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Abstract

Functional differences between healthy progenitor and cancer initiating cells may

provide unique opportunities for targeted therapy approaches. Hematopoietic stem

cells are tightly controlled by a network of CDK inhibitors that govern proliferation

and prevent stem cell exhaustion. Loss of Inca1 led to an increased number of

short-term hematopoietic stem cells in older mice, but Inca1 seems largely

dispensable for normal hematopoiesis. On the other hand, Inca1-deficiency

enhanced cell cycling upon cytotoxic stress and accelerated bone marrow

exhaustion. Moreover, AML1-ETO9a-induced proliferation was not sustained in

Inca1-deficient cells in vivo. As a consequence, leukemia induction and leukemia

maintenance were severely impaired in Inca12/2 bone marrow cells. The re-

initiation of leukemia was also significantly inhibited in absence of Inca12/2 in

MLL—AF9- and c-myc/BCL2-positive leukemia mouse models. These findings

indicate distinct functional properties of Inca1 in normal hematopoietic cells

compared to leukemia initiating cells. Such functional differences might be used to

design specific therapy approaches in leukemia.

Introduction

Hematopoietic stem cells (HSCs) are characterized by their ability to self-renew

and to differentiate into all hematopoietic lineages. Division and expansion of

HSCs have to be tightly regulated to avoid exhaustion but at the same time to

ensure sufficient proliferation for maintaining the blood system. Moreover, HSCs
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and hematopoietic progenitor cells (HPCs) have to be activated in preparation of

a stem cell donation for transplantation and intrinsically after injury of the bone

marrow i.e. as a consequence of a disease or of chemotherapy.

Remarkably, stem cell expansion is highly sensitive to aberrations of cell cycle

regulation. Several CDK inhibitors restrict HSC proliferation [1–5]. However,

several key cell cycle regulators, such as CDK2 and RB, were shown to be

dispensable for stem cell regulation [6–8]. For some of the CDK inhibitors, loss-

of-function mouse models revealed distinct functions in HSC. Loss of p21 has a

strain-specific effect on HSC numbers and proliferation, suggesting that p21

maintains HSC quiescence [2, 9]. A similar function was identified for p27, but at

the level of more committed progenitor cells [1]. In this family, especially p57

turned out to be essential for HSC maintenance and self-renewal in recent studies

[10, 11]. The absence of p16 attenuated HSC repopulation defects and apoptosis

caused by senescence [3]. Deletion of the early G1-phase CDKI p18 resulted in

improved long-term engraftment and increased self-renewal of primitive

hematopoietic cells [4, 5].

Therefore, different CDKIs have highly specific effects on the regulation of

hematopoietic stem cells, possibly because of their indispensable role during cell

cycle progression. The complex network of cell cycle regulation encompasses a

high degree of compensatory features in most cell types [8, 11]. As a consequence,

genetic deletion of CDK inhibitors mainly leads to stem cell specific phenotypes

where especially tight cell cycle control is required.

Leukemic stem cells (LSCs) are characterized by the ability to generate leukemic

blast cell populations, regardless whether they are made of rare stem cells or are

more frequent progenitor cells. Often, leukemia initiating cells are chemoresistant

due to their infrequent divisions, which appears to prevent their efficient

eradication [12, 13]. Remarkably, it has been investigated that cell cycle restriction

due to p21CIP1 expression in LSCs is necessary to induce and maintain PML-

RARa- or AML1-ETO-driven leukemogenesis in mice [14]. Moreover, the

induction of cycling in leukemia stem cells by G-CSF increased their

responsiveness to chemotherapy [13]. Still, little is known whether the

mechanisms of stem cell pool regulation differ between normal hematopoietic

stem cells and leukemic stem cells.

Recently, we identified INCA1 (Inhibitor of CDK interacting with cyclin A1) as

a novel interaction partner of cyclin A1/CDK2 [15, 16]. Inca1 binds to CDK2 and

acts as an inhibitor of CDK2 similar to p21 and p27. Decreased INCA1 levels in

blasts from Acute Lymphoid Leukemia (ALL) and Acute Myeloid Leukemia

(AML) patients underlined its relevance for growth control in vivo and for the

hematopoietic system [15]. Although Inca1-knockout mice are viable and fertile,

we identified a different spleen architecture in absence of Inca1 [15], possibly

hinting at role of Inca1 in normal hematopoiesis. We also discovered that the

tumor suppressor Ing5 interacts with and depends on Inca1 [17], further

underlining a putative role of Inca1 in cancerogenesis [18].

We used different transduction/transplantation mouse models to investigate

the role of Inca1 in leukemogenesis. Bone marrow cells were retrovirally
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transduced with the respective oncogenes and transplanted into recipient mice.

One of the most common genetic abnormalities in acute myeloid leukemia (AML)

is the t(8;21)(q22;q22) translocation that results in the fusion protein AML1-ETO.

Since the expression of full length AML1-ETO does not lead to the development

of leukemia [19–21], we took advantage of an alternatively spliced isoform of the

AML1-ETO transcript, AML1-ETO9a, which induces an acute myeloid leukemia

in mice with a high penetrance [21]. In addition, we used the oncogenes MLL-AF9

that occurs in typically in the FAB-M4 or M5 subtypes of human AML and

reliably and rapidly induces an AML in a transduction/transplantion mouse

model [22, 23]. Moreover, the co-expression of c-myc and Bcl2 induces a bilinear

myeloid–B lymphoid leukemia and can therefore reveal influences on lineage

choice in leukemogenesis [24].

Here, we investigated the role of Inca1 in murine normal hematopoiesis and

under stress conditions. We show that absence of Inca1 mildly affects normal

hematopoiesis under homeostatic conditions but controls hematopoiesis after

induction of cytotoxic stress and plays a role in the maintenance of leukemia

development in acute myeloid leukemia.

