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Overview

The present thesis is concerned with a particular area of interplay between
differential geometry, geometric topology, and algebraic topology, namely that of
positive scalar curvature. What that is and how it connects the various areas is
explained in the first half of the first chapter. It turns out that a twisted, generalised
homology theory plays a crucial role: Twisted Spin-cobordism. We construct such
a theory in the second half of the first chapter and then start to analyse its structure,
in particular we compare it to twisted, real K-theory, to which it is connected by
index theory.
In the second chapter we then make a first step, following a program set up by S.
Stolz, towards the following conjecture:

Conjecture (Stolz 1995). If for a connected, closed, smooth n-manifold M ,
whose universal cover is spin, we have

0 = α̂(M) ∈ kon(Bπ1(M), wν(M))

then M carries a metric of positive scalar curvature.

This conjecture is approached using a certain transfer map in twisted Spin-
cobordism. The homological analysis of this transfer makes up the second chapter,
with the last section providing some concluding remarks and future directions. For
more detailed information about the goings-on of both chapters we refer the reader
to their respective introductions.
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CHAPTER 1

Twisted Spin cobordism

1. Introduction

1.1. History and Motivation. The problem of classifying manifolds admit-
ting Riemannian metrics with special features, e.g. certain kinds of symmetry or
curvature, is one of the core interests in differential geometry. The present work is
concerned with this classification for the case of metrics with positive scalar cur-
vature. Of the three classical types of curvature (sectional, Ricci-, and scalar) the
scalar curvature is the weakest, given by averaging processes from the other two,
and thus the most robust against manipulation of the metric and even the under-
lying manifold. The following theorem is arguably the most prominent example of
this and forms the cornerstone of current work on the existence of positive scalar
curvature metrics.

Theorem (Gromov-Lawson 1980). Let (M, g) be a smooth n-dimensional Rie-
mannian manifold of positive scalar curvature and ϕ : Sk × Dn−k ↪−→ M an
embedding of a k-sphere with trivialised normal bundle. Then the manifold arising
from M by surgery along ϕ again carries a positive scalar curvature metric as long
as n− k ≥ 3. Indeed, the metric g can be extended to a metric with positive scalar
curvature on the trace of the surgery.

Combined with the standard techniques of surgery and handlebody theory, this
result shows that in order to prove the existence of a metric of positive scalar cur-
vature on a given closed, smooth manifold M one need only exhibit such a manifold
cobordant to M , provided one can bound the dimensions of the surgeries occuring
as one moves through the cobordism. Since manifolds up to certain types of cobor-
dism often are explicitly classified, this sometimes allows immediate conclusions
about the desired geometric classification.

1.2. Organisation of the chapter and statement of results. The di-
mensions of the surgeries occuring in a cobordism can be controlled by requiring
reference maps to some background space, usually one classifying additional struc-
ture (e.g. orientations or Spin-structures) on all occuring manifolds. Precisely how
this works is explained in section 2, which recalls and extends results from the
literature. Thus, no claim of originality is made for this section, and the results
presented have been used in various special cases and are easily deduced by any
surgeon. Continuing the line of investigation we consider several bordism groups
that occur when following the program of Gromov and Lawson, in particular, we
explain that for every closed, smooth, connected manifold M of dimension greater
than four its 1-type can be used as the background space. We go on to identify
the arising cobordism groups as either twisted oriented or twisted Spin-cobordism,
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8 1. TWISTED SPIN COBORDISM

corresponding as to whether the universal cover of M is spinnable or not. Similar
results first appeared in Stolz’ preprint [St ??] using a slightly different language.
We conclude the second section with a short discussion of various known results
and conjectures.

The second part of the chapter specifically studies twisted Spin-cobordism
groups and the underlying representing parametrised spectrum, which we name
M2O. To this end, section 3 reviews the category of parametrised spectra due to
May and Sigurdsson, in the process giving a few easy results that seem to have
not been written down before. In this section we also construct the parametrised
spectrum M2O and another one, K2O, representing twisted, real K-theory. Sec-
tion 4 constructs a twisted version α̂ of the Atiyah-Bott-Shapiro orientation. Such
an orientation first appeared in [Jo 97] using the model for K-theory, which later
appeared in [Jo 01].
In section 5 we finally begin the analysis of twisted Spin-cobordism: A slight vari-
ation of the KO-valued Pontryagin classes of [AnBrPe 66] produces (homotopy
classes of) maps of parametrised spectra θJ : M2O → K2O, that admit lifts to cer-
tain connective covers of K2O. Using these we obtain the following generalisation
of the Anderson-Brown-Peterson splitting:

Theorem (5.2.5). For any choice of lifts pj : M2O → k2o〈nJ〉 there exist maps
xi : M2O −→ K × shiHZ/2, such that the combined map

M2O −→

[∏
J

k2o〈nJ〉

]
×

[∏
i

K × shiHZ/2

]
induces an isomorphism of parametrised homology theories after localisation at 2.

Section 6 uses this splitting to describe the mod 2 cohomology of M2O and
k2o (the connective version of K2O) as modules over the twisted Steenrod algebra
A. The main structural result here is that there is an embedding ϕ : A(1) ↪−→ A,
different from the obvious one, that all modules in question are induced along.

Theorem (6.2.4). Evaluation at the unique non-trivial class in lowest degree
gives isomorphisms

Aϕ ⊗A(1) Z/2 −→ H∗(k2o,Z/2)

sh−2Aϕ ⊗A(1) A(1)/Sq3 −→ H∗(k2o〈2〉,Z/2)

where sh? just denotes a shift and Aϕ denotes the twisted Steenrod algebra viewed
as a right module over A(1) via ϕ.

Corollary (6.3.1). H∗(M2O,Z/2) is an extended A(1)-module.

As a final observation we show that the map in homology induced by the
twisted orientation α̂ does not split as a map of rings, contrary to the untwisted
case. This implies that a splitting of the (co)homology of M2O along the lines
of [St 92, Corollary 5.5] is not possible; a fact that plays a significant role in the
second chapter.

2. The relation of positive scalar curvature to cobordism

2.1. From surgery to bordism. Given the surgery theorem of Gromov and
Lawson we want to investigate the class of manifolds from which a given manifold
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M arises by surgeries in codimension ≥ 3. The basis for this is the following
fundamental result of handlebody theory:

Theorem (Smale 1962). Let W be a cobordism from a smooth, closed manifold
M to another smooth, closed manifold N , both of dimension n, and let the inclusion
of N into W be a k-equivalence. Then as long as n ≥ 5 and k < n

2 , W arises from
N × I by attaching handles of dimensions greater than k and thus M from N by
surgeries of dimensions greater than k.

To exploit this we introduce a background space B that is equipped with a
stable vector bundle ξ. A ξ-structure on a manifold M is by definition a choice of
(stable) normal bundle ν of M , together with a homotopy class of maps of stable
bundles ν → ξ.

2.1.1. Proposition. Let n ≥ 5 and M be a smooth, closed n-manifold with a ξ-
structure such that the underlying map M → B is a k-equivalence where k < n

2 .Let
furthermore N be another n-dimensional, closed ξ-manifold that is ξ-bordant to M .
Then M arises from N by a sequence of surgeries of codimension > k.

2.1.2. Corollary. Let M be a smooth, closed ξ-manifold of dimension ≥ 5,
whose underlying structure map M → B is a 2-equivalence and where B admits a
2-equivalence from a finite cell complex. If the ξ-cobordism class of M contains a
manifold admitting a metric of positive scalar curvature, then also M admits such
a metric.

This corollary is explicitely stated in [RoSt 94, Bordism Theorem 3.3], yet the
proof is deferred to [Ro 86, Theorem 2.2], where only a special case is proved. For
a specific choice of B the corollary is also stated in [Kr 99, Theorem 1], however,
the proof seems to be invalid due to a number shift occuring in a crucial step, as
we explain in the proof below.

Proof of Proposition 2.1.1. Let W be a ξ-bordism from M to N . One
can now do sugery on the interior of W to produce an new ξ-bordism W ′ such that
the ξ-structure map W ′ → B is a k-equivalence:
In classical surgery theory this is usually done only for B a Poincaré complex and
ξ a reduction of the Spivak normal fibration, but this restriction is only needed
to formulate the notion of degree one normal maps. Achieving connectivity below
the middle dimension only requires a normal map and a finiteness assumption on
the target, which is precisely what we have with a ξ-bordism. In principle this is
covered in [Kr 99, Proposition 4], however, the proof given in [Kr 99] is (also)
incorrect. It claims (and uses) that the lowest higher homotopy group of a finite
cell complex is finitely generated over the group ring of the fundamental group, but
this need not be so. A counterexample is given in [Ha, Section 4A].
Given the assumptions on B, however, one can perform finitely many 0, 1 and 2
surgeries in the interior of W by hand to make the map W → B a 2-equivalence
and then the inductive scheme from e.g. [CrLüMa, Theorem 3.61] makes this into
a k-equivalence W ′ → B. It is not true, however, that this map can be made into a
k+ 1-equivalence without a ‘one-higher’ finiteness assumption on B, i.e. that there
exists a finite cell complex together with a k + 1-equivalence to B. That this can
nevertheless be achieved is claimed in the proof of [Kr 99, Theorem 1] for k = 2
and a choice of B which only has finite second, but not necessarily third skeleton.
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By the commutativity of

π∗(M) //

$$

π∗(W
′)

zz
π∗(B)

we find that the inclusion M →W ′ is an isomorphism on the first k− 1 homotopy
groups. In order to continue we will, however, need to have the map from M
into the cobordism a k-equivalence. One therefore has to argue as Rosenberg does
in [Ro 86], namely directly perform surgeries in the interior of W ′. To this end
consider the following part of the long exact sequence of homotopy groups

πk(M)→ πk(W ′)→ πk(W ′,M)
0→ πk−1(M)

∼=→ πk−1(W ′)

Because of the surjectivity of the map πk(M)→ πk(B) we can represent any element
in πk(W ′,M) by an element of πk(W ′) that lies in the kernel of πk(W ′)→ πk(B).
Any such sphere Sk → W ′ has trivial stable normal bundle by construction and
can be represented by a framed embedding since we are working below the middle
dimension. Picking a finite generating system of πk(W ′,M) over Z[π1(M)] (which
is possible by [CrLüMa, Lemma 3.55] and has also been used several times above)
we obtain finitely many disjoint embeddings of Sk × Dn+1−k → W ′ on which we
can perform surgery to obtain a new bordism W ′′, which now has πk(M)→ πk(W )
surjective. As we are killing spheres that go to zero in B the new cobordism indeed
has a B-structure once more, so we could also have proceeded inductively, but the
B-structure will be irrelevant from this point on.
By Smale’s theorem W ′′ arises from M × I by attaching handles of dimensions
≥ k + 1 and thus N from M by surgeries of dimensions ≥ k. Turning this around
we find that M arises from N by surgeries of dimension < n − k (note that the
surgery dual to an l-surgery is an n − l − 1-surgery) and hence of codimensions
> k. �

2.2. A choice of bordism groups. For a given connected manifold M and
a number k we always have Moore-Postnikov decompositions

M → BkM → BO

of the map classifying the stable normal bundle of M . Here the map M → BkM is
a k + 1-equivalence and BkM → BO is injective on πk+1 and an isomorphism on
higher homotopy groups. The spaces BkM are often called normal k-types of M
(e.g. [Kr 99]). Pulling back the universal stable bundle over BO along the map
BkM → BO, we arrive at a stable bundle ξ, such that M admits a ξ-structure,
whose underlying map we can choose as connected as we need it to be.
For our purposes we of course want to choose k = 1 and thus need to study the
1-type of a given manifold. There are essentially two separate cases, one for mani-
folds, whose universal covers admit Spin-structures, and one for the others. Man-
ifolds, whose universal covers are non-spin, are sometimes referred to as totally
non-spinnable and we will call the others almost spinnable, or hardly spinnable, if
they do not admit a Spin-structure themselves. Let us consider the totally non-
spinnable manifolds first. Given connected M with fundamental group π there is
a unique class in H1(Bπ,Z/2) that pulls back to w1(M) ∈ H1(M,Z/2) under the
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map classifying of the universal cover of M (because this map induces an isomor-
phism on H1). Since Bπ has the homotopy type of a cell complex, this class can
be represented by a map Bπ → K(Z/2, 1) which we name wν(M) (ν denoting the
fact, that we really care about the Stiefel-Whitney classes of the normal bundle of
M). We can then form the following diagram

B1M

��

// BO

w1

��
Bπ

wν(M)
// K(Z/2, 1)

where the left vertical map is a first Postnikov section of B1M inducing the isomor-
phism on π1 that makes the composition M → B1M → Bπ the canonical one. For
each choice of spaces and maps involved the diagram is homotopy commutative,
since both possible compositions represent w1(M) ∈ H1(M,Z/2) when pulled back
along the canonical map M → B1M .

2.2.1. Lemma. In case M is totally non-spinnable, this diagram expresses B1M
as a homotopy pullback.

We will use this information after 2.3.2 to express the cobordism groups cor-
responding to B1M using the language of parametrised spectra. Before doing that
we shall however construct the analogous diagram for hardly spinnable manifolds.
Note that the determination of all possible normal 1-types is carried out in [Kr 99,
Proposition 2]; however, the description given there differs from ours in the case of
hardly spinnable manifolds. It is trivial to verify though that the results coincide.
For the reader’s convenience we include a proof of our description.

Proof. Denote by P a homotopy pullback of the diagram above (with B1M
deleted). By definition of the homotopy pullback we obtain a map B1M → P
for any choice of homotopy in the above diagram. Any of these is a homotopy

equivalence: Since the homotopy fibre of BO
w1→ K(Z/2, 1) is a model for BSO, we

have a fibre sequence BSO → P → Bπ. From this we see that P is path-connected,
the map P → Bπ is an isomorphism on π1 and BSO → P is an isomorphism on
higher homotopy groups. By definition of B1M the map B1M → Bπ induces an
isomorphism on π1 and the map B1M → BO is injective on π2 and an isomorphism
on higher groups. Since the appropriate diagrams commute we conclude that our
maps B1M → P induce isomorphism on homotopy groups except maybe for the
second. Here the assumption on M enters: Choosing an orientation on the normal

bundle of M̃ , we have a diagram

M̃ //

��

BSO

��
M // BO

where M̃ denotes a universal cover of M (note that the composition M̃ →M → BO

classifies the stable normal bundle of M̃). By assumption M̃ does not admit a Spin-
structure and thus neither does its stable normal bundle. This in turn implies that

the map M̃ → BSO induces an injective map on second cohomology with Z/2
coefficients. Using the Hurewicz theorem we conclude that it induces a surjection
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on π2. Since both vertical maps induce isomorphisms on π2, we find the composition
M → B1M → BO to also induce a surjection on π2. This is only possible if indeed
B1M → BO induces an isomorphism on π2. We thus obtain a weak equivalence
B1M → P and since both spaces have the homotopy type of cell complexes we are
done. �

To obtain a similar description for hardly spin manifolds we need the following:

2.2.2. Lemma. Given a hardly spin manifold M there is a unique class in
H2(Bπ,Z/2) pulling back to w2(M) ∈ H2(M,Z/2) under the canonical map M →
Bπ.

Proof. Consider the Serre spectral sequence of the map M → Bπ. Using the

fact that H0(Bπ,Ht(M̃)) ∼= Ht(M̃)π (here the upper index denotes fixed points,
compare e.g. [Wh, Theorem VI.3.2]), we find a short exact sequence

0 −→ H2(Bπ)→ H2(M) −→ H2(M̃)π −→ 0

whose maps are the canonical ones. This immediately yields the claim since the
assumption precisely says that w2(M) maps to 0 on the right. �

Let us denote by wν(M) a pair of representing maps for the lift to Bπ of the
class (w1(M), w2(M) + w1(M)2). We can then produce a similar diagram:

B1M

��

// BO

(w1,w2)

��
Bπ

wν(M)
// K(Z/2, 1)×K(Z/2, 2)

2.2.3. Lemma. In case M is hardly spin, this diagram expresses B1M as a
homotopy pull-back.

Proof. The proof is essentially the same as that of 2.2.1, or we can refer to
[Kr 99, Proposition 2]. �

We will later choose specific models for BO and K(Z/2, 1)×K(Z/2, 2) together
with a representing map for the first Stiefel-Whitney classes, that is a fibre bundle.
For some choice of Bπ and wν(M) we can then take B1M to be the honest pull-
backs of the diagrams above.

2.3. Interpretation via twists. We now set out to compute the Thom spec-
trum corresponding to these choices for B1M . The following is an easily verified
generalisation of the property M(ξ × ξ′) ∼= M(ξ) ∧M(ξ′) for vector bundles. We
need, however, a bit of notation. Given a vector bundle ξ over a space X that
comes equipped with a map q : X → K we denote by Mq(ξ) the fibrewise Thom
space, that is given by first one-point compactifying each fibre of ξ as usual but
then only identifying points in the section at infinity if they lie in the same fibre of
q. Instead of a basepoint Mq(ξ) comes equipped with an obvious map to K that
admits a section by sending k ∈ K to the points at infinity of the fibre over k. We
shall sometimes identify K with this subspace.
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2.3.1. Observation. Given stable vector bundles ξ and ξ′ over spaces X and
X ′ and a pull-back diagram

B

p′

��

p // X

q

��
X ′

q′
// K

there is a canonical isomorphism

M(p∗ξ ⊕ p′∗ξ′) =
[
Mq(ξ) ∧K Mq′(ξ

′)
]
/K

given by the identity before passing to quotient spaces.

Another bit of notation: We shall refer to any space coming from an honest
pull-back as described above as BM and the pullback bundle as ξM . Similarly K
shall from now on refer to either K(Z/2, 1) or K(Z/2, 1) × K(Z/2, 2) depending
on M , and the same goes for wν(M) : Bπ → K, by which we denote the first or
first and second normal Stiefel-Whitney class(es) of M , respectively, lifted to Bπ.
Furthermore we shall denote the fibrewise Thom space of the universal bundle over
BO(n) along the map BO(n) → K given by the first or first and second Stiefel-
Whitney classes by MKO(n).

2.3.2. Corollary. We have

M(ξM , n) ∼=
[
(Bπ +K) ∧K MKO(n)

]
/K

where M(ξM , n) denotes the Thom space of the n-stage of ξM and we have sup-
pressed the map wν(M) : Bπ → K from notation.

For good choices of universal vector bundles the spaces MKO(n) fit together
into a parametrised orthogonal spectrum over K, as shall be explained in the
next section. Any parametrised spectrum gives rise to a twisted homology the-
ory (which in our case we denote by ΩKn (−,−)) in such a way that (almost by
definition, see 3.3.6) we find the (stable) homotopy groups of the right hand side

to be ΩK∗ (Bπ,wν(M)). Since by the Pontryagin-Thom theorem we have ΩξM∗ ∼=
π∗(M(ξM )), we conclude:

2.3.3. Theorem. A smooth, closed, connected manifold M of dimension ≥ 5
admits a metric of positive scalar curvature if and only if for some (and then every)
choice of ξM -structure on M , we can represent the bordism class

[M ] ∈ ΩKn (Bπ,wν(M))

by some manifold admitting a positive scalar curvature metric.

By various properties of twisted homology theories described in the next sec-
tion, this result specialises to the well-known cases where either M is oriented and
totally non-spinnable (here we find ΩKn (Bπ,wν(M)) ∼= Ωn(Bπ)) or where it is spin
(in which case ΩKn (Bπ,wν(M)) ∼= ΩSpinn (Bπ)). Indeed all other cases we know of
in the literature are special cases of this general result.

2.3.4. Remark. In [St ??] Stolz constructed Lie groups G(n, γ) associated to
a natural number n and a ‘supergroup’ γ. A supergroup he describes as a triple
(P,w, c), where P is a group, w : P → Z/2 is a group homomorphism and c ∈ P
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lies in the kernel of w. Any manifold, and indeed every bundle E, determines a
supergroup π1(E) with P a certain extension of the fundamental group π of the
base space, and w the orientation character composed with the projection of P
onto π. Both c and the extension are related to the spinnability of the bundle
and its universal cover. Following Stolz’ construction it is not hard to see that the
‘stage’ of our space BM that pulls back from BO(n) is indeed a classifying space of
G(n, π1(M)). This gives a geometric interpretation of the bordism groups we have

just described as G(−, π1(M))-manifolds modulo G(−, π1(M))-bordisms.
Except in the following comments, which do not connect directly to anything we
prove here, we make no use of this identification and thus leave its proof to the
reader.

