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Abstract

We analyze the Jacobson topology on the spectrum of transformation group C∗-algebras for
proper G-spaces X in terms of the space Stab(X )̂ = {(x,Gx, σ) | x ∈ X, σ ∈ Ĝx}. We
show that Stab(X )̂ can be topologized and equipped with a G-action in such a way that the
quotient space G\Stab(X )̂ is homeomorphic to (C0(X) oG)̂ via the well-known bijection
between these spaces from the Mackey-Rieffel-Green theorem.

We discuss several approaches to define such a topology on Stab(X )̂ and show that the
resulting topologies coincide.

Zusammenfassung

Diese Arbeit liefert eine Beschreibung der Jacobson-Topologie auf dem Spektrum von Trans-
formationsgruppen-C∗-algebren für eigentlicheG-RäumeX vermittels des Raums Stab(X )̂ =

{(x,Gx, σ) | x ∈ X, σ ∈ Ĝx}. Es wird gezeigt, daß auf Stab(X )̂ eine Topologie und
eine G-Wirkung derart definiert werden können, daß die aus dem Satz von Mackey-Rieffel-
Green bekannte Bijektion zwischen dem Bahnenraum G\Stab(X )̂ und (C0(X) o G)̂ ein
Homöomorphismus ist.

Wir diskutieren verschiedene Ansätze zur Topologisierung des Raums Stab(X )̂ und
zeigen, daß sie dieselbe Topologie liefern.
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6.1 Construction of A with Â ∼= Stab(X )̂ . . . . . . . . . . . . . . . . . . . . . . 60
6.2 A G-action for A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Proper G-spaces with Palais’ slice property 66
7.1 Motivation for the consideration of (SP) . . . . . . . . . . . . . . . . . . . . . 66
7.2 The topology on Stab(X )̂ if X satisfies (SP) . . . . . . . . . . . . . . . . . . 67
7.3 Different settings — different proofs . . . . . . . . . . . . . . . . . . . . . . . 70

A Some useful results and complementary proofs 74
A.1 C0(Z)-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.2 Continuity of integration on F (G) . . . . . . . . . . . . . . . . . . . . . . . . 75
A.3 Proof of Lemma 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

References 79

ii



Introduction

The purpose of this thesis is to describe the spectrum of transformation group C∗-algebras
C0(X) o G for proper actions. In particular, we want to describe the Jacobson topology on
these spaces in terms of the action of G on X.

Crossed products of the form C0(X) o G for proper G-spaces X are very important in
the theory of operator algebras because their K-theory appears in certain special cases of the
Baum-Connes conjecture with coefficients. The topological structure of (C0(X) o G)̂ is of
interest because it corresponds to the ideal structure of C0(X) oG, the knowledge of which
can be helpful for the computation of the K-theory of this C∗-algebra.

This work is based on a well-known result, going back to work of Mackey, Rieffel, and
Green, which states that, for a proper G-space X, there exists a bijection

indG : G\Stab(X )̂ → (C0(X) oG)̂ ,

where the space Stab(X )̂ = {(x,Gx, σ) | x ∈ X, σ ∈ Ĝx} is equipped with a suitable action
of G. This shows that it is possible to describe the spectrum of C0(X) o G in terms of the
spectra of the stabilizer subgroups Gx.

We present several ways to equip Stab(X )̂ with a topology such that the quotient topol-
ogy on G\Stab(X )̂ coincides with the topology induced by the bijection indG. The nicest
one, based on an idea by Siegfried Echterhoff, is to define a C∗-algebra A such that the spec-
trum Â is in a natural set bijection with Stab(X )̂ . Then Stab(X )̂ can simply be topologized
by transferring the Jacobson topology from Â.

To actually prove that Stab(X )̂ carries a topology with the required properties we need,
however, a more tangible definition. This is obtained by viewing Stab(X )̂ as a subset of
X × S(G)̂ , where S(G)̂ is the space of irreducible subgroup representations of G equipped
with the Fell topology, which can be described very concretely in terms of functions of positive
type. We use this topology to define a closure operation on Stab(X )̂ , but the corresponding
topology does not in general coincide with the topology induced from X × S(G)̂ . In fact,
it requires a good deal of work to show that our closure operation satisfies the Kuratowski
axioms and therefore induces a topology on Stab(X )̂ at all. But this can be done, and we
also show that this topology coincides with the topology induced from the spectrum of A as
above.

The definition of this closure operation is inspired by Baggett’s work in [Bag68], where he
analyzes the topological structure of the spectrum of semidirect product groups N oK with
N abelian and K compact. Since

(N oK )̂ ∼= C∗(N oK )̂ ∼= (C∗(N) oK )̂ ∼= (C0(N̂) oK )̂ ,

and since compact groups automatically act properly, this is a special case of our situation. In
his description of (N oK )̂ , Baggett works with cataloguing triples which correspond to the
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elements of Stab(X )̂ . He also uses a convergence-like notion based on S(G)̂ , but he does
not supply a proof that this notion does actually yield a topology for the set of cataloguing
triples. Nonetheless, our proof that the map indK is open with respect to our topology in
case of a compact group K is based on his ideas.

To prove that openness of indK can be used to prove openness of indG in the general
situation of a properly acting group G we use a theorem of Abels’, which states that every
proper G-space is locally induced from compact subgroups. This approach has also been used
by Echterhoff and Emerson in [EE], where they define a topology on Stab(X )̂ for proper
G-spaces X that satisfy Palais’ slice property, denoted by (SP), which means that X is even
locally induced from stabilizer subgroups. The topology defined by Echterhoff and Emerson
under the assumption of (SP) is very convenient, because it is completely determined by the
G-action and does not require the space S(G)̂ .

We prove that, provided that (SP) is satisfied, their and our topology coincide, and we
also discuss why it is not possible to transfer their definition, nor their proof that indG is a
homeomorphism with respect to their topology, to the general case.

This thesis is organized as follows: In Chapter 1 we present some basic material which will be
needed all the time. Chapter 2 begins with a short presentation of the different approaches to
defining a topology on Stab(X )̂ , continues with background material for and the definition
of our topology on Stab(X )̂ , and closes with the proof that this topology makes the map
indG continuous, and a description of Stab(X )̂ in the special case that the map x 7→ Gx is
continuous.

In Chapter 3 we use induction via bimodules to show how the fact that a proper G-space is
locally induced from compact subgroups can be used to reduce the analysis of (C0(X)oG)̂
and Stab(X )̂ to the situation that G is compact. Chapter 4 contains some results on
representations of compact groups K and the structure of L2(K), which will be used in
Chapter 5 to prove that indK is open with respect to our topology. That chapter also
contains the proof of openness in the general case, which completes the proof that indG

is a homeomorphism.
We then go back to the definition of our topology on Stab(X )̂ and show in Chapter 6

that it coincides with the topology induced from Â. In Chapter 7 we then turn to proper
G-spaces with Palais’ slice property, briefly present Echterhoff and Emerson’s methods, and
compare them with our approach. The Appendix A contains some additional definitions and
proofs.
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Chapter 1

Definitions and tools

In this chapter we collect most of the basic material which is needed for this thesis. Everything
is kept quite short and restricts to the results which we actually need, but references for
background reading are given. The topics we discuss here are properG-spaces, locally compact
groups and C∗-algebras and their representations, crossed products and generalized fixed point
algebras, and induced representations of covariant systems.

All through this thesis we work with locally compact spaces and locally compact groups.
Recall that a topological space is said to be locally compact if every point has a neighborhood
basis consisting of compact sets. If the space is Hausdorff, this is equivalent to the condition
that every point has a compact neighborhood. As we deal with Hausdorff spaces most of the
time, we use the term “locally compact” when we mean “locally compact and Hausdorff”. If
a space is locally compact, but not necessarily Hausdorff, we will mention this explicitly.

If X is a locally compact space, then we denote by Cc(X) the compactly supported
continuous functions on X, and by C0(X) the continuous functions vanishing at infinity.

1.1 Proper G-spaces

In this section we introduce the notion of (proper) G-spaces, list some important properties,
and explain what it means that a proper G-space is locally induced from compact subgroups.

Locally compact G-spaces

Most of the following definitions are also valid for general topological groups and spaces, but
we don’t need that generality. See [Wil07] for a more extended treatment of this material.

Let G be a locally compact group, and let X be a locally compact Hausdorff space. Then
X is a locally compact G-space if there exists a continuous map

G×X → X, (g, x) 7→ g · x

such that e · x = x and g · (h · x) = (gh) · x for all x ∈ X and all g, h ∈ G. We will usually
write gx instead of g · x for all g ∈ G and all x ∈ X. For every x ∈ X, the orbit through x
and the stabilizer subgroup at x are defined by

Gx := {gx ∈ X | g ∈ G},
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and
Gx := {g ∈ G | gx = x},

respectively. The set of orbits is called the orbit space and is denoted by G\X. It is equipped
with the usual quotient topology, which is defined to be the final topology induced by the
orbit map X → G\X, x 7→ Gx. The orbit map is continuous (by definition of the topology)
and open (see Lemma 3.25 in [Wil07]). The openness of the orbit map yields the following
useful description of convergence in G\X:

Remark 1.1.1 (Lemma 3.38 in [Wil07]). Suppose that X is a locally compact G-space, that
x ∈ X, and that (xν)ν∈N is a net in X such that ([xν ])ν∈N converges to [x] in G\X. Then
there are a subnet (xj)j∈J and elements sj ∈ G for all j ∈ J such that sjxj → x in X.

If G acts on X and (xν)ν∈N is a net in X, then we denote the corresponding net of
stabilizer subgroups by (Gν)ν∈N instead of (Gxν )ν∈N . We modify the notation analogously
for several other objects associated to a net (xν)ν∈N in X, and it will hopefully always be
clear what we mean.

Proper G-spaces

The following lemma lists several properties that might be used to define proper G-spaces. It
is a slight extension of Lemma 3.42 in [Wil07].

Lemma 1.1.2. Let X be a locally compact G-space. Then the following conditions are
equivalent:

(i) The map G × X → X × X, (g, x) 7→ (gx, x) is proper in the sense that preimages of
compact subsets of X ×X are compact in G×X;

(ii) If (xν)ν∈N and (gν)ν∈N are nets in X and G, respectively, and if x, y ∈ X are such that
xν → x and gνxν → y, then the net (gν)ν∈N has a convergent subnet;

(iii) For every compact subset K ⊆ X the set {g ∈ G | g−1K ∩K 6= ∅} is compact in G.

Definition 1.1.3. A locally compact G-space X is said to be proper if it satisfies any, and
hence every condition of the previous lemma.

It is not hard to deduce the following important properties of proper G-spaces from
Lemma 1.1.2. The proofs of (i)-(iii) can also be found in [Wil07]; statement (iv) follows
directly from Lemma 1.1.2 (ii) or (iii).

Proposition 1.1.4. Let X be a proper G-space. Then the following statements are true:

(i) The stabilizer group Gx is compact for every x ∈ X.

(ii) The orbit space G\X is a locally compact Hausdorff space.

(iii) For every x ∈ X, the map G/Gx → Gx, gGx 7→ gx is a homeomorphism.

(iv) Let Y be locally compact (not necessarily proper) G-space. Then the action of G on
X × Y given by g(x, y) = (gx, gy) for all g ∈ G, (x, y) ∈ X × Y is proper.
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It follows immediately from the definition that actions of compact groups are always
proper. To get a slightly more general example, let H be a closed subgroup of a locally
compact group G. Then the action H ×G→ G, (h, g) 7→ (gh−1) is proper, because the map

G×G→ G×G, (h, g) 7→ (gh−1, g)

is a homeomorphism, which implies that its restriction to H ×G is proper.

Induced G-spaces

Definition 1.1.5. Let H be a closed subgroup of a locally compact group G, and let Y be
a locally compact H-space. Define an action of H on G × Y by h(g, y) := (gh−1, hy) for all
h ∈ H, g ∈ G, and y ∈ Y . The quotient G×H Y := H\(G×Y ) is then a G-space with respect
to the action g′[g, y] := [g′g, y] for all g′ ∈ G, [g, y] ∈ G×H Y .

As shown in the end of the previous paragraph, the action of H on G is proper. Hence
it follows that H acts properly on G × Y , and thus the induced space G ×H Y is a locally
compact Hausdorff space, see Proposition 1.1.4 (ii),(iv).

The following proposition gives a criterion for when a given G-space is induced from a
closed subgroup H. It is a corollary to a similar statement on general covariant systems,
which is proven in [Ech90a]. Recall that, if X and Y are locally compact G-spaces, then a
continuous map ϕ : X → Y is called a G-map if ϕ(gx) = gϕ(x) for all g ∈ G, x ∈ X.

Proposition 1.1.6. Let X be a locally compact G-space and let H be a closed subgroup of
G. The following statements are equivalent:

(i) There exists a locally compact H-space Y such that X is G-homeomorphic to G×H Y .

(ii) There exists a continuous G-map ϕ : X → G/H.

If (i) holds, then the corresponding G-map ϕ : G×H Y → G/H is given by ϕ([g, y]) = gH for
all g ∈ G, y ∈ Y . Given a map ϕ as in (ii), the corresponding H-space Y is the closed subset
Y := ϕ−1({eH}) of X, and the G-homeomorphism Φ: G×H Y → X is given by Φ([g, y]) = gy
for all g ∈ G, y ∈ Y .

It is shown in Lemma 1.2 in [EE] that, if H is a closed subgroup of a locally compact
group G, and Y is a locally compact H-space, then G acts properly on G ×H Y if and only
if H acts properly on Y . It follows in particular that every G-space which is induced from a
compact subgroup must be proper. Locally, the converse of this is also true, which is shown
in the following theorem of Abels:

Theorem 1.1.7 (Theorem 3.3 in [Abe78]). Let X be a proper G-space. Then for every
x ∈ X there exist a G-invariant open neighborhood Ux of x and a compact subgroup Lx of
G such that there is a continuous G-map ϕx : Ux → G/Lx with ϕx(x) = eLx.

Remarks 1.1.8. (i) By the preceding theorem and by Proposition 1.1.6 there is, for every
x ∈ X, a G-homeomorphism Φx : G ×Lx Yx → Ux, where Yx := ϕ−1

x ({eLx}). Notice
that x ∈ Yx.

(ii) If X is a proper G-space and L and Y are such that the statements of Proposition 1.1.6
hold, i.e., Y ⊆ X is an L-invariant subset and X ∼= G ×L Y , then Y is called a global
L-slice of X. If U ⊆ X is a G-invariant open subset, then Y ⊆ U is a local L-slice for
X if it is a global L-slice for the G-space U .
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(iii) Let x ∈ X, and let Ux, Lx, and ϕx be as in Theorem 1.1.7. Let y ∈ Yx. Then Gy ≤ Lx,
because for every g ∈ Gy we have that

eLx = ϕx(y) = ϕx(gy) = gϕx(y) = gLx,

and hence g ∈ Lx.

(iv) Palais proved in [Pal61] that if a Lie group G acts properly on a locally compact space
X, then the group Lx from Theorem 1.1.7 can be chosen to be the stabilizer subgroup
Gx for every x ∈ X. Then every x ∈ X has a G-invariant open neighborhood Ux
which is homeomorphic to G ×Gx Yx for a suitable Gx-slice Yx. In [EE], Echterhoff
and Emerson say that a proper G-space X satisfies Palais’ slice property (SP) if it has
just this property. If now Yx is a Gx-slice through some x ∈ X, then (iii) implies that
Gy ≤ Gx for all y ∈ Yx. Under this assumption, Echterhoff and Emerson can formulate a
topology on the space Stab(X )̂ such that the map indG : G\Stab(X )̂ → (C0(X)oG)̂
becomes a homeomorphism, see Chapter 7.

(v) Not all proper G-spaces satisfy (SP). Suppose, for instance, that a compact group K
acts on a compact space X. Then the componentwise action of the product

∏
n∈NK on∏

n∈NX is automatically proper, but does in general not satisfy (SP).

In our applications of Abels’ Theorem we will often need the following statement which,
loosely speaking, says that it does not matter if we move a net in Ux which converges to a
point in Yx into Yx.

Lemma 1.1.9. Let X be a proper G-space, let x ∈ X and let Ux, ϕx, Lx, and Yx be as in
Abels’ Theorem. Suppose that (yν)ν∈N in Ux converges to y ∈ Yx. Then there exists a subnet
(yj)j∈J such that there is a net (gj)j∈J in G which satisfies gj → e and gjyj ∈ Yx for all j ∈ J .

Proof. Let U(e) denote the collection of symmetric open neighborhoods of e in G. Then WYx
is open in X for every W ∈ U(e) because the composition

G× Yx
q //G×Lx Yx

Φx //Ux

of the quotient map q and the map Φx from Remark 1.1.8 (i) is open, and WYx is the image
of the relatively open subset W × Yx of G× Yx. So WYx is relatively open in Ux and, as Ux
is open, WYx is open in X.

It follows that for every W ∈ U(e) there exists ν ∈ N such that yµ ∈WYx for all µ ∈ N≥ν .
Hence we can define

J := {(W, ν) | ∀µ ≥ ν : yµ ∈WYx},

and J becomes an upwards directed ordered set with (W1, ν1) ≤ (W2, ν2) defined by W2 ⊆W1

and ν2 ≥ ν1. The map j = (W, ν) 7→ ν defines a subnet (yj)j∈J of (yν)ν∈N which satisfies
yj ∈WYx for every j = (W, ν) ∈ J . For every j = (W, ν) ∈ J we can thus choose an element
gj ∈ W such that gjyj ∈ Yx. To see that gj → e let W0 ∈ U(e) and choose ν0 ∈ N such that
j0 := (W0, ν0) ∈ J . Then, for all j = (W, ν) ∈ J≥j0 we have that gj ∈ W ⊆ W0, and we are
done.
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1.2 Locally compact groups and their representations

In this section we want to set up the notation and definitions on locally compact groups and
their representations which we will need later on. For details, proofs and background to this
material the reader can, for instance, consult [DE09] or [Fol95]; some of this is also covered
in [Wil07].

Haar measure and the modular function

Let G be a locally compact group. Then G has a (left) Haar measure, that is, a left-invariant
Radon measure, which is unique up to a strictly positive scalar. Equivalently, there exists a
non-zero positive integral on Cc(G) which satisfies∫

G
f(gx)dx =

∫
G
f(x)dx for all f ∈ Cc(G), g ∈ G,

which is called the (left) Haar integral, and is also unique up to multiplication with a strictly
positive scalar.

Since, for every g ∈ G, the map

Cc(G)→ C, f 7→
∫
G
f(xg)dx

also defines a Haar integral, uniqueness implies that there exists a number ∆(g) ∈ R>0 such
that ∫

G
f(x)dx = ∆(g)

∫
G
f(xg)dx for all f ∈ Cc(G).

The map ∆: G→ R>0 is called the modular function on G. It is independent of the choice of
Haar measure and is a continuous homomorphism. A group for which ∆(g) = 1 for all g ∈ G
is called unimodular; this is the case for all abelian, all discrete, and all compact groups.

Whenever we consider a compact group K, we suppose that it comes equipped with the
normalized Haar measure such that

∫
K 1dk = 1. In case that we have several groups and Haar

measures around we sometimes use the notation
∫
G f(g)dµG(g) instead of

∫
G f(g)dg.

Unitary representations

We now come to the definition of unitary representations of locally compact groups. The nice
representation theory of compact groups will play such an important role in this work that it
deserves some extra treatment — see Chapter 4 for this.

Again, letG be a locally compact group. A unitary representation ofG is a homomorphism
σ from G into the group U(Vσ) of unitary operators on a Hilbert space Vσ that is continuous
with respect to the strong operator topology, which means that G → Vσ, x 7→ σ(x)ξ is
continuous for every ξ ∈ Vσ. The dimension of the space Vσ is denoted by dimσ and is called
the dimension of σ. We often omit the term “unitary”.

The most important examples are the left and right regular representation, denoted by λG

and %G, respectively, which represent G on the unitary operators on L2(G) and are defined
by

(λGx f)(g) = f(x−1g) for all f ∈ L2(G), x, g ∈ G,
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and
(%Gx f)(g) = ∆(x)

1
2 f(gx) for all f ∈ L2(G), x, g ∈ G.

Two representations σ, π of G are said to be unitarily equivalent (notation: σ ≈ π) if there
exists a unitary operator U : Vσ → Vπ such that

Uσ(x)U−1 = π(x) for all x ∈ G.

The collection of equivalence classes of unitary representations of G (with limited cardinality
of the involved Hilbert spaces) is denoted by Rep(G). For the sake of readability we will not
make a notational difference between a representation σ of G and its class in Rep(G).

Subrepresentations and irreducible representations

When working with group representations it is often desirable to split a given representation
up into “smaller” ones, and of course it is also interesting to know which ones are “smallest”.
This is implemented with the following notion of subrepresentations and irreducible repre-
sentations. If σ is a unitary representation of G, then a closed subspace M of Vσ is called
invariant for σ if σ(x)M ⊆M for all x ∈ G. If M is a nonzero invariant subspace for σ, then
there is a representation σ|M of G on M given by σ|M (x) = σ(x)|M for all x ∈ G.

A unitary representation π of G is said to be a subrepresentation of σ, or to be contained
in σ, notated by π ≤ σ, if there exists an invariant subspace M ≤ Vσ such that π = σ|M .
We are often a bit sloppy and also use this notation if π is just equivalent to σ|M . A unitary
representation σ of a locally compact group G is said to be irreducible if it does not admit any
invariant subspaces other than Vσ and {0}. Otherwise, σ is called reducible. If G is compact,
then every irreducible representation of G is finite-dimensional, and every representation of
G is a direct sum of irreducibles.

The collection of unitary equivalence classes of irreducible representations of a locally
compact group G is called the spectrum of G and is denoted by Ĝ.

Schur’s Lemma

The following criterion for irreducibility is fundamental, and many of the results which we
will present in Chapter 4 are based on it. Whenever π and σ are unitary representations
of a locally compact group G, then C(π, σ) denotes the set of all T ∈ B(Vπ.Vσ) that satisfy
Tπ(g) = σ(g)T for all g ∈ G. If σ = π we just write C(π) instead of C(π, σ).

Lemma 1.2.1 (Schur’s lemma). Let π and σ be irreducible representations of a locally
compact group G.

(i) π is irreducible if and only if C(π) contains only scalar multiples of the identity.

(ii) If π and σ are equivalent, then C(π, σ) is one-dimensional; otherwise, C(π, σ) = {0}.

The dual of a representation

We will later, when we want to decompose the space L2(K) for a compact group K, need the
following notion of the dual of a given representation: Let σ be a unitary representation of
G. Recall that the Hilbert space dual of the space Vσ of σ is given by

V ∗σ = {ξ∗ | ξ ∈ Vσ}
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with the linear operations and the inner product given by

λξ∗ + µη∗ = (λ̄ξ + µ̄η)∗, 〈ξ∗|η∗〉V ∗σ = 〈η|ξ〉Vσ

for all λ, µ ∈ C and ξ, η ∈ Vσ. The dual representation σ∗ : G→ U(V ∗σ ) of σ is now given by
σ∗(g)ξ∗ = (σ(g)ξ)∗ for all g ∈ G and ξ ∈ Vσ.

1.3 C∗-algebras and their representations

We now introduce some material on representations of C∗-algebras and the topologies of the
spaces Rep(A) and Â. For precise definitions and proofs the reader may consult, for instance,
[Dix77] or [Mur90]. Some of the terms and notations of Section 1.2 on page 7, like equivalence
of representations or subrepresentations, can be transferred directly to C∗-algebras, and we
do so without further notice.

The spaces Rep(A) and Â

In the following let A be a C∗-algebra. A representation of A is a ∗-homomorphism A→ B(V )
for some Hilbert space V . We denote by Rep(A) the set of all unitary equivalence classes of
nondegenerate ∗-representations, and by Â the spectrum of A, i.e., the subset of all unitary
equivalence classes of irreducible ∗-representations of A.

To define topologies on these sets, we first introduce topologies on the sets I(A) of closed
two-sided ideals in A, and on Prim(A) := {kerπ | π ∈ Â}, the primitive ideal space of A.

For every I ∈ I(A) let U(I) := {J ∈ I(A) | J \ I 6= ∅}, then {U(I) | I ∈ I(A)} forms a
sub-basis for the Fell topology on I(A). The Fell topology on Rep(A) is defined as the initial
topology via the map Rep(A) → I(A), π 7→ kerπ. Restriction to Prim(A) respectively Â
yields the usual Jacobson topology. Recall that the Jacobson topology can also be defined
directly via the closure operation given by

R :=

{
J ∈ Prim(A) |

⋂
I∈R

I ⊆ J

}

for every R ⊆ Prim(A). This leads us to the concept of weak containment, which will give a
convenient description of convergence with respect to the Fell topology:

Definition 1.3.1. An element π ∈ Rep(A) is said to be weakly contained in a subset R of
Rep(A) if ⋂

%∈R
ker % ⊆ kerπ.

This is denoted by π ≺ R. If R = {%}, we simply write π ≺ %. Two subsets R,S of Rep(A)
are said to be weakly equivalent if % ≺ S for all % ∈ R and σ ≺ R for all σ ∈ S.

The following two results are Propositions 1.2 and 1.3 in [Fel64], and they characterize
convergence in Rep(A) in terms of weak containment:

Proposition 1.3.2. Suppose that A is a C∗-algebra, that (πν)ν∈N is a net in Rep(A) and
that π ∈ Rep(A).
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(i) Then πν → π in the Fell topology if and only if π is weakly contained in every subnet
of (πν)ν∈N .

(ii) If πν → π, then πν → % for every % ∈ Rep(A) which is weakly contained in π.

It is useful to keep the following fact in mind, a proof of which can, for instance, be found
in Paragraph 3.3.8 of [Dix77].

Remark 1.3.3. For every C∗-algebra A the spectrum Â is a locally compact (not necessarily
Hausdorff) space.

The spaces Rep(G) and Ĝ

If G is a locally compact group, then the unitary representations of G correspond to the
non-degenerate representations of the group C∗-algebra C∗(G) (see page 12), and so Rep(G)
and Ĝ can be identified with Rep(C∗(G)) and C∗(G)̂ , respectively. Hence, the preceding
concepts of the Fell topology, the Jacobson topology, and weak containment all carry over to
the group situation.

In case of a compact group there is a nice criterion for convergence of a net of represen-
tations to an irreducible representation. It is taken from [EE], but since it is very important
to some of our work, we will also present the proof in the end of Chapter 4.

Lemma 1.3.4 (Lemma 4.8 in [EE]). Let K be a compact group, let (πν)ν∈N be a net in
Rep(K), and let σ ∈ K̂. The following statements are equivalent:

(i) πν → σ;

(ii) There exists an index ν0 ∈ N such that σ ≤ πν for all ν ∈ N≥ν0 .

Weak containment in terms of positive functionals

A very useful characterization of weak containment for representations of C∗-algebras can be
obtained using positive functionals which are associated with ∗-representations. Analogous
results can be obtained for group representations (without passing to the group C∗-algebra)
using functions of positive type, but we will only need and discuss these in the context of
subgroup representations, see Section 2.2. The following material is based on [Fel60].

Definition 1.3.5. Let A be a C∗-algebra. Then a positive functional ϕ is said to be associated
with an element π ∈ Rep(A) if there exists an element ξ ∈ Vπ such that

ϕ(a) = 〈π(a)ξ, ξ〉

for all a ∈ A. If R ⊆ Rep(A), then ϕ is associated with R if there exists % ∈ R such that ϕ is
associated with %.

