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Abstract

In this thesis we introduce a new dimensional reduction approach which is based on the applica-
tion of Reduced Basis (RB) techniques in the Hierarchical Model Reduction (HMR) framework.
Considering problems that exhibit a dominant spatial direction, the idea of HMR is to perform a
Galerkin projection onto a reduced space, which combines the full solution space in the dominant
direction with a reduction space in the transverse direction. The latter is spanned by modal or-
thonormal basis functions. While so far the basis functions in the HMR approach have been chosen
a priori, for instance as Legendre or trigonometric polynomials, in this work a highly nonlinear
approximation is employed for the construction of the reduction space. To this end we first derive
a parametrized problem in the transverse direction from the full problem where the parameters
reflect the influence from the unknown solution in the dominant direction. Exploiting the good
approximation properties of RB methods, we then construct a reduction space to approximate a
suitable solution manifold of the parametrized transverse problem from snapshots and a subsequent
proper orthogonal decomposition. For an efficient construction of the snapshots we apply adaptive
refinement in parameter space based on an a posteriori error estimate that is also derived in this
thesis.
To accomplish a dimensional reduction for nonlinear problems we propose to approximate also the
nonlinear operator with an orthonormal expansion in an orthonormal, so-called collateral basis
on the transverse direction. The collateral basis space is constructed in a highly nonlinear fashion
analogously to the reduction space by first generating a manifold of parametrized lower dimensional
operator evaluations and subsequently employing RB methods for the selection of the basis func-
tions from snapshots of the former. The coefficients in the orthonormal expansion are efficiently
computed by the newly introduced Empirical Projection Method, which is an adaptive integration
algorithm based on the Empirical Interpolation Method. Rigorous a priori and a posteriori error
bounds which do not require additional regularity of the nonlinear operator are proven for the
Empirical Projection Method.
Having the application of our dimensional reduction approach to subsurface flow problems in mind,
we finally propose an ansatz for the approximation of a possibly skewed water table (or similar
interface) with tensor-based model reduction methods.
Numerical experiments for general advection-diffusion problems and the elliptic nonlinear diffusion
equation demonstrate a fast convergence of the proposed dimensionally reduced approximation to
the solution of the full-dimensional problem. Run-time experiments verify a linear scaling of the
method in the number of degrees of freedom used for the computations in the dominant direction
both in the linear and nonlinear setting.
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Chapter 1

Introduction

1.1 Aim, scope and contributions of this work

Many phenomena in nature have dominant spatial directions along which the essential dynamics
occur. Examples are blood flow problems, fluid dynamics in pipes or river beds and subsurface flow.
This property can be exploited to derive a dimensionally reduced model. However, the processes
in the transverse directions are often too relevant for the whole problem to be neglected. This
can be due to local features as the presence of a narrowing (stenosis) of an artery or the outlet of
a river in a lake, but also to possibly nonlocal processes as infiltration of soil. To obtain a good
approximation of the full dimensional problem, the dimensionally reduced model should therefore
include information on the transverse dynamics.
The major goal of this thesis is the development of an efficient dimensional reduction approach which
yields a fast convergence of the solution of the dimensionally reduced model to the solution of the full
dimensional problem against the application background of saturated-unsaturated subsurface flow.
The latter is of interest for instance in environmental applications or in the fields of reliable flood
forecasting and construction of flood protection measures. This aim is achieved by the application
of Reduced Basis (RB) Methods in the Hierarchical Model Reduction (HMR) framework and yields
the Hierarchical Model Reduction-Reduced Basis (HMR-RB) approach. The key idea of HMR, orig-
inally introduced in [124–126] and studied in a more general geometric setting in [48,100,102,103],
is to perform a Galerkin projection of the original variational problem onto a reduced space of
approximation order m of the form Vm = {vm(x, y) =

∑m
l=1 v̄l(x)φl(y), x ∈ Rk, y ∈ Rd−k}, where

the coefficients v̄l(x), l = 1, ...,m, are defined on the dominant direction and the orthonormal func-
tions φl, l = 1, ...,m, on the so-called transverse direction. The projection is thus determined by
the choice of the reduction space in the transverse direction Ym := span(φ1, . . . , φm). While in
all previous papers the choice of the reduction space is based on an a priori chosen set of basis
functions such as trigonometric or Legendre polynomials, one of the major contributions of the
present work is to employ a double stage (and thus highly) nonlinear approximation in the sense
of [38] to construct the reduction space. First, we derive a parametrized lower dimensional problem
in the transverse direction from the full problem, where the parameters reflect the influence from
the unknown solution in the dominant direction. For the selection of the basis {φl}ml=1 from the
solution manifold formed by the solutions of the parametrized dimensionally reduced problem, we
apply RB methods, exploiting their good and in some cases even optimal approximation proper-
ties [17, 21, 40, 69, 104]. In particular we make use of an adaptive training set extension in the
parameter space, which combines ideas from [61, 62] and [46] for an efficient generation of a snap-
shot set. One central ingredient of this construction process is a reliable and efficient a posteriori
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2 CHAPTER 1. INTRODUCTION

error estimator for the discretized reduced model which is also derived. On the snapshot set a
proper orthogonal decomposition (POD) is applied to construct the reduction space Ym, where
the approximation order m is determined automatically by the POD by prescribing a certain error
tolerance. Thus, both in the construction of the solution manifold and the subsequent choice of
the basis functions, information on the full solution is included to obtain a fast convergence of the
reduced solution to the full one.

