
Automated and Feature-Based

Problem Characterization and Algorithm Selection

Through Machine Learning

Inauguraldissertation

zum Erlangen des Grades eines

Doktors der Wirtschaftswissenschaften

durch die Wirtschaftswissenschaftliche Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Pascal Kerschke, M. Sc.

aus Frankfurt (Oder)

Münster, 14. September 2017

• Dekanin der Wirtschaftswissenschaftlichen Fakultät:
Prof. Dr. Theresia Theurl

• Betreuerin & Erstgutachterin:
Prof. Dr. Heike Trautmann

• Zweitgutachter:
Prof. Dr. Thomas H. W. Bäck
(LIACS, Leiden University, The Netherlands)

• Tag der mündlichen Prüfung:
13. November 2017

Acknowledgements

“We must find time to stop and thank the people who

make a difference in our lives.”

John F. Kennedy

Without the strong support of my supervisor, colleagues, collaborators, friends and of course

my family, this work would have been impossible. Therefore, I want to thank all of you!

First of all, I sincerely thank my supervisor, Heike Trautmann, who gave me the possibility to

jointly start this journey with her in Münster. During the last four years, she always provided

me with valuable feedback and inspiring ideas, helped me to tackle several obstacles along the

way and introduced me to many inspiring people.

Of course, things are much easier, if you are part of a vivid, friendly, cooperative and encouraging

(research) group. Therefore, thanks a lot to my great colleagues Christian Grimme, Kay F.

Hildebrand, Jakob Bossek, Mike Preuß, Matthias Carnein, Dennis Assenmacher, Pelin Aspar,

Lena Adam, Ingolf Terveer and Barbara Berger-Mattes.

Furthermore, I was lucky enough to frequently collaborate with people from all over the world:

members of the Group of Computational Intelligence from the TU Dortmund University, the

Leiden Institute of Advanced Computer Science (LIACS), the Cinvestav in Mexico City, the

UBC’s Computer Science Department in Vancouver, Luis Mart́ı in Rio de Janeiro, as well as the

many collaborators from the research networks COSEAL, ERCIS, OpenML, mlr and NumBBO.

Aside from those people, who influenced me somewhat more frequently, I feel also very inspired

by several smart minds whom I got to know at the many conferences, workshops, seminars and

hackathons that I attended in the last years.

Last – but definitely not least – I want to thank my entire family, my beloved wife Laura, and

of course all of my friends for their great support, patience and – whenever necessary – positive

distractions from work. This way, I always had the possibility to completely recharge myself.

THANK YOU!

i

http://erc.is/p/trautmann
https://www.wi.uni-muenster.de/department/statistik/people/christian-grimme
https://www.wi1.uni-muenster.de/qm/en/organisation/hildebrand/hildebrand.html
https://www.wi1.uni-muenster.de/qm/en/organisation/hildebrand/hildebrand.html
http://erc.is/p/bossek
http://erc.is/p/mike.preuss
http://erc.is/p/carnein
https://www.wi.uni-muenster.de/department/statistik/people/dennis-assenmacher
https://www.wi.uni-muenster.de/department/statistik/people/pelin-aspar
https://www.wi.uni-muenster.de/department/statistik/people/lena-adam
http://erc.is/p/ingolf.terveer
https://www.wi.uni-muenster.de/department/statistik/people/barbara-berger-mattes
https://ls11-www.cs.tu-dortmund.de/rudolph/start
https://liacs.leidenuniv.nl/
http://www.cinvestav.mx/
https://www.cs.ubc.ca/
http://lmarti.com/
http://www.coseal.net/
https://www.ercis.org/
https://www.openml.org/
http://mlr-org.github.io/
http://numbbo.gforge.inria.fr/doku.php

Abstract

“The universe is governed by science. But science tells

us that we can’t solve the equations, directly in the

abstract.”

Stephen Hawking

One of the many prejudices about Germans is that we are always very structured. However, I

would actually say that in today’s world, many things, and especially processes – not only in

Germany – are structured. An advantage of having such structures is that we are able to model

them. Even in cases, for which one can not come up with an exact mathematical model, one

still can measure the influence of the input on the corresponding output. In such a case, we are

talking of black-box problems.

Interestingly, people tend to optimize everything: we minimize the travel time between home

and office, look for the shortest queue in the supermarket, search for the best value for money

hotel for the next vacation, or increase the productivity of our machines at work. All of these

‘decisions’ are examples for optimization problems. Unfortunately, people tend to make rather

poor decisions when optimizing their problems, because most of these ‘optimal solutions’ – at

least people often believe that they are optimal – are either based on numerous trial-and-error

experiments or (frankly said) ‘gut-decisions’. Instead of these manual approaches, one could

use some computational power to run an optimization algorithm. However, as there exists a

plethora of optimization algorithms (for each of the different applications) one has to make a

sophisticated guess on which of the available algorithms is the best one for the application at

hand. This decision is known as the algorithm selection problem.

We nowadays have the computational power (and also the necessary tools) for making those

selections on the one hand more sophisticated based on problem-specific measures, and on the

other hand compute these measures and thus, also the algorithm selections, in an automated

fashion. As a result, our machines now are in the position to adjust to the respective optimization

problem at hand by selecting and running a promising optimization algorithm, which in turn

hopefully provides us with a satisfying – ideally the best possible – solution.

Within this cumulative dissertation, I will present (i) a new set of these aforementioned au-

tomatically computable features (which in my case, are able to extract useful information on

the structure of single-objective continuous optimization problems at a very low computational

budget), (ii) experimental studies that have confirmed the applicability, as well as the good per-

formance of automated and feature-based algorithm selection models, and (iii) several frame-

works, which facilitate the research in the fields of single-objective continuous optimization,

algorithm selection and machine learning.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

1.1 Benchmarking . 3

1.2 Exploratory Landscape Analysis . 4

1.3 Algorithm Selection . 5

2 Characterizing the Global Structure of Continuous Black-Box Problems 7

2.1 Contributed Material . 7

2.2 Cell Mapping Techniques for Exploratory Landscape Analysis 7

2.3 Detecting Funnel Structures by Means of Exploratory Landscape Analysis 9

2.4 Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models 11

3 Flacco – A Toolbox for Exploratory Landscape Analysis with R 13

3.1 Contributed Material . 13

3.2 The R-Package FLACCO for Exploratory Landscape Analysis with Applications

to Multi-Objective Optimization Problems . 13

3.3 flaccogui: Exploratory Landscape Analysis for Everyone 15

3.4 Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained

Optimization Problems Using the R-Package flacco 17

4 Feature-Based Algorithm Selection from Optimizer Portfolios 18

4.1 Contributed Material . 18

4.2 Improving the State of the Art in Inexact TSP Solving using Per-Instance Algo-

rithm Selection . 18

4.3 Leveraging TSP Solver Complementarity through Machine Learning 20

4.4 Automated Algorithm Selection on Continuous Black-Box Problems By Com-

bining Exploratory Landscape Analysis and Machine Learning 22

5 Platforms for Collaborative Research on Algorithm Selection and Machine

Learning 26

5.1 Contributed Material . 26

5.2 ASlib: A Benchmark Library for Algorithm Selection 26

5.3 OpenML: An R Package to Connect to the Machine Learning Platform OpenML 28

6 Summary and Outlook 30

Bibliography 33

Appendix: Contributed Publications

A Characterizing the Global Structure of Continuous Black-Box Problems 42

A.1 Cell Mapping Techniques for Exploratory Landscape Analysis 42

A.2 Detecting Funnel Structures By Means of Exploratory Landscape Analysis 44

A.3 Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models 45

B Flacco – A Toolbox for Exploratory Landscape Analysis with R 46

B.1 The R-Package FLACCO for Exploratory Landscape Analysis with Applications

to Multi-Objective Optimization Problems . 46

B.2 flaccogui: Exploratory Landscape Analysis for Everyone 47

B.3 Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained

Optimization Problems Using the R-Package flacco 48

C Feature-Based Algorithm Selection from Optimizer Portfolios 49

C.1 Improving the State of the Art in Inexact TSP Solving Using Per-Instance Al-

gorithm Selection . 49

C.2 Leveraging TSP Solver Complementarity through Machine Learning 50

C.3 Automated Algorithm Selection on Continuous Black-Box Problems By Com-

bining Exploratory Landscape Analysis and Machine Learning 51

D Platforms for Collaborative Research on Algorithm Selection and Machine

Learning 52

D.1 ASlib: A Benchmark Library for Algorithm Selection 52

D.2 OpenML: An R Package to Connect to the Machine Learning Platform OpenML 54

Chapter 1

Introduction

“It is not knowledge, but the act of learning, not pos-

session but the act of getting there, which grants the

greatest enjoyment.”

Carl Friedrich Gauß

Optimization problems can be found in many different real-world applications. Imagine a mass

production of printed circuit boards (PCBs), where for each board with the same arrangement of

holes, the roboter follows the same drilling path. Obviously, having a better, i.e., faster, tour for

the roboter’s path on the respective board could substantially increase the productivity of the

factory. Or think of the print media sector, where a company generates thousands of newspapers,

leaflets and magazines per day. Here, many parameters influence the printing performance,

which in turn directly affects the company’s profit: the speed of the printer’s rolls, the amount

of ink being printed on the paper, the temperature and power of the drying fan, etc.

In either of these scenarios one chases the goal of finding the optimal setting for a given problem.

And while domain knowledge can be helpful for finding at least satisfying solutions, the majority

of real-world problems is usually too complex for human beings. Even worse, most of these

problems are so-called black-box problems, i.e., the exact relationship between the controllable

inputs and the corresponding outputs is unknown. However, for most of these applications,

there exists a variety of optimization algorithms that often find better solutions than the ones

that are based on the domain-expert’s gut decisions. Unfortunately, according to the “no free

lunch theorems” by Wolpert and Macready (1997), there is no single optimization algorithm

that is superior to all the other ones for every single problem. In consequence, one has to decide

for each problem separately or at least for each group of similar problems, which optimization

algorithm one should use.

Of course, one could execute multiple optimization algorithms and afterwards pick the best

solution found by any of them. However, while this may be a reasonable approach for scenarios

that can be optimized offline – e.g., finding the optimal PCB drilling path can be done via

computer simulations – in many real-world problems, each evaluation of a unique parameter

configuration can be very costly. For instance, in the print media example from above, a single

evaluation stands for a specific combination of rolling speed, fan temperature and amount of

ink. Obviously, it is not affordable to try hundreds of configurations (or even more). Therefore,

one wants to avoid running several optimization algorithms and instead use only one of them.

1

Figure 1.1: Schematic overview of the interlinks between Exploratory Landscape Analysis (ELA;
blue area in the top left), Benchmarking the optimization algorithms (green area in the bottom
left), the actual Modeling process of the machine learning algorithms (red area in the center) and
their Performance Evaluation (yellow area in the bottom right). The grey box in the background
displays which of the aforementioned topics belong to the field of Machine Learning in general.

However, even the evaluations for a single optimizer could already be too expensive – it simply

might require too many evaluations until it finds a satisfying solution. Consequently, despite the

plethora of optimization algorithms, one remains with the task of solving the following problem:

How do I know in advance, which optimization algorithm is the best one for my application?

Within this thesis, I will present a possible solution to this task by means of automated and

feature-based algorithm selection. Admittedly, this approach does not guarantee to always find

the best optimization algorithm for every single instance of a problem1, but due to the integra-

tion of problem-specific features, we usually find competitive algorithms.

A schematic overview of the principle of automated feature-based algorithm selection is given in

Figure 1.1. This scheme also shows the links between its key elements, which are the extraction

of problem-specific features (highlighted by a blue box), benchmarking a portfolio of optimiza-

tion algorithms (green box) and training the algorithm selector itself. Note that the latter is

distinguished into the actual modeling phase (red area) and its performance assessment (yellow

area). Furthermore, the scheme also shows how these elements are embedded within the more

general research field of machine learning (grey box).

Within the following sections of this introductory chapter, i.e., Sections 1.1 to 1.3, the three

aforementioned key elements will be introduced. Afterwards our contributions to each of these

1In the example of PCBs, an instance would be a different arrangement of the holes, whereas finding the
fastest drilling path would be the general optimization problem.

2

CHAPTER 1. INTRODUCTION

areas are described in more detail in the succeeding chapters. More precisely, in Chapter 2 our

advances w.r.t. the characterization of the global structure of continuous optimization problems

will be presented. Then, in Chapter 3, a toolbox, which enables the computation of numerous

problem-specific features for continuous optimization problems, is being introduced. Chapter 4

summarizes several experimental studies, in which we successfully showed the applicability of

our approach in two different domains: the Travelling Salesperson Problem (TSP) and the

single-objective continuous (black-box) optimization problem. As machine learning in general,

and algorithm selection in particular, strongly rely on sound experiments, we also contributed

to two platforms, which facilitate the exchange of experimental studies and hence, the collabo-

ration among researchers within the respective research domains. Further details on these two

platforms are given in Chapter 5. At last, Chapter 6 concludes this thesis with a summary of

the presented work and an outlook on promising future extensions.

In order to facilitate the classification of our contributions to the respective areas from Fig-

ure 1.1, each of them is listed at the beginning of the respective chapter and marked with boxes

that are colored according to the four categories feature computation (), benchmarking (),

modeling () and/or performance assessment ().

1.1 Benchmarking

During the last years, my research projects usually were related to one of the following two types

of optimization problems: (1) single-objective continuous optimization problems (e.g., Boyd and

Vandenberghe, 2004), or (2) the Travelling Salesperson Problem (TSP, e.g., Mersmann et al.,

2013). The former one can be defined as follows:

minimize f(x)

s.t. gi(x) ≤ bi, i = 1, . . . , k.

Here, x = (x1, . . . , xn)T ∈ Rn is a n-dimensional vector from the continuous search or decision

space Rn, f : Rn → R is the single-objective function that is supposed to be minimized2 and

the functions gi : Rn → R, i = 1, . . . , k, are the k inequality constraints with the respective

boundaries bi ∈ R. In addition to these constraints, the optimal value xopt ∈ Rn also satisfies

the condition f(xopt) ≤ f(x) for all x ∈ Rn.

While the aforementioned optimization problem tries to find the optimal value in a continuous

decision space, the (Euclidean) Travelling Salesperson Problem is one of the most well-known

combinatorial optimization problems. Given a set C := {c1, . . . , cn} of n so-called cities with

non-negative distances d(ci, cj) ≥ 0 between all pairs of cities ci and cj , the goal is to find the

shortest tour, which visits each of the n cities exactly once and afterwards returns to its origin.

For either of these types of optimization problems, there exist several benchmarks. As displayed

by the green area in the bottom left of Figure 1.1, the general idea of benchmarking is quite

simple: given a set of problem instances, one executes a set of optimization algorithms on each of

the instances. Their performances can then be used in two ways: comparing (1) the optimizers

against each other and thereby get a better understanding of their strengths and weaknesses,

or (2) the performances across the different problem instances and thereby distinguish, for

2A maximization problem m(x) can easily be transformed into a minimization problem via f(x) := −m(x).

3

1.2. EXPLORATORY LANDSCAPE ANALYSIS

instance, the easy from the difficult problems. Such benchmark analyses are important as there

can not exist a single algorithm, which is superior to all other algorithms across all problem

classes (Wolpert and Macready, 1997).

In the context of single-objective continuous optimization, there already exist such benchmarks,

e.g., the COCO platform (Hansen et al., 2016), which summarizes the performances of more

than a hundred optimizers across the so-called Black-Box Optimization Benchmark (BBOB,

Hansen et al., 2009a,b). The latter consists of 24 problem classes, which Hansen et al. (2009b)

divided into five groups according to their separability, conditioning, multimodality and global

structure. For each of the 24 functions, one can generate multiple variants by rotating, shifting

or scaling the respective original instance. Each of the transformed versions – as well as many

other single- and multi-objective optimization problems – can for example be generated using

the R-package smoof (Bossek, 2016).

In correspondence with the diversity of optimization problems, there also exist numerous opti-

mization algorithms. In the single-objective continuous optimization domain, the most success-

ful ones usually are variants of Quasi-Newton methods (e.g., BFGS; Broyden, 1970), Covari-

ance Matrix Adaption Evolution Strategies (CMA-ES; Hansen, 2006), Simulated Annealing (SA;

Tsallis and Stariolo, 1996), Genetic Optimization Using Derivatives (Genoud; Mebane Jr. and

Sekhon, 2011), Multi-Level Methods (e.g., Rinnooy Kan and Timmer, 1987), Differential Evo-

lution (DE; Storn and Price, 1997) and Particle Swarm (PSO; Eberhart and Kennedy, 1995)

optimization algorithms. However, for many of them, there exists a plethora of variants. For

instance, van Rijn et al. (2016) have shown that (considering the different modules that are

affecting the solver) there are more than 4,000 variants of the CMA-ES.

Obviously, comparing all of them one-by-one across all problems is simply impossible and also

completely unnecessary as one usually requires at most a handful of complementary optimizers,

i.e., an optimizer portfolio, for a given set of problems. However, in order to make a sophisticated

guess on which solvers might work well on the respective problem(s), it is important to have

further information on the respective problems before actually optimizing them.