Remark 1.3.6. If ϕ, π, and ξ are as in the previous definition, then ‖ϕ‖ = ‖ξ‖2, because if
(uν)ν∈N is an approximate unit for A, then

‖ϕ‖ = lim
ν
ϕ(uν) = lim

ν
〈π(uν)ξ, ξ〉 = 〈ξ, ξ〉 = ‖ξ‖2.

The following result is a special case of Fell’s Equivalence Theorem for convergence of
representations, which is Theorem 1.2 in [Fel60].
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Proposition 1.3.7 (Lemma 2.2 in [Fel62b]). Let A be a C∗-algebra, let B ⊆ Rep(A) and let
π ∈ Â. Then the following conditions are equivalent:

(i) π is weakly contained in B;

(ii) There exists a nonzero positive functional associated with π which is a weak∗ limit of
finite linear combinations of positive functionals associated with B;

(iii) Every nonzero positive functional ϕ associated with π is a weak∗ limit of a net of positive
functionals (ϕν)ν∈N associated with B such that ‖ϕν‖ ≤ ‖ϕ‖ for all ν ∈ N .

In case that π is a general element of Rep(A), one has to work with “a net of finite sums
of positive functionals” in (iii).

1.4 Crossed products and generalized fixed point algebras

We give a short account of some aspects of covariant systems, in particular of transformation
group C∗-algebras, which we need in this work. Background material can be found in [Ech]
or [Wil07]. We also discuss generalized fixed point algebras and some of their properties; this
treatment is based on [EE].

Covariant systems, covariant representations, and crossed products

A covariant system (A,G, α) consists of a C∗-algebra A, a locally compact group G, and a
strongly continuous homomorphism α : G → Aut(A), i.e., the map g 7→ αg(a) is continuous
for every a ∈ A. A covariant representation of (A,G, α) is a pair (%, U), where % : A→ B(V )
is a ∗-representation and U is a unitary representation of G on the same Hilbert space, such
that

%(αs(a)) = Usπ(a)U−1
s

for all s ∈ G and a ∈ A. We say that (%, U) is nondegenerate if % is nondegenerate, and
denote the set of all nondegenerate covariant representations of (A,G, α) by Rep(A,G).

For the construction of the crossed product Aoα G we start with Cc(G,A) and turn this
space into a ∗-algebra by defining convolution and involution by

f ∗ g(s) :=

∫
G
f(t)αt(g(t−1s))dµ(t), f∗(s) := ∆(s−1)αs(f(s−1))∗

for all f, g ∈ Cc(G,A) and all s ∈ G. If now (%, U) is a covariant representation of (A,G, α)
on some Hilbert space V , then we can construct a ∗-representation of Cc(G,A) on the same
Hilbert space by defining the integrated form

%o U(f) :=

∫
G
%(f(s))Usdµ(s)

for every f ∈ Cc(G,A).
Since every ∗-representation % : A→ B(V%) induces a covariant representation of (A,G, α)

on the Hilbert space L2(G,V%), we are not talking about the empty set here, and can define

‖f‖ := sup{‖%o U(f)‖ | (%, U) is a covariant representation of (A,G, α)} (1.4.1)
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for every f ∈ Cc(G,A). This defines a norm on Cc(G,A), which is called the universal norm.
The completion of Cc(G,A) with respect to this norm is a C∗-algebra, which is called the
crossed product of A by G and is denoted by A oα G. It is a useful fact that the crossed
product Aoα G contains Cc(G,A) as a dense subset.

Another possibility to obtain the crossed product is to define

‖f‖1 :=

∫
G
‖f(s)‖dµ(s)

for every f ∈ Cc(G,A). This also is a norm on Cc(G,A), and the crossed product is the
enveloping C∗-algebra of the completion L1(G,A) of Cc(G,A) with respect to ‖·‖1.

Using the first definition, it follows directly from (1.4.1) that every integrated form %oU
of a covariant representation (%, U) can be extended to a ∗-representation of Aoα G.

For nondegenerate ∗-representations, there is also a converse to this statement which uses
the canonical inclusions ιA and ιG of A and G into the multiplier algebra M(Aoα G) given
by

(ιA(a)f)(s) = af(s), (fιA(a))(s) = f(s)αs(a)

(ιG(t)f)(s) = αt(f(t−1s)), (fιG(t))(s) = ∆(t−1)f(st−1) (1.4.2)

for all f ∈ Cc(G,A), a ∈ A, and s, t ∈ G. These formulas extend to Aoα G.
If now Φ is a nondegenerate ∗-representation of A oα G, then ιA and ιG can be used to

induce the representations
% := Φ ◦ ιA, U := Φ ◦ ιG

of A and G, respectively. A calculation shows that (%, U) is then a nondegenerate covariant
representation of (A,G, α) and that Φ = %o U .

Remark 1.4.1. Since this is a special case of induction via bimodules as described in Sec-
tion 3.3 below, the maps

Rep(Aoα G)→ Rep(A), %o U 7→ %

and
Rep(Aoα G)→ Rep(G), %o U 7→ U

are continuous.

The group C∗-algebra C∗(G) of a locally compact group G

To every locally compact group G we can associate the covariant system (C, G, id), and the
resulting crossed product Coid G is nothing but the group C∗-algebra C∗(G). The covariant
representations of (C, G, id) correspond to the unitary representations of G, and the integrated
form of a unitary representation U of G is just given by

idoU(f) =

∫
G
f(s)Usdµ(s)

for every f ∈ Cc(G).
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Transformation group C∗-algebras

Transformation group C∗-algebras constitute an important class of examples for crossed prod-
ucts, and in the special case that they arise from a proper G-space X, they are our main object
of study in this work.

Suppose now that X is a G-space. Then the action of G on X gives rise to an action of
G on C0(X) via left translation defined by s · f(t) := f(s−1t), and we can form the crossed
product C0(X)olt G. Since we won’t consider any other action on C0(X) we omit the lt and
simply write C0(X) oG.

It is shown in Section 2.3 in [Wil07] that Cc(G×X) is a dense ∗-subalgebra of Cc(G,C0(X)).
The formulas for convolution and involution then read

f ∗ g(s, x) =

∫
G
f(t, x)g(t−1s, t−1x)dµ(t),

f∗(s, x) = ∆(s−1)f(s−1, s−1x)

for all f ∈ Cc(G ×X), s ∈ G, and x ∈ X. In case of a proper G-space X it is well known,
and we mention it in Example A.1.1, that C0(X) o G is a C0(G\X)-algebra with fibre over
each Gx given by C0(Gx) oG. In the following we show how this fact can be obtained from
a very general construction of C0(G\X)-algebras.

Generalized fixed point algebras

The material of this and the following section is taken from [EE], where one can also find
references to older and partly more general treatments of generalized fixed point algebras.
These algebras are the basis of our description of Stab(X )̂ as the spectrum of a C∗-algebra,
and they are also essential for Echterhoff and Emerson’s work on proper G-spaces with Palais’
slice property.

Assume that X is a proper G-space and that G acts on a C∗-algebra B with an action
β : G→ Aut(B). If the set

{F ∈ Cb(X,B) | ∀g ∈ G, x ∈ X : F (gx) = βg(F (x)) and Gx 7→ ‖F (x)‖ ∈ C0(G\X)}

is equipped with pointwise addition, multiplication, involution, and the supremum norm, it
becomes a C∗-algebra which is denoted by C0(X ×G B).

Lemma 1.4.2 (Lemma 2.2 in [EE]). The C∗-algebra C0(X ×G B) is a C0(G\X)-algebra,
where the fibre over each orbit Gx is given by the fixed point algebra BGx .

In the proof it is shown that C0(X×GB) is a C0(G\X)-algebra with fibre over Gx given by
C0(Gx×G B), and that such a fibre is isomorphic to BGx via the evaluation map F 7→ F (x).

To use this for a description of C0(X)oG we consider the following situation: Let a locally
compact group G act on itself by left translation and equip K := K(L2(G)) with the G-action
given by Ad(%) : G→ Aut(K), where % is the right regular representation from Example 1.2.
Then the crossed product C0(G) olt G can be described as follows:

Remark 1.4.3. The extended version of the Stone-von Neumann Theorem (see Theorem C.34
in [RW98]) yields an isomorphism

M o λG : C0(G) olt G→ K,
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where M is the representation by multiplication operators. Since the right translation action
rt of G on C0(G) commutes with lt, it induces an action r̃t of G on C0(G)oltG which is given
by r̃tg(ϕ)(h) = rtg(ϕ(h)) for all ϕ ∈ Cc(G,C0(G)), g, h ∈ G. A calculation shows that

M o λG(r̃tg(ϕ)) = %G(g)
(
M o λG(ϕ)

)
%G(g−1)

for all g ∈ G and ϕ ∈ C0(G) olt G. If K is a compact subgroup of G, then it follows that
an element ϕ ∈ C0(G) olt G ∼= K is contained in the fixed point algebra KK if and only if
ϕ ∈ C0(G/K) oG, so we obtain an isomorphism

C0(G/K) oG ∼= KK , (1.4.3)

which will be used in the explicit description of KK in Lemma 7.3.1. See [EE] for details.

If now X is a proper G-space and the C∗-algebra B from Lemma 1.4.2 and the text
preceding it is replaced by K with the G-action given by Ad(%), then Echterhoff and Emerson
prove that

C0(X) oG ∼= C0(X ×G,Ad% K). (1.4.4)

Combined with Lemma 1.4.2 this yields that C0(X) o G is a C0(G\X)-algebra with fibre
at an orbit Gx given by C0(Gx) o G ∼= KGx . Echterhoff and Emerson also give a concrete
description of these fibres, see Lemma 7.3.1.

We will consider a special case where there is an easier description of the generalized fixed
point algebras C0(X ×G B):

Topological fundamental domains

For reasons of compatibility with later usage of this material, it is for the moment inconvenient
to call our G-space X. So we name it Y for now.

Definition 1.4.4. Let Y be a (not necessarily locally compact) G-space. A closed subspace
Z ⊆ Y is said to be a topological fundamental domain for Y if the map Z → G\Y, z 7→ Gz
is a homeomorphism.

Echterhoff and Emerson prove the following nice consequence of Lemma 1.4.2:

Proposition 1.4.5 (Proposition 2.7 in [EE]). If Z ⊆ Y is a topological fundamental domain
for a proper G-space Y , and if B is any G-algebra, then there is an isomorphism

C0(Y ×G B) ∼= {f ∈ C0(Z,B) | ∀z ∈ Z : f(z) ∈ BGz}

given by F 7→ F |Z .

We are of course interested in the following special case, where G acts on K = K(L2(G))
via Ad% as above.

Corollary 1.4.6. Suppose again that Z is a topological fundamental domain for a proper
G-space Y . Then

C0(Y ) oG ∼= C0(Y ×G,Ad% K) ∼= {f ∈ C0(Z,K) | ∀z ∈ Z : f(z) ∈ KGz}. (1.4.5)

Proof. The first isomorphism is as in (1.4.4), the second one comes from Proposition 1.4.5
above.
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1.5 Induced representations of covariant systems

The concept of induced representations of covariant systems is of central importance in this
work because it gives rise to the bijection indG between our cataloguing space G\Stab(X )̂
and the space we want to analyze, namely (C0(X) oG)̂ .

Suppose that (A,G, α) is a covariant system and that H is a closed subgroup of G.
There exists a right-Hilbert Aoα G–Aoα|H H bimodule (see, for instance, Appendix B.1 of
[EKQR06]). Using the methods of Section 3.3 on induction via bimodules, this can be used to
induce representations of Aoα|HH up to representations of AoαG. In our situation it will be
more useful to have a concrete realization of induced representations of crossed products, as
given by Blattner in [Bla61]. To avoid technicalities, we restrict our treatment to the special
cases we actually need, although most of the statements below are also true in more general
situations.

Nice treatments of this material which deal both with the bimodule approach and with
Blattner’s realization, are given in [Ech] and [Wil07]. The case of group representations is
also dealt with in [Fol95].

Proposition/Definition 1.5.1. Let (A,G, α) be a covariant system, let H be a compact
subgroup of G, and let (%, U) be a covariant representation of (A,H,α|H) on a Hilbert space
VU . Then

HindU :=
{
ξ ∈ L2(G,VU ) | ∀g ∈ G, h ∈ H : ξ(gh) = Uh−1ξ(g)

}
defines a Hilbert space with inner product given by

〈ξ1, ξ2〉 :=

∫
G
〈ξ1(s), ξ2(s)〉VUds for all ξ1, ξ2 ∈ HindU . (1.5.1)

On this space we can define a covariant representation (π, indGH U) of (A,G, α) by

(π(a)ξ)(g) := %(αg−1(a))ξ(g) for all a ∈ A, ξ ∈ HindU , g ∈ G,
((indGH U)g)ξ(s) := ξ(g−1s) for all g, s ∈ G, ξ ∈ HindU .

We often denote the representation π o indGH U by indGH(%o U).

This construction is a special case of induction of covariant representations from a closed
(not necessarily compact) subgroup H of G. In that more general situation one has to work
in some modular functions and has to make some precautions to ensure that the integral in
(1.5.1) exists. For us, the compact case will be sufficient.

We continue with the presentation of several important and useful results on induced
representations.

Proposition 1.5.2. Induction of representations preserves unitary equivalence, direct sums,
and containment of representations.

The following result on induction and containment of irreducible representations of com-
pact groups will be used many times in this work and plays a crucial role both in the proof
that our definition of convergence in Stab(X )̂ is valid, and also in the proof of openness of
indG.
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Theorem 1.5.3 (Frobenius Reciprocity Theorem). Let K be a compact group, let H be a
closed subgroup of K, let σ be an irreducible representation of K, and let τ be an irreducible
representation of H. Then τ ≤ σ|H if and only if σ ≤ indKH τ . More precisely, the multiplicity
of τ in σ|H equals the multiplicity of σ in indKH τ .

The following theorem says that induction can be performed in “steps” or “stages”.

Theorem 1.5.4. Let (A,G, α) be a covariant system, let L ≤ H ≤ G be compact subgroups,
and let %o U be a representation of Ao L. Then

indGL (%o U) ≈ indGH(indHL (%o U)).

The following statement is an immediate consequence of the fact that induction via bi-
modules is continuous (see [Ech]).

Theorem 1.5.5. Let (A,G, α) be a covariant system and let H ≤ G be a compact subgroup.
Then the map

Rep(AoH)→ Rep(AoG), %o U 7→ indGH(%o U)

is continuous with respect to the Fell topologies.

Since we will have to deal with varying subgroups, we need a refined version of this, see
Proposition 2.2.5 in the section on subgroup representations. We close this section with some
examples which we will need later on. For more general examples the reader may consult the
literature.

Examples 1.5.6. (i) In case of a trivial covariant system (C, G, id), the construction from
Proposition/Definition 1.5.1 reduces to the case of induced group representations.

(ii) If G is a locally compact group acting properly on a locally compact space X, then, for
every x ∈ X, every compact subgroup H of Gx, and every unitary representation σH of
H, induction of the representation evxoσH of C0(X) oH yields the representation

πx,σH := indGH(evxoσH) = P x o indGH σH

of C0(X) oG, where P x is given by

P x(ϕ)ξ(g) = evx(g−1 · ϕ)ξ(g) = ϕ(gx)ξ(g)

for all ϕ ∈ C0(X), ξ ∈ HindσH , and g ∈ G. If we only induce up to Gx, then it follows
from the definition of P x that

P x o indGxH σH = evxo indGxH σH .

Notice that we write evx not only for the point evaluation representation of C0(X) on
C, but also if evx acts as multiples of the identity on any Hilbert space.

(iii) Suppose again that X is a proper G-space, that x ∈ X and that H is a closed subgroup

of Gx. Let σH ∈ Ĥ and σ ∈ Ĝx be such that σH ≤ σ|H . By Frobenius reciprocity
theorem, this implies that σ ≤ indGxH σH . If we only induce up to Gx, we have

P x(ϕ)ξ = evx(ϕ)ξ = ϕ(x)ξ

for all ϕ ∈ C0(X) and all ξ ∈ HindσH . This shows that P x leaves subspaces of HindσH

invariant, and thus σ ≤ indGxH σH implies that

evxoσ ≤ evxo indGxH σH .

We will use this observation in the proof of Proposition 2.4.2.
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Chapter 2

The space Stab(X )̂ and continuity of
indG

This chapter begins with a short motivation why we consider the space Stab(X )̂ at all and
a short overview of several ways to obtain a topology on it. In Section 2.2 we introduce the
concepts of subgroup C∗-algebras and their representation spaces, which in Section 2.3 will
be used to define a topology and a G-action on Stab(X )̂ . That section closes with a short
discussion of the Mackey-Rieffel-Green theorem which states that induction of representations
yields a bijective map indG between the orbit space G\Stab(X )̂ and (C0(X)oG)̂ . To show
that there is hope that the map indG becomes a homeomorphism with respect to the quotient
topology on G\Stab(X )̂ and the Jacobson topology on (C0(X)oG)̂ , we give in Section 2.4
the proof of continuity of indG. To see that indG is also open we will have to work much
more, which we will do in the following chapters.

Section 2.5 contains some statements on Stab(X )̂ in case that the stabilizer map x 7→ Gx
is continuous.

2.1 The space Stab(X )̂

Why Stab(X )̂ ?

Suppose that X is a proper G-space. It is our aim to find a description for the spectrum
of C0(X) o G and its Jacobson topology. A classical theorem based on results by Mackey,
Rieffel, and Green states that, if S is a section for the orbit space G\X, then there exists a
bijection ⋃

x∈S
Ĝx → (C0(X) oG)̂ , σ 7→ indGGx(evxoσ) = πx,σ, (2.1.1)

see Example 1.5.6 (ii) for the notation and, for instance, [Ech] for a proof. This motivates us
to make the following definition:

Definition 2.1.1. Let X be a proper G-space. Define

Stab(X )̂ := {(x,Gx, σ) | x ∈ X, σ ∈ Ĝx}.

There is some redundancy in writing down the stabilizer subgroup Gx here, but this
notation will be useful when we view Stab(X )̂ as a subset of X × S(G)̂ , where S(G)̂ is
the space of irreducible subgroup representations from Definition 2.2.4 below.
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Notice that the definition of Stab(X )̂ could be made for general locally compact G-spaces
X, but since all our applications need the assumption of properness, we restrict ourselves to
the treatment of proper G-actions.

To get closer to the domain of the map in (2.1.1), we define an action of G on Stab(X )̂
by g(x,Gx, σ) = (gx,Ggx, gσ) for all g ∈ G and (x,Gx, σ) ∈ Stab(X )̂ , where gσ is given
by gσ(h) := σ(g−1hg) for all h ∈ Ggx = gGxg

−1. At this point, this is not really a G-
action in our sense because we lack a topology on Stab(X )̂ , but this will be mended in
Section 2.3, where this material will be discussed in detail. We denote the class of an element
(x,Gx, σ) ∈ Stab(X )̂ in the orbit space G\Stab(X )̂ by [x,Gx, σ].

Combining this with the map in (2.1.1), we obtain a bijection

G\Stab(X )̂ → (C0(X) oG)̂ , [x,Gx, σ]→ πx,σ,

which we denote by indG.

Some ideas for defining a topology on Stab(X )̂

Of course, the knowledge of the bijection indG motivates us to define a topology on Stab(X )̂
in such a way that the quotient topology on G\Stab(X )̂ coincides with the topology induced
by indG from the Jacobson topology on (C0(X)oG)̂ . As mentioned before there are several
ways to do this. The most elegant is certainly the following approach, the idea of which was
communicated to me by Siegfried Echterhoff.

Let X be a proper G-space and suppose that G acts on K := K(L2(G)) via Ad(%) as in
the text preceding Remark 1.4.3. Then define

A := {f ∈ C0(X,K) | ∀x ∈ X : f(x) ∈ KGx}. (2.1.2)

We will show in Chapter 6 that A is a C0(X)-algebra with fibre KGx at every x ∈ X. Using
Proposition A.1.3 on the structure of the spectrum of a C0(X)-algebra and Echterhoff and
Emerson’s decomposition of the fibres KGx , which we present in Lemma 7.3.1, we obtain

Â =
∐
x∈X

(KGx )̂ =
∐
x∈X

⊕
σ∈Ĝx

K(Hindσ )̂ =
∐
x∈X
σ∈Ĝx

K(Hindσ )̂ =
∐
x∈X
σ∈Ĝx

{iσ}, (2.1.3)

where iσ is the unique irreducible representation of K(Hindσ), namely the inclusion into
B(Hindσ). It is clear that the right hand side equals Stab(X )̂ as a set, so we can equip
Stab(X )̂ with a topology by transferring the Jacobson topology from Â. This procedure
shows that Stab(X )̂ can be topologized in a very natural way.

However, to prove that Stab(X )̂ carries a topology as desired, we will use the space S(G)̂
of irreducible subgroup representations of G equipped with the Fell topology, as indicated in
the introduction. The preliminaries for the construction of this topology and its definition
are given in the following sections. In Chapter 6 we will prove that this topology coincides
with the topology obtained via Â as above.

Echterhoff and Emerson show in [EE] that, under the assumption of Palais’ slice property,
one can define a topology on Stab(X )̂ in terms of open neighborhood bases. We present
their approach in Chapter 7 and also show that their and our topology are the same if Palais’
slice property holds.
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2.2 Subgroup C∗-algebras and subgroup representations

In this section we give a short account of the concept of the subgroup C∗-algebra C∗(S(G), A)
associated to a covariant system (A,G, α), its representation space Rep(S(G), A), and of a
useful description of the topology on Rep(S(G), A). This is the stuff that our topology on
Stab(X )̂ will be made of. First, we need a topology on the set of closed subgroups of a given
locally compact group.

The space K (G)

The space K (G) of closed subgroups of a given locally compact group G can be equipped
with the Fell topology, which can be more generally defined on the set of closed subsets of a
topological space X. Fell introduced this topology in [Fel62a].

Let X be any topological space and let C (X) denote the set of all closed subsets of X.
For every finite collection F of open subsets of X and for every compact C ⊆ X define

U(F , C) := {K ∈ C (X) | ∀F ∈ F : F ∩K 6= ∅ and C ∩K = ∅}.

These sets form a basis for the so-called compact-open topology or Fell topology on C (X),
which turns C (X) into a compact (not necessarily Hausdorff) space.

If X is locally compact there is the following nice description of convergence in C (X):

Lemma 2.2.1 (Lemma H.2 in [Wil07]). Let X be a locally compact (not necessarily Haus-
dorff) space. A net (Kν)ν∈N in C (X) converges to K ∈ C (X) if and only if the following
conditions hold:

(i) if kν ∈ Kν and k ∈ X satisfy kν → k, then k ∈ K;

(ii) for every k ∈ K there are a subnet (Kj)j∈J and elements kj ∈ Kj such that kj → k in
X.

Combined with the above, it now follows that C (X) is a compact Hausdorff space whenever
X is a locally compact (not necessarily Hausdorff) space. If we consider the situation of closed
subgroups or closed subspaces of locally compact groups or spaces, respectively, we get the
following easy, but important result:

Corollary 2.2.2. Let G be a locally compact group and let V be a finite-dimensional, hence
also locally compact K-vector space. Then the spaces

K (G) := {K ∈ C (G) | K is a closed subgroup of G}

and
K (V ) := {W ∈ C (V ) | W is a subspace of V }

are closed in C (G) and C (V ), respectively. In particular, K (G) and K (V ) are compact
Hausdorff spaces.

Proof. The proof is a direct application of Lemma 2.2.1. In the group case the details are given
in Corollary H.4 in [Wil07]. We illustrate the idea in the vector space situation. Suppose that
(Wν)ν∈N is a net in K (V ) which converges to an element W ∈ C (V ). Then W is a closed
subset of V , and it is left to show that W is a vector subspace of V . It already follows from
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the group case that W is a subgroup of V . Let now w ∈W and λ ∈ K. By Lemma 2.2.1(ii),
there exists a subnet (Wj)j∈J of (Wν)ν∈N such that there are elements wj ∈ Wj for every
j ∈ J such that wj → w in V . Since λwj ∈Wj for every j ∈ J and λwj → λw in V , it follows
from Lemma 2.2.1(i) that λw ∈ W . Thus, W ∈ K (V ), and we have proven that K (V ) is a
closed subset of the compact Hausdorff space C (V ), as required.

The following application of the previous results to nets of stabilizer subgroups will be
important when we define convergence in the space Stab(X )̂ later on.

Lemma 2.2.3. Let G be a locally compact group that acts on a locally compact Hausdorff
space X. Let (xν)ν∈N be a net in X which converges to an element x ∈ X. Then the net
(Gν)ν∈N of stabilizer subgroups has a subnet which converges to a subgroup of Gx.

Proof. Since the space K (G) is compact, we can, after passing to a subnet and relabeling,
assume that (Gν)ν∈N converges to an element H in K (G). We show that H ≤ Gx. Let
g ∈ H. By Lemma 2.2.1(ii) we can, after passing to a subnet and relabeling again, assume
that there are elements gν ∈ Gν for every ν ∈ N such that gν → g. Now, as gνxν = xν for all
ν ∈ N , the net (gνxν)ν∈N converges both to gx and to x. Since X is Hausdorff, this implies
that gx = x and thus g ∈ Gx, as required.

Subgroup C∗-algebras of covariant systems and subgroup representations

The following description of subgroup C∗-algebras and subgroup representations is based on
Section 2 of [Ech92], but to keep this exposition short, we reduce the general treatment which
is given there to the setting we need. The case A = C is also treated in [Fel64].

In the following let (A,G, α) be a covariant system. We start by defining the set

S(G) := {(H,h) ∈ K (G)×G | h ∈ H}.

It follows from Lemma 2.2.1 on convergence in K (G) that S(G) is a closed subset of K (G)×G
and thus is a locally compact Hausdorff space. It is shown in [Ech92] that Cc(S(G), A)
becomes a normed ∗-algebra if convolution, involution, and the norm are pointwise given by
the operations on Cc(H,A) (for every H ∈ K (G)) as in the definition of crossed products on
page 11. Explicitly, this gives

(f ∗ g)(H,h) = (f(H, ·) ∗ g(H, ··))(h) =

∫
H
f(H, t)αt(g(H, t−1h))dt,

f∗(H,h) = f(H, ·)∗(h) = ∆H(h−1)αh(f(h−1)∗),

‖f‖1 = sup
L∈K (G)

‖f(L, ·)‖1 = sup
L∈K (G)

∫
L
‖f(L, l)‖Adl

for all f, g ∈ Cc(S(G), A) and for all (H,h) ∈ S(G). Note that in the third line the symbol
‖·‖1 stands both for the norm on Cc(S(G), A) and the one on Cc(L,A) for every L ∈ K (G).
Let L1(S(G), A) denote the completion of Cc(S(G), A) with respect to ‖·‖1.

We now show that every pair (H, %), with H ∈ K (G) and % ∈ Rep(A,H), can be
interpreted as a ∗-representation of L1(S(G), A). Let (H, %) be such a pair. For every function
F ∈ Cc(S(G), A) define FH ∈ Cc(H,A) by FH(h) := F (H,h) for all h ∈ H. Then the
map F 7→ FH extends to a norm decreasing ∗-homomorphism of L1(S(G), A) onto a dense
subalgebra of L1(H,A), and

%̃(F ) := %(FH) for all F ∈ L1(S(G), A)
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defines the desired ∗-representation of L1(S(G), A).

Definition 2.2.4. The enveloping C∗-algebra of L1(S(G), A) is called the subgroup C∗-
algebra of (A,G, α) and is denoted by C∗(S(G), A).