2.4. Obstructions, conjectures and known results. While 2.3.3 gives a
method for proving existence of metrics with positive scalar curvature, there are
also well-known obstructions coming from indices of Dirac-type operators. Given a
spin manifold M of dimension n with fundamental group π these were coalesced into
a single invariant A(M) ∈ KOn(C∗π) by Rosenberg in [Ro 83]. This invariant was
further generalised to an invariant A(M) ∈ KOn(C∗π) for almost spin manifolds by
Stolz in [St ??]; here C∗π denotes the reduced group C∗-algebra of the fundamental
group (or even fundamental supergroup in the latter case, see [St ??]) of M and
KOn the topological KO-homology. Improving upon a conjecture of Gromov and
Lawson, Rosenberg stated the untwisted version of the following:

2.4.1. Conjecture (Gromov-Lawson-Rosenberg 1983). An almost spin man-
ifold M supports a metric of positive scalar curvature if and only if

0 = A(M) ∈ KOn(C∗π1(M))

While false in general (see [Sc 98]), it is open for manifolds with finite funda-
mental groups and has been verified for many cases of spin manifolds. Rosenberg
furthermore showed that his invariant depends only on the Spin-cobordism class
of M in ΩSpinn (Bπ) and factors as

ΩSpinn (Bπ)
α−→ kon(Bπ)

per−→ KOn(Bπ)
ass−→ KOn(C∗π)

where α denotes the Atiyah-Bott-Shapiro orientation, per the canonical periodisa-
tion map and ass a certain assembly map. A similar decomposition using twisted
Spin-cobordism and KO-theory works for the case of hardly spin manifolds (but
we will not pursue this here). This decomposition connects Rosenberg’s conjecture
to the bordism-invariance theorem 2.3.3 on the one hand and on the other to the
conjecture from the introduction (compare 4.3.2) by the following observation:

2.4.2. Observation. Given a stable vector bundle ξ : E → B and a group
homomorphism a : Ωξn → A, n ≥ 5, such that every n-dimensional ξ-manifold in the
kernel of a (n ≥ 5), whose structure map to B is a 2-equivalence, admits a metric
of positive scalar curvature, one can conclude that an n-dimensional ξ-manifold,
whose structure map is a 2-equivalence, admits a positive scalar curvature metric if
and only if a([M ]) = a([N ]) for some n-dimensional ξ-manifold N , that does admit
a positive scalar curvature metric:

For the difference [M ] − [N ] = [M + N ] goes to 0 under a and by surgery we
can produce a ξ-manifold L that is ξ-cobordant to M+N and whose structure map
is a 2-equivalence (see the proof of 2.1.1). By assumption L then carries a positive
scalar curvature metric and since [M ] = [L+N ] corollary 2.1.2 yields the claim.
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The positive results on the Gromov-Lawson-Rosenberg conjecture mentioned
above are mostly obtained by explicit comparison of kon(Bπ) with KOn(C∗π)
using the untwisted version of 4.3.2, which is a theorem due to Führing and Stolz
([St 94, Fü 13]). In addition to being useful on its own, one can thus view 4.3.2
as a way of attacking 2.4.1 in the case of hardly spin manifolds.

In comparison, for a totally non-spin manifold M Rosenberg’s ‘Dirac tells all’-
philosophy predicts the existence of a metric with positive scalar curvature in gen-
eral, since there are no Dirac-type operators associated with M . While this again
fails in general, it is known that if the fundamental class of M in Hn(Bπ) (with
local coefficients in case M is non-orientable) vanishes, then M admits a metric
of positive scalar curvature, compare [RoSt 01, Theorem 4.11]. For that reason
deciding the existence of a positive scalar curvature metric for a given manifold
is in principle amenable to computation for all cases except that of hardly spin
manifolds and the second part of this thesis can be regarded as a first step toward
completing this picture.

3. Parametrised spectra after May and Sigurdsson

3.1. Parametrised homology theories. Before recalling the basic features
of parametrised spectra, we shall discuss the objects they are supposed to produce,
namely twisted or parametrised (co)homology theories. To this end let K be a
topological space and Top2

K denote the category of pairs over K, the over-category
of (K,K) in Top2. We will denote an object of Top2

K by (X,A, ζ), where A ⊆ X
and ζ : X → K.

3.1.1. Definition. A twisted homology theory over K is a functor h : Top2
K →

gr-R-Mod and a natural transformation δ satisfying the following version of the
Eilenberg-Steenrod axioms:

• Normalisation: h∗(X,X, ζ) = 0 for all spaces X and maps ζ : X → K.
• Homotopy invariance: A homotopy equivalence f : (X ′, A′) → (X,A)

induces an isomorphism

h∗(X
′, A′, f∗ζ)→ h∗(X,A, ζ)

for any ζ : X → K.
• Mayer-Vietoris sequences: For any decomposition of a space X into sub-

spaces A,B,C,D, such that C ⊆ A,D ⊆ B and (A,B,A ∪B), (C,D,C ∪
D) are excisive triads, the sequence

. . . −→ hk(A ∩B,C ∩D, ζ) −→hk(A,C, ζ)⊕ hk(B,D, ζ)

−→hk(A ∪B,C ∪D, ζ)
δ−→ hk−1(A ∩B,C ∩D, ζ) −→ . . .

is exact.

Furthermore, it may have the following additional properties:

• Additivity: Whenever U is a partition of a space X into clopen sets, the
natural map ⊕

U∈U
h∗(U,U ∩A, ζ)→ h∗(X,A, ζ)

is an isomorphism.
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• Singularity: A weak homotopy equivalence f : (X ′, A′)→ (X,A) induces
an isomorphism

h∗(X
′, A′, f∗ζ)→ h∗(X,A, ζ)

for any ζ : X → K.
• Compact Supports: Whenever (Ui)i∈N is an ascending filtration of X such

that each compact subset of X is contained in a single Ui and (Vi)i∈N is
a similar filtration for Y , then any filtration preserving map f : X → Y
that induces isomorphisms

hk(Ui, U0, f
∗ζ)→ hk(Vi, V0, ζ)

for all i ∈ N, also induces an isomorphism hk(X,U0, f
∗ζ)→ hk(Y, V0, ζ).

3.1.2. Remark. We have formulated the axioms for a homology theory in a
slightly different way from what is usual. The reason is that we need to employ
the general Mayer-Vietoris sequence as described above and this is a bit cumber-
some to derive from the usual set of axioms, compare [St 84]. The proof given
there also works in the parametrised case. Note in addition that as usual (count-
able) additivity and singularity for a theory h together imply that h has compact
supports: Firstly, colimh∗(Ui, A, ζ) = h∗(X,A, ζ) for additive h and a filtration by
(non fibrewise) cofibrations (the proof via e.g. the infinite cylinder construction still
works verbatim ([tD, pp. 148 - 151]) and, secondly, the realisation of the singular
simplicial complex reduces the general case to this.

The analogous definition for cohomology should be obvious. In the rest of
this first section we will establish our notation and state some easy facts about
parametrised (co)homology theories, that we shall need, but for which we know no
reference.

3.1.3. Proposition. If π, ρ : X −→ K are two homotopic maps, then any
homotopy H between them induces an isomorphism H! : h∗(X,A, π) −→ h∗(X,A, ρ)
constructed in the proof. Two homotopic homotopies give the same isomorphism
and the arising assignment h : Π(X;K) −→ gr-R-Mod is functorial.

Here Π(X;K) is the groupoid whose objects are maps X −→ K and whose
morphisms are homotopy classes of homotopies with composition given by concate-
nation.

Proof. Consider the diagram

X
� � i0 //

π
##

X × I

H

��

X?
_i1oo

ρ
{{

K

Since both horizontal inclusions are (not necessarily fibrewise) homotopy equiva-
lences, we can define the isomorphism H! by

h∗(X,A, π)
(i0)∗
−−−−−→ h∗(X × I, A× I,H)

(i1)−1
∗

−−−−−→ h∗(X,A, ρ)

The claimed properties are easily verified right from the definition. �
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3.1.4. Definition. The system of coefficients of a homology theory h over K
is the local system h∗ : Π(K) −→ gr-R-Mod given by setting (X,A) = (∗, ∅) in the
previous proposition.
A transformation of homology theories h and h′ over spaces K and K ′ is pair
consisting of a map f : K → K ′ and a collection of linear maps

h∗(X,A, ζ)→ h′∗(X,A, f∗(ζ))

that is natural and commutes with the boundary operator in the obvious way.
In case both are defined over the same space K, we shall implicitly require f to be
the identity.

3.1.5. Theorem. Given a transformation θ : h −→ k of twisted homology
theories over K, that is an isomorphism hq → kq for all q < n and surjective for
q = n, then for a pair (X,A, ζ), such that (X,A) is a finite relative cell complex
without cells below dimension l, θ gives an isomorphism hq(X,A, ζ)→ kq(X,A, ζ)
for all q < n+ l and a surjection for q = l + n.
If both h and k have compact supports, X need not be finite (relative to A) and in
case both h and k are singular (X,A) may be an arbitrary l-connected pair.

The statement is true for cohomology upon replacing < by >. The reason
to include the proof here is that the usual proof in the untwisted case using the
cofibration sequence

∑
i S

n → X(n) → X(n+1) does not generalise to the twisted
case, simply because the mapping cone does not carry any obvious map to K. We
will instead have to rely on Mayer-Vietoris-sequences in their most general form as
given in our definition of parametrised (co)homology.

Proof. First we note that if Si
f→ K is an arbitrary map hq(S

i, 1, f) →
kq(S

i, 1, f) is an isomorphism for q < n + i and a surjection for q = n + i: The
proof is via induction on the subspheres Sj of Si the case j = 0 follows from the
automatic finite additivity of both h and k. The induction step is established by
the 5-lemma applied to the map of Mayer-Vietoris-sequences as follows:

. . . −→ hq(S
j+1
+ ∩ Sj+1

− , 1, f) −→ hq(S
j+1
+ , 1, f)⊕ hq(Sj+1

− , 1, f) −→ hq(S
j+1, 1, f)

δ−→ hq−1(Sj+1
+ ∩ Sj+1

− , 1, f) −→ hq−1(Sj+1
+ , 1, f)⊕ hq−1(Sj+1

− , 1, f) −→ . . .

The first and fourth entry receive a fibrewise map and (non-fibrewise) homotopy
equivalence from (Sj , 1) → K, hence the induction hypothesis applies, while the
second and fifth are simply 0.
Note that while the proof is formally the same as that of the suspension isomorphism
in the classical case, a 1-sphere S1 → K is not usually a (fibrewise!) suspension at
all.
Now for the general case: Again, we carry out an induction on the skeleta of X
with induction start the l−1-skeleton X(l−1) = A, for which there is nothing to do.
If now l = 0 the induction step from X(−1) to X(0) is again by (finite) additivity.
For the other induction steps we need notation for the standard neighbourhoods
for subsets of cell complexes, see [Ha, p. 552]: Given a subset B ⊆ X let N i

ε(B)
denote the open neighbourhood of B in X(i) given by successively thickening B by
ε-tubes cell by cell. Subsequently we can look at the following subsets of X(i+1):
M the set of midpoints of i+ 1 cells, M + 1

2 the set of midpoints shifted by 1
2 in the

first coordinate and consider the Mayer-Vietoris-sequence for N i+1
5
6

(X(i)), N i+1
4
6

(M)
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relative to N i+1
4
6

(A), N i+1
1
6

(M + 1
2 ). Abbreviating the names of these sets in the

obvious way, we first note that N(A) ⊆ N(X(i)), N(M+) ⊆ N(M) as required,
and also N(M+) ⊆ N(A) and finally that the inclusion N(M+) ↪→ N(M) is a
(non-fibrewise) homotopy equivalence. The sequence then looks as follows:

. . . −→ hq(N(X(i)) ∩N(M), N(M+), π)

−→ hq(N(X(i)), N(W ), π)

−→ hq(X
(i+1), N(W ), π)

δ−→ hq−1(N(X(i)) ∩N(M), N(M+), π)

−→ hq−1(N(X(i)), N(W ), π) −→ . . .

On the one hand, (N(X(i)) ∩ N(M), N(M+)) receives a fibrewise map from a
disjoint union of pointed i-spheres that is a homotopy equivalence, and hence θ
gives an isomorphism on this term for q < n + i and a surjection for q = n + i.
On the other hand, (N(X(i)), N(W )) deformation retracts onto (X(i), A) strongly
so the inclusion in the other direction certainly is a fibrewise map and a homotopy
equivalence, whence the induction hypothesis implies that θ gives an isomorphism
here for q < n + l and a surjection for q = n + l. An application of the 5-lemma
finishes the proof of the first assertion.
The second follows since we have colimh∗(X

(n), A, π) = h∗(X,A, π) (for additive
h) as stated in 3.1.2. The final assertion is immediate from the usual technique of
CW-approximation. �

3.1.6. Definition. An exterior product of (co)homology theories between (co)
homology theories h, h′ and k over spaces K,K ′ and L, respectively, refers to a map
f : K ×K ′ → L and pairings

× : h∗(X,A, ζ)× h′∗(Y,B, η) −→ k∗(X × Y,X ×B ∪A× Y, f∗(ζ × η))

that are compatible with the boundary map just as in ordinary homology.

3.1.7. Remark. We shall employ this definition only in two trivial, special
cases: Firstly, that in which K = L, K ′ = ∗, h = k and f = id giving a notion of
a parametrised theory h being a module over an unparametrised one h′. Secondly,
that in which K = K ′ = L, f is a monoidal composition law and h = h′ = k arises
from an unparametrised theory by simply ignoring the twisting data. The reason
for this is the following: Asking for a multiplicative, parametrised (co)homology
theory only really makes sense over a topological monoid K. The problem is that
we know of no example of such a multiplicative theory, aside from the ones that
are just given by ignoring the twist. This seems to be an inherent problem of the
definition. Naturally given multiplications ‘want’ to simultaneously produce classes
in h∗(X × Y,X ×B ∪A× Y, g∗(ζ × η)) for every g homotopic to the multiplication
f , satisfying various coherences, instead of e.g. strict associativity. However, only
the module structures over unparametrised homology theories will play an essential
role for our study and for these the framework is perfectly well suited.

Using multiplicative structures we can now give a generalisation of the Thom-
isomorphism:
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3.1.8. Definition. A Thom class of a k-dimensional vector bundle p : X −→ B
along a map ζ : B → K is a class t ∈ h′k(X,X − 0, p∗η), such that the pairing map

hl(B, ζ)→ kk+l(X,X − 0, p∗(ζ ⊕ η)), h −→ p∗(h) · t

restricts to isomorphisms

hl(b, ζ)→ kk+l(Xb, Xb − 0, p∗(ζ ⊕ η))

for all b ∈ B. A Thom class is called compatible with a subset U ⊆ B, if the map

h∗(U, η)→ k∗+k(X|U , X|U − 0, p∗(η ⊕ ζ)), b 7−→ p∗(b) ∪ t|U
is an isomorphism. It is called compatible with an atlas of the bundle, if it is
compatible with all its covering sets.

3.1.9. Theorem. Let p : X −→ B be a k-dimensional vector bundle with
a finite atlas A and ζ : B → K a map. If now h, h′ and k are as above and
t ∈ h′k(X,X − 0, p∗ζ) is a Thom class compatible with A , then the map

h∗(B, η)→ k∗+k(X,X − 0, p∗(ζ ⊕ η)), b 7−→ p∗(b) ∪ t

is an isomorphism.
If h, h′ and k admit compact supports, A need only be countable. If furthermore
all are singular and additive, the atlas may be arbitrary and the Thom class is
automatically compatible.

Even when restricted to the case of a twisted module theory over an untwisted
theory this proposition is more general than that of say [AnBlGe 10, Example
5.2], in that it also allows twists for the total space of the bundle instead of the
base. It is this version that we shall need.

Proof. The proofs of the unparametrised version here carry over without
change: By a Mayer-Vietoris argument the first bit is induction over n for the
statement that the Thom class is compatible with

⋃n
i=0 Ui using the usual Mayer-

Vietoris-sequence-&-5-lemma-argument, where U is some denumeration of A. The
second is immediate from the axiom applied to the filtration

· · · ⊆
n⋃
i=0

Ui ⊆
n+1⋃
i=0

Ui ⊆ . . .

(this filtration is by open subsets). For the last bit one can pull the bundle back
along a CW-approximation of B. However, for a cell complex one can argue by
induction on the skeleta and then apply the Milnor sequence once more: The 0-
skeleton is covered by the additivity axiom and the induction step uses similar sets
as in the above proof; compatibility here never becomes an issue because in each
step only spheres, disks and lower skeleta appear and the former two have finite
atlases of contractible sets. �

3.2. Parametrised spectra. In this section we follow [MaSi 06] and give
the basics of parametrised spectra. We shall essentially employ orthogonal spectra
in their parametrised form as developed in [MaSi 06], however, we shall use right
instead of left S-modules since this fits better with the usual conventions from
bundle theory.
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3.2.1. Definition. A parametrised orthogonal sequence over K is a sequence
of ex-spaces X over K together with a continuous left O(n)-action on Xn by ex-
maps for each n ∈ N. A map between to such objects is a sequence of equivariant
ex-maps.
The orthogonal sequence K×S is given by (K×S)n = K× (Rn)+ with the obvious
structure maps and O(n)-action.
The pre-smash product of two orthogonal sequences X and Y is the sequence given
by

(X ∧K Y )n =
n∨
i=0

O(n) ∧
O(p)×O(n−p)

Xp ∧K Yn−p

with action induced by the left operation on the left factor. There is also an exter-
nal pre-smash product ∧, which arises simply by substituting the internal smash
product of ex-spaces by their external one. Thus it has as input two orthogonal
sequences, one over K one over (say) K ′, and the output is one over K ×K ′.

The two kinds of pre-smash products are of course related by X∧KY = ∆∗(X∧
Y ) where X,Y are sequences over K, ∆ is the diagonal map of K and ∆∗ means
degreewise pullback. As usual the sequence K × S comes with a canonical map
(K × S) ∧K (K × S) → K × S making it a commutative monoid in the symmetric
monoidal structure given by the smash product.

3.2.2. Definition. A parametrised orthogonal spectrum over K is an orthog-
onal sequence X over K together with a map X ∧K K × S → X, that makes X
into a right K × S-module. Their category is denoted SK .

Of course the pre-smash products lift to smash products ∧K : SK × SK → SK
and ∧ : SK × SK′ → SK×K′ by the usual coequaliser construction.
May and Sigurdsson then proceed to put two model structures on the arising cate-
gory of parametrised spectra, namely the level - and the stable structure ([MaSi 06,
Theorem 12.1.7 & Theorem 12.3.10]). Except for the proof of proposition 3.3.6
only the weak equivalences of the stable structure will matter. These are the
maps X → Y that induce weak homotopy equivalences of homotopy fibre spec-
tra Xh

k → Y hk for each point k ∈ K; here the homotopy fibre spectrum Xh
k is built

from X by using as n-th space the homotopy fibre over k (say the mapping path
space for concreteness sake) of the structure map Xn → K. This spaces carry
evident structure maps making them orthogonal spectra.

We can now give the usual definitions of the (co)homology theories given by a
spectrum, though one comment is in order: Smash products and function spectra
are all meant in the derived sense, as is application of any other functor; May
and Sigurdsson indeed prove that all functors occuring in the formulas actually
are Quillen functors except for FK , which they construct as a right adjoint to the
derived smash product ∧K . ‘Underivedly’ it is given by taking fibrewise function
spectra. They put

E∗(X,A, ζ) := π∗Θ
(

cofibK(X,A) ∧K E
)

E∗(X,A, ζ) := π−∗Γ
(
FK(cofibK(X,A), E)

)
where Θ : SK → S denotes the degree wise collapse of the base-section, and

Γ : SK → S denotes degreewise taking of sections of the structure maps.
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3.2.3. Theorem (May-Sigurdsson). Given a parametrised spectrum E over K
the above constructions yield an additive and singular homology theory and an ad-
ditive singular cohomology theory.

3.2.4. Remark. In [MaSi 06] Multiplicative structures are not much investi-
gated. However, just as in the unparametrised case a map of spectra g : E ∧ F →
f∗G (for parametrised spectra E,F and G over spaces K,K ′ and L and a map
f : K×K ′ → L) gives rise to an exterior product of (co)homology theories. If then
the spectra all agree, f is an associative multiplication on K and g is at least fibre-
homotopy associative/commutative, we would obtain multiplications with the same
properties. We do not know how to produce such multiplications on parametrised
spectra representing twisted KO-theory or spin cobordism.

3.2.5. Remark. Another approach to twisted cohomology based on (∞, 1)-
categories is for example given in [AnBlGeHoRe 09] and their methods certainly
produce functors of the type we have been studying. We have, however, not inves-
tigated whether they fit into definition 3.1.1 on the nose, though we believe that
they do.

3.3. Our models for twisted Spin-bordism. We use a slight variation of
the spectra appearing in [Jo 04, Chapter 6]. Essentially we translate this model to
orthogonal spectra and introduce a second version which trades the strictly asso-
ciative and commutative multiplication of this spectrum for an action of PGL±(`2)
by maps of orthogonal spectra. While this to some extend looks unnatural, it illus-
trates the problems with multiplicative structures mentioned in the last section.

