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Abstract. We prove structure theorems for algebraic stacks with a reductive group action
and a dense open substack isomorphic to a horospherical homogeneous space, and thereby
obtain new examples of algebraic stacks which are global quotient stacks. Our results par-
tially generalize the work of Iwanari, Fantechi, Mann and Nironi, and Geraschenko and
Satriano for abstract toric stacks.
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1. Introduction

Several theories of abstract toric stacks, i.e., algebraic stacks with a torus
action and a dense open substack isomorphic to the torus, have been introduced
over the last years, see [8, 11, 12, 13, 14, 23, 26, 40]. These stacks admit a
simple combinatorial description, via stacky fans, and thus provide a class of
stacks which are easy to handle. Moreover, in some cases they have a natural
interpretation in terms of moduli spaces (e.g., as the parameter space of certain
tuples of effective Cartier divisors on toric varieties in [14, Section 7]). Also,
certain toric stacks appear naturally as Mori dream stacks, see [21].

The aim of this paper is to generalize some structure results from the setting
of abstract toric stacks to the more general setting of abstract horospherical
stacks. More precisely, we characterize algebraic stacks with a reductive group
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action and a dense open substack isomorphic to a horospherical homogeneous
space as stacky quotients of horospherical varieties. Let us mention that we
were first led to investigate this problem by the work of Borisov, Chen and
Smith [8], Iwanari [23], Fantechi, Mann and Nironi [11], and Geraschenko and
Satriano [13, 14] on abstract toric stacks.

To state our results, we first review the basic definitions; see also Section 3.
Let k be an algebraically closed field of characteristic zero, and let G be a
connected reductive linear algebraic group over k. A closed subgroup H of
G is horospherical if it contains a maximal unipotent subgroup of G. In this
case, the normalizer P := NG(H) of H in G is a parabolic subgroup of G and
the quotient T := P/H = AutG(G/H) is a torus. A homogeneous space G/H
is horospherical if H is a horospherical subgroup of G. Note that the natural
morphism G/H → G/P is a Zariski T-torsor over the flag variety G/P .

A horospherical G-variety X is a normal G-variety with an open horospher-
ical G-orbit; see, for instance, [30, 31] for a presentation of the theory of
horospherical varieties (and their relation to Fano varieties). Horospherical
varieties form a subclass of spherical varieties [25, 34, 35] containing both toric
varieties and flag varieties. The advantage to working with horospherical va-
rieties is that their combinatorial description is easier than that of a general
spherical variety.

Horospherical varieties appear naturally as orbit closures of certain linear
representations [36]. Moreover, they form a fertile ground to tackle some prob-
lems in algebraic geometry such as the Mukai conjecture [32]. The theory
of horospherical varieties is also exploited in the (log) minimal model pro-
gram [33], the study of stringy invariants [6, 27], and quantum cohomology [16].
Thus, it seems reasonable to suspect that a “stacky” generalization of the no-
tion of a horospherical variety could be useful in algebraic geometry.

Simply replacing the word “variety” by the word “stack” in the definition of
a horospherical variety, we obtain a first (naive) generalization of the notion of
horospherical G-variety, as we explain now. We say that a finite type normal
algebraic stack X over k endowed with a G-action is an abstract horospherical
G-stack if there is a G-stable dense open substack of X which is G-isomorphic
to a horospherical homogeneous space G/H . If, in addition, the rational map
X 99K G/P induced by the open immersionG/H →֒ X is a morphism of stacks,
then we say that X is a toroidal abstract horospherical G-stack, see Defini-
tions 3.2 and 3.4. We note that we recover the classical theory of horospherical
varieties by considering stacks which are (representable by) varieties.

Let us note that if G = T is a torus and H = {1}, then the (toroidal)
abstract horospherical G-stacks with a dense open substack G-isomorphic to
G/H = T are precisely the abstract toric stacks considered in the work of
Geraschenko and Satriano [13, 14]. We recall the main result of [14] which is a
characterization of certain abstract toric stacks as quotients of toric varieties.
(We refer the reader to Remark 4.3 for a brief discussion of a mistake in
Geraschenko and Satriano’s paper [14] which does not concern the following
result.)
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Theorem 1.1 ([14, Theorem 5.2]). If X is a smooth abstract toric stack such
that the diagonal of X is affine and the geometric points of X have reductive
inertia groups, then X is equivariantly isomorphic to a quotient stack [X/K],
where X is a toric variety with torus T and K is a closed subgroup of T .

It is stressed in [14, Section 5.1] that Theorem 1.1 fails without the assump-
tion on the diagonal and the inertia groups. Moreover, it is shown in [12] that
Theorem 1.1 fails if one drops the smoothness assumption.

Our main results are a characterization of certain abstract horospherical G-
stacks, without the restriction that G is a torus, as quotients of horospherical
varieties, see Theorems 1.2 and 1.4 below.

The definition of abstract horospherical stacks above is quite natural but it
is not the most convenient one to work with in concrete examples. Therefore,
we introduce another class of stacks that can be studied using combinatorial
tools; our goal will be to show that these two definitions coincide, under suit-
able assumptions. Let X be an algebraic stack with a G-action over k. We
say that X is a horospherical G-stack if there exist a horospherical G × T -
variety X , where T is a torus acting faithfully on X , and a closed subgroup
K of AutG×T (X) containing T , such that X is G-isomorphic to the stacky
quotient [X/K], see Definition 3.6.

We note that the class of horospherical stacks is an intermediate class be-
tween the class of horospherical varieties and the class of abstract horospherical
stacks. Indeed, it suffices to take T = K = {1} for X to be a horospherical
G-variety.

Our first result characterizes toroidal abstract horospherical stacks.

Theorem 1.2. If X is a smooth toroidal abstract horospherical G-stack such
that the diagonal of X is affine and the geometric points of X have reductive
inertia groups, then X is a horospherical G-stack.

We push our methods a bit further and obtain a general structure result for
smooth (not necessarily toroidal) abstract horospherical stacks, under suitable
assumptions. Namely, to prove our main result, we require the following con-
jecture (see also Section 6). We will say that an open substack Y in a stack X is
big if its complement has codimension at least 2. Moreover, a linear algebraic
group is diagonalizable if it is a subgroup of a torus.

Conjecture 1.3 (Criterion for quasi-affineness). Let G be a connected reduc-
tive algebraic group. Let X be a smooth integral finite type algebraic stack over
k with affine diagonal, Pic(X ) = 0, and diagonalizable inertia groups. Suppose
that X contains a big open substack Y. If Y is a (smooth) quasi-affine scheme
and X is an abstract horospherical G-stack, then X is a quasi-affine scheme.

To prove our next result, we use Theorem 1.2, the theory of Cox rings of
horospherical varieties, and Conjecture 1.3.

Theorem 1.4. Assume that Conjecture 1.3 holds. If X is a smooth abstract
horospherical G-stack with dense open substack G/H such that the diagonal

Münster Journal of Mathematics Vol. 12 (2019), 1–29



4 Ariyan Javanpeykar, Kevin Langlois, and Ronan Terpereau

of X is affine, the geometric points of X have reductive inertia groups, and the
natural (right) action of the torus T = P/H on G/H extends to X , then X is
a horospherical G-stack.

Using the techniques employed in the proof of Theorem 1.4, we also obtain
the following result.

Theorem 1.5. Let X be a smooth abstract horospherical G-stack such that
the natural (right) action of the torus T = P/H on G/H extends to X . If X
admits an open covering by horospherical G-stacks, then X is a horospherical
G-stack.

To prove Theorem 1.5, we first establish that Conjecture 1.3 holds true for
horosphericalG-stacks (Proposition 6.8). Our motivation to prove Theorem 1.5
comes from the proof of Theorem 1.1 (by Geraschenko and Satriano) for a
smooth abstract toric stack X . Indeed, the proof Theorem 1.1 consists of first
showing the existence of an open covering of X by toric stacks [14, Theorem 4.5]
and then an analog of Theorem 1.5 in the setting of smooth abstract toric
stacks.

In Section 2 we recall some properties of group actions on algebraic stacks,
and include several properties of the normalization of an algebraic stack (which
might be of independent interest). Next, we define the class of abstract horo-
spherical stacks and the subclass of horospherical stacks in Section 3, and
prove that abstract horospherical stacks have diagonalizable inertia groups
using Luna’s étale slice theorem for algebraic stacks [2], under reasonable as-
sumptions (see Proposition 3.19). Our first result (Theorem 1.2) is proven in
Section 4, see Theorem 4.4. Our proof reduces Theorem 1.2 to the main re-
sult of Geraschenko and Satriano (Theorem 1.1) on abstract toric stacks, and
therefore also relies crucially on Luna’s étale slice theorem for algebraic stacks
as proven by Alper, Hall and Rydh [2].

As an application of our abstract structure results, we construct toroidi-
fications of abstract horospherical G-stacks (Proposition 5.1), and we prove
that abstract horospherical G-stacks have finitely many G-orbits (Corollary
5.3). Moreover, we show that if the G-orbits of X are of codimension at most
1, then X is a smooth horospherical G-stack, see Proposition 5.5 for a pre-
cise statement. We then use all the previous results together with facts on
Cox rings of horospherical varieties and Conjecture 1.3 to prove Theorems 1.4
and 1.5 in Section 6.