The pairs (H, %) with H ∈ K (G) and % ∈ Rep(A,H) are called subgroup representations
of C∗(S(G), A). We denote the space of all subgroup representations of C∗(S(G), A) by
Rep(S(G), A) and give it the topology induced from Rep(C∗(S(G), A)).

The subspace of all subgroup representations (H, %) with % ∈ Ĥ will be denoted by
(S(G), A)̂ .

It is shown in Proposition 2 in [Ech92] that the irreducible representations of C∗(S(G), A)
all come from elements of (S(G), A)̂ .

The topology on Rep(S(G), A) makes it possible to investigate the continuity of induction
processes where all involved subgroups can vary. The following Proposition, which is part of
Corollary 2 in [Ech92], will be essential in our proof that the map indG is continuous.

Proposition 2.2.5. Let (A,G, α) be a dynamical system. The map

ind: {(K, (H, %)) ∈ K (G)× Rep(S(G), A) | H ≤ K} → Rep(S(G), A),

(K, (H, %)) 7→ (K, indKH %)

is continuous.

A description of the topology on Rep(S(G))

In case of a trivial covariant system (i.e., if A = C) the spaces Rep(S(G)) and S(G)̂ consist
of pairs (K,σ), where K ∈ K(G) and σ ∈ Rep(K) or σ ∈ K̂, respectively. In [Fel64],
Fell characterizes the topology on Rep(S(G)) in terms of a topology on the function space
F (G) :=

⋃
H∈K (G)C(H). We skip the formal definition of the Fell topology on F (G) and

restrict ourselves to the following criterion for convergence:

Lemma 2.2.6 (Lemma 3.2 in [Fel64]). Let G be a locally compact group. Let (fν)ν∈N be a
net in F (G) and let f ∈ F (G). Let H and Hν be the domains of f and fν for every ν ∈ N ,
respectively. Then fν → f if and only if the following conditions hold:

(i) Hν → H in K (G);

(ii) for each subnet (fj)j∈J of (fν)ν∈N and each choice of xj ∈ Hj and x ∈ H with xj → x
it follows that fj(xj)→ f(x).

A function f ∈ F (G) is said to be of positive type and associated with an element
(H,σ) ∈ Rep(S(G)) if the domain of f is H and if there exists a vector ξ ∈ Vσ such that
f(h) = 〈σ(h)ξ, ξ〉 for all h ∈ H.

Theorem 2.2.7 (Theorem 3.1.′ in [Fel64]). Let (Hν , σν)ν∈N be a net in Rep(S(G)) and let
(H,σ) ∈ Rep(S(G)). Then (Hν , σν) → (H,σ) if and only if the following holds: For every
function ϕ of positive type associated with (H,σ) and each subnet of (Hν , σν)ν∈N there exist
a subnet (Hj , σj)j∈J of that subnet and for each j ∈ J a finite sum ϕj of functions of positive
type associated with (Hj , σj), such that ϕj → ϕ in F (G).
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Remarks 2.2.8. (i) If (H,σ) is irreducible, then each ϕj can be chosen to be a function
of positive type associated with (Hj , σj) instead of a finite sum of such functions.

(ii) If H ≤ G and (σν)ν∈N and σ are representations of H, then (H,σν) → (H,σ) in
Rep(S(G)) if and only if σν → σ in Rep(H). This follows directly from Theorem 1.5 in
[Fel60], which is basically a “constant group version” of Theorem 2.2.7 above.

(iii) Suppose that (Hν , σν)→ (H,σ) in Rep(S(G)). Then the above theorem combined with
Proposition 1.3.2 (ii) implies that (Hν , σν) → (H, %) for every % ∈ Rep(H) which is
weakly contained in σ.

Compact subspaces of Rep(S(G))

When we define our topology on the space Stab(X )̂ it will be very important to control
subgroup representations which are in some sense dominated by a fixed subgroup representa-
tion. For this we introduce the following notation, which will be used all over this thesis: If
(L, %), (H,σ) ∈ Rep(S(G)), then

(L, %) ≤ (H,σ) :⇐⇒ L ≤ H and % ≤ σ|L.

Proposition 2.2.9. Let G be a locally compact group. Let (H,σ) ∈ Rep(S(G)) be such that
σ is finite-dimensional. Then the space

Rep(S(G))≤(H,σ) := {(L, %) ∈ Rep(S(G)) | (L, %) ≤ (H,σ)}

is compact (not necessarily Hausdorff) in Rep(S(G)).

Proof. Let (Lν , %ν)ν∈N be a net in Rep(S(G))≤(H,σ). We show that this net has a convergent
subnet. We know from Corollary 2.2.2 that K (G) is compact, so we can pass to a subnet and
relabel to assume that there is L ∈ K (G) such that Lν → L. It is clear from the description
of convergence in K (G) from Lemma 2.2.1 that Lν ≤ H for all ν ∈ N implies that L ≤ H.

For every ν ∈ N , let Vν denote the space of %ν . Since %ν ≤ σ|Lν for every ν ∈ N , we
can without loss of generality assume that each space Vν is a σ|Lν -invariant subspace of Vσ.
Since Vσ is finite-dimensional, Corollary 2.2.2 tells us that K (Vσ) is compact. Hence, we
can pass to a subnet and relabel to assume that there exists a closed subspace V ≤ Vσ with
Vν → V in K (Vσ). It remains to show that V is σ|L-invariant and that (Lν , %ν)ν∈N converges
to (L, (σ|L)|V ) in Rep(S(G)).

For σ|L-invariance of V let l ∈ L and ξ ∈ V . By the description of convergence in K (G)
and K (V ) in Lemma 2.2.1(ii) we can pass to a subnet and relabel twice to assume that there
exist elements lν ∈ Lν and ξν ∈ Vν for all ν ∈ N such that lν → l in G and ξν → ξ in Vσ.
Since

‖σ(lν)ξν − σ(l)ξ‖ ≤ ‖σ(lν)ξν − σ(lν)ξ‖+ ‖σ(lν)ξ − σ(l)ξ‖
≤ ‖ξν − ξ‖+ ‖σ(lν)ξ − σ(l)ξ‖ (2.2.1)

in Vσ for every ν it follows from ξν → ξ and from strong continuity of σ that σ(lν)ξν converges
to σ(l)ξ in Vσ. As σ(lν)ξν is contained in Vν for every ν ∈ N , it follows from Lemma 2.2.1(i)
that σ(l)ξ is contained in V , which shows that V is σ|L-invariant.

It is clear that (L, (σ|L)|V ) ≤ (H,σ), and to show that (Lν , %ν) → (L, (σ|L)|V ) we apply
Fell’s characterization of convergence in Rep(S(G)) as given in Theorem 2.2.7. For this
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suppose that ϕ is a function of positive type associated with (L, (σ|L)|V ), and choose η ∈ V
such that ϕ(k) = 〈σ(k)η, η〉 for all k ∈ L. Suppose that we have passed to a subnet of
(Lν , %ν)ν∈N , and relabeled. As above, we apply the description of convergence in K (Vσ), so
we can pass to a subnet and relabel again to assume that for every ν ∈ N there exists an
element ην ∈ Vν such that ην → η in Vσ. For every ν ∈ N set

ϕν : Lν → C, k 7→ 〈%ν(k)ην , ην〉 = 〈σ(k)ην , ην〉,

then every ϕν is a function of positive type associated with (Lν , %ν), and, since %ν ≤ σ|Lν , it
is also associated with σ|Lν . We apply Lemma 2.2.6 to see that ϕν → ϕ in F (G), and since
we already know that Lν → L, it suffices to show (ii) of Lemma 2.2.6. Suppose that we have
passed to a subnet and relabeled. Let k ∈ L and kν ∈ Lν for all ν ∈ N be such that kν → k.
We have

|ϕ(k)− ϕν(kν)| = |〈σ(k)η, η〉 − 〈σ(kν)ην , ην〉|.

It follows as in (2.2.1) that σ(kν)ην → σ(k)η in Vσ, so it follows from continuity of the scalar
product that ϕν(kν)→ ϕ(k), as required.

We will also need the following lemma on convergence in S(K )̂ for a compact group K:

Lemma 2.2.10. LetK be a compact group. Suppose that (Kν , σν)ν∈N , (K ′, σ′), (Hν , %ν)ν∈N ,
and (H ′, %′) in S(K )̂ satisfy the following conditions:

(i) (Kν , σν)→ (K ′, σ′),

(ii) (Hν , %ν)→ (H ′, %′),

(iii) (Hν , %ν) ≤ (Kν , σν) for all ν ∈ N .

Then (H ′, %′) ≤ (K ′, σ′).

The proof, the idea of which was suggested to me by Siegfried Echterhoff, uses the concept
of characters associated to finite-dimensional representations on compact groups, so we include
the definition and some properties here. For details, the reader may consult [DE09] or [Fol95].
Let K be a compact group and let σ be a finite-dimensional representation of K. Then the
character χσ of σ is defined by

χσ(k) = tr(σ(k))

for all k ∈ K, where tr is the usual trace. Notice that χσ only depends on the class of σ.
If % is a finite-dimensional unitary representation of K such that % ≤ σ, then σ = %⊕σ|V ⊥% ,

and it follows easily that
χσ = χ% + χσ|

V⊥%
.

Using the fact that every representation of a compact group can be decomposed into irre-
ducibles, this leads to

χσ =
∑
τ∈K̂

mult(τ, σ)χτ , (2.2.2)

where mult(τ, σ) denotes the multiplicity of τ in σ. As {χτ | τ ∈ K̂} is an orthonormal system
in L2(K), (2.2.2) implies that

〈χσ, χτ 〉 =

∫
K
χσ(k)χτ (k)dk = mult(τ, σ) (2.2.3)
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for every τ ∈ K̂.
The following lemma shows that convergence in S(K )̂ implies convergence of the corre-

sponding characters and is the key to the proof of Lemma 2.2.10.

Lemma 2.2.11 (Lemma 7.1-B in [Bag68]). Let K be a compact group, and let (Kν , σν)ν∈N
and (K ′, σ′) be in S(K )̂ be such that (Kν , σν) → (K ′, σ′). Then there exists a subnet
(Kj , σj)j∈J of (Kν , σν)ν∈N such that χσj → χσ′ in F (K).

The following statement on continuity of integration on F (K) is a consequence of the
more general Proposition 3.1 in [Fel64], but there is a more direct proof in the compact case
which we present in Appendix A.2. For every f ∈ F (K) let D(f) denote the domain of f .

Proposition 2.2.12. Let K be a compact group. Then the map

F (K)→ C, f 7→
∫
D(f)

f(s)dµD(f)(s)

is continuous.

Now we have collected all ingredients for the proof of Lemma 2.2.10, so let’s put them
together and see what comes out:

Proof of Lemma 2.2.10. Since Hν ≤ Kν for all ν ∈ N and Kν → K ′ in K (K), it follows
immediately from the characterization of convergence in K (K) that H ′ ≤ K ′. It is thus left
to show that %′ ≤ σ′|H′ . By (2.2.3) it suffices to show that 〈χσ′|H′ , χ%′〉 ∈ N. Notice that the
character of the restriction σ′|H′ is just the restriction of the character, i.e., χσ′|H′ = χσ′ |H′ .

By passing to subnets and relabeling twice, if necessary, we can use Lemma 2.2.11 to
assume that χσν → χσ′ and χ%ν → χ%′ in F (K). The characterization of convergence in
F (K) from Lemma 2.2.6 implies that χσν |Hν → χσ′ |H′ and

(χσν |Hν )χ%ν → (χσ′ |H′)χ%′

in F (K). Now Proposition 2.2.12 yields that∫
Hν

χσν (h)χ%ν (h)dµHν (h)→
∫
H′
χσ′(h)χ%′(h)dµH′(h),

and since %ν ≤ σν |Hν implies that∫
Hν

χσν (h)χ%ν (h)dµHν (h) ∈ N

for all ν ∈ N , it follows that

〈χσ′|H′ , χ%′〉 =

∫
H′
χσ′(h)χ%′(h)dµH′(h) ∈ N,

and hence %′ ≤ σ′|H′ .
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A G-action on Rep(S(G))

The space Stab(X )̂ for a properG-spaceX will be equipped with aG-action. Since Stab(X )̂
will be defined as a subset of X×S(G)̂ , it makes sense to start with a G-action on Rep(S(G)).
Here, we don’t need the assumption of properness of the action yet.

Definition 2.2.13. Let X be a locally compact G-space. For every g ∈ G and for every
(H,σ) ∈ Rep(S(G)) define g(H,σ) := (gH, gσ), where gH := gHg−1 and gσ ∈ Rep(gH) is
given by gσ(h) = σ(g−1hg) for all h ∈ gH.

Lemma 2.2.14 (Lemma 2.7 in [Fel64]). The operation of G on Rep(S(G)) defined in the
previous definition is a continuous group action.

Remark 2.2.15. For later use we note that, for all (H, %), (L, σ) ∈ Rep(S(G)) and for all
g ∈ G we have that (H, %) ≤ (L, σ) implies g(H, %) ≤ g(L, σ).

2.3 A topology and a G-action for Stab(X )̂

We now come back to the space Stab(X )̂ from Definition 2.1.1. We view Stab(X )̂ as a
subset of the space X × S(G)̂ and use this identification to define a closure operation on
it, for which we prove that it satisfies the Kuratowski axioms and thus induces a topology.
This topology will, however, in general not coincide with the relative topology induced from
X × S(G)̂ . We will also use the space X × S(G)̂ to define a G-action on Stab(X )̂ . Once
we have that Stab(X )̂ is a G-space we will discuss the Mackey-Rieffel-Green theorem a bit
more thoroughly than we did in the beginning of this chapter.

The topology on Stab(X )̂

We define our topology on Stab(X )̂ in terms of a closure operation. We consider S(G)̂ to
be equipped with the relative topology induced from Rep(S(G)).

Definition 2.3.1. Let X be a proper G-space and let A ⊆ Stab(X )̂ . Define A to be the
set of all (x,Gx, σ) ∈ Stab(X )̂ for which there exist an element (H,σH) ∈ S(G)̂ and a net
(xν , Gν , σν)ν∈N in A such that (H,σH) ≤ (Gx, σ) and (xν , Gν , σν)→ (x,H, σH) in X×S(G)̂ ,
in short,

(xν , Gν , σν)→ (x,H, σH) ≤ (x,Gx, σ).

We often write (x, L, %) ≤ (y,H, σ) for elements (x, L, %) and (y,H, σ) in X ×Rep(S(G))
which satisfy x = y and (L, %) ≤ (H,σ).

Remark 2.3.2. Retain the notation of the previous definition. Then an element (x,Gx, σ) of
Stab(X )̂ is contained in A if and only if there exists (H,σH) ∈ S(G)̂ with (H,σH) ≤ (Gx, σ)
such that (x,H, σH) is contained in the closure of A as a subset of X×S(G)̂ , i.e., the closure
of A in Stab(X )̂ is{

(x,Gx, σ) ∈ Stab(X )̂ | ∃(H,σH) ∈ S(G)̂ : (H,σH) ≤ (Gx, σ) ∧ (x,H, σH) ∈ AX×S(G)̂
}
.

In this notation it becomes clear immediately that the closure of A in Stab(X )̂ is in general
quite different from the closure of A in X × S(G)̂ . We will see in Section 2.5 below that
things become easier if the stabilizer map x 7→ Gx is continuous.
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Proposition 2.3.3. Let X be a proper G-space. Then the operation (·) from the previous
definition defines a closure operation on Stab(X )̂ , that is, complements of closed sets form
a topology on Stab(X )̂ .

Proof. We have to show that (·) satisfies the Kuratowski closure axioms (see for instance
[Kel75], Theorem 8 in Chapter 1), i.e., we have to show that

(i) ∅ = ∅,

(ii) A ⊆ A for all A ⊆ Stab(X )̂ ,

(iii) A ∪B = A ∪B for all A,B ⊆ Stab(X )̂ ,

(iv) A = A for all A ⊆ Stab(X )̂ .

Condition (i) is obviously satisfied, and Condition (ii) holds because for every element (x,Gx, σ)
in Stab(X )̂ , the constant net (xν , Gν , σν)ν∈N with (xν , Gν , σν) = (x,Gx, σ) for every ν ∈ N
converges to (x,Gx, σ) in X × S(G)̂ .

In Condition (iii), the inclusion “⊇” is clear, and “⊆” follows because, for all subsets
A,B ⊆ Stab(X )̂ , every net in A ∪B has a subnet which lies completely in A or completely
in B.

In Condition (iv), the inclusion “⊇” follows from (ii), so it is left to show that A ⊆ A for

every A ⊆ Stab(X )̂ . Let A ⊆ Stab(X )̂ and let (x,Gx, σ) ∈ A. By definition of (·), there
exist (H,σH) ∈ S(G)̂ with (H,σH) ≤ (Gx, σ) and a net (xν , Gν , σν)ν∈N in A such that

(xν , Gν , σν)→ (x,H, σH) ≤ (x,Gx, σ)

in X×S(G)̂ . For every ν ∈ N , there now exist (Hν , σHν ) ∈ S(G)̂ with (Hν , σHν ) ≤ (Gν , σν)
and a net (xν,µ, Gν,µ, σν,µ)µ∈Mν in A such that

(xν,µ, Gν,µ, σν,µ)
µ→ (xν , Hν , σHν ) ≤ (xν , Gν , σν)

in X × S(G)̂ . It suffices to prove the following statement:

(®) There exists an element (H̃, σ
H̃

) ∈ S(G)̂ with (H̃, σ
H̃

) ≤ (Gx, σ), such that a subnet

of (xν , Hν , σHν )ν∈N converges to (x, H̃, σ
H̃

) in X × S(G)̂ .

Since each (xν , Hν , σν) is contained in the closure of A with respect to the topology on
X×S(G)̂ , (®) implies that (x, H̃, σ

H̃
) is contained in the double closure of A in X×S(G)̂ .

Since the Kuratowski axioms hold for the closure operation of any given topology, it follows
that (x, H̃, σ

H̃
) is contained in the closure of A in X × S(G)̂ , and by Remark 2.3.2 we then

have (x,Gx, σ) ∈ A in Stab(X )̂ , as required.
We first prove (®) in the special case that all elements xν , xν,µ lie in a slice at x. To do

this, we apply Abels’ Theorem (Theorem 1.1.7) and the remarks following it to find an open
G-invariant neighborhood Ux of x, a compact subgroup Lx ≤ G, and a local Lx-slice Yx for
x such that Ux ∼= G ×Lx Yx. Suppose now that xν , xν,µ ∈ Yx for all ν ∈ N , µ ∈ Mν . By
Remark 1.1.8 (iii) this implies that Gx ≤ Lx, Gν ≤ Lx, and Gν,µ ≤ Lx for all ν ∈ N , µ ∈Mν .

From (Gν , σν)→ (H,σH) in S(G)̂ we have by continuity of induction (Proposition 2.2.5)
that

indLxGν σν → indLxH σH (2.3.1)
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in Rep(Lx). Using Frobenius reciprocity theorem and induction in steps (Theorems 1.5.3 and
1.5.4) we can conclude that σH ≤ σ|H implies σ ≤ indGxH σH and thus indLxGx σ ≤ indLxH σH .

Let π ∈ L̂x be an irreducible subrepresentation of indLxGx σ, then also π ≤ indLxH σH , and it
follows from (2.3.1) together with Proposition 1.3.2 that

indLxGν σν → π

in Rep(Lx). Now Lemma 1.3.4 implies that, without loss of generality, we can assume that
π ≤ indLxGν σν and hence, by the Frobenius reciprocity theorem, that σν ≤ π|Gν for all ν ∈ N .
Since σHν ≤ σν |Hν , we also have σHν ≤ π|Hν for all ν ∈ N . This shows that (Hν , σHν )ν∈N
is a net in Rep(S(G))≤(Lx,π). As π is irreducible and hence finite-dimensional, we know by
Proposition 2.2.9 that Rep(S(G))≤(Lx,π) is compact. By passing to a subnet and relabeling

we can assume that there exists (H̃, %) in Rep(S(G))≤(Lx,π) such that (Hν , σHν )ν∈N converges

to (H̃, %) in Rep(S(G)). Let σ
H̃

be any irreducible subrepresentation of %, then

(Hν , σHν )→ (H̃, σ
H̃

)

in S(G)̂ . Now (Gν , σν)ν∈N , (H,σH), (Hν , σHν )ν∈N and (H̃, σ
H̃

) satisfy the assumptions of
Lemma 2.2.10, which then yields that

(H̃, σ
H̃

) ≤ (H,σH) ≤ (Gx, σ),

which proves (®) in the special case that all xν , xνµ are contained in a slice Yx at x.
For the proof of (®) in the general case we may without loss of generality assume that

xν , xν,µ ∈ Ux for all ν ∈ N , µ ∈Mν . By passing to subnets and relabeling, where necessary, we
can by Lemma 1.1.9 assume that there exists a net (gν)ν∈N in G with gν → e and gνxν ∈ Yx
for all ν ∈ N . Since, for every ν ∈ N , we have that gνxν,µ → gνxν , we can apply Lemma 1.1.9
again to find nets (gν,µ)µ∈Mν in G such that gν,µ → e and gν,µgνxν,µ ∈ Yx for all ν ∈ N and
µ ∈Mν . By continuity of the G-action on X × Rep(S(G)) we have that

gν(xν , Gν , σν)→ (x,H, σH) ≤ (x,Gx, σ)

and
gν,µgν(xν,µ, Gν,µ, σν,µ)

µ→ gν(xν , Hν , σHν ) ≤ gν(xν , Gν , σν)

for every ν ∈ N , so the special case of (®) implies that, after passing to subnets and relabeling,
if necessary, there exists (H̃, σ

H̃
) ≤ (Gx, σ) such that

gν(xν , Hν , σHν )→ (x, H̃, σ
H̃

)

in X × S(G)̂ . As gν → e, this implies that

(xν , Hν , σHν )→ (x, H̃, σ
H̃

),

which completes the proof of (®) and of the proposition.

Convergence of nets in Stab(X )̂ and G\Stab(X )̂ can be formulated as follows, where
the latter is just an application of the openness of the orbit map Stab(X )̂ → G\Stab(X )̂
as in Remark 1.1.1.
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Remark 2.3.4. (i) Let X be a proper G-space. A net (xν , Gν , σν)ν∈N in Stab(X )̂ con-
verges to (x,Gx, σ) ∈ Stab(X )̂ if and only if every subnet of (xν , Gν , σν)ν∈N has a
subnet (xj , Gj , σj)j∈J such that there exists an element (H,σH) ∈ S(G)̂ satisfying
(H,σH) ≤ (Gx, σ) and (xj , Gj , σj)→ (x,H, σH) in X × S(G)̂ .

Notice that it can in fact happen that different subnets of (xν , Gν , σν)ν∈N converge to
different subelements of (x,Gx, σ) in X × S(G)̂ .

(ii) A net ([xν , Gν , σν ])ν∈N in G\Stab(X )̂ converges to an element [x,Gx, σ] with respect
to the quotient topology if and only if every subnet of ([xν , Gν , σν ])ν∈N has a subnet
([xj , Gj , σj ])j∈J such there are representatives (x,Gx, σ) of [x,Gx, σ] and (xj , Gj , σj) of
[xj , Gj , σj ] for every j ∈ J such that (xj , Gj , σj)→ (x,Gx, σ) in Stab(X )̂ .

Continuity of the G-action on Stab(X )̂

Let X be a proper G-space. Combining this with the G-action on Rep(S(G)) from Defini-
tion 2.2.13 we obtain a G-action on X ×Rep(S(G)). As the G-action on Rep(S(G)) respects
irreducibility it follows that S(G)̂ is a G-invariant subset of Rep(S(G)). Since for all x ∈ X
and g ∈ G we have that g · Gx = gGxg

−1 = Ggx, we get that g(x,Gx, σ) = (gx,Ggx, gσ) is
contained in Stab(X )̂ for all g ∈ G and (x,Gx, σ) ∈ Stab(X )̂ . Hence, in the algebraic sense,
Stab(X )̂ is a G-invariant subspace of the product G-space X ×S(G)̂ , and the action is the
one we already mentioned in Section 2.1. It is left to show that this action is continuous with
respect to the topology on Stab(X )̂ .

Suppose that (xν , Gν , σν)ν∈N and (x,Gx, σ) in Stab(X )̂ , and (H,σH) ∈ S(G)̂ are
such that (xν , Gν , σν) → (x,H, σH) in X × S(G)̂ and (H,σH) ≤ (Gx, σ). If now (gν)ν∈N
converges to g in G, then it follows from continuity of the G-action on X × Rep(S(G)) and
from Remark 2.2.15 that

gν(xν , Gν , σν)→ g(x,H, σH) ≤ g(x,Gx, σ),

which implies that the G-action respects convergence in Stab(X )̂ and is hence continuous.
If now (x,Gx, σ) ∈ Stab(X )̂ and g ∈ Gx, then it follows from the definition of the G-

action that gσ is equivalent to σ via the unitary σ(g−1). Hence, the stabilizer group G(x,Gx,σ)

coincides with Gx.
We denote the class of an element (x,Gx, σ) ∈ Stab(X )̂ in the orbit space G\Stab(X )̂

by [x,Gx, σ].

The Mackey-Rieffel-Green theorem

We can now give a more precise formulation of the Mackey-Rieffel-Green theorem than the
one we provided in Section 2.1. To every element (x,Gx, σ) ∈ Stab(X )̂ we associate the rep-
resentation evxoσ of C0(X)oGx. As shown in Example 1.5.6(ii), the induced representation
indGGx(evxoσ) is given by πx,σ = P x o indGGx σ with

P x(ϕ)ξ(g) = ϕ(gx)ξ(g), ((indGGx σ)(s))ξ(g) = ξ(s−1g)

for all ϕ ∈ C0(X), ξ ∈ Hindσ, and g, s ∈ G. By Proposition 4.2 in [Wil81], these induced
representations are irreducible, so we obtain a map

ind: Stab(X )̂ → (C0(X) oG)̂ , (x,Gx, σ) 7→ πx,σ. (2.3.2)
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It is a consequence of Proposition 2.2.5 in [Ech90b] that induction is compatible with the
G-action on Rep(S(G)) from Definition 2.2.13. Here, if (x,Gx, σ) is an element of Stab(X )̂
and g ∈ G, then a unitary equivalence of πx,σ and πgx,gσ is implemented by the operator
W : Hindσ → Hind(gσ) with Wξ(s) = ξ(sg) for all ξ ∈ Hindσ, s ∈ G.

It follows that the map ind from (2.3.2) factors through the orbit space G\Stab(X )̂ , and
the following theorem states that the resulting map can be used to catalogue the elements of
(C0(X) oG)̂ using the quotient space G\Stab(X )̂ :

Theorem 2.3.5 (Mackey-Rieffel-Green). Let X be a proper G-space. Then the map in
(2.3.2) factors through a bijection

G\Stab(X )̂ → (C0(X) oG)̂ , [x,Gx, σ] 7→ πx,σ,

which we denote by indG.

We don’t give the classical proof of this result, but indicate how it can be obtained by
means of some of the results we encounter in this thesis anyway: Using the fact that C0(X)oG
is a C0(G\X)-algebra and Echterhoff and Emerson’s description of the fibres (see page 14 and
Lemma 7.3.1), it follows that

(C0(X) oG)̂ ∼=
∐

Gx∈G\X

(KGx )̂ ∼=
∐

[x,Gx,σ]∈G\Stab(X )̂

(K(Hindσ))̂ ∼=
∐

[x,Gx,σ]∈G\Stab(X )̂

{iσ},

compare (2.1.3) in Section 2.1.