3.3.1. Construction. Let L2(Rn) denote the Hilbert space of square inte-
grable, real valued functions on Rn, which we regard as Z/2-graded by even/odd
functions, and let Cln denote the Clifford algebra of Rn with v2 = 〈v, v〉, where
the right hand side denotes the standard scalar product. We further denote Ln =
L2(Rn)⊗ Cln and L′n = `2 ⊗ Ln (`2 the space of square integrable real sequences,
regarded as Z/2-graded by the vanishing of odd/even entries); tensor products will
always refer to graded tensor products.
By Kuiper’s Theorem both components of Gl±(Ln) and Gl±(L′n) (the groups of
continuous, linear, even/odd and invertible selfmaps) are contractible, we will ab-
breviate these groups to G`n and G`′n, respectively. The following definitions
work equally well for the ′-case, hence we omit them for legibility. The group
Pin(n) ⊆ Cl(n) can be mapped into G`n via

j : p 7−→ (f ⊗ c 7−→ f ◦ ρ(p)−1 ⊗ p · c)

where ρ : Pin(n)→ O(n) is the usual surjection.
The element −1 ∈ Pin(n) thus acts as multiplication by −1 ∈ R on Ln; this
yields an inclusion O(n) ↪→ PG`n. Note firstly that −id ∈ O(n) does not map to
−id = id ∈ PG`n) and secondly that this embedding maps Spin(n) and SO(n) into
G`+n and PG`+n , respectively, where + denotes the subgroup of degree preserving
(‘even’) elements. We thus find

ESpin(n) := G`+n −→ G`+n /Spin(n) = PGln/O(n) =: BSpin(n)

to be a universal principal Spin(n)-bundle.
It is noteworthy that there is a second natural map i : Pin(n)→ Gln, namely the
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one coming from functoriality of the Clifford algebra:

p 7−→ (f ⊗ c 7−→ f ◦ ρ(p)−1 ⊗ Clρ(p)(c))

This second action obviously factors through ρ, and gives an embedding O(n) ↪→
G`n. Coming back to the Spin-spectrum: Forming the Thom spaces of the asso-
ciated vector bundles of the universal Spin-bundles above yields two (remember
the primed version) nice models of the Thom spectrum MSpin as as orthogo-
nal spectra. The obvious inclusions of G`n into G`′n produce a map of spectra
MSpin→MSpin′, that is easily seen to be a weak equivalence.
There is also an obvious concatenation operation G`n × G`k → G`n+k (factor-
ing through an inclusion G`n ×C∗ G`k ↪→ G`n+k) that induces a strictly asso-
ciative and commutative multiplication on MSpin. Similarly the analogous map
G`′n × G`k → G`′n+k gives a right MSpin-module structure to MSpin′. There
is however no good choice for a map G`′n × G`′k → G`′n+k as one would have to

merge the two `2 factors somehow, and there seems to be no associative way to
do this. However, any choice of isomorphism `2 → `2 ⊗ `2 induces one such con-
catenation operation. Since by Kuiper’s theorem the space of these isomorphisms
is contractible the induced mulitplication on MSpin′ corresponding to one such
choice is homotopy associative and homotopy commutative (and homotopy every-
thing).
The redeeming feature about MSpin′ is that it carries an action of PG` by maps
of orthogonal spectra induced by letting G` act by left multiplication on the extra
`2 factor of G`′n.

To properly interpret the last few statements there are various structure maps
to be defined and even more verifications to be done, but essentially all of them
are obvious (and many of the definitions are given in [Jo 04]), so we leave them to
the reader. We now want to employ the construction of [MaSi 06, section 22.1] to
produce a parametrised spectrum over BPG`. Even though we will not endow the
arising twisted spectra with multiplicative structures, we need to be picky about
which BPG` to choose, i.e. we need it to be a topological monoid. To this end, we
have:

3.3.2. Lemma. The space BPG` has the homotopy type of a product K of
Eilenberg-MacLane spaces one of type (Z/2, 1), the other of type (Z/2, 2). Fur-
thermore, there are two (homotopy classes of) choices of such an equivalence and
under each the multplication on BPG` induced by any choice of isomorphism
i : `2 → `2 ⊗ `2 translates into the map K ×K → K represented by

(ι1 ⊗ 1 + 1⊗ ι1, 1× ι2 + ι2 ⊗ 1 + ι1 ⊗ ι1) ∈ H1(K ×K,Z/2)×H2(K ×K,Z/2)

or put somewhat loosely

(a, b) · (c, d) = (a+ c, b+ d+ ac)

By results of Milgram the space K and the multiplication can thus be chosen
so as to make it a topological monoid.

Proof. This result is folklore. The complex case is proved for example in
[AtSe 04, Proposition 2.3] using slightly different language. The non-trivial self-
homotopy equivalence on K is given by (a, b) 7−→ (a, b+a2) as one can immediately
read off from the cohomology of K. �
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For our construction of a twisted spin cobordism spectrum, we need to choose
the following data: A topological monoid K as above and a universal PG`-bundle
EPG` over K. Since there are two isomorphism classes of such bundles, there
are two possible conventions. We choose one as follows: Observe that the spaces
EPG`n := EPG`×PG` PG`n are contractible, so that they can serve as universal
PG`n- and in particular O(n)-spaces (along the homomorphism j : O(n)→ PG`n).
Altogether find that BO(n) := EPG`n/j(O(n)) is a choice of classifying space for
O(n) which admits a canonical map to K = BPG` by further quotienting. For this
map there are two possibilities:

3.3.3. Lemma. The map BO(n) → K either represents (w1, w2) or (w1, w2 +
w2

1) and postcomposing with the non-trivial self-homotopy equivalence of K (which is
the same as choosing a universal bundle in the other equivalence class) interchanges
these.

Proof. It follows immediately from the long exact sequence of

PG`n/O(n)→ BO(n)→ K

(recall that PG`n/O(n) = BSpin(n)) that the induced map π∗(BO(n))→ π∗(K) is
an isomorphism in degrees one and two. Now the Hurewicz theorem applied to this
(and the corresponding map of universal covers) gives the first claim. The second
follows immediately from the explicit description of the non-trivial self-homotopy
equivalence given in the proof of 3.3.2. �

Since choices are unavoidable in the context of parametrised spectra and twisted
cohomology, we shall keep the monoid K, and a universal PG`-bundle, such that
the map above represents (w1, w2) fixed throughout the remainder of this thesis.

3.3.4. Definition. The parametrised spectrum M2O given by

(M2O)n = EPG`×PG`MSpin(n)′

with structure maps and O(n)-actions induced from MSpin′ will be called the
twisted Spin-bordism spectrum.

We define twisted Spin-cobordism to be the homology theory represented by
this spectrum. Note that the actions of MSpin and PG` on MSpin′ explained in
3.3.1 commute and thus give a pairing

M2O ∧MSpin −→M2O

making twisted Spin-bordism into a module theory over (non-twisted) Spin-bordism.

3.3.5. Observation. The spaces M2On are on the nose the fibrewise Thom
space along the map BO(n) → K of the universal bundles described above. In
particular, we have that Θ(M2O) is a model for MO. This justifies the name M2O.

To fully connect this to the musings from the first part, however, we need the
following technical proposition:

3.3.6. Proposition. Let ζ : X → K be a space over K, where X is a cell
complex. Then there is a natural isomorphism

ΩSpinn (X, ζ) ∼= πn(Θ(M2O ∧K (X +K)))

Indeed such an isomorphism is just a zig-zag arising from fibrant and cofibrant
replacements.
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The point is that no cofibrant or fibrant resolution has to take place in order
to correctly predict the twisted cobordism groups.

Proof. We will freely use the language of [MaSi 06] in this proof. We have
to construct a zig-zag of weak equivalences between

Θ(M2O ∧K (X +K))

and

Θc∆∗f(cM2O ∧ c(X +K))

where c and f denote cofibrant and fibrant resolutions in the appropriate model
structures. Since the external smash product preserves homotopy equivalences
between well-sectioned spaces (by the same proof as [MaSi 06, Proposition 8.2.6]),
we have a homotopy equivalence

cM2O ∧ c(X +K)→M2O ∧X +K

since all spaces in sight have the homotopy type of cell complexes (see the exposition
in [MaSi 06, Section 9.1] for the resolved objects). We therefore obtain a diagram

f(cM2O ∧ c(X +K))→ f(M2O ∧X +K)→M2O ∧ LX +K

where L is the Moore-mapping-path-space functor. The rightmost map exists since
LX + K and M2On are ex-fibrations, so is their smash product by [MaSi 06,
Proposition 8.2.3], and spectra consisting of ex-fibrations are level-fibrant. As a
right Quillen functor ∆∗ preserves weak equivalences between fibrant objects and
therefore

∆∗f(cM2O ∧ c(X +K))→M2O ∧K LX +K

is a weak equivalence. Now both sides are well-sectioned: For the right side this
follows by inspection and for the left it follows since cofibrant spaces are well-
sectioned by [MaSi 06, Theorem 6.2.6], and ∆∗ preserves ’well-sectionedness’ by
[MaSi 06, Proposition 8.2.2]. Since Θ preserves weak equivalences between well-
sectioned ex-spaces we obtain a weak equivalence

Θc∆∗f(cM2O ∧ c(X +K)→ Θ(M2O ∧K (LX +K))

The right hand side here is the Thom-spectrum associated to the pullback of

BO(i)

��
LX // K

Since the canonical map X → LX is a homotopy equivalence and the map BO(i)→
K a fibration, this pullback is homotopy equivalent to that of

BO(i)

��
X // K

which concludes the proof. �
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3.3.7. Remark. Choosing an isomorphism i : `2 → `2 ⊗ `2 one obtains a map
PG`× PG`→ PG` and we can ask for a compatible bundle map

EPG`× EPG` //

��

EPG`

��
K ×K // K

covering the multiplication of K. Since EPG`→ K is universal, the space of these
bundle maps were contractible if we left the multiplication map variable (within
its homotopy class) as well. However, fixing it there is more than a single fibre
homotopy class of such maps. While every one of them induces a multiplication
M2O ∧ M2O → M2O, none of them will be (homotopy-)associative. They do
however produce a single homotopy-class of maps Θ(M2O) ∧Θ(M2O)→ Θ(M2O)
making Θ(M2O) an orthogonal spectrum with a homotopy ring structure, which is
somewhat disappointing given that MO can easily be made into an honest orthog-
onal ring spectrum.

3.4. Our model for twisted K-theory. We again use a slight variation of
the spectra appearing in [Jo 04, Chapter 6], introducing a version which trades
the nice multiplication for an action by PG`.

3.4.1. Construction. Consider the spaces KOn = Hom(C0(R),K(Ln)) and
KO′n = Hom(C0(R),K(L′n)), where C0 denotes the algebra of real valued functions
vanishing at infinity (‘suspension algebra’), K denotes the space of right-Clifford-
linear compact operators and Hom denotes the space of degree preserving C∗-
homomorphisms, pointed by the null map. It is shown in [Jo 04], that these spaces
represent KO-Theory. Both sequences form orthogonal spectra as follows:
The orthogonal group acts on KOn by conjugation using the map i : O(n)→ G`n
given by p 7−→ (f ⊗ c 7→ f ◦ p−1 ⊗ Cl(p)c) (using functoriality of the Clifford
algebras). Note that also under this map −id ∈ O(n) does not map to −id ∈ G`n.
Again a similar action works in the primed case.
The structure maps will arise via the unit of a commutative multiplication on
KO and a KO-module structure on KO′. These multiplications come from the
coproduct ∆ on C0(R) and the isomorphism K(Ln) ⊗ K(Lm) → K(Ln+m) and

K(Ln) ⊗ K(L′m) → K(L′n+m) induced by the isomorphisms Ln ⊗ L(′)
m → L

(′)
n+m.

Unwinding these definitions immediately gives that the product maps are O(n) ×
O(m)-equivariant. The unit for the product on KO is given by extending

Rn → KO(n), w 7→
(
f 7→ pn ⊗ f(w) · −

)
by zero, where pn denotes the projection operator of L2(Rn) onto the subspace

generated by the function v 7→ e−|v|
2

and f(w) may be interpreted as functional
calculus. This map is equivariant because Cl(p)(f(w)) = f(p(w)) for all f ∈
C0(R), w ∈ Rn, p ∈ O(n) and the subspace generated by ew is O(n)-invariant.
As before we also have a weak equivalence KO → KO′, however, this time it
depends upon a choice of rank 1 projection operator p on `2 and is then given by
sending

ϕ : C0(R)→ KO′(n) to f 7−→ p⊗ ϕ(f)
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Note that the space of rank 1 operators is path-connected so the homotopy class
of this equivalence is uniquely determined; it is a weak equivalence, since the map
on compact operators K(H)→ K(H ⊗H ′) given by tensoring an operator with a
rank 1 projection on H ′ is a homotopy equivalence of C∗-algebras, being homotopic
to the isomorphism arising from any identification H ∼= H ⊗H ′, see e.g. [Me 00].
The spectrum KO′ can furthermore be given an action by PG` via conjugating a
homomorphism ϕ : C0(R)→ KO′(n) with p ∈ PG` to

f 7−→ (−1)|p|(p⊗ idLn) ◦ ϕ(f) ◦ (p−1 ⊗ idLn)

The twist is necessary to make the next paragraph work.

Again, the checks that need to be performed are partially given in [Jo 04] and
the rest is left to the reader. From this data we produce a twisted spectrum just
as above.

3.4.2. Definition. The spectrum K2O given by

K2O = EPG`×PG` KO′(n)

with structure maps and O(n)-actions induced form KO′ we call the twisted, real
K-theory spectrum.

As in the case of the Spin-spectrum, this spectrum K2O is a module spectrum
over KO and the spectrum Θ(K2O) inherits at least a homotopy multiplication.

4. Fundamental classes and orientations

4.1. The twisted Atiyah-Bott-Shapiro orientation. Recall that Spin-
bundles have Thom classes in real K-theory by the work of Atiyah, Bott and
Shapiro. This gives rise to a (multiplicative) transformation of homology theories

ΩSpin∗ → KO∗, represented by some map of spectra MSpin→ KO. In [Jo 04] M.
Joachim has constructed such a (ring-)map explicitly using the spectra described
above (implying for one that this orientation is an E∞-map). We will modify his
construction slightly to obtain a map M2O → K2O, which will provide us with
Thom classes in twisted K-theory.

4.1.1. Construction. First note that the action of O(n) on KO(n) extends
to an action of all G`n by conjugation twisted by degree and this factors through
PG`n; as the O(n) action on Ln is by even transformations only, it also extends
to the G`n-action by untwisted conjugation, but then the map below would not be
O(n) equivariant.
We now have the following composite α induced by the unit of the KO-spectrum

MSpin(n) = PG`n+∧O(n)S
n

−→ PG`n+ ∧O(n) KO(n)

−→ PG`n+ ∧PG`n KO(n)
∼=−→ KO(n)

Checking that this map is indeed equivariant is a bit more involved than before
since the action of O(n) on MSpin(n) was given through multiplying from the left
on PG`n using the map j : O(n)→ PG`n whereas the action of O(n) on KO(n) was
given by conjugation using the map i : O(n)→ G`n. Tracing through the definitions
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shows that the equivariance of α is equivalent to both these maps inducing the same
conjugation on K(Ln), which they do since Clρ(g)(c) = (−1)|g|gcg−1 for g ∈ Pin(n)
and c ∈ Cln.
We similarly have a map α′ : MSpin′ → KO′ (depending on our fixed rank 1
operator p on `2). These maps make the following diagram commute:

MSpin
α //

��

KO

��
MSpin′

α′ // KO′

where both maps to KO′ come from the same choice of p. The crucial observation
is that α′ is also equivariant under the action of PG`, which was the reason for
introducing the sign in the definition of the PG`-action.

Again the remaining checks we leave to the reader.

4.1.2. Theorem (Theorem 6.9 [Jo 04]). The map α : MSpin → KO induces
the KO-theory Thom classes for Spin-bundles of Atiyah, Bott and Shapiro. The
same is therefore true of the primed version.

4.1.3. Definition. We call the map α̂ : M2O → K2O induced by α′ the twisted
Atiyah-Bott-Shapiro-orientation.

4.1.4. Remark. We remark that the existence of such a transformation on the
level of homotopy categories can be deduced along the lines of [AnBlGe 10], by
considering the fibre sequence Z/2×K(Z/2, 1)→ BSpin→ BO and studying the
induced map of Thom spectra. One obtains a map Σ∞(K + ∗) → MSpin that
is adjoint to a map K(Z/2, 1) × K(Z/2, 2) → Bgl1(MSpin). The E∞ ring map
MSpin→ KO then transports these twists to KO-theory and the result is a map
of twisted spectra. However, from this description it is not clear how to get at
the geometric content of the induced transformation; something that (although not
explicitly considered in this thesis) is very relevant to our work.

Let us now explain how this map gives rise to Thom classes. Recall that by
proposition 3.3.3 we have M2O(n) identified with the fibrewise Thom space of
EO(n) → BO(n) along a fibration BO(n) → K representing the first and second
Stiefel-Whitney classes. Given now an n-dimensional bundle V → B together with
a commutative diagram

V

p

��

// EO(n)

��
B

w
��

// BO(n)

{{
K

we obtain a canonical fibre homotopy class (DV, SV ) → (M2O(n),K) over K
representing a class

t ∈ ΩnSpin(V, V − 0, p∗w)

and thus a class α̂(t) ∈ KOn(V, V − 0, p∗w).
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4.1.5. Proposition. The classes t and α̂(t) are Thom-classes for V with respect
to the pairings given by the module structures over Spin cobordism and KO-theory,

respectively. Therefore, any bundle V
p→ B together with a representing map B

w→
K of its first and second Stiefel-Whitney class admits a Thom class in both twisted
Spin-bordism and twisted K-theory.

Proof. Given a rank k vector bundle p : V → B with first and second Stiefel-
Whitney classes represented by w : B → K, we find, for every b ∈ B, a commutative
diagram

ΩnSpin(b)× ΩkSpin(Vb, Vb − 0, p∗w) //

∼=
��

Ωn+k
Spin(Vb, Vb − 0, p∗w)

∼=
��

ΩnSpin(b)× ΩkSpin(Vb, Vb − 0) // Ωn+k
Spin(Vb, Vb − 0)

since the cohomology theories (X,A) 7−→ Ω∗Spin(X,A, ck), where ck denotes the
constant map with value k ∈ K, are all isomorphic to Spin cobordism, albeit non-
canonically, since they are represented by the (derived) fibre spectra of M2O, which
are equivalent to MSpin′ and thus MSpin. Any such equivalence coming from a
choice of point in the fibre of EPG` over k furthermore preserves the multiplica-
tive structure, so for one such isomorphism the lower hand map is again given by
multiplication. In addition such an identification induces a Spin structure on the
restriction of V to the fibre over w(b) and our construction then reduces to the
standard construction of Thom classes in Spin cobordism. This proves the claim
for the case of twisted Spin cobordism.
The KO-theory case follows by the same argument, since the map induced by α̂ on
the fibres is just α′ under an identification as above and theorem 4.1.2 applies. �

4.1.6. Remark. Note that, even though our cohomology theories are singular,
not every bundle admits Thom classes this way, since it does nessecarily admit the
twisting maps. Furthermore, the classes constructed in the proof seem to depend
on further choices than just the twisting map. We see neither a reason to believe
that the classes above are actually independent of the choices made nor even the
existence of more canonical Thom classes. Of course we have canonical Thom
classes for the universal bundles, because we can then choose the identity as the
classifying map.

In particular we find:

4.1.7. Proposition. There are isomorphisms

KOk+n(M2O(n),K,w) ∼= KOk+n(EO(n), EO(n)− 0, w) ∼= KOk(BO(n))

given by excision and the canonical Thom class just mentioned.

This is the twisted analogue of the classical K-theory Thom isomorphism

KOk+n(MSpin(n), ∗) ∼= KOk(BSpin(n))

We shall see in the next section that this also works for connective K-theory, but
there are a few technical difficulties we have to address first.
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4.2. Twisted connective covers. What we need is a construction of con-
nective covers for orthogonal spectra such that all diagrams, which are supposed to
commute, do so on the nose and if a G-action on some spectrum E is continuous
for a topological group G, then so is the induced action on E〈n〉. Covers built
using simplicial spaces satisfy this, as we explain below. Assuming all this we can
immediately produce twisted connective covers:

(K2O〈n〉)m := EPG`×PG` (KO〈n〉)m
(M2O〈n〉)m := EPG`×PG` (MSpin〈n〉)m

From the functoriality we immediately obtain a lift of α′ : MSpin′ → KO′ to
MSpin′〈0〉 → KO′〈0〉 and preservation of continuous group action then produces
a map M2O〈n〉 → K2O〈n〉. In accordance with the usual naming scheme we set
K2O〈0〉 =: k2o. However the map M2O〈0〉 → M2O is obviously a weak equiv-
alence and we shall suppress it in much of what follows. All in all we obtain a
transformation of twisted homology theories

α̂ : ΩSpin∗ (−;−) −→ ko∗(−;−)

Furthermore, we have pairings ko′ ∧KO〈n〉 → KO′〈n〉 and consequently

k2o ∧KO〈n〉 −→ K2O〈n〉
up to homotopy as follows: We have a commutative diagram

(ko′ ∧KO〈n〉)〈n〉 //

'
��

(KO′ ∧KO)〈n〉 //

��

KO′〈n〉

��
ko′ ∧KO〈n〉 // KO′ ∧KO // KO′

where the first line arises from the second by applying −〈n〉. As above we produce
a map

k2o ∧KO〈n〉
'←− EPG`×PG` (ko′ ∧KO〈n〉)〈n〉
−→ EPG`×PG` (KO′ ∧KO)〈n〉
−→ K2O〈n〉

As in the non-parametrised case, such a ‘pairing’ is homotopy associative and
so on, inducing a pairing of homology and cohomology theories. By inspection we
find:

4.2.1. Proposition. The transformation α̂ : ΩSpin∗ (−;−) → ko∗(−;−) maps
Thom classes to Thom classes for the above pairing.

Unraveling this we find that for a rank k vector bundle V as above, we have
an isomorphism

ko〈l〉n+l(V, V − 0, p∗w) ∼= ko〈l〉n(B)

Finally, we have the construction we used above:

4.2.2. Proposition. Realising the simplicial space

k 7→ X〈n〉k = {f : ∆k → X | f
(
(∆k)n

)
= x}

associated to a pointed space (X,x) produces an n-connective cover of X with all
the stated properties.
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Proof. All the assertions are more or less evident, except for maybe the fact
that |X〈n〉•| is indeed a connective cover. This is wellknown for the untopologised
version of the above construction (compare e.g. [Ma, Paragraph 8]) and can be
reduced to that by the following argument:
The bisimplicial set

Zk,l = {f : ∆k ×∆l → X | f
(
∆k × (∆l)n

)
= x}

in the one direction realises to |Zk,•| = |Sing•(C(∆k, X))〈n〉|, where C(∆k, X)
denotes the space of continuous maps and 〈n〉 denotes the simplicial set construc-
tion of connective covers. The arising simplicial space admits the obvious levelwise
weak equivalence (by constant maps) from the constant simplicial space given by
|Sing•(X)〈n〉|. We conlude that |Z•,•| really is a connective cover of X.
Realising in the other direction first produces |Z•,l| = |Sing•(X〈n〉l)|, the singular-
isation of the l-space of the singular space in question. Therefore, we conclude that
|Z•,•| and |X〈n〉•| are weakly equivalent and a quick check of the maps involved
yields the proposition. �

4.3. Fundamental classes. Given a closed, connected smooth manifold with
a choices of maps

νM //

��

EO(k)

��
M

wν1,2(M) !!

