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Zunächst möchte ich mich bei meinem Betreuer Prof. Dr. Gerold Alsmeyer für seine
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Summary

A branching within branching process, introduced in [27], is a process that consists
of two branching components, where one (often called parasites) proliferates inside the
individuals (cells) of the other. It can be used to describe host-parasite populations.
In the present thesis, we extend this model of a branching within branching process by
including a generational random environment that governs the parasite reproduction
inside the cells.

We show that many results from the standard model also hold in our extended model.
These results include extinction-explosion principles for the process of parasites (Zn)n≥0

as well as for the process (T ∗n )n≥0 counting the number of infected cells. Moreover, we
show a Kesten-Stigum-type result for the nondegeneracy of the limit of the normalised
process of parasites. Further results concern the long-term behaviour of the process
(Fn(k))≥0 describing the number of infected cells with a given number k ∈ N of parasites.
Finally, we take a look at two examples, where the conditional parasite offspring
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distribution is linear fractional.
The techniques used here are close to the ones used by Gröttrup in [27]. Among

others, we use the construction of certain size-biased processes, which, for example,
enable us to connect the long-term behaviour of the processes (T ∗n )n≥0 and (Fn(k))≥0 to
the long-term behaviour of a certain branching process in random environment.
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Introduction

The topic of this thesis falls in the scope of branching processes. In its simplest form,
a branching process is used to describe the evolution of a population of individuals
or particles, which reproduce independently and in an identical manner. The original
model was introduced by Francis Galton and Henry William Watson in 1875 [56] and
is therefore called the Galton-Watson process (GWP) or sometimes Bienaymé-Galton-
Watson process, as Irénée-Jules Bienaymé derived a similar model independently of and
earlier than the aforementioned. Galton and Watson developed their model to analyse
the extinction of aristocratic family names. However, the possible fields of application of
their model are numerous, e.g. populations of living organisms, electron multipliers, the
spreading of viruses and many more. Hence, branching processes have been extensively
studied in the last century, and, as this simple model has its limitations, many extensions
to the original model have been made. An overview of some of these extensions and
further references can be found in the book of Asmussen and Hering [7] as well as in the
book of Athreya and Ney [10].
One extension of particular interest is the consideration of a random environment. Here,
the i.i.d. reproduction of different individuals, crucial in the standard GWP setting,
is relaxed in the following way: First, in each generation the reproduction law of the
individuals is randomly chosen from a set of probability laws on N0, i.e. in general,
individuals in different generations do not reproduce in an identical manner. Second,
the multiplication of individuals is only independent given the environment. This model
has been introduced by Smith and Wilkinson in [49, 50]. Generalisations and further
results can be found in the articles of Athreya and Karlin [8, 9], Tanny [51, 52, 53],
Geiger et al. [1, 2, 22, 23] and Liu et al. [25, 32, 30, 31, 42, 43, 54, 55].

In the present thesis, we extend a discrete time model suggested by Bansaye in
[11]. Bansaye’s model describes the evolution of parasites in dividing cells and is a
discrete-time version of a model introduced by Kimmel in [37]. To be more precise,
Bansaye’s model comprises two branching components. The first one describes the
deterministic cell division, i.e. in each generation cells split into two daughter cells. The
second component describes an organism living inside these cells, e.g. parasites, as in
[11] and in most parts of the following thesis, or some cellular components like organelles.
After one unit of time each organism inside a cell produces offspring and shares these
into the two daughter cells independently of all the other organisms.
Recently, this model has been extended in a couple of ways. In [12], Bansaye considered
the model with a random environment, where in each cell the parasite multiplication is
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Introduction

governed by the random environment, and he also added an immigration component.
This means that in each generation new parasites from outside the population contami-
nate the cells. In his PhD thesis [27], Gröttrup analysed a different extension of the
original model. Instead of a deterministic cell division he allowed for a general random
cell tree. Moreover, he included the possibility that the cell reproduction can influence
the multiplication of the parasites and their sharing into the daughter cells. He called
the corresponding process, describing the alive cells and the number of parasites they
contain, a branching within branching process.
Here, we want to consider a simple branching within branching process in random
environment. To be more precise, the cell tree is again random but cells can have at
most two daughter cells and the cell reproduction does not influence the multiplication
of the parasites. Moreover, we consider an environmental sequence that governs the
parasite reproduction of an entire generation. Note that in [12] the random environment
determined the parasite reproduction for each cell separately.

The thesis is structured as follows. In the first chapter we introduce the model of a
branching within branching process including our extension to a generational random
environment and give a precise definition of a branching within branching process in
random environment.
In the following two chapters, we analyse two interesting processes arising from our
model. The first one is the process of contaminated (or infected) cells (T ∗n )n≥0, describing
the number of cells that are infected by parasites. The second one is the process of
parasites (Zn)n≥0, where Zn denotes the number of parasites in generation n. Chapter 2
contains results for the process (T ∗n )n≥0, including the a.s. convergence after a proper
normalisation, and an extinction-explosion principle for the process of parasites. It
turns out, that the asymptotic behaviour of the process (T ∗n )n≥0 is closely connected
to the behaviour of the process of the number of parasites along a randomly chosen
cell line (ZVn)n≥0. Therefore, we introduce this process using the method of size-biasing
and prove the crucial connection to the process of contaminated cells. Additionally,
this chapter includes some results about the process (Fn(k))n≥0 of the number of cells
with exactly k parasites. The third chapter is devoted to the process (Zn)n≥0. We
show that after a suitable normalisation this process converges a.s. to a random variable
W , say. The second part of this chapter introduces the construction of the size-biased
branching within branching process in random environment, where this time, the spine
is picked along the parasites and not along the cells as in Chapter 2. This construction
enables us to prove a dichotomy on the asymptotic behaviour of the normalised process
of (Zn)n≥0. In the final section of this chapter, we are going to show that under this
spinal construction the process of parasites along the spine forms a branching process in
random environment with immigration.
The first part of Chapter 4 is devoted to results about the limit W of the normalised
process of parasites in the case P(Surv) > 0. In particular, we give equivalent conditions
for the nondegeneracy of W . It turns out, that the modified (Z logZ)-condition, known
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from branching processes in random environment (BPRE), together with some technical
assumptions, is not enough for the nondegeneracy of W . A second condition regarding
the aforementioned process (ZVn)n≥0 is also needed. In the second part of Chapter 4,
we show that under certain conditions the number of parasites in strongly infected cells
is negligible compared to the total number of parasites, and that strongly infected cells
of a generation n ∈ N do not have a big impact on the number of infected cells in the
following generations.
In Chapter 5, we take a look at two examples of a BwBPRE, where the conditional
parasite distribution is linear fractional.

Since this is an extension of the model introduced by Gröttrup, the structure (and
approach) of our work is close to that in [27].

3





1. The model

In this chapter, we are going to extend the model of a branching within branching process,
introduced by Gröttrup in [27], by adding a random environment. For easy comparisons,
we use a similar notation. As mentioned in the introduction, our random environment
solely affects the multiplication of parasites and their sharing into the daughter cells
and does not influence the evolution of the cell tree. Before giving a description and a
definition of our model, we recall the notion of the well-known Ulam-Harris tree.

1.1. The Ulam-Harris tree

Let

V :=
⋃
n∈N0

{0, 1}n,

denote the infinite binary Ulam-Harris tree where {0, 1}0 := {∅} and ∅ is the root. For
convenience we write v1...vn for the vector (v1, . . . , vn) ∈ V, n ∈ N, and v = v1...vn
describes the unique path

∅ → v1 → . . .→ v1...vn = v

from the root ∅ to v. Further let |v| denote the length of this path, so that |v| = n for
v ∈ {0, 1}n and in this case we say that v is a member of the n-th generation. Moreover
for v = v1...vn we use the shorthand notation v|k for the predecessor of v in generation
k ≤ n, viz v|0 := ∅ and v|k := v1...vk, k ≥ 1, and we write u < v if v is a descendant
of u, so that u = v|k for a k < n. Finally, the concatenation uv = u1...umv1...vn is the
vertex v = v1...vn in the tree rooted in u = u1...um.

1.2. Informal description of the model

Next, we informally describe the process of proliferating parasites in a cell tree in random
environment, where the random environment e = (en)n≥0 governs the reproduction and
the sharing of the parasites. We assume that cells can die, produce one daughter cell or
split into two daughter cells.
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1. The model

The process starts with a single cell contaminated with a single parasite. Given
a parasite distribution e0 = u ∈ M(N2

0) in generation 0, the parasite gives birth
to x = (x1, x2) ∈ N2

0 offspring according to this distribution, and the cell produces
i ∈ {0, 1, 2} daughter cells, independently of the environment and of the parasite
reproduction. In the case i = 0 all descendants of the parasite die, in the case i = 1 all
x1 + x2 descendants of the parasite go into the one living daughter cell and in the case
i = 2, x1 parasites go into the first daughter cell and x2 parasites go into the second
daughter cell. Now, all the cells of the first generation exhibit the same behaviour as
before, but the parasites act according to the distribution given by the environmental
component e1. Given the environment, all parasites of the first generation behave
independently of one another as well as of the parasites of the previous generation, and
the cells reproduce independently and independent of the environment as well as of the
parasites. This mechanism goes on indefinitely.

The following picture shows a realization of the above described mechanism. Cells are
denoted by ○ and parasites are denoted by � and •, respectively, where � indicates
the parasites going to the first daughter cell (if it exists) and • indicates the parasites
going to the second daughter cell (if it exits) or to the first daughter cell (if only one
daughter cell exists). Apart from that, the shape of a parasite does not matter and is

solely for visual purposes. Moreover, GGGA indicates the parasite multiplication and —–

indicates the cell division.

gen. 0

multiplication of parasites

gen. 1

cell division

gen. 2 gen. 3

Figure 1.1.: Proliferating parasites in dividing cells up to generation three
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1.3. Formal definition of the model

1.3. Formal definition of the model

To give a formal representation of this process, let (Ω,A,P) be a probability space large
enough to carry all random variables defined hereafter.

1.3.1. The cell population

We consider the cell population first. Therefore, let (Tv)v∈V be a family of i.i.d. random
variables taking values in {0, 1, 2}, and set

pk := P(T∅ = k), k ∈ {0, 1, 2},

as well as pk = 0, k ≥ 3. We consider the random subtree T :=
⋃
n∈N0

Tn of V, where
T0 := {∅} and

Tn := {v1...vn ∈ V : v1...vn−1 ∈ Tn−1, 0 ≤ vn ≤ Tv1...vn−1 − 1}

is the set of cells in the n-th generation. Since (Tv)v∈V is an i.i.d. family, T forms a
Galton-Watson tree with offspring distribution (pk)k≥0 and reproduction mean

µ = p1 + 2p2 = 1− p0 + p2.

Furthermore let (Av)v∈V be a family of indicators describing which vertices of V belong
to T, viz.

Av =

{
1, if v ∈ Tn,

0, if v /∈ Tn,

for n ∈ N0 and v ∈ V with |v| = n. In particular, A∅ = 1 P-a.s. We say that cell v is
alive if Av = 1, otherwise we call the cell dead. For a cell v = v1...vn ∈ V, n ≥ 1, we
have

{Av = 1} = {v ∈ Tn} = {Av|n−1 = 1, Tv|n−1 − 1 ≥ vn} P-a.s.

and therefore we get by iteration

Av = Av|n−11{Tv|n−1−1≥vn} = A∅

n−1∏
i=0

1{Tv|i−1≥vi+1} =
n−1∏
i=0

1{Tv|i−1≥vi+1} P-a.s.
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1. The model

Moreover, we have

P

( 1∑
u=0

Avu

)
|v|=n

= (kv)|v|=n

∣∣∣∣∣∣ (Av)|v|=n = (tv)|v|=n

 = P
(
(tvTv)|v|=n = (kv)|v|=n

)
=

∏
|v|=n,tv=1

pkv
∏

|v|=n,tv=0

δ0kv ,

where kv ∈ {0, 1, 2} and tv ∈ {0, 1} for |v| = n, and δij denotes the Kronecker delta. For
n ∈ N0 we set

Tn := #Tn =
∑
|v|=n

Av,

that is the number of living cells in the n-th generation. Clearly, the process (Tn)n≥0 is
a standard Galton-Watson process with offspring distribution (pk)k≥0 and mean number
of offspring µ.
In the next section, we are going to introduce the second branching component - the
parasites - but it is convenient to give the definition of some related quantities already
here. To describe the evolution of parasites in this random cell tree, we denote by Zv the
number of parasites in a cell v ∈ V, and for n ∈ N0 we write T∗n for the set of infected
cells in generation n as well as T ∗n for the number of infected cells in generation n, so
that

T∗n = {v ∈ Tn : Zv > 0} and T ∗n = #T∗n.

1.3.2. The multiplication of parasites in a generational random
environment

Next we focus on the parasite reproduction, and here the random environment comes
into play. To define the random environment, set

M := M(N2
0) :=

{
(unm)n,m∈N0 : unm ≥ 0 for n,m ∈ N0,

∑
n,m∈N0

unm = 1

}
, (1.1)

equipped with the trace σ-field M induced by B∞[0,1]. Let U be a random variable taking

values in M. Furthermore, let
(
X(0), X(1)

)
be a pair of random variables taking values

in N2
0 with

P
((
X(0), X(1)

)
∈ ·
∣∣U) = U .

8



1.3. Formal definition of the model

The random environment is a sequence e = (en)n≥0 of i.i.d. copies of U and governs the

multiplication and sharing mechanism of the parasites. Further, let
(
X

(0)
k,v , X

(1)
k,v

)
k≥1,v∈V

be a family of conditionally independent random variables given e, with

P
((
X

(0)
k,v , X

(1)
k,v

)
∈ ·
∣∣∣ e) = e|v|, k ≥ 1, v ∈ V.

Additionally, we assume (Tv)v∈V and
((

X
(0)
k,v , X

(1)
k,v

)
k≥1,v∈V

, e
)

to be independent.

More precisely, for a cell v ∈ T with at least one parasite and i ∈ {0, 1, 2} daughter

cells, X
(0)
k,v +X

(1)
k,v is the number of offspring of the k-th parasite in the cell v, whereby

all offspring die in the case i = 0, all offspring go into the only daughter cell in the
case i = 1, and in the case i = 2, X

(0)
k,v offspring go into the first daughter cell and X

(1)
k,v

offspring go into the second daughter cell. Thus, the number of parasites in the cells is
recursively defined by putting Z∅ = 1 and for v ∈ V

Zv0 = 1{Tv=1}

Zv∑
k=1

(
X

(0)
k,v +X

(1)
k,v

)
+ 1{Tv=2}

Zv∑
k=1

X
(0)
k,v ,

Zv1 = 1{Tv=2}

Zv∑
k=1

X
(1)
k,v .

By definition we have {Av = 0} ⊆ {Zv = 0}.
Note that the i.i.d. structure of the random environment ensures that all parasites

show the same biological behaviour, and that parasites in different generations behave
independently.

For later usage, let us introduce the random variables

X(0,1) := X(0) +X(1), X(0,2) := X(0), X(1,2) := X(1),

X
(0,1)
k,v := X

(0)
k,v +X

(1)
k,v , X

(0,2)
k,v := X

(0)
k,v , X

(1,2)
k,v := X

(1)
k,v ,

X
(0,0)
k,v := X

(1,0)
k,v := X

(1,1)
k,v := 0, k ≥ 1, v ∈ V,

and define

U (0,1) := P
(
X(0,1) ∈ ·

∣∣U) , U (0,2) := P
(
X(0,2) ∈ ·

∣∣U) ,
U (1,2) := P

(
X(1,2) ∈ ·

∣∣U) ,
as well as

e(0,1)
n := P

(
X

(0,1)
1,0∗n ∈ ·

∣∣∣ e) , e(0,2)
n := P

(
X

(0,2)
1,0∗n ∈ ·

∣∣∣ e) ,
e(1,2)
n := P

(
X

(1,2)
1,0∗n ∈ ·

∣∣∣ e) , n ≥ 0,

9



1. The model

where 0∗0 = ∅ and 0∗n = 0 . . . 0 (n-times), n ≥ 1. In particular, with these newly defined
random variables, the number of parasites in cell v = ui, u ∈ V, i ∈ {0, 1}, is given by

Zv =
Zu∑
k=1

X
(i,Tu)
k,u .

1.3.3. The branching within branching process in random
environment

Now we have all we need to define the process of proliferating parasites in a cell tree in
random environment. Unless stated otherwise, we assume that we start with a single
cell infected by a single parasite, i.e.

T0 = 1 and Z∅ = 1 a.s.

Definition 1.1. Given the i.i.d. environmental sequence e and all above introduced
random variables, we call BP := (BPn)n≥0 with BPn := (Av, Zv)|v|=n the associated
branching within branching process in random environment (BwBPRE) and BT :=
(BTn)n≥0 with BTn := (Av, Zv)|v|≤n the associated branching within branching tree in
random environment.

It will be useful to be able to analyse a BwBPRE with multiple root parasites, e.g. to
make assertions about the subprocess rooted in a cell of generation n ≥ 1. Therefore we
introduce the family (Pz)z≥0 of probability measures, defined on (Ω,A) and satisfying

Pz(T0 = 1, Z∅ = z) = 1,

such that (Tv)v∈V is still an i.i.d. family of random variables with law (pk)k≥0 under
each Pz. Moreover, the law of the environment e is the same under every Pz, and(
X

(0)
k,v , X

(1)
k,v

)
k≥1,v∈V is a family of conditionally independent random variables given e

under Pz, with

Pz

((
X

(0)
k,v , X

(1)
k,v

)
∈ ·
∣∣∣ e) = e|v|, k ≥ 1, v ∈ V.

In addition, we assume (Tv)v∈V and
((

X
(0)
k,v , X

(1)
k,v

)
k≥1,v∈V

, e
)

to be independent with

respect to Pz. Therefore, the evolution mechanism of the BwBPRE is the same under
every Pz. The expectation corresponding to Pz will be denoted by Ez, and in accordance
with the previously used notation we set P = P1 and E = E1. Sometimes, if convenient,
we are going to write P(1,z) for Pz. Finally, we introduce a measure P(0,0) for a process
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1.3. Formal definition of the model

that never lived, i.e.

P(0,0)(T0 = 0, Z∅ = 0) = 1

and thus P(0,0)(BT = (0, 0)v∈V) = 1.

1.3.4. The process of parasites and further notation

Next, we define the process of parasites (Zn)n≥0 via

Zn :=
∑
v∈Tn

Zv, n ∈ N0,

i.e. Zn is the number of parasites in the n-th generation. We set

ν(e0) := E [Z1 |e] = E

[∑
v∈T1

Zv

∣∣∣∣∣ e
]

= E
[
1{T∅=1}X

(0,1)
1,∅ + 1{T∅=2}

(
X

(0,2)
1,∅ +X

(1,2)
1,∅

)∣∣∣ e]
= P(T∅ 6= 0)E

[
X

(0)
1,∅ +X

(1)
1,∅

∣∣∣ e]
= (p1 + p2)E

[
X

(0)
1,∅ +X

(1)
1,∅

∣∣∣ e]
and

ν := E[Z1] = E[ν(e0)] = (p1 + p2)E
[
X

(0)
1,∅ +X

(1)
1,∅

]
. (1.2)

We will assume that

0 < ν <∞ and E

∣∣∣logE
[
X

(0)
1,∅ +X

(1)
1,∅

∣∣∣ e]∣∣∣ <∞. (1.3)

Finally, we make the assumptions that

p1 < 1 and P(Z1 = 1) < 1. (1.4)

This ensures that neither the number of cells nor the number of parasites stays constant
for every generation. An easy consequence of the last assumption, regarding the case of
multiple parasites in the root cell, is stated in the next

Lemma 1.2. If P(Z1 = 0) = 0, then P(Z1 = 1) < 1 ensures

Pz(Z1 = z) < 1 for all z ∈ N.

11



1. The model

Proof. First note that P(Z1 = 0) = 0 obviously yields p0 = 0 and also e
(0,1)
0 ({0}) = 0

P-a.s., since

0 = P(Z1 = 0) = P
(
X

(0)
1,∅ +X

(1)
1,∅ = 0

)
= E

[
e

(0,1)
0 ({0})

]
.

Further, observe that e
(0,1)
0 ({1}) < 1 with positive probability, because

1 > P(Z1 = 1) = E
[
e

(0,1)
0 ({1})

]
.

For z ∈ N these two observations lead to

Pz(Z1 = z) = P

(
z∑
i=1

(
X

(0)
i,∅ +X

(1)
i,∅

)
= z

)
=

∑
x1,...,xz∈{0,...,z}∑z

i=1 xi=z

P
(
X

(0)
1,∅ +X

(1)
1,∅ = x1, . . . , X

(0)
z,∅ +X

(1)
z,∅ = xz

)

=
∑

x1,...,xz∈{0,...,z}∑z
i=1 xi=z

E
[
P
(
X

(0)
1,∅ +X

(1)
1,∅ = x1, . . . , X

(0)
z,∅ +X

(1)
z,∅ = xz

∣∣∣ e)]

=
∑

x1,...,xz∈{0,...,z}∑z
i=1 xi=z

E

[
z∏
i=1

e
(0,1)
0 ({xi})

]

= E

[
z∏
i=1

e
(0,1)
0 ({1})

]
= E

[
e

(0,1)
0 ({1})z

]
< 1,

where we used the conditional independence of
(
X

(0)
i,∅ , X

(1)
i,∅
)
, 1 ≤ i ≤ z, given e, and the

Lemma is proved.

For later usage, we define the two filtrations F = (Fn)n≥0 and G = (Gn)n≥0 by
F0 := σ(Z∅), G0 := σ (e, Z∅) and

Fn := σ
(
Z∅, Tv, X

(0)
k,v , X

(1)
k,v : |v| ≤ n− 1, k ≥ 1

)
, n ≥ 1,

Gn := σ
(
e, Z∅, Tv, X

(0)
k,v , X

(1)
k,v : |v| ≤ n− 1, k ≥ 1

)
= σ(e,Fn), n ≥ 1.

12



1.4. The space of host-parasite trees

Put also

F∞ := σ

(⋃
n≥0

Fn

)
as well as G∞ := σ

(⋃
n≥0

Gn

)
.

It is clear from the definition that BP and BT are adapted with respect to F as well as
G, and that they are F∞-measurable as well as G∞-measurable if seen as a vector.

1.4. The space of host-parasite trees

In this section, we give the construction of the measurable space our BwBPRE lives in.
The corresponding notation will become handy in Section 3.3. In the process, we adopt
the concept and notation of the space of host-parasite trees used by Gröttrup in [27], to
describe the underlying tree structure of our model. Similar approaches can be found in
[17, 40, 48].

Set S := {(0, 0)} ∪ ({1} ×N0) and denote the set of host-parasite trees by

S := SV = ({(0, 0)} ∪ ({1} ×N0))V.

Each element (sv, xv)v∈V of S represents a host-parasite tree. For w ∈ V, define the
mappings

tw : S→ {0, 1}, (sv, xv)v∈V 7→ sw and ÿw : S→ N0, (sv, xv)v∈V 7→ xw.

Next define the sequence (Sn)n≥0 of σ-fields on S generated by these projections, that is

Sn := σ(tv, ÿv, |v| ≤ n)

and set S := σ(
⋃
n≥1 Sn). Clearly, (Sn)n≥0 is a filtration of the measurable space

(S,S), and the random host-parasite tree BP = BT = (Av, Zv)v∈V is S-valued and
A-S-measurable, since every (Av, Zv) is a random vector taking values in S. Note that
(S,S) is a Polish space as a countable product of discrete spaces (see [16], Chapter IX
§6), and its open subsets generate the σ-field S.

For n ∈ N0, let trn and tr |n denote the restrictions of a host-parasite tree to the n-th

generation and the first n generations, respectively. To be more precise, set Sn := S|v|≤n,
n ∈ N0, equipped with the canonical σ-field S|n and

trn : S→ S|v|=n, (sv, xv)v∈V 7→ (sv, xv)|v|=n

as well as

tr |n : S→ Sn, (sv, xv)v∈V 7→ (sv, xv)|v|≤n,

13



1. The model

which are surjective mappings and tr |n is S-S|n-measurable. With these definitions in
mind, we can express the n-th generation and the first n generations of the BwBPRE as
follows:

BPn = trn(BT) and BTn = tr |n(BT).

Obviously, BTn is A-S|n-measurable and for every A ∈ Sn there exists a set B ∈ S|n,
such that tr |n(A) = B and {BT ∈ A} = {BTn ∈ B}.

Finally, consider the mappings

τn : (S,S)→ (N0,P(N0)), (sv, xv)v∈V 7→
∑
|w|=n

tw((sv, xv)v∈V) =
∑
|w|=n

sw,

τ∗n : (S,S)→ (N0,P(N0)), (sv, xv)v∈V 7→
∑
|w|=n

sw(1− δ0xw)

and

zn : (S,S)→ (N0,P(N0)), (sv, xv)v∈V 7→
∑
|w|=n

swxw.

Hence, the number of cells, the number of infected cells and the number of parasites in
the n-th generation can be represented by

Tn = τn(BT), T ∗n = τ∗n(BT) and Zn = zn(BT),

respectively.