2.4 Continuity of indG

The proof of continuity of indG in case of a proper G-space X consists basically of an ap-
plication of Proposition 2.2.5 on continuity of induction and is quite similar to the proof of
Theorem 2.5-B in [Bag68]. To be able to apply continuity of induction correctly, we need the
following lemma. Its proof is not difficult but slightly technical, and since it is not essential
for the general understanding at this point, we transferred it to Appendix A.3.

Lemma 2.4.1. Let X be a proper G-space and suppose that the net (xν , Gν , σν)ν∈N in
Stab(X )̂ converges to an element (x,H, σH) ∈ X×S(G)̂ in X×S(G)̂ . Then (evν oσν)ν∈N
converges to evxoσH in (S(G), C0(X))̂ .

Proposition 2.4.2. Let X be a proper G-space. Then the map

indG : G\Stab(X )̂ → (C0(X) oG)̂ , [x,Gx, σ]→ πx,σ

is continuous with respect to the quotient topology on G\Stab(X )̂ and the Jacobson topology
on (C0(X) oG)̂ .

Proof. By the universal property of the quotient topology on G\Stab(X )̂ it suffices to prove
continuity of the map

ind: Stab(X )̂ → (C0(X) oG)̂ , (x,Gx, σ) 7→ πx,σ.

Let thus (xν , Gν , σν)ν∈N be a net in Stab(X )̂ which converges to (x,Gx, σ) in Stab(X )̂ .
We show that πxν ,σν → πx,σ by proving that every subnet of (πxν ,σν )ν∈N has a subnet which
converges to πx,σ.
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Suppose we have passed to a subnet and relabeled. By the definition of convergence in
Stab(X )̂ we can do this again to assume that there exists an element (H,σH) ∈ S(G)̂ such
that (H,σH) ≤ (Gx, σ) and (xν , Gν , σν)→ (x,H, σH) in X × S(G)̂ . By Lemma 2.4.1 above
this implies that evν oσν → evxoσH in (S(G), C0(X))̂ , which by continuity of induction
implies that

indGGν (evν oσν)→ indGH(evxoσH),

which, in short notation, is just πxν ,σν → πx,σH as representations of C0(X) oG. By Propo-
sition 1.3.2(ii) it is only left to show that πx,σ is weakly contained in πx,σH . We even get
containment: By choice of (H,σH) we have that σH ≤ σ|H , which by the Frobenius reci-
procity theorem is equivalent to σ ≤ indGxH σH . As shown in Example 1.5.6(iii), this implies
that

evxoσ ≤ evxo indGxH σH = indGxH (evxoσH),

which, after using induction in steps, yields that

πx,σ = indGGx(evxoσ) ≤ indGH(evxoσH) = πx,σH ,

which completes the proof.

2.5 Stab(X )̂ for actions with continuous stabilizer map

As mentioned in Remark 2.3.2, our topology on Stab(X )̂ is usually quite different from the
one induced from X × S(G)̂ , which makes it difficult to say anything about the topological
properties of Stab(X )̂ . But if the stabilizer map is continuous, the situation becomes much
easier. The idea for the proof of “(iii)⇒(i)” has been used several times before, for instance
in [Ech94] and [Bag68].

Proposition 2.5.1. Let X be a proper G-space. Then the following statements are equiva-
lent:

(i) The stabilizer map X → K (G), x 7→ Gx is continuous;

(ii) Our definition of convergence in Stab(X )̂ coincides with the convergence in Stab(X )̂
induced from the topology on X × S(G)̂ ;

(iii) Stab(X )̂ is Hausdorff;

(iv) Stab(X )̂ is a locally compact Hausdorff space and the G-action is proper;

(v) G\Stab(X )̂ is a locally compact Hausdorff space.

As indicated in the beginning of this chapter, the space Stab(X )̂ is, for any proper G-
action on X, homeomorphic to the spectrum of a C∗-algebra A. This implies that Stab(X )̂ ,
and hence also G\Stab(X )̂ , are always locally compact (not necessarily Hausdorff) spaces.
Also, once we have proved that G\Stab(X )̂ is homeomorphic to (C0(X)oG)̂ , we get local
compactness (but not the Hausdorff property) of G\Stab(X )̂ for free. But in the situation
of this proposition these statements can also be obtained independently.
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Proof of Proposition 2.5.1. We prove the following implications:
(i)⇒(ii)⇒(iii)⇒(i), (i)+(ii)+(iii)⇒(iv), (iv)⇒(iii), (iv)⇒(v), and (v)⇒(iii).
(i)⇒(ii): Suppose that x 7→ Gx is continuous. Let (xν , Gν , σν)ν∈N and (x,Gx, σ) be

in Stab(X )̂ . It follows from the definitions that (xν , Gν , σν) → (x,Gx, σ) with respect to
X × S(G)̂ always implies convergence in Stab(X )̂ .

Suppose now that (xν , Gν , σν) → (x,Gx, σ) in Stab(X )̂ , i.e., for every subnet there
exist a subnet (xj , Gj , σj)j∈J of that subnet and an element (H,σH) ≤ (Gx, σ) such that
(xj , Gj , σj)→ (x,H, σH) in X×S(G)̂ . Since K (G) is Hausdorff, the continuity assumption
implies that H = Gx, and by irreducibility we have that σH ≤ σ becomes σH = σ. This shows
that every subnet of (xν , Gν , σν)ν∈N has a subnet which converges to (x,Gx, σ) in X×S(G)̂ ,
which means that (xν , Gν , σν)→ (x,Gx, σ) in X × S(G)̂ .

(ii)⇒(iii): Suppose that statement (ii) holds. Let (xν , Gν , σν)ν∈N be a net in Stab(X )̂
which converges to (x1, G1, σ1) and (x2, G2, σ2) in Stab(X )̂ and hence, by (ii), in X×S(G)̂ .
As X is Hausdorff we immediately get that x1 = x2.

Since the proper G-space X is locally induced from compact subgroups, we can assume
that there exist a compact subgroup Lx of G and an Lx-slice Yx at x, such that Ux = G×Lx Yx
is an open neighborhood of x. By Lemma 1.1.9 and by continuity of the G-action on Stab(X )̂
we can without loss of generality assume that xν ∈ Yx and thus Gν ≤ Lx for all ν ∈ N . But
then we have (xν , Gν , σν) → (x,Gx, σi) for i ∈ {1, 2} in X × S(Lx)̂ , which is Hausdorff
because Lx is compact, see Theorem 7.2 in [Bag68]. It follows that σ1 is equivalent to σ2, so
Stab(X )̂ is Hausdorff.

(iii)⇒(i): By contraposition. Suppose that x 7→ Gx is not continuous. By compactness
of K (G) and by Lemma 2.2.3 we can find a net (xν)ν∈N , an element x ∈ X, and a proper
subgroup H ≤ Gx such that xν → x in X and Gν → H in K (G). It follows directly from
Fell’s characterization of convergence in Rep(S(G)) given in Theorem 2.2.7 that

(xν , Gν , 1ν)→ (x,H, 1H) (2.5.1)

in X × S(G)̂ , where 1ν denotes the trivial representation of Gν for all ν ∈ N , and 1H is
defined accordingly. By definition of convergence in Stab(X )̂ we get that

(xν , Gν , 1ν)→ (x,Gx, σ)

in Stab(X )̂ for every σ ∈ Ĝx that satisfies 1H ≤ σ|H . By the Frobenius reciprocity theorem,
this is true for all elements of

S := {σ ∈ Ĝx | σ ≤ indGxH 1H}.

We show that S contains at least two distinct elements. It is clear that 1H is contained in
1Gx |H exactly once, which by Frobenius reciprocity implies that 1Gx is contained in S also
exactly once. But since H is a proper subgroup of Gx, the representation indGxH 1H is at least
two-dimensional, so there has to exist some other element of S.

Thus, we can choose two distinct elements σ, % ∈ Ĝx such that (xν , Gν , σν)ν∈N converges
both to (x,Gx, σ) and to (x,Gx, %) in Stab(X )̂ , which shows that Stab(X )̂ is not Hausdorff.

(i)+(ii)+(iii)⇒(iv): Suppose now that the three equivalent conditions (i), (ii), and (iii)
hold. Then Stab(X )̂ is Hausdorff. By (ii) we can consider Stab(X )̂ to be a topological
subspace of X × S(G)̂ . Recall that, by definition, the space S(G)̂ is homeomorphic to
the spectrum of the subgroup C∗-algebra C∗(S(G)) and therefore locally compact (but not
necessarily Hausdorff).
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We now show that Stab(X )̂ is closed in the locally compact (not necessarily Hausdorff)
space X ×S(G)̂ . Let (xν , Gν , σν)ν∈N be a net in Stab(X )̂ and let (x,H, σH) ∈ X ×S(G)̂
be such that (xν , Gν , σν)→ (x,H, σH) in X×S(G)̂ . By continuity of the stabilizer map and

since K (G) is Hausdorff it follows as above that H = Gx and σH ∈ Ĝx. Hence, (x,H, σH) is
contained in Stab(X )̂ , which implies that Stab(X )̂ is a closed subspace of X × S(G)̂ and
thus locally compact.

The properness of the G-action on Stab(X )̂ follows from Proposition 1.1.4 (iv) because
G acts properly on X and Stab(X )̂ is a closed G-invariant subspace of the product G-space
X × S(G)̂ .

(iv)⇒(iii): This is trivial.
(iv)⇒(v): Suppose that Stab(X )̂ is a proper G-space. By Proposition 1.1.4 (ii), this

implies that the orbit space G\Stab(X )̂ is a locally compact Hausdorff space.
(v)⇒(iii): By contraposition. Suppose that Stab(X )̂ is not Hausdorff. Then there exist a

net (xν , Gν , σν)ν∈N in Stab(X )̂ and two distinct elements σ, % ∈ Ĝx such that (xν , Gν , σν)ν∈N
converges both to (x,Gx, σ) and to (x,Gx, %) in Stab(X )̂ . Since, for every g ∈ G, the equality
g(x,Gx, σ) = (x,Gx, %) would imply that g ∈ Gx and hence equivalence of σ and %, it follows
that [x,Gx, σ] 6= [x,Gx, %] in G\Stab(X )̂ .

This shows that the net ([xν , Gν , σν ])ν∈N converges to the distinct points [x,Gx, σ] and
[x,Gx, %] in G\Stab(X )̂ , and thus G\Stab(X )̂ is not Hausdorff.
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Chapter 3

Induction via bimodules

In this chapter we give a short introduction to right-Hilbert bimodules and show how they
can be used to induce representations between C∗-algebras. Introductions to right-Hilbert
bimodules can be found in [Lan95] and [RW98], but our outline is mostly based on [EKQR06],
where the categorical approach to the induction procedure is given.

After discussing the basic definitions and the process of inducing representations in Sec-
tions 3.1–3.3, we present in Section 3.4 the Morita equivalence of C0(G ×H Y ) o G and
C0(Y ) o H for a locally compact group G and a closed subgroup H ≤ G which acts on a
locally compact space Y . In Section 3.5 we show how this result can be used to pass from
Stab(X )̂ for a general proper G-space X to Stab(Y )̂ for a K-space Y , where K is a compact
subgroup of G.

3.1 Basic definitions

Hilbert bimodules

Let A and B be C∗-algebras. A (right-) Hilbert B-module is a complex vector space X
equipped with a right B-module structure and a B-valued positive definite sesquilinear form
〈·, ·〉B : X ×X → B satisfying

〈x, y · b〉B = 〈x, y〉Bb, 〈x, y〉∗B = 〈y, x〉B

for all x, y ∈ X, b ∈ B, such that X is complete in the norm defined by ‖x‖ = ‖〈x, x〉B‖1/2
for all x ∈ X. We denote a Hilbert B-module X by XB and usually write xb instead of x · b
for all x ∈ X and all b ∈ B. Left-Hilbert B-modules are defined accordingly.

A right-Hilbert A–B bimodule is a Hilbert B-module X which also carries a nondegenerate
left A-module structure (nondegenerate means that AX = X) such that

a · (x · b) = (a · x) · b, 〈a · x, y〉B = 〈x, a∗ · y〉B for all a ∈ A, b ∈ B, x, y ∈ X.

We denote a right-Hilbert A–B bimodule X by AXB.

Examples 3.1.1. (i) Let A and B be C∗-algebras. Then B is a Hilbert B-module, denoted
by BB, with respect to the operations b · c = bc and 〈b, c〉B = b∗c for all b, c ∈ B. If
ϕ : A →M(B) is a nondegenerate ∗-homomorphism, then BB becomes a right-Hilbert
A–B bimodule, where the left action is given by

a · b = ϕ(a)b for all a ∈ A, b ∈ B.
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In particular, if ϕ is the identity map on B, this shows that B can be seen as a right-
Hilbert B–B bimodule.

(ii) Assuming the convention that the inner product on a Hilbert space is conjugate linear in
the first and linear in the second variable, every Hilbert space H is a Hilbert C-module.
If now A is a C∗-algebra and π is a nondegenerate representation of A on a Hilbert
space H, then the operation a · ξ = π(a)ξ gives H the structure of a right-Hilbert A–C
bimodule.

Definition 3.1.2. Let A and B be C∗-algebras, and let X be a right-Hilbert A–B bimodule
which also carries the structure of a left Hilbert A-module, such that

A〈x, y〉 · z = x · 〈y, z〉B for all x, y, z ∈ X,

and such that both A〈·, ·〉 and 〈·, ·〉B are full, i.e., A〈X,X〉 = A and 〈X,X〉B = B. Then X
is called an A–B imprimitivity bimodule. If such an X exists, then A and B are said to be
Morita equivalent.

Isomorphisms of Hilbert bimodules

Suppose that A and B are C∗-algebras, and that X and Y are right-Hilbert A–B bimodules.
We say that X and Y are isomorphic if there exists a bijective map Φ: AXB → AYB satisfying

(i) Φ(ax) = aΦ(x),

(ii) Φ(xb) = Φ(x)b,

(iii) 〈Φ(x),Φ(y)〉B = 〈x, y〉B
for all a ∈ A, b ∈ B, x, y ∈ X. Isomorphism of right-Hilbert A–B bimodules defines an
equivalence relation. If AXB and AYB are imprimitivity bimodules, then an isomorphism Φ
between them automatically respects the A〈·, ·〉-structure, because for all x, x′, ξ ∈ X we have

A〈x, x′〉 · Φ(ξ) = Φ(A〈x, x′〉 · ξ)
= Φ(x · 〈x′, ξ〉B) = Φ(x) · 〈x′, ξ〉B
= Φ(x) · 〈Φ(x′),Φ(ξ)〉B =A 〈Φ(x),Φ(x′)〉 · Φ(ξ)

Example 3.1.3. Let A be a C∗-algebra and let π1 and π2 be nondegenerate representations
of A on Hilbert spaces H1 and H2, respectively. Then it is easily checked that H1 and H2 are
isomorphic as right-Hilbert A–C bimodules if and only if π1 and π2 are unitarily equivalent.

3.2 The category C
We now show how one can set up a category whose elements are C∗-algebras and whose
morphisms are isomorphism classes of right-Hilbert bimodules. The composition of morphisms
will be given by balanced tensor products, which we will now define.

Proposition/Definition 3.2.1. Let A, B, and C be C∗-algebras, and let AXB and BYC be
right-Hilbert bimodules. Then the algebraic tensor product X�Y is a pre-right-Hilbert A–C
bimodule with operations given by

a · (x⊗ y) = a · x⊗ y, (x⊗ y) · b = x⊗ y · b
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for all a ∈ A, b ∈ B, x ∈ X, y ∈ Y , and

〈x⊗ y, x′ ⊗ y′〉C = 〈y, 〈x, x′〉B · y′〉C

for all x, x′ ∈ X, y, y′ ∈ Y . The completion is denoted by X ⊗B Y and is called the balanced
tensor product of AXB and BYC .

Theorem 3.2.2 (Theorem 2.2 and Lemma 2.4 in [EKQR06]). There exists a category C whose
objects are C∗-algebras, and in which the morphisms from a C∗-algebra A to a C∗-algebra B
are given by the isomorphism classes of right-Hilbert A–B bimodules. The composition of two
morphisms [X] : A → B and [Y ] : B → C is given by the isomorphism class of the balanced
tensor product X ⊗B Y . The identity morphism on a C∗-algebra A is the isomorphism
class of the standard right-Hilbert bimodule AAA, and the equivalences in C are exactly the
isomorphism classes of imprimitivity bimodules.

The problem that the morphisms from a C∗-algebra A to a C∗-algebra B do not in
general form a set can be handled by limiting the cardinality of the C∗-algebras and modules
in question. For example, given two C∗-algebras A and B, one can consider only right-Hilbert
A–B bimodules with cardinality smaller than the larger of the cardinalities of A and B.

3.3 Inducing representations via bimodules

As seen in Example 3.1.3, the unitary equivalence classes of nondegenerate representations of
a C∗-algebra A coincide with the morphisms from A to C in the category C. We denote this
class by Rep(A) as on page 9, and, to emphasize that we are dealing with Hilbert spaces in
this case, we denote its elements by [AHC] or just [H]. This interpretation of Rep(A) allows
us to use composition of morphisms in C to induce representations from one C∗-algebra to
another.

Proposition/Definition 3.3.1. Let A and B be C∗-algebras and let AXB be a right-Hilbert
A–B bimodule. Then there is a map

indX : Rep(B)→ Rep(A), [H] 7→ [H] ◦ [X] = [X ⊗B H]

which is bijective if X is an imprimitivity A–B bimodule.

Proposition 3.3.2 (Proposition 6.26 in [Rie74]). If, in the situation of the preceding propo-
sition/definition, Rep(A) and Rep(B) are equipped with the Fell topologies, then the map
indX is continuous. In particular, if X is an imprimitivity A–B bimodule, then indX is a
homeomorphism.

Remark 3.3.3. By taking direct sums of right-Hilbert bimodules we can define sums of
morphisms in C. This operation is commutative and obeys the distributive law with respect
to composition, which implies that induction of representations preserves direct sums. Thus,
if X is an imprimitivity A–B bimodule, then the map indX from Proposition/Definition 3.3.1
restricts to a homeomorphism between B̂ and Â.

Example 3.3.4. Let A and B be C∗-algebras and let ϕ : A → M(B) be a nondegenerate
∗-homomorphism. Then induction via the right-Hilbert A–B bimodule ABB from Exam-
ple 3.1.1 (i) coincides with the map

Rep(B)→ Rep(A), π 7→ π ◦ ϕ,
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where π is the extension of π to M(A), because for every [H] ∈ Rep(B) we have [B ⊗B H] =
[AHC], where the action of A on H is given by aξ = ϕ(a)ξ for all a ∈ A, ξ ∈ H.

3.4 The Morita equivalence of C0(G×H Y ) oG and C0(Y ) oH

As seen in Theorem 1.1.7 and Remark 1.1.8 (i), a proper G-space X is locally induced from
compact subgroups, that is, for every x ∈ X there exist a G-invariant open neighborhood Ux, a
compact subgroup Lx ≤ G, and an Lx-invariant subset Yx ⊆ Ux such that Ux is homeomorphic
to G×Lx Yx. We will show in this section that the C∗-algebras C0(Yx) oLx and C0(Ux) oG
are Morita equivalent, which by Remark 3.3.3 implies that they have homeomorphic spectra.
This material is based on Section 3.6 in [Wil07].

C0(G×H Y ) as an induced algebra

Let H be a closed subgroup of a locally compact group G, and let (A,H,α) be a covariant
system. Then the induced algebra of the system (A,H,α) and G is defined as

indGH(A) := indGH(A,α) := {F ∈ Cb(G,A) | ∀s ∈ G, h ∈ H : F (sh) = αh−1F (s)

and G/H → R≥0, sH 7→ ‖F (s)‖ ∈ C0(G/H)},

which coincides with the generalized fixed point algebra C0(G ×H A) from page 13 when
H acts on G via hg = gh−1 for all h ∈ H, g ∈ G as on page 5. The group G acts on
indGH(A) = C0(G×H A) by left translation.

Example 3.4.1. Let G be a locally compact group and let H ≤ G be a closed subgroup
which acts on a locally compact Hausdorff space Y . Then the map

δ : C0(G×H C0(Y ))→ C0(G×H Y )

given by
δ(F )([s, y]) = F (s)(y)

for all F ∈ C0(G×H C0(Y )), [s, y] ∈ G×H Y is an isomorphism. The calculation

δ(g ·F )[s, y] = (g ·F )(s)(y) = F (g−1s)(y) = δ(F )([g−1s, y]) = δ(F )(g−1[s, y]) = (g · δ(F ))[s, y]

for all F ∈ C0(G ×H C0(Y )), g, s ∈ G, and y ∈ Y , shows that δ is covariant with respect to
the G-actions on C0(G×H C0(Y )) and C0(G×H Y ). It thus follows that

indGH(C0(Y )) oG = C0(G×H C0(Y )) oG ∼= C0(G×H Y ) oG. (3.4.1)

Morita equivalence for induced G-spaces

It is proved in Corollary 4.17 in [Wil07] that indGH(C0(Y )) o G and C0(Y ) o H are Morita
equivalent. This is a consequence of Raeburn’s symmetric imprimitivity theorem from [Rae88],
which was inspired by Green’s work in [Gre78], and the proof of which is also given in
[Wil07]. We present a modified version of Corollary 4.17 from [Wil07] which is adapted to
the identification from (3.4.1) above.
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Proposition 3.4.2. Let G be a locally compact group and let H be a closed subgroup of
H which acts on a locally compact Hausdorff space Y . View E0 := Cc(G × (G ×H Y )) and
B0 := Cc(H × Y ) as dense subalgebras of C0(G×H Y )oG and C0(Y )oH, respectively, and
let Z0 := Cc(G× Y ). For all c ∈ E0, w, z ∈ Z0, b ∈ B0, s, t ∈ G, h ∈ H, and y ∈ Y define

c · w(s, y) =

∫
G

∆G(t)
1
2 c(t, [s, y])w(t−1s, y)dµG(t) (3.4.2)

w · b(s, y) =

∫
H

∆H(h)−
1
2w(sh−1, hy)b(h, hy)dµH(h)

E0〈w, z〉(t, [s, y]) = ∆G(t)−
1
2

∫
H
w(sh, h−1y)z(t−1sh, h−1y)dµH(h)

〈w, z〉B0 = ∆H(h)−
1
2

∫
G
w(t−1, y)z(t−1h, h−1y)dµG(t). (3.4.3)

Then Z0 is an E0–B0 pre-imprimitivity bimodule, and its completion Z is a C0(G×H Y )oG–
C0(Y ) oH imprimitivity bimodule.

As outlined in Section 3.3 on induction of representations via bimodules, the existence of
the C0(G ×H Y ) o G–C0(Y ) o H imprimitivity bimodule Z implies that there is a homeo-
morphism

indZ : (C0(Y ) oH )̂ → (C0(G×H Y ) oG)̂ .

For every % ∈ (C0(Y ) oH )̂ , the induced representation is given by

indZ % = [V%] ◦ [Z] = [Z ⊗C0(Y )oH V%].

By definition of the balanced tensor product, its action on Z ⊗C0(Y )oH V% is given by

(indZ %)c(z ⊗ v) = c · z ⊗ v (3.4.4)

for all c ∈ C0(G×H Y ) oG, z ∈ Z, and v ∈ V%, where c · z is the extension of the operation
defined in (3.4.2).

3.5 The reduction to the compact case

In this section we present a proposition which allows us to use the fact that proper G-spaces
are locally induced from compact subgroups to reduce the proof of openness of indG to the
situation of compact group actions. The idea for this reduction procedure is taken from [EE],
where it is used for proper G-spaces with Palais’ slice property. First, we need one more map:

Lemma 3.5.1. Suppose that X is a proper G-space, and that H ≤ G is a closed subgroup
and Y ⊆ X is an H-space such that G ×H Y is homeomorphic to X via [g, y] → gy as in
Proposition 1.1.6. Then the inclusion Stab(Y )̂ ↪→ Stab(X )̂ induces a continuous bijection

ι : H\Stab(Y )̂ → G\Stab(X )̂ , [y,Hy, σ]→ [y,Hy, σ].

It can also be shown that the map ι is open, and hence a homeomorphism. But once
we have proved that indK is a homeomorphism for a compact group K (for which ι is not
needed), the openness of ι is a direct consequence of Proposition 3.5.2 below, and so we omit
the proof.
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Proof of Lemma 3.5.1. Recall from Remark 1.1.8(iii) that Gy ≤ H, and thus Hy = Gy for all
y ∈ Y . By this and by definition of the group actions on the Stab(·)̂ -spaces it follows that
the canonical map Stab(Y )̂ → G\Stab(X )̂ factors through the map ι as given above. It is
easy to see that ι is injective.

Let now [x,Gx, σ] ∈ G\Stab(X )̂ . Find g ∈ G and y ∈ Y such that x = gy, then

[x,Gx, σ] = [g(y,Gy, g
−1σ)] = [y,Gy, g

−1σ] = ι([y,Hy, g
−1σ]),

which shows that ι is surjective. Let now (yν , Hν , σν)ν∈N be a net in Stab(Y )̂ which converges
to an element (y,H ′, σ′) in Y ×S(H )̂ . Then, as Y ⊆ X, and by the definition of convergence
in S(G)̂ (see Theorem 2.2.7) it follows that (yν , Hν , σν) → (y,H ′, σ′) in X × S(G)̂ , too.
This implies that the inclusion of Stab(Y )̂ into Stab(X )̂ and hence also the canonical map
Stab(Y )̂ → G\Stab(X )̂ are continuous. It now follows from the universal property of the
quotient topology on H\Stab(Y )̂ that ι is continuous, too.

Proposition 3.5.2 (Proposition 3.13 in [EE]). Let X be a proper G-space, let K ≤ G be
a compact subgroup, and let Y ⊆ X be such that Y is a K-space and G ×K Y is homeo-
morphic to X as above. Let Z be the C0(X) o G–C0(Y ) oK imprimitivity bimodule from
Proposition 3.4.2. Then the diagram of bijective maps

K\Stab(Y )̂
ι //

indK

��

G\Stab(X )̂

indG

��
(C0(Y ) oK )̂

indZ
// (C0(X) oG)̂ ,

commutes.

Proof. Recall that the modular function ∆K is constantly one because K is compact. We
just write ∆ instead of ∆G. Let (y,Ky, σ) ∈ Stab(Y )̂ . Let πK denote the representation
πy,σ = indKKy(evy oσ) in (C0(Y )oK )̂ , write πG for πy,σ := indGKy(evy oσ) in (C0(X)oG)̂ ,

and denote their respective Hilbert spaces by HK and HG. Recall that

HK = {ξ ∈ L2(K,Vσ) | ∀l ∈ Ky, k ∈ K : ξ(kl) = σ(l−1)ξ(k)},

and that

πK(f)ξ(k) =

∫
K
f(l, ky)ξ(l−1k)dl (3.5.1)

for all f ∈ Cc(K × Y ), ξ ∈ HK , and all k ∈ K, see Example 1.5.6(ii). The space HG and
the representation πG are defined accordingly. We have to show that indZ(πK) is unitarily
equivalent to πG, i.e., we need a unitary operator

Φ: Z ⊗C0(Y )oK HK → HG

which intertwines indZ(πK) and πG. Define

Φ(z ⊗ ξ)(g) = ∆(g)−
1
2

∫
K
z(gk−1, ky)ξ(k)dk (3.5.2)

for all z ∈ Z0 = Cc(G× Y ), ξ ∈ HK , and all g ∈ G. We have to show that
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(i) Φ is well-defined, i.e., it maps into HG,

(ii) Φ preserves inner products,

(iii) Φ intertwines indZ(πK) and πG.

