Miinster J. of Math. 9 (2016), 93-118 Miinster Journal of Mathematics
DOI 10.17879/45209421960 © Miinster J. of Math. 2016
urn:nbn:de:hbz:6-45209431256
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automorphisms of O, are not Borel
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Abstract. The group of automorphisms of the Cuntz algebra Oz is a Polish group with
respect to the topology of pointwise convergence in norm. Our main result is that the rela-
tions of conjugacy and cocycle conjugacy of automorphisms of Oz are not Borel. Moreover,
we show that from the point of view of Borel complexity theory, classifying automorphisms
of Oz up to conjugacy or cocycle conjugacy is strictly more difficult than classifying any
class of countable structures with Borel isomorphism relation. In fact, the same conclusions
hold even if one only considers automorphisms of Oz of finite order. We moreover show
that for any prime number p, the relation of isomorphism of simple purely infinite crossed
products Oz x Zp (with trivial Ki-group and satisfying the Universal Coefficient Theorem)
is not Borel. Moreover, it is strictly more difficult to classify such crossed products than
classifying any class of countable structures with Borel isomorphism relation.

1. INTRODUCTION

The Cuntz algebra O is the universal C*-algebra generated by two isome-
tries with complementary ranges [7]. The key role of Oz in the classification
program of C*-algebras—see [40, Chap. 2]—has served as motivation for an
intensive study of the structural properties of Oy and its automorphism group,
as in [30, 44, 5, 6]. In particular, considerable effort has been put into trying
to classify several important classes of automorphisms; see for example [23].

In this work, we study the group of automorphisms of Oy from the perspec-
tive of Borel complexity theory. Our main result is the following.
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Theorem 1.1. The relations of conjugacy and cocycle conjugacy of automor-
phisms of Oy are complete analytic sets when regarded as subsets of Aut(Os) x
Aut(0s), and in particular, are not Borel. Furthermore if C is any class of
countable structures such that the corresponding isomorphism relation = is
Borel, then =¢ is Borel reducible to both conjugacy and cocycle conjugacy of
automorphisms of Os.

See [24, Def. 26.7] for the notion of complete analytic set, and [17, Chap. 5]
for an introduction to Borel complexity theory and the definition of Borel
reducibility. In particular, Theorem 1.1 rules out any classification that uses
as invariant Borel measures on a Polish space (up to measure equivalence) or
unitary operators on the Hilbert space (up to conjugacy).

The fact that conjugacy and cocycle conjugacy of automorphisms of Og
are not Borel should be compared with the fact that for any separable C*-
algebra A, the relation of unitary equivalence of automorphisms of A is Borel.
This is because the relation of coset equivalence modulo the Borel subgroup
Inn(A) of Aut(A) is Borel. Similarly, the spectral theorem for unitary operators
on the Hilbert space shows that the relation of conjugacy of unitary operators
is Borel.

We will show that Theorem 1.1 holds even if one only considers automor-
phisms of finite order whose induced finite group action has Rokhlin dimension
at most one in the sense of [20]. Moreover, it will follow from our proof that the
same assertions hold for the relation of isomorphism of simple purely infinite
crossed products Oy x Z,, (with trivial Ko-group and satisfying the Universal
Coefficient Theorem), where p is any prime number.

It should be mentioned that, by the main result of [26], the automorphisms
of 05 are not classifiable up to conjugacy by countable structures. This means
that there is no explicit way to assign a countable structure to every automor-
phism of Os, in such a way that two automorphisms are conjugate if and only if
the corresponding structures are isomorphic. Moreover, the same conclusions
hold for any set of automorphisms of Oy which is not meager in the topology
of pointwise convergence.

The strategy of the proof of the main theorem is as follows. Using techniques
from [9, 22], we show that the relation of isomorphism of countable 2-divisible
torsion-free abelian groups is a complete analytic set, and it is strictly more
complicated than the relation of isomorphism of any class of countable struc-
tures with Borel isomorphism relation. We then show that the relation of
isomorphism of 2-divisible abelian groups is Borel reducible to the relations of
conjugacy and cocycle conjugacy of automorphisms of Oy of order 2. This is
achieved by showing that there is a Borel way to assign to a countable abelian
group G a Kirchberg algebra Ag with trivial K;-group, Ky-group isomorphic
to G, and with the class of the unit in Ky being the zero element. We then use
a result of Izumi from [23] asserting that there is an automorphism v of Oy
of order 2 with the following property: Tensoring the identity automorphism
of A¢ by v, and identifying Ag ® Os with O by Kirchberg’s absorption the-
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orem, gives a reduction of isomorphism of Kirchberg algebras with 2-divisible
Ky-group and with the class of the unit being the zero element in Ky, to con-
jugacy and cocycle conjugacy of automorphisms of Oy of order 2. The proof is
concluded by showing—using results from [14]—that such reduction is imple-
mented by a Borel map. A suitable modification of this argument yields the
same result when 2 is replaced by an arbitrary prime number.

The present paper is organized as follows. Section 2 exhibits a functorial
version of the notion of standard Borel parametrization of a category as defined
in [14]. Several functorial parametrizations for the category of C*-algebras are
then presented and shown to be equivalent. Section 3 provides a Borel version
of the correspondence between unital AF-algebras and dimension groups es-
tablished in [10, 11]. Finally, Section 4 contains the proofs of the main results.

In the following, all C*-algebras and Hilbert spaces are assumed to be sep-
arable, and all discrete groups are assumed to be countable. We denote by w
the set of natural numbers including 0. An element n € w will be identified
with the set {0,1,...,n — 1} of its predecessors. We will therefore write i € n
to mean that i is a natural number and ¢ < n. For n > 1, we write Z,, for
the cyclic group Z/nZ. If X is a Polish space and D is a countable set, we
endow the set XP of D-indexed sequences of elements of X with the product
topology. Likewise, if X is a standard Borel space, then we give X the prod-
uct Borel structure. In the particular case where X = 2 = {0,1}, we identify
2P with the set of subsets of D with its Cantor set topology, and the corre-
sponding standard Borel structure. We will use throughout the paper the fact
that a Gs subspace of a Polish space is Polish in the subspace topology [24,
Thm. 3.11], and that a Borel subspace of a standard Borel space is standard
with the inherited Borel structure [24, Prop. 12.1].

2. PARAMETRIZING THE CATEGORY OF C*-ALGEBRAS

2.1. Functorial parametrization. Recall that a (small) semigroupoid is a
quintuple (X,Cx,s,r,-), where X and Cx are sets, s, are functions from Cx
to X, and - is an associative partially defined binary operation on Cx with
domain
{(z,y) € Cx x Cx | s(x) =r(y)}

such that r(z-y) = r(z) and s(z-y) = s(y) for all x and y in X. The elements
of X are called objects, the elements of Cx morphisms, the map - composition,
and the maps s and r source and range map. In the following, a semigroupoid
(X,Cx,s,r,-) will be denoted simply by Cx. Note that a (small) category is
precisely a (small) semigroupoid, where moreover the identity arrow id, € Cx
is associated with the element x of X. A morphism between semigroupoids Cx
and Cx/ is a pair (f, F') of functions f: X — X" and F: Cx — Cx- such that

e soF = fos,

eroF = for and

o F(a-b)=F(a)- F(b) for every a and b € Cx.

In the case of categories, a morphism of semigroupoids is just a functor.
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A standard Borel semigroupoid is a semigroupoid Cx such that X and Cx
are endowed with standard Borel structures making the composition function -
and the source and range functions s and r Borel.

Definition 2.2. Let D be a category, let Cx be a standard Borel semigroupoid,
and let (f, F) be a morphism from Cx to D. We say that (Cx, f, F) is a good
parametrization of D if
o (f,F) is essentially surjective, that is, if every object of D is isomorphic
to an object in the range of f,
o (f,F) is full, that is, if for every z,y € X the set Hom(f(x), f(y)) is
contained in the range of F', and

e the set Isox of elements of Cx that are mapped by F' to isomorphisms of
D is Borel.