As mentioned above the motivating application and long-term goal of our ongoing research is the
treatment of saturated-unsaturated subsurface flow, which can be modeled by Richards’ equation
if a constant air pressure is assumed. Richards’ equation comes from the physical principle of mass
conservation and Darcy’s law and is a nonlinear parabolic partial differential equation (PDE) for
the water saturation in the soil. As it unites many difficulties we address some of them, namely
the nonlinearity and the formation of a possibly skewed interface at the water table, separately,
and use the obtained results for future research. Although we mainly focus on the application to
saturated-unsaturated subsurface flow, the HMR-RB approach is equally applicable to other phe-
nomena exhibiting a dominant flow direction.
We begin with the introduction of the HMR-RB approach for general linear elliptic equations.
Within this setting the HMR approach hierarchically reduces the full problem to a small dimen-
sionally reduced system in the dominant direction, coupled by the transverse behavior. Numerical
experiments show a fast convergence of the HMR-RB approximation to the full solution. Compared
to the classical HMR approach with sine functions we obtain a faster convergence for all considered
test cases. Run-time experiments verify a linear scaling of the proposed method in the number of
degrees of freedom used for the computations in the dominant direction. The concept of the HMR-
RB approach for linear problems and parts of the numerical results have been published in [92] and
as a preprint in [91].
Next, we treat general nonlinear PDEs, where the nonlinear operator A is a mapping from H1

0 (Ω) to
H−1(Ω) and Ω denotes the computational domain. As the nonlinearity of A prevents a dimensional
reduction, we propose to approximate A with Ak =

∑k
j=1 Āj(x)κj(y), (x, y) ∈ Ω, where {κj}kj=1 are

orthonormal basis functions, forming the so-called collateral basis. Also for the construction of the
collateral basis {κj}kj=1, we employ a highly nonlinear approximation. To generate a manifold of
parametrized lower dimensional operator evaluations we employ the solutions of the parametrized
dimensionally reduced problem and the associated parametrization. During the adaptive training
set extension procedure the sets of solution and operator snapshots are simultaneously generated.
The collateral basis space Wk is constructed by applying a POD to the operator snapshots. For an
efficient computation of the coefficients Āj(x), j = 1, . . . , k, we introduce the Empirical Projection
Method (EPM). The key idea is to approximate the integrals in the coefficients of the orthonormal
expansion by an automatic numerical integration program, which is based on the Empirical Inter-
polation Method [12], and choose the Āj(x), j = 1, . . . , k, as the outcome. Rigorous a priori and
a posteriori error bounds for the EPM which do not require additional regularity of the nonlinear
operator are proven. These bounds are employed for the derivation of a reliable and efficient a
posteriori error estimator, which is used within the context of the adaptive snapshot generation
procedure. Numerical experiments for the elliptic nonlinear diffusion equation demonstrate a fast
convergence of the HMR-RB approach and a linear scaling in the number of degrees of freedom
used for the computations in the dominant direction.
Finally, the approximation of the water table requires some additional efforts for the following
reason. If the water table is skewed a bad convergence behavior of tensor-based model reduction
approaches can be observed. This is due to the fact that for a full approximation of the water table
the saturation profile in every point along the dominant direction has to be included. To prevent
this effect we propose to first locate the water table by solving the lower dimensional problem in
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the dominant direction, which is derived under a hydrostatic pressure assumption and describes
the location of the water table. Then we prescribe the so obtained saturation profile as the lifting
function of the Dirichlet boundary conditions. In this way we remove the part of the full solu-
tion which causes the bad convergence rate from the approximation process and therefore expect
to significantly improve the convergence behavior of the employed tensor-based model reduction
approach. For prescribed interfaces the latter is demonstrated in numerical experiments for linear
elliptic equations and the HMR-RB approach.

1.2 Overview on the literature

There is a large variety of approaches in the fields of dimensional reduction and tensor based ap-
proximations. Thus, we only outline the ones most closely related to our method. An overview on
the literature on Reduced Basis Methods is given in the parts of the thesis, where the respective
techniques are employed.