1.2 Exploratory Landscape Analysis

The characterization of problem landscapes is very important in order to group the problems

according to their similarities. As Mersmann et al. (2010) have shown, such knowledge can

be very helpful, because algorithms often perform well on entire classes of (similar) problems

rather than just on single instances. That is, if two problem instances A and B are similar, it

is very likely that an algorithm, which performs well on instance A, will also perform well on

instance B (and vice versa).

In their work, Mersmann et al. (2010) introduced eight characteristics – which they called high-

level properties – that could be useful for distinguishing single-objective continuous optimization

problems from each other. These properties are the degree of multimodality, the underlying global

structure, the separability, the variable scaling, the homogeneity of the search space and basin

sizes, the contrast of global to local optima and whether the function’s landscapes posesses

plateaus. Unfortunately, these properties come with the drawback that they require expert

knowledge – which is equivalent to having someone (i.e., the expert), who manually assigns the

4

CHAPTER 1. INTRODUCTION

respective attributes for each property and each (new) problem instance.

This issue has been addressed with the introduction of the Exploratory Landscape Analysis

(ELA) and its so-called low-level features (Mersmann et al., 2011). These measures have the

advantage, that they are automatically computable. Hence, one has the means for computing

sets of feature values in an automated fashion – based on a sample of observations from the

given problem instance (see blue box in the top left of Figure 1.1). Furthermore, by using

these numerical features, one reduces the impact of misclassifications (made by the expert) in

case of fuzzy decisions such as the exact degree of a problem’s multimodality (low, moderate

or high). Admittedly, Mersmann et al. (2010, 2011) have neither been the first nor the last

ones to develop landscape features (as shown by Muñoz Acosta et al., 2015b). However, in

their succeeding work, Bischl et al. (2012) showed the importance of automatically computable

features for the recently revived research field of algorithm selection (due to advances in the

field of machine learning), by using the landscape features for automated algorithm selection.

Similar advances were also made in other optimization domains. For instance, Kotthoff et al.

(2015) and recently, Kerschke et al. (2017) used problem-specific features to improve the state

of the art in (inexact) solving of the Traveling Salesperson Problem (TSP) by means of feature-

based algorithm selection from a portfolio of heuristic TSP solvers.

It is important to notice that, independent of the research domain, most of these features

do not provide intuitively understandable numbers. Therefore, we strongly recommend not

to interpret them on their own. Moreover, some of them are stochastic and hence should be

evaluated multiple times on an instance and afterwards be aggregated in a reasonable manner.

Nevertheless, they definitely provide information that can be of great importance to scientific

models, such as machine learning algorithms in general or algorithm selectors in particular.

1.3 Algorithm Selection

Although the first formal definition of the Algorithm Selection Problem (ASP; Rice, 1976) is

already over 40 years old, its general idea still remains the same. Given a set (often denoted

portfolio) of optimization algorithms A and a set of problem instances I, we want to find a model

– i.e., the algorithm selector – which for a new problem instance I chooses the best-performing

algorithm A ∈ A out of the portfolio of optimizers A.

However, as already mentioned in Section 1.2, in recent years algorithm selection has strongly

benefitted from the advances in automated problem characterization via (landscape) features,

which – in combination with iteratively enhanced machine learning algorithms – enable au-

tomated algorithm selection from a set of various optimization algorithms. Ultimately, these

advances could lead to a general-purpose hybrid algorithm, which uses the problem-specific fea-

tures to automatically adapt itself to the respective problem’s (part of the) landscape, e.g., by

independently switching between the algorithms from the considered portfolio while optimizing

the given problem.

One essential aspect for tackling the algorithm selection problem is to train different machine

learning algorithms as possible algorithm selection models (highlighted by the red area in the

center of Figure 1.1). However, an accurate evaluation of its performance (visualized by the

yellow area in the bottom right of Figure 1.1), which ideally should either be assessed via a

5

1.3. ALGORITHM SELECTION

separate test set or using a resampling strategy (e.g., crossvalidation or bootstrap sampling), is

at least of similar importance. Especially when trying to improve a trained algorithm selector by

means of a (sophisticated) feature selection and/or tuning of the algorithm’s hyperparameters,

its performance provides a very important feedback mechanism for the quality of the generated

models.

By all means one has to keep in mind that the generated algorithm selection model only

generalizes to unseen instances, which are ‘similar enough’ to the set of instances that has been

used for training the algorithm selector. Or, the other way around, one should ideally use a

very representative subset of instances from the space of possible instances of interest.

6

Chapter 2

Characterizing the Global Structure of

Continuous Black-Box Problems

“Measure what is measurable, and make measurable

what is not so.”

Galileo Galilei

2.1 Contributed Material

• Kerschke, P., Preuss, M., Hernández, C., Schütze, O., Sun, J.-Q., Grimme, C., Rudolph, G.,

Bischl, B. & Trautmann, H. (2014). Cell Mapping Techniques for Exploratory Landscape

Analysis. In: EVOLVE – A Bridge between Probability, Set Oriented Numerics and Evo-

lutionary Computation, pages 115 – 131. (see Appendix A.1)

• Kerschke, P., Preuss, M., Wessing, S. & Trautmann, H. (2015). Detecting Funnel Struc-

tures by Means of Exploratory Landscape Analysis. In: Proceedings of the 17th Annual

Conference on Genetic and Evolutionary Computation (GECCO), pages 265 – 272.

(see Appendix A.2)

• Kerschke, P., Preuss, M., Wessing, S. & Trautmann, H. (2016). Low-Budget Exploratory

Landscape Analysis on Multiple Peaks Models. In: Proceedings of the 18th Annual Con-

ference on Genetic and Evolutionary Computation (GECCO), pages 229 – 236.

(see Appendix A.3)

2.2 Cell Mapping Techniques for Exploratory Landscape

Analysis

In Kerschke et al. (2014), we continued the work of Mersmann et al. (2011). That is, we designed

two new groups of (low-level) features that characterize certain aspects of a problem’s landscape,

such as the basin size homogeneity or its global structure, by means of automatically computable

measures. In contrast to the ‘classical’ ELA features from Mersmann et al. (2011), which directly

target the continuous landscapes, we discretized the decision space into a grid of cells prior to

7

http://link.springer.com/chapter/10.1007%2F978-3-319-07494-8_9
http://link.springer.com/chapter/10.1007%2F978-3-319-07494-8_9
http://link.springer.com/chapter/10.1007%2F978-3-319-07494-8_9
http://link.springer.com/chapter/10.1007%2F978-3-319-07494-8_9
http://dl.acm.org/citation.cfm?doid=2739480.2754642
http://dl.acm.org/citation.cfm?doid=2739480.2754642
http://dl.acm.org/citation.cfm?doid=2739480.2754642
http://dl.acm.org/citation.cfm?id=2908845
http://dl.acm.org/citation.cfm?id=2908845
http://dl.acm.org/citation.cfm?id=2908845

2.2. CELL MAPPING TECHNIQUES FOR EXPLORATORY LANDSCAPE ANALYSIS

−4
.4

e+
00

−3
.1

e+
00

−1
.9

e+
00

−6
.2

e−
01

6.
2e

−0
1

1.
9e

+0
0

3.
1e

+0
0

4.
4e

+0
0

Cell Coordinate (1st Dimension)

−4
.0

e+
00

−2
.0

e+
00

0.
0e

+0
0

2.
0e

+0
0

4.
0e

+0
0

C
el

l C
oo

rd
in

at
e

(2
nd

 D
im

en
si

on
)

Cell ID (1st Dimension)

1 2 3 4 5 6 7 8

C
el

l I
D

 (
2n

d
D

im
en

si
on

)

1

2

3

4

5

−4
.4

e+
00

−3
.1

e+
00

−1
.9

e+
00

−6
.2

e−
01

6.
2e

−0
1

1.
9e

+0
0

3.
1e

+0
0

4.
4e

+0
0

Cell Coordinate (1st Dimension)

−4
.0

e+
00

−2
.0

e+
00

0.
0e

+0
0

2.
0e

+0
0

4.
0e

+0
0

C
el

l C
oo

rd
in

at
e

(2
nd

 D
im

en
si

on
)

Cell ID (1st Dimension)

1 2 3 4 5 6 7 8

C
el

l I
D

 (
2n

d
D

im
en

si
on

)

1

2

3

4

5

Figure 2.1: Visualizations of the general cell mapping idea, exemplarily shown for the Freuden-
stein and Roth Function3, displayed for two different cell representation approaches: minimum
(left) and average (right). The black and grey boxes show the absorbing and uncertain cells,
respectively, whereas the colored cells represent the different basins of attraction.

computing our new landscape features. More precisely, we defined the number of (equidistant)

cells per dimension, sampled points random uniformly from the decision space and then assigned

each of them to its respective nearest cell.

The first group of proposed measures – denoted “general cell mapping” (GCM) features – use

the idea of the so-called cell-mapping method (Bursal and Hsu, 1989; Hsu, 1987), whereas the

remaining group basically computes feature-like values for each of the cells and aggregates the

resulting numbers afterwards.

For the computation of the GCM features, each cell is represented by exactly one observation

from the initial design. Within Kerschke et al. (2014), we proposed three different approaches

for assigning a representative objective value per cell: taking (a) the best objective value (of all

samples from the respective cell), (b) the average of the objective values, or (c) the objective

value of the observation that is located closest to the respective cell center. The cells were then

considered to be absorbing Markov chains, which use the height differences between neighboring

cells as transition ‘probabilities’ for moving from one cell to its neighboring cells. As exemplarily

shown within Figure 2.1 for the Freudenstein and Roth Function3, these probabilities allowed to

classify the cells into absorbing (depicted by black boxes), uncertain (grey boxes) and transient

cells (colored boxes). The absorbing or attractor cells indicate local optima, the colored areas

represent the corresponding basins of attraction – cells that have the same color belong to the

same local optimum – and the uncertain cells can be understood as ridges between at least

two basins. That information was used for computing numerous landscape features, such as the

number of attractors, the ratio of uncertain cells, and multiple aggregations of the basin sizes.

In addition to the GCM features, we proposed three further feature sets. The angle features

summarize information on the locations of each cell’s best and worst observation. More precisely,

for each cell the angle between the best observation, the cell center and the worst observation,

3The Freudenstein and Roth Function (Rao, 2009) is defined as f : R2 → R with

f(x1, x2) = (−13 + x1 + [(5− x2) · x2 − 2] · x2)
2 + (−29 + x1 + [(x2 + 1) · x2 − 14] · x2)

2 .

8

CHAPTER 2. CHARACTERIZING THE GLOBAL STRUCTURE OF CONTINUOUS BLACK-BOX

PROBLEMS

as well as the distances from the cell center to the two extreme observations, are measured. The

rational behind this approach is that for simpler problems – e.g., landscapes with a rather low

multi-modality and/or a clear trend towards the global optimum – the extreme values often

will be located in opposite parts of the cell, whereas the extreme values within more complex

problems usually do not show such patterns. The gradient homogeneity features also try to

capture trends within the cells, but use the information of all sampled points rather than just

the two extremes per cell. Our third feature set, the (cell mapping) convexity features, were

inspired by the convexity features of Mersmann et al., but in contrast to their approach, our

features completely rely on the information of the cells and thus, do not require any additional

function evaluations.

Within Kerschke et al. (2014), we compared the proposed features to three of the ‘classical’

ELA feature sets – the levelset, meta-model and y-distribution features, i.e., the ones that do

not require additional function evaluations – by classifying the high-level properties, introduced

by Mersmann et al. (2011), on a set of benchmark problems. More precisely, we considered the

two-dimensional versions of all 24 BBOB problems (Hansen et al., 2009b) with ten instances

each and tried to predict the correct class label for each property either by using only the cell

mapping features, only the ELA features or both groups combined. Our new features led to

lower misclassification errors when predicting the global structure and multimodality properties

(compared to the ELA features) and the combination of both feature sets resulted in the best

performances on five of the seven considered properties.

In conclusion, we introduced multiple new feature sets that helped to improve the existing

feature sets, especially w.r.t. the problem’s global structure, without performing any additional

function evaluations. Nevertheless, we are aware of the fact that our proposed features are only

useful in case of low-dimensional problems as the discretization into cells is accompanied by an

exponential growth of the initial design (in order to provide at least a few points within each

of the cells).

2.3 Detecting Funnel Structures by Means of Exploratory

Landscape Analysis

In Kerschke et al. (2015), we designed five new landscape features, which – in combination with

some of the existing ELA features – improve the detection of underlying funnel structures. Here,

a “funnel” is defined as “a landscape, whose local optima are aligned close to each other such that

they pile up to a mountain (in case of maximization problems) or an ‘upside-down version of a

mountain’ (minimization)”. The rational behind distinguishing such landscapes from each other

is the idea that each of these topologies requires a different group of optimization algorithms:

While global optimization algorithms are better in exploiting the global structures of funnel-

shaped landscapes and thus, are more promising when searching for the global optimum of such

structured problems, multimodal optimizers should perform better on non-funnel problems.

Therefore, predicting the correct “funnel category” enables to efficiently construct a suitable

algorithm portfolio for subsequent algorithm selection studies.

Our proposed features – denoted Nearest Better Clustering (NBC) features – aggregate infor-

mation of two sets of distances: the distances of all sampled points to (a) their nearest neighbors

9

2.3. DETECTING FUNNEL STRUCTURES BY MEANS OF EXPLORATORY LANDSCAPE ANALYSIS

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

y

●

●

●

● ●●

●
●

●
●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

x

y

Figure 2.2: Examples of two-dimensional mixed-sphere problems with an underlying linear,
funnel or “random” global structure (left to right), and visualized as contour (top) or surface
plots (bottom). The problems consist of 200 local optima each (indicated by black dots within
the contour plots) and were created using a test problem generator that combined multiple
(unimodal) sphere functions into a multimodal landscape (Wessing et al., 2013).

and (b) their nearest better neighbors. While the former is measured straightforward, the latter

measures (per observation, i.e., for each sampled point) the distance to its closest neighbor with

a better objective value. The first two NBC features are ratios of the standard deviations (or

arithmetic means) of the two distance sets and the third one is the correlation between the two

sets. In case of non-funnel landscapes the nearest better neighbors are (more) widely spread and

thus, the arithmetic mean and/or standard deviation of the nearest better neighbor distances

are higher than the ones from the nearest neighbor distance set. Analogously, the (absolute)

correlation between the two distance sets should be much lower for non-funnel landscapes than

for funnel problems.

We trained various machine learning models – decision trees, random forests, support vector

machines and nearest neighbor methods – as possible “funnel detectors”, using a self-made

benchmark consisting of 6 000 mixed-sphere problems. Each of them has a specific underlying

global structure (linear, funnel or “random”) and a varying number of peaks. Figure 2.2 pro-

vides an example for each of the aforementioned landscape categories. Due to the fact that

linear problems can be seen as a special case of funnel problems, we considered the funnel de-

tection problem to be binary: funnel (and linear) vs. non-funnel. Each of the machine learning

algorithms was trained using the three “cheap” ELA feature sets, as well as our five NBC fea-

tures. In order to find well-performing funnel detectors, we reduced the number of features by a

greedy feature selection strategy and evaluated our models with a nested resampling strategy.

The best-performing version per machine learning algorithm was assessed on two external val-

idation sets: the BBOB problems and a collection of Disc Packing problems (Addis et al.,

2008). Surprisingly, our most accurate funnel detector was a classification tree, which uses a

10

CHAPTER 2. CHARACTERIZING THE GLOBAL STRUCTURE OF CONTINUOUS BLACK-BOX

PROBLEMS

small, but plausible group of features: two meta-model (the adjusted model fit, i.e., R2
adj , of a

quadratic model with interactions, and the intercept of a simple linear model) and two NBC

features (the ratio of the standard deviations, and the correlation between the distance sets).

This rather simple – and hence, well interpretable – model on average misclassified only 10% of

the training data (assessed using a nested 10-fold crossvalidation), 3% of the BBOB problems

and also supported the thesis of Addis et al. (2008), who claim that the landscapes of (larger)

disc packing problems are funnels.

2.4 Low-Budget Exploratory Landscape Analysis on Mul-

tiple Peaks Models

After having shown in Kerschke et al. (2015) that we are in general able to detect funnel

structures of (black-box) optimization problems, we enhanced our methodology in Kerschke

et al. (2016a) allowing us to be competitive when having lower budgets (i.e., less function

evaluations) as well. With our new approach, we were able to reduce the size of the initial

design – and hence the costs for the computation of our landscape features – by factor ten.

That is, instead of 500 × d function evaluations, where d is the number of dimensions of the

underlying optimization problem, we only require 50 × d evaluations. These improvements are

extremely profitable as they approximate the size of an evolutionary algorithm’s (EA) initial

population. Considering that an EA has to evaluate its starting population anyway and that

it could use our initial design instead, the costs for the computation of the landscape features

would be negligible. Another advantage of such a budget decrease is the increased applicability

of the ELA approach to real-world problems: (additional) evaluations of such problems often

are highly costly and hence, a smaller budget implies much lower costs.

