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Ach, rief Humboldt, was sei Wissenschaft denn dann?

Gauß sog an der Pfeife. Ein Mann allein am Schreibtisch. Ein Blatt Papier

vor sich, allenfalls noch ein Fernrohr, vor dem Fenster der klare Himmel.

Wenn dieser Mann nicht aufgebe, bevor er verstehe. Das sei vielleicht Wis-

senschaft.

– Daniel Kehlmann, Die Vermessung der Welt





A B S T R A C T

Digital representations of the real world are becoming more and

more important for different application domains. Individual objects,

excavation sites or even complete cities can be digitized with today’s

technology so that they can, for instance, be preserved as digital

cultural heritage, be used as a basis for map creation, or be integrated

into virtual environments for mission planning during emergency or

disaster response tasks. Robust and efficient surface reconstruction

algorithms are inevitable for these applications.

Surface-reconstructing growing neural gas (sgng) presented in this

dissertation constitutes an artificial neural network that takes a set of

sample points lying on an object’s surface as an input and iteratively

constructs a triangle mesh representing the original object’s surface. It

starts with an initial approximation that gets continuously refined. At

any time during execution, sgng instantly incorporates any modifica-

tions of the input data into the reconstruction. If images are available

that are registered to the input points, sgng assigns suitable textures

to the constructed triangles. The number of noticeable occlusion ar-

tifacts is reduced to a minimum by learning the required visibility

information from the input data.

Sgng is based on a family of closely related artificial neural networks.

These are presented in detail and illustrated by pseudocode and

examples. Sgng is derived according to a careful analysis of these

prior approaches. Results of an extensive evaluation indicate that sgng

improves significantly upon its predecessors and that it can compete

with other state-of-the-art reconstruction algorithms.
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directly connected neighbor vertices of vi
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(vi, vj) Edge connecting vertices vi, vj

* Used synonymously for the point itself.
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1
I N T R O D U C T I O N

Reconstruction of 3d geometry is of major interest for different appli-

cation domains. Among others, reverse engineering, cultural heritage,

urban reconstruction, and surveying are striving for reconstructing

detailed digital geometric 3d models of existing real world objects.

If images of these objects are available, it is desirable to use them to

texture the models.

In this dissertation surface-reconstructing growing neural gas (sgng)

is presented, an iterative online algorithm that constructs a triangle

mesh from a set of sample points lying on an object’s surface. Sgng in-

stantly provides a coarse approximation of the object’s shape that gets

continuously refined. At any time during reconstruction, additional

data can be added to extend the model, and the mesh constructed

so far is readily available for visualization. If the sample points are

extracted from images, sgng uses them as textures for the resulting

triangle mesh. That way, fine details of the object’s surface are visible

even on an initially coarse approximation of the object’s shape.

1.1 motivation

Recent developments allow remotely piloted aircraft (rpa) to be used

in a variety of civil scenarios. If equipped with suitable payload, a

swarm of rpa can monitor pollution levels, serve as communication

hotspots or relays in order to increase a cellular network’s coverage or

bandwidth, or it can provide low-altitude aerial images for surveying

or to support map creation. Even autonomous package delivery was

considered recently by a major electronic commerce company.

Camera-equipped rpa are also especially useful for reconnaissance

during emergency or disaster situations or for search and rescue mis-

sions: Rpa can be used safely in situations that are too dangerous to

send human relief-units. Rpa can be sent to remote places immediately

while a response team is being assembled, and they can increase the

area covered by the mission. The aerial images acquired by the rpa are
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introduction

transmitted to the command and control center and are then used for

mission planning. In a common approach, the individual images are

assembled to create overview visualizations that are combined with

existing data, e.g., from geo-databases. However, three dimensional

data, i.e., 3d points, can be extracted from the images using stereopho-

togrammetry if the images are mutually overlapping. From this data a

suitable surface reconstruction algorithm can create textured 3d mod-

els to serve as a virtual environment of the operation area supporting

decision-making and eventually the units in the field [105, 116]. Even

the relief-units can be equipped with cameras providing additional

images, thus extending the virtual environment. To be useful in such

scenarios, surface reconstruction has to provide quick initial approx-

imations of the captured objects that will be continuously refined

whenever new data becomes available without discarding the model

constructed so far. Thus, especially during prolonged missions, using

an incremental online algorithm is inevitable.

Similar scenarios can be conceived for cultural heritage, archaeology,

or large scale urban reconstruction where a digital image library is

continuously updated either by experts or by crowd work. New

images are then automatically used to extend the reconstructed 3d

geometry. The model created so far can be displayed using suitable

rendering techniques. It provides information about the regions where

data is missing, and thus where additional data needs to be acquired.

An incremental online algorithm will incorporate the new data by

immediately extending the model, thus providing visual feedback

whether suitable images have been added. Impressive results for this

scenario have been achieved, but by using offline algorithms [2, 48].

Many of the state-of-the-art reconstruction algorithms do not work

in the desired way, neither incremental nor online, although data

acquisition itself is an incremental process: Whether laser scanning,

stereophotogrammetry, or mechanical probing is used, groups of

captured 3d points are provided sequentially. However, many recon-

struction algorithms require that the input data has been acquired

completely before reconstruction can start. Even if they are able to

adapt to modified or extended input data they have to recreate at least

parts of the model. Many require a regular sampling pattern, e.g., like

in depth images, whereas unorganized point clouds as obtained by

stereophotogrammetry are a way more general type of input.

In contrast to these approaches, online learning based reconstruction

algorithms are generally able to adapt to any modifications of the

input data while reconstructing the original surface. They can even

start reconstructing as soon as the first input points are available,

and they refine their results while more input points are generated.

However, existing online learning based approaches require a huge

number of input points and rely on post-processing steps for finalizing

the mesh representing the reconstructed surface for the points seen
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1.2 how to read this dissertation

so far. If continuous previewing is desired while acquiring data,

reconstruction has to be interrupted repeatedly for post-processing.

Thus, reconstruction gets costly.

Surface-reconstructing growing neural gas (sgng) that is presented in

this dissertation constitutes an artificial neural network that performs

online learning. Sgng has been designed with the aforementioned

iterative pipeline in mind, where data acquisition using overlapping

images, reconstruction, and visualization are executed in parallel.

Therefore, sgng iteratively constructs a triangle mesh even from unor-

ganized, sparse point clouds representing an object’s surface. Sgng

reduces the number of erroneously untriangulated holes to a mini-

mum by taking the constructed surface and geometric considerations

into account. Thus, at any time during the construction process a tri-

angle mesh is available, e.g., for visualization in order to direct further

data acquisition or mission planning. Furthermore, sgng instantly

adapts to any modifications of the input data: New input points may

be added, and existing points may be moved or even removed.

Besides approximating the shape and topology of the original sur-

face, sgng learns how to assign the available images as textures to the

triangles of the constructed mesh. By learning the visibility informa-

tion that is implicitly encoded in the input data, sgng does not rely on

knowing occluding triangles, as previous algorithms did that derived

occlusion from the constructed mesh. Thus, sgng reduces the number

of noticeable texturing artifacts to a minimum even if occluding ob-

jects are not represented by the input points at all. Sgng improves the

learned texture assignment whenever new images become available.

Sgng works incrementally: It operates at any time only locally on

a single input point and its neighborhood within the mesh. Thus, it

is very well suited even for massively parallel and out-of-core imple-

mentations. However, such implementations lie beyond the scope of

this dissertation and are therefore left for future work.

1.2 how to read this dissertation

In this section the reader of this dissertation is provided with a little

guidance: At first, the usage of margin notes in this work is described.

Then, the presentation of pseudocode in a literate programming ap-

proach is explained. Finally, the organization of this dissertation is

outlined by providing summaries of the individual chapters and by

suggesting suitable reading paths.

In this dissertation notes in the page margin are used frequently. Notes in the page

marginThey are intended as headlines in order to provide a more fine-grained

structure than the one that can be provided by chapters, sections, and

subsections. Furthermore, the series of margin notes of a section or

a subsection gives a very brief summary of the respective part of the

text. They therefore help the the reader navigate this dissertation.
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introduction

Many of the algorithms that are presented in this dissertation arePseudocode

illustrated by pseudocode. The pseudocode uses mostly mathematical

notation and formulae to be generally applicable. The assignment

operator ..= denotes an immediate update of a set, an attribute, or

a variable. In order to avoid that a reader has to switch frequently

between text and a separate listing, Knuth’s literate programming

approach is used [80]: Descriptive text and pseudocode are interleaved.

The syntax and the cross referencing scheme used in this dissertation

are very similar to the one used by Pharr and Humphreys [104].

The individual code fragments are named with a descriptive title

enclosed in angle brackets. Fragments’ names are used in the pseu-

docode to summarize a set of operations. In order to distinguish

between usage and definition, the symbol ≡ following a fragment’s

name indicates its definition, and the corresponding pseudocode is

indented. To provide an illustrative example, the fragment 〈Count to

10〉 presents the pseudocode for a function counting from 1 to 10.

〈Count to 10〉 ≡
〈Initialization A p. 6〉
while n < 10 do

〈Increment n A p. 6〉
end while

That way, a reader can understand the basic operation of the code at

the desired abstraction level without letting implementation details

obfuscate the intended information.

The implementation details of the other fragments—〈Initialization〉
and 〈Increment n〉 in the above example—may require more theoretical

background or a special context that has to be carefully described.

Several paragraphs may be required when describing real production

code, but it is straightforward for this example: At first a counter

variable n is initialized to zero.

〈Initialization〉 ≡ Ap. 6

n ..= 0

This counter variable is incremented in each iteration of the loop.

〈Increment n〉 ≡ Ap. 6

n ..= n + 1

Cross references are provided to help navigating the code. Whenever

a fragment is used, the page number where its definition can be found

is printed alongside the fragment’s title, preceded by a right arrow

(A ). The places of a fragment’s usage are indicated by printing

the page reference(s) preceded by a left arrow ( A) at the top right

of the fragment’s definition. Both arrows thus indicate program

flow. Furthermore, notes in the page margin help the reader locate a

fragment’s definition.
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1.2 how to read this dissertation

Sometimes, the description of a fragment is split. This is done

in order to keep descriptive text and pseudocode close together, or

when further functionality is added to an existing fragment. In such

cases, the definition of a fragment is extended by a separate code

block indicated by the symbol +≡. If, for instance, the result of the

counting has to be printed in the above example, the fragment 〈Count

to 10〉 is extended by the required output.

〈Count to 10〉 +≡
print n

The following paragraphs outline the scope of this dissertation. Organization

They provide a short summary of the content and the contributions of

each chapter. Finally, sensible reading paths are suggested.

The remainder of this chapter gives an overview of existing surface Chapter 1

reconstruction techniques. Since sgng also provides automatic textur-

ing, several existing techniques for texturing a constructed triangle

mesh are also presented. The main contribution of each approach is

summarized. At the end of this chapter, the scientific publications are

outlined that the contributions of this dissertation are based upon.

Ch. 2 presents a taxonomy of fundamental artificial neural networks Chapter 2

that have been applied to surface reconstruction and that sgng is based

upon. The learning algorithm of each neural network is described

in detail and illustrated by pseudocode. Examples demonstrate the

capabilities and characteristics of the networks. That chapter provides

the theoretical background for the development of sgng. It covers

Kohonen’s self-organizing map [81, 82, 83] and ranges over neural gas

and the topology representing network by Martinetz et al. [91, 92, 93,

94] to Fritzke’s growing cell structures [49, 51, 53] and growing neural

gas [52]. The descriptions end with the growing self-reconstruction map

by do Rêgo et al. [41].

Ch. 3 evaluates the relationship of Hoppe’s progressive mesh [62] Chapter 3

and Fritzke’s growing cell structures (gcs) [49, 51, 53]. Both use edge

split operations to refine a coarser mesh. However, later extensions

making gcs suitable for surface reconstruction [70] add edge collapse

operations to remove superfluous vertices. Therefore, the constructed

mesh is by definition no progressive mesh anymore. In that chapter, an

improved vertex removal scheme is derived that enables the extended

gcs to construct a progressive mesh. The resulting data structure is

furthermore used as an acceleration structure to identify the closest

vertex and the second-closest vertex to an input point efficiently.

Ch. 4 presents the details of surface-reconstructing growing neural gas Chapter 4

(sgng). At first, sgng’s immediate predecessor, the growing self-recon-

struction map [41], is analyzed with special regard to its limitations that

are caused by competitive Hebbian learning [93]. From this analysis, the

requirements for sgng are derived. Afterwards, the sgng algorithm

is described in detail. Pseudocode is presented for each part of the

algorithm, as well as implementation details making sgng an efficient
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reconstruction algorithm. Suitable learning parameters for sgng are

determined before testing it with a publicly available benchmark [14]

and before comparing it to screened Poisson surface reconstruction by

Kazhdan and Hoppe [78]. Further improvements included in sgng

are evaluated in separate experiments. Finally, sgng is tested with

real-world data ranging from original range data from the Stanford

Scanning Repository [114] to point clouds extracted from images

taken in Paris, France. Results indicate that sgng improves upon its

predecessors and achieves similar or even better performance than

existing state-of-the-art reconstruction algorithms.

Ch. 5 presents a texturing extension for sgng. If sgng is usedChapter 5

to reconstruct objects from point clouds that have been extracted

from images, then the images can be assigned as textures to the

constructed triangles. That way, high-resolution visual details are

added already to the initially coarse approximation of an object’s

shape that sgng provides. At first, a straightforward way to learn

surface color is presented. Afterwards, a more widely applicable

algorithm is presented that selects suitable textures from the original

images while reducing the number of occlusion artifacts to a minimum.

Existing techniques derive visibility from the reconstructed geometry,

but it is hard to guarantee in real-world applications that occluders are

represented accurately in the input points and in the reconstruction. To

overcome this, the presented extension learns the visibility information

that is implicitly encoded in the input data. A visual evaluation using

the data sets from Paris, France, reveals that sgng with automatic

texture assignment provides good visual quality and successfully

reduces the number of occlusion artifacts as desired.

Ch. 6 concludes this dissertation and relates the results and findingsChapter 6

from the previous chapters to each other. Finally, further research

directions are presented that have been determined during the work

for this dissertation but that lie beyond the scope of this work.

If this dissertation is read from Ch. 1 to 6 then it provides the readerSuggested

reading paths with the motivation and the theoretical foundations for using surface-

reconstructing growing neural gas to reconstruct textured 3d objects

from unorganized point clouds in an iterative pipeline. However, the

individual chapters are intended to be mostly self-contained so that a

reader with a strong background in artificial neural networks based on

Kohonen’s self-organizing map may treat Ch. 2 merely as a reference

while reading Ch. 4 and 5. In order to apply the texturing extension to

other surface reconstruction algorithms, Ch. 5 provides a good starting

point, given that the reader is familiar with the basic algorithm of

sgng. At present, the algorithm that creates a progressive mesh while

learning, presented in Ch. 3, is restricted to be used in growing cell

structures. Integrating it into sgng has been beyond the scope of this

dissertation. That chapter may therefore also serve as a starting point

for future work.

8
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1.3 related work

Online surface reconstruction from unorganized point clouds using

an artificial neural network with integrated texture mapping is the

main focus of this dissertation. Therefore, the topics discussed in the

subsequent chapters have a majority of the related work in common.

It is presented here in order to provide a common context for the

techniques examined in the remainder of this dissertation. Additional

related work for specific subjects is presented when needed.

Since a large body of work has already been done, and since sur-

face reconstruction is still an active field of research, only a small

fraction of it can be covered in this dissertation. Nevertheless, several

important techniques are presented in this section to give a represen-

tative overview of the field. The reader is referred to several available

surveys and state of the art reports to find more information.

A good starting point for getting a detailed overview of the research Surveys

field of surface reconstruction is probably the recent state of the art

report by Berger et al. [15]. It focuses on algorithms that approximate

a surface from point clouds representing static objects. The report

categorizes the discussed algorithms with respect to priors and the

type of data imperfections that are addressed, as well as with respect

to the format that the reconstructed surface is represented in.

The survey by Musialski et al. [99] focuses on techniques that are

required for urban reconstruction. The survey categorizes the cov-

ered techniques with respect to their output type. It distinguishes

algorithms that reconstruct individual buildings and, if applicable,

corresponding semantics from algorithms for large-scale urban re-

construction up to massive city reconstruction. Besides presenting

algorithms from these two categories, the survey reviews techniques

for façade reconstruction. Finally, it provides a detailed explana-

tion about stereo vision, structure from motion, multi-view stereo,

and point cloud generation based on stereo vision. Therefore, that

survey does not only provide related work but also the theoretical

background for generating the data that is used as an input to the

algorithms presented this dissertation.

The state of the art report by Attene et al. [11] reviews techniques

for polygon mesh repairing. The individual techniques are grouped

by defects that they resolve, like noise, holes, intersections, and de-

generacies. Furthermore, the survey characterizes applications that

generate meshes by the defects that they commonly produce, and it

characterizes applications that use meshes, e.g., for visualization, by

the defects that need to be avoided. It thus helps choosing appropri-

ate mesh repairing algorithms when linking applications to form a

processing pipeline. Especially the presented techniques for removing

topological noise and for repairing non-manifold connectivity may

serve as possible extensions to sgng in order to improve the quality
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of early approximations from sparsely sampled input data. However,

integrating them is left for future work.

The survey by Cazals and Giesen [25] covers techniques for surface

reconstruction that are based on the Delaunay triangulation of the

input point samples. The presented algorithms construct a surface

that interpolates the input data. They pose strong requirements on

the input data, but they may provide provable guarantees for the

geometric and topological quality that the reconstruction of the surface

can achieve. The survey categorizes the presented algorithms by the

main approach they take, for instance, labeling the tetrahedra in the

Delaunay triangulation of an input point set into tetrahedra that lie

inside the volume or outside the volume that is enclosed by the surface

to be reconstructed. The monograph by Dey [35] provides another

overview on reconstruction techniques from the same field of research.

In a very popular reconstruction approach, the surface is repre-Implicit surfaces

sented implicitly by a function that is fitted to the input data. Distance

functions and indicator functions are most commonly used. The for-

mer assigns a value to each point that represents its distance to the

original surface. The latter assigns a constant value to points inside an

object and a different constant value to points outside an object. After-

wards the isosurface of a level set—often the zero-level set for distance

functions—of this function is generated and triangulated, given that

a triangle mesh is the intended output format. This output mesh is

approximating the input data, and it serves as the reconstruction of the

original object’s surface. Variations of marching cubes by Lorensen and

Cline [88] are commonly used for this purpose. However, it is known

to produce many triangles that are irregular or close to degenerate.

Tangent planes proposed by Hoppe et al. [64] is a straightforward

approach to estimate a distance function from a set of unorganized 3d

points. For each input point p a tangent plane is estimated by applying

principal component analysis to the group of k nearest neighbor points

of p. Afterwards, the tangent planes are oriented consistently to create

a piecewise linear approximation of the zero-level set of the desired

distance function. Finally, the function is evaluated at the vertices of a

prespecified cubical lattice for isosurface extraction.

Volumetric range image processing (vrip) proposed by Curless and

Levoy [30] uses range images as an input. From these range images

a cumulative signed distance function and a cumulative weight func-

tion are computed. The functions are then evaluated on a discrete

voxel grid, and an isosurface is extracted that represents the original

object’s surface. Finally, vrip employs hole filling in order to create a

watertight reconstruction.

Kazhdan [75] proposes to compute an indicator function in the

frequency domain. Later, Poisson surface reconstruction (psr) proposed

by Kazhdan et al. [79] poses surface reconstruction as a spatial Poisson

problem. For this purpose, the input points need to store at least
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an approximation of the oriented surface normals. A vector field is

computed from the input points and the corresponding normals. This

vector field is equal to the gradient of a smoothed indicator function

that assigns a value of one to points inside the original object and a

value of zero to points outside the object. An isosurface is extracted

from the vector field by a variant of marching cubes that was adapted

to an octree representation, leading to a watertight triangle mesh. An

out-of-core implementation of psr was proposed by Bolitho et al. [20]

that allows for handling huge data sets.

Recently, psr was refined to screened Poisson surface reconstruction

(spsr) by Kazhdan and Hoppe [78]. Additional positional constraints

are included so that deviations from the input data are penalized by an

additional energy term. That way, a mesh generated by spsr represents

the input data better than a mesh generated by psr. Furthermore, spsr

improves the algorithmic complexity using hierarchical clustering and

a conforming octree structure.

While vrip, psr, and spsr use signed distance functions directly, the

approach by Mullen et al. [97] creates an unsigned distance function as

a starting point that is more robust to outliers and noise. The function

is then discretized hierarchically in order to provide more detail close

to the surface. A sign is estimated in a similar hierarchical way. At

first, a coarse estimation is determined by ray shooting that is refined

in regions close to the surface. Finally, the surface is extracted using

Delaunay refinement by Boissonnat and Oudot [19].

The approach of Hornung and Kobbelt [67] also uses unsigned

distances as a starting point. A confidence map is computed from the

input points that, if evaluated on a voxel grid, yields the probability

that the original surface passes through a given voxel. The surface is

then extracted via a graph-cut proposed by the same authors [68].

Another group of algorithms originated from computational geom- Computational

geometryetry. These algorithms use the input data to partition the space that

an original object is embedded in. A subset of this partition is then

used to create a reconstruction of the original object.

In a very early paper two approaches are proposed by Boisson-

nat [18]. The first approach uses the fact that the surface of a three-

dimensional object is two-dimensional. The algorithm creates an initial

edge between a point and its closest neighbor. Afterwards, triangles

are created iteratively by picking suitable points from the input data

that have not been picked yet, and by connecting them to the existing

contour edges. The second approach uses the Delaunay triangulation

of the input points to start from. Afterwards, tetrahedra of the Delau-

nay triangulation are eliminated until all input points are located on

the boundary of the resulting polyhedral shape.

Three-dimensional α-shapes proposed by Edelsbrunner and Mücke [43]

also starts from the Delaunay triangulation of the set of input points.

This algorithm generalizes the notion of planar α-shapes introduced
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earlier by Edelsbrunner et al. [44]. In the 3d approach, intuitively, the

edges and faces of the tetrahedra are carved away by a ball of radius

α. The ball reaches all positions for which no input point is located

inside the ball. The remaining edges and faces represent the object to

be reconstructed for a given value of α. For an actual implementation

the valid α-intervals are precomputed for every edge and face of the

Delaunay triangulation.

The ball pivoting algorithm proposed by Bernardini et al. [16] is

closely related to α-shapes as it constructs a subset of an α-shape. At

first, three input points are selected in such a way that a ball with a

given radius that is touching the three points does not contain any

other point. These input points are then connected to create a first

seed triangle. Afterwards, the ball is pivoted around each contour

edge. When it touches a new input point it is connected to the respec-

tive edge in order to create a new triangle. A new seed triangle is

created once the ball has been pivoted around all edges. The algorithm

terminates if no such triangle can be created.

The crust algorithm proposed by Amenta et al. [5] uses a Voronoi-

filtered Delaunay triangulation in order to select the triangles that

represent the original surface. At first, the Voronoi cells of the input

points are computed. Afterwards, one (if the input point lies on

the convex hull of the input data) or two poles are determined for

each input point. These poles are represented by the vertices of a

point’s Voronoi cell that are farthest away from the point; one on the

inside of the original surface, one on the outside. Finally, the Delaunay

triangulation of the union of the set of input points and the set of poles

is computed. The surface of the original object is then represented by

the set of triangles of the Delaunay triangulation for which all three

vertices are input points.

Power crust proposed by Amenta et al. [7] modifies this approach. At

first, the poles are determined. Afterwards, the power diagram [12, 42]

of the poles is constructed, which constitutes a Voronoi diagram that

is weighted by the Euclidean distance of a pole to the corresponding

input point. Finally, the surface of the original object is represented by

the boundary separating the power diagram cells of the inner poles

from the power diagram cells of the outer poles.

Both algorithms, crust and power crust, come alongside very elab-

orate theoretical guarantees and have been extensively refined. To

mention only a few: Cocone by Amenta et al. [6] simplifies crust

by eliminating some computation steps. Tight Cocone by Dey and

Goswami [36] creates a watertight surface from a preliminary cocone

reconstruction. Dey and Goswami [37] provide theoretical guarantees

if the input data contains noise. Eigencrust by Kolluri et al. [84] im-

proves the resistance to noise by using a spectral partitioning scheme.

All of the algorithms presented above, the ones using implicit func-Iterative pipeline

tions and the ones from computational geometry, require the complete
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input data set to be available when they start. They therefore cannot

provide any preview during scanning that can be used to direct fur-

ther data acquisition. To give a first impression of the surface while

scanning an object, points are extracted from matched depth images

in a model-acquisition pipeline proposed by Rusinkiewicz et al. [109].

The points are then rendered using QSplat rendering proposed earlier

by Rusinkiewicz and Levoy [108]. However, the final mesh is still

constructed offline using vrip.

KinectFusion proposed by Newcombe et al. [100] basically provides a

gpu implementation of the above approach: Arbitrary, complex indoor

scenes are reconstructed in real-time using only a single Microsoft™

Kinect®. The acquired depth images are fused to create a single

model. Unlike the above approach using frame-to-frame tracking,

KinectFusion tracks against the full surface model acquired so far.

While this approach provides real-time preview that is well suited to

direct further data acquisition, it is restricted to depth images, whereas

unorganized point clouds are a way more general type of input.

A third group of algorithms that are suitable for surface recon- Learning

struction are based on machine learning techniques. The presenta-

tion focuses on techniques that use a neural network, since surface-

reconstructing growing neural gas that is presented in this dissertation

is based upon those. However, a recent approach using a different

learning scheme has been included for completeness.

Xiong et al. [133] recently proposed a surface reconstruction ap-

proach based on dictionary learning. A subset of input points that

is selected by Poisson disk sampling [29] serves as an initial set of ver-

tices for the mesh to be constructed. The connectivity and vertex

positions are then learned iteratively, switching between connectivity

learning, i.e., keeping the vertex positions fixed, and position learning,

i.e., keeping the connectivity fixed. Optimization is performed by

minimizing a sophisticated energy function including a point-to-mesh

metric and a regularization term, and by enforcing a manifold con-

straint. The number of vertices remains fixed during learning. Thus,

the approach cannot adapt to any modifications of the input data.

Other dictionary-based techniques have successfully been applied to

related tasks before. For instance, Gal et al. [55] use a dictionary of

shape priors for surface reconstruction, and Wang et al. [124] create a

dictionary representing sharp features for denoising.

Surface-reconstructing growing neural gas (sgng) is based on a family

of closely related neural networks that were not designed for surface

reconstruction in the first place, but that have been later applied to this

task. These algorithms are very well suited for an iterative pipeline.

They start learning as soon as the first input points are provided, and

they refine their results while more input points become available.

The self-organizing map (som) proposed by Kohonen [81, 82, 83] is

the most fundamental neural network that learns the positions of
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a prespecified number of neurons with a predefined connectivity

from the input data. Neural gas (ng) [91, 92, 94] and the topology

representing network (trn) [93] proposed by Martinetz et al. added

topology learning capabilities. Growing cell structures (gcs) proposed

by Fritzke [49, 51, 53] added the capability to automatically learn

the density of the neural network, i.e., the required number of neu-

rons. Finally, growing neural gas (gng) proposed by Fritzke [52, 53]

combines both, learning the density and the topology. A detailed de-

scription of these fundamental neural networks including a taxonomy

characterizing their capabilities is presented in Ch. 2.

Yu [134] was one of the first who applied Kohonen’s som to surface

reconstruction. The neurons of the network represent the vertices of

the triangle mesh to be constructed. The edges that are connecting the

neurons of the network represent the edges that are connecting the

vertices of the triangle mesh. Edge swap operations [65] are added in

order to improve the quality of the reconstructed mesh. Furthermore,

a multiresolution-learning scheme is used. An initial approximation of

the overall shape is determined with a low number of vertices. Once

the desired accuracy is reached, each face is split into four smaller

faces. Then, learning continues at a higher resolution, adding finer

detail. That way, the number of iterations performed with detailed

meshes, and thus with high computational cost, is reduced.

Várady et al. [119] applied Fritzke’s gcs to free-form surface recon-

struction and improved upon an earlier approach by Hoffmann and

Varady [60] that used Kohonen’s som. Instead of a triangle mesh, the

neural network represents the control mesh of a nurbs or a Bézier

surface. Thus, a new row or a new column is added to the control

mesh in order to refine the network.

Neural meshes have been introduced by Ivrissimtzis et al. for sur-

face reconstruction. Their first approach [70] modifies Fritzke’s gcs

by replacing the original neighbor learning scheme with tangential

smoothing [117]. Furthermore, the edge split that is used to add ver-

tices in active regions in gcs is replaced with a vertex split in order

to balance the valences of the vertices. Finally, removal of inactive

vertices is included. A later approach [71, 72, 73] introduces topol-

ogy modifications by removing triangles that have become too large

and by merging boundaries that are located close to each other. In

addition to the above improvements, neural mesh ensembles [74] have

been proposed in order to improve the reconstruction quality and the

performance by employing ensemble learning. Based on the above

neural meshes, Saleem [110] suggests a more efficient algorithm to lo-

cate active vertices for mesh refinement. Instead of using an activity

counter, the vertices are ordered in a list, and active vertices are moved

closer to the front of the list.