One of the first dimensional reduced models for subsurface flow has been derived by Dupuit in 1863
assuming a hydrostatic pressure distribution, describing the height of the water table [44]. Using
an asymptotic expansion it was shown in [37] that the solution of this reduced model is the first
order approximation of the solution of the groundwater flow equation with a free surface. This
technique has among others also been applied to derive lower-dimensional models for plates (see
e.g. [36] and references therein) or water waves (see e.g. [57, 66, 116] and references therein). The
method of asymptotic partial domain decomposition for thin domains (cf. [18,54,94–96]) generalizes
the method of asymptotic expansion. Here, in the (small) part of the domain, where an asymptot-
ically singular behavior of the solution is expected, the full problem is considered, while in the rest
of the domain an asymptotic expansion is applied, which is also used to identify suitable coupling
conditions at the interface. The main drawback of methods based on asymptotic expansion is, that
they are only valid, if the considered domain is very thin, or equivalently, the solution is constant
along the vertical direction, which is often not the case.
To overcome this difficulty in the work by Babuška and Vogelius [124] the Hierarchical Model Re-
duction (HMR) approach has been introduced in the context of heat conduction in plates and shells.
For thin domains they proposed an optimal a priori choice of the reduction space which coincides
with the Legendre polynomials if the coefficients of the considered PDE are constant. In [125] a
polynomial convergence rate in m, which depends on the regularity of the full solution, is proven
for domains of arbitrary size. Finally, in [126] an a posteriori error estimator is derived and used for
an adaptive choice of m throughout the domain. A posteriori error estimation for this choice of the
reduction space has been further studied in [2,11]. In a more general geometrical setting the appli-
cation and applicability of the HMR approach for problems that exhibit a dominant flow direction
has been studied and demonstrated by Perotto, Ern and Veneziani in [48, 102] and more recently
by Perotto and coworkers in [100, 103]. Adaptive variants of HMR that allow for a local adaption
of the approximation order m by a domain decomposition scheme [100, 102] or by associating the
basis functions to the nodes of a finite element (FE) partition in the dominant direction [103] are
introduced. The basis functions are chosen a priori either as sine functions or Legendre polynomi-
als. Also for the former a polynomial convergence rate in the model order can be proved, which
depends on the regularity of the full solution and the polynomial order of the finite element spaces
used for the discretization in the dominant direction [26]. As the major part of reduced models ob-
tained by asymptotic expansion or vertical averaging can be derived with a projection approach as
presented above with approximation order m = 1, HMR constitutes in that sense a hierarchical ap-
proach to interpolate between such low dimensional models and their full dimensional counterparts.
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A more restricted way of such interpolation is given by the so-called geometrical multiscale ap-
proach, where, based on a domain decomposition, the dimension of the model is adjusted locally.
Both the coupling of full dimensional problems with one-dimensional problems (cf. for the appli-
cation within hemodynamics e.g [55,120] and for free-surface flow [86]) and with zero-dimensional,
lumped models (cf. [56,108]) are considered. The latter is particulary used in the context of blood
flow simulation. While in all these articles the domain decomposition is chosen a priori, recently
an adaptive geometrical multiscale approach has been introduced in [84]. Here, the domain is de-
composed a posteriori, based on error indicators, allowing both for model refinement and model
coarsening.
Another example for intermediate models are multilayer shallow water systems which have been
proposed in [8–10, 52, 112] for the approximation of the free-surface Navier-Stokes or Euler equa-
tions. Here, the flow domain is discretized in the transverse direction by introducing intermediate
water heights. Then, in each layer a classical shallow water equation is considered and a certain
coupling between the layers is introduced. This results in general in a better description of the
vertical profile of the horizontal velocity and an intermediate model between the classical shallow
water equations and the full dimensional Navier-Stokes or Euler equations.

The proper generalized decomposition approach (PGD), introduced in [6,7,88], also employs a trun-
cated tensor product decomposition, but determines the tensor products of the expansion by iter-
atively solving the Euler-Lagrange equations associated with the considered problem. In contrast
to RB methods and the HMR-RB approach proposed in this thesis, PGD aims at constructing an
approximation based on the knowledge of the considered differential operator and not on a priori
knowledge on the solution or an approximation of it [89]. Furthermore, in contrast to HMR, the
PGD has been developed for the approximation of models defined in multidimensional spaces, such
as problems in quantum chemistry or financial mathematics or parametrized models. Depending on
the considered application the number of factors in the tensor products is therefore in general much
larger than two. An error estimator for a quantity of interest has been derived in [5] where a PGD
approximation of higher accuracy is employed to solve the dual problem. For the variational version
of the PGD, where an energy functional is minimized, convergence has been proved for the Poisson
problem in [77], for strongly convex nonlinear energy functionals in Hilbert spaces in [24] and in
reflexive tensor Banach spaces in [51], and for high-dimensional Ornstein-Uhlenbeck operators with
unbouned drift in [53]. For a review on the PGD method we refer to [33,34].

1.3 Outline of this work

This thesis is organized as follows. In Chapter 2 we introduce the Hierarchical Model Reduction-
Reduced Basis approach for general linear elliptic problems. First we recall in Section 2.1 the
HMR framework introduced in [102] and give an overview on basis generation with RB methods in
Section 2.2. The concept of the HMR-RB approach is developed in Section 2.3. In Section 2.4 we
derive an a posteriori error estimator which is based on the Riesz representative of the residual and a
localized residual-type estimator. Extensive numerical experiments have been conducted to validate
the approximation properties and the computational efficiency of the proposed method. The results
are presented in Section 2.6. In this section we also investigate the reliability and effectivity of the
two estimators and compare their performance within the HMR-RB framework. In Chapter 3 we
adapt the HMR-RB approach to nonlinear PDEs. For this purpose we introduce and analyze the
Empirical Projection Method in Section 3.2. In Section 3.3 the formation of the solution and the
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operator manifold and the subsequent construction of the reduction and collateral basis space is
described. An a posteriori error estimator based on the Brezzi-Rappaz-Raviart theory [20, 23] is
derived in Section 3.4. Here, the results in [27] for quadratically nonlinear PDEs and non-affine
data functions are generalized to nonlinear PDEs with a nonlinear operator A : H1

0 (Ω)→ H−1(Ω).
In the numerical experiments in Section 3.6 we investigate the approximation properties and the
computational efficiency of the HMR-RB approach and test the applicability of the theoretical
results for the elliptic nonlinear diffusion equation. The latter can be regarded as a simplified
version of the nonlinear term in the Richards equation. As the coefficient functions in Richards’
equation are degenerate in the sense that the relative permeability can become arbitrary small
in the dry regions of the porous medium, we also study and demonstrate the applicability of the
HMR-RB approach for small ellipticity constants. Chapter 4 is devoted to the approximation of
the water table. An ansatz for the approximation of a skewed water table for tensor-based model
reduction approaches is introduced in Section 4.1 and exemplified for the HMR-RB approach in
Section 4.2. In Section 4.2 we also introduce an alternative ansatz for the derivation of the solution
manifold. Numerical results are presented in Section 4.3. Finally, we draw some conclusions in
Chapter 5 and give a short outlook. All computer programs used for the numerical experiments
presented in this thesis can be found on the attached USB flash drive.
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Chapter 2

