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Preface

Positive Quaternion Kähler Geometry lies in the intersection of very classical yet
rather different fields in mathematics. Despite its geometrical setting which involves
fundamental definitions from Riemannian geometry, it was soon discovered to be
accessible by methods from (differential) topology, symplectic geometry and complex
algebraic geometry even. Indeed, it is an astounding fact that the whole theory can
entirely be encoded in terms of Fano contact geometry. This approach led to some
highly prominent and outstanding results.

Aside from that, recent results have revealed in-depth connections to the theory of
positively curved Riemannian manifolds. Furthermore, the conjectural existence of
symmetry groups, which is confirmed in low dimensions, sets the stage for equivariant
methods in cohomology, homotopy and Index Theory.

The interplay of these highly dissimilar theories contributes to the appeal and the
beauty of Positive Quaternion Kähler Geometry. Indeed, once in a while one may gain
the impression of having a short glimpse at the dull flame of real mathematical insight.

Quaternion Kähler Manifolds settle in the highly remarkable class of special geome-
tries. Hereby one refers to Riemannian manifolds with special holonomy among which
Kähler manifolds, Calabi–Yau manifolds or Joyce manifolds are to be mentioned as
the most prominent examples. Whilst the latter—i.e. manifolds with G2-holonomy or
Spin(7)-holonomy—seem to be extremely far from being symmetric in general, it is
probably the central question in Positive Quaternion Kähler Geometry whether every
such manifold is a symmetric space. This question was formulated in the affirmative
in a fundamental conjecture by LeBrun and Salamon. It forms the basic motivation
for the thesis.

The conjectural rigidity of the objects of research seems to be reflected by the
variety of methods that can be applied—especially if these methods are rather “far
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away from the original definition”. For example, the existence of symmetries on the
one hand contributes to the structural regularity of the manifolds; on the other hand
does it permit a less analytical and more topological approach. The existence of
various rigidity theorems and topological recognition theorems backs the idea that
the structure imposed by special holonomy and positive scalar curvature is restrictive
enough to permit a classification of Positive Quaternion Kähler Manifolds. We shall
contribute some more results of this kind.

Conceptually, the thesis splits into two parts: On the one hand we are interested
in classification results, (mainly) in low dimensions, which has led to chapters 2 and
4. On the other hand we extend the spectrum of methods used to study Positive
Quaternion Kähler Manifolds by an approach via Rational Homotopy Theory. The
outcome of this enterprise is depicted in chapter 3.

To be more precise, results obtained feature

• the formality of Positive Quaternion Kähler Manifolds—which is obtained by an
in-depth analysis of spherical fibrations in general,

• the discovery and documentation (with counter-examples) of a crucial mistake
in the existing “classification” in dimension 12,

• new techniques of how to detect plenty of new examples of non-formal homoge-
neous spaces,

• recognition theorems for HP20 and HP24,

• a partial classification result in dimension 20,

• a recognition theorem for the real Grassmannian G̃r4(Rn+4), which proves that
the main conjecture, which suggests the symmetry of Positive Quaternion Kähler
Manifolds, can (almost always) be decided from the dimension of the isometry
group

• and results on rationally elliptic Positive Quaternion Kähler Manifolds and
rationally elliptic Joyce manifolds.

Moreover, we depict a method of how to find an upper bound for the Euler characteristic
of a Positive Quaternion Kähler Manifold under the isometric action of a sufficiently
large torus. This makes use of a classification of S1-fixed-point components and
Z2-fixed-point components of Wolf spaces which we provide. Furthermore, we reprove
the vanishing of the elliptic genus of the real Grassmannian Gr4(Rn+4) for n odd.

The methods applied comprise Rational Homotopy Theory, Index Theory, elements
from the theory of transformation groups and equivariant cohomology as well as Lie
theory.
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In the first chapter we give an elementary introduction to the subject, we recall
basic notions and we recapitulate known facts of Positive Quaternion Kähler Geometry,
Index Theory and Rational Homotopy Theory. As we want to keep the thesis accessible
to a larger audience ranging from Riemannian geometers to algebraic topologists, we
shall be concerned to give an easily comprehensible and detailed outline of the concepts.
In order to keep the proofs of the main theorems of subsequent chapters compact and
comparatively short, we establish and elaborate some crucial but not standard theory
in the introductory chapter already. We shall eagerly provide detailed proofs whenever
different concepts are brought together or when ambiguities arise (in the literature).

Chapter 2 is devoted to a depiction of an error that was committed by Herrera and
Herrera within the process of classifying 12-dimensional Positive Quaternion Kähler
Manifolds. As this classification was highly accredited, and since not only the result
but also the erroneous method of proof were used several times since then, it seems to
be of importance to document the mistake in all adequate clarity. This will be done
by giving various counter-examples for the different stages in the proof—varying from
purely algebraic examples to geometric ones—as well as for the result, i.e. for the main
tool used by Herrera and Herrera, itself. So we shall derive

Theorem. There is an isometric involution on G̃r4(R7) having G̃r2(R5) and HP1

as fixed-point components. The difference in dimension of the fixed-point components
is not divisible by 4 which implies that the Z2-action is neither even nor odd.

We shall see that this will contradict what was asserted by Herrera and Herrera. It
is the central counter-example to an argument which resulted in the assertion that
the Â-genus of a π2-finite oriented compact connected smooth manifold M2n with an
effective smooth S1-action vanishes. We even obtain

Theorem. For any k > 1 there exists a smooth simply-connected 4k-dimensional
π2-finite manifold M4k with smooth effective S1-action and Â(M4k)[M4k] 6= 0.

This chapter is closely connected to the chapters B and D of the appendix, where
not only a more global view on the main counter-example is provided (cf. chapter
B), but where we also discuss what still might be true within the setting of Positive
Quaternion Kähler Manifolds (cf. chapter D)—judging from the symmetric examples.
(The main tool of Herrera and Herrera was formulated in a more general context.)
This will also serve as a justification for some assumptions we shall make in chapter 4.

In the third chapter we establish the formality of Positive Quaternion Kähler
Manifolds.

Theorem. A Positive Quaternion Kähler Manifold is a formal space. The twistor
fibration is a formal map.

For this we shall investigate under which circumstances the formality of the total
space of a spherical fibration suffices to prove formality for the base space. An
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application to the twistor fibration proves the main geometric result. The formality of
Positive Quaternion Kähler Manifolds can be seen as another indication for the main
conjecture, as symmetric spaces are formal. Besides, the question of formality seems
to be a recurring topic of interest within the field of special holonomy.

This discussion will be presented in a far more general context than actually necessary
for the main result: We shall investigate how formality properties of base space and
total space are related for both even-dimensional and odd-dimensional fibre spheres.
Moreover, we shall discuss the formality of the fibration itself. It will become clear
that the case of even-dimensional fibres is completely distinct from the one with
odd-dimensional fibres, where hardly no relations appear at all.

This topic will naturally lead us to the problem of finding construction principles for
non-formal homogeneous spaces. Although a lot of homogeneous spaces were identified
as being formal, there seems to be a real lack of non-formal examples. As we do not
want to get too technical at this point of the thesis let us just mention a few of the
most prominent examples we discovered:

Theorem. The spaces

Sp(n)
SU(n)

SO(2n)
SU(n)

SU(p+ q)
SU(p)× SU(q)

are non-formal for n ≥ 7, n ≥ 8 and p+ q ≥ 4 respectively.

The techniques elaborated and the many examples will then also permit to find an
(elliptic) non-formal homogeneous spaces in each dimension greater than or equal to
72.

Apart from simple reproofs of the formality of Positive Quaternion Kähler Manifolds
in low dimensions, the following sections are mainly dedicated to elliptic manifolds.
We shall prove

Theorem. An elliptic 16-dimensional Positive Quaternion Kähler Manifold is ratio-
nally a homology Wolf space.

Theorem. There are no compact elliptic Spin(7)-manifolds. An elliptic simply-
connected compact irreducible G2-manifold is a formal space.

In chapter 4 we provide several classification theorems: First of all, we prove

Theorem. A 20-dimensional Positive Quaternion Kähler Manifold M20 is homothetic
to HP5 provided b4(M) = 1. A 24-dimensional Positive Quaternion Kähler Manifold
M24 is homothetic to HP6 provided b4(M) = 1.

Next we establish a partial classification result for 20-dimensional Positive Quaternion
Kähler Manifolds.

Theorem. A 20-dimensional Positive Quaternion Kähler Manifold M with
Â(M)[M ] = 0 satisfying dim Isom(M) 6∈ {15, 22, 29} is a Wolf space.
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This will be done in two major steps. First we combine several known relations
from Index Theory and twistor theory to get a grip on possible isometry groups. As
a second step we shall use Lie theory to determine the isometry type of the Positive
Quaternion Kähler Manifold from there. The techniques in the second step permit a
generalisation to nearly arbitrary dimensions. So we shall prove a recognition theorem
for the real Grassmannian—a first one of its kind. This will make clear that in order
to see whether a Positive Quaternion Kähler Manifold is symmetric or not it suffices to
compute the dimension of its isometry group—which itself permits an interpretation
as an index of a twisted Dirac operator.

Theorem. For almost every n it holds: A Positive Quaternion Kähler Manifold M4n

is symmetric if and only if dim Isom(M) > n2+5n+12
2 .

We remark that the mistakes in the literature which we spotted—cf. chapter 2
and page 21—turned out to be extremely detrimental to the classification result in
dimension 20—not exclusively but mainly. As we did not only use the main and most
prominent results that might still be true in the special case of Positive Quaternion
Kähler Manifolds, but also intermediate conclusions which are definitely wrong, it
was no longer possible to sustain a more elaborate form of the classification theorem
without unnatural assumptions. So what was true before, now remains a conjecture:
If the Euler characteristic of M20 is restricted from above (by a suitable bound which
probably needs not be very small), then M20 is symmetric.

In the appendix we compute the rational cohomology structure of Wolf spaces.
Moreover, we provide a classification of S1-fixed point components and Z2-fixed point
components of Wolf spaces, which illustrates and generalises the examples in chapter
2. It seems that such a classification can not be found in the literature. This may
pave the way for equivariant methods.

As a first application of these data we give a technique of how to restrict the
Euler characteristic of a Positive Quaternion Kähler Manifold from above under the
assumption of a sufficiently large torus rank of the isometry group. This leads to
optimal bounds in low dimensions and we do a showcase computation for dimension
16 with an isometric four-torus action. Due to the fact that the classification in
dimension 12 does no longer exist, we need to suppose that Â(M)[M ] = 0 for all
π2-finite 12-dimensional Positive Quaternion Kähler Manifolds. Then we obtain

Theorem. A 16-dimensional Positive Quaternion Kähler Manifold admitting an iso-
metric action of a 4-torus satisfies χ(M) ∈ {12, 15} and (b4, b6, b8) ∈ {(3, 0, 4), (3, 2, 3)}
unless M ∈ {HP4,Gr2(C6)}.

This kind of result can be obtained under a smaller torus rank and we shall also
indicate how to generalise it to arbitrary dimensions.

We then compute the elliptic genus of the real Grassmannian, which will serve
as a justification for the assumptions we make in chapter 4. In particular we see
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that the elliptic genus vanishes on all 20-dimensional Wolf spaces and so does the
Â-genus in particular. This also clarifies the situation on the existing examples of
Positive Quaternion Kähler Manifolds after the general results have proved to be
wrong (cf. chapter 2). This result, however, is interesting for its own sake, as the
method of proof seems to be more direct than a recently published one (cf. [36]).

Finally, we provide preparatory computations in dimension 16—which served to
prove recognition theorems for HP4—and we comment on further known relations
that can easily be reproved.
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Introduction

This chapter is devoted to a brief depiction of Positive Quaternion Kähler Geometry
and of Rational Homotopy Theory. We shall give basic definitions and we shall sketch
concepts and techniques that arise. We shall outline properties of the objects in
question that turn out to be of importance in the thesis. Definitions that appear
in different forms in the literature will be discussed and several proofs that clarify
the situation are provided. Furthermore, we shall comment on ambiguities we found
during the study of the literature. Moreover, we shall elaborate several arguments
that will simplify the proofs of the main theorems in the subsequent chapters.

For the general facts stated in the next section we recommend the textbooks [18],
[45], [46], [5] and the survey articles [66], [67].

1.1. All the way to Positive Quaternion Kähler Geometry

Let (M, g) be a Riemannian manifold, i.e. a smooth manifold M with Riemannian
metric g. One may generalise the intuitive notion of “parallel transport” known
from Euclidean space to parallel transport on M : Given a (piecewise) smooth curve
γ : [0, 1]→ M with starting point γ(0) = x, end point γ(1) = y and starting vector
v ∈ TxM in the tangent space at x one obtains a unique parallel vector field s along γ.
This yields a vector Pγ(v) = s(1) in TyM , the translation of v.

Denote by X (M) the smooth vector fields on M , i.e. the smooth sections of the
tangent bundle TM . The notion of parallel transport is made precise by means of the
concept of a connection, an R-bilinear map

∇ : X (M)×X (M)→ X (M)
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tensorial in the first component

∇fXY = f∇XY

for f ∈ C∞(M) and derivative in the second one

∇X(fY ) = X(f) · Y + f∇XY

One may now show that there is exactly one connection that additionally is metric

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ)

and torsion-free

∇XY −∇YX = [X,Y ]

This connection is called the Levi–Civita connection ∇g. Since ∇g is tensorial in the
first component, its value depends on the vector in the point only. Thus we may call a
vector field s : [0, 1]→ TM , t 7→ s(t) ∈ Tc(t)M along a curve γ : [0, 1]→M parallel
if

∇gγ̇s = 0

for the velocity field γ̇(t) = d
dtγ(t) ∈ Tγ(t)M . A starting vector v ∈ Tx(M) may always

be extended along the curve γ to a unique parallel vector field s, since the condition
for this may be formulated as a first-order ordinary differential equation.

Let us now focus on closed loops based at some x ∈M—cf. figure 1.1. Then parallel
transport is a linear transformation of TxM . We may concatenate two loops γ1, γ2 to
γ1 ∗ γ2 as usual. We obtain:

Pγ1∗γ2 = Pγ2 ◦ Pγ1

Parallel transport along the “inverse loop” γ−1(t) := γ(1 − t) leads to the inverse
transformation:

Pγ−1 = P−1
γ

Parallel transport along the constant curve is the identity transformation.

This leads to the following crucial definition:

Definition 1.1. The group

Holx(M, g) = {Pγ | γ is a closed loop based at x}⊆GL(TxM)

is called the holonomy group of M (at x).
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Figure 1.1.: Parallel transport along a loop

Since a change of base-point within the same path-component produces holonomy
groups that are isomorphic by an inner automorphism, we may suppress the point.

Clearly, the holonomy group is trivial on the flat Rn, but it already is not on the
round sphere S2:

Example 1.2. We have Hol(S2) = SO(2). This can be seen as follows: Parallel
transport is a linear transformation that preserves angles and lengths, i.e. it is a
transformation in the orthogonal group. Moreover, it preserves orientation. Thus
we have that Hol(S2)⊆SO(2). For each rotation in SO(2) we shall now construct a
piecewise smooth closed loop with the property that parallel transport along this loop
is the given rotation. For this we embed the sphere as well as its tangent spaces at
north and south pole into R3. Thus, without restriction, S2 = {x ∈ R3 | ‖x‖ = 1}.
We consider loops based at the south pole x = (0, 0,−1). We focus on loops that are
concatenations of two segments of two different great circles. Indeed, we consider the
geodesics, i.e. the great circles, generated via the exponential map by the tangent
vectors (1, 0, 0) ∈ T(0,0,−1)S2 and v ∈ S1⊆R2 ∼= T(0,0,−1)S2 in the south pole. These
great circles intersect in the north pole y = (0, 0, 1). So following the first geodesic until
we reach the north pole and then following the second one in the opposite direction
until we are back in the south pole yields a closed piecewise smooth curve.

Since the velocity field along a geodesic is parallel by definition, we deduce that
parallel transport of the tangent vector (1, 0, 0) ∈ Tx(S2) yields the tangent vector
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(−1, 0, 0) in y. (Parallel transport of v along the second geodesic yields −v.) As parallel
transport P preserves angles we see that parallel transport of (−1, 0, 0) ∈ Ty(S2) along
the inverse second great circle yields the vector P (1, 0, 0) = v2 ∈ S1⊆C ∼= Tx(S2),
i.e. the vector in S1 determined by the fact that ^(P (1, 0, 0), (1, 0, 0)) = 2·^(v, (1, 0, 0)).
Thus by a suitable choice of v we may realise any given rotation in SO(2). �

Recall that a simply-connected Riemannian manifold is irreducible if it does not
decompose as a Cartesian product. It is non-symmetric if it does not admit an
involutive isometry sp, a geodesic symmetry, for every point p ∈M having this point
as an isolated fixed-point.

We cite the following celebrated theorem due to Berger, 1955—cf. corollary [5].10.92,
p. 300:

Theorem 1.3 (Berger). The holonomy group of a simply-connected, irreducible and
non-symmetric Riemannian manifold is one of those listed in table 1.1.

Table 1.1.: Holonomy types

Hol(M, g) dimM Type of manifold Properties
SO(n) n generic
U(n) 2n Kähler manifold Kähler
SU(n) 2n Calabi–Yau manifold Ricci-flat, Kähler
Sp(n)Sp(1) 4n Quaternion Kähler Manifold Einstein
Sp(n) 4n hyperKähler manifold Ricci-flat, Kähler
G2 7 G2 manifold (imaginary Cayley) Ricci-flat
Spin(7) 8 Spin(7) manifold (octonionic) Ricci-flat

Since there is a classification of symmetric spaces due to Cartan—which yields direct
insight into the holonomy groups—and since the holonomy of a product is the product
holonomy, we hence do have a rather complete picture.

Originally, there was another case in Berger’s list, namely Hol(M, g) = Spin(9) in
dimension 16. However, this case was shown to imply the symmetry of (M, g) by
Alekseevskii. Each of the remaining cases really is established by certain manifolds.
(Observe that due to this theorem any reduced holonomy group Hol0(M, g) of a
Riemannian manifold (M, g) may be written as a direct product of groups from the
list and holonomy groups of Riemannian symmetric spaces.)

As the structure of Sp(n)Sp(1) is of essential importance, we remark: The symplectic
group

Sp(n) = {A⊆GLn(H) | AĀt = I}
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(with quaternionic conjugation defined by (i, j, k) 7→ (−i,−j,−k)) is the quaternionic
analogue of the real respectively complex groups O(n) and U(n). By Sp(n)Sp(1)
we denote the group φ(Sp(n)× Sp(1)), where φ : Sp(n)× Sp(1)→ GL2n(C) is the
representation given by φ((A, h))(x) = Axh−1 with kernel kerφ = 〈−id,−1〉. Thus we
have:

Sp(n)Sp(1) := φ(Sp(n)× Sp(1)) = Sp(n)×Z2 Sp(1) = (Sp(n)× Sp(1))/〈(−id,−1)〉

Definition 1.4. A Quaternion Kähler Manifold is a connected oriented Riemannian
manifold (M4n, g) with holonomy group contained in Sp(n)Sp(1). If n = 1 we
additionally require M to be Einstein and self-dual.

One may use the Levi–Civita connection to define different notions of curvature.
Classically, there are three different concepts: sectional curvature, Ricci curvature and
scalar curvature, which arise as contractions of the curvature tensor. Indeed, one may
define the Ricci tensor as the first contraction

Ric(X,Y ) =
4n∑
i=1

R(Ei, X, Y,Ei)

of the Riemannian curvature tensor

R(X,Y, Z,W ) = g(∇gX∇
g
Y Z −∇

g
Y∇

g
XZ −∇

g
[X,Y ]Z,W )

(The vector fields Ei form a local orthonormal basis.) Scalar curvature is the second
contraction, i.e. the trace

scal(p) =
4n∑
i=1

Ricp(Ei, Ei)

of the Ricci tensor, where the Ei are orthonormal coordinate vector fields. (By the
argument and index p we stress the fact that scalar curvature depends on the point
p ∈ M only.) The sectional curvature along a plane generated by two orthonormal
vectors v and w is given by

K(v, w) = R(v, w,w, v)

(This is well-defined, as R(X,Y )Z in a point depends on the values of X, Y , Z in the
point only.) Ricci-curvature is defined as

ric(v) = Ric(v, v)
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Scalar curvature is the weakest notion, sectional curvature the strongest one. A nice
description of scalar curvature scal(p) is the following one:

Vol(Bε(p))
Vol(BEucl

ε (0))
= 1− scal(p)

6(n+ 2)
ε2 +O(ε4)

That is, scalar curvature measures volume distortion to a certain degree.
Quaternion Kähler Manifolds are Einstein (cf. [5].14.39, p. 403), i.e. the Ricci tensor

is a multiple of the metric tensor. Thus we compute

scal(p) =
4n∑
i=1

Ric(Ei, Ei) = k ·
4n∑
i=1

gp(Ei, Ei) = 4k · n

and the scalar curvature is constant. This leads to the following crucial definition.

Definition 1.5. A Positive Quaternion Kähler Manifold is a Quaternion Kähler
Manifold with complete metric and positive scalar curvature.

We present some clarifying facts:

• Just to avoid confusion: A Quaternion Kähler Manifold needs not be Kählerian
in general, since Sp(n)Sp(1) * U(2n). No Positive Quaternion Kähler Manifold
admits a compatible complex structure (cf. [67].1.3, p. 88).

• The structure group reduces to Sp(n), i.e. M is (locally) hyperKähler if and
only if the scalar curvature vanishes (cf. [5].14.45.a, p. 406 or [67].1.2, p. 87).
Little is known in the case of negative scalar curvature.

• A Positive Quaternion Kähler Manifold is necessarily compact and simply-
connected (cf. [66], p. 158 and [66].6.6, p. 163).

• A compact orientable (locally) Quaternion Kähler Manifold with positive sec-
tional curvature is isometric to the canonical quaternionic projective space
(cf. theorem [5].14.43, p. 406).

The only known examples up to now are given by the so-called Wolf spaces , which are
all symmetric and which are the only homogeneous examples as a result of Alekseevskii
shows (cf. [5].14.56, p. 409). There is an astonishing relation between Wolf spaces and
complex simple Lie algebras. Indeed, there is a well-understood construction principle
which involves Lie groups. So there are three infinite series of Wolf spaces and some
further spaces corresponding to the exceptional Lie algebras (cf. table 1.2). We now
state the crucial conjecture that motivates the biggest part of our work in this field.

Conjecture 1.6 (LeBrun, Salamon). Every Positive Quaternion Kähler Manifold is
a Wolf space.

This conjecture is backed by the following remarkable theorem by Salamon and
LeBrun.



1.1 All the way to Positive Quaternion Kähler Geometry 7

Table 1.2.: Wolf spaces

Wolf space M dimM

HPn = Sp(n+ 1)/Sp(n)× Sp(1) 4n
Gr2(Cn+2) = U(n+ 2)/U(n)×U(2) ordinary type 4n
G̃r4(Rn+4) = SO(n+ 4)/SO(n)× SO(4) 4n
G2/SO(4) 8
F4/Sp(3)Sp(1) 28
E6/SU(6)Sp(1) exceptional type 40
E7/Spin(12)Sp(1) 64
E8/E7Sp(1) 112

Theorem 1.7 (Finiteness). There are only finitely many Positive Quaternion Kähler
Manifolds in each dimension.

Proof. See theorem [54].0.1, p. 110, which itself makes use of a classification result
by Wisniewski—see below.

A confirmation of the conjecture (cf. 1.6) has been achieved in dimensions four
(Hitchin) and eight (Poon–Salamon, LeBrun–Salamon); if the fourth Betti number
equals one it was shown that in dimensions 12 and 16 the manifold is a quaternionic
projective space—cf. theorem [67].2.1, p. 89.

As we already remarked, it is an astounding fact that the theory of Positive Quater-
nion Kähler Manifolds may completely be transcribed to an equivalent theory in
complex geometry. This is done via the twistor space Z of the Positive Quaternion
Kähler Manifold M . As this connection will be of importance for us, we shall depict
some possible constructions of Z.

Locally the structure bundle with fibre Sp(n)Sp(1) may be lifted to its double
covering with fibre Sp(n)× Sp(1). The only space that permits such a global lift is
the quaternionic projective space; and, in general, the obstruction to the lifting is a
class in second integral homology generating a Z2-subgroup.

So locally one may use the standard representation of Sp(1) on C2 to associate a
vector bundle H. In general H does not exist globally but its complex projectivisation
Z = PC(H) does. In particular, we obtain the twistor fibration

CP1 ↪→ PC(H)→M

An alternative construction of the same manifold Z, which we may also use to shed
some more light on the structure of M , is the following: A hyperKähler manifold may
be defined by three complex structures I, J , K behaving like the unit quaternions i, j,
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k, i.e. IJ = −JI = K and I2 = J2 = −id and such that the manifold is Kählerian
with respect to each of them. On a Quaternion Kähler Manifold M we do not have
these structures globally but only locally. That is, we have a subbundle of the bundle
End(TM) locally generated by the almost complex structures I, J and K. This can
be seen as follows:

Again locally we lift the Sp(n)Sp(1)-principal bundle to an Sp(n)× Sp(1) bundle.
Now we may use the adjoint representation to associate a vector bundle to the
principal bundle: Indeed, we have the map φ : Sp(1)→ Aut(Sp(1)) given by g 7→ φg
with φg(h) = ghg−1. Since each φg is an automorphism of Sp(1), it induces a map
Adg on the tangent space of the identity element preserving the Lie bracket, i.e. an
automorphism of the Lie algebra sp(1). The map Ad : Sp(1)→ Aut(sp(1)) given by
g 7→ Adg is the requested representation.

Note that the center of Sp(1) is ±1. Hence we have φ+1 = φ−1 and ker Ad = {±1}.
This permits to associate a bundle with respect to the hence well-defined action

(g1, g2) · (p, s) = ((g1, g2) · p,Adg2s)

with p ∈ P , the Sp(n)Sp(1)-principal bundle, s ∈ sp(1) and (g1, g2) ∈ Sp(n)Sp(1).
So this globally associates the (three-dimensional) real vector bundle E′, the quotient
of P × sp(1) by this action, to the adjoint representation of Sp(1).

Moreover, the Lie algebra of Sp(1) is just

sp(1) = {h ∈ H | h+ h̄ = 0}.

So sp(1) has the structure of the imaginary quaternions. This means that locally E′

has three sections I, J and K as requested, i.e. three endomorphisms of H with the
respective commutating properties. (One may view E′⊆End(TM) as the subbundle
generated by the three locally defined almost complex structures I, J , K—cf. [5],
p. 412.) The twistor space Z of M now is just the unit sphere bundle S(E′) associated
to E′. The twistor fibration is just

S2 ↪→ S(E′)→M

(Comparing this bundle to its version above we need to remark that clearly CP1 ∼= S2.)
A similar construction leads to a 3-Sasakian manifold S1-fibring over Z (cf. [28]).

As an example one may observe that on HPn we have a global lift of Sp(n)Sp(1)
and that the vector bundle associated to Sp(1) is just the tautological bundle. Now
complex projectivisation of this bundle yields the complex projective space CP2n+2

and the twistor fibration is just the canonical projection.
More generally, on Wolf spaces one obtains the following: The Wolf space may be

written as G/KSp(1) (cf. the table on [5], p. 409) and its corresponding twistor space
is given as G/KU(1) with the twistor fibration being the canonical projection.
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For the construction of the twistor space we used local lifts of Sp(n)Sp(1) to
Sp(n) × Sp(1). Then there are the standard complex representations of Sp(n) on
C2n and of Sp(1) on C2. The bundles associated to these actions will be called
E respectively H. That is, define a right action of Sp(n) on the direct product
PSp(n) × C2n of the (local) principal Sp(n)-bundle PSp(n) with C2n by the pointwise
construction

(p, v) · g := (p · g, %(g−1)v)

where % is the standard representation of Sp(n). Then form the quotient

E = (PSp(n) × C2n)/Sp(n)

Do the same for

H = (PSp(1) × C2)/Sp(1).

Moreover, we obtain the following formula for the complexified tangent bundle TCM
of the Positive Quaternion Kähler Manifold M (cf. [67], p. 93):

TCM = E ⊗H

The bundles E and H arise from self-dual representations and so their odd-degree
Chern classes vanish. The Chern classes of E will be denoted by

c2i := c2i(E) ∈ H2i(M)

and

u := −c2(H) ∈ H4(M)

We explicitly draw the reader’s attention to the definition of u as the negative second
Chern class of H. We fix this notation once and for all. (By abuse of notation we shall
sometimes equally denote a representative of the cohomology class u by u.)

Cohomology will always be taken with rational coefficients unless speci-
fied differently.

The quaternionic volume

v = (4u)n ∈ H4n(M4n)

is integral and satisfies 1 ≤ v ≤ 4n—cf. [67], p. 114 and corollary [68].3.5, p. 7.

Let us now state some important facts about twistor spaces.

Theorem 1.8. The twistor space Z of a Positive Quaternion Kähler Manifold is a
simply-connected compact Kähler Einstein Fano contact manifold.
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Proof. See theorem [54].1.2, p. 113.

The classification of twistor spaces is equivalent to the classification of the manifolds
themselves. For this recall that two Riemannian manifolds (M1, g1) and (M2, g2) are
called homothetic if there exists a diffeomorphism φ : M1 →M2 such that the induced
metric satisfies φ∗g2 = cg1 for some constant c > 0. The map φ then is a homothety.

Theorem 1.9. Two Positive Quaternion Kähler Manifolds are homothetic if and only
if their twistor spaces are biholomorphic.

Proof. See theorems [54].3.2, p. 119 and [66].4.3, p. 155.

Furthermore, note the following theorem:

Theorem 1.10. If Z is a compact Kähler Einstein manifold with a holomorphic
contact structure, then Z is the twistor space of some Quaternion Kähler Manifold.

Proof. See theorem [67].5.3, p. 102.

Twistor theory has proved to be very fruitful. Apart from the finiteness result
(cf. 1.7) above, many properties of Positive Quaternion Kähler Manifolds were gained
via Fano contact geometry. In the same vein the fact that M is simply-connected
follows from the result that π1(Z) = 0 via the long exact homotopy sequence: Indeed,
the manifold Z has a finite fundamental group—cf. the theorem of Myers, corollary
[18].3.2, p. 202—and, as it is Fano, it does not possess finite coverings by the Kodaira
vanishing theorem—cf. [32], p. 154 and [54], p. 114. Thus we have that π1(Z) = 0.
Let us now illustrate the strength of this theory with yet another example.

For Fano manifolds Z there is a contraction theorem which guarantees that there is
always a map of varieties Z → X decreasing the second Betti number by one whilst
the kernel of H2(Z,R)→ H2(X,R) is generated by the class of a rational holomorphic
curve CP1⊆Z. If the second Betti number is one, i.e. b2(Z) = 1, this theorem virtually
does not provide any information at all, since X may be taken to be a point. A famous
theorem by Wisniewski now classifies the cases in which b2(Z) > 1 and, surprisingly, it
only yields three possibilities for Z. In the case of contact varieties Z we even obtain

Theorem 1.11. Let Z be a Fano contact manifold satisfying b2(Z) > 1, then
Z = P(T ∗CPn+1).

Proof. See corollary [54].4.2, p. 122.

This is a major tool for the following corollary which, in particular, can be considered
a recognition theorem for the complex Grassmannian.

Corollary 1.12 (Strong rigidity). Let (M, g) be a Positive Quaternion Kähler Mani-
fold. Then either

π2(M) =


0 iff M ∼= HPn

Z iff M ∼= Gr2(Cn+2)
finite with 〈ε〉 ∼= Z2-torsion contained in π2(M) otherwise
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Proof. See theorems [54].0.2, p. 110, and [67].5.5, p. 103.

Via the Hurewicz theorem we may identify π2(M) with H2(M,Z). Using universal
coefficients we obtain that H2(M,Z2) is the two-torsion in H2(M,Z), as M is simply-
connected. The element ε now corresponds to the obstruction to a global lifting of
Sp(n)Sp(1) to Sp(n)× Sp(1) as defined on [66], p. 149. If such a lifting exists, it is
shown in theorem [66].6.3, p. 160–162, that the isometry group of the manifold has
to be very large; large enough to identify the manifold as the quaternionic projective
space.

Let us now collect cohomological properties of Positive Quaternion Kähler Manifolds
M4n. By bi = dimH i(M) we shall denote the Betti numbers of M .

Recall the class u = −c2(H). There is a cohomology class l ∈ H2(Z)—represented
by a Kähler form—which generates H∗(Z) as an H∗(M)-module under the restriction
that l2 = u (cf. [66], p. 148 (and (2.6) on that page), [35], p. 356). This class is given
by l = 1

2c1(L2) for a certain bundle L2 as on [66], p. 148.
We shall mainly use the terminology z = l. With respect to this form, the manifold

Z—as it is a Kähler manifold—satisfies the Hard-Lefschetz property: The morphism

Lk : Hn−k(Z,R)→ Hn+k(Z,R) Lk([α]) = [zk ∧ α]

is an isomorphism.

Theorem 1.13 (Cohomological properties). A Positive Quaternion Kähler Manifold
M satisfies:

• Odd-degree Betti numbers vanish, i.e. b2i+1 = 0 for i ≥ 0.

• The identity

n−1∑
p=0

(
6p(n− 1− p)− (n− 1)(n− 3)

)
b2p =

1
2
n(n− 1)b2n

holds and specialises to

2b2 = b6(1.1)
−1 + 3b2 + 3b4 − b6 = 2b8(1.2)

−4 + 5b2 + 8b4 + 5b6 − 4b8 = 5b10(1.3)

in dimension 12, 16 and 20 respectively.
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• The twistor fibration yields an isomorphism of H∗(M)-modules

H∗(Z) ∼= H∗(M)⊗H∗(S2) ∼= H∗(M)⊕H∗(M)z

• A Positive Quaternion Kähler Manifold M4n 6∼= Gr2(Cn+2) is rationally 3-
connected.

• The rational/real cohomology algebra possesses an analogue of the Hard-Lefschetz
property, i.e. with the four-form u ∈ H4(M) from above the morphism

Lk : Hn−k(M,R)→ Hn+k(M,R) Lk(α) = uk ∧ α

is an isomorphism. In particular, we obtain

bi−4 ≤ bi

for (even) i ≤ 2n. A generator in top cohomology H4n(M) is given by un. This
defines a canonical orientation.

Proof. The first point is proven in theorem [66].6.6, p. 163, where it is shown that
the Hodge decomposition of the twistor space is concentrated in terms Hp,p(Z). The
second item is due to [65].5.4, p. 403. The third assertion follows from our remark
before stating the theorem. It is actually a consequence of the Hirsch lemma, since
the spectral sequence of the fibration obviously degenerates at the E2-term (due to
vanishing of odd-degree cohomology groups of M).

The manifold M is simply-connected. Due to corollary 1.12 we have that b2 = 0
for Mn 6∼= Gr2(Cn+2). By the first point of this theorem we obtain that b3 = 0. So
Mn 6∼= Gr2(Cn+2) is rationally 3-connected by the Whitehead theorem.

The Hard-Lefschetz property of M follows from the Hard-Lefschetz property of Z:
Indeed, the class z ∈ H2(Z) is a Kähler class and thus M has the Hard-Lefschetz
property with respect to the class 0 6= u = z2 ∈ H4(M).

So for a Positive Quaternion Kähler Manifold M it is equivalent to demand that M
be rationally 3-connected—i.e. to have that π1(M)⊗Q = π2(M)⊗Q = π3(M)⊗Q = 0—
and to require that M be π2-finite—i.e. to suppose that π2(M) <∞.

The following consequence is as simple as it is astonishing.

Lemma 1.14. Let M be rationally 3-connected of dimension 20 with b4 ≤ 5. Then it
holds:

b6 = b10 ∨ (b4, b8) ∈ {(1, 1), (2, 3), (3, 5), (4, 7), (5, 9)}(1.4)

Proof. By assumption b2 = 0. Equation (1.3) becomes

4(2b4 − b8 − 1) = 5(b10 − b6)
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where the right hand side is non-negative due to Hard-Lefschetz (cf. 1.13). Hence the
term 2b4 − b8 − 1 must either be a positive multiple of 5 or zero. Since also b8 ≥ b4,
the first case may not occur for b4 ≤ 5. Thus it holds that b6 = b10. The existence of
the form 0 6= [u] ∈ H4(M) show that b4 ≥ 1.

A recognition theorem which relates cohomology to isometry type is the following:

Theorem 1.15. Let M be a Positive Quaternion Kähler Manifold. If dimM ≤ 16
and b4(M) = 1, then M is homothetic to the quaternionic projective space.

Proof. See theorem [67].2.1.ii, p. 89.

We remark that after corollary 1.12—the “strong rigidity” theorem—this is the
second type of theorem that relates information from algebraic topology to the isometry
type of M . If we wanted to be laconic, we could say that this gives us a feeling of
even “stronger rigidity”. Section 4.2 of chapter 4 is devoted to this kind of recognition
theorems. In particular, we shall generalise the theorem in corollary 4.4 respectively
theorem 4.5 to dimensions 20 and 24 respectively.

Another property of Positive Quaternion Kähler Manifolds related to their coho-
mology is the definiteness of the generalised intersection form, which is a symmetric
bilinear form. This result was obtained by Fujiki (cf. [27]). He asserted negative or
positive definiteness depending on degrees. Nagano and Takeuchi claim the positive
definiteness of the intersection form in [61]. So we see that the sign depends on choices.

We shall reprove a precise formulation with our conventions. The theorem will be a
consequence of the Hodge–Riemann bilinear relations on the twistor space Z. Again
we shall use (a representative of) the form u = −c2(H) and the Kähler form l = c1(L).
The orientations are naturally given by un on M respectively by l2n+1 on Z.

Theorem 1.16. The generalised intersection form

Q(x, y) = (−1)r/2
∫
M
x ∧ y ∧ un−r/2

for [x], [y] ∈ Hr(M4n,R) with even r ≥ 0 is positive definite. In particular, the
signature of the manifold satisfies

sign(M) = (−1)nb2n(M)

Proof. Recall that the Hodge decomposition of the twistor space Z of real dimension
4n+ 2 is given by

Hr(Z,C) = Hr/2,r/2(Z),
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for all r ≥ 0; i.e. all the groups Hp,q(Z) with p 6= q vanish—cf. the proof of theorem
[66].6.6, p. 163, respectively formula (6.4) on that page. We consider the Lefschetz
decomposition (cf. [32], p. 122) on the complex cohomology of Z:

Hr(Z,C) = Hr/2,r/2(Z) =
∑

s≥max{r−(2n+1),0}

LsH
r/2−s,r/2−s
0 (Z)

where H∗0 (·) denotes primitive cohomology (cf. [32], p. 122) and Ls(x) = ls ∧ x.
Recall the twistor fibration CP1 ↪→ Z

π−→M with the Leray-Serre spectral sequence
degenerating at the E2-term. Thus for r ∈ Z we obtain that

Hr(Z,R) = π∗Hr(M,R)⊕ π∗Hr−2(M,R) · l

This formula holds with real coefficients. Tensoring with C makes it valid with
complex coefficients. More precisely, we obtain the subalgebra (π∗Hr(M,R))⊗ C of
(complexified) real forms. That is, an element in (π∗Hr(M,R)) ⊗ C is of the form
η + η̄ for η ∈ Hr(Z,R).

We combine this with the Lefschetz decomposition of Z and compute

Hr(Z,C) =

 ∑
s≥max{r−(2n+1),0}

s even

LsH
r/2−s,r/2−s
0 (Z)


+

 ∑
s≥max{r−(2n+1),0}

s even

LsH
r/2−s,r/2−s
0 (Z)

 · l
Since l2 = u this grading actually enforces

π∗Hr(M,C) =
∑

s≥max{r−(2n+1),0}
s even

LsH
r/2−s,r/2−s
0 (Z)(1.5)

From theorem [75].V.6.1, p. 203, we cite that—on a compact Kähler manifold X (of
real dimension 2k)—the form

Q̃(η, µ) =
∑

max{s≥(r−k),0}

(−1)[r(r+1)/2]+s

∫
X
Lk−r+2s(ηs ∧ µs)

with Lefschetz decompositions η =
∑
Lsηs ∈ Hr(X,C) and µ =

∑
Lsµs ∈ Hr(X,C),

i.e. with primitive ηs, µs, satisfies

Q̃(η, Jη̄) > 0
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for η 6= 0 and J =
∑

p,q i
p−qΠp,q with canonical projections

Πp,q : Hp+q(X,C)→ Hp,q(X).

So in the case of the twistor space X = Z we have J = id, since Hp,p(Z) =
H2p(Z,C). Let 0 6= η = Lsη′ be a real form in H2p(Z,C), i.e. η = η′ + η̄′ as above
and η̄ = η, with primitive η′. Then we have that η ∈ Hp,p(Z), which is equivalent to
η′ ∈ Hp−s,p−s

0 (Z) = H
2(p−s)
0 (Z,C). Hence it holds that

Q̃(η, η) = Q̃(η, Jη̄) > 0

So we obtain (with r = 2p):

0 < Q̃(η, η)

= (−1)[2p(2p+1)/2]+s

∫
Z
L2n+1−2p+2s(η′ ∧ η′)

= (−1)s+p
∫
Z
l2(n−p+s)+1 ∧ η′ ∧ η′

= (−1)s+p
∫
Z
l2(n−p)+1 ∧ η ∧ η

(1.6)

Now let η be an arbitrary element in π∗Hr(M,R)⊗C. Then η is real and according
to (1.5) we have

η =
∑
s even

ls ∧ ηs

with primitive ηs.
Hence by (1.6) we derive that

0 <
∑
s even

(−1)s+p
∫
Z
l2(n−p+s)+1 ∧ ηs ∧ ηs

=
∑
s even

(−1)p
∫
Z
l2(n−p+s)+1 ∧ ηs ∧ ηs

= (−1)r/2
∫
Z
l2n−r+1 ∧ η ∧ η

for 0 6= η ∈ π∗Hr(M,C). The twistor transform finally yields the assertion as we have:

(−1)r/2
∫
M
un−r/2 ∧ η ∧ η = (−1)r/2

∫
Z
l2n−r+1 ∧ η ∧ η > 0
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We remark that in low dimensions (dimM ≤ 20) this result fits to the computation
of the signature of the Positive Quaternion Kähler Manifold M via the L-genus
(combined with further equations obtained by Index Theory)—cf. chapter 4.

An oriented compact manifold M4n is called spin if its SO(4n)-structure bundle
lifts to a Spin(4n)-bundle, or equivalently, its second Stiefel-Whitney class w2(M) = 0
vanishes. A vector bundle E → M is called spin if w1(E) = w2(E) = 0. (Thus a
manifold is spin iff its tangent bundle is spin.)

Positive Quaternion Kähler Manifolds M4n 6= HPn are spin if and only if n is even.
Indeed, the second Stiefel-Whitney class w2(M) satisfies

w2(M) =

{
ε for odd n

0 for even n

where ε is the obstruction class to a global lifting of Sp(n)Sp(1)—cf. proposition
[66].2.3, p. 148.

Now Index Theory enters the stage. This approach led to some striking results and
is likely to be fruitful in the future, too: Via Index Theory an alternative proof of the
classification in dimension 8 was obtained (cf. theorem [54].5.4, p. 129), theorem 1.15
was established and the relations on Betti numbers in theorem 1.13 were found. The
results on the isometry groups in dimensions 12 and 16 in theorem 1.18 below are also
a consequence of Index Theory.

Let us briefly mention some basic notions from Index Theory. For general reference
we recommend the textbooks [40] and [52].

A genus φ is a ring homomorphism φ : Ω⊗Q→ R from the rationalised oriented
cobordism ring Ω⊗Q into an integral domain R over Q.

Let Q(x) = 1 + a2x
2 + a4x

4 + . . . be an even power series with coefficients in R.
Assume the xi to have degree 2. The product Q(x1) · · · · ·Q(xn) is symmetric in the x2

i .
Therefore it may be expressed as a series in the elementary symmetric polynomials pi
of the x2

i . The term of degree 4r is given by Kr(p1, . . . , pr), i.e.

Q(x1) · · · · ·Q(xn) =1 +K1(p1) +K2(p1, p2) + . . .

+Kn(p1, . . . , pn) +Kn+1(p1, . . . , pn, 0) + . . .

On a compact oriented differentiable manifold M4n the genus φQ : Ω ⊗ Q → R
asociated to the power series Q is defined by

φQ(M) = Kn(p1, . . . , pn)[M ]

where pi = pi(M) ∈ H4i(M,Z) are the Pontryagin classes of M . (On such manifolds
with dimension not divisible by four the genus is set to zero.)
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Prescribing the values of a genus on the complex projective spaces leads to a power
series Q as above. As a consequence we see that there is a one-to-one correspondence
between such power series and genera.

The genus φQ corresponding to the power series Q(x) = x/2
sinh(x/2) is called the

Â-genus; the genus φQ corresponding to Q(x) = x
tanhx is the L-genus.

On a 4n-dimensional spin manifold M one may define an elliptic differential operator

D/ : Γ(S+)→ Γ(S−)

called the Dirac operator . (The spinor bundle S of TM splits into the eigenbundles
S+ and S− of a certain involution in the Clifford bundle Cl(M) of the tangent bundle
TM .) The index of D/ is given by

ind(D/) = kerD/− cokerD/

In the same way one may construct twisted Dirac operators: In order to obtain a
twisted Dirac operator locally defined by

D/(E) : Γ(S+ ⊗ E)→ Γ(S− ⊗ E)

we may use a similar definition for certain vector bundles E.
As a consequence of the famous Atiyah–Singer Index Theorem we obtain

ind(D/(E)) = 〈Â(M) · ch(E), [M ]〉

Thus we see that the Index Theorem interlinks the concept of indices of differential
operators with the notion of genera.

On a Positive Quaternion Kähler Manifold M4n we have the locally associated
bundles E and H from above. Now form the (virtual) bundles∧k

0
E :=

∧
k E −

∧
k−2E

of exterior powers and the bundles

SlH := SymlH

of symmetric powers. Set

ik,l := indD/
(∧k

0
E ⊗ SlH

)
The bundles S± ⊗

∧k

0
E ⊗ SlH exist globally if and only if n+ k + l is even. In this

case, using the index theorem one obtains the following relations (cf. [67], p. 117):
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Theorem 1.17. It holds:

ik,l =


0 if k + l < n

(−1)k(b2p(M) + b2p−2(M)) if k + l = n

d if k = 0, l = n+ 2

where d = dim Isom(M) is the dimension of the isometry group of M and the bi(M)
are the Betti numbers of M as usual.

There is the following information on isometry groups:

Theorem 1.18. Let M4n be a Positive Quaternion Kähler Manifold with isometry
group Isom(M). We obtain:

• The rank rk Isom(M) may not exceed n + 1. If rk Isom(M) = n + 1, then
M ∈ {HPn,Gr2(Cn+2)}.

• If rk Isom(M) ≥ n
2 + 3, then M is isometric to HPn or to Gr2(Cn+2).

• It holds that dim Isom(M4n) ≤ dim Sp(n+ 1) = (n+ 1)(2n+ 3). Equality holds
if and only if M ∼= HPn.

• If n = 3, then dim Isom(M) ≥ 5; if n = 4, then dim Isom(M) ≥ 8.

Proof. The first assertion is due to theorem [67].2.1, p. 89. The second item is
theorem [20].1.1, p. 642. The inequality in the third assertion follows from corollary
[68].3.3, p. 6. In case dim Isom(M) = (n+ 1)(2n+ 3) it was already observed on [66],
p. 161 that M is homothetic to the quaternionic projective space. The fourth point is
due to theorem [66].7.5, p. 169.

The isometry group Isom(M) of M is a compact Lie group. The subsequent lemma
permits a better understanding of Isom(M).

Lemma 1.19. Let G be a compact connected Lie group. Then we obtain:

• The group G possesses a finite covering which is isomorphic to the direct product
of a simply-connected Lie group G̃ and a torus T . In particular, G̃ is also
compact.

• The group G is semi-simple if and only if its fundamental group π1(G) is finite.

Proof. See theorems [11].V.8.1, p. 233, and [11].V.7.13, p. 229.
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Table 1.3.: Classification of simple Lie groups up to coverings
type corresponding Lie group dimension

(not necessarily simply-connected)
An, n = 1, 2, . . . SU(n+ 1) n(n+ 2)
Bn, n = 1, 2, . . . SO(2n+ 1) n(2n+ 1)
Cn, n = 1, 2, . . . Sp(n) n(2n+ 1)
Dn, n = 3, 4, . . . SO(2n) n(2n− 1)
G2 Aut(O) 14
F4 Isom(OP2) 52
E6 Isom((C⊗O)P2) 78
E7 Isom((H⊗O)P2) 133
E8 Isom((O⊗O)P2) 248
the index n denotes the rank

Consequently, up to finite coverings we may assume that Isom0(M) is the product
of a simply-connected semi-simple Lie group—i.e. the product of simply-connected
simple Lie groups—and a torus.

For the convenience of the reader we give a table of simple Lie groups by 1.3, which
will support our future arguments involving dimensions and ranks of Lie groups. From
theorem [48].2.2, p. 13, we cite tables 1.4, 1.5, 1.6 of maximal connected subgroups
(up to conjugation) of the classical Lie groups. (By IrrR, IrrC, IrrH real, complex and
quaternionic irreducible representations are denoted. The tensor product “⊗”y of
matrix Lie groups is induced by the Kronecker product of matrices.)

Table 1.4.: Maximal connected subgroups of SO(n)
subgroup for

SO(k)× SO(n− k) 1 ≤ k ≤ n− 1
SO(p)⊗ SO(q) pq = n, 3 ≤ p ≤ q

U(k) 2k = n

Sp(p)⊗ Sp(q) 4pq = n

%(H) H simple, % ∈ IrrR(H), deg % = n

From [8], p. 219, we cite table 1.7 of maximal rank maximal connected subgroups.
From table [48].2.1 we cite subgroups of maximal dimension in table 1.8.

Moreover, we briefly state

Lemma 1.20 (Connectivity lemma). Let i : N4n →M4m be an embedding of compact
Quaternion Kähler Manifolds. Then the map i is (2n−m+ 1)-connected.
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Table 1.5.: Maximal connected subgroups of SU(n)
subgroup for
SO(n)
Sp(m) 2m = n

S(U(k)×U(n− k)) 1 ≤ k ≤ n− 1
SU(p)⊗ SU(q) pq = n, p ≥ 3, q ≥ 2

%(H) H simple, % ∈ IrrC(H), deg % = n

Table 1.6.: Maximal connected subgroups of Sp(n)
subgroup for

Sp(k)× Sp(n− k) 1 ≤ k ≤ n− 1
SO(p)⊗ Sp(q) pq = n, p ≥ 3 , q ≥ 1

U(n)
%(H) H simple, % ∈ IrrH(H), deg % = 2n

Proof. This follows directly from theorem [19].A3, p. 150, applied to the case when
N1 = N2 = N .

This lemma is a vital tool in the proof of the second point of theorem 1.18. We
shall apply it mainly to fixed-point components. So let us comment briefly on the
structure of S1-fixed-point components and of Z2-fixed-point components of a Positive
Quaternion Kähler Manifold M4n.

Let H ⊆ Isom(M) be either S1 or Z2. Consider the isotropy representation at an
H-fixed-point x ∈M composed with the canonical projection Sp(1)→ SO(3):

ϕ : H ↪→ Sp(n)Sp(1)→ SO(3)

Theorems [15].4.4, p. 602, and [15].5.1, p. 606, (together with [15], p. 600) show that
the type of the fixed-point component F of H around x depends on the image of ϕ:
If ϕ(H) = 1, the component F is quaternionic for H ∈ {S1,Z2}. If ϕ(H) 6= 1, the
component F is locally Kählerian for H = Z2 and Kählerian for H = S1. A result by
Gray (cf. [30]) shows that a quaternionic submanifold is totally geodesic. Thus the
quaternionic components are again Positive Quaternion Kähler Manifolds.

It is easy to see that the dimension of F is exactly 2n if H = Z2 and given that F
is locally Kählerian. The dimension of F is smaller than or equal to 2n if H = S1 and
provided that F is Kählerian.
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Table 1.7.: Maximal rank maximal connected subgroups
ambient group subgroup

SU(n) S(U(i)×U(n− i− 1)) for i ≥ 1
SO(2n+ 1) SO(2n), SO(2i+ 1)× SO(2(n− i)) for 1 ≤ i ≤ n− 1

Sp(n) Sp(i)× Sp(n− i) for i ≥ 1, U(n)
SO(2n) SO(2i)× SO(2(n− i)) for i ≥ 1, U(n)

G2 SO(4), SU(3)

Table 1.8.: Subgroups of maximal dimension
ambient group subgroup
SU(n), n 6= 4 S(U(1)×U(n+ 1))

SU(4) Sp(2)
SO(n) SO(n− 1)

Sp(n), n ≥ 2 Sp(n− 1)× Sp(1)
G2 SU(3)

What’s wrong with Positive Quaternion Kähler Geometry?

Let us finally mention some irritations we encountered when studying the established
theory. This section is intended to give the interested reader the possibility to
successfully cope with certain ambiguities that she or he might face.

Foremost we shall not miss to draw the reader’s attention to a classification paper
by Kobayashi (and originally also by Onda) in which the author(s) claim(s) to have
proved the main conjecture (cf. 1.6) in all dimensions (≥ 8) via Ricci flow. Until
today this article has appeared in several versions with minor changes on arxiv.org.
However, experts on Ricci flow seem to be rather sceptical as far as the correctness of
the proof is concerned.

In theorem [43].2.6 the author asserts to have found a generalisation of the con-
nectivity lemma (cf. lemma 1.20) for fixed-point components of isometric Lie group
actions which involves the dimension of a principal orbit of the group. The result is
supposed to follow in the same fashion as the analogous result in positive sectional
curvature (cf. theorem [76].2.1, p. 263). There is at least one more article by the
same author building upon this result (cf. [44]). However, personal communication
with Fuquan Fang lets us doubt the existence of well-elaborated proofs. Moreover,
Burkhard Wilking convinced us that the lack of written proof certainly is not for
reasons of triviality of the result—if it is correct at all.

In the survey article [67] on page 117 it is remarked that the index i1,n+1 vanishes
on a Positive Quaternion Kähler Manifold other than the quaternionic projective space.
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The given reference (cf. [53]), however, only seems to prove i1,n+1 ≤ 0. Unfortunately,
also the powerful methods developed by Uwe Semmelmann and Gregort Weingart
did not result in a confirmation of the assertion. As Uwe Semmelmann found out,
originally also Simon Salamon considered the statement to be rather of conjectural
nature. We want to encourage the reader to prove the result himself, as it has immense
consequences at least in low dimensions—see for example theorem 4.11.

Note that theorem [35].1.1, p. 2, asserts that a 16-dimensional Positive Quaternion
Kähler Manifold has fourth Betti number b4 6= 2. In the proof of the theorem b4 = 2
is led to a contradiction. In claim 1 on page 4 it is asserted that c2 is not proportional
to u as this would lead to M ∼= HP4. This is supposed to follow directly from a result
in [28]. Indeed, theorem [28].5.1, p. 62, states that if b4 = 1, which implies that c2

necessarily is a multiple of u in particular, then M ∼= HP4. However, the computations
in this proof make use of b4 = 1 and one has to do separate computations for the case
b4 = 2 to confirm the result.

Finally, we point to chapter 2, where we explain why the classification of 12-
dimensional Positive Quaternion Kähler Manifolds established in [35] is erroneous and
does no longer persist.

1.2. A brief history of Rational Homotopy Theory

Homotopy groups are an intriguing field of study: They may be defined in a very
basic way. Yet, their computation turns out to be extremely difficult. So till today
there is not even a complete picture of the homotopy groups of spheres. It was a
striking observation by Quillen and Sullivan that “rationalising the groups” made the
situation much simpler. This can be observed on spheres already as for example

π2n(S2n)⊗Q = π4n−1(S2n)⊗Q = Q

and all the other groups vanish rationally. Moreover, Quillen and Sullivan managed
a translation into algebra. This gave birth to Rational Homotopy Theory . Over the
years this theory has been well-elaborated and it has become a powerful and highly
elegant tool.

As a main reference we want to recommend the book [22]. Throughout the dis-
sertation we shall follow its conceptual approach and its notation unless indicated
differently. Let us now review some basic notions we shall need in the main part of the
thesis. We do not even attempt to provide a “complete”—of any kind—introduction
to the topic. Likewise, we shall not cite lengthy but standard definitions, which all
can be found in the literature, for the general theory. Our goal is to motivate and to
guide through the well-established notions and to be more precise when concepts are
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of greater importance for our present work or if they are more particular in nature.
We shall give references whenever parts of the theory are not covered by [22].

Although the theory may be presented in larger generality (e.g. for nilpotent spaces),
we make the following general assumption:

Throughout this chapter the spaces in consideration are assumed to be
simply-connected (which comprises being path-connected). So are the
commutative differential graded algebras A, i.e. A0 is one-dimensional and
A1 = 0. Cohomology will always be taken with rational coefficients when-
ever coefficients are suppressed.

Part 1.. . . wherein we shall describe some basic concepts of Rational Ho-
motopy Theory.

The rational homotopy type of a simply-connected topological space X is the
homotopy type of a rationalisation XQ of X. By the definition of rationalisation
there is a rational homotopy equivalence φ : X '−→ XQ, i.e. a morphism inducing
isomorphisms

π∗(X)⊗Q
∼=−→ π∗(XQ)

on homotopy groups. The rationalisation XQ can always be constructed, it can be
given the structure of a CW -complex and it is unique up to homotopy (cf. [22].9.7).
By the Whitehead-Theorem π∗(φ) being an isomorphism is equivalent to H∗(φ) being
an isomorphism. Spaces X and Y have the same rational homotopy type, i.e. X 'Q Y ,
iff there is a finite chain of rational homotopy equivalences (cf. [22].9.8)

X
'−→ . . .

'←− . . . '−→ . . .
'←− Y

The transition into algebra is mainly given by the functor APL which replaces the
space X by the commutative differential graded algebra APL(X) (cf. [22].3, [22].10).
This functor is a local system APL(·) on the simplicial set of singular simplices of
X. On a smooth manifold M it is sufficient to consider the commuative differential
graded algebra—over the reals(!)—ADR(M) of ordinary differential forms instead of the
polynomial differential forms APL(M). Yet observe that the ordinary cochain algebra
of singular simplices is not commutative so that this new concept really is necessary. A
very brief description of APL could be that to first construct the algebra of polynomial
differential forms APLn on an ordinary affine n-simplex by simply restricting ordinary
differential forms (with Q-coefficients). Then the polynomial p-forms of X are the
simplicial set morphisms assigning to a singular n-simplex in X a polynomial p-form
in APLn.
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A morphism φ of commutative differential graded algebras (A,d) and (B, d) is called
a quasi-isomorphism if H∗(φ) : H(A)→ H(B) is an isomorphism. A weak equivalence
between A and B, i.e. A ' B, is a finite chain of quasi-isomorphisms:

A
'−→ . . .

'←− . . . '−→ . . .
'←− B

This may be regarded as an algebraic analogue of a rational homotopy equivalence.
Indeed, the functor APL now connects the topological world to the algebraic one

in a very beautiful way: Focussing on simply-connected spaces and algebras both
having additionally rational cohomology of finite type, there is a 1-1-correspondence
(cf. [22].10):{

rational homotopy
types

}
APL−−→

{
weak equivalence classes of

commutative cochain algebras

}
Recall that a graded vector space V =

⊕
i V

i is called of finite type if each V i is
finite-dimensional. A cochain algebra is a differential graded algebra concentrated in
non-negative degrees. There is a procedure of spatial realisation (cf. [22].17) which
reverses APL to a certain degree by constructing a CW -complex from a commutative
cochain algebra.

By this bijection we need no longer differentiate between (weak equivalence classes
of) commutative cochain algebras and (homotopy types of) topological spaces.

As a preliminary conclusion we observe that the rational homotopy type of a space
X is encoded in APL(X) up to weak equivalence and so is the real homotopy type of
a smooth manifold M with respect to ADR(M).

In order to be able to do effective computations one may find some sort of “stan-
dard form” within the weak equivalence class, a so-called minimal Sullivan algebra—
cf. [22].12. This commutative differential graded algebra is built upon the tensor
product

∧
V = Sym(V even) ⊗

∧
(V odd) of the polynomial algebra in even degrees

with the exterior algebra in odd degrees of the graded vector space V . Minimality
is established by requiring that the differential may not hit an element that is not
decomposable. An element in

∧
V is called decomposable if it is a linear combination

of non-trivial products of elements of lower degree. More precisely, minimality is given
by

im d⊆
∧>0

V ·
∧>0

V

A (minimal) Sullivan model for a commutative cochain algebra (A,d) respectively a
topological space X is a quasi-isomorphism

m :
(∧

V,d
) '−→ (A, d)
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respectively

m :
(∧

V,d
) '−→ (APL(X), d)

with a (minimal) Sullivan algebra
(∧

V,d
)
.

Before we shall continue to describe the theory we shall comment briefly on notation.
Otherwise, there might be room for equivocation. Although the following does not
differ from the standard notation in [22], it might be adequate to state it at this initial
point of the introduction in a condensed form.

Let V =
⊕

i V
i be a graded vector space. By V k we denote its k-th degree subspace

and we shall use the terminology V ≤k =
⊕

i≤k V
i, V >0 =

⊕
i>0 V

i, . . . . By
∧
V we

denote, as described, the free commutative graded algebra (cf. example [22].3.6, p. 45)
over V . We shall use the term

∧k V to denote all the elements of
∧
V that have

word-length k in V . So, for example,
∧>0 V refers to all the elements that can be

written as sums of real products of elements in V . Finally, it is not surprising that the
grading

(∧
V
)k = {x ∈

∧
V | deg x = k} again refers to degree.

Let us give two examples of constructions of Sullivan models in special situations.
We stress that the models will not be minimal in general.

First, we shall deal with fibrations. Here a Sullivan model for the total space is
constructed out of the Sullivan models of fibre and base space. Let

F ↪→ E → B

be a fibration of path-connected spaces. Suppose that B is simply-connected and that
one of H∗(F ), H∗(B) has finite type. Suppose that

(∧
VB,d

)
→ (APL(B),d) is a

Sullivan model and that
(∧

VF , d̄
)
→ (APL(F ), d) is a minimal Sullivan model. We

then have

Theorem 1.21. There is a Sullivan model
(∧

VB ⊗
∧
VF , d

)
→ (APL(E),d) such

that
(∧

VB,d
)

is a subcochain algebra of
(∧

VB ⊗
∧
VF , d

)
. Moreover, it holds for

v ∈ VB that dv − d̄v ∈
∧>0 VB ⊗

∧
VF .

Proof. See the corollary on [22], p. 199.

Even if we choose minimal Sullivan models for base and fibre the model of the total
space needs not be minimal. We shall refer to this model as the model of the fibration.

An application of this model to homogeneous spaces provides a model for G/H
based upon models for the groups G and H—the second example we shall display.

Let H be a closed connected subgroup of a connected Lie group G. Denote by
j : H ↪→ G the inclusion and by BH and BG the corresponding classifying spaces of
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H and G. It is known (cf. [22], example 12.3, p. 143) that H-spaces—and Lie groups
in particular—admit minimal models of the form(∧

VG, 0
)
→ (APL(G), d) and

(∧
VH , 0

)
→ (APL(H),d)

A direct consequence are the minimal models(∧
V +1
G , 0

)
→ (APL(BG), d) and

(∧
V +1
H , 0

)
→ (APL(BH), d)

which arise from a degree-shift of +1 applied to the graded vector spaces VG and VH
lying at the basis of the minimal models of G and H (cf. [22].15.15, p. 217). That is,
VBG := V +1

G and VBH := V +1
H . Let x1, . . . , xr be a homogeneous basis of VG. Thus we

have a corresponding basis x̄1, . . . , x̄r of VBG by degree-shift.

Theorem 1.22. The Sullivan algebra
(∧

VBG ⊗
∧
VG, d

)
defined by d|VBH

= 0 and
by dxi = H∗(B(j))x̄i for 1 ≤ i ≤ r is a Sullivan model for G/H.

Proof. See proposition [22].15.16, p. 219.