Smart growing cells (sgc) proposed by Annuth and Bohn [8] extend

neural meshes. They introduce aggressive cut out for removing triangles

14



1.3 related work

in what they call degenerated regions of the mesh. Sgc labels regions

as degenerated in which the valence of a vertex is too high or that

contain too many acute-angled triangles. After removing the trian-

gles, the resulting boundary is repaired. Furthermore, sgc improves

the boundary merging process of neural meshes. Finally, sgc adapts

the density of the constructed mesh to the curvature of the original

surface and improves the reconstruction quality of sharp features. A

tumble tree proposed by Annuth and Bohn [9] is used to locate active

vertices for mesh refinement efficiently. The same authors compare

the performance of their sgc to an implementation based on Fritzke’s

gng [10], and evaluate the parallelization potentials of the algorithms.

Melato et al. [95] evaluate the applicability of trn by Martinetz and

Schulten and Fritzke’s gng to surface reconstruction. In their imple-

mentation the vertex positions are optimized and the interconnecting

edges are created during learning. The triangle faces are constructed

in a post-processing step after learning has been finished.

Meshing growing neural gas proposed by Holdstein and Fischer [61]

employs a very similar approach. At first, noisy input data is filtered

by curvature analysis. Then, Fritzke’s gng is used to learn vertex posi-

tions and interconnecting edges. Afterwards, the required triangles

are constructed during a post-processing step. Holdstein and Fischer

furthermore propose to adaptively refine the constructed triangle

mesh in user-selected regions.

The approach proposed by Fišer et al. [47] improves the nearest-

neighbor search that is required in Fritzke’s gng. A growing uniform

grid is used to reduce the computational complexity of the algorithm.

Furthermore, handling of a vertex’ activity is improved in order to

reduce reconstruction times.

The growing self-reconstruction map (gsrm) proposed by do Rêgo

et al. [39, 40, 41] is the immediate predecessor of sgng that is pre-

sented in this dissertation. Gsrm improves upon Fritzke’s gng by

creating some triangles during learning. Gsrm aims at avoiding self-

intersections and non-manifold edges with more than two adjacent

triangles. Furthermore, obtuse triangles are removed once they are

detected in order to improve the quality of the reconstructed mesh.

However, gsrm still requires a post-processing step to complete learn-

ing the topology and to triangulate remaining holes. Gsrm is covered

in detail in Sec. 2.8. The growing self-organizing surface map proposed

by DalleMole et al. [31, 32, 33] is closely related to gsrm. However, the

former implements a different connection-learning rule.

Recently, Orts-Escolano et al. [101, 102] proposed an algorithm that

extends gsrm. In addition to creating only single triangles adjacent to

an edge, the algorithm triangulates quadrangles and pentagons once

they are detected during learning. While it leaves fewer holes untri-

angulated, their approach still requires additional processing steps to

finalize the topology once learning has been finished. However, some
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higher-order polygons cannot be closed at all. Nevertheless, Orts-

Escolano et al. integrate a straightforward method to approximate

color and normal information.

Learning algorithms that rely on post-processing to complete the

triangle mesh are not very well suited for an iterative pipeline where

data acquisition, reconstruction, and visualization are executed in

parallel: Learning has to be interrupted repeatedly for post-processing

while acquiring data. Thus, reconstruction gets costly. Iterative al-

gorithms that keep the number of vertices fixed can provide visual

feedback while reconstructing. However, reconstruction has to be

restarted from scratch whenever the input data was modified. Sgng

that is presented in this dissertation overcomes these shortcomings in

order to provide visual feedback while acquiring further data.

None of the existing reconstruction techniques support texture as-Texture assignment

signment directly, although point clouds with registered images are

available by now: Points can be extracted from images, for instance,

using multi-view stereo [54] or structure from motion (sfm) [130]. Fur-

thermore, modern 3d scanners provide rgb images that are registered

to the points. Sgng automatically assigns the image as a texture to

a triangle that provides the most perpendicular view of the triangle

and that most likely shows the unoccluded triangle. Therefore, sgng

even allows for incremental textured preview while acquiring data,

reducing the number of occlusion artifacts to a minimum. Texture

assignment is integrated into sgng learning. Other related techniques

exist, but would have to be executed after reconstruction has finished.

Lempitsky and Ivanov [85] propose an approach for assigning im-

ages as textures to the triangles of the mesh using mesh-based Markov

random field (mrf) energy optimization. Suitable texture coordinates

are obtained by projecting the triangles into the images. An energy

function is used to select the image as a texture that provides the most

perpendicular view of a triangle and that reduces the noticeability of

seams between different textures on adjacent triangles. Minimization

is done via α-expansion graph cuts [21]. The proposed technique

reduces the overall length of texture seams, placing the seams into

regions where only little texture misalignment occurs.

Sinha et al. [113] use a very similar approach, but define the mrf

on a texel grid. A more sophisticated energy function is used in their

approach that also considers the depth values encoded in the point

cloud in order to reduce the number of artifacts due to occluders that

are not reconstructed accurately. Furthermore, a user may label image

regions as suitable or unsuitable for texturing by brushing.

Abdelhafiz [1] proposes an approach that selects the image as a

texture that provides the most perpendicular view of a triangle and

in which the projected area of the triangle is largest. Two steps of

occlusion handling are applied. The first uses the depth information
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acquired from the reconstructed object in order to determine which

triangles are visible in an image. The second relies on color similarities.

The approach by Gal et al. [56] improves upon the approach by

Lempitsky and Ivanov [85]. The former adds a set of local image

transformations to the search space for optimization. That way, the

number of noticeable artifacts due to misalignments and inaccurate

reconstruction is reduced to a minimum. However, the approach does

not address any artifacts that are caused by occlusion.

Musialski et al. [98] propose a system for generating façade ortho-

textures from perspective images taken with hand-held cameras. The

approach automatically constructs façade planes and aligns the images

by sfm. User input is required to define the extent of each façade.

Some occlusion artifacts are avoided automatically by using the depth

information obtained from sfm. Similar to the approach by Sinha

et al. [113], a user can interactively remove image regions that are

unsuitable for texturing.

Dellepiane et al. [34] warp the images locally to compensate for

small inaccuracies in reconstruction and texture alignment. Their

approach computes the optical flow between overlapping images.

Since the camera positions vary too much for direct computation, the

algorithm performs pair-wise computations, projecting one image

onto the reconstructed object and then into the image space of the

second image. Afterwards, a displacement for the pixels in the first

image is computed in the image space of the second image. The

displacement is then projected via the reconstructed object into the

image space of the first image. However, occlusions are not handled.

Birsak et al. [17] propose a pipeline for assigning photos as textures

to a triangle mesh. Their approach improves upon the algorithm of

Lempitsky and Ivanov [85] including the masks for the images that

have been proposed by Callieri et al. [23]. These masks allow for select-

ing images with better quality by considering, for instance, a pixel’s

distance to the image borders or a pixel’s focusing. Furthermore, a

user can provide a stencil mask, excluding parts of the photos. In

addition to that, the approach handles occlusion by first rendering a

depth map using the reconstructed object. Afterwards, an image is

considered as a texture for a triangle only if the triangle is visible in

the image according to the depth map. This approach is similar to the

one proposed by Chen et al. [26] and requires that all occluders are

reconstructed accurately.

In addition to the texture assignment and occlusion handling pre-

sented above, each of the approaches employs techniques that reduce

the noticeability of texture seams by blending and leveling. Integrat-

ing them into sgng is beyond the scope of this dissertation and has

therefore been left for future work.
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1.4 scientific publications

The contributions presented in this dissertation are based on the

following publications:

A first sketch of the intended processing pipeline in which sgng

will be used and a virtual reality-based simulation framework for the

pipeline have been presented at the joint virtual reality conference of

Egve - Icat - EuroVr (Jvrc’10) [115]. Prototypic results of iterative

surface reconstruction from unorganized point clouds using a self-

organizing map in the intended pipeline have been presented at the

international symposium on virtual reality innovations (Isvri’11) [116].

The evaluation and the relationship of growing cell structures (gcs)

and a progressive mesh (pm) as well as the intuitive approach for letting

gcs learn a pm that is described in Ch. 3 have been presented at the

33rd annual conference of the European association for computer

graphics (Eg’12) [121].

A first version of sgng, the reconstruction algorithm presented in

Ch. 4, has been published as a technical report by the department of

computer science of the University of Muenster [122]. A prototypic

sketch of the texturing extension presented in Ch. 5 has been presented

at the first Eurographics workshop on urban data modelling and

visualisation (Udmv’13) [123]. The complete version of sgng as well

as the improved texturing extension will be presented at the shape

modeling international conference (Smi’15). The corresponding article

is published in Computers & Graphics [120].
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2
F U N D A M E N TA L A RT I F I C I A L N E U R A L N E T W O R K S

Surface-reconstructing growing neural gas (sgng), the reconstruction al-

gorithm that is proposed in this dissertation, is intended to fit seam-

lessly into an iterative processing pipeline where scanning, reconstruc-

tion, and visualization are executed in parallel. Sgng is based on an

artificial neural network that allows for continuous online learning.

In order to make this dissertation self-contained, the learning algo-

rithms and the capabilities and characteristics of a family of related

neural networks are presented in this chapter: The fundamental algo-

rithm is described on the basis of a very early approach. Each network

discussed afterwards adds a certain feature to the learning algorithm

up to the immediate predecessor of sgng. This chapter summarizes

the information from the original publications in a consistent way

in order to provide the theoretical background for the subsequent

chapters.

2.1 history and taxonomy

Kohonen’s self-organizing map (som) [81, 82, 83] proposed in 1981 is 1981: SOM

the most fundamental type of the neural networks that are used for

learning-based surface reconstruction, and that are summarized in

this chapter. Som iteratively learns the positions of a fixed number

of vertices that are connected in a mesh with a prespecified topology.

Yu [134] was the first to apply som for surface reconstruction. He pro-

poses edge swap and multiresolution learning to make the algorithm

more effective and more efficient.

In order to also learn the topology of the mesh Martinetz et al. [91, 1991: NG

92, 94] proposed neural gas (ng) in 1991. The vertex positions are

learned in a similar way as in som. However, after the position learning

phase has been finished, edges are created in a post-processing step

according to a competitive Hebbian learning (chl) rule.

Shortly after ng was developed, Fritzke [49, 51, 53] proposed growing 1992: GCS

cell structures (gcs) in 1992. Gcs constructs a mesh from an initial,
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Figure 2.1: The relation of the fundamental neural networks and their
capabilities to learn the topology and the network size.

k-dimensional simplex, i.e., a line (k = 1), a triangle (k = 2), or a

tetrahedron (k = 3), depending on the surface to be reconstructed. The

homeomorphic type of the constructed mesh is therefore prespecified,

and as in som it will not be changed during learning. In contrast to

som, gcs is able to adapt the number of vertices to the distribution

of the input data: Vertices are added by an edge split or removed

by an edge collapse. Such a growing scheme allows for simplified

learning rules for the vertex positions. Gcs was used later for surface

reconstruction among others by Várady et al. [119], by Ivrissimtzis

et al. [70], and by Annuth and Bohn [8].

In 1994 Martinetz and Schulten [93] refined their ng to the topology1994: TRN

representing network (trn) by combining both position and topology

learning into the iterative phase. That way the entire set of edges is

created during learning without relying on post-processing steps.

After having developed the growing scheme for gcs, Fritzke [52, 53]1995: GNG

combined it with the capabilities of the recently developed trn into

his growing neural gas (gng) in 1995. He proposed a network that is

able to construct a mesh with both the topology and the number of

vertices learned from the input data. Gng was later used for surface

reconstruction among others by Holdstein and Fischer [61], and by

do Rêgo et al. [39, 40, 41]. The former create the desired triangles

during a post-processing step after gng learning has finished, similar

to the post-processing step used in ng.

In 2010 the growing self-reconstruction map (gsrm) was proposed by2010: GSRM

do Rêgo et al. [39, 40, 41]. Gsrm is used as a basis for the devel-

opment of sgng. The former creates some of the desired triangles

during the learning process. However, gsrm cannot create all triangles

during learning as the underlying ng, trn, and gng, and thus still

requires a post-processing step to complete the triangle mesh. There-

fore gsrm is not particularly well suited for continuous online surface

reconstruction.

Fig. 2.1 gives an overview of the relationships between the above

artificial neural networks and their capabilities to learn the topology
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and the network size, i.e., the number of vertices. Since gcs modifies

vertex connectivity while learning, it is considered to be slightly more

versatile in terms of the constructed topology than som. Since trn

creates edges and gsrm creates triangles during the main learning

loop, they are considered to be slightly more versatile in terms of the

constructed topology than ng or gng, respectively. Gng and gsrm are

considered to be slightly less versatile in terms of the network size

than gcs, since both rely on the topology learning steps to remove

superfluous vertices instead of addressing them explicitly.

2.2 the basic reconstruction algorithm

The artificial neural networks that are outlined in the subsequent

sections learn the positions of a set V of neural units or vertices from

a set P of unorganized input points. The vertices are connected by

a set E of edges according to a prespecified or learned topology to

create a mesh. Some of the networks even create a set F of triangles.

All the networks share the same basic reconstruction algorithm: In

the beginning the network is initialized, i.e., the initial sets of vertices,

edges and, if applicable, faces are created. Afterwards, learning is

iterated in a loop for a prespecified number tmax of iterations or until

a predefined convergence criterion is met. In each iteration t an input

point pξt
is selected randomly from the set P of input points. Then, the

neural network adapts the vertex positions and, if the network allows

for it, the topology to the selected input point according to specific

learning rules. If the neural network relies on a post-processing step,

it is applied after the learning loop has finished.

〈Reconstruction〉 ≡
〈Initialization〉
for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

〈Updates according to pξt
〉

end for each

〈Post-processing step (if applicable)〉
The individual reconstruction algorithms of all networks are presented

in detail in the subsequent subsections.

Vertex positions, edges, sets, etc. are initialized in the beginning

and updated in each iteration of the learning algorithm. In order to

keep the notation concise the assignment operator ..= is used for this

purpose. The instruction

x ..= x + y

calculates x + y and assigns the result to x afterwards, similar to x=x+y

in a programming language like, e.g., C.

The artificial neural networks described in this chapter are gener-

ally able to operate in arbitrary dimensional spaces. However, this
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Figure 2.2: Input point sets used in the examples (gray area).

work focuses on reconstruction of 2d surfaces embedded in 3d space.

The following descriptions therefore use 3d positions. Nevertheless,

extensions to higher dimensional spaces are straightforward.

The characteristics of each neural network is illustrated with twoExamples

examples that are using input data sampled from surfaces with dif-

ferent genera. For the sake of clarity of the figures only input points

of the form
[
x y 0

] ⊤ ∈ R
3 are used. In the first example the input

points are sampled uniformly at random from a square (Fig. 2.2(a))

P = {
[
x y 0

] ⊤ | x, y ∈ [0, 1]} . (2.1)

In the second example the input points are sampled uniformly—with

respect to the surface area—at random from an annulus (Fig. 2.2(b))

P = {p ∈ P | ‖p −
[
0.5 0.5 0

] ⊤‖ ∈ [
√

0.125, 0.5]} . (2.2)

2.3 self-organizing map

Kohonen’s self-organizing map (som) [81, 82, 83] is the most fundamen-

tal artificial neural network that is related to the final reconstruction

algorithm proposed in this dissertation. The reconstruction algorithm

consists of two phases.

〈SOM reconstruction〉 ≡
〈SOM initialization A p. 23〉
〈SOM learning A p. 24〉

During initialization a set V of neural units vi,j ∈ V is created thatSOM initialization

are arranged in a rectangular grid of h rows and w columns (Fig. 2.3(a)).

In order to create a mesh representing a 2d surface h, w ≥ 2. To each

unit vi,j ∈ V its normalized 2d location ui,j =
[
ri,j si,j

] ⊤ ∈ [0, 1]2 in

the neural network is assigned. These 2d locations will not be modified

during learning. Since each unit of the neural network represents a

22



2.3 self-organizing map

s

r

(a) Locations and connectivity of
the units in the neural network.

y

x

(b) Initial positions and connectiv-
ity of the vertices in the mesh.

Figure 2.3: Initial configuration of som reconstructing a square (gray):
The individual units ( ) of the neural network are arranged
in a regular grid inside the network (a). The vertices ( )
of the initial triangle mesh are placed at the positions of
randomly selected input points (b).

vertex in the mesh to be constructed, a 3d position vi,j ∈ R
3—in the

space into which the original surface is embedded—is assigned to

each unit. The vertices of the initial mesh share the connectivity of

the neural units in the neural network: An edge that is connecting

a pair of neural units is also connecting the pair of vertices that are

represented by the units. The positions vi,j of the vertices are initialized

to the positions of randomly selected input points (Fig. 2.3(b)). The 3d

positions vi,j will be optimized during learning.

〈SOM initialization〉 ≡ Ap. 22

V ..= {vi,j | i = 1, . . . , h , j = 1, . . . , w} , i , j , h , w ∈ N

u : V 7A R
2 where u(vi,j) = ui,j

..=
[

j−1
w−1

i−1
h−1

]
⊤

v : V 7A R
3 where v(vi,j) = vi,j

..= pξi,j
∈ P

The shorthands ui,j and vi,j are used instead of u(vi,j) and v(vi,j),

respectively, in the remainder of this work.

To define the topology of the neural network and thus the mesh to

be constructed, a set E of horizontal, vertical, and diagonal edges is

created in the neural network (Fig. 2.3(a)).

〈SOM initialization〉 +≡ Ap. 22

E ..= {(vk,l , vk,l+1) | vk,l , vk,l+1 ∈ V } ∪
{(vk,l , vk+1,l) | vk,l , vk+1,l ∈ V } ∪
{(vk,l , vk+1,l+1) | vk,l , vk+1,l+1 ∈ V }

Since the vertices in the constructed mesh share the connectivity of the

neural units, the initial triangle mesh is randomly folded (Fig. 2.3(b)).

Online learning is iterated in a loop for a prespecified number tmax SOM learning

of iterations. Alternatively, a predefined convergence criterion can be
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Table 2.1: Learning parameters used in the som examples.

Parameter Value

Step size ǫi . . . ǫ f 0.5 . . . 0.005
Standard deviation of lateral influence σi . . . σf 1.0 . . . 0.01
Maximum number of iterations tmax 30 000

used, for instance, a prespecified maximal mean distance between the

input points and the vertex positions.

In each iteration t of som learning an input point pξt
is selected

randomly from the set P ⊂ R
3 of input points. Afterwards, the 3d

positions assigned to the neural units are adapted to pξt
.

〈SOM learning〉 ≡ Ap. 22

for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

〈SOM position updates A p. 24〉
end for each

For the selected input point pξt
the best matching, i.e., closest, unitSOM position

updates vb ∈ V with respect to the assigned 3d position vb and the ℓ2-norm

‖·‖ is determined. Then, the 3d position vi of each unit vi ∈ V is

adapted to pξt
.

〈SOM position updates〉 ≡ Ap. 24

vb = arg minvi∈V
‖vi − pξt

‖

vi
..= vi − ǫ(t) · hσ(t, vi, vb) · (vi − pξt

) , ∀vi ∈ V

This update rule uses a time dependent step size specifying the overall

adaptation rate. To be consistent with the description of ng by Mar-

tinetz et al. [92, 94] in Sec. 2.4 the following time dependence is used

here:

ǫ : N A [0, 1] , where ǫ(t) = ǫi ·
(

ǫ f

ǫi

)t·t−1
max

.

Initially, ǫ(t = 0) = ǫi. It decreases monotonically over time t ∈ N in

such a way that ǫ(t = tmax) = ǫ f . Furthermore, the update rule of

som uses a time dependent neighborhood function

hσ : N× V × V A [0, 1] ,

where hσ(t, vi, vb) = exp

(
−‖ui − ub‖2

2σ(t)2

)

specifying a lateral influence among the neural units. The lateral

influence is related to the distance of a unit vi to vb in the neural

network. It is modeled by a Gaussian [83, 94] centered at the 2d
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(a) ǫ(t) (b) hσ(t, vi, vb) (c) ǫ(t) · hσ(t, vi, vb)

Figure 2.4: Step size (a), lateral influence (b), and combined learning
rate (c) of som (Tab. 2.1), plotted against the distance of vi

to vb and the normalized number of iterations.

location ub of the best matching unit vb in the network, with a time

dependent standard deviation

σ : N A R , where σ(t) = σi ·
(

σf

σi

)t·t−1
max

. (2.3)

Thus, hσ(t, vi, vb) = 1 ⇐⇒ vi = vb, and 0 ≤ hσ(t, vi, vb) < 1

otherwise. Initially, σ(t = 0) = σi. It decreases monotonically over

time t ∈ N in such a way that σ(t = tmax) = σf . Since the step

size ǫ(t), the value of the lateral influence hσ(t, vi, vb), and the radius

around the best matching unit in which hσ has an effect are initially

large, som can create an ordered map, i.e., unfold the mesh. Since all

three monotonically decrease over time, som initially performs large

updates that get smaller the longer the algorithm is running.

Fig. 2.3 shows an example of an initial som configuration. The Example for

som learningnetwork contains 121 connected neural units that are arranged in

a regular 11 by 11 grid. The learning parameters that are used in

the reconstruction examples are set to the values that Martinetz and

Schulten [93] used (Tab. 2.1), in order to be comparable with the next

two neural networks. The initial standard deviation of the lateral

influence was set to half the value that Martinetz and Schulten used

in order to emphasize the characteristics of som in the examples.

Fig. 2.4 shows plots for the step size, the lateral influence, and

the combined learning rate. In order to give an impression of the

progression of the respective function in the neural network and over

time, the value of the respective function is plotted on the z-axis against

the distance of a unit vi to the best matching unit vb on the x-axis, and

the number t of iterations normalized to the maximum number tmax of

iterations on the y-axis. The distance of the units is computed from the

2d locations ui and ub of the units in the neural network. As required

for the creation of an ordered map from the random initialization, all

three functions decrease monotonically over time. The step size ǫ(t)

is constant over 2d distance to vb, but the lateral influence hσ(t, vi, vb)
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and thus the combined learning rate monotonically decrease over

distance.

In the first example the input points P ⊂ P (Eq. 2.1) are drawn

uniformly at random from a square. Fig. 2.5 shows the resulting mesh

after different numbers of iterations. It can easily be seen that the

constructed mesh shrinks but unfolds itself during the first iterations

(Fig. 2.5(a)–(d)) due to a wide lateral influence. Afterwards, while the

lateral influence is narrowing down to only the best matching unit,

the vertices spread out (Fig. 2.5(e)–(g)) until they are fairly evenly

distributed across the input square (Fig. 2.5(h)).

If σ(t) A 0 and thus hσ(t, vi, vb) A δvj,vb
the Kronecker delta, thenRelation to k-means

clustering som learning will become equivalent to an online, stochastic variant

of the k-means clustering algorithm [87, 90]. In that case, the learning

rules of som minimize the overall position error of the vertices in the

mesh by a stochastic gradient descent on an energy function

E = ∑
vi∈V

∑
pk∈Pvi

‖vi − pk‖2 . (2.4)

Here Pvi
⊆ P contains all input points that are located in the Voronoi

cell of vi, i.e., all input points that are closer to the 3d position vi

assigned to vertex vi than to the 3d position assigned to any other

vertex with respect to the ℓ2-norm. Unfortunately, the above energy

function has several local minima leading to folded meshes.

In order to create an ordered map, i.e., a mesh that is not folded,Lateral influence

leads to ordered map and thus to avoid the undesired local minima, the units in the neural

network may not be affected independently of each other as Koho-

nen [83] noted. Therefore, som accounts for the topological relation

among the neural units by using an initially large but monotonically

decreasing lateral influence hσ(t, vi, vb). Due to this lateral influence,

the learning rules cannot be described as a gradient descent on a

single energy function anymore—neither one like (Eq. 2.4) nor any

other one—as Erwin et al. [45] proved.

In fact, using a wide lateral influence with σ(t) 6= 0 in early itera-

tions is crucial for som, since the 3d positions are initialized randomly.

Otherwise, with hσ(t, vi, vb) 6= 0 only for vi = vb in all iterations, the

mesh will not be unfolded at all (Fig. 2.6(a)). If a constant but narrow

lateral influence is used in such a way that only the best matching

unit and its directly connected neighbors are affected, the mesh will

be unfolded only partially by som learning (Fig. 2.6(b)). Nevertheless,

the latter concept is used later in algorithms that induce an initial

ordering of the vertices by construction (Sec. 2.6–2.8).

The topology of the surface that is reconstructed by som is prede-Predefined topology

fined by the initial topology of the network. It is not modified during

learning. For an illustration the input points P ⊂ P (Eq. 2.2) are

drawn uniformly at random from an annulus in the second example.

Fig. 2.7 shows the resulting mesh after different numbers of iterations.
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Figure 2.5: Som reconstructing a square.
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Figure 2.6: Meshes created by 30 000 iterations of som learning using
different lateral influences: An input point is affecting (a)
only the best matching unit, (b) only the best matching
unit and its direct topological neighbors.

As in the previous example the mesh initially shrinks (Fig. 2.7(a)–(e))

and eventually unfolds itself (Fig. 2.7(f), (g)). Finally, nearly all vertices

are located on or close to the input annulus (Fig. 2.7(h)). However, it

can easily be seen that som is unable to reconstruct the topology of

the input data: The learning algorithm yields a mesh that bridges the

hole of the annulus.

2.4 neural gas

with subsequent competitive hebbian learning

The iterative updates of the vertex positions in som yield very good

results if the predefined topology of the network matches the topology

of the input data. To learn arbitrary topologies Martinetz et al. [91,

92, 94] proposed neural gas (ng) that creates all of the edges, i.e., the

topology, in a separate post-processing step using competitive Hebbian

learning (chl). The basic reconstruction algorithm of ng is similar to

that of Kohonen’s som.

〈NG reconstruction〉 ≡
〈NG initialization A p. 30〉
〈NG position learning A p. 30〉
〈NG topology learning A p. 32〉

In ng—and in all the following networks—the neural units and

the vertices of the mesh to be constructed do not need to be treated

separately anymore. Furthermore, the 2d location of a unit in the

network is not required. That way, notation gets simplified in such a

way that vi simultaneously refers to the neural unit and the related

vertex position. Thus, from now on V ⊂ R
3 for the set of vertices.

During initialization a set V of n vertices vi ∈ V ⊂ R
3 is created. InNG initialization

order to create a mesh representing a 2d surface, n ≥ 3. The positions
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Figure 2.7: Som reconstructing an annulus.
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Figure 2.8: Initial configuration of ng reconstructing a square.

vi of the vertices are initialized to the positions of n randomly selected

input points (Fig. 2.8). The vertex positions will be optimized during

learning, but edges will be created only in the post-processing step

after position learning has finished.

〈NG initialization〉 ≡ App. 28, 35

V ..= {v1 , . . . , vn} , vi
..= pξi

∈ P , i , n ∈ N , n ≥ 3

E ..= ∅

As for som, online learning is iterated in a loop for a prespecifiedNG position learning

number tmax of iterations. Alternatively, a predefined convergence

criterion can be used, for instance, a prespecified maximal mean

distance between the input points and the vertex positions. However,

the update rules for vertex positions of ng differ from that of som.

In each iteration t of ng learning an input point pξt
is selected

randomly from the set P ⊂ R
3 of input points. Afterwards, the vertex

positions are adapted to the selected input point.

〈NG position learning〉 ≡ Ap. 28

for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

〈NG position updates A p. 31〉
end for each

For the selected input point pξt
a neighborhood ranking (V ) =NG position updates

(vi0 , . . . , vin−1
) is created in such a way that the entries vim

in (V ) are

sorted according to their distance to pξt
in ascending order

‖vim
− pξt

‖ ≤ ‖vim+1
− pξt

‖ , m ∈ {0, 1, . . . , n − 2} ,

i.e., vi0 is the vertex closest to pξt
, and vin−1

is the vertex farthest away

from pξt
with respect to the ℓ2-norm. Let a function k yield the rank

of a vertex vik
in the neighborhood ranking (V )

k : V × P × V ∗
A {0, 1, . . . , |V | − 1} ,
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Table 2.2: Learning parameters used in the ng examples.

Parameter Value

Step size ǫi . . . ǫ f 0.5 . . . 0.005
Width of lateral influence λi . . . λ f 10.0 . . . 0.01
Maximum number of iterations tmax 30 000

where V ∗ denotes the set of all conceivable vertex sets. Then, the som

update rule can be rewritten using a new neighborhood function

hλ : N×N A [0, 1]

yielding the lateral influence of a unit according to its rank.