Within our work, the reduction of the budget basically has been achieved by three changes

within our experimental setup: (1) generating the training instances with an improved problem

generator, (2) using a more sophisticated strategy for sampling the points of the initial design,

and (3) selecting a better-performing subset of landscape features.

A weakness of our previously used problem generator was the positioning of the funnel’s global

optimum. More precisely, it always located the global optimum within the center of the decision

space. Consequently, our funnel detectors had difficulties spotting funnels that were located close

to the boundaries of the decision space. However, this issue has been solved with the usage of the

Multiple Peaks Model generator (MPM2, Wessing, 2015), which is available in python (within

optproblems, Wessing, 2016) and R (smoof, Bossek, 2016). Further minor performance im-

provements – especially w.r.t. detecting non-funnel landscapes – have been achieved by using

a latin hypercube sample (LHS, Beachkofski and Grandhi, 2002) instead of a random uniform

sampling strategy for constructing the initial design. The final performance improvements have

been made by executing a brute force (i.e., exhaustive) feature selection on a pre-selected group

of promising landscape features.

In the end, a random forest, consisting of 500 trees and using two NBC features, five meta

model features and the dimensionality of the problem itself, was the best performing funnel

detector. The results have been assessed using a 10-fold cross validation on our training data

(with an accuracy of more than 98%), as well as on two external validation sets: the BBOB

11

2.4. LOW-BUDGET EXPLORATORY LANDSCAPE ANALYSIS ON MULTIPLE PEAKS MODELS

problems (approx. 92% accuracy) and a collection of non-funnel problems from the CEC 2013

niching competition (100% accuracy).

All in all, we were able to show that landscape analysis is a powerful methodology for distin-

guishing optimization problems from each other – at least w.r.t. their global structure in general

and the existence of an underlying funnel structure in particular – while only spending a small

amount of function evaluations (50×d with d being the problem’s search space dimensionality)

on the computation of the corresponding landscape features.

12

Chapter 3

Flacco – A Toolbox for Exploratory Landscape

Analysis with R

“We have to stop optimizing for programmers and

start optimizing for users.”

Jeff Atwood

3.1 Contributed Material

• Kerschke, P. & Trautmann, H. (2016). The R-Package FLACCO for Exploratory Land-

scape Analysis with Applications to Multi-Objective Optimization Problems. In: IEEE

Congress on Evolutionary Computation (CEC), pages 5262 – 5269.

(see Appendix B.1)

• Hanster, C. & Kerschke, P. (2017). flaccogui: Exploratory Landscape Analysis for Ev-

eryone. In: Proceedings of the 19th Annual Conference on Genetic and Evolutionary

Computation (GECCO) Companion, pages 1215 – 1222. (see Appendix B.2)

• Kerschke, P. (under review). Comprehensive Feature-Based Landscape Analysis of Con-

tinuous and Constrained Optimization Problems Using the R-Package flacco.

(see Appendix B.3)

3.2 The R-Package FLACCO for Exploratory Landscape

Analysis with Applications to Multi-Objective Opti-

mization Problems

Inspired by the multitude of perspective use cases for Exploratory Landscape Analysis, sev-

eral research groups worldwide have designed new landscape features. In general, this progress

should be considered to be very helpful as the different scientific backgrounds of the develop-

ers resulted in numerous (often complementary) features, which in turn usually characterized

different aspects of a problem’s landscape. However, although a wide variety of feature sets

13

http://ieeexplore.ieee.org/document/7748359/
http://ieeexplore.ieee.org/document/7748359/
http://ieeexplore.ieee.org/document/7748359/
https://dx.doi.org/10.1145/3067695.3082477
https://dx.doi.org/10.1145/3067695.3082477
https://dx.doi.org/10.1145/3067695.3082477
https://arxiv.org/abs/1708.05258
https://arxiv.org/abs/1708.05258

3.2. THE R-PACKAGE FLACCO FOR EXPLORATORY LANDSCAPE ANALYSIS WITH

APPLICATIONS TO MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

existed (see, e.g., Muñoz Acosta et al., 2015b, for an overview on some of them), in most of

the cases researchers considered only small subsets due to a simple and plausible reason: they

did not possess the source code. More precisely, each group implemented its features in its

programmer’s favorite language, e.g., Matlab (MATLAB, 2013), python (VanRossum and The

Python Development Team, 2015) or R (R Core Team, 2017), and – if at all – published the

corresponding code in file bundles or separate packages. In consequence, people who wanted to

use and/or compare features that were developed by different groups had to cope with different

programming languages, interfaces, etc.

In order to overcome these obstacles, we created flacco (Kerschke, 2017), an R-package for

feature-based landscape analysis of continuous and constrained optimization problems. It com-

bines more than 300 features (originating from 17 feature sets), as well as several visualization

techniques, which should help to make (some of) the feature sets more comprehensible and

thereby provide a better understanding of the given optimization problem. Furthermore, we

automatically track and report the costs (i.e., the number of function evaluations, as well as

the running time in seconds) for computing each of the feature sets and thereby enable a more

fair comparison of them, especially when using them for automated algorithm selection.

Given that R-packages are open source and that flacco’s development version is hosted publicly

accessible on GitHub4 (including an issue tracker for feedback, bug reports, etc.), the entire

source code is available to everybody in the world. Hosting the package on GitHub also makes

it easier for other R-developers to extend our framework, e.g., by integrating new feature sets,

and thereby making it the tool for Exploratory Landscape Analysis. Shortly after launching

the package, we also published an online tutorial5, which provides further information on the

implemented feature sets and visualization techniques, as well as a quick start section that

should facilitate the first steps with flacco.

In Kerschke and Trautmann (2016), we introduced the R-package to the evolutionary compu-

tation community and exemplarily showed how to use it on the basis of a multi-objective case

study. To the best of our knowledge, our experiment was the first one to combine landscape

features that originate from such a variety of research groups. And while landscape features

so far were only used for characterizing single-objective problems, we tested their applicability

to multi-objective problems. For this purpose, we combined (three-dimensional) instances from

two well-known multi-objective optimization benchmarks, namely DTLZ (Deb et al., 2005) and

ZDT (Zitzler et al., 2000), by ratios of objective-wise computed landscape features. That is, we

computed each feature on both objectives of an instance and afterwards aggregated them by

dividing the value belonging to objective 1 by the respective value of objective 2.

As shown within Figure 3.1, the similarities and dissimilarities between these ‘multi-objective

landscape features’ suggested five to six clusters: two bigger groups – consisting of (1) DTLZ2,

DTLZ3, DTLZ5 and DTLZ6, and (2) DTLZ7, ZDT1, ZDT2 and ZDT3, respectively – and three

to four groups consisting of a single instance each (DTLZ1, DTLZ4, ZDT4 and ZDT6). Based on

the right image, which projects the data into the hyperplane spanned by the first two principal

components, DTLZ1 might be similar to the problems of the green cluster. With the exception

of DTLZ7 one can in general detect a rather high ‘intra-benchmark’ similarity and ‘between-

benchmark’ dissimilarity. Thus, although the objective-wise aggregation of the features was

4https://github.com/kerschke/flacco
5http://kerschke.github.io/flacco-tutorial/

14

https://github.com/kerschke/flacco
http://kerschke.github.io/flacco-tutorial/

CHAPTER 3. FLACCO – A TOOLBOX FOR EXPLORATORY LANDSCAPE ANALYSIS WITH R

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
D

T
LZ

1

D
T

LZ
2

D
T

LZ
3

D
T

LZ
4

D
T

LZ
5

D
T

LZ
6

D
T

LZ
7

Z
D

T
1

Z
D

T
2

Z
D

T
3

Z
D

T
4

Z
D

T
6

DTLZ1

DTLZ2

DTLZ3

DTLZ4

DTLZ5

DTLZ6

DTLZ7

ZDT1

ZDT2

ZDT3

ZDT4

ZDT6

DTLZ1DTLZ2DTLZ3

DTLZ4

DTLZ5DTLZ6

DTLZ7
ZDT1

ZDT2
ZDT3

ZDT4

ZDT6

−5

0

5

10

−15 −10 −5 0 5 10

PC1 (34.97%)

P
C

2
(2

8.
58

%
)

Figure 3.1: Similarities and dissimilarities among the multi-objective optimization problems,
according to our ‘multi-objective features’. The heatmap (left) visualizes the correlations be-
tween the 12 instances: blue (orange) boxes indicate positive (negative) correlations and their
intensities represent the respective magnitude. The plot on the right shows the found clusters
based on the first two principal components (which explain roughly 63.6% of the variance).

admittedly quite arbitrary, our multi-objective landscape features were able to find patterns

within the benchmarks. Consequently, if one has to rely on artificial test problems, we strongly

recommend to use test problems from multiple benchmarks in order to consider a higher variety

of problems and thereby avoid a bias towards certain benchmark-specific patterns.

3.3 flaccogui: Exploratory Landscape Analysis for

Everyone

Although flacco provides numerous tools and features for performing Exploratory Landscape

Analysis, its usability comes with one essential drawback: it is an R-package and hence will only

be used by people who are familiar with that programming language. In Hanster and Kerschke

(2017), we therefore introduced a graphical user interface (GUI), which helps to overcome this

obstacle. It can either be executed from within R itself (as part of our flacco-package) or on an

entirely platform-independent web-hosted application6. Both versions are identical w.r.t. their

appearance and functionalities, but while the web application is hosted on a server and hence,

can be accessed from any device (as long as it has access to the internet), the built-in version

runs on the user’s local machine and thus neither requires server nor internet access.

The GUI was created using the R-package shiny (Chang et al., 2016), which enables its users to

build R-based web applications without any knowledge of web development. Figure 3.2 shows

the layout of our application by means of two screenshots. The left one displays the two main

panels of the GUI: an input panel on the left side (highlighted by a dark grey background) and

an output panel (consisting of the tabs “Feature Calculation” and “Visualization”) on the right

side. In the input panel, the user can choose between four options for defining the optimization

6http://flacco.shinyapps.io/flacco/

15

http://flacco.shinyapps.io/flacco/

3.3. FLACCOGUI: EXPLORATORY LANDSCAPE ANALYSIS FOR EVERYONE

Figure 3.2: The graphical user interface (GUI) of flacco basically consists of two panels: (1) an
input panel (highlighted by a dark grey area on the very left), where the user can configure the
optimization problem, and (2) an output panel that either lists the values for the chosen feature
set (the area that is adjacent to the grey input panel, exemplarily shown for the cell mapping
angle feature set), or displays one of the package’s various visualization techniques (right half
of the image above, which exemplarily shows the information content plot as introduced by
Muñoz Acosta et al., 2015a).

problem: (1) manually defining it within a text box, (2) selecting any of the single-objective

optimization problems from the R-package smoof (Bossek, 2016), (3) defining a BBOB problem

(via its function and instance IDs), or (4) simply upload an externally evaluated initial design.

In the output panel, the user can either compute an entire feature set (as exemplarily shown

in the left image of Figure 3.2) or select a visualization of the problem’s landscape7 or any of

its feature sets. For the latter, the user can select between cell mapping plots (such as the ones

in Figure 2.1), two- or three-dimensional barrier trees, or an information content plot (e.g., the

one shown in the right image of Figure 3.2).

As one of the main purposes of ELA is automated feature computation, we also assured that the

GUI allows the computation of any user-specified feature set (or all features simultaneously)

for multiple problem instances rather than for single instances. The only restriction is that all

problems have to belong to the same problem class. That is, all of the problems have to be

either BBOB problems or belong to any other single-objective problem class that is implemented

in smoof. For either of these two options, the application provides a separate screen (“BBOB-

Import” or “smoof-Import”), where the user can upload a csv-file with the respective parameter

configurations (e.g., function ID, instance ID and problem dimension for the BBOB problems)

and in return receive a downloadable table with the computed landscape features. Figure 3.3

shows an example in which the nearest better clustering features are computed for four different

BBOB instances. Note that in this example, each feature was computed three times for each of

the four instances in order to capture the stochasticity of the features and/or initial design.

7The GUI allows to illustrate landscapes of one- or two-dimensional problems and the user can choose between
a graph (1D), contour (2D) or surface plot (3D). Examples of the latter two are given within Figure 2.2.

16

CHAPTER 3. FLACCO – A TOOLBOX FOR EXPLORATORY LANDSCAPE ANALYSIS WITH R

Figure 3.3: Screenshot of the GUI after computing the nearest better clustering features for a
set of four different BBOB problems and with three replications each.

3.4 Comprehensive Feature-Based Landscape Analysis of

Continuous and Constrained Optimization Problems

Using the R-Package flacco

After developing the R-package flacco and its accompanying GUI, we combined both works

within Kerschke (under review) and completed our project by extending the two previous

subprojects with a general overview on the existing landscape features (for continuous single-

objective optimization), an illustration of the usage of flacco by means of a well-known black-

box optimization problem8, and – most importantly – a detailed description for each of the 17

feature sets that are implemented in the current version (1.7) of our R-package.

In conclusion (of the entire project), we provided a comprehensive toolbox, which unifies a wide

collection of landscape features within a convenient, user-friendly and extensible framework. By

enhancing it with a graphical user interface, we also have made flacco accessible to a much

broader group of people – all non-R-users in particular – and thereby enabled them to also

benefit from the majority of our framework’s functionalities.

Consequently, many researchers worldwide are now in a position to perform comparative studies

with a wide collection of landscape features, which should help to gain more insights into the

respective analyzed optimization problem(s). The knowledge derived from these studies can

in turn help to perform more sophisticated follow-up actions, as for instance developing new

landscape features that aim at detecting specific traits of an optimization problem and have

not been addressed so far, or training well-performing (i.e., competitive) automated algorithm

selection models as for instance shown in the following chapter.

8A two-dimensional instance of Gallagher’s Gaussian 101-me Peaks (see, e.g., Hansen et al., 2009a), i.e., the
21st problem from the Black-Box Optimization Benchmark.

17

Chapter 4

Feature-Based Algorithm Selection from

Optimizer Portfolios

“More data beats clever algorithms, but better data

beats more data.”

Peter Norvig

4.1 Contributed Material

• Kotthoff, L., Kerschke, P., Hoos, H. H. & Trautmann, H. (2015). Improving the State of

the Art in Inexact TSP Solving using Per-Instance Algorithm Selection. In: Learning and

Intelligent OptimizatioN 9 (LION), pages 202 – 217. (see Appendix C.1)

• Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H. H. & Trautmann, H. (2017). Leveraging

TSP Solver Complementarity through Machine Learning. In: Evolutionary Computation

Journal (ECJ), pages 1 – 24. (see Appendix C.2)

• Kerschke, P. & Trautmann, H. (under review). Automated Algorithm Selection on Con-

tinuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine

Learning. (see Appendix C.3)

4.2 Improving the State of the Art in Inexact TSP Solving

using Per-Instance Algorithm Selection

In contrast to the projects described in the previous two sections, which mainly focussed on the

characterization of optimization problems by domain-specific features, we went a step further

in Kotthoff et al. (2015) and used such features for training per-instance algorithm selectors for

the well-known Travelling Salesperson Problem (TSP).

Although there exist two types of TSP algorithms – exact and inexact TSP solvers – for a long

time, algorithm selection was not applicable to either one of them as both groups were dominated

18

http://link.springer.com/chapter/10.1007/978-3-319-19084-6_18
http://link.springer.com/chapter/10.1007/978-3-319-19084-6_18
http://link.springer.com/chapter/10.1007/978-3-319-19084-6_18
https://www.mitpressjournals.org/doi/abs/10.1162/evco_a_00215
https://www.mitpressjournals.org/doi/abs/10.1162/evco_a_00215
https://www.mitpressjournals.org/doi/abs/10.1162/evco_a_00215
https://arxiv.org/abs/1711.08921
https://arxiv.org/abs/1711.08921
https://arxiv.org/abs/1711.08921

CHAPTER 4. FEATURE-BASED ALGORITHM SELECTION FROM OPTIMIZER PORTFOLIOS

1e−02

1e−01

1e+00

1e+01

1e+02

1e+03

1e+04

1e−02 1e−01 1e+00 1e+01 1e+02 1e+03 1e+04

PAR10−Scores of LKH+restart [in s]

PA
R

10
−

S
co

re
s

of
 E

A
X

+
re

st
ar

t [
in

 s
]

1e−02 1e−01 1e+00 1e+01 1e+02 1e+03 1e+04

PAR10−Scores of Best Algorithm Selector (incl. Costs) [in s]

50
100
200

500
1000
2000

5000
10000

Instance Size

TSP Set

National

RUE

TSPLIB

VLSI

Figure 4.1: Comparison of the portfolio’s single best solver, i.e., EAX+restart (with a mean
PAR10-score of 104.01s), with the portfolio’s second best solver, i.e., LKH+restart (422.48s),
on the left, as well as our best-performing per-instance algorithm selector, a paired regression
MARS model with the corresponding feature costs (95.08s), on the right.

by a single solver each: Concorde (the state of the art among the exact solvers; Applegate et al.,

2007) and LKH (inexact; Helsgaun, Keld, 2009). However, with the introduction of the inexact

TSP solver EAX, which basically exploits variants of the edge assembly crossover operator,

Nagata and Kobayashi (2013) presented an evolutionary algorithm that is competitive to LKH

and so, for the first time, made algorithm selection promising within this research domain.