Observe that if (Cx, f, F') is a good parametrization of D, then (X, f) is a
good parametrization of C in the sense of [14, Def. 2.1].

Definition 2.3. Let D be a category and let (Cx, f, F) and (Cx/, f', F’) be
good parametrizations of D. A morphism from (Cx, f,F) to (Cx, f', F') is a
triple (¢, G,n) of maps g: X — X', G: Cx — Cx/, and n: X — D, satisfying
the following conditions:
(1) The functions g and G are Borel.
(2) n(x) is an isomorphism from f(z) to (f’ o g)(z) for every z € X.
(3) The pair (f' o g, F’ o G) is a semigroupoid morphism Cx — D.
(4) We have sxroG=gosx and rxs oG =gory.
(5) For every a € Cx,

F'(G(a)) on(s(a)) = n(r(a)) o F(a).

Two good parametrizations (Cx, f, F') and (Cx/, f', F') of C are said to be
equivalent if there are isomorphisms from (Cx, f, F) to (Cx/, f', F') and vice-
versa. It is not difficult to verify that if (Cx, f, F) and (Cx-, f, F') are equiv-
alent parametrizations of D, then (X, f) and (X', f') are weakly equivalent
parametrizations of D in the sense of [14, Def. 2.1].

In the following, a good parametrization (Cx, f, F') of D will be denoted
by Cx for short. The arguments in the proof of [14, Prop. 2.7] can be easily
adapted to show that the good parametrizations Cz, Cz, and Cr of the category
of C*-algebras with *-homomorphisms defined in Sections 2.6, 2.4, and 2.8 are
equivalent in the sense of Definition 2.3.

2.4. The space Cz. We follow the notation in [14, §2.2], and denote by Q(¢)
the field of complex rationals. A Q(i)-*-algebra is an algebra over the field Q(¢)
endowed with an involution = — z*. We define U to be the Q(i)-*-algebra of
noncommutative *-polynomials with coefficients in Q(¢) and without constant
term in the formal variables X for k € w. If A is a C*-algebra, v = (Vn)new
is a sequence of elements of A, and p € U, we define p() to be the element of
A obtained by evaluating p in A, where for every k € w, the formal variables
Xk and X} are replaced by the elements vy and ~; of A.
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We denote by Z the set of elements
A= (faga h,k,’l") S wwxw X WQ(i)Xw X w“’x“’ X w¥ x R¥

that code on w a structure of Q(i)-*-algebra A endowed with a norm satisfying
the C*-identity. The completion A of w with respect to such norm is a C*-
algebra (denoted by B(A) in [14, §2.4]). It is not hard to check that = is a Borel
subset of WX« x wQXW 5 (YwXw 5 @ x R, As observed in [14, §2.4], = can
be thought of as a natural parametrization for abstract C*-algebras. We use
the notation of [14, §2.4] to denote the operations on w coded by an element
A= (f,g,hk,r)of E. We denote by da the metric on w coded by A, which
is given by
da(n,m) = |ln+7 (~1) -5 m]l,

for n,m € w. We will also write n+4m for n+ym, and similarly for g, h, k,r.

Definition 2.5. Suppose that A = (f,g,h,k,r) and A" = (f',¢', ', k', 7") are
elements of =, and that ® = (@, )necw € (W)Y is a sequence of functlons from
w to w. We say that ® is a code for a *-homomorphism from A to A" if the
following conditions hold:

(1) The sequence (®,,(k))neo is Cauchy uniformly in k € w with respect to
the metric da, and in particular converges to an element ®(k) of A.
(2) The map k — ®(k) is a contractive *-homomorphism of Q(i)-*-algebras,
and hence it induces a *-homomorphism ® from A to A'.
We say that @ is a code for an isomorphism from Ato A if @ is a code for
a *-homomorphism from A to A’, and <I> is an isomorphism. If ® and &' are
codeb for *-homomorphisms from A to A’ and from A’ to A”, respectively, we
define their composition ® o & by (' o @),, = @/ o P, for n € w.

It is easily checked that ®' o ® € (w*)“ is a code for the *-homomorphism

"o <I> from A to A”. One can verify that the set Cz of triples (A, A", @) €
Z x 2 x (w*)“, such that ® is a code for a *-homomorphism from A to A’, is
Borel. We can regard Cz as a standard semigroupoid having = as set of objects,
where the composition of (A, A’, ®) and (A, A”,®") is (A’, A", ®' o ®), and the
source and range of (A4, A'/,\ ®) are A and A’, respectively. The semigroupoid
morphism (A4, A’,®) — (A, A, ®) defines a parametrization of the category
of C*-algebras with *-homomorphisms. It is easy to see that this is a good
parametrization in the sense of Definition 2.3. In particular, the set Isoz of
elements (A, A’, ®) of = x = x (w*)*, such that @ is a code for an isomorphism
from A to A’ is Borel.

2.6. The space C=. We denote by = the Gy subset of R¥ consisting of the
nonzero functions §: U — R such that there exists a C*-algebra A and a dense
subset v = (Yn)new Of A, such that

5(p) = llp(II

It could be observed that, differently from [14, §2.3], we are not considering
the function constantly equal to zero as an element of Z; this choice is just for
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convenience and will play no role in the rest of the discussion. Observe that
any element ¢ of = determines a semi-norm on the Q(4)-+-algebra U; therefore
one can consider the corresponding Hausdorff completion of /. Denote by I
the ideal of U given by I5 = {p € U | 6(p) = 0}. Then U/Is is a normed
Q(7)-+-algebra. Its completion is a C*-algebra, which we shall denote by ¢.
(What we denote by 4 is denoted by B(d) in [14, §2.3].)

Definition 2.7. Let 6 and ¢’ be elements in Z, and let ® = (®,,),ec0 € UY)

be a sequence of functions from U to U. We say that @ is a code for a *-homo-

morphism from § to &', if

(1) for every p € U, the sequence (P, (p))new is Cauchy uniformly in p € U,
with respect to the pseudometric (¢, ¢’) = (¢ —¢’) on U, and in particular
converges in d to an element ®(p), and R

(2) p+ @(p) is a morphism of Q(i)--algebras such that ||®(p)| < d(p), and
hence induces a *-homomorphism from § to ¢’.

Writing down explicit formulas defining a code for a *-homomorphism makes
it clear that the set Cz of triples (4,6’, ®) € ExEx (UM)“, such that @ is a code
for a *~homomorphism from § to §’, is Borel. Suppose that ®, ®" are codes for
*_homomorphisms from ¢ to ¢’ and from ¢’ to ¢”. Similarly as in Section 2.4,
it is easy to check that defining (' o ®),, = @} o P, for n € w, gives a code for
a *-homomorphism from § to ¢”. This defines a standard Borel semigroupoid
structure on Cz, such that the map (4,0’,®) — (d,0’,®) is a good standard

=

Borel parametrization of the category of C*-algebras.

2.8. The space Cr(g). Denote by Bi(H) the unit ball of B(H) with re-
spect to the operator norm. Recall that Bi(H) is a compact Hausdorff space
when endowed with the weak operator topology. The standard Borel structure
generated by the weak operator topology on By (H) coincides with the Borel
structure generated by several other operator topologies on By (H), such as
the o-weak, strong, o-strong, strong-*, and o-strong-* operator topology; see
(2, Def. 1.3.1.1 and §1.3.1.4]. Denote by B;(H)*“ the product of countable many
copies of By(H), endowed with the product topology, and define I'(H) to be
the Polish space obtained by removing from B;(H)“ the sequence constantly
equal to 0. (The space I'(H) is defined similarly in [14, §2.1]; the only difference
is that here the sequence constantly equal to 0 is excluded for convenience.)
Given an element v in I'(H), denote by C*(y) the C*-subalgebra of B(H)
generated by {7, | n € w}. As explained in [14, §2.1 and Rem. 2.3], the space
I'(H) can be thought of as a natural parametrization of concrete C*-algebras.