// BO(k)

w1,2

{{
K

and normal bundle νM of some dimension k, we obtain a class [M ] ∈ ΩSpinn (M,wνM )
by the Pontryagin-Thom construction and either 3.3.6 or definition.

4.3.1. Observation. This class [M ] ∈ ΩSpinn (M,wν(M)) would deserve the
name of fundamental class of M in twisted spin bordism except for the fact that it
depends on the choice of classifying map for the normal bundle: Its push forward

generates ΩSpin∗ (M,M −x,wν(M)) freely as a module over ΩSpin∗ for every x ∈M ,
because firstly the inclusion

ΩSpin∗ (U,U − x,wν(M))→ ΩSpin∗ (M,M − x,wν(M))

induces an isomorphism by excision, secondly for U a ball around x, we find

ΩSpin∗ (U,U − x,wν(M)) ∼= ΩSpin∗ (U,U − x)

induced by some nullhomotopy of wν(M)|U , thirdly all of this is compatible with the

ΩSpin∗ -module structure and finally [M ] corresponds to the image of a fundamental
class in ΩSpinn (U, ∂U).
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Proposition 3.3.6 even gives the geometric interpretation of twisted cobordism
groups: Cycles for ΩSpinn (X, ζ) are given by commutative diagrams:

EO(k)

��

νMoo

��
BO(k)

w1,2

##

Moo

��

// X

ζ}}
K

Now, if the universal cover of M is spin, then we saw in 2.2.1 and 2.2.2, that there
is a diagram

M

��

c // Bπ1(M)

wν(M)
zz

K

where c classifies the universal cover of M . Extending this diagram to a cycle for
(Bπ1(M), wν(M)) we obtain a class

c∗(M) ∈ ΩSpinn (Bπ,wM )

We are now finally able to formulate the conjecture, that is the long term goal
of our project:

4.3.2. Conjecture (Stolz 1995). If for a connected, closed, smooth manifold
M , whose universal cover is spin, we have

0 = α̂(c∗(M)) ∈ kon(Bπ,wν(M))

for some choice of necessary auxiliary data (and then for every), then M carries a
metric of positive scalar curvature.

5. The generalised Anderson-Brown-Peterson splitting

5.1. Twisted K-Theory Pontryagin classes. With the Thom classes in
place, we can give a generalisation of the Anderson-Brown-Peterson splitting. Note
however, that while the focus of the original paper by Anderson, Brown and Peter-
son [AnBrPe 67] lies on the calculation of the spin-bordism ring, their result also
facilitated computations of other Spin cobordism groups by reduction to calcula-
tions in KO-theory. It is this second part that our result generalises to the case of
twisted cobordism groups. We begin by recalling the essentials from [AnBrPe 67].
They define characteristic classes πk for vector bundles of rank n (which is sup-
pressed in the notation because of part (3) of the following proposition) with values
in KO0, such that the following properties hold:

5.1.1. Proposition. The following hold for vector bundles E,F :

(1) πk(E ⊕ F ) =
∑k
i=0 πi(E) ∪ πj(F )

(2) πk(E ⊕ Rn) = πk(E)
(3) πk(E) = 0, if 2k > rank(E) and E orientable

Proof. These properties are all stated right in or around [AnBrPe 67, Propo-
sition 5.1]. �
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Because of (2) the πj for varying n (!) induce a compatible system of classes in
KO0(BO(n)) when applied to the universal bundle. By the Milnor-sequence one
obtains classes πj ∈ KO0(BO), since the lim1-term vanishes by application of the
real version of the Atiyah-Segal completion theorem and explicit computation of
the representation rings involved. For a finite sequence of natural numbers J denote
πJ =

∏
i πJi and n(J) =

∑
i Ji. Obviously, sequences that arise by rearrangement

give the same class. Anderson, Brown and Peterson then prove:

5.1.2. Theorem. The class πJ ∈ KO0(BSO) lies in the image of the map

ko〈nJ〉0(BSO)→ KO0(BSO)

where

nJ =

{
4n(J) n(J) even

4n(J)− 2 n(J) odd

The same statement thus also holds for the restrictions to BSpin. The in-
determinacy of such lifts is also determined in [AnBrPe 67], but we shall not
make use of that. Using the Thom classes for spin bundles along the pairing
ko∗(−) × ko〈nJ〉∗(−) → ko〈nJ〉∗(−), that we generalised in the last section, we
find

[MSpin, ko〈nJ〉] −→ lim
n
ko〈nJ〉n(MSpin(n), ∗)

∼= lim
n
ko〈nJ〉0(BSpin(n), ∗)

←−ko〈nJ〉0(BSpin)

where the first map is a surjection by the Milnor-sequence. We thus obtain a trans-

formation ΩSpin∗ (−)→ ko〈nJ〉∗(−) for each J . We will use the obvious analogue of
the above calculation

[M2O, k2o〈nJ〉] −→ lim
n
ko〈nJ〉n(M2O(n),K,w)

∼= lim
n
ko〈nJ〉0(BO(n))

←−ko〈nJ〉0(BO)

to analyse the twisted theory ΩSpin∗ (−;−). However, we do not know whether
theorem 5.1.2 also holds for BO instead of BSO or BSpin. Therefore, we have to
modify the πj ’s slightly:

5.1.3. Definition. Put πj(E) = πj(E⊕ΛnE) for any vector bundle E of rank
n.

By the second stated property of the πj ’s we have πj(E) = πj(E) for any
orientable bundle. With the same discussion as above we thus obtain classes
πj ∈ KO0(BO) and by the comment just made these restrict to our original
πj ∈ KO0(BSO). A lift of πJ in ko〈nJ〉0(BSO) thus determines a lift of πj in

ko〈nJ〉0(BO) and a transformation ΩSpin∗ → ko〈nJ〉∗.

5.1.4. Corollary. The class πJ ∈ KO0(BO) lies in the image of the map
ko〈nJ〉0(BO)→ KO0(BO), where nJ is as above.

Underlying this construction is of course the homotopy equivalence

BO → BSO ×K(Z/2, 1)
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on finite steps (i.e. the BO(n)) corresponding to adding (in the first component)
and remembering (in the second) the top exterior power of a bundle.

5.2. The Anderson-Brown-Peterson splitting and its twisted gener-
alisation. The investigation of the Spin cobordism ring in [AnBrPe 67] starts
with the following theorem:

5.2.1. Theorem. If θJ : MSpin −→ ko〈nJ〉 corresponds to πJ under the Thom
isomorphism, then, as J runs through all non-decreasing sequences with J1 > 1, the
induced map ⊕

J H
∗(ko〈nJ〉,Z/2) // H∗(MSpin,Z/2)

is injective with graded-free cokernel over A2.

Choosing a split overA2 of the arising short exact sequences and a homogeneous
basis of the cokernel we obtain maps zi : MSpin −→ shniHZ/2, where we denote
the shift of spectra by shi (so that (shiE)k = Ei+k).

5.2.2. Corollary. Given θJ and zi as above the induced map⊕
J H

∗(ko〈nJ〉,Z/2)⊕
⊕

iH
∗(shniHZ/2,Z/2) // H∗(MSpin,Z/2)

is an isomorphism.

An easy computation also gives:

5.2.3. Proposition. Given θJ and zi as above the induced map⊕
J H

∗(ko〈nJ〉,Q)⊕
⊕

iH
∗(shniHZ/2,Q) // H∗(MSpin,Q)

is a bijection.

Since everything in sight is of finite type, one can now apply Serre-class theory
to obtain:

5.2.4. Corollary (Anderson-Brown-Peterson-splitting). The transformation

ΩSpin∗ (−) −→
⊕
J

ko〈nJ〉∗(−)⊕
⊕
i

H∗−ni(−,Z/2)

given by a choice of θJ and zi as above, is an isomorphism after localisation at 2.

Given such a choice of zi we obtain (upon further choices) homotopy classes

M2O −→ K × shniHZ/2
as follows: Recall the functor Θ : SK → S, that collapses the base section and that
Θ(M2O) = MO. One then is tempted to proceed as follows: It is well known that
the canonical map

H∗(MO,Z/2) −→ H∗(MSpin,Z/2)

is a surjection, so pick representatives ẑi : MO → shniHZ/2 of inverse images of
the zi. Now Θ is left adjoint to − ×K (also on the homotopy category), whence
these should correspond to maps M2O → shniHZ/2×K as claimed. We do, how-
ever, not know whether our spectrum M2O is cofibrant (meaning that it is not clear
that Θ(M2O) = MO on homotopy categories). To verify that we still obtain maps
as claimed we need to peek into the black box of model structures on parametrised
spectra once more. We can cofibrantly resolve M2O in the level model structure,
since it shares cofibrations with the stable structure and has a stronger notion of
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weak equivalence. However, as we observed in the proof of 3.3.6 the base sections in
our spectrum M2O are cofibrations and so we certainly obtain a levelwise homology
equivalence, and hence a weak equivalence.

Note that the parametrised spectrum K ×HZ/2 represents the parametrised
homology theory obtained by ignoring the twist and taking singular homology of
the total space.

5.2.5. Corollary. If θJ : M2O −→ k2o〈nJ〉 corresponds to a lift of πJ ∈
KO0(BO) in ko〈nj〉0(BO) and ẑi : M2O → K × shniHZ/2 corresponds to a class
∈ Hni(MO,Z/2) that restricts to zi ∈ Hni(MSpin,Z/2), the induced map

ΩSpin∗ (−,−) −→
⊕
J

ko〈nJ〉∗(−,−)⊕
⊕
i

H∗+ni(−,−,Z/2)

is an isomorphism of twisted homology theories after localising at 2.

Proof. By Theorem 3.1.5 it suffices to verify, is that the statement holds for
each point k ∈ K and as before, for every point the claim reduces to the classical
Anderson-Brown-Peterson splitting (albeit in a non-canonical way)! �

6. The cohomology of twisted spin cobordism

6.1. The twisted Steenrod algebra. Using our generalisation of the Ander-
son-Brown-Peterson splitting we shall now set out to compute the Z/2-cohomology
of the twisted spin cobordism spectrum as a module over the twisted Steenrod
algebra, which we denote by A2. Before doing so we shall therefore describe A2.
We shall from now on suppress Z/2 and related 2’s from notation.

6.1.1. Definition. The graded algebra A is defined to be the ‘set’ of natural
transformations H∗(−,−) → H∗(−,−) commuting with the connecting transfor-
mation, where H∗ is regarded as a functor Top2

K → Ab.

As in the untwisted setting A is an algebra under composition and carries
a canonical coproduct coming from the multiplicativity of H∗, making it a co-
commutative Hopf algebra. Representability easily yields:

6.1.2. Proposition. The inclusions H∗(K) → A (acting via multiplication)
and A → A induce an isomorphism

H∗(K)⊗A ∼= A
of vector spaces and coalgebras, but not of algebras.

Proof. What we have to compute is limnH
∗+n(K×K(Z/2, n),K×∗), which

by the Künneth-formula is isomorphic to H∗(K)⊗A, and since the multiplication
of K × HZ/2 is componentwise, this is an isomorphism of coalgebras. The final
statement follows from the next proposition. �

The multiplication, however, is also easily described in terms of the isomor-
phism above.

6.1.3. Proposition. For k, l ∈ H∗(K) and a, b ∈ A, with ∆(a) =
∑
i a
′
i ⊗ a′′i

we have
(k ⊗ a) · (l ⊗ b) =

∑
i

k ∪ a′i(l)⊗ a′′i ◦ b
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Proof. Given a pair (X,A) with twist ζ, we find for every x ∈ H∗(X,A, ζ):

(k ⊗ a) ((l ⊗ b)x)) = (k ⊗ a)(ζ∗l ∪ b(x))

= ζ∗k ∪ a(ζ∗l ∪ b(x))

=
∑
i

ζ∗k ∪ a′i(ζ∗l) ∪ a′′i (b(x))

=
∑
i

ζ∗(k ∪ a′i(l)) ∪ (a′′i ◦ b)(x)

=
∑
i

(k ∪ a′i(l)⊗ a′′i ◦ b)x

�

6.1.4. Remark. From these formulas we see that A is precisely the semidirect
product of A with H∗(K) and the obvious action of A on H∗(K). As usual we
conclude that the inclusions H∗(K) ↪→ A and A ↪→ A are Hopf algebra maps,
whereas of the projection maps A → A (killing H+(K) ⊗ A) and A → H∗(K)
(killing H∗(K)⊗A+) only the first is multiplicative, while both are comultiplicative
(since both A and H∗(K) are cocommutative).

To describe our results for H∗(M2O) we will construct a nontrivial automor-
phism of a subalgebra of A(1), that emulates the changes under Thom isomor-

phisms: To this end let A(1) denote the subalgebra of A generated by Sq1 and
Sq2, which indeed is a sub-Hopf-algebra. Similarly, let A(1) denote the subalgebra

of A generated by A(1) and H∗(K); it is also readily checked to be a sub-Hopf-
algebra of A. Now note that given the spectrum M2O, we can apply the Thom
isomorphism H∗(M2O) = H∗(MO) ∼= H∗(BO). It transforms the H∗(K)-action
on H∗(M2O) into the one on H∗(BO) coming from the map BO → K given by
the first and second Stiefel-Whitney class by our convention from right after lemma
3.3.3. The module structure over the Steenrod algebra, however, changes, but the
change in the action over A(1) can be described by an automorphism ψ of A(1): It
is determined by

ψ(1⊗ Sq1) = 1⊗ Sq1 + ι1 ⊗ 1

ψ(1⊗ Sq2) = 1⊗ Sq2 + ι1 ⊗ Sq1 + ι2 ⊗ 1

ψ(k ⊗ 1) = k ⊗ 1

and we have H∗(M2O) ∼= ψH
∗(BO), where the lower case ψ denotes pulling back

the module structure. For technical reasons it turns out to be more convenient to
work with the inverse of ψ for a while, which we denote by ϕ. We also denote by
ϕ its composition with the inclusion A(1)→ A(1). This is given by

ϕ(Sq1) = 1⊗ Sq1 + ι1 ⊗ 1

ϕ(Sq2) = 1⊗ Sq2 + ι1 ⊗ Sq1 + ι21 ⊗ 1 + ι2 ⊗ 1

The verification that indeed ϕ ◦ ψ = id is a little calculation and will be left to the
reader.

6.1.5. Lemma. The above stipulation indeed defines a unique homomorphism
ϕ : A(1)→ A(1) of algebras. It is a morphism of Hopf algebras.



36 1. TWISTED SPIN COBORDISM

Proof. This is just a lengthy computation, since we know that a presentation
for A(1) is given by (Sq1)2 = 0, Sq1Sq2Sq1 = (Sq2)2. We have deferred it to
appendix I. �

6.1.6. Lemma. Extending ϕ by the identity on H∗(K) produces a Hopf algebra
automorphism of A(1).

Proof. To make the extension well-defined, there is again a relation to be
checked and we do this in appendix I. The extension is an isomorphism, since it is
for example H∗(K)-linear and induces the identity on H∗(K)-indecomposables. �

6.2. The cohomology of k2o. We begin with a few simple observations: By
the adjointness of Θ and K ×− we find:

H∗(E) = H∗(ΘcE)

where the left hand side denotes the twisted cohomology theory represented by
K × HZ/2 and the right hand side the untwisted one represented by HZ/2 (and
c is cofibrant resolution). Since we may as well replace all spectra occuring in the
following by their cofibrant replacements, we shall suppress it from notation.

6.2.1. Lemma. The spectrum Θ(k2o) is connective with zeroth homotopy group
isomorphic to Z/2. The corresponding Postnikov section yields a homotopy class
of maps of parametrised spectra

k2o −→ K ×HZ/2
This map induces a surjection A −→ H∗(k2o) upon passage to cohomology. Fur-
thermore, the Poincaré series of H∗(k2o) equals the product of that of H∗(ko) and
that of H∗(K).

Proof. The statement about the homotopy groups of Θ(k2o) follows from
the fact that the ABS-orientation MSpin → ko is an 8-equivalence integrally
(and not just 2-locally). By the long exact sequences of the obvious fibration
the same holds true for the twisted ABS-orientation and thus for the induced map
MO = Θ(M2O) → Θ(k2o), where the homotopy groups of the left side are well
known.
The second statements follow from the Serre spectral sequences: Stong’s calcula-
tions of H∗(BO〈k〉) (compare [St, Chapter XI, Proposition 6]) show that the map
A → H∗(ko) induced by ‘the’ zeroth Postnikov section of ko is a surjection with
kernel generated by Sq1 and Sq2. The transformation of spectral sequences induced
by the Postnikov section k2o −→ K × HZ/2 therefore also is a surjection on the
second pages; this is clear once we know that the coefficient system in the spectral
sequence for k2o is constant, which we show below. Since the domain spectral se-
quence (that of H∗(K × H)) collapses, this implies that we have a surjection on
the limit pages and thus a surjection on the abutment, i.e. A → H∗(k2o).
Furthermore, the comparison of spectral sequences of k2o and M2O shows the final
part, since the latter spectral sequence also collapses by the following argument:
The Poincaré series of H∗(M2O) = H∗(MO) is the same as that of the product of
H∗(MSpin) with H∗(K), whose tensor product make up the second page of the
spectral sequence. Since nontrivial differentials would strictly decrease the Poincaré
series, the spectral sequence for M2O has to collapse and consequently that for k2o,
since it is a summand in that of M2O. It follows that the Poincaré series of H∗(k2o)
equals that of the second page of its spectral sequence and the proposition follows.
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Finally, let us prove that the coefficients in the spectral sequence for M2O (which
in particular implies the same for k2o) are indeed constant. To this end observe
that we have a group homomorphism Z/2 → PG` that splits the grading map
PG` → Z/2 (one such is given by letting the nontrivial element in Z/2 act by
swapping the obvious base elements δ2n and δ2n+1). Call the image of the non-
trivial element g. Such a split induces an isomorphism on path components and
thus an isomorphism on π1 after taking classifying spaces. Considering the arising
diagram

MSpin′(n) //

��

MSpin′(n)

��
EZ/2×Z/2 MSpin′(n) //

��

EPG`×PG`MSpin′(n)

��
BZ/2 // BPG`

we find that the action of the nontrivial element in π1(BPG`) on the cohomology of
the fibre is induced by the action of the g on MSpin′(n). By the Thom isomorphism
we therefore need to study the action of g on BSpin′(n) and this is given by left
multiplication of g on

BSpin′(n) = G`′+n /Spin(n) = PG`′n/O(n)

This action is covered by a bundle isomorphism of the universal O(n)-bundle over
BSpin′(n), which will yield the claim since its Stiefel-Whitney classes generate the
mod 2 cohomology ring of BSpin′(n). The universal principal O(n)-bundle is given
by

G`′+n ×Spin(n) O(n)

��

∼= // G`′n ×Pin(n) O(n)

BSpin′(n)

and the isomorphism covering the left multiplication by g is again just given by left
multiplication with g using the righthandside description of the total space. Note
that this does not work for the universal SO(n) or Spin(n) bundles since Pin(n)
does not act on these. The coefficient system is indeed non-trivial using integral
coefficients (since Pontryagin classes are sensitive to orientations). �

In particular, we find H0(k2o) ∼= Z/2. Let us denotes by κ the unique non-zero
class in that group. Using the splitting of M2O once more we find:

6.2.2. Lemma. We have ϕ(Sq1)κ = 0 and ϕ(Sq2)κ = 0.

Proof. This seems difficult to do directly as we know of no way to track
Steenrod operations through the Serre spectral sequence. However, since the ABS-
orientation is injective, we can check ϕ(Sq1,2)u = 0 in H∗(M2O) = H∗(MO), where
the computation reads:

ϕ(Sq1)u = Sq1(u) + ι1u = w1u+ w1u = 0

ϕ(Sq2)u = Sq2(u) + ι1Sq
1(u) + ι21u+ ι2u = w2u+ w2

1u+ w2
1u+ w2u = 0

�
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6.2.3. Theorem. There is a unique non-trivial class κ8n ∈ H8n(k2o〈8n〉) and
the map sh−8nA → H∗(k2o〈8n〉) given by evaluation on κ8n induces an isomor-
phism

sh−8nAϕ ⊗A(1) Z/2→ H∗(k2o〈8n〉)

of left A-modules.

Proof. Bott periodicity immediately reduces the claim to the case n = 0. By
the above lemma the map indeed factors through A/ϕ(Sq1,2) and it is surjective
by the proposition above that. We will thus be done once we have computed the
Poincaré series of both sides. For the right hand side this was also done in the
lemma above, and for the left hand side all that remains to be noted is that the
Poincaré-series of Aϕ⊗A(1)Z/2 agrees with that of A⊗A(1)Z/2 by two applications
of the Milnor-Moore theorem and that the latter is indeed the tensor product of
H∗(K) and A⊗A(1) Z/2 at least as a Z/2 vector space. At this point we are done
since H∗(ko) ∼= A⊗A(1) Z/2 by Stong’s calculation.