1.5. The process started in a cell |v| ≥ 1 and the
process started in the n-th generation

In this short section, we take a look at the evolution of the process started in the n-th
generation of the BwBPRE conditional on the random environment e. Let BT(v) :=
(Avu, Zvu)u∈V denote the BwBPRE on the subtree rooted in the cell v ∈ V. It is clear
from our model, that given the history BTn of the process the evolution of BT(v) for
a cell v in generation n only depends on (Av, Zv). Moreover, given the cell-parasite
configuration BPn of the n-th generation, the processes starting in the different cells v
of generation n behave independently conditional on the random environment e, due to
our assumptions. However, it needs to be taken into account, that the behaviour of each
of these subprocesses starting in generation n is governed by the shifted environment
[e]n := (em)m≥n. This leads to the following

14



1.5. The process started in a cell |v| ≥ 1 and the process started in the n-th generation

Proposition 1.3 (Conditional branching property). We have P(t,z)-a.s.

P(t,z)

(
(BT(v))|v|=n ∈ ·

∣∣∣BTn = (sw, xw)|w|≤n, e
)

=

⊗
|v|=n

P
BT|[e]n
(sv ,xv)

 (·)

for n ∈ N0, (t, z) ∈ S and (sw, xw)|w|≤n ∈ Sn.

From this point of view, it is useful to allow for the BwBPRE to start with multiple
root cells. To this end, let

R := {(0, 0)} ∪
⋃
n∈N

({n} ×Nn
0 )

be the set of possible root configurations, and consider a family of probability measures
(P(t,z))(t,z)∈R on the space (Ω,A), such that under P(t,z), t ≥ 1, z = (z1, . . . , zt) ∈ Nt

0,
the BwBPRE starts with t cells and zi parasites in cell i, 1 ≤ i ≤ t, i.e.

P(t,z) (T0 = t, Z∅(1) = z1, . . . , Z∅(t) = zt) = 1,

where Z∅(i) denotes the number of parasites in root cell i, 1 ≤ i ≤ t. Furthermore,
the measure P(0,0) is the same as before and the environment e is still a sequence of
i.i.d. random variables having the same law under any P(t,z). To account for multiple root
cells, the random variables describing the cell and the parasite evolution, respectively,
need to be adjusted. Therefore, let (Tv(i))v∈V,i≥1 be a family of independent random

variables with law (pk)k≥0 under P(t,z), and let
(
X

(0)
k,v(i), X

(1)
k,v(i)

)
k≥1,v∈V,i≥1

be a family

of conditionally independent random variables given e under P(t,z), with

P(t,z)

((
X

(0)
k,v(i), X

(1)
k,v(i)

)
∈ ·
∣∣∣ e) = e|v|, k ≥ 1, v ∈ V, i ≥ 1.

Moreover, we assume (Tv(i))v∈V,i≥1 and
((

X
(0)
k,v(i), X

(1)
k,v(i)

)
k≥1,v∈V,i≥1

, e
)

to be inde-

pendent under P(t,z). Recalling the definition of our initial model, the random variables

(Tv(i))v∈V and
(
X

(0)
k,v(i), X

(1)
k,v(i)

)
k≥1,v∈V govern the evolution of the cells and parasites of

the process starting in root cell i in the obvious way. Furthermore, we denote by BP(i)
the BwBPRE starting in cell i, where Av(i), T(i), Tn(i), Tn(i), T∗n(i), T ∗n (i), Zv(i) and
Zn(i) are the corresponding random variables describing the alive cells, the cell tree,
etc., of the process starting in the i-th ancestor cell. In particular,

Tn(i) = τn(BP(i)), T ∗n (i) = τ∗n(BP(i)) and Zn(i) = zn(BP(i)).

Then, the total number of living cells, the total number of infected cells and the total

15



1. The model

number of parasites in the n-th generation of the BwBPRE is given by

Tn =
t∑
i=1

Tn(i), T ∗n =
t∑
i=1

T ∗n (i) and Zn =
t∑
i=1

Zn(i) P(t,z)-a.s.,

respectively.
Note that the definition of these probability measures is in accordance with our

previous notation. The expectation corresponding to P(t,z) is denoted by E(t,z).
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2. The process of infected cells

This chapter comprises results about the process of infected cells (T ∗n )n≥0 and about
the process (Fn(k))n≥0 of the number of cells with exactly k parasites, defined later. As
it is going to turn out, the asymptotic behaviour of these processes is closely related
to the asymptotics of the process of parasites along a randomly chosen cell line. This
random path in the cell tree is picked by using the method of size-biasing, an approach
that will be introduced in the following section.

2.1. Size-biasing I

In [46] Lyons, Pemantle and Peres presented a tool to give probabilistic proofs of some
classical limit theorems for GWP’s. The original, more analytic proofs of these results
relied heavily on the analysis of generating functions. The central idea of the method of
Lyons et al. is the construction of a size-biased measure on the space of marked trees,
using the notion of size-biased distributions. At this point, we only need the concept of
size-biased distributions to construct a marked cell tree, but we will use their method in
Chapter 3 in greater generality to construct a size-biased BwBPRE. The definition of a
sized-biased distribution is given in Section A.3.1 of the appendix.

In the years following the article of Lyons, Pemantle and Peres, many authors
have used similar approaches to give probabilistic proofs in a wide variety of different
branching models. For example, in [45] Lyons used this approach to give a new proof
of Biggins’ martingale convergence theorem for branching random walks and in [41]
Kyprianou and Rahimzadeh Sani did the same for multi-type branching random walks.
Moreover, Kuhlbusch proved limit theorems for weighted branching processes in random
environment in [40] and Gröttrup proved results for the branching within branching
process in [27], both using the size-biased construction.

Now, we turn to the actual construction. Let (Ťn, Cn)n≥0 be a sequence of i.i.d. random
variables on (Ω,A) that is also independent of (Tv)v∈V as well as independent of((

X
(0)
k,v , X

(1)
k,v

)
k≥1,v∈V

, e
)

, and satisfies for n ∈ N0

P
(
Ťn = k

)
=
kpk
µ
, k ≥ 0,

17



2. The process of infected cells

and in the case pk > 0

P (Cn = l| Ťn = k
)

=
1

k

for 0 ≤ l ≤ k − 1. In particular, we have in the case pk > 0

P
(
Ťn = k, Cn = l

)
= P (Cn = l| Ťn = k

)
P
(
Ťn = k

)
=
pk
µ

for 0 ≤ l ≤ k − 1, and this is even true in the case pk = 0. Note that in our model
pk = 0 for k ≥ 3. The spine (Vn)n≥0 is now recursively defined by putting V0 := ∅ and

Vn := Vn−1Cn−1, n ≥ 1.

Thus

∅ = V0 → V1 → V2 → . . .→ Vn → . . .

is a random cell line in V.
Plainly speaking, in each generation n the spinal cell produces offspring according to

the size-biased distribution of the original cell offspring distribution and among these
offspring the new spinal cell is chosen uniformly via Cn. The parasite reproduction is
not influenced by this mechanism.

The following figure illustrates this procedure. Here, � denotes the cells along the
randomly chosen cell line, i.e. the spine, and ○ denotes all other cells. Parasites are
indicated by •.

V0 = ∅

V1 = 1

V2 = 11

V3 = 110

gen. 0

gen. 1

gen. 2

gen. 3

Figure 2.1.: Realisation of a random cell line up to generation three
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2.2. The number of parasites along the spine I

As a final note, this structure including the sequence (Ťn, Cn)n≥0 shall be the same
under any Pz, z ≥ 0.

2.2. The number of parasites along the spine I

Now, we consider the number of parasites along the spine (Vn)n≥0. Put ZV0 = Z∅ and
for n ≥ 0

ZVn+1 = 1{Ťn=1}

ZVn∑
k=1

(
X

(0)
k,Vn

+X
(1)
k,Vn

)
+ 1{Ťn=2}

1∑
u=0

1{Cn=u}

ZVn∑
k=1

X
(u)
k,Vn

= 1{Ťn=1}

ZVn∑
k=1

(
X

(0)
k,Vn

+X
(1)
k,Vn

)
+ 1{Ťn=2}

ZVn∑
k=1

X
(Cn)
k,Vn

=

ZVn∑
k=1

X
(Cn,Ťn)
k,Vn

.

Furthermore set ξn := (Ťn, Cn, en) as well as

fξn(s) := E
[
sX

(Cn,Ťn)
k,Vn

∣∣∣ ξn]
for n ≥ 0, k ≥ 1 and s ∈ [0, 1].

The first important observation is that the process (ZVn)n≥0 forms a BPRE. This is
stated in the following

Proposition 2.1. The process of the number of parasites along the spine (ZVn)n≥0 is a
BPRE in i.i.d. random environment ξ := (ξn)n≥0.

Since the above statement is obvious from our model assumptions, we omit the
tedious calculations. Note that the corresponding conditional offspring distribution of
the process (ZVn)n≥0 is given by

P
(
X

(Cn,Ťn)
k,Vn

∈ ·
∣∣∣ ξ) =

∑
v∈{0,1}n

2∑
t=1

t−1∑
l=0

1{Vn=v,Ťn=t,Cn=l}P
(
X

(l,t)
k,v ∈ ·

∣∣∣ ξ)

=
∑

v∈{0,1}n

2∑
t=1

t−1∑
l=0

1{Vn=v,Ťn=t,Cn=l} · e(l,t)
n

= e(Cn,Ťn)
n P-a.s. for all k ≥ 1, n ≥ 0.

Here we used the independence of (Ťn, Cn)n≥0 and
((

X
(0)
k,v , X

(1)
k,v

)
k≥1,v∈V

, e
)

.
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2. The process of infected cells

Proposition 2.1 enables us to use the many results in the area of BPRE to determine
the asymptotic behaviour of the process (ZVn)n≥0 depending on its criticality, see
e.g. Afanasyev, Geiger, Kersting, Vatutin [2], Athreya and Karlin [8, 9], Geiger and
Kersting [22], Geiger, Kersting and Vatutin [23], Smith and Wilkinson [50] as well as
Tanny [53]. We formulate these results in our situation and postpone their proofs to the
end of this section.

Proposition 2.2. Let

E

∣∣∣logE[X
(0)
1,∅ |e]

∣∣∣ ,E ∣∣∣logE[X
(1)
1,∅ |e]

∣∣∣ <∞. (2.1)

For the process of parasites along the spine (ZVn)n≥0, the following assertions are
equivalent:

(a) E[log f ′ξ0(1)] > 0 and E[log−(1− fξ0(0))] <∞.

(b) lim
n→∞

P(ZVn > 0) = c > 0, for some c ∈ (0, 1].

Remark 2.3. Since this will be needed later on, note that the above result is also valid
in the case of z ≥ 2 root parasites, i.e. limn→∞Pz(ZVn > 0) > 0 iff

E[log f ′ξ0(1)] > 0 and E[log−(1− fξ0(0))] <∞.

Proposition 2.4 (Supercritical case). Let

E[log f ′ξ0(1)] > 0 and E[log−(1− fξ0(0))] <∞.

The process W̃n := π−1
n ZVn, n ≥ 0, where π0 := 1 and πn :=

∏n−1
i=0 f

′
ξi

(1), n ≥ 1, forms a
nonnegative martingale with respect to the filtration

(σ(ZV0 , . . . , ZVn , ξ0, ξ1, ξ2, . . .))n≥0,

and therefore W̃ := lim
n→∞

W̃n exists a.s. Moreover, W̃ is nondegenerate iff

E

[
ZV1 log+ ZV1

f ′ξ0(1)

]
<∞,

and in this case we have

E[W̃ |(ξn)n≥0] = 1 P-a.s. and {W̃ = 0} = {ZVn → 0} P-a.s.
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2.2. The number of parasites along the spine I

Proposition 2.5 (Critical case). Let E[log f ′ξ0(1)] = 0 and assume

E
[
log2 f ′ξ0(1)

]
∈ (0,∞) and E

[
(1 + log+ f ′ξ0(1))f ′′ξ0(1)

f ′ξ0(1)2

]
<∞.

Then there exists a constant 0 < c <∞, such that

P(ZVn > 0) ∼ cn−1/2, n→∞.

Proposition 2.6 (Strongly subcritical case). Let

E[log f ′ξ0(1)] < 0, E[f ′ξ0(1) log f ′ξ0(1)] < 0

and

E
[(
X(0) +X(1)

)
log+

(
X(0) +X(1)

)]
<∞

be valid. Then we have for some 0 < c1 ≤ 1 that

P(ZVn > 0) ∼ c1

(
ν

µ

)n
, n→∞.

Moreover,

lim
n→∞

P(ZVn = k|ZVn > 0) = q1(k), k ≥ 1,

where

∞∑
k=1

q1(k) = 1 and
∞∑
k=1

kq1(k) = c−1
1 <∞,

and ZVn is conditioned on {ZVn > 0} uniformly integrable, i.e.

lim
a→∞

sup
n∈N

E
[
ZVn1{ZVn>a}

∣∣ZVn > 0
]

= 0.

Proposition 2.7 (Intermediately subcritical case). Let

E[log f ′ξ0(1)] < 0, E[f ′ξ0(1) log f ′ξ0(1)] = 0

and assume

E[f ′ξ0(1) log2 f ′ξ0(1)] <∞ and E[(1 + log− f ′ξ0(1))f ′′ξ0(1)] <∞.
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Then there exists a constant 0 < c2 <∞, such that

P(ZVn > 0) ∼ c2n
−1/2

(
ν

µ

)n
, n→∞.

Moreover,

lim
n→∞

P(ZVn = k|ZVn > 0) = q2(k), k ≥ 1,

where
∑

k≥1 q2(k) = 1.

For the weakly subcritical case set

β := inf
ϑ∈[0,1]

Ef ′ξ0(1)ϑ

and choose α ∈ [0, 1], such that β = Ef ′ξ0(1)α.

Proposition 2.8 (Weakly subcritical case). Let

E[log f ′ξ0(1)] < 0 and 0 < E[f ′ξ0(1) log f ′ξ0(1)] <∞

and assume

E

[
f ′′ξ0(1)

f ′ξ0(1)1−α

]
<∞ and E

[
f ′′ξ0(1)

f ′ξ0(1)2−α

]
<∞.

Then there exists a constant 0 < c3 <∞, such that

P(ZVn > 0) ∼ c3n
−3/2βn, n→∞.

Moreover,

lim
n→∞

P(ZVn = k|ZVn > 0) = q3(k), k ≥ 1,

where
∑

k≥1 q3(k) = 1.

Now, we introduce some further common notation for BPRE. Recall that

fξn(s) = E
[
sX

(Cn,Ťn)
k,Vn

∣∣∣ ξ] , s ∈ [0, 1],

is the probability generating function (pgf) of X
(Cn,Ťn)
k,Vn

under the measure P(·|ξ). Theo-
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2.2. The number of parasites along the spine I

rem A.1 gives us

fn,ξ(s) := E
[
sZVn

∣∣ ξ] = fξ0 ◦ . . . ◦ fξn−1(s)

and

fn(s) := E
[
sZVn

]
= E

[
fξ0 ◦ . . . ◦ fξn−1(s)

]
for every n ∈ N and s ∈ [0, 1]. Note that (fξn)n≥0 is an i.i.d. sequence with

E[f ′ξ0(1)] = E
[
X

(C0,Ť0)
1,∅

]
=

2∑
k=1

k−1∑
l=0

P(Ť0 = k, C0 = l) · E
[
X

(l,k)
1,∅

]
=

2∑
k=1

k−1∑
l=0

pk
µ
· E
[
X

(l,k)
1,∅

]
=
p1 + p2

µ
· E
[
X

(0)
1,∅ +X

(1)
1,∅

]
=
ν

µ
,

where we used (1.2) for the last equation. Moreover, this yields

E[ZVn ] = f ′n(1) =
n−1∏
i=0

E[f ′ξi(1)] =

(
ν

µ

)n
.

Furthermore, if E|log f ′ξ0(1)| < ∞, the theory of BPRE ([50], Theorem 3.1 and [8],
Section 1) yields that (ZVn)n≥0 survives with positive probability iff

E
[
log f ′ξ0(1)

]
> 0 and E

[
log− (1− fξ0(0))

]
<∞. (2.2)

Finally, we define for s ∈ [0, 1] the random pgf

g
e

(l,t)
n

(s) := E
[
sX

(l,t)
1,0∗n

∣∣∣ e] , n ≥ 0, 0 ≤ l ≤ t− 1 ≤ 1.

We want to use the process (ZVn)n≥0 to prove assertions about the limiting behaviour
of the process of the number of infected cells (T ∗n )n≥0 and other related quantities. The
required connection is subject of the following

Proposition 2.9. For every m,n, z ∈ N0 we have

Pz(ZVn = m|e) = µ−n · Ez[#{v ∈ Tn : Zv = m}|e] Pz-a.s.,
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and thus

Pz(ZVn > 0|e) =
Ez[T ∗n |e]

µn
Pz-a.s.

In particular, this gives

Pz(ZVn = m) = µ−n · Ez[#{v ∈ Tn : Zv = m}],

and therefore

Pz(ZVn > 0) =
Ez[T ∗n ]

µn
.

The proof of this proposition will be given after two easy consequences.

Corollary 2.10. In the subcritical case, the expected number of infected cells (T ∗n )n≥0

satisfies

ET ∗n ∼


c1ν

n, if the assumptions of Proposition 2.6 are fullfilled,

c2n
−1/2νn, if the assumptions of Proposition 2.7 are fullfilled,

c3n
−3/2µnβn, if the assumptions of Proposition 2.8 are fullfilled,

as n→∞, with c1, c2, c3 from the respective propositions.

Proof. We know from Proposition 2.9 that

ET ∗n = µnP(ZVn > 0).

for all n ≥ 0. Then, using the asymptotics for P(ZVn > 0) shown in Propositions 2.6,
2.7 and 2.8, respectively, we get the desired result.

Next, we can state a first assertion about the number of cells with a given number of
parasites and, in the strongly subcritical case, about the expected number of parasites
within all these cells. To that end, define the number of cells in the n-th generation
having exactly k parasites, i.e.

Fn(k) := #{v ∈ Tn : Zv = k}, n, k ≥ 0. (2.3)

Corollary 2.11. We have for every k, z ≥ 1

lim
n→∞

Fn(k)

µn
= 0, in probability and in L1 under Pz.
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2.2. The number of parasites along the spine I

Furthermore, under the assumptions of Proposition 2.6 we have for k ≥ 1

lim
n→∞

E[Fn(k)]

νn
=
q1(k)

c−1
1

,

i.e. (kν−nE[Fn(k)])k≥1 converges weakly to the size-biasing of (q1(k))k≥1.

Proof. Starting with Fn(·) and using once again Proposition 2.9 as well as the extinc-
tion-explosion principle for BPRE (see e.g. [8]), we have

lim
n→∞

Ez

[
Fn(k)

µn

]
= lim

n→∞
Pz(ZVn = k) = 0

for k, z ≥ 1. Hence, Fn(k)/µn converges in L1 to 0 and therefore converges in particular
in probability to 0 under Pz for n→∞.

Turning to the second assertion, we get

lim
n→∞

E[Fn(k)]

νn
= lim

n→∞

[(µ
ν

)n
P(ZVn = k)

]
= lim

n→∞

[(µ
ν

)n
P(ZVn > 0) · P(ZVn = k|ZVn > 0)

]
=
q1(k)

c−1
1

,

for k ≥ 1, where we used Proposition 2.9 and Proposition 2.6.

Now, we prove Proposition 2.9.

Proof of Proposition 2.9. For n ∈ N, v = v1...vn ∈ V, u := v|n − 1 and t0, . . . , tn−1 ∈
{1, 2} with v1 ≤ t0 − 1, . . . , vn ≤ tn−1 − 1, we get for s ∈ [0, 1]

Ez

[
Zu∏
k=1

sX
(vn,tn−1)

k,u

∣∣∣∣∣ (Tv|j)0≤j≤n−2,
(
X

(0)
k′,v′ , X

(1)
k′,v′

)|v′|≤n−2

k′≥1
, e

]

=
∑
j≥0

1{Zu=j} · E

[
j∏

k=1

sX
(vn,tn−1)

k,u

∣∣∣∣∣ (X(0)
k′,v′ , X

(1)
k′,v′

)|v′|≤n−2

k′≥1
, e

]

=
∑
j≥0

1{Zu=j} · E

[
j∏

k=1

sX
(vn,tn−1)

k,u

∣∣∣∣∣ e
]

(2.4)

=
Zu∏
k=1

E

[
sX

(vn,tn−1)

k,u

∣∣∣∣ e]
= g

e
(vn,tn−1)

n−1

(s)Zu Pz-a.s.,
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2. The process of infected cells

where we used the independence of (Tw)w∈V and
((

X
(0)
k,w, X

(1)
k,w

)
k≥1,w∈V

, e
)

in the first

equation and the conditional independence of
(
X

(0)
k,w, X

(1)
k,w

)
k≥1,w∈V given e in the third

equation. For the second equality note that for A ∈MN0 and B ∈
⊗
|w|≤n−2 P(N2

0)N

∫{
e∈A,

(
X

(0)

k′,v′ ,X
(1)

k′,v′

)
k′≥1,|v′|≤n−2

∈B
} j∏
k=1

sX
(vn,tn−1)

k,u dP

=

∫
{e∈A}

E

[
1{(

X
(0)

k′,v′ ,X
(1)

k′,v′

)
k′≥1,|v′|≤n−2

∈B
} j∏
k=1

sX
(vn,tn−1)

k,u

∣∣∣∣∣ e
]
dP

=

∫
{e∈A}

P

((
X

(0)
k′,v′ , X

(1)
k′,v′

)
k′≥1,|v′|≤n−2

∈ B
∣∣∣∣ e)E

[
j∏

k=1

sX
(vn,tn−1)

k,u

∣∣∣∣∣ e
]
dP (2.5)

=

∫
{e∈A}

E

[
1{(

X
(0)

k′,v′ ,X
(1)

k′,v′

)
k′≥1,|v′|≤n−2

∈B
}E [ j∏

k=1

sX
(vn,tn−1)

k,u

∣∣∣∣∣ e
]∣∣∣∣∣ e

]
dP

=

∫{
e∈A,

(
X

(0)

k′,v′ ,X
(1)

k′,v′

)
k′≥1,|v′|≤n−2

∈B
}E [ j∏

k=1

sX
(vn,tn−1)

k,u

∣∣∣∣∣ e
]
dP,

since
(
X

(0)
k,v′ , X

(1)
k,v′

)
k≥1,|v′|≤n−2

and
(
X

(0)
k,u, X

(1)
k,u

)
k≥1

are conditionally independent given

e.
From (2.4), it follows that

Ez

[
sZv
∣∣Tv|j = tj, 0 ≤ j ≤ n− 1, e

]
= Ez

[
Zu∏
k=1

sX
(vn,tn−1)

k,u

∣∣∣∣∣Tv|j = tj, 0 ≤ j ≤ n− 2, e

]

= Ez

[
g
e

(vn,tn−1)

n−1

(s)Zu
∣∣∣∣Tv|j = tj, 0 ≤ j ≤ n− 2, e

]
Pz-a.s.,

and hence iteration yields

Ez

[
sZv
∣∣Tv|j = tj, 0 ≤ j ≤ n− 1, e

]
= (g

e
(v1,t0)
0

◦ . . . ◦ g
e

(vn,tn−1)

n−1

(s))z Pz-a.s.

Analogously, we get for s ∈ [0, 1]

Ez

[
sZVn |(Ťj, Cj) = (tj, vj+1), 0 ≤ j ≤ n− 1, e

]
= (g

e
(v1,t0)
0

◦ . . . ◦ g
e

(vn,tn−1)

n−1

(s))z
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2.2. The number of parasites along the spine I

Pz-a.s., i.e.

Ez

[
sZv
∣∣Tv|j = tj, 0 ≤ j ≤ n− 1, e

]
= Ez

[
sZVn |(Ťj, Cj) = (tj, vj+1), 0 ≤ j ≤ n− 1, e

]
Pz-a.s. This implies for m ∈ N0

Pz(Zv = m,Av = 1|e)

=
2∑

t0=v1+1

. . .
2∑

tn−1=vn+1

Pz(Zv = m,Tv|j = tj, 0 ≤ j ≤ n− 1|e)

=
2∑

t0=v1+1

. . .

2∑
tn−1=vn+1

P(Tv|j = tj, 0 ≤ j ≤ n− 1|e)

· Pz(Zv = m|Tv|j = tj, 0 ≤ j ≤ n− 1, e)

=
2∑

t0=v1+1

. . .
2∑

tn−1=vn+1

n−1∏
k=0

ptkPz

(
ZVn = m

∣∣(Ťj, Cj) = (tj, vj+1), 0 ≤ j ≤ n− 1, e
)

=
2∑

t0=v1+1

. . .
2∑

tn−1=vn+1

n−1∏
k=0

ptkP
(
(Ťj, Cj) = (tj, vj+1), 0 ≤ j ≤ n− 1

∣∣e)−1

· Pz

(
ZVn = m, (Ťj, Cj) = (tj, vj+1), 0 ≤ j ≤ n− 1|e

)
= µn

2∑
t0=v1+1

. . .
2∑

tn−1=vn+1

Pz

(
ZVn = m, (Ťj, Cj) = (tj, vj+1), 0 ≤ j ≤ n− 1|e

)

Pz-a.s., and therefore

µ−n · Ez[#{v ∈ Tn : Zv = m}|e]

= µ−n
∑
|v|=n

Pz(Zv = m,Av = 1|e)

=
∑
|v|=n

2∑
t0=v1+1

. . .