〈NG position updates〉 ≡ App. 30, 35

vi
..= vi − ǫ(t) · hλ

(
t, k(vi, pξt

, V )
)
· (vi − pξt

) , ∀vi ∈ V

Similar to the lateral influence of som Martinetz et al. used a Gaus-

sian for hλ that is centered at k = 0 with a time-dependent standard

deviation σ(t) =
√

0.5λ(t):

hλ

(
t, k(vi, pξt

, V )
)
= exp

(
−

k(vi, pξt
, V )

λ(t)

)
,

where λ(t) uses the same time dependence as the standard deviation

σ(t) in som (Eq. 2.3):

λ : N A R where λ(t) = λi ·
(

λ f

λi

)t·t−1
max

.

Initially, λ(t = 0) = λi. It decreases monotonically over time t ∈ N in

such a way that λ(t = tmax) = λ f .

Similar to som, if λ(t) A 0 and thus hλ

(
t, k(vi, pξt

, V )
)
A δk,0 the Relation to k-means

clustering,

energy function
Kronecker delta, then ng learning will also become equivalent to an

online, stochastic variant of the k-means clustering algorithm [87, 90].

However, in contrast to som, ng will on average execute a stochastic

gradient descent on a single energy function even if λ(t) 6= 0. Details

can be found in the work of Martinetz et al. [94].

After the position learning phase has been finished, the topology NG topology learning

of the original surface is learned. For this purpose edge creation is

iterated in a loop for a prespecified number t′max of iterations. If a

finite set of input points is used, t′max should be set to the number

of input points so that each point will be presented once to learn the

entire topological information.

In each iteration t′ a point pξt′
is selected randomly from the set

P of input points. For the selected pξt′
the closest vertex vb and the

second-closest vertex vc are determined with respect to the ℓ2-norm.
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If these vertices are not yet connected by an edge, a new edge (vb, vc)

connecting both will be created.

〈NG topology learning〉 ≡ Ap. 28

for each t′ ∈ {1, 2, . . . , t′max} do

randomly select pξt′
∈ P

vb = arg minvi∈V ‖vi − pξt′
‖

vc = arg minvi∈V \{vb} ‖vi − pξt′
‖

E ..=E ∪ {(vb, vc)}
end for each

Martinetz and Schulten prove that the set of edges that is createdRelation to Delaunay

triangulation during the ng topology learning phase forms a subset of the set of

edges that are present in the Delaunay triangulation of the vertices in

V [91, 93]. The proof is sketched only roughly here for the sake of a

concise description. Details can be found in the original work.

Any edge connecting two vertices vi, vj ∈ V is present in the Delau-

nay triangulation of the vertices in V iff their Voronoi polyhedra* Dvi

and Dvj
are adjacent. For the proof Martinetz and Schulten introduce

a second-order Voronoi polyhedron Dvi ,vj
that contains all points that

are closer to both vi and vj than to any other vertex vk 6= vi, vj. This

allows for a straightforward proof that two Voronoi cells Dvi
and Dvj

are adjacent iff the second-order Voronoi cell Dvi ,vj
is not empty.

During ng topology learning Dvb,vc is obviously not empty since it

contains at least pξt′
that was sampled from the surface to be recon-

structed. Thus, Dvb
and Dvc are adjacent, and finally the edge (vb, vc)

is present in the Delaunay triangulation of the vertices. However, some

Dvi ,vj
might not contain any selected pξt′

∈ P , thus ng topology learn-

ing does not create all of the edges that are present in the Delaunay

triangulation. This fact is used later for motivating the development

of surface-reconstructing growing neural gas in Sec. 4.1.

Fig. 2.8 shows an example of an initial ng configuration. TheExamples for

NG learning network contains 121 vertices that are placed at the position of ran-

domly selected input points. The learning parameters that are used

in the reconstruction examples are set to the values that Martinetz

and Schulten [93] used (Tab. 2.2). For the figures ng position learning

was interrupted after prespecified numbers t′max of iterations. Then,

topology learning was executed for t′max iterations. Afterwards, the

reconstruction was restarted from scratch.

In the first example the input points P ⊂ P (Eq. 2.1) are drawn

uniformly at random from a square. Fig. 2.9 shows the resulting mesh

after different numbers of iterations. It can easily be seen that the

vertices tend to form clusters during the first iterations (Fig. 2.9(a)–(d))

due to a wide lateral influence. They do not collapse to a single small

* Since Voronoi polyhedra are also called Dirichlet regions, the symbol D is used to
avoid confusion with the set V of vertices.
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Figure 2.9: Ng reconstructing a square.
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Figure 2.10: Ng reconstructing an annulus.
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cluster as they do in som. While the lateral influence is narrowing

down to only the best matching unit, the vertices spread out (Fig. 2.9(e)–

(g)) until they are fairly evenly distributed across the input square (Fig.

2.9(h)). The more input points are selected during topology learning,

the more edges are created. Eventually, the constructed mesh is nearly

completely triangulated (Fig. 2.9(h)). However, some higher-order

polygons cannot be triangulated by the chl rule.

The topology of the surface that is reconstructed by ng is not prede- Arbitrary topologies

fined as it was for som. Instead, it is created during the final topology

learning phase. This is illustrated in the second example where the

input points P ⊂ P (Eq. 2.2) are drawn uniformly at random from an

annulus. Fig. 2.10 shows the resulting mesh after different numbers

of iterations. As in the previous example, the vertices form clusters

initially (Fig. 2.10(a), (b)), form a ring (Fig. 2.10(c)–(e)) and eventually

spread out (Fig. 2.10(f), (g)). Finally, all vertices are located on the

annulus (Fig. 2.10(h)), with the hole reconstructed correctly. As before,

some higher-order polygons remain untriangulated.

2.5 topology representing network

Ng does not simultaneously provide the complete mesh with opti-

mized vertex positions and a learned topology at any time during the

reconstruction process. Instead, it relies on a post-processing step to

create the necessary edges. To allow for topology adjustments in each

learning iteration Martinetz and Schulten [93] proposed the topology

representing network (trn). Trn uses the same initialization as (Sec. 2.4),

and a learning algorithm that is almost identical to that of ng.

〈TRN reconstruction〉 ≡
〈NG initialization A p. 30〉
〈TRN learning A p. 35〉

As before, online learning is iterated in a loop for a prespecified TRN learning

number tmax of iterations. Alternatively, a predefined convergence

criterion can be used, for instance, a prespecified maximal mean

distance between the input points and the vertex positions.

In each iteration t of trn learning an input point pξt
is selected

randomly from the set P ⊂ R
3 of input points, and the vertex positions

are adapted according to the learning rule of ng. In contrast to ng, the

selected input point is used to modify the topology of the constructed

mesh in the very same iteration.

〈TRN learning〉 ≡ Ap. 35

for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

〈NG position updates A p. 31〉
〈TRN topology updates A p. 36〉

end for each
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In trn edges are created according to the same chl rule that wasTRN topology

updates used for ng. Thus, in each iteration a new edge (vb, vc) is created, if it

does not yet exist, so that the closest vertex vb and the second-closest

vertex vc for pξt
are connected. Upon creation, the new edge is present

in the Delaunay triangulation of the vertices.

However, during trn learning, two connected vertices might be

moved to positions where they do no longer form the pair of closest

and second-closest vertex for any input point. Therefore, they are no

longer connected in the respective Delaunay triangulation. Thus, trn

eventually disconnects such vertices by removing obsolete edges.

〈TRN topology updates〉 ≡ App. 35, 47

vb = arg minvi∈V ‖vi − pξt
‖

vc = arg minvi∈V \{vb} ‖vi − pξt
‖

E ..= E ∪ {(vb, vc)}

〈TRN obsolete edge removal A p. 36〉

To enable disconnecting vertices, each edge (vk, vl) ∈ E keeps trackTRN obsolete edge

removal of its age a:

a : E 7A N , with a
(
(vk, vl)

)
..= 0 for a new edge (vk, vl) .

The age of the edge connecting the closest vertex vb and the second-

closest vertex vc is reset to zero in each iteration, whether it already

existed or was just created. The age of all other edges emanating from

vb is incremented by one. If two connected vertices vk, vl do no longer

form the pair of closest and second-closest vertex for any input point,

and thus need to be disconnected, the age of the edge (vk, vl) will

increase since it is not reset to zero anymore. If the age exceeds a

predefined threshold amax(t), the edge is deleted. This threshold uses

the same time dependence as, e.g., the step size in som or ng:

amax : N A R , where amax(t) = amaxi
·
(

amax f

amaxi

)t·t−1
max

.

Initially, amax(t = 0) = amaxi
. It decreases monotonically over time

t ∈ N in such a way that amax(t = tmax) = amax f
.

〈TRN obsolete edge removal〉 ≡ App. 36, 53

a
(
(vb, vc)

)
..= 0

a
(
(vb, vn)

)
..= a

(
(vb, vn)

)
+ 1 , ∀(vb, vn) ∈ E \ (vb, vc)

Eamax = {(vk, vl) ∈ E | a
(
(vk, vl)

)
> amax(t)}

E ..= E \ Eamax

For the trn examples the same initial configuration as for ng isExamples for

TRN reconstruction used with 121 vertices that are placed at the position of randomly

selected input points (Fig. 2.8). The learning parameters that are used

36



2.6 growing cell structures

Table 2.3: Learning parameters used in the trn examples.

Parameter Value

Step size ǫi . . . ǫ f 0.5 . . . 0.005
Width of lateral influence λi . . . λ f 10.0 . . . 0.01
Maximum edge age amax,i . . . amax, f 12.0 . . . 242.0
Maximum number of iterations tmax 30 000

in the reconstruction examples are set to the values that Martinetz and

Schulten [93] used (Tab. 2.3).

In the first example the input points P ⊂ P (Eq. 2.1) are drawn

uniformly at random from a square. Fig. 2.11 shows the resulting

mesh after different numbers of iterations. It can easily be seen that

the vertices are located at exactly the same positions as during ng

learning, since the topology updates do not affect the position updates

in trn. However, trn creates a different set of edges. It creates

more edges than ng in early iterations (Fig. 2.11(c)–(e)). Since edges

are created during learning, some of them intersect. Eventually, the

intersections are removed during later iterations (Fig. 2.11(f), (g)). The

final mesh consists of many triangles (Fig. 2.11(h)), but more higher-

order polygons remain untriangulated than in the final mesh that was

constructed by ng.

In the second example the input points P ⊂ P (Eq. 2.2) are drawn

uniformly at random from an annulus. Fig. 2.12 shows the resulting

mesh after different numbers of iterations. As in the previous example,

the vertices form clusters initially (Fig. 2.12(a), (b)), form a ring (Fig.

2.12(c)–(e)), and eventually spread out (Fig. 2.12(f), (g)). Finally, all

vertices are located on the annulus (Fig. 2.12(h)), with the hole recon-

structed correctly. As before, there are some higher order polygons

that remain untriangulated, some more than in the example for ng.

2.6 growing cell structures

Although som produces very good results, it is unable to create meshes

of arbitrary sizes: The number of vertices is fixed and has to be

predefined according to the specific task. Building upon som learning

rules, Fritzke [49, 51, 53] proposed growing cell structures (gcs) in order

to create meshes with an arbitrary size.

Since gcs starts with only a single k-dimensional simplex and re-

fines it locally in a predefined way, gcs creates an ordered map by

construction. That way, the lateral influence for position updates

does only need to have local support without any time dependence,

leading to reduced complexity and thus shorter running times. Trian-

gles can be integrated into gcs in a straightforward way for surface

reconstruction [70]. Therefore they are included in this description.
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Figure 2.11: Trn reconstructing a square.
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Figure 2.12: Trn reconstructing an annulus.
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Figure 2.13: Initial configuration of gcs reconstructing a square.

The reconstruction algorithm of gcs consists of two phases.

〈GCS reconstruction〉 ≡
〈GCS initialization A p. 40〉
〈GCS learning A p. 41〉

During initialization a set V of k + 1 vertices vi ∈ V ⊂ R
3 is created,GCS initialization

with k = 2 if a surface has to be created that is homeomorphic to

a disc, and with k = 3 for a surface that is homeomorphic to a

sphere. The positions vi of the vertices are initialized to the positions

of randomly selected input points (Fig. 2.13). The vertex positions will

be optimized during learning. Edges are created in such a way that all

pairs of initial vertices are connected once. For surface reconstruction,

triangular faces are created accordingly, so that the initial mesh forms a

k-dimensional simplex, i.e., a triangle (k = 2) or a tetrahedron (k = 3).

〈GCS initialization〉 ≡ Ap. 40

V ..= {v1 , . . . , vk+1} , vi
..= pξi

∈ P ,

i ∈ {1, 2, . . . , k + 1} , k ∈ {2, 3}
E ..= {(vi, vj) ∈ V 2 | vi 6= vj}
F ..= {△(vl , vm, vn) ∈ V 3 | (vl , vm), (vm, vn), (vn, vl) ∈ E}

As before, online learning is iterated in a loop for a prespecifiedGCS learning

number tmax of iterations. Alternatively, a predefined convergence cri-

terion can be used, for instance, a prespecified number of constructed

vertices or triangles, or a prespecified maximal mean distance between

the input points and the constructed mesh.

In each iteration t of gcs learning an input point pξt
is selected

randomly from the set P ⊂ R
3 of input points. For the selected input

point pξt
the best matching, i.e., closest, vertex vb ∈ V with respect to

the ℓ2-norm ‖·‖ is determined. Afterwards, the vertex positions are

adapted to pξt
. Finally, gcs checks whether the density of the mesh

constructed so far needs to be modified in order to match the input

points better, i.e., if vertices need to be added or removed.
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2.6 growing cell structures

〈GCS learning〉 ≡ Ap. 40

for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

vb = arg minvi∈V
‖vi − pξt

‖

〈GCS position updates A p. 41〉
〈GCS density updates A p. 41〉

end for each

Let N yield the set of vertices that are directly connected to another GCS position updates

vertex by an edge

N : V 7A P(V ) , with N (vi) = Nvi
= {vn ∈ V | (vi, vn) ∈ E} ,

where P(·) denotes the power set. The shorthand Nvi
is used instead

of N (vi) in the remainder of this dissertation.

Since gcs creates an ordered map by construction, only the best

matching vertex vb that is closest to pξt
and its directly connected

neighbors vn ∈ Nvb
are adapted to pξt

according to update rules using

constant step sizes β for vb, and η for its neighbors, with β, η ∈ [0, 1].

In practice, to achieve good results β ≫ η.

〈GCS position updates〉 ≡ App. 41, 47, 52, 90

vb
..= vb − β(vb − pξt

)

vn
..= vn − η(vn − pξt

) , ∀vn ∈ Nvb

In order to adapt the density of the constructed mesh to the density GCS density updates

of the input points, each vertex vi ∈ V keeps track of its activity τ and

the number ϑ of the last iteration it was selected as best match:

τ : V 7A R , τ(vi) ≥ 0 , with τ(vi) ..= 0 initially (2.5)

ϑ : V 7A N , with ϑ(vi) ..= t initially . (2.6)

Whenever a vertex is selected best match for an input point, its activity

is incremented by one. To weight activity in recent iterations stronger

τ decays over time by a constant factor α ∈ [0, 1].

〈GCS density updates〉 ≡ Ap. 41

τ(vb) ..= τ(vb) + 1

ϑ(vb) ..= t

〈GCS mesh refinement A p. 42〉
〈GCS mesh coarsening A p. 43〉

τ(vi) ..= ατ(vi) , ∀vi ∈ V

Whenever the number of iterations is an integer multiple of a prede- GCS mesh refinement

fined parameter λs, a new vertex vo is added to the mesh. It is placed

in the middle of the longest edge (vm, vn) emanating from the most

active vertex vm. In order to preserve the topology of the constructed

mesh the new vertex is created by splitting the edge (vm, vn) and its
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Figure 2.14: Splitting edge (vm, vn), collapsing edge (vo, vm).

adjacent triangles (Fig. 2.14 left to right). Activity is distributed among

the existing and the new vertices according to the number |Nvo | of

neighbors of the new vertex.

〈GCS mesh refinement〉 ≡ Ap. 41

if t ≡ 0 (mod λs) then

vm = arg maxvi∈V τ(vi)

vn = arg maxvj∈Nvm
‖vm − vj‖

V ..= V ∪ {vo
..= vm+vn

2 }

split edge (vm, vn) with new vertex vo

τ(vk) ..= (1 − 1
|Nvo |

) · τ(vk) , ∀vk ∈ Nvo

τ(vo) ..= 1
|No | ∑vk∈No

τ(vk)

end if

The edge split creates the new vertex vo, and it deletes the existing

edge (vm, vn) and the triangles adjacent to it. Afterwards, new edges

are inserted so that vo is connected to vm and vn, and to their common

neighbors. Finally, triangles are created for each loop of three edges

that contains vo.

Ivrissimtzis et al. [70] added a topology preserving removal ofGCS mesh coarsening

inactive vertices to gcs: Whenever the number of iterations is an

integer multiple of a predefined parameter λc, the set Vo ⊂ V of

inactive vertices vo ∈ Vo is removed from the mesh. A vertex is

considered inactive, if it was not selected as best matching vertex for

any input point for a number of ∆ϑmax iterations in a row. If vertices

and input points are distributed uniformly, a vertex is likely selected

best match in µ of µ · |V | iterations, where |V | denotes the number of

vertices in the mesh. Thus, ∆ϑmax = µ · |V | yields a suitable threshold

to detect inactivity robustly.

In order to preserve the topology of the constructed mesh, inactive

vertices vo ∈ Vo are removed by collapsing an edge (vo, vm) and its

adjacent triangles (Fig. 2.14 right to left). The edge (vo, vm) is selected

in such a way that the topological type of the constructed mesh is

preserved, and that the valences of the affected vertices are as close to
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Table 2.4: Learning parameters used in the gcs examples.

Parameter Value

Step size (best match vb) β 0.06
Step size (direct neighbors vn ∈ Nvb

) η 0.002
Activity decay α 0.95
Inactivity threshold ∆ϑmax 6 · |V |
Iterations for split and collapse λs, λc 100

six as possible. Hoppe et al. [65] defined criteria for the former, and

Ivrissimtzis et al. [70] introduced a regularity error Ec for the latter:

Ec : E A R , Ec

(
(vo, vm)

)
≥ 0 ,

with Ec

(
(vo, vm)

)
=

(|Nvm |+ |Nvo | − 10)2 + (|Nvr | − 7)2 + (|Nvs | − 7)2 , (2.7)

where |Nvk
| denotes the number of neighbors of a vertex vk, and vo

denotes the inactive vertex, vm denotes the other endpoint of the

selected edge, and vr, vs denote the two affected neighbors (Fig. 2.14

right). Gcs selects the vm that causes the lowest Ec

(
(vo, vm)

)
.

〈GCS mesh coarsening〉 ≡ Ap. 41

if t ≡ 0 (mod λc) then

Vo = {vo ∈ V | ϑ(vo) < t − ∆ϑmax}
for each vo ∈ Vo do

V +
o = {vl ∈ Nvo | collapsing (vo, vl) is valid [65]}

if |V +
o | > 0 then

vm = arg minvl∈V +
o

Ec

(
(vo, vl)

)

collapse edge (vo, vm) removing vertex vo

end if

end for each

end if

An edge collapse first deletes the edge (vo, vm) and its adjacent trian-

gles. Additionally, the edges connecting vo to the common neighbors

of vm and vo are deleted, but their adjacent triangles are preserved

and attached to vm. Afterwards, the remaining edges emanating from

vo and their adjacent triangles are detached from vo and attached to

vm. Finally, the inactive vertex vo is deleted.

Fig. 2.13 shows an example of an initial gcs configuration with Examples for

GCS learningk = 2. The network initially contains three vertices that are placed at

the positions of three randomly selected input points. The learning

parameters that are used in the reconstruction examples are set to the

values that Fritzke [51] used except for ∆ϑmax (Tab. 2.4).

In the first example the input points P ⊂ P (Eq. 2.1) are drawn

uniformly at random from a square. Fig. 2.15 shows the resulting mesh

after different numbers of iterations. During the first 99 iterations the
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Figure 2.15: Gcs reconstructing a square.
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Figure 2.16: Gcs reconstructing an annulus.
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initial triangle grows to match the input points better (Fig. 2.15(a)).

It is split once t ≥ λs (Fig. 2.15(b)). Afterwards, the triangles grow

again (Fig. 2.15(c)). This process is repeated during the subsequent

iterations (Fig. 2.15(d)–(g)) until the refined mesh covers the square

almost completely (Fig. 2.15(h)). The constructed triangles have very

different sizes. Quite a few are elongated, some are even close to

degenerate. Furthermore, several fold-overs occur.

In the second example the input points P ⊂ P (Eq. 2.2) are drawn

uniformly at random from an annulus. Fig. 2.16 shows the resulting

mesh after different numbers of iterations. The initial triangle grows

and is split with the process repeating as in the first example (Fig.

2.16(a)–(g)). Eventually, all of the constructed vertices are located on

or close to the annulus (Fig. 2.16(h)). The constructed triangles have

very different sizes. Quite a few are elongated, some are even close to

degenerate. It can easily be seen that gcs is unable to reconstruct the

topology of the input data: The learning algorithm constructs a mesh

that bridges the hole in the center of the annulus. Furthermore, there

are many fold-overs and some gaps.

2.7 growing neural gas

Som, ng, trn, and gcs are suitable for surface reconstruction, but they

are rather inflexible: For som, ng, and trn the number of vertices

in the constructed mesh needs to be prespecified and remains fixed

during learning. For som and gcs the topology of the surface needs

to be prespecified and remains fixed. However, ng and trn learn the

topology, and gcs learns the number of vertices.

In order to construct meshes with arbitrary topology and an arbitrary

number of vertices Fritzke introduced growing neural gas (gng) [52, 53]

which combines the capabilities of trn and gcs. Similar to gcs, gng

creates an ordered map by construction. That way, the lateral influence

for position updates does only need to have local support without

any time dependence, leading to reduced complexity and thus shorter

running times compared to trn.

The reconstruction algorithm of gng is a combination of the algo-

rithms used in trn and gcs. It consists of two phases.

〈GNG reconstruction〉 ≡
〈GNG initialization A p. 47〉
〈GNG learning A p. 47〉

During initialization a set V of two vertices vi ∈ V ⊂ R
3 is created.GNG initialization

The positions vi of the vertices are initialized to the positions of two

randomly selected input points (Fig. 2.17). The vertex positions will

be optimized during learning. No edges are created as in ng and trn,

since they are created during learning.
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Figure 2.17: Initial configuration of gng reconstructing a square.

〈GNG initialization〉 ≡ Ap. 46

V ..= {v1 , v2} , vi
..= pξi

∈ P , i ∈ {1, 2}
E ..= ∅

As before, online learning is iterated in a loop for a prespecified GNG learning

number tmax of iterations. Alternatively, a predefined convergence cri-

terion can be used, for instance, a prespecified number of constructed

vertices, or a prespecified maximal mean distance between the input

points and the vertex positions.

In each iteration t of gng learning an input point pξt
is selected

randomly from the set P ⊂ R
3 of input points. For the selected

input point pξt
the best matching, i.e., closest, vertex vb ∈ V , and the

second-best matching vertex vc ∈ V with respect to the ℓ2-norm ‖·‖
are determined. In order to adapt the density of the constructed mesh

to the density of the input points, each vertex vi ∈ V keeps track of

its activity τ (Eq. 2.5) that decays over time like in gcs. The activity of

the best matching vertex is incremented by its squared distance to the

input point. Afterwards, the vertex positions are updated according

to the position update rules of gcs, the topology is updated according

to the topology update rules of trn, and the density is updated in a

similar way as in gcs.

〈GNG learning〉 ≡ Ap. 46

for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

vb = arg minvi∈V
‖vi − pξt

‖
vc = arg minvi∈V \{vb} ‖vi − pξt

‖

τ(vb) ..= τ(vb) + ‖vb − pξt
‖2

〈GCS position updates A p. 41〉
〈TRN topology updates A p. 36〉
〈GNG density updates A p. 48〉

τ(vi) ..= ατ(vi) , ∀vi ∈ V

end for each
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Table 2.5: Learning parameters used in the gng examples.

Parameter Value

Step size (best match vb) β 0.2
Step size (direct neighbors vn ∈ Nvb

) η 0.006
Maximum edge age amax 50
Activity decay α 0.995
Iterations until mesh refinement λs 100
Activity factor on mesh refinement αs 0.5

Whenever the number of iterations is an integer multiple of aGNG density updates

predefined parameter λs, a new vertex vo is added to the constructed

mesh. It is placed in the middle of the edge (vm, vn) connecting the

most active vertex vm to its most active neighbor vn. Afterwards, vo is

connected to vm and vn, whereas the original edge (vm, vn) is deleted.

Finally, the activity of vm and vn is decreased by a prespecified factor

αs. The activity of the new vertex is initialized with the activity of vm.

〈GNG density updates〉 ≡ App. 47, 53

if t ≡ 0 (mod λs) then

vm = arg maxvi∈V τ(vi)

vn = arg maxvi∈Nvm
τ(vi)

V ..= V ∪ {vo
..= vm+vn

2 }

E ..= (E ∪ {(vm, vo), (vo, vn)}) \ (vm, vn)

τ(vm) ..= αsτ(vm)

τ(vn) ..= αsτ(vn)

τ(vo) ..= τ(vm)

end if

Fig. 2.17 shows an example of an initial gng configuration. TheExamples for

GNG learning network initially contains two vertices that are placed at the position

of two randomly selected input points. The learning parameters that

are used in the reconstruction examples are set to the values that

Fritzke [52] used (Tab. 2.5).

In the first example the input points P ⊂ P (Eq. 2.1) are drawn

uniformly at random from a square. Fig. 2.18 shows the resulting

mesh after different numbers of iterations. In the first iteration both

initial vertices get connected by an edge. During the first 99 iterations

this line segment moves and gets longer so that the vertices match the

input points better (Fig. 2.18(a)). It is split and it bends once t ≥ λs

(Fig. 2.18(b)). The vertices get connected to a first triangle during the

next few iterations (Fig. 2.18(c)). Afterwards, the constructed mesh is

refined repeatedly. The vertices spread out, new edges are added and

obsolete ones are deleted (Fig. 2.18(d)–(g)). Eventually, the constructed

mesh covers the input square almost completely (Fig. 2.18(h)). Some

intersecting edges exist. Many triangles have been created with only
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Figure 2.18: Gng reconstructing a square.
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Figure 2.19: Gng reconstructing an annulus.
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y

x

Figure 2.20: Initial configuration of gsrm reconstructing a square.

very few being degenerate. However, several higher order polygons

remain untriangulated. Only few edges intersect. The triangulation

created by gng (Fig. 2.18(h)) is apparently much more regular than

the one created by gcs (Fig. 2.15(h)).

In the second example the input points P ⊂ P (Eq. 2.2) are drawn

uniformly at random from an annulus. Fig. 2.19 shows the resulting

mesh after different numbers of iterations. The characteristics of the

results are very similar to the square example. However, at first a

ring of connected vertices is created (Fig. 2.19(a)–(e)). Eventually, the

vertices spread out (Fig. 2.19(f), (g)). Finally, all constructed vertices

are located on the input annulus (Fig. 2.19(h)). As before, some

intersecting edges exist, and many triangles have been created with

only very few being degenerate, but several higher-order polygons

remain untriangulated.

2.8 growing self-reconstruction map

Gng combines the quality of trn with the growing mechanism of gcs,

but does not create triangular faces during learning. To overcome

this—at least to some extent—do Rêgo et al. [41] proposed the grow-

ing self-reconstruction map (gsrm) that extends gng by creating some

triangles during learning and the remaining ones during a separate

post-processing step, similar to the one used in ng (Sec. 2.4).

The basic reconstruction algorithm of gsrm consists of three phases.

〈GSRM reconstruction〉 ≡
〈GSRM initialization A p. 52〉
〈GSRM learning A p. 52〉
〈GSRM post-processing A p. 54〉

Gsrm is initialized in a similar way as gng. During initialization GSRM initialization

a set V of three vertices vi ∈ V ⊂ R
3 is created, instead of two as in

gng. The positions vi of the vertices are initialized to the positions of

three randomly selected input points (Fig. 2.20). No edges are created
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as in ng, trn, and gng, since they are created during learning. Finally,

an initially empty set of triangles is created.

〈GSRM initialization〉 ≡ Ap. 51

V ..= {v1 , v2 , v3} , vi
..= pξi

∈ P , i ∈ {1, 2, 3}
E ..= ∅

F ..= ∅

Gsrm uses a learning algorithm that resembles the one of gng.GSRM learning

However, gsrm topology updates create triangles and use extended

edge creation and removal schemes. For gsrm notation is extended:

Let Fe(·) yield the set of faces that are adjacent to an edge:

Fe : E A P(F ) ,

with Fe

(
(vi, vj)

)
= {△(vi, vj, vk) ∈ F | vk ∈ Nvi

∩ Nvj
} ,

where P(·) denotes the power set.

As before, online learning is iterated in a loop for a prespecified

number tmax of iterations. Alternatively, a predefined convergence cri-

terion can be used, for instance, a prespecified number of constructed

vertices or triangles, or a prespecified maximal mean distance between

the input points and the constructed mesh.