�

By similar arguments we can also deal with k2o〈2〉:

6.2.4. Theorem. There is a unique non-trivial class κ8n+2 ∈ H8n+2(k2o〈8n+
2〉) and the map sh−(8n+2)A → H∗(k2o〈8n + 2〉) given by evaluation on κ8n+2

induces an isomorphism

sh−(8n+2)Aϕ ⊗A(1) A(1)/Sq3 → H∗(k2o〈8n+ 2〉)

of left A-modules.

Proof. By Bott periodicity it suffices again to consider a single value of n,
which we choose to be 1, since k2o〈10〉 ‘is a summand of M2O’. In particular, the
Serre spectral sequence of k2o〈10〉 has constant coefficients (as observed in the proof
of 6.2.1), giving us the element κ10. The computation of the Poincaré series is also
basically the same as in the previous argument, however, ϕ(Sq3)κ10 = 0 does not
follow directly, since we do not know the image of κ10 in H10(M2O) under a lift of
θ3 : M2O → k2o〈10〉. To proceed we shall decompose θ3 into its components:

M2O
∆−→ BO+ ∧M2O

θ3∧α̂−→ ko〈10〉0 ∧ k2o
µ−→ k2o〈10〉

Because µ∗κ10 clearly equals λ10 × κ, where λ10 refers to the fundamental class
in H10(ko〈10〉0) (which makes sense since ko〈10〉0 can be chosen 9-connected with
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10th homotopy group isomorphic to Z/2), the following calculation gives the claim:

ϕ(Sq3)(λ10 × κ) = ϕ(Sq1)ϕ(Sq2)(λ10 × κ)

= ϕ(Sq1)
(

(1⊗ Sq2)(λ10 × κ) + (ι1 ⊗ Sq1)(λ10 × κ)

+ (ι21 ⊗ 1)(λ10 × κ) + (ι2 ⊗ 1)(λ10 × κ)
)

= ϕ(Sq1)
([
Sq2(λ10)× ι+ Sq1(λ10)× Sq1(κ)︸ ︷︷ ︸

=((((
((

Sq1(λ10)×ι1κ

+λ10 × Sq2(κ)︸ ︷︷ ︸
=���

�λ10×ι2κ

]
+
[
((((

(((Sq1(λ10)× ι1κ + λ10 × ι1Sq1(κ)︸ ︷︷ ︸
���

�
λ10×ι21κ

]
+��

���λ10 × ι21κ +���
��λ10 × ι2κ
)

= (1⊗ Sq1)(Sq2(λ10)× κ) + (ι1 ⊗ 1)(Sq2(λ10)× κ)

=
[
Sq1Sq2(λ10)× κ︸ ︷︷ ︸

=0

+Sq2(λ10)× Sq1(κ)︸ ︷︷ ︸
=Sq2(λ10)×ι1κ

]
+ Sq2(λ10)× ι1κ

= 0

where Sq1Sq2(λ10) = 0 by Stong’s calculations of H∗(BO〈n〉). �

With these results it seems natural to guess:

6.2.5. Conjecture. Generalising Stong’s computation of H∗(ko〈n〉) we find

sh−(8n+1)A(1)/ϕ(Sq2)
∼=−→ H∗(k2o〈8n+ 1〉)

sh−(8n+4)A(1)/ϕ(Sq1,5)
∼=−→ H∗(k2o〈8n+ 4〉)

as A(1)-modules.

However, the arguments used above break down. Another approach would be
to use the fact that ko〈n〉 ' Xn ∧ ko for some small space Xn and extend the map
Xn → ko〈n〉 to an equivalence k2o〈n〉 ' Xn ∧ k2o using the ko-module structure
on k2o〈n〉. We have not investigated the details of this though.

6.3. The cohomology of M2O. Our generalised Anderson-Brown-Peterson
splitting allows us to compute the cohomology of M2O as a module over the
twisted Steenrod algebra. The isomorphism, however, we cannot uniquely spec-
ify just as Anderson, Brown and Peterson could not determine theirs due to the
non-uniqueness of lifts in theorem 5.1.2.

6.3.1. Corollary. Any choice of splitting from 5.2.4 determines an isomor-
phism

H∗(M2O) ∼=
⊕
J,n(J)
even

sh−nJA/ϕ(Sq1,2)⊕
⊕
J,n(J)
odd

sh−nJA/ϕ(Sq3)⊕
⊕
i

sh−niA

of modules over the twisted Steenrod algebra.

In particular, we see thatH∗(M2O) ∼= Aϕ⊗A(1)M for theA(1)-moduleM given
as a direct sum of Z/2’s, jokers and free modules according to the above decompo-
sition. Since Anderson, Brown and Peterson showed H∗(MSpin) ∼= Aϕ ⊗A(1) M
for that very same M , we will call it the ABP-module in the second chapter for
easier reference.
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This explicitly given structure as an extended module over the twisted Steenrod
algebra can be used to get a hand on the second page of a K×HZ/2-based Adams
spectral sequence. We hope to take advantage of this to approach conjecture 4.3.2
along the lines of Stolz’ arguments in [St 94], which uses the Adams spectral se-
quence as a principal tool. In the second chapter we start with some preliminary
investigations.

6.4. A final observation. We saw in remark3.3.7 that H∗(M2O) (and sim-
ilarly H∗(k2o)) carries a multiplicative structure, agreeing with that of H∗(MO).
Dualising our cohomological calculations from above one can perform some low-
dimensional calculations and find:

6.4.1. Proposition. The homology of k2o contains an element 0 6= y ∈ H2(k2o)
with y4 = 0. In particular, there can be no injective ring homomorphism H∗(k2o)→
H∗(M2O).

Proof. In order to carry out this proof we use the description of H∗(K) from
proposition 4.1.1. This does not create any circular argument, since the present
proposition is only ever used to explain why certain approaches cannot work.
From 4.1.1 we know that H∗(K) ∼= Z/2[x2k : k ∈ N, x2k+2l : k > l]/(x4

2k , x
2
2k+2l).

From this description it is clear that the element y2 ∈ H2(K) dual to ι21 satisfies
x4

2 = 0 and so does the element x1 ∈ H1(K), which is the dual of ι1. We proceed
by noting that the element x1 ⊗ ζ1 + x2 ⊗ 1 ∈ A∗2 lies in the image of H2(k2o)
under the Postnikov section, where ζ1 is dual to Sq1: All we need to verify is that
〈a, x1⊗ ζ1 +x2⊗ 1〉 = 0 for a = (ι1⊗ 1)ϕ(Sq1), (1⊗Sq1)ϕ(Sq1) and ϕ(Sq2), which
form a generating system for (A·Sq1,2)2. Since (ι1⊗1)ϕ(Sq1) = ι21⊗1+ ι1⊗Sq1 =
(1⊗ Sq1)ϕ(Sq1) the computations

〈ι21 ⊗ 1 + ι1 ⊗ Sq1, x1 ⊗ ζ1 + x2 ⊗ 1〉 = 1 + 1 = 0

〈1⊗ Sq2 + ι1 ⊗ Sq1 + ι21 + ι2, x1 ⊗ ζ1 + x2 ⊗ 1〉 = 0 + 1 + 1 + 0 = 0

suffice for this. The preimage y of x1⊗ ζ1 +y2⊗1 (the map induced in cohomology
is surjective by 6.2.1, so in homology it is injective) then meets our requirements,
since the multiplication in A∗ is commutative. �

This observation is in stark contrast to the situation in the untwisted case: In
[St 92] Stolz used the observation of Pengelley, that indeed there is a ring split of
the Atiyah-Bott-Shapiro orientation in homology, to produce a structure theorem
for the homology of MSpin-module spectra. In fact, in [St 94] he even produced
a map of spectra inducing such a split.



CHAPTER 2

The twisted HP 2-transfer

1. Introduction

1.1. History and motivation. As described in the introduction of the first
chapter our interest in twisted Spin-cobordism groups arises from their connection
to the existence of metrics of positive scalar curvature. The case of spin manifolds
in conjecture 4.3.2 from the first chapter was proven by Führing and Stolz. To
state their results we need to rephrase the conjecture as the degree-greater-than-4
case of

ker
(
α̂ : ΩSpin∗ (Bπ,w)→ ko∗(Bπ,w)

)
⊆ ΩSpin∗ (Bπ,w)+

for every finitely presented group π, and every H1,2(−,Z/2)-twist w on Bπ, where

ΩSpin∗ (−)+ ⊆ ΩSpin∗ (−) denotes those elements which can be represented by man-
ifolds admitting positive scalar curvature metrics. In this rather algebraic formu-
lation we can split up the statement by localising at and inverting 2, respectively
and Stolz proved the 2-primary and Führing the odd-primary part.
We now set out to explain the method Stolz employed and indicate how one might
hope it generalises to include the case of twisted manifolds. One should also be
able to adapt Führing’s arguments, but we will not discuss that here as his proof
is by different, far more geometric methods.
Since explicit generators even for the Spin-cobordism ring are hard to come by
(and to our best knowledge still are not entirely known), Stolz’ idea was to consider
total spaces of fibre bundles with fixed fibre F (and indeed structure group G)
over varying base spaces. For appropriately chosen fibre these will always admit
metrics of positive scalar curvature. The entirety of such bundles can generically
be described as the image of the following transfer map

TG,F : Ω∗(X ×BG) −→ Ω∗+dim(F )(X)

[M, (f, g) : M → X ×BG] 7−→ [g∗(EF ), f ◦ p : g∗(EF )→M → X]

where EF = EG ×G F denotes the universal bundle over BG with fibre F . To
impose decorations like twists and Spin-structures one needs additional assump-
tions on G and F of course. For the problem at hand Stolz chooses F as HP 2 and
G = Isom(HP 2), where the isometry group (which in fact is PSp(3)) is taken with
respect to the Fubini-Study metric on HP 2, which has positive scalar curvature.
He then goes on to show that the vertical tangent bundle of EF → BG admits a
Spin-structure, wherefore the above map makes sense with Spin-decorations. We
will review this in a moment. The 2-primary part of 4.3.2 for spin manifolds now
follows from

Theorem (Stolz 1994). We have

ker
(
α : ΩSpin∗ (X)→ ko∗(X)

)
(2)
⊆ im

(
T : ΩSpin∗−8 (X ×BPSp(3))→ ΩSpin∗ (X)

)
(2)

41
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for every space X.

Following some preliminaries Stolz’ proof of this result consists of two main
steps. The preliminiaries are that the transfer map is induced by an explicitly
given map of spectra

MSpin ∧ S8 ∧BG+ −→MSpin

and that the composition

MSpin ∧ S8 ∧BG+ −→MSpin
α−→ ko

is nullhomotopic by the Atiyah-Singer index theorem (compare [St 92, Section 1
& 2]). Therefore, one can pick a lift t : MSpin ∧ S8 ∧ BG+ → hofib(α) of the
transfer map. Stolz then proceeds with the following two results:

Theorem (Proposition 1.3 [St 92]). Any such t induces a injection in mod 2-
cohomology, which splits over A.

Theorem (Proposition 8.3 [St 94]). Any split from the previous theorem is
realised by a map of (2-localised) spectra.

From these two results it follows immediately that t induces a split surjection
of homology theories, which has the desired statement as a corollary.

1.2. Statement of results and organisation of the chapter. In the sec-
ond part of this thesis we concern ourselves with the generalisation of the results
stated above. It is easy to set up a twisted transfer map

M2O ∧ S8 ∧BG+ −→M2O

with the analogous geometric interpretation as in the Spin-case. We do this in
the second section. In the third we review Stolz’ approach to the first step and
reduce its generalisation to a certain conjecture about the A(1)-module structure

of H∗(BSO) (a certain submodule of H∗(BSO)), which the main results of the first
chapter provide strong evidence for. Along the way we close a small gap that was
left in [St 92]. In the fifth section we discuss a simplification of Stolz’ arguments in
[St 94] leading to his proof of the second step. We reinterpret several prerequisites
from it and thereby decrease the overall complexity of the argumentation. For a
generalisation of Stolz’ proof, these simplifications should ultimately prove essential;
we show, that his arguments can entirely be reduced to algebra once basic facts
about the Adams spectral sequence are taken into account. We also discuss how a
verification of the conjecture from the second part would lead to an entryway for
such a generalisation.
However, in the fourth section, we unfortunately and very surprisingly disprove
our conjecture by an explicit computation, showing that the gap we closed for the
untwisted case in the third section is indeed a chasm in the general case.
All in all this leaves part of the analysis of the twisted transfer map to future work.

2. The twisted transfer

In this very short section we will sketch the construction of the twisted transfer
map, we refer the reader to the exposition in [St 92] and the references therein for
details and proofs, which work equally well in the parametrised setting.
Recall that given a smooth manifold bundle p : E → B with compact k-dimensional
fibres there is an associated stable Pontryagin-Thom map Sk ∧ B+ → M(−Tvp)
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for some choice of inverse of the vertical tangent bundle Tvp of p. If this inverse
of the vertical tangent bundle comes equipped with a spin structure one obtains
a homotopy class M(−Tvp) → MSpin. Using these two maps we can form the
following composition:

M2O ∧ Sk ∧B+ −→M2O ∧M(−Tvp) −→M2O ∧MSpin −→M2O

Interjecting this with the Thom diagonal M(−Tvp)→M(−Tvp)∧E+ produces the
usual integration along the fibres, but we shall not need that here. Just as in the
unparametrised situation the geometric interpretation of the above map is simple
enough: Suppressing the additional bundle data for legibility, it sends a cycle

BO(k)

w1,2

##

Moo

��

// X

ζ~~
K

together with a map g : M → B to the diamond shaped part in

BO(k)×BSpin(l)

��

g∗(E)oo

ww !!��
BO(k + l)

w1,2

((

M

��

// X

ζ||
K

where the map g∗(E) → BO(k) × BSpin(l) is given by g∗(E) → M → BO(k)
in the first coordinate and a classifying map for some destabilisation of −Tvp over
g∗(E) in the second. Note that for some large enough l all such destabilisations
produce the same fibre-homotopy class of maps g∗(E) → BO(k + l), so the class
represented by this cycle does not depend on the choice made. Furthermore, by our
construction of the BO(i) in the first chapter the diagram still commutes strictly.
We want to apply this to the bundle mentioned in the introduction: Let G =
PSp(3) = Isom(HP 2) and consider EG ×G HP 2 → BG. We obtain our transfer
map

T : M2O ∧ S8 ∧BG+ −→M2O

The image of this transfer in ΩSpin∗ (X, ζ) will consist entirely of manifolds admitting
metrics of positive scalar curvature, since they are total spaces of bundles over
compact manifolds, whose fibres HP 2 admit such metrics. Finally, we have the
following evident generalisation:

Proposition. The composition

M2O ∧ S8 ∧BG+
T−→M2O

α̂−→ k2o

is nullhomotopic.

Proof. Since α̂ is an MSpin-module map, we find the above map equal to

M2O ∧ Sk ∧BG+ −→M2O ∧M(−Tvp) −→M2O ∧MSpin
α̂∧α−→ k2o ∧ ko −→ k2o

However, by the Atiyah-Singer index theorem for families the composition Sk ∧
BG+ → M(−Tvp) → MSpin → ko is null, since it represents the family index
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of a bundle with uniformly positive scalar curvature in the fibres, as explained in
[St 92, Section 2]. �

This concludes our preliminaries on the twisted transfer.

3. Splitting the transfer

In order to utilise the structural results obtained in the first chapter for an
analysis of the transfer, it is necessary to produce a version of the isomorphism
H∗(M2O) ∼= Aϕ ⊗A(1) M , where M is a direct sum of Z/2’s, Jokers and a free
module, that is respected by the transfer map. This is unclear for any isomorphism
coming from a choice of KO-theory Pontryagin classes, as was already observed
by Stolz in the untwisted case. He resolved this problem by introducing such an
isomorphism for MSpin-module spectra, that is natural in MSpin-module maps.
Since the transfer is MSpin-linear he was able to proceed. Proposition 6.4.1 of the
last chapter, however, prohibits us from directly expanding his methods.
What we obtain from his results is an isomorphism

H∗(M2O) ∼= A⊗A(1) H∗(M2O)

for some A(1)-module H∗(M2O) functorially associated to H∗(M2O), that extends
to a natural isomorphism. We shall see that one way of interpreting the results
from the previous section is that

H∗(M2O) ∼= A⊗A(1) (H∗(MV )⊗M)

for some A(1)-module H∗(MV ). Therefore, it is very natural to guess that

H∗(M2O) ∼= H∗(MV )⊗M

with diagonal action. We had originally hoped to formally derive this conjecture
from our version of the Anderson-Brown-Peterson-splitting above, just as Stolz
seems to deduce the analogous result in the untwisted case ([St 92, Corollary 6.4]).
However, it became apparent, that this deduction constitutes a small gap in [St 92],
which we set out to fill. Unfortunately, it turns out that the fix we establish does not
extend to the twisted case and, using the classical technique ofQ0 andQ1-homology,
we then analyse H∗(M2O) far enough to ultimately disprove our conjecture, after
it passes several consistency checks. This surprising fact leaves part of the analysis
of the twisted transfer map to future work.

3.1. Stolz’ decomposition of the homology of MSpin-module spectra.
Building on work of Pengelley Stolz constructs a map s : H∗(MSpin) → H∗(ko)
in [St 92], which is A-linear, comultiplicative and a one-sided invers of the ABS-
orientation. This makes the cohomology of any MSpin-module spectrum X into a
comodule over the coalgebra H∗(ko). He then shows:

3.1.1. Theorem (Section 5 [St 92]). The H∗(ko)-primitives H∗(X) form an

A(1)-submodule of H∗(X) and the inclusion H∗(X)→ H∗(X) induces an isomor-
phism

A⊗A(1) H∗(X)→ H∗(X)

if the cohomology of X is bounded below and locally finite.
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Since MSpin-module maps are in particular H∗(ko)-(co)linear, the naturality

of this isomorphism is clear. Stolz now concludes H∗(MSpin) ∼= M from A⊗A(1)

M ∼= H∗(MSpin) ∼= A⊗A(1)H∗(MSpin), where the first isomorphism comes from
the work of Anderson, Brown and Peterson. However, a priori this is unclear (as
S. Stolz agreed in private conversation), since the combined isomorphism has no

reason to come from a map between H∗(MSpin) and M (which would suffice since
extensions of Hopf-algebras are one-sided free and hence faithfully flat). Due to the
special nature of the modules that arise in M (whose structure is known), we show,
that this can be corrected, and the original isomorphism deformed into one of the
form id ⊗ f , to which we can apply the bracketed reasoning. The method used
however, is easily seen to break down in the case of H∗(M2O) and H∗(MV )⊗M .

Let us remark here, that a direct analysis of H∗(MSpin) or rather its dual is also
feasible, and well within the methods of the later parts of [St 92], however, it is
not carried out. It is such a direct (and somewhat painful) analysis that will lead
to the disprove of our conjecture for the twisted case.

Let us now fill this gap:

3.1.2. Proposition. Let A be a connected Hopf algebra of finite type over a
field k, B ⊆ A a sub-Hopf-algebra, M,N be two graded connected modules of finite
type over B and F a free B-module of finite type. If now

g : A⊗B N −→ A⊗B (M ⊕ F )

is an isomorphism of A-modules, then N contains a direct summand N ′ with com-
plement isomorphic to F such that A⊗B M ∼= A⊗B N ′.

Proof. Working from the lowest nontrivial degree of F upwards, it obviously
suffices to consider the case with F of rank one. So let f be a basis element for F ,
{1} ∪ {bi : i ∈ I} a right basis of A over B and consider

g−1(1⊗ f) = 1⊗ n+
∑
i

bi ⊗ ni

Here we have n 6= 0, since otherwise the right hand side would be decomposable
over A. Put X = B · n ⊆ N ; we claim that X is free with a complement we can
choose as N ′. To see this consider the following B-linear map

N
g−→ A⊗B (M ⊕ F )

pr−→ A⊗B F = sh|f |A −→ sh|f |B

where the final arrow depends on a choice of left (!) B-complement of B in A. It
maps n first to g(1⊗ n) = 1⊗ f +

∑
i biϕ(1⊗ ni). Now since every bi is in strictly

positive degree, the elements ϕ(1⊗ ni) lie in strictly lower degree than 1⊗ f and,
therefore, in A⊗B M . So all in all n is mapped to 1 and thus forms a basis of X.
The kernel of this composition is then a complement to X and we choose it as N ′.
Finally, in this decomposition of N the map induced by g on indecomposables

QB(N ′)⊕ k · n = QA(A⊗B (N ′ ⊕X))
QA(g)−→ QA(A⊗B (M ⊕ F )) = QB(M)⊕ k · f

is of the form (
∗ 0
∗ 1

)
so the composition

A⊗B N ′ −→ A⊗B (N ′ ⊕X) −→ A⊗B (M ⊕ F ) −→ A⊗M
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(which makes up the upper left corner) induces an isomorphism on indecomposables,
hence is an isomorphism because the Poincaré series of both sides agree by the
Milnor-Moore theorem. �

3.1.3. Remark. We used the freeness of F only two times in the proof: The
first time via the existence of a B-linear map A ⊗B F → B ⊗B F , which in the
above proof is given by a choice of left complement of B in A, say L. If F was
only cyclic with annihilator I, such a map does exist if and only if L · I ⊆ L + I,
a nontrivial condition. The second time is the fact that the arising surjection onto
F is automatically an isomorphism. This can be generalised by requiring I to be
minimal among all proper annihilators of elements in M ⊕ F . So in general given
a cyclic summand F with annihilator I and an isomorphism

A⊗B (M ⊕ F ) ∼= A⊗B N

we can split a copy of F off N if I is minimal among all proper annihilators and
we can find a left B-complement L of B in A with LI ⊆ L+ I.