Definition 2.9. Let v and 4/ be elements in I'(H), and let ® = (®,,)pecw €

(UY)* be a sequence of functions from U to U. We say that ® is a code for a

*_homomorphism from C*(v) to C*(v/), if

(1) the sequence (®,,(p)(7'))new of elements of C*(v') is Cauchy uniformly
in p, and hence converges to an element ®(p(v)) of C*(v'),

(2) the function p(v) — ®(p(7)) extends to a *~homomorphism from C*(7) to

C*(y).
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Again, it is easily checked that the set Cp(gy of triples (v,7', ®), such that
® is a code for a *-homomorphism from C*() to C*(v’), is Borel. Moreover,
one can define a standard Borel semigroupoid structure on Crg), in such a
way that the map (v,7/,®) — (C*(v),C*(7), @) is a good parametrization of
the category of C*-algebras.

Recall that, consistently with Definition 2.2, Isor() denotes the Borel set
of elements in Cp(y) that code an isomorphism. It is not difficult to see that
there is a Borel map Isopg) — (UY)*, assigning to an element (7,7, ®) of
Isor(g) a code Inv(7y,v', ®) for an isomorphism from C* (') to C*(v) such that

Inv(y,~,®) = &~ .

2.10. Computing reduced crossed products. We want to remark that the
reduced crossed product of a C*-algebra by an action of a discrete group can
be computed in a Borel way in any of the parametrizations of C*-algebras
introduced so far. For convenience, we will work using the parametrization
['(H) of C*-algebras; similar statements will hold for the parametrizations =
and =. We refer the reader to [45] for the definitions of full and reduced crossed
products for actions of discrete groups.

Definition 2.11. Let v be an element of I'(H), and G be an element of G.
Suppose that ® = (Pmp)(mn)cwxw € UY)*¥ is an (w X w)-sequence of
functions from U to U. We say that @ is a code for an action of G on C*(v),
if the following conditions hold:

(1) For every m € w, the sequence (¥, n)new € (UY)“ is a code for an auto-
morphism ®,,, of C* (7).

(2) ®g,n(m) =m for every n,m € w. R R

(3) The function m +— @, is an action of G on C*(), this is, ®,, 0 Py, = P,
whenever (m, k,n) € G.

It is easy to verify that any action of G on C*(7y) can be coded in such way.
Moreover, the set Actp gy of triples (G,v,®) € G xI'(H) x (U“)“*“, such that
® is a code for an action of G on C*(v), is a Borel subset of G xI'(H) x (U~ )“*¥.
We will regard Actp(g) as the standard Borel space of actions of discrete
groups on C*-algebras. From the fact that the reduced crossed product can
be computed using a single faithful representation of the given algebra [36,
Thm. 7.7.5], it is easy to deduce that crossed products are Borel-computable.
Precisely, there is a Borel map (G,v,®) — 6(g ) from Actpg) to T'(H)
such that C*((G,y,e)) is isomorphic to C*(y) xZ G. In particular, this shows
that crossed products by single automorphisms—which correspond to actions
of Z—are Borel-computable.

One can deduce from this that also the computation of crossed products by
injective corner endomorphisms [35, 7] is witnessed by a Borel function. This
can be easily deduced from Stacey’s explicit construction of such a crossed
product from [42, Prop. 3.3].
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3. BOREL SELECTION OF AF-ALGEBRAS

3.1. Bratteli diagrams, dimension groups and AF-algebras. We refer
the reader to [12] for the standard definition of a Bratteli diagram. We will
identify Bratteli diagrams with elements

(I, (Wn)news (Mn)new) € W™ X (W*)* X (w7 )%
such that for every i, j,n,m € w, the following conditions hold:
1) 1(0) = 1.

) wp(0) = 1.

) wy (i) > 0if and only if i € I(n).

) myn(i,7) = 0 whenever ¢ > I(n) or j > l(n+1).
)

Setting k,, = 1,
U)n(Z) = Z Hmt(kt,kt+1).
(kj)jen€l(j)™ tEN

We denote by BD the Borel set of all elements (I,w,m) in w* x (w¥)* X
(w¥*«)« that satisfy conditions (1)-(5) above. An element (I,w,m) of BD
codes the Bratteli diagram with [(n) vertices at the n-th level of weight

wp(0),...,w(l(n) —1)
and with m,(¢,j) arrows from the i-th vertex at the n-th level to the j-th
vertex and the (n 4 1)-st level for n € w, ¢ € I(n), and j € I(n+1). We call
the elements of BD simply “Bratteli diagrams”.

We refer the reader to [40, §1.4] for a complete exposition on dimension
groups. A dimension group can be coded in a natural way as an element of
w¥*¥ x 2% x w. The set DG of codes for dimension groups is a Borel subset of
W% x 2% x w, which can be regarded as the standard Borel space of dimension
groups.

One can associate to a Bratteli diagram (I,w,m) the dimension group
G (1,w,m) obtained as follows. For n in w, denote by

On : Zl(n) N Zl(nJrl)
the homomorphism given on the canonical bases of Z{™ by

I(n .o (I(n
@n(el(f( ))) _ Z mn(l,])eg( +1))’
i€l(n+1)

(
(2
3
(4
(

5

for all k in I(n). Then G(; ) m) is defined as the inductive limit of the inductive
system
(Z"™), (wn (0), ..., wn (1(n) = 1)), 0n), .-

Theorem 2.2 in [10] asserts that any dimension group is in fact isomorphic to
one of the form G ; ., ) for some Bratteli diagram (I, w,m). The key ingredient
in the proof of [10, Thm. 2.2] is a lemma due to Shen, see [10, Lem. 2.1] and
also [41, Thm. 3.1]. An inspection of its proof (or the application of standard
selection theorems from descriptive set theory) shows that Shen’s lemma is
witnessed by a Borel function. This can be used to conclude that there is a
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Borel function that associates to a dimension group G = (G,G",u) € DG a
Bratteli diagram (19, w®, m®) € BD such that the dimension group associated
with (19, w%, m%) is isomorphic to G.

Let (I,w,m) be a Bratteli diagram. We will describe how to canonically
associate to it a unital AF-algebra, which we will denote by A . m). For
each n in w, define a finite-dimensional C*-algebra F,, by F,, = @iel(n) M, (i) -
Denote by ¢, : F, — F,11 the unital injective *-homomorphism determined
as follows. For every ¢ € [(n) and j € I(n + 1), the restriction of ¢, to the
i-th direct summand of F,, and the j-th direct summand of F}, 1 is a diagonal
embedding of my,(i,7) copies of My, ) in M, (- Then Ag ) is the
inductive limit of the inductive system (F},, on)new. The Ko-group of Ag . m)
is isomorphic to the dimension group Gy .m associated with (I,w,m). The
main result of [3] asserts that any unital AF-algebra is isomorphic to the C*-
algebra associated with a Bratteli diagram. It is not difficult to see—working
for instance in the parametrization I'( H )—that the code for such an AF-algebra
can be computed in a Borel way. This together with our remarks above about
Bratteli diagrams shows that there is a Borel map that assigns to a dimension
group D a unital AF-algebra Ap whose ordered Ky-group is isomorphic to D
as dimension group. Since by [13, Prop. 3.4] the Ky-group of a C*-algebra
can be computed in a Borel way, one can conclude that if A is any Borel
set of dimension groups, then the relation of isomorphisms restricted to A is
Borel bireducible with the relation of isomorphism unital AF-algebras whose
Ky-group is isomorphic to an element of A.

Fix n € N. A dimension group has rank n if n is the largest size of a
linearly independent subset. Let us denote by %} the relation of isomorphism
of dimension groups of rank n, and by g,‘?F the relation of isomorphism of AF-
algebras whose dimension group has rank n. By the previous discussion and
the fact that the computation of the Ky-group is given by a Borel function
[13, Cor. 3.7], the relations =} and =AF are Borel bireducible. Moreover,
Theorem 1.11 of [12] asserts that =} <p 2 | for every n € N. This means
that 2} is Borel reducible to 2, but = | is not Borel reducible to 2} .
It follows that the same conclusions hold for the relations =AF: For every
n € N, we have =AF < p gﬁfl. This amounts to saying that it is strictly more
difficult to classify AF-algebras with Ky-group of rank n + 1 than classifying
AF-algebras with Ky-group of rank n.