Again, this model by no reasons has to be minimal. This approach can be generalised
to the case of biquotients:

Let G be a compact connected Lie group and let H ⊆G×G be a closed Lie subgroup.
Then H acts on G on the left by (h1, h2) · g = h1gh

−1
2 . The orbit space of this action

is called the biquotient G�H of G by H. If H is of the form H = H1 × H2 with
inclusions given by H1⊆G× {1}⊆G×G and H2⊆{1} ×G⊆G×G, we shall also
use the notation H1\G/H2 instead of G�H. If the action of H on G is free, then G�H
possesses a manifold structure. This is the only case we shall consider. Clearly, the
category of biquotients contains the one of homogeneous spaces.

In the notation from above we see that a minimal model for G × G is given by(∧
VG×G, 0

)
defined by

VG×G = 〈x1, . . . , xr, y1, . . . yr〉

where the yi satisfy deg xi = deg yi. Thus we obtain VBG×BG = 〈x̄1, . . . , x̄r, ȳ1, . . . ȳr〉.
Denote by j the inclusion H ↪→ G×G. Then we obtain

Theorem 1.23. The Sullivan algebra(∧
VBH ⊗

∧
〈q1, . . . , qr〉,d

)
with d|∧VBH

= 0 and defined by d(qi) = H∗(Bj)(x̄i − ȳi) for 1 ≤ i ≤ r is a Sullivan
model for G�H.

Proof. See proposition [42].1, p. 2.
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Now we present an algorithm that iteratively constructs a minimal model in the
case of a trivial differential. This algorithm is adapted from [22], p. 144–145 from the
general case to the case d = 0 that will be of interest for us.

Algorithm 1.24. Let (A, 0) be a commutative differential graded algebra with A0 = Q
and A1 = 0. Then the following procedure produces a minimal Sullivan model for (A, 0).

Choose m2 : (
∧
V 2, 0) → (A, 0) such that H2(m2) : V 2

∼=−→ A2 is an
isomorphism.
Suppose now mk : (

∧
V ≤k, d)→ (A, 0) has been constructed for some k ≥ 2.

Then we may extend this morphism to mk+1 : (
∧
V ≤k+1, d) → (A, 0) by

the following procedure:
Choose elements ai ∈ Ak+1 such that

Ak+1 = imHk+1(mk)⊕
⊕
i

Q · [ai]

and choose cocyles zj ∈ (
∧
V ≤k)k+2 such that

kerHk+2(mk) =
⊕
j

Q · [zj ]

Let V k+1 be a vector space (in degree k + 1) with basis {vi, . . . , wj , . . . } in
one-to-one correspondence with the elements {ai} respectively {zj}. Write∧
V ≤k+1 =

∧
V ≤k⊗

∧
V k+1. Extend d to a derivation in

∧
V ≤k+1 and mk

to a morphism mk+1 :
∧
V ≤k+1 → A of graded algebras by setting

dvi = 0, dwj = zj and mk+1vi = ai, mk+1wj = 0.

Observe that the ai and zj can be interpreted in the following way: One may regard
imHk+1(mk) as the “surviving products” of lower degrees and thus the ai represent
“new” generators, i.e. generators of Ak+1 that are not a linear combination of products
of lower degree. Conversely, the zj are placed—so to say—one for each vanishing linear
combination; i.e. if a linear combination of products in degree k + 2 vanishes (in A),
one sets a generator in degree k+ 1 (in V ), which corrects this deviation from freeness
by means of d. �

Finally note the following simple property.

Proposition 1.25. Let a cochain algebra
(∧

V,d
)

satisfy the properties

V = V ≥2 and im d⊆
∧>0

V ·
∧>0

V

Then this algebra is necessarily a minimal Sullivan algebra.
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Proof. We elaborate the arguments in [22], example 12.5, p. 144: As a filtration on
V we use the filtration on degrees: V (k) :=

⊕k
i=1 V

k. Then trivially V =
⋃∞
k=0 V (k),

V (0)⊆V (1)⊆V (2)⊆ . . . and d = 0 in V (0) = V 0 = Q. We have d : V k →
∧k+1 V

by definition and thus d : V k →
(∧>0 V ·

∧>0 V
)k+1 by assumption. Moreover,

(∧>0
V ·

∧>0
V
)k+1⊆

∧
V ≤k−1

since V 1 = 0. Hence

d : V (k) =
k⊕
i=0

V i →
k+1⊕
i=0

(∧>0
V ·

∧>0
V
)i⊆∧( k−1⊕

i=0

V i

)
=
∧
V (k − 1)

for k ≥ 1. This reveals
(∧

V,d
)

as a Sullivan algebra. Minimality is clear by
assumption.

The most prominent theorem of Rational Homotopy Theory now connects the
graded vector space V upon which the minimal model

(∧
V,d

)
of a topological space

X is based with the rational homotopy groups of X. Let K be a field of characteristic
zero.

Theorem 1.26. Suppose that X is simply-connected and H∗(X,K) has finite type.
Then there is an isomorphism of graded vector spaces

νX : V
∼=−→ HomZ(π∗(X),K)

Proof. See theorem [22].15.11, p. 208.

In particular, up to duality, the rational vector space πi(X) ⊗ Q in degree i ≥ 2
corresponds exactly to V i. This provides a tremendously effective way of computing
rational homotopy!

A topological space X is called n-connected if for 0 ≤ i ≤ n it holds πi(X) = 0. In
this vein we shall call X rationally n-connected if for 0 ≤ i ≤ n it holds πi(X)⊗Q = 0.
Thus for the minimal model of a simply-connected space X with homology of finite
type this is equivalent to V i = 0 for 0 ≤ i ≤ n.

Remark 1.27. Recall the Hurewicz homomorphism hur : π∗(X)→ H∗(X,Z) (cf. [22],
p. 58). We have H>0

(∧
V,d

)
= ker d/im d, where im d⊆

∧≥2 V by minimality. Let
ζ : H>0

(∧
V,d

)
→ V be the linear map defined by forming the quotient with

∧≥2 V ,
i.e. the natural projection

ζ : ker d/im d→ ker d
/((∧≥2

V

)
∩ ker d

)
⊆V
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There is a commutative square (cf. [22], p. 173 and the corollary on [22], p. 210)

H>0
(∧

V,d
) ∼= //

ζ

��

H>0(X)

hur∗

��
V νX

∼= // Hom(π>0(X),Q)

where hur∗ is the dual of the rationalised Hurewicz homomorphism. Thus by this
square ζ and hur∗ are identified.

In particular, we see that if hur⊗Q is injective, then hur∗ is surjective and so is ζ.
In such a case every element x ∈ V is closed and defines a homology class. �

Part 2.. . . wherein we shall outline the notion of formality.
As we have seen, the rational (respectively real) homotopy type of a space X

(respectively a smooth manifold M) is given by APL(X) (respectively ADR(M)). A
prominent question in Rational Homotopy Theory is the following: When can we
replace APL(X) by the cohomology algebra H∗(X) without losing information? When
is the rational homotopy type of X encoded in its rational cohomology algebra?

Let K be a field of characteristic zero and (A,d) a connected commutative cochain
algebra over K.

Definition 1.28. The commutative differential graded algebra (A,d) is called formal if
it is weakly equivalent to the cohomology algebra (H(A,K), 0) (with trivial differential).

We call a path-connected topological space formal if its rational homotopy type is a
formal consequence of its rational cohomology algebra, i.e. if (APL(X), d) is formal. In
detail, the space X is formal if there is a weak equivalence (APL(X),d) ' (H∗(X), 0),
i.e. a chain of quasi-isomorphisms

(APL(X), d) '←− . . . '−→ . . .
'←− . . . '−→ (H∗(X), 0)

Theorem 1.29. Let X have rational homology of finite type. The algebra
(APL(X,K),d) is formal for any field extension K⊇Q if and only if X is a formal
space.

Proof. See [22], p. 156 and theorem 12.1, p. 316.

Corollary 1.30. A compact connected smooth manifold is formal iff there is a weak
equivalence (ADR(M),d) ' (H∗(M,R), 0).

Example 1.31. Suppose that n ≥ 0. A minimal model for the odd-dimensional
sphere is given by ∧

(e,d = 0) ' APL(S2n+1) deg e = 2n+ 1
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A minimal model for the even-dimensional sphere is given by∧
(e, e′, d) ' APL(S2n) deg e = 2n, deg e′ = 4n− 1, de = 0, de′ = e2

Since the maps ∧
(〈e〉, 0) '−→ H∗(S2n+1)∧

(〈e, e′〉,d) '−→ H∗(S2n)

induced by e 7→ [S2n+1], respectively by e 7→ [S2n], e′ 7→ 0 are quasi-isomorphisms, the
spheres are formal spaces. Since the k-th-degree subspace V k of the graded vector
space underlying the minimal model is dual to πk(X)⊗Q of the respective topological
space (cf. [22].15.11, p. 208), we may read off the rational homotopy groups of spheres
which we presented initially in this chapter. �

Let us give another example quite similar in nature.

Example 1.32. Suppose the finite-dimensional homology algebra H(A,d) of a com-
mutative differential graded algebra (A,d) has exactly one generator 0 6= e with
deg e = n being even. Then this algebra is formal.

This may be seen as follows: The homology algebra of A necessarily is a truncated
polynomial algebra of the form H(A,d) = Q[e]/ed for some d > 1. The minimal model(∧

V,d) of (A,d) can be constructed by means of the algorithm on [22] pages 144 and
145—the general version of algorithm 1.24. So we obtain

V n = Hn(A,d) = 〈e〉
V n·d−1 = 〈e′〉

V i = 0 for i 6∈ {n, n · d− 1}

The differential of the minimal model then is defined by de = 0 and de′ = ed. The
morphism µ :

(∧
V,d

)
→ (H(A,d), 0) of commutative differential graded algebras

defined by µ(e) = e and µ(e′) = 0 is a quasi-isomorphism and the algebra (A, d) is
formal. �

Using these minimal models of spheres we shall state the following remark illustrating
example [22].15.4, p. 202. For this we make

Definition 1.33. A fibration

F ↪→ E
p−→ B

is called a spherical fibration if the fibre F is path-connected and has the rational
homotopy type of a connected sphere, i.e. F 'Q Sn for n ≥ 1.
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Remark 1.34. We shall see that a spherical fibration admits a pretty simple model:
Suppose first that n is odd. By the model of the fibration and example 1.31 we form

the quasi-isomorphism (∧
V ⊗

∧
〈e〉,d

) '−→ (APL(E), d)

with de =: u ∈
∧
V .

Let us now suppose n to be even and let
(∧

V,d
) '−→ (APL(B), d) be a minimal

Sullivan model. Using the model of the fibration and example 1.31 we can form a
quasi-isomorphism (∧

V ⊗
∧
〈e, e′〉, d

) '−→ (APL(E),d)

with de ∈
∧
V and de′ = ke2 + a⊗ e+ b for k ∈ Q, a, b ∈

∧
V . Without restriction

we may assume k = 1. Since d2e′ = 0, we compute:

0 = d(de′) = d(e2 + ae+ b) = 2(de)e+ (da)e+ a(de) + db

As
(∧

V,d
)

forms a differential subalgebra in the model of the fibration, we obtain
da = −2de. Set ẽ := e+ a

2 ∈
∧

(V ⊕ 〈e〉) and obtain dẽ = 0 and de′ = ẽ2 + (b− a2

4 )
with du = 0 for u := (a

2

4 − b) ∈
∧
V . So form the (abstract) commutative differential

graded algebra (∧
V ⊗

∧
〈ẽ, e′〉, d̃

)
with the inherited grading and where the differential satisfies that d̃|∧V = d|∧V ,
d̃ẽ = 0 and that d̃e′ = ẽ2 + (b− a2

4 ). (For this notation we identify the
∧
V -factors.

In this newly constructed algebra the element ẽ denotes an abstract element of the
graded vector space by which the algebra is generated whereas before—by abuse of
notation—we used to consider ẽ as an element of V ⊕ 〈e〉.)

Thus the “identity”, i.e. the assignment e 7→ ẽ− a
2 , e′ 7→ e′ together with the identity

on V , induces an isomorphism σ of graded algebras(∧
V ⊗

∧
〈e, e′〉, d

) '−→ (∧
V ⊗

∧
〈ẽ, e′〉, d̃

)
which is compatible with the differential:

d(σ(e)) = d̃
(
ẽ− a

2

)
= −da

2
= de = σ(d(e))

d(σ(e′)) = d̃(e′)

= ẽ2 +
(
b− a2

4

)
= σ

((
e+

a

2

)2

+
(
b− a2

4

))
= σ(e2 + ae+ b)
= σ(d(e′))
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(Indeed, we know that de ∈
∧
V which implies that σ(de′) = de′.)

Summarising these considerations we have proved that there is a quasi-isomorphism
of cochain algebras (∧

V ⊗
∧
〈ẽ, e′〉, d̃

) '−→ (APL(E),d)

with dẽ = 0, de′ = ẽ2 − u, u ∈
∧
V , du = 0.

Note further that the cohomology class [u] is determined by the fibration. It vanishes
iff E 'Q B × F . Nonetheless, on the level of H∗(B)-modules we always have

H∗(E) ∼= H∗(B)⊗H∗(F )

This is due to the following arguments: We have seen that the restriction of the total
space to the fibre is surjective in cohomology, since we have [ẽ] 7→ [e]. This is what is
meant when calling the fibration totally non-cohomologous to zero. So by the Hirsch
lemma the cohomology of the total space is a free module over the cohomology of the
base space. �

With the notation of remark 1.34 we state

Definition 1.35. A fibration p is called primitive, if u is not decomposable, i.e.
u 6∈

∧>0 V ·
∧>0 V . Otherwise, the fibration p will be called non-primitive.

Let us illustrate primitivity of a spherical fibration with odd-dimensional fibre—the
even-dimensional case is not admissible to this description as we changed the algebra—
by means of a better known description: The linear part of the differential in the model
of the fibration—we use minimal models for base and fibre—can be identified up to
duality with the transgression of the long exact homotopy sequence of the fibration.
Minimality of this model corresponds to a trivial linear part of the differential. So the
fibration is non-primitive iff the transgression is trivial (cf. [22].15 (e), p. 214).

Let us now return to the context of formal spaces by citing some important examples.

Example 1.36. • H-spaces are formal (cf. [22], example 12.3, p. 143).

• Symmetric spaces of compact type are formal (cf. [22].12.3, p. 162).

• N -symmetric spaces are formal (cf. [71], Main Theorem, p. 40, for the precise
statement, [50]).

• Compact Kähler manifolds are formal (cf. [17], Main Theorem, p. 270).
�

In the quoted example it is shown that H-spaces admit minimal Sullivan models
of the form

(∧
V, 0

)
. So we obtain H

(∧
V, 0

)
=
∧
V and in particular we have(∧

V, 0
) '−→ (

H
(∧

V, 0
)
, 0
)

which yields formality.
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The formality of compact Kähler manifolds is a celebrated theorem by Deligne,
Griffiths, Morgan and Sullivan. We want to sketch the idea of the proof very briefly:
Let J be the complex structure of the compact Kähler manifold Z. Set dc = J−1dJ :
ADR(Z)→ ADR(Z) which again is a differential commuting with d. It is then proved
that compact Kähler manifolds satisfy

Lemma 1.37 (ddc-lemma). If α is a differential form with dα = 0 = dcα and such
that α = dγ, then α = ddcβ for some differential form β.

It follows as an easy conclusion that d restricts to a map d : ker dc → im dc and that
the obvious inclusion and projection

ADR(Z)←↩ (ker dc,d)→ (ker dc/im dc, 0)

are quasi-isomorphisms. Since the differential on the right hand side of the chain is
trivial, this yields formality.

Formality is a highly important concept in Rational Homotopy Theory and serves
as a vital tool for several geometric applications. Since symplectic manifolds need not
be formal (cf. [22], example 12.5, p. 163) formality for example may be used to find
symplectic manifolds that are not Kählerian—see for example the introduction of [23]
for more references and illustrations. A possible way of showing non-formality hereby
is the existence of a non-vanishing Massey product. As remarked on [17], p. 262,
formality is equivalent to “uniform choices so that the forms representing all Massey
products and higher order Massey products are exact”.

Let us now mention some more properties and characterisations of formality.

Lemma 1.38. Let(∧
V,d

) '←− (A1,d) '←− . . . '−→ . . .
'←− . . . '−→ (An,d)

be a chain of quasi-isomorphism of commutative differential graded algebras (Ai,d).
Suppose further that

(∧
V,d

)
is a minimal Sullivan algebra. Then we obtain a quasi-

isomorphism (∧
V,d

) '−→ (An,d)

of commutative differential graded algebras, i.e. a minimal model.

Proof. Whenever we have a diagram of quasi-isomorphisms(∧
V,d

) ' // (A,d)

'
��

(B, d)
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with commutative differential graded algebras (A,d), (B, d) and
(∧

V,d
)
, composition

yields a quasi-isomorphism
(∧

V,d
) '−→ (B, d). In case we have a diagram

(A,d)

'
��(∧

V,d
) ' // (B, d)

with a Sullivan algebra
(∧

V,d
)
, proposition [22].12.9, p. 153, yields the existence

of a lifting
(∧

V,d
)
−→ (A,d) which is unique up to homotopy (cf. [22], p. 149) and

which makes the diagram commute up to homotopy. Moreover, this morphism is then
necessarily a quasi-isomorphism.

If the situation is given by a diagram

(A,d)

'
��(∧

V,d
)

(B, d)'
oo

we extend the diagram by a minimal model ψ :
(∧

W, d
) '−→ (A, 0). Hence we obtain(∧

W, d
) '

ψ
// (A,d)

'
��(∧

V,d
)

(B, d)'
oo

Composition yields a quasi-isomorphism φ :
(∧

W, d
) '−→ (∧

V,d
)

of minimal Sullivan
algebras. By proposition [22].14.13, p. 191, a quasi-isomorphism of minimal Sullivan
algebras is an isomorphism. So ψ ◦ φ−1 :

(∧
V,d

) '−→ (A, d) is the quasi-isomorphism
we have been looking for.

Finally, we treat the situation given by the diagram

(A,d)

(∧
V,d

)
(B, d)

'

OO

'
oo

in a similar fashion: Use the minimal model ψ :
(∧

W, d
) '−→ (A,d) and lift this

morphism to a morphism ψ̃ :
(∧

W, d
) '−→ (B, d). By composition this morphism

again yields a quasi-isomorphism φ :
(∧

W, d
) '−→

(∧
V,d

)
of minimal Sullivan

algebras. Hence we proceed as in the last case.
Iteratively stepping through the chain (1.7) now yields the result.
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This will be a vital tool in the proof of

Theorem 1.39. • A minimal model
(∧

V,d
)

of a commutative differential graded
algebra (A,d) is formal iff (A, d) is formal.

• A minimal Sullivan algebra
(∧

V,d
)

is formal if and only if there is a quasi-
isomorphism

µ :
(∧

V,d
) '−→ (

H
(∧

V,d
)
, 0
)

• The quasi-isomorphism µ from the last point may be taken to be the identity in
cohomology.

• This quasi-isomorphism then has the property that

µ : x 7→ [x]

for d-closed elements x.

Proof. The first part is apparent from the definition of formality as a chain of
quasi-isomorphisms between algebra and homology and from the definition of minimal
model given by a quasi-isomorphism

(∧
V,d

) '−→ (A,d).
Let us now prove the second part. One implication is trivial. Suppose now that(∧
V,d

)
is formal. We then have a weak equivalence(∧

V,d
) '←− . . . '−→ . . .

'←− . . . '−→
(
H
(∧

V,d
)
, 0
)

(1.7)

Applying 1.38 to this chain yields the quasi-isomorphism between the Sullivan algebra
and its cohomology algebra.

This quasi-isomorphism µ without restriction may be assumed to induce the identity
in cohomology. We give two different lines of argument for this:

As for the first one we observe that the quasi-isomorphism µ induces

µ∗ : H
(∧

V,d
) ∼=−→ H

(
H
(∧

V,d
)
, 0
)

which canonically may be considered as an automorphism

µ∗ :
(
H
(∧

V,d
)
, 0
) ∼=−→ (

H
(∧

V,d
)
, 0
)

of commutative differential graded algebras. With this canonical identification it is
obvious that the morphism induced by µ∗ in cohomology is just µ∗ itself, i.e. (µ∗)∗ = µ∗.
This amounts to the fact that the morphism induced in homology by the chain of
morphisms (∧

V,d
) µ−→

(
H
(∧

V,d
)
, 0
) (µ∗)−1

−−−−→
(
H
(∧

V,d
)
, 0
)
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is just the identity.

Alternatively, following algorithm 1.24 we can construct a minimal model(∧
V ′, d

) '−→ (
H
(∧

V,d
)
, 0
)

=
(
H
(∧

V ′, d
)
, 0
)

where the morphism induces the identity in cohomology. Since we may lift morphisms
between Sullivan algebras we have a diagram(∧

V,d
) ' //

(
H
(∧

V,d
)
, 0
)

=
(
H
(∧

V ′, d
)
, 0
)

(∧
V ′,d

)'

OO

∼=

jjTTTTTTTTTTTTTTTTTT

which is commutative up to homotopy (cf. [22], p. 149). The diagonal morphism
is then a quasi-isomorphism by commutativity. Note that a quasi-isomorphism of
simply-connected minimal Sullivan algebras is an isomorphism (cf. [22].12.10.i, p. 154).

Thus up to isomorphism of minimal Sullivan algebras we may assume the quasi-
isomorphism between minimal model and its cohomology algebra to be the identity.

Let us finally prove the last assertion: A d-closed element x ∈
(∧

V,d
)

defines a
homology class which is mapped to itself under µ∗ by the last paragraph. That is,
[x] = µ∗([x]) = [µ(x)]. We now identify

(
H
(∧

V,d
)
, 0
)

with its own homology algebra
in the canonical way. This yields µ(x) = [x].

Remark 1.40. In [17] and in [23] the existence of a morphism between the minimal
Sullivan algebra

(∧
V,d

)
and its cohomology algebra (with zero differential) inducing

the identity in cohomology is taken as a definition of the formality of
(∧

V,d
)
.

Furthermore, a commutative differential graded algebra is said to be formal in these
articles if so is its minimal model.

The third point in theorem 1.39 tells us that up to isomorphism of minimal models,
we may assume the minimal model of a formal—in the sense of definition 1.28—algebra
to map into its cohomology algebra whilst inducing the identity in cohomology. Since
minimal Sullivan models are unique only up to isomorphism, the points two and three
from theorem 1.39 thus reconcile the definitions in [17] and in [23] with ours. �

Let us mention the following essential characterisation of formality. This theorem
was also established in the famous article [17] by Deligne, Griffiths, Morgan and
Sullivan.

Theorem 1.41. A minimal model (
∧
V,d) is formal if and only if there is in each

V i a complement N i to the subspace of d-closed elements Ci with V i = Ci ⊕N i and
such that any closed form in the ideal I(

⊕
N i) generated by

⊕
N i in

∧
V is exact.
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Proof. See [17], theorem 4.1, p. 261.

Set C :=
⊕
Ci and N :=

⊕
N i. This theorem has undergone a certain refinement.

Now there is a degreewise formulation of formality:

Definition 1.42. A topological space with minimal model (
∧
V,d) is called s-formal

(s ≥ 0) if the space V i of generators in degree i for each i ≤ s decomposes as a direct
sum V i = Ci ⊕N i with the Ci and N i satisfying the following conditions:

• d(Ci) = 0,

• d : N i →
∧
V is injective.

• Any closed element in the ideal Is = N≤s ·(
∧
V ≤s) generated by N≤s =

⊕
i≤sN

i

in the free algebra
∧
V ≤s =

∧
(
⊕

i≤s V
i) is exact in

∧
V .

The full power of this definition becomes visible by

Theorem 1.43. A connected compact orientable differentiable manifold of dimension
2n or 2n− 1 is formal if and only if it is (n− 1)-formal.

Proof. See [23].3.1, p. 8.

The next lemma is similar to theorem [17].4.1, p. 261. It can be considered as a
refinement of theorem 1.39.

Lemma 1.44. Suppose
(∧

V,d
) '−→ (A,d) is a minimal model. Let (A,d) be a formal

algebra. Let V = C ⊕N be the decomposition from theorem 1.41 with C = ker d|V .
Then there is a quasi-isomorphism

µA :
(∧

V,d
) '−→ (

H
(∧

V,d
)
, 0
)

with the property that µA(x) = [x] if [x] is closed and with µ(x) = 0 for x ∈ N .

Proof. Choose a basis {bi}|i∈J of V that is subordinate to the decomposition C⊕N ;
i.e. there is a subset J ′⊆ J such that {bi}|i∈J ′ is a basis of C and such that {bi}|i∈J\J ′
is a basis of N . Then define

µA(bi) :=

{
[bi] for i ∈ J ′

0 for i ∈ J \ J ′

and extend this linearly and multiplicatively to a morphism of graded algebras. This
morphism obviously vanishes on N .

It also maps a closed element to its homology class: The decomposition of V induces
the decomposition ∧

V =
∧
C ⊕ I(N)
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Hence an element from
∧
C is mapped to its homology class by the definition of µ.

The map µ even vanishes on I(N). Moreover, by formality and theorem 1.41 every
closed element in I(N) is exact. So µ maps every closed element to its homology class.

In particular, µ is compatible with differentials. This is due to µ(dx) = [0]. Indeed,
the element dx is exact and therefore defines the zero homology class.

As µ maps a closed element to its homology class, it induces the identity in homology.
In particular, it is a quasi-isomorphism.

On homogeneous spaces there is the following remarkable theorem:

Theorem 1.45. Let H be a connected Lie subgroup of a connected compact Lie group
G. Let T be a maximal torus of H. Then G/H is formal if and only if G/T is formal.

Proof. See the remark on [64], p. 212.

Let us eventually define the notion of a formal map. We shall present the version
of formality of a map which was proposed and used in [1]—cf. definition [1].2.7.20,
p. 123—as it turns out to be most suitable for our purposes. (Contrast this version
with the definition in [17].4, p. 260.)

Let (A,d), (B, d) be commutative differential algebras with minimal models

mA :
(∧

V,d
) '−→ (A, d)

mB :
(∧

W, d
) '−→ (B, d)

A morphism f : (A, d)→ (B, d) induces the map f∗ : H(A)→ H(B) and the Sullivan
representative f̂ :

(∧
V,d

)
→
(∧

W, d
)

uniquely defined up to homotopy (cf. [22].12,
p. 154). Indeed, the morphism f̂ is defined by lifting the diagram

(∧
V,d

) f̂ //

'
��

(∧
W, d

)
'

��
(A,d)

f // (B, d)

Completing the square by f̂ makes it a diagram which is commutative up to homotopy
(cf. [22], p. 149).

Suppose now that A and B are formal. By theorem 1.39 there are quasi-isomorphisms

φA :
(∧

V,d
) '−→ (H∗(A), 0)

φB :
(∧

W, d
) '−→ (H∗(B), 0)



1.2 A brief history of Rational Homotopy Theory 39

By composing such a model with a suitable automorphism of the cohomology algebra
(analogous to what we did in the proof of theorem 1.39) we may suppose that (mA)∗ =
(µA)∗ and (mB)∗ = (µB)∗.

Then the morphism f is said to be formal if there is a choice of such quasi-
isomorphisms µA and µB (with (mA)∗ = (µA)∗ and that (mB)∗ = (µB)∗) which makes
the diagram

(∧
V,d

) f̂ //

µA

��

(∧
W, d

)
µB

��
(H(A), 0)

f∗ // (H(B), 0)

commute up to homotopy.
Call a continuous map f : M → N between two formal topological spaces M , N

formal if the map APL(f) induced on polynomial differential forms is formal.

Let us illustrate this concept in an elementary case first.

Proposition 1.46. A continuous map of H-spaces is formal.

Proof. Suppose X and Y are H-spaces with minimal models
(∧

V, 0
)

and
(∧

W, 0
)

respectively (cf. example 1.36). So we have the identifications(∧
V, 0

)
=
(
H
(∧

V, 0
)
, 0
)

and
(∧

W, 0
)

=
(
H
(∧

W, 0
)
, 0
)
. A continuous map

f : X → Y induces f̂ and f∗ as above. Since (f̂)∗ = f∗, we necessarily see that—under
the identification of the minimal models with their respective cohomology algebras—we
obtain the equality f∗ = f̂ . Thus f is formal.

We shall prove another property of formal spaces that can be found in the literature
with varying formulation and more or less detailed proofs (cf. proposition [6].5, p. 335
or lemma [23].2.11, p. 7 for example).

Theorem 1.47. Let (A,d) and (B, d) be differential graded algebras. The product
algebra (A ⊗ B, d) is formal if and only if so are both A and B. In this case the
canonical inclusion (A,d) ↪→ (A⊗B, d) given by a 7→ (a, 1) is a formal map.

Proof. First assume A and B to be formal with minimal models
(∧

V,d
)

and(∧
W, d

)
. Then (∧

V,d
)
⊗
(∧

W, d
) ∼= (∧(V ⊕W ), d

)
is again a minimal Sullivan algebra; it is a model for the product algebra (A⊗B, d),
since there is an isomorphism H(A) ⊗ H(B) ∼= H(A ⊗ B) (cf. [22], example 12.2,
p. 142–143).



40 1 Introduction

By theorem 1.39 there are quasi-isomorphisms(∧
V,d

) φ1−→ (H(A, d), 0) and
(∧

W, d
) φ2−→ (H(B, d), 0)

Hence the product morphism

φ1 ⊗ φ2 :
(∧

(V ⊕W ), d
)
−→ (H(A⊗B, d), 0)

is a quasi-isomorphism. By theorem 1.39 the algebra (A⊗B, d) is formal.

Suppose now that A⊗B is formal. With the minimal models
(∧

V,d
)

and
(∧

W, d
)

for (A,d) respectively (B, d) the minimal Sullivan algebra
(∧

(V ⊕W ), d
)

is a model
for (A⊗B, d). Consider the composition

ψ :
(∧

V,d
)
↪→
(∧

(V ⊕W ), d
) '−→ (H(A⊗B, d), 0)→ (H(A,d), 0)

(The first map is the inclusion of minimal models induced by the inclusion V ↪→ V ⊕W .
The second map comes from theorem 1.39; we may suppose it to induce the identity
in cohomology. The third map is the canonical projection.) Since the second map
induces the identity in cohomology, we see that it factorises as the product map

φ1 ⊗ φ2 :
(∧

V,d
)
⊗
(∧

W, d
) '−→ (H(A,d), 0)⊗ (H(B, d), 0)

with two morphisms φ1 and φ2 that induce the identity in cohomology. In particular,
the morphism ψ factors and we obtain ψ = φ1, which is a quasi-isomorphism.

Let us now see that the inclusion (A, d)
i
↪→ (A,d)⊗ (B, d) = (A⊗B, d) is formal if

so are (A,d) and (B, d). The diagram(∧
V,d

) î //

'
��

(∧
V,d

)
⊗
(∧

W, d
)

'
��

(A,d) � � a7→(a,1)

i
// (A, d)⊗ (B, d)

commutes if î is the canonical inclusion x 7→ (x, 1). By definition this inclusion serves
as a Sullivan representative for i.

The map i∗ : H(A, d) → H(A ⊗ B, d) = H(A,d) ⊗ H(B, d) clearly is also just
the canonical inclusion. Thus, in total, these observations combine to yield the
commutativity of the diagram(∧

V,d
) � � x 7→(x,1)

î

//

φ1 '
��

(∧
V,d

)
⊗
(∧

W, d
)

' φ1⊗φ2

��
(H(A,d), 0) � � a7→(a,1)

i∗
// (H(A,d), 0)⊗ (H(B, d), 0)
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Hence the map i is formal.

As a direct consequence one sees that a space that is (rationally) a product X × Y
of topological spaces X and Y is formal if and only if so are both factors X and Y .

Part 3.. . . wherein rational ellipticity is dealt with.
In the following we shall briefly introduce the notion of rational ellipticity . See

[22], p. 370 for the definition of the rational Lusternik–Schnirelmann category cat0.
Suppose now that X is a simply connected topological space with rational homology
of finite type and with finite rational Lusternik–Schnirelmann category cat0X <∞.
Then we have the so-called rational dichotomy , i.e. exactly one of the following two
cases applies (cf. [22], p. 452):

• The space X is (rationally) elliptic.

• The space X is (rationally) hyperbolic.

Definition 1.48. A simply-connected topological space X is called (rationally) elliptic
if it satisfies both

dimH∗(X,Q) <∞ and dimπ∗(X)⊗Q <∞

Note that finite rational Lusternik–Schnirelmann category is equivalent to finite-
dimensional rational homology (cf. [22].32.4, p. 438).

According to the dichotomy a simply-connected space X with rational homology of
finite type is called (rationally) hyperbolic if cat0(X) <∞ and dimπ∗(X)⊗Q =∞.
More can be said in this case: If X is hyperbolic then

∑k
i=2 dimπi(X) ⊗ Q grows

exponentially in k. If X additionally has finite-dimensional rational homology and
formal dimension d, then for each k ≥ 1 there is an i ∈ (k, k+d) with the property that
πi(X)⊗Q 6= 0—cf. [22], p. 452. (By formal dimension we denote rational homological
dimension.)

Let us now focus on properties of elliptic spaces X. From cf. [22].32, p. 434, we cite
several relations on rational homotopy groups satisfied by elliptic spaces. By d we
shall denote the formal dimension of X. (Clearly, in case X is a manifold both notions
of dimension coincide.)

Let the xi form a basis of πodd(X)⊗Q and let the yi form a basis of πeven(X)⊗Q.
Moreover set the homotopy Euler characteristic

χπ(X) := dimπodd(X)⊗Q− dimπeven(X)⊗Q

on the analogy of the ordinary Euler characteristic

χ(X) :=
∑
i

(−1)i dimH i(X)
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We obtain (cf. [22], p. 434): ∑
i

deg xi ≤ 2d− 1(1.8) ∑
i

deg yi ≤ d(1.9)

dimπi(X)⊗Q = 0 for i ≥ 2d(1.10)
dimπ∗(M)⊗Q ≤ d(1.11) ∑

i

deg xi −
∑
j

(deg yj − 1) = d(1.12)

χπ(X) ≥ 0(1.13)
χ(X) ≥ 0(1.14)

χπ(X) > 0 ⇐⇒ χ(X) = 0 χπ(X) = 0 ⇐⇒ χ(X) > 0(1.15)
dimπodd(X)⊗Q ≤ cat0X(1.16)

Important examples of elliptic spaces are closed simply-connected Dupin hypersurfaces
in Sn+1, closed simply-connected manifolds admitting strict cohomogeneity one actions—
both being asserted in [33], theorem B—and biquotients:

Proposition 1.49. A biquotient is an elliptic space.

Proof. As biquotients are compact manifolds, their homology is of finite type. Lie
groups are elliptic. This is due to the fact that path-connected H-spaces X with
rational homology of finite type satisfy

∧
V ∼= H∗(X) for some graded vector space

V (cf. [22], example 12.3, p. 143). That is, cohomology is a free commutative graded
algebra. Since cohomology of a manifold vanishes above its dimension, we see V = V odd

and dimV <∞.
Now use the long exact sequence of homotopy groups associated to the fibration

H ↪→ G×G→ G�H

to see that rational homotopy groups of G�H vanish from a certain degree on.

Note that biquotients constitute a natural class of manifolds with non-negative
curvature which attributes to their importance in Riemannian geometry. (In fact, Lie
groups admit metrics of non-negative curvature. By the submersion theorem so does a
biquotient). The fact that ellipticity and non-negative curvature appear together on a
space was speculated to be not accidental:

Conjecture 1.50 (Bott). Simply-connected compact Riemannian manifolds with
non-negative sectional curvature are rationally elliptic.

Recall that we constructed the model
(∧

VBH ⊗
∧
〈q1, . . . , qr〉, d

)
for biquotients

(cf. 1.23). Since H-spaces rationally are a direct product of odd-dimensional spheres,
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the algebra
∧
VBH is a polynomial algebra generated in even degrees. By construction

the qi form relations and have odd degree. So biquotients are examples of elliptic
spaces that admit a very special (minimal) Sullivan model, a so-called pure model .

Definition 1.51. A Sullivan algebra
(∧

V,d
)

is called pure if V is finite dimensional,
if d|V even = 0 and if d(V odd)⊆

∧
V even.

In a pure Sullivan algebra the differential d is homogeneous of degree −1 with
respect to word-length in V odd:

0←
∧
V even ←

∧
V even ⊗ V odd ← · · · ←

∧
V even ⊗

∧
k V odd ← . . .

Denote by Hk

(∧
V,d

)
the subspace representable by cocycles in

∧
V even ⊗

∧
k V odd.

Thus we have that H
(∧

V,d
)

=
⊕

kHk

(∧
V,d

)
; this is called the lower grading of

H
(∧

V,d
)
.

A simply-connected elliptic space X of positive Euler characteristic is called an
F0-space. These spaces have remarkable properties (cf. [22].32.10, p. 444):

• They admit pure models
(∧

V,d
)

(cf. [22], p. 437).

• Their cohomology is concentrated in even degrees only.

• Their cohomology is the quotient of a polynomial algebra in even degrees and a
regular sequence (cf. [22], p. 437).

So let
(∧

V,d
) '−→ APL(X) be a pure Sullivan model of the F0-space X.

• It holds: dimV odd = dimV even.

• It holds: H
(∧

V,d
)

= H0

(∧
V,d

)
(cf. [22].32.3, p. 437).

Another very interesting property due to Halperin—originally proved in [34]—follows:

Theorem 1.52. F0-spaces are formal.

Proof. We prove this using that an F0-space X has the properties mentioned above.
Our main tool will be theorem 1.41:

The space X admits a pure Sullivan model and hence also a pure minimal Sullivan
model

(∧
V,d

)
. By definition of a pure Sullivan algebra we have d(V even) = 0. The

cohomology H∗(X) is concentrated in even degrees only. So by the minimality of the
model there cannot be an element 0 6= a ∈ V odd with da = 0. Thus we have a uniquely
determined homogeneous decomposition C = V even and N = V odd with V = C ⊕N
and C = ker d. We have to show that every closed element x ∈ I(N) is exact. However,
every such element x ∈ I(N) determines a cohomology class in H>0

(∧
V,d

)
. Yet, as

we have seen, it holds that H>0

(∧
V,d

)
= 0, which implies that x is exact.

We shall apply this to biquotients generalising a result by Halperin for homogeneous
spaces:
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Proposition 1.53. • A biquotient G�H admits a pure model.

• A biquotient G�H with rkG = rkH is an F0-space. (In particular, it has positive
Euler characteristic and it is formal.)

Proof. The first assertion was proven in proposition [4].7.1, p. 269 and proposition
[42].1, p. 2.

In the latter paper on the same page the formula

χ(G�H) =
|W (G)|
|W (H)|

for the Euler characteristic of G�H in terms of the orders of the Weyl groups of G and
H under the assumption that rkG = rkH is given. See theorem [70].5.1 for the first
result of this kind. As G is a compact Lie group, we know that up to finite coverings
it is a product of simply-connected simple Lie groups and a torus (cf. theorem [11].8.1,
p. 233). In particular, its Weyl group is trivial if and only if it is a torus up to finite
coverings.

If the Weyl group W(G) is not trivial, the formula yields positive Euler characteristic
and thus G�H is an F0-space. If the Weyl group is trivial, up to finite coverings G is a
torus. Thus by rkG = rkH we see that G�H is a point. Formality is due to theorem
1.52. This proves the second assertion.
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Dimension Twelve—a
“Disclassification”

As we pointed out in the introduction, Positive Quaternion Kähler Manifolds are
classified in dimensions four (Hitchin) and eight (Poon–Salamon, LeBrun–Salamon).
In 2002 Haydeé and Rafael Herrera claimed to have proved the main conjecture
(cf. 1.6) for 12-dimensional Positive Quaternion Kähler Manifolds in [35]. According
to this article in dimension 12 every Positive Quaternion Kähler Manifold was one
of the Wolf spaces HP3, Gr2(C5) and G̃r4(R7). The result was commonly approved
and held in high esteem. Recently, however, we found the proof to be erroneous
and intermediate results to be wrong. Due to this unfortunate development, the
classification in dimension 12 can no longer be maintained.

This chapter is intended to provide a brief outline of the problems that appear in the
original reasoning. Haydeé and Rafael Herrera showed that any 12-dimensional Positive
Quaternion Kähler Manifold M is symmetric if the Â-genus of M vanishes. If M is a
spin manifold this condition is always fulfilled by a classical result of Lichnerowicz,
since a Positive Quaternion Kähler Manifold has positive scalar curvature. As we have
seen on page 16, the manifold M12 is spin if and only if M ∼= HP3.

One also knows that Â(M) vanishes on the symmetric examples with finite second
homotopy group (cf. theorem [7].23.3.iii, p. 332). Atiyah and Hirzebruch showed that
the Â-genus vanishes on spin manifolds with smooth effective S1-action (cf. [3]).

In [35] Haydeé and Rafael Herrera offered a proof for the vanishing of the Â-genus
on any π2-finite manifold with smooth effective S1-action (cf. theorem [35].1, p. 341).
Since one knows from the work of Salamon that the isometry group of a 12-dimensional
Positive Quaternion Kähler Manifold is of dimension 5 at least (cf. 1.18), this would
have been sufficient to prove the LeBrun–Salamon conjecture (cf. 1.6) in this dimension.

The argument in [35] essentially consists of three parts:
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• In the first part Haydeé and Rafael Herrera argue that any smooth S1-action on
a π2-finite manifold is of even or of odd type. (This condition means that the
sum of rotation numbers at the S1-fixed-points is always even or always odd.)

• In the second step they argue that the proof of Bott–Taubes [9] for the rigidity
of the elliptic genus may be adapted to non-spin manifolds if the S1-action is of
even or of odd type.

• Finally, they use an argument by Hirzebruch–Slodowy [39] to derive the vanishing
of the Â-genus from the rigidity of the elliptic genus.

Unfortunately, the first part of their argument cannot be correct. The real Grassman-
nian G̃r4(Rn+4) is a simply-connected non-spin Positive Quaternion Kähler Manifold
with finite second homotopy group π2(G̃r4(Rn+4)) = Z2—cf. p. 16 and corollary 1.12.
However, for any odd n ≥ 3 the real Grassmannian G̃r4(Rn+4) admits a smooth
effective S1-action that is neither odd nor even:

We shall describe such an action on G̃r4(R7) in detail. We refer the reader to
chapter B of the appendix for a far more general treatise on fixed-point components of
isometric actions of either S1 or Z2 on Wolf spaces. The following computations can
be regarded as a showcase computation for the classification given in the appendix.

The symmetric space G̃r4(R7) is the oriented real Grassmannian of 4-planes in R7

counted with orientations.
On C we denote the standard action of the unit circle S1⊆C by

t : S1 → Aut(C) = C∗ t(s) · z = s · z

By abuse of notation we shall also denote the standard action on R2 ∼= C by t.
We consider the S1-action r = (t, 1, 1) on C3 ∼= R6; i.e. the standard action on the

first factor of C× C× C and the trivial action on the other two ones. We regard r
as an action on R7 by the canonical inclusion R6⊆R7. Thus r induces an action on
G̃r4(R7). For this we fix an orthonormal basis v, w, x, y of a plane 〈v, w, x, y〉 and an
orientation det(v, w, x, y) := v ∧ w ∧ x ∧ y ∈

∧4〈v, w, x, y〉. The image of this pair
under a certain orthogonal transformation of R7 is the plane generated by the images
of v, w, x, y with the induced orientation.

In our situation the image of the rotation r(s) with s ∈ S1 is the plane

〈(r(s))(v), (r(s))(w), (r(s))(x), (r(s))(y)〉

with the orientation

r(s))(v) ∧ (r(s))(w) ∧ (r(s))(x) ∧ (r(s))(y)

∈
∧4
〈(r(s))(v), (r(s))(w), (r(s))(x), (r(s))(y)〉
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Hence the subgroup 〈−1〉 = Z2⊆S1 acts by (−1, 1, 1) on C3 ∼= R6. Let us write this
action as a real action on R7. Then it is given by

r(−1) = (−1,−1, 1, 1, 1, 1, 1)

The fixed-point components of this involution are the spaces G̃r4(R5) and G̃r2(R5),
the oriented Grassmannian of oriented two-planes in R5. This can be seen as follows:
Let V1 be the five-dimensional vector space on which the action r(−1) is given by +1
and let V2 be the two-dimensional space with (−1)-action. So suppose v = (v1, v2),
w = (w1, w2), x = (x1, x2), y = (y1, y2) are vectors in V1⊕V2 which generate a 4-plane
P = 〈v, w, x, y〉 that is fixed by the involution. Thus

(v1,−v2) = (r(−1))(v1, v2) ∈ P

lies in P and so do (v1, 0), (0, v2) ∈ P . The same works for the other vectors and we
see that P is already generated by vectors from V1 and from V2 only, i.e.

P = 〈(v1, 0), (0, v2), (y1, 0), (0, y2), (y1, 0), (0, y2), (y1, 0), (0, y2)〉

As P is four-dimensional, there is a choice

ṽ, w̃, x̃, ỹ ∈ {(v1, 0), (0, v2), (y1, 0), (0, y2), (y1, 0), (0, y2), (y1, 0), (0, y2)}

with the property that

P = 〈ṽ, w̃, x̃, ỹ〉

(Moreover, by orthonormalisation, we then may assume the ṽ, w̃, x̃, ỹ to form an
orthonormal basis.) We may now step through the different cases according to how
many of generating vectors ṽ, w̃, x̃, ỹ are in V1 (and how many of them lie in V2). As
dimV2 = 2, there can at most two of them be in V2.

Assume first that ṽ, w̃, x̃, ỹ ∈ V1. Then the vectors generate a plane that may be
regarded as an element in

G̃r4(V1) ∼= G̃r4(R5)

when we count it with orientation. Conversely, every element in this subspace is fixed
by r(−1). (Here orientations are not altered by r(−1) as every generating vector
ṽ, w̃, x̃, ỹ of P is fixed by r(−1).)

As a second case suppose ṽ, w̃, x̃ ∈ V1 and ỹ ∈ V2, i.e. three generators are from
V1 and the fourth generator is from V2. This case cannot occur, as P will not be
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fixed under r(−1). Indeed, the orientation of P is reversed in that case, since an odd
numbers of directions is multiplied by (−1), i.e. we apply the matrix

r(−1)|P = diag(1, 1, 1,−1) 6∈ SO(P ) ∼= SO(4)

with determinant −1.
Finally, only the case with two generators in both V1 and V2 remains, i.e. ṽ, w̃ ∈ V1

and x̃, ỹ ∈ V2. Thus V2 is entirely contained in P . Hence P (together with an
orientation upon it) is a point in

Gr2(R2)×Gr2(R5)

—the space of all oriented four-planes which can be generated by two basis vectors in
both V1 and V2. This is the same space as

G̃r2(R5)

Conversely, every element in Gr2(R2)×Gr2(R5) stays fixed under the involution.
This is due to the fact that with respect to the basis ṽ, w̃, x̃, ỹ we now obtain

r(−1)|P = diag(−1,−1, 1, 1) ∈ SO(P ) ∼= SO(4)

Thus the orientation of P is preserved.

Both fixed-point components have positive Euler characteristics

χ(G̃r2(R5)) = χ

(
SO(5)

SO(3)× SO(2)

)
=
|W (SO(5))|
|W (SO(3))|

=
22 · 2!
21 · 1!

= 4

χ(G̃r4(R5)) = χ(HP1) = χ(S4) = 2

(This fits to the fact that χ(G̃r4(R7)) = 6 = 4+2.) The S1-action restricts to an action
on each of the fixed-point components. Thus by the Lefschetz fixed-point theorem
there are S1-fixed-points in each respective component.

We can easily compute the dimensions of the fixed-point components:

dim G̃r2(R5) = dim
SO(5)

SO(3)× SO(2)
= 6

dim G̃r4(R5) = dim S4 = 4

Thus the difference in dimension

dim G̃r2(R5)− dim G̃r4(R5) = 6− 4 = 2 6≡ 0 mod 4

of the fixed-point components is not divisible by 4. Consequently, the S1-action r can
be neither even nor odd.
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Clearly, this example may be generalised to arbitrary dimensions: For any odd n ≥ 3
we obtain an S1-action on G̃r4(Rn+4) that is neither even nor odd in the same way as
above, i.e. by setting r := (t, 1, . . . , 1). The fixed-point components are then given by

G̃r2(Rn+2) =
SO(n+ 2)

SO(n)× SO(2)

G̃r4(Rn+2) =
SO(n+ 2)

SO(n− 2)× SO(4)

Thus their dimensions can be computed as

dim G̃r2(Rn+2) =
n+ 1

2
(n+ 2)− n− 1

2
n− 1 = 2n

dim G̃r4(Rn+2) =
n+ 1

2
(n+ 2)− n− 3

2
(n− 2)− 6 = 4(n− 2)

Again the difference in dimension satisfies 4(n− 2)− 2n = 2n− 8 6≡ 0 mod 4, since n
is odd.

Several further examples may be given on G̃r4(Rn+4) (for odd n ≥ 3) by varying the
S1-action r. So consider G̃r4(R9) equipped with the action (t, t, 1, 1, 1, 1, 1). Here, for
example, the spaces Gr2(R4)×Gr2(R5) of dimension 10 and G̃r4(R5) of dimension 4
occur as Z2-fixed-point components.

Let us also mention a slightly different type of space on which we may easily
produce analogous examples. The real Grassmannian G̃r3(R9) of real oriented three-
planes in R9 is orientable and has finite second homotopy. Let it be equipped with
an S1-action of the form (t, t, t, 1, 1, 1) yielding an embedded involutive action by
(−1,−1,−1,−1,−1,−1, 1, 1, 1). The same arguments as above show that we obtain
three fixed-point components of this action, namely a double point, i.e. twice the space
G̃r3(R3), and the space Gr1(R3)×Gr2(R6). (Further components do not arise due
to orientation issues.) The latter component has dimension 10, whence the difference
in dimension is congruent to two modulo four. (Clearly, all components involved
have S1-fixed-points.) One may extend this example to all higher even dimensions
by considering G̃r3(R9+2k) for k ∈ N. More examples can easily be derived from the
classification given in chapter B of the appendix.

The error in [35] can be traced back to an application of a result of Bredon on the
representations at different fixed-points which requires that π2(M) as well as π4(M)
be finite—cf. theorem [35].4, p. 351 and the paragraph below it. We suppose that this
error may have occurred for confusion of real and complex representation rings. Indeed,
the computations below [35].4 are correct applied to the complexified representations.
The computations in [35] rely heavily on the property that a representation is divisible
by (1 − t)2. Yet, in contrast to the real case, this property is nothing special for
complexified representations:
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Let φ1(S1) and φ2(S1) be real representations of the circle group S1 on a 2n-
dimensional real vector space. Again we make no difference between the standard
complex representation t on C and the standard real representation of S1. The complex
representation ring of S1 is just the ring of integer-valued Laurent polynomials Z[t, t−1].
The complexification of φ1(S1) respectively of φ2(S1) is denoted by φ1(S1)⊗C ∈ Z[t, t−1]
respectively by φ2(S1)⊗ C ∈ Z[t, t−1].

Proposition 2.1. In Z[t, t−1] we have the divisibility relation:

(1− t)2 | (φ1(S1)⊗ C− φ2(S1)⊗ C)

Proof. Real representations of S1 split as sums of the tk and the real-one-dimensional
trivial representation. Complexification replaces the real-one-dimensional represen-
tation 1 by the complex-one-dimensional representation 1. The difference of two
representations on a real-even-dimensional vector space splits into a sum of representa-
tions of the form tk (with possibly k = 0). Representations on a real-odd-dimensional
vector space necessarily have a summand 1 in the real representation ring. Hence
their complexifications have a summand 1 in the complex representation ring. These
two summands cancel out when taking the difference of two representations on the
same odd-dimensional vector space. Thus we conclude that it is sufficient to prove the
divisibility result for representations that split as sums of the tk.

Complexification replaces a representation of the form tk with k ∈ Z by tk + t−k.
The difference φ1(S1)⊗C− φ2(S1)⊗C therefore splits as a finite sum with summands
of the form

±(tk + t−k − (tl + t−l))

Without restriction we assume k > l ≥ 0. We show that every such summand is
divisible by (1− t)2 in Z[t, t−1], whence the result follows. Indeed, we have

tk + t−k − (tl + t−l) = (tk−l − 1)(tl − t−k)
= t−k(tk−l − 1)(tk+l − 1)

= t−k(1− t)2(1 + t+ t2 + . . .+ tk−l−1)(1 + t+ t2 + . . .+ tk+l−1)

and (1− t)2 | (tk + t−k − (tl + t−l)).

For the sake of completeness we compute the rotation numbers in our main geometric
example: Given the S1-action r = (t, 1, 1, 1, 1, 1) on G̃r4(R7) we choose S1-fixed-points
x respectively y in the Z2-fixed-point components G̃r4(R5) respectively G̃r2(R5). The
situation is simplified by the observation that obviously in our case the Z2-fixed-
point components are exactly the S1-components. Now we use charts on the real
Grassmannian which are given by matrices of the form

∗ . . . ∗ 1 0 0 0
∗ . . . ∗ 0 1 0 0
∗ . . . ∗ 0 0 1 0
∗ . . . ∗ 0 0 0 1


T
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(together with an orientation) up to reordering. Let us compute the representation in
x first. Since the plane corresponding to x lies entirely in V1, we may choose a chart
around x with the property that its identity-block also lies entirely in (V1)4. For this
we clearly use that V1 is of dimension dimV1 = 5 > 4. The non-identity part of the
chart is a real matrix T ∈ R3×4 and corresponds to the 12-dimensional tangent space
of G̃r4(R7) at x. Its (1× 4)-submatrix contained in (V1)4 corresponds to the tangent
space of G̃r4(R5).

The matrix T is acted upon by left matrix-multiplication of the (3 × 3)-real ma-
trix diag(t, 1). So on the tangent space this produces the real-12-dimensional S1-
representation (t, t, t, t, 1, 1, 1, 1) —clearly, the action is trivial on the 4-dimensional
tangent space of G̃r4(R5).

In order to compute the representation in y we need to use a chart that is the
identity on V2. Thus the left-action of S1 is given by left-matrix-multiplication with
diag(t, 1, 1, 1, 1, 1). Since it changes the chart, we have to correct this by right-
multiplication with its inverse (which just replaces generating vectors of the plane by
certain linear combinations of them). So we obtain the action on the non-identity part
corresponding to the tangent space by

diag((t, 1, 1), 1, 1, 1) ·


1 0 0 0 ∗ . . . ∗
0 1 0 0 ∗ . . . ∗
0 0 1 0 ∗ . . . ∗
0 0 0 1 ∗ . . . ∗


T

· diag(t−1, 1, 1)

This directly yields the S1-representation on y which is given by
(t, t, t, 1, 1, 1, 1, 1, 1). (This again corresponds to the fact that the real dimension
of G̃r2(R5) is six.) The difference of the complexified representations in x and y now
is given by (4(t+ t−1) + 4)− (3(t−1 + t) + 6) = t+ t−1− 2 = t−1(1− t)2. The difference
of real representations is 4t− 3t− 2 = t− 2, which is not divisible by (1− t)2 in the
real representation ring Z[t].

All this prompts the question whether one can prove the vanishing of the Â-genus
on π2-finite manifolds with smooth effective S1-action by other means. This question
must be answered in the negative. More precisely, we shall construct counter-examples
in each dimension 4k ≥ 8. (In dimension 4 the Â-genus does vanish on a simply
connected π2-finite manifold, since it is a multiple of the signature.)

Together with Anand Dessai we provide a construction for every dimension 4k ≥ 8
of a simply-connected π2-finite manifold with non-vanishing Â-genus in [2]. The
construction is a straight-forward adaption of the classical elementary surgery theory
(cf. [12], chapter IV) to the equivariant setting and relies heavily on

Lemma 2.2 (Surgery Lemma). Let G be a compact Lie group and let M be a
smooth simply-connected G-manifold. Suppose the fixed-point manifold MG contains
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a submanifold N of dimension dimN ≥ 5 such that the inclusion map N ↪→ M is
2-connected. Then M is G-equivariantly bordant to a simply connected G-manifold
M ′ with π2(M ′)⊆Z2.

Proof. Let f : M → BSO be a classifying map for the stable normal bundle of M .
We fix a finite set of generators for the kernel of π2(f) : π2(M) → π2(BSO) ∼= Z2.
Since the inclusion map N ↪→ M is 2-connected and since dimN ≥ 5, we may
represent these generators by disjointly embedded 2-spheres in N . By construction the
normal bundle in M of each such 2-sphere is trivial as a non-equivariant bundle and
equivariantly diffeomorphic to a G-equivariant vector bundle over the trivial G-space
S2. For each embedded 2-sphere we identify the normal bundle G-equivariantly with
a tubular neighbourhood of the sphere and perform G-equivariant surgery for all of
these 2-spheres. The result of the surgery is a simply connected G-manifold M ′ with
π2(M ′)⊆Z2. (If M is a spin manifold, then M ′ is actually 2-connected.)

Theorem 2.3. For any k > 1 there exists a smooth simply-connected 4k-dimensional
π2-finite manifold M4k with smooth effective S1-action and Â(M4k)[M4k] 6= 0.

Proof. We begin with some effective linear S1-action on the complex projective
space M = CP2k such that the fixed-point manifold MS1

contains a component N
which is diffeomorphic to CPl for some l ≥ 3. Since N ↪→ CP2k is 2-connected, the
manifold CP2k is S1-equivariantly bordant to a simply-connected S1-manifold M ′ with
finite π2(M ′) by the surgery lemma 2.2. (In fact, π2(M ′) ∼= Z2, since CP2k is not a
spin manifold.) It is well-known that the Â-genus does not vanish on CP2k. Since M ′

is bordant to CP2k, we obtain Â(M ′) = Â(CP2k) 6= 0.

It is straight-forward to produce examples with much larger symmetry using the
construction above. Higher torus symmetries follow right in the same way: Let S1⊆T
be a subgroup of a torus T ⊆U(2k + 1), where CP2k = U(2k+1)

U(2k)×U(1) . Let some CPl

be fixed by S1. The torus action restricts to an action on CPl and we may proceed
iteratively. If k is large enough and the torus is chosen in an appropriate manner,
there will be a suitable CPl′ in MT .

Let U(n)⊆U(2k + 1) be a blockwise included canonical subgroup which acts on
U(2k+1)

U(2k)×U(1) by left multiplication. Thus this subgroup fixes the component

U(2k − n+ 1)
U(2k − n)×U(1)

∼= CP2k−n

This enables us to find examples with U(n)-symmetry in dimension 4k provided
2k − n ≥ 3.

Clearly, in theorem 2.3 one may replace the complex projective space by other
suitable spaces with non-vanishing Â-genus. One possible choice is Gr2(Cn+2).

Moreover, the proof of the surgery lemma 2.2 leads to the following observation:
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Remark 2.4. Let M be a manifold of dimension at least 10 with vanishing first
Pontrjagin class p1(M). Let M admit an action by a compact Lie group with a
fixed-point component of dimension greater than or equal to 9 the inclusion of which
is 4-connected. The proof of the lemma shows that M may be altered to a bordant
M ′ with π2(M ′) and π4(M ′) finite.

Indeed, as the first Pontrjagin class p1(M) of M vanishes, we see that the morphism

π4(f)⊗Q : π4(M)⊗Q→ π4(BSO)⊗Q

induced by the classifying map f : M → BSO is the zero-map. Thus “up to a finite
group” the group π4(M) lies in the kernel of π4(f) which can be “removed” by surgery.
Due to the dimension of M surgery does not produce new homotopy generators in
degrees smaller than or equal to 4.

Thus it follows that M ′ is π2-finite and π4-finite. Hence Bredon’s divisibility result
applies and the proof in [35] yields that Â(M)[M ] = Â(M ′)[M ′] = 0. �

It remains a challenging task to determine whether the Â-genus vanishes on π2-finite
Positive Quaternion Kähler Manifolds as predicted by the LeBrun–Salamon conjecture
(cf. 1.6).

Moreover, this project naturally extends to a description of the elliptic genus on
such manifolds, which would be very welcome. Indeed, on spin manifolds there is the
following theorem:

Theorem 2.5. Let g be an involution contained in the compact connected Lie group G
acting differentiably on the 4n-dimensional spin manifold X. If the action is odd, then
Φ(X) = 0. Suppose the action is even and codimXg ≥ 4r. If r > 0, then Â(X) = 0.
If r > 1, then Â(X,TCX) = 0. If r > n/2, then Φ(X) = 0.

Proof. See the corollary on [39], p. 317.

This theorem is a refinement of the vanishing theorem of the Â-genus. It relies on
the rigidity of the elliptic genus, i.e. Φ(X, g) = Φ(X) and the formula

Φ(X, g) = Φ(Xg t Xg)

which relates the equivariant elliptic genus to the transversal self-intersection of the
fixed-point set Xg—independent of whether the manifold is spin or not. So having
proved the rigidity of the elliptic genus, one may not only derive the vanishing of the
Â-genus but a theorem analogous to 2.5—cf. theorem [37].2.1, p. 254. This would
have enabled us to prove the vanishing of the whole elliptic genus—and the signature
sign(M), in particular—on certain π2-finite Positive Quaternion Kähler Manifolds. For
a treatise on the elliptic genus of Wolf spaces we refer to chapter D of the appendix.
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Unfortunately, the erroneous reasoning in [35] has further negative impact: Not
only was it used for the classification of 12-dimensional Positive Quaternion Kähler
Manifolds, it also appears as a key argument in subsequent work by Haydeé and Rafael
Herrera.

Furthermore, for example the classification in dimension 12 was used in lemma
[19].2.5, which served to prove theorem B in the article.



3

Rational Homotopy Theory

This chapter provides some results that arise from an application of Rational Homotopy
Theory to the field of Positive Quaternion Kähler Manifolds. To the author’s knowledge
this is the first attempt in this direction. Despite the geometric intentions we have
managed to keep this chapter highly algebraical. Thus our results can be stated in a
rather general context.

Readers without experience in the field of Rational Homotopy Theory are recom-
mended to initially have a short glimpse at the introductory section 1.2 of chapter
1, where all the necessary concepts, tools, supporting reasonings and notations are
provided.

As a main result we shall prove the formality of Positive Quaternion Kähler Manifolds.
Although this theorem motivates our efforts, this chapter is devoted to an in-depth
analysis of spherical fibrations—far beyond of what turns out to be necessary for the
geometric result.

Moreover, we shall find new techniques of how to produce non-formal homogeneous
spaces. Furthermore, in low-dimensions we shall provide very simple direct proofs for
the formality of Positive Quaternion Kähler Manifolds. This chapter is completed
by some results under the assumption that the spaces in consideration are rationally
elliptic. In this vein we shall give a discussion for

• low-dimensional Positive Quaternion Kähler Manifolds and

• manifolds the cohomology of which admits a Lefschetz-like property. (Applica-
tions can be found in the field of biquotients, symplectic manifolds and Joyce
manifolds.)
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3.1. Formality and spherical fibrations

Before we shall begin to establish the main result let us just mention the following
proposition which may serve as a motivation. Indeed, despite its complete simplicity,
its proof illustrates beautifully the interplay between base space and total space of a
fibration, which we shall benefit from.

Proposition 3.1. Let M be a Positive Quaternion Kähler Manifold with b4(M) = 1.
Then its rational homotopy groups are a formal consequence of its rational cohomology
algebra.

Proof. By 1.12 and 1.13 we may assume M to be rationally 3-connected as the
symmetric space Gr2(Cn+2) is formal (cf. 1.36). Since b4 = 1 there is a unique class
u ∈ H4(M) (up to multiples) with respect to which H∗(M) has the Hard-Lefschetz
property (cf. 1.13). This implies that the cohomology ring of the twistor space Z
is uniquely determined by H∗(M), as we necessarily have z2 = u (up to multiples).
Due to the formality of the compact Kähler manifold Z (cf. 1.36) we obtain that the
rational homotopy type of Z is a formal consequence of H∗(Z). In particular, so are
the rational homotopy groups π∗(Z)⊗Q. The long exact homotopy sequence applied
to the twistor fibration

S2 ↪→ Z →M

splits and yields the following results: We have

π2(Z)⊗Q ∼= Q
πi(M)⊗Q ∼= πi(Z)⊗Q for i ≥ 5

and

0 −→ π4(Z)⊗Q→ π4(M)⊗Q ∂−→ Q→ π3(Z)⊗Q→ 0

is exact. Up to duality the transgression ∂ can be identified with the linear part of
the differential in the model of the fibration (cf. [22].15 (e), p. 214). In the notation of
remark 1.34 we obtain de′ = z2 − u with linear part d0e

′ = −u 6= 0. The element e′

generates π3(S2)⊗Q. Thus the morphism d0 is injective and its dual morphism ∂ is
surjective. We conclude that

π3(Z)⊗Q = 0
π4(M)⊗Q ∼= (π4(Z)⊗Q)⊕Q

Hence the rational homotopy groups of Z completely determine the groups π∗(M)⊗Q.
In summary, we have proved that the rational cohomology algebra of M deter-

mines the one of Z, which itself determines the rational homotopy groups of Z and
consequently also π∗(M)⊗Q.
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This result was intended to serve as a showcase computation. Clearly, once having
established the formality of Positive Quaternion Kähler Manifolds, this proposition
will be obsolete. Let us now start to work out the main topological results.