The Hierarchical Model Reduction -
Reduced Basis (HMR-RB) approach
for linear elliptic problems

In this chapter we introduce the Hierarchical Model Reduction-Reduced Basis approach for gen-
eral linear elliptic equations. The chapter is organized as follows. In Section 2.1 we introduce the
problem setting and recall the Hierarchical Model Reduction approach following the framework
presented in [102]. Afterwards, we describe the most popular procedures for basis generation in
Reduced Basis methods, namely the proper orthogonal decomposition (POD) and the greedy al-
gorithm. Important properties including results on their convergence behavior are cited from the
literature. The main new contributions of this chapter are developed in Section 2.3 where we first
derive a suitable parametrized equation in transverse direction and then detail the usage of Re-
duced Basis techniques to construct the reduction space. In Section 2.4 a reliable and efficient a
posteriori error estimator based on the Riesz representative of the residual and a localized residual-
type estimator are derived. Both can be used in the construction process of the reduction space.
Subsequently, we thoroughly discuss the computational complexity of the resulting HMR-RB ap-
proach in Section 2.5. It is shown that the computional steps of the HMR-RB approach can be
decomposed analogue to offline-online splitting in the RB method. However, different from classi-
cal RB methods, the HMR-RB scheme is designed to be more efficient than direct finite element
methods also for single computations including the cpu-time spend for the offline-steps. Finally, we
present several numerical experiments in Section 2.6 to validate the approximation properties and
the computational efficiency of our approach including offline- and online phase. Furthermore, the
reliability and effectivity of the two estimators is analyzed.

2.1 Hierarchical model reduction for linear elliptic problems

Let Ω ⊂ R2 be a computational domain with Lipschitz boundary ∂Ω and outer normal ν. We define
the solution space V such that H1

0 (Ω) ⊆ V ⊆ H1(Ω) and consider the following general elliptic
problem:

Find p ∈ V : a(p, v) = f(v) ∀v ∈ V, (2.1)

where a(·, ·) is a coercive and continuous bilinear form and f ∈ V ∗, V ∗ being the dual space of
V . For sake of clarity we assume that possible Dirichlet boundary conditions are homogeneous.

7
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Figure 2.1: The mapping Ψ : Ω→ Ω̂, [102]

The extension to non-homogeneous Dirichlet boundary conditions is straightforward and treated
in Chapter 4. Furthermore, we denote by as(·, ·) the symmetric part of a(·, ·), i.e. for all v, w ∈ V
there holds as(v, w) = 1

2 (a(v, w) + a(w, v)). We define a V -inner product and the induced V -norm
as

(·, ·)V := as(·, ·) and ‖ · ‖V :=
√

(·, ·)V . (2.2)

Finally, we define the coercivity and the continuity constants of the bilinear form a(·, ·) with respect
to the V -norm as

c0 := inf
v∈V

a(v, v)

‖v‖2V
and c1 := sup

v∈V
sup
w∈V

a(v, w)

‖v‖V ‖w‖V
. (2.3)

We adopt the hierarchical model reduction framework introduced by Perotto, Ern, and Veneziani
[48, 102]. Thus, we refer to (2.1) as the full problem and assume that Ω can be considered as a
two-dimensional fiber bundle

Ω =
⋃

x∈Ω1D

{x} × ωx,

where Ω1D is the one-dimensional (1D) computational domain in the dominant direction and ωx
the transverse fiber associated with x ∈ Ω1D. For the sake of simplicity we assume Ω1D to be a
straight line, that is Ω1D =]x0, x1[. We denote

Γ0 = {x0} × ωx0
, Γ1 = {x1} × ωx1

, Γ∗ =
⋃

x∈Ω1D

{x} × ∂ωx. (2.4)

Furthermore, we define for any x ∈ Ω1D the mapping

ψ(·;x) : ωx → ω̂ (2.5)

between the fiber ωx associated with x ∈ Ω1D and a reference fiber ω̂ with ω̂ =]y0, y1[. We adopt
the notation for z = (x, y) being a generic point in Ω and ẑ = (x, ŷ) being the corresponding point
in Ω̂. The latter is constructed via the mapping Ψ : Ω → Ω̂ depicted in Fig. 2.1 with ŷ = ψ(y;x)

for y ∈ ωx and x̂ = x for x ∈ Ω1D, which is why Ω̂1D ≡ Ω1D. We suppose that ψ(·;x) is a
C1-diffeomorphism and that the transformation Ψ is differentiable with respect to z. Finally, we
denote

D1(z) = ∂xψ(·;x), and D2(z) = ∂yψ(·;x).
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2.1.1 Formulation of the reduced problem
We exploit the fiber structure of Ω to define the spaces X and Y such that

H1
0 (Ω1D) ⊆ X ⊆ H1(Ω1D) and H1

0 (ω̂) ⊆ Y ⊆ H1(ω̂).