It follows from (i) and (ii) that Φ extends to a norm preserving operator from Z⊗C0(Y )oKH
K

to HG, and since indZ(πK) and πG are irreducible, (iii) then implies that Φ is a unitary
operator, as required (Corollary 6.1.9 in [DE09]).

Proof of (i): Let z ∈ Cc(G× Y ) and let ξ be a continuous element of HK . Then Φ(z ⊗ ξ)
is a continuous function which has compact support in G, because z has compact support in
G× Y , and and for all g ∈ G, l ∈ Ky we get

Φ(z ⊗ ξ)(gl) = ∆(gl)−
1
2

∫
K
z(glk−1, ky)ξ(k)dk

= ∆(g)−
1
2

∫
K
z(gk−1, ky)ξ(kl)dk

= ∆(g)−
1
2

∫
K
z(gk−1, ky)σ(l−1)ξ(k)dk

= σ(l−1)∆(g)−
1
2

∫
K
z(gk−1, ky)ξ(k)dk

= σ(l−1)Φ(z ⊗ ξ)(g),

where the step from the first to the second line follows by replacing k by kl and using that
K is unimodular and that l ∈ Ky.

Proof of (ii): Let w, z ∈ Cc(G× Y ) and let ξ and η be continuous elements of HK . Then

〈Φ(z ⊗ ξ),Φ(w ⊗ η)〉HG

=

∫
G
〈Φ(z ⊗ ξ)(g),Φ(w ⊗ η)(g)〉Vσ dg

=

∫
G

∆(g)−1

〈∫
K
z(gk−1, ky)ξ(k)dk,

∫
K
w(gl−1, ly)η(l)dl

〉
Vσ

dg

=

∫
G

∆(g)−1

∫
K

∫
K
z(gk−1, ky)w(gl−1, ly) 〈ξ(k), η(l)〉Vσ dk dl dg, (3.5.3)

and, with the action of C0(Y ) oK on HK given by πK ,

〈z ⊗ ξ, w ⊗ η〉Z⊗C0(Y )oKHK

=
〈
ξ, 〈z, w〉C0(Y )oK · η

〉
HK

=

∫
K

〈
ξ(k), 〈z, w〉C0(Y )oK · η(k)

〉
Vσ
dk

=

∫
K

〈
ξ(k), πK(〈z, w〉C0(Y )oK)η(k)

〉
Vσ
dk

(3.5.1)
=

∫
K

〈
ξ(k),

∫
K
〈z, w〉C0(Y )oK (l, ky)η(l−1k)dl

〉
Vσ

dk

(3.4.3)
=

∫
K

∫
K

〈
ξ(k),

∫
G
z(g−1, ky)w(g−1l, l−1ky)dg η(l−1k)

〉
Vσ

dl dk
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=

∫
K

∫
K

∫
G

〈
ξ(k), z(g−1, ky)w(g−1l, l−1ky)η(l−1k)

〉
Vσ
dg dl dk

l→kl−1

=

∫
K

∫
K

∫
G
z(g−1, ky)w(g−1kl−1, ly) 〈ξ(k), η(l)〉Vσ dg dl dk

g→kg−1

=

∫
K

∫
K

∫
G

∆g−1z(gk−1, ky)w(gl−1, ly) 〈ξ(k), η(l)〉Vσ dg dl dk,

which is equal to (3.5.3) by Fubini. This shows (ii), and it follows that Φ extends to the whole
space Z ⊗C0(Y )oK HK .

Proof of (iii): Let F ∈ Cc(G× (G×K Y )), z ∈ Z0, ξ ∈ HK , and g ∈ G. We show that(
Φ ◦ indZ(πK)(F )

)
(z ⊗ ξ)(g) =

(
πG(F ) ◦ Φ

)
(z ⊗ ξ)(g).

We have(
Φ ◦ indZ(πK)(F )

)
(z ⊗ ξ)(g)

(3.4.4)
= Φ(F · z ⊗ ξ)(g)

(3.5.2)
= ∆(g)−

1
2

∫
K

(F · z)(gk−1, ky)ξ(k)dk

(3.4.2)
= ∆(g)−

1
2

∫
K

∫
G
F (t, [gk−1, ky]︸ ︷︷ ︸

=[g,y]

)z(t−1gk−1, ky)∆(t)
1
2dt ξ(k)dk, (3.5.4)

and (
πG(F ) ◦ Φ

)
(z ⊗ ξ)(g)

= πG(F )(Φ(z ⊗ ξ))(g)

(3.5.1)
=

∫
G
F (t, g[e, y])Φ(z ⊗ ξ)(t−1g)dt

=

∫
G
F (t, [g, y])∆(t−1g)−

1
2

∫
K
z(t−1gk−1, ky)ξ(k)dk dt,

which, using multiplicativity of ∆ and applying Fubini, equals (3.5.4). This implies (iii), and
the proof is complete.
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Chapter 4

Representation theory of compact
groups and ideals in L2(K)

In this chapter we will first present the Peter-Weyl Theorem and related results, then we
will show how subrepresentations of the left regular representation λK of a compact group
K correspond to ideals in L2(K). In Section 4.3 we show that, for a general locally compact
group G and a compact subgroup K ≤ G, the space L2(G) can be written as a space induced
from L2(K). We apply this result in Section 4.4 to analyze what happens if we restrict
continuous elements of L2(K) to a closed subgroup H of K, which will be very helpful in
the proof of openness of indK for a compact group K. In Section 4.5 we supply the proof of
Lemma 1.3.4 on convergence of representations of a compact group to an irreducible limit.

4.1 The Peter-Weyl Theorem

We start with a short review of some important facts on compact groups, then we present
the idea of matrix elements. We close the section with the Peter-Weyl theorem. For a careful
treatment of the material of this section the reader may consult [DE09] or [Fol95]; part of the
notation is also influenced by [EE].

Basic facts on representations of compact groups

Recall from page 7 that compact groups are always unimodular, that is, the Haar measure
is always left and right invariant. We will always work with normalized Haar measure µ, so
that µ(K) = 1. Representations of compact groups have several very useful properties:

Theorem 4.1.1. Let K be a compact group. Then every irreducible representation of K is
finite-dimensional, and every unitary representation of K is a direct sum of irreducible ones.

Definition 4.1.2. Let K be a compact group, let % and σ be unitary representations of K
with σ irreducible. We define the isotype V%(σ) of σ in % to be the closed linear span of all
irreducible subspaces of V% on which % is equivalent to σ.

The following proposition, which is a consequence of Schur’s lemma (Lemma 1.2.1), shows
that the space of every unitary representation % of K decomposes into the isotypes of the
irreducible representations which are contained in %.
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Proposition 4.1.3. Let K be a compact group, let % be a unitary representation of K and
let σ and σ′ be irreducible representations of K. Then V%(σ) ⊥ V%(σ′) whenever σ and σ′ are
not equivalent. For every irreducible subspace M of V%(σ), the restriction %|M is equivalent
to σ.

Matrix elements

Definition 4.1.4. Let K be a compact group and let σ be a unitary representation of K.
For any choice of u, v ∈ Vσ define

ϕσu,v : K → C, x 7→ 〈σ(x−1)u, v〉.

These functions are called matrix elements for σ. If ei, ej are members of an orthonormal
basis for Vσ, then we write ϕσij instead of ϕσei,ej .

It is easy to check that equivalent representations σ and σ′ have the same set of matrix
elements. If K is a compact group, σ is a representation of K, and (ej)j∈J is an orthonormal
basis for Vσ, then the entries of the matrices of σ(k) and the dual representation σ∗(k) with
respect to this basis are given by

σij(k) = 〈σ(k)ej , ei〉 = 〈σ(k−1)ei, ej〉 = ϕσij(k)

and
σ∗ij(k) = 〈σ∗(k)e∗j , e

∗
i 〉V ∗σ = 〈(σ(k)ej)

∗, e∗i 〉V ∗σ = 〈ei, σ(k)ej〉Vσ = ϕσij(k) (4.1.1)

for all k ∈ K and all i, j ∈ J , see the definition of the dual representation on page 8.
Since matrix elements are continuous functions and thus in particular elements of Lp(K)

for every p ∈ N, we can define a map

φ :
⊕
τ∈K̂

Vτ ⊗ V ∗τ → L2(K)

by
φ(v ⊗ w∗) =

√
dσϕ

σ
v,w (4.1.2)

for all elementary tensors v ⊗ w∗ ∈ Vσ ⊗ V ∗σ for every σ ∈ K̂.
The matrix elements of irreducible representations satisfy the following relations in L2(K),

which underly most of the following results:

Lemma 4.1.5 (Schur Orthogonality Relations). Let σ and σ′ be irreducible representations
of a compact group K. Then

(i) If σ 6= σ′ in K̂, then φ(Vσ ⊗ V ∗σ ) and φ(Vσ′ ⊗ V ∗σ′) are orthogonal subspaces of L2(K);

(ii) If {ej | j ∈ N≤dσ} is any orthonormal basis for Vσ, then {
√
dσϕ

σ
ij | i, j ∈ N≤dσ} is an

orthonormal basis for φ(Vσ ⊗ V ∗σ ).

Corollary 4.1.6. Let σ and σ′ be irreducible representations of a compact group K such
that σ 6= σ′ in K̂. Let {ej | j ∈ N≤dσ} and {fl | l ∈ N≤dσ′} be orthonormal bases for the
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spaces Vσ and Vσ′ . Then convolution and involution of the corresponding matrix elements as
elements of L2(K) are given by

ϕσij ∗ ϕσ
′
kl = 0

ϕσij ∗ ϕσmn =
1

dσ
δjmϕ

σ
in

(ϕσij)
∗ = ϕσji

for all i, j,m, n ∈ N≤dσ and all k, l ∈ N≤dσ′ .

The proof consists of easy calculations based on the Schur Orthogonality Relations.

The isomorphism
⊕

τ∈K̂ Vτ ⊗ V ∗τ
∼= L2(K)

The correspondence between the spaces
⊕

τ∈K̂ Vτ ⊗V
∗
τ and L2(K) deserves some more atten-

tion. A calculation using Schur’s Orthogonality Relations shows that the map φ from (4.1.2)
is norm preserving (this is why we need the factor

√
dσ). It is shown in Chapter 5.2 in [Fol95]

that φ is also surjective, so altogether it is a unitary isomorphism between
⊕

τ∈K̂ Vτ ⊗ V
∗
τ

and L2(K), where
⊕

τ∈K̂ Vτ ⊗ V
∗
τ is endowed with the canonical Hilbert space structure.

Combining the formulas from Corollary 4.1.6 with the definition of φ we can transfer
convolution and involution from L2(K) to

⊕
τ∈K̂ Vτ ⊗ V

∗
τ as follows:

Proposition 4.1.7. Let K be a compact group and suppose that σ and σ′ are irreducible
representations with σ 6= σ′ in K̂, and that {ej | j ∈ N≤dσ} and {fl | l ∈ N≤dσ′} are
orthonormal bases for Vσ and Vσ′ . Then the formulas

(ei ⊗ e∗j ) ∗ (fk ⊗ f∗l ) = 0,

(ei ⊗ e∗j ) ∗ (em ⊗ e∗n) =
1√
dσ
δjmei ⊗ e∗n,

(ei ⊗ e∗j )∗ = ej ⊗ e∗i

for all i, j,m, n ∈ N≤dσ and all k, l ∈ N≤dσ′ define a convolution and an involution on⊕
τ∈K̂ Vτ ⊗ V

∗
τ such that it is isomorphic to L2(K) as a ∗-algebra.

Notice that the ∗ denotes both the elements of the dual space V ∗σ and the involution here,
but since we probably won’t run into this ambiguity again, we don’t worry about dissolving
it here.

The formulas in Proposition 4.1.7 imply that, if σ ∈ K̂ and e ∈ Vσ is a unit vector, then
Vσ⊗e∗ (resp. e⊗V ∗σ ) are left (resp. right) ideals in

⊕
τ∈K̂ Vτ ⊗V

∗
τ , and Vσ⊗V ∗σ is a two-sided

ideal. We will pursue the issue of ideals in L2(K) further in Section 4.2 below.

The Peter-Weyl theorem

We now define representations λK,⊗ and %K,⊗ of K on
⊕

τ∈K̂ Vτ⊗V
∗
τ such that λK,⊗ ≈ λK and

%K,⊗ ≈ %K modulo the unitary equivalence φ defined above. Let idV : K → U(V ), k 7→ idV
denote the trivial representation on any Hilbert space V .
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Proposition 4.1.8. Let K be a compact group and define unitary representations λK,⊗ and
%K,⊗ of K on

⊕
τ∈K̂ Vτ ⊗ V

∗
τ by

λK,⊗ :=
⊕
τ∈K̂

τ ⊗ idVτ∗ , %K,⊗ :=
⊕
τ∈K̂

idVτ ⊗τ∗.

Then λK,⊗ ≈ λK and %K,⊗ ≈ %K , where the unitary equivalence is given by φ.

These characterizations of the left and right regular representation are also used in [EE].
We can now state the following version of the Peter-Weyl Theorem:

Theorem 4.1.9 (Peter-Weyl Theorem). Let K be a compact group. Then the following
statements are true:

(i) The Hilbert spaces and ∗-algebras L2(K) and
⊕

τ∈K̂ Vτ ⊗ V
∗
τ are unitarily isomorphic

via the map φ as defined in (4.1.2). If, for every τ ∈ K̂, we have an orthonormal basis
{eτi | i ∈ N≤dτ }, then

{
√
dτϕij | τ ∈ K̂, i, j ∈ N≤dτ }

is an orthonormal basis for L2(K).

(ii) For every τ ∈ K̂ and every unit vector e ∈ Vτ the following holds: Vτ ⊗ e∗ is invariant
under λK,⊗, and λK,⊗|Vτ⊗e∗ is unitarily equivalent to τ ; analogously, e⊗V ∗τ is invariant
under %K,⊗, and %K,⊗|e⊗V ∗τ is unitarily equivalent to τ∗. The multiplicity of τ (resp. τ∗)
in λK,⊗ (resp. %K,⊗) is dτ .

The proof of (i) follows from the results on
⊕

τ∈K̂ Vτ ⊗ V
∗
τ and φ above and the fact that

{eτi | τ ∈ K̂, i, j ∈ N≤dτ }

is an orthonormal basis for
⊕

τ∈K̂ Vτ ⊗ V
∗
τ . The statements of (ii) follow from the definition

of λK,⊗ and %K,⊗.

4.2 Minimal ideals in L2(K)

It is now quite easy to analyze the ideal structure of L2(K) for a compact group K in terms
of
⊕

τ∈K̂ Vτ ⊗ V
∗
τ . As a starting point we take the following proposition:

Proposition 4.2.1. Let K be a compact group and let V be a closed subspace of L2(K).
Then V is a left (right) ideal if and only if it is invariant under λK (%K).

In [Fol95], Theorem 2.43, this proposition is formulated for L1(K). Since K is compact
and we have assumed that

∫
K 1dk = 1, we have that L2(K) ⊆ L1(K), which implies that

Folland’s proof can be transferred to this situation.
Combining our version of the Peter-Weyl Theorem with Proposition 4.2.1 we see that the

minimal left (right) ideals of L2(K) ∼=
⊕

τ∈K̂ Vτ ⊗ V ∗τ are exactly the spaces of the form

Vσ ⊗ e∗ (resp. e⊗ V ∗σ ) for every σ ∈ K̂ and every unit vector e ∈ Vσ. The minimal two-sided
ideals are exactly the spaces Vσ ⊗ V ∗σ for every σ ∈ K̂, and Vσ ⊗ V ∗σ is the isotype VλK (σ) of
σ in λK .
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It also follows that every left (right) ideal P ∈ L2(K) is an invariant subspace for λK (%K),
and so the Peter-Weyl Theorem implies that P decomposes into the minimal left (right) ideals
which correspond to the irreducible subrepresentations of λK |P (resp. %K |P ).

The following observation will be important in the proof of openness of indK :

Remark 4.2.2. The preceding observations imply in particular that every minimal left, right,
or two-sided ideal of L2(K) is finite-dimensional and contains continuous functions only.

Projections onto minimal ideals

If σ ∈ K̂ and {ei | i ∈ N≤dσ} is an orthonormal basis for Vσ, then the projection of the space⊕
τ∈K̂ Vτ ⊗ V

∗
τ onto the minimal two-sided ideal Vσ ⊗ V ∗σ is given by convolution with

pσ :=
√
dσ

dσ∑
i=1

ei ⊗ e∗i .

This is easily verified using the formulas from Proposition 4.1.7. We also give a description of
these projections in the L2(K)-notation: Suppose that σ ∈ K̂ and that I is the corresponding
minimal ideal of L2(K), i.e., I is the image of Vσ ⊗ V ∗σ in L2(K) under the isomorphism φ
from above. Then the projection onto I is given by convolution with

pI := φ(pσ) = dσ

dσ∑
i=1

ϕσii
(4.1.1)

= dσ

dσ∑
i=1

σ∗ii = dσtr(σ∗) = dσχσ∗ , (4.2.1)

where χσ∗ is the character of σ∗ as on page 23.

4.3 L2(G) as an induced space

The following description of L2(G) will be used in Section 4.4 on restriction of continuous
functions, and it also underlies the proof of Lemma 7.3.1 (Lemma 3.1 in [EE]). In their proof
of this lemma, Echterhoff and Emerson also give the definition of the isomorphism below, and
Baggett uses a similar construction in Paragraph 5.2 in [Bag68].

Let G be a locally compact group and let H be a compact subgroup of G. In this section
we want to use the isomorphism L2(H) ∼=

⊕
τ∈Ĥ Vτ ⊗ V

∗
τ to establish an isomorphism

L2(G) ∼=
⊕
τ∈Ĥ

Hind τ ⊗ V ∗τ . (4.3.1)

To this end, we will induce λH ≈ λH,⊗ =
⊕

τ∈Ĥ τ ⊗ idV ∗τ up to G, and then show that

indGH λ
H =

⊕
τ∈Ĥ indGH τ⊗idV ∗τ is equivalent to λG. To prove the existence of the isomorphism

in (4.3.1) we decompose it as follows:

L2(G) ∼= HindλH
∼= HindλH,⊗

∼=
⊕
τ∈Ĥ

Hind τ ⊗ V ∗τ . (4.3.2)

In fact, all these isomorphisms will be implemented by unitaries, that at the same time
implement the corresponding unitary equivalences

λG ≈ indGH λ
H ≈ indGH λ

H,⊗ ≈
⊕
τ∈Ĥ

indGH τ ⊗ idV ∗τ .
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The isomorphism HindλH
∼= L2(G)

According to Proposition/Definition 1.5.1, the induced Hilbert space HindλH is given by

HindλH = {ξ ∈ L2(G,L2(H)) | ∀h ∈ H, g ∈ G : ξ(gh) = λHh−1ξ(g)}.

We want to define a unitary operator P : HindλH → L2(G). We do this by giving an explicit
formula for P (ξ) for continuous elements ξ of HindλH , and by supplying an inverse operator.
Set

P (ξ)(g) := ξ(g)(eH) (4.3.3)

for all ξ ∈ HindλH ∩ C(G,C(H)) and all g ∈ G. To obtain an inverse operator for P , define

Q(η)(g)(h) := η(gh)

for all η ∈ Cc(G), and all g ∈ G, h ∈ H. It is easily checked that Q(η) ∈ HindλH for each
η ∈ Cc(G). For all ξ ∈ HindλH ∩ C(G,C(H)), g ∈ G, and h ∈ H we compute

(Q ◦ P )(ξ)(g)(h) = P (ξ)(gh) = ξ(gh)(eH) = λHh−1ξ(g)(eH) = ξ(g)(h),

so we have (Q ◦ P )(ξ) = ξ for all continuous ξ ∈ HindλH . A similar calculation shows that
(P ◦ Q)(η) = η for all η ∈ Cc(G). A computation using the definition of the scalar product
on HindλH shows that P and Q are isometric on the dense subsets of continuous elements
of HindλH and L2(G), respectively. It follows that P and Q can be extended to HindλH

and L2(G), respectively, and that Q ◦ P = idH
indλH

and P ◦ Q = idL2(G). Being isometric
surjections, the operators P and Q are unitary, and since they are inverse to each other it
follows that Q = P ∗.

A short calculation shows that P intertwines λG and indGH λ
H , as required.

The isomorphism HindλH
∼= HindλH,⊗

Let φH :
⊕

τ∈Ĥ Vτ ⊗ V
∗
τ → L2(H) be the unitary isomorphism defined in (4.1.2) applied to

H. This induces a canonical unitary isomorphism indφH between

HindλH,⊗ = {ξ ∈ L2(G,
⊕
τ∈Ĥ

Vτ ⊗ V ∗τ ) | ∀h ∈ H, g ∈ G : ξ(gh) = λH,⊗
h−1 ξ(g)}

and the space HindλH . For continuous elements of HindλH,⊗ this isomorphism is given by

((indφH)ξ)(g) = φH(ξ(g)) (4.3.4)

for all ξ ∈ HindλH,⊗ ∩C(G,
⊕

τ∈Ĥ Vτ ⊗V
∗
τ ) and all g ∈ G. The unitary indφH intertwines λH

and λH,⊗.

The isomorphism
⊕

τ∈Ĥ Hind τ ⊗ V ∗τ
∼= HindλH,⊗

By definition, λH,⊗ =
⊕

τ∈Ĥ τ ⊗ idVτ∗ . Since induction preserves direct sums and commutes
with amplifications (Proposition 9.18 in [Ech]) it follows that

indGH λ
H,⊗ ≈

⊕
τ∈Ĥ

indGH(τ ⊗ idV ∗τ ) ≈
⊕
τ∈Ĥ

indGH τ ⊗ idV ∗τ
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and
HindλH,⊗

∼=
⊕
τ∈Ĥ

Hind(τ⊗idV ∗τ )
∼=
⊕
τ∈Ĥ

Hind τ ⊗ V ∗τ .

Explicitly, this isomorphism maps an elementary tensor ξ⊗w∗ ∈ Hind τ ⊗V ∗τ with continuous
ξ to the element

G→ Vτ ⊗ V ∗τ , g 7→ ξ(g)⊗ w∗ (4.3.5)

of HindλH,⊗ .

The isomorphism
⊕

τ∈Ĥ Hind τ ⊗ V ∗τ
∼= L2(G)

Combining the results of the preceding paragraphs we obtain a unitary isomorphism between⊕
τ∈Ĥ Hind τ⊗V ∗τ and L2(G). To get an explicit formula, fix τ ∈ Ĥ and let ξ⊗w∗ ∈ Hind τ⊗V ∗τ

be such that ξ ∈ C(G,Vτ ). As seen in (4.3.5), this elementary tensor is mapped to

G→ Vτ ⊗ V ∗τ , g 7→ ξ(g)⊗ w∗

in HindλH,⊗ . To this we can apply the isomorphism indφH from (4.3.4) as follows:

indφH(g′ 7→ ξ(g′)⊗ w∗)(g) = φH(ξ(g)⊗ w∗)

= (h 7→
√
dτ 〈τ(h−1)ξ(g), w〉)

= (h 7→
√
dτ 〈ξ(gh), w〉) (4.3.6)

for all g ∈ G. Applying the isomorphism P : HindλH → L2(G) from (4.3.3) to (4.3.6), we
obtain the function

g 7→
√
dτ 〈ξ(g), w〉Vτ

in L2(G). In short, we have a unitary isomorphism

γ :
⊕
τ∈Ĥ

Hind τ ⊗ V ∗τ → L2(G), (4.3.7)

which, for each elementary tensor ξ ⊗ w∗ ∈ Hind τ ⊗ V ∗τ with continuous ξ, is given by

γ(ξ ⊗ w∗)(g) =
√
dτ 〈ξ(g), w〉

for all g ∈ G. It also follows that γ intertwines
⊕

τ∈Ĥ indGH τ ⊗ idV ∗τ and λG.

4.4 Restriction of continuous elements of L2(K)

Let now H be a closed subgroup of a compact group K. The results of the previous section,
applied to K instead of G, imply in particular that each subspace Hind τ ⊗ V ∗τ is invariant for
λK and hence a left ideal in L2(K). We now analyze what happens if we restrict continuous
elements of L2(K) to H. The results of this section are based on the work of Baggett in
Paragraphs 5.1 and 5.4 in [Bag68].
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Restricting ideals in L2(K) to L2(H)

We start with the following observation:

Lemma 4.4.1. If M is a finite-dimensional left ideal in L2(K), then all elements of M are
continuous, and

M |H := {f |H | f ∈M}

is a closed left ideal in L2(H).

Proof. Being finite-dimensional, M is a finite sum of minimal left ideals of L2(K). By Re-
mark 4.2.2, the minimal left ideals contain continuous functions only, so this is also true for
M . By Theorem 4.2.1 it now suffices to show that M |H is a closed invariant subspace for λH .
Being a finite-dimensional vector space, M |H is closed, and since M is invariant under λK , it
follows immediately that

λHh (f |H) = (λKh (f))|H ∈M |H
for every h ∈ H and every f ∈M , which shows that M |H is invariant under λH .

We can describe the restriction of a continuous function quite explicitly when we use the
isomorphisms γ :

⊕
τ∈Ĥ Hind τ ⊗V ∗τ → L2(K) from (4.3.7) and φH :

⊕
τ∈Ĥ Vτ ⊗V

∗
τ → L2(H)

from (4.1.2):

Lemma 4.4.2. Let τ ∈ Ĥ, let ξ ∈ Hind τ be continuous, and let w∗ ∈ V ∗τ . Then the restriction
of γ(ξ ⊗ w∗) ∈ L2(K) to H equals φH(ξ(eK)⊗ w∗).

Proof. The definitions of the isomorphisms γ and φH give

γ(ξ ⊗ w∗)|H(h) =
√
dτ 〈ξ(h), w〉 =

√
dτ 〈τ(h−1)ξ(eK), w〉 = φH(ξ(eK)⊗ w∗)(h)

for all h ∈ H.

Roughly speaking, the lemma says that restriction of continuous functions from L2(K) to
L2(H) can be implemented by evaluating elements of

⊕
τ∈Ĥ Hind τ ⊗ V ∗τ at the unit element

eK of K, which means that a continuous element ξ⊗w∗ ∈ Hind τ ⊗V ∗τ restricts to the element
ξ(eK)⊗ w∗ ∈ Vτ ⊗ V ∗τ .

The following corollary contains two more precise statements on restriction, which will be
used in the proof of openness of indK .

Corollary 4.4.3. Let K be a compact group and let H be a closed subgroup.

(i) Let σ ∈ Ĥ and suppose that M is a left ideal of L2(K) which is contained in Hindσ⊗V ∗σ .
Then

M |H := {f |H | f ∈M is continuous}

is a closed left ideal in L2(H) which is contained in Vσ ⊗ V ∗σ .

(ii) If M is a minimal left ideal in L2(K), then M |H defined as in Lemma 4.4.1 is also
minimal in L2(H).
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Proof. (i): It follows directly from Lemma 4.4.2 that M |H is contained in Vσ ⊗ V ∗σ , which
implies that M |H is a finite-dimensional and hence closed subspace of L2(H). It follows as in
the proof of Lemma 4.4.1 that M |H is invariant for λH and thus a left ideal.