With this remark the above proposition suffices to close the gap in Stolz’ argu-
ment, since first cancelling free summands leaves us with jokers and Z/2’s. Then
the remark applies to cancel jokers, since a left complement of A(1) in A starts in
degree four, so L · (Sq3) starts in degree 7 and L≥7 = A≥7. This leaves us with
Z/2-summands only, for which computation shows the remark to apply as well.
However, once the free summands are cancelled one can argue a little more cleanly:

3.1.4. Proposition. Let A,B and M,N be as above and g : A⊗BN → A⊗BM
be an A-linear map. Let furthermore R ⊆ A be a right sub-B-module of A, that is a
complement of B ⊆ A and π : A→ B the associated right-B-linear projection (these
exist by the Milnor-Moore theorem). If now B ·R ⊆ ann(M), the map h : N →M
given by

N −→ A⊗B N
g−→ A⊗B M

π⊗id−→ B ⊗B M ∼= N

is B-linear and the diagram

QA(A⊗B N)
g // QA(A⊗B M)

QB(N)

∼=

OO

h // QB(M)

∼=

OO

commutes, where Q denotes indecomposoables. In particular, if g is an isomor-
phism, so is h.

Proof. To verify B-linearity write g(1⊗n) = 1⊗m+
∑
i ri⊗ni with bi ∈ R.

Then bg(1⊗ n) = 1⊗ bm whereas g(1⊗ bn) = 1⊗ bm+
∑
i bri ⊗ ni which projects

to the same thing precisely under the above assumption.
The other two statements are hopefully obvious. �

3.1.5. Remark. Note the curious similarity/difference between the two con-
ditions LI ⊆ L + I and BR ⊆ R + I. It may however well happen, that in case
both remark 3.1.3 and proposition 3.1.4 apply they produce different isomorphisms,
as the first construction changes the given map on indecomposables, whereas the
second does not!
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We can apply these to H∗(MSpin) and the Anderson-Brown-Peterson module
M , to first take out all the free summands of the right and split off correspond-
ing free summands on the left. The remainder on the right side is then a direct
sum of Z/2’s and jokers. In this situation the second proposition applies: The
Milnor-Moore theorem tells us that any set of representatives for the (right) A(1)-
indecomposables consitutes a right basis for A, so in low degrees one can choose
the set {1, Sq4, Sq6, Sq7...} and, therefore, let L be generated by {Sq4, Sq6, Sq7, ...}.
The set π(A(1) · L) is nontrivial in degree five for the first time, the nontrivial ele-
ment being Sq2Sq1Sq2 = Sq4Sq1+Sq5, since Sq1Sq4 = Sq5 = Sq2Sq1Sq2+Sq4Sq1

(its other nontrivial element is Sq2Sq2Sq2 = Sq5Sq1 in degree six). However, all
elements of degree greater than four obviously act trivially on a sum of jokers and
Z/2’s.
It is a rather painful but in the end trivial calculation that a similar argument
cannot work after replacing everything in sight by its twisted versions.

3.2. The twisted transfer in cohomology. Proposition 6.4.1 of chapter
one prevents us from reducing questions about the twisted transfer to questions
about A(1)-modules using the same ideas as above, namely the H∗(k2o)-primitives
of an M2O-module spectrum (note that at present it formally does not even make
sense to talk about M2O-module spectra, since we have not constructed M2O as a
ring spectrum). One therefore has to make do with the H∗(ko)-colinearity of the
transfer.

3.2.1. Proposition. For any parametrised MSpin-module spectrum X over K,
the primitives form an A(1)-submodule of H∗(X) and the inclusion map H∗(X)→
H∗(X) induces an isomorphism

A⊗A(1) H∗(X)→ H∗(X)

of A-modules.

Proof. One can either refer back to Stolz’ general statement [St 92, (5.2) &
Proposition 5.4], which applies immediately, or one can reduce to the untwisted
case by the following argument: Since the homology-ko-module structure of X is
given by a map over K the comultiplication ∆ is H∗(K)-linear, so we obtain

∆(ku) = k∆(u) = k(1× u) = 1× ku

For an A(1)-module N we in general have that the canonical map

A⊗A(1) N → A⊗A(1) N

is an isomorphism: Both sides have equal Poincaré series and the map is surjective,
since any element in k⊗α ∈ A can be written as a sum of products (1⊗αi)(ki⊗1)
using the antipode. �

Now consider the twisted transfer and the twisted Atiyah-Bott-Shapiro orien-
tation

M2O ∧BG+ ∧ S8 −→M2O
α−→ k2o

By the Atiyah-Singer index theorem for families this composition is nullhomotopic
(compare [St 92, Section 2 & Proposition 1.1]) and we can pick a lift

T : M2O ∧BG+ ∧ S8 −→ hofib(α)
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Since α induces an injection on cohomology we find

H∗(hofib(α)) = coker α̂∗ = A⊗A(1) coker α̂∗

In order to show that the twisted transfer splits overA in homology it thus suffices to
demonstrate that the induced map coker α̂∗ → H∗−8(M2O ∧BG+) ∼= H∗(M2O)⊗
H∗−8(BG) splits over A(1). This map fits into the following diagram:

coker α̂∗ //

����

H∗(M2O)⊗H∗−8(BG)

?
ss

����
coker α∗ // H∗(MSpin)⊗H∗−8(BG)

s
ss

where s is the split Stolz constructed in [St 92, Proposition 7.5] and the question
mark indicates the desired generalised split.

As a next step we reinterpret the computation of H∗(M2O) from section 6 of
chapter 1 to fit this program: To this end first of all recall the Hopf algebra maps
ϕ,ψA(1) :→ A and define

H∗(MV ) := ψH
∗(K)

where H∗(K) carries the obvious A(1)-module structure.

3.2.2. Remark. This new module structure onH∗(K) comes from the following
gedankenexperiment: Suppose there was a vector bundle V → K with w1(V ) = ι1
and w2(V ) = ι2. Then the A(1)-module structure of the Thom space MV of V
would be fixed and given exactly as above by the very definition of ψ. In this case
one might hope

MV ∧MSpin→MO ∧MO →MO

to be a 2-local equivalence, since it might just induce an isomorphism on Z/2-
cohomology. Of course such a bundle cannot exist, indeed there is no mapH∗(MO)→
H∗(MV ) that is A(1)-linear and an isomorphism in degree 0, as one can easily ver-
ify by low dimensional computations. Note that the next proposition tells us, that
to some extent this idea may be salvaged (whereas theorem 4.2.1 limits this extent
once more).

Following the remark, we shall denote elements in H∗(MV ) by ku instead of
just k.

3.2.3. Lemma. Given a left A(1)-module M the inclusion

M −→ H∗(MV )⊗M, m 7−→ u⊗m

(which is not A(1)-linear) extends to an isomorphism

A(1)
ϕ
⊗A(1) M ∼= H∗(MV )⊗M

of A(1)-modules, where the right hand side is endowed with the diagonal action by

A(1) (with trivial H∗(K)-action on M).
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Proof. In general the map ϕ⊗ id :ϕ−1 S⊗RM ∼= Sϕ⊗RM is an isomorphism
of S-modules for any (not necessarily R-algebra-) automorphism ψ of an R-algebra
S. Applying this to our situation we find

A(1)
ϕ
⊗A(1) M ∼=ψ A(1)⊗A(1) M ∼=ψ (H∗(K)⊗M) = (ψH

∗(K))⊗M

where the second isomorphism is the obvious map striking out the middle fac-
tor of A(1) and the last identity holds since image of ψ − id consists of H∗(K)-
decomposable elements, which act trivially on M . �

Therefore, we can rewrite corollary 6.3.1 from chapter 1 as:

H∗(M2O) ∼= Aϕ ⊗A(1) M ∼= A⊗A(1) A(1)
ϕ
⊗A(1) M ∼= A⊗A(1) (M ⊗H∗(MV ))

(where we are allowed to switch the factors by the cocommutativity of A). Putting
this together with the isomorphism from theorem 3.1.1 and our fix from above we
obtain:

A⊗A(1) H∗(M2O) ∼= H∗(M2O)

∼= A⊗A(1) (M ⊗H∗(MV ))

∼= A⊗A(1) (H∗(MSpin)⊗H∗(MV ))

Therefore, it seems natural to guess, that indeed

H∗(M2O) ∼= H∗(MSpin)⊗H∗(MV )

with similar formulas following for coker α̂∗ and H∗(M2O)⊗H∗−8(BG).

3.2.4. Proposition. Any isomorphism H∗(M2O) ∼= H∗(MSpin) ⊗ H∗(MV )

determines and is determined by a ϕ-linear map H∗(MSpin) → H∗(M2O), via
restriction and H∗(K)-linear expansion, respectively. Such a map determines an
isomorphism if and only if it induces an isomorphism on H∗(K)-indecomposable
quotients.

Proof. There is an evident general statement to this end for semidirect prod-
ucts of Hopf algebras, but we stick to our concrete case: It is trivial to ver-
ify that for an A(1)-module M and an A(1)-module N the A(1)-linear maps

H∗(K) ⊗ M → N correspond exactly to A(1)-linear maps M → N . Applying

this to N = ϕH∗(M2O) yields that maps as described in the proposition corre-

spond to maps ψ(H∗(K) ⊗ H∗(MSpin)) → H∗(M2O). It remains to verify that

ψ(H∗(K) ⊗ H∗(MSpin)) and H∗(MV ) ⊗ H∗(MSpin) = ψH
∗(K) ⊗ H∗(MSpin)

carry the same A(1)-action: However, this immediately follows from the H∗(K)-

decomposability of ψ − id, since H∗(K)-decomposable elements act trivially on M
by definition. It is trivial to note that the process described in the one direction
is indeed given by restriction, however, the expansion proceeds by mapping a ϕ-
linear map r : H∗(MSpin) → H∗(M2O) to the map H∗(MV ) ⊗H∗(MSpin) −→
H∗(M2O) sending ku⊗m to ϕ(k)·r(m). To see that this is indeed the H∗(K)-linear
expansion of r one has to note that ϕ restricts to the identity on H∗(K).
The final statement is trivial upon noting that the respective Poincaré series coin-
cide, since they do after inducing up to A. �

Now suppose we had such a ϕ-linear map r : H∗(MSpin)→ H∗(M2O). Using

the corresponding isomorphisms a map H∗(M2O) ⊗ H∗−8(BG) −→ coker α̂∗ is
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then determined by a ϕ-linear map H∗(MSpin) ⊗ H∗−8(BG) −→ coker α̂∗. For
such a map there is the obvious candidate r◦s, since r automatically factor through
the cokernels of the various incarnations of α. All in all from a choice of r we can
construct a dotted map, say S, in the diagram above. By construction it makes the
diagram

coker α̂∗ H∗(M2O)⊗H∗+8(BG)

S
ss

coker α∗

r

OO

H∗(MSpin)⊗H∗+8(BG)

r⊗id

OO

s
ss

commute.
It remains to check that S indeed gives a split of the transfer. To ensure this we
need one more assumption on r, namely that the composition

H∗(MSpin)
r−→ H∗(M2O) −→ H∗(MSpin)

is the identity (it is certainly linear, since ϕ− id consists of H∗(K)-decomposable
elements, which are killed by the projection map). If this condition is satisfied, then
taking H∗(K)-indecomposable quotients in the diagrams above makes the vertical
maps inverse isomorphisms and thereby shows that the twisted transfer composed
with S induces the identity on QH∗(K)(H∗(M2O)). This composition is therefore
an isomorphism and, in particular, the twisted transfer splits.

In order to study the existence of such a map r, we first ‘dethomify’ the
statement: By the Thom isomorphism ϕH∗(M2O) ∼= H∗(BO) as A(1)-modules,
where H∗(ko) acts on H∗(BO), since the Thom isomorphism is comultiplicative.
Since the Thom isomorphism for Spin-bundles is A(1)-linear, we similarly have

H∗(MSpin) ∼= H∗(BSpin). Thus, the existence of r is equivalent to the existence
of an A(1)-linear split of the projection

H∗(BO) −→ H∗(BSpin)

and any such induces an isomorphism H∗(BO) ∼= H∗(BSpin) ⊗ H∗(K) as A(1)-
modules. In order to facilitate computation we find it convenient to switch to
homology.

Before doing so let us, however, observe one final simplification: Since BO '
BSO×K1, we can try to split off the H∗(K1)-factor on both sides of our conjectured

A(1)-isomorphism H∗(BO) ∼= H∗(BSpin)⊗H∗(K); first of all it is clear that the

splitting of BO induces an A(1)-isomorphism H∗(BO) ∼= H∗(BSO) ⊗ H∗(K1),
since the map BSpin→ BO factors through BSO under the homotopy equivalence
above. We now claim that an A(1)-isomorphism

H∗(BSO)⊗H∗(K1) ∼= H∗(BSpin)⊗H∗(K2)⊗H∗(K1)



4. THE STRUCTURE OF H∗(BSO) AS AN A(1)-MODULE 51

induces an A(1)-isomorphism of these terms with the H∗(K1)-factors cancelled:
First of all from any such isomorphism i we obtain an A(1)-linear map

H∗(BSpin)⊗H∗(K2)
id⊗1−→ H∗(BSpin)⊗H∗(K2)⊗H∗(K1)

i−→ H∗(BSO)⊗H∗(K1)

id⊗π−→ H∗(BSO)

The composition of the first two maps sends an element m ⊗ k to
∑
j kaj ⊗ a′j ,

where r(a) =
∑
j aj ⊗ a′j ∈ H∗(BSO)⊗H∗(K1) ∼= H∗(BO). The third then picks

out kaj for the summand with a′j ∈ H0(K1), but by assumption on r the element

aj reduces back to a when sent to H∗(BSpin). So in order for kaj to be zero, either
k or aj (and thus a) have to be zero (since the action of H∗(K2) on H∗(BSO) is
torsionfree), proving that this map is injective and thus an isomorphism.

Switching to homology now, one considers modules over H∗(ko) and we let
M denote the H∗(ko)-indecomposable quotient of M . However, we do not switch
to A(1)-comodules, but rather consider homology as a right A(1)-module via the
dual Steenrod operations. By the same argument as above (only replacing H∗(K)
by H∗(K2) where necessary), we see that the existence of our desired map r is
equivalent to:

3.2.5. Guess. The obvious map H∗(BSpin)→ H∗(BSO) is the inclusion of a
direct right A(1)-summand.

As before a choice of complement determines a (dual) map r and any such map
gives rise to an isomorphism

H∗(BSO) ∼= H∗(BSpin)⊗H∗(K2)

as right A(1)-modules, say. In the next section we analyse both sides far enough,
to show that no such isomorphism can exist.

4. The structure of H∗(BSO) as an A(1)-module

4.1. A presentation of H∗(BSO). To analyse H∗(BSO) we use the descrip-
tion of H∗(BSO) given by Giambalvo, Pengelley and Ravenel in [GiPeRa 88].
They construct classes xi ∈ Hi(BO), such that H∗(BO) = Z/2[xi : i ∈ N]. They
also describe the action of the Steenrod algebra in terms of these classes. Since
the procedure is somewhat complicated we briefly describe it here: Consider the
polynomial ring Z[yi : i ∈ N], where again yi has degree i, and then consider the
classes di given by writing i = j2k with odd j and putting

di =

j∑
l=0

2ly2k−l

j2l

There is a unique set of linear selfmaps Sqi on this ring obeying

Sqjdi =
i

i− j

(
i− j
j

)
di−j
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and the usual Cartan formula. Explicitly for Sq1 and Sq2 we have

Sq1di = idi−1

Sq2di =
i(i− 3)

2
di−2

These two rules together allow algorithmic computations of Sqjyi in terms of
the yk, which upon replacing yi by xi and reduction mod 2 yield the correct for-
mulas for Sqjxi, see [GiPeRa 88, Section 2] for details.

We can now identify several relevant homology rings in terms of this description
of H∗(BO).

4.1.1. Proposition. We have

H∗(BSO) = Z/2[x2
2k : k ∈ N, xi : α(i) ≥ 2]

H∗(BSpin) = Z/2[x4
2k : k ∈ N, x2

2k+2l : k > l, xi : α(i) ≥ 3]

H∗(ko) = Z/2[x4
1, x

2
3, x2k−1 : k ≥ 3]

where we view H∗(ko) as embedded in H∗(BSpin) via Stolz’ multiplicative splitting
of the Atiyah-Bott-Shapiro orientation

H∗(BO) = Z/2[xi : i 6= 2k − 1][x1, x3]/(x4
1, x

2
3)

H∗(BSO) = Z/2[x2
2k : k ≥ 1, xi : α(i) ≥ 2 & i 6= 2k − 1][x2

1, x3]/(x4
1, x

2
3)

H∗(BSpin) = Z/2[x4
2k : k ≥ 1, x2

2k+2l : k > l & (k, l) 6= (1, 0),

xi : α(i) ≥ 3 & i 6= 2k − 1]

H∗(K) = Z/2[x2k : k ∈ N, x2k+2l : k > l]/(x4
2k , x

2
2k+2l)

H∗(K1) = Λ[x2k : k ∈ N]

H∗(K2) = Λ[x2
2k : k ∈ N, x2k+2l : k > l]

Furthermore, all the obvious maps connecting these send all generators which are
not explicitely mentioned in the target to 0.

Proof. The first two statements follow from [GiPeRa 88, Lemma 2.2] de-
scribing the images of the injective maps H∗(BSpin) → H∗(BSO) → H∗(BO).
The third is [St 92, Corollary 4.7]. The fourth, fifth and sixth isomorphism should
then be clear. For the seventh, note that the map H∗(BO) → H∗(K) is multi-
plicative by the choice of multiplication on K and is surjective, for example by [St,
Chapter IX, Corollary to Lemma 7]. Since the composition

BSpin→ BO → K

is nullhomotopic Z/2[x2k : k ∈ N, x2k+2l : k > l]/(x4
2k , x

2
2k+2l)] maps onto H∗(K).

However, once more both sides have equal Poincaré series, as can be seen from
H∗(K) = Z/2[ι1, ι2, Sq

1(ι2), Sq2Sq1(ι2), ...], which has generators in degrees 1 and
2i + 1: The polynomial ring formed by ι1 and ι2 has the same Poincaré-series as
Z/2[x2k : k ∈ N]/(x4

2k) and a polynomial ring on a generator in degree 2i + 1 for
i ≥ 1 corresponds to Λ[x2i+1, x2i+1+2, x2i+2+4, ...]. The same argument applied to
the other combinations of BSO,BSpin and BO gives the last two claims. �
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4.2. The Qi-structure of H∗(BSO). The ultimate goal of this section will
be to prove:

4.2.1. Theorem. It is not true that

H∗(BSO) ∼= H∗(BSpin)⊗H∗(K)

as A(1)-modules. Indeed even as an A(1)-module H∗(BSO) is not induced along
the inclusion A(1) ⊆ A(1).

To see this we calculate that on the one hand the class x18 ∈ H18(K) is a
Q1-cycle but not a Q1-boundary and has trivial Sq2 but nontrivial Sq1 (namely
x17), which is again not a Q1-boundary. The class 1 ⊗ x18 then has those same

properties and we show that no such class can exist in H18(BSO).
To this end we will calculate the Q0- and Q1-cohomology of H∗(K2) and

H∗(BSO) using the spectral sequence associated to the image/pullback of the aug-
mentation filtration on H∗(BO). The following lemma will determine the first
differential:

4.2.2. Lemma. Let I denote the augmentation ideal in H∗(BO). Then

Q0(xi) ≡

{
xi−1 i even

0 i odd
mod I2

Q1(xi) ≡

{
xi−3 i even

0 i odd
mod I2

Sq2(xi) ≡

{
xi−2 i ≡ 0, 1 mod 4

0 i ≡ 2, 3 mod 4
mod I2

Proof. Write i = 2kj with j odd and i− 1 = 2lh with h odd. Then

2kj(x2l

h + 2x2l−1

2h + ...+ 2l−1x2
2l−1h + 2lx2lh)

= idi−1

= Sq1(di)

= Sq1(x2k

j +2x2k−1

2j + ...+ 2k−1x2
2k−1j + 2kx2kj)

Disregarding all terms with more than one factor, we obtain

2ljxi−1 ≡ Sq1(xi)

which yields the first claim. For Sq2 write i = 2kj, i − 2 = 2lh and i − 3 = 2mf
with j, h, f odd. We find

2k+m−1jf(x2l

h + 2x2l−1

2h + ...+ 2l−1x2
2l−1h + 2lx2lh)

=
i(i− 3)

2
di−2

= Sq2(di)

= Sq2(x2k

j +2x2k−1

2j + ...+ 2k−1x2
2k−1j + 2kx2kj)

Again, disregarding all terms that go to zero we have:

2l+m−1jfxi−2 ≡ Sq2(xi)

which gives the third claim, the second following by putting the others together. �



54 2. THE TWISTED HP 2-TRANSFER

While this gets us started, we have relegated all further explicit computations
to the second appendix.