2∑
tn−1=vn+1

Pz

(
ZVn = m, (Ťj, Cj) = (tj, vj+1), 0 ≤ j ≤ n− 1|e

)
=

2∑
t0=1

t0−1∑
v1=0

. . .
2∑

tn−1=1

tn−1−1∑
vn=0

Pz

(
ZVn = m, (Ťj, Cj) = (tj, vj+1), 0 ≤ j ≤ n− 1|e

)
= Pz(ZVn = m|e) Pz-a.s.

From this, the other three assertions follow easily and the proposition is proved.
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2. The process of infected cells

Finally, we provide the remaining proofs of the Propositions 2.2 to 2.8. Since (ZVn)n≥0

is a BPRE, the results can be concluded more or less directly from the theory of BPRE.

Proof of Proposition 2.2. The proposition is a consequence of results in [50] as well as
[8] and has been stated in (2.2), where we note that (2.1) ensures E|log f ′ξ0(1)| <∞.

Proof of Proposition 2.4. The assertions are consequences of Theorem 1 in [9] and
Theorem 2 in [53].

Proof of Proposition 2.5. This follows from Theorem 1.1 in [22].

Proof of Proposition 2.6. Note that

E[ZV1 log+ ZV1 ] = E
[
X

(C0,Ť0)
1,∅ log+ X

(C0,Ť0)
1,∅

]
=

2∑
k=1

k−1∑
l=0

E
[
1{Ť0=k,C0=l}X

(l,k)
1,∅ log+ X

(l,k)
1,∅

]
=

2∑
k=1

k−1∑
l=0

pk
µ
E
[
X(l,k) log+ X(l,k)

]
≤ E

[(
X(0) +X(1)

)
log+

(
X(0) +X(1)

)]
<∞

and E[f ′ξ0(1)] = ν/µ. Thus the assertions follow from Theorem 1.1 in [23] and Corollary
2.3 in [2].

Proof of Proposition 2.7. This is Theorem 1.2 in [23] with the assumptions transferred
to our notation and observing E[f ′ξ0(1)] = ν/µ.

Proof of Proposition 2.8. This is Theorem 1.3 in [23] with the assumptions transferred
to our notation.

2.3. A Markov chain and the extinction-explosion
principle for the process of parasites

This part follows along the lines of Section 1.2.2 in [27]. Apart from some minor changes,
the results shown there are directly transferable to our situation. First, we need some
further notation. Let

R↑ = {(s, (z1, . . . , zs)) ∈ R : 1 ≤ z1 ≤ z2 ≤ . . . ≤ zs}

be the set of ordered configurations of infected cells in a generation and set R↑0 :=
{(0, 0)} ∪R↑.
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2.3. A Markov chain and the extinction-explosion principle for the process of parasites

For a vector (τ (1), . . . , τ (k)), k ∈ N, of host-parasite trees, we want to get a vector
representing the total number of infected cells in a given generation and the number of
parasites in these cells in ascending order. That is, for n ≥ 0, setting t(k) :=

∑k
i=1 τ

∗
n(τ (i))

for a vector (τ (1), . . . , τ (k)), we define

χn :

(⋃
l≥1

Sl, σ

(⋃
l≥1

Sl

))
→ (R↑0,P(R↑0)),

(
τ (i)
)

1≤i≤k 7→

{
(t, z), if t := t(k) > 0,

(0, 0), if t = 0,

where z = (z1, . . . , zt) is the t-dimensional vector of increasing entries zj = ÿwj(τ
(ij)),

1 ≤ j ≤ t, for distinct tuples (i1, w1), . . . , (it, wt) ∈ {1, . . . , k} × {|v| = n}, de-
noting the number of parasites in the infected cells over all trees in generation n,
i.e. twj(τ

(ij))ÿwj(τ
(ij)) > 0 for every 1 ≤ j ≤ t, and z1 ≤ z2 ≤ . . . ≤ zt.

We define the process BPG = (BPGn)n≥0 by

BPGn := χn(BP), n ∈ N0.

Thus, BPGn = (s, (z1, . . . , zs)) means that the n-th generation of the BwBPRE BP has
s infected cells containing z1, . . . , zs parasites, respectively.

Given the environment e, all cells and their parasites multiply independently of all
other cells and their parasites in the same generation. Thus given e, the exact positions
of the infected cells in a generation are not important for the number of infected cells
and the parasites they contain in the next generation. Therefore, by standard but rather
tedious calculations, one can show that the process BPG is a Markov chain with state
space R↑0 and transition probabilities

p((s, x), (t, z)) := P(s,x)(BPG1 = (t, z)) = P(s,x)(BP ∈ χ−1
1 (t, z)) (2.6)

for (s, x), (t, z) ∈ R↑0. We omit the details. This leads to the following

Proposition 2.12. The process BPG is a homogeneous Markov chain with state space
R↑0 and transition probabilities given in (2.6). Moreover, all states in R↑ are transient.

Before we prove this statement, we need a

Lemma 2.13. In the case P(Z1 = 0) = 0, we have Pz(Z1 < z) = 0 for every z ∈ N.

Proof. Similar to the proof of Lemma 1.2 we get

Pz(Z1 < z) =
∑

x1,...,xz∈{0,...,z−1}∑z
i=1 xi<z

E

[
z∏
i=1

e
(0,1)
0 ({xi})

]
= 0,
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2. The process of infected cells

since at least one xi has to be zero and e
(0,1)
0 ({0}) = 0 P-a.s.

Proof (Proposition 2.12). The proof follows along similar lines as the proof of Proposi-
tion 1.5 in [27], but some changes occur due to the random environment.

Since the Markov property has already been stated prior to the proposition, it is only
left to prove that all states in R↑ are transient. First note that

{Z1 = 0} = {T∅ = 0} ∪

{
T∅ 6= 0,

z∑
i=1

(
X

(0)
i,∅ +X

(1)
i,∅

)
= 0

}
Pz-a.s.

for all z ∈ N0. Therefore P(Z1 = 0) > 0 implies

P(T∅ = 0) > 0 or E
[
e

(0,1)
0 ({0})

]
= P

(
X

(0)
1,∅ +X

(1)
1,∅ = 0

)
> 0.

Hence, together with

P

(
z∑
i=1

(
X

(0)
i,∅ +X

(1)
i,∅

)
= 0

)
= P

(
X

(0)
1,∅ +X

(1)
1,∅ = 0, . . . , X

(0)
z,∅ +X

(1)
z,∅ = 0

)
= E

[
P
(
X

(0)
1,∅ +X

(1)
1,∅ = 0

∣∣∣ e)z]
= E

[
e

(0,1)
0 ({0})z

]
,

we have in the case P(Z1 = 0) > 0

Pz(Z1 = 0) ≥

P(T∅ = 0), if P(T∅ = 0) > 0,

E
[
e

(0,1)
0 ({0})z

]
, if P(T∅ = 0) = 0,

 > 0.

Thus, for (s, x) ∈ R↑ with x = (x1 . . . , xs) we get

P(s,x) (BPGn 6= (s, x) for all n ≥ 1)

≥


P(s,x)(Z1 = 0), if P(Z1 = 0) > 0,

1− P(s,x)

(
Z1 =

s∑
i=1

xi

)
, if P(Z1 = 0) = 0,



≥


P(T∅ = 0)s, if P(T∅ = 0) > 0,

P∑s
i=1 xi

(Z1 = 0), if P(Z1 = 0) > 0,P(T∅ = 0) = 0,

1− P∑s
i=1 xi

(
Z1 =

s∑
i=1

xi

)
, if P(Z1 = 0) = 0,


> 0,

30



2.3. A Markov chain and the extinction-explosion principle for the process of parasites

where we used Lemma 2.13 for the first and the second step and Lemma 1.2 for the last
step. This proves the transience of (s, x) and finishes the proof.

Now, the extinction-explosion principle for the process of parasites is an easy

Corollary 2.14 (Extinction-explosion principle). For the process of parasites (Zn)n≥0

we have

P(t,z)(Zn → 0) + P(t,z)(Zn →∞) = 1

for any (t, z) ∈ R.

Proof. First note that root cells with no parasites have no effect on the survival of the
parasite population. Therefore we can assume (t, z) ∈ R↑, and then the transience of
elements in R↑ for the process BPG yields

lim
n→∞

P(t,z)(1 ≤ Zn ≤ K) ≤ lim
n→∞

K∑
s=1

∑
1≤x1≤...≤xs≤K

P(t,z)(BPGn = (s, x)) = 0

for any K ∈ N, where x = (x1, . . . , xs). This proves the assertion.

For the process of parasites, we define the set of extinction and the set of survival
through

Ext := {Zn → 0} and Surv := Extc,

respectively. In particular, the previous corollary implies that Surv = {Zn → ∞}
P(t,z)-a.s. for every (t, z) ∈ R. Since the processes starting from different ancestor cells
are independent given e, we have for (t, z) ∈ R↑

P(t,z)(Zn = 0|e) =
t∏
i=1

Pzi(Zn = 0|e) P-a.s.

Thus

P(t,z)(Ext |e) =
t∏
i=1

Pzi(Ext |e) P-a.s.,

which in turn implies P-a.s. P(t,z)(Ext |e) = 1 iff Pzi(Ext |e) = 1 for every 1 ≤ i ≤ t.
Furthermore, for z′ ∈ N, Pz′(Ext |e) = 1 implies P(Ext|e) = 1. If on the other hand

P(Ext|e)(ω) = 1, it follows from the independence of
((

X
(0)
k,v , X

(1)
k,v

)
k≥1,v∈V

, e
)

and
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T := (Tv)v∈V that

1 = P(Ext|e)(ω) =

∫
P(Ext |T = τ, e)(ω) PT(dτ) =

∫
P(Ext(τ)|e)(ω) PT(dτ).

Therefore, P(Ext(τ)|e)(ω) = 1 PT-a.s., where

P(Ext(τ)|e) = lim
n→∞

P(Zn(τ) = 0|e)

and Zn(τ) is the number of parasites in the n-th generation of a BwBPRE when the
cell tree is spanned by τ . Furthermore, if we consider a single ancestor cell with z′ ∈ N

parasites, let Zn,i denote the number of progeny in the n-th generation of the i-th
ancestor parasite and let Zn,i(τ) denote the same when the cell tree is spanned by τ ,
1 ≤ i ≤ z′, τ ∈ {0, 1, 2}V. We then get, using once again the independence of T and((

X
(0)
k,v , X

(1)
k,v

)
k≥1,v∈V

, e
)

,

Pz′(Zn = 0|e) = P(Zn,1 = 0, . . . ,Zn,z′ = 0|e)

=

∫
P(Zn,1 = 0, . . . ,Zn,z′ = 0|T = τ, e) PT(dτ)

=

∫
P(Zn,1(τ) = 0, . . . ,Zn,z′(τ) = 0|e) PT(dτ)

=

∫ z′∏
i=1

P(Zn,i(τ) = 0|e) PT(dτ)

=

∫
P(Zn(τ) = 0|e)z

′
PT(dτ) P-a.s.,

where we used the conditional independence of Zn,1(τ), . . . ,Zn,z′(τ) given e. Thus we
have for almost all ω with P(Ext|e)(ω) = 1

Pz′(Ext |e)(ω) =

∫
(P(Ext(τ)|e)(ω))z

′
PT(dτ) = 1.

Therefore we have P-a.s. Pz′(Ext |e) = 1 iff P(Ext|e) = 1. Summarising, this shows that
P-a.s.

P(t,z)(Ext |e) = 1 iff P(Ext|e) = 1. (2.7)

In particular P(t,z)(Ext) = 1 iff P(Ext) = 1.
Next we are going to show, that the set {P(Surv |e) > 0} has either probability 0 or

1, i.e. extinction is certain under almost every environment or survival is possible under
almost every environment. The same phenomenon is known for BPRE, see Proposition 1
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2.4. An extinction-explosion principle and the normalised process of infected cells

in [8]. Recall that [e]m = (en)n≥m.

Proposition 2.15. We have {P(Surv |e) > 0} = {P(Surv |[e]1) > 0} P-a.s., and hence
P(P(Surv |e) > 0) ∈ {0, 1}.

Proof. We start by showing {P(Surv |e) > 0} ⊆ {P(Surv |[e]1) > 0} P-a.s. Choose
ω ∈ {P(Surv |e) > 0} and suppose P(Surv |[e]1)(ω) = 0. Then, according to what has
been shown prior to the proposition, we have P(t,z)(Surv |[e]1)(ω) = 0 for all (t, z) ∈ R↑,
except for ω from a set of measure 0, and thus

0 < P(Surv |e)(ω) = P(BPGm ∈ R↑ for all m ≥ 1|e)(ω)

=
∑

(t,z)∈R↑
P(BPGm ∈ R↑ for all m ≥ 2|BPG1 = (t, z), e)(ω) · P(BPG1 = (t, z)|e)(ω)

=
∑

(t,z)∈R↑
P(t,z)(BPGm ∈ R↑ for all m ≥ 1|[e]1)(ω) · P(BPG1 = (t, z)|e)(ω)

=
∑

(t,z)∈R↑
P(t,z)(Surv |[e]1)(ω) · P(BPG1 = (t, z)|e)(ω) = 0.

This is a contradiction and we must have

{P(Surv |e > 0} ⊆ {P(Surv |[e]1) > 0} P-a.s. (2.8)

Now, since the random environment consists of i.i.d. random variables, we further have

P(P(Surv |e) > 0) = P(P(Surv |[e]1) > 0) (2.9)

Combining (2.8) and (2.9), we arrive at the desired result. The second assertion of the
proposition follows from the ergodicity of the shift operator.

Remark 2.16. In other words, Proposition 2.15 tells us

P(P(Ext |e) = 1) ∈ {0, 1}.

2.4. An extinction-explosion principle and the
normalised process of infected cells

With the help of the Markov chain introduced in the previous section, we can prove that
the process of contaminated cells satisfies an extinction-explosion principle, apart from
some degenerate cases. This is stated in the following
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Theorem 2.17. Let P(Surv) > 0 and z ∈ N.

(a) If P2(T ∗1 = 2) = 0, then

Pz(T ∗n = 1 ∀ n ≥ 0|Surv) = 1.

(b) If P2(T ∗1 = 2) > 0, then

Pz(T ∗n →∞|Surv) = 1.

Proof. The proof follows the general idea of the proof of Theorem 1.7 in [27], but some
adaptations are necessary due to the random environment. Let z ∈ N.

(a) Note that P(Surv) > 0 implies p2 > 0, for otherwise, since p1 < 1, the cell tree
would die out P-a.s., and thus in particular P(Surv) = 0. Furthermore, the independence
assumptions of our model imply

0 = P2(T ∗1 = 2) ≥ p2 P
(
X

(0)
i,∅ > 0, X

(1)
j,∅ > 0

)
for all i, j ∈ {1, 2}, and thus P

(
X

(0)
i,∅ > 0, X

(1)
j,∅ > 0

)
= 0 for all i, j ∈ N. Then we get

Pz′(T ∗1 = 2) = p2 P

(
z′∑
i=1

X
(0)
i,∅ > 0,

z′∑
j=1

X
(1)
j,∅ > 0

)
= p2 P

(
∃(i, j) ∈ {1, . . . , z′}2 : X

(0)
i,∅ > 0, X

(1)
j,∅ > 0

)
≤ p2

z′∑
i,j=1

P
(
X

(0)
i,∅ > 0, X

(1)
j,∅ > 0

)
= 0

for all z′ ∈ N. Therefore, there is a.s. at most one infected cell in every generation, and
since Surv = {T ∗n ≥ 1 ∀ n ≥ 0} Pz-a.s. and Pz(Surv) > 0, we get

Pz(T ∗n = 1 ∀ n ≥ 0|Surv) = 1.

(b) For t ≥ 1 we are going to show that

Pz(T ∗n = t i.o.) = 0. (2.10)

This yields

Pz(1 ≤ T ∗n ≤ t i.o.) = 0
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for all t ≥ 1, i.e. the extinction-explosion principle for (T ∗n )n≥0. Since Ext = {T ∗n → 0}
Pz-a.s. and thus Surv = {T ∗n →∞} Pz-a.s., (b) can be concluded.

To show (2.10) for every t ≥ 1, we use the Markov chain BPG introduced in the
previous section. To this end, set

At := {(t, x1, . . . , xt) ∈ R↑ : xt ≥ 2} ⊂ Nt+1,

for t ≥ 1, and note that

{T ∗n = t} = {BPGn ∈ At} ∪ {BPGn = (t, 1 . . . , 1)} Pz-a.s.

Furthermore, we have

Pz(T ∗n = t i.o.) = Pz(BPGn ∈ At i.o.),

since (t, 1, . . . , 1) ∈ R↑ is a transient state, see Proposition 2.12.
Fix t ≥ 1 and use the notation T ∗n,i for the number of infected cells in the n-th

generation stemming from ancestor cell i, 1 ≤ i ≤ t. Now, we get by the conditional
independence of the processes starting from different ancestor cells

P(t,x)(BPGn /∈ At for all n ≥ 1)

≥ P(t,x)(T ∗n > t for all n ≥ 1)

≥ P(t,x)(T ∗n,1 ≥ 1, . . . , T ∗n,t−1 ≥ 1, T ∗n,t ≥ 2 for all n ≥ 1)

= E(t,x)[P(t,x)(T ∗n,1 ≥ 1, . . . , T ∗n,t−1 ≥ 1, T ∗n,t ≥ 2 for all n ≥ 1|e)]

= E[Px1(T ∗n ≥ 1 for all n ≥ 1|e) · · ·Pxt−1(T ∗n ≥ 1 for all n ≥ 1|e)

· Pxt(T ∗n ≥ 2 for all n ≥ 1|e)],

for (t, x) ∈ At and x = (x1, . . . , xt). One possibility for the event in the last factor to
occur is: There are two infected cells in the first generation and in both of the resulting
branches the parasites survive. Note that both of these branches are conditionally
independent as well as independent of the first generation given the number of parasites
in the two starting cells. Moreover, the survival probability gets smaller if these cells
are only inhabited by one parasite. This leads to

P(t,x)(BPGn /∈ At for all n ≥ 1)

≥ E[Px1(Surv |e) · · ·Pxt−1(Surv |e)Pxt(T ∗1 ≥ 2|e)P(Surv |[e]1)2]

≥ E[P(Surv |e)t−1P2(T ∗1 = 2|e)P(Surv |[e]1)2] =: c̃ > 0,

where we used xt ≥ 2, Proposition 2.15 and the assumptions for the final line. In
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particular, this lower bound does not depend on x. Let τ0 := 0 and

τn+1 := inf{k > τn : BPGk ∈ At}, n ≥ 0,

where, as usual, inf ∅ :=∞. The strong Markov property yields

Pz(τn+1 − τn <∞|BPGτn = (t, x), τn <∞)

= P(t,x)(τ1 <∞) = 1− P(t,x)(BPGn /∈ At for all n ≥ 1) ≤ 1− c̃ =: c < 1

for all n ≥ 1 and (t, x) ∈ At. By iteration we get for n ≥ 2

Pz(τn <∞) =
∑

(t,x)∈At

Pz(BPGτn−1 = (t, x), τn − τn−1 <∞, τn−1 <∞)

=
∑

(t,x)∈At

Pz(τn − τn−1 <∞|BPGτn−1 = (t, x), τn−1 <∞)

· Pz(BPGτn−1 = (t, x), τn−1 <∞)

≤ c Pz(τn−1 <∞)

≤ cn−1 Pz(τ1 <∞)

≤ cn−1

and thus

Pz(BPGn ∈ At i.o.) = Pz(τn <∞ for all n ≥ 1)

= lim
n→∞

Pz(τn <∞) ≤ lim
n→∞

cn−1 = 0.

This shows Pz(T ∗n = t i.o.) = 0 and completes the proof of (b).

Now we prove a limit theorem for the process of infected cells (T ∗n )n≥0. This result
is an easy consequence of the martingale convergence theorem applied to the super-
martingale (µ−nT ∗n )n≥0. Moreover, we can show a dichotomy known from the theory of
GWP’s, namely either this supermartingale converges to 0 Pz-a.s. or µ−n gives the right
normalisation, that is {

lim
n→∞

µ−nT ∗n > 0
}

= {T ∗n →∞} Pz-a.s.

Proposition 2.18. Let z ≥ 1. Under Pz the process (µ−nT ∗n )n≥0 forms a nonnegative
supermartingale with respect to (Gn)n≥0 and therefore converges Pz-a.s. to an integrable
random variable L for n→∞. Moreover we have:

(a) L = 0 Pz-a.s. iff one of the following conditions holds

(i) µ ≤ 1,
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(ii) E log f ′ξ0(1) ≤ 0 or E
[
log− (1− fξ0(0))

]
=∞.

(b) Pz(Pz(L = 0|e) = 1) ∈ {0, 1}.

(c) {L = 0} = Ext Pz-a.s. if Pz(L = 0) < 1.

Proof. The first part of the proof is similar to the one of Theorem 1.8 in [27].
Since integrability and measurability are obvious, we are left to prove the supermartin-

gale property. For n ≥ 1 we have

Ez

[
T ∗n+1

∣∣Gn] =
∑
v∈T∗n

Ez

[
Tv−1∑
u=0

1{Zvu>0}

∣∣∣∣∣Gn
]

≤
∑
v∈T∗n

Ez [Tv| Gn]

=
∑
v∈T∗n

E [Tv]

= µT ∗n Pz-a.s.,

where we have used the independence of (Tv)|v|=n and Gn for the second equality. Thus
(µ−nT ∗n )n≥0 is a nonnegative supermartingale and the martingale convergence theorem
yields the Pz-a.s. convergence to an integrable random variable L. This finishes the
proof of the first part of the proposition.

(a) Note that in the case µ > 1 the process (µ−nTn)n≥0 forms a normalised supercritical
GWP satisfying the (Z logZ)-condition and is therefore uniformly integrable. Since

µ−nT ∗n ≤ µ−nTn, n ≥ 1,

the process (µ−nT ∗n )n≥0 is also uniformly integrable, and Proposition 2.9 yields

EzL = lim
n→∞

Ez

[
T ∗n
µn

]
= lim

n→∞
Pz (ZVn > 0) .

Therefore, Proposition 2.2 and Remark 2.3 imply that L = 0 Pz-a.s. iff condition (ii) is
fulfilled. On the contrary, if µ ≤ 1, then the GWP (Tn)n≥0 is critical or subcritical and
as a consequence dies out with probability one. So for almost every ω there exists a
n0(ω) ∈ N0, such that T ∗n (ω) ≤ Tn(ω) = 0 for all n ≥ n0(ω), and thus L = 0 Pz-a.s.

(b) W.l.o.g. suppose Pz(L = 0) < 1, for otherwise Pz(L = 0|e) = 1 Pz-a.s. Then, part
(a) ensures µ > 1 and, as before, (µ−nTn)n≥0 forms a normalised supercritical GWP
satisfying the (Z logZ)-condition. Therefore, the independence of (Tv)v∈V and e yields

lim
a→∞

sup
n∈N0

Ez

[
Tn
µn

1{ Tnµn>a}

∣∣∣∣ e] = lim
a→∞

sup
n∈N0

E

[
Tn
µn

1{ Tnµn>a}

]
= 0 Pz-a.s.,
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i.e. (µ−nTn)n≥0 is uniformly integrable under Pz(·|e) Pz-a.s., and so the same holds true
for (µ−nT ∗n )n≥0. Thus, with the help of Proposition 2.9 we infer

Ez[L|e] = lim
n→∞

Ez

[
T ∗n
µn

∣∣∣∣ e] = lim
n→∞

Pz(ZVn > 0|e) = Ez

[
lim
n→∞

Pz(ZVn > 0|ξ)
∣∣∣ e]

Pz-a.s. Setting qz(ξ) := limn→∞Pz(ZVn = 0|ξ), we have qz(ξ) = q1(ξ)
z. Note that

P(q1(ξ) = 1) ∈ {0, 1} according to Proposition 1 in [8], since (ZVn)n≥0 is a BPRE.
Therefore, Pz(qz(ξ) = 1|e) = 1 Pz-a.s. or Pz(qz(ξ) = 1|e) = 0 Pz-a.s., and thus
Ez[L|e] = 0 Pz-a.s. or Ez[L|e] > 0 Pz-a.s. Since Pz(L = 0) < 1, this gives us
Pz(Pz(L = 0|e) = 1) = 0.
Altogether, we have Pz(Pz(L = 0|e) = 1) ∈ {0, 1}, as desired.

(c) Note first, that Ext ⊆ {L = 0} Pz-a.s. Now, consider for every n ∈ N the first
time the number of contaminated cells is greater than or equal to n, i.e.

τn = inf{m ∈ N : T ∗m ≥ n}.