In addition, both spaces have to be compatible with the prescribed boundary conditions on ∂Ω.
On ω̂ we introduce a set of basis functions {φk}k∈N ∈ Y , orthonormal with respect to the L2-inner
product on ω̂, i.e. ∫

ω̂

φk(ŷ)φl(ŷ) dŷ = δkl ∀ k, l ∈ N,

where δkl is the Kronecker symbol. In previous papers, possible choices for {φk}k∈N were suitable
a priori chosen functions, like trigonometric [48, 102] or Legendre polynomials [102]. A major new
contribution of this work is to replace the a priori chosen basis by a posteriori constructed basis
functions that are tailored to the specific problem at hand (cf. §2.3). By combining the space X
with the reduction space Ym = span(φ1, ..., φm), we define the reduced space

Vm =

{
vm(x, y) =

m∑
k=1

vk(x)φk(ψ(y;x)), with vk(x) ∈ X, x ∈ Ω1D, y ∈ ωx

}
, (2.6)

where m ∈ N is the approximation order and the coefficients satisfy

vk(x) =

∫
ω̂

vm(x, ψ−1(ŷ;x))φk(ŷ) dŷ, k = 1, ...,m.

A Galerkin projection onto Vm yields the reduced problem:

Find pm ∈ Vm : a(pm, vm) = f(vm) ∀ vm ∈ Vm. (2.7)

Rewriting pm as pm(x, y) =
∑m
k=1 pk(x)φk(ψ(y;x)) leads to:

Find pk ∈ X, k = 1, ...,m :

m∑
k=1

a(pkφk, ξφl) = f(ξφl) ∀ ξ ∈ X and l = 1, ...,m. (2.8)

Note that for a given set of basis functions {φk}mk=1 the integrals in the transverse direction can
be precomputed. The computation of pm(x, y) thus reduces to the solution of a one-dimensional
coupled system, whose size depends on the model order m.

2.1.2 Example: An advection-diffusion problem
We exemplify the reduced problem (2.8) by an advection-diffusion problem with homogeneous
Dirichlet boundary conditions. For the sake of clarity we restrict our exposition to a rectangular
domain Ω, implicating Ω = Ω̂ and y = ŷ. We refer to the Appendix A.1 for the treatment of a
domain with a curved boundary. The full space V coincides with H1

0 (Ω) and the spaces X and Y
coincide with H1

0 (Ω1D) and H1
0 (ω̂) respectively. We consider the following bilinear and linear form

a(p, v) :=

∫
Ω

k∇p∇v dxdy +

∫
Ω

b · ∇pv dxdy and f(v) =

∫
Ω

sv dxdy, (2.9)

where k ∈ L∞(Ω) with 0 < c3 ≤ k ≤ c4 for constants c3, c4 ∈ R+ and b = (b1, b2)t ∈ [W 1,∞(Ω)]2

with div b ≤ 0 and s ∈ L2(Ω). Under these assumptions a(·, ·) is a coercive and continuous bilinear
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and f(·) a continuous linear form. Given a set of basis functions {φl}ml=1 ∈ Y , we obtain the reduced
problem: Find pl ∈ X, l = 1, ...,m, such that for all ξ ∈ X and j = 1, ...,m

m∑
l=1

∫
Ω1D

Alj(x)dpldx
dξ
dx +Blj(x)dpldx ξ + Clj(x) pl ξ dx =

∫
Ω1D

Fj(x) ξ dx, (2.10a)

where the coefficients Alj(x), Blj(x), Clj(x) and Fj(x), l = 1, ...,m, j = 1, ...,m are given by

Alj(x) =

∫
ω̂

k(x, y)φl φj dy, Blj(x) =

∫
ω̂

b1(x, y)φl φj dy,

(2.10b)
Clj(x) =

∫
ω̂

k(x, y)φ′l φ
′
j + b2(x, y)φ′l φj dy, Fj(x) =

∫
ω̂

s(x, y)φj dy.

We emphasize that although considering an advection-diffusion problem (2.9), the coupled system
(2.10) also contains a reactive term due to the dimensional splitting.

2.1.3 Discretization of the reduced problem
For the computation of the coefficient functions pl(x), l = 1, ...,m, we introduce a subdivision TH of
Ω1D with elements Ti = (xi−1, xi) of width Hi = xi − xi−1 and maximal step size H := maxTi Hi.
We also introduce an associated conforming Finite Element space XH ⊂ X with dim(XH) = NH <
∞ and basis ξHi , i = 1, ..., NH . XH is then combined with Ym to define the discrete reduced space

V Hm =

{
vHm(x, y) =

m∑
k=1

vHk (x)φk(ψ(y;x)), with vHk (x) ∈ XH , x ∈ Ω1D, y ∈ ωx

}
. (2.11)

By rewriting the discrete reduced solution pHm as pHm(x, y) =
∑m
k=1 p

H
k (x)φk(ψ(y;x)) we obtain the

discrete reduced problem: Find pHk ∈ XH , k = 1, ...,m, such that

m∑
k=1

a(pHk φk, ξ
H
i φl) = f(ξHi φl) for i = 1, ..., NH and l = 1, ...,m. (2.12)

We also introduce a coarse subdivision TH′ of Ω1D and an associated low-dimensional conforming
FE space XH′ ⊂ X with dim(XH′) = NH′ < NH <∞. V H

′

m and pH
′

m shall be the respective coarse
counterparts of V Hm and pHm.

Before we describe the construction of the reduction space Ym in Section 2.3 with Reduced Basis
techniques, we give a short introduction to Reduced Basis methods with a particular focus on basis
generation.