Remark 1.6. Throughout this paper, we assume that the base field k is alge-
braically closed of characteristic zero. The essential reason for this restriction
on the characteristic is that our main results rely on the results of Geraschenko
and Satriano [14], where the base field is assumed to be algebraically closed of
characteristic zero.
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Remark 1.7. Part of our results could easily be extended to the setting of
spherical varieties. However, in several places we use in a crucial way the par-
ticular features of horospherical varieties (e.g., to construct the toroidification
in Proposition 5.1 or to reduce to the toric case in the proof of Theorem 1.2).

Remark 1.8. Let us mention that Wedhorn considers spherical spaces in [41].
These are families of spherical varieties over arbitrary base schemes. This is
another generalization of the notion of a spherical variety which is different
from ours since for us the base scheme is Spec k. On the other hand, in
[20], Hausen considers complex analytic spaces with a G-action and a dense
open orbit G-isomorphic to a spherical homogeneous space. He then obtains
a criterion for algebraicity. This criterion applies in our situation for abstract
horospherical stacks which are algebraic spaces.

Conventions. Throughout this article, we let k be an algebraically closed field
of characteristic zero. A variety (over k) is an integral separated finite type
scheme over k. An algebraic group (over k) is a finite type group scheme over k.
A linear algebraic group (over k) is an affine algebraic group. By a subgroup,
we always mean an algebraic closed subgroup. We use the conventions of the
Stacks Project [42, Tag 026N] for algebraic stacks.

2. Group actions on algebraic stacks

In this section we gather presumably well-known properties of group actions
on algebraic stacks.

2.1. Stack-theoretic images. Let f : X → Y be a morphism of finite type
algebraic stacks over k. We define the stack-theoretic image of f : X → Y to be
the closed substack Z of Y whose ideal is the kernel of the natural morphism
OY → f∗OX . This coincides with the scheme-theoretic image if X and Y are
schemes [42, Tag 01R6].

Note that f factors through Z. Moreover, for any other closed substack Z ′

of Y such that f factors through Z ′, we have Z ⊆ Z ′. By [42, Tag 01R8], the
induced morphism X → Z is dominant. Also, it follows from the minimality
of Z that if X is reduced, then Z is a reduced algebraic stack.

2.2. Orbits of group actions. Let X be an algebraic stack over k, and let
G be a group scheme over k. We say that X is a G-stack (over k) if G acts on
the groupoid X , see [38, Definition 1.3 (i)]. Note that if G′ → G is a morphism
of group schemes over k, then any G-stack naturally inherits the structure of
a G′-stack. A morphism of G-stacks X → Y is the data of a morphism of
G-groupoids X → Y, see [38, Definition 1.3 (ii)].

Lemma 2.3. The singular locus of a G-stack is a G-stable closed substack.

Proof. Let x be an object of aG-stack X . Let g be an element ofG. Let P → X
be a presentation. Note that multiplication by g induces an automorphism
g :X → X . Hence, pulling-back along P → X induces an isomorphism P ′ → P .
Note that P ′ → X is a presentation as well. If p′ ∈ P ′ is a point lying over x′
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which maps to a point p ∈ P lying over x := gx′, then p′ is regular if and only
if p is regular. Since regularity is local in the smooth topology, we conclude
that x is regular if and only if x′ is regular. This concludes the proof. �

Let m : G × X → X be a G-action on the algebraic stack X and let x ∈
X (k) be a k-point of X . We denote by G · x the stack-theoretic image of the
morphism G→ X obtained as the composition

G = G×k Spec k
idG×x

// G×k X
m

// X .

Note that, for all x in X (k), the stack-theoretic image G · x of x in X is
a G-stable closed substack of X . Suppose that G is irreducible. Then, as
the morphism G → G · x is dominant and G is irreducible, it follows that
G · x contains a dense irreducible constructible substack. Therefore, if G is
irreducible, then G · x is irreducible and reduced, hence integral.

Note that the codimension of G · x in X is well-defined. Moreover, as the
codimension of a substack in a finite type algebraic stack X over k is bounded
from above by the dimension of a smooth surjective presentation R → X , the
maximum of codim(G · x,X ), as x runs over X (k), is well-defined. This will
be used in Sections 5 and 6.

For x in X (k), we have a morphism

G→ X ×k X , g 7→ (x, gx).

We pullback the diagonal ∆: X → X ×k X along this morphism and obtain a
Cartesian diagram

H //

��

X

∆

��

G // X ×k X .

We refer to H as the stabilizer (group scheme) of x. (We emphasize that if X is
a G-stack and x is an object of X (k), then the inertia group of x in X does not
coincide with the stabilizer of x in general.) Note that H is not necessarily a
subgroup of G. However, H is a group scheme over k. Indeed, if S is a scheme
over k, then the S-objects ofH are pairs (g, a) with g in G(S) and a : gx→ x an
isomorphism in X (S) (where we consider x as an object of X (S) via the functor
X (k) → X (S)). Now, let us define (g, a) · (g′, a′), where (g, a) and (g′, a′) are
objects of H(S). Define g′′ := gg′ in G(S). Moreover, let a′′ : gg′x → gx → x
be defined as a′ multiplied with g and composed with a. (Here we use that G
also acts on the morphisms in X .) Then we define (g, a) · (g′, a′) := (g′′, a′′).
In particular, the morphism H → G given by (g, a) 7→ g is a homomorphism.
Let K be its image. The closed subscheme K of G is a subgroup scheme and
the morphism H → K is faithfully flat.

Note that H acts on G (via H → G). This action is not necessarily free.
Indeed, note that if (1, a) is an element of H(k), then a is an object of the
inertia group Ix of x. Now, since (g, a)g′ = gg′, the element (1, a) acts trivially
for all a in the inertia group of x. Conversely, any a in Ix gives an element
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(1, a) of H(k). We see that the kernel of the action of H on G is naturally the
inertia group of x.

Now, as H maps to K equivariantly for the action on G, there is a natural
G-equivariant morphism of algebraic stacks

[G/H ] → G/K.

We will refer to [G/H ] as the (stack-theoretic structure of the) orbit of x
in X . Note that the morphism G→ G · x is H-invariant. Therefore, there is a
natural morphism [G/H ] → G · x. Since the morphism G→ G · x is dominant,
the morphism [G/H ] → G · x is dominant. We will say that the G-stack X has
a finite number of G-orbits if the set (of k-isomorphism classes of objects of)
X (k) is a finite union of G-orbits.

2.4. Normalization and equivariant resolution of the indeterminacy

locus. Let X be a finite type algebraic stack over k. Our discussion of the
normalization of X closely follows [5, Appendix A]. A morphism of algebraic
stacks X ′ → X is a normalization (of X ) if, for all smooth morphisms U → X
with U a scheme, the scheme U ×X X ′ is the normalization of U .

If X is an integral affine scheme, say X = SpecA, then the normalization
of X is given by SpecB with B the integral closure of A in its field of frac-
tions. More generally, if X is an algebraic stack, then one can construct a
normalization morphism X ′ → X following the analog construction for alge-
braic spaces given in [42, Tag 07U4]. Moreover, by adapting the arguments in
[42, Tag 0BB4] for algebraic spaces, it follows that X ′ is normal and unique up
to unique isomorphism. Furthermore, for all normal integral algebraic stacks
Y over k and for all dominant morphisms Y → X with X an integral algebraic
stack, there is a morphism Y → X ′ such that Y → X factors as Y → X ′ → X .
Note that normal algebraic stacks behave like normal schemes in many ways.
For instance, a finite type integral normal algebraic stack over k is nonsingular
in codimension one.

Lemma 2.5. Let f : X → Y be a quasi-finite representable morphism of finite
type algebraic stacks over k. Then, for all x in X (k), the image of the inertia
group Ix in If(x) is of finite index.

Proof. We follow the proof of [14, Proposition 3.2]. Let G = If(x). Since k
is algebraically closed, the residual gerbe of Y at f(x) is trivial. Therefore,
we have a stabilizer-preserving morphism BG → Y, see [1, Definition 2.10].
Since stabilizer-preserving morphisms are stable under base-change, it suffices
to show that the morphism BG×Y X → BG induces finite index inclusions on
inertia groups.

Let Spec k → BG be the universal G-torsor over BG. Let U = Spec k ×BG

(BG ×Y X ) and note that U is a G-torsor over BG ×Y X . Moreover, since f
is quasi-finite and finite type, it follows that U is quasi-finite and finite type
over Spec k. It follows that U = SpecA, where A is a zero-dimensional finite
type k-algebra.

Münster Journal of Mathematics Vol. 12 (2019), 1–29
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Let H be the inertia group of a point in BG ×Y X . Note that H is the
stabilizer of a point u in U (with respect to the action of G). Therefore, the
set (G/H)(k) identifies with a subset of U(k). Since U is finite over k, we
conclude that G/H is finite. �

Lemma 2.6. Let X be a finite type integral algebraic stack over k. The nor-
malization X ′ → X is a representable proper quasi-finite birational surjective
morphism. Moreover, for all x′ in X ′(k) with image x in X (k), the image of
the inertia group Ix′ in Ix is of finite index.