Materials and Methods

Animal experiments

Inca1-knockout (-/-) mice were generated and genotyped as previously described

[14]. All animal experiments in this study were carried out in strict accordance

with the recommendations of the institutional animal care and use committee

‘‘Landesamt fuer Natur, Umwelt und Verbraucherschutz NRW’’. This study was

approved by the institutional animal care and use committee and of the local

veterinary administration of Muenster (G15/2005, 8.87-51.04.20.09.322, and 87-

51.04.2011.A005). Mice were kept in individually ventilated (IVC-) Typ II cages

(Tecniplast GmbH, Germany) in groups of five mice, in a 12-hour light/dark

cycle, with room temperature at 22¡2 C̊ and a relative air humidity of 45–65%.

All mice were allowed free access to water and a maintenance sterile diet. All

reasonable efforts were made to ameliorate suffering, including anesthesia using

isoflurane inhalation for retro-orbital puncture and isolation of affected mice.

Mice were monitored daily for signs of pain or distress. Moribund mice were

humanely sacrificed as described below. Study design and biometric planning of

each experiment was performed in accordance with a biostatistician. Mice were

sacrificed for sample preparation by cervical dislocation after anesthesia. For each

experiment, the single animal was an experimental unit.

Flow cytometry, RNA isolation, real-time quantitative RT-PCR and

hematological analysis

Bone marrow, spleen and blood cells were red cell-lysed using AKC-lysis buffer

(0.15% NH4Cl, 0.1 M EDTA, 1 mM KHCO3, pH 7.4) for 5 min at RT and
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incubated with the respective antibody (c-Kit, B220, GR1, CD11b, Ter119, CD41,

CD45.1, CD45.2, sca-1, CD34, all BD Biosciences, Franklin Lakes, NJ, USA) for

30 min on ice in the dark. Lineage depletion was obtained using the Lineage Cell

Depletion Kit Mouse (Miltenyi Biotec, Bergisch Gladbach, Germany) according to

the manufacturer’s protocol. For analysis of LSK cells, red blood cell-lysed BM

and spleen cells were stained with tricolor-conjugated rat antibodies specific for

the following lineage markers: CD3, CD4, CD8a, CD45R (B220), and Ly-6G (Gr-

1; Invitrogen), and CD11b and Ter119 (eBioscience). LSK cells were sorted using

CD117 (c-kit)–allophycocyanin, Sca-1 (Ly-6A/E)–biotin, antistreptavidinphy-

coerythrin-Cy7, (BD Biosciences) antibodies. LT-HSCs, short-term (ST)–HSCs,

and multipotent progenitors (MPPs) were identified using CD34 and CD135

(Flt3) antibodies in addition (BD Biosciences). FACS analysis and sorting of

antibody-stained cells [15] and HSC FACS [25, 26] were performed as described

previously.

RNA isolation from sorted murine cells was performed using RNeasy Micro Kit

(Qiagen, Hilden, Germany) according to the manufacturer’s protocol.

Reverse transcription and real-time quantitative RT-PCR were performed as

described [16]. The probes were labeled at the 5’ end with the fluorescent dye

FAM (mInca1, Mm01243673_m1, Life Technologies, Darmstadt, Germany) or

VIC (GAPDH) [16] and at the 3’ end with the quencher TAMRA.

For concomitant cell cycle analysis in LSK cells, DAPI staining was performed

as described [27]. Briefly, antibody-labelled bone marrow cell populations were

fixed in 1% formaldehyde for 30 minutes and permeabilized with 0.1% Triton X-

100 for 30 minutes then labelled with DAPI (5 mg/ml).

The WBC and blood parameters were analyzed by using the HEMAVET

multispecies hematology analyzer (Drew Scientific, UK) following the manufac-

turer’s instruction.

Colony Formation Assays

Colony formation assays from total primary bone marrow were carried out

essentially as described by growing 10,000 red-cell-lysed bone marrow cells per ml

methylcellulose with recombinant cytokines for mouse cells including fetal bovine

serum, bovine serum albumin, rh insulin, human transferrin (iron-saturated), 2-

mercaptoethanol, rm stem cell factor, rm IL-3, rh IL-6, rh erythropoietin in

IMDM (MethoCult GF M3434, Stem Cell Technologies) for 7-8 days [26].

Colonies were replated by resuspension of the grown colonies in PBS to test for

their self-renewal capacity and by reseeding 10,000 cells per ml methylcellulose.

Colony-forming units (CFU) of granulocytes (CFU-G), macrophages (CFU-M),

mixed granulocytes/macrophages (CFU-GM) and of erythrocytes (burst-forming

units BFU-E/CFU-E) were counted between days 8 and 11.
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Competitive and serial transplantations

Red blood cell-lysed bone marrow of Inca1+/+ and Inca12/2 mice (CD45.2+

C57BL/6N-strain) was mixed 1:100 (51%), 1:10 (510%) and 1:1 (550%) with

bone marrow of congenic CD45.1+ B6.SJL-mice and a total of one million

nucleated cells were injected intravenously into CD45.1+ recipient mice, which

had been irradiated with 10 Gy. Blood parameters including FACS for the

distribution of CD45.1+ versus CD45.2+ cells (antibodies from BD Biosciences)

were analysed at 5 and 12 weeks after transplantation.

For the serial transplantation, bone marrow cells were isolated from 4 age-

matched pairs of Inca1+/+ and Inca12/2 mice. One million nucleated cells that

were CD45.2+ were transplanted into lethally (10 Gy) irradiated CD45.1+ B6.SJL-

recipients (three for each donor mouse in each transplantation, without pooling

the donor bone marrow cells). Recipients of the first transplantation were

sacrificed after 6 weeks and one million CD45+ FACS-sorted bone marrow cells

were transplanted as described above. This procedure was repeated for another

two rounds. Blood, bone marrow, and spleen parameters including FACS for

CD45.2+ cells were analysed at the day of retransplantation.