3.2. Endomorphism of Bratteli diagrams.

Definition 3.3. Let T' = (I,w,m) be a Bratteli diagram. We say that an
element ¢ = (¢n)new € (W¥*¥)¥ is an endomorphism of T, if for every n € w,
t€l(n) and t' € [(n + 1), the following identity holds:

Z mn(iat)QnJrl(tatl) = Z qn(iat)mn+l(t7tl)~
tel(n+1) tel(n+1)

The set Endgp of pairs (T,q) € BD x (w¥*¥)¥, such that T is a Bratteli
diagram and ¢ is an endomorphism of T, is Borel.
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We proceed to describe how an endomorphism of a Bratteli diagram, in the
sense of the definition above, gives rise to an endomorphism of the unital AF-
algebra associated with it. Let (F,, ¢n)ncw be the inductive system of finite-
dimensional C*-algebras associated with T', and denote by Ar its inductive
limit. By repeatedly applying [8, Lem. I11.2.1], one can define unital *-homo-
morphisms v, : F,, — F,+1 for n in w, satisfying the following conditions:

(1) 1y, is unitarily equivalent to the *-homomorphism from F, to F,; such
that for every i € I(n) and j € I(n + 1) the restriction of #,, to the i-th
direct summand of F;, and the j-th direct summand of F},1; is a diagonal
embedding of g, (i, j) copies of M, (;) in M

(2) ¥n 0 @n_1 = ppo,_1 whenever n > 1.

Wr41(7)

(Notice in particular that g is determined solely by condition (1).) One
thus obtains a one-sided intertwining (1, )new from (Fh, on)new to itself. We
denote by ¢ ,4: A7 — Ar the corresponding inductive limit endomorphism.
Working in the parametrization I'(H) of C*-algebras and *-homomorphisms
and using [14, Prop. 3.5, one can show that, given a Bratteli diagram T' and
an endomorphism ¢ of T, there is a Borel way to compute a code for the
endomorphism 7, of Ar associated with q.

3.4. Endomorphisms of dimension groups. Let (G,G™,u) be a dimension
group. Let us denote by Endpg the set of pairs (G, ¢) € DG x w* such that
G is a dimension group and ¢ is an endomorphism of G.

Let (I,w,m) be a Bratteli diagram, and let

(Z'™), (wn(0),...,wu(l(n) — 1)), Pn) pew

be the inductive system of dimension groups whose inductive limit is the di-
mension group Gy, m associated with (I, w,m). Fix an endomorphism ¢ of
(I,w,m), and for n € w, define a positive homomorphism ), : Z!() — ZH»+1)

by
Ua(e! ™) = ST gali,g)ell .
JEl(n+1)

Observe that the sequence (¢, )ne., induces an endomorphism ((;,w,m),q) Of
the inductive limit Gj 4 m). A routine verification shows that there is a Borel
map

EndDg — EndBD, (G, (p) — (TG, qG’w),

such that the dimension group associated with T'¢ is isomorphic to G, and the
endomorphism of the dimension group associated with T¢ corresponding to
¢“¥ is conjugate to . Using this and the remarks from Sections 3.1 and 3.4,
one can conclude that there is a Borel map that assigns to a dimension group G
with a distinguished endomorphism ¢, a code for a unital AF-algebra A and a
code for an endomorphism p of A, such that the Ky-group of A is isomorphic
to G as dimension groups with order units, and the endomorphism of the
Ky-group of A corresponding to p is conjugate to .
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4. CONJUGACY AND COCYCLE CONJUGACY OF AUTOMORPHISMS OF Oy

4.1. Background on C*-algebras. Recall that the set Aut(A) of all auto-
morphisms of a C*-algebra A is a Polish group under composition when en-
dowed with the topology of pointwise norm convergence.

Definition 4.2. Let G be a discrete group and let A be a C*-algebra. An
action a of G on A is a group homomorphism a: G — Aut(A). Two actions
a and 8 of G on A are said to be conjugate if there is v € Aut(A) such that
yoa, o0yt = p, for every g € G.

Let A be a unital C*-algebra and let a be an action of G on A. An a-cocycle
is a function u: G — U(A) satisfying ug, = ugag(us) for every g,h € G. If u
is an a-cocycle, we define the u-perturbation of «, denoted o*: G — Aut(A),
by ay = Ad(uy) o a4 for g in G.

Definition 4.3. Two actions a and 8 of G on A are said to be cocycle conjugate
if B is conjugate to a perturbation of a by a cocycle.

In the case when G is the group of integers Z, actions of Z on A naturally
correspond to single automorphisms of A. Similarly, if G is the group Z,,, then
actions of Z, on A correspond to automorphisms of A whose order divides n.
We show in Lemma 4.4 below that the notions of conjugacy and cocycle conju-
gacy for actions and automorphisms are respected by this correspondence when
A has trivial center. These observations will be used to infer Corollary 4.26
from Corollary 4.25.

Lemma 4.4. Let o and B be automorphisms of a unital C*-algebra A.

(1) The following statements are equivalent:
(a) The actions n— o™ and n+— ™ of Z on A are cocycle conjugate.
(b) There are an automorphism v of A and a unitary v of A such that

Ad(u)oa=vyoBo~yt

(2) Assume moreover that o and B have order k > 2 and that A has trivial
center (for example, if A is simple). Then the following statements are
equivalent:
(a) The actions n— o™ and n+— "™ of Zy, on A are cocycle conjugate.
(b) The actions n+— ™ and n — B™ of Z on A are cocycle conjugate.

Proof. (1). To show that (a) implies (b), simply take the unitary u = wuy
coming from the a-cocycle u: Z — U(A). Conversely, if u is a unitary in A as
in the statement, we define an a-cocycle as follows. Set ug = 1 and u; = u,
and for n > 2 define u,, inductively by u, = uia(u,_1). Set u_; = a=(u}),
and for n < —2, define u,, inductively by u, = u_ja~*(un+1). It is straight-
forward to check that n +— u, is an a-cocycle, and that the automorphism -~y
in the statement implements the conjugacy between a* and (.

(2). To show that (a) implies (b), it is enough to note that if u: Zx — U(A)
is an a-cocycle, when we regard « as a Zj action, then the sequence (v, )men
of unitaries in A given by v,, = u, if m = n mod k, is an a-cocycle, when we
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regard « as a Z action. Assume that « and § are cocycle conjugate as auto-
morphisms of A. Let (u,)nen be an a-cocycle and let v be an automorphism
implementing the conjugacy. Fix n in N, and write n = km + r for uniquely
determined k € Z and r € k. Since « and § have order k, we have
Ad(upmir) 0 " = Ad(upmar) 0 @™ FT

ﬁkm—i-r 1

oy~
1

:")/O
=708 oy"
= Ad(u,) o a”.

In particular, Ad(uptmi) = Ad(up), SO Untmi and u, differ by a central
unitary. Since the center of A is trivial, upon correcting by a scalar, we may
assume that wn4mr = up,. Thus, the assignment v: Zy — U(A) given by
n +— Uy is an a-cocycle, when we regard « as a Zj action, and v implements
an conjugacy between the Zj actions a” and 8. This finishes the proof. g

4.5. Strongly self-absorbing C*-algebras. We refer the reader to [43] for
the definition and basic results concerning strongly self-absorbing C*-algebras.
The particular case of Theorem 4.6 when D is the Jiang—Su algebra Z has
been proved in [13, Thm. A.1].

Theorem 4.6. Let D be a strongly self-absorbing C*-algebra. Then the set of
~ € T'(H), such that C*(v) is unital and D-absorbing, is Borel.