By enhancing both heuristics with additional restart-variants, Dubois-Lacoste et al. (2015)

introduced two further, very competitive solvers, which perfectly complement our TSP solver

portfolio. This competitiveness is in particular observable for the restart version of EAX, which

has the best aggregated performance across the entire training set and hence is considered to

be the portfolio’s single best solver (SBS). Its complementarity with the restart variant of LKH

– which can be seen in the left scatterplot of Figure 4.1 – is a strong indicator for the potential

of algorithm selection in this setting.

Within our conducted study, the performances of the four solvers – and thus the ones of the

algorithm selectors as well – were measured by means of PAR10-scores (see, e.g., Bischl et al.,

2016a). For successful runs, it is identical to the measured runtime, but for unsuccessful runs

(usually caused by time- or memouts) it is given a penalty score, which is the tenfold of the

largest valid runtime. Here, the walltime was one hour and therefore, the penalized runtime

was ten hours (or 36 000s, respectively).

For the purpose of automated algorithm selection, we first created a comprehensive set of TSP

problems by collecting instances from four well-known TSP benchmarks: Random Uniform Eu-

clidean (RUE) problems, VLSI and National instances, as well as problems from the TSPLIB.

While the first set of instances can be created with an artificial problem generator9, the other

three sets are mostly collections of real-world problems. In order to obtain the corresponding

performance values, we executed all four solvers from our portfolio, i.e., EAX, LKH and their

restart variants (denoted EAX+restart and LKH+restart, respectively), on each of the col-

9The portgen generator from the 8th DIMACS Implementation Challenge (http://dimacs.rutgers.edu/
Challenges/TSP/).

19

http://dimacs.rutgers.edu/Challenges/TSP/
http://dimacs.rutgers.edu/Challenges/TSP/

4.3. LEVERAGING TSP SOLVER COMPLEMENTARITY THROUGH MACHINE LEARNING

lected instances. For the same benchmark problems, we also computed two feature sets from

the literature (Hutter et al., 2014; Mersmann et al., 2013) and additionally tried a novel set of

features, which we denoted probing features. The idea of the latter is to monitor the behavior

of our portfolio’s single best solver (SBS), i.e., EAX+restart, and extract information from its

progress across the different generations.

In a first approach, we trained three machine learning models for each of the three supervised

learning strategies classification, regression and paired regression as potential algorithm selec-

tors. Due to the fact that the feature costs have a direct impact on the selectors’ performances,

each machine learner was trained with different combinations of the feature sets: a subset of 13

rather cheap (i.e., quickly computable) features from Hutter et al. (2014), all 50 features from

the same source, the 64 features from Mersmann et al. (2013), as well as the union of both

feature sets (114 features). Note that each selector’s performance was assessed with a 10-fold

crossvalidation in order to assure reliable performance values.

Our best performing algorithm selector – a paired regression multivariate adaptive regression

spline (MARS, Friedman, 1991), which was trained with the ‘cheap’ feature subset from Hutter

et al. (2014) – achieved a mean PAR10-score of 95.08s (already including the costs for the

feature computation) and hence reduced the gap between the single best solver (104.01s) and

the virtual best solver (VBS; 18.52s) by more than 10%. However, one can also observe the

impact of the feature costs by means of the tail in the lower part of Figure 4.1 (right image),

which relates to the quickly solvable problems that are usually solved in less than a second.

Nevertheless, we successfully showed that – despite the aforementioned overhead for computing

problem-specific features – our proposed approach of feature-based algorithm selection still is

powerful enough to improve over the current state of the art in inexact TSP solving.

In a second attempt, we used our probing features for training the algorithm selection models.

The usage of those features comes with the benefit of negligible feature costs on instances that

were presolved during the features’ monitoring phase. Even though the probing features them-

selves might not be as informative as the established sets from the literature, they nevertheless

led to algorithm selectors that performed comparable to the SBS. Especially when charging the

feature costs only on instances, for which the selected optimization algorithm was different to

EAX+restart, our best selector (under this approach), i.e., a regression random forest (Breiman,

2001) with a mean PAR10-score of 103.83s, slightly improved over the SBS. Therefore, our find-

ings based on these (admittedly rather simplistic) online monitoring features indicate that the

integration of feature-based per-instance algorithm selection into the optimization process itself

could as well be a profitable approach for further research in this area.

4.3 Leveraging TSP Solver Complementarity through

Machine Learning

Inspired by the promising results from Kotthoff et al. (2015), we enhanced our previous experi-

ments by extending the setup with an additional optimization algorithm, an extra set of TSP

features, two further artificial problem benchmarks, more sophisticated machine learning ap-

proaches, as well as a thorough in-depth analysis of the corresponding performance data (Ker-

schke et al., 2017). Based on these extensions, we were able to clearly outperform the state of

20

CHAPTER 4. FEATURE-BASED ALGORITHM SELECTION FROM OPTIMIZER PORTFOLIOS

1

10

100

1000

10000

1 10 100 1000 10000

PAR10−Scores of Best Model [in s]

PA
R

10
−

S
co

re
s

of
 E

A
X

+
re

st
ar

t [
in

 s
]

1

10

100

1000

10000

1 10 100 1000 10000

PAR10−Scores of Second Best Model [in s]

TSP Set

National

RUE

TSPLIB

VLSI

Netgen

Morphed

500

1000

1500

2000
Instance Size

Figure 4.2: Comparison of the single best solver from the portfolio (EAX+restart with a mean
PAR10-score of 36.32s) and the two best-performing algorithm selectors, i.e., classification-
based SVMs with mean PAR10-scores of 16.75s (left) and 16.93s (right), respectively.

the art in inexact TSP solving by constructing an algorithm selector, which on average required

less than half of the resources used by the single best solver from our portfolio.

Within recent works, Pihera and Musliu (2014) introduced a set of 287 TSP features and also

showed that the Multiagent Optimization System (MAOS) from Xie and Liu (2009) performs

competitive to LKH – at least on some of their considered problems – and we therefore added

both, MAOS and their proposed features, to our setup. Additionally, we reduced the large

impact of the unstructured RUE instances on our experiments – and hence, on the algorithm

selectors – by (a) also considering two sets of clustered TSP problems, which were generated with

the R-package netgen (Bossek, 2015), and (b) restricting our benchmark to problems of sizes 500

to 2 000 cities. While these changes provided us with a much more general data basis, the largest

improvements w.r.t. the selectors’ performances were achieved by conducting automated feature

selection. Despite the fact that the current implementations of the feature sets did not enable

more accurate tracking of the feature costs10, using small subsets of the features led to much

better performing algorithm selectors. These findings are very plausible, because restricting the

number of features obviously reduces the noise and/or redundancy among them.

In the end, we analyzed a total of 280 potential algorithm selectors. The two best of them

were classification-based support vector machines (Vapnik, 1995), which were trained with 16

or 11 features from Pihera and Musliu (2014), respectively. As displayed in Figure 4.2, both

models – having average PAR10-scores of 16.75s and 16.93s, respectively – selected for each of

the 1 845 instances from our benchmark a solver that found an optimal tour within less than

1 000s, whereas the single best solver, EAX+restart, found an optimal tour for all but one of

the considered problems11 and had a mean PAR10-score of 36.30s. Therefore, based on these

PAR10-scores, both selectors found an optimal tour on average more than twice as fast as the

SBS and thus, reduced the gap towards the virtual best solver (10.73s) – i.e., the performance

10Independent of the amount of features that were chosen from a specific feature set, we always had to consider
the costs for computing all features from the respective set.

11While EAX, EAX+restart and MAOS failed to solve the TSPLIB-instance d657 within the given time limit
of one hour, LKH and LKH+restart solved it in less than a second.

21

4.4. AUTOMATED ALGORITHM SELECTION ON CONTINUOUS BLACK-BOX PROBLEMS BY

COMBINING EXPLORATORY LANDSCAPE ANALYSIS AND MACHINE LEARNING

that one could theoretically achieve by always selecting the best-performing solver per instance

– by more than 75% (from 25.57s to 6.02s or 6.20s, respectively). Especially when considering

that the VBS is measured under very idealistic settings (i.e., perfect oracle-like selections per

instance without any additional costs), our algorithm selectors set a very strong and much more

realistic baseline for the state of the art in inexact TSP solving.

In spite of these very positive results, we still see potential for further improvements. Currently,

the source code for the feature computation did not enable a more realistic estimation of the

true feature costs when using only (small) subsets of the feature sets. In consequence, the costs

that we considered for assessing the selectors’ performances provided an upper bound for the

true costs. Also, except for the SVM’s inverse kernel width parameter sigma, which strongly

influences the SVM’s performance and hence was set upfront to a more reasonable default value,

all of our considered machine learning algorithms were executed with default configurations for

their respective hyperparameters. Given that the accuracy of a machine learner often relies on

its hyperparameter configuration, tuning them could yield even better performances.

4.4 Automated Algorithm Selection on Continuous Black-

Box Problems By Combining Exploratory Landscape

Analysis and Machine Learning

In Kerschke and Trautmann (under review), we transferred our successful strategy of feature-

based algorithm selection from the Travelling Salesperson Problem (as described in the two

previous works) to the domain of single-objective continuous black-box optimization. There,

we combined it with our landscape analysis framework flacco (see Chapter 3), as well as our

findings regarding an optimization problem’s high-level properties, such as the global structure

(see Chapter 2).

For this purpose, we first computed all of the more than 300 features that are currently avail-

able in flacco on a set of 96 problem instances12 from the Black-Box Optimization Bench-

mark (BBOB, Hansen et al., 2009b). Due to our recent findings, which showed that low budgets

are sufficient for detecting certain problem characteristics (Kerschke et al., 2016a), we again

used rather small initial designs of only 50 × d observations for our experiments. For the same

set of instances, we acquired the performance results of several optimization algorithms from

the COCO-platform (Hansen et al., 2016). Between the years 2009 and 2015, the latter collected

the performances (i.e., the best objective values that were found along with the corresponding

number of function evaluations) from a total of 129 optimization algorithms on BBOB. Using

this external source enabled us to compare performances from a wide variety of well-established

optimization algorithms (without having the burden of making their source code executable on

our local machines) and also made our results more comparable for other researchers (as they

can simply use the same data base). Therefore, instead of wasting valuable time for dealing

with the optimizers’ implementations, we rather invested more resources in a thorough revision

of the acquired performance data in order to assure a clean data basis for our experiments.

12For each of the 24 BBOB functions, we considered four different problem dimensions, d ∈ {2, 3, 5, 10}, and
aggregated the feature and performance data across the respective first five instances, IID ∈ {1, . . . , 5}.

22

CHAPTER 4. FEATURE-BASED ALGORITHM SELECTION FROM OPTIMIZER PORTFOLIOS

On the basis of our data analysis, we reduced the set of all 129 solvers to a much smaller,

but still very competitive, portfolio of 12 representative optimization algorithms. It consists of

two very fast derivative-based solvers, several variants of the well-known Covariance Matrix

Adaption Evolution Strategy (CMA-ES, Hansen and Ostermeier, 2001), as well as some multi

level approaches. Compared to all 129 solvers from COCO, the best solver (per instance) from

our portfolio also achieved the best results on 51 of all 96 problems and was at most twice

(three times) as slow for ten (three) of the problems. While a hybrid version of the CMA-

ES (denoted HCMA, Loshchilov et al., 2013) clearly was the single best solver across the entire

benchmark – it also was the only one to approximate the optimal objective value for all 96

problems up to the considered precision level of 10−2 – we also confirmed the thesis that the

performance of an optimization algorithm heavily relies on the given optimization problem.

That is, while the derivative-based approaches on average worked best across the separable

problems, more complex problems required much more sophisticated optimizers. Therefore,

having a priori knowledge of the problem’s landscape should clearly help to find (per instance)

a more appropriate, i.e., better performing, optimization algorithm – compared to sticking to

a single algorithm across all problems.

In contrast to the TSP-related projects, in which we measured (the PAR10-score of) the CPU

runtime, we here considered the so-called relative Expected Runtime (relative ERT) as perfor-

mance measure. The ‘regular’ Expected Runtime (ERT, Hansen et al., 2009a) basically measures

the average number of function evaluations (across multiple runs of an algorithm on an instance)

that are needed to “solve” an instance. Here, “solving” an instance means that the optimizer

found an observation, whose objective value differs at most by a pre-defined precision value

ε from the landscape’s true global optimum. As the complexity of the optimization problem

has a strong impact on the size of the corresponding ERTs13, we standardize each optimizer’s

ERT per problem and dimension by the respective problem’s best ERT (among the portfolio’s

optimization algorithms). Thereby, the performance values of simple and complex problems

should become much more comparable to each other across the entire benchmark. Standard-

izing the ERT per problem and dimension also simplifies the interpretation of the results: the

relative ERT of the virtual best solver obviously has to be exactly one on each of the problems

and hence, also on the entire benchmark. In consequence, the relative ERTs of the solvers and

selectors, basically provide a factor compared to the VBS. For instance, the performance of

the single best solver, which achieved a relative ERT of 30.37, implies that HCMA on average

requires 30.37 times as many function evaluations for solving an instance as the respective ideal

optimizer from our portfolio.

For modeling our algorithm selectors, we considered a similar approach as in Kerschke et al.

(2017) and combined several machine learning approaches with different feature selection strate-

gies as potential algorithm selectors. Their performances were assessed by a leave-one-function-

out crossvalidation, i.e., we trained each model on 95 of the 96 problems and validated it on the

one that was left out. This step is repeated 96 times, so that each problem was used for testing

exactly once and afterwards averaged across the resulting 96 relative ERTs. Again, the best

performance was achieved by a classification-based support vector machine (Vapnik, 1995). It

had a mean relative ERT of 16.67, which means that it (on average) required less than 55% of

13Low-dimensional, unimodal, separable functions can be successfully solved with a very small amount of
function evaluations, whereas high-dimensional, highly multimodal problems often require millions of function
evaluations – if they can be solved at all.

23

4.4. AUTOMATED ALGORITHM SELECTION ON CONTINUOUS BLACK-BOX PROBLEMS BY

COMBINING EXPLORATORY LANDSCAPE ANALYSIS AND MACHINE LEARNING

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●●

●

5 10

2 3

1e+02 1e+04 1e+06 1e+02 1e+04 1e+06

1e+02

1e+04

1e+06

1e+02

1e+04

1e+06

Expected Runtime of Best Model (Classification−Based SVM)

E
xp

ec
te

d
R

un
tim

e
of

 S
B

S
 (

H
C

M
A

)

Function ID (FID)
●

●

●

●

●

●

●

1
2
3
4
5
6
7
8
9
10
11
12

13
14
15
16
17
18
19
20
21
22
23
24

BBOB−Group
●

●

●

●

●

F1 − F5
F6 − F9
F10 − F14
F15 − F19
F20 − F24

Figure 4.3: Comparison of the HCMA, i.e., the portfolio’s single best solver with a mean relative
ERT of 30.37, and the best-performing algorithm selector, a classification-based SVM (14.24).
The performances are distinguished by problem dimension and BBOB problem (FID).

HCMA’s number of function evaluations for solving an instance.

Examining the features that were used by our best selector revealed that neither the NBC

nor the meta-model features, i.e., features describing a landscape’s global structure, were con-

sidered by the found algorithm selector. Instead, it used one levelset and three y-distribution

features (Mersmann et al., 2011), two information content features (Muñoz Acosta et al., 2015a),

one cell mapping feature (Kerschke et al., 2014) and one of the basic features. However, being

aware of the imperfectness of our feature selection strategies – amongst others due to their usage

of an either greedy or random approach – we tried a new approach by combining the previously

selected eight features with the NBC and meta-model features and performing a second round

of feature selection on top. As a result, we found a composition of (three features from the pre-

vious model, two meta-model and four NBC) features, which led to an even better algorithm

selection model with a mean relative ERT of 14.24. The corresponding performance differences

between the portfolio’s best solver, i.e., HCMA, and our best-performing per-instance algorithm

selector are displayed in Figure 4.3.

Analyzing our two algorithm selectors in more detail, we detected that both models performed

poorly on the separable BBOB problems (FIDs 1 to 5), whereas especially the better (second)

model outperformed all single solvers on the group of multimodal problems with a weak global

structure (FIDs 20 to 24). However, bringing the size of the initial design in relation to the

complexity of the problems, both findings are plausible. The separable problems usually can

be solved with a few function evaluations, giving the costs for the initial design – 100 to 500

function evaluations depending on the problem’s dimensionality – a strong negative impact

24

CHAPTER 4. FEATURE-BASED ALGORITHM SELECTION FROM OPTIMIZER PORTFOLIOS

on the selector’s performance, which is also visible in Figure 4.3. On the other hand, the

multimodal problems with a weak global structure are so complex that they require a huge

amount of function evaluations – if they can be solved at all. For instance, HCMA had an

ERT of 7.3 million function evaluations on the ten-dimensional version of the Lunacek Bi-

Rastrigin Function (FID 24, Hansen et al., 2009b), but still was the portfolio’s only algorithm

to solve this problem at all. In such extreme cases, the cost of at most 500 function evaluations

for computing the landscape features becomes completely insignificant compared to the high

amount of function evaluations that one would actually waste when selecting a solver that either

(a) performs very poorly or (b) does not even find the optimum for the given problem.