5-FU exposure in vivo

The antimetabolite 5-fluorouracil (5-FU) was used to deplete cycling cells in vivo.

5-FU was administered intraperitoneally (i. p.) weekly at a dose of 150 mg/kg

body weight, and the survival rate of each group was defined.

For cell cycle analysis, mice were injected on day 0 with the full dose and on day

8 with the half dose of 5-FU to ensure survival of the animals until the

examination on day 11. BrdU was injected at 100 mg/g body weight i. p. 10 hrs

before preparation. Cell cycle analysis was performed using BrdU/propidium

iodide (PI) staining as described previously [28], apoptosis rates were determined

using an Annexin-V-FITC kit according to the manufacturer’s recommendations

(Beckman-Coulter, Krefeld, Germany).

Histology

Histological sections and hematoxyline-eosine staining of paraffin-embedded

tissues were performed according to standard procedures.

Retroviral transduction, colony assays, and cloning efficiency

assays

The plasmids MSCV-AML1-ETO9a-IRES-GFP and MSCV-MLL-AF9-IRES-GFP

were kind gifts of Dong-Er Zhang and Frank Rosenbauer, respectively [21, 22].

For the MSCV-c-myc/BCL2-IRES-mCherry, the vector MSCV2.2-cmyc-IRES-

BCL2 (from Frank Rosenbauer; [22]) was linearized using ClaI and blunt-ended

and a blunt-ended IRES-Cherry from LeGO-iC (http://www.addgene.org/27362/)

was ligated into this vector.
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The retroviral transduction of lin- bone marrow cells with oncogene-containing

viral particles was performed as described previously. Retroviral supernatants were

collected as described [15]. For transduction, viruses were bound to retronectin-

coated plates by centrifugation as described [29]. Briefly, lineage-depleted bone

marrow cells were stimulated overnight, transduced by growth on the virus-

coated plates for 24 h and sorted by FACS for EGFP-positivity.

For colony assays, 1,000 EGFP-positive freshly transduced cells per ml

methylcellulose M3434 (Stem Cell Technologies) were plated. The total number of

GFP-positive colonies was determined on day 10 after plating.

For colony formation assays of transplanted mice, bone marrow cells were

isolated and GFP-positive and lineage-negative (AML1-ETO9a) or c-kit-positive

(MLL-AF9) cells were sorted by using the FACSAria cell sorter (BD Bioscience,

San Jose, CA, USA). Initially, 1,000 cells per ml methylcellulose of were seeded.

Subsequently, 10,000 cells/ml methylcellulose were serially replated at a 7 day

interval.

To determine the cloning efficiency of bone marrow cells, different

concentrations (1, 10, 30, 100 and 300) of FACS-sorted GFP-positive and lineage-

negative (AML1-ETO9a) or c-kit-positive (MLL-AF9) cells were seeded in 200 ml

methylcellulose in 14 wells of a 48-well plate. 7 days later wells with one or more

colonies were classified as positive. The colony-forming unit frequency was

determined by Poisson statistical analysis (L-calc software, Stem Cell

Technologies).

Transplantations

Bone marrow cells of wild type and Inca1-knockout recipients were retrovirally

transduced as described above. Unsorted 100,000 or 250,000 (AML1-ETO9a) or

100,000 (MLL-AF9) GFP-positive cells were transplanted by tail-vein injection

into C57Bl/6N wild type recipients, which were lethally irradiated with 8 Gy. Cells

transduced with the c-myc/BCL2-retrovirus were sorted for mCherry expression

and 50,000 mCherry-positive cells were transplanted along with 106 freshly

isolated B6.SJL bone marrow cells to ensure survival of the mice.

For secondary transplantation, bone marrow cells of leukemic mice were

isolated and unsorted 2276105 AML1-ETO9a-GFP-positive, 106 MLL-AF9-

GFP-positive, or 106 c-myc/BCL2-mCherry-positive cells of each individual donor

were intravenously injected into irradiated secondary C57Bl/6N wild type mice.

All transplanted mice were dosed with the antibiotic Cotrimoxazol (100 mg/l)

(Ratiopharm, Ulm, Germany) until 2 weeks after transplantation to prevent

infections during the immunocompromised state after irradiation. The results of

the survival experiments were analyzed with the log-rank non-parametric and

represented as Kaplan-Meier survival curves. Moribund animals were euthanized

by isoflurane inhalation and cervical dislocation. Mice were stated as moribund

when they showed certain signs of sickness i.e. shiver, weight loss, neglected

grooming.
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Results and Discussion

The role of Inca1 in the hematopoietic stem cell compartment

We hypothesized that Inca1 as a novel CDK-inhibitor could have impact on cells

of the hematopoietic system. This would be in concordance with the finding that

several CDKIs have a distinct function in hematopoiesis [1–3, 5, 10]. Moreover,

we already identified a disturbed architecture of Inca1-knockout spleens and

expression of Inca1 in hematopoietic and leukemic cells [15]. We therefore further

examined Inca1 functions in hematopoiesis.

First, expression of Inca1 was analyzed in cell populations sorted by flow

cytometry from wild type murine bone marrow by real-time quantitative RT-

PCR. Inca1 mRNA was found predominantly in the HSC-enriched population of

lineage-negative Sca-1+c-Kit+ cells (LSK cells; Fig. 1A), while its expression was

decreased in more committed progenitor cells (Fig. 1A) as well as in B-cell

precursors (B220+) but not in myeloid, erythrocytic, or megakaryocytic

progenitor cells [15], revealing a distinctive expression pattern of Inca1 in normal

bone marrow.

Inca1 expression especially in the hematopoietic stem/progenitor cell

compartment led to the assumption that Inca1 could regulate the proliferation of

these cells. Interestingly, FACS analyses of the bone marrow (see S1A Fig. for an

example) of older Inca1-deficient mice revealed that the short-term stem cell

population was significantly increased compared to their wild type littermates

(Fig. 1B, p50.021), which was not observed in the bone marrow of young mice

(Fig. 1B). Other hematopoietic subpopulations were not significantly disturbed in

absence of Inca1.