Observe that for m ∈ N, we have

T ∗m+l =
∑
u∈T∗m

T ∗l (u), l ≥ 0,

and thus

L = lim
l→∞

T ∗m+l

µm+l
=

1

µm

∑
u∈T∗m

lim
l→∞

T ∗l (u)

µl
,

where T ∗l (u) is the number of infected cells in the l-th generation of the BwBPRE with
root cell u and Zu root parasites. According to our model assumptions, these processes
starting in the cells u ∈ T∗m are conditionally independent given Gm, and are evolving as
the original process under P with the shifted environment [e]m, apart from the fact that
there might be more than one parasite in the starting generation. Therefore, we get for
n ∈ N

Pz(L = 0) ≤
∑
m≥1

Pz(τn = m,L = 0) + Pz(τn =∞)

=
∑
m≥1

Pz

{τn = m} ∩
⋂
u∈T∗m

{
lim
l→∞

T ∗l (u)

µl
= 0

}+ Pz(τn =∞)

=
∑
m≥1

Ez

1{τn=m} · Pz

 ⋂
u∈T∗m

{
lim
l→∞

T ∗l (u)

µl
= 0

}∣∣∣∣∣∣Gm
+ Pz(τn =∞)
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=
∑
m≥1

Ez

1{τn=m}
∏
u∈T∗m

Pz

(
lim
l→∞

T ∗l (u)

µl
= 0

∣∣∣∣Gm)
+ Pz(τn =∞)

≤
∑
m≥1

Ez

[
1{τn=m} · P(L = 0|[e]m)T

∗
m
]

+ Pz(τn =∞)

≤
∑
m≥1

Ez [Pz(τn = m|e) · P(L = 0|[e]m)n] + Pz(τn =∞)

=
∑
m≥1

Pz(τn = m) · Ez [P(L = 0|[e]m)n] + Pz(τn =∞)

=
∑
m≥1

Pz(τn = m) · Ez [P(L = 0|e)n] + Pz(τn =∞)

≤ Ez [P(L = 0|e)n] + Pz(τn =∞),

where we used the i.i.d. property of the random environment in the antepenultimate and
in the penultimate line. If Pz(L = 0) < 1, we have P(L = 0) < 1 and P(L = 0|e) < 1
a.s., according to part (a) and (b). Hence, the extinction-explosion principle for the
process of contaminated cells yields

Pz(L = 0) ≤ lim
n→∞

Pz(τn =∞)

= lim
n→∞

Pz

(
sup
m≥1
T ∗m < n

)
= Pz

(
sup
m≥1
T ∗m <∞

)
= Pz(Ext).

Combining this with Ext ⊆ {L = 0} Pz-a.s., completes the proof.

With the previous proposition at hand, we can take a look at the notion of a recovering
organism. In [11] Bansaye called an organism recovering, if the number of infected cells
becomes negligible compared to the total number of cells as n → ∞. Therefore, we
analyse the asymptotic behaviour of T

∗
n

Tn . Note that in our model the cell process is a
GWP that may die out, and obviously, the notion of a recovering organism only makes
sense if the cell population survives. Thus, we let Survcell denote the survival set of the
cell population (Tn)n≥0, and we say that an organism recovers if the number of infected
cells becomes asymptotically negligible compared to the total number of cells on Survcell.
An immediate consequence of Proposition 2.18 is the following

Corollary 2.19. Let µ > 1 (or equivalently P(Survcell) > 0). The organism is a.s. re-
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covering, i.e.

T ∗n
Tn
→ 0 a.s. on Survcell,

as n→∞, iff

E log f ′ξ0(1) ≤ 0 or E[log−(1− fξ0(0))] =∞.

Moreover, if the organism is not a.s. recovering, then the parasites need to die out for
the organism to recover.

This completes our analysis of the long-term behaviour of the process of infected cells.

2.5. The number of cells with a given number of
parasites

In the final section, we come back to the process (Fn(k))n≥0 of the number of cells with
exactly k parasites defined in (2.3). In Corollary 2.11 we compared this quantity to the
expected number of cells. Here we compare it to the number of cells (Tn)n≥0 and the
number of infected cells (T ∗n )n≥0. This is done in the next

Theorem 2.20. Let z ≥ 1 and P(Surv) > 0. The following assertions hold for k ≥ 1:

(a) lim
n→∞

Pz

(
Fn(k)
Tn > ε

∣∣∣ Surv
)

= 0 for all ε > 0.

(b) If E[log f ′ξ0(1)] > 0 and E[log−(1− fξ0(0))] <∞, then

lim
n→∞

Fn(k)

Ez[T ∗n |e]
= 0, in probability and in L1 under Pz.

(c) If E[log f ′ξ0(1)] > 0 and E[log−(1− fξ0(0))] <∞, then

lim
n→∞

Pz

(
Fn(k)

T ∗n
> ε

∣∣∣∣ Surv

)
= 0

for all ε > 0.

Proof. (a) First note that (Tn)n≥0 is a supercritical GWP satisfying the (Z logZ)-
condition. Therefore, (Tn/µn)n≥0 converges a.s. to an integrable random variable, say
T , satisfying {T > 0} ⊇ Surv. Hence, we get with the help of Corollary 2.11

Fn(k)

Tn
1Surv =

Fn(k)/µn

Tn/µn
1Surv

Pz−−→ 0,
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i.e. limn→∞Pz

(
Fn(k)
Tn > ε

∣∣∣ Surv
)

= 0 for all ε > 0.

(b) In the given situation, Theorem 5.3 in [51] tells us

Pz(ZVn → 0 or ZVn →∞ as n→∞|ξ) = 1 a.s.

Therefore, the dominated convergence theorem ensures

lim
n→∞

Pz(ZVn = k|e) = Ez

[
lim
n→∞

P(ZVn = k|ξ)
∣∣∣ e] = 0 a.s.

Furthermore, since limn→∞Pz(ZVn > 0) > 0 according to Remark 2.3, a similar reasoning
as in the proof of Proposition 2.18 part (b) yields

lim
n→∞

Pz(ZVn > 0|e) = lim
n→∞

(1− Pz(ZVn = 0|e)) > 0 a.s.

So, another appeal to the dominated convergence theorem gives us in combination with
Proposition 2.9

Ez

[
Fn(k)

Ez[T ∗n |e]

]
= Ez[Pz(ZVn = k|ZVn > 0, e)]

n→∞−−−→ 0,

which is the desired result.
(c) Using Proposition 2.18, we have Pz(L = 0) < 1 and {L > 0} = Surv Pz-a.s.

Therefore, Corollary 2.11 yields

Fn(k)

T ∗n
1Surv =

Fn(k)/µn

T ∗n /µn
1Surv

Pz−−→ 0,

i.e. limn→∞Pz

(
Fn(k)
T ∗n

> ε
∣∣∣ Surv

)
= 0 for all ε > 0.
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Now, we are turning to the process of parasites (Zn)n≥0. In Corollary 2.14 of the
previous chapter, we have already seen that this process satisfies an extinction-explosion
principle.

In the following section, we will take a closer look at the P-a.s. extinction of the process
of parasites. Afterwards, after a proper normalisation, we establish a convergence result
for the process (Zn)n≥0 by means of the martingale convergence theorem. Furthermore,
we give conditions for L2-boundedness of this normalised process. Then, we come back
to the earlier mentioned method of size-biasing and construct a size-biased BwBPRE.
This enables us to prove a dichotomy on the asymptotic behaviour of the normalised
process of (Zn)n≥0. The final section of this chapter deals with the process of parasites
along the spine in the here given spinal construction.

Similar results can be found in [27].

3.1. The a.s. extinction of the process of parasites

Again, we have to distinguish the cases P2(T ∗1 = 2) > 0 and P2(T ∗1 = 2) = 0. Let us
start with the latter one.

Proposition 3.1. If P2(T ∗1 = 2) = 0, then P(Ext) = 1 iff

E [logE [Z1|T∅, e0]] ≤ 0 or E[log−(1− P(Z1 = 0|T∅, e0))] =∞.

Proof. Let P2(T ∗1 = 2) = 0 and p2 > 0. As seen in the proof of Theorem 2.17, we get

Pz(T ∗n ≤ 1 ∀ n ≥ 0) = 1,

for any z ∈ N0. Obviously, this is also true in the case p2 = 0. Hence, the process
(Zn)n≥0 is equal in law to the BPRE (Z̃n)n≥0 in i.i.d. random environment (T0∗n , en)n≥0,
where Z̃0 = 1 and

Z̃n+1 =
Z̃n∑
i=1

(
X

(0,T0∗n )
i,0∗n +X

(1,T0∗n )
i,0∗n

)
, n ≥ 1.

If p0 = 0, we see with the help of (1.3) that this BPRE satisfies E|logE[Z1|T∅, e0]| <∞.

43



3. The process of parasites

Therefore, according to results in [8] and [50] we get P(Ext) = 1 iff

E[logE[Z1|T∅, e0]] ≤ 0 or E[log−(1− P(Z1 = 0|T∅, e0))] =∞.

If p0 > 0, we have P(Ext) = 1 as well as E[logE[Z1|T∅, e0]] ≤ 0.

Unfortunately, we cannot give a full characterisation of P-a.s. extinction in the case
P2(T ∗1 = 2) > 0. At least, we can state a necessary condition and a different condition
which is sufficient. We start with the necessary condition.

Proposition 3.2. Let P2(T ∗1 = 2) > 0. If P(Ext) = 1, then we have

E[logE[T ∗n |e]] ≤ 0 or E[log−(1− P(T ∗n = 0|e))] =∞

for all n ∈ N0.

Proof. Suppose that there exists an m ∈ N0, such that

E[logE[T ∗m|e]] > 0 and E[log−(1− P(T ∗m = 0|e))] <∞.

Then one can consider the supercritical BPRE (Sn)n≥0 with S0 = 1 and generic random
generating function E[sT

∗
m |e]. Note that

P(Sn > k|e) ≤ P(T ∗nm > k|e), k ∈ N0,

since the presence of more than one parasite in an infected cell increases the probability
to get more infected cells. Moreover, the BPRE (Sn)n≥0 is supercritical and satisfies

E[log−(1− P(S1 = 0|e))] = E[log−(1− P(T ∗m = 0|e))] <∞.

Thus, Theorem 3 in [8] or Theorem 3.1 in [50] yields

lim
n→∞

P(T ∗nm > 0) ≥ lim
n→∞

P(Sn > 0) > 0,

i.e. parasites survive with positive probability. This is a contradiction.

The sufficient condition for a.s. extinction is content of the next

Proposition 3.3. Let P2(T ∗1 = 2) > 0. If supn∈N0
E[log+ E[T ∗n |e]] <∞, then we have

P(Ext) = 1.

Proof. Assume P(Surv) > 0. We have

P(T ∗n →∞|Surv) = 1
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according to Theorem 2.17, and therefore

P(T ∗n →∞, Surv |e) > 0

with positive probability. Using Fatou’s lemma, we get

lim inf
n→∞

E[T ∗n |e] ≥ E
[
1Surv lim inf

n→∞
T ∗n
∣∣∣ e] =∞

with positive probability and thus, using Fatou’s lemma once again,

∞ > sup
n∈N0

E[log+ E[T ∗n |e]] ≥ lim inf
n→∞

E[log+ E[T ∗n |e]] ≥ E
[
lim inf
n→∞

log+ E[T ∗n |e]
]

=∞.

This is a contradiction.

3.2. The process of parasites and two martingales

Note that the number of parasites Zn in the n-th generation, n ≥ 1, can be written as

Zn =
∑

v∈T∗n−1

Zv∑
i=1

(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

)
.

Let us introduce

ν(en) := E
[
X

(0,Tv)
1,v +X

(1,Tv)
1,v

∣∣∣ e] , |v| = n,

for n ∈ N0, and

νn(e) :=
n−1∏
i=0

ν(ei),

where ν0(e) := 1. Note that assumption (1.3) ensures

0 < ν(e0) <∞ P-a.s.

Using (νn(e))n≥0 as a norming sequence, we can state a first convergence result for
the process of parasites (Zn)n≥0. The corresponding process (Wn)n≥0 given by

Wn :=
Zn
νn(e)

will be analysed in greater detail here and in the following chapter.
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Proposition 3.4. Under each Pz, z ∈ N0, the process (Wn)n≥0 forms a nonnegative
martingale with respect to (Gn)n≥0 and therefore converges Pz-a.s. to an integrable
random variable W satisfying EzW ≤ z. Moreover:

(a) {P(W > 0|e) > 0} = {P(W > 0|[e]1) > 0} P-a.s., and therefore

P(P(W = 0|e) = 1) ∈ {0, 1}.

(b) If P(W = 0) < 1, then {W = 0} = Ext P-a.s.

Remark 3.5. Another natural norming sequence would be (νn)n≥0, where ν is the
annealed mean of Z1. However, as we will see later in Proposition 3.13, it turns out that
this norming sequence is in general not suitable.

Proof. It is clear from the definition of Gn that Wn is Gn-measurable, n ≥ 0. Moreover,
for n ≥ 0

Ez[Wn+1|Gn] = νn+1(e)−1
∑
v∈Tn

Zv∑
i=1

Ez

[
X

(0,Tv)
i,v +X

(1,Tv)
i,v

∣∣∣Gn]
= νn+1(e)−1

∑
v∈Tn

Zv∑
i=1

E
[
1{Tv 6=0}E

[
X

(0)
i,v +X

(1)
i,v

∣∣∣Gn, Tv]∣∣∣Gn]
= νn+1(e)−1

∑
v∈Tn

Zv∑
i=1

E
[
1{Tv 6=0}E

[
X

(0)
i,v +X

(1)
i,v

∣∣∣ e]∣∣∣Gn]
= νn+1(e)−1

∑
v∈Tn

Zv∑
i=1

E
[
X

(0)
i,v +X

(1)
i,v

∣∣∣ e]P(Tv 6= 0)

= νn+1(e)−1
∑
v∈Tn

Zv∑
i=1

ν(en)

= νn+1(e)−1ν(en) ·
∑
v∈Tn

Zv

= νn(e)−1 · Zn
= Wn Pz-a.s.,

where we used the independence of (Tv)|v|=n and Gn for the fifth equation. Regarding
the fourth equation note that

E
[
X

(0)
i,v +X

(1)
i,v

∣∣∣Gn, Tv] = E
[
X

(0)
i,v +X

(1)
i,v

∣∣∣ e, X(0)
k,w, X

(1)
k,w, k ≥ 1, |w| ≤ n− 1

]
= E

[
X

(0)
i,v +X

(1)
i,v

∣∣∣ e] ,
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3.2. The process of parasites and two martingales

where we used the independence of
((

X
(0)
k,w, X

(1)
k,w

)
k≥1,w∈V

, e
)

and (Tw)w∈V, and a

similar calculation as in (2.5). Since the integrability follows from the above by iteration,
(Wn)n≥0 forms a nonnegative martingale with respect to (Gn)n≥0 and the martingale
convergence theorem ensures the Pz-a.s. convergence to an integrable random variable
W . Finally, EzW0 = z in combination with Fatou’s lemma yields

EzW ≤ lim inf
n→∞

EzWn = z.

(a) First, we are going to show {P(W > 0|e) > 0} ⊆ {P(W > 0|[e]1) > 0} P-a.s. To
that end, we choose ω ∈ {P(W > 0|e) > 0} and suppose P(W > 0|[e]1)(ω) = 0. Similar
to (2.7), one can show that this entails

P(t,z)(W > 0|[e]1)(ω) = 0

for every (t, z) ∈ R↑ and almost all such ω. Then

0 < P(W > 0|e)(ω)

=
∑
z≥1

P(T∅ = 1, Z0 = z|e)(ω)Pz(W > 0|[e]1)(ω)

+
∑

z0,z1≥0
z0+z1≥1

P(T∅ = 2, Z0 = z0, Z1 = z1|e)(ω)P(2,(z0,z1))(W > 0|[e]1)(ω)

= 0.

This is a contradiction and so {P(W > 0|e) > 0} ⊆ {P(W > 0|[e]1) > 0} P-a.s. Since
the environmental sequence e is i.i.d., we also get

P(P(W > 0|e) > 0) = P(P(W > 0|[e]1) > 0),

and therefore {P(W > 0|e) > 0} = {P(W > 0|[e]1) > 0} P-a.s. The second assertion
follows from the ergodicity of the shift operator.

(b) This part follows similar to part (c) of Proposition 2.18. First note that obviously
Ext ⊆ {W = 0} P-a.s.
If P2(T ∗1 = 2) = 0 and P(W = 0) < 1, then the law of the process (Zn)n≥0 equals the
law of a BPRE, as seen in the proof of Proposition 3.1. Therefore, Theorem 1 in [9]
gives us {W = 0} = Ext P-a.s.
Let P2(T ∗1 ≥ 2) > 0. Again, as in the proof of Proposition 2.18 (c), consider the first
time the number of infected cells is greater than or equal to n ∈ N, i.e.

τn = inf{m ∈ N : T ∗m ≥ n}.
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3. The process of parasites

Now, for m ∈ N we have

Zm+l =
∑
u∈T∗m

Zl(u), l ≥ 0,

and thus

W = lim
l→∞

Zm+l

νm+l(e)
=

1

νm(e)

∑
u∈T∗m

lim
l→∞

Zl(u)

νm+l(e)/νm(e)
,

where Zl(u) denotes the number of parasites in the l-th generation of the BwBPRE
starting in the cell u with Zu root parasites. These processes, starting in the cells
u ∈ T∗m, are conditionally independent given Gm, and evolve like the original process
under P with the shifted environment [e]m, except for the fact that there might be more
than one parasite in the root cell u. This gives us for n ∈ N

P(W = 0) ≤
∑
m≥1

P(τn = m,W = 0) + P(τn =∞)

=
∑
m≥1

P

{τn = m} ∩
⋂
u∈T∗m

{
lim
l→∞

Zl(u)
νm+l(e)

νm(e)

= 0

}+ P(τn =∞)

=
∑
m≥1

E

1{τn=m}P

 ⋂
u∈T∗m

{
lim
l→∞

Zl(u)
νm+l(e)

νm(e)

= 0

}∣∣∣∣∣∣Gm


+ P(τn =∞)

=
∑
m≥1

E

1{τn=m}
∏
u∈T∗m

P

(
lim
l→∞

Zl(u)
νm+l(e)

νm(e)

= 0

∣∣∣∣∣Gm
)+ P(τn =∞)

≤
∑
m≥1

E
[
1{τn=m} · P(W = 0|[e]m)T

∗
m
]

+ P(τn =∞)

≤
∑
m≥1

E [P(τn = m|e) · P(W = 0|[e]m)n] + P(τn =∞)

=
∑
m≥1

P(τn = m) · E [P(W = 0|[e]m)n] + P(τn =∞)

=
∑
m≥1

P(τn = m) · E [P(W = 0|e)n] + P(τn =∞)

≤ E [P(W = 0|e)n] + P(τn =∞),
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3.2. The process of parasites and two martingales

where we used the i.i.d. property of the random environment. If P(W = 0) < 1, we have
P(W = 0|e) < 1 a.s. according to part (a), and the extinction-explosion principle for
the process of infected cells (Theorem 2.17 (b)) yields

P(W = 0) ≤ lim
n→∞

P(τn =∞) = P

(
sup
m≥1
T ∗m <∞

)
= P(Ext),

where we recall that we are in the case P2(T ∗1 ≥ 2) > 0. Together with Ext ⊆ {W = 0}
P-a.s. this gives the desired result.

Sometimes it is convenient to have W defined on the entire probability space (Ω,A,P).
Therefore we put W := lim supn→∞Wn.

Now, we turn to the problem of finding conditions that ensure P(W > 0) > 0. An
obvious sufficient condition is uniform integrability (u.i.) and a fortiori L2-boundedness
of (Wn)n≥0. Later, in Theorem 4.5, we give a necessary and sufficient condition for u.i.,
but here we start with the L2-setting. First, we compute the quenched and annealed
second moment of our martingale (Wn)n≥0 in order to make assertions about the L2-
boundedness under P(·|e) as well as under P. To give the following expressions in a
more compact form, let us introduce the notation

ν(p)(en) = E
[(
X

(0,Tv)
1,v +X

(1,Tv)
1,v

)p∣∣∣ e] , |v| = n,

for n ∈ N0 and p > 0, and note that ν(1)(en) = ν(en). Moreover, define

β(en) := µ · E[f ′′ξn(1)|e], α(en) := µ · E[f ′ξn(1)2|e], n ≥ 0,

and

α0(e) := 1, αn(e) :=
n∏

m=1

α(em), n ≥ 1,

and put

σ2 := Var

(
Z1

ν(e0)

)
, ν̃ := E[ν−1(e0)], β := µ · E

[
f ′′ξ0(1)

ν2(e0)

]
and α := µ · E

[(
f ′ξ0(1)

ν(e0)

)2
]
.

Then we get the following
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3. The process of parasites

Proposition 3.6. Suppose (Wn)n≥0 is square-integrable. For any n ≥ 1 we have

E[W 2
n |e] = 1 +

n−1∑
k=0

1

νk(e)

(
ν(2)(ek)

ν2(ek)
− 1

)

+
p0

p1 + p2

n−1∑
k=0

1

ν2
k(e)

k−1∑
j=0

αk−1(e)

αj(e)
β(ej)νj(e) P-a.s.

and

E[W 2
n ] = 1 + σ2

n−1∑
k=0

ν̃k +
p0

p1 + p2

β
n−1∑
k=0

αk−1

k−1∑
j=0

(
ν̃

α

)j
. (3.1)

In particular

VarWn = σ2

n−1∑
k=0

ν̃k +
p0

p1 + p2

β
n−1∑
k=0

αk−1

k−1∑
j=0

(
ν̃

α

)j
. (3.2)

Proof. Note that

Wn+1 −Wn =
1

νn(e)

∑
v∈Tn

Zv∑
i=1

(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(en)
− 1

)
, (3.3)

and that (Wn)n≥0 forms a martingale under P(·|e) with respect to the filtration (Fn)n≥0.
The latter is immediate from the proof of Proposition 3.4, and by our assumption this
martingale is P-a.s. square-integrable under P(·|e). Therefore, the orthogonality of
martingale increments yields

E[W 2
n |e] = 1 +

n−1∑
k=0

E
[
(Wk+1 −Wk)

2
∣∣ e]

= 1 +
n−1∑
k=0

1

ν2
k(e)

· E

(∑
v∈Tk

Zv∑
i=1

(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

))2
∣∣∣∣∣∣ e
 P-a.s.

Denoting the quenched expectation on the right hand side of the previous equation by
Ik, we get

Ik = Ik,1 + Ik,2 + Ik,3,

50



3.2. The process of parasites and two martingales

with

Ik,1 := E

∑
v∈Tk

Zv∑
i=1

(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

)2
∣∣∣∣∣∣ e


= E

∑
v∈Tk

Zv∑
i=1

E

(X(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

)2
∣∣∣∣∣∣Fk, e

∣∣∣∣∣∣ e


= E

∑
v∈Tk

Zv∑
i=1

E

(X(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)

)2
∣∣∣∣∣∣ e
− 1

∣∣∣∣∣∣ e


=

(
ν(2)(ek)

ν2(ek)
− 1

)
E[Zk|e]

=

(
ν(2)(ek)

ν2(ek)
− 1

)
νk(e) P-a.s.

and

Ik,2 := E

∑
v∈Tk

Zv∑
i,j=1
i 6=j

(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

)(
X

(0,Tv)
j,v +X

(1,Tv)
j,v

ν(ek)
− 1

)∣∣∣∣∣∣∣∣ e


= E

∑
v∈Tk

Zv∑
i,j=1
i 6=j

E

[(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

)(
X

(0,Tv)
j,v +X

(1,Tv)
j,v

ν(ek)
− 1

)∣∣∣∣∣Fk, e
]∣∣∣∣∣∣∣∣ e



= E

∑
v∈Tk

Zv∑
i,j=1
i 6=j

E

[(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

)(
X

(0,Tv)
j,v +X

(1,Tv)
j,v

ν(ek)
− 1

)∣∣∣∣∣ e
]∣∣∣∣∣∣∣∣ e



= E

∑
v∈Tk

Zv∑
i,j=1
i 6=j

(
p1 + p2

ν2(ek)
· E
[
X

(0)
i,v +X

(1)
i,v

∣∣∣ e]E [X(0)
j,v +X

(1)
j,v

∣∣∣ e]− 1

)∣∣∣∣∣∣∣∣ e


= E

∑
v∈Tk

Zv∑
i,j=1
i 6=j

(
1

p1 + p2

− 1

)∣∣∣∣∣∣∣∣ e

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=
p0

p1 + p2

· E

[∑
v∈Tk

Z2
v −Zk

∣∣∣∣∣ e
]

P-a.s.

as well as

Ik,3 := E

 ∑
v,w∈Tk
v 6=w

(
Zv∑
i=1

(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

))(
Zw∑
j=1

(
X

(0,Tw)
j,w +X

(1,Tw)
j,w

ν(ek)
− 1

))∣∣∣∣∣∣∣∣ e


= E

 ∑
v,w∈Tk
v 6=w

Zv∑
i=1

Zw∑
j=1

E

[(
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

)(
X

(0,Tw)
j,w +X

(1,Tw)
j,w

ν(ek)
− 1

)∣∣∣∣∣Fk, e
]∣∣∣∣∣∣∣∣ e



= E

 ∑
v,w∈Tk
v 6=w

Zv∑
i=1

Zw∑
j=1

E

[
X

(0,Tv)
i,v +X

(1,Tv)
i,v

ν(ek)
− 1

∣∣∣∣∣ e
]
E

[
X

(0,Tw)
j,w +X

(1,Tw)
j,w

ν(ek)
− 1

∣∣∣∣∣ e
]∣∣∣∣∣∣∣∣ e


= 0 P-a.s.,

where we used the conditional independence of (X
(0,Tv)
i,v , X

(1,Tv)
i,v )i≥1,|v|=k and Fk as well

as the conditional independence of (X
(0)
i,v , X

(1)
i,v ) and (X

(0)
j,v , X

(1)
j,v ) if i 6= j and the condi-

tional independence of (X
(0,Tv)
i,v , X

(1,Tv)
i,v ) and (X

(0,Tw)
j,w , X

(Tw)
j,w ) if v 6= w. Further, using

Proposition 2.9, we can conclude

E

[∑
v∈Tk

Z2
v −Zk

∣∣∣∣∣ e
]

= µkE[Z2
Vk
− ZVk |e] = µkE[f ′′k,ξ(1)|e]

= µk
(
E[f ′′k−1,ξ(1)f ′ξk−1

(1)2|e] + E[f ′k−1,ξ(1)f ′′ξk−1
(1)|e]

)
= µk

(
E[f ′′k−1,ξ(1)|e] · E[f ′ξk−1

(1)2|e] + E[ZVk−1
|e] · E[f ′′ξk−1

(1)|e]
)

= µk
(
E[f ′′k−1,ξ(1)|e] · α(ek−1)

µ
+
νk−1(e)

µk−1
· β(ek−1)

µ

)
= . . . =

k−1∑
j=0

αk−1(e)

αj(e)
β(ej)νj(e) P-a.s.,

where we used the definitions made beforehand. Altogether, this yields

E[W 2
n |e] = 1 +

n−1∑
k=0

1

νk(e)

(
ν(2)(ek)

ν2(ek)
− 1

)
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+
p0

p1 + p2

n−1∑
k=0

1

ν2
k(e)

k−1∑
j=0

αk−1(e)

αj(e)
β(ej)νj(e) P-a.s.