In each iteration t of gsrm learning an input point pξt
is selected

randomly from the set P ⊂ R
3 of input points. For the selected input

point pξt
the best matching, i.e., closest, vertex vb ∈ V , and the second-

best matching vertex vc ∈ V with respect to the ℓ2-norm ‖·‖ are

determined. In order to update the density of the constructed mesh

according to the density of the input points, each vertex vi ∈ V keeps

track of its activity τ (Eq. 2.5) that decays over time. The activity of

the best matching vertex is incremented by its squared distance to the

input point. Afterwards, the vertex positions are updated according

to the position update rules of gcs. Then, the topology is updated

according to a more elaborate rule than in trn and gng. Finally, the

density is updated as in gng, with the extensions that the adjacent

faces are deleted whenever an edge is deleted, and that the activity of

the new vertex is interpolated*.

〈GSRM learning〉 ≡ Ap. 51

for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

vb = arg minvi∈V
‖vi − pξt

‖
vc = arg minvi∈V \{vb} ‖vi − pξt

‖

τ(vb) ..= τ(vb) + ‖vb − pξt
‖2

〈GCS position updates A p. 41〉
〈GSRM topology and surface updates A p. 53〉

* Thus, add F ..= F \ Fe
(
(vm, vn)

)
and τ(vo) ..= τ(vm)+τ(vn)

2 .
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〈GNG density updates A p. 48〉*

τ(vi) ..= ατ(vi) , ∀vi ∈ V

end for each

In gsrm edges are created similar to the original chl rule that was GSRM topology and

surface updatesalready used in trn and in gng. However, do Rêgo et al. [41] extended

chl in order to make it better suited for surface reconstruction: In each

iteration a new edge (vb, vc) is created if it does not yet exist, and—in

addition to the original chl rule—if the best vb and the second-best

matching vertex vc do not share more than two common neighbors.

If they shared three or more neighbors and were connected by a new

edge, then three or more faces would be created adjacent to that edge,

violating the desired 2-manifold property of the constructed mesh.

Furthermore, if vb and vc share two common neighbors vi, vj that

are connected, then the connecting edge (vi, vj) and its adjacent trian-

gles will be removed before creating the new edge (vb, vc). That way,

overlapping or intersecting edges are avoided.

If the new edge (vb, vc) generates one or two loops of three edges,

and if each of the edges in the respective loop has less than two adja-

cent triangles, then a new triangle will be created for the respective

loop. In order to improve the quality of the constructed mesh, ob-

tuse triangles are removed. Finally, obsolete edges are detected and

removed by aging as in trn and gng, with the extension that the

adjacent faces are deleted whenever an edge is deleted†.

〈GSRM topology and surface updates〉 ≡ App. 52, 54

if Nvb
∩ Nvc = {vi, vj} ∧ (vi, vj) ∈ E then

F ..= F \ Fe

(
(vi, vj)

)

E ..= E \ {(vi, vj)}
end if

if |Nvb
∩ Nvc | ≤ 2 ∧ (vb, vc) 6∈ E then

E ..= E ∪ {(vb, vc)}
F ..= F ∪ {△(vb, vc, vn) | vn ∈ Nvb

∩ Nvc ,

|Fe

(
(vc, vn)

)
| < 2 ,

|Fe

(
(vn, vb)

)
| < 2}

else if (vb, vc) ∈ E then

〈GSRM obtuse triangle removal A p. 54〉
end if

〈TRN obsolete edge removal A p. 36〉†

Whenever the edge (vb, vc) already existed, then for each edge GSRM obtuse triangle

removal(vb, vi) emanating from vb the Thales circle in the plane that contains

vb, vc, and vi is determined in order to detect and remove obtuse

triangles. If vc lies inside that circle, the triangle △(vb, vi, vc) is obtuse,

* Thus, add F ..= F \ Fe
(
(vm, vn)

)
and τ(vo) ..= τ(vm)+τ(vn)

2 .
† Thus, add F ..= F \ Fe

(
(vk, vl)

)
, ∀(vk, vl) ∈ Eamax .
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Table 2.6: Learning parameters used in the gsrm examples.

Parameter Value

Step size (best match vb) β 0.05
Step size (direct neighbors vn ∈ Nvb

) η 0.0006
Maximum edge age amax 30
Activity decay α 0.9995
Iterations until mesh refinement λs 200
Activity factor on mesh refinement αs 0.5

i.e., one of its angles is greater than 90°. Thus, edge (vb, vi) and its

adjacent triangles are deleted.

〈GSRM obtuse triangle removal〉 ≡ Ap. 53

Eo = {(vb, vi) ∈ E | ‖ vb+vi
2 − vc‖ <

‖vb−vi‖
2 }

F ..= F \ Fe

(
(vb, vi)

)
, ∀(vb, vi) ∈ Eo

E ..= E \ Eo

The topology updates of gsrm leave several higher-order polygonsGSRM

post-processing untriangulated, similar to ng, trn, and gng. In order to triangulate

the constructed mesh, do Rêgo et al. [41] execute a post-processing

step after the learning loop has finished. This post-processing step is

similar to the one that was used to created the edges in ng. Basically,

the gsrm topology and surface updates are reused without the edge

aging and removal steps. However, as in ng, this chl-based topology

learning still leaves some higher-order polygons untriangulated. These

are triangulated by adding suitable triangle fans.

〈GSRM post-processing〉 ≡ Ap. 51

〈GSRM topology and surface updates A p. 53〉*

Triangulate higher-order polygons

Fig. 2.20 shows an example of an initial gsrm configuration. TheExamples for

GSRM learning network initially contains three vertices that are placed at the position

of three randomly selected input points. The learning parameters

that are used in the reconstruction examples are set to the values that

do Rêgo et al. [41] used (Tab. 2.6). The post-processing step is not used

in the following examples making the results comparable to sgng that

is proposed later in this dissertation (Ch. 4), and that is based on gsrm.

In the first example the input points P ⊂ P (Eq. 2.1) are drawn

uniformly at random from a square. Fig. 2.21 shows the resulting mesh

after different numbers of iterations. During the first 99 iterations

the three initial vertices get connected by edges. Once the edge loop

is closed, a triangular face is added (dark gray) (Fig. 2.21(a)). One

edge is split once t ≥ λs. Due to the split the triangle is removed

leaving an untriangulated four-loop of edges (Fig. 2.21(b)). Afterwards,

* Without edge aging and removal.
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Figure 2.21: Gsrm reconstructing a square.
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Figure 2.22: Gsrm reconstructing an annulus.
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the constructed mesh is refined repeatedly, while the vertices spread

out and new edges are added (Fig. 2.21(c), (d)). Eventually, edges

are added that create loops of three edges and thus triangles (Fig.

2.21(e)–(g)). Finally, the vertices are distributed fairly evenly across the

input square, but only few triangles are created during learning (Fig.

2.21(h)). Thus, post-processing is inevitable for gsrm. Nevertheless,

most of the triangles that are created during learning are of similar

size with only few irregularities.

In the second example the input points P ⊂ P (Eq. 2.2) are drawn

uniformly at random from an annulus. Fig. 2.22 shows the resulting

mesh after different numbers of iterations. The characteristics of the

results are very similar to the square example: The triangle created

during early iterations is split and deleted (Fig. 2.22(a), (b)), and

a ring of connected vertices is created (Fig. 2.22(c)–(f)). Eventually,

the vertices spread out and triangles and higher-order polygons that

remain untriangulated are created (Fig. 2.22(g), (h)). As in the previous

example, only few triangles are created during learning.

57





3
G R O W I N G C E L L S T R U C T U R E S

LEARN PROGRESSIVE MESHES *

Several related artificial neural networks that can be used to recon-

struct a surface from an unstructured point cloud have been presented

in the previous chapter. One of them, growing cell structures (gcs), au-

tomatically adapts the density of the constructed mesh to the density

of the input points by applying edge split and edge collapse operations

(Sec. 2.6). Ivrissimtzis et al. [70] replaced the former operation with the

very closely related vertex split in order to improve the quality of the

constructed mesh. The same pair of operations—vertex split and edge

collapse—is used when generating a progressive mesh (pm) proposed by

Hoppe [62]. Thus, gcs and pm are related.

This relationship is examined in this chapter, and the learning algo-

rithm of gcs is modified using a binary tree of vertex split operations

in order to create a pm directly. Thus, the constructed triangle meshes

share the features of a pm, e.g., continuous level of detail, geomorphs,

and compact storage, at any time during learning. Additionally, the

binary tree induces a bounding volume hierarchy (bvh) for the nearest

neighbor search that is required in gcs. Its performance is similar to

the performance of an octree that is commonly used in gcs.

3.1 progressive meshes

At first, three operations edge split, vertex split, and edge collapse are

examined closely.

Ivrissimtzis et al. [70] note that the edge split that is used in Fritzke’s Edge split

gcs [50, 51] does not distribute the valences of the vertices well. There-

fore, they replace the edge split with a vertex split. Fig. 3.1 illustrates

the difference between the two: For an edge split (Fig. 3.1, center to left)

* Parts of this chapter have been published in [121] Tom Vierjahn, Guido Lorenz,
Sina Mostafawy, and Klaus Hinrichs. Growing cell structures learning a progressive
mesh during surface reconstruction – a top-down approach. In Eurographics 2012 -
Short Papers, 2012. doi: 10.2312/conf/EG2012/short/029-032.
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Figure 3.1: Edge split es(·) and edge collapse ec(·) versus vertex split
vs(·) and edge collapse operations.

in the original gcs the longest edge emanating from vm, i.e., (vm, vn),

is split by adding a new vertex vo in the middle of the edge. For this

purpose the edge and its adjacent triangles are deleted. Afterwards,

new edges are inserted so that the new vertex vo is connected to vm

and vn, and to their common neighbors. Finally, a triangle is created

for each loop of three edges that contains vo. Thus, the valence of vm

does not change during an edge split, the valence of each of the com-

mon neighbors of vm, vn is incremented by one, and the new vertex

vo has a valence of 4, whereas a valence of 6 is desirable in order to

create a mesh containing regular triangles.

The vertex split that is used by Ivrissimtzis et al. [70] (Fig. 3.1, centerVertex split

to right) also adds a new vertex vo. This time, intuitively, by dupli-

cating the edge strip (vr, vm), (vm, vs)—indicated by the double line

in Fig. 3.1 (center)—and assigning the name vo to the copy of vm.

Afterwards, vo is moved to its desired position and connected to vm

by a new edge. Finally, new triangles △(vm, vo, vs) and △(vm, vr, vo)

are inserted to close the respective edge loops. By carefully selecting

vr and vs in such a way that the star of edges emanating from vm is

approximately split in half, some of the edges that are emanating from

vm are transferred to vo. Thus, valences of vm and vo are balanced,

their difference is at most one, and eventually the resulting triangles

will be more regular.

While an edge split es(vm, vn) is unambiguously defined by specify-

ing its source vertex vm and its target vertex vn, a vertex split requires

different vertices to be specified: Besides the source vertex, the vertex

vo that is created by the vertex split needs to be specified instead of the

target vertex. Furthermore, the left vertex vs and the right vertex vr,

in the direction of the split from vm to vn (Fig. 3.1), need to be speci-

fied in order to unambiguously define a vertex split vs(vm, vs, vr, vo).

Both operations es(vm, vn) and vs(vm, vs, vr, vo) are equivalent, iff

vo =
1
2 (vm + vn) and vs, vr are the common neighbors of vm, vn.

While in general edge split and vertex split are different, both opera-Edge collapse

tions share the same inverse: the edge collapse (Fig. 3.1, left to center,

right to center). An edge collapse removes a vertex vo from the mesh

by first deleting the edge (vo, vm) and its adjacent triangles. Addi-

tionally, the edges connecting vo to the common neighbors of vm, vo

are deleted, but their adjacent triangles are preserved and attached

to vm. Afterwards, the remaining edges emanating from vo and their
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adjacent triangles are detached from vo and attached to vm. Finally,

the vertex vo is deleted. An edge collapse ec(vo, vm) is unambiguously

defined by specifying its source vertex vo and its target vertex vm.

Let M = (V , E , F ) denote a mesh consisting of a set V of vertices, Mesh

transformationsa set E of edges, and a set F of triangles. Then, a vertex split vs(·)
constitutes a transformation turning M into a transformed mesh M ′ =
(V ′, E ′, F ′) consisting of a transformed set V ′ of vertices, a transformed

set E ′ of edges, and a transformed set F ′ of triangles:

M
vs(·)

GGGGGA M ′ ,

or using function notation

M ′ = vs(·)(M ) .

The same applies to an edge collapse ec(·):

M ′ ec(·)
GGGGA M ,

or using function notation

M = ec(·)(M ′) .

Consequently, let ec(·) = vs−1(·) ⇐⇒ ec−1(·) = vs(·), then

M
vs(·)

GGGGGA M ′ ec(·)
GGGGA M , or M =

(
ec(·) ◦ vs(·)

)(
M
)

.

The application of a transformation is called move from M to M ′.
Composition is not commutative. If

M =
(
ec(vo, vm) ◦ vs(vm, · , · , vo)

)(
M
)

is defined, then

(
vs(vm, · , · , vo) ◦ ec(vo, vm)

)(
M
)

is not, since vo 6∈ M .

Hoppe et al. [65] defined a legal move in the context of mesh op- Legal moves

timization to be a move that does not change the topological type

of the mesh that it is applied to, i.e., that does not create holes or

non-manifold edges. This definition is also used here. A vertex split

does not change the topological type of M and is thus always a legal

move. In contrast, an edge collapse may change the topological type of

M . Therefore, tests have to be performed in order to make sure that

the desired edge collapse is a legal move.

Hoppe et al. [65] list three conditions for testing whether an edge

collapse is a legal move. They prove the conjunction of them to be

a necessary and sufficient condition for a legal move [66]. For this
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Figure 3.2: A legal (a) and an illegal (b) edge collapse ec (vo, vm).

purpose additional definitions are made: An edge (vm, vo) ∈ E is

defined to be a boundary edge if there exists only one △(vm, vo, vk) ∈ F

adjacent to it. Furthermore, a vertex vm is defined to be a boundary

vertex if there exists a boundary edge (vm, vl) ∈ E . Let M denote a

mesh with M = (V , E , F ). Let furthermore vm, vo ∈ V and (vm, vo) ∈
E . Then, an edge collapse ec(vo, vm) that is applied to M in such a way

that M ′ = ec(vo, vm)(M ) with M ′ = (V ′, E ′, F ′) is a legal move, iff

• ∀vk ∈ Nvm ∩ Nvo : △(vm, vo, vk) ∈ F , and

• if vm, vo are boundary vertices, (vm, vo) is a boundary edge, and

• |V | > 4 if neither vm nor vo are boundary vertices, or

|V | > 3 if either vm or vo are boundary vertices.

The last condition is strengthened to |V | > 4 for practical purposes

in gcs. It holds true in all but the very first iterations, since the con-

structed mesh grows. The second condition holds true by construction

in gcs if watertight objects are reconstructed. The first condition is

explicitly checked.

Fig. 3.2 shows an example for a legal and an illegal edge collapse

ec(vo, vm). The same set of vertices is used for both examples, but

their connectivity is slightly different. The figure shows a part of

a completely triangulated mesh, but triangles are not depicted for

the sake of clarity. Thus, neither vm nor vo are boundary vertices,

indicated by the dotted lines that are denoting further edges. The

edge (vm, vo) is not a boundary edge. Furthermore, |V | > 4. Thus the

second and the third conditions are satisfied.

In Fig. 3.2(a) vm, vo share two common neighbors vr, vs. Both tri-

angles △(vm, vo, vr),△(vm, vo, vs) ∈ F . Thus, all three conditions

hold true, and ec(vo, vm) is a legal move. In contrast, in Fig. 3.2(b)

vm, vo share three common neighbors vr, vs, vt. Only the triangles

△(vm, vo, vr),△(vm, vo, vs) ∈ F , but △(vm, vo, vt) 6∈ F . Thus, the first

condition is violated, and this time ec(vo, vm) is not a legal move.

If the edge collapse ec(vo, vm) is applied to the latter mesh anyway,

duplicate coincident triangles and edges will be introduced that will
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most likely cause an implementation of gcs to crash. If such duplicate

faces and edges are resolved correctly, the edge collapse will change

the topological type of the mesh: Edge (vs, vt) ∈ E ′ will be a bound-

ary edge, although (vs, vt) ∈ E is not. Furthermore, (vm, vt) ∈ E ′

will have three adjacent faces although (vm, vt), (vo, vt) ∈ E had two

adjacent faces each.

Thus, whenever an inactive vertex is to be removed in gcs by an

edge collapse, at first the set of legal moves is determined that remove

the vertex. If no legal edge collapse exists, removal of the inactive vertex

is deferred to a later iteration. Otherwise the edge collapse that causes

the lowest regularity error is applied to the constructed mesh. See

Sec. 2.6 for details.

With the above definitions available, Hoppe [62] notes that apply- Progressive mesh

ing a sequence of n edge collapse operations to a triangle mesh M n

transforms M n into a coarser mesh M0

M n ec1

GGGA M n−1 ec2

GGGA . . .
ecn−1

GGGGGA M 1 ecn

GGGA M 0 ,

or using function notation

M 0 =
(
ecn ◦ . . . ◦ ec1

)(
M n
)

,

with each eci = ec(·) using individual vertices as source and target.

Consequently, since each eci is invertible, any mesh M n is represented

by an initial, simple mesh M 0 and a sequence of vertex split operations

M 0 vs1

GGGA M 1 vs2

GGGA . . .
vsn−1

GGGGGA M n−1 vsn

GGGA M n ,

or using function notation

M n =
(
vsn ◦ . . . ◦ vs1

)(
M 0
)

,

with each vsi = vs(·) using individual vertices as source, new, left,

and right vertex. The tuple (M 0, f ) with f = vsn ◦ . . . ◦ vs1 is called

progressive mesh (pm) representation of M n.

A pm representation has several practical features. Geomorphs can

be implemented in a straightforward way, creating smooth visual

transitions from any M i to any M i+j. Furthermore, meshes can be

transmitted progressively and in a compressed format, e.g., from/to

disk, over a network connection, or onto the gpu*. Finally, a pm allows

for selective refinement and continuous level of detail.

Hoppe [62] proposes a preprocess to construct a pm based on his

mesh optimization approach [65]. In that approach the sequence

of edge collapse operations is determined by minimizing an energy

function that penalizes large distance errors and large numbers of

vertices, and that adds a regularization term. However, many other

* Progressive meshes are for instance included in the Microsoft® Direct3d® api [96].
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error metrics that are used to find suitable simplification steps exist [57,

63, 86, 131]. Xia and Varshney introduce a hierarchical merge tree

to create a pm representation of a detailed triangle mesh [132]. A

precomputed pm can be refined in parallel [69], and the level of detail

can be used during rendering [103]. Since gcs produces a sequence of

vertex split operations, it is well suited to create a pm. A modification

to the original learning algorithm is presented in this chapter that

enables gcs to construct a pm while learning.

3.2 problem statement

Using gcs to construct M n representing an original surface is regarded

as a transformation

M n = f (M 0)

of the initial mesh M 0, i.e., the tetrahedron or a single triangle. How-

ever, f is then composed not only of vertex split operations, but also

of edge collapse operations. Thus in general, the tuple (M 0, f ) that

is created by gcs is no pm representation of M n, but very similar to

such a representation. Level of detail (lod) can still be achieved by

subsequently applying the inverted vertex split and edge collapse oper-

ations of f−1 to M n = (V n, En, F n). But whenever an edge collapse of

f is inverted during the lod steps from the fine mesh M n towards

the coarser mesh M 0, the number of vertices is increased. Since these

superfluous vertices do not belong to V n, they would have to be stored

separately. To overcome this, the edge collapse operations of gcs are

replaced by a more general vertex removal in such a way that gcs

iteratively learns a pm representation.

Until the first inactive vertex vo is removed from a mesh M m, only

vertex split operations have been performed so far. Thus the corre-

sponding transformation

f = vsm ◦ . . . ◦ vs1

that has been recorded in order to construct M m = f (M 0) is a compo-

sition of vertex split operations. Instead of applying an edge collapse to

M m that removes vo, i.e., recording ecm+1 ◦ f , an alternative transfor-

mation f ′ is determined that does not produce the inactive vertex vo

from M 0 in the first place. Thus, vo is erased from history.

3.3 an intuitive approach

Let M m = f (M 0) denote the triangle mesh that has been constructed

so far with gcs by applying

f = vsm ◦ . . . ◦ vsk ◦ . . . ◦ vs1
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to the initial mesh M 0. Let furthermore vo denote the inactive vertex

to be removed, and let vsk = vs(vm, vs, vr, vp) denote the latest vertex

split that affected vo either as the source vertex, i.e., vm = vo, or as the

new vertex, i.e., vp = vo. Then, f can be rewritten as

f = h ◦ vsk ◦ g ,

where

g = vsk−1 ◦ . . . ◦ vs1

h = vsm ◦ . . . ◦ vsk+1 .

In order to remove the inactive vertex from the mesh M m the in-

verted transformation

(h ◦ vsk)
−1 = vs−1

k ◦ h−1 = vs−1
k ◦ vs−1

k+1 ◦ . . . ◦ vs−1
m

is applied to M m simplifying it to M k−1 with the set V k−1 of vertices.

If vsk affected vo as the new vertex, i.e., vp = vo, then vo 6∈ V k−1, since

vo has been removed by reverting vsk . Thus, vo is deleted.

If on the other hand vsk affected vo as the source vertex, i.e., vm = vo,

then vo ∈ V k−1, and it is thus still connected in M k−1. Therefore, vo

cannot be deleted. Instead its neighbor vp is deleted since vp 6∈ V k−1

after reverting vsk. Afterwards, vo takes the role of vp in the mesh.

For this purpose vo is moved to the position of vp. Furthermore, the

activity of vp and if applicable any other attributes are transferred to

vo. Thus, if vsk affects vo as the source vertex, removal of vo is replaced

by removal of its neighbor vp. As a consequence every reference to vp

in the transformations of h is replaced by a reference to vo.

Special care has also to be taken if no vsk exists, since vo ∈ V 0, and

vo is neither affected as the source vertex nor as the new vertex by any

vertex split recorded so far. In this case f is rewritten as f = h ◦ vs1,

and f−1 is applied to M m, simplifying it to the initial mesh M 0, with

the initial set V 0 of vertices, and vo still connected in the mesh. As in

the previous case, vo takes the role of the new vertex that is created

by the vertex split that is reverted last, this time vs1.

Finally, all vertex split operations of h are reapplied to M k−1 in order

to get back a detailed mesh M m′
reusing the original vertex positions

and if applicable other attributes from the vertices in V m with one

caveat: Since a vertex has been deleted, some vr or vs might have

become invalid in some vsi = vs(vm, vr, vs, vp) of h. Thus, these vsi

are repaired by determining new suitable right and left vertices vr, vs

in such a way that valences get distributed evenly. To emphasize this,

the composition of the repaired operations is denoted by h′.

Let M c = (V c, E c, F c) denote the mesh produced by removing vo

from M m by an edge collapse as in the original gcs, and let M m′
=

(V m′
, Em′

, F m′
) denote the mesh produced by removing vo from M m
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with the new technique. Then, |V m′ | = |V c|, |Em′ | = |E c| and |F m′ | =
|F c|. Furthermore, the learned positions of the vertices in M m′

are the

same as those in M c. So, M m′
is similar to M c and the transformation

h′ ◦ g is the desired one. By construction all operations of h′ ◦ g

are vertex split operations, and thus the tuple
(

M 0, (h′ ◦ g)
)

is a pm

representation of M m′
.

3.4 split tree

Gcs with the modified vertex removal from the previous section

creates a composition of vertex split operations vsi = vs(vm, vr, vs, vp)

refining a coarse, initial mesh to a detailed one. Connecting the

individual operations of that composition with respect to their source

vertices vm and their new vertices vp creates a binary tree. This tree is

automatically learned during the modified gcs surface reconstruction

process and is referred to as a split tree. Since it contains only vertex

split operations by definition, it is—in combination with an initial

mesh—a representation of a detailed mesh that is equivalent to a pm.

Basically, the split tree is related to the merge tree that Xia and

Varshney [132] use. However, in contrast to their approach, the split

tree is constructed top-down in the modified gcs. Furthermore, it uses

the vertex split operations as internal nodes connected by edges that

represent the vertices. Therefore, a split tree constitutes an operator

tree. The vertices of the initial mesh M 0 are represented by the edges

leaving the root node R of the tree, whereas the vertices of the detailed

mesh M n are represented by the leaf nodes of the tree. Thus, the root

node is i-ary, with i = |V 0| the number of initial vertices in M 0. Fig.

3.3 shows the first 8 vertex split operations that are executed in the gcs

example (Fig. 2.15). Fig. 3.4 shows the corresponding split tree.

3.5 the optimized approach

In Sec. 3.3 an intuitive approach to letting gcs learn a pm has been

presented. A closer examination of the algorithm indicates that there

is room for optimization leading to a more efficient algorithm: In the

intuitive approach an inactive vertex vo is removed by reverting all

recent vertex split operations up to the latest vsk that affected vo as

the source or the new vertex. Afterwards, all operations but vsk are

reapplied. That way, many vertices, edges, and triangles are discon-

nected and reconnected, and running time depends on the number

of operations that have been recorded after vsk. To optimize vertex

removal, some key observations are used. These observations and the

drawn conclusions that are leading to the desired optimizations are

presented in the following.

Both vertex split and edge collapse have only local influence on theLocal influence

mesh. During a vertex split a new vertex is inserted in the middle
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(e) vs5 = vs(v1, ε, v5, v8)
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(f) vs6 = vs(v2, v5, ε, v9)
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(g) vs7 = vs(v1, v8, v6, v10)
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Figure 3.3: The first 8 vertex split operations that are executed in the
gcs example (Fig. 2.15). The index i of each vertex vi is
printed in the circles that are representing the vertices. A
non-existent left or right vertex is denoted by ε.
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Figure 3.5: The regions of neighborhood defined by branch vs1 of the
split tree immediately before (a) and after (b) vs8 is applied
to the mesh.

of the edge connecting a source vertex vm to one of its neighbors

(cf. Sec. 3.1). Thus, by construction, the triangle mesh is modified

only inside the polygon that is bounded by the directly connected

neighbors of vm (Fig. 3.1). The same applies to an edge collapse, since

it is the inverse of a vertex split. Thus, removing an inactive vertex

influences the mesh only locally.

Consequently, each branch of the learned split tree defines a local,

continuous, hole-free region of neighborhood on the surface of the

constructed mesh. Fig. 3.5 shows these regions of neighborhood for

branch vs1 of the previous example’s split tree. A region defined by

one branch can only be subdivided by vertex split operations that are

added to the same branch. It cannot be subdivided by adding a vertex

split to a different branch. The region that corresponds to vs6 in Fig.

3.5(a), for instance, contains vertices v2 and v9. Only a vertex split

affecting v2 or v9 as the source vertex subdivides the region, i.e., vs8

in this case (Fig. 3.5(b)). Vertex split operations affecting a vertex as the

source vertex that lies outside a region only move the boundary of the

respective region. In this example, applying vs8 moves the boundary

of the region corresponding to vs2 and causes it to shrink.

From these regions of neighborhood and the local influence of the

operations a first optimization strategy is devised: Let vsk denote the

latest vertex split that affects the vertex to be removed either as the

source vertex or as the new vertex. Then, only those operations need

to be reverted that are located in the branch below vsk.

The first optimization strategy reduces the number of operationsImmediate revert

that are reverted and reapplied, and thus reduces the number of edges

and triangles that are disconnected and reconnected. However, in the

worst case, vsk might be the child of the root node of the split tree.

Thus still a significant number of operations is reverted and reapplied.
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In total, the intuitive approach and the first optimization strategy

both remove a single vertex split from the split tree. Since this operation

has only local influence, a second optimization strategy is devised:

Let vsk again denote the latest vertex split that affects the vertex to

be removed either as the source vertex or as the new vertex. Then,

vsk might be invertible and thus removed from the split tree directly.

However, in practice, many vertices and thus the respective vertex split

cannot be removed, since the respective reversal is illegal. Thus, the

respective removal is deferred until the operation has become legal.

Deferring removal reduces the quality of the mesh. In order to More candidates

improve the quality a third optimization strategy is devised: Inactivity

is caused by a triangle mesh that has become too dense so that some

vertices are moved to locations where they are no longer activated by

any input point. The original gcs removes the inactive vertex and thus

reduces the number of vertices

It turns out that this can be addressed differently if vsk cannot be

reverted: Instead of removing the inactive vertex vo, it might be legal

to remove one of its neighbors vn by reverting the latest vertex split

that affected vn as the source vertex or as the new vertex. Afterwards,

vo is moved to the former position of vn, replacing it. That way the

number of candidate reversals is increased, and it is more likely that a

legal edge collapse is found. Thus, inactive vertices are removed earlier.

These strategies lead to a working surface reconstruction algorithm, Practical

consequencesreverting only one vertex split during each vertex removal, directly,

without disconnecting and reconnecting numerous vertices, edges and

triangles. The triangle mesh is still represented by a split tree at any

learning step. Unfortunately, after a certain number of vertex removals

using the above algorithm, relying only on the criteria for legality by

Hoppe et al. [65], the split tree cannot be reverted any more in order

to get back to a coarser mesh. Thus, many desired features of the

progressive mesh representation are not applicable directly anymore,

e.g., continuous level of detail.