To assess proliferation capacity of Inca12/2 bone marrow cells, we performed

serial colony assays, which show the self-renewal capacity of colony-forming cells

in each round of replating [30], from whole bone marrow of age-matched mice.

After the first plating, no difference was observed in the number of colonies

formed from wild type or Inca12/2 bone marrow cells (Fig. 1C). However, when

these colonies were serially replatedthe absence of Inca1 was associated with a

significant increase in the number of colonies compared to wild type bone

marrow from young mice (Fig. 1C; p50.02), indicating a growth advantage of

colony-forming cells in absence of Inca1. Replated cells of old mice did not grow

after two platings (Fig. 1C), most likely due to an exhaustion of colony-forming

cells, which represent the hematopoietic progenitor pool. Loss of Inca1 did not

alter the differentiation of the colony forming units (S1B Fig.).

To follow up on an anti-proliferative effect of Inca1 in hematopoietic cells, we

analyzed the cell cycle status of the LSK compartment of older Inca12/2 and wild

type mice (older than 17 months) using multi-color FACS analysis with DAPI

staining. Remarkably, the results indicated no significant increase of cells in S-

phase in the Inca12/2 mice compared to age-matched controls (Fig. 1D). Also,

colony formation of LSK cells of young mice did not differ between Inca1+/+ and

Inca12/2 cells (S1C Fig.).
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Fig. 1. Bone marrow of Inca12/2 mice contains an enlarged short-term hematopoietic stem cell (ST-HSC) pool. A. Inca1 expression was determined
by quantitative RT-PCR relative to GAPDH in subpopulations of the bone marrow, which were sorted by FACS. Highest expression was detected in lineage-
negative, Sca-1+, c-Kit+ HSCs (LSK), while expression was lower in primitive lineage-committed progenitors (lin2, Sca-12, c-Kit+), in more committed
progenitors (lin2, Sca-12, c-Kit2), and in cells expressing lineage-markers (lin+). Shown here are means with standard errors from two independent
experiments. B. The fraction of hematopoietic subpopulations was determined in bone marrow cells from Inca1+/+ and Inca12/2 mice. FACS analysis
revealed that older Inca12/2 mice (.300 days) had a higher proportion of short-term HSCs (ST-HSC) than their age-matched Inca1+/+ counterparts
(p50.021, t-test). This effect was not observed in younger mice (,140 days). Indicated are means with standard deviation. C. Inca1+/+ and Inca12/2 bone
marrow cells from age-matched mice were analyzed in colony formation assays with subsequent replating. Replated Inca12/2 cells of young mice exhibited
a significant growth advantage in comparison to wild type cells after two platings (asterisks indicate p50.02, t-test) without altering colony differentiation (Fig.
S1B). Shown here are means with standard deviations of four (‘‘young’’: 10–18 weeks old mice) and three independent experiments (‘‘old’’: 20 months old
mice). D. For cell cycle analysis of enriched hematopoietic stem cells, Lin2 Sca-1+ c-Kit+ (LSK) cells of age-matched Inca1+/+ and Inca12/2 mice were
stained with DAPI.

doi:10.1371/journal.pone.0115578.g001
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Next, we analyzed whether Inca1 controlled the proliferation of hematopoietic

cells in vivo. In competitive transplantation assays, we transplanted bone marrow

cells from CD45.2-positive Inca1+/+ or Inca12/2 siblings versus CD45.1-positive

bone marrow of congenic mice at ratios of 1:100 (51%), 1:10 (510%) and 1:1

(550%; Fig. 2A, left-hand side), and measured the ratio of CD45.1 vs CD42.2

positive cells by FACS at certain time points after transplantation as a value for the

proliferation capacity of Inca1-wild type and Inca1-knockout cells. Neither five

nor 12 weeks after transplantation, Inca12/2 donor cells possessed a significant

advantage compared to Inca1+/+ cells (Fig. 2A).

Also, serial transplantations did not exhibit a significant difference between the

growth capacity of Inca12/2 compared to Inca1+/+ bone marrow cells (Fig. 2B),

suggesting a rather mild impact of Inca1 on the in vivo-function of short-term

hematopoietic stem and progenitor cells as detected only in the presence of more

ST-HSCs in old Inca12/2 mice (Fig. 1B). Although some CDK inhibitors like p21

[2], p27 [1] and p16 [3] are important regulators of HSC function, other

prominent cell cycle regulators like RB1 [7], CDK2 [6] are largely dispensable for

normal hematopoiesis, just as Inca1 seems to be.

Proliferation of hematopoietic progenitor cells is regulated by

Inca1 under 5-FU-induced stress

Although Inca1 had a limited impact on steady-state hematopoiesis, it could

influence hematopoiesis under stress conditions. Cytotoxic stress specifically

affects hematopoietic stem cells by accumulation of potentially detrimental

mutations as well as by inducing a strong proliferative signal due to killing of

proliferating progenitor cells [31]. We therefore examined the effects of repeated

administration of (5-FU). 5-FU ablates cycling cells from murine bone marrow

but largely spares quiescent cells, thereby strongly forcing HSCs to divide

[14, 15, 32, 33]. Repeated administration of 5-FU eliminates cells that derive from

HSCs and hematopoietic progenitor cells (HPC) to replace the ablated cycling

cells and subsequently reveals the capacity of HSC/HPCs to enter the cycle until

the HSC/HPC pool exhausts [2]. Remarkably, weekly administration of 5-FU

significantly shortened the lifespan of Inca1-deficient mice compared to wild type

littermates (Fig. 3A; p50.02). The increased 5-FU toxicity in Inca12/2 bone

marrow suggested a premature exhaustion of the progenitor/stem cell pool most

likely reflecting a more rapid cell cycling of HSC/HPC in the absence of Inca1.