2.2 Basis generation with Reduced Basis Methods
Reduced Basis (RB) methods are especially designed for and applied within the real-time andmany-
query context. While in real-time applications we have constraints on the duration of the numerical
simulation, in the many-query context simulations are conducted repeatedly for different inputs.
By introducing an appropriate parametrization of the problem the solution space is restricted to a
solution manifold, which contains the solutions that are relevant for the considered application. The
key idea of RB methods is to perform a Galerkin projection on a suitably chosen low-dimensional
reduced (basis) space which approximates this solution manifold. As the focus of real-time or
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many-query applications lies on a fast input-output response, a possibly expensive so-called offline
phase can be accepted. During this offline phase high-dimensional computations, i.e. solutions of
a discretized PDE for certain parameter values, are performed to build the reduced basis space in
such a way that for each admissible parameter value a small error between the high-dimensional and
reduced approximation can be certified. Therefore, in the so-called online phase for a given param-
eter value only the reduced problem has to be solved. Note that RB methods aim at approximating
the high-dimensional solution, assuming that the discretization error between the latter and the
respective exact solution is negligible. The focus of this section lies on the generation of the reduced
basis space. For other topics within the field of RB methods, such as offline-online decomposition,
we refer to [42,97,106,110] and for an overview on the historical background of RB methods to [110].

We denote the solution manifold by

Mh(µ) = {Ph(µ) : µ ∈ D}, (2.13)

where Ph(µ) ∈ Y h ⊂ Z is the solution of a discrete parametrized PDE, the parameter space D
contains all admissible parameter values µ, and Z ⊂ Lq(ω̂), q ≥ 1. The linear n-dimensional
subspace Yn ⊂ Y h, which yields the best approximation ofMh(µ) among all other n-dimensional
subspaces of Y h, can then be characterized by the Kolmogorov n-width [104], which is given by

dn(Mh(µ);Y h) := inf
Ỹ⊂Y h

dim(Ỹ )=n

sup
Ph(µ)∈Mh(µ)

inf
υ̃∈Ỹ

‖Ph(µ)− υ̃‖Z . (2.14)

For the computation of the reduced basis space, we introduce a finite dimensional train sample
Ξtrain ⊂ D of size ntrain and a corresponding discrete manifold

Mh
train(µ) = {Ph(µ) : µ ∈ Ξtrain}. (2.15)

As in [110] we further define for a given function z : D → Y h (or z : D → Z) the norms

‖z‖L2(Ξtrain;Z) :=

 1

ntrain

∑
µ∈Ξtrain

‖z(µ)‖2Z

1/2

and ‖z‖L∞(Ξtrain;Z) := max
µ∈Ξtrain

‖z(µ)‖Z . (2.16)

Next, we describe the most popular methods for the generation of the reduced basis space, namely
the proper orthogonal decomposition (POD) and the greedy algorithm. The main difference between
these two approaches is that the former yields the optimal space with respect to the L2(Ξtrain;Z)-
norm, while the latter constructs a reduced space which is suboptimal and in some cases even
optimal with respect to the L∞(Ξtrain;Z)-norm.

2.2.1 Proper Orthogonal Decomposition
The POD, also known as the Karhunen-Loève expansion [70,78] or Principal Component Analysis
[67, 98] is very popular and has been used in different fields including fluid dynamics (see e.g.
[60,64,115]). It has also been successfully applied in the parametric context for linear (see e.g. [69])
and nonlinear problems (see e.g. [31, 75]). For a Hilbert space Z ⊂ L2(ω̂) the POD basis functions
φi, i = 1, ..., n, are obtained by solving the optimization problem

min

 1

ntrain

∑
µ∈Ξtrain

‖Ph(µ)−
n∑
i=1

(Ph(µ), φi)Zφi‖2Z

 s.t. (φi, φj)Z = δij , 1 ≤ i, j ≤ n. (2.17)
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Here, n ≤ dim(Υh) is assumed, where Υh = span{Ph(µ)}, Ph(µ) ∈ Mh
train(µ), and (·, ·)Z denotes

the inner product associated with the space Z. The POD basis functions φi, i = 1, ..., n, then span
the POD space Y POD

n , which can be equivalently defined as

Y POD
n := arg inf

Ỹ⊂Υh

dim(Ỹ )=n

 1

ntrain

∑
µ∈Ξtrain

inf
υ̃∈Ỹ
‖Ph(µ)− υ̃‖2Z

 . (2.18)

The POD space Y POD
n thus yields the best approximation of Υh among all other n-dimensional

subspaces of Υh with respect to the L2(Ξtrain;Z)-norm. In that sense Y POD
n is optimal with respect

to this norm. The POD basis {φi}ni=1 can be determined by applying the method of snapshots [115].
First, we compute the Gramian matrix

K :=
(
(Ph(µi),Ph(µj))Z

)
1≤i,j≤ntrain

∈ Rntrain×ntrain . (2.19)

Subsequently, we determine its first n eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn > 0 and associated eigen-
vectors v1, ..., vn, that are orthonormal with respect to the Euclidean inner product (·, ·)2, i.e. we
solve

Kvi = λivi, 1 ≤ i ≤ n and (vi, vj)2 = δij , 1 ≤ i, j ≤ n. (2.20)

The POD basis φi, i = 1, ..., n, is then given as

φi =
1√

ntrainλi

ntrain∑
j=1

(vi)jPh(µj), 1 ≤ i ≤ n,

where (vi)j denotes the jth component of the eigenvector vi. The POD error ePOD
n defined as

ePOD
n :=

 1

ntrain

∑
µ∈Ξtrain

‖Ph(µ)−
n∑
i=1

(Ph(µ), φi)Zφi‖2Z

1/2

(2.21)

satisfies (cf. [69])

(ePOD
n )2 =

ntrain∑
k=n+1

λk. (2.22)

We finally remark that all stated results equally hold true for continuous functions P(µ), µ ∈ Ξtrain.