(ii): Suppose that M is a minimal left ideal in L2(K). Then M is finite-dimensional
and contains continuous functions only, so M |H can be defined as in Lemma 4.4.1. It is a
consequence of the description of L2(K) as

⊕
τ∈K̂ Vτ ⊗ V

∗
τ that L2(K) decomposes into left

ideals of the form Hind τ ⊗ f∗ with τ ∈ Ĥ and f∗ a unit vector in V ∗τ .
By minimality of M , we can thus choose σ ∈ Ĥ and a unit vector e∗ ∈ V ∗σ such that

M ⊆ Hindσ ⊗ e∗. It then follows by the above description of restriction that M |H ⊆ Vσ ⊗ e∗.
By Lemma 4.4.1, M |H is a closed left ideal, so minimality of Vσ⊗e∗ implies that M |H = Vσ⊗e∗
is a minimal left ideal in L2(H).

Application to representations

Translated into the language of representations, the previous corollary reads as follows:

Remark 4.4.4. If M is as in (i) of Corollary 4.4.3, then there exists n ∈ N such that

λH |(M |H) = nσ.

If M is minimal, then it follows from (ii) of Corollary 4.4.3 that there exists σ ∈ Ĥ such that

λH |(M |H) = σ.

The second statement is a slight refinement of Lemma 5.4-B in [Bag68], because we show
that λH |(M |H) is not just equivalent to a multiple of σ, but to σ itself.

In the proof of openness of indK it will be necessary to construct, for given (K,σ) ∈ S(K )̂
and H ≤ K, an element σH ∈ Ĥ with σH ≤ σ|H . For this we need one more lemma, the
proof of which is based on the following fact, which is Theorem 1.2 in [Mac55].

Theorem 4.4.5. Let G be a locally compact group and let π, % ∈ Rep(G). Suppose that
T ∈ B(Vπ, V%) intertwines π and %, i.e., %(g)T = Tπ(g) for all g ∈ G. Let N := (kerT )⊥

and L := imT . Then N and L are invariant subspaces for π and %, respectively, and π|N is
unitarily equivalent to %|L.

Lemma 4.4.6. Let H ≤ K be a closed subgroup, let M be a minimal left ideal in L2(K).
Then

λH |(M |H) ≤ (λK |M )|H .

Proof. Define T : M →M |H , f 7→ f |H . Then(
T ◦

(
(λK |M )|H

)
(h)
)

(f)(l) = f(h−1l) =
(
(λH |(M |H))(h) ◦ T

)
(f)(l)

for all f ∈ M and for all h, l ∈ H, which shows that T intertwines (λK |M )|H and λH |(M |H).

Since T is surjective, the above theorem implies that λH |(M |H) is equivalent to the restriction

of (λK |M )|H to (kerT )⊥, which shows that λH |(M |H) is a subrepresentation of (λK |M )|H , as
required.

49



4.5 A convergence lemma for nets in Rep(K) with limit in K̂

As promised, we now include the proof of Lemma 1.3.4, which was used in the proof that
our closure operation on Stab(X )̂ satisfies the Kuratowski closure axioms, and which will
also be used when we compare our topology on Stab(X )̂ with the one defined by Echterhoff
and Emerson in [EE] under the assumption of Palais’ slice property. Notice that its proof
is completely independent of the results we obtained for the topology on Stab(X )̂ . For the
convenience of the reader, we restate the lemma here:

Lemma 4.5.1 (Lemma 1.3.4, Lemma 4.8 in [EE]). Let K be a compact group, let (πν)ν∈N
be a net in Rep(K), and let σ ∈ K̂. The following statements are equivalent:

(i) πν → σ;

(ii) There exists an index ν0 ∈ N such that σ ≤ πν for all ν ∈ N≥ν0 .

The proof requires some facts about containment and weak containment, which we put
into the following lemma. We will not need all implications stated here, but leaving them out
makes things seem incomplete.

Lemma 4.5.2. Let K be a compact group, let π ∈ Rep(K), and let σ ∈ K̂. The following
statements are equivalent:

(i) σ ≤ π;

(ii) Vσ ⊗ V ∗σ 6⊆ kerπ;

(iii) σ ≺ π.

Proof. As seen above, the space Vσ ⊗ V ∗σ can be identified with a subset of C(K) and hence
of C∗(K). It is an immediate consequence of the Schur Orthogonality Relations that σ is the
only element of K̂ which is nontrivial on Vσ ⊗ V ∗σ , i.e., which satisfies Vσ ⊗ V ∗σ 6⊆ kerσ.

(i)⇒(iii): This follows directly from the definitions and requires neither the compactness
assumption nor the irreducibility of σ.

(iii)⇒(ii): By contraposition. Suppose that Vσ ⊗ V ∗σ ⊆ kerπ. It follows immediately that
kerπ 6⊆ kerσ, because otherwise we had Vσ ⊗ V ∗σ ⊆ kerπ ⊆ kerσ, which would contradict
Vσ ⊗ V ∗σ 6⊆ kerσ.

(ii)⇒(i): Suppose that Vσ ⊗ V ∗σ 6⊆ kerπ. Since π is a direct sum of irreducible represen-
tations, and since σ is the only element of K̂ which is nonzero on Vσ ⊗ V ∗σ , it follows that π
contains σ as a direct summand.

Proof of Lemma 4.5.1. Recall from Proposition 1.3.2 that πν → σ if and only if σ is weakly
contained in every subnet of (πν)ν∈N .

(i)⇒(ii): By contraposition. Suppose that for every ν ∈ N there exists µ ∈ N≥ν such that
σ is not contained in πν . We construct a subnet (πj)j∈J of (πν)ν∈N which does not weakly
contain σ. Set

J := {(ν, µ) ∈ N ×N | µ ≥ ν and σ 6≤ πµ},

then J is an upwards directed ordered set with respect to componentwise ordering, and

J → N, j = (ν, µ) 7→ µ

50



defines a subnet (πj)j∈J of (πν)ν∈N such that σ 6≤ πj for all j ∈ J . By Lemma 4.5.2 this
implies that

Vσ ⊗ V ∗σ ⊆
⋂
j∈J

kerπj

and hence, as Vσ ⊗ V ∗σ 6⊆ kerσ, it follows that⋂
j∈J

kerπj 6⊆ kerσ,

i.e., σ is not weakly contained in (πj)j∈J .
(ii)⇒(i): Choose ν0 ∈ N such that σ ≤ πν for all ν ∈ N with ν ≥ ν0. By Lemma 4.5.2

and by definition of weak containment it follows that

kerσ ⊇ kerπν

for every ν ∈ N≥ν0 . Let now (πνj )j∈J be any subnet of (πν)ν∈N . Find j0 ∈ J such that
νj ≥ ν0 for every j ≥ j0. Then

kerσ ⊇
⋂
j≥j0

kerπνj ⊇
⋂
j∈J

kerπνj ,

i.e., σ is weakly contained in (πνj )j∈J , as required.
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Chapter 5

The map indG is a homeomorphism

In this chapter we will prove that the topology on Stab(X )̂ from Definition 2.3.1 and
Proposition 2.3.3 makes the map

indG : G\Stab(X )̂ → (C0(X) oG)̂ , [x,Gx, σ] 7→ πx,σ

a homeomorphism in case of a proper locally compact G-space X. We have already seen in
Section 2.4 that indG is continuous. It is left to work out the much more complicated proof
that indG is also open. In Section 5.1 we prove some first results concerning the X- and the
K (G)-component of indG in case of a proper G-action. In Section 5.2 we consider a compact
group K acting on a locally compact space Y and prove that indK is open in this situation.
Openness of indK can then be combined with the results on reduction to the compact case
from Section 3.5 to prove openness of indG in the general case of a proper group action. This
is done in Section 5.3.

We close the chapter with a short discussion of our assumptions and an application of our
results on actions with continuous stabilizer map from Section 2.5 to the space (C0(X)oG)̂ .

5.1 First steps towards openness of indG

Let G be a locally compact group which acts properly on a locally compact Hausdorff space
X. Suppose that (πν)ν∈N converges to π in (C0(X) o G)̂ . By the Mackey-Rieffel-Green
Theorem (2.3.5) we can choose ([xν , Gν , σν ])ν∈N and [x,Gx, σ] in G\Stab(X )̂ such that

π = πx,σ = P x o indGGx σ and πν = πxν ,σν = P xν o indGGν σν

for all ν ∈ N . We show in this section that there are a subnet ([xj , Gj , σj ])j∈J and repre-
sentatives (xj , Gj , σj)j∈J such that xj → x in X and Gj → H ≤ Gx in K (G). This is a
consequence of the following two results:

Lemma 5.1.1. Retain the notation of the preceding text. Then Gxν → Gx in G\X.

Proof. As described in Remark 1.4.1, the canonical inclusion ιC0(X) : C0(X)→M(C0(X)oG)
induces a continuous map Rep(C0(X) oG)→ Rep(C0(X)), mapping %o U to %. Combined
with the above assumptions this gives that P xν → P x as representations of C0(X).

Now the canonical inclusion j : C0(G\X) → M(C0(X)) given by j(f)(y) = f(Gy) for all
f ∈ C0(G\X) and all y ∈ X induces a continuous map

Rep(C0(X))→ Rep(C0(G\X)), %→ % ◦ j.
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As

(P x ◦ j)(f)ξ(g) = j(f)(gx)ξ(g) = f(Gx)ξ(g) = evGx(f)ξ(g)

for all f ∈ C0(G\X), ξ ∈ Hindσ and g ∈ G, and analogously for P xν for all ν ∈ N , it follows
that evGxν → evGx as representations of the commutative C∗-algebra C0(G\X). Since G\X
is a locally compact Hausdorff space, this implies that Gxν → Gx in G\X.

Combining this result with Lemma 2.2.3 on the convergence of the stabilizer subgroups
of a convergent net in X, we obtain the following proposition:

Proposition 5.1.2. Let G be a locally compact group acting properly on a locally compact
Hausdorff space X. Let (πν)ν∈N converge to π in (C0(X) o G)̂ . Then there exist a subnet
(πj)j∈J , elements (xj , Gj , σj)j∈J and (x,Gx, σ) in Stab(X )̂ , and a subgroup H ≤ Gx such
that

π = πx,σ and πj = πxj ,σj

for all j ∈ J , and xj → x in X and Gj → H in K (G).

Proof. Let (x,Gx, σ) be a representative of [x,Gx, σ]. By Lemma 5.1.1 above we know that
Gxν → Gx, so Remark 1.1.1 yields a subnet ([xl, Gl, σl])l∈L and representatives (xl, Gl, σl)l∈L
such that xl → x. It then follows from Lemma 2.2.3 that there exist a subnet (xj , Gj , σj)j∈J
and H ≤ Gx with Gj → H.

5.2 Openness of indK for a compact group K

This section contains most part of the work for the proof of openness of indG. Since we have
to use several results from the representation theory of compact groups, we restrict ourselves
to actions of compact groups here. The material of this section is based on the work of
Baggett in [Bag68], but the reduction to group representations below and our description of
restriction of continuous functions in L2(K) to closed subgroups from Section 4.4 allow some
simplifications.

So we suppose now that a compact group K acts on a locally compact Hausdorff space
Y . As before, let (πν)ν∈N converge to π in (C0(Y ) oK )̂ , and suppose that we have found
(yν ,Kν , σν)ν∈N and (y,Ky, σ) in Stab(Y )̂ with

π = πy,σ = P y o indKKy σ and πν = πyν ,σν = P yν o indKKν σν

for all ν ∈ N . We have already seen that it is not too difficult to obtain some first open-
ness results for the Y - and the K (K)-component of indK . We now have to worry about
convergence of the subgroup representations (Kν , σν)ν∈N .

Reduction to group representations

The integrated form ιC∗(K) : C∗(K) → M(C0(Y ) o K) of the canonical inclusion ιK from
Remark 1.4.1 induces a continuous map Rep(C0(Y ) oK) → Rep(C∗(K)) = Rep(K), which
maps a representation τ o U to U . Hence, the above assumption that πyν ,σν → πy,σ implies
that indKKν σν → indKKy σ in Rep(K).
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Let % ∈ K̂ be such that % ≤ indKKy σ. It then follows from Proposition 1.3.2 that

indKKν σν → %. As seen in section 4.3, the left regular representation λK of K is equiva-

lent to indKKν λ
Kν for all ν ∈ N , and so σν ≤ λKν for all ν ∈ N implies that indKKν σν is

equivalent to a subrepresentation of λK for every ν ∈ N . Hence we can choose closed λK-
invariant subspaces (Pν)ν∈N of L2(K) such that indKKν σν is equivalent to λK |Pν for all ν ∈ N .
Let P% be a minimal left ideal of L2(K) associated to %, i.e., P% = V%⊗e∗ for some unit vector
e ∈ V%. Then % is equivalent to λK |P% .

We now construct a positive functional associated with % so that we can apply Fell’s
characterization of convergence in terms of positive functionals from Proposition 1.3.7. Recall
that P% contains continuous elements only, and let h be a nonzero element of P%. Define

ϕ : C∗(K)→ C, F 7→ 〈%(F )h, h〉 = 〈λK(F )h, h〉,

then ϕ is a positive functional associated with % as a representation of C∗(K). By Propo-
sition 1.3.7(iii) we can, after passing to a subnet and relabeling, if necessary, find a net of
positive functionals (ϕ′ν)ν∈N , each ϕ′ν associated to indKKν σν as representations of C∗(K),
such that ‖ϕ′ν‖ ≤ ‖ϕ‖ for all ν ∈ N and such that ϕ′ν → ϕ in the weak∗ topology.

Choose, for every ν ∈ N , an element h′ν ∈ Pν such that ϕ′ν is given by

ϕ′ν : C∗(K)→ C, F 7→ 〈(indKKν σν)(F )h′ν , h
′
ν〉 = 〈λK(F )h′ν , h

′
ν〉.

In what follows we work out the following idea: Using the net (h′ν)ν∈N we construct a space
Z ≤ L2(K) such that λK |Z is equivalent to % and the following holds: For every element g ∈ Z
we find continuous elements gν ∈ Pν which converge uniformly to g. As seen in Section 4.4,
the restriction of any continuous element g of Z to Ky lies in the left ideal of L2(Ky) associated
to σ, and in the same way the restrictions gν |Kν are related to σν for all ν ∈ N . We will
use this fact combined with the convergence gν → g to prove that (Kν , σν) → (H,σH) for a
suitable element (H,σH) ≤ (Ky, σ). First, we need a modification of the elements hν .

Lemma 5.2.1. Retain the above assumptions. Let I := V% ⊗ V ∗% denote the minimal two-
sided ideal of L2(K) which contains h. Let pI ∈ C(K) be the projection onto I as defined in
(4.2.1). For every ν ∈ N define hν := pI ∗ h′ν and

ϕν : C∗(K)→ C, F 7→ 〈λK(F )hν , hν〉.

Then hν ∈ Pν∩I and ‖hν‖2 ≤ ‖h‖2 for every ν ∈ N , each ϕν is a positive functional associated
with indKKν σν , and ϕν → ϕ in the weak∗ topology.

As, on the finite-dimensional ideal I, the L2-norm is equivalent to the maximum norm,
and since all the functions involved here are contained in I and in particular continuous, it
follows that there exists a constant c > 0 such that ‖hν‖∞ ≤ c‖h‖∞.

Proof of Lemma 5.2.1. Being invariant subspaces for λK , all Pν are closed left ideals in L2(K)
by Theorem 4.2.1. Since I is a two-sided ideal it follows directly that hν ∈ Pν ∩ I, and hence
that ϕν is associated with indKKν σν for every ν ∈ N . Moreover we can use that

‖h′ν‖22 = ‖ϕ′ν‖ ≤ ‖ϕ‖ = ‖h‖22

to see that
‖hν‖2 = ‖pI ∗ h′ν‖2 ≤ ‖h‖2
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for all ν ∈ N , because convolution with pI is a projection. For the proof of convergence of
the net (ϕν)ν∈N to ϕ we use the fact that

λK(η)ζ = η ∗ ζ

for all η, ζ ∈ C(K). It follows that, for every F ∈ C(K):

ϕ(F ) = 〈λK(F )h, h〉 = 〈F ∗ (pI ∗ h), pI ∗ h〉
= 〈pI ∗ (F ∗ (pI ∗ h)), h〉 = 〈λK(pI ∗ (F ∗ pI))h, h〉
= ϕ(pI ∗ (F ∗ pI)) = lim

ν
ϕ′ν(pI ∗ (F ∗ pI))

= lim
ν
〈λK(pI ∗ (F ∗ pI))h′ν , h′ν〉 = lim

ν
〈(pI ∗ (F ∗ pI)) ∗ h′ν , h′ν〉

= lim
ν
〈F ∗ (pI ∗ h′ν), p ∗ h′ν〉 = lim

ν
〈λK(F )(p ∗ h′ν), pI ∗ h′ν〉

= lim
ν
ϕν(F )

Since C(K) is dense in C∗(K) and all positive functionals are continuous it follows that
ϕ(F ) = limν ϕν(F ) for all F ∈ C∗(K), which completes the proof.

Proposition 5.2.2. Retain the above assumptions. Then there exists a λK-invariant sub-
space Z of L2(K) such that

(i) λK |Z is equivalent to %,

(ii) for every g ∈ Z there exist continuous elements gν ∈ Pν for all ν ∈ N such that gν → g
uniformly.

Proof. As seen above, we can assume that hν ∈ Pν ∩ I for all ν ∈ N , where I = V% ⊗ V ∗% ,
which in particular implies that all hν are continuous, and that there is a constant c > 0 such
that ‖hν‖∞ ≤ c‖h‖∞. Now {hν | ν ∈ N} is a closed bounded subset of the finite-dimensional
space I, hence it is compact. After passing to a subnet and relabeling we can thus assume
that there is v ∈ I such that hν → v uniformly. Define

Z := {λK(F )v | F ∈ C∗(K)}.

Notice that Z is finite-dimensional, because v is contained in the λK-invariant finite-dimensional
subspace I. For every F ∈ C∗(K) we have that

〈λK(F )v, v〉 = lim
ν
〈λK(F )hν , hν〉 = lim

ν
ϕν(F )

= ϕ(F ) = 〈λK(F )h, h〉.

Since cyclic representations are equivalent if and only if the positive functionals coming from
their cyclic vectors are the same (Theorem 5.1.4 in [Mur90]), it follows that λK |Z is equivalent
to λK |P , where

P := {λK(F )h | F ∈ C∗(K)}.
But as P% is an invariant subspace for λK and h ∈ P%, we have that λK(F )h ∈ P% for all
F ∈ C∗(K). This shows that P is an invariant subspace of P%, which implies that P = P% by
minimality of P%. We now have that λK |Z is equivalent to %, which shows (i).

Let now g ∈ Z and choose F ∈ C∗(K) with g = λK(F )v. Define the net (gν)ν∈N by
gν := λK(F )hν for every ν ∈ N . As hν ∈ Pν for every ν ∈ N and as each Pν is λK-invariant,
it follows that gν ∈ Pν for all ν ∈ N . Since hν → v and everything takes place in I we can
conclude that gν → g uniformly.
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Proof of openness for a compact group K

We now give the proof of openness of the bijection indK in case of a compact group K.

Theorem 5.2.3. Suppose that K is a compact group acting on a locally compact Hausdorff
space Y . Then the map indK : K\Stab(Y )̂ → (C0(Y ) oK )̂ is open.

Proof. Suppose that (πν)ν∈N converges to π in (C0(Y ) oK )̂ , and let ([yν ,Kν , σν ])ν∈N and
[y,Ky, σ] be in Stab(Y )̂ such that π = πy,σ and πν = πyν ,σν for every ν ∈ N . To prove
that [yν ,Kν , σν ]→ [y,Ky, σ] in K\Stab(Y )̂ in the sense of Remark 2.3.4, we first pass to a
subnet and relabel.

As seen in Proposition 5.1.2 we can, after passing to a subnet and relabeling again, assume
that there exist representatives (yν ,Kν , σν)ν∈N and (y,Ky, σ) in Stab(Y )̂ , and a subgroup
H ≤ Ky such that

π = πy,σ = P y o indKKy σ and πν = πyν ,σν = P yν o indKKν σν

for all ν ∈ N , and such that yν → y in Y and Kν → H in K (K). We have to find an element
σH ∈ Ĥ such that σH ≤ σ|H and (Kν , σν)→ (H,σH) in S(K )̂ .

As in the beginning of Section 5.2 choose closed λK-invariant subspaces (Pν)ν∈N of L2(K)
such that indKKν σν is equivalent to λK |Pν for every ν ∈ N , and let % ∈ K̂ be an irreducible

subrepresentation of indKKy σ.

Let Z be a subspace of L2(K) as constructed in Proposition 5.2.2. Being equivalent to
%, the representation λK |Z is an irreducible subrepresentation of indKKy σ. Thus we can view
Z as a minimal left ideal in Hindσ ⊗ V ∗σ , which by Corollary 4.4.3 and Remark 4.4.4 implies
that Z|Ky is a minimal left ideal in L2(Ky) and

λKy |(Z|Ky ) = σ.

Again by Corollary 4.4.3 it follows that Z|H is a minimal left ideal in L2(H), so σH := λH |(Z|H)

is an element of Ĥ, and by Lemma 4.4.6 we get that

σH = λH |(Z|H) ≤
(
λKy |(Z|Ky )

)∣∣∣
H

= σ|H .

It is now left to show that (Kν , σν) → (H,σH) in S(K )̂ . We use Fell’s criterion for conver-
gence of subgroup representation pairs given in Theorem 2.2.7. Let f ∈ Z|H , then

ψ : H → C, h 7→ 〈σH(h)f, f〉 =

∫
H
f(h−1x)f(x)dµH(x)

is a function of positive type associated with (H,σH). Suppose that we have passed to a
subnet of (Kν , σν)ν∈N and relabeled. To construct functions of positive type associated with
the elements (Kν , σν) we first go back to the level of L2(K) and apply Proposition 5.2.2. To
this end choose g ∈ Z such that f = g|H . Then there exists a net (gν)ν∈N of continuous
elements gν ∈ Pν such that gν → g uniformly. For every ν ∈ N define

Mν := {h|Kν | h ∈ Pν is continuous},

then by Remark 4.4.4 there exists for every ν ∈ N a number nν ∈ N such that

λKν |Mν = nνσν .
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For every ν ∈ N set fν := gν |Kν , then fν ∈Mν and

ψν : Kν → C, k 7→ 〈(nνσν)(k)fν , fν〉 =

∫
Kν

fν(k−1x)fν(x)dµKν (x)

is a function of positive type associated with nνσν , and hence a finite sum of functions of
positive type associated with σν . To apply Fell’s criterion for convergence in Rep(S(K))
from Theorem 2.2.7 we now have to show that ψν → ψ in the Fell topology on F (K) as
characterized in Lemma 2.2.6.

We already know that Kν → H in K (K). Suppose that we have passed to a subnet of
(ψν)ν∈N and relabeled, and that we have chosen elements kν ∈ Kν for all ν ∈ N and k ∈ H
such that kν → k. We have to show that ψν(kν)→ ψ(k). Define

h : H → C, l 7→ f(k−1l)f(l)

and
hν : Kν → C, l 7→ fν(k−1

ν l)fν(l)

for every ν ∈ N . We first show that hν → h in F (K). Suppose again that we have passed to
a subnet and relabeled, and that we have chosen elements lν ∈ Kν for all ν ∈ N and l ∈ H
such that lν → l. Using that f = g|H and fν = gν |Kν for all ν ∈ N we get that

|hν(lν)− h(l)| = |fν(k−1
ν lν)fν(lν)− f(k−1l)f(l)|

= |gν(k−1
ν lν)gν(lν)− g(k−1l)g(l)|.

This tends to zero because gν → g uniformly. It now follows from Proposition 2.2.12 on
continuity of integration on F (K) that

|ψν(kν)− ψ(k)| =
∣∣∣∣∫
Kν

fν(k−1
ν s)fν(s)dµKν (s)−

∫
H
f(k−1t)f(t)dµH(t)

∣∣∣∣
=

∣∣∣∣∫
Kν

hν(s)dµKν (s)−
∫
H
h(t)dµH(t)

∣∣∣∣
tends to zero. This proves that ψν → ψ in F (K), which implies (Kν , σν) → (H,σH) in
S(K )̂ and thus (yν ,Kν , σν)→ (y,Ky, σ) in Stab(Y )̂ , which completes the proof.

5.3 Openness of indG

Let G be a locally compact group which acts properly on a locally compact Hausdorff space
X. We already saw in Section 2.4 that the bijection

indG : G\Stab(X )̂ → (C0(X) oG)̂

from the Mackey-Rieffel-Green Theorem is continuous with respect to the quotient topology
on G\Stab(X )̂ and the Jacobson topology on (C0(X) o G)̂ . We now prove that indG is
also open, and hence a homeomorphism.

To achieve this, we will use the fact that the proper G-space X is locally induced from
compact subgroups, combined with the openness of indK in case of a compact group K acting
on a locally compact Hausdorff space Y . The following remarks will be useful for the proof
of the theorem.
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Remarks 5.3.1. (i) If U ⊆ X is a G-invariant subset, then G\Stab(U )̂ ⊆ G\Stab(X )̂ .

(ii) If U ⊆ X is a G-invariant open subset, then C0(U) is a closed G-invariant ideal in C0(X).
Since taking (full) crossed products gives an exact functor between the category of G-
C∗-algebras and the category of C∗-algebras (see Proposition 4.8 in [Ech]), this implies
that C0(U) o G is a closed ideal in C0(X) o G. Combined with the fact that closed
ideals of a C∗-algebra correspond to open subsets of the spectrum (see Proposition 3.2.2
in [Dix77]), we obtain that (C0(U) oG)̂ is an open subset of (C0(X) oG)̂ .

Theorem 5.3.2. Let X be a proper G-space. Then indG is open.

Proof. We show that images of open sets are open. Let thus W ⊆ G\Stab(X )̂ be an open
subset. Let V be the pre-image of W in Stab(X )̂ . For every (w,Gw, σ) ∈ V suppose that
Uw is a G-invariant open neighborhood of w, that Lw ≤ G is a compact subgroup, and that
ϕw : Uw → G/Lw is a continuous G-map as supplied by Abels’ Theorem (Theorem 1.1.7).
Then, with Yw := ϕ−1

w ({eLw}), we have for every (w,Gw, σ) ∈ V that w ∈ Yw and that
G×Lw Yw is homeomorphic to Uw via [g, y] 7→ gy. We then have that

W =
⋃

(w,Gw,σ)∈V

G\Stab(Uw )̂ ∩W

and thus
indG(W ) =

⋃
(w,Gw,σ)∈V

indG (G\Stab(Uw )̂ ∩W ) .

It thus suffices to show that the sets

indG (G\Stab(Uw )̂ ∩W )

are open in (C0(X) o G)̂ for every (w,Gw, σ) ∈ V . Let thus (w,Gw, σ) ∈ V . By Proposi-
tion 3.5.2 there is a commutative diagram of bijective maps

Lw\Stab(Yw )̂
ι //

indLw

��

G\Stab(Uw )̂

indG

��
(C0(Yw) o Lw )̂

indZ
// (C0(Uw) oG)̂ ,

where indLw and indG are the usual Mackey-Rieffel-Green maps, indZ is the homeomorphism
coming from the Morita equivalence of C0(Yw) o Lw and C0(Uw) oG from Section 3.4, and
ι is the bijection from Lemma 3.5.1. Since ι is continuous, indZ is a homeomorphism and
indLw is open by compactness of Lw, it follows immediately that the restriction of indG to
G\Stab(Uw )̂ is open.