To confirm this assumption, we injected mice with 5-FU on day 0 and day 7

and performed cell cycle analysis by BrdU incorporation and propidium iodide

(PI) staining on day 11. Indeed, Inca12/2 bone marrow cells of mice that had

been exposed twice to 5-FU showed significantly more cells in S-phase than 5-FU

treated wild type mice (Fig. 3B, upper and lower panel).

In contrast, the percentage of cells undergoing apoptosis was identical in both

5-FU treated groups in this assay (data not shown). Also, the cell cycle

distribution of total bone marrow from untreated Inca12/2 mice did not differ

from wild type littermates (see below, Fig. 3B). Interestingly, bone sections
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Fig. 2. Inca1 regulates the hematopoietic stem cell pool. A. Left-hand side: Schematic overview about the competitive transplantation assays. Cells from
CD45.2+ Inca1+/+ or Inca12/2 mice were mixed at different ratios with Inca1+/+ bone marrow from congenic CD45.1+ mice and transplanted in CD45.1+

recipients. Right-hand side: Blood analysis revealed that recipients of both genotypes showed comparable numbers of CD45.2+-donor cells in the blood
after six and twelve weeks. B. For serial bone marrow transplantation, cells from CD45.2+ Inca1+/+ or Inca12/2 mice were transplanted into congenic
irradiated CD45.1+ mice. Retransplantation was performed six weeks after initial transplantation. Although Inca12/2 cells appeared overrepresented in the
third round of bone marrow transplantation (‘‘BMT3’’) compared to Inca1+/+ cells, these results did not reach statistical significance (p50.07, t-test).

doi:10.1371/journal.pone.0115578.g002
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indicated that the bone marrow was largely depleted of hematopoietic cells in 5-

FU treated Inca12/2 mice (Fig. 3C). As a consequence, the numbers of bone

marrow cells were significantly decreased in 5-FU treated Inca12/2 compared to

control mice (Fig. 3D; p50.002). No other specific histopathological abnormal-

Fig. 3. Cytotoxic stress exhausts the stem cell pool in Inca1-deficient bone marrow. A. The Kaplan-
Meier plot illustrates the survival of Inca1+/+ (n57) and Inca12/2 (n513) mice after weekly administration of
the myeloablative agent 5-fluorouracil (5-FU). 5-FU treatment targeted predominantly proliferating bone
marrow cells and led to a significantly shortened lifespan of Inca12/2 mice compared to their wild type
littermates (p50.02, log-rank). B. Cell cycle analysis of total bone marrow from mice treated twice with 5-FU
using BrdU/PI staining and subsequent FACS analysis. Inca12/2 bone marrow cells of mice that had been
exposed twice to 5-FU showed more cells in S-phase than 5-FU treated wild type mice. Shown here is a
representative example of three independent experiments. C. Histological bone sections from 5-FU treated
mice showed significant depletion of hematopoietic cells in the bone marrow of Inca12/2 sternum (right-hand
side) with replacement by fat cells compared to wild type control mice. In contrast, hematopoietic cell numbers
were only mildly decreased in wild type mice (left panel). Lower panels show higher magnifications of the
areas marked in the upper panels. D. The total number of nucleated bone marrow cells was significantly
decreased in Inca12/2 mice after two cycles of 5-FU treatment (mean ¡ SD, p50.002, t-test). All mice were
16 weeks old at the time of analysis. E. Bone marrow cellularity in non-challenged mice did not differ between
Inca12/2 and Inca1+/+ genotypes (mice aged 70 to 425 days; mean ¡ SD, p50.83, t-test).

doi:10.1371/journal.pone.0115578.g003
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ities were found in the 5-FU exposed Inca12/2 mice. In addition, the total number

of bone marrow cells in untreated Inca1-deficient mice was unchanged compared

to age-matched wild type mice (Fig. 3E).

Therefore, Inca1 might regulate proliferation of HSC/HPCs under stress

conditions, preventing their early exhaustion.

Inca1 alters latency and penetrance of leukemogenesis induced

by AML1-ETO9a

The sensitivity of Inca12/2 bone marrow cells towards 5-FU led us to analyze

Inca1 functions during another stress situation: leukemogenesis. In leukemia (as

in other cancers), initiation and maintenance of the disease depend on exact cell

cycle regulation of the leukemia initiating cells that allow unrestricted

proliferation while preserving self-renewal activity. We therefore analyzed whether

the balance between proliferation and self-renewal was affected by the absence of

Inca1. Wild type or Inca12/2 bone marrow cells were retrovirally transduced with

leukemogenic oncogenes and transduced cells were analyzed freshly as well as after

primary and secondary transplantations (Fig. 4A).

We first looked at the influence of Inca1 in AML1-ETO9a-driven leukemia [21].

Initial engraftment after primary transplantation appeared to be higher with

Inca12/2 bone marrow as assessed by the detection of GFP positive blood cells,

which originated from AML1-ETO9a-transduced bone marrow cells (Fig. 4B).

Intriguingly, we observed exhaustion of the transplanted AML1-ETO9a-positive

Inca12/2 bone marrow cells as indicated by the decrease of GFP+ peripheral blood

cells over time in the Inca12/2 transplanted mice but not in the mice transplanted

with Inca1+/+; AML1-ETO9a cells (Fig. 4B; p50.015 Inca12/2 at 4 wks vs Inca12/2

at 40 wks, and p50.04 Inca12/2 at 8 wks vs Inca12/2 at 40 wks). Also, colony

forming units were reduced in Inca12/2; AML1-ETO9a cells from mice which were

transplanted six months before (Fig. 4C). Replating capability, which was readily

observed in Inca1+/+; AML1-ETO9a bone marrow cells, was abolished in Inca12/2;

AML1-ETO9a bone marrow cells (Fig. 4C).