According to remark 1.33 we shall call a fibration

F ↪→ E → B

of topological spaces a spherical fibration provided the fibre F is path-connected and
F 'Q Sn for n ≥ 1.

The discussion of spherical fibrations mainly splits into two parts: Either the rational
homological dimension of the fibre sphere is even or it is odd.

3.1.1. Even-dimensional fibres

In this section we shall see that under slight technical prerequisites it is possible
to relate the formality of the base space to the formality of the total space when the
(rational) fibre sphere is (homologically) even-dimensional. In particular, we shall
prove our main result on Positive Quaternion Kähler Manifolds that will arise basically
as a consequence of the far more general

Theorem 3.2. Let

F ↪→ E
p−→ B

be a spherical fibration of simply-connected (and path-connected) topological spaces
with rational homology of finite type. Let the fibre satisfy F 'Q Sn for an even n ≥ 2.
Suppose further

• that the rationalised Hurewicz homomorphism π∗(B)⊗Q −→ H∗(B) is injective
in degree n,

• that the rationalised Hurewicz homomorphism π∗(B)⊗Q −→ H∗(B) is injective
in degree 2n.

Then we obtain: If the space E is formal, so is B.

Proof. Choose a minimal Sullivan model
(∧

VB, dB
) '−→ APL(B). Recall (cf. 1.34)

the following quasi-isomorphism of cochain algebras:(∧
VB ⊗

∧
〈z, z′〉, d

) '−→ (APL(E), d)(3.1)

with dz = 0, dz′ = z2 − u, u ∈
∧
VB, du = 0 and d|∧VB

= dB. We call p primitive if
u is not decomposable.

We shall prove the theorem in the following manner:
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Case 1. The fibration is primitive.

Step 1. We construct a minimal Sullivan algebra from (3.1).

Step 2. We show that it extends to a minimal Sullivan model of E by proving

Surjectivity and

Injectivity of the morphism induced in cohomology.

Step 3. We show the formality of the model for B by means of the one for E.

Case 2. The fibration is non-primitive.

Step 1. We prove that (3.1) is a minimal Sullivan model of E.

Step 2. We show the formality of the model.

Let us commence the proof:
Case 1. We suppose the fibration to be primitive.
Step 1. If the fibration satisfies dz′ = z2, i.e. u = 0, then remark 1.34 yields that

the fibration is rationally trivial. This just means that E 'Q B × F or, equivalently,
that there is a weak equivalence APL(E) ' APL(B) ⊗ APL(F ). Theorem 1.47 then
applies and yields that the formality of E is equivalent to the formality of B, since
spheres are formal due to example 1.31.

Therefore it suffices to assume dz′ 6= z2, i.e. u 6= 0. Since the fibration is primitive,
we may write

u = u′ + v

with 0 6= u′ ∈ VB, v ∈
∧>0 VB ·

∧>0 VB both homogeneous with respect to degree.
The condition of primitivity contradicts the property of minimality for Sullivan

algebras. Thus we shall construct a minimal Sullivan algebra
(∧

VE ,d
)

out of(∧
VB ⊗

∧
〈z, z′〉, d

)
.

This will be done as follows: Let u′, {bi}i∈J denote a (possibly infinite yet countable)
basis of VB homogeneous with respect to degree. Set VE := 〈z, {bi}i∈J〉 with the
previous grading. Let

φ :
∧
VB ⊗

∧
〈z, z′〉 →

∧
VE(3.2)

be the (surjective) morphism of commutative graded algebras defined by φ(bi) := bi
for i ∈ J , φ(z) := z, φ(z′) := 0, φ(u′) := z2 − φ(v) and extended linearly and
multiplicatively. (This is well-defined, since there is a subset J ′⊆ J such that
v ∈

∧
〈{bi}i∈J ′〉 by degree. Thus when we define φ(u′), the element φ(v) is already

defined.)
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We now define a differential dE on
∧
VE by dEz := 0, by dEbi := φ(d(bi)) for i ∈ J

and by making it a derivation. We shall see that this really defines a differential,
i.e. that d2

E = 0. This will be a direct consequence of the property

dE ◦ φ = φ ◦ d(3.3)

which we shall prove first: It suffices to do so on the bi, on u′, z and z′. We compute

dE(φ(bi)) = dE(bi) = φ(d(bi))

dE(φ(u′)) = dE(z2 − φ(v)) = −dE(φ(v)) = −φ(d(v)) = φ(d(u′))
dE(φ(z)) = dE(z) = 0 = φ(d(z))

dE(φ(z′)) = dE(0) = 0 = φ(z2 − u′ − v) = φ(d(z′))

As for the second line we remark that the next to last equality is a direct consequence
of the first line, since v ∈

∧
〈{bi}i∈J ′〉. The last equality follows from u = u′ + v and

d(u) = 0.
For x ∈

∧
VE there is y ∈ VB ⊗

∧
〈z, z′〉 with φ(y) = x by the surjectivity of φ.

Applying (3.3) twice yields

d2
E(x) = dE(φ(d(y))) = φ(d2(y)) = 0

which proves that
(∧

VE , dE
)

is a commutative differential graded algebra, even a
commutative cochain algebra.

We shall now prove that it is even a minimal Sullivan algebra. For this we show
that dEz, dEbi ∈

∧>0 VE ·
∧>0 VE for i ∈ J , i.e. that these are decomposable. This

will establish minimality.
The minimality of

(∧
VB,dB

)
, which is a differential subalgebra of

(∧
VB ⊗∧

〈z, z′〉,d
)
, together with property (3.3) yields

dE(bi) = dE(φ(bi)) = φ(d(bi)) = φ(dB(bi))

with dB(bi) being decomposable. Thus so is φ(dB(bi)), as φ is multiplicative.
Additionally, we have dE(z) = 0. Thus dE satisfies the minimality condition on VE ,

whence so it does on
∧
VE . As B is simply-connected, it holds that V 1

B = 0. Thus
proposition 1.25 implies that

(∧
VE ,dE

)
is a minimal Sullivan algebra.

Step 2. We shall now exhibit φ as a quasi-isomorphism. This will make
(∧

VE ,dE)
a minimal Sullivan model of APL(E) due to step 1, the quasi-isomorphism (3.1) and
the weak equivalence(∧

VE , dE
) φ←−

(∧
VB ⊗

∧
〈z, z′〉,d

) '−→ (APL(E),d)
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In fact, by lemma 1.38 we then obtain a quasi-isomorphism(∧
VE ,dE

) '−→ (APL(E),d)

We shall prove that φ is a quasi-isomorphism by separately proving the surjectivity
and the injectivity of

φ∗ : H
(∧

VB ⊗
∧
〈z, z′〉, d

)
→ H

(∧
VE ,dE)

Surjectivity. Let x ∈
(∧

VE ,dE) be an arbitrary closed element. Thus it defines a
homology class. We shall construct a d-closed preimage of x; this will prove surjectivity.

Define a map of commutative graded algebras

ψ :
∧
VE →

∧
VB ⊗

∧
〈z, z′〉

by bi 7→ bi for i ∈ J , by z 7→ z and by extending it linearly and multiplicatively. Then
ψ is injective, since

φ ◦ ψ = id(3.4)

The main idea to prove surjectivity will be the following: We have φ(ψ(x)) = x.
Now vary ψ(x) additively by a form x̃ ∈ kerφ such that d(ψ(x) + x̃) = 0.

Let I ∈
(
Q × NN)N be a finite tuple I = (a1, . . . , as) of finite tuples

ai = (ki, a(i,1), . . . , a(i,t(i))). We shall use the multi-multiindex notation

bI :=
s∑
i=1

ki

t(i)∏
j=1

ba(i,j)

in order to denote arbitrary linear combinations of products in the bi. We construct a
set Ĩ from I in such a way that summands of bI change sign according to their degree:
Let δ(i) := deg

∏t(i)
j=1 ba(i,j)

. With the coefficients of bI we obtain

bĨ =
s∑
i=1

(−1)δ(i)ki
t(i)∏
j=1

ba(i,j)

With this terminology we come back to our problem. There is a finite family (I(i,j))i,j
of such tuples with the property that

d(ψ(x)) =(bI(0,0)
+ bI(1,0)

u+ bI(2,0)
u2 + . . . )

+ (bI(0,1)
+ bI(1,1)

u+ bI(2,1)
u2 + . . . )z

+ (bI(0,2)
+ bI(1,2)

u+ bI(2,2)
u2 + . . . )z2

+ . . .
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Note that every coefficient bI(i,j) is uniquely determined. Set

x̃i,j := bĨ(i,j) · z
′ · zj ·

∑
l+2m=2i−2

zlum

and

x̃ :=
∑
i>0,j

x̃i,j ∈
(∧

VB ⊗
∧
〈z, z′〉,d

)
(3.5)

We shall prove in the following that x̃ is indeed the element we are looking for,
i.e. ψ(x) + x̃ is d-closed and maps to x under φ. This last property actually is
self-evident, since

x̃ ∈ z′
∧
〈{bi}i∈J , z, u′〉

and since φ(z′) = 0 by definition. Thus φ(ψ(x) + x̃) = φ(ψ(x)) = x.

Let us now see that ψ(x) + x̃ is d-closed: For this we shall prove first that the
term d(ψ(x) + x̃) does not possess any summand that has uizj as a factor for any
i, j ∈ N×N0. (Actually, such a summand is replaced by one in z2i+j and by one more
in z′.) This is due to the computation

uizj + (z2 − u) · zj ·
∑

l+2m=2i−2

zlum

=uizj + zj · (z2 − u) · (ui−1 + z2ui−2 + z4ui−3 + · · ·+ z2(i−1))(3.6)

=z2i+j
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for i > 0 and finally—the sums run over (i, j) ∈ N0 × N0—by

d(ψ(x) + x̃) =
∑
i,j

bI(i,j)u
izj +

∑
i>0,j

d
(
bĨ(i,j) · z

′ · zj ·
∑

l+2m=2i−2

zlum
)

=
∑
i,j

bI(i,j)u
izj +

∑
i>0,j

(
bI(i,j) · (z

2 − u) · zj ·
∑

l+2m=2i−2

zlum

+ d
(
bĨ(i,j)

)
· z′ · zj ·

∑
l+2m=2i−2

zlum
)

(3.7)

=
∑
j

bI(0,j)
zj +

∑
i>0,j

bI(i,j)

(
uizj + (z2 − u) · zj ·

∑
l+2m=2i−2

zlum
)

+
∑
i>0,j

d
(
bĨ(i,j)

)
· z′ · zj ·

∑
l+2m=2i−2

zlum

(3.6)
=
∑
j

bI(0,j)
zj +

∑
i>0,j

(
bI(i,j)z

2i+j + d
(
bĨ(i,j)

)
· z′ · zj ·

∑
l+2m=2i−2

zlum
)

=
∑
i,j

bI(i,j)z
2i+j +

∑
i>0,j

(
d
(
bĨ(i,j)

)
· z′ · zj ·

∑
l+2m=2i−2

zlum
)

Consequently, the term d(ψ(x) + x̃) is in the “affine subalgebra”∧
〈{bi}i∈J , z〉 ⊕ z′

∧
〈{bi}i∈J , z, u′〉

More precisely, we see(
d(ψ(x) + x̃)

)
|∧〈{bi}i∈J ,z〉

(3.7)
=
∑
i,j

bI(i,j)z
2i+j

= φ(d(ψ(x)))
(3.3)
= dE(φ(ψ(x)))(3.8)
= dE(x)
= 0

The last equation holds by assumption, the second one by the definition of d(ψ(x)).
Thus it suffices to prove that also the second direct summand(

d(ψ(x) + x̃)
)
|z′∧〈{bi}i∈J ,z,u′〉

equals zero. Using the vanishing of the first one we compute

0 = d2(ψ(x) + x̃) = d
(
d(ψ(x) + x̃)|z′∧〈{bi}i∈J ,z,u′〉

)
∈ (z2 − u)

∧
〈{bi}i∈J , z, u′〉 ⊕ z′

∧
〈{bi}i∈J , z, u′〉
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So let z′y :=
(
d(ψ(x) + x̃)

)
|z′∧〈{bi}i∈J ,z,u′〉). We have

0 = d(z′y) = (z2 − u)y − z′dy

Since y,dy ∈
∧
〈{bi}i∈J , z, u′〉, we have (z2− u)y 6= z′dy unless both sides vanish. The

term

z2 − u = z2 − u′ − v ∈
∧
VB ⊗

∧
〈z, z′〉

is not a zero-divisor, since u′ ∈ V even
B is not. This necessarily implies y = 0. So we

obtain

d(ψ(x) + x̃)|z′∧〈{bi}i∈J ,z,u′〉 = 0

Combined with (3.8) this yields

d(ψ(x) + x̃) = 0

This finishes the proof of the surjectivity of φ∗.

Injectivity. We shall now prove that φ∗ is also injective, i.e. an isomorphism in
total. For this we prove that its kernel is trivial. So let y ∈

(∧
VB ⊗

∧
〈z, z′〉,d

)
be

a closed element with φ∗([y]) = 0. Thus there is an element x ∈ (
∧
VE ,dE) with

dE(x) = φ(y). We shall construct an element x̃ ∈
(∧

VB ⊗
∧
〈z, z′〉, d

)
with the

property that d(ψ(x) + x̃) = ȳ. Hereby ȳ will be a newly constructed closed element
with the property that [y] = [ȳ]. This will show that [ȳ] = 0 and will prove injectivity.

There are families (I(i,j))i,j and (I ′(i,j))i,j as above—cf. the surjectivity part—such
that the element y may be written in the form

y =
∑
i,j

bI(i,j)u
izj + z′ ·

∑
i,j

bI′
(i,j)

uizj

Again coefficients are uniquely determined. Once more we form elements

ỹi,j : = bĨ(i,j) · z
′ · zj ·

∑
l+2m=2i−2

zlum

(for i, j ≥ 0) and

ỹ : =
∑
i>0,j

dỹi,j
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On the analogy of (3.7) this leads to

y + ỹ =
∑
i,j

bI(i,j)u
izj + z′ ·

∑
i,j

bI′
(i,j)

uizj

+
∑
i>0,j

(
bI(i,j)(z

2 − u)zj ·
∑

l+2m=2i−2

zlum + d
(
bĨ(i,j)

)
· z′zj ·

∑
l+2m=2i−2

zlum
)

=
∑
j

bI(0,j)
zj +

∑
i>0,j

bI(i,j) ·
(
uizj + (z2 − u)zj ·

∑
l+2m=2i−2

zlum
)

+ z′ ·
(∑

i,j

bI′
(i,j)

uizj − d
(
bI(i,j)

)
· zj ·

∑
l+2m=2i−2

zlum
)

(3.6)
=
∑
i,j

bI(i,j)z
2i+j + z′ ·

(∑
i,j

bI′
(i,j)

uizj − d
(
bI(i,j)

)
· zj ·

∑
l+2m=2i−2

zlum
)

Since ỹ is an exact form by construction, we see that this additive variation has no
effect on the homology class of y, i.e. y + ỹ is d-closed with [y] = [y + ỹ].

Consequently, by this reasoning we have found a representative y+ ỹ of the homology
class of y with

ȳ : = y + ỹ ∈
∧
〈{bi}i∈J , z〉 ⊕ z′

∧
〈{bi}i∈J , z, u′〉

Since φ commutes with differentials (cf. (3.3)), we have

dE

(
x+ φ

( ∑
i>0,j

ỹi,j

))
= dE(x) + φ(ỹ) = φ(ȳ)

Moreover, since for every i, j ∈ N0 the term ỹi,j has z′ as a factor, we see that
φ
(∑

i>0,j ỹi,j
)

= 0. This is due to φ(z′) = 0 and φ being multiplicative by definition.
So we obtain

φ(y) = dE(x) = φ(ȳ)

We shall now prove that a d-closed element

a ∈
∧
〈{bi}i∈J , z〉 ⊕ z′

∧
〈{bi}i∈J , z, u′〉

is completely determined by its first direct summand. Equivalently, we prove that
there is no non-trivial closed element of this kind with vanishing first summand. So we
suppose additionally that a|∧〈{bi}i∈J ,z〉 = 0 and that a =: z′ā for some
ā ∈

∧
〈{bi}i∈J , z, u′〉. Thus we compute

0 = d(a) = d(z′ā) = (z2 − u) · ā− z′ · dā

∈ (z2 − u) ·
∧
〈{bi}i∈J , z, u′〉 ⊕ z′ ·

∧
〈{bi}i∈J , z, u′〉
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Thus again we see that d(a) equals zero if and only if both (direct) summands vanish.
As (z2−u) is not a zero divisor in

∧
〈{bi}i∈J , z, u′〉, we derive that ā = 0. Consequently,

we obtain a = 0.

So let us eventually prove that the cohomology class [y] = [y + ỹ] equals zero by
constructing an element that maps to y + ỹ under d. As in the surjectivity part we
may deform ψ(x) additively by the special element

x̃ ∈ z′
∧
〈{bi}i∈J , z, u′〉⊆ kerφ

from (3.5). Since φ ◦ ψ = id by (3.4), once more we obtain

φ(ψ(x) + x̃) = x

and computation (3.7) shows that

d(ψ(x) + x̃) ∈
∧
〈{bi}i∈J , z〉 ⊕ z′

∧
〈{bi}i∈J , z, u′〉

So we obtain a commutative diagram(∧
〈{bi}i∈J , z, z′, u′〉

)
|ψ(x)+x̃

d

��

φ //
∧
〈{bi}i∈J , z〉

dE

��

ψ(x) + x̃ � /
_

???

�

x_

�
ȳ � / φ(ȳ)∧

〈{bi}i∈J , z〉 ⊕ z′ ·
∧
〈{bi}i∈J , . . . , z, u′〉

(id,0)

φ
//
∧
〈{bi}i∈J , z〉

where the commutativity in the upper left corner of the outer square has to be
interpreted as

φ(ψ(x) + x̃) ∈
∧
〈{bi}i∈J , z〉

d(ψ(x) + x̃) ∈
∧
〈{bi}i∈J , z〉 ⊕ z′ ·

∧
〈{bi}i∈J , z, u′〉

It remains to prove the correctness of the arrow tagged by question marks: We know
that ȳ|∧〈{bi}i∈J ,z〉 = ψ(φ(ȳ)), since φ|∧〈{bi}i∈J ,z〉 is the “identity” by definition. This
leads to

d(ψ(x) + x̃)|∧〈{bi}i∈J ,z〉 = ψ(φ(d(ψ(x) + x̃)))

= ψ(dE(φ(ψ(x) + x̃)))
= ψ(dE(x))
= ψ(φ(ȳ))
= ȳ|∧〈{bi}i∈J ,z〉
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by the same argument when additionally using the commutativity of the square.
The class ȳ is closed by construction, the class d(ψ(x) + x̃) is closed as it is exact.

Since both classes coincide on the first direct summand, the uniqueness property we
proved previously yields

ȳ = d(ψ(x) + x̃)

So ȳ is exact. Hence we have that [y] = [ȳ] = 0 and that φ∗ is injective.

Step 3. Let us now work with the minimal model
(∧

VE , d
)

in order to prove for-
mality for B. We shall make essential use of the characterisation given in theorem 1.41.
So we shall decompose VE as in the theorem, which will yield a similar decomposition
for VB. This will enable us to derive the formality of the minimal model of B. By
theorem 1.39 this is equivalent to the formality of B itself.

Since E is formal, we may decompose VE = CE ⊕NE with CE = ker dE |VE
and N i

E

being a complement of CiE in V i
E with the property that every closed element in the

ideal I(NE) generated by NE in
∧
VE is exact (cf. 1.41).

Without restriction we may assume that there is a subset J ′⊆ J such that

CE = 〈z, {bi}i∈J ′〉(3.9)

where {bi}i∈J , u′ is the homogeneous basis we chose for VB.

We now prove that the morphism

φ :
(∧

VB ⊗
∧
〈z, z′〉, d

)
→
(∧

VE , dE
)

restricts to an isomorphism of commutative differential graded algebras

φ|∧VB
:
(∧
〈{bi}i∈J , u′〉, dB

)
→
(∧
〈z2, {bi}i∈J〉,dE

)
Note that clearly d|∧VB

= dB which makes the left hand side a well-defined differential
subalgebra of the domain of φ. By abuse of notation—the element z2 has word-length
2—we write

∧
〈z2, {bi}i∈J〉 in order to denote the subalgebra generated by z2, {bi}i∈J

in
∧
〈z, {bi}i∈J〉.

Foremost we shall see that the morphism is a well-defined and bijective morphism
of commutative graded algebras: The right hand side obviously possesses an algebra
structure and a grading as a subalgebra of

∧
VE . Moreover, it holds that φ|∧VB

(bi) = bi
for i ∈ J and φ|∧VB

(u′) = z2−φ(v) ∈
∧
〈z2, {bi}i∈J〉, as v ∈

∧
〈{bi}i∈J〉. In particular,

we derive that φ|∧VB
(u) = z2, which shows that φ|∧VB

is surjective.
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It is also injective: Again we may write an arbitrary element a ∈
∧
〈{bi}i∈J , u′〉 as a

uniquely determined polynomial in u, i.e. a =
∑

i bIiu
i (with the notation introduced

previously). Suppose φ|∧VB
(a) = 0 and compute

0 = φ|∧VB
(a) = φ|∧VB

(∑
i

bIiu
i

)
=
∑
i

bIi(z
2)i

However, the element
∑

i bIiz
2i ∈

∧
VE vanishes if and only if all the bIi equal zero.

Thus we obtain that a = 0.
The morphism φ is compatible with differentials (cf. (3.3)). So as soon as we have

identified
(∧
〈z2, {bi}i∈J〉, dE

)
as a differential subalgebra, we have also proved that

φ|∧VB
is a morphism of differential algebras. So it remains to see that

∧
〈z2, {bi}i∈J〉 is

respected by dE . This, however, is due to the fact that φ|∧VB
is surjective, commutes

with differentials (cf. (3.3)) and that
(∧

VB, dB
)

is a differential algebra. That is, for
an element y ∈

∧
〈z2, {bi}i∈J〉 there is an element x ∈

(∧
VB,dB

)
with φ|∧VB

(x) = y
and

dE(y) = φ|∧VB
(dB(x)) ∈ φ|∧VB

(∧
VB
)

=
∧
〈z2, {bi}i∈J〉

This proves that φ|∧VB
is an isomorphism of commutative differential graded algebras.

We shall make use of this by constructing a decomposition for VB. We start by
setting

CB := ker dB|VB

In the assertion we assume that the rationalised Hurewicz homomorphism
π∗(B) ⊗ Q −→ H∗(B) is injective in degree n. This guarantees (cf. remark 1.27)
that there are no relations in this degree, i.e. V n

B = CnB, which itself implies that
Nn
E = 0 by construction of

(∧
VE , dE

)
. So every complement of CE in VE necessarily

lies in 〈{bi}i∈J〉. Hence we may assume without restriction that

NE = 〈{bi}i∈J\J ′〉

(For this it might be necessary to change the basis 〈{bi}i∈J〉.) Set

NB := ψ|∧〈{bi}i∈J 〉NE = 〈{bi}i∈J\J ′〉⊆VB

Let us now prove that VB = CB⊕NB and that every closed element in I(NB)⊆
∧
VB

is exact: Due to (3.9), since φ|∧VB
commutes with differentials (cf. (3.3)) and by our

results on φ|∧VB
, we know that 〈{bi}i∈J ′〉⊆ ker dB. Indeed,

dBa =
(
φ|∧VB

)−1(dE(φ|∧VB
(a))) = 0
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for a ∈
∧
〈{bi}i∈J ′〉.

Moreover, the second (non-technical) assumption asserts that the rationalised
Hurewicz homomorphism π∗(B)⊗Q −→ H∗(B) is injective in degree 2n. This again
guarantees—cf. 1.27—that V 2n

B = C2n
B , which itself implies that u′ ∈ C2n

B , as u′ ∈ V 2n
B .

Thus we obtain that 〈{bi}i∈J ′ , u′〉⊆CB. If there was an element 0 6= a ∈ 〈{bi}i∈J\J ′〉
with dBa = 0, then dE(φ(a)) = 0, as φ commutes with differentials (cf. (3.3)). However,
φ(a) ∈ NE by construction. This yields a contradiction. Hence we really do obtain a
direct sum decomposition

VB = CB ⊕NB

with

CB = 〈{bi}i∈J ′ , u′〉 and NB = 〈{bi}i∈J\J ′〉

Now assume there is a closed element y ∈ I(NB). We shall construct an element
x̄ ∈

(∧
VB,dB

)
with dBx̄ = y. This will finally prove formality in case 1.

The element φ|∧VB
(y) ∈

(∧
〈z2, {bi}i∈J〉,dE

)
equally satisfies dE

(
φ|∧VB

(y)
)

= 0.
Moreover, it lies in I(NE): This follows from the fact that φ|∧VB

(bi) = bi for i ∈ J
and that φ is multiplicative. So every monomial with factor bi will be mapped to a
product with bi as a factor. Every monomial of y contains a factor bI ∈ NB. Hence
every factor of φ|∧VB

(y) contains the factor bI ∈ NE and φ|∧VB
(y) ∈ I(NE).

Thus by formality of E there is an element x ∈
(∧

VE , dE
)

with dEx = φ|∧VB
(y).

As x ∈
(∧

VE ,dE
)
, we may write

x = x0 + x1z + x2z
2 + x3z

3 + . . .

as a finite sum with xi ∈
∧
〈{bi}i∈J〉. Since z is dE-closed, we compute

〈z2, {bi}i∈J〉⊇φ|∧VB
(y) = dE(x) = dE(x0) + dE(x1)z + dE(x2)z2 + . . .

As
(∧
〈z2, {bi}i∈J〉,dE

)
is a differential subalgebra of

(∧
VE , dE

)
, we see that a term

dE(xi)zi lies in zi ·
∧
〈z2, {bi}i∈J〉 again. In particular, the parity of the power of z is

preserved by differentiation. Thus—by comparison of coefficients in z—we obtain∑
i≥0

dE(x2i+1) = 0

In particular, we see that already

dE(x0 + x2z
2 + x4z

4 + . . . ) = φ|∧VB
(y)

Hence, without restriction, we may assume x to consist of monomials with even powers
of z only, i.e. x2i+1 = 0 for i ≥ 0. Thus it holds that x ∈ 〈z2, {bi}i∈J〉. As φ|∧VB

is
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bijective, there is the well-defined element x̄ =
(
φ|∧VB

)−1(x) ∈
∧
VB . As φ commutes

with differentials (cf. (3.3)), we eventually obtain

dB(x̄) =
(
φ|∧VB

)−1(dE(x)) =
(
φ|∧VB

)−1(
φ|∧VB

(y)
)

= y

Case 2. We shall now prove the assertion under the assumption that the fibration
is non-primitive. Again we shall rely on the quasi-isomorphism(∧

VB ⊗
∧
〈z, z′〉, d

) '−→ (APL(E), d)

where the left hand side contains the minimal Sullivan algebra
(∧

VB, dB
)

as a
differential subalgebra. Again this last algebra is supposed to be a minimal model for
the space B.

Step 1. We show that the algebra generated by VE := VB ⊕ 〈z, z′〉 is a minimal
Sullivan algebra: We have ∧

VB ⊗
∧
〈z, z′〉 =

∧
VE

Set dE := d. So
(∧

VE , dE
)

is a commutative differential graded algebra. Moreover,
it holds that V 1

E = 0, since B is simply-connected by assumption.
By the definition of (non-)primitivity u ∈

∧
VB is decomposable, i.e.

u ∈
∧>0 VB ·

∧>0 VB. Thus we have that dEz′ = z2 − u ∈
∧>0 VE ·

∧>0 VE .
Clearly, dEz = dEu = 0 and dEbi ∈

∧>0 VB ·
∧>0 VB for i ∈ J , as

(∧
VB,dB

)
is a minimal differential subalgebra of

(∧
VE , dE

)
. As dE is a derivation, we obtain

im dE ∈
∧>0 VE ·

∧>0 VE .
These properties taken together with proposition 1.25 yield that

(∧
VE , dE

)
is a

minimal Sullivan model of E.

Step 2. By assumption E is formal. Theorem 1.41 then yields the existence of a
decomposition VE = CE ⊕ NE with CE = ker dE |VE

. Clearly, we have z ∈ CE and
without restriction we may assume that

CE = 〈z, {bi}i∈J ′〉

for a subset J ′⊆ J , where {bi}i∈J now is a homogeneous basis of VB. (Recall that
non-primitivity implies that the element u lies in

∧≥2〈{bi}i∈J〉.)

Since dEz′ 6= 0 and since z′ ∈ VE , there is an element c ∈ C with the property that
z′ + c ∈ NE . Set z̃′ := z′ + c. Thus we have that z̃′ ∈ NE . The change of basis caused
by z′ 7→ z̃′ induces a linear automorphism of the vector space VE which is the identity
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on VB⊕〈z〉. This automorphism itself induces an automorphism σ of the commutative
differential graded algebra

∧
VE . By construction this automorphism has the property

that σ|∧(VB⊕〈z〉) = id. Moreover, we know that dE(
∧

(VB ⊕ 〈z〉))⊆
∧

(VB ⊕ 〈z〉).
Therefore σ is also compatible with the differential, since

dE(σ(x)) = σ(dE(x)) for x ∈
∧

(VB ⊕ 〈z〉)

dE(σ(z′)) = dE(z̃′) = dE(z′ + c) = dE(z′) = z2 − u = σ(z2 − u) = σ(dE(z̃′))

Thus up to this isomorphism of differential graded algebras we may assume that
there is a decomposition of VE = CE ⊕NE with CE = ker dE |VE

and with z′ ∈ NE .
Moreover, up to a change of basis we hence may assume that

NE = 〈{bi}i∈J\J ′ , z′〉

We use this to split VB in the following way: Set CB := ker dB|VB
. We recall that(∧

VB,dB
)

is a differential subalgebra of
(∧

VE , dE
)
. Thus we realise that

CB = 〈{bi}i∈J ′〉

and we set

NB : = 〈{bi}i∈J\J ′〉

We directly obtain VB = CB ⊕NB.
As for formality of B, by theorem 1.41 it remains to prove that every closed element

in the ideal I(NB) generated by NB in
(∧

VB,dB
)

is exact in
(∧

VB,dB
)
. So let

y ∈ I(NB) with dBy = 0. Since NB ⊆NE we obtain that I(NB)⊆ I(NE). Thus by
the formality of E we find an element x ∈

∧
VE with dEx = y. Recall the notation we

introduced in the surjectivity part of case 1, step 2 and write x as a finite sum

x = bI0 + bI1z + bI2z
2 + · · ·+ bI′0z

′ + bI′1zz
′ + bI′2z

2z′ + . . .

with bIi , bI′i ∈
∧
VB. We compute

y = dEx =dEbI0 + (dEbI1)z + (dEbI2)z2 + . . .

+
(
(dEbI′0)z′ + bĨ′0

(z2 − u)
)

+
(
(dEbI′1)zz′ + bĨ′1

z(z2 − u)
)

+
(
(dEbI′2)z2z′ + bĨ′2

z2(z2 − u)
)

+ . . .(3.10)

=
∑
i≥0

(
(dEbIi)− bĨ′iu+ bĨ′i−2

)
zi +

∑
i≥0

(dEbĨ′i)z
′zi

Since dE(bi) ∈
∧
VB for 1 ≤ i ≤ m and since u ∈

∧
VB, we shall proceed with our

reasoning by comparing coefficients in zi respectively in z′zi. That is, the element y
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lies in
∧
VB. Thus it cannot contain a summand with zi (for i > 0) or with z′zi (for

i ≥ 0) as a factor. So we see that

y = dEx = dEbI0 − bĨ′0u

In particular, (dEbI2)− bĨ′2u+ bĨ′0
= 0. Thus the element bI0 + bI2u ∈

∧
VB satisfies

dE(bI0 + bI2u) = dEbI0 +
(
dEbI2

)
u = dEbI0 + bĨ′2

u2 − bĨ′0u = y + bĨ′2
u2

Below we prove that bĨ′2 is exact, i.e. there is some a ∈
∧
VB with dEa = bĨ′2

. This
yields the exactness of bĨ′2u

2 by dE(au2) = bĨ′2
u2. So we finally shall obtain

dE(bI0 + bI2u− au2) =
(
y + bĨ′2

u2
)
− bĨ′2u

2 = y

Since this is a computation in
∧
VB and since dE restricts to dB on

∧
VB we obtain

that y is exact in
∧
VB. This will provide formality.

So let us finally prove that bĨ′2 is exact. Since we are dealing with finite sums only,
there is an even i0 ≥ 2 with bĨ′i0

= 0. From (3.10) we again see that

0 = (dEbIi0 )− bĨ′i0
u+ bĨ′i0−2

= (dEbIi0 ) + bĨ′i0−2

This implies dB(−bIi0 ) = bĨ′i0−2
and bĨ′i0−2

is exact in
(∧

VB, dB
)
. We shall continue

this iteratively. That is, as a next step we have

0 = (dEbIi0−2)− bĨ′i0−2
u+ bĨ′i0−4

= (dEbIi0−2)− dB
(
− bIi0

)
+ bĨ′i0−4

and bĨ′i0−4
is dB-exact. As i0 is even, this iterative procedure will finally end up with

proving that bĨ′2 is exact.
This finishes the proof of the formality of B.

We already did so in the proof and we shall continue to do so: We refer to the two
conditions in the assertion of the theorem that involve the Hurewicz homomorphism
as “non-technical” conditions. (The other prerequisites are mainly due to the general
setting of the theory.)

It is of importance to remark that S2n (n ≥ 1) is an F0-space. Thus the question
whether formality of the base space implies formality for the total space is related
to the Halperin conjecture—cf. [56] for an introduction to this topic and theorem
[56].3.4 in particular. The Halperin conjecture has been established on these spheres.
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Reformulations (cf. [58]) of the conjecture permit extremely short proofs for this. For
example it is trivial to see that the cohomology algebra H∗(S2n) does not admit non-
trivial derivations of negative degree. A direct proof needs to show that every spherical
fibration with fibre of even rational homological dimension is totally non-cohomologous
to zero, i.e. that the Serre spectral sequence degenerates at the E2-term; respectively
that the inclusion of the fibre into the total space induces a surjective map in rational
cohomology. For this see remark 1.34.

A consequence of theorem [56].3.4 now is that if the fibre of a fibration is an F0-
space, then the formality of the base space implies the formality of the total space. In
particular, this proves

Theorem 3.3. Let

F ↪→ E
p−→ B

be a spherical fibration of simply-connected (and path-connected) topological spaces.
Let the fibre satisfy F 'Q Sn for an even n ≥ 2.

Then it holds: If B is a formal space, then so is E.

Nonetheless, we shall give a direct proof of this theorem, as this proof will provide
some observations and tools which we shall need in the following.

Proof of Theorem 3.3. Choose a minimal model

mB :
(∧

VB,dB
) '−→ (APL(B),d)

As B is formal we have the quasi-isomorphism

µB :
(∧

VB,dB
) '−→ (H∗(B), 0)

from lemma 1.44. For this we fix a complement N of ker d|VB
in VB. We obtain that

µB(N)=0. Form the model of the fibration p

m̃E :
(∧

VB ⊗
∧
〈z, z′〉,d

) '−→ (APL(E), d)

as in remark 1.34. We use the terminology of theorem 3.2 for the model of the fibration,
i.e. d(z′) = u ∈

∧
VB and {bi}i∈J denotes a homogeneous basis of VB. (Here we do

not make use of a distinguished basis element u′.) We now define a morphism of
commutative graded algebras

µ̃E :
(∧

VB ⊗
∧
〈z, z′〉, d

)
→ (H∗(E), 0) ∼= (H∗(B)⊕H∗(B) · [z], 0)

bi 7→ µB(bi)
z 7→ [z](3.11)
z′ 7→ 0
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by extending this assignement linearly and multiplicatively. We shall prove that this
morphism of commutative graded algebras is actually a quasi-isomorphism. The weak
equivalence

(APL(E),d) m̃E←−−
(∧

VB ⊗
∧
〈z, z′〉, d

) µ̃E−−→ (H∗(E), 0)

will then yield the formality of E.

Our main tool for proving this will be that every closed element of(∧
VB ⊗

∧
〈z, z′〉, d

)
maps to its homology class under µ̃E . Let us establish this

result first. So suppose

y ∈
(∧

VB ⊗
∧
〈z, z′〉, d

)
is such a d-closed element. It then may be written as

y = y0 + z′y1

with y0, y1 ∈
∧(

VB ⊕ 〈z〉
)
.

First we shall prove that y1 is exact. We have

0 = dy = dy0 + (z2 − u)y1 − z′dy1

By construction of
(∧

VB ⊗
∧
〈z, z′〉,d

)
we know that

d
(∧

VB ⊕ 〈z〉
)
⊆
(∧

VB ⊕ 〈z〉
)

This implies that dy1 = 0. Thus we have

dy0 = −(z2 − u)y1(3.12)

Hence we write

y0 = y0,0 + y0,1z + y0,2z
2 + y0,3z

3 + · · ·+ y0,kz
k

and

y1 = y1,0 + y1,1z + y1,2z
2 + y1,3z

3 + · · ·+ y1,k−2z
k−2

as z-graded elements with y0,i, y1,i ∈
∧
VB. As z is d-closed, the grading is preserved

under differentiation. Equation (3.12) implies in this graded setting that

dBy0,i = uy1,i − y1,i−2
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Starting in top degree k we see that dBy0,k = −y1,k−2. Set xk−2 := −y0,k. This
directly leads to

dBy0,k−2 = uy1,k−2 − y1,k−4

where uy1,k−2 is dB-exact by dB(−uy0,k) = uy1,k−2. Thus y1,k−4 is exact. Set

xk−4 := −y0,k−2 − uy0,k

Hence, inductively continuing in this fashion, we obtain that each y1,i with i ≡ k
mod 2 is exact. The same line of argument applied from degree k − 1 downwards
yields finally that also all the y1,i with i ≡ k − 1 mod 2 are dB-exact. In total, for
each 0 ≤ i ≤ k − 2 there exists an xi ∈

∧
VB with dxi = y1,i. So the element y1 itself

is exact: Set

x : = x0 + x1z + x2z
2 + · · ·+ xk−2z

k−2

and obtain

d(x) = d
(
x0 + x1z + x2z

2 + · · ·+ xk−2z
k−2
)

= dBx0 + dB(x1)z + dB(x2)z2 + · · ·+ dB(xk−2)zk−2(3.13)

= y1,0 + y1,1z + y1,2z
2 + y1,3z

3 + · · ·+ y1,k−2z
k−2

= y1

Moreover, the xi are constructed iteratively within the algebra
∧
VB. So we obtain

xi ∈
∧
VB for 0 ≤ i ≤ k − 2 and

x ∈
∧

(VB ⊕ 〈z〉)(3.14)

This will enable us to see that y is mapped to its homology class. Due to the
formality of B we may decompose VB = C ⊕N homogeneously with the property that
C = ker dB|V and such that every closed element in I(N), the ideal generated by N
in
∧
VB, is exact—cf. theorem 1.41. This complement N is supposed to be identical

to the one we chose for defining µB at the beginning of the proof. This decomposition
induces a decomposition ∧

VB =
∧
C ⊕ I(N)

For each 1 ≤ i ≤ k we split y0,i =: y′0,i + y′′0,i with y′0,i ∈
∧
C (being d-closed) and

y′′0,i ∈ I(N). The morphism µB was chosen to map a closed element to its homology
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class and to vanish on I(N)—cf. lemma 1.44. Thus we see that µ̃E(y′0,i) = [y′0,i] and
that µ̃E(y′′0,i) = 0. We then need to show that

µ̃E(y) =
∑
i≥0

[y′0,i][z]
i != [y]

This will be a consequence of the following reasoning: We suppose y0,i = y′′0,i for all
0 ≤ i ≤ k and show that

µ̃E(y) = [0] != [y]

By construction we have

y0 ∈ N ·
∧

(V ⊕ 〈z〉)(3.15)

We shall now show that the element

y + d(z′x) = y0 + z′y1 + (z2 − u)x− z′y1 = y0 + (z2 − u)x

is exact, which will imply the exactness of y itself.
The whole commutative algebra splits as a direct sum∧

VB ⊗
∧
〈z, z′〉 =

(∧
(C ⊕ 〈z〉)

)
⊕
(

(N ⊕ 〈z′〉) ·
(∧

VB ⊗
∧
〈z, z′〉

))
Thus the element x may be written as x = c + n with c ∈

∧
(C ⊕ 〈z〉) and

n ∈ (N ⊕ 〈z′〉) ·
(∧

VB ⊗
∧
〈z, z′〉

)
. We conclude that d(c) = 0 and that d(x − c) =

dn = dx. Hence, without restriction, we may assume x = n. Combining this with
(3.14) thus yields

x ∈ N ·
∧(

VB ⊕ 〈z〉
)

Thus, writing x in its z-graded form, we see that each coefficient xi (for 0 ≤ i ≤ i− 2)
lies in I(N) = N ·

∧
VB. By (3.15) every coefficient y0,i (for 0 ≤ i ≤ k) in the z-grading

of y0 equally lies in I(N). Hence so does every z-coefficient

y0,i − uxi + xi−2 ∈ I(N)

of

y0 + (z2 − u)x =
∑
i≥0

(y0,i − uxi + xi−2)zi

Since y was assumed to be d-closed and since y0 + (z2 − u)x = y + d(z′x), the element
y0 + (z2 − i)x also is d-closed. In particular, every z-coefficient is a dB-closed element
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in I(B). By the formality of B and by theorem 1.41 every such coefficient is dB-exact
then. An analogous argument to (3.13) then shows that y is d-exact. In total, this
proves that µ maps a closed element to its cohomology class.

As for the properties of µ̃E , which now follow easily from this feature, we observe:
The morphism is compatible with differentials as µ(d(x)) = 0. (The closed and exact
class d(x) maps to its cohomology class.) Eventually, it is a quasi-isomorphism as the
morphism induced in homology is just the identity. This proves formality for E.

We remark that making extensive use of theorem 1.41 permits a shorter but similar
proof. Yet, for us it was important to establish the quasi-isomorphism (3.11). Indeed,
it will be a vital tool in the next theorem.

As we have seen, it becomes pretty clear that the formality of the base space and
the formality of the total space are highly interconnected. This is illustrated once
more by the next theorem.

Theorem 3.4. Let

F ↪→ E
p−→ B

be a spherical fibration of simply-connected (and path-connected) topological spaces.
Let the fibre satisfy F 'Q Sn for an even n ≥ 2.

If B and (consequently) E are formal spaces, then the fibration p is a formal map.

Proof. We shall use the terminology and results from theorem 3.2. By

mB :
(∧

VB, dB) '−→ APL(B, d)

we denote the minimal model. We let {bi}i∈J denote a basis of VB (and do not make
use of a distinguished element u′).

Case 1. Suppose the fibration p to be primitive. In the notation of theorem 3.2
we then have dz′ = z2 − u with primitive u in the model of the fibration. In the case
u = 0 we obtained the weak equivalence

E 'Q B × F

and we have seen the model of the fibration to be just the product model of fibre and
base. The diagram

APL(B)
APL(p) // APL(E) ∼= (APL(B), d)⊗ (APL(F ), d)

(∧
VB, dB

) � � x 7→(x,1) //

'

OO

(∧
VB, dB

)
⊗
(∧

VF , dF
)'

OO
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commutes (cf. [22], p. 198), where
(∧

VF ,dF
)

is the minimal model of the fibre F . So
also the induced map APL(p) is just the canonical inclusion into the first factor. Thus
theorem 1.47 applies and yields the formality of p in this case.

So we may assume u 6= 0. We then have constructed the minimal model

mE :
(∧

VE ,dE
) '−→ APL(E,d)

in case 1, step 2 of theorem 3.2. By lemma 1.38 we have a quasi-isomorphism

µB :
(∧

VB,dB
) '−→ (H∗(B), 0)

which we may assume to satisfy (mB)∗ = (µB)∗. Once more, for a spherical fibration
we form the model of the fibration

m̃E :
(∧

VB ⊗
∧
〈z, z′〉, d

) '−→ (APL(E), d)

in the altered version of remark 1.34. Consider the following diagram(∧
VE ,dE

)

mE

ww

(∧
VB,dB

)
p̂

00

� � //

mB

��

(∧
VB ⊗

∧
〈z, z′〉,d

)φ
66lllllllllllll

m̃E

��
(APL(B), d)

APL(p) // (APL(E),d)

(3.16)

where φ is the quasi-isomorphism from (3.2), which we construct in the proof of
theorem 3.2, case 1, step 2. (Note that until case 1, step 3 of the theorem we did
not need any of the “non-technical” assumptions which we did not require for this
theorem.)

We shall now prove that diagram (3.16) commutes up to homotopy. The minimal
model mE was constructed by means of a diagram of liftings and isomorphisms
extending

(APL(E), d) m̃E←−−
(∧

VB ⊗
∧
〈z, z′〉, d

) φ−→
(∧

VE , dE
)

(cf. the proof of lemma 1.38). Thus this diagram is commutative up to homotopy
(cf. [22].12.9, p. 153) and so is the right hand triangle of (3.16).
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Since the model of the fibration comes out of a relative Sullivan algebra
(cf. [22].14 and [22].15, p. 196) for APL(p)—composed with the minimal model(∧

VB,dB
) mB−−→ APL(B, d)—the algebra

(∧
VB,dB) includes into

(∧
VB⊗

∧
〈z, z′〉, d

)
by x 7→ (x, 1) as a differential subalgebra (cf. definition [22], p. 181) and the square in
the diagram commutes. (This holds although we altered the model of the fibration as
in remark 1.34.)

As a consequence, both the following diagrams commute up to homotopy—the
second one as the Sullivan representative p̂ is constructed as a lifting (cf. section 1.2).

(∧
VB, dB

) φ|∧ VB //

mB

��

(∧
VE ,dE

)
mE

��
(APL(B), d)

APL(p)// (APL(E), d)

(∧
VB,dB

) p̂ //

mB

��

(∧
VE , dE

)
mE

��
(APL(B),d)

APL(p)// (APL(E),d)

Since the Sullivan representative p̂ is uniquely defined up to homotopy, we know that
p̂ and φ|∧VB

are homotopic morphisms (cf. [22], p. 149). Thus—in order to prove the
assertion in this case—it is sufficient to find a minimal model µE with (µE)∗ = (mE)∗
for which the diagram

(∧
VB, dB

) φ|∧ VB //

µB

��

(∧
VE ,dE

)
µE

��
(H∗(B), 0)

p∗ // (H∗(E), 0)

commutes up to homotopy.
We shall start to do so by foremost recalling the quasi-isomorphism

µ̃E :
(∧

VB ⊗
∧
〈z, z′〉, d

) '−→ (H∗(E), 0)

bi 7→ µB(bi)
z 7→ [z]
z′ 7→ 0

from (3.11). (See the rest of the proof of theorem 3.3 for the fact that this really
defines a quasi-isomorphism.) For the definition of the morphism and in the following
we shall identify H∗(E) with p∗H∗(B) ⊕ p∗H∗(B)[z]. Note that this morphism has
the property that (µ̃E)∗ = (m̃E)∗. This can be derived as follows: We assumed the
analogous property to hold true for µB. Moreover, we have

(mE)∗ = ((mB)∗, (mB)∗) : H∗(B)⊕H∗(B)[z]
∼=−→ H∗(E)

by the construction of the model of the fibration as a relative Sullivan model over the
basis

(∧
VB,dB

)
. This, however, coincides with the definition of (µ̃E)∗.
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Now form the diagram (∧
VE ,dE

)

µE

ww

(∧
VB,dB

)
p̂

00

k j i h g f f e d c b a

� � //

µB

��

(∧
VB ⊗

∧
〈z, z′〉,d

)φ
66lllllllllllll

µ̃E

��
(H∗(B), 0)

p∗ // (H∗(E), 0)

(3.17)

where the map µE is defined by lemma 1.38, i.e. by means of liftings and isomorphism
that make the right hand triangle in (3.17) homotopy commute. As µ̃E and φ are
quasi-isomorphisms, so becomes µE . Again the square in the diagram commutes. So
the whole diagram commutes up to homotopy. Since (µ̃E)∗ = (m̃E)∗, we derive that
(µE)∗ = (mE)∗ by commutativity. This combines with the homotopy commutativity
of diagram (3.17) and yields that p is a formal map.

Case 2. We treat the case when p is not primitive. In case 2, step 1 of the proof of
theorem 3.2 we have seen that the model of the fibration

mE :
(∧

VE , dE
) '−→ (APL(E),d)

where VE = VB ⊕ 〈z, z′〉 and dE |VB
= dB, dEz = 0, dEz′ = z2 − u is minimal already.

As this model comes out of a relative Sullivan algebra over
(∧

VB,dB
)
, the induced

map p̂ is just the inclusion

p̂ :
(∧

VB, dB
)
↪→
(∧

VB ⊗
∧
〈z, z′〉, d

)
=
(∧

VE ,dE
)

x 7→ (x, 1)

as a differential graded subalgebra.
As in case 1 we use the quasi-isomorphism

µ̃E :
(∧

VB ⊗
∧
〈z, z′〉,d

) '−→ (H∗(E), 0)

bi 7→ µB(bi)
z 7→ [z]
z′ 7→ 0

from (3.11) with the property that (µ̃E)∗ = (m̃E)∗—as seen in case 1.
Thus it is obvious that the diagram(∧

VB, dB
) � � p̂ //

µB

��

(∧
VE , dE

)
µ̃E

��
(H∗(B), 0)

p∗ // (H∗(E), 0)



80 3 Rational Homotopy Theory

commutes. So p is formal in this case, too.

We shall now state some results related to the previous theorems. We begin with
the following apparent consequence:

Corollary 3.5. Let

F ↪→ E
p−→ B

be a spherical fibration of simply-connected (and path-connected) topological spaces
with rational homology of finite type. Let the fibre satisfy F 'Q Sn for an even n ≥ 2.
Suppose further that the space B is rationally (2n− 1)-connected.

Then we derive:

• The space E is formal if and only if so is B.

• If this is the case, the map p is formal, too.

Proof. Since B is rationally (2n− 1)-connected, we have

πi(B)⊗Q = 0 = H i(B) for i ≤ 2n− 1

So we obtain in particular that the rationalised Hurewicz homomorphism
π∗(B) ⊗ Q −→ H∗(B) is injective in degree n. By the Hurewicz theorem we also
obtain that the rationalised Hurewicz homomorphism π∗(B) ⊗ Q −→ H∗(B) is an
isomorphism in degree 2n—and injective in this degree, in particular. (We may realise
this directly by building the minimal model

(∧
VB, dB

)
of B, which has the property

that V ≤2n−1 = 0. As the model is minimal, every element in V 2n is closed and
H2n(B) ∼= H2n(B) = V 2n ∼= π2n(B)⊗Q by the Hurewicz homomorphism—cf. remark
1.27.)

Thus all the prerequisites of theorem 3.2 are satisfied and the formality of E implies
the one of B. By theorem 3.3 we have the reverse implication and theorem 3.4 finishes
the proof.

We remark that this corollary only needs case 1 of theorem 3.2, since by the
connectivity-assumption the fibration necessarily is primitve.

Let us formulate an observation from the proofs of the different theorems in this
chapter.

Theorem 3.6. Let

F ↪→ E
p−→ B
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be a fibration of simply-connected (and path-connected) topological spaces with rational
homology of finite type. Suppose the rational cohomology algebra H∗(F ) is generated
(as an algebra) by exactly one (non-trivial) element of even degree n. Suppose further
that the space B is rationally n′-connected, where

n′ := n · (dimQH
∗(F ))− 1

Then we obtain: The space E is formal if and only if so is B. In this case the map
p is formal, too.

Proof. Set d := dimQH
∗(F ). The cohomology algebra of the fibre F is given by

the polynomial algebra H∗(F ) = Q[z]/zd. The minimal model
(∧

VF ,dF
)

of F is
given by VF = V n ⊕ V n·d−1 with V n = 〈z〉 and V n·d−1 = 〈z′〉 and by the differentials
dF z = 0 and dF z′ = zd. See example 1.32 for details.

Let
(∧

VB,dB
)

be a minimal model of the base space B. We form the model of the
fibration: (∧

VB ⊗
∧
VF , d

) '−→ (APL(E),d)

The differential d of the model equals dB on the subalgebra
∧
VB. It remains to

describe the differentials d(z) and d(z′). As B is n′-connected, we obtain V ≤n
′

= 0.
Thus, due to theorem 1.21, we derive that dz = dF z = 0 and dz′ = dF z′ = zd − u for
some u ∈ V d·n

B . As
(∧

VB,dB
)

is minimal and since V <d·n = 0, we necessarily obtain
du = dBu = 0.

The result now follows by imitating the proofs of theorems 3.2, 3.3 and 3.4 in a
completely analogous fashion. Just replace z2 by zd and adapt the calculations. Some
iterative constructions will need to be done not only on even and odd indices separately,
but for each class modulo d. In theorem 3.2 clearly only case 1 has to be considered.
Neither are new ideas required nor has there any essential change to be made to
the proofs. As we have already seen in the proof of corollary 3.5 the connectedness
assumption is sufficient to derive all the “non-technical” conditions in theorem 3.2.
This combines to yield the result.

A crucial example enters the stage: This theorem directly applies to fibrations with
fibre F having the rational homotopy type of either CPn or HPn—always supposed
that all the other assumptions (including the connectivity-assumption) are fulfilled.
In such a case the cohomology ring is given by H∗(F ) = Q[z]/zn+1 with deg z = 2 or
deg z = 4 respectively. This leads us to

Remark 3.7. Let E → M be a complex vector bundle of rank n over a simply-
connected smooth (closed) manifold M . Let

CPn−1 ↪→ PC(E)
p−→M
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be the associated fibre-wise complex projectivisation. By the Hirsch lemma we obtain
the isomorphism of H∗(M)-modules H∗(PC(E)) ∼= H∗(M)⊗H∗(CPn−1) which forces
the cohomology algebra to be of the form

H∗(PC(E)) ∼= H∗(M)[z]/(zn + c1(E)zn−1 + · · ·+ cn(E))

for certain coefficients, the Chern classes, ci(E) (for 1 ≤ i ≤ n). The Chern classes
identify with the cohomology classes of the obstructions ui which we obtain in the
model of the fibration:

dz′ = zn + u1z
n−1 + · · ·+ un

where
(∧
〈z, z′〉,d

)
denotes a minimal model for CPn−1. So for example a vanishing

of the Chern classes ci(E) for 1 ≤ i ≤ n − 1 yields a situation similar in nature to
what we dealt with.

Note that unit sphere bundles associated to real vector bundles over a manifold
provide another class of examples to which theorems 3.2, 3.3 and 3.4 may be applicable.
The cohomology class [u] of the obstruction u in the differential dz′ = z2 − u we used
throughout the proofs of the theorems again may be linked to the characteristic classes
of the real vector bundle itself (cf. example [22].15.4, p. 202). �

The following proposition is a specialised version of theorem 3.2.

Proposition 3.8. Let

F ↪→ E
p−→ B

be a spherical fibration of simply-connected (and path-connected) topological spaces
with rational homology of finite type. Let the fibre satisfy F 'Q Sn for an even n ≥ 2.
Suppose further that the rationalised Hurewicz homomorphism π∗(B)⊗Q −→ H∗(B)
is injective in degree n. Additionally assume the space B to be k-connected with
3k + 2 ≥ 2n.

Then we obtain: If the space E is formal, so is B.

Proof. In order to be able to apply theorem 3.2 we need to slightly modify its
proof: In case 1, step 3 we used that the rationalised Hurewicz homomorphism was
supposed to be injective in degree 2n. The purpose of this assumption was to show
that V 2n

B = C2n
B or actually merely that u′ ∈ C2n

B .
We know that dz′ = z2− u with u− u′ ∈

∧≥2〈{bi}i∈J〉 in the model of the fibration
(cf. 1.34) and with u being dB-closed. We have to show that our new condition is apt
to replace the former one, i.e. to equally yield u′ ∈ C2n

B .
Since B is k-connected, it holds that V ≤kB = 0. Moreover, this also leads to

dBV ≤2k = 0 by the minimality of
(∧

VB,dB
)
. As (2k + 1) + (k + 1) = 3k + 2, this
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itself implies that

dB

((∧≥2
VB

)≤3k+2)
= 0

Thus by the assumption 3k + 2 ≥ 2n we derive that the element u− u′ ∈
(∧

V ≥2
)2n

is closed, i.e. dB(u − u′) = 0. However, we know that dBu = 0, whence dBu′ = 0
and u′ ∈ C2n

B . From here the proof of the theorem can be continued without any
change.

The connectedness-assumption of the proposition is automatically satisfied if
F 'Q S2. So we may formulate very catchy special versions of the proposition:

Corollary 3.9. Let

S2 ↪→ Z
p−→M

be a fibre bundle of simply-connected smooth closed manifolds.
Then we obtain:

• If Z is formal, so is M .

• If Z is a complex manifold satisfying the ddc-lemma, then M is formal.

Proof. Smooth manifolds have (rational) homology of finite type. In the terminology
of proposition 3.8 we have n = 2 and k = 1, since M is simply-connected. So
the condition 5 = 3k + 2 ≥ 2n = 4 is satisfied. A model

(∧
V,d

)
of a simply-

connected space X satisfies dV 2 = 0 and H2(X) ∼= V 2 if it is minimal. We identify
V 2
M
∼= Hom(π2(M),Q) and H2(M) ∼= Hom(H2(M),Q) by universal coefficients. By

remark 1.27 this amounts to the fact that the rationalised Hurewicz homomorphism
for M is given by an isomorphism

V 2
M
∼= πn(M)⊗Q

∼=−→ H∗(M) ∼= V 2
M

(Clearly, we just could have cited the Hurewicz theorem once more.) In particular, it
is injective. Now proposition 3.8 applies. If Z is complex satisfying the ddc-lemma,
then it is formal—cf. lemma 1.37 and the reasoning below it.

This leads us to the main geometric result:

Theorem 3.10. A Positive Quaternion Kähler Manifold is a formal space. The
twistor fibration is a formal map.
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We shall give two slightly different proofs of the theorem. The first one basically
relies on the recognition theorem for the complex Grassmannian (cf. 1.12); the second
one will need clearly less structure theory of Positive Quaternion Kähler Geometry. It
is not surprising that both proofs make essential use of the twistor fibration.

First proof of theorem 3.10. For every Positive Quaternion Kähler Manifold
M there is the twistor fibration

S2 ↪→ Z →M(3.18)

with Z a compact Kähler manifold. Positive Quaternion Kähler Manifolds are simply-
connected. Thus so is Z. (As compact manifolds both M and Z have finite-dimensional
(rational) homology.) The twistor space Z is a compact Kähler manifold (cf. theorem
1.8) so that it satisfies the ddc-lemma. Thus Z is a formal space.

Positive Quaternion Kähler Manifolds have vanishing odd-degree Betti numbers, i.e.
b2i+1(M) = 0 (for i ≥ 0)—cf. theorem 1.13. In particular, b3(M) = 0.

A Positive Quaternion Kähler Manifold Mn satisfying b2(M) > 0 is necessarily
isometric to the complex Grassmannian Gr2(Cn+2)—cf. corollary 1.12. The latter
is a symmetric space. Consequently, it is formal (cf. example 1.36). Thus, without
restriction, we may focus on the case when b2(M) = 0.

In total, we may assume M to be rationally 3-connected. Now corollary 3.5 applies
and yields the formality of M . So both M and Z are formal and theorem 3.4 tells us
that the twistor fibration is a formal map.

Second proof of theorem 3.10. As in the first proof we use the twistor fibra-
tion (3.18) and apply corollary 3.9 to it. Since Z is a formal space, the corollary
directly yields the result.

Note that we do not use b2(M) = b3(M) = 0 in the second proof!
Needless to mention that formality may be interpreted as some sort of rigidity result:

Whenever M has the rational cohomology type of a Wolf space, it also has the rational
homotopy type of the latter.

For the definition of the following numerical invariants see the definition on [22].28,
p. 370, which itself relies on various definitions on the pages 351, 360 and 366 in
[22].27.

Corollary 3.11. A rationally 3-connected Positive Quaternion Kähler Manifold M
satisfies

dimM

4
= c0(M) = e0(M) = cat0(M) = cl0(M)
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Proof. On a Positive Quaternion Kähler Manifold Mn there is a class u ∈ H4(M)
with respect to which M satisfies the analogue of the Hard-Lefschetz theorem (cf. theo-
rem 1.13). In particular, there is the volume form un 6= 0. Thus the rational cup-length
of a rationally 3-connected Positive Quaternion Kähler Manifold M is c0(M) = dimM

4 .
The rest of the equalities is due to formality (cf. [22], example 29.4, p. 388).

Clearly, Positive Quaternion Kähler Manifolds are necessarily simply-connected and
compact. This leads to

Corollary 3.12. A compact simply-connected Non-Negative Quaternion Kähler Man-
ifold is a formal space. The twistor fibration is formal.

Proof. Quaternion Kähler Manifolds are Einstein and therefore can be distinguished
by their scalar curvature being positive, zero or negative. The case of positive scalar
curvature now follows from theorem 3.10. A simply-connected Quaternion Kähler
Manifold with vanishing scalar curvature is hyperKählerian and Kählerian in particular.
So it is a formal space. The twistor fibration in this case is the canonical projection
M × S2 →M .

Let us end this section by presenting some vague ideas and speculations that are
rather thought of as a motivation for the reader to get involved in the subject than to
be a sound outline of what is possible.

Before we do so we shall hint to the fact that the question of formality is a prominent
and recurring topic in the field of special geometries (like G2-holonomy).

Let us venture to give a daring interpretation of the formality of Positive Quaternion
Kähler Manifolds: The Bott conjecture speculates that simply-connected compact
Riemannian manifolds with non-negative sectional curvature are rationally elliptic. In
the quaternionic setting theorems as the connectivity lemma (cf. theorem A on [19],
p. 150) might suggest that scalar curvature could be seen as an adequate conceptual
substitute for sectional curvature. (The only Positive Quaternion Kähler Manifold
with positive sectional curvature is HPn.) Furthermore, we know that the sectional
curvature “along a quaternionic plane” is positive (cf. formula [5].14.42b, p. 406),
which again relates quaternionic geometry to positive sectional curvature.

In the case of Positive Quaternion Kähler Manifolds—mainly because rational
cohomology is concentrated in even degrees only—we suggest to see formality as a
very weak substitute for ellipticity: In the rational elliptic case, we are dealing with
F0-spaces, which admit pure models. Thus the images of the relations—the odd degree
generators of the vector space underlying the minimal model— under the differential
in the minimal model are very well-behaved as they correspond to a regular sequence.
In particular, there are no algebraic combinations of these images that correspond to
non-vanishing cohomology classes.



86 3 Rational Homotopy Theory

In the case of formality we do not necessarily have this regularity of these images.
However, the very effect in cohomology is enforced by an additional generator of the
minimal model—corresponding to a homotopy group—which is supposed to map to
such a non-trivial algebraic combination under the differential. The effect in cohomology
then clearly is the same: The cohomology class of the algebraic combination is zero.

If one is willing to engage with this point of view, the formality of Positive Quaternion
Kähler Manifolds might be seen as heading towards a quaternionic Bott conjecture.

There is a notion of geometric formality introduced by Kotschick (cf. [49]) consists
in the property that the product of harmonic forms is harmonic again. Geometric
formality enforces strong restrictions on the topological structure of the underlying
manifold. For example, the Betti numbers of the manifold Mn are restricted from
above by the Betti numbers of the n-dimensional torus—cf. [49], theorem 6. This
result was even improved on Kähler manifolds by Nagy—cf. [62], corollary 4.1.

Symmetric spaces are geometrically formal (cf. [50], [71]). Thus it is tempting to
conjecture the same for Positive Quaternion Kähler Manifolds. This would lead to
previously unknown bounds for Betti numbers and is of high interest not only therefore.
Unfortunately, there are spaces—N -symmetric spaces already (cf. [50])—which are
formal but not geometrically formal. Nonetheless, we would like to see our result on
formality as a first step in this direction.