Proof. Let P → X be a smooth surjective morphism with P a scheme. Note
that P ′ := P ×X X ′ is the normalization of P and thus a scheme. Therefore,
the normalization morphism is representable by [42, Tag 04ZP]. Since P ′ → P
is finite surjective, it follows that X ′ → X is proper quasi-finite and surjective,
see [42, Tag 02LA and Tag 02KV]. To see that X ′ → X is birational, let
V ′ ⊆ P ′ be a dense open which is isomorphic (via P ′ → P ) to some dense
open V of P . The image U ′ of V ′ in X ′ is open and maps to the image U of
V in X . Since the morphism U ′ → U is an isomorphism after pullback along
the cover V → U , the morphism U ′ → U is an isomorphism, so that X ′ → X
is birational. The last statement follows from Lemma 2.5. �

Remark 2.7. The normalization morphism of an algebraic stack is not nec-
essarily stabilizer-preserving. Indeed, let C be the nodal cubic curve given
by the equation y2 = x3 + x2 over k. Note that C is stable with respect
to the action of µ2 on A2, given by (x, y) 7→ (x,−y), and that the singular
point (0, 0) of C is fixed by this action. In particular, it defines a stacky point
(with inertia group µ2) of the quotient stack X := [C/µ2]. Consider the action
t 7→ −t of µ2 on A1. Now, the normalization morphism A1 → C is given by
t 7→ (t2 − 1, t(t2 − 1)), and it is µ2-equivariant. Moreover, the fibre over the
singular point (0, 0) of C consists of precisely two points: 1 and −1. Their
stabilizers are trivial. In particular, the corresponding inertia groups in the
quotient stack X ′ := [A1/µ2] are trivial. This shows that the normalization
morphism X ′ → X is not stabilizer-preserving.

Remark 2.8. The normalization morphism of an algebraic stack does not
preserve commutativity of the inertia groups. Indeed, let C be Z(x2+ y2+ z2,
x+y+z) in A

3, and note that the symmetric group S3 acts on C by permuting
the coordinates x, y, and z. The stack X := [C/S3] has precisely one stacky
point. The inertia group of this stacky point is S3 (hence nonabelian). How-
ever, if X ′ → X is the normalization morphism, then X ′ has a unique stacky
point, and the inertia group of this stacky point is Z/3Z.

We now show that the indeterminacy locus of a rational map from an alge-
braic stack to a proper scheme can be resolved.

Proposition 2.9. Let X be a normal algebraic G-stack of finite type over k
and let U be a G-stable dense open substack of X . Let Y be a proper scheme
over k with a G-action. If X 99K Y is a G-equivariant rational map which
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is defined on U , then there exists a representable proper birational surjective
morphism of normal algebraic G-stacks X ′ → X , which is an isomorphism
over U , such that the composed G-equivariant rational map X ′ → X 99K Y
is defined everywhere. Moreover, X ′ → X induces finite index inclusions on
inertia groups.

Proof. As Y is a proper scheme over k, the morphism X ×k Y → X obtained
by base change is proper and stabilizer-preserving. Let Γ ⊆ U ×k Y be the
graph of the G-equivariant morphism U → Y . We let Γ ⊆ X ×k Y be the
closure of Γ in X ×k Y . Moreover, let X ′ be the normalization of Γ. Note that
the normalization map X ′ → Γ is a representable quasi-finite proper birational
morphism of G-stacks which induces finite index inclusions on inertia groups
(Lemma 2.6). It follows that the composed morphism

X ′ → Γ → X ×k Y → X

is a representable proper birational (surjective) morphism which induces finite
index inclusions on inertia groups. Also, as the composed G-equivariant ra-
tional map X ′ → X 99K Y coincides over a dense open substack of X ′ with
the composed morphism X ′ → X ×k Y → Y , this concludes the proof of the
proposition. �

2.10. Algebraic stacks over homogeneous spaces. Let G be a linear al-
gebraic group over k, let P be a closed subgroup of G, and let Y be a finite
type P -stack. We define the algebraic stack G ×P Y to be (G× Y)/P , where
P acts on G× Y via

p · (g, y) := (gp−1, p · y) for all p ∈ P, g ∈ G, y ∈ Y.

Note that G acts on G×P Y by left multiplication on the first factor. Also, the
projection G×Y → G induces a G-equivariant morphism G×P Y → G/P such
that the stack-theoretic fibre over P/P is isomorphic to Y. Therefore, since G
acts transitively on G/P , all k-fibres of G×P Y → G/P are isomorphic to Y.

Proposition 2.11. Let X be a G-stack, and let Y be a P -stack. Let X → G/P
be a G-equivariant morphism whose fiber over P/P , equipped with the P -action
induced by restricting the G-action, is the P -stack Y. Then, X is G-isomorphic
to G×P Y over G/P .

Proof. We follow the proof of Ressayre [37, Lemme 6.1]. It suffices to show
that the natural morphism π : G×Y → X , given by (g, y) 7→ g ·y, is a P -torsor
for the étale topology. To do so, since p : G → G/P is an étale locally trivial
P -torsor, it suffices to show that G×Y → X has a section, locally for the étale
topology. To construct such a section, let ψ : Ω → G/P be an étale cover such
that G×G/P Ω is trivial over Ω. Let σ : Ω → G be such that ψ = p ◦ σ. Define
U := Ω×G/P X . Note that the natural morphism f : U → X is an étale cover.
Define s : U → G× Y by

(ω, x) 7→ (σ(ω), σ(ω)−1 · x).

Note that π ◦ s = f . Thus, we conclude that G× Y → X is a P -torsor. �
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Corollary 2.12. Assume that G is connected and P is a parabolic subgroup
of G. If φ : X → G/P is a morphism of G-stacks and Y is the (stack-theoretic)
fiber of φ over P/P , then X → G/P is a Zariski locally trivial fibration which
is G-isomorphic to G×P Y over G/P .

Proof. Since P is a parabolic subgroup, the morphism G → G/P is a Zariski
locally trivial P -torsor [7, Theorem 4.13]. In particular, the morphism G ×P

Y → G/P is a Zariski locally trivial fibration whose fibers are isomorphic to Y.
However, by Proposition 2.11, the algebraic stack X is G-isomorphic to G×P Y
over G/P . We conclude that X is Zariski locally trivial over G/P . �

3. Abstract horospherical stacks

In the following, we always denote by G a connected reductive linear alge-
braic group over k. We start by introducing the notion of abstract horospheri-
cal G-stacks. We keep the same notation as in the introduction. Namely, G/H
is a horospherical G-homogeneous space, P denotes the normalizer of H in G,
and T is the torus P/H = AutG(G/H).

In Section 3.1 we give the definition of an abstract horospherical G-stack,
and in Section 3.15 we show that the inertia groups of these stacks are diago-
nalizable using Luna’s étale slice theorem for algebraic stacks [2].

3.1. Definitions and basic properties. Our aim is to show that abstract
horosphericalG-stacks are quotient stacks (of a particular type). Our definition
of an abstract horospherical G-stack is as follows.

Definition 3.2. A normal integral algebraic G-stack X is an abstract horo-
spherical G-stack if X contains a G-stable dense open substack G-isomorphic
to a horospherical homogeneous space G/H .

As mentioned in the introduction, we recover the classical theory of horo-
spherical varieties by considering stacks which are (representable by) varieties.

Remark 3.3. Let us note that if X is a horospherical G-variety, then the
G-equivariant automorphism group AutG(X) of X coincides with the torus

T = P/H = AutG(G/H), see, for instance, [3, Lemma 4.1]. In other words,
the natural (right) action of T on the open orbit G/H always extends to X .
However, we do not know whether the T-action on G/H always extends if we
replace X by an abstract horospherical G-stack.

Definition 3.4. Let X be an abstract horospherical G-stack with dense open
substack G/H . We say that X is toroidal if the G-equivariant rational map
X 99K G/P , induced by the open immersion G/H →֒ X , is a morphism of
G-stacks.

Remark 3.5. If G is a torus and H = {1}, then the (toroidal) abstract
horospherical G-stacks are precisely the abstract toric stacks studied by Gera-
schenko and Satriano in [13, 14].
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We now define horospherical G-stacks. We will see (Remark 4.5) that they
form a proper subclass of the class of abstract horospherical G-stacks.

Definition 3.6. An algebraic G-stack X over k is a horospherical G-stack
if there exist a horospherical G × T -variety X , where T is a torus acting
faithfully on X , and a subgroup K of AutG×T (X) containing T , such that
X is G-isomorphic to the stacky quotient [X/K]. We will refer to X as the
horospherical G-stack associated with the pair (X,K).

Remark 3.7. If G is a torus and H = {1}, then the (toroidal) horospherical
G-stacks are precisely the toric stacks studied by Geraschenko and Satriano in
[13, 14], i.e., quotients of a toric variety by a subgroup of the torus.

Remark 3.8. The diagonal of a horospherical G-stack [X/K] is affine (by [14,
Lemma 3.3]).

Remark 3.9. Let X = [X/K] be a horospherical G-stack. If U denotes the
open G×T -orbit of X , then U/K is a horosphericalG-homogeneous space, and
thus [X/K] is an abstract horospherical G-stack in the sense of Definition 3.2.

Remark 3.10. There is a well-developed combinatorial description for horo-
spherical varieties, see, for instance, [30, 31]. Therefore, one could also obtain a
combinatorial description for horospherical stacks proceeding as in [13, Section
2] or [12, Section 2].