4.2.3. Proposition.

H∗(K2, Q0) = Λ[x5, x
2
2k : k ≥ 1]

Proof. We have H∗(K2) ∼= Λ[x2
2k , x2k+2l : k > l]. Consider the spectral

sequence coming from the filtration by powers of the images of I. The differentials
on the first page then connect even, non-square to odd, non-square generators one
degree lower. Therefore, as a differential, graded algebra the first page decomposes
into a tensor product of Λ[x2k+1, x2k+2] for k ≥ 2 with differential given by x2k+2 7→
x2k+1 and an exterior algebra on all other generators with trivial differential. By
the Künneth-formula we find the second page given by

Λ[x2
2k , x3, x2k+2l : k > l ≥ 2, x2k+2x2k+1 : k ≥ 2]

The next differentials are computed by Sq1(x3) = x2
1 and

Sq1(x2k+2l) ≡ x2k−1+2l−1 · x2k−2+2l−2 · · ·x2k−l+1+2 · x2k−l+1+1 mod I l+1

for l ≥ 2, which we cite from lemma 2 in the appendix. In particular

d2(x3) = x2
1

d2(x2k+1+4) = x2k+2x2k+1 for k ≥ 2
d2(x2k+2l) = 0 for k > l ≥ 3

Again, by Künneth we find the third page given by

Λ[x2
2k : k ≥ 1, x2

1x3, x2k+2l : k > l ≥ 3, x2k+1+4x2k+2x2k+1 : k ≥ 2]

Since Sq1(x2
1x3) = 0 we find

d3(x2
1x3) = 0

d3(x2k+2+8) = x2k+1+4x2k+2x2k+1 for k ≥ 2
d3(x2k+2l) = 0 for k > l ≥ 4

Therefore, the fourth page is

Λ[x2
2k : k ≥ 1, x2

1x3, x2k+2l : k > l ≥ 4, x2k+2+8x2k+1+4x2k+2x2k+1 : k ≥ 2]

From here on we inductively have

Er = Λ[x2
2k : k ≥ 1, x2

1x3, x2k+2l : k > l ≥ r, x2k+r−2+2r−1 · · ·x2k+2x2k+1 : k ≥ 2]

with differential given by

dr(x
2
1x3) = 0

dr(x2k+r−1+2r ) = x2k+r−2+2r−1 · · ·x2k+2x2k+1 for k ≥ 2
dr(x2k+2l) = 0 for k > l ≥ r + 1

We thus find

Λ[x2
2k : k ≥ 1, x2

1x3]

as the limiting page. Finally, we note Sq1(x6) = x5 + x2
1x3 (lemma 1 of appendix

II) giving the result. �

Similarly:

4.2.4. Proposition.

H∗(K2, Q1) = Λ[x9, x17, x
2
2k : k ≥ 1, x2k+2 : k ≥ 4]



4. THE STRUCTURE OF H∗(BSO) AS AN A(1)-MODULE 55

Proof. Again the first page is given by H∗(K2) = Λ[x2
2k , x2k+2l : k > l] with

differentials connecting even, non-square generators to odd, non-square generators
three degrees lower. So the first page breaks up into Λ[x2k+4, x2k+1] for k ≥ 3,
Λ[x6, x3] and an exterior algebra with trivial differential on all other generators.
The second page is thus given by

Λ[x2
2k , x3x6, x5, x2k+2 : k ≥ 3, x2k+2l : k > l ≥ 3, x2k+4x2k+1 : k ≥ 3]

Here we have Q1(x3x6) = 0, Q1(x5) = x2
1, Q1(x10) = x2

1x5, Q1(x2k+2) = 0 for k ≥ 4
and

Q1(x2k+2l) ≡ x2k−1+2l−1 · x2k−2+2l−2 · · ·x2k−l+2+4 · x2k−l+2+1 mod I l

Therefore, the second differential is given by

d2(x3x6) = 0
d2(x5) = x2

1

d2(x2k+2) = 0 for k ≥ 3
d2(x2k+1+8) = x2k+4x2k+1 for k ≥ 3
d2(x2k+2l) = 0 for k > l ≥ 4

The third page:

Λ[x2
2k : k ≥ 1, x3x6, x

2
1x5, x2k+2 : k ≥ 3, x2k+2l : k > l ≥ 4, x2k+1+8x2k+4x2k+1 : k ≥ 3]

And the third differentials:

d3(x3x6) = 0
d3(x10) = x2

1x5

d3(x2k+2) = 0 for k ≥ 4
d3(x2k+2+16) = x2k+1+8x2k+4x2k+1 for k ≥ 3
d3(x2k+2l) = 0 for k > l ≥ 5

The fourth page is:

Λ[x2
2k : k ≥ 1, x3x6, x

2
1x5x10, x2k+2 : k ≥ 4,

x2k+2l : k > l ≥ 5, x2k+2+16x2k+1+8x2k+4x2k+1 : k ≥ 3]

Since Q1(x2
1x5x10) = 0 (lemma 1 of the appendix) we inductively have

Er = Λ[x2
2k : k ≥ 1, x3x6, x

2
1x5x10, x2k+2 : k ≥ 4,

x2k+2l : k > l ≥ r + 1, x2k+r−2+2r · · ·x2k+4x2k+1 : k ≥ 3]

with differentials

dr(x3x6) = 0
dr(x

2
1x5x10) = 0

dr(x2k+2) = 0 for k ≥ 4
dr(x2k+r−1+2r+1) = x2k+r−2+2r · · ·x2k+4x2k+1 for k ≥ 3

dr(x2k+2l) = 0 for k > l ≥ r + 2

Thus we find

Λ[x2
2k : k ≥ 1, x3x6, x

2
1x5x10, x2k+2 : k ≥ 4]

as the limiting page. Since Q1(x12) = x3x6 + x9 and Q1(x20) = x17 + x10x5x
2
1

(again by appendix II, lemma 1) we have the result. �
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Now consider the element x18 ∈ H18(K). We have Sq1(x18) = x17 and
Sq2(x18) = 0. By the above computation we see that it has the desired properties,
namely that neither lie in the image of Q1.

Now for H∗(BSO). Let us compute the Qi-homologies.

4.2.5. Lemma. The associated graded of the filtration on H∗(BSO,Q1) is given
by

Z/2[x2
2i : i ≥ 1]⊗ Λ[x5]

.

Proof. We have H∗(BSO) = P [x2
2k , xi : i 6= 2l − 1]/(x4

1, x
2
3) and the first

differential is again given by d1(xi) = ixi−1. Therefore, the first page breaks up
into P [x2i, x2i−1] where i 6= 2l and i ≥ 3. The second page then is:

P [x2
2i : i ≥ 1]⊗ Λ[x2

1, x3]

Since Q0(x3) = x2
1 the next page is

P [x2
2i : i ≥ 1]⊗ Λ[x2

1x3]

All of these are permanent cycles, so Sq1(x6) = x5 + x2
1x3 gives the claim. �

4.2.6. Lemma. We have the associated graded of H∗(BSO,Q1) isomorphic to

P [x2
2, x

2
4, x

2
6, x

2
10, x

2
2i : i 6= 2l + 1, x2k+2 : k ≥ 4]⊗ Λ[x9, x17]

.

Proof. Again, the first page is

H∗(BSO) = P [x2
2k , xi : α(i) ≥ 2 & i 6= 2l − 1]/(x4

1, x
2
3)

and the differential is given by d1(xi) = ixi−3. The second page thus looks as
follows:

P [x2
2, x

2
4, x

2
6, x2k+2 : k ≥ 3, x2k−3 : k ≥ 3, x2

2i : i 6= 2l + 1]⊗ Λ[x3x6]

Now Q1(x10) = x2
1x5, Q1(x2k+2) = 0 for k ≥ 4 and Q1(x2k−3) = x2

2k−1−3 once

k ≥ 3 and finally Q1(x3x6) = 0. The third page:

P [x2
2, x

2
4, x

2
6, x2k+2 : k ≥ 3, x2

2i : i 6= 2l + 1]⊗ Λ[x2
1x5, x3x6]

which has d3(x10) = x2
1x5. Thus the fourth page is

P [x2
2, x

2
4, x

2
6, x

2
10, x2k+2 : k ≥ 3, x2

2i : i 6= 2l + 1]⊗ Λ[x2
1x5x10, x3x6]

and everything here is a permanent cycle. Finally, noting that Q1(x20 +x2
1x5x13) =

x17 + x2
1x5x10 and Q1(x12) = x9 + x3x6 we have the result. �

Similarly one computes:

4.2.7. Lemma. We have the associated graded of H∗(BSpin,Qi) for both i =
0, 1 is given by

P [x4
2k : k ≥ 2, x2i : α(i) ≥ 2]

.



5. THE ADAMS SPECTRAL SEQUENCE FOR HOMOLOGY-ko-MODULE SPECTRA 57

Proof. The statement about Q0-homology is [St 92, Lemma 8.4]. Instead of

giving a direct computation Stolz uses the fact that H∗(MSpin) is isomorphic to
the Anderson-Brown-Peterson module, which he in turn does not prove (and for
which we gave an indirect argument above). The claim about Q1-homology follows
since M consists of a direct sum of Jokers, Z/2’s and free summands, all of whose
Q0 and Q1 homology is carried by the same classes.
A simple calculation using the spectral sequences above is of course also possible.
This can then be used to give a more direct proof, that indeed H∗(MSpin) ∼=
M . �

These computations immediately show that as expected the map

H∗(BSpin) −→ H∗(BSO)

is injective in Qi-homology, supporting our guess (i.e. 3.2.5) that its image is a
direct summand. Furthermore, at the level of Qi-homology our conjecture also
holds true: The Poincaré series of H∗(BSO,Qi) and H∗(BSpin,Qi)⊗H∗(K2, Qi)
agree, as should be the case by the Künneth theorem if our conjecture held: This is a
relatively easy counting argument, which we leave to the reader as it is of no further
use. All of this makes theorem 4.2.1 all the more surprising (and disappointing).

Proof of Theorem 4.2.1. We are looking for a class in H18(BSO) that has
Q1 and Sq2 trivial but whose Sq1 is not a Q1-boundary: Call such a class a.
By the above calculations we can write a = p + ux18 + Q1(b) as a sum of some
polynomial in x2

2, x
2
4, x

2
6, x

2
8, x

2
9 and x18, which we seperate as p + ux18 with p a

polynomial in all the squares, u ∈ Z/2 and a Q1-boundary Q1(b). In order to
have Sq1(a) = Sq1(p+ ux18 +Q1(b)) = ux17 +Q1(Sq1b) not be a Q1-boundary we
had better have u = 1. In particular, a has a nontrivial x18-term in the obvious
monomial basis of H18, since p does not have one and Q1(b) also cannot have one,

as Q1(H21) ⊆ I2. However, no such element of H18(BSO) can have simultaneously
vanishing Sq2 and Q1 for the following reason:
Sq2(x18) = x8

2 which in turn only occurs as a term in the expansion of Sq2 of two
other monomials, namely x4

2x10 and x6
2x6, this can easily be seen by the Cartan

formula and the table in the second appendix: Any monomial m having Sq2 contain
an x8

2 summand can be written as m = xk2a with a not divisible by x2. Now a has
to lie in I2, since otherwise applying Sq2 via the Cartan formula to it always leaves
one factor 6= x2 unchanged. Therefore, either a is a generator itself and Sq2(a)
having x2-power arising or a = bc with b, c generators and Sq1(a), Sq1(b) having
a power of x2 in it. Looking at the table in the sppendix reveals x4

2x10 and x6
2x6

as the only possibilities. Hence exactly one of these terms has to appear in the
expansion of a in addition to x18. Now Q1(x4

2x10) = x2
1x

4
2x5 and Q1(x6

2x6) = x6
2x3,

which both do not occur in the expansion of Q1 of any other monomial as is easily
checked using the table once more.

�

5. The Adams spectral sequence for homology-ko-module spectra

This last part is concerned with a somewhat more conceptual reinterpretation
of the paper [St 94]. We shall see, that, what Stolz in effect does, is the following:
Given homology-ko-module spectra X and Y he computes a certain part of the
second page of the Adams spectral sequence comptuing [X,Y ]; namely the part, in
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whose subquotients the differentials of any H∗(ko)-linear map have to lie. With this
reinterpretation we change the role that finite spectra, whose wedge-sum realises
H∗(X), play in Stolz’ paper.This has the following major advantage: It seperates
the topological from the algebraic considerations, which are very much tied together
in Stolz’ approach, and thereby allows for a generalisation to the twisted context.
The main idea is simple: Given a homology-ko-module spectrum Y each spectrum
in the canonical Adams tower of Y

��
Y2

//

��

Y2 ∧HZ/2

Y1
//

��

Y1 ∧HZ/2

Y // Y ∧HZ/2

can be given a homology-ko-module structure, such that all structure maps are
H∗(ko)-colinear. Given now an H∗(ko)-colinear and A-linear map g : H∗(Y ) −→
H∗(X), one obtains an homology-ko-module map f : X → Y ∧ HZ/2, which
represents it on the second page. Since all differentials are induced by maps in
the above tower, one may hope these differentials carry f into something H∗(ko)-
colinear. Stolz’ structural computation of the cohomology of homology-ko-module
spectra shows that on the second page, the homology-ko-module maps are identified
with the image of

Ext∗A(1)(H
∗(Y ), H∗(X)) −→ Ext∗A(1)(H

∗(Y ), H∗(X))

∼= Ext∗A(A⊗A(1) H∗(Y ), H∗(X))

∼= Ext∗A(H∗(Y ), H∗(X))

It is the former groups that Stolz shows do vanish in all relevant cases, thereby
establishing the realisability of a specific g, namely a split of the HP 2-transfer map.

5.1. Differentials on linear maps. We start by constructing a homology-
ko-module structure on the Adams tower of any homology-ko-module spectrum Y .
The only nontrivial part is giving one to the homotopy cofibre, call it Z for now, of
the obvious map Yi → Yi ∧HZ/2, whose desuspension is Yi+1. Since the diagram

ko ∧ Yi

��

id∧i // ko ∧ Yi ∧HZ/2

��
Yi

i // Yi ∧HZ/2

commutes strictly, the composition

ko ∧ Yi
id∧i−→ ko ∧ Yi ∧HZ/2 −→ Yi ∧ hZ/2 −→ Z
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is canonically nullhomotopic, giving a candidate for a map ko ∧ Z → Z. To verify
that this indeed gives a homology-ko-module structure to Z, note that the map
H∗(Yi ∧ HZ/2) → H∗(Z) is surjective (since H∗(Yi) → H∗(Yi ∧ HZ/2) is injec-
tive). Hence the relevant diagrams are even more commutative than they are in
H∗(Yi∧HZ/2) and the map Yi∧HZ/2→ Z is even strictly multiplicative (i.e. the
diagram analagous to the one above commutes on the nose). Finally, note that the
connecting map Z → shY is homology-ko-linear, since it induces the zero map in
homology, though this is a fact we will not need.

Given now a H∗(ko)-colinear, A-linear map g : H∗(Y ) −→ H∗(X), consider
the Adams spectral sequence for maps X → Y . Suppressing the internal grading
its first page Ei1 is given by [X,Yi ∧HZ/2] ∼= HomA(H∗(Yi)⊗A, H∗(X)) and the
first differential is induced by

Yi ∧HZ/2 −→ sh1Yi+1 −→ sh1Yi+1 ∧HZ/2

On E1 the map g canonically corresponds to a map f : X → Y ∧ HZ/2, which
obviously is a homology-ko-module map. By the construction the first differential of
f will also be represented by a homology-ko-module map. Now a map p : M → N
between two homology-ko-module spectra is a homology-ko-module map if and
only if p∗(N) ⊆ M . Therefore, by Stolz’ theorem 3.1.1 f and its differential is
represented by an element in

HomA(1)(H∗(Yi)⊗A, H∗(X)) ⊆ HomA(1)(H∗(Yi)⊗A, H∗(X))

Now the sequence

· · · → H∗+i+1(Yi+1 ∧HZ/2)→ H∗+i(Yi ∧HZ/2)→ · · ·

forms a free A-resolution of H∗(Y ) and the second page of the spectral sequence has
Ei2
∼= HomA(H∗(Yi)⊗A, H∗(X)). As the sequence consists of H∗(ko)-comodules

and H∗(ko)-colinear maps and by Stolz’ theorem taking ko-primitives preserves
exactness, we find that

· · · → H∗+i+1(Yi+1 ∧HZ/2)→ H∗+i(Yi ∧HZ/2)→ · · ·

is a resolution of H∗(Y ). By proposition 3.1.2 it is indeed a free resolution and,

therefore, the ’image’ of HomA(1)(H∗(Yi)⊗A, H∗(X)) on the second page is pre-

cisely the image of Ext∗A(1)(H
∗(Y ), H∗(X)) −→ Ext∗A(H∗(Y ), H∗(X)).

In order to conclude that higher differentials of g (supossing it survives the first one)
can also be represented by homology-ko-module maps, we seem to need an addi-
tional assumption on the source spectrum: Given a 1-cycle g its second differential
is represented by the upper composition using the dotted lift

sh1Yi+2
//

��

sh1Yi+2 ∧HZ/2

X
g //

00

'0

55
Yi ∧HZ/2 // sh1Yi+1

// sh1Yi+1 ∧HZ/2
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However, without further arguments it is unclear whether this lift can be chosen in
a H∗(ko)-colinear fashion. It is certainly sufficient to have X ' ko∧F as homology-
ko-module spectra for some arbitrary spectrum F . This discussion directly carries
over to higher differentials which are given by similar lifting prodcedures.

5.2. Conclusion. We can now try to rewrite parts of [St 92]: The first step
is to show that the map s : H∗(MSpin) → H∗(ko) from 3.1, which is a comulti-
plicative split of the ABS-orientation, is in fact given by a map of (2-completed)
spectra. To establish this Stolz essentially considers the Adams spectral sequence
with second page isomorphic to

Ext∗A(H∗(MSpin), H∗(ko)) = ExtA(1)(M,H∗(K))

with M the Anderson-Brown-Peterson module. Stolz computes these Ext-groups
far enough to prove that no nontrivial differential can start in position (0, 0) and
therefore the element s survives the spectral sequence (compare [St 94, Examples
3.6 & 3.7]). We now conclude that indeed s has to come from a map of spectra by
convergence of the Adams spectral sequence, see [Ad, Part III, Theorem 15.1].
The second step is to show that the split H∗(MSpin)⊗H∗(BG)→ H∗+8(hofib(α))
of the transfer is also realised by a map of spectra. Since both sides acquire
homology-ko-module structures by the previous step and the split by construction
is linear for these, it remains to verify that the groups

Ext∗A(1)(M ⊗H
∗(BG),M>0)

vanish along the line the differentials from source (8, 0) might hit and that the
spectrum MSpin is of the form ko ∧ X. The first is precisely what Stolz does in
[St 94, Proposition 8.5] and the second follows from the Anderson-Brown-Peterson
splitting, as HZ/2 and all connective covers of ko are of the required form.
In the twisted context, the same argument shows that a H∗(ko)-colinear split of
the twisted transfer should have differentials represented in

Ext∗A(1)(H
∗(M2O)⊗H∗(BG), N)

where N denotes the cokernel of

H∗(k2o)
α̂∗−→ H∗(M2O)

Had our conjecture in the second part been correct, this group would have been
isomorphic to

Ext∗A(1)(M ⊗H
∗(BG),M>0 ⊗H∗(K))

and these groups seemed very much approachable.



Appendix I

We here finish the purely calculational proofs of lemmas 6.1.5 and 6.1.6 of the
first chapter. The former of which read as follows:

Lemma (6.1.5). The stipulation

Sq1 7−→ 1⊗ Sq1 + ι1 ⊗ 1

Sq2 7−→ 1⊗ Sq2 + ι1 ⊗ Sq1 + ι21 ⊗ 1 + ι2 ⊗ 1

specifies a unique morphism of Hopf algebras ϕ : A(1) −→ A.