Moreover, one might speculate that the twistor space Z is geometrically formal if
(and only if) so is the Positive Quaternion Kähler Manifold—which would give direct
access to Nagy’s improved estimates. This might be motivated by the splitting of
modules H∗(Z) = H∗(M)⊕H∗(M)[z], where z corresponds to the Kähler form of Z.
The Kähler form, however, is harmonic. So up to pullback—which constitutes the
main problem—H∗(Z) as an algebra would be described by harmonic forms only.

A mere application to Wolf spaces would result in a class of geometrically formal
homogeneous non-symmetric (twistor) spaces. According to [50] such spaces are really
sought after.

3.1.2. Odd-dimensional fibres

In the following we shall deal with the case of a spherical fibration

F ↪→ E → B(3.19)

where the fibre has odd (homological) dimension. We shall see that a priori no general
statement can be made on how the formality of the base space and the total space
are related. That is, we shall see that the formality of E does not necessarily imply
the one of B, neither does the formality of B necessarily imply formality for E. The
examples arise as geometric realisations of algebraic constructions.
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A disadvantage of these conclusions is that our approach will probably not permit us
to prove formality of compact regular 3-Sasakian manifolds (cf. [28] for the definition
of the latter). Remark 3.15 will be the crucial one as far as this topic is concerned.

Before we shall start to construct the appropriate negative examples, we shall call
the reader’s attention to the following direct observation. For this, recall that a
fibration is totally non-cohomologous to zero if the induced map in cohomology of the
fibre-inclusion is surjective.

Proposition 3.13. Let

F
i
↪→ E

p−→ B

be a spherical fibration of simply-connected (and path-connected) topological spaces
with rational homology of finite type. Let the fibre satisfy F 'Q Sn for an odd n ≥ 3.
Suppose further that the fibration is totally non-cohomologous to zero.

Then we have that E 'Q B × F . In particular, the space E is formal if and only if
so is B. If this is the case the map p is formal.

Proof. Let
(∧
〈z〉,d

)
be the minimal model of Sn 'Q F defined by deg z = n and

dz = 0. Let
(∧

VB,dB
)

be the minimal model of the base space. Form the model of
the fibration (∧

VB ⊗
∧
〈z〉,d

) '−→ (APL(E), d)

where
(∧

VB,dB
)

includes as a differential subalgebra and where dz = y ∈
∧
VB . The

last property is due to theorem 1.21.
Since the fibration is totally non-cohomologous to zero, there is a cohomology class

[z̄] ∈ Hn(E) with the property that i∗([z̄]) = [z]. This implies that there is a closed
form z̄ ∈

∧
VB ⊗

∧
〈z〉 which maps to z under the canonical projection onto

∧
〈z〉 in

the model of the fibration. Hence we have that z̄ = −x+ z with x ∈
(∧

VB
)n. Since

z̄ is closed, we obtain that dx = dz = y.
This reveals an isomorphism

φ :
(∧

VB ⊗
∧
〈z〉,d

) ∼=−→ (∧
VB ⊗

∧
〈z̄〉, d

)
defined by φ|∧VB

= id, by φ(z) = z̄+x and by linear and multiplicative extension. (We
regard the element z̄ in the algebra on the right hand side as an abstract element in the
vector space upon which the algebra is built.) Indeed, this morphism of commutative
graded algebras evidently is bijective. It is also compatible with differentials: This is
trivial on

∧
VB and thus follows from

φ(d(z)) = φ(y) = y = dz̄ + dx = d(z̄ + x) = d(φ(z))
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This enables us to use the adapted algebra
(∧

VB ⊗
∧
〈z̄〉, d

)
in order to encode the

rational homotopy type of E. However, since dz̄ = 0, we identify(∧
VB ⊗

∧
〈z̄〉,d

) ∼=−→ (∧
VB,dB

)
⊗
(∧
〈z̄〉, 0

)
Thus E 'Q B × F . The map APL(p) is just the inclusion of APL(B, d) into
APL(B)⊗APL(F ) as a differential subalgebra—see the initial arguments in the proof
of case 1 of theorem 3.4. Theorem 1.47 then yields the result.

We remark that in the proof we established the Hirsch lemma in our case before
we worked with the adapted algebra. Thus it is not surprising that the proposition
can easily be deduced from the (refined version of the) Hirsch lemma given in lemma
[17].3.1, p. 257.

Let us now illustrate the appropriate negative examples. First we shall deal with
the case of a formal base B and a non-formal total space E. There is an example
described on [17], p. 261, which was given there as the simplest non-formal compact
manifold. Suppose

N3 :=
{1 a b

0 1 c
0 0 1

 | a, b, c ∈ R
}

and factor out the sublattice

Γ3 :=
{1 a b

0 1 c
0 0 1

 | a, b, c ∈ Z
}

in order to obtain the 3-dimensional compact Heisenberg manifold M3 := N3/Γ3. We
then obtain a fibre bundle

〈c〉
Γ3

↪→ N3

Γ3
→ 〈a, b〉

Γ3

(By abuse of notation we denote by a the set of matrices
1 a 0

0 1 0
0 0 1

 | a ∈ R


The sets b and c are defined in the analogous fashion.) Topologically, this is just

S1 ↪→M3 → T 2
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with T 2 = S1 × S1. However, E := M is proved to be non-formal in [17] whereas
B := T 2 is formal.

A higher dimensional and simply-connected analogue of this example may be
constructed algebraically by the minimal Sullivan algebra (

∧
V,d) defined as follows:

Let V be generated by elements x, y, z with deg x = deg y = n, deg z = 2n− 1, n odd,
dx = dy = 0 and dz = xy—cf. [22].12, example 1 on page 157, for a similar example.
By [17], lemma 3.2, p. 258, we may give a geometric realisation of this example as
a fibration: We may use spatial realisation (cf. [22].17) to construct a CW-complex
for the algebra (

∧
〈x, y〉, d). The algebra

∧
〈x, y〉 ⊗

∧
〈z〉 then forms an elementary

extension (cf. [17], p. 249), since dz ∈
∧
〈x, y〉. So the lemma realises this example

with total space having the rational homotopy type of (
∧
V,d), base space a realisation

of (
∧
〈x, y〉,d) and fibre a realisation of

(∧
〈z〉, 0

)
.

In all these examples the fibration is non-primitive as dz = xy is decomposable.
(The algebra (

∧
〈x, y〉, d

)
is a minimal Sullivan algebra already.) So we have seen:

Remark 3.14. Assume the fibration (3.19) to be non-primitive: The formality of B
does not necessarily imply the formality of E. �

Next we shall give a similar negative example under the assumption that (3.19) is
primitive. Consider the commutative differential graded algebra

(∧
V,d

)
over the

graded vector space V which we define as follows. We shall indicate generators with
degree; moreover, we indicate the differential.

2 : y 7→ 0
3 : b 7→ 0 c 7→ 0
4 : u 7→ 0
5 : n 7→ bc+ uy

Extend the differential to
∧
V as a derivation. By definition the algebra is minimal

and hence a minimal Sullivan algebra, as it is simply-connected (cf. 1.25). Form the
algebra

(∧
V ⊗

∧
〈z〉,d

)
with dz = u, deg z = 3. Since this algebra is an elementary

extension of
(∧

V,d
)
, by lemma [17].3.2 we may realise it as the total space of a

fibration with fibre rationally a sphere S3. Since
(∧

V,d
)

is minimal and since z is
mapped to u under d, the fibration is primitive.

We shall now show that
(∧

V,d
)

is formal whereas
(∧

V ⊗
∧
〈z〉,d

)
is not. We

have a decomposition C = 〈y, b, c, u〉 and N = 〈n〉 with V = N ⊕ C as in theorem
1.41. The ideal I(N) generated by N in

∧
V does not contain any closed form: Every

element contained is of the form n · p(y, b, c, u), where p is a rational polynomial.
Differentiation yields d(n ·p(y, b, c, u)) = (bc+uy) ·p(y, b, c, u)−n ·dp(y, b, c, u). Unless
p itself vanishes this term cannot equal zero since uy is not a zero divisor in

∧
V . In

particular,
(∧

V,d
)

is formal.
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In order to see that
(∧

V ⊗
∧
〈z〉, d

)
is not formal, we construct a minimal model for

it. The latter is given by
(∧
〈y, b, c, n〉,d

)
, where the differential is uniquely determined

by dy = db = dc = 0 and d(n) = bc. (Minimality of this algebra is evident. We have a
quasi-isomorphism between algebra and minimal model given in the obvious way by
y 7→ y, b 7→ b, c 7→ c, n 7→ n.) We have

C̃ := ker d|〈y,b,c,n〉 = 〈y, b, c〉

By degree the homogeneous complement Ñ := 〈n〉 of C̃ is uniquely determined. Thus
C and N satisfy all the prerequisites from theorem 1.41. The element n · b lies in I(N).
We have d(n · b) = −b2c = 0, since b has odd degree. Moreover deg(n · b) = 8. In
degree 7 we compute that (

∧
〈y, b, c, n〉)7 = 〈n · y〉 with d(n · y) = (bc) · y such that the

element n · b may not be exact. Hence by theorem 1.41 the total space of the fibration
is not formal and we have proved

Remark 3.15. Assume the fibration (3.19) to be primitive: The formality of B does
not necessarily imply the formality of E. �

We shall now present a simple example of a fibration with formal total space and
non-formal base space. We construct an algebra the realisation of which will be the
base space B. The algebra is

(∧
V,d

)
, where V will be given by generators with

grading; moreover, we indicate the differential which is extended to be a derivation.

3 : b 7→ 0
4 : c 7→ 0
6 : n 7→ bc

The algebra is minimal by construction. So it is a minimal Sullivan algebra as it is
simply-connected (cf. 1.25). It is rather obvious that the algebra cannot be formal:
According to theorem 1.41 there is a unique decomposition C = 〈b, c〉, N = 〈n〉
by degree. We compute d(nb) = bcb = 0 and nb ∈ I(N) is a closed but obviously
non-exact element.

Form the algebra
(∧

V ⊗
∧
〈z〉,d

)
with dz = c, deg z = 3. Since this algebra is

an elementary extension of
(∧

V,d
)
, by lemma [17].3.2 we may realise it as the total

space of a fibration with fibre rationally an S3. A minimal model for
(∧

V ⊗
∧
〈z〉, d

)
is given by

(∧
〈b, n〉, d

)
with deg b = 3, deg n = 6, db = dn = 0 (and where the n here

corresponds to n+ zb in the model of the fibration). Obviously, this model is formal,
as it is free. This proves

Remark 3.16. The formality of E does not necessarily imply the formality of B. �

We observe that this last example leads to a primitive fibration. For the non-primitive
case we make the following stunning observation:
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Proposition 3.17. Suppose n ≥ 3, n odd and let

Sn ↪→ E
p−→ Bm

be a non-primitive spherical fibre bundle of simply-connected (and path-connected)
compact manifolds.

Then it holds: The manifold E is not formal.

Proof. Clearly, fibre bundles are fibrations. We shall suppose E to be formal. This
will lead us to a contradiction.

Choose minimal models (∧
VB, dB

) '−→ (APL(B), d)(∧
〈z〉, 0

) '−→ APL(Sn, d)

Form the model of the fibration(∧
VB ⊗

∧
〈z〉,d

) '−→ (APL(E),d)

As the fibration was supposed to be non-primitive, this model is a minimal Sullivan
model for E. (Minimality is due to non-primitivity. Then apply proposition 1.25.) Set
VE := VB ⊕ 〈z〉 with the inherited grading.

As E was supposed to be formal, we may form the decomposition VE = CE ⊕NE

with CE = ker dE |VE
according to theorem 1.41.

For reasons of degree we have dz ∈
∧
VB. Due to non-primitivity we see that

dz 6= 0. We may assume that z ∈ NE . This is due to the following arguments: Since
VE = CE ⊕ NE and since dz 6= 0 by non-primitivity, there is a c ∈ C such that
z̃ := z + c ∈ NE . The assignment z 7→ z̃ induces an automorphism of VE , which
itself induces an automorphism σ of the graded algebra

∧
VE . This automorphism

commutes with differentials, since

d(σ(x)) = d(x) = σ(d(x)) for x ∈
∧
VB

d(σ(z)) = d(z̃) = d(z + c) = dz + dc = dz = σ(d(z))

This is due to the fact that σ|∧VB
= id.

The manifold E is a compact simply-connected manifold of dimension n+m. Thus
it satisfies Poincaré Duality. In particular, we have

Hn+m(E) = Q

Now compute the cohomology of E by means of the minimal model
(∧

VE ,d
)
.

Every closed form in I(NE) is exact by formality of E and theorem 1.41. Since z ∈ NE
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there is no non-vanishing cohomology class that is represented by an element of the
form z · x+ y for 0 6= x ∈

∧
VE and y ∈ I(NE). That is, cohomology is represented by

the elements in ker dB . Moreover, we have that dz ∈
∧
VB and thus 0 = d2z = dB(dz).

Hence dz ∈ ker dB. Thus we compute

H∗(E) = ker dB/im d = (ker dB/im dB)/dz = H∗(B)/dz

In particular, we obtain that H i(E) = 0 for i > m—a contradiction.

The fibre bundle S1 ↪→ S2n+1 → CPn (which clearly is non-primitive) shows that
the result does not hold in general. Consider the Hopf bundle S3 ↪→ S7 → S4 for a
simply-connected example.

3.2. Non-formal homogeneous spaces

Homogeneous spaces form an interesting class of manifolds. From the point of view
of Rational Homotopy Theory they possess very nice properties: They are elliptic
spaces that admit pure models (cf. 1.49 and 1.53). However, they remain complicated
enough to constitute a field of study worth-while the attention it is paid. For example,
an interesting question comes up: Under which conditions is a homogeneous space
formal? An elaborate discussion of this issue was given in the classical book [31].
Amongst others this resulted in long lists of formal homogneous spaces (cf. [31].XI,
p. 492-497). Basically, only three examples of non-formal type were given (cf. [31].XI.5,
p. 486-491). (One example was generalised to a parametrised family in [74].) So for
example the following homogeneous spaces are known to be non-formal for k ≥ 6 and
n ≥ 5:

SU(k)
SU(3)× SU(3)

,
Sp(n)
SU(n)

A few further examples are cited in [51], example 1.
Homogeneous spaces G/H directly lead to a fibre bundle

H ↪→ G→ G/H

In the case of a non-formal homogeneous spaces this is a fibration with formal fibre
and formal total space but with non-formal base space (cf. example 1.36). Moreover,
by theorem 1.45 we know that G/H is formal if and only if G/T is formal, where
T ⊆H is a maximal torus of H. Thus we may successively form the spherical fibre
bundles

S1 ↪→ G/T k → G/T k+1(3.20)
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for k ≥ 0 and T k⊆T a k-torus. If G/H is non-formal, we end up with a non-formal
space G/T as a base space. In particular, we see that there is a choice for k with the
property that (3.20) is a fibre bundle with formal total space and non-formal base
space. One example of this is

S1 ↪→ Sp(n)
U(n)

→ Sp(n)
SU(n)

for n ≥ 5. (The total space is formal as Sp(n)and U(n) form an equal rank pair—
cf. 1.53.)

Equally, for example, we may construct a spherical fibre bundle with non-formal
total space and formal base space by

S1 ↪→ SU(6)
SU(3)× SU(3)

→ SU(6)
S(U(3)×U(3))

The fibration is induced by the canonical inclusion

SU(3)× SU(3) ↪→ S(U(3)×U(3))

Note that

SU(6)
S(U(3)×U(3))

∼=
U(6)

U(3)×U(3)

which is a complex Grassmannian and a symmetric space. Hence it is formal (cf. 1.36).
Alternatively, we directly see that rk SU(6) = rk S(U(3)×U(3)), which also implies
formality (cf. 1.53).

These examples form the connection to the topics of the last section. They will
be a motivation to find ways of how to construct non-formal homogeneous spaces.
Before we do so let us illustrate a showcase computation by which we reprove the
non-formality of SU(6)

S(U(3)×U(3)) in a very direct way. This computation is described
explicitly. Thus it will easily be adaptable to several future situations in which we
shall merely mention the result of the calculation.

We construct a model for the homogeneous space according to theorem 1.22. A
minimal Sullivan model for SU(n) is given by

∧
(〈x2, x3, . . . , xn〉, 0) with deg xi = 2i−1

as can be derived directly from formality and its cohomology algebra. Hence a Sullivan
model for the classifying space BSU(nk) (with nk ≥ 2) is given by the polynomial
algebra

(∧
〈c2, . . . , cnk

〉, 0
)

with deg ci = 2i. So we obtain a model

APL

(
SU(n)

SU(n1)× · · · × SU(nk)
,d
)

'
∧(
〈c1

2, . . . , c
1
n1
, c2

2, . . . , c
2
n2
, . . . , ck2, . . . , c

k
nk
〉 ⊗ 〈x2, . . . xn〉, d

)
(3.21)
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with deg cji = 2i,deg xi = 2i − 1. The differential vanishes on the cji and
dxi = H∗(B(φ))yi, where yi is the generator of BSU(n) corresponding to xi and
φ is the blockwise inclusion map SU(n1)× · · · × SU(nk) ↪→ SU(n).

Note that we may take the cji for the i-th universal Chern classes of BSU(nj). Thus
blockwise inclusion of the SU(nj) yields the following equations

d(x2) =
k∑
i=1

ci2

d(x3) =
k∑
i=1

ci3

d(x4) =
k∑
i=1

ci4 +
∑
i 6=j

ci2c
j
2

...

d(xi) = (c1 · · · · · ck)|2i
...

d(xn) = c1
n1
· · · · · cknk

which become obvious when writing the Chern classes as elementary symmetric
polynomials in elements that generate the cohomology of the classifying spaces of the
maximal tori. By cj we denote the total Chern class 1 + cj2 + cj3 + · · ·+ cjnj of SU(nj)
and by |2i the projection to degree 2i.

In the case k = 2, n1 = n2 = 3 we obtain a model
(∧

V,d
)
, where the graded vector

space V is generated by

c, c′, d, d′ deg c = deg d = 4, deg c′ = deg d′ = 6
x2, x3, x4, x5, x6 deg x2 = 3, deg x3 = 5, deg x4 = 7, deg x5 = 9, deg x6 = 11

The differential is given by

dc = dc′ = dd = dd′ = 0
dx2 = c+ d, dx3 = c′ + d′, dx4 = c · d, dx5 = c′ · d+ d′ · c, dx6 = c′ · d′

Thus the cohomology algebra of this algebra is given by generators

e, e′, y, y′ deg e = 4, deg e′ = 6, deg y = 13, deg y′ = 15

and by relations

e2 = e · e′ = e′2 = y · e = y2 = y · y′ = y′2 = y′ · e′ = 0, y · e′ = −y′ · e
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Hence Betti numbers are given by

b0 = b4 = b6 = b13 = b15 = b19 = 1

with the remaining ones equal to zero.
Using the construction principle from [22].12, p. 144–145, we compute the minimal

model for this algebra. On generators it is given by

e, e′, x, x′, x′′ deg e = 4, deg e′ = 6, deg x = 7, deg x′ = 9, deg x′′ = 11

The differential d is given by

de = de′ = 0, dx = e2, dx′ = e · e′, dx′′ = e′2

Finally, cohomology classes are represented by

e↔ e, e′ ↔ e′, y ↔ x · e′ − x′ · e, y′ ↔ x′ · e′ − x′′ · e, y · e′ ↔ x · e′2 − x′ · e · e′

In particular, we see that a splitting of the underlying vector space V of the minimal
model into V = C ⊕N as required by theorem 1.41 would necessarily imply x, x′ ∈ N
by degree and it would require x · e′ − x′ · e in the ideal generated by N to be closed
but not exact. So SU(6)

SU(3)×SU(3) is not formal.
We remark that the spaces SU(4)/(SU(2)× SU(2)) and SU(5)/(SU(2)× SU(3))

are formal as a straight-forward computation shows.

In theory, given the groups G, H and the inclusion of H into G it is possible
to compute whether the space G/H is formal or not. However, understanding the
topological nature of the inclusion may be a non-trivial task.

On the other hand computational complexity theory enters the stage: In [29] the
following result was established: Given a rationally elliptic simply-connected space,
computing its Betti numbers from its minimal Sullivan model—which serves as an
encoding of the space—is an NP-hard problem. So on a general space of large dimension
it should be rather challenging to decide whether the space is formal or not.

Moreover, it is desirable (cf. [71], p. 38) to give criteria on invariants of G, H and
the embedding H ↪→ G by which a direct identification of the homogeneous space
G/H as being formal or not may be achieved. (In the same paper, this was done by
identifying N -symmetric spaces as formal. See also [50] for the same result.)

So we may agree that finding a priori arguments which allow to identify infinite non-
formal families should be worth-while the effort. Let us present some first observation
in this vein.
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Proposition 3.18. Let H ⊆G and K ⊆H × H be simply-connected compact Lie
groups. Suppose that the inclusion of H into G induces an injective morphism on
rational homotopy groups, i.e. π∗(H)⊗Q ↪→ π∗(G)⊗Q.

Then G�K is formal if and only if H�K is formal.

Proof. Choose minimal Sullivan models
(∧

VG, 0
)
,
(∧

VH , 0
)

and
(∧

VK , 0
)

for G,
H and K. Let x1, . . . , xn be a homogeneous basis of VH . Since the inclusion H ↪→ G
induces an injective morphism on rational homotopy groups, we may choose x′1, . . . , x

′
k

such that x1, . . . , xn, x
′
1, . . . , x

′
k is a homogeneous basis of VG. (For this we identify

generators of homotopy groups with the xi, x′i up to duality.)
So we obtain

H∗(G×G) ∼=
∧
〈x1, . . . , xn, x

′
1, . . . , x

′
k, y1, . . . , yn, y

′
1, . . . y

′
k〉

(The yi, y′i are constructed just like the xi, x′i, i.e. as a “formal copy”.)
Hence a model for the biquotient G�K is given by (cf. 1.21)(∧

V +1
K ⊗

∧
〈q1, . . . , qn, q

′
1, . . . , q

′
k〉, d

)
(The degrees of VK are shifted by +1.)

Denote the inclusion K
i1
↪→ H × H i2

↪→ G × G by φ = i2 ◦ i1. The differential d
on the qi is given by d(qi) = H∗(Bφ)(x̄i − ȳi), where x̄i, ȳi ∈ H∗(BG) is the class
corresponding to xi, yi ∈ H∗(G). (The analogue holds for the q′i.) By functoriality the
morphism H∗(Bφ) factors over

H∗(BG×BG)
H∗(Bi2)−−−−−→ H∗(BH ×BH)

H∗(Bi1)−−−−−→ H∗(BK)

In particular, H∗(Bφ) = H∗(Bi1) ◦H∗(Bi2) and

d(q′i) = H∗(Bi1)
(
H∗(Bi2)

(
x̄′i − ȳ′i

))
for 1 ≤ i ≤ k. The inclusion i2 by definition is the product i2 = i2|H × i2|H . Thus
we obtain a decomposition H∗Bi2 = H∗B(i2|H) ⊗ H∗B(i2|H) and H∗(Bi2)

(
x̄′i
)
∈∧

〈x1, . . . , xn〉; i.e. it is a linear combination in products of the xi. By the splitting
of H∗Bi2 we obtain that H∗(Bi2)

(
ȳ′i
)
∈
∧
〈y1, . . . , yn〉 is the same linear combination

with the xi replaced by the yi. This implies that

d(q′i) = H∗(Bi1)
(
H∗(Bi2)

(
x̄′i − ȳ′i

))
∈ imH∗(Bi1) = d

(∧
〈q1, . . . , qn〉

)
(In fact, the very same linear combination as above with the xi now replaced by the qi
will serve as a preimage of d(q′i) under d|∧〈q1,...,qn〉.)

Thus for each 1 ≤ i ≤ k there is an element zi ∈
∧
〈q1, . . . , qn〉 with the property

that d(q′i − zi) = 0. Set q̃i := q′i − zi. We have an isomorphism of commutative
differential graded algebras

σ :
(∧

V +1
K ⊗

∧
〈q1, . . . , qn, q

′
1, . . . , q

′
k〉, d

)
∼=−→
(∧

V +1
K ⊗

∧
〈q1, . . . , qn, q̃1, . . . , q̃k〉,d

)
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induced by the “identity” q′i 7→ q̃i + zi for all 1 ≤ i ≤ k. (By abuse of notation we
now consider the q̃i with dq̃i := d(q′i − zi) = 0 as abstract elements in the graded
vector space upon which the algebra is built.) This morphism is an isomorphism of
commutative graded algebras which commutes with differentials:

d(σ(q′i)) = d(q̃i + zi) = d(q′i) = σ(d(q′i))

as σ|∧〈q1,...,qk〉 = id.
Thus we obtain a quasi-isomorphism

APL(G�K) '
(∧

V +1
K ⊗

∧
〈q1, . . . , qn, q

′
1, . . . , q

′
k〉,d

)
∼=
(∧

V +1
K ⊗

∧
〈q1, . . . , qn, q̃1, . . . , q̃k〉,d

)
(3.22)

=
(∧

V +1
K ⊗

∧
〈q1, . . . , qn〉,d

)
⊗
(∧
〈q̃1, . . . , q̃k〉, 0

)
The algebra

(∧
V +1
K ⊗

∧
〈q1, . . . , qn〉,d

)
is a model for H�K, since x1, . . . , xn, y1, . . . , yn

is a basis of VH and since its differential d corresponds to H∗(Bi1). Hence the last
algebra in (3.22) is rationally the product of a model of H�K and a formal algebra.
Thus it is formal if and only if H/K is formal (cf. theorem 1.47).

Remark 3.19. We can get rid of the assumption that the Lie groups are simply-
connected: This assumption made it possible to identify generators of rational ho-
motopy groups with generators of the vector space generating the minimal model.
However, as long as we have the inclusion VH ⊆VG we can proceed as in the proof of
proposition 3.18 and the result holds equally. This will be the case in the examples we
shall consider later. �

Remark 3.20. For the convenience of the reader we specialise the arguments of the
proof to the case when all biquotients are homogeneous spaces, since this will be our
main field of application:

Choose minimal Sullivan models
(∧

VG, 0
)
,
(∧

VH , 0
)

and
(∧

VK , 0
)

for G, H
and K. Let x1, . . . , xn be a homogeneous basis of VH . Since the inclusion H ↪→ G
induces an injective morphism on rational homotopy groups we may choose x′1, . . . , x

′
k

such that x1, . . . , xn, x
′
1, . . . , x

′
k is a homogeneous basis of VG. (For this we identify

generators of homotopy groups with the xi, x′i up to duality.)
Hence a model for the homogeneous space G/K is given by (cf. 1.21)(∧

V +1
K ⊗

∧
VG,d

)
=
(∧

V +1
K ⊗

∧
〈x1, . . . , xn, x

′
1, . . . , x

′
k〉,d

)
(The degrees of VK are shifted by +1.)

Denote the inclusion K
i1
↪→ H

i2
↪→ G by φ = i2 ◦ i1. The differential d is given

on
∧
VG by d(y) = H∗(Bφ)ȳ, where ȳ ∈ H∗(BG) is the class corresponding to

y ∈ H∗(G) =
∧
VG. By functoriality the morphism H∗(Bφ) factors over

H∗(BG)
H∗(Bi2)−−−−−→ H∗(BH)

H∗(Bi1)−−−−−→ H∗(BK)
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In particular, H∗(Bφ) = H∗(Bi1) ◦H∗(Bi2) and

d(x′i) = H∗(Bi1)
(
H∗(Bi2)

(
x̄′i
))
∈ imH∗(Bi1) = d

(∧
〈x1, . . . , xn〉

)
for 1 ≤ i ≤ k. Thus for each 1 ≤ i ≤ k there is an element yi ∈

∧
〈x1, . . . , xn〉 with

the property that d(x′i − yi) = 0. Set x̃i := x′i − yi. We have an isomorphism of
commutative differential graded algebras

σ :
(∧

V +1
K ⊗

∧
〈x1, . . . , xn, x

′
1, . . . , x

′
k〉, d

)
∼=−→
(∧

V +1
K ⊗

∧
〈x1, . . . , xn, x̃1, . . . , x̃k〉,d

)
induced by the “identity” x′i 7→ x̃i + yi for all 1 ≤ i ≤ k. (By abuse of notation we
now consider the x̃i with dx̃i := d(x′i − yi) = 0 as abstract elements in the graded
vector space upon which the algebra is built.) This morphism is an isomorphism of
commutative graded algebras which commutes with differentials:

d(σ(x′i)) = d(x̃i + yi) = d(x′i) = σ(d(x′i))

as σ|∧〈x1,...,xk〉 = id.
Thus we obtain a quasi-isomorphism

APL(G/K) '
(∧

V +1
K ⊗

∧
〈x1, . . . , xn, x

′
1, . . . , x

′
k〉,d

)
∼=
(∧

V +1
K ⊗

∧
〈x1, . . . , xn, x̃1, . . . , x̃k〉,d

)
(3.23)

=
(∧

V +1
K ⊗

∧
〈x1, . . . , xn〉, d

)
⊗
(∧
〈x̃1, . . . , x̃k〉, 0

)
The algebra

(∧
V +1
K ⊗

∧
〈x1, . . . , xn〉, d

)
is a model for H/K, since x1, . . . , xn is a

basis of VH and since its differential d corresponds to H∗(Bi1). Hence the last algebra
in (3.23) is rationally the product of a model of H/K and a formal algebra. Thus it is
formal if and only if H/K is formal (cf. theorem 1.47). �

Corollary 3.21. Let K be a compact Lie subgroup of the Lie group G, which itself is
a Lie subgroup of a Lie group G̃. Table 3.1 gives pairs of groups G and G̃ together with
relevant relations and the type of the inclusion such that it holds: The homogenenous
space G/K is formal if and only if G̃/K is formal.

Proof. For the minimal models of the relevant Lie groups and further reasoning
on their inclusions see [22].15, p. 220. Lie groups are formal and so are the depicted
inclusions—cf. example 1.36 and proposition 1.46. More precisely, from the proof of
proposition 1.46 we see that we may identify minimal models with their cohomology
algebra and induced maps on minimal models with induced maps in cohomology. Thus
it suffices to see that the given inclusions induce surjective morphisms in cohomology.

The blockwise inclusions are surjective in cohomology due to theorem [57].6.5.(4),
p. 148.

The inclusion SO(n) ↪→ SU(n) induces a surjective morphism by [57].6.7.(2), p. 149.
So does the inclusion Sp(n) ↪→ SU(2n) by [57].6.7.(1), p. 149.
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Table 3.1.: Inclusions of Lie groups

G G̃ with type of embedding

SO(n) SO(N) n ≥ 1, n odd, N ≥ n, N odd blockwise

SO(n) SO(N) n ≥ 1, n odd, N ≥ n+ 1, N even blockwise

SU(n) SU(N) n > 1, N ≥ n blockwise

Sp(n) Sp(N) n ≥ 1, N ≥ n blockwise

SO(n) SU(n) n ≥ 1, n odd induced componentwise
by R ↪→ C

Sp(n) SU(2n) n ≥ 1 induced by the
identification H ↪→ C2×2

We remark that the chain of inclusions SO(n)⊆U(n)⊆Sp(n) does not induce a
surjective morphism in cohomology (cf. [57].5.8.(1), p. 138 and [57].6.7.(2), p. 149).
Neither do the chain Sp(n)⊆U(2n)⊆SO(4n) nor the chain
Sp(n)⊆U(2n)⊆SO(4n + 1) in general by a reasoning taking into account theo-
rem [57].6.11, p. 153, which lets us conclude that the transgression in the rationalised
long exact homotopy sequence for U(n) ↪→ SO(2n)→ SO(2n)/U(n) is surjective.

Example 3.22. • Using our initial computation and proposition 3.18 we see that
the space

SU(n)
SU(3)× SU(3)

is non-formal for n ≥ 6.

• We also obtain pretty simple proofs for formality: For example, the spaces

U(n)
U(k1)× · · · ×U(kl)

and
SO(2n+ 1)

SO(2k1)× · · · × SO(2kl)

with
∑l

i=1 ki ≤ n are formal: In the equal rank case
∑l

i=1 ki = n′ formality
holds due to proposition 1.53. Then apply proposition 3.18 together with remark
3.19 to the inclusions U(n′) ↪→ U(n) and SO(2n′ + 1) ↪→ SO(2n+ 1).

�

Remark 3.23. One may present this discussion in a slightly different light: By
theorem 1.45 formality of G/H only depends on the way the maximal torus of the
denominator is included.

Now fix a maximal torus TG := S1
1 × · · · × S1

l of G. Let TH ⊆TG be a maxi-
mal torus of H. Set Ti1,i2,... := S1

i1
× {1} × · · · × {1} × S1

i2
× {1} × . . . ⊆TG (with
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i1 < i2 < · · · ≤ l) to be the subtorus of TG containing only certain S1-components. Let
further T ′ with TH ⊆T ′⊆TG be the smallest subtorus of TG of this form containing
the maximal torus of H, i.e.

T ′ :=
⋂
{Ti1,i2,... | i1 < i2 < · · · ≤ l and TH ⊆Ti1,i2,...}

Let WT ′ be the maximal subgroup of the Weyl group W(G) leaving T ′ invariant. The
classical Lie groups of types An, Bn and Cn now have the following property: The
morphism

H∗(BG) = H∗(BTG)W(G) −→ H∗(BT ′)WT ′

induced by the inclusion is surjective. The algebra H∗(BG) is just the minimal model
of BG. The algebra H∗(BT ′)WT ′ is just the cohomology algebra of the subgroup
G̃⊆G that corresponds to the block-matrices for which T ′ is the standard maximal
torus. In particular, we have that rk G̃ = rkT ′. Thus the algebra H∗(BT ′)WT ′ may
also be identified with the minimal model of BG. Thus also the map on minimal
models induced by the inclusion G̃ ↪→ G is surjective and the model of G̃ lies in the
one for G.

So in these cases the question whether G/H is formal or not just depends on
(T ′,WT ′ , TH), the way TH includes into T ′ and the way WT ′ acts upon T ′; or in other
words on (G̃, TH , φ : TH ↪→ G̃) only. �

Let us now present one more result which serves to derive non-formality from some
rather easily computable topological structures. This will simplify proofs for some of
the known non-formal examples whilst producing a whole variety of further ones. We
start with a more general lemma.

Lemma 3.24. Let E2n+1 be a simply-connected compact manifold and let B2n be a
simply-connected compact Kähler manifold (for n ≥ 1). Suppose there is a fibration
S1 ↪→ E

p−→ B. Assume further the following to hold true:

• The Euler class of p is a non-vanishing multiple of the Kähler class l of B in
rational cohomology.

• The rational cohomology of B is concentrated in even degrees only.

• The rational homotopy groups of B are concentrated in degrees smaller or equal
to n.

Then E is a non-formal space.

Proof. Since the Kähler class and the Euler class rationally are non-trivial multiples,
we may formulate the Gysin sequence with rational coefficients for p as follows:

· · · → Hp(B) ∪l−→ Hp+2(B)→ Hp+2(E)→ Hp+1(B) ∪l−→ . . .
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(The fibration is oriented, since B is simply-connected.) The Hard-Lefschetz property
of B implies that taking the cup-product with l is injective in degrees p < n. So the
sequence splits, yielding

Hp+2(B) = Hp(B)⊕Hp+2(E)

for −2 ≤ p ≤ n − 2. Since we assumed the odd-dimensional rational cohomology
groups of B to vanish we obtain in particular that

Hp(E) = 0 for odd p ≤ n(3.24)

Let
(∧

VE ,dE
)

be a minimal model of E. As E was supposed to be simply-connected
we clearly have πp(E)⊗Q ∼= V p

E up to duality. By the long exact sequence of homotopy
groups we obtain

πp(E) ∼= πp(B) for p ≥ 3

As we assumed

πp(B)⊗Q = 0 for p > n

we thus see that V >n
E = 0 if n ≥ 2. If n = 1, we clearly still have V ≥3

E =0. So for
arbitrary n ≥ 1 we obtain

V p
E = 0 for odd p > n(3.25)

Assume now that E is formal. We shall lead this to a contradiction. By theorem
1.41 we may split VE = CE ⊕NE with CE = ker dE |VE

and with the property that
every closed element in I(NE) is exact.

By observation (3.24) we know that every closed element of odd degree in
(∧

VE
)≤n

is exact. Thus by the minimality of the model we directly derive that

(CE)≤n =
(
C≤nE

)even(3.26)

Together with (3.25) this implies that

CE = Ceven
E(3.27)

is concentrated in even degrees only. Hence so is
∧
CE . Thus, using the splitting∧

VE =
∧
CE ⊕ I(NE)
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we derive from (3.27) and the formality of E that

Hodd(E) =
(

ker dE |I(N)

im dE

)odd

= 0(3.28)

However, the manifold E is an odd-dimensional simply-connected compact manifold.
Thus it satisfies Poincaré Duality. It is orientable and possesses a volume form which
hence generates H2n+1(E) ∼= Q 6= 0. This contradicts formula (3.28). Thus E is
non-formal.

Remark 3.25. • We see that the proof works equally well if the spaces E and B
are not simply-connected but (have a finite fundamental group and) are simple,
i.e. the action of the fundamental group on all homotopy groups (in positive
degree) is trivial. Indeed, the spaces then are orientable and the Gysin sequence
can be applied. Moreover, Rational Homotopy Theory is applicable to simple
spaces without any change.

From proposition [64].1.17, p. 84, we see that the homogeneous space G/H of a
compact connected Lie group G with connected closed Lie subgroup H is simple.

• From the proof of the lemma it is clear that we actually do not need to require
B to be Kählerian. It is absolutely sufficient for B to have the Hard-Lefschetz
property with respect to the Euler class. For example, this extends the lemma
to the case of certain Donaldson submanifolds (cf. [23]) or biquotients (cf. [42]).

We may relax the prerequisites of the lemma even further: We need not require the
rational homotopy groups of B to be concentrated in degrees smaller or equal to
n as long as the ones concentrated in odd degrees above n correspond to relations
in the minimal model of E via the long exact homotopy sequence; i.e. they
are not in the image of the dual of the rationalised Hurewicz homomorphism
(cf. 1.27). Then the proof does not undergo any severe adaptation: We just
obtain CpE = 0 instead of V p

E = 0 for odd p > n. This extends the lemma to the
case of non-elliptic spaces E and B.

• In theory, this lemma is not restricted to S1-fibrations. So for example using
the Kraines form in degree four instead of the Kähler form in degree 2 one may
formulate a version for Positive Quaternion Kähler Manifolds. The formality of
the 3-Sasakian manifolds associated to Wolf spaces, however, shows that such
an attempt seems to be less fruitful due to the other prerequisites in the lemma.

�

See the corollary on [64].13, p. 221 and the examples below for a related result in
the category of homogenous spaces. Let us now formulate the theorem that serves as
the main motivation for the preceeding lemma.
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For this we cite the following simply-connected compact homogeneous Kähler
manifolds from [5].8.H, p. 229–234:

Sp(n)
U(p1)× · · · ×U(pq)× Sp(l)

for
q∑
i=1

pi + l = n

SO(2n+ 1)
U(p1)× · · · ×U(pq)× SO(2l + 1)

for
q∑
i=1

pi + l = n

SO(2n)
U(p1)× · · · ×U(pq)× SO(2l)

for
q∑
i=1

pi + l = n(3.29)

SO(2n)
U(p1)× · · · ×U(pq−1)× Ũ(pq)

for
q∑
i=1

pi = n

SU(n)
S(U(p1)× · · · ×U(pq))

for
q∑
i=1

pi = n

where Ũ(pq)⊆SO(2pq) is the unitary group with respect to a slightly altered complex
structure of R2pq (cf. [5].8.113, p. 231).

In table 3.2 we shall use the convention that
∑t

i=1 ki = p,
∑

i li = l and p1 + p2 = p.
Moreover, we also require p, p1, p2 > 0 in the table.

Theorem 3.26. The homogeneous spaces in table 3.2 are non-formal.

Proof. We shall consider a certain subclass of the spaces given in (3.29). Their
top rational homotopy group can easily be computed using the long exact homotopy
sequence of the fibration formed by denominator, numerator and quotient. For this we
shall use that the top rational homotopy of Sp(n), SU(n), SO(2n), SO(2n+ 1) lies
in degree 4n− 1, 2n− 1, 4n− 5 for n ≥ 2 and 4n− 1 respectively. So we are able to
give the spaces with their dimensions and with the largest degree of a non-vanishing
rational homotopy group in table 3.3—as always p, p1, p2 > 0.

Theses homogeneous spaces have the property that numerator and denominator
form an equal rank pair, whence the Euler characteristic is positive and cohomology is
concentrated in even degrees only (cf. 1.53).

All these manifolds are compact homogeneous Kähler manifolds by [5].8.H. Since for
the following arguments the spaces one to four behave similarly, we shall do showcase
computations for the cases one and five.

The fibre bundle

SU(p) ↪→ U(p) det−−→ S1

lets us conclude that U(p) = S1 ·SU(p) = S1×Zp SU(p), where Zp is the (multiplicative)
cyclic group of p-th roots of unity acting on each factor by (left) multiplication. So
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Table 3.2.: Examples of non-formal homogeneous spaces
homogeneous space with

Sp(N)
S(U(k1)×···×U(kt))×Sp(l1)×···×Sp(lr)×U(lr+1)×···×U(ls) p+ l ≤ N , r ≥ 0, s ≥ 0

1
2p

2 + (2l − 7
2 )p− 4l + 1 ≥ 0

SU(N)
S(U(k1)×···×U(kt))×Sp(l1)×···×Sp(lr)×U(lr+1)×···×U(ls) 2(p+ l) ≤ N , r ≥ 0, s ≥ 0

1
2p

2 + (2l − 7
2 )p− 4l + 1 ≥ 0

SO(N)
S(U(k1)×···×U(kt))×SO(2l1)×···×SO(2lr)×SO(2lr+1+1) 2(p+ l) + 1 ≤ N , r + 1 ≥ 0

1
2p

2 + (2l − 7
2 )p− 4l + 1 ≥ 0

SU(N)
S(U(k1)×···×U(kt))×SO(2l1)×···×SO(2lr)×SO(2lr+1+1) p+ l = n, N ≥ 2n+ 1, r + 1 ≥ 0

1
2p

2 + (2l − 7
2 )p− 4l + 1 ≥ 0

SO(2n)
S(U(k1)×···×U(kt))×SO(2l1)×···×SO(2lr) p+ l = n, r ≥ 0, n ≥ 2, l 6= 1

1
2p

2 + (2l − 9
2 )p− 4l + 5 ≥ 0

SO(2n)

S(Ũ(k1)×···×Ũ(kt))
p = n, r ≥ 0, n ≥ 2
1
2n

2 − 9
2n+ 5 ≥ 0

SU(N)
S(U(k1)×···×U(ks))×S(U(ks+1)×···×U(kt))

p1 + p2 = n ≤ N , p1, p2 > 0
N ≥ 2, p1p2 − 2(p1 + p2) + 1 ≥ 0

the canonical projection yields a fibre bundle

S1/Zp ↪→
Sp(n)

(Zp ×Zp SU(p))× Sp(l)
→ Sp(n)

(S1 ×Zp SU(p))× Sp(l)

of homogeneous spaces, which clearly is no other than

S1/Zp ↪→
Sp(n)

SU(p)× Sp(l)
→ Sp(n)

U(p)× Sp(l)

since Zp ×Zp SU(p)
∼=−→ SU(p)—given by left multiplication of Zp on SU(p)—is an

isomorphism.
In case five we obtain a homomorphism

S1 × SU(p1)× SU(p2)→ S(U(p1)×U(p2))
(x,A,B) 7→ (xp2 ·A, x−p1 ·B)

with kernel formed by all the elements of the form (a, a−p2Ip1 , a
p1Ip2) with ap1p2 =

1. Thus the kernel is isomorphic to Zp1p2 . (It is consequent to propose that
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Table 3.3.: Certain homogeneous spaces
homogeneous space for dimension top rat. homotopy

Sp(n)
U(p)×Sp(l) p+ l = n p2 + 4 · l · p+ p 4n− 1

SO(2n+1)
U(p)×SO(2l+1) p+ l = n p2 + 4 · l · p+ p 4n− 1

SO(2n)
U(p)×SO(2l) p+ l = n p2 + 4 · l · p− p 4n− 5 for n ≥ 2

SO(2n)

Ũ(n)
n2 − n 4n− 5 for n ≥ 2

SU(n)
S(U(p1)×U(p2)) p1 + p2 = n 2 · p1 · p2 2n− 1

Z1 = 1 be the trivial group.) In particular, this defines an action of Zp1p2 ⊆S1 on
SU(p1)× SU(p2) and we obtain

S(U(p1)×U(p2)) = S1 ×Zp1p2
(SU(p1)× SU(p2))

This leads to the fibre bundle

S1/Zp1p2 ↪→
SU(n)

Zp1p2 ×Zp1p2
(SU(p1)× SU(p2))

→ SU(n)
S1 ×Zp1p2

(SU(p1)× SU(p2))

of homogeneous spaces, which clearly is no other than

S1/Zp1p2 ↪→
SU(n)

SU(p1)× SU(p2)
→ SU(n)

S(U(p)× SU(p2)

Thus, in each case identifying S1/Zp (for each respective p) with its finite covering
S1, we obtain the following sphere bundles:

S1 ↪→ Sp(n)
SU(p)× Sp(l)

→ Sp(n)
U(p)× Sp(l)

S1 ↪→ SO(2n+ 1)
SU(p)× SO(2l + 1)

→ SO(2n+ 1)
U(p)× SO(2l + 1)

S1 ↪→ SO(2n)
SU(p)× SO(2l)

→ SO(2n)
U(p)× SO(2l)

S1 ↪→ SO(2n)
SŨ(n)

→ SO(2n)
Ũ(n)

S1 ↪→ SU(n)
SU(p1)× SU(p2)

→ SU(n)
S(U(p1)×U(p2))
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Due to the long exact homotopy sequence we see that the total space E of each
bundle has a finite fundamental group, namely 0 or Z2. Thus the Euler class of each
bundle does not vanish, since otherwise the bundle would be rationally trivial. This
would imply E 'Q B × S1—with the respective base space B—and π1(E)⊗Q 6= 0.

The long exact homotopy sequence associated to H ↪→ G → G/H—where G is
the numerator and H is the denominator group of the base space B = G/H in each
respective case—lets us conclude that

H2(B) ∼= π2(G/H)⊗Q = Q

for l 6= 1 and n ≥ 2 in case three, for n ≥ 2 in case four and without further restrictions
in the other cases. (In each respective case we then have π2(G)⊗Q = 0, π1(H)⊗Q = Q
and π1(G)⊗Q = 0.)

This implies that the Kähler class and the Euler class—both contained in H2(B)—are
non-zero multiples in rational cohomology.

In order to apply lemma 3.24 we need to demand that the top rational homotopy does
not lie above half the dimension of the space. This leads to the following restrictions
in the respective cases:

1
2
p2 +

(
2l − 7

2
)
p− 4l + 1 ≥ 0

1
2
p2 +

(
2l − 7

2
)
p− 4l + 1 ≥ 0

1
2
p2 +

(
2l − 9

2
)
p− 4l + 5 ≥ 0

1
2
n2 − 9

2
n+ 5 ≥ 0

p1p2 − 2(p1 + p2) + 1 ≥ 0

By the first point in remark 3.25 we may now apply lemma 3.24 to the depicted
fibre bundles. The lemma yields that the total spaces

Sp(n)
SU(p)× Sp(l)

,
SO(2n+ 1)

SU(p)× SO(2l + 1)
,

SO(2n)
SU(p)× SO(2l)

,

SO(2n)
SŨ(n)

,
SU(n)

SU(p1)× SU(p2)

of the respective bundles are non-formal under the given conditions.
Due to theorem 1.45 we may replace the stabilisers of the total spaces of the

fibrations by maximal rank subgroups sharing the maximal torus. We apply this first
to the SU(p)-factor which arose from the fibre-bundle construction and replace it by
a S(U(k1)× · · · ×U(kt)). Then we also substitute the other factors by suitable other
ones.
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Finally, we are done by an application of proposition 3.18 respectively table 3.1,
which allows us to use the described embeddings of the numerator into larger Lie
groups to form new homogeneous spaces. The result of this process is depicted in
table 3.2:

The first example we considered here leads to the first line in 3.2 by blockwise
inclusion Sp(n) ↪→ Sp(N) and to the second line by the inclusion

Sp(n) ↪→ SU(2n) ↪→ SU(N)

(which is identical to Sp(n) ↪→ Sp(N ′) ↪→ SU(2N ′) ↪→ SU(N)).
The second example produces lines three and four by the inclusions

SO(2n+ 1) ↪→ SO(N) and

SO(2n+ 1) ↪→ SU(2n+ 1) ↪→ SU(N)

(which is the same as SO(2n+ 1) ↪→ SO(N ′) ↪→ SU(2N ′) ↪→ SU(N)).
For examples three and four we do not use any further inclusions. Example five

produces line seven by the inclusion SU(n) ↪→ SU(N).

The proof guides the way of how to interpret table 3.2. Nonetheless, let us—
exemplarily for the first line of the table—shed some more light upon the used
inclusions: The inclusion of the denominator in the first example is given by blockwise
inclusions of

S(U(k1)× · · · ×U(kt)) ↪→ Sp(p) ↪→ Sp(n) ↪→ Sp(N)

Sp(l1)× · · · × . . .Sp(lr) ↪→ Sp
( r∑
i=1

li

)
↪→ Sp(n) ↪→ Sp(N)

U(lr+1)× · · · × . . .U(ls) ↪→ Sp
( s∑
i=r+1

li

)
↪→ Sp(n) ↪→ Sp(N)

where n = p+
∑s

i=1 li.
In examples three and four it does not matter whether or not we have a stabiliser

which has—beside the unitary part—special orthogonal groups of the type SO(2li)
only, if there is additionally one factor of the form SO(2lr+1 +1) or if there is the factor
SO(2lr + 1) only: All three cases establish maximal rank subgroups of SO(2l + 1),
which therefore share the maximal torus with SO(2l + 1).

Moreover, note that the relations in table 3.2 are growing quadratically in p. Thus
for a constant l we can always find p and N that will satisfy the restrictions.

Example 3.27. Let us describe some of the simplest and most classical consequences
that arise out of our reasoning. We have proved that the spaces

Sp(n)
SU(n)

SO(2n)
SU(n)

SU(p+ q)
SU(p)× SU(q)
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are non-formal for n ≥ 7, n ≥ 8 and p+ q ≥ 4 respectively.
�

We observe that the homogeneous 3-Sasakian manifolds—fibring over the twistor
space of a Positive Quaternion Kähler Manifold—do not satisfy the assumption on the
dimension in lemma 3.24—although they are quite close to it. Their formality shows
that the prerequisites in the lemma cannot be relaxed too much. In the same direction
goes the following proposition: The prerequisites in the last example in table 3.2 for
the space to be non-formal are evidently satisfied if p1, p2 ≥ 4 or if p ≥ 3 and p ≥ 5.
These are sharp bounds:

Proposition 3.28. The homogeneous space

SU(7)
SU(3)× SU(4)

is formal.

Proof. Using the model (3.21) we compute a minimal model for the given homoge-
neous space as generated by

c, c′, x̃ deg c = 4, deg c′ = 6, deg x̃ = 13

and by relations

x1, x2 deg x1 = 9, deg x2 = 11

with

d(x1) = c · c′, d(x2) = c3 + (c′)2

This model is formal.

As for the interlink between formality and geometry we remark that, for example,
from the computations in lemma [4].8.2, p. 272, we directly see that all known odd-
dimensional examples—cf. proposition[4].8.1, p. 271—of positively curved Riemannian
manifolds are formal spaces.

The importance of formality issues in geometry is also stressed by the following result
in [4]. Non-formality of C := SU(6)

SU(3)×SU(3) plays a crucial role for the construction of a
counterexample (cf. [4], theorem 1.4): It gives rise to the existence of a non-negatively
curved vector bundle over C × T (with a torus T of dimT ≥ 2) which does not split
in a certain sense as a product of bundles over the factors of the base space, but
which has the property that its total space admits a complete metric of non-negative
sectional curvature with the zero section is a soul.
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Moreover, we remark that we have found simply-connected examples of homogeneous
spaces M1 and M2 with the property that χ(M2) > 0—i.e. M2 is formal in particular
(cf. 1.52)—and that M1 is not formal whilst they fibre as

S1 ↪→M1 →M2

However, it is not possible to find manifolds M1 and M2 as described that fibre in the
form

M2 ↪→M1 → S1

This is due to the fact that the Halperin conjecture (cf. p. 71) has been confirmed on
homogeneous spaces (cf. [69], theorem A, p. 81) and theorem [56].3.4, p. 12.

It was established that simply-connected compact manifolds of dimension at most six
are formal spaces. In [24] Fernández and Muñoz pose the question whether there are
non-formal simply-connected compact manifolds in dimensions seven and higher. They
answer this in the affirmative by constructing seven-dimensional and eight-dimensional
examples. The requested example in a certain dimension above dimension seven is
then obviously given by a direct product with the corresponding even-dimensional
sphere. This leads to the problem of constructing highly-connected examples (cf. for
example [26]). Note that the methods of constructing these manifolds involve surgery
theory, in particular.

We shall use a slightly different approach towards this issue by using homogeneous
spaces.

Proposition 3.29. In every dimension d ≥ 72 there is an irreducible simply connected
compact homogeneous space which is not formal. In particular, every such space
constitutes a rationally elliptic non-formal example.

Proof. The example

SU(N)
S(U(k1)× · · · ×U(ks))× S(U(ks+1)× · · · ×U(kt))

from table 3.2 will serve us as a main source of further examples. (It is simply-connected
as so is the numerator group.)

The restrictions in the table will certainly be satisfied if p1, p2 ≥ 4 or if p1 ≥ 3 and
p2 ≥ 5 (respectively N ≥ p1 + p2). By our initial computations we may also use the
case for p1 = p2 = 3. We use a slightly different terminology: Set p := p1, k := p2 and
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N ≥ 0. Thus whenever p = k = 3 or p, k ≥ 4 or p ≥ 3 and k ≥ 5 the spaces

SU(p+ k +N)
SU(p)× SU(k)

(3.30)

SU(p+ k +N)
SU(p)× S(U(k − 1)×U(1))

(3.31)

SU(p+ k +N)
S(U(p− 1)×U(1))× SU(k)

(3.32)

SU(p+ k +N)
S(U(p− 1)×U(1))× S(U(k − 1)×U(1))

(3.33)

SU(p+ k +N)
S(U(p− 2)×U(2))× SU(k)

(3.34)

SU(p+ k +N)
S(U(p− 2)×U(2))× S(U(k − 1)×U(1))

(3.35)

SU(p+ k +N)
S(U(p− 2)×U(2))× S(U(k − 2)×U(1)×U(1))

(3.36)

SU(p+ k +N)
S(U(p− 2)×U(1)×U(1))× SU(k)

(3.37)

SU(p+ k +N)
S(U(p− 2)×U(1)×U(1))× S(U(k − 2)×U(2))

(3.38)

SU(p+ k +N)
S(U(p− 2)×U(1)×U(1))× S(U(k − 2)×U(1)×U(1))

(3.39)

will be non-formal. In the given order the spaces have the following dimensions:

2(k +N)p+ (2kN +N2 + 1)

2(k +N)p+ (2kN +N2 + 2k − 1)

2(k +N + 2)p+ (2kN +N2 − 1)

2(k +N + 2)p+ (2kN +N2 + 2k − 3)

2(k +N + 4)p+ (2kN +N2 − 7)(3.40)

2(k +N + 4p+ (2kN +N2 + 2k − 9)

2(k +N + 4)p+ (2kN +N2 + 4k − 13)

2(k +N + 4)p+ (2kN +N2 − 5)

2(k +N + 4)p+ (2kN +N2 + 4k − 13)

2(k +N + 4)p+ (2kN +N2 + 4k − 11)

Regard the manifolds as parametrised over N by the variable p. So we have the infinite
sequences (Mk,N

p )(3.30)
p∈N , . . . , (Mk,N

p )(3.39)
p∈N . We shall now show that for each congruence

class [m] modulo 16 there is a family (Mk,N
p )mp∈N which—for certain numbers p—consists
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of non-formal manifolds only and which has the property that

dim(Mk,N
p )mp∈N ≡ [m] mod 16

For this we fix the coefficient of p in each dimension in (3.40) to be 2 · 8 = 16. The
following series realise the congruence classes 0, . . . , 15. In the third column we give
the smallest dimension for which there is a p ∈ N making the space non-formal. (From
this dimension on the series will produce non-formal examples only.) Once we are
given p we may compute this dimension. We determine p due to the following rule: If
k = 3 set p = 3, if k = 4 set p = 4, if k ≥ 5 set p = 3. This guarantees non-formality.
The necessary data is given by the subsequent table:

[m] series starting dimension

0 (M3,1
p )(3.34)

p∈N 48

1 (M8,0
p )(3.30)

p∈N 49

2 (M5,1
p )(3.37)

p∈N 50

3 (M4,0
p )(3.38)

p∈N 67

4 (M3,1
p )(3.35)

p∈N 52

5 (M4,0
p )(3.39)

p∈N 69

6 (M3,1
p )(3.36)

p∈N 54

7 (M6,2
p )(3.31)

p∈N 87

8 (M3,1
p )(3.39)

p∈N 56

9 (M4,0
p )(3.34)

p∈N 57

10 (M5,1
p )(3.32)

p∈N 58

11 (M4,0
p )(3.37)

p∈N 59

12 (M7,1
p )(3.31)

p∈N 76

13 (M6,2
p )(3.30)

p∈N 77

14 (M6,2
p )(3.33)

p∈N 78

15 (M6,0
p )(3.32)

p∈N 47

From dimension 72 onwards every congruence class modulo 16 can be realised by one
of the given spaces. So we are done.

Clearly, this theorem is far from being optimal and can easily be improved by just
stepping through table 3.2 or by doing explicit calculations as we did at the beginning
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of the section. Indeed, in the proof we have found non-formal homogeneous spaces in
dimensions

47, 48, 49, 50, 52, 54, 56, 57, 58, 59, 63, 64, 65, 66, 67, 68, 69, 70

and from dimension 72 onwards.
We remark that one clearly may use other non-formal series like Sp(n)/SU(n) in

order to establish similar results. Since the number of partitions of a natural number
n ∈ N is growing exponentially in n one will find many stabilisers sharing their maximal
tori with SU(n).

As we pointed out, compact homogeneous spaces are rationally elliptic. Thus the
question that arises naturally is: In which dimensions are there examples of non-formal
elliptic simply-connected irreducible compact manifolds?

We end this section by partly generalising theorem 1.45 which asserts that the
formality of a homogeneous space G/H of a connected compact Lie group G and
a connected subgroup H is equivalent to the formality of G/T , where T ⊆H is a
maximal torus of H. We shall show that one direction can easily be seen to hold true
on a biquotient as well.

For this recall that whenever H acts freely on a topological space X we obtain the
fibre bundle:

H/T ↪→ X/T
p−→ X/H(3.41)

where p is the canonical projection [x] 7→ [[x]]. Indeed, the fibre F[[x]] at a point [[x]] is

F[[x]] = {[y] ∈ X/T | p([y]) = [[x]]}
=
{

[y] ∈ X/T | ∃h[y] ∈ H : h[y] · [y] = [x]
}

where H acts on X/T by h · [x] = [h · x]. The assignment

F[[x]] → H/T

[y] 7→ h[y]T

is well-defined and a homeomorphism.

Proposition 3.30. Let G be a connected compact Lie group and let H be a connected
closed subgroup of G×G with maximal torus T ⊆H of H. Suppose one of G�H and
G�T to be simply-connected.

Then we obtain: If the biquotient G�H is formal, so is G�T .

Proof. Due to (3.41) we form the fibre bundle

H/T ↪→ G�T → G�H
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of simply-connected spaces. Indeed, by proposition [64].1.19, p. 84, the homogeneous
space H/T is simply-connected, as rkT = rkH. The long exact homotopy sequence
then yields π1(G�T ) ∼= π1(G�H). One of these two groups vanishes by assumption
and so do both of them.

The homogeneous space H/T satisfies the Halperin conjecture (cf. [69], theorem
A, p. 81). Thus every fibration of simply-connected spaces with fibre H/T is totally
non-cohomologous to zero. Theorem [56].3.4, p. 12, then yields the result.

3.3. Pure models and Lefschetz-like properties

The last section was dedicated to the interplay of homogeneity and formality. In this
section we shall generalise the setting to pure Sullivan models. Recall that a Sullivan
algebra

(∧
V,d

)
is called pure if V is finite-dimensional and if

∧
V =

∧
V even⊗

∧
V odd

with d|V even = 0 and d(V odd)⊆
∧
V even—cf. definition 1.51.

Hence, in geometric terms, we no longer focus on homogeneous spaces, since for
example also biquotients enter the stage (cf. 1.53).

A second special feature which we shall take into consideration will be a Lefschetz-like
property.

The classical Hard-Lefschetz property for Kähler manifolds M2n states that

∪[ω]n−k : Hk(M)
∼=−→ H2n−k(M)(3.42)

is an isomorphism for all 0 ≤ k ≤ n. The form ω is the Kähler form of degree two.
On Positive Quaternion Kähler Manifolds M4n we have an analogue with the Kraines
form ω of degree four (cf. 1.13):

∪[ω]n−k : H2k(M)
∼=−→ H4n−2k(M)(3.43)

(which is as powerful as the corresponding property for Kähler manifolds, since odd
degree rational cohomology is known to vanish—cf. 1.13.) In each case a direct
consequence of the Hard-Lefschetz property is that the volume form v is a multiple of
[ω]n. In terms of a minimal Sullivan model

(∧
V,d

)
of M this will imply—at least

in the simply-connected case—that v may be regarded as lying in
∧
V even, which, in

general, is a weaker statement.
Similar but weaker properties than the Hard-Lefschetz properties can be found on

Riemannian manifolds with special holonomy—such as Joyce manifolds.
Thus we shall consider special topological properties that have effects in very concrete

geometric situations. Consequently, as one possible “dictionary” we suggest
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geometry ! algebra

compact biquotient !
pure Sullivan model (with non-degenerate cup

product pairing)

(non-symmetric) special
holonomy

! (Hard-)Lefschetz-like property

So let us begin with an investigation on formality of spaces with pure models by means
of the restrictions imposed by a (Hard-)Lefschetz-like property.

In [42] and [4] the question arises when a biquotient is a Kähler manifold. The
answer to that is unknown even for simplest examples as S1\U(3)/T 2—which satisfies
Hard-Lefschetz. The main motivation for this is that by a result of Meier’s (cf. [58],
[59]) Hard-Lefschetz spaces—and compact Kähler manifolds, in particular—satisfy
the Halperin conjecture (cf. p. 71). Moreover, it is not clear at all whether just
simple examples like S1\Sp(n)/SU(n) have the Hard-Lefschetz property. So the latter
deserves some more attention.

We commence our considerations with the following lemma (which is said to hold
on homogeneous spaces in [4], p. 280).

Proposition 3.31. A pure minimal Sullivan algebra (
∧
V,d) is formal if and only if

it is of the form (∧
V,d

) ∼= (∧V ′,d
)
⊗
(∧
〈z1, . . . , zl〉, 0

)
(3.44)

(for maximal such l) with a pure minimal Sullivan algebra (
∧
V ′, d) of positive Euler

characteristic—which is automatically formal then—and with odd degree generators zi.

Proof. Choose a basis z1, . . . , zm of V odd with the property that dzi = 0 for
1 ≤ i ≤ l—and some fixed 1 ≤ l ≤ m—and that d|〈zl+1,...,zm〉 is injective. From
pureness it follows:

d(〈z1, . . . , zl〉) = 0

d(〈zl+1, . . . , zm〉) ∈
∧
V even

d(V even) = 0

Thus we obtain(∧
V,d

)
=
(∧

(V even ⊕ 〈zl+1, . . . , zm〉), d
)
⊗
(∧
〈z1, . . . , zl〉, 0

)
Set V ′ := V even ⊕ 〈zl+1, . . . , zm〉. The minimality of

(∧
V,d

)
enforces the minimality

of
(∧

V ′, d
)

and
(∧

V ′,d
)

is again a pure minimal Sullivan algebra. (It is a Sullivan
algebra as the filtration of V that made

(∧
V,d

)
a Sullivan algebra restricts to



3.3 Pure models and Lefschetz-like properties 115

a filtration on V ′—cf. the definition on [22].12, p. 138—since both
(∧

V ′, d
)

and(∧
〈zl+1, . . . , zm〉, 0

)
are differential subalgebras.)