Example 3.11. Let G = SL2(k), H = [ 1 ∗
0 1 ], P := NG(H) = [ ∗ ∗

0 ∗ ], and
T := P/H = [ ∗ 0

0 ∗ ]
∼= Gm. The G-homogeneous space G/H is horospherical

and is isomorphic to A2 \ {0}, equipped with the natural action of G. It
follows from the combinatorial description that the horospherical G-varieties
with open orbit G-isomorphic to G/H are the following: A

2 \ {0}, A2, P2,

P2 \ {0}, Bl0(A
2), and Bl0(P

2). If K = K̃/H is any (closed) subgroup of T
and X is one of the six G-varieties above, then X = [X/K] is a horospherical

G-stack with open orbit G/K̃. Also, if Y is a toric variety with torus T , then

X = [(X × Y )/(K̃ × T )] is again a horospherical G-stack with open orbit

G/K̃, but now X × Y is not a horospherical G-variety, it is a horospherical
G× T -variety.

Lemma 3.12. Let X = [X/K] be a horospherical G-stack. Then the horo-
spherical stack X is toroidal if and only if the horospherical variety X is
toroidal.

Proof. There is a commutative diagram

X

quotient

��

//❴❴❴❴❴❴❴❴ G′/P ′ = G/P

identity

��

X = [X/K] //❴❴❴❴❴❴❴❴ G/P,

where X is a G′ = G × T -horospherical variety and X is the horospherical
G-stack associated with the pair (X,K), see Definition 3.6. In particular, it
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is clear that if X is toroidal, then X is toroidal. Conversely, if X is toroidal,
then it follows that X is toroidal from the fact that the morphism X → G/P
is K-invariant. �

Lemma 3.13 (Horospherical algebraic spaces are schemes). If X is a horo-
spherical G-stack and X is an algebraic space, then X is a scheme.

Proof. We follow the arguments in [14, Remark 6.3]. Indeed, as X is a horo-
spherical G-stack, there exist a horospherical G′-variety X and a subgroup K
of T = AutG

′

(X) such that X is G-isomorphic to [X/K], see Definition 3.6.
By Sumihiro’s theorem [39, Corollary 2], the normal T-variety X is covered
by T-invariant (hence K-invariant) affine open subsets Ui. If X is an al-
gebraic space, then K acts freely on X , therefore for each i, the quotient
Ui → Ui//K = SpecO(Ui)

K is a principal K-bundle (by Luna’s slice theorem),
and thus Ui//K coincides with [Ui/K]. This means that the algebraic space X
admits an open covering by affine varieties and therefore is a scheme. �

Remark 3.14. Note that a horospherical stack which is an algebraic space
might not be separated (e.g., the affine line with a double origin is a horo-
spherical Gm-stack).

3.15. Inertia groups of abstract horospherical stacks are diagonaliz-

able. Recall that a linear algebraic group is diagonalizable if it is a subgroup
of a torus. The aim of this section is to apply Luna’s étale slice theorem
for algebraic stacks to prove that the inertia groups of abstract horospherical
G-stacks with affine diagonal and reductive inertia groups are, in fact, diago-
nalizable, see Proposition 3.19. We follow closely the line of reasoning used by
Geraschenko and Satriano to prove [14, Theorem 4.5].

Theorem 3.16 ([2]). Let X be a finite type integral algebraic stack with affine
diagonal over k, whose geometric points have reductive inertia groups. Let x be
a k-point of X , and let Gx be its inertia group. Then there exist an irreducible
affine finite type scheme Z over k with an action of Gx, a k-point w in Z fixed
by Gx, and a representable affine étale morphism

f : ([Z/Gx], w) → (X , x).

Proof. Since affine morphisms of algebraic stacks are representable and finite
type algebraic stacks over k are quasi-separated [42, Tag 01T7], the theorem
follows from [2, Theorem 1.2]. �

Lemma 3.17. Let X be a finite type integral (not necessarily normal) algebraic
stack over k with a dense open non-stacky k-point and affine diagonal. If the
geometric points of X have reductive inertia groups, then the inertia groups of
X are tori.

Proof. (We follow the proof of [14, Theorem 4.5], but replace the first para-
graphs with a direct application of Luna’s étale slice theorem, and avoid the
last paragraph in loc. cit.) Let x be a k-point of X . Let Gx be the inertia
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group of x (sometimes also referred to as the stabilizer of x). Since Gx is re-
ductive, it follows from [2, Theorem 1.2] that there exist an irreducible affine
finite type scheme Z with an action of Gx, a k-point w in Z fixed by Gx, and
a representable affine étale morphism

f : ([Z/Gx], w) → (X , x)

such that BGx
∼= f−1(BGx). Since étale representable morphisms induce fi-

nite index inclusions on inertia groups [14, Proposition 3.2], and finite index
subgroups of a linearly reductive group are linearly reductive, we see that the
geometric points of [Z/Gx] have linearly reductive inertia groups. Since X
contains a dense open (non-stacky) k-point and [Z/Gx] → Z is étale repre-
sentable, it follows that [Z/Gx] contains a dense open non-stacky k-point. By
reformulating the aforementioned properties, we see that the stabilizers for the
action of Gx on Z are all reductive, w is a fixed point for this action, and
Z contains a open stabilizer-free orbit. We conclude that Gx is a torus [14,
Proposition 3.16]. �

Corollary 3.18. Let T be a torus, and let X be a finite type integral algebraic
stack over k with an action of T . Assume that X has affine diagonal, contains
a dense open stabilizer-free T -orbit, and that every geometric point of X has a
reductive inertia group. Then every geometric point of X has a diagonalizable
inertia group.

Proof. Since X → [X/T ] is representable, it suffices to show that the inertia
groups of Y := [X/T ] are diagonalizable. However, by assumption, Y contains
a dense open (non-stacky) k-point. Since Y is a finite type integral algebraic
stack over k with affine diagonal and reductive inertia groups, it follows from
Lemma 3.17 that Y has diagonalizable inertia groups. �

Proposition 3.19. Let X be a finite type integral (not necessarily normal)
G-stack which contains a G-stable dense open substack G-isomorphic to (the
horospherical homogeneous space) G/H. Then the inertia groups of X are
diagonalizable groups.

Proof. Let Γ be the graph of the natural morphism G/H → G/P . Let Γ be its
closure in X ×G/P . Now, Γ → G/P is a G-equivariant morphism. Let Y be
the fibre of Γ → G/P , and note that P acts naturally on Y. By Corollary 2.12,
it follows that Γ = G ×P Y. Now, Y inherits an action of T = P/H (as H
acts trivially), and Y has a dense open stabilizer-free orbit for the action of T.
Since T is a torus, it follows from Corollary 3.18 that the geometric points of Y
have diagonalizable inertia groups. (Here we use that Y has affine diagonal
and reductive inertia groups.) In particular, G× Y has diagonalizable inertia
groups, and thus G×P Y has diagonalizable inertia groups. We conclude that
Γ has diagonalizable inertia groups.

Note that Γ is a G-stable closed substack of X ×G/P . In particular, as the
natural projection X ×G/P → X is stabilizer-preserving, we conclude that the
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natural morphism Γ → X is stabilizer-preserving and G-equivariant. Thus, X
has diagonalizable inertia groups. �

4. Describing toroidal abstract horospherical stacks

The following lemma is an analog of [14, Lemma 4.1] in the setting of ab-
stract horospherical stacks.

Lemma 4.1. Let X be an abstract horospherical G-stack with dense open
substack G/H and assume that the natural (right) action of the torus T = P/H
on G/H extends to X . Then X is a horospherical G-stack if and only if [X/T]
is a horospherical G-stack.

Proof. Note that if X is a horospherical G-stack, then it is clear that [X/T] is
a horospherical G-stack.

We assume that [X/T] is a horospherical G-stack. Therefore we can write

[X/T] = [X/K], with X a horospherical G′-variety and K = AutG
′

(X), where
G′ = G× T for some torus T acting faithfully on X . Denoting by G′/H ′ the
open G′-orbit of X , the following diagram has Cartesian squares:

G′/H ′ ×G/P G/H G/H

Z := X ×[X/T] X X

G′/H ′ = X ×[X/K] G/P G/P.

X [X/T] = [X/K]

In this diagram, the horizontal arrows from left to right are K-torsors. The
vertical arrows from top to bottom are T-torsors. The remaining arrows
are equivariant open immersions. The group G′ × T acts transitively on
G′/H ′ ×G/P G/H , and the stabilizer H ′′ of the point (eH ′, eH) contains
H ′ ×{e}, that is, G′/H ′ ×G/P G/H = (G′ ×T)/H ′′ is a horospherical G′ ×T-
homogeneous space.

Since the algebraic G′ ×T-stack Z is a T-torsor over the variety X , it is an
integral normal separated scheme of finite type. Thus, we conclude that Z is
a horospherical G′ × T-variety. This shows that X = [Z/K] is a horospherical
G-stack. �

Lemma 4.2. Let X be a toroidal abstract horospherical G-stack with dense
open substack G/H, and let T = P/H. The following statements hold:

(1) There exist an integral normal algebraic T-stack Y of finite type over k
with a dense open substack which is T-equivariantly isomorphic to T

and an isomorphism of G-stacks X ∼= G ×P Y over G/P , where P
acts on Y via P → T. Moreover, the stack Y has affine diagonal and
reductive inertia groups provided that X satisfies these properties.