2.2.2 The Greedy Algorithm
As the construction of the POD basis requires the computation of Ph(µ) for all µ ∈ Ξtrain and
the subsequent solution of the eigenvalue problem, its computation can become very expensive
for large train samples. Therefore, a greedy strategy has been proposed in [123] to overcome this
difficulty. The objective of the greedy algorithm 2.2.1 (see e.g. [17, 21, 40, 81, 82, 110, 123]) is to
construct a nested set of parameters Sn = {µ1, . . . , µn} and a corresponding Lagrangian reduced
basis space Yn := span{Ph(µ1), . . . ,Ph(µn)}. This is realized by choosing in each iteration the
candidate snapshot Ph(µ), which is (based on the prediction of an error estimator ∆n−1(µ)) worst
approximated by Yn−1. Therefore, in contrast to the POD, only the snapshots associated with the
set Sn have to be computed. To consider large train samples Ξtrain it is crucial that the error
estimator is rapidly evaluable, i.e. with a complexity that does not depend on the dimension of the
underlying high dimensional discretization. This can be realized if the error estimator allows for a



2.2. BASIS GENERATION WITH REDUCED BASIS METHODS 13

Algorithm 2.2.1: Greedy Algorithm
1 greedy(Ξtrain,Nmax,tol)
2 Initialize: S0 = ∅, Y0 = ∅.
3 for n = 1 : Nmax do
4

Find: µn = arg max
µ∈Ξtrain

∆n−1(µ).

5

Extend: Sn = Sn−1 ∪ µn and Yn = Yn−1 ∪ span{Ph(µn)}.

6 Compute ∆n(µ) for all µ ∈ Ξtrain.
7 if arg max

µ∈Ξtrain
∆n(µ) ≤ tol then

8 break
9 end

10 end
11 return Sn, Yn

so-called offline-online decomposition (cf. [110]). We remark that the greedy algorithm 2.2.1 aims
at simultaneously approximating all functions Ph(µ) ∈ Mh

train(µ) employing finite dimensional
subspaces that are constructed using elements of Mh

train(µ). Algorithm 2.2.1 thus differs from
greedy algorithms with the objective to approximate a single function by a finite linear combination
of functions from a given dictionary [17]. For a complete survey on the latter including convergence
results see [117]. If the error estimator is rigorous and effective, i.e. it fulfills

c∆n(µ) ≤ inf
υh∈Yn

‖Ph(µ)− υh‖Z ≤ C̄ ∆n(µ), (2.23)

for constants 0 < c ≤ C̄, convergence of the greedy algorithm 2.2.1 can be proven. First, we restrict
to the case that Z is a Hilbert space. A first result for the convergence rate of the greedy algorithm
has been proven in [21] for c = C̄ = 1, assuming an exponential convergence of the Kolmogorov
n-width. Various improvements have been proven in [17] for 0 < c/C̄ ≤ 1, including the following.
It was shown that if we have an polynomial convergence of the Kolmogorov n-width, the greedy
algorithm converges with the same rate. If an exponential convergence of the Kolmogorov n-width
is assumed, the greedy algorithm converges with a sub-optimal exponential rate. In contrast to the
results in [17, 21] the very recent result in [40] does not require any assumption on the decay rate
of the Kolmogorov n-width. If an exponential convergence of the Kolmogorov n-width is assumed,
the result in [40] improves the rate in [17]. To simplify notations we set

σn(Mh
train(µ)) := sup

Ph(µ)∈Mh
train(µ)

inf
υh∈Yn

‖Ph(µ)− υh‖Z .

Theorem 2.1 (Convergence of the greedy algorithm 2.2.1 in Hilbert spaces, [40]). Let us assume
that Z is a Hilbert space, that 0 < c/C̄ ≤ 1 and for notational convenience only that ‖Ph(µ)‖Z ≤ 1
for Ph(µ) ∈Mh

train(µ). Then, for n ≥ 1 we have

(i)

σn(Mh
train(µ)) ≤

√
2
C̄

c
min

1≤m<n
dm(Mh

train(µ);Y h)
n−m
n .
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In particular this yields

σ2n(Mh
train(µ)) ≤

√
2
C̄

c

√
dn(Mh

train(µ);Y h), n = 1, 2, . . . .

(ii) If dn(Mh
train(µ);Y h) ≤ C0n

−α, n = 1, 2, . . . , then σn(Mh
train(µ)) ≤ C1n

−α, n = 1, 2, . . . ,

with C1 := 25α+1
(
C̄
c

)2

C0.

(iii) If dn(Mh
train(µ);Y h) ≤ C0e

−b0nα , n = 1, 2, . . . , then σn(Mh
train(µ)) ≤

√
2C0

C̄
c e
−b1nα , n =

1, 2, . . . , where b1 := 2−1−2αb0.

Proof. See [40].