We hypothesized that loss of Inca1 led to exhaustion of AML1-ETO9a-

transduced stem cells, in analogy to the premature exhaustion of 5FU-treated

Inca12/2 HSC/HPCs. To test this hypothesis, we performed cloning efficiency

experiments of GFP+ bone marrow cells (as depicted in Fig. 4A) at different time

points after transplantation to determine the fraction of AML1-ETO expressing

cells that could give rise to clonal growth. AML1-ETO9a-positive cells from

transplanted mice were sorted according to their GFP-positivity and seeded in cell

numbers from 1 to 300 cells in methylcellulose in 48-well plates and the colony

forming efficiency was determined according to Poisson-statistics. GFP-positive

Inca1+/+; AML1-ETO9a exhibited a more than five times higher cloning efficiency

than Inca12/2; AML1-ETO9a cells at 60 days after transplantation (Fig. 4D).

Strikingly, the fraction of GFP+ cells that could give rise to clonal growth was

strongly diminished in AML1-ETO9a-transduced Inca12/2 bone marrow cells

after six months of repopulation in mice without developing an AML (Fig. 4E).
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In line with these findings, leukemia induction in AML1-ETO9a-transduced

Inca12/2 bone marrow cells was severely impaired (Fig. 5A). We transplanted

100,000 (Fig. 5A, left-hand side) or 250,000 AML1-ETO9a+ cells (Fig. 5A, right-

hand side) in two independent experiments. About half of the wild type cell-

transplanted recipients died due to acute myeloid leukemia with a latency of about

six months in both settings. The leukemic phenotype was characterized by an

increased white blood cell count and spleen size (data not shown) and bone marrow

and splenic infiltration of c-kit-positive leukemic blasts (Fig. 5B and C). In contrast,

mice transplanted with Inca12/2 cells transduced with AML1-ETO9a showed very

low penetrance and a significantly prolonged latency (Fig. 5A). Only one out of ten

transplanted mice with 250,000 AML1-ETO9a-transduced Inca12/2 bone marrow

(Fig. 5A, left-hand side) died of acute myeloid leukemia (AML), none out 15

transplanted with 100,000 cells (Fig. 5A, right-hand side). The disease phenotype in

this mouse was similar to the phenotype observed in wild type cells (Fig. 5B), with

prominent c-kit expression of leukemic blasts (Fig. 5C).

Another assay to analyze the repopulation capacity of leukemic cells is the

transplantation of primary leukemic cells into secondary recipients. The leukemia

induced in Inca1+/+; AML1-ETO9a cells was readily transplantable and lethal with

very short latency (Fig. 5D). In contrast, mice receiving Inca12/2; AML1-ETO9a

bone marrow cells of the single leukemic mouse of this genotype (Fig. 5B and C)

developed a disease with a significantly delayed latency (more than 150 days;

Fig. 5D: p,0.001).

Here, the high proliferative stress induced by leukemogenic oncogenes

inhibited leukemia development and maintenance in absence of Inca1. Strongly

decreased cloning efficiency and colony growth of AML1-ETO9a-expressing bone

marrow cells provided functional evidence that Inca1 is required for leukemic

stem cell (LSC) maintenance.

We next sought to confirm leukemia exhaustion independently in another

model of murine AML. Transplantation of Inca1-deficient and wild type bone

marrow retrovirally transduced with the oncogene MLL-AF9 [22, 23, 34] led to

myeloid leukemia both in wild type and Inca12/2 bone marrow with comparable

Fig. 4. Self-renewal of AML1-ETO9a-transduced bone marrow cells is impaired in absence of Inca1. A. Schematic overview about the performed
transduction and transplantation experiments. Bone marrow isolated from Inca1+/+ or Inca12/2 mice was retrovirally transduced with AML1-ETO9a-IRES-
GFP, MLL-AF9-IRES-GFP, or c-myc-IRES-BCL2-IRES-mCherry. Equal numbers of positive cells were transplanted into lethally irradiated recipients, which
were then subjected to different analyses. B. Engraftment of AML1-ETO9a-transduced Inca1+/+ and Inca12/2 bone marrow cells was determined by FACS
analysis of GFP-positive cells in the blood of transplanted mice from 4 to 40 weeks. Engraftment was initially higher in recipients transplanted with Inca12/2

bone marrow cells. The number of GFP-positive cells in Inca12/2 bone marrow decreased significantly from weeks 4 and 8 until week 40 (*p50.015 and
**p50.04, respectively). This analysis was restricted to mice without overt leukemia. Inca1+/+: n514 at 4 and 8 weeks, n59 for 32 and 40 weeks; Inca12/2:
n510 at 4 weeks, n59 at 8 and 32 weeks, n57 at 40 weeks. C. Colony assays with two subsequent replatings using AML1-ETO9a-positive Inca1+/+ or
Inca12/2 bone marrow cells, respectively, that were FACS-sorted from non-leukemic transplanted mice (n53 from each genotype). Inca12/2 bone marrow
cells transduced with AML1-ETO9a formed less colonies and replated worse than transduced Inca1+/+ cells (1st plating: p50.01; 2nd plating: p50.03; 3rd

plating: n.s.). D and E. For a cloning efficiency assay, 1 to 300 GFP-positive Inca1+/+; AML1-ETO9a or Inca12/2; AML1-ETO9a bone marrow cells from non-
leukemic transplanted mice were FACS-sorted two (D) or six months (E) and lin2GFP+ cells were seeded in semi-solid medium in a 48-well plate (n514 for
each concentration). Two months after transplantation, Inca1+/+ cells had a clone forming frequency of 1/31, while the frequency was much lower in Inca12/2

cells (1/164; p50.0001) (D). After six months, cloning efficiency of Inca12/2 cells decreased to 1/483 (E).

doi:10.1371/journal.pone.0115578.g004
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latency, penetrance, and morphology (Fig. 6A; p50.056). But Inca12/2; MLL-

AF9 leukemic cells generated a transplantable disease upon transplantation into

secondary recipients with a significantly longer latency than Inca1+/+; MLL-AF9

cells (Fig. 6B; p,0.001), suggesting a hidden leukemia stem cell phenotype in the

primary MLL-AF9-induced disease, which was uncovered upon the secondary

transplantation. Remarkably, when we directly compared the effect of the absence

of Inca1 to the absence of p16, a known tumor suppressor [35, 36], Inca12/2

MLL-AF9-leukemic blasts initiated a secondary leukemia significantly later than

p162/2 blasts did (Fig. 6B).