(2) The group G× T acts on X ∼= G×P Y via

(g, pH) · (g′, y) := (gg′, p.y) = (gg′p, y).
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Proof. To prove (1), note that the existence of an isomorphism of G-stacks
X ∼= G×P Y over G/P is Corollary 2.12 , where Y is the stack-theoretic fiber
of X → G/P over P/P . As the fibration G ×P Y → G/P is Zariski locally
trivial, X is an integral normal finite type stack if and only if Y is an integral
normal finite type stack. The last statement in (1) also follows from the fact
that the fibration G×P Y → G/P is Zariski locally trivial.

Since Y is an integral P -stack and the subgroup H of P acts trivially on the
dense open substack P/H , the group H acts trivially on Y. Therefore, the P -
stack Y has a natural action of T = P/H . Also, the T-stack Y contains a dense
open substack (namely P/H) which is T-equivariantly isomorphic to T. �

In the proof of the next theorem we will use Geraschenko and Satriano’s
local structure theorem for (not necessarily smooth) abstract toric stacks.

Remark 4.3. While the main result of Geraschenko and Satriano’s paper (see
[14, Theorem 6.1]) is false without the smoothness assumption (see [12] for a
discussion and a counter-example), the “local” structure results for toric stacks
are correct, and follow mainly from a theorem of Alper, Hall and Rydh [2].
The mistake in Geraschenko and Satriano’s paper appears in the proof of [14,
Theorem 2.13], which is used later in the proof of [14, Theorem 6.1]. But all
the other results in [14] do not depend on [14, Theorem 6.1] and remain valid.

Theorem 4.4. Let X be a toroidal abstract horospherical stack such that the
diagonal of X is affine, and the geometric points of X have reductive inertia
groups. The following statements hold:

(1) There exist an integer n ≥ 1 and an open covering of X by horospher-
ical G-substacks X1, . . . ,Xn.

(2) If X is smooth, then X is a horospherical G-stack.

Proof. As before, we denote by G/H the horospherical homogeneous space
which identifies with a dense open substack in X . By Lemma 4.2, there exist
an integral normal algebraic T-stack Y of finite type over k with a dense open
substack which is T-equivariantly isomorphic to T and an isomorphism of G-
stacks X ∼= G×P Y over G/P , where P acts on Y via P → T. Moreover, since
X has affine diagonal and reductive geometric inertia groups, it follows that
the stack Y has affine diagonal and reductive geometric inertia groups.

It now follows from Geraschenko and Satriano’s local structure results [14,
Lemma 4.1 and Theorem 4.5] that Y is the union of open T-substacks Y1, . . . ,Yn

such that Yi = [Yi/Ki], where Yi is a toric variety for the action of a torus Ti
and Ki ⊆ Ti.

Let Xi = G ×P Yi, and note that Xi is an open G-substack of X . To
conclude the proof of (1), it suffices to show that Xi is a horospherical G-stack.
By Lemma 4.1, it suffices to show that [Xi/T] is a horospherical G-stack. To
do so, note that the G-stack

[Xi/T] ∼= [(G×P Yi)/T] ∼= G/P × [Yi/T] ∼= G/P × [Yi/Ti] ∼= [(G/P × Yi)/Ti]

is a horospherical G-stack.
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To prove (2), we assume that X is smooth. In this case, the stack Y is
smooth. Thus, it follows from Theorem 1.1 that Y is a toric stack. Write
Y = [Y/K], where Y is a toric variety with torus TY and K ⊆ TY . Then, as
before,

[X/T] ∼= G/P × [Y/TY ] ∼= [(G/P × Y )/TY ]

is a horospherical G-stack. Thus, by Lemma 4.1, we conclude that X is a
horospherical G-stack, as required. �

Remark 4.5. If one drops the smoothness assumption on X in the statement
of Theorem 4.4, then X is not necessarily a horospherical G-stack. See [12,
Section 4] for an example of a non-smooth abstract toric stack that is not a
toric stack.

5. Toroidification

In this section, we apply the structure results obtained previously to con-
struct the toroidification of an abstract horospherical G-stack X (Proposi-
tion 5.1) and we show that if the G-orbits of X are of codimension at most 1,
then X is a smooth horospherical G-stack (Proposition 5.5). This will be the
starting point in our proof of Theorem 1.4 in Section 6.

Proposition 5.1 (Toroidification). Let X be an abstract horospherical G-stack
with dense open substack G/H. There exist a toroidal abstract horospherical G-
stack X ′ and a representable proper birational morphism of G-stacks X ′ → X
which induces finite index inclusions on inertia groups.

Proof. Recall that P := NG(H) is a parabolic subgroup of G, i.e., the homo-
geneous space G/P is a flag variety. Since G/P is proper over k, by Proposi-
tion 2.9, there exists a representable proper birational morphism of G-stacks
X ′ → X which induces finite index inclusions on inertia groups and such that
the induced rational map X ′

99K G/P is a morphism. In particular, the G-
stack X ′ is a toroidal abstract horospherical G-stack. �

We refer to a morphism X ′ → X as in Proposition 5.1 as a toroidification
of X . Note that any toroidification induces an isomorphism over the dense
open substack G/H of X .

Remark 5.2. There exists a natural choice of X ′ when X is a horospherical
G-stack. Let X = [X/K] with X a horospherical G′-variety and G′ = G × T .
One can define X ′ as the horospherical G-stack [X ′/K], where X ′ is the discol-
oration ofX ; see [9, Section 3.3] for an explicit construction of the discoloration
of a spherical variety.

Corollary 5.3. Let X be an abstract horospherical G-stack. If X has affine
diagonal and reductive inertia groups, then X has only finitely many G-orbits.

Proof. Let X ′ → X be the toroidification morphism of Proposition 5.1. Since
X has affine diagonal and reductive inertia groups, it follows that X ′ has affine
diagonal and reductive inertia groups. Indeed, for all x′ in X ′(k) with image
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x in X (k), as the subgroup Im(Ix′ → Ix) is of finite index in Ix, we have that
I0x′ = I0x, and thus Ix′ is reductive. To see that the diagonal of X ′ is affine,
it suffices to show that the diagonal of X ′ → X is affine. To do so, as the
property of having affine diagonal is fppf local on the target, we may and do
assume that X is a scheme. Since X ′ → X is representable, it follows that X ′

is an algebraic space. Since X ′ → X is a proper morphism of algebraic spaces,
it follows that the diagonal of X ′ → X is a closed immersion, hence affine.

Now, as the toroidification morphism X ′ → X is G-equivariant and surjec-
tive, to prove the corollary, it suffices to show that X ′ has only finitely many
G-orbits. Thus, we may and do assume that X = X ′, so that X is a toroidal
abstract horospherical G-stack.

Now, by Theorem 4.4 (1), there exist an integer n ≥ 1 and an open covering
of X by horospherical G-substacks X1, . . . ,Xn. As the statement of the corol-
lary is local on X , we may and do assume that n = 1, so that X is a toroidal
horospherical G-stack.

Finally, write X = [X/K] with X a toroidal horospherical G′-variety and
K a subgroup of its torus. Note that the G-orbits of X correspond one-to-
one to the G′-orbits of X . Then, as X has only finitely many G′-orbits [35,
Theorem 2.1.2], it follows that X has only finitely many G-orbits. �

Lemma 5.4. Let Y → X be a representable proper birational morphism of
finite type integral algebraic stacks over k. Let D ⊆ X be a closed integral
substack, and let D′ be an irreducible component of its preimage which surjects
onto D. Then

codim(D,X ) ≥ codim(D′,Y).

Proof. Let P → X be a smooth finite type surjective morphism with P a
scheme. As Y → X is representable, it follows that Y ×X P is an algebraic
space. Since smooth finite type morphisms are codimension preserving, we may
and do assume that Y and X are algebraic spaces in which case the statement
of the lemma is well known. �

Proposition 5.5. Let X be an abstract horospherical G-stack such that the
diagonal of X is affine, and the geometric points of X have reductive inertia
groups. Suppose that codim(G · x,X ) ≤ 1 for all x in X (k). Then X is a
smooth toroidal horospherical stack.

Proof. Let x be a singular object of X (k). Since the singular locus of X is
a G-stable closed substack (Lemma 2.3) and of codimension at least two (by
the normality of X ), we see that G · x is of codimension at least two in X .
This contradicts our assumption that codim(G · x,X ) ≤ 1 for all x in X (k). It
follows that X is smooth.

Let f : X ′ → X be a toroidification (Proposition 5.1). To conclude the
proof, by Theorem 4.4, it suffices to show that f is an isomorphism.

As f : X ′ → X is a representable proper birational morphism and X is an
integral normal (even nonsingular) algebraic stack, it follows from Zariski’s
main theorem [28, Théorème 16.5] that X ′ → X is an isomorphism provided
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that f is quasi-finite. Thus, to conclude the proof, it suffices to show that f is
quasi-finite.

To do so, let x ∈ X (k) be an object which is not a point of the open
orbit G/H . Let Z be the inverse image of G · x in X ′. Since X ′ has only
finitely many G-orbits (Corollary 5.3), there exist an integer n ≥ 1 and objects
x′1, . . . , x

′
n in X ′ such that Z =

⋃n
i=1G · x′i.

Note that G · x is of codimension one in X , by our assumption. In particular,
for all i ∈ {1, . . . , n}, it follows that the closed substack G · x′i is of codimension
one in X ′ (Lemma 5.4). Therefore, pulling-back the latter morphism along a
presentation of X , a dimension argument (applied to the pullback of X ′ → X
along a presentation of X ) shows that G · x′i → G · x is generically quasi-finite.
(Here we only need that the codimension of G · x′i equals the codimension of
G · x.)