3.6 simulated reversal

The set of criteria whether it is legal to revert a vertex split defined

by Hoppe et al. [65] is not applied only to a single vertex split, but

to the complete composition of vertex split operations. That way the

algorithm ensures that the split tree remains revertible at any time

during reconstruction.

For any vertex vi of a triangle mesh an ordered sequence (nvi
) = Sequence of

neighbors(vj, . . . , vz) of neighbors vj, . . . , vz ∈ Nvi
, i.e., vertices that are directly

connected to vi, is determined. The elements in each sequence are

ordered counter-clockwise around vi. For the vertices affected by the
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reversal of vertex split vs(vm, vs, vr, vo) (Fig. 3.1, right to center) the

sequences are:

(nvm) = (vo, vs, . . . , vr)

(nvo) = (vm, vr, . . . , vs)

(nvr) = (vm, . . . , vo)

(nvs) = (vm, vo, . . .)

(nvq) = (vo, . . .) , ∀vq ∈ Nvo \ {vm, vr, vs} .

Let

(nvm) = (vo, vs, (n̂vm), vr)

(nvo) = (vm, vr, (n̂vo), vs) ,

with (n̂vm) and (n̂vo) explicitly denoting the inner parts of the respec-

tive sequences.

In order to simulate the consequences of reverting the vertex splitSimulated collapse

vs(vm, vs, vr, vo), new sequences are determined from the above ones

by removing or replacing vo in the same way that the reversal affects

the neighborhood in the mesh:

(n′
vm
) = ((n̂vo), vs, (n̂vm), vr)

(n′
vr
) = (vm, . . .)

(n′
vs
) = (vm, . . .)

(n′
vq
) = (vm, . . .) , ∀vq ∈ Nvo \ {vm, vr, vs} .

If afterwards an element vk appears more than once in any of the

above sequences (n′
vi
), then reverting the vertex split will be illegal.

Otherwise, reverting the vertex split will be legal.

Suppose that a sequence of vertex split operations has been recordedSimulated removal

during gcs so that

M n = ( f )(M 0) = (h ◦ vsk ◦ g)(M 0)

= (vsn ◦ . . . ◦ vsk+1 ◦ vsk ◦ vsk−1 . . . ◦ vs1)(M 0) .

Then, checking whether vsk can be removed from f directly while leav-

ing the remaining f ′ invertible, leads to a two-step simulation using

the above algorithm: First, simulate the consequences of reverting only

vsk and check whether reversal will be legal. Second, simulate the con-

sequences of reverting h and check after each individual operation has

been reverted if it will be legal. If both are legal, revert vsk. That way,

no vertices, edges, and triangles are disconnected and reconnected,

but running time still depends on the number of operations that have

been recorded after vsk, and for which reversal has to be simulated.

In order to reduce the number of operations to be simulated, theReducing complexity

findings from the previous subsection are used. Intuitively, they
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3.7 implicit bounding volume hierarchy

suggest that only a subset of operations needs to be simulated: The

vertex split operations in the branch below the operation to be reverted.

While this works well in many cases, the resulting split tree is not

revertible in general. Some more operations need to be simulated.

As noted, reverting the k-th vertex split vsk = vs(vm, vs, vr, vo) affects

the set Nvs of vertices, with

Nvs = (Nvm ∪ Nvo) \ {vm, vo} .

For each vertex in Nvs the latest vertex split operation of f is determined

that affected the respective vertex either as the source vertex or as the

new vertex. Let Sj denote this set:

Sj = {vsj = vs(v′
m, v′

s, v′
r, v′

o) | v′
m, v′

o ∈ Nvs} .

Every vertex split vsj ∈ Sj is affected directly by reverting vsk. Some

of the vsj ∈ Sj might be located in a branch below a parent vertex split

vsp with p > k. Let Sp denote the set of these parents:

Sp = {vsp | vsj ∈ Sj in branch below vsp, k < p < j} .

It has been discovered, that the set S of vertex split operations, with

S = {vsi | vsi in branch below vsk}∪
Sj ∪ {vsi | vsi in branch below vsj ∈ Sj}∪

Sp ∪ {vsi | vsi in branch below vsp ∈ Sp} ,

contains the set of all vertex split operations that might not be revertible

anymore after directly removing vsk from the split tree. By construc-

tion, they are either directly affected by removing vsk or indirectly

affected by reverting h after removing vsk.

Using S , the number of vertex split operations that are simulated is

reduced: The optimized algorithm from the previous subsection is

applied only to those operations of h that are members of S . Since S

contains only the nodes of a subset of branches of a binary tree, the

time needed to perform a single vertex removal is reduced. It thus

does not depend on the total number of operations that have been

recorded after vsk anymore, but only on the size of a subset of those

operations that is smaller on average.

3.7 implicit bounding volume hierarchy

During gcs learning the best matching, i.e., closest, vertex vb is deter-

mined for each randomly selected input point pξt
with respect to the

ℓ2-norm. Finding vb requires a nearest neighbor search involving all

vertices in V . The straightforward way to find vb uses a linear search

over V . With an increasing number of vertices this becomes infeasible.
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Figure 3.6: The bvh that is implicitly defined by the split tree with the
aabbs slightly enlarged for the sake of clarity (a). Finding
the initial radius r for the nearest neighbor search (b).

There are several data structures, e.g., octrees, bvhs, kd-trees [111,Using the split tree

135], helping efficiently search for vb in a large set of vertices. All

require that a separate data structure is maintained. In contrast, as

noted earlier, the split tree that is created automatically during learning

implicitly creates a hierarchy of regions of neighborhood. The tree

stores the source vertex and the newly created vertex as children

of the same operation. Since the latter vertex is always created in

the immediate vicinity of the source vertex on the surface of the

constructed mesh, the structure of the tree naturally suggests itself

as a basis for nearest neighbor searching. Extending each internal

node with a bounding box that contains all vertices in the branch

below the respective node results in a suitable bvh. The split tree

implicitly dictates the hierarchy of the bounding volumes so that no

time consuming hierarchy creation algorithms like the one proposed

by Goldsmith and Salmon [58] have to be applied. Furthermore,

bottom-up or top-down approaches that are regularly used to create

a bvh are not applicable in an efficient way, since new vertices are

inserted frequently during gcs learning.

The split tree representation of the mesh constructed so far dictatesCreating the bvh

the hierarchy of bounding volumes. Thus, for hierarchy creation an

aabb is added to each inner node of the tree. The aabb of each node

encloses all aabb of all of its child nodes. By definition the aabb of a

leaf node is set-up in such a way that it encloses only the vertex itself.

The root node R of the split tree does not need any bounding box for

the algorithm to work.

The hierarchy is created in an incremental way. If a vertex split is

applied to the mesh, the aabb of the corresponding node is computed

in such a way that it encloses only the source vertex and the newly
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created vertex. If a vertex is moved, the aabb it is contained in is

updated. In both cases the aabbs of the parent nodes are updated

accordingly, if necessary. Each update affects only a single path up to

the root node of the split tree. Fig. 3.6a shows the bvh induced by the

split tree from the previous example.

The best matching vertex vb for an input point pξt
is found by a Nearest neighbor

searchrecursive branch and bound search in the bvh defined by the split tree.

The algorithm traverses the split tree starting at the root node R and

searches for vb inside a ball with radius r around pξt
. While searching,

r is iteratively reduced. Initially, r = ∞. Let n denote the node that is

currently processed, and let A(n) denote its aabb. Let furthermore ε

denote an non-existent vertex, similar to nullptr in C++.

〈Find vb〉 ≡
r ..= ∞

n = R

vb = ε

findNN(pξt
, r, n, vb)

At first, the smallest radius r of a ball around pξt
is determined in

such a way that the ball is just large enough to contain an aabb of one

of the node’s children. Let B yield the required ball

B : P ×R 7A P(R) , with B(p, r) = {x ∈ R
3 | ‖x − p‖ ≤ r} ,

where P(·) denotes the power set.

〈findNN’s definition〉 ≡
function findNN(in p, inout r, inout n, inout vb)

for each child node c of n do

r′ = min{d ∈ R | B(p, d) ∩ A(c) = A(c)}
r ..= min(r, r′)

end for each

Fig. 3.6b shows an example for the split tree’s root node R and a point

pξt
. There, the smallest ball around pξt

is just large enough to contain

the aabb corresponding to vs5.

Afterwards, the aabb of each child node of vs5 is checked if it is

intersected by or contained in the ball with radius r around pξt
. If an

intersection with the aabb of a leaf node is detected, the corresponding

vertex is stored as the closest vertex found so far. Otherwise, if an

intersection with a child node’s aabb is detected, the respective branch

is traversed as before, further reducing r and potentially finding a

vertex that is located closer to pξt
. If no intersection has been detected,

the respective branch is skipped. In the example of Fig. 3.6b the

branches of vs3 and vs6 are skipped. Consequently, only the vertices

v1, v4, v5, v8, v10 are considered during nearest neighbor search.
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Table 3.1: Results of the progressive mesh experiments.

Cathedral Bunny Buddha Lucy

Median time / s gcs ot 258.1 199.4 241.3 192.2
intuit. ot 446.7 680.9 608.8 656.0
optim. ot 243.4 201.3 243.7 207.8
optim. st 250.0 208.0 252.7 237.0

Delaunay Tri. / % gcs ot 82.2 91.6 80.1 86.9
intuit. ot 76.1 70.5 49.7 50.5
optim. ot 79.8 91.6 78.3 82.9
optim. st 79.8 91.6 78.3 82.9

Val. 5–7 Vert. / % gcs ot 77.8 83.3 75.0 80.5
intuit. ot 73.7 75.3 64.1 65.6
optim. ot 78.8 84.0 75.1 79.2
optim. st 78.8 84.0 75.1 79.2

〈findNN’s definition〉 +≡
for each child node c of n do

if B(p, r) ∩ A(c) 6= ∅ then

if c is leaf then

vb = vertex corresponding to c

r ..= ‖vb − p‖
else

findNN(p, r, c, vb)

end if

end if

end for each

end function

After traversing or skipping all child branches, the vertex vb that

is closest to pξt
has been found among the vertices in the branch

below the current node. Since initially the root node R and a radius of

infinity are used, calling findNN recursively finds the best matching

vertex vb and its distance r to pξt
efficiently by branch and bound.

3.8 results

The algorithms presented in this chapter are evaluated in terms of

running times and reconstruction quality. For this purpose, the orig-

inal gcs using an octree for nearest neighbor search is used as a

baseline. Furthermore, the performance of the intuitive approach to

pm-generating gcs using an octree for nearest neighbor search, and

the performance of the optimized algorithm using either an octree or

the split tree for nearest neighbor search are determined.

All techniques have been implemented in C++ and compiled with

Microsoft® Visual Studio® 2010. They have been executed on a
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Figure 3.7: Median reconstruction times of pm-generating gcs using
the split tree (solid) and an octree (dashed) for nearest
neighbor search. Original gcs as a baseline (dotted).
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Figure 3.8: Distribution of running times. Vertex removal: original
gcs (c), intuitive approach (ia), split tree (st). Acceleration
structure: octree (ot) split tree (st).
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Dell® workstation with a 3 GHz Intel® Xeon® x5675 cpu, 12 GB ram

running Windows® 7 Enterprise, using only a single cpu core. Meshes

with 20 000 vertices have been constructed from four point clouds:

Bunny, Happy Buddha, and Lucy obtained from the Stanford scanning

repository [114], and a point cloud sampled from a synthetic model

of the cathedral of Paderborn, Germany. Each reconstruction has been

tested with 100 different random seeds.

The intuitive approach significantly reduces performance. MedianReconstruction times

(octree) reconstruction times are increased by factors between 1.7 for Cathedral

and 3.4 for Bunny and Lucy (Tab. 3.1). Furthermore, the running times

vary over a very wide range for Cathedral and Bunny and still over a

serious range for Buddha and Lucy (Fig. 3.8).

The optimized algorithm based on a split tree effectively removes

this running time overhead. Its performance is similar to the original

gcs (Fig. 3.7, dotted and dashed). Median running times increased

slightly by 1 % from 199.4 s using gcs to 201.3 s using the new, op-

timized split tree algorithm for Bunny and even decreased by 6 %

from 258.1 s using gcs to 243.4 s for Cathedral. For Buddha and Lucy,

median running times increased only slightly by 1 % from 241.3 s to

243.7 s for Buddha and by 8 % from 192.2 s to 207.8 s for Lucy. The

box plots of Fig. 3.8 show that the interquartile ranges for gcs and the

optimized split tree approach overlap. Thus, there is no significant

overhead when learning a progressive mesh during surface reconstruc-

tion, directly. While deviation of running times increased significantly

with the intuitive approach, deviation of running times increased only

slightly for all meshes with the new optimized split tree algorithm.

Reconstruction quality is evaluated in terms of regularity. Thus,Quality

the ratio of the constructed triangles that are Delaunay triangles, and

the ratio of the constructed regular vertices, i.e., vertices that have a

valence in the range from 5 to 7, are determined.

Using the intuitive approach to vertex removal reduces median

reconstruction quality. Both, the ratio of Delaunay triangles and the

ratio of regular vertices are significantly reduced for Buddha and

Lucy (Tab. 3.1). For Cathedral and Bunny both quality measurements

are slightly less reduced. In contrast, the optimized approach to ver-

tex removal using the split tree reduces median quality only slightly

compared to gcs. The intuitive approach introduces a large varia-

tion in both quality measures (Fig. 3.9, 3.10). With the optimized

approach quality varies in a similar range as with the original gcs,

with overlapping interquartile ranges.

Replacing the octree by the split tree for nearest neighbor searchSplit tree for nearest

neighbor search does not impose significant running time overheads (Tab. 3.1). The

interquartile ranges of the box plots overlap (Fig. 3.8). Median running

times increased slightly by 3 % from 243.4 s using an Octree to 250.0 s

using the bvh defined in the split tree for the cathedral, by 3 % from

201.3 s to 208.0 s for Bunny, and by 4 % from 243.7 s to 252.7 s for
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Figure 3.11: Automatically learned level of detail: Reconstruction of
Stanford Bunny and Paderborn Cathedral with 20 000

triangles (far left). Using the implicit level of detail, each
mesh can be simplified to, e.g., 324 triangles (far right),
preserving the overall shape.

Buddha. For the high-resolution point cloud of Lucy, running times

increased by 14 % from 207.8 s to 237.0 s.

The plots in Fig. 3.7 compare the running times when using an

octree (dashed) and using the bvh from the split tree (solid) for all

four point clouds while reconstructing different numbers of vertices.

The curves are similar for all meshes. Since both Octree and bvh of

the split tree find the same vertices, quality of the reconstruction does

not change at all (Tab. 3.1, Fig. 3.9, 3.10).

With the optimized vertex removal based on the split tree, a se- Level of detail

quence of level of detail steps is automatically learned during recon-

struction. At any time, the reconstructed mesh can be reduced to a

coarser mesh preserving the shape of the reconstructed object with

a fairly good visual quality. However, a quadric error metric similar

to that proposed by Garland and Heckbert [57] needed to be used

to improve the position of the remaining vertex vm after reverting

a vertex split. Fig. 3.11 shows level of detail sequences for Stanford

Bunny and Paderborn Cathedral, reducing meshes of 20 000 triangles

to coarser meshes of 324 triangles.

3.9 discussion

The optimized vertex removal based on the split tree enables gcs to

efficiently learn a pm during surface reconstruction. The modifications

to the classical gcs algorithm do not introduce significant running

time overheads. Quality in terms of regularity is only slightly reduced.

However, it depends on the selected random seed, i.e., the order in

which the input points are selected. Nevertheless, all the features

of a pm are readily available for the reconstructed triangle mesh at

any time during gcs surface reconstruction, without applying any

additional processing steps afterwards.

The bvh that is defined by the split tree and is thus iteratively created

during surface reconstruction allows for an efficient nearest neighbor
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search without having to rely on a separate data structure or on

separate hierarchy creating algorithms. In practice, the binary split tree

turns out to be unbalanced during gcs surface reconstruction. It is very

likely that it does not define an optimal bvh as it could be achieved

with other algorithms. However, experiments have demonstrated

that its performance is similar to the performance of an octree that is

commonly used in gcs. Thus, any further improvements to gcs that

lead to a balanced or improved split tree may increase the performance

of nearest neighbor search, as well.

Since the split tree is implicitly learned, neither heuristics have to

be applied nor assumptions have to be made in order to determine

the octree’s depth and the number of vertices per cell. Thus, the bvh

defined by the split tree is better suited than an octree for surface

reconstruction from incrementally refined point clouds. Using the

split tree for nearest neighbor search is not limited to gcs surface

reconstruction. Since a split tree is an alternative representation of a

pm, it is very likely useful for nearest neighbor search in any pm.

Basically, in this chapter, no new operations have been added to

gcs. Instead, only the vertex removal process has been modified

based on an analysis of the underlying processes. Thus, it has been

demonstrated that gcs implicitly share all the features of a progressive

mesh and define their own acceleration structure for nearest neighbor

search. However, in the future some effort has to be spent in order

to improve the quality of the pm that is learned by gcs, and in order

to generalize the split tree to other types of neural networks that are

used for surface reconstruction.
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4
S U R FA C E - R E C O N S T R U C T I N G

GROWING NEURAL GAS *

In this chapter surface-reconstructing growing neural gas (sgng) is pro-

posed, a learning-based artificial neural network that iteratively con-

structs a triangle mesh from a set of sample points lying on an object’s

surface. From these input points sgng automatically approximates

the shape and the topology of the surface. By expressing topological

neighborhood via triangles, sgng constructs a triangle mesh entirely

during online learning and does not need any post-processing to

close untriangulated holes. Thus, sgng is well suited for long-running

applications that require an iterative pipeline where scanning, recon-

struction, and visualization are executed in parallel.

Results indicate that sgng is a widely applicable reconstruction

algorithm. It improves upon its predecessors and achieves similar or

even better performance in terms of smaller reconstruction errors and

better reconstruction quality than existing state-of-the-art reconstruc-

tion algorithms. If the input points are updated repeatedly during

reconstruction, sgng performs even faster than existing techniques.

4.1 analysis of prior art

In recent approaches to surface reconstruction that are based on neural

networks the fundamental algorithm that is used for approximating

an original object’s shape is related to Kohonen’s self-organizing map

(som) [81, 82, 83]. In those approaches the algorithm that is used for

approximating an original object’s topology is based on competitive

Hebbian learning (chl) [93]. A taxonomy of the fundamental neural

networks with detailed descriptions of their learning algorithms is

presented in Ch. 2. In this section, the chl-based predecessors of

* Substantial parts of this chapter appeared in [120] Tom Vierjahn and Klaus Hinrichs.
Surface-reconstructing growing neural gas: A method for online construction of
textured triangle meshes. Computers & Graphics, pp. –, 2015. doi: 10.1016/j.cag.2015.
05.016.
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sgng, are carefully analyzed in order to motivate and derive the sgng

algorithm.

The position updates, i.e., moving the closest vertex vb and itsPosition updates

directly connected neighbors vn ∈ Nvb
towards the selected input

point, let prior approaches construct a smooth approximation of the

original surface’s shape. These updates work well for watertight

meshes and internal vertices, but hinder the predecessors of sgng to

tightly fit the boundaries of an open surface. Since the update rules

vb
..= vb − β(vb − pξt

)

vn
..= vn − η(vn − pξt

) , ∀vn ∈ Nvb

implement exponential moving averages, eventually each vertex is

located approximately at the average position of the input points in

its Voronoi cell. Consequently, many input points are lying beyond

the boundaries of the constructed mesh. To overcome this, sgng

introduces an additional fitting step that moves boundary edges so that

the constructed mesh represents the original surface better (Sec. 4.3).

With its capability to create some triangles while constructing theTopology updates

output mesh representing an original surface, growing self-reconstruc-

tion map (gsrm) greatly improves over former surface reconstruction

algorithms that are based on growing neural gas (gng) [52] by Fritzke:

Previous work for instance by Melato et al. [95] or by Holdstein and

Fischer [61] did not create any triangles during learning but only

during post-processing. A recent extension to gsrm [101, 102] creates

even more triangles during learning.

However, using chl and age-based edge removal in a stochastic

reconstruction algorithm like the above introduces higher-order poly-

gons to the mesh, since some edges are deleted simply by chance [53].

Thus, several holes are created during reconstruction that chl often

cannot close [31]. Their size may even increase during the subsequent

iterations. In addition to that, gsrm and the recent extension [101, 102]

delete obtuse triangles that contain the best and the second-best match-

ing vertex as soon as they are detected. However, some triangles and

edges may become obtuse for a few iterations in a row only due to the

stochastic nature of the algorithm. Deleting them as soon as they are

detected introduces additional undesired holes. Therefore, gsrm and

related algorithms apply an additional topology learning phase and

a post-processing step to triangulate the remaining holes that have a

boundary of more than three edges. However, this is time-consuming,

and it still leaves more and more holes untriangulated the sparser the

input point cloud is. Finally, if continuous reconstruction and visual-

ization is desired, it needs to be interrupted repeatedly for—possibly

ineffective—post-processing.

Fig. 4.1 illustrates the iterative construction of an output triangle

mesh by gsrm before post-processing is applied: From approximately

80



4.1 analysis of prior art

(a) |V | = 150 (b) |V | = 300

(c) |V | = 600 (d) |V | = 1.25 · 103

(e) |V | = 2.5 · 103 (f) |V | = 5 · 103

(g) |V | = 10 · 103 (h) |V | = 20 · 103

Figure 4.1: Intermediate results of gsrm reconstructions of Stanford
Bunny from approximately 2.9 · 106 input points without
post-processing.
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(a) |P | ≈ 2.9 · 106, |V | = 20 · 103

(b) |P | = 1.0 · 106, |V | = 20 · 103

(c) |P | = 0.3 · 106, |V | = 20 · 103

(d) |P | = 0.1 · 106, |V | = 20 · 103

Figure 4.2: Gsrm reconstructions of Stanford Bunny from different
numbers of input points: Before (left in each subfigure)
and after post-processing (right in each subfigure). The
sparser the input point cloud, the more holes remain untri-
angulated. Results for sgng reconstructions of same sets
of input points are presented in Fig. 4.15.
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4.1 analysis of prior art

2.9 · 106 input points sampled from the reconstruction of Stanford

Bunny provided by the Stanford Scanning Repository [114], a rough

approximation with 150 vertices is created instantly (Fig. 4.1(a)). This

initial approximation gets continuously refined up to 20 · 103 vertices

in this example (Fig. 4.1(h)). During the whole reconstruction process

the constructed mesh contains many untriangulated higher-order

polygons. Thus the mesh is not well suited for live visualization while

reconstructing. Fig. 4.2 illustrates the effect of post-processing for

gsrm reconstructions of Stanford Bunny. Post-processing is effective if

the input point cloud is extraordinarily dense. Fig. 4.2(a) reproduces

the results of the original experiment conducted by do Rêgo et al. [41]:

There, an extremely dense point cloud with approximately 2.9 · 106

points [39] is used. A mesh with 20 · 103 vertices (left) is constructed

from that point cloud. During post-processing the remaining holes

are closed by triangulating the higher-order polygons (right). While

this works well for the dense point cloud, post-processing gets more

and more ineffective if the original object is sampled less densely

(Fig. 4.2(b)–(d)): Several holes remain untriangulated even after post-

processing. For reference, the original range data set of Stanford

Bunny [114] contains approximately 362 · 103 points.

In order to derive a suitable new algorithm, the reason why gsrm CHL in a stochastic

algorithmleaves higher order polygons untriangulated is examined. The findings

are also applicable to other techniques that use topology updates based

on chl, for instance the topology representing network (trn) and gng.

For this experiment the movement and the distribution of the vertices

are investigated under controlled conditions: Only the position update

rules of trn [93], gng, and gsrm are used during the automatic

iterations. Topology updates, i.e., edge removals, are performed

manually. Fig. 4.3 presents the constructed mesh at different steps in

order to illustrate the limitations of prior chl-based algorithms.

Fig. 4.3(a) shows the initial mesh for this experiment. A set of 4096

input points is used that were sampled uniformly at random from

a square (gray). These points are randomly presented to the neural

network using epochs: Each point is presented once before any point

is picked a second time. Initially and after each topology update

the algorithm executes 10 epochs, i.e., 40 960 iterations, in order to

reach a steady state. Since the reconstruction algorithm operates

in a stochastic manner where the vertices keep moving, their mean

positions during the subsequent 30 epochs, i.e., 122 880 iterations, are

determined to capture trends. The figures show these mean vertex

positions for clarity. The result of the first learning phase is presented

in Fig. 4.3(b): The vertices have moved slightly to be approximately

equally distributed across the input square.

Trn, gng, and gsrm increase the age of edges that are incident to

the best matching vertex for an input point but that are not incident

to the second-best matching vertex. By resetting the age of the edge
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y

x

(a) Initial setup.

y

x

(b) First steady state.

y

x

(c) First steady state with second-
order Voronoi regions.

y

x

(d) Second steady state with
second-order Voronoi regions.

y

x

(e) Second steady state with
second-order Voronoi regions.
Influence on other regions.

y

x

(f) Third steady state with second-
order Voronoi regions.

Figure 4.3: Illustration of the reasons why gsrm and closely related
techniques leave more and more higher order polygons
untriangulated. The gray area depicts the distribution of
the input points. The vertices ( ) and edges ( ) of the
constructed mesh are printed black. The boundaries of
the second-order Voronoi regions of pairs of vertices are
printed white.
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4.1 analysis of prior art

that is connecting the best and the second-best matching vertex, and,

if necessary, by creating such an edge, the edges that are not triggered

by any input point get older. They are eventually deleted once their

age exceeds a predefined threshold that needs to be fine-tuned for the

specific reconstruction task. See Sec. 2.5, 2.7, and 2.8 for details.

In Fig. 4.3(c) the set of input points is decomposed into the second-

order Voronoi regions (enclosed by white lines) of the vertices. Points

in such a region are closer to one pair of vertices than to any other

vertex in the mesh. Thus, they share the same best and second-best

matching vertex, or vice versa. The points from a single second-order

Voronoi region therefore cause the age of a single edge to be reset. It

can clearly be seen that the regions have very different sizes. Thus,

assuming uniformly distributed input points, the age of some edges

is likely to be reset more often than the age of other edges, depending

on the size of the second-order Voronoi regions. If too low an age

threshold is selected, an edge corresponding to a small second-order

Voronoi region will likely be removed before it has been triggered by

an input point. On the other hand, if too high a threshold is selected,

the neural network will not be able to learn the topology correctly.

The second-order Voronoi regions are getting particularly small in

places where vertices are locally arranged on or close to a circle. Such

a configuration can be found in Fig. 4.3(c): The central region (dark

gray) is by far the smallest region. Such a small region contains only

very few input points, if any. Thus, the corresponding edge (thicker,

double line) is very likely getting too old before it is triggered by an

input point. It is thus removed creating an untriangulated quadrangle.

The removal of this edge causes the now unconnected vertices to move

apart during subsequent iterations (Fig. 4.3(d)) due to the update rules

for the neighbors of vb. This may cause the corresponding second-

order Voronoi region to shrink. Thus, it gets increasingly unlikely that

the missing edge is recreated. In fact, in Fig. 4.3(d) the original region

vanished and was replaced by the second-order Voronoi region of the

other two vertices of the untriangulated quadrangle.

This effect spreads: The sizes of other regions have changed as

well. In Fig. 4.3(e) the two next larger regions and their corresponding

edges are highlighted. Since these regions shrank after the removal

of an edge, the associated edges might now get too old due to an

inadequately selected threshold or an adverse distribution of the

input points. The removal of these edges turns the untriangulated

quadrangle into an untriangulated hexagon, causes the lower left inner

vertex to move outward in subsequent iterations, and thus causes the

second-order Voronoi regions corresponding to the removed edges to

shrink even further (Fig. 4.3(f)). Therefore, it becomes unlikely that the

edges are recreated. This effect can be seen in the example figures that

were used to illustrate trn, gng, and gsrm in Sec. 2.5, 2.7 and 2.8. It

can also be observed in real-world reconstruction tasks. Therefore, the
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constructed mesh cannot be used for visualization at any time during

reconstruction without applying suitable post-processing steps.

Sgng addresses this and reduces the number of untriangulated

holes to a minimum during reconstruction by applying surface-aware

topology updates, and by using an edge and triangle removal scheme

based on more general geometric considerations that furthermore

takes the stochastic nature of the algorithm into account (Sec. 4.3.2,

4.3.3). Furthermore, sgng detects all obtuse triangles containing the

best matching vertex instead of only those that contain the best and

the second-best matching vertex.

Gsrm computes the activity τ(vi) of a vertex in terms of accumu-Activity

lated squared position errors. The activity of the best matching vertex

vb is incremented by the squared Euclidean distance of vb to the

currently selected input point pξt
:

τ(vb) ..= τ(vb) + ‖vb − pξt
‖2 .

Therefore, the mesh is refined in regions where the vertices moved

large distances, thus increasing the impact of noise and sparse outliers.