Proof. By [14, Lem. 3.14], the set ', (H) of v € I'(H), such that C*(v) is
unital, is Borel. Moreover, there is a Borel function Un: I",,(H) — B(H) such
that Un(y) is the unit of C*(~) for every v € I',,(H). Denote as in Section 2.4
by U the Q(i)-+-algebra of polynomials with coefficients in Q(¢) and without
constant term in the formal variables X for k € w. Let {d, | n € w} be an
enumeration of a dense subset of D such that dy = 1, and let {p,, | n € w} be
an enumeration of . By [43, Thm. 2.2] or [40, Thm. 7.2.2], a unital C*-algebra
A is D-absorbing if and only if for every n,m € N and every finite subset F' of
A, there are ag,aq,...,a, € A such that

® ag is the unit of A,

e |lza; — a;z|| < L for every i € n and z € F, and

e |Ipi(ao, ... an) — pi(do, ..., dy)| < = for every i € m.

Let v € T'(H) be such that C*(7y) is unital. Then C*(y) is D-absorbing if
and only if for every n,m € N there are k1, ..., k, € w such that

o |Vivk, — kil < & fori €mand 1 < j <n,

o 1pi(Un(Y)s Yeys- -5 Vky ) — Pi(doy -+, dn)|| < % for every ¢ € m.

This shows that the set of v € I'(H), such that C*(~) is unital and D-
absorbing, is Borel. O
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4.7. Borel spaces of Kirchberg algebras. Recall that a C*-algebra A is
said to be a Kirchberg algebra if it is purely infinite, simple, nuclear and sep-
arable. We will denote by T'ykir(H) the set of v € T'(H) such that C*(v) is a
unital Kirchberg algebra.

Proposition 4.8. The set I'yki(H) is Borel.

Proof. Corollary 7.5 of [14] asserts that the set I'yys(H) of v € T'(H), such that
C* () is unital, nuclear, and simple, is Borel. The result then follows from this
fact together with Theorem 4.6. (]

Definition 4.9. Fix a projection p in O such that [p] = 0 in Ky(O) = Z.
Define the standard Cuntz algebra O to be the corner pOu.p.

The C*-algebra O%! is the (unique) unital Kirchberg algebra that satisfies
the Universal Coefficient Theorem (UCT), with K-theory given by

(Ko(0%), [lox ], K1(O%)) = (Z,0,0).

In particular, a different choice of the projection p in Definition 4.9 (as long as
its class on K-theory is 0) would yield an isomorphic C*-algebra.

We point out that, even though there is an isomorphism Ot @ O3f =~ Ot
(see comments on [23, p.262]), the C*-algebra O3 is not strongly self-absorb-
ing. Indeed, if D is a strongly self-absorbing C*-algebra, then the infinite tensor
product @, ; D of D with itself is isomorphic to D. However, @, ; O is
isomorphic to Oy, and thus Ot is not strongly self-absorbing.

We proceed to give a K-theoretic characterization of those unital Kirchberg
algebras that absorb O%. Our characterization will be used to show that the
set of all Ot -absorbing unital Kirchberg algebras is Borel.

Lemma 4.10. Let A be a unital Kirchberg algebra. Then the following state-
ments are equivalent:

(1) A is O -absorbing.

(2) The class [14] of the unit of A in Ko(A) is zero.

Proof. We first show that (1) implies (2). Since O3 satisfies the UCT, the
Kiinneth formula applied to A @ Ot gives

Ko(A@)O;Z)%’KQ(A) and Kl(A®O;g)gK1(A),

with [14g0s] = 0 as an element in Ko(A). The claim follows since any iso-
morphism A ® O = A must map the unit of A ® O to the unit of A.

Let us now show that (2) implies (1). Fix a nonzero projection p in O
such that [p] = 0 as an element of K¢(O). Then 14 ® 1o, represents the
zero element in Ko(A® Oy ). Likewise, 14 ® p also represents the zero element
in Ko(A ® Ou). Since any two nonzero projections in a Kirchberg algebra
are Murray—von Neumann equivalent if and only if they determine the same
class in K-theory, it follows that there is an isometry v in A ® O, such that
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vv* = 14 ® p. The universal property of the algebraic tensor product yields a
linear map

©0: A®Ox = (14 ®@p)(A® Ox)(1la®p) = A® O

with po(a ® b) = v(a ® b)v* for a in A and b in Oy. It is straight-forward
to check that ¢ extends to a *-homomorphism ¢: A ® Qs — A ® O, We
claim that ¢ is an isomorphism. For this, it is enough to check that the *-
homomorphism

V: (1a®@p)(A® O0u)(1a®@p) - A® O

given by ¢ (z) = v*zv for all  in (14 ® p)(A ® Ox)(1a ® p) is an inverse
for ¢. This is immediate since for all z in (14 ® p)(A @ Ox)(1la ® p) we have
(14 @p)a(la ®@p) = .

Once we have A® 0% 2 A® O, the result follows from the fact that there
is an isomorphism A = A ® O by Kirchberg’s Oq-isomorphism theorem.
This finishes the proof of the lemma. O

Corollary 4.11. The set of all v € T'(H), such that C*(v) is an Ot -absorbing
unital Kirchberg algebra, is Borel.

Proof. This follows from Lemma 4.10, together with the fact that the K-theory
of a C*-algebra and the class of its unit in Ky can be computed in a Borel
fashion; see [13, §3.3]. O

4.12. Automorphisms of Q3. Denote by Aut(Os) the Polish group of auto-
morphisms of Oy with respect to the topology of pointwise convergence. Given
a positive integer n, the closed subspace Auts(Os) of automorphisms of Oy of
order 2 can be identified with the space of actions of Zs on Os.

Definition 4.13. An action a of Zy on O, is said to be approximately repre-
sentable if for every € > 0 and for every finite subset F' of O3, there exists a
unitary u of Oy such that

(1) [u* =1 <e,

(2) [a(u) —ul|| < e, and

(3) |la(a) — uau*|| < € for every a € F.

It is clear that the set of approximately representable automorphisms of
order 2 of Oy is a G5 subset of Auto(Os).

We now recall a construction of a model action of Zy on O from [23, p. 262].
Fix a projection e of O such that [e] is a generator of Ky(O%) and let u be
the order 2 unitary u = 2e — 1 of O%t. Identifying O with the infinite tensor
product &), c,, 0% one can define the approximately representable action v =
&®,c, Ad(u) of Zy on Oy. Lemma 4.7 of [23] asserts that the crossed product
O3 %, Zs is isomorphic to O @ Mg, which from now on we will denote by Ds.

For a simple nuclear unital C*-algebra A, denote by a4 the automorphism
of A ® Oy defined by idg ® v. Using Kirchberg’s Os-isomorphism theorem
[28, Thm. 3.8], we fix an isomorphism ¢: A ® O3 — Os. Denote by a4 the
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automorphism of Oy given by ay = poa oL

that a4 is approximately representable.

It is immediate to check

Remark 4.14. If A is a simple nuclear unital C*-algebra, then
Oz X, 2y = AR Ds.
Indeed,
O2 N, Lo = (A® O2) Nidov Lo = A® (02 x, Zg) 2 AR Ds.
Proposition 4.15. Let A and B be simple nuclear unital C*-algebras. The

following statements are in decreasing order of strength:

(1) A and B are isomorphic.

(2) The actions as and ap are conjugate.

(3) The actions as and ap are cocycle conjugate.

(4) The crossed products Og Xq , Zo and Oa Xy Lo are isomorphic.
(5) A® Dy and B ® Dy are isomorphic.

In particular, if A and B are Do-absorbing unital Kirchberg algebras, then
all the statements above are equivalent.

5

Proof. If ¢v: A — B is an isomorphism, then ¢ ® idp,: A ® Oy = B ® Os
conjugates id4 ® v, and idp ®v/p, and hence a4 , and ap , are conjugate. This
shows that (1) implies (2). It is well known that (2) implies (3) and that (3)
implies (4). Remark 4.14 shows that (4) implies (5). O

We refer the reader to [20, Def. 1.1] for the definition of the Rokhlin dimen-
sion of a finite group action on a unital C*-algebra. We remark that an action

has Rokhlin dimension 0 if and only if it has the Rokhlin property in the sense
of [23, Def. 3.1].

Proposition 4.16. Let A be a Dy-absorbing unital Kirchberg algebra not iso-
morphic to Oy. Then as has Rokhlin dimension 1.