All in all, one can state that the computation of landscape features on very simple problems

might cause some overhead, but feature-based algorithm selection has definitely proven to be a

very powerful tool, especially on more complex (and thus expensive) problems. Consequently,

spending a small amount of function evaluations on the feature computation can in turn be

very profitable considering the strong performance improvements that one could achieve with a

suitable, i.e., well-performing, optimization algorithm. Furthermore, in order to avoid spending

too many function evaluations on these very simple problems, future research could aim at

designing new landscape features, which are able to distinguish these very simple problems

from all the other ones, by means of an extremely minimalistic budget or initial design.

Finally, considering that the size of the initial design is already in the range of an evolutionary

algorithm’s population size, low-budget landscape analysis provides essential information for

improved continuous black-box optimization basically for free14. Instead of using two different

sets of observations for both – i.e., the solver’s initial population and the features’ initial design

– one could either use the initial population for computing the landscape features or the initial

design as the solver’s starting population. Either way, the features would be available for free.

14Except for the aforementioned very simple problems, which ideally are solved by fast, deterministic (local
search) optimization algorithms.

25

Chapter 5

Platforms for Collaborative Research on

Algorithm Selection and Machine Learning

“Great things in business are never done by one per-

son, they’re done by a team of people.”

Steve Jobs

5.1 Contributed Material

• Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, T. M., Malitsky, Y., Frechette, A.,

Hoos, H. H., Hutter, F., Leyton-Brown, K., Tierney, K. & Vanschoren, J. (2016). ASlib: A

Benchmark Library for Algorithm Selection. In: Artificial Intelligence Journal (AIJ), pages

41 – 58. (see Appendix D.1)

• Casalicchio, G., Bossek, J., Lang, M., Kirchhoff, D., Kerschke, P., Hofner, B., Seibold, H.,

Vanschoren, J. & Bischl, B. (2017). OpenML: An R Package to Connect to the Machine

Learning Platform OpenML. In: Journal of Computational Statistics (COST), pages 1 –

15. (see Appendix D.2)

5.2 ASlib: A Benchmark Library for Algorithm Selection

As shown in the previous chapter, feature-based per-instance algorithm selection can yield

impressive performance improvements within different research domains. And although there

has been a steady growth in the number of related research projects (see, e.g., Kotthoff, 2014;

Muñoz Acosta et al., 2015b), there exists no common platform for researchers, where they can

share and/or compare their experimental data and approaches. Therefore, in order to increase

both, comparability and exchangeability of algorithm selection results from different studies,

we defined a standardized format (for data sets of algorithm selection scenarios) and introduced

the Algorithm Selection Library15(ASlib, Bischl et al., 2016a).

The ASlib is an online platform, which (a) comes with a repository for sharing various data

sets (features, feature costs, algorithm performances, runstatus, etc.) for a wide variety of

15http://aslib.net/

26

http://www.sciencedirect.com/science/article/pii/S0004370216300388
http://www.sciencedirect.com/science/article/pii/S0004370216300388
http://www.sciencedirect.com/science/article/pii/S0004370216300388
http://www.sciencedirect.com/science/article/pii/S0004370216300388
https://link.springer.com/article/10.1007/s00180-017-0742-2
https://link.springer.com/article/10.1007/s00180-017-0742-2
https://link.springer.com/article/10.1007/s00180-017-0742-2
https://link.springer.com/article/10.1007/s00180-017-0742-2
http://aslib.net/

CHAPTER 5. PLATFORMS FOR COLLABORATIVE RESEARCH ON ALGORITHM SELECTION AND

MACHINE LEARNING

algorithm selection scenarios, (b) provides useful insights for each of the uploaded scenarios

by means of an automatically generated explorative data analysis, and (c) runs some initial

benchmark experiments (with a few standard machine learning algorithms) per scenario. For

better usability of the library, we additionally provided interfaces for accessing the platform

either from python (ASlibScenario16) or R (aslib17, Bischl et al., 2016b). Thereof we expect

a facilitated communication between the users on the one end and the ASlib on the other.

Due to these functionalities, the library mostly simplifies the steps prior to actually performing

algorithm selection. That is, one neither has to deal with any of the implementations of the

different optimization algorithms nor with the feature computations and their costs. Each of

the AS scenarios available on the library assured to provide all these required data sets and

furthermore the corresponding data sets also have to pass various sanity checks prior to being

published on the platform. Also, due to the standardized data format, the user has to cope with

the format specifications only once – at the very first encounter with any of the scenarios. In

future experiments, users can easily adapt their code from the previous experiments by replacing

the links to the ‘old’ data sets with the respective ones from any of the other scenarios.

An additional advantage and at the same time very important contribution of the ASlib is its

automatically generated Exploratory Data Analysis (EDA)18, which provides valuable insights

into the performance and feature data of each scenario. On its first page, it summarizes all

available scenarios by means of a table with the number of instances, (optimization) algorithms

and features. The same table also displays whether the data contains stochastic features or

algorithms, respectively. Therefore, a user who is looking for a specific setup for an AS scenario,

can quickly scan over the entire list of all scenarios and afterwards explore the relevant ones in

more detail. For the latter, our EDA provides a multitude of visualizations, such as boxplots,

density or cumulative distribution functions (of the algorithm performances), as well as several

tables summarizing the presented performance and feature values.

Aside from the scenario’s raw data, the aforementioned EDA and a readme-file, which provides

further information on the source of the respective scenario, the library offers summaries of

standard baseline measures – i.e., the virtual best solver (VBS) and the single best solver (SBS)

– along with the results of an initial benchmark study based on well-established machine learning

algorithms (e.g., random forests and support vector machines). These benchmark tables, which

show the respective performances by means of three different measures – success rates, PAR10-

scores and misclassification penalties – should give the user some first indications on the size

of the gap between VBS and SBS, or VBS and best machine learning algorithm, respectively.

Hence, the users get an approximate idea of how much improvement one could expect from

more thoroughly trained algorithm selectors.

A further contribution that we have made in Bischl et al. (2016a) is a brief description of the six

optimization domains that were covered by the platform’s 17 algorithm selection scenarios (at

the time of the release of version 2.0). However, in its current version (3.0), the library contains

21 scenarios (originating from ten optimization domains), as well as an additional repository

for unverified scenarios, which have the potential to be integrated in future releases. At last, we

also presented an exploratory benchmark study, whose results on the one hand displayed the

16https://github.com/mlindauer/ASlibScenario
17https://github.com/coseal/aslib-r
18http://coseal.github.io/aslib-r/scenario-pages/index.html

27

https://github.com/mlindauer/ASlibScenario
https://github.com/coseal/aslib-r
http://coseal.github.io/aslib-r/scenario-pages/index.html

5.3. OPENML: AN R PACKAGE TO CONNECT TO THE MACHINE LEARNING PLATFORM OPENML

diversity of the available scenarios and on the other hand provided a nice baseline for further

studies on each of them.

In conclusion, the development and introduction of the ASlib finally provided a platform where

researchers can access and share the data from various experimental studies related to algorithm

selection. Furthermore, we provided various tools which enable a stronger focus on the actual

algorithm selection itself as users no longer have to deal with the usually rather time consuming

preprocessing steps, such as collecting the data, performing sanity checks, or extracting further

information from the data, e.g., by means of an explorative data analysis. Therefore, our plat-

form clearly facilitates collaborations across different applications for algorithm selection, e.g.,

Satisfiability (SAT) or Travelling Salesperson Problem (TSP), as (expert) knowledge of those

is – due to the provided data sets – no longer a mandatory prerequisite.

5.3 OpenML: An R Package to Connect to the Machine

Learning Platform OpenML

While the previously described Algorithm Selection Library aims at experimental studies that

are specifically related to the topic of algorithm selection, the online machine learning platform

OpenML19 (Vanschoren et al., 2013) targets a much broader community: machine learning

researchers in general.

The main goal of OpenML is to provide a place, where researchers can easily collaborate (on-

line), e.g., by sharing their data, machine learning algorithms, experimental setups, or even

entire experiments. Due to the modularized structure of the platform, researchers can directly

benefit from advances made by any other member of this network within a specific part of

their experimental workflow. In order to enable as many researchers as possible access into

the network, OpenML provides interfaces to the majority of machine learning applications,

namely WEKA (Hall et al., 2009), MOA (Bifet et al., 2010), RapidMiner (Hofmann and Klinken-

berg, 2013), Java (e.g., Arnold et al., 2005), R (R Core Team, 2017) and python (VanRossum

and The Python Development Team, 2015).

In Casalicchio et al. (2017b), we introduced the R-package OpenML (Casalicchio et al., 2017a),

which provides the interface from R to OpenML and vice versa. Our package is closely connected

to mlr (Bischl et al., 2016c), which probably is the most complex and at the same time most

powerful framework for machine learning in R. Within our work, we provide a description of

the different building blocks of OpenML, i.e., the data sets, tasks (i.e., encapsulations of the

data sets, enriched by further information such as the supervised learning type, the desired

performance measure and resampling strategy), flows (i.e., the considered machine learning

algorithms along with specifications of their possible hyperparameters) and the runs (i.e., results

as achieved by a flow with a specific hyperparameter configuration and applied to a certain task).

For facilitating the first steps with OpenML and in particular with our package, we (a) designed

a tutorial20, and (b) also presented a case study (within our work), in which we demonstrate

the usage of our package in combination with OpenML and the mlr framework.

19https://www.openml.org/
20https://cran.r-project.org/web/packages/OpenML/OpenML.pdf or
https://cran.r-project.org/web/packages/OpenML/vignettes/OpenML.html

28

https://www.openml.org/
https://cran.r-project.org/web/packages/OpenML/OpenML.pdf
https://cran.r-project.org/web/packages/OpenML/vignettes/OpenML.html

CHAPTER 5. PLATFORMS FOR COLLABORATIVE RESEARCH ON ALGORITHM SELECTION AND

MACHINE LEARNING

Summarizing, one can state that the R-package OpenML provides R-users easy access to the very

promising machine learning platform OpenML. Due to the many interfaces of the platform,

its users are enabled to collaborate with many other scientists worldwide and independent of

their favorite programming language. After all, such a powerful network will help its members

to jointly tackle complex machine learning problems and thereby push the entire, already very

vivid, research domain even further.

29

Chapter 6

Summary and Outlook

“Realize that everything connects to everything else.”

Leonardo da Vinci

This thesis was structured into four parts in order to represent the different aspects that con-

tributed towards the overall goal of performing “Automated and Feature-Based Problem Charac-

terization and Algorithm Selection Through Machine Learning”. As discussed within this work,

we have made valuable progress in each of these categories with the most important ones among

them being summarized below.

Characterizing the Global Structure of Continuous Black-Box Problems

We proposed new feature sets, which improved the classification of a problem’s degree of mul-

timodality and its global structure. In particular, these features enabled the distinction of

funnel-shaped problems from landscapes with rather randomly distributed local optima. More

importantly, we showed that our features, despite being computed by means of very low budgets,

always classified the aforementioned properties with a high accuracy (of 90% and more).

Framework for Exploratory Landscape Analysis

The two essential contributions of this category have been the development of the R-package

flacco and its accompanying platform-independent and web-hosted graphical user interface,

which even enables non-R-users to benefit from this framework’s functionalities. The package

itself provides a collection of more than 300 automatically computable landscape features, as

well as several visualization techniques. While the latter should help its users to get a better

understanding of the problems at hand, the former is a very important ingredient for performing

automated algorithm selection.

Experimental Studies on Feature-Based Algorithm Selection

We have conducted experimental studies to show the applicability of feature-based algorithm

selection within different application domains. For the Travelling Salesperson Problem (TSP),

30

CHAPTER 6. SUMMARY AND OUTLOOK

our best algorithm selector completely dominated the single best solver (SBS) from our port-

folio of state-of-the-art heuristic TSP solvers. More precisely, we reduced the gap between the

virtual best solver (VBS), i.e., an oracle like predictor that always predicts the best performing

optimization algorithm for every single instance (at no costs), and the aforementioned SBS

by more than 75%. Within the second considered application, i.e., single-objective continuous

black-box optimization, we performed algorithm selection on a portfolio of 12 complementary

solvers that were evaluated across all 24 functions from the well-known Black-Box Optimization

Benchmark (BBOB, Hansen et al., 2009a) and across four different problem dimensions. Similar

to the TSP experiments, our best algorithm selection model again required less than half of the

resources compared to the respective SBS. Especially the ‘funnel features’, which we proposed

for characterizing the structures of continuous black-box problems proved to be valuable for

our algorithm selector.

Development of Platforms for Machine Learning and Algorithm Selection

At last, we have made contributions to two online platforms, which encourage collaborations

among researchers in the field of machine learning (OpenML) in general and algorithm selection

(ASlib) in particular. On either of these platforms, the users can publicly share their data, which

in turn allows others to study those in more detail. Consequently, being checked by numerous

people, it is more likely that the provided data sets – and hence, the experiments conducted

on them – are of better quality. Also, the platforms facilitate contributions to separate parts

of the algorithm selection and/or machine learning models and thereby help to improve them

without too much additional effort.

Based on these very promising results, we have laid the basis for several new developments

within the analyzed research field. Focussing on the automated characterization of problem

landscapes, it would be interesting to investigate how much one could reduce the available bud-

get without losing (too much) information and thereby accuracy. While one could obviously try

to tackle this problem by directly decreasing the size of the initial designs, one would assume that

more sophisticated approaches, such as combining landscape analysis with surrogate-assisted

models (e.g., Kriging, Jones et al., 1998), yields more promising results.

Also, a weakness of our feature-based algorithm selection (in case of continuous optimization)

was its poor performance on very simple problems. Admittedly, this weakness is negligible

as it obviously only affects a few very special problems (such as for instance the Sphere and

Linear Slope functions). Nevertheless, designing features that are able to detect these (usually

separable) problems by means of a very limited amount of function evaluations, likely will have

a strong positive impact on the overall performance of the algorithm selection models.

So far, all of these landscape features have been designed for tackling single-objective problems.

However, as the majority of real-world problems usually have to be optimized w.r.t. more than

one objective, we need features that are able to characterize such multi-objective landscapes.

Again, one could use näıve approaches, such as computing the features per objective, but then

one would lose (probably essential) information on the interaction between the objectives. So,

although some initial steps towards characterizing such landscapes have already been made (see,

e.g., Kerschke and Grimme, 2017; Kerschke et al., 2016b, under review), this research field is

31

one of the most important ones to address in the near future.

Aside from the continuous landscapes, I also see possible enhancements w.r.t. features charac-

terizing the TSP instances. The implementations of most of the TSP feature sets within this

thesis only allow to measure their costs across the entire feature set. However, as our experi-

mental studies have shown, usually only small subsets of these features are sufficient for training

well-performing algorithm selectors. Thus, measuring the feature costs at a smaller level would

(a) allow the machine learning algorithms to choose from a wider collection of features (cur-

rently, cheap features that are part of an expensive feature set, will usually be disregarded by

the machine learning algorithm), and (b) provide better estimates for the required runtime (so

far, the performances of our algorithm selectors are only upper bounds for the actual costs).

Furthermore, the hyperparameters of our algorithm selection models have always been used

within their default configurations. However, as shown in many works of the adjacent research

field of algorithm configuration, tuning an algorithm to the problem at hand usually yields strong

performance improvements as well. Based on those results and the contributions presented

within this thesis, there is a lot of potential for a fruitful combination of these two approaches.

On the one hand, algorithm configuration could strongly benefit from our automated feature

computation as our features could reduce the hyperparameters’ search space prior to actually

running the algorithm configurator and thereby clearly decrease its required computational

budget. On the other hand, the configurators could be used for tuning our machine learning

algorithms, which in turn should push them towards even better performances.

As a final enhancement of our results, one could – instead of computing the landscape features

offline before the optimization – measure them online while actually running the optimization

algorithms. By means of such online monitoring features (similar to the ‘probing features’ that

we proposed in Kotthoff et al., 2015) one could either (a) switch between different optimization

algorithms from a pre-defined portfolio or (b) tune the optimizer’s hyperparameters so that it

focusses on exploiting the landscape’s promising regions – and thereby saves valuable function

evaluations.

32

Bibliography

“It’s the knowledge derived from information that

gives you a competitive edge.”

Bill Gates

Bernardetta Addis, Marco Locatelli, and Fabio Schoen. Disk Packing in a Square: A New Global

Optimization Approach. INFORMS Journal on Computing, 20(4):516 – 524, 2008. doi:

10.1287/ijoc.1080.0263. URL http://pubsonline.informs.org/doi/abs/10.1287/ijoc.

1080.0263.

David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J. Cook. The Traveling

Salesman Problem: A Computational Study. Princeton University Press, Princeton, NJ, USA,

2007. URL http://press.princeton.edu/titles/8451.html.

Ken Arnold, James Gosling, and David Holmes. The Java (TM) Programming Language.