Since the environmental sequence is i.i.d., we obtain for the annealed second moment

E[W 2
n ] = 1 +

n−1∑
k=0

E[ν−1
k (e)] · E

[
ν(2)(ek)

ν2(ek)
− 1

]

+
p0

p1 + p2

n−1∑
k=0

k−1∑
j=0

E

[
β(ej)

α(ej+1) · · ·α(ek−1)

ν(e0) · · · ν(ej−1)ν2(ej) · · · ν2(ek−1)

]

= 1 +
n−1∑
k=0

ν̃k · E
[
Z2

1

ν2(e0)
− 1

]

+
p0

p1 + p2

· E
[
β(e0)

ν2(e0)

] n−1∑
k=0

k−1∑
j=0

(
E[ν−1(e0)]

)j · (E [ α(e0)

ν2(e0)

])k−1−j

= 1 + Var

(
Z1

ν(e0)

) n−1∑
k=0

ν̃k

+
p0

p1 + p2

· µE
[
f ′′ξ0(1)

ν2(e0)

] n−1∑
k=0

(
µE

[(
f ′ξ0(1)

ν(e0)

)2
])k−1 k−1∑

j=0

 ν̃

µE

[(
f ′ξ0

(1)

ν(e0)

)2
]

j

= 1 + σ2

n−1∑
k=0

ν̃k +
p0

p1 + p2

β
n−1∑
k=0

αk−1

k−1∑
j=0

(
ν̃

α

)j
.

Now, the formula for the variance is a consequence of E[Wn] = 1.

We can make a case analysis to give more explicit formulas for the variance. Put

c =
p0

p1 + p2

.

The results are summarised in the next
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Corollary 3.7. For n ≥ 0, the variance of Wn is given by

VarWn =



nσ2 + cβ
n(n− 1)

2
, ν̃ = 1, α = 1,

nσ2 +
cβ

1− α

(
n− 1− αn

1− α

)
, ν̃ = 1, α 6= 1,

σ2 1− ν̃n

1− ν̃
+

cβ

1− ν̃

(
n− 1− ν̃n

1− ν̃

)
, ν̃ 6= 1, α = 1,

σ2 1− ν̃n

1− ν̃
+ cβ

1− nαn−1 + (n− 1)αn

(1− α)2
, ν̃ 6= 1, α 6= 1, ν̃ = α,

σ2 1− ν̃n

1− ν̃
+

cβ

α− ν̃

(
1− αn

1− α
− 1− ν̃n

1− ν̃

)
, ν̃ 6= 1, α 6= 1, ν̃ 6= α.

Proof. Using (3.2) from Proposition 3.6 and the formula for the partial sum of the
geometric series, the above expressions in the different cases are readily obtained.

With the help of Proposition 3.6, we can give conditions for the L2-boundedness of
(Wn)n≥0 under P(·|e) as well as under P. We need the following

Lemma 3.8 ([32], Lemma 3.1, [26], Theorem 1). Let (αn, βn)n≥0 be a stationary and
ergodic sequence of nonnegative random variables. If E[logα0] < 0 and E[log+ β0] <∞,
then ∑

n≥0

α0 · · ·αn−1βn <∞ P-a.s.

The previous proposition and the cited lemma entail

Theorem 3.9. Let E[log ν(e0)] > 0, p0 > 0 and suppose (Wn)n≥0 is square-integrable.

(a) For P-almost all e, the martingale (Wn)n≥0 is L2-bounded under P(·|e) iff

∑
n≥0

1

νn(e)

(
ν(2)(en)

ν2(en)
− 1

)
<∞

and

∑
n≥0

1

ν2
n(e)

n−1∑
j=0

αn−1(e)

αj(e)
β(ej)νj(e) <∞.

These sums are P-a.s. finite if

E

[
logE

[(
Z1

ν(e0)

)2
∣∣∣∣∣ e
]]

<∞, E

[
log+

E[f ′′ξ0(1)|e]

E[f ′ξ0(1)2|e]

]
<∞
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and E

[
logE

[(
f ′ξ0(1)

ν(e0)

)2
∣∣∣∣∣ e
]]

< − log µ < E

[
logE

[
f ′ξ0(1)2

ν(e0)

∣∣∣∣ e]] .
(b) The martingale (Wn)n≥0 is L2-bounded under P iff

Var

(
Z1

ν(e0)

)
<∞, E[ν−1(e0)] < 1 and E

[(
f ′ξ0(1)

ν(e0)

)2
]
<

1

µ
.

Proof. (a) The first assertion is a direct consequence of Proposition 3.6 because all
summands are nonnegative. For the second assertion we use Lemma 3.8. Regarding the
first sum, note that

E[log ν−1(e0)] = −E[log ν(e0)] < 0

and

E

[
log+

(
ν(2)(e0)

ν2(e0)
− 1

)]
≤ E

[
log+ E

[(
Z1

ν(e0)

)2
∣∣∣∣∣ e
]]

<∞.

Thus, the P-a.s. finiteness of the first sum is a consequence of Lemma 3.8.
For the second sum, note that

∑
n≥0

1

ν2
n(e)

n−1∑
j=0

αn−1(e)

αj(e)
β(ej)νj(e)

≤ 1

ν(e0)

∑
n≥1

α(e1)

ν2(e1)
· · · α(en−1)

ν2(en−1)

∑
j≥0

ν(e1)

α(e1)
· · · ν(ej−1)

α(ej−1)

β(ej)

α(ej)
.

Furthermore, the assumptions ensure

E

[
log

ν(e0)

α(e0)

]
= −E

[
log

α(e0)

ν(e0)

]
= − log µ− E

[
logE

[
f ′ξ0(1)2

ν(e0)

∣∣∣∣ e]] < 0,

E

[
log+ β(e0)

α(e0)

]
= E

[
log+

E[f ′′ξ0(1)|e]

E[f ′ξ0(1)2|e]

]
<∞

as well as

E

[
log

α(e0)

ν2(e0)

]
= log µ+ E

[
logE

[(
f ′ξ0(1)

ν(e0)

)2
∣∣∣∣∣ e
]]

< 0.

Hence, Lemma 3.8 gives us the P-a.s. finiteness of the second sum.

55



3. The process of parasites

(b) Recalling E[W 2
n ] from (3.1) in Proposition 3.6 and using the definitions made

prior to Proposition 3.6, we see that (Wn)n≥0 is L2-bounded under P iff

σ2 <∞,
∑
n≥0

E[ν−1(e0)]n <∞, E

[
f ′′ξ0(1)

ν2(e0)

]
<∞

and
∑
n≥0

n−1∑
j=0

(
µE

[(
fξ′0(1)

ν(e0)

)2
])n−1−j (

E[ν−1(e0)]
)j
<∞.

First note that Var(Z1/ν(e0)) <∞ implies

E

[
f ′′ξ0(1)

ν2(e0)

]
≤ E

[
E

[
Z2
V1

ν2(e0)

∣∣∣∣ ξ]] ≤ E

[(
Z1

ν(e0)

)2
]
<∞.

Furthermore

∑
n≥0

n−1∑
j=0

(
µE

[(
fξ′0(1)

ν(e0)

)2
])n−1−j (

E[ν−1(e0)]
)j

=
∑
j≥0

∑
n≥0

(
µE

[(
fξ′0(1)

ν(e0)

)2
])n (

E[ν−1(e0)]
)j
,

and this double series is obviously finite iff

E[ν−1(e0)] < 1 and E

[(
fξ′0(1)

ν(e0)

)2
]
<

1

µ
.

This completes the proof.

Remark 3.10. Obviously, one can prove part (b) of the previous proposition by
considering the different cases according to Corollary 3.7.

With the previous proposition at hand, we can give sufficient conditions for L2-
convergence of the martingale (Wn)n≥0, which in turn also ensure L1-convergence of the
martingale, and thus the nondegeneracy of the martingale limit W . This is stated in
the next

Corollary 3.11. If σ2 <∞, ν̃ < 1 and α < 1, then

lim
n→∞

E(Wn −W )2 = 0,

56



3.2. The process of parasites and two martingales

and hence

EW = 1, VarW =
σ2

1− ν̃
+

cβ

(1− α)(1− ν̃)
and P(W = 0) = P(Ext).

Since the conditions stated above are not necessary for L1-convergence, this is not
the end of the story. Later in Theorem 4.5 we give a necessary and sufficient condition,
using the size-biased construction of the next section.

We close this section by giving two consequences from Proposition 3.4. The first one
is an easy consequence of the SLLN and yields the convergence of Z1/n

n to a finite and
positive constant on the event {W > 0}. Note that E|log ν(e0)| <∞ by (1.3).

Corollary 3.12. On the event {W > 0} we have

lim
n→∞

1

n
logZn = E[log ν(e0)] P-a.s.

Proof. For any ω withWn(ω)→ W (ω) ∈ (0,∞), we obviously have lim
n→∞

1
n

logWn(ω) = 0.

Furthermore, by the SLLN

lim
n→∞

1

n
log νn(e) = lim

n→∞

1

n

n−1∑
i=0

log ν(ei) = E[log ν(e0)] P-a.s.,

and thus

lim
n→∞

1

n
logZn = lim

n→∞

1

n
logWn + lim

n→∞

1

n
log νn(e) = E[log ν(e0)] P-a.s.

on the event {W > 0}.

Finally, we take a look at another possible norming sequence for (Zn)n≥0, namely
(νn)n≥0, where ν is the annealed mean of Z1. It is easy to see that (Zn/νn) forms again
a martingale, and we can further deduce that (νn)n≥0 is not a suitable norming sequence
for the process of parasites, unless ν(e0) is deterministic. This is stated in the next

Proposition 3.13. The process W̃n := ν−nZn, n ≥ 0, forms a nonnegative martingale
with respect to (Fn)n≥0 and thus converges P-a.s. to an integrable random variable W̃ .
If ν(e0) is nondeterministic, i.e. Var(ν(e0)) > 0, we have W̃ = 0 P-a.s.

Proof. Obviously, W̃n is Fn-measurable, n ≥ 0. Furthermore for n ≥ 0 we have

E[Zn+1|Fn] =
∑
v∈Tn

Zv∑
i=1

E
[
X

(0,Tv)
i,v +X

(1,Tv)
i,v

∣∣∣Fn]
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3. The process of parasites

=
∑
v∈Tn

Zv∑
i=1

E
[
X

(0,Tv)
i,v +X

(1,Tv)
i,v

]
=
∑
v∈Tn

Zv∑
i=1

EZ1

= ν
∑
v∈Tn

Zv

= νZn P-a.s.,

where we used the independence of X
(0,Tv)
i,v +X

(1,Tv)
i,v and Fn for the second equality. The

integrability follows from the above by induction. Hence (W̃n)n≥0 forms a nonnegative
martingale and the martingale convergence theorem ensures the P-a.s. convergence to
an integrable random variable W̃ .

For the second part note that Jensen’s inequality in combination with the fact that
ν(e0) is nondeterministic implies

E[log ν(e0)] < logEν(e0) = logEZ1 = log ν.

Therefore, by the SLLN(
νn(e)

νn

)1/n

= exp

(
1

n

n−1∑
i=0

log ν(ei)− log ν

)
→ exp (E[log ν(e0)]− log ν) < 1 P-a.s.,

and together with Proposition 3.4 we get

W̃n = Wn ·
νn(e)

νn
→ 0 P-a.s.,

that is W̃ = 0 P-a.s. This completes the proof.

Remark 3.14. The second part of the previous proposition can also be proved by
means of Kakutani’s product martingale theorem. In fact, the process (νn(e)/νn)n≥0

forms a nonnegative product martingale, and since ν(e0) is nondeterministic, Jensen’s
inequality implies

q := E

[(
ν(en)

ν

)1/2
]
<

(
E

[
ν(en)

ν

])1/2

= 1, n ≥ 0.
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3.3. Size-biasing II

Therefore

n∏
k=0

E

[(
ν(ek)

ν

)1/2
]

= qn+1 → 0, as n→∞.

This yields νn(e)/νn → 0 P-a.s., as n→∞, and we can proceed as before.

3.3. Size-biasing II

This section provides us with the tools to give the desired necessary and sufficient
conditions for the nondegeneracy of the martingale limit W in Chapter 4.

We come back to the method of size-biasing discussed in Section 2.1. References and
a short description of the method can be found there. This time we are interested in the
construction of a size-biased tree, not just in picking a random cell line. Furthermore,
we pick the spine along the parasites rather than the cells.

Before formally constructing the size-biased process, we give an intuitive description
of the method, which is also depicted in Figure 3.1.
Given the random environment e, we want to construct a spine in our cell tree. Therefore,
every cell along the spine needs to have at least one daughter cell. For convenience, we
let spinal cells produce one daughter cell with probability p1/(p1 + p2) and two daughter
cells with probability p2/(p1 + p2). Note that this is not the size-biased cell distribution.
Now, we describe how the spinal cells are chosen.
At generation 0, we start with a single cell and a single parasite, called the spinal
cell and the spinal parasite of generation 0. This cell reproduces according to the
cell distribution specified above, and the parasite produces offspring and shares these
into the daughter cell(s) according to a size-biased parasite distribution specified later.
Among these offspring, the spinal parasite of the first generation is chosen uniformly,
and the cell containing this parasite becomes the spinal cell of the first generation.
Now, the same procedure applies to the spinal cell and the spinal parasite of the first
generation, while the possible other cell and the other parasites multiply in the original
way. In particular, the possible other cell of the first generation starts a usual BwBPRE
- potentially having more than one starting parasite - in the shifted environment [e]1.
This goes on indefinitely.
As already mentioned, the above described evolution of the size-biased process is
visualized later in Figure 3.1 and includes the notation we introduce next.

Let (T̂n, Ĉn, (X̂
(0)
n , X̂

(1)
n ))n≥0 be a sequence of random variables satisfying the following

properties:

• (T̂n)n≥0 is an independent sequence and independent of(
(Ĉn, (X̂

(0)
n , X̂(1)

n ))n≥0, (Tv)v∈V, (X
(0)
k,v , X

(1)
k,v)k≥1,v∈V, e

)
.
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3. The process of parasites

• Given e, the random variables
(
Ĉn, (X̂

(0)
n , X̂

(1)
n )
)
n≥0

are independent and indepen-

dent of
(
(Tv)v∈V, (X

(0)
k,v , X

(1)
k,v)k≥1,v∈V

)
.

• The distributions are defined by

P
(
T̂n = t,

(
X̂(0)
n , X̂(1)

n

)
∈ A, Ĉn = l

∣∣∣ e)
=

pt
ν(en)

P
((
X

(0)
1,0∗n , X

(1)
1,0∗n

)
∈ A,X(0)

1,0∗n +X
(1)
1,0∗n ≥ l

∣∣∣ e) P-a.s.,

for t ∈ {1, 2}, A ⊆ N2
0, l ≥ 1, and 0 otherwise.

This yields for the marginal distributions

P(T̂n = t) =


pt

p1 + p2

, if t ∈ {1, 2},

0, otherwise,

and

P
((
X̂(0)
n , X̂(1)

n

)
∈ A

∣∣∣ e) =

E

[
1{(

X
(0)
1,0∗n ,X

(1)
1,0∗n

)
∈A
} (X(0)

1,0∗n +X
(1)
1,0∗n

)∣∣∣∣ e]
E
[
X

(0)
1,0∗n +X

(1)
1,0∗n

∣∣∣ e] P-a.s.,

for A ⊆ N2
0, as well as

P(Ĉn = l|e) =
P
(
X

(0)
1,0∗n +X

(1)
1,0∗n ≥ l

∣∣∣ e)
E
[
X

(0)
1,0∗n +X

(1)
1,0∗n

∣∣∣ e] P-a.s., l ≥ 1.

Here, the sequence (T̂n)n≥0 describes the multiplication of the spinal cells, the sequence

(X̂
(0)
n , X̂

(1)
n )n≥0 describes the multiplication of the spinal parasites and the sequence

(Ĉn)n≥0 describes the choosing of the spinal parasites.
Note that for x0, x1 ∈ N0, with x0 + x1 ≥ 1 and 1 ≤ l ≤ x0 + x1

P(Ĉn = l|X̂(0)
n = x0, X̂

(1)
n = x1, e) =

P
(
X̂

(0)
n = x0, X̂

(1)
n = x1, Ĉn = l|e

)
P
(
X̂

(0)
n = x0, X̂

(1)
n = x1|e

)
=

1

x0 + x1

.

This means that Ĉn picks uniformly at random one of the offspring of the spinal parasite
of the n-th generation to be the spinal parasite of the (n+ 1)-st generation.
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3.3. Size-biasing II

Note that this structure including the sequence (T̂n, Ĉn, (X̂
(0)
n , X̂

(1)
n ))n≥0 shall be the

same under any Pz, z ≥ 0, where the spinal parasite of the root cell is chosen uniformly
among the root parasites.

Next, we define the random variables V̂0 := ∅ and V̂n+1 := V̂nÛn, n ≥ 0, where

Ûn := 1{
Ĉn>X̂

(0,T̂n)
n

}, n ≥ 0.

Here the notation X̂
(k,l)
n is the same as for the nonhatted version. Thus, (V̂n)n≥0 is a

cell line in the cell tree and V̂n gives the cell the spinal parasite of the n-th generation is
living in. Furthermore, put Â∅ := 1 and

Âvu :=

{
1{u≤T̂n−1}, if v = V̂n for some n ≥ 0,

1{u≤Tv−1}Âv, otherwise,

for all v ∈ V and u ∈ {0, 1}, as well as Ẑ∅ := Z∅ and

Ẑvu :=



ẐV̂n−1∑
i=1

X
(u,T̂n)

i,V̂n
+ X̂(u,T̂n)

n , if v = V̂n for some n ≥ 0,

Ẑv∑
i=1

X
(u,Tv)
i,v , otherwise,

for all v ∈ V and u ∈ {0, 1}. Finally set

T̄v :=

{
T̂n, if v = V̂n for some n ≥ 0,

Tv, otherwise,

for all v ∈ V.
Now, the corresponding size-biased branching within branching process in random

environment, B̂P := (B̂Pn)n≥0, is given by B̂Pn := (Âv, Ẑv)|v|=n, and the size-biased

branching within branching tree in random environment, B̂T := (B̂Tn)n≥0, is given by

B̂Tn := (Âv, Ẑv)|v|≤n.

Now, the quantities T̂, T̂n, T̂n, T̂∗n, T̂ ∗n and Ẑn, n ≥ 0, are defined in an obvious way
for the size-biased BwBPRE .

In the following figure, a realization of the first three generations of the size-biased
BwBPRE is shown. The spinal parasites and the cells they live in are represented by
� and �, respectively, whereas normal cells and normal parasites are represented by
the corresponding circular versions. Here, the nonspinal cell 0 starts a BwBPRE in the
shifted environment [e]1 with two ancestor parasites, and the cell 11 starts a BwBPRE in
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3. The process of parasites

the shifted environment [e]2 with one ancestor parasite. The spinal cells up to generation
three are given by V̂0 = ∅, V̂1 = 1, V̂2 = 10 and V̂3 = 100, and the corresponding parasite
counts are ẐV̂0

= 1, ẐV̂1
= 4, ẐV̂2

= 3 and ẐV̂3
= 5.

V̂0 = ∅

BT(0)

V̂1 = 1

V̂2 = 10

V̂3 = 100 BT(11)

gen. 0

gen. 1

gen. 2

gen. 3

Figure 3.1.: A realization of the size-biased BwBPRE up to generation three

To derive the relation between the law of (B̂T, e) and the law of (BT, e) we need a

Lemma 3.15. Let n ∈ N0.

(a) For all x0, x1 ∈ N0, t ∈ {1, 2} and 0 ≤ u ≤ t− 1 we have

P
(
X̂(0)
n = x0, X̂

(1)
n = x1, T̂n = t, Ûn = u

∣∣∣ e)
=

ptx
(u,t)

ν(en)
P
(
X

(0)
1,0∗n = x0, X

(1)
1,0∗n = x1

∣∣∣ e) P-a.s.,

where x(0,1) = x0 + x1, x(0,2) = x0 and x(1,2) = x1.
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(b) For all t ∈ {1, 2}, 0 ≤ u ≤ t− 1, (zv)0≤v≤t−1 ∈ Nt
0 and z ∈ N

Pz

(
(Ẑv)0≤v≤t−1 = (zv)0≤v≤t−1, T̂0 = t, Û0 = u

∣∣∣ e)
=

1

ν(e0)

zu
z

Pz

(
(Zv)0≤v≤t−1 = (zv)0≤v≤t−1, T∅ = t

∣∣ e) Pz-a.s.

In particular,

Pz

(
(Ẑv)0≤v≤t−1 = (zv)0≤v≤t−1, T̂0 = t

∣∣∣ e)
=

1

ν(e0)

∑t−1
u=0 zu
z

Pz ((Zv)0≤v≤t−1 = (zv)0≤v≤t−1, T∅ = t| e) Pz-a.s.

Proof. (a) We establish the assertion just for t = 2 and u = 0, as the other two cases
can be proved in a similar fashion. For x0, x1 ∈ N0, t = 2 and u = 0 we get

P
(
X̂(0)
n = x0, X̂

(1)
n = x1, T̂n = 2, Ûn = 0

∣∣∣ e)
=

x0∑
l=1

P
(
X̂(0)
n = x0, X̂

(1)
n = x1, T̂n = 2, Ĉn = l

∣∣∣ e)
=

p2

ν(en)

x0∑
l=1

P
(
X

(0)
1,0∗n = x0, X

(1)
1,0∗n = x1

∣∣∣ e)
=

p2x0

ν(en)
P
(
X

(0)
1,0∗n = x0, X

(1)
1,0∗n = x1

∣∣∣ e) P-a.s.

(b) For t ∈ {1, 2}, 0 ≤ u ≤ t− 1, (zv)0≤v≤t−1 ∈ Nt
0 and z ∈ N we get

Pz

(
(Ẑv)0≤v≤t−1 = (zv)0≤v≤t−1, T̂0 = t, Û0 = u

∣∣∣ e)
=

∑
x0,x1≥0

x(v,t)≤zv ,0≤v≤t−1

P
(
X̂

(0)
0 = x0, X̂

(1)
0 = x1, T̂0 = t, Û0 = u

∣∣∣ e)

· P

((
z−1∑
i=1

X
(v,t)
i,∅

)
0≤v≤t−1

= (zv − x(v,t))0≤v≤t−1

∣∣∣∣∣ e
)

=
pt

ν(e0)

∑
x0,x1≥0

x(v,t)≤zv ,0≤v≤t−1

x(u,t) P
(
X

(0)
z,∅ = x0, X

(1)
z,∅ = x1

∣∣∣ e)

· P

((
z−1∑
i=1

X
(v,t)
i,∅

)
0≤v≤t−1

= (zv − x(v,t))0≤v≤t−1

∣∣∣∣∣ e
)
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=
pt

ν(e0)

∑
x0,x1≥0

x(v,t)≤zv ,0≤v≤t−1

x(u,t) P

((
z∑
i=1

X
(v,t)
i,∅

)
0≤v≤t−1

= (zv)0≤v≤t−1,

X
(0)
z,∅ = x0, X

(1)
z,∅ = x1

∣∣∣ e)
=

pt
ν(e0)

E

[
X

(u,t)
z,∅

∣∣∣∣∣
(

z∑
i=1

X
(v,t)
i,∅

)
0≤v≤t−1

= (zv)0≤v≤t−1, e

]

· P

((
z∑
i=1

X
(v,t)
i,∅

)
0≤v≤t−1

= (zv)0≤v≤t−1

∣∣∣∣∣ e
)

=
1

ν(e0)

zu
z

P

((
z∑
i=1

X
(v,T∅)
i,∅

)
0≤v≤t−1

= (zv)0≤v≤t−1, T∅ = t

∣∣∣∣∣ e
)

=
1

ν(e0)

zu
z

Pz

(
(Zv)0≤v≤t−1 = (zv)0≤v≤t−1, T∅ = t

∣∣ e) Pz-a.s.,

where we used the independence assumptions for the first equality and part (a) for the
second equality. Due to the conditional independence, the penultimate equality follows
from the fact that E[X1|Sn] = Sn

n
P-a.s. for any random walk (Sn)n≥0 with S0 = 0 and

i.i.d. increments (Xn)n≥1.
The second part of (b) follows by summation over u ∈ {0, 1}.