The activity of the vertices is reduced in each iteration by a constant

factor 0 < α < 1 leading to a decay over time:

τ(vi) ..= ατ(vi) , ∀vi ∈ V .

In contrast to gsrm, sgng adapts the density of the mesh to the

density of the input points balancing the influence of noise and outliers

better. For this purpose, sgng uses a constant activity increment

(Sec. 4.3.4), allowing for sorting the vertices by activity more efficiently.

Furthermore, activity does not decay in sgng, reducing complexity

to be sub-quadratic. Unlike gsrm, but similar to a variant of growing

cell structures (gcs) [51], sgng adds vertices to the mesh by splitting

the longest edge emanating from the most active vertex in order to

construct more regular triangles.

Inactivity is not addressed directly in gsrm. Instead, gsrm relies onInactivity

topology updates to remove inactive vertices. If a vertex gets inactive,

it is not selected as best or second-best matching vertex anymore.

Thus, the age of none of the edges that are emanating from it is reset

to zero anymore. Consequently, they get older and are eventually

removed. Once the inactive vertex gets isolated, it is removed from

the constructed mesh. Since gsrm modifies the topology in order to

remove inactive vertices, additional holes are introduced that need

to be closed during post-processing. Furthermore, topology learning

cannot detect inactive vertices that are not connected directly to the

best matching vertex, since it operates only locally for efficiency.

Sgng handles inactivity separately: Inactive vertices that are caused

by too dense a reconstruction, or that are located at inversions or

protuberances are removed without changing the topology of the
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constructed mesh (Sec. 4.3.4). For this purpose, edge collapse operations

are used, similar to a prior extension to gcs [70]. Therefore, inactive

vertices that are located in a hole of the original surface are removed

while keeping the surface intact at first. The desired hole is created by

topology learning in later iterations.

4.2 requirements and features

The input points do not need to store any information about the

surface normal for an sgng reconstruction. The density of the input

points needs to be locally homogeneous, however it may vary across

the original surface. Constructed triangles will be smaller in regions

with higher point density than in regions with lower density. If a

triangle gets so small that no input point is located in the vicinity of its

surface anymore, sgng will remove the triangle and create a hole. In

order to limit the density of the constructed mesh and thus in order to

avoid erroneously untriangulated holes that are caused by too dense a

reconstruction, the minimal ratio of the number of input points per

constructed vertex should be limited. A minimal ratio of 4 turned out

to be practical, leaving only very few holes untriangulated in regions

where the vertex density exceeds the point density.

Sgng is robust to noise, if the variation of the noise is small com-

pared to the size of the constructed triangles, otherwise overfitting

will occur. Currently, estimating the amount of noise is left to the

operator by setting an appropriate point to vertex ratio. Automatic

noise estimation during sgng reconstruction is left for future work.

Sgng guarantees that there will be at most two triangles adjacent

to any edge. However, in order to quickly create visually meaningful,

initial approximations of sparsely sampled input data, sgng tolerates

self intersections and the existence of more than one topological disk

adjacent to a vertex. Since further input points can be added at any

time during reconstruction, sgng will resolve such cases automatically

once the original surface is sampled densely enough. It deliberately

does not guarantee that the constructed mesh will be manifold. Other-

wise, for instance hourglass-like shapes needed to be sampled much

more densely before reconstruction could start.

The basic update rules for positions in gcs, gng, and gsrm are Local surface

smoothnessstill used in sgng. They implement an exponential moving average

of the recently presented input points. Thus, the constructed mesh

eventually approximates the input points smoothly by construction.

Sgng supports this smooth approximation by constructing the sur-

face that is smoothest whenever sgng has to select from more than

one surface configuration. By enforcing global smoothness the overall

computational complexity would increase, and sharp features would

be overly smoothed. However, maximizing local smoothness of two

adjacent faces can be integrated in a straightforward way and is used
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nk

nl
vk

vi vl

vj

(a)

ϕk,l
nl

nk

(b)

Figure 4.4: Evaluating smoothness: Unit normals nk, nl of the adja-
cent triangles △(vk, vi, vj), △(vl , vj, vi) (a). Smoothness is
defined in terms of the dihedral angle ϕk,l (b).

as a guideline when creating triangles. Local smoothness is related to

the cosine of the dihedral angle ϕk,l between two triangles △(vi, vj, vk)

and △(vl , vj, vi) adjacent to their common edge (vi, vj) (Fig. 4.4):

cos ϕk,l = n⊤
k nl

Here nk and nl denote the unit normals of the triangles △(vk, vi, vj)

and △(vl , vj, vi), respectively

nk =
(vi − vk)× (vj − vk)

‖(vi − vk)× (vj − vk)‖

nl =
(vj − vl)× (vi − vl)

‖(vj − vl)× (vi − vl)‖
.

Thus, maximizing the dihedral angle maximizes local smoothness.

Like its predecessors sgng creates a set V of vertices, a set E ofA mesh for learning,

a submesh for

visualization
edges, and a set F of faces. In contrast to its predecessors sgng

iteratively constructs a mesh that can be used for visualization at any

time during reconstruction.

However, a distinction is made between the mesh M that is used

during reconstruction and the triangle mesh M△ to be exported, e.g.,

for visualization. Let M = (V , E , F ) contain the complete sets of

faces, edges, and triangles. Then, M△ = (V△, E△, F ) contains subsets

V△ ⊆ V of vertices and E△ ⊆ E that are used by the triangles in F

V△ = {vi ∈ V | ∃vj, vk ∈ V : △(vi, vj, vk) ∈ F }
E△ = {(vi, vj) ∈ E | ∃vk ∈ V : △(vi, vj, vk) ∈ F } .

Therefore, M△ contains only the vertices and edges that are required

to create the triangles representing the original object’s surface. M

may contain (many) additional vertices and edges that are required

to explore the input data, and that serve as candidates for triangle

creation in later iterations in order to create a better, i.e., smoother and

more regular, surface.
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y

x

Figure 4.5: Initial configuration of sgng reconstructing a square.

4.3 the reconstruction algorithm

The sgng reconstruction algorithm is based on the one used by gsrm

and has been derived from the findings of the previous analysis of

prior art. The new algorithm is described in this chapter. From a

high-level perspective it is still similar to all the algorithms based on

an artificial neural network that have been presented in Ch. 2.

〈SGNG reconstruction〉 ≡
〈SGNG initialization A p. 89〉
〈SGNG learning A p. 90〉

Sgng reuses the initialization routine of gng. For convenience it SGNG initialization

is repeated here: A set V of two vertices vi ∈ V ⊂ R
3 is created.

The positions vi of the vertices are initialized to the positions of two

randomly selected input points (Fig. 4.5). The vertex positions will be

optimized during learning. No edges are created. In addition to gng

initialization, an empty set of triangles is created. Edges and triangles

will be created during learning.

〈SGNG initialization〉 ≡ Ap. 89

V ..= {v1 , v2} , vi
..= pξi

∈ P , i ∈ {1, 2}
E ..= ∅

F ..= ∅

As before, online learning is iterated in a loop for a prespecified SGNG learning

number tmax of iterations. Alternatively, a predefined convergence cri-

terion can be used, for instance, a prespecified number of constructed

vertices or triangles, or a prespecified maximal mean distance between

the input points and the triangle mesh.

In each iteration t of sgng learning an input point pξt
is selected

randomly from the set P ⊂ R
3 of input points. For the selected

input point pξt
the best matching, i.e., closest, vertex vb ∈ V , and

the second-best matching vertex vc ∈ V with respect to the ℓ2-norm

‖·‖ are determined. Afterwards, the vertex positions are updated

according to the position update rules of gcs. Then, the new fitting
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vb
v∗

i

vc

p′
ξt

Figure 4.6: Additional fitting step introduced by Sgng.

step is used to match boundaries of the original surface more tightly

and as a regularization. Finally, the topology and the density of the

constructed mesh are updated according to new rules replacing the

ones from gsrm.

〈SGNG learning〉 ≡ Ap. 89

for each t ∈ {1, 2, . . . , tmax} do

randomly select pξt
∈ P

vb = arg minvi∈V
‖vi − pξt

‖
vc = arg minvi∈V \{vb} ‖vi − pξt

‖

〈GCS position updates A p. 41〉

〈SGNG boundary fitting A p. 90〉
〈SGNG topology: create edges, triangles A pp. 91, 92〉
〈SGNG topology: delete edges, triangles A pp. 94, 95〉
〈SGNG density updates A p. 97〉

end for each

4.3.1 Boundary Fitting

If there are any triangles adjacent to the edge connecting vb and

vc, the triangle △(vb, vc, v∗
i ) whose third vertex v∗

i is closest to the

current input point pξt
is determined. Afterwards, p′

ξt
is computed

by projecting pξt
into the plane through vb, vc, v∗

i . Finally, the trilinear

coordinates [128, 129] of p′
ξt

with respect to △(vb, vc, v∗
i ) are computed.

If any of them are negative, p′
ξt

lies outside the triangle. In this case, the

respective edges are moved towards p′
ξt

by moving their vertices along

the other edges of the triangle (Fig. 4.6) according to the previously

used update rate β.

〈SGNG boundary fitting〉 ≡ Ap. 90

if Fe

(
(vb, vc)

)
6= ∅ then

Vi = {vi | △(vb, vc, vi) ∈ Fe

(
(vb, vc)

)
}

v∗
i = arg minvi∈Vi

‖vi − pξt
‖

p′
ξt
= projection of pξt

into plane through vb, vc, v∗
i[

x y z
] ⊤ = tril. coord’s of p′

ξt
w.r.t. △(vb, vc, v∗

i ),

s.t. x corresponds to (vb, vc),

y corresponds to (vc, v∗
i ),

z corresponds to (v∗
i , vb)
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Figure 4.7: The only triangulations of a four-edge loop, requiring ei-
ther edge (vb, vc) (a), or edge (vi, vj) (b).

if x < 0 then

vb
..= vb − β · x · (vb − v∗

i )

vc
..= vc − β · x · (vc − v∗

i )

end if

ditto for y, z

end if

4.3.2 Topology: Create Edges, Triangles

During learning, for a randomly selected input point the best matching,

i.e., closest vertex vb and the second-best matching vertex vc are

determined. Due to the findings from the previous analysis of prior

art, sgng connects vb and vc with a surface and preserves it during

reconstruction. Therefore, new topology and surface updates are

used. In the following pseudocode fragments Nvb
denotes the set of

neighbors of vb, and Nvc denotes the set of neighbors of vc. Then,

the set of common neighbors of vb and vc is equal to the intersection

Nvb
∩ Nvc of both sets. In order to later remove undesired edges and

triangles, each edge (vi, vj) keeps track of a penalty value

ae : E 7A N , with ae

(
(vi, vj)

)
..= 0 for a new edge .

Assume for the moment that each edge will have at most two The basic algorithm

adjacent triangles even if new triangles are created. Later on, it is

described how to enforce this by a special union operator ⋒.

If vb and vc do not share a common neighbor, no triangles are |Nvb
∩ Nvc | = 0

created. Only the edge (vb, vc) will be added, if it does not yet exist.

Its penalty ae

(
(vb, vc)

)
is reset to zero, no matter if the edge already

existed or was just created.

〈SGNG topology: create edges, triangles〉 ≡ Ap. 90

if Nvb
∩Nvc = ∅ then

E ..= E ∪ {(vb, vc)}
ae

(
(vb, vc)

)
..= 0
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If vb and vc share one common neighbor vi, the edge (vb, vc) and|Nvb
∩ Nvc | = 1

the triangle △(vb, vi, vc) will be created, if they do not yet exist. The

penalty ae

(
(vb, vc)

)
of the edge (vb, vc) is reset to zero.

〈SGNG topology: create edges, triangles〉 +≡ Ap. 90

else if Nvb
∩ Nvc = {vi} then

E ..= E ∪ {(vb, vc)}
F ..= F ⋒ {△(vb, vi, vc)}
ae

(
(vb, vc)

)
..= 0

If vb, vc share two or more common neighbors sgng selects the two|Nvb
∩ Nvc | ≥ 2

most active ones, vi, vj. These represent the original surface best, since

they have been selected most frequently as best match to an input

point. In this case, two different surface configurations exist:

• the triangles △(vb, vi, vc) and △(vb, vc, vj) (Fig. 4.7(a))

• the triangles △(vb, vi, vj) and △(vc, vj, vi) (Fig. 4.7(b))

The former requires edge (vb, vc) to be present, the latter edge (vi, vj).

Sgng selects the edge of both candidates that creates the smoothest

surface, i.e., at which the larger dihedral angle (ϕ(vb, vc) or ϕ(vi, vj))

will be located. If necessary, the required edge and its adjacent tri-

angles are created accordingly. ⋒ does not add any triangles if the

corresponding required edge already has two adjacent triangles. The

penalty ae

(
(vb, vc)

)
or ae(vi, vj) of the edge (vb, vc) or (vi, vj), respec-

tively, is reset to zero. Any existing but no longer desired edge and its

adjacent triangles are deleted.

In addition to the above, sgng detects configurations where vb is

part of a not yet triangulated 4-loop. If none of the edges of that 4-loop

has two adjacent triangles, it will be triangulated automatically.

〈SGNG topology: create edges, triangles〉 +≡ Ap. 90

else

{vi, vj} = {vi, vj ∈ Nvb
∩ Nvc | most active}

if ϕ(vb, vc) ≥ ϕ(vi, vj) then

E ..= E ∪ {(vb, vc)}
F ..= F ⋒ {△(vb, vi, vc) , △(vb, vc, vj)}
ae

(
(vb, vc)

)
..= 0

else

E ..= E ∪ {(vi, vj)}
F ..= F ⋒ {△(vb, vi, vj) , △(vc, vj, vi)}
ae

(
(vi, vj)

)
..= 0

end if

delete no longer desired edge and triangles

end if

The previous algorithm determines the edge that is required toThe special union

operator ⋒ connect vb and vc with a surface. Whenever a triangle has to be created

adjacent to such a required edge in order to fill a 3-loop, one or both of
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vb vc

vivk

vl
A

vb vc

vivk

vl

Figure 4.8: Enforcing the 2-adjacent-triangle guarantee: If triangle
△(vb, vi, vc) has to be created but the edge (vb, vi) has
two adjacent triangles (left), sgng will pick the smoothest
surface configuration from all potential ones (right).

the other edges of the loop might already have two adjacent triangles.

Then, creation of the new triangle would violate the guarantee that

each edge has at most two adjacent triangles. Therefore, sgng uses

a union operator ⋒ that complies with this guarantee. ⋒ picks the

smoothest surface configuration, i.e., the configuration with the largest

dihedral angles, and it creates and removes triangles accordingly.

Assume for instance that vb and vc share one common neighbor vi,

that the edge (vb, vc) was just created, and that the basic algorithm

requests to add a new triangle △(vb, vi, vc):

F ..= F ⋒ {△(vb, vi, vc)} . (4.1)

Let there be no triangles adjacent to the edge (vi, vc), but let there be

two triangles △(vb, vk, vi) and △(vb, vi, vl) adjacent to the other edge

(vb, vi) (Fig. 4.8 left). Creating the new triangle would add a third

triangle adjacent to (vb, vi) and thus violate the above guarantee.

By also taking the edge (vb, vi) and the vertices vk and vl into

account, three different valid surface configurations exist:

• triangles △(vb, vk, vi) and △(vb, vi, vl)

• triangles △(vb, vk, vi) and △(vb, vi, vc)

• triangles △(vb, vl , vi) and △(vb, vi, vc)

Sgng evaluates the dihedral angles for all three configurations and

picks the smoothest, i.e., the one which generates the largest dihedral

angle—the second in case of Fig. 4.8 right. In this case the union

operator ⋒ (Eq. 4.1) thus evaluates to

F ⋒ {△(vb, vi, vc)} = (F \ {△(vb, vi, vl)}) ∪ {△(vb, vi, vc)} .

The number of potential surface configurations that are evaluated will

increase if vb and vi share more common neighbors. This concept is ex-

tended in a straightforward manner even to configurations where both

of the existing edges (vb, vi) and (vi, vc) have two adjacent triangles.

Then, the sum of the respective dihedral angles is maximized.

Sgng might produce some edges that have no adjacent triangles.

These edges increase the number of potential surface configurations

in future iterations and thus help construct the mesh that fits the
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input data best. However, these edges will eventually be deleted in

subsequent iterations and will not be part of the final mesh.

4.3.3 Topology: Delete Edges, Triangles

Sgng introduces new surface-aware removal schemes for triangles and

edges. Three different, undesired geometric cases are addressed: Tri-

angles that are covering holes in the original surface, obtuse triangles,

and isolated edges, i.e., edges without adjacent triangles. Since these

may be caused by the stochastic nature of the algorithm they may exist

for a few iterations. Sgng penalizes undesired triangles and edges

whenever they are detected instead of deleting them instantly.

To enable deleting edges and thus triangles, each edge keeps trackEdge penalties

of its penalty ae. Whenever the edge and triangle creation algorithm

from the previous subsection determines that an edge is required for

the selected surface configuration, its penalty is reset to zero. If an

edge is determined to be undesired, its penalty is incremented by one.

Once the penalty assigned to an edge exceeds a predefined threshold

amax, the edge and any triangles adjacent to it are deleted.

〈SGNG topology: delete edges, triangles〉 ≡ Ap. 90

Eu
..= ∅

〈SGNG detect isolated edges, update Eu A p. 94〉
〈SGNG detect obtuse triangles, update Eu A p. 95〉

ae

(
(vb, vk)

)
..= ae

(
(vb, vk)

)
+ 1 , ∀(vb, vk) ∈ Eu

Eamax = {(vb, vk) ∈ E | ae

(
(vb, vk)

)
> amax}

F ..= F \ Fe

(
(vb, vk)

)
, ∀(vb, vk) ∈ Eamax

E ..= E \ Eamax

V ..= V \ {vr ∈ V | ∀vs ∈ V : (vr, vs) 6∈ E}
Isolated edges, i.e., edges with no adjacent triangles, are requiredIsolated edges

especially during early iterations at the beginning of a reconstruction

process or whenever new points are added to the point cloud in order

to explore the input data. However, when no triangles are created

adjacent to an edge, it is not required to construct a surface. Isolated

edges are handled in a straightforward manner: If any edge emanating

from the best matching vertex vb has no adjacent triangles, its penalty

ae(·) is incremented by one.

〈SGNG detect isolated edges, update Eu〉 ≡ Ap. 94

Eu
..= Eu ∪ {(vb, vk) ∈ E |

∀vl ∈ V : △(vb, vk, vl) 6∈ F }
Obtuse triangles are handled by determining the Thales circle forObtuse triangles

any edge (vb, vi) that is emanating from vb (Fig. 4.9). If another di-

rectly connected neighbor vj 6= vi of vb lies inside that circle, the

corresponding triangle △(vb, vi, vj) is obtuse, i.e., one of its angles is
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vb vi

vj

γ

(a)

vb vk

vl
γ

(b)

Figure 4.9: The Thales circle is used to detect obtuse triangles (γ >

90°): △(vb, vi, vj) is obtuse, and is thus penalized (a).
△(vb, vk, vl) is more regular, and is thus preserved (b).

greater than 90°. The penalty ae

(
(vb, vi)

)
of the edge (vb, vi) that is

causing the triangle to be obtuse is incremented by one. The penalty

is incremented even if △(vb, vi, vj) 6∈ F , since the respective trian-

gle might be created in subsequent iterations. That way sgng later

constructs more regular triangles.

〈SGNG detect obtuse triangles, update Eu〉 ≡ Ap. 94

for each vi ∈ Nvb
do

if ∃vj ∈ Nvb
\ {vi} : ‖vj − vb+vi

2 ‖ < ‖vb − vb+vi
2 ‖ then

Eu
..= Eu ∪ {(vb, vi)}

end if

end for each

Triangles that are covering holes in the original surface cannot Triangle penalties

be removed by removing one of its edges, since the edge might be

necessary to represent the boundary of the original surface. Therefore,

each triangle △(vi, vj, vk) keeps track of a separate penalty value

a△ : F 7A N , with a△
(
△(vi, vj, vk)

)
..= 0 for a new triangle .

In contrast to the penalty assigned to the edges the penalty assigned

to the triangles may not be reset to zero. Otherwise triangles that

are covering holes will not be detected robustly. Once the penalty

assigned to a triangle exceeds a predefined threshold, the triangle is

deleted. It turned out that it is practical to also use amax as a threshold.

〈SGNG topology: delete edges, triangles〉 +≡ Ap. 90

〈SGNG detect triangles covering holes, update a△(·) A p. 96〉

Famax = {△(vi, vj, vk) ∈ F | a△
(
△(vi, vj, vk)

)
> amax}

F ..= F \ Famax

Once the edge and triangle creation step from the previous subsec- Triangles

covering holestion has determined that an edge is required to construct the desired

surface configuration, the triangles adjacent to this edge are checked

if they are representing the input data. Let (vl , vm) denote the re-

quired edge. Then, there are at most two triangles △(vl , vm, vn) and

△(vl , vm, vo) adjacent to it. If both exist, the penalty of the triangle
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whose third vertex (vn or vo) is closer to the current pξt
is decremented

by one, the penalty of the other is incremented by one. If only one

of these triangles exists, its penalty is decremented. Decrementing is

clamped so that a△(·) ≥ 0, denoted by the operator ⊖.

〈SGNG detect triangles covering holes, update a△(·)〉 ≡ Ap. 95

if Fe

(
(vl , vm)

)
= {△(vl , vm, vn),△(vl , vm, vo)} then

if ‖vn − pξt
‖ ≤ ‖vo − pξt

‖ then

a△
(
△(vl , vm, vn)

)
..= a△

(
△(vl , vm, vn)

)
⊖ 1

a△
(
△(vl , vm, vo)

)
..= a△

(
△(vl , vm, vo)

)
+ 1

else

a△
(
△(vl , vm, vn)

)
..= a△

(
△(vl , vm, vn)

)
+ 1

a△
(
△(vl , vm, vo)

)
..= a△

(
△(vl , vm, vo)

)
⊖ 1

end if

else if Fe

(
(vl , vm)

)
= {△(vl , vm, vn)} then

a△
(
△(vl , vm, vn)

)
..= a△

(
△(vl , vm, vn)

)
⊖ 1

end if

4.3.4 Density Updates: Add, Delete Vertices

During sgng learning the density of the constructed mesh is adjusted

in such a way that the reconstructed surface approximates the input

points better. Vertices are added in regions with too much vertex

activity τ(·), whereas inactive vertices are removed. For this purpose

each vertex keeps track of its activity τ, a value denoting how often

the vertex has been selected best match:

τ : V 7A N , with τ(v) ..= 0 initially .

The activity τ of a vertex is incremented by one, whenever it is selected

best match for an input point.

Inactivity is addressed explicitly in sgng, without changing the

topology of the constructed mesh, i.e., cutting holes. Thus, vertices at

protuberances, at inversions, or in regions that have been reconstructed

too densely are removed while keeping the surface intact. For this

purpose each vertex keeps track of the number ϑ of the last iteration

it was selected as best match:

ϑ : V 7A N , with ϑ(v) ..= t initially .

The value ϑ of the best matching vertex is updated in each iteration.

The density of the mesh is modified, whenever the number of input

points processed so far is an integer multiple of a parameter λ. Activity

and inactivity are addressed in the same iteration.
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Figure 4.10: Splitting edge (vm, vn), collapsing edge (vo, vm).

〈SGNG density updates〉 ≡ Ap. 90

τ(vb) ..= τ(vb) + 1

ϑ(vb) ..= t

if t ≡ 0 (mod λ) then

〈SGNG mesh refinement A p. 97〉
〈SGNG mesh coarsening A p. 98〉

end if

A new vertex vo is added in regions with too much vertex activity. SGNG mesh

refinementFor this purpose the most active vertex of the triangle mesh is deter-

mined. The new vertex vo is added in the middle of the longest edge

(vm, vn) emanating from the most active vertex vm. To preserve the

constructed topology, the new vertex is created by splitting the edge

(vm, vn) and its adjacent triangles (Fig. 4.10 left to right). Activity of

the three vertices vm, vn, vo is set to the activity of the least active

vertex of the mesh. Therefore, other regions with high activity will be

handled before any of the three vertices becomes most active again.

Thus, refinement is distributed globally across the triangle mesh.

〈SGNG mesh refinement〉 ≡ Ap. 97

vm = arg maxvi∈V τ(vi)

vn = arg maxvj∈Nvm
‖vm − vj‖

V ..= V ∪ {vo
..= vm+vn

2 }

split edge (vm, vn) with new vertex vo

τ(vm), τ(vn), τ(vo) ..= minvk∈V \{vo} τ(vk)

Vertices are removed in regions with too little vertex activity. For SGNG mesh

coarseningthis purpose a set of inactive vertices is determined. A vertex is

considered inactive, if it was not selected best match for a certain

number ∆tmax · |V | of iterations in a row. To preserve the constructed

topology, an inactive vertex vo is removed by collapsing one of the

edges emanating from vo (Fig. 4.10 right to left). For this purpose,

sgng determines the set Vm ⊆ Nvo of target vertices that are directly

connected to vo, onto which vo may be collapsed while preserving the

topological type of the constructed mesh. Hoppe et al. [65] defined

criteria for this (Sec. 3.1). After that, sgng picks that edge from the

above set, for which an edge collapse maximizes regularity of the mesh,
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Table 4.1: Learning parameters used in the sgng examples.

Parameter Value

Step size (best match vb) β 0.1
Step size (direct neighbors vn ∈ Nvb

) η 0.01
Maximum edge/triangle penalty amax 20
Iterations until density update λ 100
Vertex inactivity threshold (used as ∆tmax · |V |) ∆tmax 12

i.e., minimizes the sum of squared differences to valence six of the

affected vertices:

Ec : E A R

with Ec

(
(vo, vm)

)
=

(|Nvm |+ |Nvo | − |Nvm ∩ Nvo | − 8)2 + ∑
vk∈Nvm∩Nvo

(|Nvk
| − 7)2 ,

where |Nvk
| denotes the number of neighbors of a vertex vk, vo denotes

the inactive vertex, and vm denotes the other endpoint of the selected

edge (Fig. 4.10 right).

〈SGNG mesh coarsening〉 ≡ Ap. 97

Vo = {vo ∈ V | ϑ(vo) < t − ∆tmax · |V |}
for each vo ∈ Vo do

V +
o = {vl ∈ Nvo | collapsing (vo, vl) is valid [65]}

if |V +
o | > 0 then

vm = arg minvl∈V +
o

Ec

(
(vo, vl)

)

collapse edge (vo, vm) removing vertex vo

V ..= V \ {vo}
end if

end for each

Sgng keeps the reconstructed surface intact as long as possible: If a

vertex becomes inactive, because it has been moved into a hole that is

present in the input data, sgng will first remove the vertex with the

above technique. Topology updates in later iterations will detect that

the resulting triangles are covering a hole and remove them.

4.4 examples for sgng learning

In order to illustrate the characteristics of the proposed sgng and to

show the difference to the existing algorithms that are described in

Ch. 2, examples are presented in this subsection. The same data sets

are used as before to make the results comparable. Fig. 4.5 shows

an example of an initial sgng configuration. The network initially

contains two randomly placed vertices. The learning parameters that

are used in these reconstruction examples are collected in Tab. 4.1.

98



4.5 implementation details

These values have been determined in a separate experiment that is

described later (Sec. 4.6).

Sgng exports only those edges and vertices as the final constructed

mesh that have adjacent triangles (Sec. 4.2). Additional edges and

vertices with no adjacent triangles are needed in early iterations to let

sgng explore the data. Such edges and vertices are denoted by dotted

lines ( ) and white-filled circles ( ), respectively, in Fig. 4.11, 4.12.

In the first example the input points P ⊂ P (Eq. 2.1) are drawn SGNG reconstructing

a squareuniformly at random from a square. Fig. 4.11 shows the resulting

mesh after different numbers of iterations. At first, the results are very

similar to those of gng. In the first iteration both initial vertices get

connected by an edge. During the first 99 iterations this line segment

moves and gets longer to match the input points better (Fig. 4.11(a)).

It is split and it bends once t ≥ λ (Fig. 4.11(b)). The vertices get

connected to a first three-loop during the next few iterations, and a

triangular face is added to the mesh (Fig. 4.11(c)). Afterwards, the

constructed mesh is refined repeatedly. The vertices spread out, new

edges are added and obsolete ones are deleted (Fig. 4.11(d)–(g)). In

contrast to gsrm edge splits do not remove any desired triangles and

thus do not leave untriangulated n-loops of edges. Eventually, the ver-

tices are distributed fairly evenly across the input square (Fig. 4.11(h)).

The constructed triangles have very similar sizes with only few irregu-

larities. Almost no triangles are being degenerate. Furthermore, sgng

creates all desired triangles during learning. Thus, post-processing

steps that are inevitable for gsrm are obsolete with sgng.