Proof. Since v is outer, so is a4. It follows from [18, Thm. 4.19] that o
has Rokhlin dimension at most 1. Assume now by contradiction that a4 has
the Rokhlin property. Corollary 3.4 in [19] asserts that the crossed product
O3 X, Zo is isomorphic to Oy. At the same time Oy x4 Zs is isomorphic to A
by Remark 4.14. Therefore A = Oy, against our assumption. U

4.17. Isomorphism of p-divisible torsion-free abelian groups.

Definition 4.18. Let G be an abelian group and let n be a positive integer.
(1) We say that G is n-divisible, if for every x in G there exists y in G such
that x = ny.
(2) We say that G is uniquely n-divisible, if for every = in G there exists a
unique y in G such that x = ny.
Given a set S of positive integers, we say that G is (uniquely) S-divisible,
if G is (uniquely) n-divisible for every n in S.
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It is clear that if n is a positive integer, then any n-divisible torsion-free
abelian group is uniquely n-divisible.

It is easily checked that the following classes of abelian groups are Borel
subsets of the standard Borel space of countable infinite groups G:

e torsion free groups;
e n-divisible groups, for any positive integer n;
e uniquely n-divisible groups.

The main result of [22] asserts that if C is any class of countable structures
such that the relation ¢ of isomorphisms of elements of C is Borel, then =
is Borel reducible to the relation =rpa of isomorphism of torsion-free abelian
groups. Moreover, Theorem 1.1 of [9] asserts that 2pa is a complete analytic
set and, in particular, not Borel.

Proposition 4.19. Suppose that P is a set of prime numbers which is co-
infinite in the set of all primes. If C is any class of countable structures such
that the relation =¢ of isomorphism of elements of C is Borel, then C is Borel
reducible to the relation of isomorphism of torsion-free P-divisible countable
infinite groups. Moreover, the latter equivalence relation is a complete analytic
set and, in particular, not Borel.

Proof. A variant of the argument used in the proof of the main result of [22]
can be used to prove the first assertion. Indeed, the only modification needed
is in the definition of the group eplag associated with an excellent prime labeled
graph as in [22, §2] (we refer to [22] for the definitions of these notions). Sup-
pose that (V, E, f) is an excellent prime labeled graph such that the range of f
is disjoint from P. Denote by Q") the direct sum Q(Y) = P, Q of copies of
Q indexed by V', and identify an element v of V' with the corresponding copy
of Q in QY). We define the P-divisible group eplag Gp(V, E, f) associated
with (V, E, f) to be the subgroup of Q(Y) generated by

v v+ w
{p”f(v)m’p"f({v,w}) lveV,{v,ute E,nmecw,pe P}.
It is easy to check that Gp(V, E, f) is indeed a torsion-free P-divisible abelian
group. The group eplag G(V, E, f) as defined in [22, §2] is the particular case
of this definition with P = @. The same argument as in [22], where

(1) the group eplag G(V, E, f) is replaced everywhere by Gp(V, E, f),

(2) all the primes are chosen from the complement of P,

gives a proof of the first claim of this proposition.

The second claim follows by modifying the argument in [9] and, in particular,
the construction of the torsion-free abelian group associated with a tree on w
as in [9, Thm. 2.1]. Choose injective enumerations (pp)new and (gn)new of
disjoint subsets of the complement of P in the set of all primes, and let T" be
a tree on w. Define the excellent prime labeled graph (Vp, Ep, fr) as follows.
The graph (V, Ep) is just the tree T', and

f:VrUEr = {pn,qn | n € w}
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is defined by

(@) qn if x is a vertex in the n-th level of T,
€Tr) =
pn  if x is an edge between the n-th and the (n + 1)-st levelofT.

Define the P-divisible torsion-free abelian group Gp(T') to be the group eplag
Gp(Vr, E7, fr). The same proof as that of [9, Thm. 2.1] shows the following
facts: If T'and T” are isomorphic trees, then the groups Gp(T') and Gp(T") are
isomorphic. On the other hand, if T is well-founded and 7" is ill-founded, then
Gp(T) and Gp(T") are not isomorphic. The second claim of this proposition
can now be proved as [9, Thm. 1.1]. O

4.20. Constructing Kirchberg algebras with a given Ky-group. The
following is the main result of this subsection.

Theorem 4.21. There is a Borel map from the Borel space G of countable
infinite groups to the Borel space T'ykiy(H) parametrizing unital Kirchberg al-
gebras, which assigns to every infinite countable abelian group G, a code ~y for
a unital Kirchberg algebra C*(vy) that satisfies the UCT, and with K-theory
given by

(Ko(C* (1), [Le ()]s K1 (C* (7)) = (G, 0, {0}).

Moreover, C*(vy) is Da-absorbing if and only if G is uniquely 2-divisible.

Proof. An inspection of the proof of [39, Prop. 3.5] shows that one can choose,
in a Borel way from G, a torsion-free abelian group H and an automorphism
a of H such that
H/Im(idyg — a) 2 G.
Denote by L the dimension group given by L = Z[%] @ H with positive cone
LY ={(t,h) e D|t>0}U{(0,0)},

and order unit (1,0). Consider the endomorphism p of L defined by
t
B(t, ) = (5 atH))

for (¢,h) in L. It is clear that L and 8 can be computed in a Borel way from
H and a. As remarked in Section 3.4, one can obtain in a Borel way from
H and § a code for a unital AF-algebra B and a code for an injective corner
endomorphism p of B such that the Ky-group of B is isomorphic to L, and
the endomorphism of the Ky-group of B induced by p is conjugate to 5. As
observed in Section 2.10, one can obtain in a Borel way a code vg € I'(H) for
the crossed product B x, N of B by the endomorphism p. It can be shown,
as in the proof of [39, Thm. 3.6], that C*(y¢) is a unital Kirchberg algebra
satisfying the UCT, with trivial K;-group, Ky-group isomorphic to G, and
[le+(ye)] = 0 in Ko(C*(7)). An easy application of the Pimsner-Voiculescu
exact sequence gives the computation of the K-theory. Pure infiniteness of
C*(v¢) is proved in [39, Thm. 3.1]. The map G — I'yki(H) given by G — ¢
is Borel by construction. O
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4.22. Nonclassification of automorphisms of Q5 of order 2. Since M
is strongly self-absorbing, it follows from Theorem 4.6 and Corollary 4.11 that
the set D of v € T'(H) such that C*(v) is a unital Dy-absorbing Kirchberg
C*-algebra not isomorphic to Oz is a Borel subset of I'(H). One can regard
D as the standard Borel space parametrizing Ds-absorbing unital Kirchberg
algebras not isomorphic to Os. Thus, the equivalence relation E on D defined
by vE~' if and only if C*(y) = C*(v') can be identified with the relation of
isomorphism of unital Ds-absorbing Kirchberg algebras not isomorphic to Os.

Theorem 4.23. There are Borel reductions:

(1) From the relation of isomorphism of Da-absorbing unital Kirchberg algebras
not isomorphic to Os, to the relation of cocycle conjugacy of approximately
representable actions of Zo on Oo that have Rokhlin dimension 1.

(2) From the relation of isomorphism of Da-absorbing unital Kirchberg alge-
bras, to the relation of conjugacy of approximately representable actions of
Zo on Oy that have Rokhlin dimension 1.

Proof. In view of Propositions 4.15, 4.16 and Elliott’s theorem Os ® O = O,
it is enough to find a Borel function I'ykir(H) — Aute(O2 ® O2) that assigns
to every v € I'ykir(H) an automorphism a, of Oy ® O which is conjugate to
idC*(v) QK V.

We follow the notation of [14, §6.1], and denote by SA(O3) the space of
C*-subalgebras of Oy. Then SA(O;) is a Borel subset of the Effros Borel
space of closed subsets of O, as defined in [24, §12.C]. It follows from [14,
Thm. 6.5] that the set SAukir(O2) of C*-subalgebras of Oy isomorphic to a
unital Kirchberg algebra is Borel. Moreover, again by [14, Thm. 6.5], there
is a Borel function T'ykir(O2) = SAukir(O2) that assigns to an element v of
Cukir(O2) a subalgebra of Qs isomorphic to C*(). It is therefore enough to
show that there is a Borel function S Aukir (O2) = Aute(O2 ® O2) that assigns
to A € SAukir(O2) an automorphism a4 of Os ® O conjugate to ida ® v.