Thus, for all i ∈ {1, . . . , n}, there is a dense open Ui of G · x over which
G · x′i → G · x is quasi-finite. Let U be the intersection of all Ui. Then, for all
i ∈ {1, . . . , n}, the morphism G · x′i → G · x is quasi-finite over U .

Since U ⊆ G · x is a dense open, the union V :=
⋃

g∈G gU is a G-stable
dense open of G · x. Since X ′ → X is G-equivariant and quasi-finite over U ,
the morphism X ′ → X is quasi-finite over V . We now show that V = G · x.
To do so, we argue by contradiction. Thus, let us assume that V 6= G · x.

Let W be the complement of V in G · x. Note that W is a G-stable closed
substack of codimension at least one in G · x. In particular, W is of codimen-
sion at least two in X . Let w be an object of W (k). Then the closed substack
G · w is contained inW and therefore is of codimension at least two in X . This
contradicts our assumption that codim(G · x,X ) ≤ 1 for all x in X (k). Hence,
V = G · x and f is quasi-finite. �

6. Towards the general case

In this last section we first discuss Conjecture 1.3. We prove Conjecture 1.3
under suitable assumptions, see Lemma 6.6 and Proposition 6.8. Finally, we
use the theory of Cox rings and our results so far to prove Theorems 1.4 and
1.5.

6.1. About Conjecture 1.3. We restate our conjecture for the reader’s con-
venience.

Conjecture 1.3 (Criterion for quasi-affineness). Let G be a connected reduc-
tive algebraic group. Let X be a smooth integral finite type algebraic stack over
k with affine diagonal, Pic(X ) = 0, and diagonalizable inertia groups. Suppose
that X contains a big open substack Y. If Y is a (smooth) quasi-affine scheme
and X is an abstract horospherical G-stack, then X is a quasi-affine scheme.

Remark 6.2. If X is a smooth integral finite type scheme over k with affine
diagonal and trivial Picard group, then X is quasi-affine. Indeed, by [42,
Tag 01QE], the scheme X is quasi-affine if and only if its structure sheaf OX is
ample. To show that OX is ample, we verify the conditions in [42, Tag 01PS].
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To do so, let x be a point of X , and let U be an affine open subset of X
containing x. If U = X , then we are done. Thus, we may assume that U 6= X .
The complement D of U in X is pure of codimension one (as can be shown
using [42, Tag 0BCW] and the fact that the diagonal of the smooth scheme
X over k is affine). Let s be a section of OX(D) such that div(s) = D. Since
Pic(X) = 0, we see that s is a section of OX(D) ∼= OX . Moreover, Xs = U is
affine and contains x. This shows that OX is ample.

Remark 6.3. Let X be the affine plane with a double origin over k. Then
X is a smooth finite type integral scheme over k whose diagonal is not affine.
Indeed, X contains two open subschemes U and V isomorphic to A2

k whose
intersection U ∩ V is isomorphic to A2

k −{0}. Moreover, Pic(X) = Cl(X) = 0,
and X contains a big open subset Y isomorphic to A2

k − {0}. Therefore,
Conjecture 1.3 is false if one drops the hypothesis on the diagonal.

Remark 6.4 (Kresch). In Conjecture 1.3, we can not remove the condition
that X is an abstract horospherical G-stack. Indeed, let F := A5 be the
alternating group, and let F → GL(V ) be the restriction of the standard
linear representations of the symmetric group S5. Let Y be the complement
of the codimension two diagonals. (These diagonals are given by xi = xj = xk
with i, j, k pairwise distinct or by xi = xj and xk = xl with i, j, k, l pairwise
distinct in V .) Note that F acts stabilizer-free on the big open Y of V .

The stack Z := [V/F ] is not an algebraic space, as the origin in V is a
fixed point for the action of F . However, it is a smooth finite type separated
Deligne–Mumford integral algebraic stack with affine coarse space, Pic(Z) = 0,
and reductive (finite) inertia groups. Moreover, the stack Z contains a big
quasi-affine open Y := [Y/F ] = Y/F . (To show that Pic(Z) = 0, note that
F = A5 has no nontrivial characters, and that the Picard group of V is trivial.
Since V F 6= ∅ and O(V )× = k×, it follows from [24, Corollary 5.3] that
Pic(Z) := PicF (V ) = 0.)

Now, to give the desired example, let W be the complement of the codi-
mension three diagonals in V . (Note that the codimension three diagonals in
V = A5 are given by xi = xj = xk = xl with i, j, k, l pairwise distinct or
xi = xj = xk and xl = xm with i, j, k, l,m pairwise distinct.) The smooth fi-
nite type separated Deligne–Mumford stack X := [W/F ] has nontrivial inertia
groups, and they are all finite abelian groups (either Z/2Z or Z/3Z). Since X
is not a scheme and contains a big quasi-affine open substack, this shows that
we can not remove the condition that X is an abstract horospherical G-stack
in Conjecture 1.3. (Note that, as above, it follows from [24, Corollary 5.3] that
Pic(X ) = 0.)

We now establish Conjecture 1.3 for certain stacks, see Remark 6.7, Corol-
lary 6.9, and Corollary 6.13. To prove our results, we will frequently use the
following well-known result.
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Lemma 6.5. Let X be a smooth finite type integral algebraic stack with quasi-
compact and separated diagonal over k. Let Y be a dense open substack of X .
Then the natural homomorphism Pic(X ) → Pic(Y) is surjective.

Proof. Let L be a line bundle on Y. Let i : Y → X be the inclusion, and note
that i∗L is a quasi-coherent sheaf on X , see [28, Proposition 13.2.6]. Since L is
a coherent subsheaf of i∗i∗L, it follows from [28, Corollary 15.5] that there is a
coherent sheaf F on X such that F |Y ∼= L. Let M = F∨∨ be the double dual
of F . Note that M |Y ∼= L. Let P = SpecA be a smooth scheme over k and let
f : P → X be a smooth surjective morphism. To conclude the proof, it suffices
to show that f∗M is locally free. However, since taking duals is compatible
with flat pullback, the sheaf f∗M is a reflexive coherent OP -module of rank 1
(on the smooth k-scheme P ), hence locally free [19, Proposition 1.9]. �

Lemma 6.6. Let X = [X/K] be a quotient stack where K is a diagonalizable
group acting on a normal variety X. Assume that there exists a big open
substack U ⊆ X which is a quasi-affine scheme with Cl(U) = 0. If O(X)× =
k×, then K is trivial and X = X is a scheme.

Proof. Let τ : X → X be the quotient map and consider the preimage V :=
τ−1(U). Note that the subscheme V ⊆ X is a K-stable big open subset on
which the K-action is free. Let us show that V is K-factorial. That is, let us
show that every K-stable Weil divisor on V is principal.

Let D be a K-stable Weil divisor on V . Since the map τ : V → U is a
K-torsor, there exists a Weil divisor D′ on U such that τ∗(D′) = D. As
Cl(U) = 0, there exists a rational function f ∈ k(U) such that divU (f) = D′.
It follows that D = τ∗divU (f) = divV (f ◦ τ) is a principal divisor. This shows
that V is K-factorial.

Since V → U is a K-torsor and K is affine over k, we see that V is quasi-
affine over k (use [42, Tag 02L5]). Thus, K is a diagonalizable group acting
freely on the normal quasi-affine variety V , every invertible function on V is
constant (because X is normal with O(X)× = k× and V is a big open of
X), and V is K-factorial. Under these assumptions, by [22, Proposition 2.7],
it follows that the character group χ(K) of K is isomorphic to Cl(U). We
conclude that χ(K) = Cl(U) = 0, so that K is trivial and X = X is a
scheme. �

Remark 6.7 (First special case of Conjecture 1.3). If, in the notation of
Lemma 6.6, we also assume that X is smooth, then U is smooth and Cl(U) =
Pic(U) is trivial. Therefore, Lemma 6.6 implies that Conjecture 1.3 holds for a
quotient stack [X/K] with K a diagonalizable group and X a smooth variety
satisfying O(X)× = k×.

Proposition 6.8. Let X = [X/K] be a smooth horospherical G-stack, with
Pic(X ) = 0, which contains a big open substack Y. If Y is a quasi-affine
scheme, then X is a horospherical variety. In other words, Conjecture 1.3
holds for smooth horospherical G-stacks.
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Proof. Let Y ′ := G ·Y, and note that Y ′ is a big open substack of X containing
Y. Since Pic(X ) = 0 and X has affine diagonal, it follows from Lemma 6.5 that
Pic(Y ′) = Pic(Y) = 0. Thus Y ′ is a quasi-affine scheme by Remark 6.2. Hence,
replacing Y by Y ′ if necessary, we may and do assume that Y is G-stable.

Let G′ be the connected reductive group acting on X with dense open
orbit G′/H ′. By [25, Theorem 2.1], the G′-variety X admits a G′-stable open
covering {Xi} such that any Xi has a unique closed G′-orbit. Thus, replacing
X by Xi if necessary, we may and do assume that X has a unique closed
G′-orbit.

By [35, Theorem 2.3.2], there exist a parabolic subgroup P ′ ⊆ G′ with
unipotent radical P ′

u, a P
′-stable affine open subset X0 ⊆ X with X = G′ ·X0,

a closed L-stable subset Z ⊆ X0 (where L is a Levi subgroup of P ′), and an
L-isomorphism

P ′ ×L Z = P ′
u × Z → X0, (u, x) 7→ u · x.