Since W is open in G\Stab(X )̂ , the intersection G\Stab(Uw )̂ ∩W is relatively open
in G\Stab(Uw )̂ , hence indG (G\Stab(Uw )̂ ∩W ) is relatively open in (C0(Uw) o G)̂ . But
as (C0(Uw) o G)̂ is open in (C0(X) o G)̂ by Remark 5.3.1(ii), it already follows that
indG (G\Stab(Uw )̂ ∩W ) is open in (C0(X) oG)̂ , which completes the proof.

Altogether we have now obtained our main result:

Theorem 5.3.3. If X is a proper G-space, then the bijection

indG : G\Stab(X )̂ → (C0(X) oG)̂

from the Mackey-Rieffel-Green Theorem is a homeomorphism with respect to the quotient
topology induced from Stab(X )̂ on G\Stab(X )̂ and the Jacobson topology on (C0(X)oG)̂ .
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5.4 Discussion of assumptions

We have now proved that (C0(X) o G)̂ ∼= G\Stab(X )̂ for any proper G-space X, where
X is a locally compact Hausdorff space. This might be a good place to contemplate where
we actually need these assumptions.

We used properness to make Abels’ Theorem available, which tells us that proper G-spaces
are locally induced from compact subgroups. The reduction of the proof of openness of indG

to the case where G is compact relies heavily on this fact.
After reading the proof of openness in the compact case above it is obvious that it only

works in case of a compact group K, since we use the representation theory of compact groups
like the Peter-Weyl Theorem, the minimal ideal structure, and the Frobenius Reciprocity
Theorem all over the place.

The assumption that X is Hausdorff is implicitly used in many places, for instance when
we use that the orbit space of a proper G-space X is Hausdorff. It appears explicitly when
we prove that whenever xν → x, there is a subnet (xj)j∈J such that Gj → H ≤ Gx.

5.5 Proper actions with continuous stabilizer map

A nice application of our result is that it leads to a new proof of the well-known fact that, given
a proper G-space X, the spectrum (C0(X)oG)̂ is Hausdorff if and only if the stabilizer map
x 7→ Gx is continuous. Results of this kind have been obtained, for instance, by Echterhoff in
[Ech94], by Baggett in [Bag68], and also by Williams in [Wil82].

Theorem 5.5.1. Let X be a proper G-space. Then the stabilizer map X → K (G), x 7→ Gx
is continuous if and only if (C0(X) oG)̂ is Hausdorff.

Proof. We already proved in Proposition 2.5.1 that continuity of the stabilizer map is equiv-
alent to the fact that G\Stab(X )̂ is Hausdorff. As seen above, this is equivalent to
(C0(X) oG)̂ being Hausdorff, which completes the proof.
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Chapter 6

A C∗-algebra with spectrum
Stab(X )̂

In the beginning of Chapter 2 we mentioned that, for every proper G-space X, there exists
a C∗-algebra A, the spectrum of which is in one-to-one correspondence to Stab(X )̂ . In
Section 6.1 we give the details for the construction of A and show that the spectrum Â is
then even homeomorphic to Stab(X )̂ with its usual topology as defined in Section 2.3. In
Section 6.2 we define a G-action on A such that the induced G-action on Â corresponds to
the G-action on Stab(X )̂ .

The ideas underlying the material of this chapter where communicated to me by Siegfried
Echterhoff.

6.1 Construction of A with Â ∼= Stab(X )̂

Let X be a proper G-space and let G act on K := K(L2(G)) via Ad(%) : G→ Aut(K), where
% is the right regular representation of G on L2(G). As in Section 2.1 we define

A := {f ∈ C0(X,K) | ∀x ∈ X : f(x) ∈ KGx}. (6.1.1)

We mentioned before that A is a C0(X)-algebra with fibre KGx over every x ∈ X. This can
be shown directly by modifying Echterhoff and Emerson’s proof of the bundle structure of
generalized fixed point algebras. It is then the main issue to show that the fibres are really
all of KGx for every x ∈ X.

But, since we have to work with topological fundamental domains anyway, we can use
Corollary 1.4.6 from page 14 to obtain the desired statement on A: If

(?) we can describe X as a topological fundamental domain for a proper G-space Y in such
a way that, for every x ∈ X, the stabilizer subgroup Gx with respect to the G-action
on X coincides with Gx with respect to the G-action on Y ,

then the just mentioned corollary yields that

A ∼= C0(Y ) oG ∼= C0(Y ×G,Ad% K),

which by Lemma 1.4.2 implies that A is a C0(X)-algebra as described above. We showed in
Section 2.1 that then the spectrum Â equals Stab(X )̂ as a set.

We will prove in Proposition 6.1.2 that (?) is always satisfied. This is point 1. of our plan
below, in which we outline the idea for the proof that Â is in fact homeomorphic to Stab(X )̂ .
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The plan

To avoid too much irritating text we introduce the following notation:

Notation 6.1.1. Suppose that W is a G-space. If there are also other G-spaces around and
there is a risk of misunderstanding, then we denote the stabilizer subgroup of an element
w ∈ W with respect to the G-action on W by GWw . If V is a G-space such that GVv = GWv
for all v ∈ V ∩W , then we say that V and W have coinciding stabilizers.

To obtain our desired result that, for a proper G-space X, the C∗-algebra A as above
is a C0(X)-algebra and that its spectrum is homeomorphic to Stab(X )̂ , we will pursue the
following strategy:

1. Construct a proper G-space Y which contains X as a topological fundamental domain
such that X and Y have coinciding stabilizers, i.e., GXx = GYx for every x ∈ X.

2. Prove that this implies that Stab(X )̂ is a topological fundamental domain for the
G-space Stab(Y )̂ .

3. Use 1., Theorem 5.3.3, and 2., respectively, to obtain the homeomorphisms

Â ∼= (C0(Y ) oG)̂ ∼= G\Stab(Y )̂ ∼= Stab(X )̂ ,

and be happy.

Every proper G-space X is a topological fundamental domain for some
proper G-space Y

As above, let X be a given proper G-space. As usual we assume that X is a locally compact
Hausdorff space. Recall from topology that a topological space S is Hausdorff if and only
if the diagonal ∆S := {(s, s) | s ∈ S} is closed in S × S. Notice that this ∆ has nothing
to do with the modular function ∆G of a locally compact group G. Since the diagonal of a
topological space and the modular function of a locally compact group will not appear in the
same place here, there should be no confusion about the use of ∆.

Proposition 6.1.2. There exists a locally compact Hausdorff space Y equipped with a proper
G-action which contains X as a topological fundamental domain such that X and Y have
coinciding stabilizers.

Proof. Define
Y := {(x, y) ∈ X ×X | y ∈ Gx}

and equip Y with the relative topology induced from X ×X. Then Y is Hausdorff. To see
that Y is locally compact consider the continuous map

ϕ : X ×X → G\X ×G\X, (x, y) 7→ Gx×Gy.

Since G acts properly on X, the orbit space G\X is Hausdorff (Proposition 1.1.4 (ii)), which
implies that the diagonal ∆G\X is closed. It is easy to check that Y = ϕ−1(∆G\X), which
implies that Y is a closed, hence locally compact, subspace of the locally compact space
X ×X.
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To define an action of G on Y we first equip the space X × X with the G-action given
by g(x1, x2) = (x1, gx2) for all g ∈ G, (x1, x2) ∈ X ×X. As X is a proper G-space, it follows
from Proposition 1.1.4 (iv) that this action makes X × X also a proper G-space. Being a
closed, G-invariant subspace of X ×X, the G-space Y is now also proper.

We have now established that Y is a locally compact Hausdorff space with a proper G-
action, and it is left to show that X is a topological fundamental domain for Y . Via the
embedding i : X → Y, x 7→ (x, x) we identify X with the diagonal i(X) ⊆ Y . Since X is
Hausdorff, i(X) = ∆X = ∆X ∩ Y is closed in Y . Moreover, for every x ∈ X, we have that
GXx = GY(x,x) = GYi(x), which shows that the stabilizer subgroups of X and Y coincide.

We now show that the map q : X → G\Y, x 7→ G(x, x) is a homeomorphism. To see that
q is injective, let x1, x2 ∈ X be such that G(x1, x1) = G(x2, x2). Then there exists g ∈ G
with (x2, x2) = g(x1, x1) = (x1, gx1), from which it follows that x1 = x2.

Let now G(x, y) ∈ G\Y . By definition of Y there is g ∈ G with y = gx, which implies
that (x, y) = g(x, x) and thus q(x) = G(x, x) = G(x, y). This shows that q is surjective.

Since q is the composition of the continuous inclusion i with the continuous quotient map
p : Y → G\Y , it is itself continuous.

To see that q is open let U ⊆ X be an open subset. We have to show that

q(U) = {G(x, x) ∈ G\Y | x ∈ U}

is open in G\Y , which is equivalent to the question whether p−1(q(U)) is open in Y . We
check that

p−1(q(U)) = {(x, y) ∈ Y | ∃x′ ∈ U : G(x, y) = G(x′, x′)}
= {(x, gx) ∈ Y | x ∈ U, g ∈ G}
= (U ×GU) ∩ Y.

Since U is open in X, so is the set GU =
⋃
g∈G gU . Thus, U × GU is open in X × X,

which implies that (U ×GU)∩ Y is open in Y, as required. This shows that q is open, which
completes the proof.

Notice that if X is a topological fundamental domain for a G-space Y , if q : X → G\Y
denotes the corresponding homeomorphism and p : Y → G\Y is the usual quotient map, then

f := q−1 ◦ p : Y → X, y 7→ q−1(Gy) (6.1.2)

is a continuous surjection. This will be useful in the proof of the following lemma, with which
we proceed to step 2 of our strategy.

Stab(X )̂ as a topological fundamental domain

Lemma 6.1.3. Suppose that a proper G-space X is a topological fundamental domain for a
proper G-space Y such that the stabilizer subgroups coincide. Let G act on Stab(X )̂ and
Stab(Y )̂ as usual. Then Stab(X )̂ is a topological fundamental domain for the G-space
Stab(Y )̂ , and the stabilizers coincide.

This lemma could also be formulated for a topological fundamental domain X of the G-
space Y , where X does not carry a G-action of its own. Then the space Stab(X )̂ would be
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defined with respect to the G-action on Y , and the statement of the lemma would still be
true, without major changes in the proof.

But since we consider the situation where we start with a G-space X, the chosen formu-
lation of the lemma seems more convenient to us.

Proof of Lemma 6.1.3. Since X ⊆ Y and since the stabilizers for X and Y coincide, it follows
immediately that Stab(X )̂ can be identified with the subset {(x,Gx, σ) ∈ Stab(Y )̂ | x ∈ X}
of Stab(Y )̂ . As X is closed in Y , the definition of convergence in Stab(X )̂ resp. Stab(Y )̂
implies that Stab(X )̂ is closed in Stab(Y )̂ . It is left to show that

ϕ : Stab(X )̂ → G\Stab(Y )̂ , (x,Gx, σ) 7→ [x,Gx, σ]

is a homeomorphism.
If (x1, Gx1 , σ1), (x2, Gx2 , σ2) ∈ Stab(X )̂ are such that [x1, Gx1 , σ1] = [x2, Gx2 , σ2] in

G\Stab(Y )̂ , then there exists g ∈ G with (gx1, Ggx1 , gσ1) = (x2, Gx2 , σ2) with respect to
the G-action on Stab(Y )̂ . But, if q is the homeomorphism of X and G\Y from above, then
gx1 = x2 in Y implies that q(x1) = q(x2) in G\Y , and thus x1 = x2 in X. It follows that
g ∈ Gx1 = G(x1,Gx1 ,σ1), and hence (x2, Gx2 , σ2) = g(x1, Gx1 , σ1) = (x1, Gx1 , σ1). This proves
injectivity of ϕ.

Let now [y,Gy, %] ∈ G\Stab(Y )̂ . Let x = f(y) with f as in (6.1.2) and find g ∈ G with
x = gy with respect to the G-action on Y . Then g(y,Gy, %) = (x,Gx, g%) ∈ Stab(X )̂ and
ϕ(x,Gx, g%) = [y,Gy, %], which shows that ϕ is surjective.

Being the composition of the continuous embedding of Stab(X )̂ into Stab(Y )̂ and of
the continuous projection of Stab(Y )̂ onto G\Stab(Y )̂ , the map ϕ is continuous.

It is left to show that ϕ is open. Suppose that [yν , Gyν , %ν ] → [y,Gy, %] in G\Stab(Y )̂ .
Let (x,Gx, σ) = ϕ−1([y,Gy, %]) and (xν , Gxν , σν) = ϕ−1([yν , Gyν , %ν ]) for all ν ∈ N . We
have to show that (xν , Gxν , σν) → (x,Gx, σ) in Stab(X )̂ . We pass to a subnet and relabel.
After doing this again, if necessary, we can assume that there are representatives (y,Gy, %) of
[y,Gy, %] and (yν , Gyν , %ν) of [yν , Gν , %ν ] for every ν ∈ N such that (yν , Gyν , %ν) → (y,Gy, %)
in Stab(Y )̂ . After passing to a subnet and relabeling again, we can assume that there exists
(H, %H) ≤ (Gy, %) such that (yν , Gyν , %ν)→ (y,H, %H) in Y × S(G)̂ .

Find g ∈ G with (x,Gx, σ) = g(y,Gy, %) and a net (gν)ν∈N in G such that (xν , Gxν , σν) =
gν(yν , Gyν , %ν) for all ν ∈ N with respect to the action on Stab(Y )̂ . Since the first component
of ϕ coincides with the homeomorphism q : X → G\Y , we get that x = f(y) and xν = f(yν)
for all ν ∈ N . As yν → y and as f is continuous, we get that xν → x.

To obtain that (Gxν , σν)ν∈N = (gν(Gyν , %ν))ν∈N has a convergent subnet, we need a
convergent subnet of (gν)ν∈N . By properness of the action of G on Y the map

γ : G× Y → Y × Y, (h, z) 7→ (hz, z)

is proper. Let C be a compact neighborhood of (x, y) in Y × Y . Since xν → x and yν → y in
Y we can without loss of generality assume that (xν , yν) ∈ C for all ν ∈ N . Since gνyν = xν
for all ν ∈ N , this implies that (gν , yν) is contained in the compact subset γ−1(C) ⊆ G × Y
for all ν ∈ N . After passing to a subnet and relabeling we can thus assume that there is
g′ ∈ G with gν → g′. Since (gνyν)ν∈N converges both to x and to g′y it follows that x = g′y.

It now follows from (yν , Gyν , %ν)→ (y,H, %H) in Y × S(G)̂ that

gν(yν , Gyν , %ν)→ g′(y,H, %H),

63



i.e., that
(xν , Gxν , σν)→ (x, g′H, g′%H) (6.1.3)

in X ×S(G)̂ . It is left to show that (g′H, g′%H) ≤ (Gx, σ). We know that (H, %H) ≤ (Gy, %),
so it is clear that

(g′H, g′%H) ≤ g′(Gy, %) = (Gx, g
′%). (6.1.4)

From above we already have an element g ∈ G with (x,Gx, σ) = g(y,Gy, %). It follows that
gy = x = g′y, and hence that g′g−1 ∈ Gx. Using this, we get that g′% = (g′g−1)σ is equivalent
to σ. Combined with (6.1.3) and (6.1.4) this shows that (xν , Gν , σν)→ (x,Gx, σ) in Stab(X )̂ ,
and thus that ϕ is open. This completes the proof.

Stab(X )̂ is homeomorphic to Â

We now have all ingredients to prove the result we wanted:

Theorem 6.1.4. Let X be a proper G-space and let

A = {f ∈ C0(X,K) | ∀x ∈ X : f(x) ∈ KGx}

as in (6.1.1). Then the spectrum Â is homeomorphic to Stab(X )̂ .

Proof. By Proposition 6.1.2 we can find a proper G-space Y which contains X as a topological
fundamental domain such that the stabilizers coincide. By Lemma 6.1.3, this implies that
Stab(X )̂ is a topological fundamental domain for the G-space Stab(Y )̂ , i.e., Stab(X )̂ is
homeomorphic to G\Stab(Y )̂ , which by our main result (Theorem 5.3.3) is homeomorphic
to (C0(Y ) oG)̂ . But, by Corollary 1.4.6, C0(Y ) oG is isomorphic to A, so that altogether
we get

Â ∼= (C0(Y ) oG)̂ ∼= G\Stab(Y )̂ ∼= Stab(X )̂ ,

which completes the proof.

6.2 A G-action for A

Let G, X, K, and A be as above. Before we define a G-action on A it will be useful to have a
description of the irreducible representations of A in terms of the decompositions of the fibres
KGx at hand.

Irreducible representations of A

Recall from (2.1.3) that Â can be decomposed as

Â =
∐
x∈X

(KGx )̂ =
∐
x∈X

⊕
σ∈Ĝx

K(Hindσ )̂ =
∐
x∈X
σ∈Ĝx

K(Hindσ )̂ =
∐
x∈X
σ∈Ĝx

{iσ}.

It follows that an element (x,Gx, σ) ∈ Stab(X )̂ ∼= Â can be identified with the irreducible
representation qx,σ ◦ evx of A, where qx,σ denotes the projection of KGx onto the summand
K(Hindσ), and evx is evaluation at x on A.
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A G-action for A and Â

Recall that the G-action on K = K(L2(G)) which appears in the definition of A is given by
Ad(%). The following lemma will be useful:

Lemma 6.2.1. Let g ∈ G and x ∈ X. Then

Ad(%)(g)(KGx) = KGgx .

Proof. “⊆”: Let T ∈ KGx , i.e., for every l ∈ Gx we have that Ad(%)(l)T = T . Let now
k ∈ Ggx = gGxg

−1 and choose l ∈ Gx such that k = glg−1. Then

Ad(%)(k) (Ad(%)(g)T ) = Ad(%)(glg−1)Ad(%)(g)T = Ad(%)(g)Ad(%)(l)T = Ad(%)(g)T,

which shows that Ad(%)(g)T ∈ KGgx .
“⊇”: This is equivalent to Ad(%)(g−1)(KGgx) = KGx , which follows from “⊆”.

Define now for every g ∈ G and f ∈ A a function gf by

(gf)(x) = Ad(%)(g)f(g−1x) (6.2.1)

for every x ∈ X. Since, for every g ∈ G and x ∈ X, we know by definition of A that
f(g−1x) ∈ KGg−1x , the previous lemma implies that (gf)(x) ∈ KGx , and hence gf ∈ A. It
follows that (6.2.1) defines a G-action on A.

This induces a G-action on Â by (gπ)(f) = π(g−1f) for all g ∈ G, f ∈ A, of which we now
want to show that it corresponds to the G-action on Stab(X )̂ . Let (x,Gx, σ) ∈ Stab(X )̂
and g ∈ G. We saw in the first paragraph of this section that (x,Gx, σ) corresponds to the
element qx,σ ◦ evx of Â.

A calculation shows that

g(qx,σ ◦ evx)(f) =
(
(qx,σ ◦Ad(%)(g−1)) ◦ evgx

)
(f).

Since qx,σ ◦Ad(%)(g−1) is the projection of KGgx onto K(Hindσ), and Hindσ is isomorphic to
Hind(gσ) by equivalence of indGGx σ and indGGgx(gσ), it follows that g(qx,σ ◦ evx) is equivalent
to qgx,gσ ◦ evgx, which corresponds to g(x,Gx, σ) in Stab(X )̂ .

Combined with the facts that Â is homeomorphic to Stab(X )̂ and that the quotient
G\Stab(X )̂ is homeomorphic to (C0(X) o G)̂ , we have now obtained that (C0(X) o G)̂
can be described as the quotient G\Â of the spectrum of A.
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Chapter 7

Proper G-spaces with Palais’ slice
property

Recall from Remark 1.1.8 (iv) that a proper G-space X has Palais’ slice property (SP) if it is
locally induced from the stabilizer subgroups, which means that for every x ∈ X there exists
a G-invariant open neighborhood Ux such that there is a continuous G-map ϕx : Ux → G/Gx
with ϕx(x) = eGx. It then follows from Remark 1.1.8(i) that Ux is G-homeomorphic to
G ×Gx Yx with Yx = ϕ−1

x ({eGx}). Palais proved in [Pal61, Proposition 2.3.1] that (SP) is
satisfied whenever the group G is a Lie group.

In this chapter we first show that the assumption of property (SP) leads to a simplification
of our result, namely, it allows to compare convergence in (C0(X) o G)̂ directly with con-
vergence in Stab(X )̂ , and not just in the quotient G\Stab(X )̂ . We continue in Section 7.2
with a presentation of Echterhoff and Emerson’s definition of a topology on Stab(X )̂ in the
situation that X satisfies (SP). As announced in Section 2.1, we also show that, if X satisfies
(SP), their and our definition give the same topology on Stab(X )̂ .

In Section 7.3 we give a sketch of their proof that indG is a homeomorphism, and we also
discuss why it is so different from our approach.

7.1 Motivation for the consideration of (SP)

In terms of convergence, the fact that indG is a homeomorphism reads as follows:

Corollary 7.1.1. Let (xν , Gν , σν)ν∈N be a net in Stab(X )̂ and let (x,Gx, σ) ∈ Stab(X )̂ .
Then the following conditions are equivalent:

(i) [xν , Gν , σν ]→ [x,Gx, σ] in G\Stab(X )̂ ,

(ii) πxν ,σν → πx,σ in (C0(X) oG)̂ .

In general we can not conclude that (xν , Gν , σν)ν∈N converges to (x,Gx, σ) in Stab(X )̂ ,
because, as seen in Lemma 5.1.1, the convergence πxν ,σν → πx,σ in (C0(X) o G)̂ does not
imply xν → x in X but only Gxν → Gx in G\X.

There is, however, a special case in which we get equivalence of convergence in Stab(X )̂
and in (C0(X)oG)̂ . The key to this special case is the following lemma, the assumptions of
which suggest that it will be useful to consider Palais’ slice property:
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Lemma 7.1.2. Let K be a compact group, let Y be a K-space and suppose that y ∈ Y is
fixed by K, i.e., that Ky = K. Then a net (yν ,Kν , σν)ν∈N converges to (y,K, σ) in Stab(Y )̂
if and only if ([yν ,Kν , σν ])ν∈N converges to [y,K, σ] in K\Stab(Y )̂ .

Proof. Let (yν ,Kν , σν)ν∈N be a net in Stab(Y )̂ and let (y,K, σ) ∈ Stab(Y )̂ . It is clear that
(yν ,Kν , σν)→ (y,K, σ) in Stab(Y )̂ implies convergence in the orbit space.

Suppose now that [yν ,Kν , σν ] → [y,K, σ] in K\Stab(Y )̂ , and that we have passed to a
subnet of (yν ,Kν , σν)ν∈N and relabeled. By Remark 1.1.1 on openness of the orbit map and
by definition of convergence in Stab(Y )̂ we can pass to a subnet (yj ,Kj , σj)j∈J such that
there exist a net (kj)j∈J in K and an element (H,σH) ≤ (K,σ) such that

kj(yj ,Kj , σj)→ (y,H, σH) ≤ (y,K, σ)

in Y × S(K )̂ . By compactness of K we can assume without loss of generality that there is
k ∈ K with kj → k. By continuity of the K-action on Y × Rep(S(K)), see Lemma 2.2.14, it
follows that

(yj ,Kj , σj)→ k−1(y,H, σH),

so it remains to show that k−1(y,H, σH) ≤ (y,K, σ). Since k ∈ K = Ky it follows immediately
from (y,H, σH) ≤ (y,K, σ) that

k−1(y,H, σH) ≤ k−1(y,K, σ) = (y,K, σ),

as required.

Corollary 7.1.3. Let K be a compact group, let Y be a K-space and suppose that y ∈ Y is
fixed by K, i.e., that Ky = K. Let (yν ,Kν , σν)ν∈N be a net in Stab(Y )̂ , and let (y,K, σ) ∈
Stab(Y )̂ . Then the following are equivalent:

(i) (yν ,Kν , σν)→ (y,K, σ) in Stab(Y )̂ ,

(ii) πyν ,σν → πy,σ ≈ σ in (C0(Y ) oK )̂ .

Proof. The equivalence of (i) and (ii) is a direct consequence of Corollary 7.1.1 and Lemma 7.1.2.
It is straightforward from the definitions that πy,σ = P y o indKK σ is equivalent to σ.

The assumptions of the preceding lemma and corollary are locally satisfied if a proper
G-space satisfies (SP), and we now continue to have a closer look at such spaces.

7.2 The topology on Stab(X )̂ if X satisfies (SP)

Definition of neighborhood bases in Stab(X )̂ with (SP)

In the following we give a short account of Echterhoff and Emerson’s approach to describe
the topology of (C0(X)oG)̂ in case of a proper G-space X with (SP). For proofs and details
the reader may consult Section 4 of Echterhoff and Emerson’s paper [EE].

Definition 7.2.1. Let X be a proper G-space with (SP). For every x ∈ X define

Sx := {y ∈ X | Gy ≤ Gx}.

An almost slice at x is a set of the form W · Vx, where W is a symmetric open neighborhood
of e in G, and Vx is a relatively open neighborhood of x in Sx. The set of all almost slices at
x is denoted by ASx.
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It is only a matter of convenience that we work with symmetric open neighborhoods of e
in G, the theory works as well without the assumption of symmetry. Notice that, for every
x ∈ X, we have Yx ⊆ Sx for every Gx-slice Yx in x, because Gy ≤ Gx for every y ∈ Yx (see
Remark 1.1.8 (iii)).

Echterhoff and Emerson show that, for every x ∈ X, the set ASx forms an open neigh-
borhood base at x. As long as we work in their setting for a topology on Stab(X )̂ , we will
denote the elements of Stab(X )̂ by (x, σ) instead of (x,Gx, σ), because we won’t have to
work in S(G)̂ anyway.

Definition 7.2.2. Suppose that X is a proper G-space which satisfies (SP). For every element
(x, σ) ∈ Stab(X )̂ and every almost slice WVx ∈ ASx define

U ((x, σ),WVx) :=
{

(y, τ) ∈ Stab(X )̂ | ∃g ∈W : gy ∈ Vx ∧ gτ ≤ σ|Ggy
}

; (7.2.1)

further set
U(x,σ) := {U((x, σ),WVx) | WVx ∈ ASx} .

Notice that, by symmetry of the neighborhoods W , the existence of an element g ∈ W
with gy ∈ Vx is equivalent to y ∈WVx.

Lemma 7.2.3 (Lemma 4.3 in [EE]). Let X be a proper G-space satisfying (SP). Then there
is a topology on Stab(X )̂ such that the elements of U(x,σ) form a base of open neighborhoods
for every (x, σ) ∈ Stab(X )̂ . The canonical action of G on Stab(X )̂ is continuous with
respect to this topology.

It should be pointed out that the definition of this topology does not work if we drop the
assumption of Palais’ slice property. To see this, suppose that U ((x, σ),WVx) is a neighbor-
hood of (x, σ) ∈ Stab(X )̂ as in (7.2.1) and that (y, τ) ∈ U ((x, σ),WVx). Without (SP) it
would in general not be true that Ggy ≤ Gx, so the statement gτ ≤ σ|Ggy would not make
sense.