By theorem 1.47 the formality of
(∧

V,d
)

now is equivalent to the formality of
(
∧
V ′, d).
If
(∧

V ′, d
)

has positive Euler characteristic, it is formal by theorem 1.52, since it
is positively elliptic. Thus

(∧
V,d

)
then is formal, too.

For the reverse implication we use contraposition: Suppose the Euler characteristic
of
(∧

V ′, d
)

to vanish. We shall show that the algebra is non-formal. The algebra(
V ′, d

)
has the property that d((V ′)even) = 0 and that d|(V ′)odd is injective. Thus,

setting C := (V ′)even and N := (V ′)odd, yields a decomposition V ′ = C⊕N as required
in theorem 1.41 and this decomposition is uniquely determined.

Due to χ
(∧

V ′,d
)

= 0 there is a closed and non-exact element x in
(∧

V ′,d
)

that
has odd degree. Therefore x necessarily lies in I(N). Thus

(∧
V ′, d

)
is not formal

and neither is
(∧

V,d
)
.

By abuse of notation we shall speak of volume forms as top cohomology generators
of simply-connected elliptic Sullivan algebras. Volume forms then need to be unique
up to multiples by [21], theorem A, p. 70. So we shall refer to it as to “the” volume
form.

Proposition 3.32. Let
(∧

V,d
)

be a simply-connected pure minimal Sullivan algebra
with the property that its volume form [v] ∈ H

(∧
V,d

)
is represented by some closed

v ∈
∧
V even.

Then the following assertions hold: The algebra
(∧

V,d
)

is positively elliptic, i.e. its
rational cohomology is concentrated in even degrees only. In particular, it is formal.

Proof. We split the algebra as in (3.44). Thus a volume form of
(∧

V,d
)

necessarily
has to be of the form v = v̄ ·z1 ·· · ··zl 6= 0 with v̄ a volume form of

(∧
V ′,d

)
. Recall that

the zi ∈ V are of odd degree. So v ∈
∧
V even requires l = 0 and

(∧
V,d

)
=
(∧

V ′,d
)
.

Suppose the algebra
(∧

V,d
)

is non-formal. Thus there is a closed non-exact element
x 6= 0 in the ideal I(N) generated by N = V odd—cf. the proof of proposition 3.31—in∧
V .
Due to [21], theorem A, p. 70, simply-connected elliptic spaces have the homotopy

type of finite Poincaré complexes. Thus by the non-singularity of the cup-product
pairing we see that there is an element x′ ∈

(∧
V,d

)
such that x · x′ represents a

non-vanishing element in (rational) top cohomology. By our assumption and by the
uniqueness of the volume form we now derive that

[x · x′ − kv] = 0 ∈ H
(∧

V,d
)

for some 0 6= k ∈ Q. Hence there is a form y ∈
(∧

V,d
)

with dy = x · x′ − kv.
Now we use the fact that on a pure algebra we have the lower grading, i.e.:

d :
∧
V even ⊗

∧
l V odd →

∧
V even ⊗

∧
l−1 V odd
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Now we shall see that the form x · x′ lies in
∧
V even ⊗

∧>0 V odd whereas
v ∈

∧
V even ⊗

∧0 V odd by assumption. This is due to the fact that the element
x is in the ideal I(N) generated by N = V odd in

∧
V , i.e. x ∈

∧
V even ⊗

∧>0 V odd.
So we also obtain

x · x′ ∈
∧
V even ⊗

∧>0
V odd

By the lower grading we obtain a direct sum decomposition y =
∑l

i=0 yl with
yi ∈

∧
V even ⊗

∧i V odd. Without restriction we may assume that y0 = 0. Hence we
see that y = y1 + · · ·+ yl, i.e. y = y1 + ỹ with

ỹ = y2 + · · ·+ yl ∈
∧
V even ⊗

∧
>0 V odd

Thus

d(y1) ∈
∧
V even ⊗

∧
0 V odd =

∧
V even 3 kv

d(ỹ) ∈
∧
V even ⊗

∧
>0 V odd 3 x · x′

Since dy1 + dỹ = dy = −kv + x · x′, the lower grading directly implies that dy1 = −kv
and that dỹ = x · x′. This, however, contradicts the fact that both [v] and [x · x′] were
volume forms and consequently it contradicts the choice of x. Thus there is no closed
non-exact element x ∈ I(N).

Thus the algebra
(∧

V,d
)

=
(∧

V ′,d
)

is formal by 1.41. By proposition 3.31 this
is exactly the case if (

∧
V,d) has positive Euler characteristic. This, however, is

equivalent to the vanishing of odd-degree homology and finishes the proof.

Recall that symplectic manifolds M2n, i.e. smooth manifolds with closed, non-
degenerate 2-form ω, have the following property: The symplectic form ω ∈ A2

DR(M)
is closed and satisfies ωn(p) 6= 0 for all p ∈M . This is equivalent to the non-degeneracy
of ω. Compact Kähler manifolds are symplectic in particular.

A weaker version of symplecticity is the following: A manifold M2n is called
cohomologically symplectic if there is a class η ∈ H2(M2n) with ηn 6= 0. Clearly, Hard-
Lefschetz manifolds—in the version of formula (3.42)—are cohomologically symplectic.

Theorem 3.33. Let M be a simply-connected manifold which admits a pure Sullivan
model. Suppose that one of the following statements holds:

• The manifold M2n is cohomologically symplectic.

• The manifold M4n satisfies Hard-Lefschetz in the version of formula (3.43).

Then M is formal and has cohomology concentrated in even degrees only.
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Proof. We form a pure minimal Sullivan model
(∧

V,d
)

for M . We shall show that
its non-degeneracy requires the volume form to be represented by an element in the
subalgebra generated by even-degree elements:

In the first case of the assertion we shall show that the cohomology-symplectic
form [ω] ∈ H2(M) satisfies ω ∈

∧
V even. We then derive that ωn is a volume form in∧

V even.
So we have degω = 2 and we directly see that ω is not decomposable, since the

manifolds are simply-connected. This implies that ω ∈ V 2.

In the second case we consider the form ω in degree four with respect to which we
have Hard-Lefschetz. Clearly, ωn is a volume form. So we shall show that ω ∈

∧
V even

which will yield the result.
Every decomposition of ω would have to be done by linear combinations of products

of two elements (as there are none in degree one). These two elements may now
either be of degree two both or one of degree one and the other of degree three. The
latter possibility again is excluded by simply-connectedness. So even if the form ω is
decomposable, it still remains in

∧
V even.

By proposition 3.32 we may now derive the result on cohomology and formality.

Remark 3.34. • In the case of simply-connected (Positive Quaternion) Kähler
Manifolds with pure model we might have just proceeded as follows: Use their
formality to see that

(∧
V ′, d

)
in decomposition (3.44) is formal, whence it is

positively elliptic. Use “cohomologically symplectic” to realise that V ′ = V .

• Theorem 3.33—either applied to the twistor space or to the manifold itself—may
serve as a reproof of the vanishing of odd-degree Betti numbers and of formality
for Positive Quaternion Kähler Manifolds within the class of simply-connected
manifolds admitting pure models.

• Define a quaternionic cohomologically symplectic manifold in an analogous fashion.
This property instead of the quaternionic Hard-Lefschetz property (3.43) clearly
would have been sufficient to conclude the theorem.

• From [60] and [13].5, p. 79–94, we deduce that a generalised ddc-lemma on a
compact symplectic manifold holds if and only if the manifold satisfies Hard-
Lefschetz. Nonetheless, the manifold then needs not be formal in general. In the
light of theorem 3.33 it is so, however, if the manifold admits a pure model.

• In example [14].4.4, p. 346, an example of a 12-dimensional non-formal simply-
connected symplectic Hard-Lefschetz manifold is given.

• We remark that there are several examples of Hard-Lefschetz manifolds that are
not Kählerian although they are formal. For example see [23], proposition 6.2,
p. 171, where certain four-dimensional Donaldson submanifolds are shown to
be symplectic, to satisfy Hard-Lefschetz but to admit no complex structures;
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i.e. there is no Kähler structure, in particular. See theorem [25].3.5, p. 3322,
for examples of cohomologically Kähler manifolds that admit no Kähler metric.
(They are formal and satisfy Hard-Lefschetz.)

�

We shall now derive topological properties of some particular manifolds with holon-
omy G2 or Spin(7).

In proposition [41].10.2.6, p. 246, it is proved that a compact G2-manifold M7, i.e. a
manifold M with Hol(M) = G2, satisfies

〈a ∪ a ∪ [ω], [M ]〉 < 0(3.45)

for every non-zero a ∈ H2(M) and with respect to the 3-form ω defining the G2-
structure (cf. [41].10.1.1, p. 242). The analogue holds for compact Spin(7)-manifolds
(cf. [41].6.6, p. 261) with the respective 4-form ω (cf. [41].10.5.1, p. 255). So, in
particular, combining this with Poincaré Duality one obtains Lefschetz-like properties
for manifolds with holonomy G2 or Spin(7):

∪ω : H2(M)
∼=−→ Hn−2(M)

for the closed 3-form ω defining the G2-structure and n = 7; respectively the 4-form ω
defining the Spin(7)-structure and n = 8.

If Hol(M) = Spin(7), theorem [41].10.6.8, p. 261, gives further strong topological
restrictions; there is the following relation on Betti numbers:

b3 + b+4 = b2 + 2b−4 + 25(3.46)

where b+4 + b−4 = b4 and b+4 ≥ 1. The manifold is simply-connected and spin with
Â(M)[M ] = 1—cf. [41], equation (10.25) on page 260, together with proposition 10.6.5,
p. 260. A direct consequence of the latter result is that there are no smooth effective
S1-actions upon M due to [3]—compare the refined version given by theorem 2.5.
In particular, we shall not find any homogeneous space that admits a metric with
such holonomy. Using the relation on Betti numbers this can be generalised with
ease. For this recall— we adapt the formulas (1.8), (1.9), (1.11) and (1.12) to our
case—that for an elliptic orientable compact manifold—these properties imply that
the formal/homological dimension equals dimM—the following equations hold:∑

i

deg xi ≤ 2 · dimM − 1(3.47) ∑
i

deg yi ≤ dimM(3.48)

dimπ∗(M)⊗Q ≤ dimM(3.49) ∑
i

deg xi −
∑
j

(deg yj − 1) = dimM(3.50)
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Again, the xi form a homogeneous basis of πodd ⊗Q and the yi form a homogeneous
basis of πeven ⊗Q.

Using these relations we shall prove

Proposition 3.35. A rationally elliptic compact manifold does not admit a metric g
with Holg(M) = Spin(7).

Proof. Relation (3.46) yields b4 ≥ b+4 ≥ b2 − b3 + 25 and b3 + b4 ≥ b2 + 25. Let(∧
V,d

)
be the minimal model of M . Since M is simply-connected we obtain that

dimπ2(M)⊗Q = dimV 2 = b2

dimπ3(M)⊗Q = dimV 3 ≥ b3

dimπ4(M)⊗Q = dimV 4 ≥ b4 − dim Sym2(V 2) = b4 −
b2(b2 + 1)

2

In particular, we see that

dimπ∗(M)⊗Q ≥ b2 + b3 +
(
b4 −

b2(b2 + 1)
2

)
= b3 + b4 +

b2(1− b2)
2

≥ 25 + b2 +
b2(1− b2)

2

= 25 +
b2(3− b2)

2

Since we have that dimV 2 = b2 equation (3.48) yields in particular that
2 · b2 ≤ dimM = 8 and that b2 ≤ 4. Thus we derive that dimπ∗(M) ⊗ Q ≥ 23,
which contradicts (3.49).

A G2-manifold is known to have a finite fundamental group (cf. [41].10.2.2, p. 245).
We shall now shed a light on the rational homotopy type of an elliptic simply-connected
G2-manifold.

Proposition 3.36. Let M be a simply-connected compact elliptic manifold that admits
a Riemannian metric g with Holg(M) = G2. Then a minimal model

(∧
V,d

)
of M

is one of the following models, which we describe by the graded vector space V . We
give generators in their respective degree together with their differentials when possible.
In the first two cases the model is completely described. In the third case we obtain a
family of models depending on the differentials of x and x′.

2 : a 7→ 0 3 : ω 7→ 0 2 : a 7→ 0, b 7→ 0
3 : ω 7→ 0 4 : a 7→ 0 3 : ω 7→ 0, x 7→?, x′ 7→?

5 : x 7→ a3 7 : x 7→ a2
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The first case has the rational homotopy type of CP2 × S3 and the second one has the
rational homotopy type of S3 × S4. In the third case d|〈x,x′〉 is injective.

Moreover, in any case the minimal model is formal.

Proof. A G2-manifold is 7-dimensional. In particular, by Poincaré Duality its Euler
characteristic vanishes. By equation (1.15) we therefore know that
dimπodd(M) ⊗ Q > dimπeven(M) ⊗ Q. Let

(∧
V,d

)
be the minimal model of M .

Since M is simply-connected, this result on homotopy groups thus translates to
dimV odd > dimV even.

We shall now proceed by a case by case check depending on the number and the
degrees of even-degree generators. We always have the existence of a closed three-form
ω ∈ V 3—it cannot be decomposable, as M is simply-connected. By Poincaré Duality
we therefore obtain a closed four-form. Given a certain configuration of even-degree
generators we use equation (3.50) to compute all the possible configurations of odd-
degree generators from partitions of 7 +

∑
j(deg yj − 1) which contain the element 3.

Equations (3.47) and (3.48) limit the number of generators of V and their degrees.
We shall give the generators and their index will denote their degree. (The class ω is
of degree 3 always.)

As a showcase computation we shall do the first case explicitly: Assume there is
exactly one even generator in degree 2. Then equation (3.50) yields

∑
i deg xi = 7 + 1.

With the existence of the three-form ω only the partition (3, 5) of 8 is a partition that
gives the degrees of odd-degree generators, since M is simply-connected, i.e. V 1 = 0.
Under all these restrictions these are the remaining possibilities:

V = 〈a2, ω, x5〉(3.51)
V = 〈ω, a4, x7〉(3.52)
V = 〈a2, b2, ω, x3, x

′
3〉(3.53)

V = 〈a2, ω, x3, b4, x
′
5〉(3.54)

(There cannot be more than three even-degree generators as this would contradict
equation (3.48). If there are three even-degree generators they are all of degree 2.
Then there have to be at least four odd-degree generators. Their degree is at least 3
each. However, 4 · 3 = 12 > 10 = 7 + 3 · (2− 1) contradicting equation (3.50).)

Let us step through the different cases. We always have dω = 0.
In case (3.51) we obtain da2 = 0 by degree. Moreover, dx5 ∈ (

∧
V )6 = 〈a3〉. Thus,

up to multiples, i.e. up to isomorphisms of the model, we obtain dx5 = a3
2. Indeed,

dx5 6= 0 as this would admit the closed non-exact class x5 · ω in degree 8. This yields
the first algebra in the assertion.

In case (3.52) by the analogous argument we have da4 = 0 and dx7 = a2
4 yielding

the second algebra in the assertion.
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In case (3.53) we have da2 = db2 = 0 by degree. We therefore obtain that
dx3,dx′3 ∈ 〈a2

2, b
2
2, a2b2〉. None of the differentials may vanish as this would produce—

by multiplication with ω—a closed non-exact class in degree 6 which would have to be
Poincaré dual to a class in degree one. Since the space is simply-connected, this may
not be the case. This argument applied to a linear combination of x3 and x′3 shows
that d|〈x3,x′3〉 is injective.

In case (3.54) we have that da2 = 0 by degree. Equally, by degree we have
dx3 ∈ 〈a2, b4〉; thus by minimality we obtain dx3 ∈ 〈a2〉. If dx3 6= 0, i.e.
dx3 = a2 without restriction, we obtain [a2] = 0 and [a2 · ω] = 0 in cohomology.
This contradicts property (3.45). Thus dx3 = 0 and x3 defines a non-vanishing class in
cohomology. Hence we obtain that dimH3(M) = dim〈ω, x3〉 = 2 and the same holds
for dimH4(M) = 2 by duality. Thus, in particular, we obtain db4 = 0 by degree. Hence
we compute dimH5(M) = dim〈[a2 ·ω], [a2 ·x3]〉 = 2. Since dimH2(M) = dim〈a2〉 = 1,
this contradicts Poincaré Duality.

The first two models are easily seen to have the rational homotopy type of CP2×S3

and S3 × S4 respectively. So they are cartesian products of symmetric spaces. Hence
they are formal by 1.36 and theorem 1.47.

Every model in the third family is formal, too: We shall prove this by an application
of theorem 1.41. For this split V = C ⊕ N with C := 〈a2, b2, ω〉 and N := 〈x3, x

′
3〉.

Then ker d|V = C, since we showed d|〈x3,x′3〉 to be injective. Every element in the
ideal I(N) lies in degree 5, 6, 7, . . . or higher. In degree six or in degree higher than
seven every closed element in the ideal must be exact, since in these degrees rational
cohomology vanishes. Assume there is a closed non-exact element y ∈ I(N) in degree
5 or 7.

Let us first deal with the case when deg y = 5. We have

dimH5(M) ≥ dim〈[a2 · ω], [b2 · ω]〉 = 2

since a2, b2, ω are closed and since every element in degree 4 is closed. Thus by duality
we see dimH5(M) = dimH2(M) = 2 and H5(M) = 〈[a2 · ω], [b2 · ω]〉. We assumed y
to represent a non-vanishing cohomology class [y] ∈ H5(M). As there is no relation in
degree 4, i.e. no element with non-trivial differential, we obtain that

[y] 6∈ 〈[a2 · ω], [b2 · ω]〉⊆
∧
C

and that H5(M) = 3; a contradiction.
Suppose now that y ∈ (I(N))7 is closed and non-exact. By reasons of degree we

obtain

y ∈ 〈x3 · a2
2, x3 · a2 · b2, x3 · b22, x′3 · a2

2, x
′
3 · a2 · b2, x′3 · b22〉

As any cohomology class in degree seven is represented by a multiple of a2 · ω 6∈ I(N)
by property (3.45) and by Poincaré Duality, we see that there must be a relation in
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degree six, i.e. an element y′ ∈
(∧

V
)6 with

dy′ = k · y − a2
2 · ω(3.55)

for some 0 6= k ∈ Q. By reasons of degree we have

y′ ∈ 〈x3 · x′3, x3 · ω, x′3 · ω〉

So let y′ = k1 · x3 · x′3 + k2 · x3 · ω + k3 · x′3 · ω for ki ∈ Q and compute

dy′ = k1((dx3)x′3 − x3(dx′3)) + k2(dx3)ω + k3(dx′3)ω

with k1((dx3)x′3−x3(dx′3)) ∈
∧
〈x3, x

′
3, a2, b2〉 and k2(dx3)ω+k3(dx′3)ω ∈ ω ·

∧
〈a2, b2〉.

Combine this with (3.55) to obtain that

d(k2x3 + k3x
′
3) = k2(dx3) + k3(dx′3) = −a2

2

This, however, implies that d(−(k2x3 +k3x
′
3)ω) = a2

2ω, which contradicts (3.45). Thus
we cannot find a suitable element y′ and there is no closed non-exact element y in
(I(N))7.

Summarising our reasoning, we see that there is no closed non-exact element in
I(N) at all. Thus by theorem 1.41 we obtain that M is formal.

In [13], example 8.5, p. 131, a simply-connected non-formal manifold is constructed
which has all the known topological properties of a G2-manifold ([13], p. 128). We
now see that such an example is no longer possible in the category of simply-connected
elliptic spaces.

A consequence of the preceeding propositions is

Theorem 3.37. A rationally elliptic compact simply-connected irreducible Riemannian
manifold (M, g) with Holg(M)⊆Spin(7) is formal.

Proof. It holds that G2⊆Spin(7). Symmetric spaces are formal (cf. example 1.36).
Thus—taking into account all the possible inclusions of Lie groups—Berger’s theorem
yields that Hol(M) ∈ {Spin(7),G2} unless dimM ≤ 6. If dimM ≤ 6, we directly
obtain that M is formal—as so is every manifold of that dimension due to proposition
[63].4.6, p. 574. Now propositions 3.35 and 3.36 finish the proof.

3.4. Low dimensions

In low dimensions, i.e. in dimensions 12, 16 and 20, there are comparatively simple
and completely different proofs for the formality of Positive Quaternion Kähler Mani-
folds. Moreover, we shall study these manifolds under the restrictions imposed by the
assumption of ellipticity.
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3.4.1. Formality

We provide a proof of the formality in low dimensions which relies heavily on the
concept of s-formality—cf. 1.42. We then proceed by theorem 1.43.

Again we may focus on rationally 3-connected Positive Quaternion Kähler Manifolds,
as the symmetric space Gr2(Cn+2) is formal (cf. 1.36 and 1.13).

Theorem 3.38. Let M be a rationally 3-connected Positive Quaternion Kähler Man-
ifold. Suppose dimM ≤ 20. Then M is formal.

First proof of theorem 3.38. Symmetric spaces are formal, hence, in partic-
ular, so are Wolf spaces (1.36). The classification of Positive Quaternion Kähler
Manifolds of dimensions 4 and 8 yields the result in this case.

Dimension 12. Suppose dimM = 12. By theorem 1.43 we need to show 5-
formality: Let

(∧
V,d

) '−→ (APL(M), d) be a minimal model. Since M is 3-connected
we obtain that V 1 = V 2 = V 3 = 0 and that V 4⊆ ker d (from the algorithm on [22].12,
p. 144–145 for example). Moreover, we obtain V 5 = 0, as the cohomology of M is
concentrated in even degrees (cf. 1.13) and since (

∧
V )6 = V 6, i.e. since we need

not place any relations in degree 5. In the terminology of definition 1.42 we choose
C≤5 := V 4 and N≤5 := 0. This yields a homogeneous decomposition V = C ⊕N as
required in 1.42. In particular, there is no closed non-zero element in I5 and M is
formal.

Dimension 16. In this dimension we need to prove 7-formality. We build the
minimal model as above. That is, we obtain V 1 = V 2 = V 3 = 0, V 4 is in bijection
with H4(M). For reasons of degree and since H5(M) = 0, we again obtain V 5 = 0. As
(
∧≥2 V

)≤7 = 0, we see that V 6 lies in the kernel of d and is in bijection with H6(M).
As H7(M) = 0, we see that d|V 7 is injective and that every element in degree seven
represents a relation. We set

C≤7 := V 4 ⊕ V 6

and

N≤7 := V 7

Then clearly V = C ⊕N with C = ker d|V and d|N being injective.
We need to see that there is no closed non-exact element in I7. We obtain that

I7 = N7 ·
∧

(C4 ⊕ C6 ⊕N7)
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is concentrated in odd degrees 7, 11, 13, 15 in the even degree 14 or in degrees strictly
larger than 16.

Whenever H i(M) = 0, every closed form in degree i is necessarily exact. As the
odd-degree cohomology of M vanishes (cf. 1.13), every closed element in degrees
7, 11, 13, 15 is exact. As M is rationally 3-connected the same holds in degree 14 due
to Poincaré Duality.

Dimension 20. Let M now be of dimension 20. We need to prove 9-formality. In
an analogous manner to what we did in the previous cases we see that V 4, V 6 and V 8

are contained in ker d. Moreover, we see that d is necessarily injective on V 7 and V 9.
So set C≤9 := V 4 ⊕ V 6 ⊕ V 8 and N≤9 := V 7 ⊕ V 9. We then obtain

V = (V 4 ⊕ V 6 ⊕ V 8)⊕ (V 7 ⊕ V 9) = C≤9 ⊕N≤9

with C = ker d|V and d being injective on N .
We need to show that every closed element in I≤9 is exact. We obtain that

I9 = (N7 ⊕N9) ·
∧

(C4 ⊕ C6 ⊕N7 ⊕ C8 ⊕N9)

is concentrated in degrees 7, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20 and degrees strictly
larger than 20. For the same reasons as in the case of dimension 16 we may neglect
them all except for degrees 14, 16 and 20. We shall show that in these dimensions
there is no non-trivial closed form in I9.

So we compute:

(I9)14 =
∧

2N7

(I9)16 = N7 ·N9

(I9)20 = N7 ·N7 · C6 ⊕N7 ·N9 · C4

This implies that

d(I9)14 ∈ d(N7 ·N7)⊆C4 · C4 ·N7

d(I9)16 ∈ d(N7 ·N9)⊆C4 · C4 ·N7 ⊕ C4 · C6 ·N9

d(I9)20 ∈ d(N7 ·N7 · C6 ⊕N7 ·N9 · C4)⊆C4 · C4 · C6 ·N7 ⊕ C4 · C4 · C4 ·N9

Let us first deal with the case of degree 14. Every form in (I9)14 is of the form
s =

∑
k akniknjk (with ak ∈ Q) for nik , njk ∈ N7 and 0 6= nik 6= njk 6= 0. Thus

d(s) =
∑
k

ak(d(nik)njk − nikd(njk)) =
∑
β

∑
α

αRβ

bα,β d(nα)nβ
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with bα,β ∈ Q and αRβ ⇔ ∃k : (α = ik ∧ β = jk) ∨ (α = jk ∧ β = ik). As d|N7 is
injective with d(N7)⊆C4 · C4, we obtain that d(s) = 0 if and only if for each fixed
β the sum

∑
α

αRβ

bα,β d(nα) is zero which itself is equivalent to bα,β = 0 for all α. This

requires s = 0.
An analogous reasoning applies to the case of degree 16. The case of degree 20 is

only slightly more complicated and follows in a similar fashion: In degree 20 each
element in I9 is a linear combination s of products of the form niknjkck or ñik ñjk c̃k,
where deg nik = deg njk = 7, deg cl = 6, deg ñik = 7, deg ñjk = 9 and deg c̃l = 4. That
is,

s =
∑
k∈K1

akniknjkck +
∑
k∈K2

bkñik ñjk c̃k

with ak, bk ∈ Q. Suppose ds = 0. We compute

0 = d(s) =
∑
k∈K1

ak
(
d(nik)njk − nikd(njk)

)
ck +

∑
k∈K2

bk
(
d(ñik)ñjk − ñikd(ñjk)

)
c̃k

We observe that bk = 0 for all k ∈ K2, since the summands d(ñik)ñjk c̃k contain the
factor ñjk ∈ (I9)9 and since no other summands contain a factor from (I9)9. Thus

d(s) =
∑
k∈K1

ak(d(nik)njk − nikd(njk))ck,

and we may argue in a way completely analogous to the reasoning in degree 14.

We can provide yet another proof for the formality of Positive Quaternion Kähler
Manifolds in dimensions 12 and 16. This proof uses far more structure theory of
Positive Quaternion Kähler Manifolds.

Second proof of theorem 3.38. By theorem 1.18 Positive Quaternion Kähler
Manifolds in dimensions 12 and 16 permit a smooth effective S1-action. The fixed-point
components of such an action are either again Positive Quaternion Kähler Manifolds
or Kähler manifolds. Due to theorem [10].VII.2.1, p. 375 and the remark on [10].VII.2,
p. 378, we conclude that the rational homology of each fixed-point component is
concentrated in even degrees, as so is H∗(M) by 1.13. For the same reason the spectral
sequence of the fibration

M ↪→ ES1 ×S1 M → BS1

of the Borel construction degenerates at the E2-term.
As we may suppose M to be rationally 3-connected, we see that every form of degree

smaller than dimM in V even lies in the kernel of d: In the case of dimension 12 this
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follows from the fact that there is no non-trivial closed form in V 11. (This is due
to the fact that—in the notation of the first proof—an element in

(∧
V
)11 lies in

C4 ·N7.) If dimM = 16 we need to observe that there are no non-trivial closed forms
in
(∧

V
)11,

(∧
V
)13 and

(∧
V
)15. This follows in the same way.

Using the classification of Positive Quaternion Kähler Manifolds until dimension 8
and the fact that Kähler manifolds and symmetric spaces are formal (cf. 1.36) we are
done by an application of corollary [55].5.9, p. 2785.

Thus, given the formality of 12-dimensional Positive Quaternion Kähler Manifolds,
we conclude that 16-dimensional Positive Quaternion Kähler Manifolds are formal by
means of the corollary.

3.4.2. Ellipticity

Let us now investigate Positive Quaternion Kähler Manifolds in dimensions 16 and
20 under the hypothesis of rational ellipticity. Since Wolf spaces are elliptic, as they
are homogeneous (cf. 1.49), this is a plausible assumption.

We shall first see that Positive Quaternion Kähler Manifolds M of arbitrary dimen-
sion satisfy the rational dichotomy, i.e. that they are either elliptic or hyperbolic.

This follows directly: As they are compact manifolds, the (rational) homology
of Positive Quaternion Kähler Manifolds is finite-dimensional. Hence a Positive
Quaternion Kähler Manifold M admits a model

(∧
V,d

)
with a finite-dimensional

vector space V—cf. the corollary on page [22], p. 146. As M is simply-connected, thus
also its rational Lusternik–Schnirelmann category cat0(M) <∞ is finite (cf. [22].32.4,
p. 438) and M satisfies the rational dichotomy.

We remark that even more can be said: As M4n additionally is formal (cf. 3.10), its ra-
tional cup-length equals its rational Lusternik–Schnirelmann category, i.e.
n = c0(M) = cat0(M)—cf. 3.11. Moreover, by the formality of the twistor space
together with its Hard-Lefschetz property we obtain

2n+ 1 = c0Z = cat0Z ≥ cat0M + c0S2 = n+ 1

(cf. example [22].29.4, p. 388). The inequality matches a more general theorem by
Jessup (cf. proposition [22].30.8, p. 410).

So from now on we shall assume M to be a rationally elliptic. Since the cohomology
of M is concentrated in even degrees (cf. 1.13) we obtain that M then is an F0-space.
In particular, its formality then also follows from theorem 1.52.

We adapt some of the formulas (1.8), . . . , (1.16), where the xi are a homogeneous
basis of πodd(M)⊗Q and the yj are a homogeneous basis of dimπeven(M)⊗Q:

dimπodd(M)⊗Q ≤ cat0M(3.56)
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∑
deg xi ≤ 2 dimM − 1

∑
deg yj ≤ dimM(3.57)

dimM =
∑
i

deg xi −
∑
j

(deg yj − 1)(3.58)

Since its cohomology is concentrated in even degrees, the manifold M has positive
Euler characteristic and we obtain that

dimπodd(M)⊗Q = dimπeven(M)⊗Q(3.59)

We denote by

ci := dimπi(M)⊗Q

the “homotopy Betti numbers” of M .

Theorem 3.39. Suppose M to be a rationally 3-connected 16-dimensional Positive
Quaternion Kähler Manifold. Then its non-trivial Betti numbers bi (up to Poincaré
Duality) together with its (non-trivial) homotopy Betti numbers ci are given by one of
the following possibilities:

b4 = b8 = 1, b6 = 0 and c4 = 1, c19 = 1

or

b4 = 3, b6 = 0, b8 = 4 and c4 = 3, c7 = 2, c11 = 1

In particular, we obtain that an elliptic 16-dimensional Positive Quaternion Kähler
Manifold is rationally a homology Wolf space.

Proof. Since M is formal, corollary (3.11) yields in particular that cat0M = 1
4 dimM

and by (3.56) and (3.59) we obtain:

(3.60) dimπeven(M)⊗Q = dimπodd(M)⊗Q ≤ 1
4 dimM

Recall the equation

−1 + 3b4 − b6 = 2b8

from (1.2). Combining this equation with the Hard-Lefschetz property (cf. 1.13) yields

(b4, b6, b8) ∈ {(1, 0, 1), (2, 1, 2), (3, 0, 4), (3, 2, 3), (4, 1, 5), (4, 3, 4), (5, 0, 7),
(5, 2, 6), (5, 4, 5), . . . }
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(The remaining triples satisfy b4 ≥ 6.) As in the proof of theorem 3.38 we form the
minimal model

(∧
V,d

)
of M and we see that c1 = c2 = c3 = 0, c4 = b4, c5 = 0,

c6 = b6, since ci = dimVi. Thus by equation (3.60) we have b4 + b6 ≤ 4 in particular,
which reduces the list to the triples

(b4, b6, b8) ∈ {(1, 0, 1), (2, 1, 2), (3, 0, 4)}

If b4 = 1, then M has the rational cohomology algebra of HP4. Thus by formality
it is weakly equivalent to the quaternionic projective space. In this case we obtain
that c19 = 1 is the only non-trivial homotopy Betti number other than c4 = 1.

For the case b4 = 2 we may cite theorem [38].1.1, p. 2, which excludes exactly a
possible occurence of this Betti number.

If b4 = 3, again by (3.57) and (3.59) we have

dimπodd(M)⊗Q = dimπeven(M)⊗Q = 3

We compute

dim
(∧

V
)8 = dim

(∧
2 V 4 ⊕ V8

)
= dim Sym2(V 4) + c8 =

b4(b4 + 1)
2

+ c8 = 6 + c8

As d|V 7 is injective, we obtain that

4 = dimH8(M) = dim
(∧

V
)8 − dimV 7 = 6 + c8 − c7

As dimπeven(M)⊗Q = 3, we see that c8 = 0 and that c7 = 2. By (3.58) we compute
that c11 = 1 and that there is no further rational homotopy.

Thus there only remain configurations of Betti numbers which are realised by Wolf
spaces (cf. corollary A.2), and so M is rationally a homology Wolf space. By corollary
1.12 this clearly extends to the case when b2 6= 0.

Similar computations can be done in dimension 20, where still only very few possible
configurations for the bi and ci exist. We shall not bore the reader with more details
and with computations that blow up dramatically.
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Classification Results

In this chapter we combine several relations from Index Theory with the connectivity
lemma, with further properties of Positive Quaternion Kähler Manifolds and with Lie
theoretic arguments to obtain new properties of Positive Quaternion Kähler Manifolds
and partial classification results in low dimensions. By this we mainly refer to dimension
20 beside dimensions 16 and 24.

Several arguments involve heavy computations. All of these were done with the help
of Mathematica 6.01 or Maple 9 or later programmme versions respectively.

4.1. Preparations

This section is devoted to a computation of several indices ip,q in terms of the char-
acteristic numbers of the complexified tangent bundle TCM for a Positive Quaternion
Kähler Manifold M of dimension 20. That is, we compute

ip,q = 〈Â(M) · ch(Rp,q),M〉

with Rp,q =
∧p

0E ⊗ SqH as usual. For the analogous computations in dimension 16
see chapter E of the appendix. The formulas relating these indices to other invariants
are given in theorem 1.17. For 5 + p+ q even they become:

ip,q =


0 for p+ q < 5
(−1)p(b2p(M) + b2p−2(M) for p+ q = 5
d for p = 0, q = 7

where d = dim Isom(M).
Combining these equations with our computations yields the fundamental system of

equations we shall mainly be concerned with in the following sections. It is linear in
the characteristic numbers of M .
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We shall compute these indices in terms of characteristic classes u = −c2(H)
respectively c2, c4, . . . , c10 of the well-known bundles H and E. Using the formula
ch(E) =

∑10
i=1 e

xi (for the formal roots xi), the analogue for the bundle H and the
fact that Chern classes may be described as the elementary polynomials in the formal
roots one obtains easily:

ch(H) =2 + u+
u2

12
+

u3

360
+

u4

20160
+

u5

1814400

ch(E) =10− c2 +
1
12
(
c2

2 − 2c4

)
+

1
360

(
− c3

2 + 3c2c4 − 3c6

)
+

1
20160

(
c4

2 − 4c2
2c4 + 2c2

4 + 4c2c6 − 4c8

)
+

1
1814400

(
− 5c10 − c5

2 + 5c3
2c4 − 5c2c

2
4 − 5c2

2c6 + 5c4c6 + 5c2c8

)

Now use the formula TCM = E ⊗H to successively compute the Chern classes of the
complexified tangent bundle and the Pontryagin classes pi of M :

p1 =− (2c2 − 10u)

p2 =c2
2 + 2c4 − 14c2u+ 45u2

p3 =− (2c2c4 + 2c6 − 8c2
2u+ 40c2u

2 − 120u3)

p4 =c2
4 + 2c2c6 + 2c8 − 10c2c4u+ 22c6u+ 28c2

2u
2 − 40c4u

2 − 56c2u
3 + 210u4

p5 =− (2c10 + 2c4c6 + 2c2c8 − 6c2
4u+ 4c2c6u+ 52c8u+ 18c2c4u

2 − 78c6u
2

− 56c2
2u

3 + 128c4u
3 + 28c2u

4 − 252u5)

Filling in these Pontryagin classes into the characteristic series QÂ of the Â-genus,
which is given by

1− p1

24
+

1
5760

(
7p2

1 − 4p2

)
+

1
967680

(
− 31p3

1 + 44p1p2 − 16p3

)
+

1
464486400

(
381p4

1 − 904p2
1p2 + 208p2

2 + 512p1p3 − 192p4

)
+

1
122624409600

(
− 2555p5

1 + 8584p2
1p2 − 4976p1p

2
2 − 5856p2

1p3

+ 2688p2p3 + 3392p1p4 − 1280p5

)
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yields the Â-genus

Â(M) =1 +
1
12
(
c2 − 5u

)
+

1
720

(3c2
2 − c4 − 28c2u+ 65u2

)
+

1
60480

(10c3
2 − 9c2c4 + 2c6 − 136c2

2u+ 55c4u+ 570c2u
2 − 820u3

)
+

1
3628800

(
21c4

2 − 34c2
2c4 + 5c2

4 + 13c2c6 − 3c8 − 384c3
2u+ 409c2c4u

− 113c6u+ 2274c2
2u

2 − 1060c4u
2 − 5736c2u

3 + 5760u4
)

+
1

479001600
(
90c5

2 − 219c3
2c4 + 87c2c

2
4 + 109c2

2c6 − 32c4c6 − 43c2c8

+ 10c10 − 2136c4
2u+ 3990c2

2c4u− 675c2
4u− 1834c2c6u+ 525c8u

+ 16524c3
2u

2 − 19740c2c4u
2 + 6155c6u

2 − 57576c2
2u

3 + 29935c4u
3 + 98815c2u

4

− 73985u5
)

We now compute the Chern characters of the exterior powers of E. For this we use
that the roots of

∧k E are given by yi1,...,ik = xi1 + · · ·+ xik for 1 ≤ i1 < · · · < ik ≤ 10.

ch(
∧

2E) =45− 8c2 +
1
3
(
2c2

2 − c4

)
+

1
180

(
− 4c3

2 − 3c2c4 + 33c6

)
+

1
5040

(
2c4

2 + 6c2
2c4 + 11c2

4 − 76c2c6 + 118c8

)
+

1
907200

(
− 4c5

2 − 25c3
2c4 − 95c2c

2
4 + 445c2

2c6 + 5c4c6 − 1075c2c8

+ 1255c10

)
ch(
∧

3E) =120− 28c2 +
1
3
(
7c2

2 + 4c4

)
+

1
90
(
− 7c3

2 − 24c2c4 + 24c6

)
+

1
720

(
c4

2 + 8c2
2c4 + 8c2

4 − 8c2c6 − 136c8

)
+

1
453600

(
− 7c5

2 − 100c3
2c4 − 260c2c

2
4 + 100c2

2c6 − 640c4c6

+ 7460c2c8 − 18260c10

)
ch(
∧

4E) =210− 56c2 +
1
3
(
14c2

2 + 17c4

)
+

1
180

(
− 28c3

2 − 141c2c4 − 129c6

)
+

1
720

(
2c4

2 + 22c2
2c4 + 19c2

4 + 68c2c6 + 22c8

)
+

1
907200

(
− 28c5

2 − 535c3
2c4 − 1265c2c

2
4 − 3245c2

2c6 − 5125c4c6

− 6205c2c8 + 220585c10

)
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ch(
∧

5E) =252− 70c2 +
1
6
(
35c2

2 + 50c4

)
+

1
36
(
− 7c3

2 − 39c2c4 − 57c6

)
+

1
288

(
c4

2 + 12c2
2c4 + 52c2c6 + 10c2

4 + 140c8

)
+

1
181440

(
− 7c5

2 − 145c3
2c4 − 335c2c

2
4 − 1199c2

2c6 − 1537c4c6

− 8881c2c8 − 78095c10

)
These exterior powers already determine all the higher ones. For this recall the
definition of the Hodge ∗-operator:

∗ :
∧k

Ex →
∧10−k

Ex ei1 ∧ · · · ∧ eik 7→ ±ej1 ∧ · · · ∧ ej10−k

where the ei form a basis of Ex and where {j1, . . . , j10−k} is the complement of
{i1, . . . , ik} in {1, . . . , 10}. The plus sign is chosen if the permutation
{i1, . . . , ik, j1, . . . , j10−k} is even, the minus sign if it is odd. The operator extends to
a bundle isomorphism ∧k

E ∼=
∧10−k

E

for 0 ≤ k ≤ 10 and

ch
(∧k

E
)

= ch
(∧10−k

E
)

respectively

ch(
∧k

0
E) = ch(

∧k
E)− ch(

∧k−2
E)

= ch(
∧10−k

E)− ch(
∧10−(k−2)

E)

= −ch(
∧12−k

0
E)

and

ip,q = −i12−p,q

In particular, we obtain that i6,q = 0 for all q ∈ N0, since ch(
∧6E) = ch(

∧4E).
It remains to compute the Chern characters of the symmetric bundles. For this we

may use the Clebsch-Gordan formula

SjH ⊗ SkH ∼=
min(j,k)∑
r=0

Sj+k−2rH
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to obtain

ch(S0H) =1

ch(S1H) =ch(H)

ch(S2H) =ch(H)2 − 1

ch(S3H) =ch(H)3 − 2ch(H)

ch(S4H) =ch(H)4 − 3ch(H)2 + 1

ch(S5H) =ch(H)5 − 4ch(H)3 + 3ch(H)

ch(S6H) =ch(H)6 − 5ch(H)4 + 6ch(H)2 − 1

ch(S7H) =ch(H)7 − 6ch(H)5 + 10ch(H)3 − 4ch(H)

since the irreducible representations of Sp(1) are the symmetric powers of C2.

Alternatively, we may use a similar approach as for the exterior powers using the roots
of the symmetric bundles given by the yi1,...,ik = xi1+· · ·+xik for 1 ≤ i1 ≤ · · · ≤ ik ≤ 10.

This enables us to compute the following indices in terms of characteristic numbers.
(The “indices” ip,q with p+ q+ 5 odd are to be regarded as formal expressions, as they
do not necessarily correspond to twisted Dirac operators.) As we have seen, as for the
first parameter p it is sufficient to compute the indices from p = 0 to p = 5.

i0,0 =
1

479001600
(
10c10 + 90c5

2 − 32c4c6 − 2136c4
2u− 675c2

4u+ 525c8u+ 6155c6u
2

+ 29935c4u
3 − 73985u4 − 3c3

2(73c4 − 5508u2) + c2
2(109c6 + 3990c4u− 57576u3)

+ c2(87c2
4 − 43c8 − 1834c6u− 19740c4u

2 + 98815u4)
)

i0,1 =
1

239500800
(
10c10 + 90c5

2 − 32c4c6 − 750c4
2u− 345c2

4u+ 327c8u− 643c6u
2

− 22799c4u
3 + 90817u5 − 3c3

2(73c4 + 1840u2) + c2
2(109c6 + 1746c4u+ 50400u3)

+ c2(87c2
4 − 43c8 − 976c6u+ 4284c4u

2 − 116543u4
)

i0,3 =
1

119750400
(
10c10 + 90c5

2 − 32c4c6 + 4794c4
2u+ 975c2

4u− 465c8u− 4075c6u
2

+ 87025c4u
3 + 310465u5 − 3c3

2(73c4 − 8368u2)

+ c2
2(109c6 − 7230c4u− 135456u3)

+ c2(87c2
4 − 43c8 + 2456c6u− 6540c4u

2 − 277055u4)
)



134 4 Classification Results

i0,5 =
1

79833600
(
10c10 + 90c5

2 − 32c4c6 + 14034c4
2u+ 3175c2

4u− 1785c8u

+ 74685c6u
2 − 1546255c4u

3 + 44944065u5 + c3
2(−219c4 + 498544u2)

+ c2
2(109c6 − 22190c4u+ 6228704u3)

+ c2(87c2
4 − 43c8 + 8176c6u− 404740c4u

2 + 30037185u4)
)

i0,7 =
1

59875200
(
10c10 + 90c5

2 − 32c4c6 + 26970c4
2u+ 6255c2

4u− 3633c8u

+ 362357c6u
2 − 18291599c4u

3 + 3830160577u5 − 3c3
2(73c4 − 682800u2)

+ c2
2(109c6 − 43134c4u+ 61087200u3)

+ c2(87c2
4 − 43c8 + 16184c6u− 1760556c4u

2 + 796656577u4)
)

i1,0 =
1

239500800
(
− 610c10 + 450c5

2 + 1952c4c6 − 9294c4
2u− 49575c2

4u+ 22425c8u

− 149405c6u
2 + 690875c4u

3 − 369925u5 + c3
2(−2481c4 + 60576u2)

+ c2
2(−4669c6 + 43050c4u− 179904u3)

+ c2(4593c2
4 − 3317c8 + 56104c6u− 224760c4u

2 + 113915u4))

i1,2 =
1

79833600
(
− 610c10 + 450c5

2 + 1952c4c6 + 9186c4
2u+ 60425c2

4u− 43575c8u

+ 8115c6u
2 + 750715c4u

3 − 693765u5 − c3
2(2481c4 + 48544u2)

− c2
2(4669c6 + 39670c4u+ 144704u3)

+ c2(4593c2
4 − 3317c8 − 101416c6u+ 203800c4u

2 + 43515u4)
)

i1,4 =
1

47900160
(
− 610c10 + 450c5

2 + 1952c4c6 + 46146c4
2u+ 280425c2

4u− 175575c8u

− 5810093c6u
2 − 31189765c4u

3 − 6917125u5 − 3c3
2(827c4 − 333472u2)

− c2(−4593c2
4 + 3317c8 + 416456c6u+ 3272904c4u

2 + 8410117u4)

− c2
2(4669c6 + 4770(43c4u− 1504u3))

)
i2,1 =

1
5443200

(
15070c10 + 90c5

2 − 2864c4c6 − 246c4
2u+ 855c2

4u+ 21567c8u

− 153103c6u
2 − 79439c4u

3 + 90817u5 − 3c3
2(241c4 + 2112u2)

+ c2
2(13c6 + 1146c4u+ 21984u3)

+ c2(1599c2
4 + 8369c8 − 7840c6u+ 32784c4u

2 + 56257u4)
)

i2,3 =
1

2721600
(
15070c10 + 90c5

2 − 2864c4c6 + 5298c4
2u+ 59775c2

4u+ 530535c8u

+ 1506665c6u
2 + 60625c4u

3 + 310465u5 + c3
2(−723c4 + 53088u2)

+ c2
2(13c6 − 36630c4u+ 109728u3)

+ c2(1599c2
4 + 8369c8 − 5848c6u− 307800c4u

2 + 414145u4)
)
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i3,0 =
1

21772800
(
− 876370c10 + 450c5

2 − 38176c4c6 − 7278c4
2u− 73575c2

4u

+ 1714425c8u+ 571315c6u
2 − 293125c4u

3 − 369925u5

+ c3
2(−4497c4 + 28512u2)

+ c2
2(9347c6 + 55050c4u− 22848u3)

+ c2(10641c2
4 + 15931c8 − 121112c6u− 159720c4u

2 − 439045u4)
)

i3,2 =
1

7257600
(
− 876370c10 + 450c5

2 − 38176c4c6 + 11202c4
2u+ 190025c2

4u

− 3765975c8u− 158205c6u
2 − 636485c4u

3 − 693765u5

− c3
2(4497c4 + 3808u2)

+ c2
2(9347c6 − 104470c4u− 225728u3)

+ c2(10641c2
4 + 15931c8 + 201368c6u− 126680c4u

2 − 1062405u4)
)

i4,1 =
1

7257600
(
3509330c10 + 450c5

2 − 61216c4c6 + 282c4
2u+ 46275c2

4u

+ 10275c8u+ 994705c6u
2 + 1245365c4u

3 + 454085u5

− 3c3
2(1709c4 + 11376u2)

+ c2
2(18977c6 − 15270c4u+ 24672u3)

+ c2(12531c2
4 − 73079c8 + 101488c6u+ 228300c4u

2 + 799685u4)
)

i5,0 =
1

3628800
(
− 1415810c10 + 90c5

2 − 15488c4c6 − 1254c4
2u− 13275c2

4u

− 1020075c8u− 599905c6u
2 − 314465c4u

3 − 73985u5

− 3c3
2(367c4 − 832u2)

+ c2
2(5191c6 + 10290c4u+ 11136u3)

− c2(−2733c2
4 + 33097c8 + 25816c6u+ 3360c4u

2 + 143105u4)
)

For the sake of completeness we now give a complete description of what results
from solving the described linear system of equations:

c5
2 =− 1686169

315
+

14345b10

12
− 3239b4

9
− 8879b6

9
+ 361b8 +

19697d
63

+
19e
3

− 50f
3

+
323450368i0,0

315
− 8q

3
− 10724s

27
− 4894t

27
− 829913ṽ

45

c3
2c4 =− 69653

210
+

1977b10

4
− 2197b4

15
− 950b6

3
+

927b8
5

+
3161d

84
+ 3e− 6f

+
21455872i0,0

105
+ 3q − 1544s

9
− 1249t

9
− 34967ṽ

15
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c2
2c6 =

9449
42

+ 148b10 −
3352b4

15
− 359b6

3
+

912b8
5

+
149d
84

+ 2f

+
3979264i0,0

105
− 719s

9
− 382t

9
− 3014ṽ

15

c2c8 =
5129
70

+
131b10

2
− 244b4

5
− 61b6 +

192b8
5
− 23d

28

+
95744i0,0

35
− 22s

3
− 41t

3
+

165ṽ
5

c10 =− 181
70

+
3b10

4
+

7b4
5

+ 2b6 +
9b8
5

+
d

28
+

512i0,0

35
− s

3
− 2t

3
− 7ṽ

5

c4
2u =− 37109

210
− 39b10

4
+

1079b4
15

+
202b6

3
− 39b8

5
+

929d
84

− 14587904i0,0

105
+ 3q +

4s
9
− 394t

9
− 10631ṽ

15

c3
2u

2 =
33827
420

− 33b10

4
+

53b4
15

+
35b6

6
− 33b8

5
− 473d

168

+
1443328i0,0

105
+

40s
9

+
29t
9

+
2032ṽ

15

c2
2c4u =

−2315
42

− 63b10

4
+

553b4
15

+
128b6

3
− 63b8

5
+

199d
84

− 2768896i0,0

105
+ 2q +

74s
9
− 161t

9
− 2179ṽ

15

c2
2u

3 =
6347
420

+
3b10

4
− 13b4

15
− 2b6

3
+

3b8
5
− 65d

168
− 19456i0,0

21
− 2s

9
− t

9
+

50ṽ
3

c2c6u =
907
210
− 9b10

2
− 172b4

15
− 23b6

3
− 18b8

5
+

11d
84

− 478208i0,0

105
+

49s
9

+
92t
9
− 212ṽ

15

c2c4u
2 =

349
21
− 27b10

4
+

17b4
15

+
13b6

3
− 27b8

5
− 13d

21

+
295936i0,0

105
+

40s
9

+
29t
9

+
439ṽ
15

c2u
4 =− 81

70
+

3d
28

+
1536i0,0

35
− 31ṽ

5

c4u
3 =

257
35

+
9b10

4
− 13b4

5
− 2b6 +

9b8
5
− d

7
− 2048i0,0

35
− 2s

3
− t

3
+

33ṽ
5

b2 =
4
5
− 8b4

5
− b6 +

4b8
5

+ b10

The result depends on the variables e = c2
4c2, f = c4c6, q = c2

4u, s = c6u
2, t = c8u and

ṽ = u5, on the Betti numbers bi, on the dimension of the isometry group d and on the
Â-genus i0,0.

Observe that the last line just reestablishes the well-known relation (1.3) on Betti
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numbers from theorem 1.13.
Moreover, we may give corresponding expressions for higher indices. So we obtain

i1,6 =
1
45

(−2109− 1395b10 + 1752b4 + 1275b6 − 1116b8 − 15d− 98304i0,0 + 320s

+ 160t+ 5088ṽ)

i2,5 =
1

280
(22661 + 5915b10 − 4984b4 − 5075b6 + 4732b8 − 905d− 1015808i0,0

+ 245i1,6 − 1120t+ 33376ṽ)

The following indices are written in the two variables i1,6 and i2,5:

i3,4 =− 1871
35
− 29b10 +

187b4
5

+ 24b6 −
116b8

5
+

6d
7
− 131072i0,0

35
− 2i1,6 + i2,5 +

v

10

i4,3 =
1382
35

+ 10b4 + 2b8 −
23d
7
− 262144i0,0

35
− i2,5 +

v

5

i5,2 =
3001
35

+ 22b10 − 25b4 − 24b6 + 17b8 −
22d
7
− 131072i0,0

35
+ i1,6 − i2,5 +

v

10

Note that their integrality is already covered by known relations. Moreover recall the
formula ∑

p=0

n(−1)pip,n+2−p = 2χ(M) + b2n−2 + b2n

from proposition [67].84, p. 117, which—in the case n = 5—is also a direct consequence
of our computations.

Moreover, we know that M has a negative definite intersection form. Hence its
signature equals −b10 (cf. theorem 1.16). However, we may prove this independently
by formulating the L-genus of M as the number

− 1
467775

(2(5110c10 − 45c5
2 + 4438c4c6 − 1011c4

2u− 13275c2
4u+ 142050c8u

− 89620c6u
2 + 152260c4u

3 − 112085u5 + c3
2(76c4 − 1641u2)− 2c2

2(613c6 − 3705c4u

+ 28473u3) + c2(−1083c2
4 + 3272c8 − 5584c6u+ 40560c4u

2 − 64835u4)))

This expression is a linear combination of certain terms in the system of equations
(cf. page 135). The system of equations then directly yields that this term equals −b10.

Now compute the Hilbert Polynomial f of M in the parameters d, v and i0,0 ∈ Q.
(Assume M to be rationally 3-connected.) The Hilbert Polynomial f on M is given by

f(q) = indD(SqH) = 〈Â · ch(SqH), [M ]〉 = i0,q
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The formula

(H − 2)⊗m =
m∑
j=0

(−1)j
((

2m
j

)
−
(

2m
j−2

))
Sm−jH

resulting from the Glebsch-Gordan formula now lets us compute the following list of
equations

〈Â(M) · ch(H − 2)⊗0, [M ]〉 =f(0)

〈Â(M) · ch(H − 2)⊗1, [M ]〉 =f(1)− 2f(0)

〈Â(M) · ch(H − 2)⊗2, [M ]〉 =f(2)− 4f(1) + 5f(0)

〈Â(M) · ch(H − 2)⊗3, [M ]〉 =f(3)− 6f(2) + 14f(1)− 14f(0)

〈Â(M) · ch(H − 2)⊗4, [M ]〉 =f(4)− 8f(3) + 27f(2)− 48f(1) + 42f(0)

〈Â(M) · ch(H − 2)⊗5, [M ]〉 =f(5)− 10f(4) + 44f(3)− 110f(2)
+ 165f(1)− 132f(0)

〈Â(M) · ch(H − 2)⊗6, [M ]〉 =f(6)− 12f(5) + 65f(4)− 208f(3) + 429f(2)
− 572f(1) + 429f(0)

〈Â(M) · ch(H − 2)⊗7, [M ]〉 =f(7)− 14f(6) + 90f(5)− 350f(4) + 910f(3)
− 1638f(2) + 2002f(1)− 1430f(0)

〈Â(M) · ch(H − 2)⊗8, [M ]〉 =f(8)− 16f(7) + 119f(6)− 544f(5) + 1700f(4)
− 3808f(3) + 6188f(2)− 7072f(1) + 4862f(0)

〈Â(M) · ch(H − 2)⊗9, [M ]〉 =f(9)− 18f(8) + 152f(7)− 798f(6) + 2907f(5)
− 7752f(4) + 15504f(3)− 23256f(2) + 25194f(1)
− 16796f(0)

〈Â(M) · ch(H − 2)⊗10, [M ]〉 =f(10)− 20f(9) + 189f(8)− 1120f(7) + 4655f(6)
− 14364f(5) + 33915f(4)− 62016f(3) + 87210f(2)
− 90440f(1) + 58786f(0)

〈Â(M) · ch(H − 2)⊗11, [M ]〉 =f(11)− 22f(10) + 230f(9)− 1518f(8) + 7084f(7)
− 24794f(6) + 67298f(5)− 144210f(4) + 245157f(3)
− 326876f(2) + 326876f(1)− 208012f(0)

The leading term of the power series of the Â-genus is 1 and the first non-zero
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coefficient of the power series ch(H − 2)m lies in degree m. Thus we obtain that
〈Â(M) · ch(H − 2)⊗5, [M ]〉 = u5 and all the higher terms vanish.

Moreover, by theorem 1.17 we have f(0) = i0,0, f(1) = f(3) = 0, f(5) = 1 and
f(7) = d. This yields a system of equations which we may solve by

f(0) = 0

f(1) = i0,0

f(2) =
−2816 + 128d− 360448i0,0 − 7v

229376

f(3) = 0

f(4) =
269568− 7040d+ 4685824i0,0 + 273v

1146880

f(5) = 1

f(6) =
228096 + 18304d− 2342912i0,0 − 273v

114688

f(7) = d

f(8) =
13(−143616 + 35200d+ 3063808i0,0 + 595v)

114688

f(9) =
1

140
(−10692 + 1760d+ 262144i0,0 + 63v)

f(10) =
13(−4333824 + 598400d+ 116424704i0,0 + 33915v)

229376

f(11) =
1
14

(−9152 + 1144d+ 262144i0,0 + 91v)
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The Hilbert polynomial has degree 11. Thus we have sufficient data to compute it:

f(q) =i0,0 +
684288− 35200d+ 50462720i0,0 + 2205v

454164480
q

+
2909952− 144000d− 3385851904i0,0 + 8575v

2890137600
q2

+
−41119488 + 2176640d− 3385851904i0,0 − 140931v

26011238400
q3

+
−1059264 + 53280d+ 166330368i0,0 − 3229v

928972800
q4

+
28512− 2640d+ 9240576i0,0 + 257v

464486400
q5

+
84096− 4800d− 4718592i0,0 + 329v

619315200
q6

+
8064− 320d− 524288i0,0 + 7v

619315200
q7

+
−5184 + 480d+ 196608i0,0 − 49v

2167603200
q8

+
−3456 + 320d+ 131072i0,0 − 21v

13005619200
q9

+
v

3715891200
q10

+
v

40874803200
q11

Note that we may substitue (d, v) = (78, 1024) and (d, v) = (36, 264) to obtain the
well-known Hilbert Polynomials

fHP5(5 + 2q) =
1

39916800
(1 + 2q)(2 + 2q)(3 + 2q)(4 + 2q)(5 + 2q)(6 + 2q)

· (7 + 2q)(8 + 2q)(9 + 2q)(10 + 2q)(11 + 2q)

and

f
G̃r4(R9)

(5 + 2q) =
(1 + q)(2 + q)2(3 + q)2(4 + q)2(5 + q)(5 + 2q)(6 + 2q)(7 + 2q)

604800

From theorem [68].1.1, p. 2, we are given the formula

0 ≤ fM (5 + 2q) ≤ fHP5(5 + 2q) =
(

11 + 2q
11

)
for q ∈ N0. So we may compute for each q a lower and an upper bound for
i0,0—depending on d and v. Unfortunately, with q growing, these bounds seem
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to become worse so that we use low values of q—i.e. q = 3 respectively q = 2—to
obtain:

1
14

(−9152 + 262144i0,0 + 1144d+ 91v) ≤ 12376(4.1)

1
140

(−10692 + 262144i0,0 + 1760d+ 63v) ≥ 0(4.2)

Unfortunately, these inequalities are not strong enough to yield the vanishing of the Â-
genus (when filing in the known bounds for d and v). Observe that from the integrality
of indices used in the Hilbert polynomial or from the integrality of Pontryagin classes
one may deduce certain properties on divisibility which, however, do not seem to be
strong enough to make essential progress on the topic.

Let us now compute further relations involving the Â-genus of a Positive Quaternion
Kähler Manifold M . We adapt lemma [66].7.6, p. 169, to dimension 20 and plug in
the expression −(2c2 − 10u) for the first Pontryagin class p1:

8u5 − p1u
4 ≥ 0⇔ 8u5 + (2c2 − 10u)u4 ≥ 0⇔ c2u

4 − u5 ≥ 0(4.3)

From the solution of the fundamental system of equations (cf. page 135) we cite

c2u
4 = −81

70
+

3d
28

+
1536Â(M)[M ]

35
− 31u5

5

Combining it with formula (4.3) yields

−81
70

+
3d
28
− 36u5

5
+

1536Â(M)[M ]
35

≥ 0(4.4)

Recall that 1 ≤ v ≤ 1024. So for d = 0 the equation becomes

−81
70
− 36

5 · 1024
+

1536Â(M)[M ]
35

≥ 0(4.5)

4.2. Recognising quaternionic projective spaces

In this section we shall prove recognition theorems of the following kind: Whenever
the fourth Betti number of a Positive Quaternion Kähler Manifold M equals one, then
M is homothetic to the quaternionic projective space.

This theorem is well-known in dimensions smaller than or equal to 16—cf. 1.15. We
shall generalise it to dimensions 20 and 24. We remark that a general theorem of this
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kind cannot hold true, since the exceptional Wolf spaces equally satisfy b4 = 1—cf. the
remark on [67], p. 89. Nonetheless, as we were told by Gregor Weingart, in dimension
28 a similar recognition theorem—which also identifies the exceptional Wolf space
F4/Sp(3)Sp(1)—seems to be possible.

Let us first give generalisations of the theorem in dimension 16.

4.2.1. Dimension 16

In dimension 16 the relations on Betti numbers given in (1.2) of theorem 1.13 together
with the Hard-Lefschetz property have the following consequence: If b4 = 1 and if we as-
sume M to be rationally 3-connected (cf. 1.12), we obtain
b0 = b4 = b8 = b12 = b16 = 1 with all the other Betti numbers vanishing. So
necessarily every Pontryagin class is a multiple of the corresponding power of the form
u. This motivates the following slight improvement.

Proposition 4.1. If each of the Chern classes ci of the bundle E over a 16-dimensional
Positive Quaternion Kähler Manifold is a (scalar) multiple of the corresponding power
of u, then the manifold already is homothetic to HP4.

Proof. We refer the reader to chapter E of the appendix for the computation of all
the necessary indices ip,q in dimension 16. We then may form the system of equations
as in 1.17. This system is linear in the characteristic numbers.

By assumption we may now replace every Chern class ci by some xiuni for xi ∈ R.
If one focuses on the case b2 = 0 (cf. 1.12), the system of equations can be solved

and it yields d = 55, b4 = b8 = 1, b6 = 0, u4 = 1 (with all the factors xi equal to one).
We then observe that in dimension 55 only semi-simple Lie groups of rank at least 5
appear. Theorem 1.18 then yields the assertion; i.e. the isometry group becomes very
large and permits to identify M as the quaternionic projective space.

If one does not assume b2 = 0, the list of possible configurations for
(d, b2, b4, b6, b8, u4) becomes a little larger. However, the configuration from above
remains the only one with integral d ∈ Z.

Assume b2 = 0. Then the same proof works if one only requires c2 and c4 to be
scalar multiples of u respectively u2. In this case a numerical solving procedure leads
to six different solutions of which the only one with an integral value for d is the
requested one as in proposition 4.1.