Denote by End(O3 ® O3) the space of endomorphism of Oz ® O2. By [14,
Thm. 7.6], there is a Borel map SA,ki(O2) — End(Oz ® Oz) that assigns to
an element A in SAukir(O2) a unital injective endomorphism n4 of Oy @ O2
with range A ® Os. In particular, 4 is an isomorphism between Oy ® Oy and
A® Oy. For A in SAukir(O2), define

aa=n,"0(ida®@v)ona,

and note that the map A — «4 is Borel.

It is enough to show that for every z,y € Oy and every ¢ > 0, the set of
C*-algebras A in SA,xkir(O2), such that ||aa(z) —y| < e, is Borel. Fix z and y
in Oz. By [24, Thm. 12.13], there is a sequence (ay, )ne. of Borel functions from
SAukir(0O2) to Oy such that for A in SAuxki (O2), the set {a;? | n € w}is an
enumeration of a dense subset of A.

Fix a countable dense subset {b,, | n € w} of O3. Then

laa(z) —yll = [I(ida @ v)(na(z)) —na)l,
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and thus |jaas(z) — y|| < ¢ if and only if there are positive integers k € w and
ng, ..., Nk—1, Mo, - - ., Mk—1 € w, and scalars Ao, ..., \g—1 € Q(2), such that

‘ na(z) — Z)\iai ® by, || < % and HZ )\iai ® v(bm,) — nA(y)H < %
ick ick

Since the map A — n4 is Borel, it follows that the set of all C*-algebras A in
SAukir(O2), such that ||aa(x) — y|| < g, is Borel. The result follows. O

Theorem 4.24. There are Borel reductions:

(1) From the relation of isomorphism of infinite countable abelian groups, to
the relation of isomorphism of O3 -absorbing unital Kirchberg algebras sat-
isfying the UCT with infinite Ko-group and with trivial Kq-group.

(2) From the relation of isomorphism of uniquely 2-divisible infinite counta-
ble abelian groups, to the relation of isomorphism of Ds-absorbing unital
Kirchberg algebras satisfying the UCT with infinite Ko-group and with triv-
ial K1-group that are a crossed product of Oy by an action of Za of Rokhlin
dimension 1.

Proof. Both results follow from Remark 4.14, Proposition 4.16, Theorem 4.23,
and Theorem 4.21, together with the Kirchberg—Phillips classification theorem
(see [27] and [37]). O

Corollary 4.25. Let C be any class of countable structures such that the re-
lation Z¢ of isomorphism of elements of C is Borel. Assume that F' is any of
the following equivalence relations:
o isomorphism of simple Oa X Zo (with infinite Ko-group and trivial K-
group);
e conjugacy of approximately representable actions of Zs on O that have
Rokhlin dimension 1,
e cocycle conjugacy of approximately representable actions of Zs on Og that
have Rokhlin dimension 1.

Then =¢ is Borel reducible to F', and moreover F is complete analytic.

Corollary 4.26. The relations of isomorphism of simple crossed products
O X Zso satisfying the UCT, conjugacy of automorphisms of Oz, and cocycle
conjugacy of automorphisms of Oz are complete analytic sets and, in particu-
lar, not Borel.

Recall that by [23, Thm. 3.5], if G is a finite group, then any two actions of
G on Oy with the Rokhlin property are conjugate. On the other hand there
are at the moment no classification results for actions of Zs on Os, even in
the case of Rokhlin dimension 1. Corollary 4.25 shows that such classification
problem is rather complicated.

4.27. Nonclassification of automorphisms of O, of order p. Corol-
lary 4.25 can be in fact generalized to automorphisms of order p for any prime
number p. This is the content of the following theorem.
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Theorem 4.28. Fiz a prime number p. Let C be any class of countable struc-
tures such that the relation =¢ of isomorphism of elements of C is Borel. Let
F be any of the following equivalence relations:
o isomorphism of simple purely infinite crossed products O X Zy, (with infi-
nite Ko-group and trivial Kq-group);
e conjugacy of approximately representable actions of Z, on Oy that have
Rokhlin dimension 1,
e cocycle conjugacy of approzimately representable actions of Z, on Oy that
have Rokhlin dimension 1.

Then =¢ is Borel reducible to F'. Moreover, F is a complete analytic set.

We explain here how to adapt the arguments in Sections 4.17, 4.20, and
4.22 to obtain Theorem 4.28. In the rest of this subsection we suppose that p
is a fixed prime number.

An analog of the model action v: Zy — Aut(O;), for actions of Z,, has
been obtained in [1, Prop. 4.15], and we thank Selguk Barlak and Gabor Szabo
for calling our attention to it. We recall its construction in a form which is
suitable for our purposes. Denote by D,, the (unique) unital Kirchberg algebra
satisfying the UCT whose K-theory is given by

(Ko(D,) (10,1 Kr(Dy) = (2[] @+ 0 2[3],0.0}).

where the nontrivial group on the right-hand side has p — 1 direct summands.
Note that when p = 2, the algebra D,, is isomorphic to Mg~ ® O .

Proposition 4.29. Let p be a prime number. Then there exists an approxi-
mately representable action vy: Zy, — Aut(Oz) such that Oz %, Zy = Dy,

Proof. The proof is essentially the same as that of [1, Prop. 4.15]. Set ,
to be a primitive p-th root of unity. One may identify the group Ko(D,)
with the additive group of the ring Z[%,Cp]. Under this identification, the
automorphism of K(D,) determined by multiplication by ¢, can be lifted to
an action pp: Z, — Aut(D),) with the Rokhlin property, by [1, Thm. 2.10].
The crossed product of such action is easily seen to be a Kirchberg algebra
with trivial K-theory. Since it satisfies the UCT by [34, Prop. 3.7], it follows
from the Kirchberg—Phillips classification theorem that

Dp ><1Np Zp = 02.
The desired action is then the dual action v, = fi,: Z, — Aut(O2). O

If A is a simple nuclear unital C*-algebra, then one can define the action
agp of Z, on A analogously as in Section 4.12, after replacing v with v,. The
proof of Proposition 4.16 goes through without changes when « 4 is replaced
with a4 p. Theorem 4.23 is then generalized after replacing Dy with D, and
Zy with Z,.

Let us say that a countable infinite group G is self-absorbing if GG = G. It
follows from the Kirchberg—Phillips classification theorem that, if A is a unital
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Kirchberg algebra with K-theory (G,0,{0}) and G is a self-absorbing torsion-
free p-divisible abelian group, then A is Dp-absorbing. Thus, Theorem 4.24
still holds after replacing Dy with D), and uniquely 2-divisible infinite count-
able abelian groups with self-absorbing uniquely p-divisible infinite countable
abelian groups.

Finally, one needs to modify the construction in Proposition 4.19 to obtain
self-absorbing p-divisible torsion-free abelian groups. This is accomplished
by considering the following modification in the definition of the group eplag
associated with an excellent prime labeled graph. Suppose that (V) E, f) is
an excellent prime labeled graph such that the range of f is disjoint from P.
Denote by Q(V*%) the direct sum

@(wa) _ @ Q
(v,n)EV Xw

of copies of Q indexed by V x w, and identify an element (v,n) of V X w with
the corresponding copy of Q in Q(V). We define the p-divisible self-absorbing
group eplag G>*(V, E, f) associated with (V, £, f) to be the subgroup of Q(Vxw)
generated by

{ (v,k)  (v,k) + (w, k)

prf)m’ prf({v, wh)

It is easy to check that G3*(V, E, f) is indeed a self-absorbing p-divisible torsion-
free abelian group. The proof of Theorem 4.28 is thus complete.

|v,w eV, {v,w} € E, n,m,kew,pep}.