Addison Wesley Professional, 4th edition, 2005. URL http://dl.acm.org/citation.cfm?

id=1051069.

Brian Beachkofski and Ramana Grandhi. Improved Distributed Hypercube Sampling. In

Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference, pages 1 – 7. American Institute of Aeronautics and Astronautics

(AIAA), 2002. doi: 10.2514/6.2002-1274. URL https://arc.aiaa.org/doi/abs/10.2514/

6.2002-1274.

Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. MOA: Massive Online

Analysis. Journal of Machine Learning Research (JMLR), 11(May):1601 – 1604, 2010. URL

http://www.jmlr.org/papers/v11/bifet10a.html.

Bernd Bischl, Olaf Mersmann, Heike Trautmann, and Mike Preuss. Algorithm Selection Based

on Exploratory Landscape Analysis and Cost-Sensitive Learning. In Proceedings of the 14th

Annual Conference on Genetic and Evolutionary Computation (GECCO), pages 313 – 320.

ACM, July 2012. doi: 10.1145/2330163.2330209. URL http://dl.acm.org/citation.cfm?

doid=2330163.2330209.

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Thomas Marius Lindauer, Yuri Malitsky, Alexan-

dre Fréchette, Holger Hendrik Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney,

and Joaquin Vanschoren. ASlib: A Benchmark Library for Algorithm Selection. Artifi-

cial Intelligence Journal (AIJ), 237:41 – 58, 2016a. doi: 10.1016/j.artint.2016.04.003. URL

https://www.sciencedirect.com/science/article/pii/S0004370216300388.

33

http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1080.0263
http://pubsonline.informs.org/doi/abs/10.1287/ijoc.1080.0263
http://press.princeton.edu/titles/8451.html
http://dl.acm.org/citation.cfm?id=1051069
http://dl.acm.org/citation.cfm?id=1051069
https://arc.aiaa.org/doi/abs/10.2514/6.2002-1274
https://arc.aiaa.org/doi/abs/10.2514/6.2002-1274
http://www.jmlr.org/papers/v11/bifet10a.html
http://dl.acm.org/citation.cfm?doid=2330163.2330209
http://dl.acm.org/citation.cfm?doid=2330163.2330209
https://www.sciencedirect.com/science/article/pii/S0004370216300388

BIBLIOGRAPHY

Bernd Bischl, Lars Kotthoff, and Pascal Kerschke. aslib: Interface to the Algorithm Selection

Benchmark Library, November 2016b. URL https://CRAN.R-project.org/package=aslib.

R-package version 0.1.

Bernd Bischl, Michel Lang, Lars Kotthoff, Julia Schiffner, Jakob Richter, Erich Studerus,

Giuseppe Casalicchio, and Zachary M. Jones. mlr: Machine Learning in R. Journal of Machine

Learning Research (JMLR), 17(170):1 – 5, 2016c. URL http://jmlr.org/papers/v17/15-

066.html.

Jakob Bossek. netgen: Network Generator for Combinatorial Graph Problems, 2015. URL

https://CRAN.R-project.org/package=netgen. R-package version 1.2.

Jakob Bossek. smoof: Single and Multi-Objective Optimization Test Functions, April 2016. URL

https://CRAN.R-project.org/package=smoof. R-package version 1.5.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University

Press, 2004. doi: 10.1017/CBO9780511804441. URL https://web.stanford.edu/~boyd/

cvxbook/.

Leo Breiman. Random Forests. Machine learning, 45(1):5 – 32, 2001. doi: 10.1023/A:

1010933404324. URL https://link.springer.com/article/10.1023/A:1010933404324.

Charles George Broyden. The Convergence of a Class of Double-Rank Minimization Algo-

rithms 2. The New Algorithm. Journal of Applied Mathematics (JAM), 6(3):222 – 231,

September 1970. doi: 10.1093/imamat/6.3.222. URL https://doi.org/10.1093/imamat/

6.3.222.

Faruk Halil Bursal and Chieh Su Hsu. Application of a Cell-Mapping Method to Opti-

mal Control Problems. International Journal of Control (IJC), 49(5):1505 – 1522, 1989.

doi: 10.1080/00207178908559722. URL http://www.tandfonline.com/doi/abs/10.1080/

00207178908559722.

Giuseppe Casalicchio, Bernd Bischl, Dominik Kirchhoff, Michel Lang, Benjamin Hofner, Jakob

Bossek, Pascal Kerschke, and Joaquin Vanschoren. OpenML: Exploring Machine Learning

Better, Together, June 2017a. URL https://CRAN.R-project.org/package=OpenML. R-

package version 1.4.

Giuseppe Casalicchio, Jakob Bossek, Michel Lang, Dominik Kirchhoff, Pascal Kerschke, Ben-

jamin Hofner, Heidi Seibold, Joaquin Vanschoren, and Bernd Bischl. OpenML: An R

package to connect to the machine learning platform OpenML. Journal of Computa-

tional Statistics (COST), pages 1 – 15, June 2017b. doi: 10.1007/s00180-017-0742-2. URL

https://link.springer.com/article/10.1007/s00180-017-0742-2.

Winston Chang, Joe Cheng, Joseph J. Allaire, Yihui Xie, and Jonathan McPherson. shiny: Web

Application Framework for R, 2016. URL https://CRAN.R-project.org/package=shiny.

R package version 0.14.1.

Kalyanmoy Deb, Lothar Thiele, Marco Laumanns, and Eckart Zitzler. Scalable Test Prob-

lems for Evolutionary Multiobjective Optimization. In Ajith Abraham, Lakhmi Jain, and

Robert Goldberg, editors, Evolutionary Multiobjective Optimization, Advanced Information

34

https://CRAN.R-project.org/package=aslib
http://jmlr.org/papers/v17/15-066.html
http://jmlr.org/papers/v17/15-066.html
https://CRAN.R-project.org/package=netgen
https://CRAN.R-project.org/package=smoof
https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~boyd/cvxbook/
https://link.springer.com/article/10.1023/A:1010933404324
https://doi.org/10.1093/imamat/6.3.222
https://doi.org/10.1093/imamat/6.3.222
http://www.tandfonline.com/doi/abs/10.1080/00207178908559722
http://www.tandfonline.com/doi/abs/10.1080/00207178908559722
https://CRAN.R-project.org/package=OpenML
https://link.springer.com/article/10.1007/s00180-017-0742-2
https://CRAN.R-project.org/package=shiny

BIBLIOGRAPHY

and Knowledge Processing, pages 105 – 145. Springer, 2005. doi: 10.1007/1-84628-137-7 6.

URL https://link.springer.com/chapter/10.1007/1-84628-137-7_6.

Jérémie Dubois-Lacoste, Holger Hendrik Hoos, and Thomas Stützle. On the Empirical Scaling

Behaviour of State-of-the-art Local Search Algorithms for the Euclidean TSP. In Proceedings

of the 17th Annual Conference on Genetic and Evolutionary Computation (GECCO), pages

377 – 384, New York, NY, USA, 2015. ACM. doi: 10.1145/2739480.2754747. URL http:

//dl.acm.org/citation.cfm?doid=2739480.2754747.

Russell Eberhart and James Kennedy. A New Optimizer Using Particle Swarm Theory. In

Proceedings of the Sixth International Symposium on Micro Machine and Human Science

(MHS), pages 39 – 43. IEEE, October 1995. doi: 10.1109/MHS.1995.494215. URL http:

//ieeexplore.ieee.org/document/494215/.

Jerome Harold Friedman. Multivariate Adaptive Regression Splines. The Annals of Statistics,

pages 1 – 67, 1991. URL http://www.jstor.org/stable/2241837.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H

Witten. The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations

Newsletter, 11(1):10 – 18, 2009. doi: 10.1145/1656274.1656278. URL http://dl.acm.org/

citation.cfm?id=1656278.

Nikolaus Hansen. The CMA Evolution Strategy: A Comparing Review. Towards a New Evolu-

tionary Computation - Advances in the Estimation of Distribution Algorithms, 192:75 – 102,

2006. doi: 10.1007/3-540-32494-1 4. URL https://link.springer.com/chapter/10.1007/

3-540-32494-1_4.

Nikolaus Hansen and Andreas Ostermeier. Completely Derandomized Self-Adaptation in Evo-

lution Strategies. Evolutionary Computation Journal (ECJ), 9(2):159 – 195, 2001. URL

http://www.mitpressjournals.org/doi/10.1162/106365601750190398.

Nikolaus Hansen, Anne Auger, Steffen Finck, and Raymond Ros. Real-Parameter Black-Box

Optimization Benchmarking 2009: Experimental Setup. Technical Report RR-6828, INRIA,

2009a. URL https://hal.inria.fr/inria-00362649v3/document.

Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-Parameter Black-Box

Optimization Benchmarking 2009: Noiseless Functions Definitions. Technical Report RR-

6829, INRIA, 2009b. URL https://hal.inria.fr/inria-00362633/document.

Nikolaus Hansen, Anne Auger, Olaf Mersmann, Tea Tušar, and Dimo Brockhoff. COCO: A

Platform for Comparing Continuous Optimizers in a Black-Box Setting. arXiv preprint,

August 2016. URL http://arxiv.org/abs/1603.08785v3.

Christian Hanster and Pascal Kerschke. flaccogui: Exploratory Landscape Analysis for Every-

one. In Proceedings of the 19th Annual Conference on Genetic and Evolutionary Computation

(GECCO) Companion, pages 1215 – 1222. ACM, July 2017. doi: 10.1145/3067695.3082477.

URL http://dl.acm.org/citation.cfm?doid=3067695.3082477.

Helsgaun, Keld. General k-opt submoves for the Lin-Kernighan TSP heuristic. Mathematical

Programming Computation, 1(2-3):119 – 163, 2009. doi: 10.1007/s12532-009-0004-6. URL

https://link.springer.com/article/10.1007/s12532-009-0004-6.

35

https://link.springer.com/chapter/10.1007/1-84628-137-7_6
http://dl.acm.org/citation.cfm?doid=2739480.2754747
http://dl.acm.org/citation.cfm?doid=2739480.2754747
http://ieeexplore.ieee.org/document/494215/
http://ieeexplore.ieee.org/document/494215/
http://www.jstor.org/stable/2241837
http://dl.acm.org/citation.cfm?id=1656278
http://dl.acm.org/citation.cfm?id=1656278
https://link.springer.com/chapter/10.1007/3-540-32494-1_4
https://link.springer.com/chapter/10.1007/3-540-32494-1_4
http://www.mitpressjournals.org/doi/10.1162/106365601750190398
https://hal.inria.fr/inria-00362649v3/document
https://hal.inria.fr/inria-00362633/document
http://arxiv.org/abs/1603.08785v3
http://dl.acm.org/citation.cfm?doid=3067695.3082477
https://link.springer.com/article/10.1007/s12532-009-0004-6

BIBLIOGRAPHY

Markus Hofmann and Ralf Klinkenberg. RapidMiner: Data Mining Use Cases and Business

Analytics Applications. Chapman & Hall/CRC Data Mining and Knowledge Discovery. CRC

Press, 2013. URL http://dl.acm.org/citation.cfm?id=2543538.

Chieh Su Hsu. Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems,

volume 64. Springer, 1987. doi: 10.1007/978-1-4757-3892-6. URL https://link.springer.

com/book/10.1007/978-1-4757-3892-6.

Frank Hutter, Lin Xu, Holger Hendrik Hoos, and Kevin Leyton-Brown. Algorithm Run-

time Prediction: Methods & Evaluation. Artificial Intelligence Journal (AIJ), 206:79 – 111,

2014. doi: 10.1016/j.artint.2013.10.003. URL http://www.sciencedirect.com/science/

article/pii/S0004370213001082.

Donald R. Jones, Matthias Schonlau, and William James Welch. Efficient Global Optimization

of Expensive Black-Box Functions. Journal of Global Optimization, 13(4):455 – 492, Decem-

ber 1998. doi: 10.1023/A:1008306431147. URL https://link.springer.com/article/10.

1023/A:1008306431147.

Pascal Kerschke. flacco: Feature-Based Landscape Analysis of Continuous and Constrained

Optimization Problems, June 2017. URL https://cran.r-project.org/package=flacco.

R-package version 1.7.

Pascal Kerschke. Comprehensive Feature-Based Landscape Analysis of Continuous and Con-

strained Optimization Problems Using the R-Package flacco. under review. Current version

available at arXiv (https://arxiv.org/abs/1708.05258).

Pascal Kerschke and Christian Grimme. An Expedition to Multimodal Multi-Objective Op-

timization Landscapes. In Heike Trautmann, Günter Rudolph, Klamroth Kathrin, Oliver

Schütze, Margaret Wiecek, Yaochu Jin, and Christian Grimme, editors, Proceedings of the 9th

International Conference on Evolutionary Multi-Criterion Optimization (EMO), pages 329 –

343. Springer, March 2017. ISBN 978-3-319-54157-0. doi: 10.1007/978-3-319-54157-0 23.

URL http://link.springer.com/chapter/10.1007/978-3-319-54157-0_23.

Pascal Kerschke and Heike Trautmann. The R-Package FLACCO for Exploratory Landscape

Analysis with Applications to Multi-Objective Optimization Problems. In Proceedings of the

IEEE Congress on Evolutionary Computation (CEC), pages 5262 – 5269. IEEE, July 2016.

doi: 10.1109/CEC.2016.7748359. URL http://ieeexplore.ieee.org/document/7748359/.

Pascal Kerschke and Heike Trautmann. Automated Algorithm Selection on Continuous Black-

Box Problems By Combining Exploratory Landscape Analysis and Machine Learning. under

review. Current version available at arXiv (https://arxiv.org/abs/1711.08921).

Pascal Kerschke, Mike Preuss, Carlos Ignacio Hernández Castellanos, Oliver Schütze, Jian-Qiao

Sun, Christian Grimme, Günter Rudolph, Bernd Bischl, and Heike Trautmann. Cell Mapping

Techniques for Exploratory Landscape Analysis. In EVOLVE – A Bridge between Probability,

Set Oriented Numerics, and Evolutionary Computation V, pages 115 – 131. Springer, July

2014. doi: 10.1007/978-3-319-07494-8 9. URL https://link.springer.com/chapter/10.

1007/978-3-319-07494-8_9.

36

http://dl.acm.org/citation.cfm?id=2543538
https://link.springer.com/book/10.1007/978-1-4757-3892-6
https://link.springer.com/book/10.1007/978-1-4757-3892-6
http://www.sciencedirect.com/science/article/pii/S0004370213001082
http://www.sciencedirect.com/science/article/pii/S0004370213001082
https://link.springer.com/article/10.1023/A:1008306431147
https://link.springer.com/article/10.1023/A:1008306431147
https://cran.r-project.org/package=flacco
https://arxiv.org/abs/1708.05258
http://link.springer.com/chapter/10.1007/978-3-319-54157-0_23
http://ieeexplore.ieee.org/document/7748359/
https://arxiv.org/abs/1711.08921
https://link.springer.com/chapter/10.1007/978-3-319-07494-8_9
https://link.springer.com/chapter/10.1007/978-3-319-07494-8_9

BIBLIOGRAPHY

Pascal Kerschke, Mike Preuss, Simon Wessing, and Heike Trautmann. Detecting Funnel Struc-

tures by Means of Exploratory Landscape Analysis. In Proceedings of the 17th Annual

Conference on Genetic and Evolutionary Computation (GECCO), pages 265 – 272. ACM,

July 2015. doi: 10.1145/2739480.2754642. URL http://dl.acm.org/citation.cfm?doid=

2739480.2754642.

Pascal Kerschke, Mike Preuss, Simon Wessing, and Heike Trautmann. Low-Budget Exploratory

Landscape Analysis on Multiple Peaks Models. In Proceedings of the 18th Annual Conference

on Genetic and Evolutionary Computation (GECCO), pages 229 – 236. ACM, July 2016a.

doi: 10.1145/2908812.2908845. URL http://dl.acm.org/citation.cfm?doid=2908812.

2908845.

Pascal Kerschke, Hao Wang, Mike Preuss, Christian Grimme, André H. Deutz, Heike Traut-

mann, and Michael T. M. Emmerich. Towards Analyzing Multimodality of Multiobjec-

tive Landscapes. In Julia Handl, Emma Hart, Peter Richard Lewis, Manuel López-Ibánez,

Gabriela Ochoa, and Ben Paechter, editors, Proceedings of the 14th International Con-

ference on Parallel Problem Solving from Nature (PPSN XIV), volume 9921 of Lecture

Notes in Computer Science (LNCS), pages 962 – 972. Springer, September 2016b. doi:

10.1007/978-3-319-45823-6 90. URL https://link.springer.com/chapter/10.1007/978-

3-319-45823-6_90.

Pascal Kerschke, Lars Kotthoff, Jakob Bossek, Holger Hendrik Hoos, and Heike Trautmann.

Leveraging TSP Solver Complementarity through Machine Learning. Evolutionary Com-

putation Journal (ECJ), pages 1 – 24, August 2017. doi: 10.1162/evco a 00215. URL

https://www.mitpressjournals.org/doi/abs/10.1162/evco_a_00215.