In the second example the input points P ⊂ P (Eq. 2.2) are SGNG reconstructing

an annulusdrawn uniformly at random from an annulus. Fig. 4.12 shows the

resulting mesh after different numbers of iterations. The characteristics

of the results are very similar to the square example. At first, a

triangulated quadrangle is created (Fig. 4.12(d)). In the early iterations,

the density and distribution of the constructed vertices do not match

the density and distribution of the input points, leading to holes

and overlapping edges (Fig. 4.12(e)). However, sgng recovers easily

from this configuration during the next few iterations constructing a

triangulated disk (Fig. 4.12(f)) and afterwards an annulus (Fig. 4.12(g)).

Finally, all constructed vertices are fairly evenly distributed across

the input annulus with the hole being correctly reconstructed (Fig.

4.12(h)). As in the previous example the constructed triangles have

very similar sizes with only few irregularities. Almost no triangles

are being degenerate. Furthermore, sgng creates all desired triangles

during learning without requiring any post-processing steps.

4.5 implementation details

During implementation of sgng, some care must be taken to achieve

runtime efficiency. For the sake of clarity, the sgng algorithm pre-

99



surface-reconstructing growing neural gas

y

x

(a) t = 99 iterations

y

x

(b) t = 110 iterations

y

x

(c) t = 199 iterations

y

x

(d) t = 480 iterations

y

x

(e) t = 1200 iterations

y

x

(f) t = 3000 iterations

y

x

(g) t = 12 000 iterations

y

x

(h) t = 120 000 iterations

Figure 4.11: Sgng reconstructing a square.
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Figure 4.12: Sgng reconstructing an annulus.
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sented so far was described without referring to implementation

details. However, many design decisions have been made with an

efficient implementation in mind. To make the results presented in this

dissertation reproducible, important details about the implementation

are outlined in this section. A pseudocode that is very similar to C++

is used for this purpose.

Custom data structures for the constructed mesh, its triangles, its

edges, and its vertices have been designed for sgng in order to support

the required operations with low overhead.

〈SGNG data structures〉 ≡
〈SGNG Mesh class A pp. 102, 103〉
〈SGNG Vertex class A pp. 103, 104〉
〈SGNG Edge class A p. 102〉
〈SGNG Triangle class A p. 102〉
〈SGNG OctreeNode class A p. 103〉

The constructed mesh maintains lists of vertices, edges, and trian-Mesh class

gles. In order to handle activity and inactivity of vertices, two separate

vertex lists are required. Details are presented later.

〈SGNG Mesh class〉 ≡ Ap. 102

Vertex* pFirstActiveVertex; // V , Activity list

Vertex* pFirstInactiveVertex; // V , Inactivity list

list<Edge*> pEdges; // E

list<Triangle*> pTriangles; // F

Each triangle stores pointers to the three adjacent edges. TheTriangle class

vertices and adjacent triangles are accessible via these edges. In order

to detect and remove obsolete triangles, each triangle stores the penalty

assigned to it.

〈SGNG Triangle class〉 ≡ Ap. 102

Edge* pAdjEdges[3]; // (v0, v1), (v1, v2), (v2, v0)

int* penalty; // a△
(
△(v0, v1, v2)

)

Each edge stores pointers to the two vertices that it is connecting,Edge class

and pointers to at most two adjacent triangles. Finally, each edge keeps

track of its penalty in order to detect and remove obsolete edges.

〈SGNG Edge class〉 ≡ Ap. 102

Vertex* pVertices[2]; // v0, v1

Triangle* pAdjTriangles[2];

int penalty; // ae

(
(v0, v1)

)

Besides its 3d position each vertex stores a list of pointers to theVertex class

edges emanating from it. Thus, sgng efficiently checks if two given

vertices are already connected by an edge. Furthermore, sgng effi-

ciently determines the set of neighbors of a single given vertex and the

set of common neighbors of two given vertices. Sgng also efficiently

checks whether a given triangle already exists. Finally, each vertex
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v keeps track of its activity τ(v) and the number ϑ(v) of the last

iteration in which it was selected as best match.

〈SGNG Vertex class〉 ≡ Ap. 102

float position[3]; // v

list<Edge*> pEdges[2];

int activity; // τ(v)

int lastIterBestMatch; // ϑ(v)

With the above data structures both edge split and edge collapse are

implemented efficiently. The vertices that are affected by both op-

erations are found via the set of common neighbors of the vertices

that are connected by the respective edge. Furthermore, the data

structures allow for efficient neighbor search and efficient detection of

undesired edges and triangles. The set of edges that are emanating

from the best matching vertex is used to find the neighbors of the best

matching vertex that are affected by position updates. The same set of

emanating edges is used when checking for undesired edges. Only

the triangles adjacent to the edges emanating from the best matching

vertex are considered when checking for undesired triangles.

Vertex positions are stored in the leaf nodes of an octree that is vb, vc

dynamically updated during reconstruction. That way the best and

the second-best matching vertex for a randomly selected input point

are found efficiently.

〈SGNG Mesh class〉 +≡ Ap. 102

OctreeNode* pOctreeRoot;

A leaf node contains at most eight vertices. Nodes are split when

necessary, and collapsed when possible. The depth of the octree is

not limited. Whenever a vertex is moved beyond or a new vertex is

placed outside the bounds of the root node, the octree grows upwards

by creating a new root node having the old root node as one of its

child nodes.

〈SGNG OctreeNode class〉 ≡ Ap. 102

OctreeNode* pParent;

float bounds[6];

bool isLeaf;

union {

OctreeNode* pChildNodes[8];

Vertex* pVertices[8]; }

To facilitate the dynamic updates each vertex stores a pointer to the

octree node it is currently located in. That way, sgng efficiently checks

whether a vertex has been moved beyond the bounds of the respective

node and whether parts of the octree have to be updated.

〈SGNG Vertex class〉 +≡ Ap. 102

OctreeNode* pOctreeNode;
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Sgng organizes the vertices in two lists: The entries in the activityVertex activity

and inactivity list are sorted with respect to the activity of the corresponding vertices,

and the entries in the inactivity list are sorted with respect to the

number of the last iteration in which the corresponding vertices were

created or selected as best match. Thus, the most active vertex is

located at the front of the first list, and inactive vertices are located at

the end of the second list.

Whenever a vertex is selected as best match, its activity is incre-

mented by one, and its position in the activity list is readjusted. Si-

multaneously, it is moved to the front of the inactivity list. A density

update resets the activity of the affected vertices to the smallest activ-

ity value in the mesh. The vertices are thus moved to the end of the

activity list. Each vertex stores pointers to its immediate predecessor

and successor in both lists. That way, separate list nodes do not need

to be allocated, and thus memory requirements are reduced.

〈SGNG Vertex class〉 +≡ Ap. 102

Vertex* pPrevVtxInActivityList;

Vertex* pNextVtxInActivityList;

Vertex* pPrevVtxInInactivityList;

Vertex* pNextVtxInInactivityList;

4.6 experiments and results

At first, suitable reconstruction parameters for sgng were determined

that were then used in all subsequent experiments (Tab. 4.1). These

parameters were also used in the examples presented earlier. After-

wards, experiments were conducted in order to illustrate the effect of

the new boundary fitting and to demonstrate that sgng can handle

input data that is locally homogeneous but that has a globally varying

density. In order to verify the performance of sgng, and to compare it

to other surface reconstruction techniques, sgng was tested with the

benchmark provided by Berger et al. [13, 14]. By repeating their er-

ror distribution experiments for Poisson surface reconstruction (psr) the

results for sgng can be related to the results of other state-of-the-art

reconstruction techniques that were tested in the original benchmark.

Sgng is compared to gsrm in order to verify whether the new algo-

rithm does indeed improve the reconstruction process. Furthermore,

sgng is compared to screened Poisson surface reconstruction (spsr) [78]

as a state-of-the-art baseline. This comparison focuses mainly on it-

erative reconstructions providing preview while reconstructing from

real-world data. At present spsr is designed to construct only water-

tight meshes. However, its authors provide a trimming tool to remove

undesired triangles. To make comparison fair, this trimming tool

was used in the experiments. In addition to creating high-resolution

renderings of the reconstructed surfaces for visual comparison, the
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median reconstruction time of ten executions was determined in the

experiments. Additionally the mean relative error normalized to the

length of the diagonal of the bounding box was evaluated. Finally, the

angle distribution and the reconstruction quality were computed.

Sgng was implemented in C++ and executed as a 64 bit-application

on a single cpu core. It was not especially fine-tuned for run-time

performance. However, a dynamic octree was used to determine

vb and vc. Gsrm was implemented and configured according to

the original paper [41], triangulating 3- to 7-loops during post-pro-

cessing. The dynamic octree and the new activity updates of sgng

were used to make comparison fair. Psr version 2 [76] as provided

with the benchmark, and the recent spsr version 6.13 [77] were used.

Experiments were run on an Apple® MacBook Pro® with a 2.6 GHz

Intel® Core™ i7-4960hq cpu, 16 GB 1600 MHz ddr3 ram, running

Mac OS X® 10.9.

The mean distance between the input points and the constructed Reconstruction error

triangles was computed as an error measure. That way, the overall

deviation of the output mesh from the input points is tracked better

than using the Hausdorff distance. The latter yields only the largest

deviation and is thus prone to outliers.

The metro tool [27] could not be used directly due to data incom-

patibilities. Thus, the measurement process was rebuilt: Monte Carlo

sampling from MeshLab [28] was used to create a set S of 3d samples

lying on the triangles of each exported mesh. The number |S | of

samples was equal to the number |P | of input points used to construct

the respective mesh. Afterwards, two mean distance values were

computed: The first indicating the mean distance from an input point

pi ∈ P to the closest sample sj ∈ S , the second indicating the mean

distance from a sample to the closest input point. To be compara-

ble throughout the experiments, both values were normalized to the

length of the diagonal of the bounding box of the point cloud, dP , or

of the set of samples, dS , respectively. The greater value of the two

mean distance values was selected as the error value e:

e = max

{
1

|P |
|P |
∑
i=1

min
sj∈S

‖pi − sj‖
dP

,
1

|S |
|S |
∑
j=1

min
pi∈P

‖pi − sj‖
dS

}
.

Reconstruction quality was evaluated in terms of triangle shape: Reconstruction

qualityThe more regular, i.e., the closer to equilateral the triangles, the better.

Therefore, the ratio of the radii of the incircle and the circumcircle of

a triangle was used as a quality measure, normalized to the ratio of

an equilateral triangle.

Let a, b, c denote the lengths of the sides of a triangle, then for the

area A of the triangle [125],

A =
1

4

√
(a + b + c)(b + c − a)(c + a − b)(a + b − c) ,
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Figure 4.13: Contour plot of reconstruction quality values for all valid
triangle configurations. The abscissa and ordinate specify
two of the three inner angles. marks the quality value
(q = 1.0) of equilateral tringles, and marks the quality
value (q ≈ 0.828) of half-square triangles.

Table 4.2: Characteristic quality values

Type of triangle Quality (q)

Equilateral 1.0
Half-square ≈0.828
Isosceles, top angle ≈ 34.1° ≈0.828
Isosceles, top angle < 26.5° or > 100.8° <0.707
Isosceles, top angle < 16.9° or > 117.2° <0.5

its inradius r, and its circumradius R [126, 127]

r =
2A

a + b + c
, R =

abc

4A
,

and thus

q =
2r

R
=

16A2

(a + b + c) · abc
∈ [0, 1] ,

where the factor of 2 is used for normalization so that q = 1 for

equilateral triangles. The contour plot in Fig. 4.13 gives an overview

of the quality values for different angle configurations in a triangle.

Tab. 4.2 lists characteristic quality values for some triangle types.

In order to determine a set of suitable parameter values for theDetermining suitable

parameter values experiments, sgng reconstructions that were created with various

combinations of parameter values were evaluated. To make sure that

the subsequent experiments yielded results that are related to the

generalization capabilities of sgng, a different data set was used here:

A set of 200 · 103 points sampled from the Armadillo reconstructions
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Figure 4.14: Influence of the learning parameters of sgng on (nor-
malized) reconstruction time (t (tnorm), solid), error (e,
dashed), quality (q, dotted), and relative number of bound-
ary edges (b, dash-dotted). The parameter values used in
the experiments are highlighted by a vertical gray line.

from Stanford Scanning Repository [114]. Sgng constructed meshes

with 50 · 103 vertices.

Fig. 4.14 shows plots revealing the relationships between the learn-

ing parameters and reconstruction time t (solid), error e (dashed), and

quality q (dotted). The leftmost plot uses tnorm, the time normalized to

the result at ∆tmax = 12 for each tested value of λ, to account for the

proportionality relationship of t and λ. Since a point to vertex ratio of

4 was used here, sgng leaves a small number of holes untriangulated

in regions where the vertex density exceeds the point density. The

number of holes is represented by the relative number b of bound-

ary edges in the lower right plot. From the plots a set of suitable

parameter values (β = 0.1, η = 0.01, λ = 100, ∆tmax = 12, amax = 20)

(Tab. 4.1) was determined as trade-offs between speed, quality, error,

and the number of erroneously untriangulated holes. A vertical gray

line highlights these values in the plots.

The experiment that was conducted earlier in order to demonstrate Comparison to GSRM

the influence of the input data’s density to gsrm reconstructions

(Fig. 4.2) was repeated for sgng. Fig. 4.15 shows renderings of sgng

reconstructions of Stanford Bunny with 20 · 103 vertices from different

numbers of input points. While the gsrm reconstructions contain

holes for sparser input data, the new topology learning (Sec. 4.3.2,

4.3.3) enables sgng to construct a hole-free triangle mesh even from

sparse input data that can be used directly for visualization at any time

during learning. In addition to that, sgng is faster than gsrm (Tab. 4.3).

While the post-processing of gsrm took longer the sparser the input

data was, running times of sgng are almost constant independent

of the number of input points. For fairness, λ = 200 for both gsrm
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(a) |P | ≈ 2.9 · 106 (b) |P | = 1.0 · 106

(c) |P | = 0.3 · 106 (d) |P | = 0.1 · 106

Figure 4.15: Sgng reconstructions of Stanford Bunny with 20 · 103 ver-
tices from different numbers of input points. Results for
gsrm reconstructions of same sets of input points are
presented in Fig. 4.2.

and sgng in this experiment, since this value was used in the original

paper by do Rêgo et al. [41].

In order to evaluate the effect of the newly introduced boundary fit-Effect of additional

boundary fitting ting (Sec. 4.3) a set of 12 000 input points was used that were sampled

from a square with an area of 1 square unit. From these input points

sgng constructed two meshes containing 100 vertices each: the first

without, the second with the additional boundary fitting. Fig. 4.16

presents the constructed meshes that both approximate the original

square. The input points are overlaid for reference. Without boundary

fitting (Fig. 4.16(a)) sgng constructs a mesh with a surface area of

approximately 0.72 square units. With boundary fitting (Fig. 4.16(b))

sgng constructs a mesh with a surface area of approximately 0.81

square units. Therefore, the newly introduced boundary fitting re-

duces the error in terms of surface area and thus improves boundary

accuracy—by 32 % in this experiment.

An experiment was conducted in order to demonstrate that sgngVarying point

density can handle input data robustly even if its density is locally homo-

geneous but varies across the original surface. For this purpose a

torus was sampled with four different densities (Fig. 4.17(a)) yielding
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Table 4.3: Running times in seconds for gsrm and sgng reconstructions
of Stanford Bunny with |V | = 20 · 103.

Gsrm Sgng

|P | / 106 2.9 0.3 0.1 2.9 0.3 0.1

Reconstruction 9.7 9.3 8.7 15.5 15.2 15.1
Post-Processing 8.9 17.3 43.0 – – –

Total 18.6 26.6 51.7 15.5 15.2 15.1

(a) Without boundary fitting. (b) With boundary fitting.

Figure 4.16: Effect of additional boundary fitting: Sgng reconstruc-
tions of a square with overlaid input points.

(a) (b)

Figure 4.17: Torus with varying point density. (a) Input points: Upper
right 1479 points, lower right 5878 points, lower left 2955

points, upper left 11 723 points. (b) Sgng reconstruction
with overlaid wireframe.
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Figure 4.18: Plots for the error distribution experiments using the
benchmark test provided by [14].

a total of 22 035 input points. Using the above learning parameters

sgng constructed a smooth surface with 5508 vertices from these input

points that approximates the original torus (Fig. 4.17(b)). Due to the

new topology learning (Sec. 4.3.2, 4.3.3) and the improved density

learning (Sec. 4.3.4) sgng is robust to the varying density of the input

points: Constructed triangles are smaller in regions with greater point

density than in regions with lower density. Since even in the sparsely

sampled regions the triangles are large compared to the distance of

the input points, there are no untriangulated holes in the constructed

surface. If the settings of sgng were changed in such a way that more

and thus smaller triangles were constructed, sgng would leave some

holes untriangulated. However, this could be detected easily during

iterative reconstruction, and an operator could adjust the parameters

accordingly without having to restart reconstruction from scratch.

In order to compare sgng to other surface reconstruction tech-Benchmark tests

niques, sgng was evaluated using the error distribution tests of a

publicly available benchmark [14]. The test for psr was repeated as a

verification: The results that were published by Berger et al. [14] could
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Figure 4.19: Number |V | of vertices (top row) and mean error e (bot-
tom row) of sgng (black) and spsr (gray) reconstructions
versus median time.

be reproduced. The results of psr thus serve as a link to the results

of the other techniques that Berger et al. tested. In addition to gsrm,

spsr was also tested, since sgng is compared to it. Fig. 4.18 presents

the results. Spsr performed slightly better than psr in terms of mean

and Hausdorff distance, but led to slightly larger angular errors. Since

the point clouds that were used in the benchmark are too sparse for

hole-free gsrm reconstructions, these caused large errors.

Sgng yielded results that are comparable to those presented by

Berger et al.: In terms of mean distance, Hausdorff distance, and mean

angle deviation for Gargoyle, Dancing Children, and Quasimoto sgng

performed similar to psr, and thus similar to or better than half of the

algorithms that were tested in the original benchmark [14]. For the

Anchor and Daratech data sets performance of sgng was even better:

Sgng outperformed psr in terms of mean and Hausdorff distance,

with similar results as spsr.

In the original benchmark psr reconstruction took 36.83 s, averaged

across all point clouds [14]. In the experiment that was repeated

here psr reconstruction took 36.91 s. Thus, running times can be

compared directly to the results of the other techniques that were

tested in the original benchmark. For comparison, in this experi-

ment, spsr reconstruction with the same settings as psr took 130.79 s,

gsrm reconstruction took 103.68 s including post-processing, and sgng

reconstruction took 19.66 s.

Sgng is compared to spsr using six real-world data sets: The origi- Real-world

reconstruction

experiments
nal range data of Stanford Bunny and Happy Buddha from Stanford

Scanning Repository [114], and the Arch, Cemetery, Fountain, and

Statues data sets created by a combination of VisualSFM [130] and

CMVS/PMVS [54] from photos taken in Paris, France. Stanford Bunny

and Happy Buddha are used for single-shot reconstructions. The
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Table 4.4: Results for sgng and spsr reconstructions.

Bunny Buddha

Sgng Spsr Sgng Spsr

Points (iterative steps) 362 230 (1 St.) 1 098 870 (1 St.)
Vertices 46 634 93 732
Time / s 20.9 14.6 50.0 33.0
Mean rel. error / 10−3 0.9 1.0 0.7 1.0

Arch Cemetery

Sgng Spsr Sgng Spsr

Points (iterative steps) 407 229 (10 St.) 380 840 (9 St.)
Vertices 101 808 104 670 95 210 88 303
Time / s 69.2 249.2 53.8 180.3
Mean rel. error / 10−3 1.0 3.1 2.1 3.2

Fountain Statues

Sgng Spsr Sgng Spsr

Points (iterative steps) 567 920 (16 St.) 497 489 (4 St.)
Vertices 140 000 69 248 124 373 97 408
Time / s 99.4 339.8 74.5 88.2
Mean rel. error / 10−3 1.0 3.5 0.8 3.0

remaining data sets are used in experiments that constitute a mock-up

of the intended application of sgng: An interactive pipeline where

data acquisition and reconstruction with continuous preview are ex-

ecuted in parallel. For this purpose incremental input point clouds

are constructed by adding only one photo at a time. To determine the

net reconstruction time in such a pipeline, the experiments start with

the initial point cloud. Further input points for the next incremental

step are added once a point to vertex ratio of 4 is reached (sgng)

or the previous reconstruction task has been finished (spsr). Sgng

is configured to use the previously determined learning parameters.

Spsr uses a 1283 voxel grid for Bunny and a 2563 voxel grid for the

other data sets. For Buddha a trimming value of 9 is used, for the

other data sets a value of 7 is used.

Fig. 4.19 and Tab. 4.4 present the results of these experiments. Spsr

is faster than sgng by a factor of approximately 1.5 for single-shot

reconstructions of Bunny and Buddha. However, it can be seen in

the plots in Fig. 4.19 that sgng instantly provides an approximate

reconstruction that gets continuously refined. For the single-shot re-

constructions of Bunny and Buddha the error of sgng is slightly lower

than the error of spsr. The former gets reduced during learning with

a steep initial decay. For iterative reconstructions of Arch, Cemetery,

and Fountain that are updated frequently sgng is faster than spsr by

a factor of 3.4 to 3.6 and still by a factor of 1.1 for the Statues data set

with only 3 updates during reconstruction. Again, the error of sgng is
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considerably smaller than the error of spsr. The former gets reduced

during learning with a steep initial decay, but increases temporarily

every time new points are added.

Besides the above measurements the visual appearance of the Visual evaluation

reconstructions is evaluated. Fig. 4.20–4.32 present the results. For

each iterative reconstruction a photo is presented as an overview (Fig.

4.24(a), 4.26(a), 4.28(a), 4.30(a)) as well as the complete point cloud

(Fig. 4.24(b), 4.26(b), 4.28(b), 4.30(b)) created from the input images.

Sgng constructs a mesh that visually represents the input data more

accurately than spsr. The latter tends to oversmooth the data (Fig.

4.20(a)) while sgng reconstructs finer details with the same number of

vertices (Fig. 4.20(b)): The bulges on the side and the rear foot, and

the bumps near the mouth of Stanford Bunny are more prominent for

sgng than for spsr. The quality of the triangles that are constructed

by sgng on the one hand and by spsr on the other hand is different

(Fig. 4.21): Sgng constructs a fairly regular triangle mesh, that can

be seen in a close-up of the left eye of Stanford Bunny (Fig. 4.21(b)).

In contrast, spsr constructs many right angled triangles. Quite a few

are even close to degenerate (Fig. 4.21(a)). However, this is caused by

marching cubes that is known to construct a considerable amount of

irregular triangles.

Holes that are present in the input data are reconstructed much

better by sgng than by spsr: On the bottom of the original Stanford

Bunny clay figure there are two holes for balancing the pressure during

baking. Additionally, some parts of the bottom surface were not

captured while scanning and are thus missing from the input points.

Sgng correctly reconstructs the two holes (Fig. 4.32(b)) and reveals the

missing data without any modifications to the learning parameters.

In contrast, spsr bridges those parts and the accompanying trimming

tool is needed to reopen at least the holes partially (Fig. 4.32(a)). Thus,

regions with missing input data cannot be determined from an spsr

reconstruction with sufficient certainty, whereas those regions are

clearly apparent in an sgng reconstruction.

The difference in visual accuracy of sgng and spsr becomes also

apparent in the reconstructions of Happy Buddha. The sgng recon-

struction (Fig. 4.23) reproduces the wrinkles of the cloth better than

the spsr reconstruction (Fig. 4.22). Spsr bridges the coat and the base

on the right side of the statue. Furthermore, even the trimmed spsr

reconstruction does not track the boundaries of the original object

well, and some overshooting of the underlying distance function’s

zero-set becomes apparent: The right foot of Happy Buddha seems

to be sunken into the base of the figure with spsr (Fig. 4.22) mak-

ing it appear soft. Although there is a considerable amount of noise

contained in the Buddha data set, with its current settings sgng fits

a fairly smooth surface to the input points without creating spikes

or other artifacts that are due to overfitting (Fig. 4.23). Furthermore,
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.20: Reconstructions of Stanford Bunny.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.21: Close-up of the left eye of Stanford Bunny.
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Figure 4.22: Spsr reconstruction of Happy Buddha.
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Figure 4.23: Sgng reconstruction of Happy Buddha.
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(a) Photo.

(b) Point Cloud.

Figure 4.24: Arch: Exemplary photo and complete point cloud.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.25: Arch: Constructed triangle meshes.
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(a) Photo.

(b) Point Cloud.

Figure 4.26: Cemetery: Exemplary photo and complete point cloud.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.27: Cemetery: Constructed triangle meshes.
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(a) Photo.

(b) Point Cloud.

Figure 4.28: Fountain: Exemplary photo and complete point cloud.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.29: Fountain: Constructed triangle meshes.
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(a) Photo.

(b) Point Cloud.

Figure 4.30: Statues: Exemplary photo and complete point cloud.
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(a) Screened Poisson Surface Reconstruction.

(b) Surface-Reconstructing Growing Neural Gas.

Figure 4.31: Statues: Constructed triangle meshes.
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(a) Spsr. (b) Sgng.

Figure 4.32: View of the bottom of Stanford Bunny.

sgng tracks the boundary tightly within the variation of the input

data’s noise. Thus the reconstruction does not mislead a viewer about

the materials of the original object. Finally, sgng does not bridge

empty regions of the input data, except for one triangle in the back,

erroneously bridging the coat and the base.

The reconstructions of the remaining, larger real-world objects fur-

ther underline the visual accuracy of sgng reconstructions in compari-

son to spsr reconstructions. Parts of the original object that are not

captured by the respective point cloud (Fig. 4.24(b), 4.26(b), 4.28(b),

4.30(b)) are bridged in the spsr reconstructions (Fig. 4.25(a), 4.27(a),

4.29(a), 4.31(a)), although the accompanying trimming tool was used

with a high trimming value. Therefore, details in bridged regions

might be missed since an operator cannot decide by examining the

reconstruction where data has to be added. In contrast, the sgng

reconstructions (Fig. 4.25(b), 4.27(b), 4.29(b), 4.31(b)) track the input

point clouds well: Parts of the original object that are not captured

by the respective point cloud are left empty in the constructed mesh.

From these reconstructions an operator can decide where further data

needs to be acquired in order to complete the reconstruction. Thus,

eventually no details will be missing. Furthermore, the spsr recon-

structions look smoothed. Due to this smoothness they appear to be

rather small and made from soft materials. In combination with the

already mentioned overshooting the spsr reconstructions look rather

like a mold for the object than like the object itself. In contrast, the

sgng reconstructions look crisp and provide a much better impression

of material and size.

Sgng constructs fairly regular triangles: The normalized angleTriangle quality

distributions of the individual experiments (Fig. 4.33(a) left, solid

black) concentrate around 53°. This high regularity is reflected in

a high triangle quality: The normalized quality distributions of the

individual sgng experiments (Fig. 4.33(a) right) concentrate at q ≈ 0.98.

In contrast to these results, spsr features half-square triangles: The
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normalized angle distributions of the individual experiments (Fig.

4.33(b) left) concentrate around 45° and 89°. This is also reflected

by the triangle quality: The normalized quality distributions of the

individual spsr experiments (Fig. 4.33(b) right) concentrate at q ≈ 0.84.

The different triangle configurations that sgng and spsr create can

be evaluated in greater detail using the contour plots in Fig. 4.34, 4.35.

The plots give an overview of the frequency of triangle configurations,

by identifying the most common 25 % (black), 50 % (gray), and 75 %

(light gray) configurations of the triangles in the constructed mesh. It

can clearly be seen that sgng and spsr produce significantly different

distributions of triangle configurations. The most common 25 % of

triangle configurations that are constructed by sgng are very close to

that of regular triangles for all data sets (Fig. 4.34(a), 4.34(c), 4.35(a),

4.35(c), 4.35(e), 4.35(g)). Even the most common 75 % of triangle

configurations that are constructed by sgng are still pretty close to

that. In contrast, the most common 25 % of triangle configurations that

are constructed by spsr are very close to that of right-angled, isosceles

triangles for all reconstructions (Fig. 4.34(b) 4.34(d), 4.35(b), 4.35(d),

4.35(f), 4.35(h)). Although the close to regular configurations are

among the most common 50 % of triangle configurations for some spsr

reconstructions, there are also elongated, right-angled configurations

in every spsr reconstruction. Furthermore, even degenerate, right-

angled configurations are among the most common 75 % of triangle

configurations that are constructed by spsr.

The irregular triangles constructed by spsr are caused by marching

cubes that is used to triangulate the zero-set of the computed distance

function. In order to provide a less biased comparison, the angle

distributions of sgng are additionally compared to the results of

the dictionary-learning approach by Xiong et al. [133] (Fig. 4.33(a)

left, dashed gray) and to results of Singular Cocone reconstruction by

Dey and Wang [38] (Fig. 4.33(a) left, dashed light gray). The curves

are reproduced from the histograms published by Xiong et al. [133]

in order to provide a direct comparison. The peaks in the angle

distributions created by sgng are located at a slightly smaller angle

than in both the dictionary-learning approach and in Singular Cocone

reconstruction. However, the distribution achievable with sgng is much

steeper, thus considerably fewer acute or obtuse triangles are created.