Focussing on the case that only c2 is a multiple x ∈ R of u leads to the two equations

d = 7 +
v

6
+
vx

48
(4.6)

b4 =
783
2
− 7

8
v − 9

16
vx− 11

128
vx2 − 1

512
vx3(4.7)

where v = (4u)4 is the quaternionic volume. The element x is integral by the same
reasoning as in the original proof, i.e. the proof of theorem [28].5.1, p. 62. On page 21
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we saw that it is plausible to suppose the vanishing of i1,5 in the case M 6= HP4. This
assumption produces

d =
7(304 + 56x+ 3x2)

16 + 20x+ 3x2
(4.8)

b4 =− 27(1280− 304x− 40x2 + 7x3)
8(16 + 20x+ 3x2)

(4.9)

b6 =
1
36
(
3289− 294x+ 63x2 − 6(c4u

2)x2 − 53200
16 + 20x+ 3x2

(4.10)

− 93548x
16 + 20x+ 3x2

)
b8 =

1
144

(
14410− 1113x− (126x2 − 12(c4u

2))x2 − 1163680
16 + 20x+ 3x2

(4.11)

+
14728x

16 + 20x+ 3x2

)
c2

4 =
1
16

(
− 3546 + 567x− 378x2 + 44(c4u

2)x2 − 821520
16 + 20x+ 3x2

(4.12)

+
445032x

16 + 20x+ 3x2

)
The only integral solution for 8 ≤ d < 55 = dim Sp(5) (cf. theorem 1.18) is given by
x = 4 and d = 28. Then we directly obtain b4 = 3 by (4.9) and also v = 84 by (4.6).
Indeed, by the relations on Betti numbers in 1.13 only two possibilities for (b4, b6, b8)
remain, namely (3, 0, 4) or (3, 2, 3). Equations (4.10) and (4.11) yield c4u

2 = 27
32 in

the first case. By theorem 1.16 we may use the positive definiteness of the bilinear
form Q to see 0 ≤ Q(c4, c4) = c2

4. Yet, in the case (b4, b6, b8) = (3, 2, 3) we obtain the
contradiction c2

4 = −75
16 by (4.12). As a consequence, we have the following theorem:

Theorem 4.2. If M is a rationally 3-connected 16-dimensional Positive Quaternion
Kähler Manifold with i1,5 = 0 and if the class c2 is a scalar multiple of u, then either
M ∼= HP4 or the datum (d, v, b4, b6, b8) = (28, 84, 3, 0, 4) is exactly the one of G̃r4(R8).

We remark that the property that c2 is a multiple of u seems to be a special feature
of G̃r4(Rn+4) for n = 4 among the infinite series of Wolf spaces other than the
quaternionic projective space.

4.2.2. Dimension 20

Let us now prove the result in dimension 20. Again, without restriction we focus on
rationally 3-connected Positive Quaternion Kähler Manifolds M20—cf. 1.12.
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Theorem 4.3. If each of the Chern classes c2i of E over M is a (scalar) multiple of
the corresponding power of u, then M ∼= HP5.

Proof. We proceed as before in dimension 16; i.e. we solve the system of equations
(cf. page 135) setting all characteristic classes to rational multiples of a suitable power
of the form u. As a result we obtain b4 = b8 = 1, b6 = b10 = 0, u5 = 1, all the
scalars are 1 and d = 78. However, such a large isometry group can only occur for the
quaternionic projective space—cf. theorem 1.18.

We remark that for this proof to work we do not need that c6 is a scalar multiple of
u3. We shall now use the observation we stated in lemma 1.14 to finish the reasoning.

Corollary 4.4. If b4(M20) = 1, then M20 ∼= HP5.

Proof. Lemma 1.14 tells us that b4 = 1 implies b8 = 1. By Poincaré Duality we may
conclude that all the c2i ∈ H4i(M) satisfy the condition from theorem 4.3.

Observe that clearly by this corollary we have ruled out an infinite number of
possible configurations of Betti numbers, since it automatically follows that b4 = 1 not
only implies b8 = 1 but also b6 = b10 = 0.

Observe that one may prove this corollary in a slightly different way: Assume only
that c2 and u are scalar multiples and do the same for monomials containing c2 and u.
Use the equations with the additional information b4 = 1 (and b2 = 0) and the result
follows directly.

4.2.3. Dimension 24

We apply similar techniques as before to prove

Theorem 4.5. A 24-dimensional Positive Quaternion Kähler Manifold M with
b4(M) = 1 is homothetic to HPn.

Proof. Again we replace c2 by a scalar multiple of u and do the same for all the
monomials containing c2 as a factor. This and the additional information b4 = 1
(respectively b2 = 0) simplifies the system of equations (cf. 1.17) that we build up as
we did for dimensions 16 and 20. Solving it yields a list of possibilities, which we run
through in order to isolate the one leading to HP6:

We may rule out the first solution, since it yields d = 244724
2891 6∈ Z for the dimension of

the isometry group. The second solution gives d = 105 = dim Sp(7). Thus we directly
know that M ∼= HP6 in this case—cf. theorem 1.18. So what is left is to rule out the
following configuration of solutions, which is marked by

d =
7937019926774969
402874803650560

x1 −
19592196959405797
2417248821903360

x2
2 +

457452279096536909
2417248821903360

− 263256496233
805749607301120

x6
3 +

1176648936457
402874803650560

x5
4 +

14142811929437
161149921460224

x4
5

− 282904843313851
604312205475840

x3
6
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where each xi is a root of

29223x7 − 358275x6 − 6960405x5 + 67759961x4 + 579930789x3 − 4142432537x2

− 9711667063x+ 33284884867

Numerically, the roots of this polynomial are given by

2.156753156, 7.720829360, 11.12408307, 15.23992325,−10.15093795 + 2.570319306i,
− 3.679678028,−10.15093795− 2.570319306i

A computer-based check on all the possible combinations now shows that there are no
integral solutions for d in all these cases. So we are done.

4.3. Properties of interest

In this section we shall show that under slight assumptions some surprising results
on the degree of symmetry of 20-dimensional Positive Quaternion Kähler Manifolds
are obtained.

Proposition 4.6. Unless M20 admits an isometric S1-action, the Â-genus of M20 is
restricted by

0.0321350097 < Â(M)[M ] < 0.6955146790

Proof. The upper bound clearly results from equation (4.1) when substituting in
the extremal value v = 1. For the lower bound we form the linear combination

1
448

(−1053 + 136d+ 32768i0,0) ≥ 0

out of equations (4.2) and (4.4). Plug in d = 0 and the result follows.

Let us now use the fact that the terms f(5 + 2q) = i0,5+2q (for q ≥ 0) are indices of
the twisted Dirac operator D/(S5+2qH); i.e. in particular they are integral. This leads
to congruence relations for the dimension of the isometry group and the quaternionic
volume.

Theorem 4.7. A 20-dimensional rationally 3-connected Positive Quaternion Kähler
Manifold with Â(M)[M ] = 0 satisfies

d ≡ 1 mod 7 and v ≡ 4 mod 20
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Proof. We use the Hilbert Polynomial f of M . Thus, using the assumption that
Â(M)[M ] = 0, we obtain

Z 3 i0,9 = f(9) =
1

140
(−10692 + 1760d+ 63v).

This implies that

− 10692 + 1760d+ 63v ≡ 0 mod 140
⇐⇒ 88 + 80d+ 63v ≡ 0 mod 140
⇐⇒ (d ≡ 1 mod 7) ∨ (v ≡ 4 mod 20)

Remark 4.8. • Any computation of further indices seems to result in the fact
that only denominators appear that divide 22 · 5 · 7. Since vHP5 = 1024 and
since v

G̃r4(R9)
= 264, we see that the relations found in the theorem are the only

ones that may hold on the quaternionic volume when focussing on congruence
modulo m for m|140.

• The dimension dHPn of HPn is given by (n+ 1)(2n+ 3) with

dHPn ≡ (n+ 1)((n+ 1) + (n+ 2)) ≡ (−1)(−1 + 0) ≡ 1 mod n+ 2.

The dimension d
G̃r4(Rn+4)

of G̃r4(Rn+4) is given by

d
G̃r4(Rn+4)

=

{
((n+ 3)/2)(2(n+ 3)/2 + 1) = 1

2(n+ 3)(n+ 4) for n odd
((n+ 4)/2)(2(n+ 4)/2− 1) = 1

2(n+ 3)(n+ 4) for n even

So in any case we have

d
G̃r4(Rn+4)

≡ 1
2
· 1 · 2 ≡ 1 mod n+ 2.

Thus in dimensions without exceptional Wolf spaces—for these it is not true—by
the main conjecture 1.6 it should hold on a rationally 3-connected Positive Quater-
nion Kähler Manifold that the dimension of the isometry group is congruent 1
modulo n+ 2.

�

Corollary 4.9. A 20-dimensional Positive Quaternion Kähler Manifold satisfying
Â(M)[M ] = 0 and possessing an isometry group of dimension greater than 36 is
isometric to the complex Grassmannian or the quaternionic projective space.

Proof. By corollary 1.12 we assume the manifold to be rationally 3-connected. There
are no compact Lie groups in dimensions 43, 50, 57, 64 and 71 with rank smaller than
or equal to 5. Thus theorems 1.18 and 4.7 yield the result.
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We shall now prove the existence of S1-actions on 20-dimensional Positive Quaternion
Kähler Manifolds which satisfy some slight assumptions. For this we use the definiteness
of the intersection form to establish

Lemma 4.10. We have:

u5 ≥ 0 c4
2u ≥ 0 c2

2u
3 ≥ 0 c2

4u ≥ 0

More generally, the same holds for

(kc22 + lc2u+mu2 + nc4)2u ≥ 0

with k, l,m, n ∈ R.

Proof. Recall the generalised intersection form Q from theorem 1.16. All the classes
y from the assertion may be written as y = Q(x, x) for some x ∈ Hr(M) with r ∈ {4, 8}.
However, the intersection form Q is positive definite in degrees divisible by 4 and it
results that Q(x, x) ≥ 0.

Lemma 4.10 yields that c2
2u

3 ≥ 0, which translates to

495392− 14240d− 35651584i0,0 − 1120i1,6 + 707v
35840

≥ 0

after solving the usual system of equations on indices (cf. page 135) and substituting
in the special solution for i1,6. So we obtain:

i1,6 ≤ 495392− 14240d− 35651584i0,0 + 707v
1120

which already shows that for extremal values of v and d, i.e. v = 1024 and d = 0, the
index i1,6 becomes very small.

Now consider the term (c2u + mu2)2u together with the solution from the sys-
tem of equations (cf. page 135) and the solution for i1,6. By lemma 4.10 we have
(c2u+mu2)2u ≥ 0. Suppose d = 0. This has the consequence that

i1,6 ≤ 495392− 35651584i0,0 − 82944m+ 3145728i0,0m+ 707v − 434mv + 35m2v

1120

for all m ∈ R. The right hand side is a parabola in m. Determine the apex of this
parabola as m0 = 41472−1572864i0,0+217v

35v , put it into the inequality and obtain:

i1,6 ≤ − 1
4900v

(214990848 + 309237645312(i0,0)2 + 82516v + 2793v2

+ 131072i0,0(−124416 + 539v))

The right hand side is a function in i0,0 and v which has no critical point in the interior
of the square

[
0.0321350097, 0.695514790

]
×
[
1, 1024

]
—cf. proposition 4.6. Thus its
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maximum lies in the boundary of the square. A direct check reveals that on the
border of the square the function is decreasing monotonously in i0,0 for v ∈ {1, 1024}.
Analogously, we see that for i0,0 = 0.0321350097 the function has the only maximum
−549.348 for v = 61 and for i0,0 = 0.695514790 it is increasing in [1, 1024]. So it
takes its maximum −549.348 on the square in v = 61 and i0,0 = 0.695514790. So, in
particular, we obtain the following theorem:

Theorem 4.11. A 20-dimensional Positive Quaternion Kähler Manifold with

i1,6 ≥ −549

admits an effective isometric S1-action.

As we explained on page 21, for M 6∼= HPn the index i1,6 is smaller or equal to zero
and it is conjectured to equal zero. On HPn it equals i1,n+1 = n(2n+ 3).

Next we shall link the existence of an isometric S1-action to the Euler characteristic.

Theorem 4.12. A 20-dimensional Positive Quaternion Kähler Manifold M with
Euler characteristic restricted by

χ(M) < 16236

admits an effective isometric S1-action. The same holds if the Betti numbers of M
satisfy either

b4 −
b6
4
< 842.5

or

59b4
3
− 25b6

4
< 3027.93

or—as a combination of both inequalities—if

b4 ≤ 3381

Proof. The theorem is trivial for Gr2(C7). Thus by 1.12 we assume M to be ratio-
nally 3-connected. We give a proof by contradiction and assume
d = dim Isom(M) = 0. We shall choose special values for k, l,m, n from lemma
4.10. These coefficients determine an element y. We shall obtain the contradiction
Q(y, y) < 0 under the assumptions from the assertion.
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Use the linear combination in corollary 4.10 with coefficients n = −0.168, m = 4.99,
k = −n, l = −2

√
−mn− 18n2 under the assumption of d = 0, b2 = 0 together with

our solution to the system of indices (cf. page 135) and the relation on Betti numbers
(1.3). This results in the formula

19.9668 + 0.254016b4 − 0.063504b6 − 9835.62i0,0 + 0.0801763v ≥ 0

(where coefficients are rounded off.) Substituting in the lower bound
i0,0 ≥ 0.0321350097 from proposition 4.6 and the upper bound v = 1024 yields
b4 − b6

4 ≥ 842.468. This contradicts our assumption b4 − b6
4 < 842.5. Thus we obtain

d 6= 0.

The second formula involving Betti numbers results from similar arguments with
coefficients l = 22k, n = − 3l

22 , m = −239n
3 , n = 1. This yields

−467.202 +
59b4

3
− 25b6

4
− 104.025i0,0 + 4.72222i1,6 − 0.439931v ≥ 0

Once more we assume there is no S1-action on M . Thus theorem 4.11 gives us
i1,6 ≤ −551. So in this case we additionally substitute the other known bounds
i0,0 ≥ 0.0321350097 and v ≥ 1. This eventually yields that 59b4

3 − 25b6
4 ≥ 3027.93

contradicting our assumption.

Assume d = 0. Thus from the previous two relations on Betti numbers we compute

25 · b4 −
59b4

3
≥ 25 · 842.5− 3027.93⇔ b4 ≥ 3381.48

Hence, whenever b4 ≤ 3381, we obtain a contradiction and d 6= 0.

The result on the Euler characteristic results from the formula b4 ≤ 3381 and the
Hard-Lefschetz property by a computer-based check on all possible configurations
of (b4, b6, b8, b10)—in a suitable range—that satisfy relation (1.3). That is, we start
with b4 = 3382 and figure out the configuration of (b4, b6, b8, b10)—satisfying all the
properties from theorem 1.13—with smallest Euler characteristic. This configuration
is given by

(b4, b6, b8, b10) = (3382, 0, 3383, 2704)

and Euler characteristic χ(M) = 16236. So whenever χ(M) < 16236 we necessarily
have b4 ≤ 3381. The result follows by our previous reasoning.



150 4 Classification Results

Theorem 4.13. Let M20 6∈ {HP5,Gr2(C7)} be a (rationally 3-connected) Positive
Quaternion Kähler Manifold with Â(M)[M ] = 0. Then it holds:

• The dimension d of the isometry group of M satisfies

d ∈ {15, 22, 29, 36}

• The pair (d, v) of the dimension of the isometry group and the quaternionic
volume is one of

(15, 4), (15, 24), (15, 44), (15, 64), (22, 24), . . . , (22, 164),
(29, 24), . . . , (29, 264), (36, 24), . . . (36, 384)

where v increases by steps of 20.

• The connected component Isom0(M) of the isometry group of M is as given in
table 4.1 up to finite coverings.

Table 4.1.: Possible isometry groups
dim Isom(M) type of Isom0(M) up to finite coverings

15 SO(6), G2 × S1, SO(4)× SO(4)× SO(3),
Sp(2)× Sp(1)× S1 × S1, SU(3)× SO(4)× S1

22 Sp(3)× S1, SO(7)× S1, G2 × SU(3)

29 SO(8)× S1, SO(6)×G2, G2 ×G2 × S1,
SO(7)× SU(3), Sp(3)× SU(3)

36 SO(9), Sp(4)

Proof. Recall equation (4.4)

−81
70

+
3d
28
− 36u5

5
+

1536Â(M)[M ]
35

≥ 0

and set the Â-genus to zero. This results in

−162
35

+
3d
7
− 144v

1024 · 5
≥ 0(4.13)

From computations with the Hilbert Polynomial we know that d ≡ 1 mod 7 and
v ≡ 4 mod 20 for the dimension of the isometry group and the quaternionic volume—
cf. theorem 4.7. Since 3d

7 −
162
35 < 0 for all values of d with d ≡ 1 mod 7 and d < 15,

we may thus rule them all out.
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Now use the classification of compact Lie groups. The connected component of the
identity of Isom(M) permits a finite covering by a product of a semi-simple Lie group
and a torus—cf. lemma 1.19. Now we figure out all those products G of simple Lie
groups and tori that satisfy

• dimG ≡ 1 mod 7,

• 15 ≤ dimG ≤ 36 (cf. corollary 4.9),

• rkG ≤ 5. (By theorem 1.18 we know that rkG ≥ 6 already implies M ∼= HP5,
as M is rationally 3-connected.)

Congruence classes modulo 7 of the dimensions of the relevant different types of Lie
groups are as described in table 4.2. The list of Lie groups G then is given as in the

Table 4.2.: Dimensions modulo 7
type n = 1 n = 2 n = 3 n = 4 n = 5
An 3 1 1 3 0
Bn 3 3 0 1 6
Cn 3 3 0 1 6
Dn 1 6 1 0 3

dim G2 ≡ 0 mod 7
dim F4 ≡ 3 mod 7

assertion.

Let us finally establish the list of pairs (d, v). For this we apply equation (4.13) once
more. Additionally, note that the total deficiency

∆ = 2n+ 1 + 2v − d ≥ 0

is non-negative (cf. [38], p. 208), which translates to

11 + 2v − d ≥ 0

for dimension 20. These conditions already reduce the list of pairs (d, v) due to
the following restrictions: It holds 4 ≤ v ≤ 64, 24 ≤ v ≤ 164, 24 ≤ v ≤ 264 and
24 ≤ v ≤ 384 when d = 15, d = 22, d = 29 and d = 36 respectively.

We remark that all the Lie groups in the theorem have rank at least 3. Note that if
one focusses on simple groups G, then only dimensions 15 and 36 occur. Moreover, we
easily derive the following recognition theorem for the quaternionic volume:
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Corollary 4.14. A 20-dimensional Positive Quaternion Kähler Manifold with
Â(M)[M ] = 0 and quaternionic volume v > 384 is symmetric.

In chapter D from the appendix we compute the elliptic genus Φ(M) of Wolf
spaces. In particular, we see that Φ(M20) = 0 for a 20-dimensional Wolf space
M 6∼= Gr2(C7). In particular, this implies that Â(M)[M ] = Â(M,TCM)[M ] = 0,
i.e. that i0,0 = i1,1 = 0 in dimension dimM = 20. Equally, this yields sign(M) = 0.
This justifies the assumption

Â(M)[M ] = Â(M,TCM)[M ] = sign(M) = 0

We shall now depict very briefly how this assumption—combined with some more—
leads to a classification of Positive Quaternion Kähler Manifolds in dimension 20. In
this vein we shall see that originally, i.e. mainly before we spotted the mistake in
the classification in dimension 12 (cf. chapter 2), it was possible to prove the main
conjecture 1.6 in dimension 20 under a slight assumption on the Euler characteristic.

The assumption sign(M) = 0 directly yields b2 = b6 = b10 = 0 by Hard-Lefschetz—
cf. 1.13. Thus by equation 1.3 the fourth Betti number b4 completely determines
the Euler characteristic χ(M). By our main linear system of equations we then see
that the index i1,6 is divisible by 5 and that it is restricted to a very small set of
possible values depending on the dimensions d of the isometry group. Then the
computations involving the generalised intersection form (cf. theorem 1.16 and lemma
4.10) yield that d ∈ {15, 22, 29} requires b4 and thus the Euler characteristic χ(M) to
be relatively large; the smaller is d, the larger is χ(M). Due to table 4.1 we see that in
dimensions 22 and 29 only isometry groups of rank 4 and 5 appear. The methods we
present in chapter C of the appendix apply and theorem C.5 and further refinements
of it yield an upper bound for the Euler characteristic. (For this bound to hold we
need to assume that Â(M)[M ] = 0 for all 12-dimensional Positive Quaternion Kähler
Manifolds M with |π2(M)| <∞.) This bound contradicts the values obtained from
the computations here.

As mentioned above, in the case d = 15 we obtain a large Euler characteristic χ(M)
from the computations. So we assume the Euler characteristic to lie below this value;
this rules out d = 15 and leaves us with d = 36. As we shall see in theorem 4.22 this
will suffice—cf. table 4.1—to prove the symmetry of M .

Eventually, we remark that before we encountered the error in the classification
proof for dimension 12—cf. chapter 2—we were able to derive the assumptions on
the Â-genus, the twisted Â-genus and the signature from the theory. The theorem
proposed in [43].2.8 directly ruled out an isometry group of dimension 29, as all these
groups are of rank 5—cf. table 4.1. However, this theorem is based upon theorem
[43].2.6, which lacks a proof—cf. page 21.
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So it would have been possible to prove the symmetry of 20-dimensional Positive
Quaternion Kähler Manifolds under a slight assumption on the Euler characteristic.

4.4. Classification results in dimension 20

In this section we prove that a Positive Quaternion Kähler Manifold of dimension
20 with isometry group one of Sp(4) or SO(9) up to finite coverings is homothetic to
the real Grassmannian G̃r4(R9). We shall combine this result with the computations
from section 4.3, especially with theorem 4.13. The arguments given in this section
will be Lie theoretic mainly.

In this section we obey the following convention: Every statement on
equalities, inclusions or decompositions of groups is a statement up to
finite coverings.

First of all note the relation

SO(n)⊗ Sp(1) ∼= (SO(n)× Sp(1))/〈((−1)n+1, (−id)n+1)〉

This can be seen by computing the Lie algebras (cf. [48], p. 25) and determining the
fibre of the covering SO(n)× Sp(1)→ SO(n)⊗ Sp(1) over the identity.

From the tables in appendix B in [48], p. 63–68, we cite that all irreducible repre-
sentations %(G2) of G2 in degrees smaller than or equal to

• deg % ≤ 30 if % ∈ IrrR(G2)

• deg % ≤ 15 if % ∈ IrrC(G2)

• deg % ≤ 12 if % ∈ IrrH(G2)

are real and have degree

deg % ∈ {7, 14, 27}(4.14)

This is considered an exemplary citation of the most important case.
We shall use this information in order to shed more light on inclusions of Lie

groups. Some of the following lemmas will be generalised in the next section to higher
dimensions. Nonetheless, for the convenience of the reader and since some proofs may
be given in a shorter form, we shall also prove the special cases relevant for dimension
20.

Lemma 4.15. Let G = G1 ×G2 be a decomposition of Lie groups. Let further H 6= 1
be a simple Lie subgroup of G. Then (up to finite coverings) H is also a subgroup of
one of G1 and G2 (by the canonical projection).
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Proof. Compose the inclusion H ↪→ G1 ×G2 with the canonical projection G→ Gi
(with i ∈ {1, 2}) to obtain a morphism fi : H → Gi. The kernel of fi is a normal
subgroup of H, i.e. we have ker fi ∈ {1, H} (up to finite coverings). If ker fi = 1, the
morphism fi is an injection and we are done. Otherwise, if ker fi = H, the morphism
fi is constant. So if both f1 and f2 are constant, the original inclusion H ↪→ G is a
constant map, too. This contradicts H 6= 1.

Lemma 4.16. There is no inclusion of Lie groups SO(7) ↪→ Sp(5) (not even up to
finite coverings).

Proof. By table 1.6 the group SO(7) has to be contained in one of

U(5), Sp(4)× Sp(1), Sp(3)× Sp(2), SO(5)⊗ Sp(1)

as there is no quaternionic representation of a simple Lie group H in degree 10 (other
than the standard representation of Sp(5)) by the tables in appendix B in [48], p. 63–68.
(The tables neglect the cases of Lie groups with dimensions smaller than 11. Clearly,
so can we.)

Thus, by lemma 4.15 and for dimension reasons, we see that SO(7) has to be a
subgroup of one of

SU(5), Sp(4)

Suppose first that SO(7) is a subgroup of SU(5). By table 1.5, lemma 4.15 and
for dimension reasons this is not possible. (Again, there are no further irreducible
complex representations of degree 5 of interest.)

Assume SO(7) is a subgroup of Sp(4). We argue in the analogous way to get
a contradiction. Alternatively, one may quote table 1.8 for subgroups of maximal
dimension.

Lemma 4.17. There is no inclusion of Lie groups SU(5) ↪→ SO(9) and equally,
SU(5) is not a subgroup of Sp(4) either—not even up to finite coverings.

Proof. Case 1. The group SU(5) cannot be included into SO(9):
If this was the case, the group SU(5) would be a maximal rank subgroup of SO(9).

Thus iteratively applying table 1.7 we see that all the subgroups of SO(9) of maximal
rank are again products of special orthogonal groups. Indeed, by dimension, we would
obtain that SU(5) would have to equal SO(8) up to finite coverings; a contradiction.

Case 2. The group SU(5) cannot be included into Sp(4): By table 1.8 a subgroup
of maximal dimension of Sp(4) is given by dimension 21 < 24 = dim SU(5).

Lemma 4.18. There is no inclusion of Lie groups Sp(2) × SU(3) ↪→ SO(9) and
equally, the group Sp(2) × SU(3) also is not a subgroup of Sp(4)—not even up to
finite coverings.
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Proof. Case 1. The group Sp(2)× SU(3) is not a subgroup of SO(9):
Again, we may iteratively use table 1.7 in order to see that all the maximal rank

subgroups of SO(9) are products of special orthogonal groups. Since

rk Sp(2)× SU(3) = 4 = rk SO(9)

this yields the result

Case 2. The group Sp(2)×SU(3) is not a subgroup of Sp(4): Assume the contrary.
Since

rk Sp(2)× SU(3) = rk Sp(4) = 4

we derive that Sp(2)× SU(3) necessarily includes into one of

Sp(1)× Sp(3), Sp(2)× Sp(2), U(4)

by means of table 1.7. If it included into Sp(1) × Sp(3), then there would even be
an inclusion into Sp(3) (cf. 4.15), which is impossible by rank. If it included into
Sp(2)×Sp(2), we would necessarily obtain an inclusion of SU(3) into Sp(2) (cf. 4.15),
which is impossible by table 1.8, as a subgroup of Sp(2) of maximal dimension has
dimension 6 < 8 = dim SU(3). An inclusion of Sp(2) × SU(3) into U(4) equally
cannot exist by reasons of dimension. This yields a contradiction.

Lemma 4.19. Suppose that k ∈ {3, 4}. The only inclusion of Lie groups
Sp(k) ↪→ Sp(5) is given by the canonical blockwise inclusion up to conjugation.

Proof. Unless Sp(k) is included in the depicted way, it has to be a subgroup of one
of

SU(5), Sp(4)

by lemma 4.15, by table 1.6 and by dimension. (Again, we use that there are no
further quaternionic representations of degree 10 of interest.)

It cannot be a subgroup of SU(5), as a subgroup of SU(5) of maximal dimension
has dimension 16 < dim Sp(3) = 21 by table 1.8.

If Sp(3) is a subgroup of Sp(4), then it has to include blockwise (by our usual
arguments). As the inclusion of Sp(4) into Sp(5) is also given blockwise, we obtain
the blockwise inclusion of Sp(3) ↪→ Sp(5).

Lemma 4.20. There is no inclusion of Lie groups Sp(2) × Sp(2) ↪→ Sp(5) unless
one of the Sp(2)-factors includes blockwise (up to conjugation).
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Proof. By table 1.6 and by dimension Sp(2)× Sp(2) includes into one of

U(5), Sp(4)× Sp(1), Sp(3)× Sp(2)

Thus by lemma 4.15 we see that Sp(2)× Sp(2) is a subgroup of one of

SU(5), Sp(3)× Sp(2)

It cannot be a subgroup of SU(5), as a subgroup of SU(5) of maximal dimension is of
dimension 16 < 20 = dim Sp(2)× Sp(2). Thus Sp(2)× Sp(2)⊆Sp(3)× Sp(2) and
we need to determine all the possible inclusions i.

The only inclusion of Sp(2) into Sp(3) possible is given by the canonical blockwise
inclusion (up to conjugation). Suppose now that both Sp(2)-factors do not include
blockwise. We shall lead this to a contradiction.

We obtain that the inclusion composed with the canonical projection

i1 : Sp(2)× {1} ↪→ Sp(3)× Sp(2)→ Sp(2)

again is an inclusion. This is due to the fact that the kernel of this map has to be
trivial, as Sp(2) is simple. Thus by our assumption of non-blockwise inclusion the
kernel has to be the trivial group and i1 is an inclusion. The same holds for

i2 : {1} × Sp(2) ↪→ Sp(3)× Sp(2)→ Sp(2)

Without restriction, we may suppose that i1 = i2 = id. Thus we obtain that i is an
inclusion if and only if

Sp(2)× Sp(2) ↪→ Sp(3)× Sp(2)→ Sp(3)

is an inclusion. By consideration of rank this is impossible. This yields a contradiction
and at least one Sp(2)-factor is canonically included.

Lemma 4.21. The only inclusion of Lie groups SU(4) ↪→ Sp(5) respectively
SU(4) × Sp(1) ↪→ Sp(5) is given by the canonical blockwise inclusion up to con-
jugation.

Proof. By table 1.6, by the tables in appendix B in [48], p. 63–68, and by dimension
we see that SU(4) respectively SU(4)× Sp(1) lies in one of

U(5), Sp(4)× Sp(1), Sp(3)× Sp(2)

The group SU(4) is not a subgroup of Sp(3) by table 1.6 and by dimension. The
only inclusion of SU(4) into U(5) is given by the canonical blockwise one due to the
usual arguments. The group SU(4)× Sp(1) is not a subgroup of U(5); indeed, this is
impossible by table 1.5, the tables in appendix B in [48], p. 63–68, and by dimension.
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Case 1. Thus in the case of the inclusion SU(4) ↪→ Sp(5) we observe that either
the inclusion factors over SU(4) ↪→ U(4) ↪→ Sp(5) and is given blockwise or the
inclusion is given via SU(4) ↪→ Sp(4) ↪→ Sp(5). Again, the inclusion necessarily is
given blockwise. For this we realise that SU(4) cannot be included into any maximal
subgroup of Sp(4) other than U(4).

Case 2. As for the inclusion SU(4)× Sp(1) ↪→ Sp(5) we note that SU(4)× Sp(1)
maps into Sp(4)× Sp(1) by dimension. By lemma 4.15 and by dimension we see that
SU(4) again lies in Sp(4). As we have seen this inclusion necessarily is blockwise. As
Sp(4) maps into Sp(5) by blockwise inclusion, the inclusion SU(4) ↪→ Sp(5) is the
canonical one.

It then remains to see that Sp(1) includes into the Sp(1)-factor of Sp(4)× Sp(1)
(and not into the Sp(4)-factor). Assume this is not the case. This means that the group
Sp(1) necessarily does include into the Sp(4)-factor. Thus there is a homomorphism
of groups

i : SU(4)× Sp(1)→ Sp(4)

with the property that i|SU(4) as well as i|Sp(1) are injective. (Clearly, the morphism i
itself cannot be injective.) However, as we shall show, this contradicts the fact that i
is a homomorphism: For (x1, x2), (y1, y2) ∈ SU(4)× Sp(1) we compute

i((x1, x2) · (y1, y2)) = i(x1y1, x2y2) = i(x1, 1)i(1, y1)i(1, x2)i(1, y2)
i((x1, x2) · (y1, y2)) = i(x1, x2)i(y1, y2) = i(x1, 1)i(1, x2)i(y1, 1)i(1, y2)

Thus we necessarily have that i(1, y1)i(1, x2) = i(1, x2)i(y1, 1). As i|Sp(1) is injective,
we realise that—whatever the inclusion i|Sp(1) will be—the group i(Sp(1)) always
contains elements that do not commute with every element of SU(4)⊆Sp(4). (Clearly,
Sp(1) cannot be included into the centre T 4 of SU(4).)

Consequently, we obtain that the inclusion of Sp(1) into Sp(4)×Sp(1) maps Sp(1)
to the Sp(1)-factor and the projection Sp(1)→ Sp(4)× Sp(1)→ Sp(4) is the trivial
map. This proves the assertion.

Let us now prove the classification result.

Theorem 4.22. A 20-dimensional Positive Quaternion Kähler Manifold M which
has an isometry group Isom(M) that satisfies

Isom0(M) ∈ {SO(9),Sp(4)}

up to finite coverings is homothetic to the real Grassmannian

M ∼= G̃r4(R9)
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Proof. We proceed in three steps. First we shall establish a list of stabiliser groups
in a T 4-fixed-point—where T 4 is the maximal torus of Isom0(M)—that might occur
unless M is a Wolf space. As a second step we reduce the list by inclusions into the
isometry group and the holonomy group. Finally, in the third step we show by more
distinguished arguments that also the remaining stabilisers from the list cannot occur,
whence M has to be symmetric.

Step 1. Both groups SO(9) as well as Sp(4) have rank 4, i.e. they contain a 4-torus
T 4 = S1 × · · · × S1. The Positive Quaternion Kähler Manifold M has positive Euler
characteristic by theorem 1.13. Thus by the Lefschetz fixed-point theorem we derive
that there exists a T 4-fixed-point x ∈ M . Let Hx denote the (identity-component
of the) isotropy group of the G-action in x for G ∈ {SO(9),Sp(4)}. Since G is of
dimension 36 and since dimM = 20, we obtain that dimHx ≥ 17 unless the action of
G on M is transitive. If this is the case, a result by Alekseevskii (cf. [5].14.56, p. 409)
yields the symmetry of M . If M is symmetric, it is a Wolf space and the dimension of
the isometry group then yields that M ∼= G̃r4(R9). We may even assume dimHx ≥ 18
by the classification of cohomogeneity one Positive Quaternion Kähler Manifolds in
theorem [16].7.4, p. 24.

Since rkG = 4 and since x is a T 4-fixed-point, we also obtain rkHx = 4. Moreover,
Hx is a closed subgroup. Thus, using lemma 1.19, we may give a list of all products of
semi-simple Lie groups and tori of dimension 36 ≥ dimHx ≥ 18 and with rkHx = 4
up to finite coverings:

SU(5), SO(9), SO(8), Sp(4), Sp(3)× Sp(1), Sp(3)× S1, SO(7)× Sp(1),

SO(7)× S1, SO(6)× Sp(1), Sp(2)× Sp(2), Sp(2)× SU(3), Sp(2)×G2,

G2 ×G2, G2 × SU(3), G2 × Sp(1)× Sp(1), G2 × Sp(1)× S1

Step 2. We now apply two criteria by which we may reduce the list:

• On the one hand we have that Hx is a Lie subgroup of G.

• On the other hand by the isotropy representation Hx is a Lie subgroup of
Sp(5)Sp(1)—cf. theorem [45].VI.4.6, p. 248.

We use lemma 4.15 to see that every group Hx in the list contains a factor that has to
include into Sp(5) up to finite coverings.

An iterative application of table 1.7 yields that every maximal rank subgroup of the
classical group G ∈ {SO(9),Sp(4)} again is a product of classical groups. Thus Hx

may not be one of the groups

Sp(2)×G2, G2 ×G2, G2 × SU(3), G2 × Sp(1)× Sp(1), G2 × Sp(1)× S1
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(not even up to finite coverings).
Now apply lemma 4.16 in the respective cases to reduce the list of potential stabilisers

to

SU(5), Sp(4), Sp(3)× Sp(1), Sp(3)× S1,

SO(6)× Sp(1), Sp(2)× Sp(2), Sp(2)× SU(3)

Indeed, this lemma rules out all the groups Hx that contain a factor of the form SO(7);
and as we see that SO(7) is not a subgroup of Sp(5), also SO(8) and SO(9) cannot
be subgroups of Sp(5).

Now apply lemmas 4.17 and 4.18 by which potential inclusions into the isometry
group G are made clearer. That is, they rule out the groups SU(5) and Sp(2)×SU(3).
Thus the list of possible isotropy groups reduces further to

Sp(4), Sp(3)× Sp(1), Sp(3)× S1, SO(6)× Sp(1), Sp(2)× Sp(2)

Step 3. Let us consider the inclusion of the groups Hx into the holonomy group
Sp(5)Sp(1). By 4.15 the largest direct factor of the candidates in our list has to
be a subgroup of Sp(5) (up to finite coverings), as it cannot be included into Sp(1).
By lemma 4.19 we see that the inclusion of Sp(4) into Sp(5) and the one of the
Sp(3)-factor of Sp(3) × Sp(1) respectively of Sp(3) × S1 has to be blockwise. Due
to lemma 4.20 we observe that there is also an Sp(2)-factor of Sp(2) × Sp(2) that
includes blockwise into Sp(5). Thus we obtain that every group from our list which
contains a factor of the form Sp(k) for k ≥ 2 has a circle subgroup S1⊆Sp(k) that
includes into Sp(5) by

diag(S1, 1, 1, 1, 1)⊆diag(Sp(k), 1, . . . , 1)⊆Sp(5)

Thus this circle group fixes a codimension 4 Positive Quaternion Kähler compo-
nent. Due to theorem [20].1.2, p. 2, we obtain that M ∼= HP5 or M ∼= Gr2(C7); a
contradiction by our assumption on the isometry group.

This leaves us with Hx = SO(6)× SO(3), which is SU(4)× Sp(1) up to (Z2 ⊕ Z2)-
covering. Equivalently, we consider an orbit of the form

X : =
SO(9)

SO(6)× SO(3)

=
Spin(9)

(Spin(6)× Spin(3))/〈(−id,−id)〉

=
Spin(9)

(SU(4)× Sp(1))/〈(−id,−1)〉
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Now consider the isotropy representation of the stabiliser group. There are basically
two possibilities: Either the whole stabiliser includes into the Sp(5)-factor or the
Sp(1)-factor includes into the Sp(1)-factor of Sp(5)Sp(1) (and not into the Sp(5)-
factor).

In the first case we apply lemma 4.21 to see that the inclusion of SU(4) × Sp(1)
into Sp(5) is blockwise. So is the inclusion of the Sp(1)-factor in particular. Thus
again we obtain a sphere which is represented by diag(S1, 1, 1, 1, 1) and which fixes a
codimension four quaternionic component. We proceed as above.

Let us now deal with the second case. Again we cite lemma 4.21 to see that the
SU(4)-factor includes into Sp(5) in a blockwise way. Observe now that the tangent
bundle TM of M splits as

TM = TX ⊕NX

over X, where NX denotes the normal bundle. Since

dimX = dim SO(9)− dim SO(6)× SO(3) = 36− 18 = 18

we obtain that the normal bundle is two-dimensional. Thus the slice representation
of the isotropy group (SU(4) × Sp(1))/(−id,−1) at a fixed-point, i.e. the repre-
sentation on NX, is necessarily trivial. That is, the action of the isotropy group
(SU(4)× Sp(1))/(−id,−1) at a fixed-point has to leave the normal bundle pointwise
fixed.

The Sp(1)-factor of SU(4) × Sp(1) maps isomorphically (up to finite coverings)
into the Sp(1)-factor of the holonomy group; the SU(4)-factor maps into Sp(5). Thus
the action of this SU(4)× Sp(1) on the tangent space TxM ∼= H5 at x ∈M is given
by (A, h)(v) = Avh−1. This action, however, has no 18-dimensional (respectively
2-dimensional) invariant subspace as the Sp(1)-factor acts transitively on each H-
component. Hence the normal bundle does not remain fixed under the action of the
stabiliser. Thus SU(4)× Sp(1) cannot occur as an isotropy group.

Hence we have excluded all the cases that arose from the assumption dimHx ≥ 18.
This was equivalent to the action of the isometry group neither being transitive nor
of cohomogeneity one. In the latter two cases—as already observed—the manifold
M has to be symmetric. More precisely, since there is no 20-dimensional Wolf space
with Isom0(M) = Sp(4) (up to finite coverings), we obtain Isom0M = SO(9) and
M ∼= G̃r4(R9).

We combine this result with previous computations.

Theorem 4.23. A 20-dimensional Positive Quaternion Kähler Manifold M with
Â(M)[M ] = 0 satisfying

dim Isom0(M) 6∈ {15, 22, 29}
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(where possible groups Isom0(M) in these dimensions can be read off from table 4.1)
is a Wolf space.

Proof. This follows by combining theorems 4.13 and 4.22.

Clearly, as for dim Isom0(M) 6∈ {15, 22, 29} one hopes an approach by similar
techniques as in the proof of 4.22 to be likewise successful. Yet, we remark that for
example in dimension 29 one will have to cope with five different isometry groups due
to table 4.1. All these groups are of rank 5. So one lists all the possible stabilisers at
a T 5-fixed-point on M that do not necessarily make the action of Isom(M) transitive
or of cohomogeneity one. That is, one computes all the products H of semi-simple Lie
groups and tori that satisfy rkH = 5 and 11 ≤ dimH ≤ 29. This results in a list of
45 possible groups H (up to finite coverings). Following our previous line of argument
we then try to rule out stabilisers by showing that they either may not include into
a respective isometry group or that they may not be a subgroup of Sp(5)Sp(1). If
both is not the case, as a next step we try to show that the way H includes into
the holonomy group already implies the existence of an S1-fixed-point component of
codomension 4. This would imply the symmetry of the ambient manifold M20. We
observe that by far the biggest part of this procedure is covered by the arguments
we applied before and we encourage the reader to provide the concrete reasoning.
Nonetheless, we encounter new difficulties: For example, the group SU(4)× S1 × S1

includes into the isometry group SU(4) ×G2
∼= SO(6) ×G2. If its inclusion into

Sp(5)Sp(1) is induced by the blockwise inclusion of SU(4) into Sp(5), the canonical
inclusion of S1 into Sp(1) and the diagonal inclusion of S1 into Sp(5), we realise that
there is no codimension four S1-fixed-point component. Then methods more particular
in nature will have to be provided—as we did in step 3 of the proof of theorem 4.22.
We leave this to the reader.

4.5. A recognition theorem for the real Grassmannian

We shall prove a theorem for Positive Quaternion Kähler Manifolds M4n that recog-
nises the isometry type of M by means of the dimension of the isometry group. The
theorem will determine the isometry type of the manifold when given a large enough
isometry group G. Compare the second point in theorem 1.18, which asserts a recog-
nition theorem for the quaternionic projective space and the complex Grassmannian.
This result uses the weaker information of the rank of the isometry group. We shall
use it as an important tool. Yet, observe that this theorem is not capable of detecting
the real Grassmannian G̃r4(Rn+4); indeed, there seems to be no general recognition
theorem for Wolf spaces in the literature. (We hint to non-published work by Gregor
Weingart for a recognition theorem on all indices ip,q—cf. 1.17.) By corollary 1.12
we see that both HPn and Gr2(Cn+2) are topologically well-recognisable. Thus a
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main problem with a positive confirmation of conjecture 1.6 lies in identifying the
real Grassmannian and the exceptional Wolf spaces. There seem to be no properties
known by which these spaces could be identified.

Since one may relate the index i0,n+2 (cf. 1.17) directly to the dimension of
Isom(M4n), it seems to be pretty natural to try to provide a recognition theorem on
this information. The methods applied extend the ones from section 4.4. Again, we
shall neglect finite coverings.

Lemma 4.24. For n ≥ 6 there is no inclusion of Lie groups SO(n + 1) ↪→ Sp(n),
not even up to finite coverings.

Proof. Due to table 1.6 the group SO(n+ 1) either has to be contained in U(n),
Sp(k)×Sp(n− k) with 1 ≤ k ≤ n− 1, some SO(p)⊗Sp(q) with pq = n, p ≥ 3, q ≥ 1
or in %(H) for a simple Lie group H and an irreducible quaternionic representation
% ∈ IrrH(H) of dimension deg % = 2n. The cases with direct product or tensor product
yield an inclusion of SO(n+ 1) in either some SO(k) with k ≥ n—which is impossible
by dimension—or into some smaller symplectic group by lemma 4.15.

Assume there is an inclusion into U(n) = (SU(n)×U(1))/Zn. Then again lemma
4.15 yields an inclusion into SU(n). By table 1.5 the maximal subgroups of SU(n)
are given by SO(n), Sp(m) with 2m = n, S(U(k)×U(n− k)) for (1 ≤ k ≤ n− 1),
SU(p)⊗ SU(q) with pq = n, p ≥ 3, q ≥ 2 and by %(H) for a simple Lie group H and
an irreducible quaternionic representation % ∈ IrrC(H) of dimension deg % = n. An
inclusion in the first case is impossible due to dimension. Cases two to four lead to
inclusions into smaller symplectic or special unitary groups by lemma 4.15.

Hence we need to have a closer look at irreducible quaternionic and complex
representations of simple Lie groups H. The tables in [48], appendix B, p. 63–68,
give all the representations of simple Lie groups satisfying a certain dimension bound,
which is given by

2 dimH ≥ deg %− 2
dimH ≥ deg %− 1

dimH ≥ 3
2

deg %− 4

for real, complex and quaternionic representations respectively.
First of all for n ≥ 3 the tables together with our previous reasoning yield that k = n

is the maximal number for which SU(k) is a maximal subgroup of Sp(n). Equally,
for n ≥ 7 we obtain that k = n is the maximal number for which SO(k) is a maximal
subgroup of Sp(n) or of SU(n). This means in particular that SO(n+ 1) cannot be
included into Sp(n) by a chain

SO(n+ 1)⊆G1⊆ . . . ⊆Gl⊆Sp(n)(4.15)



4.5 A recognition theorem for the real Grassmannian 163

of (irreducible representations of) classical groups G1, . . . , Gl for n ≥ 6.
It remains to prove that there is no such chain involving (representations of)

exceptional Lie groups Gi. For this it suffices to realise that there are no exceptional
Lie groups H satisfying

dim SO(n+ 1) ≤ dimH ≤ dim Sp(n)(4.16)

with H admitting a quaternionic or complex representation of degree smaller than or
equal to 2n or n respectively. (We clearly may neglect the real representations % of
degree k with k ≤ n, as there evidently cannot be inclusions SO(n+1)⊆ %(H)⊆SO(k)
by dimension.)

In table 4.3 for each exceptional Lie group H we give the values of n for which
the inequalities (4.16) are satisfied. Additionally, we note the corresponding maximal
degree deg % = 2n (deg % = n) of an irreducible quaternionic (complex) representation
% by which H might become the subgroup %(H)⊆Sp(k) (%(H)⊆SU(k)) with k ≤ n
for the given values of n. That is, for example in the case of G2 we see that if there
is a quaternionic representation (a complex representation) of degree smaller than
or equal to 22 (to 11), then there is an inclusion of G2 into Sp(k) (into SU(k)) for
k ≤ 11 and now also conversely: If there is no such representation, then G2 cannot be
a subgroup satisfying SO(n+ 1)⊆G2⊆Sp(n) for any n ∈ N.

Now the tables in [48] yield that there are no quaternionic respectively complex repre-
sentations ofH in the degrees depicted in table 4.3. This amounts to the fact that for the
relevant values of n from table 4.3 there is no inclusion
SO(n + 1)⊆H ⊆Sp(n). Thus by (4.16) there are no inclusions of exceptional Lie
groups H with SO(n+ 1)⊆H ⊆Sp(n) for any n ∈ N.

Thus we have proved that there cannot be a chain of the form (4.15) with an
exceptional Lie group Gi. Combining this with our previous arguments proves the
assertion.

Table 4.3.: Degrees of relevant representations
Lie group n ∈ deg % ≤

G2 {3, 4} 8, 4
F4 {5, 6, 7, 8, 9} 18, 9
E6 {7, 8, 9, 10, 11} 22, 11
E7 {8, 9, 10, 11, 12, 13, 14, 15} 30, 15
E8 {11, 12, . . . , 20, 21} 42, 21

Note that the bound n ≥ 7 in the lemma is necessary since the universal two-sheeted
covering of SO(6) is SU(4). In higher dimensions no such exceptional identities occur
as can be seen from the corresponding Dynkin diagrams.
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Lemma 4.25. For n ≥ 3 the only inclusion of Lie groups Sp(bn2 c+ 1) ↪→ Sp(n) is
given by the canonical blockwise one up to conjugation.

Proof. We proceed as in lemma 4.24. Indeed, by the same arguments as above we
see that every chain of classical groups

Sp
(⌊

n

2

⌋
+ 1
)
⊆G1⊆ . . . ⊆Gl⊆Sp(n)(4.17)

involves symplectic or special unitary groups Gi of rank smaller than or equal to n
only. For this we use that there is no inclusion Sp(bn2 c+ 1)⊆SO(n) by dimension;
indeed

dim SO(n) =
n(n− 1)

2
<

{ (
n
2 + 1

)
(n+ 3) for n even

(n+1)(n+2)
2 for n odd

}
= dim Sp

(⌊
n

2

⌋
+ 1
)

More precisely, in such a chain of classical groups the inclusion of Sp(bn2 c + 1) is
necessarily blockwise since n ≥ 3. This is due to the fact that actually only symplectic
groups Gi which are included in a blockwise way may appear by table 1.5; i.e. the
subgroups of SU(n) are to small to permit the inclusion of Sp(bn2 c+ 1).

We now have to realise that there is no chain as in (4.17) with an exceptional Lie
group Gi. As in the proof of lemma 4.24 we depict the values of n for which an inclusion
Sp(bn2 c + 1)⊆H ⊆Sp(n) of an exceptional Lie group H might be possible—when
merely considering dimensions—in table 4.4. The table again also yields degree bounds
for the degrees of quaternionic and complex representations. Then the tables in

Table 4.4.: Degrees of relevant representations
Lie group n ∈ deg % ≤

G2 {3} 6, 3
F4 {5, 6, 7} 14, 7
E6 {7, 8, 9} 18, 9
E7 {8, 9, 10, 11, 12, 13} 26, 13
E8 {11, 12, 13, 14, 15, 16, 17, 18, 19} 38, 19

appendix [48].B, p. 63–68, yield that under these respective restrictions no represen-
tations of exceptional Lie groups can be found. This implies that each Gi in the
chain is classical. Thus the inclusion of Sp(bn2 c+ 1) into Sp(n) is necessarily given
blockwise.

Note that Sp(1) ∼= SU(2), whence the inclusion Sp(1) ↪→ Sp(2) is not necessarily
blockwise.

Lemma 4.26. Let n ≥ 7 be odd. Every inclusion Sp(n+1
2 − 1) × Sp(2) ↪→ Sp(n)

restricts to the canonical blockwise one (up to conjugation and finite coverings) on the
first factor.
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Proof. By table 1.6 and by dimension we see that Sp(n+1
2 − 1)×Sp(2) lies in one of

U(n), Sp(k)× Sp(n− k) for 1 ≤ k ≤ n− 1, %(H)

for a simple Lie group H and an irreducible quaternionic representation % of degree
deg % = 2n.

If Sp(n+1
2 −1)×Sp(2) should happen to appear as a subgroup of SU(n), then table

1.5 would show that

Sp
(
n+ 1

2
− 1
)
↪→ SU(n− 1) ↪→ SU(n)

necessarily is included in the standard “diagonal” way induced by the standard inclusion
H ↪→ C2×2. For this we observe the following facts that result when additionally taking
into account the tables in appendix [48].B, p. 63–68: The largest special orthogonal
subgroup (up to finite coverings) of SU(n) is SO(n) for n ≥ 6. The group SO(n) does
not permit Sp(n+1

2 − 1) as a subgroup for n ≥ 4. Moreover, there are no irreducible
complex representations by which a simple Lie group H might include into some SU(k)
(for k ≤ n) satisfying Sp(n+1

2 − 1)⊆H.
Now we see that whenever Sp(n+1

2 −1) is included diagonally into SU(n) as depicted,
there is no inclusion of Sp(n+1

2 − 1) × Sp(2) possible. That is, for the inclusion of
this direct product to be a homomorphism we need the group Sp(2) to map into the
centraliser CSU(n)(Sp(n+1

2 − 1)) of Sp(n+1
2 − 1) in SU(n). Yet, we obtain

CSU(n)

(
Sp
(
n+ 1

2
− 1
))
∼= S1 × S1

and thus no inclusion of Sp(2) is possible. Hence Sp(n+1
2 − 1)× Sp(2) cannot be a

subgroup of U(n).

The tables in [48] again yield that whenever a simple Lie group H is included into
Sp(k) (for k ≤ n) via an irreducible quaternionic representation %, the inclusion is one
of

SU(6) ↪→ Sp(10), SO(11) ↪→ Sp(16), SO(12) ↪→ Sp(16), E7 ↪→ Sp(28)

or an inclusion of a symplectic group of rank smaller than k unless the degree of
the representation is far too large to be of interest for our purposes. Indeed, already
the depicted inclusions are not relevant, since Sp(n+1

2 − 1) cannot be included into
SU(6), SO(11), SO(12), E7 respectively when n ≥ 10, 16, 16, 28.

Thus we see that every inclusion of Sp(n+1
2 − 1)× Sp(2) has to factor through one

of Sp(n− k)× Sp(k) for 1 ≤ k ≤ n− 1. Hence for 1 ≤ k < n+1
2 − 1 we obtain that
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the only inclusion of Sp(n+1
2 − 1) into Sp(n) factoring through Sp(n− k)× Sp(k) is

given by standard blockwise inclusion

Sp
(
n+ 1

2
− 1
)
↪→ Sp(n− k) ↪→ Sp(k)

Thus we may assume without restriction that k = n+1
2 − 1 (and n − k = n+1

2 ) and
that the inclusion of Sp(n+1

2 − 1) ↪→ Sp(n) is not the standard blockwise one. Thus
we see that the inclusion necessarily factors over

Sp
(
n+ 1

2
− 1
)
↪→ Sp

(
n+ 1

2
− 1
)
× Sp

(
n+ 1

2

)
↪→ Sp(n)

where the first inclusion splits as a product of the standard blockwise inclusions

Sp
(
n+ 1

2
− 1
)

id
↪→ Sp

(
n+ 1

2
− 1
)

Sp
(
n+ 1

2
− 1
)
↪→ Sp

(
n+ 1

2

)
So regard Sp(n+1

2 − 1) as the subgroup of Sp(n) given by this inclusion. Again we
make use of the fact that the Sp(2)-factor has to include into the centraliser

CSp(n)

(
Sp
(
n+ 1

2
− 1
))
∼= S1 × S1 × Sp(1)

Such an inclusion clearly is impossible and we obtain a contradiction. Thus the
inclusion of Sp(n+1

2 − 1)× Sp(2) is the standard blockwise one when restricted to the
Sp(n+1

2 − 1)-factor.

Lemma 4.27. In table 4.5 the semi-simple Lie groups of maximal dimension with
respect to a fixed rank (from rank 1 to rank 12) are given up to isomorphisms and
finite coverings. From rank 13 on the groups that are maximal in this sense are given
by the two infinite series Sp(n) and SO(2n+ 1) only.

Proof. Table 4.5 results from a case by case check using table 1.3. From dimension
13 on semi-simple Lie groups involving factors that are exceptional Lie groups are
smaller than the largest classical groups. Among products of classical groups the ratio
between dimension and rank is maximal for the types Bn and Cn,

Let us now prove the classification theorem that actually may be regarded as a
recognition theorem for the real Grassmannian.

Theorem 4.28. Let M4n be a Positive Quaternion Kähler Manifold. Suppose that
the dimension of the isometry group dim Isom(M4n) satisfies the respective condition
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Table 4.5.: Largest Lie groups with respect to fixed rank
rkG extremal Lie groups G dimG

1 Sp(1) 3
2 G2 14
3 Sp(3),SO(7) 21
4 F4 52
5 Sp(5),F4 × Sp(1),SO(11) 55
6 E6,Sp(6) 78
7 E7 133
8 E8 248
9 E8 × Sp(1) 251

10 E8 ×G2 262
11 E8 × Sp(3),E8 × SO(7) 269
12 Sp(12),SO(25),E8 × F4 300

depicted in table 4.6. Then M is symmetric and it holds:

M ∼= G̃r4(Rn+4) ⇔ dim Isom(M) = n2+7n+12
2 ⇔ rk Isom(M) =

⌊
n
2

⌋
+ 2

M ∼= Gr2(Cn+2) ⇔ dim Isom(M) = n2 + 4n+ 3
M ∼= HPn ⇔ dim Isom(M) = 2n2 + 5n+ 3

In particular, if the isometry group satisfies that

dim Isom(M) >
n2 + 5n+ 12

2
for n ≥ 22 and n 6∈ {27, 28} then we recognise the real Grassmannian by the dimension
of its isometry group.

Proof. Step 1. By theorem 1.18 we may suppose that rk Isom(M4n) ≤ dn2 e + 2,
since otherwise M ∈ {HPn,Gr2(Cn+2)}. The dimension bounds in table 4.6 for
4 ≤ n ≤ 20 result from table 4.5: That is, for each such n the bound is the dimension
of the largest group that satisfies this rank condition. Thus every group with larger
dimension has rank large enough to identify M4n as one of HPn and Gr2(Cn+2).

In degree n = 3 we use that there is no semi-simple Lie group of rank smaller
than or equal to 4 in dimensions 29 to 36 = dim Sp(4). By theorem 1.18 we have
dim Isom(M12) ≤ 36.

Step 2. Now we determine all (the one-components of) the isometry groups
G = Isom0(M4n) (up to finite coverings) with rkG ≤ dn2 e+ 2 satisfying the dimension
bound for n ≥ 22 and n 6∈ {27, 28} as

G ∈
{

SO(n+ 4), SO(n+ 5), Sp
(
n

2
+ 2
)}
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for n even and as

G ∈
{

SO(n+ 4), SO(n+ 4)× SO(2), SO(n+ 4)× SO(3), SO(n+ 5),

SO(n+ 6), Sp
(
n+ 1

2
+ 2
)
, Sp

(
n+ 1

2
+ 1
)
, Sp

(
n+ 1

2
+ 1
)
× SO(2),

Sp
(
n+ 1

2
+ 1
)
× Sp(1)

}
for n odd. This can be achieved as follows: We see that whenever we have a product
of classical groups we may replace it by a simple classical group of the same rank
and of larger dimension. The classical groups for which the ratio between dimension
and rank is maximal are given by the groups of type B and C. Moreover, the series
dim Bn = dim Cn is strictly increasing in n. We compute

dim SO(n+ 3)× SO(3) =
n2 + 5n+ 12

2

whilst

rk SO(n+ 3)× SO(3) =
⌊
n+ 3

2

⌋
+ 1 =

⌈
n

2

⌉
+ 2

Consequently, by our assumption on the dimension of G we need to find all the groups
that are larger in dimension but not larger in rank than SO(n + 3) × SO(3). This
process results in the list we gave.

We still need to see when there are groups G that are larger in dimension than
SO(n+ 3)× SO(3) but not larger in rank and that have exceptional Lie groups as
direct factors (up to finite coverings). Clearly, this can only happen in low dimensions.
So we use lemma 4.27 and table 4.5 to see that unless n ∈ {27, 28} there do no appear
exceptional Lie groups as factors. As for degrees n ∈ {27, 28} the group E8 ×E8 has
dimension

dim(E8 ×E8) = 496 >

{
438 = dim SO(30)× SO(3)
468 = dim SO(31)× SO(3)

Therefore in these degrees we want to assume that dim Isom(M4n) > 496. This will
make it impossible to identify the real Grassmannian, since dim SO(31) = 465 and
since dim SO(32) = 496. Nonetheless the following arguments hold as well.

Step 3. We now prove that whenever G is taken out of the list we gave, then
actually G = SO(n+4) and M ∼= G̃r4(Rn+4). In order to establish this we shall have a
closer look at orbits around a fixed-point of the maximal torus of G for each respective
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possibility of G. (Such a point exists due to the Lefschetz fixed-point theorem and the
fact that χ(M) > 0—cf. 1.13.) This will lead to the observation that a potential action
of G has to be transitive, whence M is homogeneous. Due to Alekseevski homogeneous
Positive Quaternion Kähler Manifolds are Wolf spaces—cf. [5].14.56, p. 409.

Since dimM = 4n, we necessarily obtain that the orbit G/H of G has dimension
at most dimG/H ≤ 4n. Assume first that G is a direct product from the list with
SO(n+ 4) as a factor (up to finite coverings). Thus all the maximal rank subgroups
H of G satisfying dimG/H ≤ 4n for n ≥ 22, necessarily contain one of the groups

SO(n)× SO(4), SO(n+ 3), SO(n+ 2)× SO(2)

as a factor—which includes into SO(n + 4)—due to table 1.7. (Note that whether
SO(n+ 3) is a maximal rank subgroup of SO(n+ 4) or not depends on the parity of
n being odd or even.) By the same arguments we see that for G = SO(n+ 5) only
the following subgroups H may appear:

SO(n+ 4), SO(n+ 3)× SO(2), SO(n+ 2)× SO(2), SO(n+ 2)× SO(3)

For G = SO(n+ 6) the group H is out of the following list:

SO(n+ 5), SO(n+ 4)× SO(2), SO(n+ 3)× SO(3), SO(n+ 3)× SO(2)

In any of the cases there has to be an inclusion SO(n+ k) for k ≥ 0 into Sp(n) by the
isotropy representation—cf. [45], theorem VI.4.6.(2). By lemma 4.24, however, this is
impossible unless k = 0. Thus we see that

G/H =
SO(n+ 4)

SO(n)× SO(4)
= M

since the action of G thus necessarily is transitive.

Now suppose that G = Sp(n2 + 2) for n even. Again we use table 1.7 to list maximal
rank subgroups H with dimG/H ≤ 4n:

Sp
(
n

2
+ 1
)
× Sp(1), Sp

(
n

2
+ 1
)
×U(1), Sp

(
n

2

)
× Sp(2)

If H = Sp(n2 )×Sp(2), we see that dimG/H = 4n and that the action of G is transitive.
Thus M is homogeneous and symmetric. Yet, by the classification of Wolf spaces we
derive that

M =
Sp
(
n
2 + 2

)
Sp
(
n
2

)
× Sp(2)

cannot be the case.
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Now apply lemma 4.25 in the other cases and derive that the isotropy representation
of H is marked by a blockwise included Sp(n2 + 1) ↪→ Sp(n) for k > 0. This implies
that the sphere

S1 × {1}× (n/2). . . ×{1} ↪→ Tn/2+1 ↪→ Sp
(
n

2
+ 1
)

is represented by S1 × {1}× (n−1). . . ×{1} in the Sp(n)-factor of the holonomy group
Sp(n)Sp(1). Thus it fixes a quaternionic fixed-point component of codimension 4.
Thus by theorem [20].1.2, p. 2, we obtain that M4n ∈ {HP4n,Gr2(Cn+2)}.

If G = Sp(n+1
2 + 2) and n is odd, virtually the same arguments apply. That is, the

list of isotropy subgroups H is given by

Sp
(
n+ 1

2
+ 1
)
× Sp(1), Sp

(
n+ 1

2
+ 1
)
×U(1)

As above this leads to a codimension four quaternionic S1-fixed-point component.

Finally, suppose n to be odd and the group G to contain a factor of the form
Sp(n+1

2 + 1). The list of possible stabilisers is given as

Sp
(
n+ 1

2

)
× Sp(1), Sp

(
n+ 1

2

)
×U(1), Sp

(
n+ 1

2
− 1
)
× Sp(2),

Sp
(
n+ 1

2
− 1
)
× Sp(1)× Sp(1)

If H = Sp(n+1
2 − 1) × Sp(1) × Sp(1), the action of G again is transitive which is

impossible by the classification of Wolf spaces. If

H ∈
{

Sp
(
n+ 1

2

)
× Sp(1), Sp

(
n+ 1

2

)
×U(1)

}
we note that its Sp(n+1

2 )-factor again maps into Sp(n) in a blockwise way—cf. lemma
4.25—by the isotropy representation. This leads to a codimension four quaternionic
S1-fixed point component once more. Now suppose

H = Sp
(
n+ 1

2
− 1
)
× Sp(2)

Then the holonomy representation necessarily makes H a subgroup of Sp(n). By lemma
4.26 this can only occur in the standard blockwise way. Again this yields a quaternionic
codimension four S1-fixed-point component which leads to M ∈ {HPn,Gr2(Cn+2)}.

In degree n = 21 we see that similar arguments apply as for n ≥ 22. However, we have
that dim(SO(25)) = 300 < 303 = dim E6 × F4 × Sp(1). Thus due to the assumption
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that dim Isom(M21) > 303 we may not identify the real Grassmannian G̃r4(R25) but
only the quaternionic projective space and the complex Grassmannian.

Table 4.6.: A recognition theorem
n = dim Isom(M4n) > recognising

3 28 H
4 52 H
5 55 H
6 55 H,C
7 78 H,C
8 78 H,C
9 133 H

10 133 H,C
11 248 H
12 248 H
13 251 H
14 251 H,C
15 262 H,C
16 262 H,C
17 269 H,C
18 269 H,C
19 300 H,C
20 300 H,C
21 303 H,C
22 303 H,C,R
23 328 H,C,R
24 354 H,C,R
25 381 H,C,R
26 409 H,C,R
27 496 H,C
28 496 H,C

n ≥ 29 n2+5n+12
2 H,C,R

The symbols H,C,R in the column “recognising” in table 4.6 refer to whether we
may identify the quaternionic projective space, the complex Grassmannian or the real
Grassmannian in this dimension by the theorem.