Note that K ⊆ T′, where T′ = NG′(H ′)/H ′. Now, the complement of X0 in
X is a union of B′-stable prime divisors intersecting G′/H ′, where B′ ⊆ G′ is
a Borel subgroup contained in P ′. In particular, X0 is T′-stable. Thus, since
G′ ·X0 = X , to prove that [X/K] is a scheme, it suffices to show that [X0/K]
is a scheme.

As O(X0)
P ′

u = O(Z) and the T′-action commutes with the P ′
u-action, we

see that Z is T′-stable and T′ acts trivially on the first factor of P ′
u×Z. Thus,

since [(P ′
u ×Z)/K] = P ′

u× [Z/K], to prove that [X0/K] is a scheme, it suffices
to show that [Z/K] is a scheme. Since Z is an affine variety, it suffices to show
that K-acts freely on Z.

Since Z is an L-horospherical variety [35, Remark 2.3.3], each simple L-
module appears with multiplicity at most one in the L-module O(Z). We
denote by Λ the corresponding set of dominant weights, and byM the character
group of T′. The horosphericity of the L-action implies that the decomposition
of O(Z) in simple L-modules

O(Z) =
⊕

λ∈Λ

V (λ)

is exactly the isotypic decomposition in T′-modules. In particular, the lattice Λ
identifies with a sublattice ofM . LetM1 ⊆ Λ ⊆M be the subset corresponding
to the one-dimensional L-modules V (λ) such that λ ∈ Λ if and only if λ∗ ∈ Λ.
Since Z is normal, the subset M1 is a satured sublattice of M and therefore
M = M1 ⊕M2 for some sublattice M2 ⊆ M . Then we can write O(Z) as a
tensor product

O(Z) =
(

⊕

λ∈M1

V (λ)
)

⊗k

(

⊕

µ∈Λ∩M2

V (µ)
)

.

Since both sides are T′ ×L-algebras, there exist affine T′ ×L-varieties Z1 and
Z2 such that Z ∼= Z1 × Z2 as a T′ × L-variety.
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The direct sum of lattices M = M1 ⊕M2 induces a decomposition T′ =
T1 × T2, where each Ti acts on Zi. (Note that Z1 = T1, where T1 acts on Z1

by translation.) In particular, the K-action on Z is induced by the product of
the K-action on Z1 and Z2 via the inclusion K ⊆ T1 × T2 composed with the
projection T1 × T2 → Ti for i = 1, 2.

It follows from the definition of Λ ∩M2 that Z2 is an L-spherical variety
with a unique fixed point by the L-action. As X0 is smooth, Z is smooth, and
thus Z2 is smooth. By Luna’s slice theorem (see [29, §III.1, Corollary 2]), the
variety Z2 is an L-module. Now, to prove that the K-action on Z is free, it
suffices to prove that the K-action on Z1 is free.

Let τ : X → X = [X/K] be the natural quotient map. The preimage
X ′

0 = X0 ∩ τ−1(Y) is a P ′-stable big open subset of X0 on which K acts
freely. Moreover, the quotient X ′

0/K is a scheme. We have the decomposition
X ′

0 = P ′
u ×U0, where U0 ⊆ Z is a big open subset on which K acts freely. Let

V0 := T
′ · U0 and note that V0 is a T

′-stable big open of Z. Note that [V0/K]
is an algebraic space. The same argument as in the proof of Lemma 3.13
shows that [V0/K] is in fact a scheme. As Cl(X ) = Cl(Y) = 0, it follows that
Cl([(P ′

u × V0)/K) = 0. Therefore,

0 = Cl([(P ′
u × V0)/K]) = Cl(P ′

u × [V0/K]) = Cl(P ′
u × (V0/K)) = Cl(V0/K),

since P ′
u is an affine space [18, §II, Proposition 6.6].

Let us note thatO(V0)
× = O(Z)× = O(Z1)

×, since Z2 is an affine space (see
[24, §1.1, Proposition]). By [24, §5.1, Proposition], there is an exact sequence

(O(V0)
×/k×)K = (O(Z1)

×/k×)K → χ(K)

→ H1
alg(K,O(V0)

×) = Cl(V0/K) = 0.

The surjectivity of the first map implies that the induced action of K on Z1

is faithful. Therefore, K acts freely on an open subset of Z1. Since Z1 has a
unique T′-orbit, the action of K on Z1 is free everywhere. This concludes the
proof of the proposition. �

Corollary 6.9 (Second special case of Conjecture 1.3). Let X be a smooth
integral finite type algebraic stack over k with affine diagonal, Pic(X ) = 0, and
diagonalizable inertia groups. Suppose that X contains a big open substack Y.
If Y is a (smooth) quasi-affine scheme and X is Zariski covered by horospherical
G-stacks, then X is a quasi-affine scheme.

Proof. Let X =
⋃

i Xi be a Zariski covering of X by horospherical G-stacks.
Note that Yi := Y ∩ Xi is a big open quasi-affine substack of Xi. Since
Pic(X ) = 0, it follows from Lemma 6.5 that Pic(Yi) = Pic(Xi) = 0. Thus,
it follows from Proposition 6.8 that Xi is a scheme. Thus, X is Zariski cov-
ered by schemes. Therefore, X is a scheme. The result now follows from
Remark 6.2. �

Lemma 6.10. Let G be an algebraic group over k, and let X be a finite type
scheme with an action of G. Suppose that there is a point x0 in X(k) which is
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fixed by G. Then there is an injective group homomorphism from the character
group X(G) of G into PicG(X) = Pic([X/G]).

Proof. For a given χ ∈ X(K), let Lχ := X × A
1 be the trivial line bundle

equipped with the linearization g · (x, v) := (g · x, χ(g)v). Note that the map
which sends χ in X(G) to Lχ in Pic([X/G]) is a group homomorphism. To
show that this map is injective, assume that Lχ is isomorphic to the trivial
line bundle with the trivial linearization. Then, for all g in G, x in X(k) and
v in A1, we have

(g · x, χ(g)v) = (g · x, v).

In particular, as x0 is a fixed point, we see that, for all g in G and all v in A
1,

(x0, χ(g)v) = (g · x0, χ(g)v) = (g · x0, v) = (x0, v).

We conclude that, for all g in G, χ(g) = 1, so that χ is the trivial character. �

Example 6.11. Without the assumption that there exists a fixed point x0,
Lemma 6.10 might fail. Consider, for example, G = µ2, X = Gm with the
usual (free) action, and note that [Gm/G] ∼= Gm. Since Pic(Gm) = 0 and
χ(G) = Z/2Z, there is no injective map χ(G) → PicG(Gm).

Lemma 6.12. Let X be a smooth integral finite type algebraic stack over k
with affine diagonal, Pic(X ) = 0, and diagonalizable inertia groups. Suppose
that X = [X/G], where X is a finite type scheme and G is an algebraic group
acting on X. If X has a fixed point, then X is a scheme.

Proof. By Lemma 6.10, X(G) injects into Pic(X ) = 0. Thus, X(G) = 0. Since
G is diagonalizable, we see that G = 0. Thus, X = X is a scheme. �

Corollary 6.13 (Third special case of Conjecture 1.3). Let X be a smooth
integral finite type algebraic stack over k with affine diagonal, Pic(X ) = 0, and
diagonalizable inertia groups. Suppose that X contains a big open substack Y
with Y a quasi-affine scheme. Assume that there is a Zariski-open covering
X =

⋃

iXi with Xi = [Ui/Gi], where Ui is a finite type scheme over k and Gi

is an algebraic group over k acting on Ui with a fixed point. Then the stack X
is a quasi-affine scheme.

Proof. Note that Xi contains a big open quasi-affine substack and that Lem-
ma 6.5 implies that Pic(Xi) = 0. Thus, by Lemma 6.12, the stack Xi is a
scheme. Therefore, X is a scheme, so that X is quasi-affine (Remark 6.2). �

Remark 6.14 (Kresch). Let F be a subgroup of Gm over k, and let X be a
F -gerbe over a smooth finite type scheme X over k such that either the band
of X is nontrivial, or the gerbe is trivially banded and its class in H2(X,F ) has
nonzero image in H2(X,Gm). Then X is a smooth finite type algebraic stack
with affine diagonal which does not contain a dense open substack [U/K] with
U a finite type scheme over k and K an algebraic group acting on U with a
fixed point. In particular, X does not satisfy the assumption of Corollary 6.13.
For instance, let D4 be the dihedral group. Note that the center Z of D4
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is Z/2Z, and let D4 → V4 be the quotient map, where V4 is the Klein four-
group. Let V4 = 〈a, b〉 act on V = C2 via the reflections in the coordinate axis,
i.e., a · (x, y) = (−x, y) and b · (x, y) = (x,−y). Note that X = [(A1 \{0})2/D4]
is a nontrivial µ2-gerbe overX := (A1\{0})2. Since X is a nontrivial µ2-gerbe,
it is nontrivial on any dense open. Thus, there is no dense open substack U of
X such that U = [V/µ2], where V is a scheme and µ2 acts on V with a fixed
point. (With the notation as in Remark 6.4, note that X = [W/A5] also does
not satisfy the assumption in Corollary 6.13. Otherwise, X would be a scheme
by Corollary 6.13.)