4.7 discussion

In this chapter sgng has been proposed and evaluated, an online

learning-based artificial neural network that iteratively constructs a tri-

angle mesh from an unorganized point cloud representing an object’s

surface. Sgng instantly provides a rough approximation of the original

surface that gets continuously refined up to an accurate reconstruction.

Since all desired triangles are created during learning and not during
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(a) Surface-Reconstructing Growing Neural Gas (solid black), dictionary learn-
ing [133] (dashed gray), Singular Cocone Dey and Wang [38] (dashed light gray).
The latter two are reproduced from the histograms published by Xiong et al. [133].
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(b) Screened Poisson Surface Reconstruction.

Figure 4.33: Normalized angle and quality distributions.
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(a) Sgng: Stanford Bunny.
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(b) spsr: Stanford Bunny.
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(c) Sgng: Happy Buddha.
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(d) spsr: Happy Buddha.

Figure 4.34: Contour plots displaying the relative frequency of triangle
configurations that are created by sgng and spsr. The
most common 25 % of configurations are enclosed by
a black contour. The most common 50 % and 75 % of
configurations are enclosed by a gray and a light gray
contour, respectively.

128



4.7 discussion

0◦ 30◦ 60◦ 90◦
0◦

30◦

60◦

second-largest angle

sm
al

le
st

an
gle

(a) Sgng: Arch.
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(b) spsr: Arch.
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(c) Sgng: Cemetery.
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(d) spsr: Cemetery.
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(e) Sgng: Fountain.
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(f) spsr: Fountain.
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(g) Sgng: Statues.
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(h) spsr: Statues.

Figure 4.35: Contour plots displaying the relative frequency of triangle
configurations that are created by sgng and spsr. The
most common 25 % of configurations are enclosed by
a black contour. The most common 50 % and 75 % of
configurations are enclosed by a gray and a light gray
contour, respectively.
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post-processing, sgng is well suited for an iterative pipeline where

scanning, reconstruction, and visualization are executed in parallel:

At any time modifications to the input data are incorporated instantly

into the reconstruction without additional overhead. That way, with

sgng an operator or an automatic process will be able to direct further

data acquisition without waiting for a reconstruction to be finished.

In order to provide visually meaningful initial approximations sgng

tolerates self-intersections and that the constructed mesh may become

non-manifold. However, adding a guarantee to sgng that the con-

structed mesh will be manifold, once the input data is dense enough,

is left for future work.

An extensive evaluation has confirmed that sgng improves signifi-

cantly upon its predecessor gsrm. Furthermore, results of a benchmark

test have confirmed that sgng can compete with other state-of-the-art

surface reconstruction algorithms. Although sgng is intended to be

used as an online algorithm providing iterative preview while acquir-

ing data, the reconstruction error of sgng is low while the quality of

the constructed mesh is high. Sgng visually represents the input data

much better than spsr, a state-of-the-art offline algorithm. The con-

structed meshes contain mostly regular triangles, outperforming spsr,

Singular Cocone, and a recent dictionary-learning approach. However,

a comparison to several more recent surface reconstruction techniques

is left for future work. Sgng is robust to noise as long as the variation

of the noise is smaller than the average triangle size. Furthermore, the

additional fitting step lets sgng fit data boundaries tightly. Finally,

the new topology learning enables sgng to correctly represent empty

regions of the input data.

Sgng does not extrapolate missing data: Holes are created whenever

the vertex density exceeds the point density. Nevertheless, to overcome

this, further input data can be added, and the learning parameters can

be adjusted at any time during reconstruction. However, experiments

indicate that the learning parameters of sgng do not need to be

specifically adjusted for each input data set: Leaving them unchanged

for all experiments consistently produced good results.

Since sgng uses a variant of chl and approximates the positions

of the input points, it cannot yet reconstruct very fine structures or

sharp features, if these are sampled too sparsely: The latter will be

smoothed, the former will lead to holes and wrinkles. With the current

update rules, input data has to be very dense in such regions in order

to avoid these errors. Approximating such features more accurately is

left for future work.

It is very likely that the current implementation of sgng leaves room

for optimization: Profiling revealed that the 2-nearest neighbor search

in the adaptive octree to find the best and the second-best matching

vertices dominates running time. Furthermore, a considerable number

of cache misses was reported. It is planned to examine the sgng
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algorithm in order to find a way to address both bottlenecks and to

further streamline the reconstruction process. Since sgng operates

only locally and evaluates only one input point at a time in a stochastic

way, it is very likely that the algorithm can be executed massively in

parallel, implemented as an out-of-core algorithm. Thus, even a gpu

implementation is conceivable. In order to improve performance in

terms of smaller reconstruction error and better reconstruction quality

even further, other learning objectives or even dual representations of

sgng have to be examined.

It might be advantageous if the iteratively refined triangle meshes

constructed by sgng were fed back into the point extraction process.

That way at first only a very coarse set of feature points has to be

extracted, matched and converted into 3d points. The iteratively

refined surface that is constructed by sgng could then be used to direct

extraction of a denser set of feature points. Thus, a combination of

point extraction and sgng could operate in an integrated, incremental

coarse to fine approach, with reduced processing power and memory

requirements—maybe even on mobile platforms.
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5
L E A R N I N G T H E T E X T U R E A S S I G N M E N T *

If the input points that have been acquired for surface reconstruction

provide color information about the original object, then the previ-

ously proposed surface-reconstructing growing neural gas (sgng) can

learn vertex colors from this information. Furthermore, if images of

the original object are available that are registered to the input points,

then these images can be used as textures for the constructed mesh.

A coloring and a texturing extension to sgng are presented in this

chapter. While the former is a straightforward way to add visual detail

to the constructed mesh, the latter enables sgng to automatically learn

how to assign suitable high-resolution textures to the constructed

triangles. By learning visibility from the input data instead of deriving

it from the constructed mesh, sgng reduces the number of noticeable

occlusion artifacts to a minimum. Whenever new images become

available, they are immediately incorporated into the model being

learned, refining the result, without interrupting the reconstruction

process. That way, even a textured mesh is available for visualization

at any time during reconstruction.

5.1 problem statement

Sgng is originally intended to be used as a surface reconstruction

algorithm using 3d input data that has been extracted from a set of

images. The images can stem, for instance, from aerial photography

using remotely-piloted aircraft, or from crowd work using digital cam-

eras or smart phones. If the input images are mutually overlapping,

* Substantial parts of this chapter appeared in [120] Tom Vierjahn and Klaus Hinrichs.
Surface-reconstructing growing neural gas: A method for online construction of
textured triangle meshes. Computers & Graphics, pp. –, 2015. doi: 10.1016/j.cag.2015.
05.016.
A first prototype was sketched in [123] Tom Vierjahn, Jan Roters, Manuel Moser,
Klaus Hinrichs, and Sina Mostafawy. Online reconstruction of textured triangle
meshes from aerial images. In 1st Eurographics Workshop Urban Data Modelling and
Visualisation, pp. 1–4, 2013. doi: 10.2312/UDMV/UDMV13/001-004.

133



learning the texture assignment

then 3d input points can be extracted by stereophotogrammetry or by

structure from motion [130] for subsequent surface reconstruction. For

this purpose, at first, special feature points are identified in each image.

The features are then matched across the images according to their

feature descriptors so that each feature in a group of matching features

represents the same point on the original object. Many suitable feature

descriptors exist, including CenSurE [3], freak [4], brief [24], sift [89],

and daisy [118]. After matching the features, epipolar geometry is

used to compute the points’ 3d positions and the cameras’ extrinsic

and intrinsic parameters from the matching features’ 2d locations

inside the images [107]. Real-world data is prone to imperfections like

noise, drifts, or sensor inaccuracies. Feature matching may introduce

additional artifacts like outliers. Thus, robust estimation techniques

like Festgpu [106], a gpu implementation of ransac, [46] are used to

compute as accurate a solution as possible efficiently.

The process sketched above creates a set of 3d input points for sub-

sequent surface reconstruction and relates every point to a 2d location

in two or more images. Thus, sgng is not restricted to reconstruct

an original object’s shape and topology. Sgng can also learn the ob-

ject’s surface color. Related results have been presented for instance

for reconstructions of historic sites in Rome from community photo

collections [2, 48]. However, these approaches used fundamentally

different reconstruction and texturing techniques.

Extracting the set P of 3d points from a set T of images yields forAvailable data

each input image Ti ∈ T which points pj ∈ P are visible in it. Thus,

the indicator function

[pj visible in Ti] =

{
1 , if pj is visible in Ti

0 , otherwise
(5.1)

is defined for all pairs of Ti ∈ T and pj ∈ P . Consequently, a set

Tpj
⊆ T is defined for each input point pj that contains only those

images that show pj:

Tpj
= {Ti ∈ T | [pj visible in Ti] = 1} .

Furthermore, point extraction computes a mapping

wp : P × T 7A R
2 , with wp(pj, Ti) =

{
wpj,Ti

, if Ti ∈ Tpj

undefined , otherwise ,

yielding a point’s 2d location wpj,Ti
inside an image Ti if the point pj

is visible in the image. Determining the color at wpj,Ti
in the image

Ti is straightforward. Let each image constitute a mapping from 2d

locations inside the image to colors, for instance in rgb space,

Ti : R2 7A R
3 , with
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Ti(wpj,Ti
) =

{
color at wpj,Ti

, if wpj,Ti
inside image

undefined , otherwise .

If wpj,Ti
has sub-pixel accuracy, then a suitable interpolation scheme

needs to be applied, e.g., linear interpolation. Finally, a color, for

instance in rgb space, is assigned to each point by a mapping

cp : P 7A R
3 , with cp(pj) =

1

|Tpj
| ∑

Ti∈Tpj

Ti(wpj,Ti
) ,

yielding the average color of the pixels that are showing a point. The

shorthand cpj
= cp(pj) is used in the remainder of this dissertation.

5.2 learning vertex colors and texture coordinates

Sgng approximates an original object’s shape by learning vertex posi-

tions from the input points’ positions by an algorithm that—intuitive-

ly—resembles a variant of k-means clustering [87, 90] using stochastic

gradient descent. Learning vertex colors and interpolating them across

the triangles as an approximation for the original object’s color can

be integrated into the reconstruction algorithm in a similar fashion.

The same applies to learning texture coordinates inside the individual

images. The derivation is outlined in the following.

Sgng as a learning algorithm minimizes an objective function. To be Objective function

precise, Erwin et al. [45] prove that there does not exist a single energy

function for gradient descent in a self-organizing map (som). A similar

argument might apply to sgng, since it uses a neighbor learning

scheme that is related to the one used in som. However, a closer

examination lies beyond the scope of this dissertation. Nevertheless,

for the sake of an intuitive illustration, existence of such a single

energy function is assumed here. Let E denote this energy function

E : V ∗ 7A R , with E(V ) = ∑
v∈V

∑
p∈Pv

‖v − p‖2 ,

where V ∗ denotes the set of all conceivable vertex sets, and where

Pv ⊆ P denotes the set of all points that are located in the Voronoi cell

of vertex v. Applying gradient descent leads to the update rule

v ..= v − β′ · ∇E = v − β · ∑
p∈Pv

(v − p) , ∀v ∈ V .

Presenting the points one by one, one after the other, in random order,

leads to a stochastic gradient descent, with the already known update

rule for the best matching vertex vb according to the point pξt
that is

randomly selected in iteration t

vb
..= vb − β · (vb − pξt

) .

135



learning the texture assignment

A beautiful derivation of the above is presented by Singer and War-

muth [112], but for training a mixture of Gaussians.

With this intuition, learning vertex colors is derived, leading toVertex colors

an approach that is similar to the one presented by Orts-Escolano

et al. [101, 102]. Let cv denote the mapping to be learned, assigning a

color, for instance in rgb space, to a vertex

cv : V 7A R
3 ,

with cv(vi) = undefined initially. The shorthand cvi
= cv(vi) is used

in the remainder of this dissertation. Vertex colors are optimized

independently of the vertex positions, in order to avoid that color

influences the constructed shape. This leads to an energy function

E′ : V ∗ 7A R , with E′(V ) = ∑
v∈V

∑
p∈Pv

‖v − p‖2 + ‖cv − cp‖2 .

According to the above rationale an additional update rule for vertex

colors is derived

cvb
..= cvb

− β · (cvb
− cpξt

) .

Taking the neighbor learning of sgng into account and replacing vertex

positions with vertex colors leads to the color-learning rule for the

directly connected neighbors of vb

cvn
..= cvn − η · (cvn − cpξt

) , ∀vn ∈ Nvb
.

If cvi
= undefined, cpξt

is assigned to cvi
as an initial approximation.

The above derivation can be reused for letting the vertices in theTexture coordinates

constructed mesh learn texture coordinates from the 2d locations of

the input points in the images. Then, sgng keeps track of a mapping

wv : V × T 7A R
2

yielding a vertex’ learned texture coordinates wv(vj, Ti) inside an im-

age Ti, with wv(vj, Ti) = undefined initially. The shorthand wvj,Ti
=

wv(vj, Ti) is used in the remainder of this dissertation.

Applying the same rationale that was used to derive the color

learning rules leads to update rules for texture coordinates: For the

best matching vertex vb

wvb,Ti
..= wvb,Ti

− β · (wvb,Ti
− wpξt

,Ti
) , ∀Ti ∈ Tpξt

,

and for the directly connected neighbors of vb

wvn,Ti
..= wvn,Ti

− η · (wvn,Ti
− wpξt

,Ti
) , ∀Ti ∈ Tpξt

, ∀vn ∈ Nvb
.

If wvj,Ti
= undefined, wpξt

,Ti
is assigned to wvj,Ti

as an approximation.
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n△

b△

gTi oTi

αi,△

θi,△

Figure 5.1: Selecting the image Ti that provides the most perpendicular
view of the triangle △.

Learning vertex colors or texture coordinates as presented above Practical

considerationsand interpolating them across the triangles leads to a colored or tex-

tured triangle mesh—given that suitable textures for the triangles are

selected. However, the level of detail in terms of color and the accuracy

in terms of texture coordinates are coupled to the number and thus to

the size of the constructed triangles, since vertex colors and texture

coordinates are interpolated across them: The smaller the triangles, the

more details in terms of color and texture coordinates are achievable.

Thus, a large number of triangles is required for visually appealing,

sharp, colored or textured results containing fine details, although

a rather low number of triangles might be sufficient to represent a

desired level of geometric detail. This coupling is also apparent in the

results of other algorithms that determine vertex colors from the input

points, for instance, in ssd-c [22]. Nevertheless, especially integrating

color learning into sgng significantly improves the visual quality of

the results without increasing implementation complexity or adding a

severe overhead to the reconstruction algorithm. However, in the next

section a texturing approach is presented, that is well suited even for

low-resolution triangle meshes.

5.3 assigning suitable textures

In order to provide better accuracy, sgng computes texture coordinates

for the vertices by projecting the constructed triangles into the input

images using the previously determined attributes of the cameras.

In order to avoid noticeable artifacts, the image that is assigned as a

texture to a given triangle has to be carefully selected from the set of

input images. Blending, and leveling techniques [17, 34, 56] should be

applied to balance different exposure and lighting conditions. There

are many such techniques readily available. However, integrating

them is left for future work.

In order to minimize perspective distortions sgng aims at assigning Finding the most

perpendicular viewthe image as a texture to a triangle that provides the most perpendicu-

lar view of the triangle. For this purpose, a suitable metric ⊥(△, Ti)

that is similar to the form factor in Radiosity [59] is derived from the

position oTi
and the unit gaze direction gTi

of the original camera that

captured Ti ∈ T , and from the barycenter b△ and the unit normal n△

137



learning the texture assignment

of the triangle △ (Fig. 5.1):

⊥(△, Ti) =

(
n△ · (oTi

− b△)
)
·
(
gTi

· (b△ − oTi
)
)

(oTi
− b△) · (oTi

− b△)

= cos αi,△ · cos θi,△ .

The image T△ to be used for texturing a given triangle is then found

by maximizing ⊥(△, Ti) over all Ti ∈ T

T△ = arg max
Ti∈T

⊥(△, Ti) .

While maximizing only ⊥(△, Ti) works well for reconstructions

from clean scans of simple, convex objects, it is not well suited for

the general case, since it does not handle occlusions, neither by other

objects nor by self-occlusion. Therefore, real-world applications will

suffer from noticeable artifacts. These artifacts can be avoided with ex-

isting techniques only if occluding surface parts are represented by the

input points and if those are reconstructed accurately. Both can hardly

be guaranteed in real-world applications. Since sgng reconstructs

objects incrementally and in a stochastic way, occluding triangles are

not necessarily created accurately at any time. Fortunately, visibility

information is implicitly encoded in the input points and can therefore

be learned during sgng reconstruction.

Each vertex learns its visibility in an image from the input points.Avoiding occlusion

artifacts The visibility is then used to select the image that is suitable for

texturing a triangle without creating noticeable occlusion artifacts,

even if occluding surfaces are not represented in the input points.

Let Pv denote the set of all points that are located in the Voronoi

cell of a vertex v. Then, the probability that this vertex is visible in a

given image Ti is estimated by the ratio of the points of Pv that are

visible in Ti

P(v visible in Ti | Ti) ≈
∑p∈Pv

[p visible in Ti]

|Pv|
,

with [p visible in Ti] denoting the indicator function (Eq. 5.1). Having

learned the visibility, optimization is extended to assign the image

T△ as a texture to a triangle △ with vertices v ∈ △ that provides the

most perpendicular view of the triangle and that most likely shows

the unoccluded triangle:

T△ = arg max
Ti∈T

(
⊥(△, Ti) · ∏

v∈△
P(v visible in Ti | Ti)

)
.
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Table 5.1: Images available for the point clouds.

Image Num. Num.
Data Set Resolution Camera Images Textures

Arch 3888 × 2592 eos 400d 25 10
Cemetery 3264 × 2448 iPhone 5 14 9
Fountain 3264 × 2448 iPhone 5 30 11
Statues 3888 × 2592 eos 400d 9 5

5.4 results

The reconstruction experiments with the Arch, Cemetery, Fountain,

and Statues data sets that were performed earlier (Sec. 4.6) were

repeated using the texture assignment extension of sgng presented

above. Each point cloud was created from photos by a combination of

VisualSFM [130] and CMVS/PMVS [54]. Thus, the visibility information

for the input points in the original images is readily available. Tab. 5.1

lists further details for the images available with the input point clouds.

Fig. 5.2, 5.3 present thumbnails of the images as an overview. The

photos were taken in Paris, France, with a Canon® Digital Rebel xti

(eos 400d) dslr or with the built-in camera of an Apple® iPhone® 5.

Sgng successfully assigns suitable textures to the constructed trian- Visual quality

gles with the extension presented in this chapter. Fig. 5.4–5.9 present

the results. Original photos (Fig. 5.4(a), 5.5(a), 5.7(a), 5.8(a), 5.9(a))

that were not used as textures for the constructed triangle meshes are

presented alongside the textured reconstructions (Fig. 5.4(b), 5.5(b),

5.7(b), 5.8(b), 5.9(b)). In order to alleviate visual evaluation the virtual

camera used for rendering the reconstruction was aligned with and

matched to the original camera used for taking the photo. Two differ-

ent pairs of photo and reconstruction are presented for the Fountain

data set due to the size of the original object. Since the original photos

were leveled only manually, slight color and exposure mismatches are

noticeable on the textured triangle meshes. However, no geometric

misalignments or distortions are visible. Even the inscription on the

tomb of the Cemetery data set is clearly legible (Fig. 5.6(b)).

Sgng successfully reduces the number of occlusion artifacts to Occlusion artifacts

a minimum by taking visibility into account. Textures are selected

in such a way that the people walking in front of the Arch and the

Fountain and that are visible in the original photos (Fig. 5.2(a), 5.3(a))

are not visible in the textures assigned to the constructed meshes (Fig.

5.4(b), 5.7(b), 5.8(b)). Static occluders are also handled correctly by

sgng. Fig. 5.6 presents the effect of learning the visibility showing

close-ups of the textured reconstructions for the Cemetery data set.

If only the most perpendicular view is used to select the textures,

occlusion artifacts become clearly apparent (Fig. 5.6(a)): The blue
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Table 5.2: Running times for sgng without and with textures.

Arch Cemetery

Points (iterative steps) 407 229 (10 St.) 380 840 (9 St.)
Vertices 101 808 95 210
Time (without textures) / s 69.2 53.8
Time (with textures) / s 89.1 72.1
Overhead / s 19.9 18.3
Relative Overhead 10−5 s 2.0 2.1

Fountain Statues

Points (iterative steps) 567 920 (16 St.) 497 489 (4 St.)
Vertices 140 000 124 373
Time (without textures) / s 99.4 74.5
Time (with textures) / s 132.3 90.9
Overhead / s 32.9 16.4
Relative Overhead / 10−5 s 2.1 2.6

shore and the pillars that are supporting the roof of the tomb are

projected onto the tomb. By also learning the visibility information

from the input points the number of these artifacts is reduced to a

minimum (Fig. 5.6(b)): No details on the tomb are covered by projected

images of the shore or the pillars. The same applies to the two statues

in front of the Fountain (Fig. 5.7(a), 5.8(a)) that are not projected to

the back. Instead, sgng correctly selects those images as textures that

show the unoccluded base of the Fountain (Fig. 5.7(b), 5.8(b)).

The texturing extension introduces an overhead to sgng. EachOverhead

vertex needs to keep track of its visibility in the input images. Thus,

more memory is required. The running time overhead was evalu-

ated explicitly. As in the experiments for sgng (Sec. 4.6) the median

running times of ten executions were determined. Learning the tex-

ture assignment takes additional 16.4 s to 32.9 s for the tested data

sets. Tab. 5.2 presents the results. For a better overview some of the

numbers of Tab. 4.4 are repeated.

Taking a closer look at the running times suggests that the overhead

is related to the number of constructed vertices and the number of

images used as textures (Tab. 5.1). Thus, the overhead appears to

be related to the amount of additional data to be maintained and

learned in order to enable texture assignment. As an indicator for this

relationship, the bottom row of Tab. 5.2 presents the relative overhead,

i.e., the difference of the running times divided by the product of the

number of constructed vertices and the number of images used for

texturing (Tab. 5.1). For all tested data sets the values of the relative

overhead are in the same order of magnitude. However, a closer

examination is deferred to future work.
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(a) Arch

(b) Cemetery

Figure 5.2: Thumbnails of the original photos – part 1.
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learning the texture assignment

(a) Fountain

(b) Statues

Figure 5.3: Thumbnails of the original photos – part 2.
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5.4 results

(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.4: Arch: Photo and textured sgng reconstruction.
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learning the texture assignment

(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.5: Cemetery: Photo and textured sgng reconstruction.
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5.4 results

(a) Using only the most perpendicular view.

(b) Additionally using the learned visibility.

Figure 5.6: Cemetery: Close-ups of textured sgng reconstructions.
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(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.7: Fountain: Photo and textured sgng reconstruction.
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5.4 results

(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.8: Fountain: Photo and textured sgng reconstruction.
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(a) Photo that was not used for texturing.

(b) Textured sgng reconstruction.

Figure 5.9: Statues: Photo and textured sgng reconstruction.
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5.5 discussion

5.5 discussion

The texturing extension that has been presented in this chapter en-

ables sgng to construct textured triangle meshes if the input points

have been extracted from images, or if images are available that are

registered to the points. That way further visual details are automati-

cally added to the reconstructions that can be used for visualization

at any time during the execution. Whenever new images are added

during reconstruction, they are instantly considered as candidates

for texturing the triangles. Once sgng has learned that a new image

provides a better view of a triangle, the image that has been used as a

texture so far is replaced by the new one.

Sgng successfully reduces the number of occlusion artifacts to a min-

imum by learning the visibility information that is implicitly encoded

in the input points. That way, no separate techniques for occlusion

handling are required that might rely on accurately reconstructed

occluders—a guarantee that is hard to fulfill in real-world applica-

tions, especially when using iterative and stochastic reconstruction

approaches. Although the learned visibility leads to a fairly good

texturing, some seams remain visible due to unmatched exposures

and illuminations of the photos. Integrating existing leveling, blending

and warping techniques will most likely alleviate this.

The current implementation of the texture assignment increases the

time that is required to construct the triangle mesh from the input

points. Evaluation suggests that this overhead is related to the amount

of additional data that has to be maintained and learned. Improving

data structures and memory management will most likely reduce

this overhead and thus improve performance. However, even with

the current implementation sgng still outperforms screened Poisson

surface reconstruction in terms of running times for the data sets with

frequent updates during reconstruction. Only the Statues data set

takes slightly longer, but with the benefit of included textures.
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6
C O N C L U S I O N A N D F U T U R E W O R K

Surface-reconstructing growing neural gas (sgng) has been presented in

this dissertation as a technique for online surface reconstruction from

unorganized point clouds that is based on an artificial neural network.

The theoretical background for sgng and its relation to other existing

artificial neural networks that are used for surface reconstruction have

been explained in detail. An in-depth analysis of the characteristics

and shortcomings of prior algorithms has been used to derive the sgng

algorithm. Finally, a texturing extension for sgng has been presented.

Unlike its predecessors sgng expresses topological neighborhood

via triangles. That way sgng successfully constructs a triangle mesh

entirely during online learning, reducing the number of untriangu-

lated holes to a minimum. By taking geometric considerations into

account, a mesh with fairly regular triangles is constructed that at

first approximates an original object’s shape and that is iteratively

refined afterwards. An extensive evaluation has confirmed that sgng

improves significantly upon its predecessor and that it can compete

with other state-of-the-art surface reconstruction algorithms.

The texturing extension enables sgng to assign suitable textures to

the constructed triangles if the input points have been extracted from

images. That way further visual detail is automatically added to the

reconstruction of the original object’s surface. Sgng does not rely on

the reconstructed geometry to determine visibility. Instead, visibility

is learned directly from the information that is implicitly contained in

the input data. Thus, the number of noticeable occlusion artifacts is

reduced to a minimum. A visual evaluation has confirmed that sgng

yields good texturing quality. No severe geometric misalignments or

distortions are visible.

Sgng allows for modifications of the input data at any time during

reconstruction and instantly incorporates them without having to

restart from scratch. Thus, sgng is very well suited for an iterative

pipeline, where data acquisition, reconstruction, and visualization

are executed in parallel. Such a pipeline can be used for instance in
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emergency or disaster management scenarios, where it is crucial to get

an immediate overview of the situation and to be able to add further

data whenever needed. Especially during long running scenarios sgng

will play out its full strength.

The texturing extension does not yet use elaborate techniques for

leveling or blending. Thus, some texture seams remain visible due

to unmatched exposures and illuminations of the photos. Literature

provides a wealth of suitable techniques that can be incorporated

into sgng. The descriptions and algorithmic details that have been

presented in this dissertation will serve as a good basis for future work

in this direction.

Memory management and data handling have turned out to be a

bottleneck in both parts of the current implementation of sgng: in

reconstruction and in texturing. Running time in the former is domi-

nated by the 2-nearest neighbor search. Overhead in terms of running

time of the latter mostly depends on the number of constructed ver-

tices and the number of textures in use. Some effort will be required

to streamline the current implementation in this regard and thus to

improve performance.

Currently, an adaptive octree is used in sgng to find the two vertices

that are closest to an input point. It is maintained as a separate data

structure. Since the vertices of the constructed mesh are continuously

moved during the iterations of sgng reconstruction, many updates of

the cells’ boundaries are required as well as many vertex relocations

between cells. A split tree has been developed and presented in this

dissertation that serves as an efficient replacement for the octree

in growing cell structures (gcs) by providing a hierarchy of bounding

boxes. This hierarchy is automatically created during mesh refinement.

It is very likely that the presented split tree can be adapted in such

a way that it serves as an acceleration structure also for sgng since

the learning algorithms of sgng and gcs are closely related. However,

some improvements to the algorithm are required in order to create a

balanced tree. These improvements and the adaptation of the split tree

to sgng have been beyond the scope of this work. They remain to be

addressed in future work.

Feeding back the constructed textured triangle meshes into the point

extraction process might be advantageous. That way, the geometric

information reconstructed by sgng may help the point extraction

process generate a denser set of samples and register the images better.

Furthermore, the idle times of one process could be used by the other.

The combination of both would lead to an integrated, incremental

coarse to fine approach, maybe with reduced processing power and

memory requirements—perhaps even on mobile platforms.

Creating a dual representation of sgng is an interesting task that

presents itself for future work, since the current algorithm—like its

predecessors—exhibits a systematic error: In sgng the vertices’ po-
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sitions are optimized in such a way that their distance to the input

points is minimized. Thus, the corresponding learning rules smooth

sharp features if the constructed mesh contains too few vertices. Nev-

ertheless, sgng aims at reconstructing an original object’s surface.

Consequently, in contrast to the current approach, the surface ele-

ments, i.e., the constructed triangles, should be optimized in such a

way that their distance to the input points is minimized. A straightfor-

ward integration of additional planar fitting made sgng prone to noise,

leading to many wrinkles. It is thus planned to investigate a more

robust technique for dual sgng surface reconstruction. The details

presented in this dissertation will serve as a good starting point.
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