As a third model of murine leukemia, we analysed the survival of c-myc/BCL2-

transduced bone marrow cells, which led to comparable results as for MLL-AF9-

transduced cells: No difference occurred between wild type and Inca1-knockout

cells after primary transplantation (S2A Fig.) but the latency of leukemogenesis

was significantly prolonged in absence of Inca1 after secondary transplantation

(S2B Fig.).

In accordance with the effect of Inca1 in AML1-ETO9a-transduced bone

marrow cells, FACS-isolated GFP+ c-kit+ MLL-AF9 blasts formed significantly

fewer colonies in absence of Inca1 (Fig. 6C). Moreover, the frequency of colony

forming units as determined in cloning efficiency assays was lower in GFP+ c-kit+

Inca12/2; MLL-AF9 blasts than in wild type MLL-AF9 blasts (Fig. 6D).

Inca1 mRNA expression levels in AML blasts are lower than in normal bone

marrow cells [15]. It is tempting to speculate that suppression of Inca1 permits

expansion of the malignant clone but that a threshold of Inca1 is required to

prevent leukemia exhaustion. Obviously, low Inca1 expression in patients and no

Inca1 expression in genetically modified mice make a difference for leukemo-

genesis, as seen in AML1-ETO9a-positive cells. Therefore, it might be useful to

further lower the INCA1 expression in leukemia patients to inhibit its function as

cell cycle regulator and to reach an expression level near to absence that prohibits

LSC maintenance. Since absence of Inca1 also does not appear to affect important

organs and therefore survival, such a therapy approach might lack severe side

effects as seen i.e. with FLT3-inhibitors. Here, FLT3 is essential for normal

hematopoiesis [37], on the other hand mutated FLT3 triggers leukemogenesis in

Fig. 5. Inca1 is required for AML1-ETO9a-driven leukemia initiation and maintenance in vivo. A. Survival curve of recipient mice which were
transplanted in two independent experiments with bone marrow cells of Inca1+/+ and Inca12/2 mice that were retrovirally transduced with AML1-ETO9a.
Left-hand side: Transplantation with 100,000 AML1-ETO9a+ cells (both genotypes: n515); right-hand side: Transplantation with 250,000 AML1-ETO9a+

cells (Inca1+/+: n514, Inca12/2: n510). Only one Inca12/2 bone marrow transplanted with 250,000 AML1-ETO9a+ cells led to a lethal leukemic phenotype,
while about half of the Inca1+/+ AML1-ETO9a transplanted mice died within 300 days. B. Bone marrow smears (upper panel) and spleen sections (lower
panel) of Inca1+/+ and Inca12/2 AML1-ETO9a transplanted mice that died of a leukemic phenotype. Arrows in the upper panels hint at leukemic blasts,
indicating acute myeloid leukemia. HE stained sections revealed morphological disruption of the splenic structure and accumulation of myeloid cells in both
genotypes (lower panels). C. Leukemic phenotypes of recipients that received AML1-ETO9a-transduced Inca1+/+ and Inca12/2 bone marrow cells are
characterized by an infiltration of bone marrow and spleen with GFP+c-kit+ leukemic blasts in both genotypes. D. Survival curve of secondary recipient mice
which were transplanted with bone marrow cells of leukemic mice derived from the primary transplantation shown in Fig. 5A. All mice transplanted with
primary leukemic Inca1+/+; AML1-ETO9a bone marrow cells died within 60 days, whereas secondary recipients of Inca12/2; AML1-ETO9a cells died with an
increased latency of 150 days (Inca1+/+: n518, Inca12/2: n55; p50.001).

doi:10.1371/journal.pone.0115578.g005
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mice [38, 39] and man [40, 41]. Therefore, although FLT3-ITD seems to be a

potent therapeutic target [41, 42], adverse reactions like incomplete hematological

recovery after chemotherapy [43] could be anticipated according to the murine

Fig. 6. Absence of Inca1 accelerates MLL-AF9 driven murine leukemogenesis. A. Survival curves of recipient mice, which were transplanted with bone
marrow cells of Inca1+/+ or Inca12/2 mice that were retrovirally transduced with MLL-AF9 as depicted in Fig. 4A (n511 of each genotype). Cells of both
genotypes led to a fatal leukemic disease with comparable latency. B. Survival curves of secondary recipient mice which were transplanted with 106 GFP+

leukemic spleen cells of leukemic mice derived from the primary transplantation shown in Fig. 5B. The secondary recipients of Inca12/2; MLL-AF9 cells
(n515) died after a significantly longer latency than mice transplanted with Inca1+/+; MLL-AF9 primary blasts (n515; p,0.001). Secondary transplantation of
p162/2; MLL-AF9 blasts also had elongated survival compared to wild type-MLL-AF9 cells (p,0.001), but to a significant less extent (Inca12/2 vs p162/2:
p,0.001). C. Colony assays using MLL-AF9/GFP+c-kit+ Inca1+/+ or Inca12/2 spleen blast, respectively. Inca12/2; MLL-AF9 blasts formed less colonies
Inca1+/+ blasts (p50.05, t-test). D. For a cloning efficiency assay, Inca1+/+; MLL-AF9 or Inca12/2; MLL-AF9 bone marrow cells from leukemia-transplanted
mice were FACS-sorted and 1 to 300 c-kit+GFP+ cells were seeded in semi-solid medium in a 48-well plate. Inca1+/+ cells had a clone forming frequency of
1/13, while the frequency was much lower in Inca12/2 cells (1/54; p50.0001). Shown here are the mean results of two independent experiments.

doi:10.1371/journal.pone.0115578.g006
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knockout phenotype [37]. Pharmacological inhibitors of the cell cycle have

already become an attractive and effective therapy option (reviewed in [44]).