Remark 6.15. Let X be a smooth finite type separated Deligne–Mumford
algebraic stack with trivial generic stabilizer over k. Suppose that the coarse
space of X is a smooth scheme over k and that Pic(X ) = 0. If X contains a big
open substack Y which is quasi-affine, then the coarse space map X → X is an
isomorphism by Geraschenko and Satriano’s “bottom-up” characterization of
orbifolds [15]. (Indeed, the inertia groups of codimension one points of X are
trivial.) Thus, X is a smooth scheme and therefore quasi-affine by Remark 6.2.
In particular, Conjecture 1.3 holds for smooth finite type separated Deligne–
Mumford algebraic stacks with trivial generic stabilizer over k.

6.16. Proof of Theorem 1.4 and Theorem 1.5. In our discussion below,
we will require the following results.

Proposition 6.17. Let X be a smooth integral algebraic stack of finite type
over k. Let Y be a big open substack of X . Then the category of line bundles
on Y is equivalent to the category of line bundles on X .

Proof. The essential surjectivity of this restriction functor follows from Lem-
ma 6.5 (and does not require Y to be big). To prove the fully faithfulness, note
that if X is a scheme, then this is well known as regular schemes are locally
factorial, see [19, Propositions 1.6 and 1.9]. The result for algebraic stacks
follows from descent theory. �

Corollary 6.18. Let X be a smooth integral scheme of finite type over k. Let G
be a linear algebraic group acting on X. Let U be a G-stable big open subscheme
of X. Then the category of G-linearized line bundles on U is equivalent to the
category of G-linearized line bundles on X.

Proof. This follows from applying Proposition 6.17 to [U/G] ⊆ [X/G]. �

Note that Theorems 1.4 and 1.5 are subsumed by the following result.

Theorem 6.19. Let X be a smooth abstract horospherical G-stack with dense
open substack G/H such that the diagonal of X is affine, and the geometric
points of X have reductive inertia groups. Assume that the natural (right)
action of the torus T = P/H on G/H extends to X . Then the following
statements hold:

(1) If Conjecture 1.3 holds, then X is a horospherical G-stack.
(2) If X has a Zariski-open covering by horospherical G-stacks, then X is

a horospherical G-stack.
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Proof. Note that the (right) action of T = P/H on G/H extends to the
stack X . (This is part of our assumption.) Thus, we can apply Lemma 4.1 and
replace X by [X/T]. That is, we may and do assume that T = P/H is trivial,
i.e., H = P . Moreover, replacing G by a finite étale cover if necessary, we may
and do assume that G is a direct product of a torus and a simply connected
semisimple group.

Suppose that codim(G · x,X ) is at most 1 for all x in X (k). Then the result
follows from Proposition 5.5. Therefore, to prove the theorem, we may and do
assume that there exists x ∈ X (k) such that codim(G · x,X ) is at least 2.

Define Z as the union of all closed substacks G · x, where x in X (k) runs
over all points such that G · x is of codimension at least 2. It follows from
Corollary 5.3 that Z is a G-stable closed substack of codimension at least 2
in X .

Let Y be the complement of Z in X . Then Y is a G-stable dense open
substack of X such that codim(G.y,Y) is at most 1 for all y ∈ Y(k). Note that
Y is a smooth abstract horospherical G-stack with dense open substack G/H .
Therefore, by Proposition 5.5, the stack Y is a smooth horospherical G-stack,
i.e., there exist a smooth horospherical G′-variety Y1 with open orbit G′/H ′

and a diagonalizable subgroup K1 ⊆ T1 := P ′/H ′ such that Y ∼= [Y1/K1],
where G′ = G × T for some torus T acting faithfully on Y1 and contained
in K1. Since the open G-orbit of X is the flag variety G/P (as T is trivial),
we must have K1 = T1.

(We will now perform the Cox construction on Y1, see [4] for a general
background on Cox rings. However, this is slightly more complicated than
expected, as one needs to reduce to the situation in which there are only
constant invertible global regular functions. Once this is done, we will extend
the torsors over Y appearing below to X using that the complement is of
codimension at least two. We will then be in the situation of Conjecture 1.3.)

Let Y2 be a G′-equivariant smooth compactification of Y1. Then O(Y2)
× =

k×, and Cl(Y2) = Pic(Y2) is finitely generated and torsion-free, see [35, Corol-
laries 3.2.5 and 3.2.6]. Let R(Y2) be the Cox ring of Y2, and let Y4 :=
SpecR(Y2). Note that Y4 is a normal (possibly singular) affine variety with
trivial class group [10, Section 3.1]. The variety Y4 comes with an action of
a torus T2 whose group of characters identifies with Cl(Y2), and there exists
a T2-stable smooth quasi-affine subvariety Y3 ⊆ Y4 such that the T2-action
on Y3 is free and the quotient morphism Y3 → Y3/T2 = Y2 is a T2-torsor.
Moreover, the action of G′ on Y2 lifts to Y3 and Y4, see [4, Theorem 4.2.3.2
and Section 4.5.4]. (Here we use that G is a direct product of a torus and
a simply connected semisimple algebraic group, and that the class group of
Y2 is torsion-free.) Therefore Y3 and Y4 are horospherical G′′-varieties, where
G′′ = G′ × T2 = G× T × T2, with open orbit G′′/H ′′, say.

We denote by Y the inverse image of Y1 in Y4. Note that Y is a smooth
quasi-affine horospherical G′′-variety.

Let T3 = T2 × T1. The variety Y is the total space of a T3-torsor over the
stack Y = [Y/T3]. Since H1

fppf(Y,Gm) = Pic(Y), the T3-torsor Y corresponds
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to a direct sum of line bundles on Y. As the codimension of Z = X \ Y
in X is at least 2, such line bundles extend uniquely to X (Proposition 6.17).
Therefore, as H1

fppf(X ,Gm) = Pic(X ), there exists a unique T3-torsor X → X
whose restriction over Y is Y → Y. As X is a T3-torsor over X , we see that
X is a smooth integral finite type algebraic stack with has affine diagonal
and reductive inertia groups. Moreover, Y is a smooth quasi-affine scheme
with trivial Picard group and the complement of Y in X is of codimension
at least 2. Since Y is a big open of X with trivial Picard group, we see that
Pic(X) = 0 (Proposition 6.17).

Note that G′′ acts on Y , and that G′′ acts on Y and X via the projection
G′′ → G. We now show that the action of G′′ on Y extends to an action
on X , so that X is an abstract horospherical G′′-stack. We can view the T3-
torsor Y → Y as a direct sum of G′′-linearized line bundles on Y. However,
as [Y/G′′] is a big dense open of [X/G′′], it follows from Corollary 6.18 that
any G′′-linearized line bundle on Y extends uniquely to a G′′-linearized line
bundle on X . Therefore, the extension X → X of the T3-torsor Y → Y admits
a compatible action of G′′. Thus, X is an abstract horospherical G′′-stack.
In particular, every geometric point of X has a diagonalizable inertia group
(Proposition 3.19).

The following diagram (whose squares are Cartesian) summarizes the situ-
ation so far:

Y4 = SpecR(Y2) Y3? _oo

/T2

����

Y?
_

oo

/T2

����

� �
// X

/T2×T1

����

[Y3/T2] = Y2 Y1? _oo

/T1

����

Y = [Y1/T1]
� �

// X .

Now, to prove (1), note that it follows from Conjecture 1.3 that X is a
quasi-affine scheme, and thus a smooth variety. To prove (2), note that X is
covered by horospherical G-stacks (as X is covered by horospherical G-stacks),
so that X is a smooth quasi-affine variety by Corollary 6.9.

Hence, in both cases (1) and (2), we see that X is a smooth horospherical
G′′-variety. Since X = [X/T3], we see that X is a horospherical G-stack. �
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[7] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. No. 27
(1965), 55–150. MR0207712

[8] L. A. Borisov, L. Chen, and G. G. Smith, The orbifold Chow ring of toric Deligne–
Mumford stacks, J. Amer. Math. Soc. 18 (2005), no. 1, 193–215. MR2114820

[9] M. Brion, Sur la géométrie des variétés sphériques, Comment. Math. Helv. 66 (1991),
no. 2, 237–262. MR1107840

[10] M. Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), no. 1,
61–99. MR2326138

[11] B. Fantechi, E. Mann, and F. Nironi, Smooth toric Deligne–Mumford stacks, J. Reine
Angew. Math. 648 (2010), 201–244. MR2774310

[12] W. D. Gillam and S. Molcho, A theory of stacky fans, arXiv:1512.07586v1 [math.AG]
(2015).

[13] A. Geraschenko and M. Satriano, Toric stacks I: The theory of stacky fans, Trans. Amer.
Math. Soc. 367 (2015), no. 2, 1033–1071. MR3280036

[14] A. Geraschenko and M. Satriano, Toric stacks II: Intrinsic characterization of toric
stacks, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1073–1094. MR3280037

[15] A. Geraschenko and M. Satriano, A “bottom up” characterization of smooth Deligne–

Mumford stacks, Int. Math. Res. Not. IMRN 2017, no. 21, 6469–6483. MR3719470
[16] R. Gonzales, C. Pech, N. Perrin, and A. Samokhin, Geometry of horospherical varieties

of Picard rank one, arXiv:1803.05063v1 [math.AG] (2018).
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