We remark that in general the dimension of the isometry group dim Isom(M4n)
takes values in

[0, dim Sp(n+ 1)] = [0, 2n2 + 5n+ 3]
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(cf. 1.18). Hence—apart from recognising the real Grassmannian—this theorems rules
out approximately three quarters of all possible values. For example when taking into
account more structure data for exceptional Lie groups one certainly may generalise
the theorem with ease.

This theorem now shows that the whole question whether Positive Quaternion
Kähler Manifolds M4n are symmetric or not boils down to a computation of the
dimension of the isometry group Isom(M4n).

A Positive Quaternion Kähler Manifold M4n is symmetric (for almost
every n) if and only if dim Isom(M) > n2+5n+12

2 .

Furthermore, by theorem 1.17 one may interpret the dimension of the isometry
group as the index of a twisted Dirac operator, i.e. i0,n+2 = dim Isom(M). As a
major consequence of a non-published formula by Gregor Weingart one obtains that
a Positive Quaternion Kähler Manifold is a Wolf space if and only if all the indices
ip,q and Betti numbers coincide with the ones of the symmetric example. As we have
proved by our approach—which is certainly much simpler than the highly elaborated
techniques applied by Gregor Weingart—the index i0,n+2 already suffices for such a
conclusion in almost every dimension. This lets us extend our statement from above:

The question whether a Positive Quaternion Kähler Manifold M4n is
symmetric or not can (almost always) be decided from the index

ind(D/(Sn+2H)) = 〈Â(M) · ch(Sn+2H), [M ]〉

(For the bundle H and the indices ip,q we refer to the notation from the introduction,
section 1.1.)



A

Cohomology of Wolf Spaces

Although the results are well-known, for the convenience of the reader we shall compute
the rational cohomology of the three infinite series of Wolf spaces up to degree 8.
Recall that the series are given by the quaternionic projective space, the complex
Grassmannian and the oriented real Grassmannian:

HPn =
Sp(n+ 1)

Sp(n)× Sp(1)
(A.1)

Gr2(Cn+2) =
U(n+ 2)

U(n)×U(2)
(A.2)

G̃r4(Rn+4) =
SO(n+ 4)

SO(n)× SO(4)
(A.3)

The computation of the cohomology of HPn will illustrate the method.
We refer to the “stable case” as to the cohomology of Gr2(C∞) and of G̃r4(R∞)

respectively.

Theorem A.1. For the quaternionic projective space it holds:

H∗(HPn,Q) = Q[u]/un+1

Iff n ≥ 4 we are in the stable case and obtain

H i(Gr2(Cn+2)) =



0 for i odd
Q for i = 0
〈l〉Q for i = 2
〈l2, x〉Q for i = 4
〈l3, lx〉Q for i = 6
〈l4, l2x, x2〉Q for i = 8
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For the complex Grassmannian we have: If n is odd and iff n ≥ 5 we are in the stable
case and obtain

H i(G̃r4(Rn+4)) =


0 for i ∈ {2, 6} or i odd
Q for i = 0
〈u, x〉Q for i = 4
〈u2, ux, x2〉Q for i = 8

For the real Grassmannian we obtain: If n is even and iff n ≥ 10 we are in the stable
case and obtain

H i(G̃r4(Rn+4)) =


0 for i ∈ {2, 6} or i odd
Q for i = 0
〈l2, x〉Q for i = 4
〈l4, l2x, x2〉Q for i = 8

In lower dimensions we have the following cohomology algebras:

H∗(Gr2(C3)) = Q[l]/l3 deg l = 2

H∗(Gr2(C4)) = Q[l, x]/{lx = 0, x2 = l4} deg l = 2, deg x = 4

H∗(Gr2(C5)) = Q[l, x]/{R3} deg l = 2, deg x = 4

H∗(Gr2(C6)) = Q[l, x]/{R4} deg l = 2, deg x = 4

H∗(Gr2(C7)) = Q[l, x]/{R5} deg l = 2, deg x = 4

H∗(G̃r4(R5)) = Q[u]/u2 deg u = 4

H∗(G̃r4(R6)) = Q[l, x]/{l3 = 2lx, x2 = l2x} deg l = 2,deg x = 4

H∗(G̃r4(R7)) = Q[l, x]/{R1} deg l = deg x = 4

H∗(G̃r4(R8)) = Q[l, x, y]/{R2,R′2} deg l = deg x = deg y = 4

H∗(G̃r4(R9)) = Q[l, x]/{R2} deg l = deg x = 4

In order to complete the list of low-dimensional Wolf spaces we compute

H∗(G2/SO(4)) = Q[u]/u3 deg u = 4

The relations Rn consist of setting σi = 0 for i > n in the following list and the
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relations R′i require σi = y2.

σ1 = −l
σ2 = l2 − x
σ3 = 2lx− l3

σ4 = l4 − 3l2x+ x2

σ5 = −l5 + 4l3x− 3lx2

σ6 = l6 − 5l4x+ 6l2x2 − x3

σ7 = −l7 + 6l5x− 10l3x2 + 4lx3

σ8 = l8 − 7l6x+ 15l4x2 − 10l2x3 + x4

σ9 = l9 + 8l7x− 21l5x2 + 20l3x3 − 5lx4

σ10 = l10 − 9l8x+ 28l6x2 − 35l4x3 + 15l2x4 − x5

This yields the following cohomology groups with relations (without linear dependencies
between generators).

H i(Gr2(C4)) =


〈σ̃1〉Q for i = 2
〈σ̃2

1, σ̃2〉Q for i = 4
〈σ̃3

1〉Q for i = 6
〈σ̃4

1〉Q for i = 8

σ̃1σ̃2 = σ̃3
1/2, σ̃

2
2 = σ̃4

1/2

H i(Gr2(C5)) =


〈σ̃1〉Q for i = 2
〈σ̃2

1, σ̃2〉Q for i = 4
〈σ̃3

1, σ̃1σ̃2〉Q for i = 6
〈σ̃4

1, σ̃
2
1σ̃2〉Q for i = 8

σ̃2
2 = −σ̃4

1 + 3σ̃2
1σ̃2

H i(G̃r4(R6)) =


〈σ̃′1〉Q for i = 2
〈σ̃′21 , σ̃′2〉Q for i = 4
〈σ̃′31 〉Q for i = 6
〈σ̃′41 〉Q for i = 8

σ̃′1σ̃
′
2 = 0, (σ̃′2)2 = (σ̃′1)4

H i(G̃r4(R7)) =

{
〈σ̃1, σ̃

′
2〉Q for i = 4

〈(σ̃1)2, σ̃1σ̃
′
2〉Q for i = 8

(σ̃′2)2 = (σ̃1)2

H i(G̃r4(R8)) =

{
〈σ′2, σ̃1, σ̃

′
2〉Q for i = 4

〈(σ̃1)2, σ̃1σ
′
2, σ̃1σ̃

′
2, σ̃

2
2〉Q for i = 8

(σ′2)2 = σ̃2
1 − (σ̃′2)2, σ′2σ̃

′
2 = 0

Observe that these results reflect the ring structure in low degrees and the well-known
isometries Gr2(C3) ∼= CP2, G̃r4(R5) ∼= HP1 ∼= S4, G̃r4(R6) ∼= Gr2(C4).
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Proof. It holds

H∗(HPn) = H∗(B(Sp(n)× Sp(1))/H>0(BSp(n+ 1))

= H∗(BT )W(Sp(n)×Sp(1))/H>0(BT )W(Sp(n+1))
(A.4)

where T denotes the maximal torus of Sp(n + 1) and W is the Weyl group. Now
recall that the Weyl group of Sp(n) is given by G(n), the group of permutations φ of
the set {−n, . . . ,−1, 1, . . . , n} satisfying φ(−v) = −φ(v) (cf. [11], p. 171). The group
acts on the maximal torus by φ−1(θ1, . . . , θn) = (θφ(1), . . . , θφ(n)), where the θi denote
the angles of the corresponding rotations. By convention we write θ−v = −θv. Recall
that the cohomology of the classifying space BT is the polynomial algebra on n+ 1
generators xi in degree 2 corresponding to the θi. Due to these remarks it becomes
obvious that the cohomology of HPn is generated by those polynomials symmetric in
x1, . . . , xn which are invariant under xi 7→ −xi for all 1 ≤ i ≤ n respectively by the
polynomials in xn+1 which are invariant under xn+1 7→ −xn+1. These are exactly the
elementary symmetric polynomials σ1, . . . , σn in the x2

i for 1 ≤ i ≤ n and σ̃1 = x2
n+1.

So (A.4) equals

Q[σ1, . . . σn, σ̃1]/{σσ̃ = 1}
=Q[σ1, . . . σn, σ̃1])/{σ1 = −σ̃1, σ2 = σ̃2

1, . . . , σn = (−1)nσ̃n1 , σ̃
n+1
1 = 0}

=Q[σ̃1]/σ̃n+1
1

where σ = 1 + σ1 + . . . σn respectively σ̃ = 1 + σ̃1. (Recall that the elementary
symmetric polynomials in x1, . . . , xn+1 can be described as σσ̃.)

Now let us compute the cohomology of the complex Grassmannian. As above we
obtain

H∗(Gr2(Cn+2)) = H∗(BT )W(U(n)×U(2))/H>0(BT )W(U(n+2))

= Q[σ1, . . . , σn, σ̃1, σ̃2]/{σσ̃ = 1}

where the σi are the elementary symmetric polynomials in the xi for 1 ≤ i ≤ n and
the σ̃i are the elementary symmetric polynomials in xn+1, xn+2. (Recall that the Weyl
group of U(n) is just the symmetric group Sn.) From the relation σσ̃ = 1 we compute
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in each degree:

σ1 = −σ̃1

σ2 = σ̃2
1 − σ̃2

σ3 = 2σ̃1σ̃2 − σ̃3
1

σ4 = σ̃4
1 − 3σ̃2

1σ̃2 + σ̃2
2

σ5 = −σ̃5
1 + 4σ̃3

1σ̃2 − 3σ̃1σ̃
2
2

σ6 = σ̃6
1 − 5σ̃4

1σ̃2 + 6σ̃2
1σ̃

2
2 − σ̃3

2

σ7 = −σ̃7
1 + 6σ̃5

1σ̃2 − 10σ̃3
1σ̃

2
2 + 4σ̃1σ̃

3
2

σ8 = σ̃8
1 − 7σ̃6

1σ̃2 + 15σ̃4
1σ̃

2
2 − 10σ̃2

1σ̃
3
2 + σ̃4

2

σ9 = σ̃9
1 + 8σ̃7

1σ̃2 − 21σ̃5
1σ̃

2
2 + 20σ̃3

1σ̃
3
2 − 5σ̃1σ̃

4
2

σ10 = σ̃10
1 − 9σ̃8

1σ̃2 + 28σ̃6
1σ̃

2
2 − 35σ̃4

1σ̃
3
2 + 15σ̃2

1σ̃
4
2 − σ̃5

2

(A.5)

This yields the first cohomology groups

H2(Gr2(Cn+2)) = 〈σ̃1〉Q
H4(Gr2(Cn+2)) = 〈σ̃2

1, σ̃2〉Q
H6(Gr2(Cn+2)) = 〈σ̃3

1, σ̃1σ̃2〉Q
H8(Gr2(Cn+2)) = 〈σ̃4

1, σ̃
2
1σ̃2, σ̃

2
2〉Q

for n ≥ 4 (without any linear relations between the generators). In low dimensions we
obtain additional restrictions by setting the corresponding equations in (A.5) to zero,
i.e. σi = 0 for i > n.

The same procedure for the real Grassmannian yields the following: The Weyl group
of SO(n) for odd n is G(n). For even n it is SG(n) consisting of even permutations of
G(n). So in the odd case invariant polynomials again are generated by elementary
symmetric polynomials in the xi. In the even case the n-th elementary symmetric
polynomial in the x2

i can be replaced by the n-th elementary symmetric polynomial
σ′n = x1 · x2 · · ·xn. (A permuation is in SG(n) iff it causes a change of sign on an even
number of xi. Thus it has no effect on σ′n.) In the case that n is odd we obtain

H∗(G̃r4(Rn+4)) = H∗(BT )W(SO(n)×SO(4))/H>0(BT )W(SO(n+4))

= Q[σ1, . . . , σ(n−1)/2, σ̃1, σ̃
′
2]/{σσ̃ = 1}

where the σi are the elementary symmetric polynomials in the x2
i for

1 ≤ i ≤ (n−1)/2, the σ̃i are the elementary symmetric polynomials in x2
(n+1)/2, x

2
(n+3)/2

and σ̃′2 = x(n+1)/2 · x(n+3)/2 with (σ̃′2)2 = σ̃2. So we obtain the relations (A.5) in our
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terminology. For n ≥ 5 this yields the following cohomology groups (without any
linear relations between generators).

H4(G̃r4(Rn+4)) = 〈σ̃1, σ̃
′
2〉Q

H8(G̃r4(Rn+4)) = 〈σ̃2
1, σ̃1σ̃

′
2, σ̃2〉Q

In low dimensions we obtain cohomology algebras as in the assertion by setting the
corresponding σi to zero.

If n is even we have

H∗(G̃r4(Rn+4)) = H∗(BT )W(SO(n)×SO(4))/H>0(BT )W(SO(n+4))

= Q[σ1, . . . , σ(n−2)/2, σ
′
n/2, σ̃1, σ̃

′
2]/{σσ̃ = 1, σ′n/2σ̃

′
2 = 0}

where σ′n/2 = x1 · · ·xn/2. Using the relations (A.5) we obtain for n ≥ 10 that

H4(G̃r4(Rn+4)) = 〈σ̃1, σ̃
′
2〉Q

H8(G̃r4(Rn+4)) = 〈σ̃2
1, σ̃1σ̃

′
2, σ̃2〉Q

and, as usual, the cohomology groups in degrees 1 to 3 and 5 to 7 vanish. A computation
of the relations in the particular cases yields the corresponding results.

The ring structure of G2/SO(4) can be derived in the same way: The Weyl group
of G2 is the symmetry group of the regular hexagon, i.e. the dihedral group D6. The
maximal torus of G2 can be regarded as the quotient of the full hexagon by identifying
opposite sides and collapsing one such pair. Thus the Weyl group acts on T as a
symmetry group, i.e. given generating loops x, y and

D6 = Z6 o Z2 = 〈d, s | d6 = 1, s2 = 1, dsd = d−1〉

we obtain the relations:

dx = y, d2x = y − x, d3x = −x, d4x = −y, d5x = x− y, d6x = x, sx = y, s2x = x

A polynomial in x and y invariant under D6 must be symmetric due to the action of
s, so again it must be generated by the elementary symmetric polynomials σ′1 and
σ′2 in x and y. Now a simple calculation using the invariance under the action of d
shows that the polynomial (σ′1)2 − 3σ′2 is (up to multiples) the only polynomial in
degree 4 invariant under the action of D6. In degree 8 no such polynomial exists.
Set σ1 = x2 + y2 (the first elementary symmetric polynomial in x2, y2) and obtain
(σ′1)2 − 3σ′2 = σ1 − σ′2. So the following computations yield the desired result:

H∗(G2/SO(4)) = H∗(BT )W(SO(4))/H>0(BT )W(G2)
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Set u = σ1. The relation σ1 = σ′2 yields H4(G2/SO(4)) = 〈u〉Q. The non-existence of
relations in degree eight yields H8(G2/SO(4)) = 〈u2〉Q.

Observe that the isomorphism H∗(Gr2(C4)) ∼= H∗(G̃r4(R6)) is given by l 7→ l and
x 7→ l2 + 2x.

As a corollary we obtain the Betti numbers in low dimensions.

Corollary A.2. Betti numbers are concentrated in degrees divisible by two for the
complex Grassmannian, in degrees divisible by four for the other Wolf spaces—except
for Gr2(C4) ∼= G̃r4(R6). Non-trivial Betti numbers bi are given (mostly) up to duality.
The Euler characteristic χ is computed.

HPn : b0 = b4 = · · · = bn = 1, χ = n+ 1

Gr2(C3) : b0 = 1, b2 = 1 χ = 3

Gr2(C4) : b0 = 1, b2 = 1, b4 = 2 χ = 6

Gr2(C5) : b0 = 1, b2 = 1, b4 = 2, b6 = 2 χ = 10

Gr2(C6) : b0 = 1, b2 = 1, b4 = 2, b6 = 2, b8 = 3 χ = 15

Gr2(C7) : b0 = 1, b2 = 1, b4 = 2, b6 = 2, b8 = 3, b10 = 3 χ = 21

G̃r4(R5) : b0 = 1, b4 = 1 χ = 2

G̃r4(R6) : b0 = 1, b2 = 1, b4 = 2 χ = 6

G̃r4(R7) : b0 = 1, b4 = 2 χ = 6

G̃r4(R8) : b0 = 1, b4 = 3, b8 = 4 χ = 12

G̃r4(R9) : b0 = 1, b4 = 2, b8 = 3 χ = 12

G2/SO(4) : b0 = b4 = b8 = 1 χ = 3





B

Isometric Group Actions on
Wolf Spaces

In this chapter we shall describe the fixed-point components of isometric circle-actions
and certain isometric involutions on the infinite series of Wolf-spaces.

B.1. Isometric circle actions

Let us classify isometric circle actions together with their fixed-point components on
the three infinite series. Observe that each element of the isometry group may be taken
to lie in a maximal torus and any two maximal tori are conjugated. Since a one-sphere
admits a topological generator, we may thus consider the sphere to be part of the
maximal torus. Equally, this does not impose any restriction on the structure of possible
fixed-point components, since conjugation satisfies tst−1(t(x)) = t(x)⇔ s(x) = x (for
any two isometries s and t acting on M 3 x). We have

rk Isom(HPn) = n+ 1

rk Isom(Gr2(Cn+2)) = n+ 1

rk Isom(G̃r4(Rn+4)) =
⌊
n+ 4

2

⌋
(Note that we have to write Gr2(Cn+2) = SU(n+ 2)/(S(U(n)×U(2))) in order to
reveal a group acting almost effectively.)

We shall bear in mind the following line of argument: The description of a Grass-
mannian as a homogeneous space may be interpreted as follows. The isometry group
acts transitively on the manifold. So every plane can be obtained by multiplying
a basis of a standard coordinate plane in the ambient vector space with a suitable
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element of the isometry group and eventually by forming the quotient with all those
actions that leave invariant the coordinate plane and its complement; i.e. those actions
that transform a basis of the plane to just another basis of the very same plane, a
basis of the complement to another basis of the complement. Thus, in particular, it is
obvious that the maximal torus of the isometry group just acts by ordinary rotations
in the corresponding coordinate planes, i.e. its action on planes is the one induced by
the standard action on Euclidean space.

Theorem B.1. Every isometric circle action on HPn is given in homogeneous coor-
dinates and up to reordering by

(tk1z1 : tk2z2 : . . . : tkjzj : zj+1 : . . . : zn+1)

with k ∈ Z\{0}. So every isometric circle action has at most one fixed-point component
equal to HPn′ . All the other fixed-point components are of the form CPmi and it holds

n′ +
∑
i

(mi + 1) = n

(Take n′ = −1 in the formula if there is no quaternionic component.)

Proof. As remarked above, the i-th factor S1 of the standard maximal torus Tn+1

of Isom(HPn) = Sp(n+ 1)/Z2 acts on HPn by (z1 : . . . : zi−1 : tzi : zi+1 : . . . : zn+1).
Up to conjugation every circle acting isometrically on M must factor over its image in
this maximal torus. Since all the group endomorphisms of S1 are given by s 7→ sk for
k ∈ Z, its action is exactly as described in the assertion.

As for fixed-point components observe that the elements (zj+1 : . . . : zn+1) again
form an HPn−j . A maximal sequence of the form tkzi1 : . . . : tkzim fixes exactly a
CPm−1, namely the set of all elements with strictly complex coefficients zi. These are
mapped to a common complex multiple tk. Rotations with different exponents tk1 and
tk2 clearly cannot fix common points. So the result follows.

Clearly, every configuration of fixed-point manifolds permitted by the theorem can
be realised.

Lemma B.2. The isometric S1-fixed-point components of CPn are again CPi. In
particular, on CP3 any such action either fixes the whole space, a CP2 and a fixed-point
or three fixed-points.

Proof. We shall only prove the assertion for CP3, since that is all we shall make
use of. The general case follows by similar arguments.

For CP3 we observe that in homogeneous coordinates the action of the standard torus
is given by (tk1z1 : tk2z2 : tk3z3). There are three cases corresponding to k1 = k2 = k3,
k1 = k2 6= k3 (respectively k1 = k3 6= k2 or k2 = k3 6= k1) and to k1, k2, k3 being
pairwise distinct.



B.1 Isometric circle actions 183

Given an S1-action on a (complex) vector space of the form
(tk1 , . . . , tkn+1 , t−

∑
1≤j≤n+1 kj ) we set Vi to equal the (maximal) space on which the

action is given by tki . Let di denote its (complex) dimension. Let I be the set of all
the Vi.

Theorem B.3. Every isometric circle action on Gr2(Cn+2) is induced up to conjuga-
tion by an action on the surrounding vector space given by some
(tk1 , . . . , tkn+1 , t−

∑
1≤j≤n+1 kj ) with integer ki. The fixed-point components of this action

are given by the set

{Gr2(Cdi)}i∈I ∪ {CPdi−1 × CPdj−1}i 6=j∈I

Proof. Again the standard maximal torus Tn+1⊆SU(n+2) given by all matrices of
the form diag(el1i, . . . , eln+1i, e−

∑
1≤j≤n+1 lji) acts on Cn+2 in the standard way, i.e. by

rotations in the coordinate planes. Thus a circle subgroup of this torus acts by a
rotation of the form (tk1 , . . . , tkn+1 , t−

∑
1≤j≤n+1 kj ) inducing its action on contained

2-planes.
Without restriction, the action has the form (tk1 , . . . , tk1 , tk2 , . . . , tk2 , . . . , tkj ) and

pairwise it holds 0 6= ki1 6= ki2 . Assume now a certain plane is fixed. Since projections
commute with rotations, the image of each projection to some 〈z1, . . . , ẑi, . . . , zn〉
remains fixed under the action. So we may consider all the projections into complex
3-spaces 〈zi1 , zi2 , zi3〉 with corresponding actions given by rotation numbers k1, k2 and
k3. However, the Grassmannian Gr2(C3) is canonically isometric to CP2—by taking
orthogonal complements. Thus we may reduce the situation to an action on the latter
space. Due to lemma B.2 we may now discern the following cases:

First assume k1 = k2 = k3. Then the image of the projection is fixed, no matter
what it looks like.

In the case k1 = k2 6= k3 we obtain: If the plane is mapped to a plane, in 〈zi1 , zi2 , zi3〉
it must be of the form 〈(x1, x2, 0), (0, 0, x3)〉. If it is mapped to a line, the image looks
like 〈(x1, x2, 0), (kx1, kx2, 0)〉 (with k ∈ C) or 〈(0, 0, x3), (0, 0, kx3)〉. (The case of the
image being a point can be neglected.)

In the case that all three rotation numbers are pairwise distinct the image cannot be
a plane. So—unless it is a point—we obtain that it has the shape 〈(x1, 0, 0), (kx1, 0, 0)〉,
〈(0, x2, 0), (0, kx2, 0)〉 or 〈(0, 0, x3), (0, 0, kx3)〉.

Thus we make the following observation: Whenever we project to a 3-space the
image is spanned by eigenvectors of the rotation. Successively applying this result to
all coordinate 3-spaces lets us conclude that a 2-plane in Cn+2 which remains fixed is
spanned by eigenvectors of the action. So the fixed-point components are now either
made up of those planes generated by two eigenvectors corresponding to the the same
eigenvalue or by two ones corresponding to two different eigenvalues. In the first case
we clearly obtain the complex Grassmannian, in the other cases we have the products
of complex projective spaces as asserted.

Observe that all possibilities can be realised indeed.
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In the following, we use the notation introduced above and let Vi denote the maximal
complex vector subspace on which the rotation number of the circle action on Rn+4 is
given by ki > 0. That is, we define the complex structure of Vi such that the rotation
number is positive. Again we use the set I as an index set for the Vi. Moreover, we
denote the complex dimension of Vi by di. Let Ṽ be the real vector space on which
the rotation number vanishes with real dimension d̃ = dim Ṽ . By the “dual space”,
i.e. by the notation (X)∗ we denote a copy of the subspace X ⊆ G̃r4(Rn+4) with all
planes x ∈ X in the opposite orientation.

Theorem B.4. Every isometric circle action on G̃r4(Rn+4) is induced by an action
on the surrounding vector space given by some (tk1 , . . . , tkbn/2c+2) with ki > 0. The
fixed-point components of this action are given by the set

{G̃r4(Rd̃)} ∪ {CPdi−1 × G̃r2(Rd̃) | i ∈ I} ∪ {CPdi−1 × CPdj−1 | i 6= j ∈ I}
∪ {(CPdi−1 × CPdj−1)∗ | i 6= j ∈ I} ∪ {Gr2(Cdi) | i ∈ I} ∪ {(Gr2(Cdi))∗ | i ∈ I}

if d̃ > 4. Otherwise, if d̃ = 2, there is additionally the component

{(CPdi−1 × G̃r2(Rd̃))∗ | i ∈ I}

If d̃ = 4 there is additionally the component

{(G̃r4(R4))∗}

Proof. We start by considering planes H that lie in at most two of the spaces Vi,
i.e. H ∈ V1 ⊕ V2. First we consider planes H ⊆V1 ⊕ Ṽ , i.e. V2 = Ṽ .

Let v = v1 +v2 be a vector in Rn+4 with components vi ∈ Vi contained in just two of
the spaces Vi. Assume—without restriction—that k2 is equal to zero, whence V2 = Ṽ .
Then k1 6= 0 by construction. So all the rotations of v generate the affine plane

{c · v1 + v2 | c ∈ C} = v2 + Cv1

Thus any oriented real 4-plane H ⊆V1 ⊕ Ṽ invariant under the circle action—i.e. any
fixed-point of the induced action on the Grassmannian—which contains v also contains
this affine 2-plane. In particular, it contains the vector v2 and the plane Cv1. This
implies that 〈Cv1, v2〉⊆H is a subspace.

By dimension there is a v′ = v′1 +v′2 ∈ H with v′1 ∈ V1, v′2 ∈ V2 and v′ 6∈ 〈Cv1, v2〉. If
v′1 ∈ Cv1, we thus derive that v′2 6∈ 〈v2〉. Otherwise, if v′1 6∈ Cv1, then dim〈Cv1,Cv′1〉 = 4
(unless v1 = 0 which may be neglected) and we obtain v2 = v′2 = 0. Summing this up,
in any case H (without restriction) can be generated by either two complex planes in
V1, a complex plane in V1 and a real 2-plane in Ṽ or it equals a real 4-plane in Ṽ .

As a second case we assume now that neither k1 nor k2 equals zero and that
H ⊆V1 ⊕ V2. Yet k1 and k2 may be identical. Then rotate v = v1 + v2 by e2πi/k1 ∈ S1

and obtain v1 + e2πi·k2/k1 . As above we note that H contains the affine plane v1 + Cv2.
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A rotation with e2πi/k2 ∈ S1 then reveals that actually H = Cv1 + Cv2, if v1 and v2

are non-zero.
For a general plane H ⊆Rn+4 consider its projections onto “pairs” of subspaces

Vi ⊕ Vj as described and use the reasoning applied above. This finally yields that H
corresponds to either a complex plane in one Vi and a real 2-plane in Ṽ , two complex
planes each contained in some Vi, a real 4-plane in Ṽ or a complex 2-plane in some Vi.
(The complex structure is induced by the rotation number.) Since we are dealing with
oriented planes, we get two copies of every such plane with fixed opposite orientations.
This yields the assertion.

Observe that—due to the second factor—the dual of {CPdi−1 × G̃r2(Rd̃) | i ∈ I}
already is identical to the space itself if d̃ > 2.

Corollary B.5. On low-dimensional spaces M we obtain the possibilities for the
fixed-point set FS1(M) of an isometric S1-action as depicted in table B.1. (There is
redundancy contained in the list due to exceptional isomorphisms of Wolf spaces.)

The next corollary can be derived by means of Weyl groups. Nonetheless, we can
give a very elementary proof now.

Corollary B.6. The Euler characteristics are given by

χ(HPn) = n+ 1

χ(Gr2(Cn+2)) =
(
n+ 2

2

)
χ(G̃r4(Rn+4)) = (bn/2c+ 2)(bn/2c+ 1)

Proof. The quaternionic projective space admits an isometric circle action with n+1
fixed-points only. So does the complex Grassmannian with exactly

(
n+2

2

)
fixed-points

and the real Grassmannian with exactly (bn/2c+ 2)(bn/2c+ 1) ones. (The actions
are just those with different rotation numbers everywhere. In the case of the complex
Grassmannian this actions fixes

(
n+2

2

)
fixed-points of the form CP0 × CP0. In the

case of the real Grassmannian the fixed-point set consists of
(bn/2c+2

2

)
points of the

form CP0 × CP0 and the same amount of points identical to (CP0 × CP0)∗. So
there are exactly 2 ·

(bn/2c+2
2

)
= (bn/2c+ 2)(bn/2c+ 1) fixed-points.) Since the Euler

characteristic of the fixed-point set equals the one of the manifold, we are done.

In order to give a complete description of fixed-point components in terms of
cohomology, we still have to take a look at

G̃r2(Rn) =
SO(n+ 2)

SO(n)× SO(2)

Considering this space as a complex quadric gives insight into its structure. For the
convenience of the reader we reprove
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Theorem B.7. The space G̃r2(Rn+2) is a simply-connected Kähler manifold of di-
mension 2n and its rational cohomology algebra is given by

H∗(G̃r2(Rn+2)) = Q[x]/xn+1 deg x = 2

if n is odd. In the case that n is even we obtain

H∗(G̃r2(Rn+2)) = Q[x, y]/{xn+1 = 0, xy = 0, y2 = (−1)n/2xn}

with

deg x = 2, deg y = n

Moreover, we know G̃r2(R3) ∼= CP1 and G̃r2(R4) ∼= CP1 × CP1.

Proof. From the general theory (cf. page 20) we know that G̃r2(Rn+2) is locally
Kählerian. We shall now compute the fundamental group, the vanishing of which will
prove that it is actually Kählerian. First of all, the space G̃r2(Rn+2) is connected,
since so is SO(n+ 2).

The space is even simply-connected, as the inclusion of SO(n)× SO(2) induces a
surjective morphism

π1(SO(n)× SO(2))→ π1(SO(n+ 2))

(This morphism is already surjective when restricted to the SO(2)-factor). The long
exact homotopy sequence then yields the result.

We compute

dim G̃r2(Rn+2) = dim SO(n+ 2)− dim SO(n)× SO(2) = 2n

Furthermore, we have

G̃r2(R3) =
SO(3)
SO(2)

= S2 ∼= CP1

and

CP1 × CP1 =
U(2)

U(1)×U(1)
× U(2)

U(1)×U(1)

=
SU(2)

S(U(1)×U(1))
× SU(2)

S(U(1)×U(1))

=
SU(2)
U(1)

× SU(2)
U(1)

=
Sp(1)
SO(2)

× Sp(1)
SO(2)

=
SO(4)

SO(2)× SO(2)

= G̃r2(R4)
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For this we note that the inclusion of the denominator group is the inclusion of the
standard maximal torus in each respective case. The used identifications preserve
standard tori.

As we did with the Wolf spaces we may now compute the rational cohomology of
G̃r2(Rn+2) in the terminology introduced before. So for n odd we derive:

H∗(G̃r2(Rn+2)) = H∗(BT )W(SO(n)×SO(2))/H>0(BT )W(SO(n+4))

= Q[σ1, . . . , σ(n−1)/2, σ̃
′
1]/{σσ̃ = 1}

where σ̃′1 denotes the first elementary symmetric polynomial in the formal roots of
SO(2), i.e. just in x1. The relations σσ̃ = 1 are just σi = −σ̃1σi−1 and can successively
be reduced from σ1 + σ̃1 = 0⇔ σ1 = −(σ̃′1)2 to finally σi = (−1)i(σ̃′1)2i. So actually
the cohomology is generated by x = σ̃′1 and the only relation that remains is

σ(n+1)/2 = 0⇔ (−1)(n+1)/2(σ̃′1)n+1 = 0⇔ xn+1 = 0

If n is even we obtain

H∗(G̃r2(Rn+2)) = H∗(BT )W(SO(n)×SO(2))/H>0(BT )W(SO(n+4))

= Q[σ1, . . . , σ(n−2)/2, σ
′
n/2, σ̃

′
1]/{σσ̃ = 1, σ′n/2σ̃

′
1 = 0}

As in the odd case we derive σi = (−1)i(σ̃′1)2i. Set x := σ̃′1 and obtain as before that
xn+1 = 0. This is the only relation on x. Set y = σ′n/2 and derive xy = 0. Finally,
recall

(σ′n/2)2 = σn/2 = (−1)n/2(σ̃′1)n

which implies y2 = (−1)n/2xn.

Observe that the fact that G̃r2(R4) ∼= CP1 × CP1 reflects the isometry
G̃r4(R6) ∼= Gr2(C4) on the level of S1-fixed-point components.

Corollary B.8. The Euler characteristic is given by

χ(G̃r2(Rn+2)) =

{
n+ 2 for n even
n+ 1 for n odd

B.2. Isometric involutions

Let us now classify the fixed-point components of Z2-actions on the infinite series of
Wolf spaces under the condition that Z2⊆S1⊆Tmax is a subgroup of the standard
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maximal torus of the isometry group. For this, we use our knowledge of how the
maximal torus acts. However, observe that using the description of the spaces as
homogeneous spaces as given in (A.1) we may have to pass over to certain finite
quotients of the numerator in order to obtain the effectively acting isometry group.

Note further that our assumptions on the Z2-actions are not really restrictive: Every
Z2-subgroup in the connected component Isom0(M) of the isometry group of M is
contained in some maximal torus and every two maximal tori are conjugated. Conju-
gation, however, has no effect on the structure of the fixed-point sets; i.e. conjugation
with g ∈ Isom(M) of different Z2-subgroups yields that g is an isometry between the
different fixed-point sets. However, for example on the real Grassmannian we have the
isometric involution which reverses all the orientations of planes. This involution acts
without fixed-points.

Theorem B.9. The fixed-point set of such an (effective) involutive action on HPn

can be described as follows: Either are there n1 > 0, n2 > 0 with n1 + n2 + 1 = n and
the involution fixes

HPn1 , HPn2

or the action fixes a

CPn

Proof. Let Z2 = 〈g〉. Since g2 = id, in homogeneous coordinates of HPn the element
g may act by ±1,±i in each coordinate only. (This is due to the fact that the center of
H is given by C(Sp(1)) = ±1.) That is, the action of Z2 in homogeneous coordinates
is given by

(ik1z1 : ik1z2 : . . . : ik1zl : ik2zl+1 : . . . : ik2zn : ik2zn+1)

where k1, k2 ∈ {0, 1, 2, 3} and k1 ∈ {1, 3} ⇔ k2 ∈ {1, 3}, since the action of the square
of the generator must equal multiplication with a real scalar. So there are the following
cases: If k1 = k2 ∈ {0, 2}, then the action is the identity—not effective—and the
whole HPn is fixed. If k1 6= k2 and k1, k2 ∈ {0, 2}, an HPl−1 and an HPn−l are fixed.
If k1 = k2 ∈ {1, 3}, then the standard complex projective subspace CPn is fixed. If
k1 6= k2 ∈ {1, 3} (without restriction ik1 = i and ik2 = −i), then the space of all points
of the form (z1 : . . . zl : zlj : . . . : zn+1j) with zi ∈ C are fixed. These points also form
a CPn.

Assume a Z2-action on Gr2(Cn+2) as depicted at the beginning of the section.

Theorem B.10. There are k1 ≥ 0 and k2 ≥ 0 with k1 + k2 = n+ 2 with the property
that the fixed-point set of the involution on Gr2(Cn+2) is given by

{Gr2(Ck1), Gr2(Ck2), CPk1−1 × CPk2−1}
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Proof. Recall that the action of a circle of the maximal torus is induced by the
action

(tk1 , . . . , tkn+1 , t−
∑

1≤j≤n+1 kj )

on C2n. Now assume an involutive action on Cn+2 contained in this torus to be given
by multiplication of the form

(s1z1, s2z2, . . . , sn+2zn+2)

where sn+2 = (
∏n+1
j=1 sj)

−1. As a first step we shall prove that this action induces the
identity on the Grassmannian, i.e. on 2-planes, if and only if s1 = · · · = sn+2 (for
n ≥ 1). Suppose that s1, s2, s3 are not identical, without restriction. We consider the
action (s1z1, s2z2, s3z3) induced on C3. This action induces an action on 2-planes in
C3. Division by s1 6= 0 shows that, without restriction, we may assume the action to
be induced by (1 · z1, s2z2, s3z3). Consider the 2-plane P generated by (1, 1, 0) and
(1, 0, 1). Suppose this plane is fixed under the involution. Thus we obtain that the
image of the generating vectors lies in P again, i.e. (1, s2, 0) ∈ P and (1, 0, s3) ∈ P . By
forming suitable linear combinations we see that (0, s1−1, 0) ∈ P and (0, 0, s2−1) ∈ P .
As we assumed s1 = 1, at least one of s2, s3 cannot equal one by assumption. Thus,
without restriction, we also obtain (0, 1, 0) ∈ P . In total, we see that P is generated
by the vectors (1, 1, 0), (1, 0, 1) and (0, 1, 0). As these vectors are linearly independent,
this contradicts dimP = 2. Thus we obtain s1 = · · · = sn+2.

Hence the identity action on 2-planes is given by multiplication with a certain
(n + 2)-th root of unity, since s1 = s2 = · · · = sn+2 = (

∏n+1
j=1 sj)

−1 = s−n−1
1 implies

(s1)−n−2 = 1. (This corresponds to the fact that the isometry group is a finite quotient
of SU(n + 2).) Without restriction, i.e. after division with s1 we may assume that
s1 = 1.

Hence any Z2 contained in the torus acts by (s, . . . , s,−s, . . . ,−s) for a certain
s ∈ S1 and again, without restriction, we suppose it to act by

(1, . . . , 1,−1, . . . ,−1)

As a next step we shall identify the fixed-point components of such an action. Let
us denote the subspace of C2n with a (+1)-action by V1, the one with a (−1)-action
by V2. So let 〈(

x1

x2

)
,

(
y1

y2

)〉
be a complex 2-plane with xi, yi ∈ Vi which is fixed by the action. So, clearly, the
plane also contains the vectors (x1,−x2) and (y1,−y2). Thus it is generated by (x1, 0),
(0, x2), (y1, 0) and (0, y2). This implies that any complex 2-plane fixed under the action
is of the form 〈x, y〉 with either x, y ∈ V1, x, y ∈ V2 or (without restriction) x ∈ V1,
y ∈ V2 and the result on fixed-point components follows.
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Observe that the Kähler component CPk1−1 × CPk2−1 indeed has real dimension
2n as required by the general theory (cf. page 20).

Again we denote by (X)∗ the “dual space” of X with reversed orientations. To
finish off our discussion of this sort of Z2-actions we suppose

Gr2(Rd1)×Gr2(Rd2) =
S(O(d1)×O(d2))

S(O(d1 − 2)×O(d2 − 2))× S(O(2)×O(2))

and prove

Theorem B.11. A Z2-action (as specified) on G̃r4(Rn+4) has one of the following
fixed-point sets: One possibility for the set is given in table B.2. (These components
depend on the dimensions d1 and d2 of the subspaces on which the action on Rn+4

inducing the action on the Grassmannian is given by multiplication with +1 respectively
with −1. For low dimensional versions of this type see also table B.3.)

The second type of fixed-point set can only appear if n is even. It is of the form

{Gr2(Cn/2+2), (Gr2(Cn/2+2))∗}

Proof. We shall now apply a reasoning similar to the one used in the case of the
complex Grassmannian to reveal the structure of possible Z2-actions. As in the complex
case we see that the only actions on Rn+4 inducing the identity on real 4-planes are
given by ±id.

This will be done as follows: The torus T = T bn/2c+2 acts on Rn+4 by left-
multiplication

(s1(x1, x2), s2(x3, x4), . . . , sbn/2c+2(x2bn/2c+3, x2bn/2c+4), xn+4)

for (s1, . . . , sbn/2c+2) ∈ T . (Whether the last coordinate xn+4 is acted on trivially
or not depends on the parity of the dimension. We described the case for n odd.)
Suppose this action induces the identity on 4-planes.

First we observe that consequently all the si have to be real. Assume the contrary.
Without restriction s1 6∈ R. Consider the 4-plane

P =

〈


1
0
0
0
0
0
...
0


,



1
0
1
0
0
0
...
0


,



1
0
0
1
0
0
...
0


,



1
0
0
0
1
0
...
0



〉
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As it is left invariant by (s1, . . . , sbn/2c+2), we see that (s1(1, 0), 0, . . . , 0) ∈ P . Thus
(R2, 0, . . . , 0) ∈ P , which contradicts dimP = 4.

As a next step we obtain that all the si have to be identical. For this we proceed as
in the case of the complex Grassmannian—cf. the proof of theorem B.10.

Thus we see that the identity on 4-planes is induced by ±id on Rn+4 only. Hence
we see that the Z2-action is given by either

(1, . . . , 1,−1, . . . ,−1)(B.1)

or

(i, . . . , i,−i, . . . ,−i)(B.2)

Let V1 be the vector space on which the action is given by +1 in the first case
respectively by +i in the second one. Let V2 be the space with (−1)- respectively
(−i)-action. Let di := dimVi. Observe that d2 is even in any case, since the (−1)-action
respectively the (−i)-action is induced by an S1-action on R2.

The fixed-point components in the case (B.1) can be detected as follows: Let (v1, v2),
(w1, w2), (x1, x2), (y1, y2) be vectors in V1 ⊕ V2 generating a 4-plane P = 〈v, w, x, y〉
that is invariant under the involution. Thus (v1,−v2) lies in P and so do (v1, 0), (0, v2).
The same works for the other vectors and we see that P is already generated by vectors
from V1 and from V2 only, i.e.

P = 〈(v1, 0), (0, v2), (y1, 0), (0, y2), (y1, 0), (0, y2), (y1, 0), (0, y2)〉

As P is four-dimensional, there is a choice

ṽ, w̃, x̃, ỹ ∈ {(v1, 0), (0, v2), (y1, 0), (0, y2), (y1, 0), (0, y2), (y1, 0), (0, y2)}

with the property that

P = 〈ṽ, w̃, x̃, ỹ〉

We may now step through the different cases according to how many of the generating
vectors ṽ, w̃, x̃, ỹ are in V1 (and how many of them lie in V2).

Assume first that ṽ, w̃, x̃, ỹ ∈ V1. Then the vectors generate a plane that may be
regarded as an element in G̃r4(V1) when we count it with orientation. Conversely,
every element in this subspace is fixed by the involution. (Here orientations are not
altered as every generating vector ṽ, w̃, x̃, ỹ of P is fixed by the involution.)
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As a second case suppose ṽ, w̃, x̃ ∈ V1 and ỹ ∈ V2, i.e. three generators are from V1

and the fourth generator is from V2. This case cannot occur, as P will not be fixed
under the involution. Indeed, the orientation of P is reversed in that case, since an
odd numbers of directions is multiplied by (−1).

Finally only the case with two generators in both V1 and V2 remains, i.e. ṽ, w̃ ∈ V1

and x̃, ỹ ∈ V2. Thus V2 is entirely contained in P . Hence P (endowed with an
orientation) is a point in

Gr2(V1)×Gr2(V2)

—the space of all oriented four-planes which can be generated by two basis vectors in
both V1 and V2. Conversely, every element in Gr2(V1)×Gr2(V2) stays fixed under
the involution. This is due to the fact that the orientation of P is preserved, as we
multiply twice by (−1).

Let us now deal with the case when the involution is given by (B.2). This case
may only occur when n is even, since otherwise there is a coordinate not affected
by multiplication with an element from the maximal torus, i.e. the action is the
identity on there. The action defines a complex structure I on R2(n/2+2) ∼= Cn/2+1

given by I = (+i, . . . ,+i,−i, . . . ,−i), i.e. by multiplication with (+i) on V1 and by
multiplication with (−i) on V2. Due to that definition the image of the real vector
(v1, v2) ∈ V1 ⊕ V2 lies in P again—i.e. P is invariant—if and only if the complex plane
〈(v1, v2)〉C (with complex structure I) is invariant under the involution. So, clearly, the
planes P invariant under the action are just the complex 2-planes (with respect to I)
that are generated by one vector in V1 and by one more in V2. For an oriented plane
P to stay invariant we need the action restricted to P to be orientation-preserving.
This, however, is always the case since detR(±i) = 1. So again we obtain two dual
components with opposite orientations.

In order to shed more light on the structure of the fixed-point set we prove

Theorem B.12. We have

Gr2(Rn1+2)×Gr2(Rn2+2) = (G̃r2(Rn1+2)× G̃r2(Rn2+2))/Z2

(for n1, n2 > 0) and

Gr2(Rn1+2)×Gr2(Rn2+2) = G̃r2(Rn1+2)

for n2 = 0. Further

Gr2(R3)×Gr2(R3) = (CP1 × CP1)/Z2
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For n1, n2 > 0 the space Gr2(Rn1+2)×Gr2(Rn2+2) is locally Kähler, has dimension
2(n1 + n2), fundamental group Z2 and Euler characteristic

χ((G̃r2(Rn1+2)× G̃r2(Rn2+2))/Z2) =


(n1 + 2)(n2 + 2)/2 for n1 and n2 even
(n1 + 2)(n2 + 1)/2 for n1 even and n2 odd
(n1 + 1)(n2 + 2)/2 for n1 odd and n2 even
(n1 + 1)(n2 + 1)/2 for n1 and n2 odd

Proof. The first equalities follow directly from the description as homogenous spaces
of the Grassmannians involved. Alternatively, they are directly due to a geometric
reasoning concerning subplanes of Euclidean space. Exemplarily, we compute the least
obvious case:

Gr2(R3)×Gr2(R3) =
S(O(3)×O(3))

S(O(1)×O(1))× S(O(2)×O(2))

=
S(O(3)×O(3))

Z2 × S(O(2)×O(2))

=
(

SO(3)
SO(2)

× SO(3)
SO(2)

)/
Z2

= (CP1 × CP1)/Z2

In general, the space is a Z2-quotient of a simply connected space. So its fundamental
group equals Z2. Its dimension is

dim Gr2(Rn1+2)×Gr2(Rn2+2) = dim G̃r2(Rn1+2) + dim G̃r2(Rn2+2) = 2(n1 + n2)

The space is locally Kähler by the general theory (cf. page 20).
The Euler characteristic is multiplicative and satisfies χ(X) = k · χ(Y ) for a k-fold

covering X → Y . Corollary B.8 yields the result.

Corollary B.13. In low dimensions, possible configurations of fixed-point sets FZ2 of
the considered Z2-actions are given as depicted in table B.3.

B.3. Clearing ambiguities

Observe that there is a certain ambiguity in the terminology: Recall from page
20 that a fixed-point component of an element g ∈ Isom(M)—be it an involution
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or a topological generator of an S1—is a quaternionic submanifold if the isotropy
representation of g composed with the canonical projection

Sp(n)Sp(1)→ SO(3)

(on the second factor) is trivial. If it is not, the component is a locally Kähler
submanifold. Conversely, every quaternionic respectively locally Kähler submanifold
is a Positive Quaternion Kähler Manifold respectively a locally Kähler manifold.

In general, we directly see whether the components are quaternionic or (locally)
Kählerian as submanifolds. Indeed, ambiguity can appear only if the component
is simply-connected, Kählerian and Positive Quaternion Kählerian as an abstract
manifold. The only Positive Quaternion Kähler Manifold with this property is
the complex Grassmannian Gr2(Cn+2). Moreover, in small dimensions we have
CP2 ∼= Gr2(C3) for example. It remains to see when the complex Grassmannian
respectively certain complex projective spaces appear as quaternionic submanifolds
and when they appear as Kähler submanifolds.

(Moreover, it is easy to see that (locally) Kähler components of an involution are of
at most half the dimension of the ambient manifold. In the case of the involution they
are of exactly half the dimension; this provides another criterion.)

Theorem B.14. • Given an S1-action—without restriction assume it to be of the
form (tk1 , . . . , tkn+1 , t−

∑
1≤j≤n+1 kj )—on Gr2(Cn+2), for each rotation number ki

there is exactly one quaternionic component, namely a complex Grassmannian
as depicted in theorem B.3—provided the complex dimension of the subspace on
which the action is given by (tki , . . . , tki) is greater than or equal to 2.

The products of complex projective spaces that arise as components in the theorem
are Kähler submanifolds.

• Given a Z2-action—without restriction by (1, . . . , 1,−1, . . . ,−1)—on Gr2(Cn+2),
there are

– exactly two quaternionic components, if the complex dimension of the space
on which the action is given by 1 is at least 2 and if the same holds for the
dimension of the space on which the action is given by −1.

– exactly one quaternionic component, if exactly one of the spaces with ±1-
action is at least 2-dimensional.

The components are given by the complex Grassmannians corresponding to
the subspaces on which the involution is given by +1 respectively by −1 only
(cf. theorem B.10).

Thus the products of complex projective spaces are Kähler components. (They
are never quaternionic submanifolds, not even for low dimensions.)

Proof. Elements of Gr2(Cn+2) are given as complex 2-planes of Cn+2, i.e. they are
represented by ((n+ 2)× 2)-matrices. Recall that charts are hence given by matrices
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of the form (
∗ ∗ ∗ . . . ∗ 1 0
∗ ∗ ∗ . . . ∗ 0 1

)T
(B.3)

when having applied a certain permutation to line vectors (cf. [32], p. 193). Recall that
the description of Gr2(Cn+2) as the homogeneous space Gr2(Cn+2) = SU(n+2)

S(U(n)×U(2))
corresponds to the one presented by identifying a generating special unitary 2-frame of
a plane with the special unitary matrix that maps the last two vectors en+1, en+2 of
the standard basis of Cn+2 to it. Indeed, the identification of special unitary matrices
with complex 2-planes is given by U 7→ 〈Uen+1, Uen+2〉.

The action of the isometry group is induced by left multiplication with SU(n+2). On
a fixed-point x ∈ Gr2(Cn+2) of a certain transformation A ∈ Tn+1⊆SU(n+2) we shall
compute the isotropy representation of A. For this we shall consider the action of A on a
chart like (B.3). For this let x be represented by the matrix X ∈ Gr2(Cn+2). Since A is
in the standard maximal torus, it is of the form A = diag(

∏
2≤i≤n+2(ai)−1, a2, . . . , an+2)

for certain complex units ai ∈ S1. Now multiplication by diag(a−1
n+1, a

−1
n+2) ∈ U(2)

from the right does not alter the coset of x and maps AX back to the standard form
(B.3), i.e.

AXdiag(a−1
n+1, a

−1
n+2)

is the identity on 〈en+1, en+2〉. Thus the action of A on its tangent space
TxGr2(Cn+2) ∼= Cn×2 ∼= C2n ∼= Hn at x is given by dA : TxGr2(Cn+2)→ TxGr2(Cn+2)
with

dA(y) = diag
( ∏

2≤i≤n+2

(ai)−1, a2, . . . , an

)
·
(
y1

y2

)T
·
(

(an+1)−1 0
0 (an+2)−1

)

where y =
(
y1

y2

)T
∈ Cn×2.

Now recall that

S(U(n)×U(2)) = {a(U1, 0) + b(0, U2) | U1 ∈ SU(n);U2 ∈ SU(2); a, b ∈ S1; ab = 1}

So the action on TxGr2(Cn+2) in these terms is given by

dA(y) = (aA1) ·
(
y1

y2

)T
· (bA2)−1 = ((ab−1)A1)

(
y1

y2

)T
A−1

2

where A = (aA1, bA2) ∈ S(U(n) × U(2)) with (A1, A2) ∈ SU(n) × SU(2) and
((ab−1)A1) ∈ U(n). By [5], p. 409, the inclusion of the S(U(n) × U(2))-structure
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bundle into the standard Sp(n)Sp(1)-bundle now is induced by the canonical inclusion
U(n) ↪→ Sp(n) and the canonical identification of SU(2) with Sp(1).

So the type of a fixed-point, i.e. whether it is quaternionic or (locally) Kählerian, is
determined by the rotation numbers of A on the ( 1 0

0 1 )-part of the chart it belongs to,

i.e. by the matrix A2 = b−1

(
a−1

n+1 0

0 a−1
n+2

)
.

Let us step through the different cases: Assume first that the rotation numbers are
constant on there. So the matrix

(
(an+1)−1 0

0 (an+2)−1

)
can be written as b · ( 1 0

0 1 ) in the
terminology from above—this b indeed is a central factor. Thus the representation in
the Sp(1)-factor is the identity and so is the projection onto SO(3). Hence the point
x—and the fixed-point component it is contained in—is quaternionic.

Suppose now that the rotation numbers are different. Hence the Sp(1)-representation
has the form

(
b′ 0
0 b̄′

)
with b′ ∈ S1 \ {±1}. So the projection of this matrix to SO(3) is

not trivial. Hence the fixed-point is (locally) Kählerian.
Thus we see that whenever a plane X that is fixed by the action does not lie in a

subspace of Cn+2 on which the action of A is given by one rotation number only, then
the plane belongs to a (locally) Kähler component. Conversely, if there is only one
rotation number upon it, it is quaternionic. Thus—irrespective of whether we consider
S1-actions or involutions—the components we denoted by Gr2(Ck) are quaternionic,
the ones involving CPk-factors are (locally) Kählerian.

Note that alternatively we might have used that the isotropy representation is
given by the adjoint map Ad which would permit a more general but less illustrative
approach.
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Table B.1.: S1-fixed-point components of low-dimensional Wolf spaces
Wolf space possible fixed-point sets

FS1 (HP1) {HP1}, {HP0,CP0}, {CP1}
FS1 (HP2) {HP2}, {HP1,CP0}, {HP0,CP0,CP0}, {CP2}, {CP1,CP0},

{CP0,CP0,CP0}
FS1 (HP3) {HP3}, {HP2,CP0}, {HP1,CP1}, {HP1,CP0,CP0}, {HP0,CP2},

{HP0,CP1,CP0}, {HP0,CP0,CP0,CP0}, {CP3}, {CP2,CP0},
{CP1,CP1}, {CP1,CP0,CP0}, {CP0,CP0,CP0,CP0}

FS1 (HP4) {HP4}, {HP3,CP0}, {HP2,CP1}, {HP2,CP0,CP0}, {HP1,CP2},
{HP1,CP1,CP0}, {HP1, (CP0)t3}, {HP0,CP3}, {HP0,CP2,CP0},
{HP0,CP1,CP1}, {HP0,CP1,CP0,CP0}, {HP0, (CP0)t3}, {CP4},
{CP3,CP0}, {CP2,CP1}, {CP2,CP0,CP0}, {CP1,CP1,CP0},
{CP1, (CP0)t3}, {(CP0)t5}

FS1 (Gr2(C3)) {Gr2(C3)}, {Gr2(C2),CP1}, {CP0,CP0,CP0}
FS1 (Gr2(C4)) {Gr2(C4)}, {Gr2(C3),CP2}, {Gr2(C2),Gr2(C2),CP1 × CP1},

{Gr2(C2),CP1,CP1,CP0}, {(CP0)t6}
FS1 (Gr2(C5)) {Gr2(C5)}, {Gr2(C4),CP3}, {Gr2(C3),Gr2(C2),CP2 × CP1},

{Gr2(C3),CP2,CP2,CP0},
{Gr2(C2),Gr2(C2),CP1 × CP1,CP1,CP1},
{Gr2(C2),CP1,CP1,CP1,CP0,CP0,CP0}, {(CP0)t10}

FS1 (Gr2(C6)) {Gr2(C6)}, {Gr2(C5),CP4}, {Gr2(C4),Gr2(C2),CP3 × CP1},
{Gr2(C4),CP3,CP3,CP0}, {Gr2(C3),Gr2(C3),CP2 × CP2},
{Gr2(C3),Gr2(C2),CP2 × CP1,CP2,CP1},
{Gr2(C3), (CP2)t3, (CP0)t3}, {(Gr2(C2))t3, (CP1 × CP1)t3}
{(Gr2(C2))t2,CP1 × CP1, (CP1)t4,CP0}
{Gr2(C2), (CP1)t4, (CP0)t6}, (CP0)t15

FS1 (G̃r4(R5)) {G̃r4(R5)}, {CP0 × G̃r2(R3)}, {2(CP0 × CP0)}
FS1 (G̃r4(R6)) {G̃r4(R6)}, {2G̃r4(R4),CP0 × G̃r2(R4)},

{2Gr2(C2), 2(G̃r2(R2)× CP1)}, {2Gr2(C3)},
{2(CP0 × CP0), 2(CP0 × G̃r2(R2)), 2(CP0 × G̃r2(R2))},
{2Gr2(C2), 2(CP1 × CP0)},
{2(CP0 × CP0), 2(CP0 × CP0), 2(CP0 × CP0)}

FS1 (G̃r4(R7)) {G̃r4(R7)}, {G̃r4(R5),CP0 × G̃r2(R5)},
{2(Gr2(C2)), G̃r2(R3)× CP1}, {2(Gr2(C3))},
{2(CP0 × CP0), (CP0 × G̃r2(R3))t2}, {2(Gr2(C2)), 2(CP0 × CP1)},
{(2(CP0 × CP0))t3}

FS1 (G̃r4(R8)) {G̃r4(R8)}, {G̃r4(R6),CP0 × G̃r2(R6)},
{2(Gr2(C2)),CP1 × G̃r2(R4), 2(G̃r4(R4))}
{2(Gr2(C3)), 2(CP2 × G̃r2(R2))}, {2(Gr2(C4))},
{2(G̃r4(R4), (CP0 × G̃r2(R4))t2, 2(CP0 × CP0)},
{2(Gr2(C2)), 2(CP0 × CP1), 2(CP0 × G̃r2(R2)), 2(CP1 × G̃r2(R2))},
{2(Gr2(C3)), 2(CP0 × CP2), {(2(Gr2(C2)))t2, 2(CP1 × CP1)},
{(2(CP0 × G̃r2(R2)))t3, (2(CP0 × CP0))t3},
{2(Gr2(C2)), (2(CP0 × CP1))t2, 2(CP0 × CP0)},
{(2(CP0 × CP0))t6}

In the case of the real Grassmannian as ambient space multiplication of a set by 2 denotes
that this set appears once as noted and once in its dual form as appearing in theorem B.4.
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Table B.2.: Real-Grassmannian-Z2-fixed-point components of G̃r4(Rn+4)
possible fixed-point set

d1, d2 > 4, {G̃r4(Rd1), G̃r4(Rd2),Gr2(Rd1)×Gr2(Rd2)},

4 = d1 < d2 {G̃r4(R4), (G̃r4(R4))∗, G̃r4(Rd2), Gr2(R4)×Gr2(Rd2)}

d1 = 3, d2 > 4, {G̃r4(Rd2), Gr2(R3)×Gr2(Rd2)}

d1 = 2, d2 > 4, {G̃r4(Rd2), G̃r2(Rd2)}

d1 < 2, d2 > 4, G̃r4(Rd2)
This is symmetric in d1 and d2. We have d1 + d2 = n + 4, and d2 is even. The results

for small di are special cases of the general one just interpreted in the right way.

Table B.3.: Involutive fixed-point components of low-dimensional Wolf spaces
Wolf space possible fixed-point sets

FZ2(HP1) {HP1}, {HP0,HP0} {CP1}
FZ2(HP2) {HP2}, {HP1,HP0} {CP2}
FZ2(HP3) {HP3}, {HP2,HP0}, {HP1,HP1} {CP3}
FZ2(HP4) {HP4}, {HP3,HP0}, {HP2,HP1} {CP4}
FZ2(Gr2(C3)) {Gr2(C3)}, {Gr2(C2),CP1 × CP0}
FZ2(Gr2(C4)) {Gr2(C4)}, {Gr2(C3),CP2 × CP0},

{Gr2(C2),Gr2(C2),CP1 × CP1}
FZ2(Gr2(C5)) {Gr2(C5)}, {Gr2(C4),CP3 × CP0},

{Gr2(C3),Gr2(C2),CP2 × CP1}
FZ2(Gr2(C6)) {Gr2(C6)}, {Gr2(C5),CP4 × CP0},

{Gr2(C4),Gr2(C2),CP3 × CP1},
{Gr2(C3),Gr2(C3),CP2 × CP2}

FZ2(G̃r4(R5)) {G̃r4(R5)}, {2(G̃r4(R4))}, {G̃r2(R3)}

FZ2(G̃r4(R6)) {G̃r4(R6)}, {2(G̃r4(R4)), G̃r2(R4)}, {2(Gr2(C3))}

FZ2(G̃r4(R7)) {G̃r4(R7)}, {G̃r4(R6)}, {G̃r4(R5), G̃r2(R5)}
{2(G̃r4(R4)),Gr2(R3)×Gr2(R4)}

FZ2(G̃r4(R8)) {G̃r4(R8)}, {G̃r4(R6), G̃r2(R6)},
{2(G̃r4(R4)), 2(G̃r4(R4)),Gr2(R4)×Gr2(R4)}, {2(Gr2(C4))}

In the case of the real Grassmannian as ambient space multiplication of a set by 2 denotes

that this set appears once as noted and once in its dual form as appearing in theorem B.11.



C

The Euler Characteristic

In this chapter we apply the last two ones, i.e. chapters A and B, in order to find
upper bounds for the Euler characteristic of Positive Quaternion Kähler Manifolds
under the existence of torus actions. We shall concentrate on low-dimensional cases.
Nonetheless the proof for the result in dimension 20 will pave the way towards an
inductive approach over all dimensions.

Unfortunately, due to the errors in the classification in dimensions 12—cf. chapter
2—we need to suppose that every 12-dimensional Positive Quaternion Kähler
Manifold is symmetric—or equivalently, that

Â(M)[M ] = 0

for every π2-finite 12-dimensional Positive Quaternion Kähler Manifold M
as a general assumption for this chapter.

Thus in order to keep this chapter comparatively short we shall content ourselves
with results that are not optimal yet. The proofs given therefore may be considered as
showcase computations only preceeding an in-depth investigation. However, although
arguments get much more technical and lengthy when optimising the results, the
interested reader will certainly be able to adapt the reasoning we give. Indeed, our
exemplary line of argument will illustrate the techniques to an extent that makes it
possible to continue in this vein. For this we established chapters A and B, which
provide all the necessary information—beyond our current use.

Let us begin by a depiction of the main idea we use. We shall do so for the special
case of a 16-dimensional Positive Quaternion Kähler Manifold M and a an effective
isometric action of a 3-torus T 3 = S1 × S1 × S1, although the arguments may clearly
be adapted to further cases.

Main Idea. The rational cohomology of M is concentrated in the fixed point set
MT 3

—cf. theorem [10].VII.1.6, p. 374. That is, in particular χ(M) = χ(MT 3
). As

χ(M) > 0 (cf. 1.13) there is a T 3-fixed-point x ∈ M . By means of the isotropy
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representation at x and by the canonical projection Z2 ↪→ Sp(1)→ SO(3) we obtain
the homomorphism

ϕ : T 3 ↪→ Sp(4)Sp(1)
p−→ SO(3)

Thus by consideration of rank we obtain that there is a T 2⊆ kerϕ. Consider the
Z2-subtorus T 2

Z2
⊆T 2. Hence every involution Z2⊆T 2

Z2
fixes a quaternionic component

at x. A combinatorial argument yields that there is always an involution in T 2
Z2

that
fixes an at least eight-dimensional (quaternionic) component Nx (cf. page 20).

Inductively, we construct a sequence of quaternionic fixed-point components Ni:
Choose a T 3-fixed point x1 and construct the Z2-fixed point component N1 := Nx1 as
above. Now choose a point x2 ∈MT 3 \N1 with corresponding component N2 := Nx2 .
We proceed by iteratively choosing a point xi ∈ MT 3 \ {N1 ∪ · · · ∪ Ni−1} and by
forming the component Ni := Nxi .