With the help of the previous lemma, we are now able to prove the crucial connection
between the law of (B̂T, e) and the law of (BT, e). But beforehand, we need some
further notation. For z ∈ N0 let

Q̂z(·) := Pz((B̂T, e) ∈ ·) and Qz(·) := Pz ((BT, e) ∈ ·) ,

and put

wn : (S×MN0 ,S⊗MN0)→ ([0,∞),B([0,∞))), (s, u) 7→ zn(s)

νn(u)
,

w := lim sup
n→∞

wn, Ẑn := zn ◦ B̂T, Ŵn := wn ◦ (B̂T, e),

S′n := Sn ⊗MN0 . (3.4)

Note that wn is S′n-measurable. In particular, this yields the following representations

Wn = wn ◦ (BT, e) and W = w ◦ (BT, e).

The aforementioned connection between the law of (B̂T, e) and the law of (BT, e) is
stated in the next
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Lemma 3.16. Let n ≥ 0.

(a) For all (tv, zv)|v|≤n ∈ Sn, u ∈ V with |u| = n and z ∈ N we have

Pz(B̂Tn = (tv, zv)|v|≤n, V̂n = u|e) =
1

νn(e)

zu
z

Pz(BTn = (tv, zv)|v|≤n|e) Pz-a.s.

In particular,

Pz(B̂Tn = (tv, zv)|v|≤n|e) =

∑
|u|=n zu

νn(e)z
Pz(BTn = (tv, zv)|v|≤n|e) Pz-a.s.,

as well as

Pz(B̂Tn ∈ A|e) =
1

z
Ez[Wn1{BTn∈A}|e] Pz-a.s.

for all A ∈ S|n.

(b) For every z ∈ N and B ∈ S′n

Q̂z(B) =
1

z
Ez[Wn1{(BT,e)∈B}] =

∫
B

wn
z

dQz,

i.e. Q̂z|S′n � Qz|S′n with
dQ̂z|S′n
dQz|S′n

= wn
z

.

(c) For every z ∈ N we have the dichotomy

(i) Q̂z(w <∞) = 1 ⇐⇒ EzW = z,

(ii) Q̂z(w =∞) = 1 ⇐⇒ Qz(w = 0) = 1.

Proof. Let z ∈ N.
(a) The assertion is obviously true for n = 0. Let n ∈ N, (tv, zv)|v|≤n ∈ Sn and

u = u′un ∈ V, where |u′| = n− 1 and un ∈ {0, 1}. W.l.o.g. we can assume that tw1 = 0
whenever tw0 = 0, |w| ≤ n− 1, and tv = 0 whenever tv|k = 0 for a 0 ≤ k ≤ |v|, |v| ≤ n.
Moreover, tu|k = 1 for all k ≤ n, as well as zu > 0 (and hence zu|k > 0, k ≤ n). Otherwise
both sides of the assertion are equal to 0. Finally set t̂ := max{v′ ∈ {0, 1} : tu′v′ = 1}+ 1
and

En := {B̂Tn−1 = (tv, zv)|v|≤n−1, V̂n−1 = u′}.

Note that

Pz(B̂Tn = (tv, zv)|v|≤n, V̂n = u|e) = I1 · Pz(En|e) Pz-a.s., (3.5)
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with

I1 = Pz(B̂Tn = (tv, zv)|v|≤n, V̂n = u|En, e)

= Pz((Âv, Ẑv)|v|=n = (tv, zv)|v|=n, Ûn−1 = un|En, e)

= P

( zv|n−1∑
i=1

X
(vn,Tv|n−1)

i,v|n−1 = zv, |v| = n, v|n− 1 6= u′,

zu′−1∑
i=1

X
(v′,T̂n−1)
i,u′ + X̂

(v′,T̂n−1)
n−1 = zu′v′ , |v′| = 1,

(tv|n−11{vn≤T̄v|n−1−1})|v|=n = (tv)|v|=n, Ûn−1 = un

∣∣∣∣∣En, e
)

= P

( zv|n−1∑
i=1

X
(vn,Tv|n−1)

i,v|n−1 = zv, tv|n−11{vn≤Tv|n−1−1} = tv, |v| = n, v|n− 1 6= u′,

zu′−1∑
i=1

X
(v′,T̂n−1)
i,u′ + X̂

(v′,T̂n−1)
n−1 = zu′v′ ,1{v′≤T̂n−1−1} = tu′v′ , |v′| = 1,

Ûn−1 = un

∣∣∣∣∣En, e
)

= P

( zv|n−1∑
i=1

X
(vn,Tv|n−1)

i,v|n−1 = zv, tv|n−11{vn≤Tv|n−1−1} = tv, |v| = n, v|n− 1 6= u′,

zu′−1∑
i=1

X
(v′,T̂n−1)
i,u′ + X̂

(v′,T̂n−1)
n−1 = zu′v′ , |v′| = 1, T̂n−1 = t̂, Ûn−1 = un

∣∣∣∣∣e
)

=
∏
|v|=n−1
v 6=u′

P

(
zv∑
i=1

X
(v′,Tv)
i,v = zvv′ , tv1{v′≤Tv−1} = tvv′ , |v′| = 1

∣∣∣∣∣ e
)

· P

(
zu′−1∑
i=1

X
(v′,T̂n−1)
i,u′ + X̂

(v′,T̂n−1)
n−1 = zu′v′ , |v′| = 1, T̂n−1 = t̂, Ûn−1 = un

∣∣∣∣∣e
)

=
∏
|v|=n−1
v 6=u′

P

(
zv∑
i=1

X
(v′,Tv)
i,v = zvv′ , tv1{v′≤Tv−1} = tvv′ , |v′| = 1

∣∣∣∣∣ e
)

· Pzu′

(
(Ẑv′)0≤v′≤t̂−1 = (zu′v′)0≤v′≤t̂−1, T̂0 = t̂, Û0 = un

∣∣∣∣∣(em)m≥n−1

)
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=
zu

ν(en−1)zu′
P

(zv|n−1∑
i=1

X
(vn,Tv|n−1)

i,v|n−1 = zv, tv|n−11{vn≤Tv|n−1−1} = tv, |v| = n

∣∣∣∣∣ e
)

=
1

ν(en−1)

zu
zu′

Pz

(
BTn = (tv, zv)|v|≤n

∣∣BTn−1 = (tv, zv)|v|≤n−1, e
)

Pz-a.s.,

where we used the independence and conditional independence assumptions for the fifth,
sixth, eighth and ninth equality, and also Lemma 3.15 for the eighth equality. Hence by
induction we get from equation (3.5)

Pz(B̂Tn = (tv, zv)|v|≤n, V̂n = u|e)

=
1

ν(en−1)

zu
zu′

Pz

(
BTn = (tv, zv)|v|=n

∣∣BTn−1 = (tv, zv)|v|≤n−1, e
)

· 1

νn−1(e)

zu′

z
Pz(BTn−1 = (tv, zv)|v|≤n−1|e)

=
1

νn(e)

zu
z

Pz(BTn = (tv, zv)|v|≤n|e) Pz-a.s.

The second part of (a) follows by summation over |u| = n, and we then get for A ∈ S|n

Pz(B̂Tn ∈ A|e) =

∫
A

Pz(B̂Tn ∈ d(tv, zv)|v|≤n|e)

=

∫
A

∑
|u|=n zu

νn(e)z
Pz(BTn ∈ d(tv, zv)|v|≤n|e)

=
1

z
Ez

[
Zn
νn(e)

1{BTn∈A}

∣∣∣∣ e]
=

1

z
Ez

[
Wn1{BTn∈A}

∣∣ e] Pz-a.s.

This completes the proof of part (a).
(b) With part (a) in mind, we get for B = C ×D with C ∈ Sn and D ∈MN0

Q̂z(B) =

∫
{e∈D}

Pz(B̂T ∈ C|e) dPz

=

∫
{e∈D}

Pz(B̂Tn ∈ C ′|e) dPz

=

∫
{e∈D}

1

z
Ez[Wn1{BTn∈C′}|e] dPz

=
1

z
Ez[Wn1{(BT,e)∈B}],
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where we used the existence of a C ′ ∈ S|n with {B̂T ∈ C} = {B̂Tn ∈ C ′} and
{BT ∈ C} = {BTn ∈ C ′}, see Section 1.4 for further details. Since the sets of the above
product form are a π-system and generate the product σ-field S′n, part (b) is proved.

(c) With the help of part (b) and Theorem A.5 we infer for every B ∈ S⊗MN0

Q̂z(B) =

∫
B

w

z
dQz + Q̂z(B ∩ {w =∞})

and thus

1

z
EzW = 1− Q̂z(w =∞),

i.e. the asserted dichotomy.

The previous lemma also yields the following connection between an integrability
condition for the size-biased process of parasites and the modified (Z logZ)-condition
for the process of parasites.

Lemma 3.17. One has

E[log Ẑ1] = E

[
Z1 logZ1

ν(e0)

]
.

Proof. First, note that

E[log Ẑ1] =

∫
(0,∞)

P(log Ẑ1 > t) λλ(dt).

Furthermore, with the help of Lemma 3.16 (b) we can infer that

P(log Ẑ1 > t) =

∫
w1(s, u)1{log z1(s)>t} Q(d(s, u)) = E

[
Z1

ν(e0)
1{logZ1>t}

]
for t > 0, and thus we get with the help of Fubini’s theorem

E[log Ẑ1] = E

[
Z1

ν(e0)

∫
(0,∞)

1{logZ1>t} λλ(dt)

]
= E

[
Z1 logZ1

ν(e0)

]
.

This concludes the proof.

Remark 3.18. Part (b) of Lemma 3.16 gives us for any A ∈ B([0,∞)) and n ≥ 0

PŴn
z (A) = Q̂z(wn ∈ A) =

1

z

∫
{wn∈A}

wn dQz =
1

EzWn

∫
A

x PWn
z (dx),
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that is Ŵn is the size-biasing of Wn. This explains the notion of size-biasing from the
beginning of this section, since the use of this terminology was not directly evident from
the definition of the distribution of the random vector (T̂n, Ĉn, (X̂

(0)
n , X

(1)
n )).

3.4. The number of parasites along the spine II

Recall that ẐV̂0
= Z∅ and

ẐV̂n+1
=

ẐV̂n−1∑
i=1

X
(Ûn,T̂n)

i,V̂n
+ X̂(Ûn,T̂n)

n , n ≥ 0.

Therefore

ẐV̂n+1
− 1 =

ẐV̂n−1∑
i=1

X
(Ûn,T̂n)

i,V̂n
+ X̂(Ûn,T̂n)

n − 1, n ≥ 0.

Looking at this representation, imagining that the spinal parasite lives outside the
population and its offspring immigrate into the spinal cell of the next generation, it
should not come as a surprise that this process actually forms a BPRE with immigration
(BPREI). This is stated in the next

Proposition 3.19. The process (ẐV̂n − 1)n≥0 forms a BPREI in i.i.d. random environ-

ment Ξ := (Ξn)n≥0 := (T̂n, Ûn, en)n≥0 and with immigration sequence (X̂
(Ûn,T̂n)
n − 1)n≥0.

Since this assertion is fairly obvious from our model assumptions, we omit the tedious
calculations.

We are going to use this result in the upcoming chapter when we derive an equivalent
condition for the nondegeneracy of the martingale limit W .
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In the first part of this chapter we want to give equivalent conditions for the nonde-
generacy of the martingale limit W , i.e. conditions that ensure that the sequence of
quenched means (νn(e))n≥0 is the right norming sequence for the process of parasites
(Zn)n≥0. This leads to a (Z logZ)-condition and a Kesten-Stigum type result. To prove
this result, we use the dichotomy established in part (c) of Lemma 3.16 of the previous
chapter.

The second part of the chapter contains some additional results, e.g. that under certain
assumptions the number of parasites in ‘strongly’ infected cells is negligible compared
to the total number of parasites, or that ‘strongly’ infected cells in a generation have
not a big impact on the number of infected cells in the following generations.

4.1. Conditions for the nondegeneracy of W

Part (a) of the following theorem shows that the (Z logZ)-condition known from BPRE
in combination with a (Z logZ)-condition regarding the process of parasites along a
randomly chosen cell line implies EW = 1. If p0 > 0, we see in part (b) that the converse
is also true.

Theorem 4.1. Suppose P(Surv) > 0 and E[log ν(e0)] > 0.

(a) If

E

[
Z1 logZ1

ν(e0)

]
<∞ and E

[
f ′ξ0(1)

ν(e0)
log

f ′ξ0(1)

ν(e0)

]
< 0,

then EW = 1.

(b) If further p0 > 0, then the converse of (a) holds true, i.e.

E

[
Z1 logZ1

ν(e0)

]
=∞ or E

[
f ′ξ0(1)

ν(e0)
log

f ′ξ0(1)

ν(e0)

]
≥ 0

imply W = 0 P-a.s.

Proof of Theorem 4.1 (a). We show that Ŵ := lim supn→∞ Ŵn is P-a.s. finite and then
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use Lemma 3.16 to finish the proof. Consider the representation

Ẑn+1 =
∑
v∈T̂n

T̄v−1∑
u=0

Ẑvu =
T̂n−1∑
u=0

ẐV̂nu +
∑

v∈T̂n\{V̂n}

Tv−1∑
u=0

Ẑv∑
i=1

X
(u,Tv)
i,v , n ∈ N0,

and define the σ-field

H := σ
(

(T̂n)n≥0, (X̂
(0)
n , X̂(1)

n )n≥0, (Ûn)n≥0, e
)
.

Using the independence assumptions from the beginning of Section 3.3, we infer by
iteration that

E[Ẑn+1|H] =
T̂n−1∑
u=0

E
[
ẐV̂nu

∣∣∣H]+ E

 ∑
v∈T̂n\{V̂n}

Tv−1∑
u=0

Ẑv∑
i=1

X
(u,Tv)
i,v

∣∣∣∣∣∣H


=
T̂n−1∑
u=0

E
[
ẐV̂nu

∣∣∣H]+ E

 ∑
v∈T̂n\{V̂n}

Ẑv∑
i=1

E
[
X

(0,Tv)
i,v +X

(1,Tv)
i,v

∣∣∣ e]
∣∣∣∣∣∣H


=
T̂n−1∑
u=0

E
[
ẐV̂nu

∣∣∣H]+ E

 ∑
v∈T̂n\{V̂n}

Ẑv∑
i=1

ν(en)

∣∣∣∣∣∣H


≤
T̂n−1∑
u=0

E
[
ẐV̂nu

∣∣∣H]+ ν(en)E
[
Ẑn
∣∣∣H]

≤ . . . ≤
n∑
k=0

ν(ek+1) · · · ν(en)

T̂k−1∑
u=0

E
[
ẐV̂ku

∣∣∣H]

=
n∑
k=0

νn+1(e)

νk+1(e)

T̂k−1∑
u=0

X̂(u,T̂k)
k + E

ẐV̂k−1∑
i=1

X
(u,T̂k)

i,V̂k

∣∣∣∣∣∣∣H

 P-a.s.,

where we used the definition of ẐV̂ku, k ≥ 0, for the last line. Once again, with the
independence assumptions from the beginning of Section 3.3, we can further infer that

E

ẐV̂k−1∑
i=1

X
(u,T̂k)

i,V̂k

∣∣∣∣∣∣∣H
 =

∑
|v|=k

2∑
t=1

∑
j≥1

1{V̂k=v,T̂k=t}E

[
1{Ẑv=j}

j−1∑
i=1

E
[
X

(u,t)
i,v

∣∣∣H,Fk]
∣∣∣∣∣H
]

=
∑
|v|=k

2∑
t=1

∑
j≥1

1{V̂k=v,T̂k=t}E

[
1{Ẑv=j}

j−1∑
i=1

E
[
X

(u,t)

1,0∗k

∣∣∣ e]∣∣∣∣∣H
]
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= E
[
ẐV̂k − 1

∣∣∣H] · 2∑
t=1

1{T̂k=t}E
[
X

(u,t)

1,0∗k

∣∣∣ e]
= E

[
ẐV̂k − 1

∣∣∣H]E [X(u,T̂k)

1,0∗k

∣∣∣ T̂k, e] P-a.s.,

and so we get P-a.s.

E[Ẑn+1|H] ≤
n∑
k=0

νn+1(e)

νk+1(e)

T̂k−1∑
u=0

(
X̂

(u,T̂k)
k + E

[
ẐV̂k − 1

∣∣∣H]E [X(u,T̂k)

1,0∗k

∣∣∣ T̂k, e])
=

n∑
k=0

νn+1(e)

νk+1(e)
X̂

(0,1)
k +

n∑
k=0

νn+1(e)

νk+1(e)
E
[
ẐV̂k − 1

∣∣H] ·E[X(0,1)

1,0∗k

∣∣∣e].
Thus, we have P-a.s.

E[Ŵn+1|H] ≤
∑
k≥0

1

νk+1(e)
X̂

(0,1)
k +

∑
k≥0

1

νk+1(e)
E
[
ẐV̂k − 1

∣∣H] ·E[X(0,1)

1,0∗k

∣∣∣e]
=
∑
k≥0

1

νk+1(e)
X̂

(0,1)
k +

1

p1 + p2

∑
k≥0

1

νk(e)
E
[
ẐV̂k − 1

∣∣H] =: I1 + I2 (4.1)

for all n ≥ 0. Next we show the P-a.s. finiteness of the sums I1 and I2.
Let us start with the first one. The definitions from the beginning of Section 3.3

together with the i.i.d. property of the environment e ensure that under P the sequence
(X̂

(0,1)
k )k≥0 consists of i.i.d. random variables distributed as Ẑ1. Recalling Lemma 3.17,

the assumption E
[
Z1 logZ1

ν(e0)

]
<∞ implies E[log+ Ẑ1] <∞. Furthermore,

E

[
log

1

ν(e0)

]
= −E[log ν(e0)] < 0.

Therefore, Lemma 3.8 yields

I1 =
∑
k≥0

ν(e0)−1 · · · ν(ek)
−1X̂

(0,1)
k <∞ P-a.s.

For the second sum I2, recall that (ẐV̂n − 1)n≥0 is a BPREI in random environment Ξ

and with immigration sequence (X̂
(Ûn,T̂n)
n − 1)n≥0. Since E[log Ẑ1] <∞, as was pointed

out along the way of showing the P-a.s. finiteness of I1, the immigration sequence
satisfies

E
[
log+

(
X̂

(Û0,T̂0)
0 − 1

)]
≤ E[log Ẑ1] <∞. (4.2)
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Moreover, for the reproduction mean E
[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ] of the first marginal distribution

of the BPREI we have

E
[
logE

[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]] =
2∑
t=1

t−1∑
u=0

E
[
1{T̂0=t,Û0=u} logE

[
X

(u,t)
1,∅

∣∣∣ e]]
=

2∑
t=1

t−1∑
u=0

E
[
P(T̂0 = t, Û0 = u|e) logE

[
X

(u,t)
1,∅

∣∣∣ e]]

=
2∑
t=1

t−1∑
u=0

pt E

E
[
X

(u,t)
1,∅

∣∣∣ e]
ν(e0)

logE
[
X

(u,t)
1,∅

∣∣∣ e]
 ,

where we used Lemma 3.15 (a) for the last equality. Recalling the definitions from the
beginning of Section 2.1, we get

E

[
f ′ξ0(1)

ν(e0)
log f ′ξ0(1)

]
=

2∑
t=1

t−1∑
u=0

E

1{Ť0=t,C0=u}

E
[
X

(u,t)
1,∅

∣∣∣ e]
ν(e0)

logE
[
X

(u,t)
1,∅

∣∣∣ e]


=
1

µ

2∑
t=1

t−1∑
u=0

pt E

E
[
X

(u,t)
1,∅

∣∣∣ e]
ν(e0)

logE
[
X

(u,t)
1,∅

∣∣∣ e]
 (4.3)

=
1

µ
E
[
logE

[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]] .
Combining this with the second assumption E

[
f ′ξ0

(1)

ν(e0)
log

f ′ξ0
(1)

ν(e0)

]
< 0 we see that

E
[
logE

[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]] < µ E

[
f ′ξ0(1)

ν(e0)
log ν(e0)

]

= µ
2∑
t=1

t−1∑
u=0

E

1{Ť0=t,C0=u}

E
[
X

(u,t)
1,∅

∣∣∣ e]
ν(e0)

log ν(e0)


=

2∑
t=1

t−1∑
u=0

pt E

E
[
X

(u,t)
1,∅

∣∣∣ e]
ν(e0)

log ν(e0)

 (4.4)

= E

E
[
X

(0,T∅)
1,∅ +X

(1,T∅)
1,∅

∣∣∣ e]
ν(e0)

log ν(e0)


= E [log ν(e0)] ,
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using the independence assumptions from the beginning of Section 2.1. Hence, we can
choose a c ∈ (1, exp(E[log ν(e0)])), such that

E
[
logE

[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]] < log c

and together with (4.2), Lemma A.3 implies

Ẑ∞ := sup
n≥0

(
1

cn
E[ẐV̂n − 1|H]

)
<∞ P-a.s.

We now arrive at the following estimate for the second sum

I2 ≤
Ẑ∞

p1 + p2

∑
k≥0

ck

νk(e)
P-a.s.

Since

E

[
log

(
c

ν(e0)

)]
= log c− E[log ν(e0)] < 0,

we can again use Lemma 3.8 to get

I2 ≤
Ẑ∞

p1 + p2

∑
k≥0

c

ν(e0)
· · · c

ν(ek)
<∞ P-a.s.

Recalling (4.1) and gathering everything that we have shown so far, we arrive at

sup
n≥0

E[Ŵn|H] <∞ P-a.s.,

and with the help of Fatou’s lemma, this gives us

Q̂
(

lim inf
n→∞

wn <∞
)

= P
(

lim inf
n→∞

Ŵn <∞
)

= 1.

To finish the proof we need to show that (wn)n≥0 converges Q̂-a.s. To this end, we

show that (1/wn)n≥0 forms a Q̂-supermartingale with respect to the filtration (S′n)n≥0,
defined in (3.4). Obviously, wn is S′n-measurable and Lemma 3.16 (b) gives us

Q̂(wn = 0) =

∫
{wn=0}

wn dQ = 0,

for all n ≥ 0. Then for every A ∈ S′n ⊆ S′n+1 we get, using once again Lemma 3.16,
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that ∫
A

EQ̂

[
1

wn+1

∣∣∣∣S′n] dQ̂ =

∫
A∩{wn+1>0}

1

wn+1

dQ̂

=

∫
A∩{wn+1>0}

1

wn+1

· wn+1 dQ

= Q(A ∩ {wn+1 > 0})
≤ Q(A ∩ {wn > 0})

=

∫
A

1

wn
dQ̂.

This ensures the supermartingale property and the integrability. Hence, according to
the martingale convergence theorem (1/wn)n≥0 converges Q̂-a.s. and therefore, so does
(wn)n≥0. Thus we have

Q̂(w <∞) = Q̂(lim inf
n→∞

wn <∞) = 1

and Lemma 3.16 (c) ensures EW = 1. This completes the proof.

For the proof of Theorem 4.1 (b), we need the following auxiliary lemma which follows
directly by the Borel-Cantelli lemma.

Lemma 4.2. Let (Xn)n≥0 be a sequence of identical distributed and nonnegative random
variables. If EX0 <∞, then

lim sup
n→∞

Xn

n
= 0 P-a.s.

If EX0 =∞, and in addition (Xn)n≥0 is an independent sequence, then

lim sup
n→∞

Xn

n
=∞ P-a.s.

Proof of Theorem 4.1 (b). Once again, we want to use Lemma 3.16. For this purpose,
we show that Q̂(w =∞) = 1.

Case I: Suppose E
[
Z1 logZ1

ν(e0)

]
=∞. Due to Lemma 3.17, this implies E[log Ẑ1] =∞.

Moreover, we have for n ≥ 1

Ŵn =
1

νn(e)

∑
v∈T̂n

Ẑv ≥
1

νn(e)

T̂n−1−1∑
u=0

ẐV̂n−1u
≥ 1

νn(e)
X̂

(0,1)
n−1 P-a.s.

As already pointed out in the proof of the previous theorem, the sequence (X̂
(0,1)
n−1 )n≥1
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consists of i.i.d. random variables distributed as Ẑ1, and hence

lim sup
n→∞

1

n
log X̂

(0,1)
n−1 =∞ P-a.s.,

by Lemma 4.2. Together with the SLLN this yields

lim sup
n→∞

Ŵn ≥ lim sup
n→∞

exp

(
1

n
log X̂

(0,1)
n−1 −

1

n

n−1∑
i=0

log ν(ei)

)n

=∞ P-a.s.,

i.e. Q̂(w = ∞) = P(lim supn→∞ Ŵn = ∞) = 1, and part (c) of Lemma 3.16 ensures
P(W = 0) = 1.