In a general proper G-space X, we only know that there exist a compact subgroup Lx
of G and a Lx-slice Yx such that Gy ≤ Lx for all y ∈ Yx (see Remark 1.1.8 (iii)), but Lx is
usually bigger than Gx. So it is essential for Echterhoff and Emerson’s topology on Stab(X )̂
that X is locally induced from the stabilizers, not just from arbitrary compact subgroups.

Echterhoff and Emerson’s topology on Stab(X )̂ becomes even easier to describe if G
is discrete. Since then the set {e} is open in G, we can ignore the open neighborhoods W
above. It follows that the set Sx is itself open in X for every x ∈ X and contains an open
neighborhood base of x. Hence, an open neighborhood base of an element (x, σ) ∈ Stab(X )̂
is given by

U(x,σ) := {U((x, σ), Vx) | Vx ⊆ Sx is an open neighborhood of x} ,

where
U((x, σ), Vx) =

{
(y, τ) ∈ Stab(X )̂ | y ∈ Vx ∧ τ ≤ σ|Gy

}
for every open neighborhood Vx of x in Sx.
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Convergence in Stab(X )̂ with (SP)

We proceed with a formulation of convergence in this topology, and then show that in
proper G-spaces with Palais’ slice property, this convergence coincides with our convergence
in Stab(X )̂ from Remark 2.3.4.

Remark 7.2.4. Let X be a proper G-space with (SP). Then a net (xν , σν)ν∈N converges to
(x, σ) in Stab(X )̂ in the sense of Lemma 7.2.3 if and only if xν → x and every subnet of
(xν , σν)ν∈N has a subnet (xj , σj)j∈J such that there exists a net (gj)j∈J with gj → e in G,
and such that gjxj ∈ Sx and gjσj ≤ σ|Ggjxj for all j ∈ J .

Proposition 7.2.5. Let X be a proper G space which satisfies Palais’ slice property. Then
the notions of convergence given in Remark 2.3.4 and in Remark 7.2.4 coincide.

The idea of the proof is based on the same tools as the proof that our closure operation on
Stab(X )̂ for a general proper G-space X satisfies the Kuratowski axioms (Proposition 2.3.3):

Proof of Proposition 7.2.5. Let (xν , Gν , σν)ν∈N be a net in Stab(X )̂ and let (x,Gx, σ) be
in Stab(X )̂ . We use Palais’ slice property to choose an open neighborhood Ux of x and a
Gx-slice Yx at x such that Ux ∼= G×Gx Yx.

Suppose first that (xν , Gν , σν)ν∈N converges to (x,Gx, σ) in the sense of Remark 2.3.4,
i.e., for every subnet there exist a subnet (xj , Gj , σj)j∈J and an element (H,σH) ∈ S(G)̂
such that (H,σH) ≤ (Gx, σ) and (xj , Gj , σj) → (x,H, σH) in X × S(G)̂ . This implies in
particular that xν → x.

To prove that the other conditions from Remark 7.2.4 hold, suppose that we have passed
to a subnet of (xν , Gν , σν)ν∈N and choose a subnet (xj , Gj , σj)j∈J of that subnet satisfying
(xj , Gj , σj) → (x,H, σH) in X × S(G)̂ for some (H,σH) ≤ (Gx, σ). By Lemma 1.1.9 we
can without loss of generality assume that there is a net (gj)j∈J in G such that gj → e and
gjxj ∈ Yx ⊆ Sx, and hence gjGj = Ggjxj ≤ Gx for all j ∈ J .

By continuity of the G-action on X×S(G)̂ we then also have gj(xj , Gj , σj)→ (x,H, σH),
which by continuity of induction implies that

indGxGgjxj
(gjσj)→ indGxH σH .

By choice of σH we know that σH ≤ σ|H , which by Frobenius reciprocity is equivalent to
σ ≤ indGxH σH , so we also get

indGxGgjxj
(gjσj)→ σ.

Now Lemma 1.3.4 yields that, by passing to a subnet and relabeling if necessary, we can
assume that

σ ≤ indGxGgjxj
(gjσj)

and thus, by Frobenius reciprocity,

gjσj ≤ σ|Ggjxj

for all j ∈ J , as required.
Conversely, suppose now that (xν , σν)ν∈N converges to (x, σ) in the sense of Remark 7.2.4.

Suppose that we have passed to a subnet of (xν , σν)ν∈N , and choose a subnet (xj , σj)j∈J of
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that subnet and a net (gj)j∈J in G such that gj → e, gjxj ∈ Sx, and gjσj ≤ σ|Ggjxj for all
j ∈ J .

Now, the net (Ggjxj , gjσj)j∈J lies in the space Rep(S(G))≤(Gx,σ), which by Lemma 2.2.9
is compact. Hence we can, after passing to a subnet and relabeling, assume that there exist
a subgroup H ≤ Gx and a subrepresentation % ≤ σ|H such that

gj(xj , Gj , σj)→ (x,H, %)

in X × Rep(S(G)). Let now σH be any irreducible subrepresentation of %, then we have
(H,σH) ≤ (Gx, σ) and gj(Gj , σj) → (H,σH) in S(G)̂ . Since gj → e, continuity of the
G-action implies that

(xj , Gj , σj)→ (x,H, σH) ≤ (x,Gx, σ),

which completes the proof.

This shows that, if X is a proper G-space with Palais’ slice property, our topology and
the one defined by Echterhoff and Emerson are the same. Hence, the fact that the map

indG : G\Stab(X )̂ → (C0(X) oG)̂

is a homeomorphism with respect to Echterhoff and Emerson’s topology, as proved in [EE],
can be seen as a special case of our result from Theorem 5.3.3. The methods employed by
Echterhoff and Emerson are, however, quite different from ours, and have several advantages.

7.3 Different settings — different proofs

To be able to compare Echterhoff and Emerson’s proof that indG is a homeomorphism if the
proper G-space X satisfies (SP) with our proof in the general case, we present a very short
version of some of their notation and results. The reader may refer to [EE] for details.

As mentioned before, Echterhoff and Emerson show that C0(X)oG is a C0(G\X)-algebra
and give quite a concrete description of the fibres. This description is essential for their proof
of continuity of indG in the (SP)-situation.

The fibres of C0(X) oG as a bundle of fixed point algebras

Recall from page 14 that if X is a proper G-space and K := K(L2(G)) is equipped with the
G-action given by Ad(%), then

C0(X) oG ∼= C0(X ×G,Ad% K),

which implies that C0(X)oG is a C0(G\X)-algebra with fibre at an orbit Gx given by KGx .
The structure of these fibres is described explicitly in the following lemma.

Recall from (4.2.1) that, if K is a compact group and σ ∈ K̂, then pσ := dσχσ∗ is the
projection onto the minimal two-sided ideal in L2(K) corresponding to σ.

Lemma 7.3.1 (Lemma 3.1 in [EE]). Let G be a locally compact group and let K be a
compact subgroup of G which acts on K := K(L2(G)) via k 7→ Ad%(k). For every σ ∈ K̂
define L2(G)σ := %(pσ)L2(G). Then the following statements hold:

(i) L2(G) =
⊕

σ∈K̂ L
2(G)σ,
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(ii) For every σ ∈ K̂, the space L2(G)σ is %(K)-invariant and is isomorphic to Hindσ ⊗ V ∗σ
such that %(k)|L2(G)σ = 1Hindσ

⊗ σ∗(k) for all k ∈ K,

(iii) KK ∼=
⊕

σ∈K̂ K(Hindσ), where the isomorphism is given by mapping T ∈ K(Hindσ) to

the operator T ⊗ 1V ∗σ ∈ K(L2(G)σ) under the decomposition of (ii),

(iv) The projection of C0(G/K) o G ∼= KK (see (1.4.3)) onto the factor K(Hindσ) in the
decomposition in (iii) is equal to the representation P σ o indGK σ of C0(G/K) o G on
Hindσ, where P σ is given by

P σ(ϕ)ξ(g) = ϕ(gK)ξ(g)

for all ϕ ∈ C0(G/K), ξ ∈ Hindσ, and g ∈ G.

We give a very short indication of the ideas of the proof, the details of which can be
found in [EE]. Statement (i) of the lemma holds because the projections pσ add up to the
unit in M(C∗(K)) with respect to the strict topology. Statement (ii) is a consequence of the
isomorphism L2(G) ∼=

⊕
τ∈K Hind τ ⊗V ∗τ from (4.3.7), and part (iii) follows from a calculation

using the definition of KK , the decomposition from (ii), and Schur’s lemma. Statement (iv)
also follows from the definitions.

Proof of “indG is a homeomorphism” in the (SP)-case

Suppose now that X is a proper G-space with (SP). We will now outline how Echterhoff
and Emerson’s analysis of the structure of C0(X) o G can be used to prove that indG is
a homeomorphism. Proposition 3.5.2 implies that it is possible to reduce the proof to the
situation where a compact group — here even a stabilizer subgroup — acts on a corresponding
slice. The transition to the general case works exactly as in our situation (see the proof of
Theorem 5.3.2), so we don’t discuss it any further here. Restricted to a stabilizer subgroup
acting on a slice the main result reads as follows:

Proposition 7.3.2 (Proposition 4.9 in [EE]). Let K be a compact group which acts on a
locally compact Hausdorff space Y , and suppose that y ∈ Y is such thatKy = K, i.e., y is fixed

by K. Let σ ∈ K̂ and let (yν , σν)ν∈N be a net in Stab(Y )̂ . We identify πy,σ = P y o indKK σ
with σ. The following statements are equivalent:

(i) The net (yν , σν)ν∈N converges to (y, σ) in Stab(Y )̂ ,

(ii) The net (πyν ,σν )ν∈N converges to πy,σ in (C0(Y ) oK )̂ .

Sketch of proof. (i)⇒(ii) (continuity): By Proposition 1.3.2 it suffices to show that σ = πy,σ

is weakly contained in every subnet of (πyν ,σν )ν∈N . Suppose that we have passed to a subnet
and relabeled. We have to show that every a ∈ C0(Y ) oK with πyν ,σν (a) = 0 for all ν ∈ N
satisfies σ(a) = 0.

Using the structure of C0(Y ) o K as a C0(K\Y )-algebra and the decomposition of the
fibres from Lemma 7.3.1 we get that every a ∈ C0(Y ) oK is represented on the fibres by a
net (ayν )ν∈N and an element ay such that ayν → ay in norm and

ayν ∈ K(L2(K))Kν ∼=
⊕
τ∈K̂ν

K(Hind τ )⊗ 1V ∗τ
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for every ν ∈ N and

ay ∈ K(L2(K))K ∼=
⊕
τ∈K̂

K(Hind τ )⊗ 1V ∗τ

τ≈indKK τ
∼=

⊕
τ∈K̂

K(Vτ )⊗ 1V ∗τ .

Moreover, by a similar argument as in Remark 1.4.3, we get that

K(L2(K))K ∼= C∗(K).

In what follows we write 1ν instead of 1V ∗σν for every ν ∈ N . The projections of the fibres

C0(Kyν) o K ∼= K(L2(K))Kν onto the factors K(Hindσν ) ⊗ 1ν are just the representations
πyν ,σν ⊗ 1ν for every ν ∈ N . Since σ(pσ) = 1Vσ we can replace any a ∈ C0(Y ) oK by pσapσ.
Using the embedding C∗(K) → M(C0(Y ) o K) we can calculate for every a ∈ C0(Y ) o K
and every ν ∈ N :

πyν ,σν (pσapσ) = (indKKν σν(pσ)⊗ 1ν)(πyν ,σν (a)⊗ 1ν)(indKKν σν(pσ)⊗ 1ν),

where (indKKν σν(pσ)⊗ 1ν) is the projection of Hindσν ⊗ V ∗σν onto the isotype

Wν := (Hindσν ⊗ V ∗σν ) ∩ (Vσ ⊗ V ∗σ )

of σ in indKKν σν . By assumption and by the definition of convergence in Stab(Y )̂ as in

Remark 7.2.4 we know that σν ≤ σ|Kν and thus by Frobenius reciprocity σ ≤ indKKν σν , so
the spaces Wν are nonzero for all ν ∈ N . As Vσ ⊗ V ∗σ is finite-dimensional, we can without
loss of generality assume that the projections qν : Vσ ⊗ V ∗σ → Wν converge to a projection q
of Vσ ⊗ V ∗σ onto a nonzero subspace W .

If now a ∈ C0(Y ) oK is such that

πyν ,σν (a)⊗ 1ν = qνayνqν = 0

for all ν ∈ N , then it follows from the norm convergence ayν → ay and qν → q that we get
qνayνqν → qayq, and thus that qayq = 0. Since W is a K-invariant subspace of Vσ ⊗ V ∗σ , it
follows that σ(ay) = 0, as required.
(ii)⇒(i) (openness): As shown in Lemma 5.1.1, it follows from πyν ,σν → πy,σ that Kyν → Ky.
But as Ky = {y} and K is compact, it follows easily that every subnet of (yν)ν∈N has a
subnet which converges to y, and thus that yν → y. Additionally, πyν ,σν → πy,σ implies that
indKKν σν → indKK σ = σ in Rep(K), as shown in the beginning of Section 5.2. As shown in

Lemma 1.3.4, this implies that there exists an index ν0 ∈ N such that σ ≤ indKKν σν , and thus
by Frobenius reciprocity, that σν ≤ σ|Kν for all ν ≥ ν0. This shows that (yν , σν)→ (y, σ) in
Stab(Y )̂ , and the proof is complete.

Discussion

The most apparent difference between Echterhoff and Emerson’s proof and ours is the follow-
ing: In their situation, it is easy to show openness of indG, but difficult to prove continuity.
With our topology on Stab(X )̂ , continuity of indG is an easy consequence of the continuity
of induction, but the proof of openness requires a lot of work.

We saw in Proposition 7.2.5 that, in the (SP)-situation, Echterhoff and Emerson’s and our
topologies coincide. Hence, one could also prove continuity of indG in the (SP)-case by passing
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from Echterhoff and Emerson’s notion of convergence to ours, and then use continuity of
induction. But this procedure would spoil a significant advantage of Echterhoff and Emerson’s
topology, namely, that it does not require the space Rep(S(G)) with its somewhat difficult to
grasp topology.

It is, however, not possible to transfer Echterhoff and Emerson’s proof of continuity of
indG to the situation of a general proper G-space X. First of all, the definition of the topology
would not make sense, because we can not assume that the space X is locally induced from the
stabilizers. Moreover, it is very important that Ky = K in the notation of Proposition 7.3.2,
because otherwise we don’t get the identification of indKKy σ and σ. But Ky = K can only be
assumed if the space X satisfies (SP).

The two features mentioned in the previous sentence are also crucial for the nice and
easy proof of openness provided by Echterhoff and Emerson. In our case, we also obtain
convergence of the form indKKν σν → indKKy σ, but in general we have that Ky is a proper
subgroup of K, so it is not possible to use the argument from the proof of Proposition 7.3.2
above.
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Appendix A

Some useful results and
complementary proofs

In this appendix we give some supplements to the contents of this thesis. We start with a
brief introduction to C0(Z)-algebras and present an important result on the structure of their
spectra.

In Section A.2, we show that, if K is a compact group, then integration on F (K) is
continuous. The proof is based on Fell’s proof of Proposition 3.1 in [Fel64], but it becomes
much more readable in the compact case.

As a technical detail we deliver the proof of Lemma 2.4.1, which was used in the proof of
continuity of indG in Section A.3.

A.1 C0(Z)-algebras

Most of the following material on C0(Z)-algebras is taken from [Wil07]. Let A be a C∗-algebra
and let Z be a locally compact Hausdorff space. Then A is said to be a C0(Z)-algebra if there
exists a ∗-homomorphism Φ from C0(Z) into the center ZM(A) of the multiplier algebra of
A, which is nondegenerate, which means that the ideal

Φ(C0(Z))A = span{Φ(f)a | f ∈ C0(Z), a ∈ A}

is dense in A. We often write f ·a instead of Φ(f)a. The C∗-algebra A is then fibred over the
space Z in the following way: Whenever J is an ideal in C0(Z), then the closure of Φ(J)A
is an ideal in A. For every z ∈ Z let Jz be the ideal of functions vanishing at z, and let
Iz := Φ(Jz)A denote the corresponding ideal in A. Then the quotient A(z) = A/Iz is called
the fibre of A over z. For every a ∈ A and z ∈ Z we define a(z) := a + Iz ∈ A(z). This
allows us to identify every a ∈ A with the function z 7→ a(z) from Z into the disjoint union∐
z∈Z A(z); which can be seen as a section of the bundle of C∗-algebras {A(z) | z ∈ Z}.

Example A.1.1. Let X be a proper G-space. We already know from the identification of
C0(X) oG with C0(X ×G K) that the former is a C0(G\X)-algebra with fibres C0(Gx) oG,
see page 14. This can also be obtained directly by considering the map

Φ: C0(G\X)→ ZM(C0(X) oG)
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given by
(Φ(f)F )(g)(x) = f(Gx)F (g)(x)

for all f ∈ C0(G\X), F ∈ Cc(G,C0(X)), g ∈ G, and x ∈ X.

We now give a result which allows a very useful description of the algebra ZM(A). A
proof of this is given in [RW98], Appendix A.3.

Theorem A.1.2 (Dauns-Hofmann-Theorem). LetA be a C∗-algebra. For every P ∈ Prim(A)
let πP : A→ A/P denote the quotient map. Then there is an isomorphism Ψ from Cb(Prim(A))
to ZM(A) such that

πP (Ψ(f)a) = f(P )πP (a) for all P ∈ Prim(A), f ∈ Cb(Prim(A)), a ∈ A. (A.1.1)

We often write f · a instead of Ψ(f)a.

In terms of irreducible representations, (A.1.1) gives

π(Ψ(f)a) = f(kerπ)π(a) for all π ∈ Â, f ∈ Cb(Prim(A)), a ∈ A.

The following result,which is Proposition C.5 in [Wil07], shows how the existence of a con-
tinuous map σA : Prim(A)→ Z makes A a C0(Z)-algebra and vice versa.

Proposition A.1.3. Let A be a C∗-algebra and let Z be a locally compact Hausdorff space.
If there exists a continuous map γA : Prim(A) → Z, then A is a C0(Z)-algebra, where the
map Φ: C0(Z)→ Cb(Prim(A)) ∼= ZM(A) is given by

Φ(f) = f ◦ γA for all f ∈ C0(Z). (A.1.2)

Conversely, if Φ: C0(Z)→ Cb(Prim(A)) ∼= ZM(A) turns A into a C0(Z)-algebra, then there
is a continuous map γA : Prim(A)→ Z such that (A.1.2) holds.

In particular, every π ∈ Â is lifted from a fibre A(z) for some z ∈ Z as follows: If π ∈ Â,
then the ideal IγA(kerπ) is contained in kerπ, and π is lifted from an irreducible representation

of the fibre A(γA(kerπ)). Thus, Â can be identified with the disjoint union
∐
z∈Z A(z)̂ .

A.2 Continuity of integration on F (G)

The proof of continuity of integration on F (G) is based on the following fact, which is proved
in the appendix of [Gli62].

Proposition/Definition A.2.1. Let G be a locally compact group. It is possible to assign
to every K ∈ K (G) a left Haar measure µK such that the map

K (G)→ C, K 7→
∫
K
f(k)dµK(k)

is continuous for every f ∈ Cc(G). Such an assignment is called a continuous choice of Haar
measures.
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If G is compact, then the assignment of normalized Haar measure to every K ∈ K (G)
is a continuous choice. To see this, note that the function given by f(g) = 1 for all g ∈ G is
in Cc(G) = C(G). Then take any continuous choice of Haar measures (µK)K∈K (G) and set

cK :=
∫
K f(k)dµK(k) for every K ∈ K(G). Then K 7→ cK is continuous and (c−1

K µK)K∈K (G)

is a continuous choice of normalized Haar measures.
We continue with a lemma:

Lemma A.2.2. Let K be a compact group and equip K (K) with a (general) continuous
choice of Haar measures. Then the map

K (K)→ C, H 7→
∫
H
F (H,x)dµH(x)

is continuous for every F ∈ C(K (K)×K).

Proof. Let F ∈ C(K (K) × K), and let (Hν)ν∈N and H be in K (K) such that Hν → H.
Then ∣∣∣∣∫

Hν

F (Hν , x)dµHν (x)−
∫
H
F (H,x)dµH(x)

∣∣∣∣
≤
∣∣∣∣∫
Hν

(F (Hν , x)− F (H,x)) dµHν (x)

∣∣∣∣+

∣∣∣∣∫
Hν

F (H,x)dµHν (x)−
∫
H
F (H,x)dµH(x)

∣∣∣∣
(A.2.1)

for every ν ∈ N . By continuity of F it is clear that F (Hν , ·) converges to F (H, ·) pointwise
and hence uniformly in C(K). It follows from the observations preceding this lemma that the
map

ϕ : K (K)→ C, L 7→ cL

is continuous on the compact space K (K), and hence bounded. So we have∣∣∣∣∫
Hν

(F (Hν , x)− F (H,x)) dµHν (x)

∣∣∣∣ ≤ ‖ϕ‖∞‖F (Hν , ·)− F (H, ·)‖∞

for all ν ∈ N , which implies that the first summand in (A.2.1) tends to zero. By applying the
fact that we have a smooth choice of Haar measures to the function

K → C, k 7→ F (H, k)

it follows that the second summand tends to zero, too. Thus,∫
Hν

F (Hν , x)dµHν (x)→
∫
H
F (H,x)dµH(x),

as required.

Proposition A.2.3 (Proposition 2.2.12, Proposition 3.1 in [Fel64]). Let K be a compact
group. Then the map

F (K)→ C, f 7→
∫
D(f)

f(s)dµD(f)(s)

is continuous.
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Proof. Fix a smooth choice of Haar measures on K (K). Let (fν)ν∈N and f be in F (K)
such that fν → f . Let Hν := D(fν) and H := D(f) denote the domains of the fν and of
f , respectively. By the characterization of convergence in F (K) we know that Hν → H in
K (K). To prove convergence of the integrals we first notice that

f̃ : {H} ×H → C, (H,h) 7→ f(h)

is a continuous function on a closed and therefore compact subset of K (K)×K, which implies
that there exists a continuous extension F ∈ C(K (K)×K) of f̃ .

We now prove the following claim: For every ε > 0 there exists νε ∈ N such that for all
ν ∈ N with ν ≥ νε and for all x ∈ Hν we have

|fν(x)− F (Hν , x)| < ε. (A.2.2)

Assume that this is false. Then we can choose ε > 0, a subnet (fj)j∈J of (fν)ν∈N and for
every j ∈ J an element xj ∈ Hj such that

|fj(xj)− F (Hj , xj)| ≥ ε.

By compactness of K and since Hj → H, we can, after passing to a subnet and relabeling,
assume that there is x ∈ H with xj → x. But now we have

|fj(xj)− F (Hj , xj)| ≤ |fj(xj)− f(x)|+ |f(x)− F (Hj , xj)|

for each j ∈ J , which is a contradiction because the left hand side is bounded below by ε, and
the right hand side tends to zero because fj(xj) → f(x) and F (Hj , xj) → F (H,x) = f(x).
This proves the claim.

Consider now∣∣∣∣∫
Hν

fν(s)dµHν (s)−
∫
H
f(s)dµH(s)

∣∣∣∣
≤
∫
Hν

|fν(s)− F (Hν , s)| dµHν (s) +

∣∣∣∣∫
Hν

F (Hν , s)dµHν (s)−
∫
H
F (H, s)dµH(s)

∣∣∣∣ ,
then the first summand tends to zero by the claim above and the second one tends to zero
by Lemma A.2.2. This completes the proof.

A.3 Proof of Lemma 2.4.1

Lemma A.3.1 (Lemma 2.4.1). Let X be a proper G-space. Let (xν , Gν , σν)ν∈N in Stab(X )̂
be a net which converges to an element (x,H, σH) ∈ X × S(G)̂ in X × S(G)̂ . Then
evν oσν → evxoσH in (S(G), C0(X))̂ .

Proof. As outlined in the text before Definition 2.2.4, convergence of (evν oσν)ν∈N to evxoσH
in (S(G), C0(X))̂ means that (evν oσν )̃ → (evxoσH )̃ as representations of the subgroup
C∗-algebra C∗(S(G), C0(X)). Recall that, for every pair (L, %) with L ∈ K (G) and % in
Rep(C0(X), L), the representation %̃ is defined as follows: For every F ∈ Cc(S(G), C0(X))
define FL ∈ Cc(L,C0(X)) by FL(l) = F (L, l) for all l ∈ L, and let %̃(F ) = %(FH). Then %̃
extends to a representation of C∗(S(G), C0(X)).
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Since σH is irreducible, so is (evxoσH )̃ , and so it suffices by Proposition 1.3.7 to show
that there exists a positive functional associated with (evxoσH )̃ which is a weak∗ limit of
positive functionals associated with the representations (evν oσν )̃ . We use this criterion to
prove that every subnet of ((evν oσν )̃ )ν∈N has a subnet which converges to (evxoσH )̃ .

Since (Gν , σν)→ (H,σH) in S(G)̂ , we have that σ̃ν → σ̃H as representations of C∗(S(G)).
Let ψ be a positive functional associated with σ̃H and, after passing to a subnet and relabeling,
assume that there is a net (ψν)ν∈N of positive functionals, each ψν associated with σ̃ν , such
that ψν → ψ in the weak∗ topology. Choose vectors ξ ∈ VσH and ξν ∈ Vν for every ν ∈ N
such that

ψ(F ) = 〈σ̃H(F )ξ, ξ〉
and

ψν(F ) = 〈σ̃ν(F )ξν , ξν〉
for all F ∈ C∗(S(G)). We use these vectors to define positive functionals associated with
(evxoσH )̃ and (evν oσν )̃ for all ν ∈ N , respectively, as follows:

ϕ : C∗(S(G), C0(X))→ C, F 7→ 〈(evxoσH )̃ (F )ξ, ξ〉

and
ϕν : C∗(S(G), C0(X))→ C, F 7→ 〈(evν oσν )̃ (F )ξν , ξν〉

for all ν ∈ N . Notice that Cc(S(G)) � C0(X) can be considered as a dense subset (with
respect to the inductive limit topology) of Cc(S(G), C0(X)), when we identify an elementary
tensor F ⊗ f with the function (L, l) 7→ F (L, l)f = FL(l)f . We prove below that

ϕ(F ⊗ f) = evx(f)ψ(F ) and ϕν(F ⊗ f) = evν(f)ψν(F ) (A.3.1)

for all F ⊗ f ∈ Cc(S(G))� C0(X) and for all ν ∈ N . It follows that

ϕν(F ⊗ f)→ ϕ(F ⊗ f)

for all F ⊗ f ∈ Cc(S(G))� C0(X), and by linearity and continuity it follows that ϕν → ϕ in
the weak∗ topology. This proves that the net ((evν oσν )̃ )ν∈N converges to (evxoσH )̃ , as
required.

It is left to check (A.3.1). Let F ⊗ f ∈ Cc(S(G))� C0(X), then

(evxoσH )̃ (F ⊗ f) = (evxoσH)(FH ⊗ f)

=

∫
H

evx((FH ⊗ f)(h))σH(h)dh

=

∫
H
F (H,h)f(x)σH(h)dh

= f(x)

∫
H
F (H,h)σH(h)dh = evx(f)σH(FH),

which implies that

ϕ(F ⊗ f) = 〈(evxoσH )̃ (F ⊗ f)ξ, ξ〉
= 〈evx(f)σH(FH)ξ, ξ〉
= evx(f)〈σ̃H(F )ξ, ξ〉 = evx(f)ψ(F ).

The equation for the ϕνs and ψνs follows in the same way.
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