Proof. As mentioned in 6.1.5 the following two identities

ϕ(Sq1)2 = 0

ϕ(Sq2)2 = ϕ(Sq1)ϕ(Sq2)ϕ(Sq1)

will show both multiplicativity of ϕ and that it is even well defined. Here goes:

ϕ(Sq1)2 = (1⊗ Sq1 + ι1 ⊗ 1)2

= (1⊗ Sq1)2 + (1⊗ Sq1)(ι1 ⊗ 1) + (ι1 ⊗ 1)(1⊗ Sq1) + (ι1 ⊗ 1)2

= 1⊗ (Sq1)2︸ ︷︷ ︸
=0

+
[
Sq1(ι1)⊗ 1︸ ︷︷ ︸

=ι21⊗1

+ι1 ⊗ Sq1
]

+ ι1 ⊗ Sq1 + ι21 ⊗ 1

= 0

ϕ(Sq1)ϕ(Sq2)ϕ(Sq1)

= (1⊗ Sq1 + ι1 ⊗ 1)(1⊗ Sq2 + ι1 ⊗ Sq1 + ι21 ⊗ 1 + ι2 ⊗ 1)(1⊗ Sq1 + ι1 ⊗ 1)

=
(

(1⊗ Sq1)(1⊗ Sq2) + (1⊗ Sq1)(ι1 ⊗ Sq1) + (1⊗ Sq1)(ι21 ⊗ 1)

+ (1⊗ Sq1)(ι2 ⊗ 1) + (ι1 ⊗ 1)(1⊗ Sq2) + (ι1 ⊗ 1)(ι1 ⊗ Sq1)

+ (ι1 ⊗ 1)(ι21 ⊗ 1) + (ι1 ⊗ 1)(ι2 ⊗ 1)
)

(1⊗ Sq1 + ι1 ⊗ 1)

=
(

1⊗ Sq1Sq2 +
[
Sq1(ι1)⊗ Sq1︸ ︷︷ ︸

=���ι21⊗Sq
1

+ ι1 ⊗ (Sq1)2︸ ︷︷ ︸
=0

]
+
[
Sq1(ι21)⊗ 1︸ ︷︷ ︸

=0

+ ��
��ι21 ⊗ Sq1

]
+
[
Sq1(ι2)⊗ 1 + ι2 ⊗ Sq1

]
+ ι1 ⊗ Sq2 + ι21 ⊗ Sq1

+ ι31 ⊗ 1 + ι1ι2 ⊗ 1
)

(1⊗ Sq1 + ι1 ⊗ 1)

61



62 APPENDIX I

= (1⊗ Sq1Sq2)(1⊗ Sq1) + (Sq1(ι2)⊗ 1)(1⊗ Sq1) + (ι2 ⊗ Sq1)(1⊗ Sq1)

+ (ι1 ⊗ Sq2)(1⊗ Sq1) + (ι21 ⊗ Sq1)(1⊗ Sq1) + (ι31 ⊗ 1)(1⊗ Sq1)

+ (ι1ι2 ⊗ 1)(1⊗ Sq1) + (1⊗ Sq1Sq2)(ι1 ⊗ 1) + (Sq1(ι2)⊗ 1)(ι1 ⊗ 1)

+ (ι2 ⊗ Sq1)(ι1 ⊗ 1) + (ι1 ⊗ Sq2)(ι1 ⊗ 1) + (ι21 ⊗ Sq1)(ι1 ⊗ 1)

+ (ι31 ⊗ 1)(ι1 ⊗ 1) + (ι1ι2 ⊗ 1)(ι1 ⊗ 1)

= 1⊗ Sq1Sq2Sq1︸ ︷︷ ︸
=1⊗Sq3Sq1

+Sq1(ι2)⊗ Sq1 + ι2 ⊗ (Sq1)2︸ ︷︷ ︸
=0

+ ι1 ⊗ Sq2Sq1 + ι21 ⊗ (Sq1)2︸ ︷︷ ︸
=0

+ ι31 ⊗ Sq1 +���
��

ι1ι2 ⊗ Sq1 +
[
Sq1Sq2(ι1)⊗ 1︸ ︷︷ ︸

=0

+Sq1(ι1)⊗ Sq2︸ ︷︷ ︸
���ι21⊗Sq

2

+Sq2(ι1)⊗ Sq1︸ ︷︷ ︸
=0

+ ι1 ⊗ Sq1Sq2︸ ︷︷ ︸
ι1⊗Sq3

]
+ Sq1(ι2)ι1 ⊗ 1 +

[
ι2Sq

1(ι1)⊗ 1︸ ︷︷ ︸
���ι21ι2⊗1

+��
���ι2ι1 ⊗ Sq1

]
+
[
ι1Sq

2(ι1)⊗ 1︸ ︷︷ ︸
=0

+ ι1Sq
1(ι1)⊗ Sq1︸ ︷︷ ︸
���ι31⊗Sq

1

+���
�

ι21 ⊗ Sq2
]

+
[
ι21Sq

1(ι1)⊗ 1︸ ︷︷ ︸
��ι
4
1⊗1

+���
�

ι31 ⊗ Sq1
]

+��
�ι41 ⊗ 1 +��

��ι21ι2 ⊗ 1

= 1⊗ Sq3Sq1 + Sq1(ι2)⊗ Sq1 + ι1 ⊗ Sq2Sq1 + ι31 ⊗ Sq1 + ι1 ⊗ Sq3

+ ι1Sq
1(ι2)⊗ 1

ϕ(Sq2)ϕ(Sq2)

= (1⊗ Sq2 + ι1 ⊗ Sq1 + ι21 ⊗ 1 + ι2 ⊗ 1)(1⊗ Sq2 + ι1 ⊗ Sq1 + ι21 ⊗ 1 + ι2 ⊗ 1)

= (1⊗ Sq2)2 + (ι1 ⊗ Sq1)(1⊗ Sq2) + (ι21 ⊗ 1)(1⊗ Sq2) + (ι2 ⊗ 1)(1⊗ Sq2)

+ (1⊗ Sq2)(ι1 ⊗ Sq1) + (ι1 ⊗ Sq1)2 + (ι21 ⊗ 1)(ι1 ⊗ Sq1) + (ι2 ⊗ 1)(ι1 ⊗ Sq1)

+ (1⊗ Sq2)(ι21 ⊗ 1) + (ι1 ⊗ Sq1)(ι21 ⊗ 1) + (ι21 ⊗ 1)2 + (ι2 ⊗ 1)(ι21 ⊗ 1)

+ (1⊗ Sq2)(ι2 ⊗ 1) + (ι1 ⊗ Sq1)(ι2 ⊗ 1) + (ι21 ⊗ 1)(ι2 ⊗ 1) + (ι2 ⊗ 1)2

= 1⊗ (Sq2)2︸ ︷︷ ︸
=1⊗Sq3Sq1

+ ι1 ⊗ Sq1Sq2︸ ︷︷ ︸
=ι1⊗Sq3

+���
�

ι21 ⊗ Sq2 +���
�

ι2 ⊗ Sq2 +
[
Sq2(ι1)⊗ Sq1︸ ︷︷ ︸

=0

+ Sq1(ι1)⊗ (Sq1)2︸ ︷︷ ︸
=0

+ι1 ⊗ Sq2Sq1
]

+
[
ι1Sq

1(ι1)⊗ Sq1︸ ︷︷ ︸
=ι31⊗Sq1

+ ι21 ⊗ (Sq1)2︸ ︷︷ ︸
=0

]
+��

��ι31 ⊗ Sq1 +��
���ι2ι1 ⊗ Sq1 +

[
Sq2(ι21)⊗ 1︸ ︷︷ ︸

=��ι
4
1⊗1

+Sq1(ι21)⊗ Sq1︸ ︷︷ ︸
=0

+��
��ι21 ⊗ Sq2

]
+
[
ι1Sq

1(ι21)⊗ 1︸ ︷︷ ︸
=0

+���
�

ι31 ⊗ Sq1
]

+��
�ι41 ⊗ 1 +���

�ι2ι
2
1 ⊗ 1 +

[
Sq2(ι2)⊗ 1︸ ︷︷ ︸

=��ι
2
2⊗1

+ Sq1(ι2)⊗ Sq1 +���
�

ι2 ⊗ Sq2
]

+
[
ι1Sq

1(ι2)⊗ 1 +���
��

ι1ι2 ⊗ Sq1
]

+��
��ι21ι2 ⊗ 1

+�
��ι22 ⊗ 1
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= 1⊗ Sq3Sq1 + ι1 ⊗ Sq3 + ι1 ⊗ Sq2Sq1 + ι31 ⊗ Sq1 + Sq1(ι2)⊗ Sq1

+ ι1Sq
1(ι2)⊗ 1

These two outcomes obviously agree. For the comultiplicativity recall that the
inclusion maps induce a coalgebra isomorphism H∗(K) ⊗ A → A. The coalgebra
structure of H∗(K) is of course determined by 3.3.2:

∆(ι1) = ι1 ⊗ 1 + 1⊗ ι1
∆(ι2) = ι2 ⊗ 1 + ι1 ⊗ ι1 + 1⊗ ι2

With these data it is trivial to verify ϕ(∆(Sq1,2)) = ∆(ϕ(Sq1,2)). By multiplica-
tivity of ϕ and the coproducts we are done. �

Lemma (6.1.6). Extending ϕ by the identity on H∗(K) produces a Hopf algebra
automorphism of A(1).

Proof. Putting ϕ(k ⊗ α) = (k ⊗ 1)ϕ(α) just leaves the verificaton of the
multiplicativity. To this end calculate

ϕ(k ⊗ α)ϕ(l ⊗ β) = (k ⊗ 1)ϕ(α)(l ⊗ 1)ϕ(β)

ϕ((k ⊗ α)(l ⊗ β)) =
∑

ϕ(k · α′(l)⊗ α′′ ◦ β)

=
∑

(kα′(l)⊗ 1)ϕ(α′′ ◦ β)

=
∑

(k ⊗ 1)(α′(l)⊗ 1)ϕ(α′′)ϕ(β)

Note that we would be done if ϕ(α)(l ⊗ 1) =
∑

(α′(l)⊗ 1)ϕ(α′′) for all α ∈ A, l ∈
H∗(K), observe this propagates under multiplying α’s and then calculate once
more:

ϕ(Sq1)(l ⊗ 1) = (ι1 ⊗ 1 + 1⊗ Sq1)(l ⊗ 1)

= (ι1l ⊗ 1) + (Sq1(l)⊗ 1) + (l ⊗ Sq1)

= (Sq1(l)⊗ 1) + (l ⊗ 1)(ι1 ⊗ 1 + 1⊗ Sq1)

ϕ(Sq2)(l ⊗ 1) = (ι2 ⊗ 1 + ι21 ⊗ 1 + ι1 ⊗ Sq1 + 1⊗ Sq2)(l ⊗ 1)

= ι2l ⊗ 1 + ι21 ⊗ 1 + ι1Sq
1(l)⊗ 1 + ι1l ⊗ Sq1 + Sq2(l)⊗ 1

+Sq1(l)⊗ Sq1 + l ⊗ Sq2

= (Sq2(l)⊗ 1) + (Sq1(l)⊗ 1)(ι1 ⊗ Sq1)

+(l ⊗ 1)(ι2 ⊗ 1 + ι21 ⊗ 1 + ι1 ⊗ Sq1 + 1⊗ Sq2)

Of course this is nothing but the verification of compatibility of ϕ and idH∗(K) in
the universal property of a semidirect product of Hopf algebras. �





Appendix II

In this appendix we compile several calculations of Steenrod operations in
H∗(BSO) that are needed in section 4.2 of chapter 2.

Lemma 1. In low degrees of H∗(BO) we have:

x Sq1(x) = Q0(x) Sq2(x) Q1(x)
x1 0 0 0
x2 x1 0 0
x3 x2

1 0 0
x4 x1x2 + x3 x2 x1

x5 0 x3 x2
1

x6 x5 + x2
1x3 x2

2 x3

x8 x1x
3
2 + x1x2x4 + x3x4 x6 + x4x2 x5 + x1x4 + x2

1x3 + x3
1x2

x9 0 0 0
x10 x9 x3x5 + x4

2 x2
1x5

x11 x2
5 0 0

x12 x11 + x6x5 + x6x3x
2
1 x10 + x2

5 + x2
2x6 x9 + x3x6

x13 0 x11 x2
5

x14 x13 x2
6 x11

x16 − − −
x17 0 0 0
x18 x17 x8

2 0
x19 x2

9 0 0
x20 x19 + x9x10 x18 + x3x

3
5+ x17 + x2

1x
3
5 + x2

1x5x10

+x3x5x10 + x4
2x10

x21 x4
5 x19 x2

9

where we have not given the values for x16 since they are not needed in section 4.2
(as x2

16 ∈ H32(BSO), but x16 /∈ H16(BSO)) and they are too long to fit into the
table.

Proof. This is just a tedious calculation using the algorithm from [GiPeRa 88].
�

Lemma 2. For k > l + 1 ≥ 3 we have

Sq1(x2l+1) = 0

Sq1(x2l+1+2) = x2k+1
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in H∗(BO). In H∗(K2) we furthermore have:

Sq1(x2l+1+2l) = x2l+2l−1 · x2l−1+2l−2 · . . . · x12 · x6 · x5

+ x2l+2l−1 · x2l−1+2l−2 · . . . · x12 · x6 · x3 · x2
1

Sq1(x2k+2l) = x2k−1+2l−1 · x2k−2+2l−2 · . . . · x2k−l+1+2 · x2k−l+1+1

Similarly in H∗(BO):

Sq2(x2l+1+1) = 0

Sq2(x2l+2+2) = 0

Sq2(x2l+3+4) = x2l+3+2

And in H∗(K2) we find:

Sq2(x2l+2+2l+1) = x2l+1+2l · x2l+2l−1 · . . . · x12 · x10

+ x2l+1+2l · x2l+2l−1 · . . . · x12 · x6 · x2
2

Sq2(x2l+3+2l+1) = x2l+2+2l · x2l+1+2l−1 · . . . · x20 · x18

+ x2l+2+2l · x2l+1+2l−1 · . . . · x20 · x10 · x5 · x3

Sq2(x2k+2+2l+1) = x2k+1+2l · x2k+2l−1 · . . . · x2k−l+3+4 · x2k−l+3+2

and finally in H∗(K2) we obtain:

Q1(x2k+2l+1) ≡ x2k−1+2l · x2k−2+2l−1 · . . . · x2k−l+1+4 · x2k−l+1+1 mod I l+1

Proof. The first case:

Sq1(d2n+1) = Sq1(y2n+1)

Sq1(d2n+1) = (2n + 1)d2n

= (2n + 1)(y2n

1 + 2y2n−1

2 + . . .+ 2n−1y2
2n−1 + 2ny2n)

Reducing this mod 2 gives Sq1(x2n+1) = x2n

1 which is zero for n ≥ 2. The second
case:

Sq1(d2n+2) = Sq1(y2
2n−1+1 + 2y2n+2)

= 2y2n−1+1Sq1(y2n−1+1) + 2Sq1(y2n+2)

Sq1(d2n+2) = (2n + 2)d2n+1

= (2n + 2)y2n+1

Reducing mod 2 yields

Sq1(x2n+2) = x2n−1+1Sq1(x2n−1+1) + x2n+1 = x2n+1
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once n ≥ 3. The third case:

Sq1(d2n+2m) = Sq1

(
y2m

2n−m+1 + 2y2m−1

2n−m+1+2 + . . .+ 2m−1y2
2n−1+2m−1 + 2my2m+2n

)
= 2m

(
y2m−1

2n−m+1Sq1(y2n−m+1) + y2m−1−1
2n−m+1+2Sq1(y2n−m+1+2)

+ . . .+ y2n−1+2m−1Sq1(y2n−1+2m−1) + Sq1(y2m+2n)
)

Sq1(d2n+2m) = (2n + 2m)d2n+2m−1

= (2n + 2m)y2n+2m−1

Reducing this mod 2 and projecting into H∗(K) yields

Sq1(x2n+2m) = x2n+2m−1 + x2n−1+2m−1Sq1(x2n−1+2m−1)

= x2n−1+2m−1Sq1(x2n−1+2m−1)

once m ≥ 2, giving a recursion whose initial value can be read off from either 1 for
n = m+ 1 (i.e. Sq1(x6)) or from the previous case when n > m+ 1. This recursion
immediately gives the claimed formulas.

The fourth case:

Sq2(d2n+1) = Sq2(y2n+1)

Sq2(d2n+1) = (2n + 1)(2n−1 − 1)d2n−1

= (2n + 1)(2n−1 − 1)y2n−1

which yields

Sq2(x2n+1) = x2n−1 = 0

once n ≥ 3. The fifth case:

Sq2(d2n+2) = Sq2(y2
2n−1+1 + 2y2n+2)

= 2y2n−1+1Sq2(y2n−1+1) + Sq1(y2n−1+1)2 + 2Sq2(y2n+2)

= 2y2n−1+1Sq2(y2n−1+1) + 2Sq2(y2n+2)

+
(

(2n−1 + 1)(y2n−1

1 + 2y2n−2

2 + . . .+ 2n−2y2
2n−2 + 2n−1y2n−1)

)2

≡ 2y2n−1+1Sq2(y2n−1+1) + 2Sq2(y2n+2) + y2n

1 mod 4

Sq2(d2n+2) = (2n−1 + 1)(2n − 1)d2n

= (2n−1 + 1)(2n − 1)(y2n

1 + 2y2n−1

2 + . . .+ 2n−1y2
2n−1 + 2ny2n)

≡ 3y2n

1 + 2y2n−1

2

Reducing mod 2:

Sq2(x2n+2) = x2n−1+1Sq2(x2n−1+1) + x2n

1 + x2n−1

2 = 0
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once n ≥ 4. The sixth:

Sq2(d2n+4) = Sq2(y4
2n−2+1 + 2y2

2n−1+2 + 4y2n+4)

= 4y3
2n−2+1Sq2(y2n−2+1) + 6y2

2n−2+1Sq1(y2n−2+1)2

+ 4y2n−1+2Sq2(y2n−1+2) + 2Sq1(y2n−1+2)2 + 4Sq2(y2n+4)

= 4y3
2n−2+1Sq2(y2n−2+1) + 4y2n−1+2Sq2(y2n−1+2) + 4Sq2(y2n+4)

+ 6y2
2n−2+1

(
(2n−2 + 1)(y2n−2

1 + 2y2n−3

2 + . . .+ 2n−3y2
2n−3 + 2n−2y2n−2)

)2

+ 2
(
(2n−2 + 1)y2n−1+1 − y2n−2+1Sq1(y2n−2+1)

)2
≡ 4y3

2n−2+1Sq2(y2n−2+1) + 4y2n−1+2Sq2(y2n−1+2) + 4Sq2(y2n+4)

+ 6y2
2n−2+1y

2n−1

1 + 2y2
2n−2+1Sq1(y2n−2+1)2

+ 4y2n−2+1Sq1(y2n−2+1)y2n−1+1 + 2y2
2n−1+1 mod 8

= 4y3
2n−2+1Sq2(y2n−2+1) + 4y2n−1+2Sq2(y2n−1+2) + 4Sq2(y2n+4)

+ 4y2n−2+1Sq1(y2n−2+1)y2n−1+1 + 2y2
2n−1+1 + 6y2

2n−2+1y
2n−1

1

+ 2y2
2n−2+1

(
(2n−2 + 1)(y2n−2

1 + 2y2n−3

2 + . . .+ 2n−3y2
2n−3 + 2n−2y2n−2)

)2

≡ 4y3
2n−2+1Sq2(y2n−2+1) + 4y2n−1+2Sq2(y2n−1+2) + 4Sq2(y2n+4)

+ 4y2n−2+1Sq1(y2n−2+1)y2n−1+1 + 2y2
2n−1+1 mod 8

Sq2(d2n+4) = (2n−1 + 2)(2n + 1)d2n+2

= (2n−1 + 2)(2n + 1)(y2
2n−1+1 + 2y2n+2)

≡ 2y2
2n−1+1 + 4y2n+2 mod 8

Reducing mod 2:

Sq2(x2n+4) = x3
2n−2+1Sq2(x2n−2+1) + x2n−1+2Sq2(x2n−1+2)

+ x2n−2+1Sq1(x2n−2+1)x2n−1+1 + x2n+2

= x2n+2

for n ≥ 5. The seventh:

Sq2(d2n+2m) = Sq2

(
y2m

2n−m+1 + 2y2m−1

2n−m+1+2 + . . .+ 2m−1y2
2n−1+2m−1 + 2my2m+2n

)
= 2m

(
y2m−1

2n−m+1Sq2(y2n−m+1) + y2m−1−1
2n−m+1+2Sq2(y2n−m+1+2)

+ . . .+ y2n−1+2m−1Sq2(y2n−1+2m−1) + Sq2(y2m+2n)
)

+ 2m−1
(

(2m − 1)y2m−2
2n−m+1Sq1(y2n−m+1)2

+ (2m−1 − 1)y2m−1−2
2n−m+1+2Sq1(y2n−m+1+2)2 + . . .+ Sq1(y2n−1+2m−1)2

)
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To continue without having to expand the various Sqi’s denote by J the ideal in
Z[yi : i ∈ N] formed by those elements all of whose 2-power-’demultiples’ (i.e. the
element itself, its half, its quarter ..., whenever those exist) vanish when sent to
H∗(K). We then find:

≡ 2my2n−1+2m−1Sq2(y2n−1+2m−1) + 2mSq2(y2m+2n)+

+ 2m−1Sq1(y2n−1+2m−1)2 mod J

= 2my2n−1+2m−1Sq2(y2n−1+2m−1) + 2mSq2(y2m+2n)

+ 2m−1
(

(2n−1 + 1)y2n−1+2m−1−1 − y2m−1−1
2n−m+1Sq1(y2n−m+1)

− y2m−2−1
2n−m+1+2Sq1(y2n−m+1+2)− . . .− y2n−2+2m−2Sq1(y2n−2+2m−2)

)2

≡ 2my2n−1+2m−1Sq2(y2n−1+2m−1) + 2mSq2(y2m+2n) mod J

Sq2(d2n+2m) = (2n−1 + 2m−1)(2n + 2m − 3)d2n+2m−2

= (2n−1 + 2m−1)(2n + 2m − 3)(y2
2n−1+2m−1−1 + 2y2n+2m−2)

≡ 0 mod J

Equating these produces the recursion

Sq2(x2n+2m) = x2n−1+2m−1Sq2(x2n−1+2m−1)

for m ≥ 3 whose inital values are again obtained from 1 for n = m + 1,m + 2
(i.e. Sq2(x12) and Sq2(x20)) and which are covered by the previous calculation for
n > m+ 2.
The final claim now follows by simple inspection. �

Lemma 3. For k ≥ 3 we have:

Sq1(x2k−3) = x4
2k−2−1

Sq2(x2k−3) = x2k−5

Sq1(x2k−5) = x2
2k−1−3

Q1(x2k−3) = x2
2k−1−3

in H∗(BO).

Proof. This is comparatively simple: The equations

Sq1(y2k−3) = Sq1(d2k−3) = (2k − 3)d2k−4 = (2k − 3)(y4
2k−2−1 + 2y2

2k−1−2 + 4y2k−4)

Sq2(y2k−3) = Sq2(d2k−3) = (2k − 3)(2k−1 − 3)d2k−5 = (2k − 3)(2k−1 − 3)y2k−5

Sq1(y2k−5) = Sq1(d2k−5) = (2k − 5)d2k−6 = (2k − 5)(y2
2k−1−3 + 2y2k−6)

immediately reduce to the first three claims, and the fourth follows by putting them
together. �
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