Pascal Kerschke, Hao Wang, Mike Preuss, Christian Grimme, André H. Deutz, Heike Traut-

mann, and Michael T. M. Emmerich. Search Dynamics on Multimodal Multi-Objective

Problems. under review.

Lars Kotthoff, Pascal Kerschke, Holger Hendrik Hoos, and Heike Trautmann. Improving the

State of the Art in Inexact TSP Solving Using Per-Instance Algorithm Selection. In Clarisse

Dhaenens, Laetitia Jourdan, and Marie-Eléonore Marmion, editors, Proceedings of 9th In-

ternational Conference on Learning and Intelligent Optimization (LION), volume 8994 of

Lecture Notes in Computer Science (LNCS), pages 202 – 217. Springer, January 2015. doi:

10.1007/978-3-319-19084-6 18. URL https://link.springer.com/chapter/10.1007/978-

3-319-19084-6_18.

Lars Kotthoff. Algorithm Selection for Combinatorial Search Problems: A Survey. AI Magazine,

35(3):48 – 60, 2014. doi: 10.1609/aimag.v35i3.2460. URL https://aaai.org/ojs/index.

php/aimagazine/article/view/2460.

Ilya Loshchilov, Marc Schoenauer, and Michèle Sebag. Bi-Population CMA-ES Algorithms with

Surrogate Models and Line Searches. In Proceedings of the 15th Annual Conference on Ge-

netic and Evolutionary Computation (GECCO), pages 1177 – 1184. ACM, July 2013. doi: 10.

1145/2464576.2482696. URL http://dl.acm.org/citation.cfm?doid=2464576.2482696.

MATLAB. Version 8.2.0 (R2013b). The MathWorks Inc., Natick, MA, USA, 2013.

37

http://dl.acm.org/citation.cfm?doid=2739480.2754642
http://dl.acm.org/citation.cfm?doid=2739480.2754642
http://dl.acm.org/citation.cfm?doid=2908812.2908845
http://dl.acm.org/citation.cfm?doid=2908812.2908845
https://link.springer.com/chapter/10.1007/978-3-319-45823-6_90
https://link.springer.com/chapter/10.1007/978-3-319-45823-6_90
https://www.mitpressjournals.org/doi/abs/10.1162/evco_a_00215
https://link.springer.com/chapter/10.1007/978-3-319-19084-6_18
https://link.springer.com/chapter/10.1007/978-3-319-19084-6_18
https://aaai.org/ojs/index.php/aimagazine/article/view/2460
https://aaai.org/ojs/index.php/aimagazine/article/view/2460
http://dl.acm.org/citation.cfm?doid=2464576.2482696

BIBLIOGRAPHY

Walter Mebane Jr. and Jasjeet Sekhon. Genetic Optimization Using Derivatives: The rgenoud

Package for R. Journal of Statistical Software (JSS), 42(11):1 – 26, June 2011. doi: 10.18637/

jss.v042.i11. URL https://www.jstatsoft.org/v042/i11.

Olaf Mersmann, Mike Preuss, and Heike Trautmann. Benchmarking Evolutionary Algo-

rithms: Towards Exploratory Landscape Analysis. In Robert Schaefer, Carlos Cotta, Joanna

Kolodziej, and Günter Rudolph, editors, Proceedings of the 11th International Conference

on Parallel Problem Solving from Nature (PPSN XI), Lecture Notes in Computer Science

(LNCS), pages 71 – 80. Springer, September 2010. doi: 10.1007/978-3-642-15844-5 8. URL

https://link.springer.com/chapter/10.1007/978-3-642-15844-5_8.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Mike Preuss, Claus Weihs, and Günter

Rudolph. Exploratory Landscape Analysis. In Proceedings of the 13th Annual Conference on

Genetic and Evolutionary Computation (GECCO), pages 829 – 836. ACM, July 2011. doi: 10.

1145/2001576.2001690. URL http://dl.acm.org/citation.cfm?doid=2001576.2001690.

Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob Bossek, and Frank

Neumann. A Novel Feature-Based Approach to Characterize Algorithm Performance for the

Traveling Salesperson Problem. Annals of Mathematics and Artificial Intelligence, 69:151 –

182, October 2013. doi: 10.1007/s10472-013-9341-2. URL https://link.springer.com/

article/10.1007/s10472-013-9341-2.

Mario Andrés Muñoz Acosta, Michael Kirley, and Saman K. Halgamuge. Exploratory Landscape

Analysis of Continuous Space Optimization Problems Using Information Content. IEEE

Transactions on Evolutionary Computation (TEVC), 19(1):74 – 87, 2015a. doi: 10.1109/

TEVC.2014.2302006. URL http://ieeexplore.ieee.org/document/6719480/.

Mario Andrés Muñoz Acosta, Yuan Sun, Michael Kirley, and Saman K. Halgamuge. Algo-

rithm Selection for Black-Box Continuous Optimization Problems: A Survey on Methods

and Challenges. Journal of Information Sciences (JIS), 317:224 – 245, October 2015b. doi:

10.1016/j.ins.2015.05.010. URL http://www.sciencedirect.com/science/article/pii/

S0020025515003680.

Yuichi Nagata and Shigenobu Kobayashi. A Powerful Genetic Algorithm Using Edge Assembly

Crossover for the Traveling Salesman Problem. INFORMS Journal on Computing, 25(2):

346 – 363, 2013. doi: 10.1287/ijoc.1120.0506. URL http://dl.acm.org/citation.cfm?id=

2466704.

Josef Pihera and Nysret Musliu. Application of Machine Learning to Algorithm Selection for

TSP. In Proceedings of the IEEE 26th International Conference on Tools with Artificial

Intelligence (ICTAI). IEEE, November 2014. doi: 10.1109/ICTAI.2014.18. URL https:

//www.dbai.tuwien.ac.at/staff/musliu/art_ictai_cam.pdf.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria, 2017. URL http://www.R-project.org/.

Singiresu S. Rao. Nonlinear Programming II: Unconstrained Optimization Techniques, pages

301 – 379. John Wiley & Sons, 2009. doi: 10.1002/9780470549124.ch6. URL http://dx.

doi.org/10.1002/9780470549124.ch6.

38

https://www.jstatsoft.org/v042/i11
https://link.springer.com/chapter/10.1007/978-3-642-15844-5_8
http://dl.acm.org/citation.cfm?doid=2001576.2001690
https://link.springer.com/article/10.1007/s10472-013-9341-2
https://link.springer.com/article/10.1007/s10472-013-9341-2
http://ieeexplore.ieee.org/document/6719480/
http://www.sciencedirect.com/science/article/pii/S0020025515003680
http://www.sciencedirect.com/science/article/pii/S0020025515003680
http://dl.acm.org/citation.cfm?id=2466704
http://dl.acm.org/citation.cfm?id=2466704
https://www.dbai.tuwien.ac.at/staff/musliu/art_ictai_cam.pdf
https://www.dbai.tuwien.ac.at/staff/musliu/art_ictai_cam.pdf
http://www.R-project.org/
http://dx.doi.org/10.1002/9780470549124.ch6
http://dx.doi.org/10.1002/9780470549124.ch6

BIBLIOGRAPHY

John Rischard Rice. The Algorithm Selection Problem. Advances in Computers, 15:65 –

118, 1976. doi: 10.1016/S0065-2458(08)60520-3. URL http://www.sciencedirect.com/

science/article/pii/S0065245808605203.

Alexander Hendrik George Rinnooy Kan and Gerrit Theodoor Timmer. Stochastic Global

Optimization Methods Part II: Multi Level Methods. Mathematical Programming, 39(1):

57 – 78, 1987. doi: 10.1007/BF02592071. URL https://link.springer.com/article/10.

1007/BF02592071.

Rainer Storn and Kenneth Price. Differential Evolution – A Simple and Efficient Heuristic for

Global Optimization over Continuous Spaces. Journal of Global Optimization (JOGO), 11(4):

341 – 359, December 1997. doi: 10.1023/A:1008202821328. URL https://link.springer.

com/article/10.1023/A:1008202821328.

Constantino Tsallis and Daniel Adrián Stariolo. Generalized Simulated Annealing. Physica

A: Statistical Mechanics and its Applications, 233(1-2):395 – 406, November 1996. doi: 10.

1016/S0378-4371(96)00271-3. URL http://www.sciencedirect.com/science/article/

pii/S0378437196002713.

Sander van Rijn, Hao Wang, Matthijs van Leeuwen, and Thomas H. W. Bäck. Evolv-

ing the Structure of Evolution Strategies. In Proceedings of the IEEE Symposium Se-

ries on Computational Intelligence (SSCI), pages 1 – 8. IEEE, December 2016. doi:

10.1109/SSCI.2016.7850138. URL http://ieeexplore.ieee.org/document/7850138/.

Guido VanRossum and The Python Development Team. The Python Language Reference –

Release 3.5.0. Python Software Foundation, 2015.

Joaquin Vanschoren, Jan Nicolaas van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Net-

worked Science in Machine Learning. ACM SIGKDD Explorations Newsletter, 15(2):49 –

60, 2013. doi: 10.1145/2641190.2641198. URL http://dl.acm.org/citation.cfm?doid=

2641190.2641198.

Vladimir Naumovich Vapnik. The Nature of Statistical Learning Theory. Springer, 1995. doi:

10.1007/978-1-4757-2440-0. URL http://www.springer.com/de/book/9781475724400.

Simon Wessing. Two-Stage Methods for Multimodal Optimization. PhD thesis, Technische

Universität Dortmund, 2015. URL http://hdl.handle.net/2003/34148.

Simon Wessing. optproblems: Infrastructure to define optimization problems and some test prob-

lems for black-box optimization, 2016. URL https://pypi.python.org/pypi/optproblems.

Python-package version 0.6.

Simon Wessing, Mike Preuss, and Günter Rudolph. Niching by Multiobjectivization with Neigh-

bor Information: Trade-offs and Benefits. In Proceedings of the IEEE Congress on Evolution-

ary Computation (CEC), pages 103 – 110. IEEE, June 2013. doi: 10.1109/CEC.2013.6557559.

URL http://ieeexplore.ieee.org/document/6557559/.

David Hilton Wolpert and William G. Macready. No Free Lunch Theorems for Optimization.

IEEE Transactions on Evolutionary Computation (TEVC), 1(1):67 – 82, April 1997. doi:

10.1109/4235.585893. URL http://ieeexplore.ieee.org/document/585893/.

39

http://www.sciencedirect.com/science/article/pii/S0065245808605203
http://www.sciencedirect.com/science/article/pii/S0065245808605203
https://link.springer.com/article/10.1007/BF02592071
https://link.springer.com/article/10.1007/BF02592071
https://link.springer.com/article/10.1023/A:1008202821328
https://link.springer.com/article/10.1023/A:1008202821328
http://www.sciencedirect.com/science/article/pii/S0378437196002713
http://www.sciencedirect.com/science/article/pii/S0378437196002713
http://ieeexplore.ieee.org/document/7850138/
http://dl.acm.org/citation.cfm?doid=2641190.2641198
http://dl.acm.org/citation.cfm?doid=2641190.2641198
http://www.springer.com/de/book/9781475724400
http://hdl.handle.net/2003/34148
https://pypi.python.org/pypi/optproblems
http://ieeexplore.ieee.org/document/6557559/
http://ieeexplore.ieee.org/document/585893/

BIBLIOGRAPHY

Xiao-Feng Xie and Jiming Liu. Multiagent Optimization System for Solving the Traveling

Salesman Problem (TSP). IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, 39(2):489 – 502, April 2009. doi: 10.1109/TSMCB.2008.2006910. URL http:

//ieeexplore.ieee.org/document/4717264/.

Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele. Comparison of Multiobjective Evolutionary

Algorithms: Empirical Results. Evolutionary Computation Journal (ECJ), (2):173 – 195,

June 2000. doi: 10.1162/106365600568202. URL http://dl.acm.org/citation.cfm?id=

1108876.

40

http://ieeexplore.ieee.org/document/4717264/
http://ieeexplore.ieee.org/document/4717264/
http://dl.acm.org/citation.cfm?id=1108876
http://dl.acm.org/citation.cfm?id=1108876

Appendix:

Contributed Publications

Chapter A

Characterizing the Global Structure of

Continuous Black-Box Problems

A.1 Cell Mapping Techniques for Exploratory Landscape

Analysis

• Authors:

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Mike Preuss,

Information Systems and Statistics, University of Münster, Germany

– Carlos Ignacio Hernández Castellanos,

Department of Computer Science, CINVESTAV, Mexico-City, Mexico

– Oliver Schütze,

Department of Computer Science, CINVESTAV, Mexico-City, Mexico

– Jian-Qiao Sun,

School of Engineering, University of California, Merced, USA

– Christian Grimme,

Information Systems and Statistics, University of Münster, Germany

– Günter Rudolph,

Department of Computer Science, TU Dortmund University, Germany

– Bernd Bischl,

Department of Statistics, TU Dortmund University, Germany

– Heike Trautmann,

Information Systems and Statistics, University of Münster, Germany

• Published in “EVOLVE – A Bridge between Probability, Set Oriented Numerics, and

Evolutionary Computation V”, pages 115 – 131, Springer, 2014.

• Presented at the “EVOLVE 2014 International Conference” held from July 1 to 4, 2014

in Beijing, China.

42

https://link.springer.com/chapter/10.1007%2F978-3-319-07494-8_9
https://link.springer.com/chapter/10.1007%2F978-3-319-07494-8_9
http://www.evolve-conference.org/previous-editions/evolve-2014-china

CHAPTER A. CHARACTERIZING THE GLOBAL STRUCTURE OF CONTINUOUS BLACK-BOX

PROBLEMS

• Abstract:

Exploratory Landscape Analysis is an effective and sophisticated approach to characterize

the properties of continuous optimization problems. The overall aim is to exploit this

knowledge to give recommendations of the individually best suited algorithm for unseen

optimization problems. Recent research revealed a high potential of this methodology in

this respect based on a set of well-defined, computable features which only requires a

quite small sample of function evaluations. In this paper, new features based on the cell

mapping concept are introduced and shown to improve the existing feature set in terms

of predicting expert-designed high-level properties, such as the degree of multimodality

or the global structure, for 2-dimensional single objective optimization problems.

• Keywords:

exploratory landscape analysis, cell mapping, black-box optimization, continuous opti-

mization, single objective optimization, algorithm selection

43

A.2. DETECTING FUNNEL STRUCTURES BY MEANS OF EXPLORATORY LANDSCAPE ANALYSIS

A.2 Detecting Funnel Structures ByMeans of Exploratory

Landscape Analysis

• Authors:

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Mike Preuss,

Information Systems and Statistics, University of Münster, Germany

– Simon Wessing,

Department of Computer Science, TU Dortmund University, Germany

– Heike Trautmann,

Information Systems and Statistics, University of Münster, Germany

• Published in “Proceedings of the 17th Annual Conference on Genetic and Evolutionary

Computation (GECCO)”, pages 265 – 272, ACM, 2015.

• Presented at the “Genetic and Evolutionary Computation Conference (GECCO)” held

from July 11 to 15, 2015 in Madrid, Spain.

• Abstract:

In single-objective optimization different optimization strategies exist depending on the

structure and characteristics of the underlying problem. In particular, the presence of

so-called funnels in multimodal problems offers the possibility of applying techniques ex-

ploiting the global structure of the function. The recently proposed Exploratory Landscape

Analysis approach automatically identifies problem characteristics based on a moderately

small initial sample of the objective function and proved to be effective for algorithm se-

lection problems in continuous black-box optimization. In this paper, specific features for

detecting funnel structures are introduced and combined with the existing ones in order

to classify optimization problems regarding the funnel property. The effectiveness of the

approach is shown by experiments on specifically generated test instances and validation

experiments on standard benchmark problems.

• Keywords:

Fitness landscapes, Working principles of evolutionary computing, Machine learning, Ex-

ploratory Landscape Analysis, Funnel Structure, Optimization, Feature Selection

44

http://dl.acm.org/citation.cfm?doid=2739480.2754642
http://dl.acm.org/citation.cfm?doid=2739480.2754642
http://www.sigevo.org/gecco-2015/

CHAPTER A. CHARACTERIZING THE GLOBAL STRUCTURE OF CONTINUOUS BLACK-BOX

PROBLEMS

A.3 Low-Budget Exploratory Landscape Analysis on Mul-

tiple Peaks Models

• Authors:

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Mike Preuss,

Information Systems and Statistics, University of Münster, Germany

– Simon Wessing,

Department of Computer Science, TU Dortmund University, Germany

– Heike Trautmann,

Information Systems and Statistics, University of Münster, Germany

• Published in “Proceedings of the 18th Annual Conference on Genetic and Evolutionary

Computation (GECCO)”, pages 229 – 236, ACM, 2016.

• Presented at the “Genetic and Evolutionary Computation Conference (GECCO)” held

from July 20 to 24, 2016 in Denver, CO, USA.