Therapeutic targets like Inca1 that are at least not essential for survival of

hematopoietic cells under homeostatic conditions might be a good choice to be

tested.

In summary, we identify INCA1 as a novel regulator of leukemic stem cell

function, which is largely dispensable for normal hematopoiesis under

homeostatic conditions. The distinct functions in the regulation of stem/

progenitor cells under physiological conditions and in leukemogenesis suggest

that Inca1 might be a novel target for leukemia stem cell specific therapy

approaches.

Supporting Information

S1 Fig. Loss of Inca1 does not interfere with normal hematopoiesis. S1A. FACS-

analysis of bone marrow cells of Inca1+/+ and Inca12/2 mice. The hematopoietic

subpopulations were determined as Lin2 Sca-1+ c-Kit+ (LSK) cells, LT-HSC

(CD342/Flt32), ST-HSC (CD34+/Flt32) and MPPs (CD34+/Flt3+). Marked areas

indicate Lin2 Sca-1+ c-Kit+. Results are summarized in 1B. S1B. The

differentiation of colonies grown in methylcellulose did not differ between wild

type and Inca12/2 cells. S1C. Colony assays using sorted LSK cells from Inca1+/+

and Inca12/2 bone marrow. No differences could be observed between the two

genotypes.

doi:10.1371/journal.pone.0115578.s001 (EPS)

S2 Fig. Loss of Inca1 delays secondary transplanted c-myc/BCL2 leukemia. S2A.

Survival curves of recipient mice, which were transplanted with bone marrow cells

of Inca1+/+ or Inca12/2 mice retrovirally transduced with c-myc-IRES-BCL2 as

depicted in Fig. 4A (n512 of each genotype). Cells of both genotypes led to a fatal

leukemic disease with comparable latency and penetrance. S2B. Survival curves of

secondary recipient mice which were transplanted with 106 mCherry+ spleen cells

of leukemic mice derived from the primary transplantation shown in Fig. S2A.

The secondary recipients of Inca12/2; c-myc/BCL2 cells (n511) died after a

significantly longer latency than mice transplanted with Inca1+/+; c-myc/BCL2

primary blasts (n511; p50.005).

doi:10.1371/journal.pone.0115578.s002 (EPS)

Acknowledgments

We are grateful to Lisa Terheyden, Linda Kerstiens, and Annika Krause for

excellent technical assistance. We thank Dong-Er Zhang and Frank Rosenbauer

for providing plasmids.

Inca1 Regulates Leukemia-Initiating Cells

PLOS ONE | DOI:10.1371/journal.pone.0115578 December 19, 2014 18 / 21

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115578.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0115578.s002


Author Contributions
Conceived and designed the experiments: NB PT CMT. Performed the

experiments: NB FB SB PT MS. Analyzed the data: NB GK WEB CMT. Wrote the

paper: NB SB PT CMT.

References

1. Cheng T, Rodrigues N, Dombkowski D, Stier S, Scadden DT (2000) Stem cell repopulation efficiency
but not pool size is governed by p27(kip1). Nat Med 6: 1235–1240.

2. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, et al. (2000) Hematopoietic stem cell
quiescence maintained by p21cip1/waf1. Science 287: 1804–1808.

3. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, et al. (2006) Stem-cell ageing modified by the
cyclin-dependent kinase inhibitor p16INK4a. Nature 443: 421–426.

4. Yu H, Yuan Y, Shen H, Cheng T (2006) Hematopoietic stem cell exhaustion impacted by p18 INK4C
and p21 Cip1/Waf1 in opposite manners. Blood 107: 1200–1206.

5. Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T (2004) In vivo self-renewing divisions of
haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat
Cell Biol 6: 436–442.

6. Berthet C, Rodriguez-Galan MC, Hodge DL, Gooya J, Pascal V, et al. (2007) Hematopoiesis and
thymic apoptosis are not affected by the loss of Cdk2. Mol Cell Biol 27: 5079–5089.

7. Walkley CR, Orkin SH (2006) Rb is dispensable for self-renewal and multilineage differentiation of adult
hematopoietic stem cells. Proc Natl Acad Sci U S A 103: 9057–9062.

8. Sherr CJ, Roberts JM (2004) Living with or without cyclins and cyclin-dependent kinases. Genes Dev
18: 2699–2711.

9. van Os R, Kamminga LM, Ausema A, Bystrykh LV, Draijer DP, et al. (2007) A Limited role for
p21Cip1/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells 25: 836–843.

10. Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, et al. (2011) p57 is required for quiescence
and maintenance of adult hematopoietic stem cells. Cell Stem Cell 9: 262–271.

11. Zou P, Yoshihara H, Hosokawa K, Tai I, Shinmyozu K, et al. (2011) p57(Kip2) and p27(Kip1)
cooperate to maintain hematopoietic stem cell quiescence through interactions with Hsc70. Cell Stem
Cell 9: 247–261.

12. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112: 4793–4807.

13. Saito Y, Uchida N, Tanaka S, Suzuki N, Tomizawa-Murasawa M, et al. (2010) Induction of cell cycle
entry eliminates human leukemia stem cells in a mouse model of AML. Nat Biotechnol 28: 275–280.

14. Viale A, De Franco F, Orleth A, Cambiaghi V, Giuliani V, et al. (2009) Cell-cycle restriction limits DNA
damage and maintains self-renewal of leukaemia stem cells. Nature 457: 51–56.
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