Case II: Suppose E
[
Z1 logZ1

ν(e0)

]
<∞ but E

[
f ′ξ0

(1)

ν(e0)
log

f ′ξ0
(1)

ν(e0)

]
≥ 0. For n ≥ 1 we get

Ŵn =
1

νn(e)

∑
v∈T̂n

Ẑv ≥
1

νn(e)
ẐV̂n ≥

1

νn(e)
(ẐV̂n − 1) P-a.s.

Now, (ẐV̂n−1)n≥0 is a BPREI in random environment Ξ and with immigration sequence

(X̂
(Ûn,T̂n)
n − 1)n≥0. As in (4.2), the immigration sequence satisfies

E
[
log+

(
X̂

(Û0,T̂0)
0 − 1

)]
≤ E[log Ẑ1] <∞,

since E[log Ẑ1] <∞ by Lemma 3.17. Furthermore, using (4.3) and a similar reasoning
as in (4.4), the assumption

E

[
f ′ξ0(1)

ν(e0)
log

f ′ξ0(1)

ν(e0)

]
≥ 0

yields

E
[
logE

[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]] = µ E

[
f ′ξ0(1)

ν(e0)
log f ′ξ0(1)

]
≥ µ E

[
f ′ξ0(1)

ν(e0)
log ν(e0)

]
(4.5)

= E[log ν(e0)] > 0.

Thus, the process (ẐV̂n − 1)n≥0 is supercritical and Theorem A.2 (a) gives the existence
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of an a.s. finite random variable Z∞, such that

lim
n→∞

ẐV̂n − 1∏n−1
i=0 E

[
X

(Ûi,T̂i)

1,0∗i

∣∣Ξ] = Z∞ P-a.s.

Note that

E

X(Û0,T̂0)
1,∅ log+ X

(Û0,T̂0)
1,∅

E[X
(Û0,T̂0)
1,∅ |Ξ]

 =
2∑
t=1

t−1∑
u=0

E

[
1{T̂0=t,Û0=u}

X
(u,t)
1,∅ log+ X

(u,t)
1,∅

E[X
(u,t)
1,∅ |e]

]

=
2∑
t=1

t−1∑
u=0

E

[
P(T̂0 = t, Û0 = u|e)

E[X
(u,t)
1,∅ log+ X

(u,t)
1,∅ |e]

E[X
(u,t)
1,∅ |e]

]

=
2∑
t=1

t−1∑
u=0

pt E

[
X

(u,t)
1,∅ log+ X

(u,t)
1,∅

ν(e0)

]

≤
2∑
t=1

t−1∑
u=0

pt E

[
X

(u,t)
1,∅

ν(e0)
log+

(
t−1∑
u′=0

X
(u′,t)
1,∅

)]

=
2∑
t=1

E

[
1{T∅=t}

X
(0)
1,∅ +X

(1)
1,∅

ν(e0)
log+

(
X

(0)
1,∅ +X

(1)
1,∅

)]

= E

[
Z1 logZ1

ν(e0)

]
<∞,

where we used the conditional independence given e in the second equality and part (a) of
Lemma 3.15 for the third equality. Thus, Theorem A.2 (a) ensures that P(Z∞ > 0) = 1.
Taking everything into account we have shown so far, we see that

lim sup
n→∞

Ŵn ≥ Z∞ lim sup
n→∞

∏n−1
i=0 E

[
X

(Ûi,T̂i)

1,0∗i

∣∣∣Ξ]
νn(e)

= Z∞ exp

lim sup
n→∞

n−1∑
i=0

log

E
[
X

(Ûi,T̂i)

1,0∗i

∣∣∣Ξ]
ν(ei)

 P-a.s.,

and this expression depends on

E

log

E
[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]
ν(e0)

 = E
[
logE

[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]]− E[log ν(e0)] ≥ 0,
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where we used (4.5). If E
[
logE

[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]] > E[log ν(e0)], the SLLN gives us

lim
n→∞

n−1∑
i=0

log

E
[
X

(Ûi,T̂i)

1,0∗i

∣∣∣Ξ]
ν(ei)

 =∞ P-a.s.

If E
[
logE

[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]] = E[log ν(e0)], note that the assumption p0 > 0 ensures

P

log

E
[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ]
ν(e0)

 = 0

 = P
(
E
[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ] = ν(e0)
)
< 1,

according to Lemma A.8, and thus the Chung-Fuchs theorem (the last part in Theo-
rem A.7) yields

lim sup
n→∞

n−1∑
i=0

log

E
[
X

(Ûi,T̂i)

1,0∗i

∣∣∣Ξ]
ν(ei)

 =∞ P-a.s.

Hence, in both cases we get lim supn→∞ Ŵn = ∞ P-a.s., and by Lemma 3.16 (c) this
implies P(W = 0) = 1 again.

Remark 4.3. If

E

[
f ′ξ0(1)

ν(e0)
log

f ′ξ0(1)

ν(e0)

]
< 0,

then the supercriticality or criticality of the process (ZVn)n≥0, i.e. E[log f ′ξ0(1)] ≥ 0,
automatically ensures E[log ν(e0)] > 0. To see this, observe that due to Jensen’s
inequality

0 > E

[
f ′ξ0(1)

ν(e0)
log

f ′ξ0(1)

ν(e0)

]
≥ E

[
f ′ξ0(1)

ν(e0)

]
logE

[
f ′ξ0(1)

ν(e0)

]
≥ E

[
f ′ξ0(1)

ν(e0)

]
E

[
log

f ′ξ0(1)

ν(e0)

]
,

and thus E
[
log

f ′ξ0
(1)

ν(e0)

]
< 0. Since we are in the supercritical or critical case, we further

get

0 ≤ E[log f ′ξ0(1)] < E[log ν(e0)].

Now, we take a look at the the case p0 = 0. In this case (Zn)n≥0 actually is a BPRE
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with quenched reproduction mean E[Z1|e] = ν(e0). Therefore, Theorem 2 in [53] yields
the following

Theorem 4.4. Let P(Surv) > 0, E[log ν(e0)] > 0 and p0 = 0. We have

EW = 1 iff E

[
Z1 logZ1

ν(e0)

]
<∞.

It is pretty obvious from our model assumptions that (Zn)n≥0 forms a supercritical
BPRE with quenched reproduction mean

E[Z1|e] = ν(e0)

if p0 = 0. We omit the details.
Let us summarise the previous results in the following

Theorem 4.5. Let P(Surv) > 0 and assume E[log ν(e0)] > 0.

(a) If p0 > 0, then the following conditions are equivalent:

(i) P(W > 0) > 0,

(ii) EW = 1,

(iii) (Wn)n≥0 is uniformly integrable,

(iv) E
[
Z1 logZ1

ν(e0)

]
<∞ and E

[
f ′ξ0

(1)

ν(e0)
log

f ′ξ0
(1)

ν(e0)

]
< 0.

(b) If p0 = 0, then

EW = 1 iff E

[
Z1 logZ1

ν(e0)

]
<∞.

4.2. The impact of strongly infected cells

In this section we give additional results about the long-time behaviour of the number
of infected cells and of the number of parasites. More precisely, we are interested in the
following question: What is the impact of strongly infected cells on the total number
of parasites and on the number of infected cells in future generations? We need the
following assumption for the process of parasites along the spine (ZVn)n≥0:

lim
K→∞

sup
n≥0

E

[
µn

νn(e)
ZVn1{ZVn>K}

]
= 0. (4.6)

Remark 4.6. If we could replace νn(e) by νn in (4.6), this would turn into an u.i. con-
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dition for the process (ZVn)n≥0. In fact,

E

[
µn

νn
ZVn1{ZVn>K}

]
≤ 1

P(ZVn > 0)
E[ZVn1{ZVn>K}] = E[ZVn1{ZVn>K}|ZVn > 0],

and if (ZVn)n≥0 is a strongly subcritical BPRE satisfying E[ZV1 logZV1 ] <∞, we have

lim
K→∞

sup
n≥0

E[ZVn1{ZVn>K}|ZVn > 0],

cf. Proposition 2.6. Since in general νn/νn(e)→∞ P-a.s. for n→∞, as we have seen
in the proof of Proposition 3.13, our assumption is stronger. This is probably due to the
fluctuations of the random environment. We expect that we could replace (4.6) with
the assumptions from Proposition 2.6 and a condition controlling for the fluctuations of
the random environment.

Furthermore we assume

E[log ν(e0)] > 0, p0 > 0, E

[
Z1 logZ1

ν(e0)

]
<∞ and E

[
f ′ξ0(1)

ν(e0)
log

f ′ξ0(1)

ν(e0)

]
< 0. (A1)

According to Theorem 4.5, these assumptions ensure the nondegeneracy of W if
P(Surv) > 0. Next we give a simple example, where the conditions (4.6) and (A1)
are satisfied. Recall (1.1) for the definition of M.

Example 4.7. Let p0 = 1/4, p2 = 3/4 and P(e0 = u) = 1
2

= P(e0 = û), where
u = (un,m)n,m≥1, û = (ûn,m)n,m≥1 ∈M, with

u1,0 =
1

2
= u1,1 and û1,1 = 1.

Then we obviously have ZVn ≤ 1 P-a.s. for all n ≥ 0, and therefore

lim
K→∞

sup
n≥0

E

[
µn

νn(e)
ZVn1{ZVn>K}

]
= 0.

Moreover, it is easy to verify that (A1) is also satisfied. We omit the details.

We follow the approach of Section 6 in [11] and of Section 4.3 in [27]. We need the
following

Lemma 4.8. Let P(Surv) > 0 and assume (A1). There exist P-a.s. finite random
variables C and D, such that

C ≤ Zn
νn(e)

≤ D P-a.s.
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for any n ∈ N0, and P(C = 0|Surv) = P(D = 0|Surv) = 0.

Proof. Using Theorem 4.5 and Proposition 3.4, the assumptions ensure that

Zn/νn(e)→ W P-a.s., P(W = 0) < 1 and {W = 0} = Ext P-a.s.

In particular, P(W = 0|Surv) = 0. Since Zn/νn(e) <∞ P-a.s. for every n ≥ 0 and

lim sup
n→∞

Zn
νn(e)

= W <∞ P-a.s.,

we get

C := inf
n≥0

Zn
νn(e)

≤ Zn
νn(e)

≤ sup
n≥0

Zn
νn(e)

=: D <∞ P-a.s.

Moreover, Zn/νn(e) > 0 P-a.s. on Surv for all n ≥ 0 and thus

P(D = 0|Surv) ≤ P(C = 0|Surv)

= P

(
lim inf
n→∞

Zn
νn(e)

= 0

∣∣∣∣ Surv

)
= P(W = 0|Surv) = 0.

This completes the proof.

With the help of the previous lemma, we can show that the number of parasites
in strongly infected cells is negligible compared to the total number of parasites, cf.
Lemma 6.1 in [11] and Lemma 4.13 (a) in [27].

Theorem 4.9. Let P(Surv) > 0 and assume (4.6) and (A1). We have

lim
K→∞

sup
n≥0

P

(∑
v∈T∗n

Zv1{Zv>K}

Zn
≥ η

∣∣∣∣∣ Surv

)
= 0

for all η > 0.

Proof. Fix η > 0 and define

An(K, η) :=

{∑
v∈T∗n

Zv1{Zv>K}

Zn
≥ η

}
∩ Surv

for n,K ≥ 0. By Lemma 4.8, there exists a random variable C such that C ≤ Zn/νn(e)
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P-a.s. for all n ≥ 0 and P(C = 0|Surv) = 0. Therefore

E

∑
v∈T∗n

Zv1{Zv>K}

∣∣∣∣∣∣ e
 ≥ ηE

[
Zn1An(K,η)

∣∣ e] ≥ ηνn(e)E[C1An(K,η)|e] P-a.s.,

and thus

ηE[C1An(K,η)|e] ≤ 1

νn(e)

∑
k>K

E

∑
v∈T∗n

k1{Zv=k}

∣∣∣∣∣∣ e


=
1

νn(e)

∑
k>K

kE[#{v ∈ Tn : Zv = k}|e]

=
µn

νn(e)

∑
k>K

kP(ZVn = k|e) (4.7)

=
µn

νn(e)
E[ZVn1{ZVn>K}|e],

where we used Proposition 2.9 for the second equality. This leads to

lim
K→∞

sup
n≥0

ηE[C1An(K,η)] ≤ lim
K→∞

sup
n≥0

E

[
µn

νn(e)
ZVn1{ZVn>K}

]
= 0

according to (4.6). Since C > 0 P-a.s. on Surv, this implies

lim
K→∞

sup
n≥0

P

(∑
v∈T∗n

Zv1{Zv>K}

Zn
≥ η

∣∣∣∣∣ Surv

)
= 0,

and the proof is finished.

The next result is the analogue of Proposition 6.3 in [11] and of Lemma 4.13 (b) in
[27].

Proposition 4.10. In the situation of Theorem 4.9, for any ε > 0 there exist constants
0 < a < b <∞, such that

P

(
a ≤ T ∗n

νn(e)
≤ b

∣∣∣∣ Surv

)
≥ 1− ε

for all n ≥ 0.

Proof. Fix ε > 0 and choose random variables C,D according to Lemma 4.8. Then we
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get for all n ≥ 0

T ∗n
νn(e)

≤ Zn
νn(e)

≤ D P-a.s., (4.8)

and since D is P-a.s. finite there exists a b ∈ (0,∞) with P(D ≤ b|Surv) ≥ 1 − ε
2
.

Furthermore, Lemma 4.8 yields

T ∗n
νn(e)

≥
∑

v∈T∗n
Zv1{Zv≤K}

Kνn(e)
≥ C

K
·
∑

v∈T∗n
Zv1{Zv≤K}

Zn
P-a.s. (4.9)

for any K ≥ 1. Owing to Theorem 4.9, we can find a K0 ∈ N, such that

P

(∑
v∈T∗n

Zv1{Zv≤K}

Zn
≥ 1

2

∣∣∣∣∣ Surv

)
≥ 1− ε

4

for all K ≥ K0 and n ≥ 0. Now, on Surv we have C > 0 P-a.s. and thus there exists an
0 < η < 2b, such that

P

(
C

K0

> η

∣∣∣∣ Surv

)
≥ 1− ε

4
.

Taking a := η
2

we get for any n ≥ 0

P

(
C

K0

·
∑

v∈T∗n
Zv1{Zv≤K0}

Zn
≥ a

∣∣∣∣∣ Surv

)

≥ P

(∑
v∈T∗n

Zv1{Zv≤K0}

Zn
≥ 1

2
,
C

K0

> η

∣∣∣∣∣ Surv

)

≥ P

(∑
v∈T∗n

Zv1{Zv≤K0}

Zn
≥ 1

2

∣∣∣∣∣ Surv

)
+ P

(
C

K0

> η

∣∣∣∣ Surv

)
− 1

≥ 1− ε

2
.

Using (4.8) and (4.9), this choice of 0 < a < b <∞ yields

P

(
a ≤ T ∗n

νn(e)
≤ b

∣∣∣∣ Surv

)
≥ 1− ε

2
− ε

2
= 1− ε

for all n ≥ 0.

Now, we show that strongly infected cells do not have a big influence on the number
of infected cells in future generations. Similar results in the case without a random
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environment can be found in [27, Lemma 4.13 (c)] and in [11, Lemma 6.5].

Theorem 4.11. In the situation of Theorem 4.9, for any η > 0 we have

lim
K→∞

sup
n,m≥0

P

(
#{v ∈ T∗n+m : Zv|n > K}

T ∗n+m

≥ η

∣∣∣∣ Surv

)
= 0.

To prove this result, we use the previous proposition and details from the proof of
Theorem 4.9.

Proof. Fix η, ε > 0. According to Proposition 4.10, we can find an a > 0, such that

P

(
T ∗n+m

νn+m(e)
≥ a

∣∣∣∣ Surv

)
≥ 1− ε

2

for all n,m ≥ 0. Set

An,m(K, η) :=

{
#{v ∈ T∗n+m : Zv|n > K}

T ∗n+m

≥ η

}
∩
{
T ∗n+m

νn+m(e)
≥ a

}
for n,m,K ≥ 0. Then we get

#{v ∈ T∗n+m : Zv|n > K} ≥ ηT ∗n+m1An,m(K,η) ≥ ηaνn+m(e)1An,m(K,η) P-a.s.

Now, let Z(v)
m denote the number of parasites in the m-th generation of the process

starting in cell v ∈ T∗n. We get

P(An,m(K, η)) ≤ 1

ηa
E

[
#{v ∈ T∗n+m : Zv|n > K}

νn+m(e)

]
≤ 1

ηa
E

[∑
v∈T∗n

Z(v)
m 1{Zv>K}

νn+m(e)

]

=
1

ηa
E

[∑
v∈T∗n

∑
k>K E[Z(v)

m 1{Zv=k}|Gn]

νn+m(e)

]

=
1

ηa
E

[∑
v∈T∗n

∑
k>K 1{Zv=k}Ek[Zm|[e]n]

νn+m(e)

]

=
1

ηa
E

[∑
v∈T∗n

∑
k>K 1{Zv=k}k

νn+m(e)
νn(e)

νn+m(e)

]

=
1

ηa
E

 1

νn(e)

∑
k>K

E

∑
v∈T∗n

k1{Zv=k}

∣∣∣∣∣∣ e

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=
1

ηa
E

[
µn

νn(e)
ZVn1{ZVn>K}

]
,

where the last equality follows as in (4.7). By (4.6), this yields

lim
K→∞

sup
m,n≥0

P(An,m(K, η)) = 0.

In particular, there exists a K0 ≥ 0, such that for each K ≥ K0 and n,m ≥ 0

P(An,m(K, η) ∩ Surv) ≤ P(An,m(K, η)) ≤ ε

2
P(Surv)

and thus

P

(
#{v ∈ T∗n+m : Zv|n > K}

T ∗n+m

≥ η

∣∣∣∣ Surv

)
≤ P(An,m(K, η)|Surv) + P

(
T ∗n+m

νn+m(e)
< a

∣∣∣∣ Surv

)
≤ ε

2
+
ε

2
= ε

for all K ≥ K0 and n,m ≥ 0. This completes the proof.
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5. Linear fractional parasite
reproduction

The final chapter comprises two examples where the conditional parasite reproduction
is linear fractional. At first we look at the simple example of a complete binary cell
tree, i.e. p2 = 1. The second example is in the setting of chapter one, i.e. cells can die,
produce one daughter cell or produce two daughter cells. We gathered some facts about
the linear fractional distribution in Section A.5 of the appendix.

5.1. The complete binary cell tree

5.1.1. The model and known results about perpetuities

We consider a simple example, where the cell tree is a complete binary tree, i.e. p2 =
1. Moreover, the parasite reproduction given the environment is linear fractional
and the environment governs the parameters of these linear fractional distributions.
Therefore, let e = (An, Bn)n≥0 be a sequence of i.i.d. R2

>-valued random vectors satisfying
A0 +B0 ≥ 1 P-a.s. and E|logA0|,E|logB0| <∞. Furthermore, we assume that, given
the environment, the sharing of parasites into the cells is independent and symmetric,
i.e.

P
((
X

(0)
k,v , X

(1)
k,v

)
∈ ·
∣∣∣ e) = LF(A|v|, B|v|)⊗ LF(A|v|, B|v|), k ∈ N, v ∈ V.

Here, LF(a, b) denotes the linear fractional distribution with parameters a, b.

Remark 5.1. For convenience, we defined our random environment by e = (An, Bn)n≥0

instead of e = (LF(An, Bn)⊗ LF(An, Bn))n≥0.

The corresponding generating function h of LF(a, b) is given by

1

1− h(s)
=

a

1− s
+ b, s ∈ [0, 1).

If hen denotes the generating function of X
(0)
1,0∗n under P(·|e) (and also of X

(1)
1,0∗n),

87



5. Linear fractional parasite reproduction

n ≥ 0, it is well known that

1

1− h1:n,e(s)
:=

1

1− he0 ◦ . . . ◦ hen−1(s)
=

Πn

1− s
+ Sn, n ≥ 1,

where Π0 := 1, S0 := 0,

Πn =
n−1∏
i=0

Ai and Sn =
n−1∑
i=0

ΠiBi.

For n ≥ 0 set gen(s) := Ans+Bn and

g1:n,e := ge0 ◦ . . . ◦ gen−1 as well as gn:1,e := gen−1 ◦ . . . ◦ ge0 .

Then

g1:n,e(s) = Πns+ Sn and gn:1,e(s) = Πns+
n∑
i=1

Πn

Πi

Bi−1.

Further, setting ϕ(s) := (1− s)−1 for s ∈ [0, 1), the above computations yield

ϕ ◦ h1:n,e(s) = g1:n,e ◦ ϕ(s).

Next, we gather some known facts about these quantities. The following proposition is
due to Goldie and Maller.

Proposition 5.2 (Goldie and Maller [24], Theorem 2.1). The following assertions are
equivalent:

(a) Πn → 0 P-a.s. and I− :=
∫

[0,∞)
x

J−(x)
P(logB0 ∈ dx) <∞,

where J−(x) :=
∫ x

0
P(− logA0 > y) dy = E[x ∧ log−A0] for x > 0.

(b) The so-called perpetuity

S∞ :=
∑
i≥0

ΠiBi

is P-a.s. finite and, for each x ∈ R, the backward iterations g1:n,e(x) converge
P-a.s. (monotonically) to S∞, while the forward iterations gn:1,e(x) converge in
distribution to S∞.

Conversely, if

P(A0x+B0 = x) < 1 for all x ∈ R
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5.1. The complete binary cell tree

and at least one of the conditions in (a) fails, then S∞ =∞ P-a.s.

Replacing An with A−1
n as well as Bn with A−1

n Bn, the above proposition immediately
yields

Proposition 5.3. Defining g
(−1)
en (s) := A−1

n s+ A−1
n Bn for n ≥ 0, the duality relation

Sn
Πn

= g
(−1)
n:1,e(0)

d
= g

(−1)
1:n,e(0) =

n−1∑
i=0

Π−1
i+1Bi =: S(−1)

n

holds true for all n ∈ N. Moreover, the following assertions are equivalent:

(a) Πn →∞ P-a.s. and I+ :=
∫

[0,∞)
x

J+(x)
P(log(B0/A0) ∈ dx) <∞,

where J+(x) := E[x ∧ log+ A0] for x > 0.

(b) S
(−1)
∞ :=

∑
i≥0 Π

−1
i+1Bi <∞ P-a.s.

In particular, (a) and (b) imply

Sn
Πn

d→ S(−1)
∞ .

5.1.2. The process of parasites along the spine

Next, we compute some of the quantities needed for a deeper analysis of the results from
the previous chapters of this thesis, in the given linear fractional situation. First we get

E
[
X

(0)
k,v

∣∣∣ e] = E
[
X

(1)
k,v

∣∣∣ e] =
1

A|v|
and thus ν(en) =

2

An
, νn(e) =

2n

Πn

,

ν = E[ν(e0)] = 2 · E[A−1
0 ], E[log ν(e0)] = log 2− E[logA0].

For any v ∈ {0, 1}n, n ≥ 1, the number of parasites in cell v is, conditioned on e,
again linear fractional. More precisely

L(Zv|e) = LF(Πn, Sn).

In particular, the same holds true for the number of parasites along the spine (ZVn)n≥0,
and so we have

P(ZVn = k|e) =


1− 1

Πn + Sn
, k = 0,

Πn

(Πn + Sn)2

(
Sn

Πn + Sn

)k−1

, k ≥ 1,

(5.1)
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5. Linear fractional parasite reproduction

and therefore P(ZVn > 0|e) = 1
Πn+Sn

. In the notation of Chapter 2, we get

fξ0(s) = E
[
sZV1

∣∣ ξ] = 1− 1− s
A0 +B0(1− s)

,

f ′ξ0(s) =
A0

(A0 +B0(1− s))2
, f ′ξ0(1) =

1

A0

, E[log f ′ξ0(1)] = −E[logA0],

E[f ′ξ0(1) log f ′ξ0(1)] = −E
[

logA0

A0

]
,

f ′′ξ0(s) =
2A0B0

(A0 +B0(1− s))3
, f ′′ξ0(1) =

2B0

A2
0

.

Therefore,

E[log f ′ξ0(1)]


> 0, if E[logA0] < 0,

= 0, if E[logA0] = 0,

< 0, if E[logA0] > 0.

Moreover, since E[log+ B0] <∞ and E[log+(B0/A0)] <∞, we get from Proposition 5.2
and Proposition 5.3

S∞ <∞ = S(−1)
∞ P-a.s. iff E[logA0] < 0,

S∞ =∞ = S(−1)
∞ P-a.s. iff E[logA0] = 0, (5.2)

S(−1)
∞ <∞ = S∞ P-a.s. iff E[logA0] > 0.

Subcritical case: S(−1)
∞ <∞ = S∞ P-a.s.

If S
(−1)
∞ = lim

n→∞
S

(−1)
n <∞ P-a.s., then

P(ZVn = k|ZVn > 0, e) =
Πn

Πn + Sn

(
Sn

Πn + Sn

)k−1

=
1

1 + Sn/Πn

(
Sn/Πn

1 + Sn/Πn

)k−1

d
=

1

1 + S
(−1)
n

(
S

(−1)
n

1 + S
(−1)
n

)k−1

n→∞−−−→ 1

1 + S
(−1)
∞

(
S

(−1)
∞

1 + S
(−1)
∞

)k−1

P-a.s.
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5.1. The complete binary cell tree

for k ≥ 1, according to Proposition 5.3. In particular

L(ZVn |ZVn > 0, e) = Geom

(
1

1 + Sn/Πn

)
.