By a Fraenkel-type argument (cf. theorem [19].0.1, p. 151) we obtain that any two
quaternionic submanifolds of M intersect provided that their dimension sum is at
least dimM . Thus the involutions that fix Ni and Nj for i < j are distinct elements
of T 3: Since dimNi ≥ 8 and dimNj ≥ 8, we clearly obtain that Ni ∩Nj 6= ∅. So if
both components are fixed by the same involution, they are necessarily identical and
xj 6∈MT \ {N1 ∪ · · · ∪Ni ∪ · · · ∪Nj−1} contradicting the construction.

The number of different involutions in T 3
Z2

is given by 23−1 = 7. Hence the sequence
of components Ni we constructed above necessarily is finite and consists of the elements

N1, N2, N3, N4, N5, N6, N7

at most.
These components are eight-dimensional or twelve-dimensional Positive Quaternion

Kähler Manifolds (cf. page 20). By our general assumption for this chapter all these
manifolds are symmetric spaces. Consequently, by corollary A.2 we see that their
Euler characteristic is restricted by χ(Ni) ≤ 6 from above unless Ni

∼= Gr2(C5) for
some 1 ≤ i ≤ 7. If this is the case, however, the connectivity lemma 1.20 implies that
the inclusion Ni ↪→M is 3-connected, whence π2(M) = π2(Ni) = Z. Thus by corollary
1.12 we deduce that M ∼= Gr2(C6). So, in total, we may suppose that

χ(M) ≤
7∑
i=1

χ(Ni) = 7 · 6 = 42

One now proceeds by taking into account the various intersections between the
Ni-components. This will reduce the Euler characteristic bound even further. �

We remark that a 16-dimensional Positive Quaternion Kähler Manifold admits an
effective isometric action of a 2-torus T 2 by theorem 1.18 and by the classification of
simple Lie groups (cf. table 1.3).
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We now want to illustrate how to reduce the upper bound of the Euler characteristic
by taking into account the several intersections of the fixed-point components Ni.
We shall do so in the case of an effective isometric 4-torus action in order to keep
the reasoning rather short. Similar results may equally be obtained by means of a
T 3-action only.

Lemma C.1. A component of the intersection of two 12-dimensional (quaternionic)
Z2-fixed-point components N1 6= N2 (belonging to different involutions contained in
T 3) of M16 is a quaternionic isometric Z2-fixed-point component (of N1) of dimension
8.

Proof. Let the components N1, N2 belong to the involutions a, b ∈ T 3. As a and b
commute, we see that b restricts to an action on the fixed-point set Ma of a. Moreover,
the map b preserves path-components: Choose an arbitrary element g ∈ T 3. Then
there is a path s : [0, 1]→ T 3 with s(0) = id, s(1) = g. Thus we obtain the path

[0, 1]→Ma : t 7→ (s(t))(x)

from x to g(x) for x ∈Ma. This implies that the action of g—and actually the one of
the whole T 3—restricts to an action on Ni. So does the action of b in particular.

Hence a component Ñ of the intersection N1 ∩N2 is a component of the action of b
on N1. As N2 is quaternionic, the morphism

Z2b ↪→ Sp(4)Sp(1)→ SO(3)

(induced by the isotropy representation in a point x ∈ Ñ ⊆M and the canonical
projection) is trivial. As the inclusion of Sp(3)Sp(1) ↪→ Sp(4)Sp(1) is the canonical
blockwise one, we see that also the map Z2b ↪→ Sp(3)Sp(1) → SO(3) is trivial in
x ∈ Ñ ⊆N1. Thus the fixed-point component Ñ of the action of b on N1 is quaternionic.
That is, a component of N1 ∩N2 is quaternionic.

The isotropy representation (in M) of a respectively b in a point x ∈ Ñ (without
restriction) is given by (1, 1, 1,−1) and by (1, 1,−1, 1) respectively; i.e. infinitesimally,
the components N1 and N2 share two “quaternionic directions”. Thus we compute
the dimension of the intersection component Ñ as dim Ñ = 2 · 4 = 8.

Generalisations of this lemma to different components and higher dimensions are
obvious. So for example we directly see that the intersection of a 12-dimensional compo-
nent and an 8-dimensional quaternionic component (in M16) consists of 4-dimensional
quaternionic Z2-fixed-point-components—unless the 8-dimensional component is con-
tained in the 12-dimensional one.

Proposition C.2. Let M be a Positive Quaternion Kähler Manifold with an effective
isometric T 3-action. If there is a Z2-subgroup of T 3 fixing a 12-dimensional component,
then M ∈ {HP4,Gr2(C6)}.
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Proof. In order to prove the result we shall show that if there is a 12-dimensional Z2-
component N12, the Euler characteristic of M is smaller than 12 unless
M ∈ {HP4,Gr2(C6)}. This will yield a contradiction.

As we described when depicting the main idea, we cover the T 3-fixed-point set by the
components N1, . . . , N7. By dimension, the component N12 is necessarily quaternionic.
So suppose N1 = N12. By our general assumption N1 is symmetric. We suppose that
N1
∼= G̃r4(R7) and shall lead this to a contradiction.

Step 1. We shall see that under the assumption N1
∼= G̃r4(R7) the Euler charac-

teristic of M is bounded from above by χ(M) < 12.
Case 1. Suppose there is another 12-dimensional component N2 6= N1. By lemma

C.1 the intersection N1 ∩N2 is an 8-dimensional Z2-component of N1
∼= G̃r4(R7). We

now apply the classification of Z2-fixed-point components as elaborated in chapter
B. By table B.3 we see that an intersection component Ñ ⊆N1 ∩N2 is isometric to
Ñ ∼= G̃r4(R6). Since

χ(G̃r4(R6)) = 6 = χ(G̃r4(R7))

we realise that the cohomology of N2 is already concentrated in Ñ ; i.e. that

MT 3 ∩N2⊆ Ñ ⊆N1

This implies that the components N1, N3, . . . , N7 already cover MT 3
.

Case 2. Thus we may assume that there are at most seven components Ni and at
most one of them, namely N1, is of dimension 12—the other ones satisfying dimNi = 8
for i 6= 1.

Every 8-dimensional component Ni (for i > 1) intersects with N1 = N12 in a
4-dimensional Z2-components unless it is contained in N12. We clearly may neglect
the case of the inclusion Ni⊆N1.

As such a 4-dimensional component is a Z2-component of N1
∼= G̃r4(R7), table

B.3 yields that it is isometric to HP1. Consequently, as the 4-dimensional compo-
nent equally is a Z2-component of the 8-dimensional component Ni, the table yields
that Ni

∼= HP2. (For this we make use of the additional information—cf. theorem
[73].8.2, p. 537—that Gr2(C3) is the only 4-dimensional quaternionic submanifold
that G2/SO(4) admits.)

Thus we compute

χ(M) ≤
7∑
i=1

χ(Ni) = χ(G̃r4(R7)) + 6 · (χ(HP2)− χ(HP1)) = 12(C.1)
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We shall now show that the components Ni
∼= HP2 (for i > 1) do intersect outside

of N1. This will decrease the upper bound of the Euler characteristic below the
crucial value of 12. We may assume that there are exactly seven components Ni as
otherwise the upper bound for the Euler characteristic equally is smaller than 12. Due
to Fraenkel the components Ni (for 1 < i ≤ 7) intersect pairwise.

Suppose all the points of intersection lie in N1. Hence such a point x is an intersection
point of at least two 8-dimensional components and the 12-dimensional component N1.
Thus the isotropy representation of T 3

Z2
in such a point without restriction is given by

{(1, 1, 1,−1), (−1,−1, 1, 1), (−1, 1,−1, 1), (−1,−1, 1,−1), (1,−1,−1, 1),(C.2)
(−1, 1,−1,−1), (1,−1,−1,−1)}

as a direct check shows. Indeed, we focused on the only case possible under the
absence of further 12-dimensional components. Actually, in case 1 we dealt with the
situation of more than one 12-dimensional component and we reduced it to the case of
one 12-dimensional component and only six 8-dimensional ones; this yields a bound
which is smaller than 12. (As for the notation: We consider a vector—i.e. for example
(1, 1, 1,−1)—as a diagonal matrix—i.e. in the example as diag(1, 1, 1,−1)—in Sp(4).
The representation of each involution is trivial on the Sp(1)-factor.)

Hence all these points are isolated fixed-points of T 3
Z2

on M in which exactly three 8-
dimensional components intersect. Without restriction, in the point x we assume these
three components to be N2, N3 and N4. Let us now consider the intersection of N5 with
N2. By assumption there is a point x′ ∈ N1∩N2∩N5 with the representation of T 3

Z2
in

x′ being given by (C.2). Thus in x as well as in x′ every involution in T 3
Z2

—other than
the involution belonging to N1—restricted to an action on N1 fixes a four-dimensional
component on N1

∼= G̃r4(R7). By table B.3 such a component necessarily is isometric
to HP1. In particular, we obtain the following: The involution belonging to N5 fixes a
four-dimensional component (in M) in x and an eight-dimensional component (in M)
in x′. Restricted to an action on N1 this involution fixes a four-dimensional component
in x (in N1) and another now necessarily distinct four-dimensional component in x′

(in N1). Thus the involution fixes two four-dimensional quaternionic components on
N1. By table B.3 this is not possible.

So there are components Ni 6= Nj (with i, j ≥ 2) that do intersect outside of N1 in
a component Ñ ⊆Ni ∩Nj . The Euler characteristic of this component was counted
twice in C.1. So we obtain a refinement of (C.1):

χ(M) ≤ χ(G̃r4(R7)) + 6 · (χ(HP2)− χ(HP1))− χ(Ñ) ≤ 12− 1 = 11
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Step 2. So in any case we reduced the Euler characteristic χ(M) to a value below
12. However, observe that by formula (1.2) combined with Hard-Lefschetz (cf. 1.13)
and by excluding the special case (b4, b6, b8) = (2, 1, 2) via theorem [38].1.1, p. 2,
the smallest Euler characteristic that may be realised by a rationally 3-connected
16-dimensional Positive Quaternion Kähler Manifold other than HP4 comes from the
triple (b4, b6, b8) = (3, 0, 4). It is given by χ(M) = 12.

Combining this with the information obtained in step 1 we conclude that
N1 6∼= G̃r4(R7). By our general assumption on symmetry in dimension 12 this
implies that N1 ∈ {HP3,Gr2(C5)}. By the connectivity lemma 1.20 this implies that
M ∈ {HP4,Gr2(C6)}.

The next proposition is an important step for restricting the Euler characteristic in
the case of a T 3-action. If we are even given a T 4-action—we shall content ourselves
with this stronger assumption—it will already yield a suitable bound.

Proposition C.3. Suppose M16 admits an effective isometric action by a 3-torus T 3.
Assume further that there is a T 3-fixed-point where the map

ϕ : T3 ↪→ Sp(4)Sp(1)→ SO(3)

induced by the isotropy representation is trivial. Then we obtain

χ(M) ≤ 15

Proof. Following our main idea we consider the isotropy representations of the
three-torus T 3 in its fixed-points. In each such point we obtain a T 2-subtorus, the
involutions of which fix quaternionic components. We have |T 3

Z2
| = 8. So we cover the

T 3-fixed-point set by the components N1, . . . , N7 (with dimNi ≥ 8) as depicted. By
proposition C.2 we may assume that none of the Ni has dimension 12; i.e. we have
that dimNi = 8 for 1 ≤ i ≤ 7.

By the assumption in the assertion there is a T 3-fixed-point x in which every
involution in T 3

Z2
has a representation in Sp(4). A combinatorial argument then yields

that in x this representation—in the absence of 12-dimensional components—is given
by

{(1, 1,−1,−1), (−1,−1, 1, 1), (−1, 1, 1,−1), (1,−1, 1,−1), (−1, 1,−1, 1),(C.3)
(1,−1,−1, 1), (−1,−1,−1,−1)}

So there are six 8-dimensional components N1, . . . , N6 intersecting in x—we let N1

correspond to (1, 1,−1,−1) and so forth.
Let N1 respectively N2 correspond to the involution represented by (1, 1,−1,−1)

respectively by (−1,−1, 1, 1). The Euler characteristic concentrated in N1 ∪ N2 is
restricted by 6+6−1 = 11, since χ(Ni) ≤ 6 by corollary A.2. Every further component
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N3, . . . , N6 intersects both with N1 and N2 in a 4-dimensional component by (C.3).
These 4-dimensional pairwise distinct intersection components are represented in x by

{(1,−1,−1,−1), (−1, 1,−1,−1), (−1,−1, 1,−1), (−1,−1,−1, 1)}

and we shall denote them by Ñ1, Ñ2, Ñ3, Ñ4 (in this order).

Case 1. Suppose that there exist i, j for 1 ≤ i < j ≤ 4 with {x} ( Ñi ∩ Ñj . On
the analogy of lemma C.1 we see that the intersection Ñi ∩ Ñj consists of isolated
Z2-fixed-points in Ñi. That is, the involution corresponding to Ñj has at least two
isolated fixed-points when restricted to an action on Ñi. By table B.3 the only 4-
dimensional Wolf space that admits an involution (contained in a torus) with two
isolated fixed-points is HP1. Thus we obtain that Ñi

∼= HP1. By table B.3 we
know that the only 8-dimensional Wolf space that admits a Z2-fixed-point component
isometric to HP1 is HP2. (Again we make use of the fact that G2/SO(4) does not
admit HP1 as a quaternionic submanifold by theorem [73].8.2, p. 537.)

Without restriction we suppose i = 1. Then Ñ1
∼= HP1. Consequently, the

componentN1 is isometric to HP2. A 4-dimensional quaternionic Z2-component of HP2

is isometric to HP1 by table B.3. Thus also Ñ2
∼= HP1. This again implies N4

∼= HP2

and N6
∼= HP2. Continuing in this fashion we obtain that N1, . . . , N6

∼= HP2.
Thus we see that the Euler characteristic concentrated in N1 ∪ N2 is restricted

from above by 3 + (3 − 1) = 5. The components Ni
∼= HP3 for 3 ≤ i ≤ 6 intersect

with either N1 or N2 in an Ñj
∼= HP1. Thus the Euler characteristic concentrated

in N1 ∪ · · · ∪ N6 is restricted from above by 5 + 4 · (3 − 2) = 9. Hence the Euler
characteristic concentrated in N1 ∪ . . . ∪N7 is restricted by 9 + 6 = 15.

Case 2. Suppose that for all i, j with 1 ≤ i < j ≤ 4 we have {x} = Ñi ∩ Ñj . As we
have seen the Euler characteristic concentrated in N1 ∪N2 is restricted by 11. Every
further component Ni for 3 ≤ i ≤ 6 intersects both with N1 and N2 in one of the
Ñj , Ñk with 1 ≤ j, k ≤ 4 respectively. Since Ñj ∩ Ñk = {x}, we see that the Euler
characteristic concentrated in N1 ∪ · · · ∪N6 is restricted by

(χ(N1) + χ(N2)− χ({x})) +
6∑
i=3

χ(Ni)

− (χ(Ñ2) + χ(Ñ3)− χ({x}))
− (χ(Ñ1) + χ(Ñ3)− χ({x}))(C.4)

− (χ(Ñ2) + χ(Ñ4)− χ({x}))
− (χ(Ñ1) + χ(Ñ3)− χ({x}))
≤11 + 4 · (6− (3 + 3− 1))
=15
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Indeed, if there is an Ni isometric to G2/SO(4), then it intersects with another eight-
dimensional component in an Ñj

∼= Gr2(C3). Consequently, its Euler characteristic is
already concentrated in the intersection Ñj . Thus a similar refined inequality holds.

If there is a component Ni
∼= HP2, then we see that there are two Ñj and Ñk that

are Z2-fixed point components of Ni (for two different involutions). According to table
B.3 they are homothetic to Ñj , Ñk

∼= HP1 each. Moreover, table B.3 gives that every
8-dimensional component Nl they are contained in is homothetic to HP2. Iteratively
continuing in this fashion we see that Ni

∼= HP2 for all 1 ≤ i ≤ 6. Consequently,
the Euler characteristic concentrated in N1 ∪ N2 is 3 + (3 − 1) = 5. Every further
component Ni for 3 ≤ i ≤ 6 intersects both with N1 and with N2 in one of the
Ñj , Ñk with 1 ≤ j, k ≤ 4 respectively. Thus the Euler characteristic concentrated in
N1 ∪ . . . ∪N6 is restricted by

(χ(N1) + χ(N2)− χ({x})) +
6∑
i=3

χ(Ni)

− (χ(Ñ2) + χ(Ñ3)− χ({x}))
− (χ(Ñ1) + χ(Ñ3)− χ({x}))
− (χ(Ñ2) + χ(Ñ4)− χ({x}))
− (χ(Ñ1) + χ(Ñ3)− χ({x}))
≤5 + 4 · (3− (2 + 2− 1))
=5

Thus the Euler characteristic concentrated in N1 ∪ · · · ∪ N7, i.e. the number χ(M)
itself, is restricted by χ(M) ≤ 5 + 6 = 11 and we are done.

Hence we may assume in the following that Ni
∼= G̃r4(R6) for 1 ≤ i ≤ 6.

If there is no seventh component N7, we are done. Otherwise, we now also take
intersections with the seventh component N7 into account.

Clearly, by Fraenkel N7 intersects with each of N1, . . . , N6.
Case 2.1. Suppose there is a point x′ with x′ ∈ N7 ∩Ni ∩Nj with i < j < 7. The

existence of these three 8-dimensional components requires the isotropy representation
in x′ to be one out of two possibilities:

Case 2.1.1. Assume the isotropy representation of T 3 to be characterized by
kerϕ = T 2 with the Z2-subtorus of this T 2 being represented by

{(1, 1,−1,−1), (−1, 1, 1,−1), (−1, 1,−1, 1)}

These representations correspond to the components N7, Ni and Nj . Thus the
common intersection component of N7, Ni and Nj is 4-dimensional. This implies
that the involution corresponding to N7 fixes an isolated fixed-point on Ni in x
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whereas it fixes a four-dimensional quaternionic submanifold of Ni in x′. According
to table B.3 there is no classical Wolf space of dimension eight that permits such an
involution other than Ni

∼= HP2—the subcase we ruled out at the beginning of case 2.
Equally, the space G2/SO(4) cannot permit such an involution as the 4-dimensional
fixed-point component is necessarily Gr2(C3)—cf. [73].8.2, p. 537—whence the Euler
characteristic concentrated in the Z2-fixed-point set would be equal to or bigger than
χ(Gr2(C3)) + χ({x}) = 3 + 1 = 4.

Thus this case actually cannot occur.
Case 2.1.2. Assume kerϕ = T 3 and suppose the isotropy representation of T 3

Z2
in

x′ to be given by

{(1, 1,−1,−1), (−1,−1, 1, 1), (−1, 1, 1,−1), (1,−1, 1,−1), (−1, 1,−1, 1),
(1,−1,−1, 1), (−1,−1,−1,−1)}

Let Nk denote the component corresponding to the involution represented by
(−1, 1, 1,−1) in x′. The involution belonging to N7 is represented by
(−1,−1,−1,−1) in x and by (1, 1,−1,−1) in x′ without restriction. Thus it fixes a
4-dimensional component around x′ in Nk and it has x as an isolated fixed-point in Nk.
As in case 2.1.1 this leads to Nk

∼= HP2, which is impossible by assumption. Hence
this case cannot occur either.

Case 2.2. So we may assume that there is no triple intersection of the components
Ni for 1 ≤ i ≤ 7, i.e. whenever x′ ∈ Ni ∩Nj with 1 ≤ i < j ≤ 7 there is no k 6∈ {i, j}
with 1 ≤ k ≤ 7 and x′ ∈ Nk.

By Fraenkel the component N7 intersects with each of the components N1, . . . , N6.
By assumption these intersections now have to be pairwise disjoint. The Euler charac-
teristic concentrated in each intersection component is at least one. We have at least
six different intersection components N1 ∩N7, . . . , N6 ∩N7. The Euler characteristic
of N7 is at most χ(N7) ≤ 6. These facts imply that the Euler characteristic of N7

already is concentrated in N1 ∪ · · · ∪N6, i.e. by equation (C.4) we obtain

χ(M) ≤ 15 + χ(N7)−
6∑
i=1

χ(Ni ∩N7) = 15

This proves the assertion.

Together with our general assumption of symmetry in dimension 12 this proposition
directly leads to

Theorem C.4. A 16-dimensional Positive Quaternion Kähler Manifold M admitting
an isometric action of a 4-torus satisfies

χ(M) ∈ {12, 15}
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and

(b4, b6, b8) ∈ {(3, 0, 4), (3, 2, 3)}

unless it is necessarily symmetric, i.e. M ∈ {HP4,Gr2(C6)}.

Proof. The map

ϕ : T 4 ↪→ Sp(4)Sp(1)
p−→ SO(3)

induced by the isotropy representation at a T 4-fixed-point x in M satisfies T 3⊆ kerϕ
for some subgroup T 3⊆T 4. Hence for the action of this T 3 the prerequisites of
proposition C.3 are satisfied. Consequently, the Euler characteristic of M is restricted
from above by

χ(M) ≤ 15

By corollary 1.12 we may suppose M to be rationally 3-connected. Hence by theorem
1.13 and in particular by equation (1.2) we obtain the following possibilities for the
Betti numbers (b4, b6, b8):

(b4, b6, b8) ∈ {(1, 0, 1), (2, 1, 2), (3, 0, 4), (3, 2, 3)}

If b4 = 1 theorem 1.15 yields that M ∼= HP4. By [38].1.1, p. 2, the configuration (2, 1, 2)
cannot occur. If (b4, b6, b8) = (3, 0, 4), then χ(M) = 12. In the case (b4, b6, b8) = (3, 2, 3)
the Euler characteristic is given by χ(M) = 15.

In the case of a T 3-action only a similar theorem can be proved by a deeper analysis
of intersections of Z2-fixed-point components.

We remark that χ(G̃r4(R8)) = 12 and that χ(Gr2(C6)) = 15—cf. corollary A.2.
This shows that the upper bound we found is very good.

The next theorem paves the way for an inductive generalisation over all dimensions.
In order to establish a bound for the Euler characteristic of the Positive Quaternion
Kähler Manifold M4n we shall not assume all Positive Quaternionin Kähler Manifolds
in dimensions smaller than 4n to be symmetric. The proof provides an argument that
nonetheless makes it possible to find an upper bound.

Theorem C.5. A Positive Quaternion Kähler Manifold M of dimension dimM = 20
that admits an effective isometric action by a 4-torus T 4 satisfies

χ(M) ≤ 225
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Proof. We adapt the main idea presented above to dimension 20: In a T 4-fixed-
point we consider the isotropy representation of T 3

Z2
⊆T 3⊆ kerϕ (with the notation

from above). We realise that we can always find an involution that fixes an at least
12-dimensional quaternionic component. Since |T 4

Z2
| = 24, we thus know that the

fixed-point set MT 4
can be covered by at most 24− 1 = 15 quaternionic Z2-fixed-point

components

N1, . . . , N15

satisfying dimNi ≥ 12. Thus the Euler characteristic of M is restricted by

χ(M) ≤
15∑
i=1

χ(Ni)

If dimNi = 12, we cite χ(Ni) ≤ 10 from corollary A.2 due to our general assumption
of symmetry in dimension 12.

Suppose now there is an Ni of dimension dimNi = 16. Assume that Ni is fixed by
the involution a ∈ T 3

Z2
. Since a commutes with T 4, the action of T 4 restricts to an

action on the fixed-point set Ma. Moreover, in the proof of lemma C.1 we have seen
that the action of T 4 restricts to an action on Ni.

If this action, T 4 y Ni, is not almost effective, i.e. if there is an S1-subgroup of
T 4 fixing Ni, then Ni is a codimension four S1-fixed-point component of M . Thus
by theorem [20].1.2, p. 2, we obtain that M ∼= HP5 or M ∼= Gr2(C7). Otherwise, if
T 4 acts almost effectively, we may apply the whole reasoning to dimension 16 with
the action of a 4-torus. This was done in theorem C.4, which yields the upper bound
χ(Ni) ≤ 15. Hence, in total, we obtain:

χ(M) ≤ 15 · 15 = 225

Taking into account the various intersections of the components Ni again permits
to reduce the upper bound for χ(M) tremendously.

For an iterative approach for χ(M4n) we finally notice the following: In each torus-
fixed-point we need to find a Z2-fixed-point component Ni that has dimension at least
2n. For this it is sufficient for the torus to have a rank lying in O(log2 n)—this can
easily be made more precise—as a combinatorial argument shows.





D

The Elliptic Genus of Wolf
Spaces

As we remarked in chapter 2, it remains a challenging task to prove the vanishing
of the Â-genus on Positive Quaternion Kähler Manifolds M that are not necessarily
spin but π2-finite. This question can be seen in the larger context of a description of
the elliptic genus Φ(M). Indeed, Φ(M) admits an expansion as a power series which
contains Â(M)[M ] as a first coefficient (cf. [39]).

We shall provide this description on Wolf spaces M . We ignore the complex
Grassmannian, as b2(Gr2(Cn+2)) = 1. Stepping through the list of Wolf spaces
(cf. table 1.2) then basically yields four different cases:

• The Wolf space is M ∼= HPn.

• The Wolf space is exceptional.

• We have M ∼= G̃r4(Rn+4) for even n ≥ 2.

• We have M ∼= G̃r4(Rn+4) for odd n ≥ 1.

Clearly, the quaternionic projective space is spin. (Moreover, in odd quaternionic
dimensions it is the only Positive Quaternion Kähler Manifold that is spin.) The
exceptional Wolf spaces—except for F4/Sp(3)Sp(1)—as well as G̃r4(Rn+4) for even
n ≥ 2 have even quaternionic dimension. Thus they are spin manifolds M .

So a reasoning due to [39] identifies the equivariant elliptic genus Φ(M, g) of an
involution g with the one of the transversal self-intersection, Φ(Mg t Mg, g), of the
fixed-point set of g. The rigidity of the elliptic genus on spin manifolds yields

Φ(M) = Φ(M, g) = Φ(Mg t Mg, g)

This permits an approach inductive on dimension. Due to the theorem on [39], p. 321
this leads to

Φ(M) = sign(M) = b2n(M)
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(If M is a Positive Quaternion Kähler Manifold of even quaternionic dimension, its
intersection form is positive definite–cf. 1.16. Otherwise, if M is spin and of odd
quaternionic dimension, we have M ∼= HPn and sign(M) = −b2n = 0.) This gives a
complete picture in the spin case.

Thus only the cases of the real Grassmannian G̃r4(Rn+4) with odd n and of the
exceptional space F4/Sp(3)Sp(1) remain. We shall prove the vanishing of Φ(G̃r4(Rn+4)
in this case. Compare also the result on [36], p. 202–203, which was obtained by
computations on the twistor space. However, we shall give a more direct reasoning. For
the exceptional Wolf space we quote the computations on [36], p. 204–205, although
our method applies to this case as well.

For the convenience of the reader we shall illustrate a method of direct computation—
following [39] once more—in the eight-dimensional case. This will serve as a showcase
computation for the more general case of arbitrary odd quaternionic dimension, which
we shall deal with later. Alongside this model computation we shall establish necessary
facts and notation. As a general reference on Index Theory we recommend the
textbooks [40] and [52].

We have

G̃r4(Rn+4) =
SO(n+ 4)

SO(n)× SO(4)

whence G̃r4(R6) = SO(6)
SO(2)×SO(4) . The positive roots of SO(6) (corresponding to the

standard maximal torus) are given by

x1 ∓ x3, x1 ∓ x2, x2 ∓ x3

where xi is dual to the i-th factor of the maximal torus. The positive roots of the
denominator SO(2)×SO(4) are given by x2∓x3, whence the complementary positive
roots are the

x1 ∓ x3, x1 ∓ x2

(Clearly, we have that 2|{x1 ∓ x3, x1 ∓ x2}| = dim G̃r4(R6).)
The Weyl group of SO(2n + 1) is given by the group G of permutations of

{−n, . . . ,−1, 1, . . . , n} equivariant under multiplication with (−1)—cf. [11], p. 171.
The Weyl group of SO(2n) is the subgroup SG of even permutations. We obtain the
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coset

W
(

SO(6)
SO(2)× SO(4)

)
:=

W(SO(6)
W(SO(2)× SO(4))

=
SG(3)

SG(1)× SG(2)

=
SG(3)
SG(2)

∼=
{1 0 0

0 1 0
0 0 1

 ,

−1 0 0
0 −1 0
0 0 1

 ,

0 1 0
1 0 0
0 0 1

 ,

 0 −1 0
−1 0 0
0 0 1

 ,

0 1 0
0 0 1
1 0 0

 ,

 0 −1 0
0 0 1
−1 0 0

}

The maximal torus T 3 of SO(6) acts isometrically on SO(6)
SO(2)×SO(4) by left-

multiplication. We consider the isometric S1-action induced by the inclusion of
S1 into T 3 by g 7→ (g1, g2, g3), where g is a topological generator of S1.

The fixed-points of this action are isolated and in one-to-one correspondence with

W
( SO(6)
SO(2)× SO(4)

)
The rotation numbers on the tangent space of such a fixed-point are given by evaluation
on roots, i.e. the rotation numbers in a point

w ∈W
( SO(6)
SO(2)× SO(4)

)
are given by

〈w({x1 ∓ x2, x1 ∓ x3}), φ〉 = w({x1 ∓ x2, x1 ∓ x3})|x1=1,x2=2,x3=3

The orientation in a point is compatible with the orientation of the ambient manifold
if and only if the determinant of the transformation w corresponding to the fixed-point
is positive. (For this consider w as a linear map on the vector space generated by the
roots.)

For example, in the identity component we obtain the rotation numbers

{x1 ∓ x2, x1 ∓ x3}|x1=1,x2=2,x3=3 = {−1, 3,−2, 4}

whereas in the fixed-point corresponding to−1 0 0
0 −1 0
0 0 1
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they are given by−1 0 0
0 −1 0
0 0 1

 ({x1 ∓ x2, x1 ∓ x3})

∣∣∣∣
x1=1,x2=2,x3=3

={−x1 ± x2,−x1 ∓ x3}|x1=1,x2=2,x3=3

={1,−3,−4, 2}

Both points are oriented in a positive way, i.e. compatible with the orientation of
G̃r4(R6). Continuing in this fashion we obtain the complete list depicted in table
D.1. A direct consequence of this is the signature of the Grassmannian, which can be

Table D.1.: Rotation numbers on G̃r4(R6)
fixed-point permutation of roots rotation numbers orientation1 0 0

0 1 0
0 0 1

 x1 ∓ x2, x1 ∓ x3 −1, 3,−2, 4 +

−1 0 0
0 −1 0
0 0 1

 −x1 ± x2,−x1 ∓ x3 1,−3,−4, 2 +

0 1 0
1 0 0
0 0 1

 x2 ∓ x1, x2 ∓ x3 1, 3,−1, 5 −

 0 −1 0
−1 0 0
0 0 1

 −x2 ± x1,−x2 ∓ x3 −1,−3,−5, 1 −

0 1 0
0 0 1
1 0 0

 x3 ∓ x1, x3 ∓ x2 2, 4, 1, 5 +

 0 −1 0
0 0 1
−1 0 0

 −x3 ± x1,−x3 ∓ x2 −2,−4,−5,−1 +

computed as the difference of the number of positively oriented points and the one of
negatively oriented points. So sign(G̃r4(R6)) = 4− 2 = 2.

The signature may be regarded as the constant term of the power series belonging
to the elliptic genus of the manifold. So let us compute further coefficients. Denote by



D The Elliptic Genus of Wolf Spaces 215

TC the complexified tangent bundle and set

∧
t
TC =

4n∑
k=0

(∧kTC)tk StTC =
∞∑
k=0

(SkTC)tk

Recall that the elliptic genus is given by

Φ(X) = sign
(
X,

∞∏
m=1

∧
qm
TC ·

∞∏
m=1

SqmTC

)
(D.1)

where X is a compact oriented 4n-dimensional manifold. In the same way one obtains
an equivariant formula when replacing formal roots by equivariant formal roots. One
obtains the following form:

Φ(X, g) =
∞∑
m=0

sign(X,Rm, g)qm

where we focus on g being a topological generator of S1. The bundles Rm are the
coefficient bundles arising from (D.1). So we may compute them by means of the
subsequent equation.

∞∏
m=1

∧
qm
TC ·

∞∏
m=1

SqmTC

=
∞∏
m=1

∞∑
k=0

(∧kTC)(qm)k ·
∞∏
m=1

∞∑
k=0

(SkTC)(qm)k

=(1 + TCq + TC ∧ TCq
2 + . . . ) · (1 + TCq

2 + TC ∧ TCq
4 + . . . ) · . . .

· (1 + TCq + S2TCq
2 + . . . ) · (1 + TCq

2 + S2TCq
4 + . . . ) · . . .

=1 + 2TCq + 2(TC + TC ⊗ TC + TC ∧ TC + S2TC)q2

+ (2TC + 4TC ⊗ TC + TC ⊗ TC ⊗ TC + ∧3TC + S3TC)q3 + . . .

This implies in particular that

R0 = 1
R1 = 2TC

R2 = 2(TC + TC ⊗ TC)

R3 = 2TC + 4TC ⊗ TC + TC ⊗ TC ⊗ TC + ∧3TC + S3TC

(In degree two we have an exceptional identity T ∧ T + S2T = T ⊗ T .)
In general, one may determine sign(X,Rm, g) via a computation on fixed-point

components ν of g:

sign(X,Rm, g) =
∑
ν

sign(Xg
ν , Rm, g)



216 D The Elliptic Genus of Wolf Spaces

up to orientation/sign of each summand (cf. [40], 5.8, p. 72). In terms of power
series one may compute such an expression by replacing the formal roots of the power
series of the L-genus by equivariant formal roots and by twisting the expression with
chg(Rm). (The equivariant Chern character chg(Rm) again results from ch(Rm) by
replacing formal roots xi by the equivariant roots xi + tiz of Rm. Here ti ∈ N0 is
the rotation number of g on the root xi of Rm and z is a formal variable.) In our
case all the fixed-points of the S1-action on G̃r4(R6) are isolated, which simplifies the
situation, since the topology of the fixed-point components—the part in the formula
with rotation number equal to zero—yields a trivial contribution. So we obtain

sign(ν,Rm, g) =
∑
ν

((∏
k>0

dk∏
i=1

1 + e−(xi+tkz)

1− e−(xi+tkz)

)
· chg(Rm)

)[
ν
]

=
∑
ν

±
(∏
k>0

dk∏
i=1

1 + e−tkz

1− e−tkz

)
· chg(Rm)(D.2)

The last equation holds, since we evaluate on 0-dimensional isolated fixed-points and
therefore may set the xi to zero. (In this formula xi is always supposed to correspond
to a root on which the rotation number is tk.) The ±-sign is chosen according to
whether the orientation of the fixed-point is compatible with the orientation of the
ambient manifold or not.

We need to compute the equivariant Chern characters: Complexification of the
tangent bundle T induces an action of g on TC with rotation numbers (ti,−ti) when
ti being a rotation number of the action on T at a fixed-point. The Chern character
of a complex bundle of rank m is given by

m∑
r=1

eyr

in terms of its formal roots yr. Thus the equivariant Chern character becomes

m∑
r=1

etrz+yr(D.3)

With this we compute

chg(TC) =
4n∑
r=1

etrz+xr + e−trz+xr+n

The additivity and multiplicativity of the Chern character permits us to compute the
equivariant Chern characters of the bundles Rm. In order to compute equivariant
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Chern characters of symmetric and exterior powers we use formula (D.3) with the
formal roots of SkTC being given by the

yr = xi1 + · · ·+ xir with 1 ≤ i1 ≤ · · · ≤ ik ≤ 2n

The formal roots of ∧kTC are the

yr = xi1 + · · ·+ xir with 1 ≤ i1 < · · · < ik ≤ 2n

From now on let us specialise again to the S1-action φ from above which acts with
isolated fixed-points only. Once more, in particular, we therefore may also set the
roots xi in the equivariant Chern characters to zero.

We have obtained a formula for the equivariant elliptic genus by means of equivariant
twisted signatures. We have further seen how to compute equivariant Chern characters,
which enables us to compute the signatures. Table D.1 now tells us whether the
orientation of a fixed-point is compatible with the ambient manifold or not and what
the rotation numbers on the tangent bundle look like. All this information now is
sufficient to compute the equivariant elliptic genus.

So compute the twisted equivariant signatures: By ν1, . . . , ν6 we denote the different
fixed-points in the order according to their order of appearance in table D.1. Since the
rotation numbers in ν1 and ν2, the ones in ν3 and ν4 and the ones in ν5 and ν6 coincide
up to sign and since these points have the same orientation, we obtain—irrespective
of the twisting bundle Rm—that

sign(G̃r4(R6)), Rm, g) = sign(ν1, Rm, g) + sign(ν2, Rm, g)
− sign(ν3, Rm, g)− sign(ν4, Rm, g)
+ sign(ν5, Rm, g) + sign(ν6, Rm, g)

= 2sign(ν1, Rm, g)− 2sign(ν3, Rm, g) + 2sign(ν5, Rm, g)

By means of (D.2) we compute

sign(G̃r4(R6), g) = 2 ·
(

1 + e1·z

1− e1·z

)(
1 + e2·z

1− e2·z

)(
1 + e3·z

1− e3·z

)(
1 + e4·z

1− e4·z

)
− 2 ·

(
1 + e1·z

1− e1·z

)(
1 + e1·z

1− e1·z

)(
1 + e3·z

1− e3·z

)(
1 + e5·z

1− e5·z

)
+ 2 ·

(
1 + e1·z

1− e1·z

)(
1 + e2·z

1− e2·z

)(
1 + e4·z

1− e4·z

)(
1 + e5·z

1− e5·z

)
= 2
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sign(G̃r4(R6), R1, g) = 2 · 2 ·
[(

1 + e1·z

1− e1·z

)(
1 + e2·z

1− e2·z

)(
1 + e3·z

1− e3·z

)(
1 + e4·z

1− e4·z

)]
· (e1·z + e−1·z + e2·z + e−2·z + e3·z + e−3·z + e4·z + e−4·z)

− 2 · 2 ·
[(

1 + e1·z

1− e1·z

)(
1 + e1·z

1− e1·z

)(
1 + e3·z

1− e3·z

)(
1 + e5·z

1− e5·z

)]
· (e1·z + e−1·z + e1·z + e−1·z + e3·z + e−3·z + e5·z + e−5·z)

+ 2 · 2 ·
[(

1 + e1·z

1− e1·z

)(
1 + e2·z

1− e2·z

)(
1 + e4·z

1− e4·z

)(
1 + e5·z

1− e5·z

)]
· (e1·z + e−1·z + e2·z + e−2·z + e4·z + e−4·z + e5·z + e−5·z)

= 0

sign(G̃r4(R6), R2, g) = . . . = 0

sign(G̃r4(R6), R3, g) = . . . = 0

(We suppress the computations in the last two cases, since they are a little lengthy
due to the more complicated twisting bundles. Moreover, these computations are
straight forward now and a computer-based check using Mathematica 6.01 yields
the result.)

In particular, we see that sufficiently many coefficients of the equivariant elliptic
genus vanish, whence it is constant. We obtain

Φ(G̃r4(R6), g) = 2

In particular, using continuity when g → 1 this yields

Φ(G̃r4(R6)) = 2

Finally, we remark that the exceptional isometry

SO(6)
SO(2)× SO(4)

∼=
SU(4)

S(U(2)×U(2))

induced by exceptional isomorphisms of Lie groups makes it possible to do analo-
gous computations on the second form of the space. Again consider the action given
by φ : g 7→ (g1, g2, g3, g−6). We know that W(SU(4)) = S(4) and that
W(S(U(2)×U(2)) = S(2)× S(2). Thus the fixed-points are in bijection with

{
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 ,


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 ,


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

}
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The rotation numbers on these respective isolated fixed-points are

(−2, 7,−1, 8), (2, 9, 1, 8), (−9,−7,−1, 1), (2, 1,−7,−8), (−1, 7, 1, 9), (−2,−1,−9,−8)

and we proceed as above.

Let us now compute the equivariant elliptic genus of a regular S1-action φ on
G̃r4(R2n+5) with n ≥ 0. Let g be a topological generator of S1. We let S1 include into
the standard maximal torus of SO(2n+ 5) by φ : g 7→ (gk1 , gk2 , . . . , gkn) with pairwise
distinct ki. This induces an isometric S1-action on

G̃r4(R2n+5) =
SO(2n+ 5)

SO(2n+ 1)× SO(4)

with isolated fixed-points only.

Theorem D.1. Every g-equivariant twisted signature on G̃r4(R2n+5) with n ≥ 0
vanishes, whence the equivariant elliptic genus

Φ(G̃r4(R2n+5), g) = 0

vanishes. In particular, so does the elliptic genus:

Φ(G̃r4(R2n+5)) = 0

Proof. The Weyl group of SO(2n+ 5) is W(SO(2n+ 5)) = G(n+ 2) in the notation
of [11], p. 171. Moreover, we have W(SO(2n+ 1)) = G(n) and W(SO(4)) = SG(2).
Let the xi be the standard dual forms with respect to the standard maximal torus.
The positive roots of SO(2n+ 5) are the

x1 ± x2, . . . , x1 ± xn+2,

x2 ± x3, . . . , x2 ± xn+2,

...
xn+1 ± xn+2,

x1, . . . , xn+2

The positive roots of SO(2n+ 1))× SO(4) are the

x1 ± x2, . . . , x1 ± xn,
x2 ± x3, . . . , x2 ± xn,
...
xn−1 ± xn,
x1, . . . , xn,

xn+1 ± xn+2
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Hence the complementary positive roots of the homogeneous space
SO(2n+ 5)/(SO(2n+ 1)× SO(4)) are the

x1 ± xn+1, x1 ± xn+2,

...
xn ± xn+1, xn ± xn+2,

xn+1, xn+2

Since all the rotation numbers ti of φ in the maximal torus are pairwise distinct, we
see that φ acts with isolated fixed-points only. These fixed-points are in one-to-one
correspondence with elements of

W(SO(2n+ 5))
W(SO(2n+ 1))×W(SO(4))

Let

w ∈ W(SO(2n+ 5))
W(SO(2n+ 1))×W(SO(4))

be an arbitrary element. The action of the Weyl group W(SO(2n+ 5)) on the roots
of SO(2n+ 5) induces an action of w on the complementary positive roots. Thus the
roots “belonging” to w are the w(yi) with yi a complementary positive root as above.
The reflection r := diag(1, . . . , 1,−1) is a non-trivial element of

W(SO(2n+ 5))
W(SO(2n+ 1))×W(SO(4))

Hence we have that w 6= w◦r. The roots corresponding to w◦r are the roots belonging
to w with the exception of w(xn+2), which is replaced by −w(xn+2). That is, we have
a transformation of complementary positive roots induced by the action of w ◦ r on
roots. This map transforms the complementary roots from above to the roots

w(x1)± w(xn+1), w(x1)∓ w(xn+2),
...
w(xn)± w(xn+1), w(xn)∓ w(xn+2),
w(xn+1),−w(xn+2)

Thus we may compare the action on roots induced by w with the one induced by w ◦ r.
Hence on the vector space spanned by the complementary roots the determinants of
both transformations satisfy

det(w ◦ r) = −detw ∈ {±1}
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whence their orientations are once compatible, once not compatible with the orientation
of the ambient space. However, as we have seen, the absolute values of their rotation
numbers ti clearly remain the same. Since r2 = 1, the fixed-point set decomposes into
pairs {ν, ν ◦ r}. It is now easy to see that every equivariant signature twisted with a
complex bundle R vanishes. We obtain

sign(X,R, g) =
∑
ν

sign(Xg
ν , R, g)

Since all our fixed-points ν are isolated, this equation becomes

sign(ν,R, g) =
∑
ν

((∏
k>0

dk∏
i=1

1 + e−tkz

1− e−tkz

)
· chg(R)

)[
ν
]

=
∑
{ν,ν◦r}

[(∏
k>0

dk∏
i=1

1 + e−tkz

1− e−tkz

)
· chg(R)

[
ν
]

+
(∏
k>0

dk∏
i=1

1 + e−tkz

1− e−tkz

)
· chg(R)

[
r ◦ ν

]]

=
∑
{ν,ν◦r}

[(∏
k>0

dk∏
i=1

1 + e−tkz

1− e−tkz

)
· chg(R)−

(∏
k>0

dk∏
i=1

1 + e−tkz

1− e−tkz

)
· chg(R)

]
= 0

where dk is the complex dimension of the space of roots on which g acts with rotation
number tk.

Using the formula

Φ(X, g) =
∞∑
m=0

sign(X,Rm, g)qm

with the special bundles Rm described above, the vanishing of the g-equivariant elliptic
genus follows. The limit process g → 1 now yields that the (non-equivariant) elliptic
genus vanishes.

We shall now illustrate this proof by an example. In dimension twelve we consider
the S1-action given by φ : g 7→ (g1, g2, g3) in the maximal torus. The quotient of Weyl
groups is

G(3)
G(1)× SG(2)

∼=
{1 0 0

0 1 0
0 0 1

 ,

1 0 0
0 1 0
0 0 −1

 ,

0 1 0
1 0 0
0 0 1

 ,

0 1 0
1 0 0
0 0 −1

 ,

0 1 0
0 0 1
1 0 0

 ,

0 1 0
0 0 −1
1 0 0

}
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The complementary positive roots are given by

x1 ± x2, x1 ± x3, x2, x3

Hence the rotation numbers on the different points turn out to be

3,−1, 4,−2, 2, 3 ↔ 3,−1,−2, 4, 2,−3
3, 1, 5,−1, 1, 3 ↔ 3, 1,−1, 5, 1,−3
5, 1, 4, 2, 1, 2 ↔ 1, 5, 4, 2, 1,−2

The fixed-point set splits into pairs as indicated. Orientations on the respective points
in a pair are opposite to one another whereas absolute values of orientation numbers
remain identical. Consequently, twisted equivariant signatures vanish and so does the
elliptic genus.



E

Indices in Dimension 16

In this chapter we provide index computations in dimension 16. See section 4.1 for
the analogous case of dimension 20.

E.1. Preliminaries

On a 16-dimensional Positive Quaternion Kähler Manifold M the locally-defined
complex vector bundles E and H are associated to the standard representations of
Sp(4) and Sp(1) respectively. We twist the Dirac operator with the bundles

Rp,q =
∧p

0
E ⊗ SqH

provided 4+p+q is even. Again
∧p

0E is the (virtual) bundle
∧pE−

∧p−2E. Theorem
1.17 yields the relations

ip,q =


0 for p+ q < 4
(−1)p(b2p−2 + b2p) for p+ q = 4
d for p = 0, q = 6

where d = dim Isom(M) is the dimension of the isometry group of M . Again we shall
compute the indices ip,q for these interesting values of p and q in terms of characteristic
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classes of the bundles E and H. As in the 20-dimensional case we compute

Â(M) =1 +
(
c2 − 4u

12

)
+
(

3c2
2 − c4 − 23c2u+ 42u2

720

)
+(

10c3
2 − 9c2c4 + 2c6 − 115c2

2u+ 48c4u+ 388c2u
2 − 432u3

60480

)
+(

21c4
2 − 34c2

2c4 + 5c2
4 + 13c2c6 − 3c8 − 334c3

2u+ 364c2c4u

3628800
+

−103c6u+ 1636c2
2u

2 − 799c4u
2 − 3263c2u

3 + 2497u4

3628800

)
ch(E) =8− c2 +

c2
2 − 2c4

12
+
−c3

2 + 3c2c4 − 3c6

360
+
c4

2 − 4c2
2c4 + 2c2

4 + 4c2c6 − 4c8

20160

ch(H) =2 + u+
u2

12
+

u3

360
+

u4

20160
By means of the Clebsch-Gordan formula we compute

i0,0 =
c4

2

172800
− 17c2

2c4

1814400
+

c2
4

725760
+

13c2c6

3628800
− c8

1209600
− 167c3

2u

1814400
+

13c2c4u

129600

− 103c6u

3628800
+

409c2
2u

2

907200
− 799c4u

2

3628800
− 3263c2u

3

3628800
+

2497u4

3628800

i0,1 =
c4

2

86400
− 17c2

2c4

907200
+

c2
4

362880
+

13c2c6

1814400
− c8

604800
− 17c3

2u

907200
+

47c2c4u

907200
−

43c6u

1814400
− 37c2

2u
2

56700
+

431c4u
2

1814400
+

3967c2u
3

1814400
− 3233u4

1814400

i0,2 =
c4

2

57600
− 17c2

2c4

604800
+

c2
4

241920
+

13c2c6

1209600
− c8

403200
+

233c3
2u

604800
− 89c2c4u

302400
+

19c6u

403200
− 211c2

2u
2

302400
+

89c4u
2

134400
− 647c2u

3

134400
+

211u4

44800

i0,3 =
c4

2

43200
− 17c2

2c4

453600
+

c2
4

181440
+

13c2c6

907200
− c8

302400
+

583c3
2u

453600
− 493c2c4u

453600
+

197c6u

907200
+

1277c2
2u

2

113400
− 2209c4u

2

907200
+

10207c2u
3

907200
− 18593u4

907200

i0,4 =
c4

2

34560
− 17c2

2c4

362880
+

c2
4

145152
+

13c2c6

725760
− c8

241920
+

1033c3
2u

362880
− 449c2c4u

181440
+

377c6u

725760
+

2129c2
2u

2

36288
− 12127c4u

2

725760
+

263233c2u
3

725760
+

86285u4

145152

i0,6 =
7c4

2

172800
− 17c2

2c4

259200
+

c2
4

103680
+

13c2c6

518400
− c8

172800
+

2233c3
2u

259200
− 989c2c4u

129600
+

857c6u

518400
+

57169c2
2u

2

129600
− 71839c4u

2

518400
+

4117057c2u
3

518400
+

24236737u4

518400
Again the “indices” i0,1 and i0,3 are to be regarded as formal expressions. Since the
sum of their superscripts is not even, they do not necessarily represent indices of
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twisted Dirac operators. As in the 20-dimensional case we compute

ch(
∧2

E) =28− 6c2 +
c2

2
− c3

2

60
+

c4
2

3360
− c2c4

30
+
c2

2c4

630
+

c2
4

504
+
c6

5
− 13c2c6

840
+
c8

42

ch(
∧3

E) =56− 15c2 +
5c2

2

4
− c3

2

24
+

c4
2

1344
+

3c4

2
− 5c2c4

24
+

41c2
2c4

5040
+

71c2
4

10080
− c6

8

+
11c2c6

560
− 397c8

1680

ch(
∧4

E) =70− 20c2 +
5c2

2

3
− c3

2

18
+

c4
2

1008
+

8c4

3
− c2c4

3
+

4c2
2c4

315
+

13c2
4

1260
− 2c6

3

+
89c2c6

1260
+

151c8

315

Again these exterior powers already determine all the higher ones by Hodge ∗-duality.
That is, we obtain ∧k

E ∼=
∧8−k

E

for 0 ≤ k ≤ 8 and

ch(
∧k

E) = ch(
∧8−k

E)

respectively

ch(
∧k

0
E) = −ch(

∧10−k

0
E)

and

ip,q = −i10−p,q

In particular, i5,q = 0 for all q ∈ N0, since ch(
∧5E) = ch(

∧3E).
This enables us to compute the following indices in terms of characteristic numbers.

(Again the “indices” i1,0 and i3,0 are to be regarded as formal expressions.) As we
have seen, as for the first parameter it suffices to compute from p = 0 to p = 4.

i1,0 =
1

453600
(21c4

2 + 155c2
4 − 93c8 − 259c3

2u+ 1157c6u− 5209c4u
2 + 2497u4

+ c2
2(−109c4 + 931u2) + c2(−227c6 + 1159c4u− 23u3))

i2,0 =
1

403200
(63c4

2 + 815c2
4 + 9591c8 − 602c3

2u− 27189c6u− 2397c4u
2 + 7491u4

+ c2
2(−502c4 + 1148u2) + c2(439c6 + 3652c4u+ 7491u3))

i3,0 =
1

75600
(21c4

2 + 355c2
4 − 17853c8 − 159c3

2u+ 2837c6u+ 6551c4u
2 + 2497u4

− c2
2(209c4 + 9u2) + c2(713c6 + 959c4u+ 4297u3))
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i4,0 =
1

86400
(21c4

2 + 405c2
4 + 39357c8 − 134c3

2u+ 24857c6u+ 12641c4u
2 + 2497u4

− 2c2
2(117c4 + 122u2) + c2(1173c6 + 684c4u+ 5377u3))

i1,1 =
1

226800
(21c4

2 + 155c2
4 − 93c8 + 41c3

2u− 673c6u+ 5471c4u
2 − 3233u4

− c2(109c4 + 944u2)− c2(227c6 + 56c4u+ 353u3))

i1,3 =
1

113400
(21c4

2 + 155c2
4 − 93c8 + 1241c3

2u− 7993c6u− 72769c4u
2 − 18593u4

+ c2
2(−109c4 + 14236u2)− c2(227c6 + 4916c4u+ 24353u3))

i2,2 =
1

134400
(63c4

2 + 815c2
4 + 9591c8 + 1798c3

2u+ 80811c6u+ 2403c4u
2 + 17091u4

+ c2
2(−502c4 + 7148u2) + c2(439c6 − 11948c4u+ 26691u3))

i3,1 =
1

37800
(21c4

2 + 355c2
4 − 17853c8 + 141c3

2u− 1513c6u− 7969c4u
2 − 3233u4

− c2
2(209c4 + 624u2) + c2(713c6 − 1516c4z − 6113u3))

These were the better understood ones; let us now compute some more:

i1,5 =
1

75600
(21c4

2 + 155c2
4 − 93c8 + 3241c3

2u− 20193c6u− 633249c4u
2 + 4686687u4

+ c2
2(−109c4 + 120176u2)− c2(227c6 + 13016c4u+ 816993u3)

i2,4 =
1

80640
(63c4

2 + 815c2
4 + 9591c8 + 6598c3

2u+ 296811c6u− 36381c4u
2 + 1294275u4

+ c2
2(−502c4 + 164300u2) + c2(439c6 − 43148c4u− 1692861u3))

i3,3 =
1

18900
(21c4

2 + 355c2
4 − 17853c8 + 1341c3

2u− 18913c6u+ 115391c4u
2 − 18593u4

+ c2
2(−209c4 + 19596u2) + c2(713c6 − 11416c4u− 70433u3))

i4,2 =
1

9600
(7c4

2 + 135c2
4 + 13119c8 + 222c3

2u− 24941c6u+ 4747c4u
2 + 1899u4

+ c2
2(−78c4 + 1332u2) + c2(391c6 − 2252c4u+ 5419u3))

i2,6 =
1

57600
(63c4

2 + 815c2
4 + 9591c8 + 13798c3

2u+ 620811c6u− 215517c4u
2

+ 72710211u4 + c2
2(−502c4 + 762908u2) + c2(439c6 − 89948c4u− 22491069u3))

The fundamental system of equations then yields the relation

c2u
3 =

3
16

(−7 + d)− 8u4

Reducing this system and extending it by one of the equations above lets us conclude:

c4u
2 = − 3

16
(−33 + 4b2 + 3d+ i1,5) + 34u4
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These two equations now lead to

i2,4 = 69 + 5b2 + 5b4 − 6d+ v

i3,3 = 62− 26b2 − 2b4 − 2b6 − 8d− 3i1,5 + 2v

i4,2 =
1
2

(−9− 45b2 + 3b4 + 3b6 − 6d+ 2v − 4i1,5)

= −4− 24b2 + 2b6 + b8 − 3d+ v − 2i1,5

i2,6 = 798 + 14b2 + 14b4 − 87d+ 19v

E.2. Reproofs of known relations

First we remark that the positive definiteness of the intersection form (cf. 1.16)
yields the relation on Betti numbers (1.2) and vice versa.

This can be seen via the L-genus, which can be computed as

L(M) =1 +
1
3
(
− 2c2 + 8u

)
+

1
15
(
c2

2 +
14c4

3
− 38c2u

3
+ 44u2

)
+
( 2c3

2

189
− 8c2c4

105
− 124c6

945
+

40c2
2u

189
− 152c4u

315
− 116c2u

2

945
+

176u3

105
)

+
( c4

2

675
− 184c2

2c4

14175
+

61c2
4

2835
+

478c2c6

14175
+

254c8

4725
+

416c3
2u

14175
− 338c2c4u

2025

+
11042c6u

14175
+

3091c2
2u

2

14175
− 9994c4u

2

14175
+

3502c2u
3

14175
+

7102u4

14175
)

Since the intersection form is positive definite (cf. 1.16), we obtain

〈
c4

2

675
− 184c2

2c4

14175
+

61c2
4

2835
+

478c2c6

14175
+

254c8

4725
+

416c3
2u

14175
− 338c2c4u

2025

+
11042c6u

14175
+

3091c2
2u

2

14175
− 9994c4u

2

14175
+

3502c2u
3

14175
+

7102u4

14175
, [M ]

〉
= L(M)[M ] = sign(M) = b8

Combining this equation with the known ones resulting from the previous index
computations and theorem 1.17 we obtain a linear system of equations. We solve this
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system with formal variables r = c2
4, s = c4u

2, t = u4. This yields

c4
2 =3r +

1
192

(1586155− 5964597b2 − 5923125b4 + 1982311b6 + 3945614b8

+ 24420d) +
361s

3
− 15238t

3

c2
2c4 =2r +

1
48

(47249− 217647b2 − 213471b4 + 72149b6 + 141706b8 + 1356d)

+
164s

3
− 3296t

3
c2

4 =r

c2c6 =
1

192
(8197− 64731b2 − 67035b4 + 20809b6 + 45074b8 + 732d) +

43s
3
− 454t

3

c8 =
1
32

(−335 + 17b2 + 113b4 + 37b6 − 22b8 + 12d) + s− 13t

c3
2u =

1
48

(−9389 + 54099b2 + 53091b4 − 17729b6 − 35458b8 − 348d)− 44s
3

+
728t

3

c2c4u =
1

192
(15637 + 28341b2 + 23733b4 − 8039b6 − 16078b8 − 996d)− 47s

3
+

542t
3

c6u =
1
64

(917− 11b2 − 203b4 + 89b6 + 178b8 − 36d)− 2s+ 20t

c2
2u

2 =
1

192
(7303− 8985b2 − 8985b4 + 2995b6 + 5990b8 − 204d) +

s

3
+

110t
3

c4u
2 =s

c2u
3 =

1
64

(−119 + 105b2 + 105b4 − 35b6 − 70b8 + 12d)− 8t

u4 =t

More precisely, solving the system consisting of all but the equation for i0,0 = 0 yields
the solutions above, which impose a certain condition in order to hold equally for the
first equation: Namely the well-known formula (cf. (1.2))

1
12

(1− 3b2 − 3b4 + b6 + 2b8) = 0⇔ 1− 3b2 − 3b4 + b6 = −2b8

Conversely, we may reprove the positive definiteness of the intersection form in the
following way: From the above equations we see that on the one hand on the level of
characteristic numbers we have

n∑
p=0

ip,n−p = L(M)[M ]



E.2 Reproofs of known relations 229

On the other hand on the level of Betti numbers we obtain:

n∑
p=0

ip,n−p = 1− (b2 + 1) + (b4 + b2)− (b6 + b4) + (b8 + b6) = b8

Thus L(M)[M ] = b8 and the intersection form is positive definite.

Due to theorem 1.16 the Euler characteristic of M obviously can be computed by
the formula

χ(M) =
4∑
p=0

(−1)pip,4−p

We use a different approach and we shall see that both ways of computing χ(M) are
consistent.

Consider the twistor fibration q : Z = PC(H) → M and form the associated,
locally-defined tautological line bundle L−1 → Z|U for some open set U ⊆Z. That
is, the fibre at z = [h] ∈ U ⊆PC(H) is just the subspace Ch of q∗(H)z. Form the
anti-canonical bundle L. The bundle L2 is defined globally on Z—cf. [66], p. 148.

Moreover, observe that

q∗H ∼= L⊕ L−1 ∼= L⊕ L̄

from which we obtain

q∗(T ∗CM) ∼= q∗E ⊗ q∗H ∼= Lq∗E ⊕ Lq∗E

and thus

q∗TM ∼= Lq∗E

(cf. equation (2.8) on [66], p. 148). In particular, this leads to

c8(Lq∗E) = χ(M)

(It is well-known that on a complex bundle the top Chern class and the Euler class
coincide.) Now we compute the Chern classes of Lq∗E in terms of the Chern classes
of E and H. This results in the expression

χ(M) = c8 + c6u+ c4u
2 + c2u

3 + u4

This, however, turns out to be exactly the formula we obtained by the first approach.
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As in section 4.1 we compute the Hilbert Polynomial of M as

f(q) =
v

92897280
q9 +

v

10321920
q8 +

−42 + 6d− v
1935360

q7 +
−28 + 4d− v

184320
q6

+
228− 12d+ v

276480
q5 +

520− 40d+ 7v
92160

q4 +
882− 126d+ 31v

725760
q3

+
−812 + 56d− 9v

40320
q2 +

−84 + 6d− v
5040

q

In order to obtain the form of the Hilbert Polynomial used in [68] we have to index-
transform it with q → 4 + 2q. As an example we obtain

fHP4(4 + 2q) =
(

9 + 2q
9

)
by substituting in v = 256 and d = 55. In general, we know that

1 ≤ v ≤ 256 8 ≤ d ≤ 55

(cf. chapter 1). The inequality for v shows that the leading coefficient of f is smaller
or equal to the one of fHP4 (and greater than zero). Thus a check on a finite number
of points yields that for all q ∈ N0 it holds:

0 ≤ f(4 + 2q) ≤
(

9 + 2q
9

)
So we see that in dimension 16 the special result (v ≤ 256) from [66] proves the most
general result in that article.
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S1-symmetry, arXiv:0811.0840v1, 2008

[3] M. F. Atiyah and F. Hirzebruch, Spin-manifolds and group actions, in: Essays
on Topology and Related Topics (Mémoires dédiés à Georges de Rham),
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[35] H. Herrera, R. Herrera, Â-genus on non-spin manifolds with S1 actions
and the classification of positive quaternion-Kähler 12-manifolds, Journal
of Differential Geometry 61, 2002, 341–364

[36] H. Herrera, R. Herrera, Elliptic genera on non-spin Riemannian symmetric
spaces with b2 = 0, Journal of Geometry and Physics 49, 2004, 197–205

[37] H. Herrera, R. Herrera, The signature and the elliptic genus of π2-finite
manifolds with circle actions, Topology and its Applications 136, 2004, 251–
259

[38] R. Herrera, Positive Quaternion-Kähler 16-Manifolds with b2 = 0,
Quart. J. Math. 57, no. 2, 2006, 203–214

[39] F. Hirzebruch and P. Slodowy, Elliptic genera, involutions, and homogeneous
spin manifolds, Geometriae Dedicata 35, 1990, 309–343

[40] F. Hirzebruch, Th. Berger, R. Jung, Manifolds and Modular forms,
Friedr. Vieweg & Sohn Verlagsgesellschaft, 1992

[41] D. D. Joyce, Compact manifolds with special holonomy, Oxford University
Press, Oxford Mathematical Monographs, Oxford, 2000



234 Bibliography

[42] V. Kapovitch, A note on rational homotopy of biquotients, preprint

[43] J. H. Kim, Rigidity theorems for positively curved manifolds with symmetry,
Israel J. Math., to appear

[44] J. H. Kim, On positive quaternionic Kähler manifolds with b4 = 1, 2008

[45] S. Kobayashi, K. Nomizu, Foundations of differential geometry Volume I,
John Wiley & Sons, 1996

[46] S. Kobayashi, K. Nomizu, Foundations of differential geometry Volume II,
John Wiley & Sons, 1996

[47] R. Kobayashi, Ricci Flow unstable cell centered at an Einstein metric on
the twistor space of positive quaternion Kähler manifolds of dimension ≥ 8,
arXiv:0801.2605v7 [math.DG], October 2008

[48] A. Kollross, A Classification of Hyperpolar and Cohomogeneity One Actions,
Dissertation, Shaker, 1998

[49] D. Kotschick, On products of harmonic forms, Duke Mathematical Journal,
Volume 107, No. 3, 2001
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transgression, 32, 56, 99



. . .
And on the pedestal these words appear:
“My name is Ozymandias, king of kings:
Look on my works, ye Mighty, and despair!”
Nothing beside remains: Round the decay
Of that colossal wreck, boundless and bare,
The lone and level sands stretch far away.

Percy Bysshe Shelley, “Ozymandias”
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