• Abstract:

When selecting the best suited algorithm for an unknown optimization problem, it is

useful to possess some a priori knowledge of the problem at hand. In the context of single-

objective, continuous optimization problems such knowledge can be retrieved by means

of Exploratory Landscape Analysis (ELA), which automatically identifies properties of a

landscape, e.g., the so-called funnel structures, based on an initial sample. In this paper, we

extract the relevant features (for detecting funnels) out of a large set of landscape features

when only given a small initial sample consisting of 50 ×D observations, where D is the

number of decision space dimensions. This is already in the range of the start population

sizes of many evolutionary algorithms. The new Multiple Peaks Model Generator (MPM2)

is used for training the classifier, and the approach is then very successfully validated on

the Black-Box Optimization Benchmark (BBOB) and a subset of the CEC 2013 niching

competition problems.

• Keywords:

Fitness Landscapes, Working principles of evolutionary computing, Machine Learning,

Empirical Study, Multiple solutions / Niching

45

http://dl.acm.org/citation.cfm?id=2908845
http://dl.acm.org/citation.cfm?id=2908845
http://gecco-2016.sigevo.org

Chapter B

Flacco – A Toolbox for Exploratory Landscape

Analysis with R

B.1 The R-Package FLACCO for Exploratory Landscape

Analysis with Applications to Multi-Objective Opti-

mization Problems

• Authors:

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Heike Trautmann,

Information Systems and Statistics, University of Münster, Germany

• Published in “IEEE Congress on Evolutionary Computation (CEC)”, pages 5262 – 5269,

IEEE, 2016.

• Presented at the “IEEE World Congress on Computational Intelligence (WCCI)” held

from July 24 to 29, 2016 in Vancouver, BC, Canada.

• Abstract:

Exploratory Landscape Analysis (ELA) aims at understanding characteristics of single-

objective continuous (black-box) optimization problems in an automated way. Moreover,

the approach provides the basis for constructing algorithm selection models for unseen

problem instances. Recently, it has gained increasing attention and numerical features

have been designed by various research groups. This paper introduces the R-Package

FLACCO which makes all relevant features available in a unified framework together with

efficient helper functions. Moreover, a case study which gives perspectives to ELA for

multi-objective optimization problems is presented.

46

http://ieeexplore.ieee.org/document/7748359/
http://ieeexplore.ieee.org/document/7748359/
http://wcci2016.org/

CHAPTER B. FLACCO – A TOOLBOX FOR EXPLORATORY LANDSCAPE ANALYSIS WITH R

B.2 flaccogui: Exploratory Landscape Analysis for

Everyone

• Authors:

– Christian Hanster,

University of Münster, Germany

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

• Published in “Proceedings of the 19th Annual Conference on Genetic and Evolutionary

Computation (GECCO) Companion”, pages 1215 – 1222, ACM, 2017.

• Presented at the “Genetic and Evolutionary Computation Conference (GECCO)” held

from July 15 to 19, 2017 in Berlin, Germany.

• Abstract:

Finding the optimal solution for a given problem has always been an intriguing goal

and a key for reaching this goal is sound knowledge of the problem at hand. In case of

single-objective, continuous, global optimization problems, such knowledge can be gained

by Exploratory Landscape Analysis (ELA), which computes features that quantify the

problem’s landscape prior to optimization. Due to the various backgrounds of researches

that developed such features, there nowadays exist numerous implementations of feature

sets across multiple programming languages, which is a blessing and burden at the same

time.

The recently developed R-package flacco takes multiple of these feature sets (from the

different packages and languages) and combines them within a single R-package. While this

is very beneficial for R-users, users of other programming languages are left out. Within

this paper, we introduce flaccogui, a graphical user interface that does not only make

flacco more user-friendly, but due to a platform-independent web-application also allows

researchers that are not familiar with R to perform ELA and benefit of the advantages of

flacco.

• Keywords:

Exploratory Landscape Analysis, Graphical User Interface, R-Package, Continuous Opti-

mization, Automated Algorithm Selection

47

http://dl.acm.org/citation.cfm?doid=3067695.3082477
http://dl.acm.org/citation.cfm?doid=3067695.3082477
http://gecco-2017.sigevo.org/

B.3. COMPREHENSIVE FEATURE-BASED LANDSCAPE ANALYSIS OF CONTINUOUS AND

CONSTRAINED OPTIMIZATION PROBLEMS USING THE R-PACKAGE FLACCO

B.3 Comprehensive Feature-Based Landscape Analysis of

Continuous and Constrained Optimization Problems

Using the R-Package flacco

• Authors:

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

• This manuscript is currently under review.

However, a preprint of the above manuscript is available on arXiv.

• Abstract:

Choosing the best-performing optimizer(s) out of a portfolio of optimization algorithms

is usually a difficult and complex task. It gets even worse, if the underlying functions are

unknown, i.e., so-called Black-Box problems, and function evaluations are considered to be

expensive. In the case of continuous single-objective optimization problems, Exploratory

Landscape Analysis (ELA) – a sophisticated and effective approach for characterizing the

landscapes of such problems by means of numerical values before actually performing

the optimization task itself – is advantageous. Unfortunately, until now it has been quite

complicated to compute multiple ELA features simultaneously, as the corresponding code

has been – if at all – spread across multiple platforms or at least across several packages

within these platforms.

This article presents a broad summary of existing ELA approaches and introduces flacco,

an R-package for feature-based landscape analysis of continuous and constrained opti-

mization problems. Although its functions neither solve the optimization problem itself

nor the related Algorithm Selection Problem (ASP), it offers easy access to an essential

ingredient of the ASP by providing a wide collection of ELA features on a single plat-

form – even within a single package. In addition, flacco provides multiple visualization

techniques, which enhance the understanding of some of these numerical features, and

thereby make certain landscape properties more comprehensible. On top of that, we will

introduce the package’s build-in, as well as web-hosted and hence platform-independent,

graphical user interface (GUI), which facilitates the usage of the package – especially for

people who are not familiar with R – making it a very convenient toolbox when working

towards algorithm selection of continuous single-objective optimization problems.

• Keywords:

Exploratory Landscape Analysis, R-Package, Graphical User Interface, Single-Objective

Optimization, Continuous Optimization, Algorithm Selection, Black-Box Optimization

48

https://arxiv.org/abs/1708.05258

Chapter C

Feature-Based Algorithm Selection from

Optimizer Portfolios

C.1 Improving the State of the Art in Inexact TSP Solv-

ing Using Per-Instance Algorithm Selection

• Authors:

– Lars Kotthoff,

Insight Centre for Data Analytics, Cork, Ireland

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Holger Hendrik Hoos,

Department of Computer Science, University of British Columbia, Vancouver, Canada

– Heike Trautmann,

Information Systems and Statistics, University of Münster, Germany

• Published in “Learning and Intelligent OptimizatioN (LION)”, pages 202 – 217, Springer,

2015.

• Presented at the “Learning and Intelligent OptimizatioN Conference (LION 9)” held from

January 12 to 15, 2015 in Lille, France.

• Abstract:

We investigate per-instance algorithm selection techniques for solving the Travelling Sales-

man Problem (TSP), based on the two state-of-the-art inexact TSP solvers, LKH and

EAX. Our comprehensive experiments demonstrate that the solvers exhibit complemen-

tary performance across a diverse set of instances, and the potential for improving the

state of the art by selecting between them is significant. Using TSP features from the

literature as well as a set of novel features, we show that we can capitalise on this poten-

tial by building an efficient selector that achieves significant performance improvements

in practice. Our selectors represent a significant improvement in the state-of-the-art in

inexact TSP solving, and hence in the ability to find optimal solutions (without proof of

optimality) for challenging TSP instances in practice.

49

https://link.springer.com/chapter/10.1007/978-3-319-19084-6_18
https://link.springer.com/chapter/10.1007/978-3-319-19084-6_18
http://www.lifl.fr/LION9/

C.2. LEVERAGING TSP SOLVER COMPLEMENTARITY THROUGH MACHINE LEARNING

C.2 Leveraging TSP Solver Complementarity through Ma-

chine Learning

• Authors:

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Lars Kotthoff,

Department of Computer Science, University of British Columbia, Vancouver, Canada

– Jakob Bossek,

Information Systems and Statistics, University of Münster, Germany

– Holger Hendrik Hoos,

Department of Computer Science, University of British Columbia, Vancouver, Canada

– Heike Trautmann,

Information Systems and Statistics, University of Münster, Germany

• Published in “Evolutionary Computation” Journal, pages 1 – 24, MIT Press, 2017.

• Abstract:

The Travelling Salesperson Problem (TSP) is one of the best-studied NP-hard problems.

Over the years, many different solution approaches and solvers have been developed. For

the first time, we directly compare five state-of-the-art inexact solvers – namely, LKH,

EAX, restart variants of those, and MAOS – on a large set of well-known benchmark

instances and demonstrate complementary performance, in that different instances may

be solved most effectively by different algorithms. We leverage this complementarity to

build an algorithm selector, which selects the best TSP solver on a per-instance basis

and thus achieves significantly improved performance compared to the single best solver,

representing an advance in the state of the art in solving the Euclidean TSP. Our in-depth

analysis of the selectors provides insight into what drives this performance improvement.

• Keywords:

Travelling Salesperson Problem, automated algorithm selection, performance modeling,

machine learning

50

http://www.mitpressjournals.org/doi/abs/10.1162/evco_a_00215

CHAPTER C. FEATURE-BASED ALGORITHM SELECTION FROM OPTIMIZER PORTFOLIOS

C.3 Automated Algorithm Selection on Continuous Black-

Box Problems By Combining Exploratory Landscape

Analysis and Machine Learning

• Authors:

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Heike Trautmann,

Information Systems and Statistics, University of Münster, Germany

• This manuscript is currently under review.

However, a preprint of the above manuscript is available on arXiv.

• Abstract:

In this paper, we build upon previous work on designing informative and efficient Ex-

ploratory Landscape Analysis features for characterizing problems’ landscapes and show

their effectiveness in automatically constructing algorithm selection models in continuous

black-box optimization problems.

Focussing on algorithm performance results of the COCO platform of several years, we

construct a representative set of high-performing complementary solvers and present an

algorithm selection model that manages to outperform the single best solver out of the

portfolio by factor two. Acting on the assumption that the function set of the Black-Box

Optimization Benchmark is representative enough for practical applications the model

allows for selecting the best suited optimization algorithm within the considered set for

unseen problems prior to the optimization itself based on a small sample of function eval-

uations. Note that such a sample can even be reused for the initial algorithm population

so that feature costs become negligible.

• Keywords:

Automated Algorithm Selection, Black-Box Optimization, Exploratory Landscape Anal-

ysis, Machine Learning, Single-Objective Continuous Optimization

51

https://arxiv.org/abs/1711.08921

Chapter D

Platforms for Collaborative Research on

Algorithm Selection and Machine Learning

D.1 ASlib: A Benchmark Library for Algorithm Selection

• Authors:

– Bernd Bischl,

Department of Statistics, LMU Munich, Germany

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Lars Kotthoff,

Department of Computer Science, University of British Columbia, Vancouver, Canada

– Marius Lindauer,

Department of Computer Science, University of Freiburg, Germany

– Yuri Malitsky,

IBM Research, United States

– Alexandre Fréchette,

Department of Computer Science, University of British Columbia, Vancouver, Canada

– Holger Hendrik Hoos,

Department of Computer Science, University of British Columbia, Vancouver, Canada

– Frank Hutter,

Department of Computer Science, University of Freiburg, Germany

– Kevin Leyton-Brown,

Department of Computer Science, University of British Columbia, Vancouver, Canada

– Kevin Tierney,

Department of Business Information Systems, University of Paderborn, Germany

– Joaquin Vanschoren,

Mathematics & Computer Science, Eindhoven University of Technology, Netherlands

52

CHAPTER D. PLATFORMS FOR COLLABORATIVE RESEARCH ON ALGORITHM SELECTION AND

MACHINE LEARNING

• Published in “Artificial Intelligence” Journal, Volume 237, pages 41 – 58, Elsevier, 2016.

• Abstract:

The task of algorithm selection involves choosing an algorithm from a set of algorithms

on a per-instance basis in order to exploit the varying performance of algorithms over a

set of instances. The algorithm selection problem is attracting increasing attention from

researchers and practitioners in AI. Years of fruitful applications in a number of domains

have resulted in a large amount of data, but the community lacks a standard format or

repository for this data. This situation makes it difficult to share and compare different

approaches effectively, as is done in other, more established fields. It also unnecessarily

hinders new researchers who want to work in this area. To address this problem, we intro-

duce a standardized format for representing algorithm selection scenarios and a repository

that contains a growing number of data sets from the literature. Our format has been de-

signed to be able to express a wide variety of different scenarios. To demonstrate the

breadth and power of our platform, we describe a study that builds and evaluates algo-

rithm selection models through a common interface. The results display the potential of

algorithm selection to achieve significant performance improvements across a broad range

of problems and algorithms.

• Keywords:

Algorithm selection, Machine learning, Empirical performance estimation

53

http://www.sciencedirect.com/science/article/pii/S0004370216300388

D.2. OPENML: AN R PACKAGE TO CONNECT TO THE MACHINE LEARNING PLATFORM OPENML

D.2 OpenML: An R Package to Connect to the Machine

Learning Platform OpenML

• Authors:

– Giuseppe Casalicchio,

Department of Statistics, LMU Munich, Germany

– Jakob Bossek,

Information Systems and Statistics, University of Münster, Germany

– Michel Lang,

Department of Statistics, TU Dortmund University, Germany

– Dominik Kirchhoff,

Dortmund University of Applied Sciences and Arts, Germany

– Pascal Kerschke,

Information Systems and Statistics, University of Münster, Germany

– Benjamin Hofner,

Section of Biostatistics, Paul-Ehrlich-Institut, Langen, Germany

– Heidi Seibold,

Epidemiology, Biostatistics & Prevention Institute, University of Zurich, Switzerland

– Joaquin Vanschoren,

Mathematics & Computer Science, Eindhoven University of Technology, Netherlands

– Bernd Bischl,

Department of Statistics, LMU Munich, Germany

• Published in Journal of “Computational Statistics”, pages 1 – 15, Springer, 2017.

• Abstract:

OpenML is an online machine learning platform where researchers can easily share data,

machine learning tasks and experiments as well as organize them online to work and

collaborate more efficiently. In this paper, we present an R package to interface with the

OpenML platform and illustrate its usage in combination with the machine learning R

package mlr (Bischl et al., 2016c). We show how the OpenML package allows R users to

easily search, download and upload data sets and machine learning tasks. Furthermore,

we also show how to upload results of experiments, share them with others and download

results from other users. Beyond ensuring reproducibility of results, the OpenML platform

automates much of the drudge work, speeds up research, facilitates collaboration and

increases the users’ visibility online.

• Keywords:

Databases, Machine learning, R, Reproducible Research

54

https://link.springer.com/article/10.1007/s00180-017-0742-2

	Acknowledgements
	Abstract
	Introduction
	Benchmarking
	Exploratory Landscape Analysis
	Algorithm Selection

	Characterizing the Global Structure of Continuous Black-Box Problems
	Contributed Material
	Cell Mapping Techniques for Exploratory Landscape Analysis
	Detecting Funnel Structures by Means of Exploratory Landscape Analysis
	Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models

	Flacco – A Toolbox for Exploratory Landscape Analysis with R
	Contributed Material
	The R-Package FLACCO for Exploratory Landscape Analysis with Applications to Multi-Objective Optimization Problems
	flaccogui: Exploratory Landscape Analysis for Everyone
	Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco

	Feature-Based Algorithm Selection from Optimizer Portfolios
	Contributed Material
	Improving the State of the Art in Inexact TSP Solving using Per-Instance Algorithm Selection
	Leveraging TSP Solver Complementarity through Machine Learning
	Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning

	Platforms for Collaborative Research on Algorithm Selection and Machine Learning
	Contributed Material
	ASlib: A Benchmark Library for Algorithm Selection
	OpenML: An R Package to Connect to the Machine Learning Platform OpenML

	Summary and Outlook
	Bibliography
	Appendix: Contributed Publications
	Characterizing the Global Structure of Continuous Black-Box Problems
	Cell Mapping Techniques for Exploratory Landscape Analysis
	Detecting Funnel Structures By Means of Exploratory Landscape Analysis
	Low-Budget Exploratory Landscape Analysis on Multiple Peaks Models

	Flacco – A Toolbox for Exploratory Landscape Analysis with R
	The R-Package FLACCO for Exploratory Landscape Analysis with Applications to Multi-Objective Optimization Problems
	flaccogui: Exploratory Landscape Analysis for Everyone
	Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco

	Feature-Based Algorithm Selection from Optimizer Portfolios
	Improving the State of the Art in Inexact TSP Solving Using Per-Instance Algorithm Selection
	Leveraging TSP Solver Complementarity through Machine Learning
	Automated Algorithm Selection on Continuous Black-Box Problems By Combining Exploratory Landscape Analysis and Machine Learning

	Platforms for Collaborative Research on Algorithm Selection and Machine Learning
	ASlib: A Benchmark Library for Algorithm Selection
	OpenML: An R Package to Connect to the Machine Learning Platform OpenML