Supercritical case: S∞ <∞ = S
(−1)
∞ P-a.s.

In this case, we have

1

Πn

P(ZVn = k|e) =
1

(Πn + Sn)2

(
Sn

Πn + Sn

)k−1
n→∞−−−→ 1

S2
∞

P-a.s.,

in other words

P(ZVn = k|e) =
Πn

S2
∞

+Rn P-a.s.,

as n→∞, where Rn is a random variable satisfying Rn/Πn → 0 P-a.s.

5.1.3. The process of infected cells and related quantities

Regarding the process of infected cells (T ∗n )n≥0 in the linear fractional situation, Propo-
sition 2.9 and Proposition 2.18 yield the following

Proposition 5.4. The process (2−nT ∗n )n≥0 converges P-a.s. to a random variable L
taking values in [0, 1] with

E[L|e] = lim
n→∞

1

Πn + Sn

n→∞−−−→ 1

S∞
P-a.s.

and

EL = lim
n→∞

E

[
1

Πn + Sn

]
n→∞−−−→ E

[
1

S∞

]
.

Furthermore,

P(L = 0) = 1 iff S∞ =∞ P-a.s. iff E[logA] ≥ 0,

and if P(L = 0) < 1 then Ext = {L = 0} P-a.s.

Note that in the given linear fractional situation

P(P(L = 0|e) = 1) ∈ {0, 1}
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5. Linear fractional parasite reproduction

follows from the fact that either S∞ <∞ P-a.s. or S∞ =∞ P-a.s.
Additionally, for k ≥ 0, we want to take a look at the process (Fn(k))n≥0 of the

number of cells with exactly k parasites, where we recall

Fn(k) = #{v ∈ {0, 1}n : Zv = k}.

According to Corollary 2.11, we have

Fn(k)

2n
n→∞−−−→ 0 in probability and in L1,

for every k ≥ 1. To analyse the behaviour of the conditional expectation of the number of
cells with exactly k parasites E[Fn(k)|e], we again distinguish the three cases according
to (5.2).

In the following, fix k ≥ 1 and recall from Proposition 2.9 and (5.1)

E[Fn(k)|e] = 2nP(ZVn = k|e) =
2nΠn

(Πn + Sn)2

(
Sn

Πn + Sn

)k−1

, n ≥ 1.

The supercritical case: S∞ <∞ = S
(−1)
∞ P-a.s.

In this case we have P(L = 0) < 1 and hence Ext = {L = 0} P-a.s. Since S∞ < ∞
P-a.s., Proposition 5.2 yields Πn → 0 P-a.s. and we get

E[Fn(k)|e]

2nΠn

=
1

(Πn + Sn)2

(
Sn

Πn + Sn

)k−1
n→∞−−−→ 1

S2
∞

P-a.s.

In other words

E[Fn(k)|e] =
2nΠn

S2
∞

+R1,n P-a.s.

as n→∞, where R1,n is a random variable satisfying R1,n/(2
nΠn)→ 0 P-a.s.

The critical case: S∞ =∞ = S
(−1)
∞ P-a.s.

Here we have P(L = 0) = 1, and further

(Πn + Sn)2

2nΠn

· E[Fn(k)|e] =

(
Sn/Πn

1 + Sn/Πn

)k−1
d
=

(
S

(−1)
n

1 + S
(−1)
n

)k−1

n→∞−−−→ 1 P-a.s.
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5.1. The complete binary cell tree

and thus

(Πn + Sn)2

2nΠn

· E[Fn(k)|e]
n→∞−−−→ 1 in probability.

The subcritical case: S(−1)
∞ <∞ = S∞ P-a.s.

In this case we have again P(L = 0) = 1. Moreover,

E[Fn(k)|e]

νn(e)
=
Πn

2n
· E[Fn(k)|e] =

1

(1 + Sn/Πn)2

(
Sn/Πn

1 + Sn/Πn

)k−1

d−−−→
n→∞

1(
1 + S

(−1)
∞

)2

(
S

(−1)
∞

1 + S
(−1)
∞

)k−1

according to Proposition 5.3.

5.1.4. The process of parasites

After some easy but tedious computations, we obtain for the distribution of Z1 given e

P(Z1 = k|e) =



(
1− 1

A0 +B0

)2

, k = 0,

2A0(A0 +B0 − 1)

(A0 +B0)3

(
B0

A0 +B0

)k−1

+(k − 1)
A2

0

(A0 +B0)4

(
B0

A0 +B0

)k−2

, k ≥ 1.

Note that in the given situation (Zn)n≥0 is even a BPRE and if this process is
supercritical, i.e. E[log ν(e0)] > 0, we have

EW = 1 iff E

[
Z1 logZ1

ν(e0)

]
<∞.

Moreover, our assumptions from the beginning of this section ensure

E[log−(1− P(Z1 = 0|e))] = −E
[
log

(
2

A0 +B0

− 1

(A0 +B0)2

)]
= E [log(A0 +B0)]− E

[
log

(
2− 1

A0 +B0

)]
≤ E [log(A0 +B0)] <∞.
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5. Linear fractional parasite reproduction

Thus, Theorem 3 in [8] and Theorem 3.1 in [50] yield

P(Ext) = 1 iff E[log ν(e0)] ≤ 0,

i.e.

P(Ext) = 1 iff E[logA0] ≥ log 2.

Next, we compute the quenched and annealed second moment of Wn, n ≥ 0, using
Theorem 3.6. Note that p0 = 0 and

ν(2)(ek) = E
[
(X

(0)

1,0∗k
)2
∣∣e]+ E

[
(X

(1)

1,0∗k
)2
∣∣e]+ 2E

[
X

(0)

1,0∗k

∣∣e]E[X(1)

1,0∗k

∣∣e],
where we used the conditional independence of the sharing of the parasites into the cells.
Now

E
[
(X

(0)

1,0∗k
)2
∣∣e] =

∑
j≥1

j2 Ak
(Ak +Bk)2

(
Bk

Ak +Bk

)j−1

=
Ak

(Ak +Bk)2

1 + Bk/(Ak +Bk)

(1− Bk/(Ak +Bk))3
(5.3)

=
Ak + 2Bk

A2
k

,

and therefore

ν(2)(ek) = 2

(
Ak + 2Bk

A2
k

+
1

A2
k

)
= 2 · Ak + 2Bk + 1

A2
k

.

This yields for the quenched second moment

E[W 2
n |e] = 1 +

n−1∑
k=0

Πk

2k
· Ak + 2Bk − 1

2
,

and for the annealed second moment

E[Wn] = 1 +
E[A0 + 2B0]− 1

2
·
n−1∑
k=0

(
E[A0]

2

)k
.

Thus, (Wn)n≥0 is L2-bounded iff

E[A0] < 2 and E[B0] <∞.
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5.2. The random cell tree

5.2. The random cell tree

5.2.1. The model

Now, we consider the cell tree as defined in Section 1.3.1 with p0 > 0. As before, let
e = (An, Bn)n≥0 be a sequence of i.i.d. R2

>-valued random vectors satisfying A0 +B0 ≥ 1
P-a.s. and E|logA0|,E|logB0| < ∞. Let (Yk,v)k≥1,v∈V be a family of conditionally
independent random variables given e, which is independent of (Tv)v∈V, and with
conditional distribution

P(Yk,v ∈ ·|e) = LF(A|v|, B|v|), k ≥ 1, v ∈ V.

Moreover, let (αk,v(j))k,j≥1,v∈V be a family of i.i.d. random variables with distribution
Bern(ϑ), ϑ ∈ (0, 1), which is independent of ((Yk,v)k≥1,v∈V, e, (Tv)v∈V). Now, the offspring
vector of the parasites is defined by

(
X

(0)
k,v , X

(1)
k,v

)
=

Yk,v∑
j=1

αk,v(j),

Yk,v∑
j=1

(1− αk,v(j))

 , k ≥ 1, v ∈ V.

Let hen , g
(0)
en and g

(1)
en denote the generating functions of Y1,0∗n , X

(0)
1,0∗n and X

(1)
1,0∗n under

P(·|e), respectively. Then

1

1− hen(s)
=

An
1− s

+Bn,

and by the independence of (αk,v(j))k,j≥1,v∈V and ((Yk,v)k≥1,v∈V, e) this gives us

1

1− g(0)
en (s)

=
1

1− hen(ϑs+ 1− ϑ)
=

An
1− (ϑs+ 1− ϑ)

+Bn =
An/ϑ

1− s
+Bn

and

1

1− g(1)
en (s)

=
An/(1− ϑ)

1− s
+Bn.

Therefore, X
(0)
k,v and X

(1)
k,v are again linear fractional given e with

P(X
(0)
k,v ∈ ·|e) = LF

(
A|v|
ϑ
,B|v|

)
and P(X

(1)
k,v ∈ ·|e) = LF

(
A|v|

1− ϑ
,B|v|

)
,
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5. Linear fractional parasite reproduction

k ≥ 1, v ∈ V. Set Π0 := 1 and Πn =
∏n−1

i=0 Ai. We get

E
[
X

(0)
k,v

∣∣∣ e] =
ϑ

A|v|
, E

[
X

(1)
k,v

∣∣∣ e] =
1− ϑ
A|v|

, ν(en) = (p1 + p2)
1

An
,

νn(e) =
(p1 + p2)n

Πn

, ν = E[ν(e0)] = (p1 + p2)E[A−1
0 ],

E[log ν(e0)] = log(p1 + p2)− E[logA0].

5.2.2. The process of parasites along the spine

Recall the definition of (ZVn)n≥0 from Section 2.2. In the present model we have

fξ0(s) = E
[
sZV1

∣∣ ξ]
= 1{Ť0=1}E

[
sY1,∅

∣∣ e]+ 1{Ť0=2,C0=0}E
[
sX

(0)
1,∅

∣∣∣ e]+ 1{Ť0=2,C0=1}E
[
sX

(1)
1,∅

∣∣∣ e]
= 1−

(
1{Ť0=1}

1− s
A0 +B0(1− s)

+ 1{Ť0=2,C0=0}
1− s

A0/ϑ+B0(1− s)

+ 1{Ť0=2,C0=1}
1− s

A0/(1− ϑ) + B0(1− s)

)
.

Therefore

f ′ξ0(1) = 1{Ť0=1}
1

A0

+ 1{Ť0=2,C0=0}
ϑ

A0

+ 1{Ť0=2,C0=1}
1− ϑ
A0

and

E[log f ′ξ0(1)] =
−p1

p1 + 2p2

E[logA0] +
p2

p1 + 2p2

(log ϑ−E[logA0] + log(1− ϑ)−E[logA0])

= −E[logA0] +
p2

p1 + 2p2

(log ϑ+ log(1− ϑ)).

As a consequence we get

E[log f ′ξ0(1)]


> 0, if E[logA0] <

p2

p1 + 2p2

(log ϑ+ log(1− ϑ)),

= 0, if E[logA0] =
p2

p1 + 2p2

(log ϑ+ log(1− ϑ)),

< 0, if E[logA0] >
p2

p1 + 2p2

(log ϑ+ log(1− ϑ)).
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5.2.3. The process of parasites

Now, we restate the conditions for L2-boundedness of (Wn)n≥0 and for the nondegeneracy
of W using the parameters of our linear fractional model.

First note that the distribution of Z1 under P(·|e) is again linear fractional. In fact

E[sZ1 |e] = E[1{T∅=0} + sY1,∅1{T∅>0}] = p0 + (p1 + p2)

(
1− 1− s

A0 +B0(1− s)

)
= 1− 1− s

A0

p1+p2
+ B0

p1+p2
(1− s)

,

i.e. the conditional distribution of Z1 given e is LF
(

A0

p1+p2
, B0

p1+p2

)
. Unfortunately, Zn is

not linear fractional under P(·|e) for generations n > 1.

Conditions for the L2-boundedness of (Wn)n≥0

According to Theorem 3.9, we need to compute

Var

(
Z1

ν(e0)

)
, E[ν−1(e0)] and E

[(
f ′ξ0(1)

ν(e0)

)2
]
.

Using (5.3), we get

E[Z2
1 |e] =

A0/(p1 + p2) + 2B0/(p1 + p2)

A2
0/(p1 + p2)2

=
(p1 + p2)

A2
0

(A0 + 2B0)

and therefore

Var

(
Z1

ν(e0)

)
= E

[(
Z1

ν(e0)

)2
]
− 1 =

1

p1 + p2

E[A0 + 2B0]− 1.

Moreover, we have

f ′ξ0(1)

ν(e0)
=

1

p1 + p2

1{Ť0=1} +
ϑ

p1 + p2

1{Ť0=2,C0=0} +
1− ϑ
p1 + p2

1{Ť0=2,C0=1}.

This gives us

E

[(
f ′ξ0(1)

ν(e0)

)2
]

=
p1 + p2(ϑ2 + (1− ϑ)2

(p1 + p2)2µ
=
p1 + p2 − 2p2ϑ(1− ϑ)

(p1 + p2)2µ
.
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5. Linear fractional parasite reproduction

Now, we can conclude from Theorem 3.9 that (Wn)n≥0 is L2-bounded iff

E[A0 + 2B0] <∞, 1

p1 + p2

E[A0] < 1 and
p1 + p2 − 2p2ϑ(1− ϑ)

(p1 + p2)2µ
<

1

µ
,

or, equivalently,

E[B0] <∞, E[A0] < p1 + p2 and
(p1 + p2)p0

2p2

< ϑ(1− ϑ)

Conditions for the nondegeneracy of W

Here, we can state the second condition in Theorem 4.5 (a) (iv) in terms of p1, p2 and ϑ.
Recall

f ′ξ0(1)

ν(e0)
=

1

p1 + p2

1{Ť0=1} +
ϑ

p1 + p2

1{Ť0=2,C0=0} +
1− ϑ
p1 + p2

1{Ť0=2,C0=1},

which gives us

E

[
f ′ξ0(1)

ν(e0)
log

f ′ξ0(1)

ν(e0)

]
=

1

(p1 + p2)(p1 + 2p2)

(
p1 log

(
1

p1 + p2

)
+p2

(
ϑ log

(
ϑ

p1 + p2

)
+ (1− ϑ) log

(
1− ϑ
p1 + p2

)))
= − log(p1 + p2)

p1 + 2p2

+
p2(ϑ log ϑ+ (1− ϑ) log(1− ϑ))

(p1 + p2)(p1 + 2p2)
.

Now, the second condition in Theorem 4.5 (a) (iv) is equivalent to

ϑ log ϑ+ (1− ϑ) log(1− ϑ) <
p1 + p2

p2

log(p1 + p2).
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A.1. Branching processes in random environment

Theorem A.1. Let (Zn)n≥0 be a BPRE in random environment U .

(a) For every i, n ∈ N0 and s ∈ [0, 1] we have

Ei[s
Zn |U ] =

(
E[sZn |U ]

)i
= (fU1 ◦ . . . ◦ fUn(s))i Pi-a.s.

and

Ei[s
Zn ] = E

[
(fU1 ◦ . . . ◦ fUn(s))i

]
(b) For every i, n ∈ N0 we have

Ei[Zn|U ] = i
n∏
j=1

µUj Pi-a.s.

and

Ei[Zn] = iE

[
n∏
j=1

µUj

]
.

A.2. Branching processes in random environment with
immigration

We adopt the notation used in Section 3.1 in [27]. In particular, let (Zn)n≥0 be a BPREI
in random environment U = (Un)n≥0 and with immigration sequence (ξn)n≥0. Further,
let µUn denote the mean of the first marginal distribution of Un.

Theorem A.2 (Gröttrup [27], Theorem 3.5). Let E log µU0 > 0 (and µU0 <∞ P-a.s.).

(a) If E log+ ξ0 <∞, then for every x ∈ N0 there exists a finite random variable Z∞
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such that

lim
n→∞

Zn∏n−1
i=0 µUi

= Z∞ Px-a.s.

Furthermore,

Px(Z∞ > 0) = 1 iff Px(Z∞ > 0) > 0 iff E[(X1,0 log+ X1,0)/µU0 ] <∞.

(b) If E log+ ξ0 = ∞, then lim supn→∞ c
−nZn = ∞ Px-a.s. for every x ∈ N0 and

c ∈ (0,∞).

Lemma A.3 (Gröttrup [27], Remark 3.10). Set F0 := σ((ξn)n≥0,U). Let x ∈ N0 and
assume that there exists a constant c > 1 such that E[log µUn ] < log c. Then

lim sup
n→∞

(
1

cn
Ex[Zn|F0]

)
= 0 Px-a.s.

A.3. Definitions and results from probability theory

A.3.1. The size-biased distribution

Definition A.4 (Alsmeyer [4], Definition 3.1). Let ν be a distribution on the space
([0,∞),B[0,∞)) with finite and positive mean γ =

∫
[0,∞)

xν(dx). Then ν̂, given by

ν̂(B) =
1

γ

∫
B

xν(dx), B ∈ B[0,∞),

is called the size-biased distribution on [0,∞) corresponding to ν.

A.3.2. Radon-Nikodym derivatives

Let µ be a finite measure and let ν be a probability measure on (Ω,F). Furthermore,
let Fn ↑ F be σ-fields (i.e., σ(∪Fn) = F) and let µn as well as νn be the restrictions of
µ and ν to Fn.

Theorem A.5 (Durrett [20], Theorem 5.3.3). Suppose µn � νn for all n. Let Xn =
dµn/dνn and let X = lim supn→∞Xn. Then

µ(A) =

∫
A

X dν + µ(A ∩ {X =∞}).
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A.4. A lemma for the proof of Theorem 4.1 (b)

A.3.3. Sums of i.i.d. random variables

Theorem A.6 (Alsmeyer [5], Proposition 7.11). For an independent sequence (Xn)n≥1

of identical distributed random variables, the corresponding sequence of partial sums
(Sn)n≥0 always satisfies one of the following four alternatives:

(1) Sn = 0 P-a.s. for all n ≥ 1.

(2) limn→∞ Sn =∞ P-a.s.

(3) limn→∞ Sn = −∞ P-a.s.

(4) lim infn→∞ Sn = −∞ and lim supn→∞ Sn =∞ P-a.s.

Theorem A.7 (Alsmeyer [5], Proposition 7.12). If, in addition, we assume that µ :=
EX1 exists in the previous theorem, we have

(1) ⇔ X1 = 0 P-a.s.; (2) ⇔ µ ∈ (0,∞];

(3) ⇔ µ ∈ [−∞, 0); (4) ⇔ µ = 0 and P(X1 = 0) < 1.

A.4. A lemma for the proof of Theorem 4.1 (b)

Lemma A.8. Let P(Surv) > 0 and p0 > 0. Then

P
(
E
[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ] = ν(e0)
)
< 1.

Proof. If P(Surv) > 0 and p0 > 0, then p2 > p0. We get

P
(
E
[
X

(Û0,T̂0)
1,∅

∣∣∣Ξ] = ν(e0)
)

= P(T̂0 = 1,E[X
(0,1)
1,∅ |e] = (p1 + p2)E[X

(0,1)
1,∅ |e])

+ P(T̂0 = 2, Û0 = 0,E[X
(0)
1,∅ |e] = ν(e0))

+ P(T̂0 = 2, Û0 = 1,E[X
(1)
1,∅ |e] = ν(e0))

= p2

(
E

[
1{

E[X
(0)
1,∅ |e]=ν(e0)

}E[X
(0)
1,∅ |e]

ν(e0)

]

+ E

[
1{

E[X
(1)
1,∅ |e]=ν(e0)

}E[X
(1)
1,∅ |e]

ν(e0)

])

= p2

(
P

(
E[X

(0)
1,∅ |e] =

p1 + p2

p0

E[X
(1)
1,∅ |e]

)
+ P

(
E[X

(0)
1,∅ |e] =

p0

p1 + p2

E[X
(1)
1,∅ |e]

))
< 1,
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where we used Lemma 3.15 for the second equality.

A.5. The linear fractional distribution

This section is meant as a short introduction to the linear fractional distribution. In the
following, we give two different representations of the corresponding generating function
f . The second one is used in Chapter 5.

The first representation is based on two parameters b, p ∈ (0, 1) satisfying b+ p ≤ 1.
Let

pk = bpk−1, k ∈ N, p0 = 1−
∑
k≥1

pk =
1− p− b

1− p
.

The generating function of the distribution (pk)k≥0 is given by

f(s) = 1− b

1− p
+

bs

1− ps
, s ∈ [0, 1]. (A.1)

We then have

f ′(s) =
b

(1− ps)2

and thus

m = f ′(1) =
b

(1− p)2
.

Now we come to the second representation of the generating function of the linear
fractional distribution. With this representation, it is very easy to determine all iterations
fn = f ◦ . . . ◦ f , n ≥ 1, of f . Let f be the generating function satisfying

1

1− f(s)
=

α

1− s
+ β, s ∈ [0, 1), (A.2)

where α, β ∈ R> with α + β ≥ 1. In particular

f(s) = 1− 1− s
α + β(1− s)

and thus

f ′(s) =
α

(α + β(1− s))2
and f ′(1) =

1

α
.
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A.5. The linear fractional distribution

Define the bijection ϕ : [0, 1)→ [1,∞), ϕ(s) = (1− s)−1, and the function g : R→ R,
g(s) = αs+ β, having n-th iteration gn(s) = αns+ β(αn−1 + . . .+ α+ 1). Then we can
restate (A.2) as

ϕ ◦ f(s) = g ◦ ϕ(s)

or, equivalently,

f(s) = ϕ−1 ◦ g ◦ ϕ(s)

for s ∈ [0, 1). Thus, we get for the n-th iteration of f

fn(s) = ϕ−1 ◦ gn ◦ ϕ(s), s ∈ [0, 1).

This gives us

1

1− fn(s)
=

αn

1− s
+ β(αn−1 + . . .+ α + 1),

i.e. fn is the generating function of a linear fractional distribution with parameters αn

and β(αn−1 + . . .+ α + 1).
To conclude this short section, we give the connection between the two representations:

• (A.1) (A.2) with α, β ∈ R>, α + β ≥ 1, by choosing p = β
α+β

and b = α
(α+β)2 .

• (A.2) (A.1) with b, p ∈ (0, 1), b+ p ≤ 1, by choosing α = (1−p)2

b
and β = p(1−p)

b
.

In particular,

p0 = 1− 1

α + β
and pk =

α

(α + β)2

(
β

α + β

)k−1

, k ∈ N.

, , , , , , , , , , , , , , , , , ,

103





Acronyms

BPRE branching process in random environment
BPREI branching process in random environment with immigration
BwBPRE branching within branching process in random environment
CLT Central limit theorem
GWP Galton-Watson process
SLLN strong law of large numbers

List of symbols

V infinite binary Ulam-Harris tree
∅ root cell of V
Tv number of daughter cells of cell v
(pk)k≥0 cell reproduction

µ reproduction mean of the cells
Tn set of cells in generation n
Tn number of living cells in generation n
T cell tree
Av status (alive, dead) of a cell

T∗n set of infected cells in generation n

T ∗n number of infected cells in generation n

M(N2
0),M space of probability measures on N2

0 and corresponding σ-field

[e]m := (en)n≥m
(X

(0)
k,v , X

(1)
k,v) offspring of the k-th parasite in cell v

X
(0,1)
k,v = X

(0)
k,v +X

(1)
k,v

X
(0,2)
k,v = X

(0)
k,v

X
(1,2)
k,v = X

(1)
k,v

X
(i,j)
k,v = 0 if (i, j) ∈ {(0, 0), (1, 0), (1, 1)}

Zv number of parasites in cell v
e

(i,j)
n = P(X

(i,j)
1,0∗n ∈ ·|e)
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List of symbols

0∗n = 0 . . . 0 (n-times)

0∗0 = ∅
Pz,Ez starting with z parasites in the root cell
P(t,z),E(t,z) starting with t cells hosting z1, . . . , zt parasites, respectively,

where z = (z1, . . . , zt)

BP branching within branching process in random environment
BPn nth generation of the branching within branching process in

random environment
BT branching within branching tree in random environment
BTn branching within branching tree in random environment

up to generation n
Zn number of parasites in generation n
ν(en) = E[Zn|e]

ν = E[ν(e0)]

F canonical filtration not including the random environment
G canonical filtration including the random environment
S = {(0, 0)} ∪ ({1} ×N0)

(S,S) space of host-parasite trees

Sn sub σ-field generated by the projections on the first n generations
of the host-parasite trees

R set of possible root configurations
Vn spinal cell in generation n (‘chosen along the cells’)

ξn = (Ťn, Cn, en)

fξn = E[sX
Cn,Ťn
k,Vn |ξn]

Fn(k) number of cells in generation n containing exactly k parasites

R↑ set of ordered configurations of infected cells
R↑0 = {(0, 0)} ∪R↑
BPG process denoting the number of infected cells and the number of

parasites they contain
BPGn number of infected cells and the number of parasites they contain in

generation n
Ext/Surv set of extinction/survival of the parasites

Wn = Zn/νn(e)

V̂n spinal cell in generation n (‘chosen along the parasites’)

Qz = Pz((BT, e) ∈ ·)
S′n = Sn ⊗MN0

Ξn = (T̂n, Ûn, en)
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