4.30. Actions of discrete groups on Q. Let G be a countable (discrete)
group. Denote by Act(G, A) the space of actions of G on A endowed with
the topology of pointwise convergence in norm. It is clear that Act(G, A) is
homeomorphic to a G5 subspace of the product of countably many copies of A
and, in particular, is a Polish space.

Let G and H be discrete groups, and let 7: G — H be a surjective homo-
morphism from G to H. Define the Borel map 7*: Act(H, A) — Act(G, A) by
7*(a) = aom for @ in Act(H, A). It is easy to check that 7* is a Borel reduc-
tion from the relation of conjugacy of actions of H to the relation of conjugacy
of actions of G. The following proposition is then an immediate consequence
of this observation together with Theorem 4.28.

Proposition 4.31. Let G be a discrete group with a nontrivial cyclic quotient.
If C is any class of countable structures such that the relation ¢ of isomor-
phism of elements of C is Borel, then =¢ is Borel reducible to the relation of
conjugacy of actions of G on O,.

Moreover, the latter equivalence relation is a complete analytic set as a
subset of Act(G, A) x Act(G, A) and, in particular, is not Borel.

The situation for cocycle conjugacy is not as clear. It is not hard to verify
that if G = H x N and 7: G — H is the canonical projection, then 7*, as
defined before, is a Borel reduction from the relation of cocycle conjugacy
in Act(H, A) to the relation of cocycle conjugacy in Act(G, A). Using this
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observation and the structure theorem for finitely generated abelian groups,
one obtains the following fact as a consequence of Theorem 4.28.

Proposition 4.32. Let G be any finitely generated abelian group. If C is
any class of countable structures such that the relation =¢ of isomorphism of
elements of C is Borel, then =¢ is Borel reducible to the relation of conjugacy
of actions of G on Os.

Moreover, the latter equivalence relation is a complete analytic set as a
subset of Act(G, A) x Act(G, A) and, in particular, not Borel.

5. FINAL COMMENTS AND REMARKS

Recall that an automorphism of a C*-algebra A is said to be pointwise
outer (or aperiodic) if none of its nonzero powers is inner. By [33, Thm. 1],
an automorphism of a Kirchberg algebra is pointwise outer if and only if it
has the Rokhlin property. Moreover, it follows from this fact, together with
[38, Cor. 5.14], that the set Rok(A) of pointwise outer automorphisms of a
Kirchberg algebra A is a dense G5 subset of Aut(A), which is moreover easily
seen to be invariant by cocycle conjugacy.

It is an immediate consequence of [31, Thm. 5.2] that aperiodic automor-
phisms of Oy form a single cocycle conjugacy class. In particular, and despite
the fact that the relation of cocycle conjugacy of automorphisms of Oz is not
Borel, its restriction to the comeager subset Rok(O3) of Aut(Os) has only one
class and, in particular, is Borel. This can be compared with the analogous
situation for the group of ergodic measure preserving transformations of the
Lebesgue space: The main result of [15] asserts that the relation of conjugacy
of ergodic measure preserving transformations of the Lebesgue space is a com-
plete analytic set. On the other hand, the restriction of such relation to the
comeager set of ergodic rank one measure preserving transformations is Borel.

It is conceivable that similar conclusions might hold for the relation of con-
jugacy of automorphisms of Oz. We therefore suggest the following.

Question 5.1. Consider the relation of conjugacy of automorphisms of O,
and restrict it to the invariant dense Gs set of aperiodic automorphisms. Is
this equivalence relation Borel?

By [26, Thm. 4.5], the automorphisms of Oy are not classifiable up to con-
jugacy by countable structures. It would be interesting to know if one can
obtain a similar result for the relation of cocycle conjugacy.

Question 5.2. Is the relation of cocycle conjugacy of automorphisms of Oq
classifiable by countable structures?

Theorem 4.5 of [26] shows that the relation of conjugacy of automorphisms
is not classifiable for a large class of C*-algebras, including all C*-algebras
that are classifiable according to the Elliott classification program. It would
be interesting to know if the same holds for the relation of cocycle conjugacy.
More generally, it would be interesting to draw similar conclusions about the
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complexity of the relation of cocycle conjugacy for automorphisms of other
simple C*-algebras. This problem seems to be wide open.

Problem 5.3. Find an example of a simple unital nuclear separable C*-
algebra for which the relation of cocycle conjugacy of automorphisms is not
classifiable by countable structures.

Recall that an equivalence relation on a standard Borel space is said to
be smooth, or concretely classifiable, if it is Borel reducible to the relation of
equality in some standard Borel space. A smooth equivalence relation is in par-
ticular Borel and classifiable by countable structures. Thus, it is a consequence
of Corollary 4.26 that the relation of cocycle conjugacy of automorphisms of
O3 is not smooth.

If X is a compact Hausdorff space, we denote by C(X) the unital commu-
tative C*-algebra of complex-valued continuous functions on X. It is a clas-
sical result of Gelfand and Naimark that any unital commutative C*-algebra
is of this form; see [2, Thm. 11.2.2.4]. Moreover, by [2, §I1.2.2.5], the group
Aut(C(X)) of automorphisms of C'(X) is canonically isomorphic to the group
Homeo(X) of homeomorphisms of X. It is clear that in this case the relations
of conjugacy and cocycle conjugacy of automorphisms coincide. By [4, Thm. 5],
if X is the Cantor set, then the relation of (cocycle) conjugacy of automor-
phisms of C(X) is not smooth (but classifiable by countable structures). On
the other hand, when X is the unit square [0, 1], then the relation of cocycle
conjugacy of automorphisms of C'(X) is not classifiable by countable structures
in view of [21, Thm. 4.17]. This addresses Problem 5.3 in the case of abelian
unital C*-algebras. No similar examples are currently known for simple unital
C*-algebras.

It is worth mentioning here that if one considers instead the relation of
unitary conjugacy of automorphisms, then there is a strong dichotomy in the
complexity. Recall that two automorphisms «, 8 of a unital C*-algebra are
unitarily conjugate if oo 87! is an inner automorphism, that is, implemented
by a unitary element of A. Theorem 1.2 in [29] shows that whenever this
relation is not smooth, then it is even not classifiable by countable structures.
The same phenomenon is shown to hold for unitary conjugacy of irreducible
representations in [25, Thm. 2.8.]; see also [36, §6.8]. It is possible that similar
conclusions might hold for the relation of conjugacy or cocycle conjugacy of
automorphisms of simple C*-algebras.

Question 5.4. Is it true that, whenever the relation of (cocycle) conjugacy of
automorphisms of a simple unital C*-algebra A is not smooth, then it is not
even classifiable by countable structures?

The Kirchberg—Phillips classification theorem asserts that Kirchberg alge-
bras satisfying the UCT are classified up to isomorphism by their K-theory.
By [13, §3.3], the K-theory of a C*-algebra can be computed in a Borel way.
It follows that Kirchberg algebras satisfying the UCT are classifiable up to iso-
morphism by countable structures. Conversely, by Corollary 4.25, if C is any
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class of countable structure with Borel isomorphism relation, then the relation
of isomorphism of elements of C is Borel reducible to the relation of isomor-
phism of Kirchberg algebras satisfying the UCT. It is natural to ask whether
the same conclusion holds for any class of countable structures C.

Question 5.5. Suppose that C is a class of countable structures. Is the relation
of isomorphism of elements of C Borel reducible to the relation of isomorphism
of Kirchberg algebras with the UCT?

A class D of countable structures is Borel complete if the following holds:
For any class of countable structures C the relation of isomorphism of ele-
ments of C is Borel reducible to the relation of isomorphism of elements of D.
Theorems 1, 3, and 10 of [16] assert that the classes of countable trees, count-
able linear orders, and countable fields of any fixed characteristic are Borel
complete. Theorem 7 of [16] shows, using results of Mekler from [32], that the
relation of isomorphism of countable groups is Borel complete. A long standing
open problem—first suggested in [16]—asks whether the class of (torsion-free)
abelian groups is Borel complete. In view of Theorem 4.24, a positive answer
to such problem would settle Question 5.5 affirmatively.
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