Furthermore, in [40] the first result for the convergence of the greedy algorithm 2.2.1 in Banach
spaces has been proven. Let therefore Z ⊂ Lq(ω̂), q ≥ 1.

Theorem 2.2 (Convergence of the greedy algorithm 2.2.1 in Banach spaces, [40]). Let us assume
that Z is a Banach space, that 0 < c/C̄ ≤ 1 and that ‖Ph(µ)‖Z ≤ 1 for Ph(µ) ∈Mh

train(µ). Then,
for n ≥ 1 we have

(i)

σn(Mh
train(µ)) ≤

√
2
C̄

c
min

1≤m<n
n
n−m

2n

(
n∑
i=1

σi(Mh
train(µ))2

) m
2n

dm(Mh
train(µ))

n−m
n .

In particular this yields

σ2n(Mh
train(µ)) ≤ 2

C̄

c

√
ndn(Mh

train(µ);Y h), n = 1, 2, . . . .

(ii) If for α > 0, we have dn(Mh
train(µ);Y h) ≤ C0n

−α, n = 1, 2, . . . , then for any 0 < β <
min{α, 1/2}, we have σn(Mh

train(µ)) ≤ C1n
−α+1/2+β , n = 1, 2, . . . , with

C1 := max

{
C044α+1

(
C̄

c

)4(
2β + 1

2β

)α
, max
n=1,...,7

{nα−β−1/2}

}
.

(iii) If for α > 0, we have dn(Mh
train(µ);Y h) ≤ C0e

−b0nα , n = 1, 2, . . . , then σn(Mh
train(µ)) ≤√

2C0
C̄
c

√
ne−b1n

α

, n = 1, 2, . . . , where b1 := 2−1−2αb0. The factor
√
n can be deleted by

reducing the constant b1.

Proof. See [40].

For an extensive overview on examples, where the Kolmogorov n-width is actually known, we refer
to [104]. Recently, it has been shown in [76] for linear PDEs that if the bilinear and linear form
exhibit a affine parameter dependence and if the number of affine terms for the bilinear form is
≤ 2 and one of them is dominating, an exponential convergence of the Kolmogorov n-width can be
obtained. Here, the rate depends on the number of terms in the affine decomposition of the linear
form. Due to the results of Theorem 2.1 and 2.2 we can thus conclude that the greedy algorithm
2.2.1 constructs a reduced space which is suboptimal and in some cases even optimal with respect
to the L∞(Ξtrain;Z)-norm.
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2.3 The Hierarchical Model Reduction-Reduced Basis approach
The goal of this section is to construct a low-dimensional reduction space Ym which approximates
well the transverse behavior of the full problem (2.1), and can be used to set up the approximation
spaces Vm (2.6) and V Hm (2.11) in the HMR framework. Starting from the full problem we derive
initially a 1D PDE in transverse direction in which the unknown behavior in the dominant direction
enter as parameters (§2.3.1). The FE solutions of the corresponding parameter dependent discrete
1D problem (§2.3.3) form a solution manifoldMh (cf. (2.33) below), which can be approximated by
RB methods with very few basis functions, at least if the manifold is smooth [17,21,40,104]. The key
idea is to exploit the good approximation properties of RB methods (see §2.2) for the construction
of a low-dimensional reduction space Y hm, where the index h indicates that Y hm contains discrete
solutions. Precisely, we first use an adaptive training set extension similar to the one introduced
in [61, 62] for an efficient generation of a snapshot set Y hM and subsequently apply a POD to find
the principal components of Y hM , which then form the reduction space Y hm, where m < M and
m = dim(Y hm) (cf. §2.3.4).

2.3.1 Derivation of a parametrized 1D problem in transverse direction
One of the major challenges when deriving a lower dimensional PDE from a full problem is to
realize a tensor product decomposition of the full solution. The approach we pursue in this chapter
is to assume (only for the derivation of a suitable 1D PDE in transverse direction) that

p(x, ŷ) ≈ U(x) · P(ŷ). (2.24)

Here, the function U(x) represents the behavior of the full solution in the dominant direction, which
is unknown at this stage. By choosing the test functions as v(x, y) = U(x) · υ(ŷ) for any υ ∈ Y we
obtain a reduced problem: Given any U ∈ X, find P ∈ Y such that

a(UP, Uυ) = f(Uυ) ∀υ ∈ Y. (2.25)

As U(x) is unknown, the integrals in the dominant direction cannot be precomputed as in (2.8). We
therefore introduce for an arbitrary integrand t ∈ L1(Ω̂) of an integral I(t) :=

∫
ω̂

∫
Ω1D

t(x, ŷ) dxdŷ
the quadrature formula

Q(t) :=

Q∑
l=1

αl

∫
ω̂

t̃(xql , ŷ) dŷ, t̃(xql , ŷ) := lim
ε→0

1

|Bε(xql )|

∫
Bε(x

q
l )

t(x, ŷ) dx, (2.26)

where αl, l = 1, ..., Q are the weights, and xql , l = 1, ..., Q are the quadrature points. Replacing I(t)
by Q(t) in the bilinear form a(·, ·) and the linear form f(·), we obtain the approximations aq(·, ·)
and fq(·). The reduced problem with quadrature then reads:

Given any U ∈ X, find P ∈ Y : aq(UP, Uυ) = fq(Uυ) ∀υ ∈ Y. (2.27)

Next we introduce a parametrization of (2.27) with the objective to apply RB methods (§2.3.4) to
find optimal locations of the quadrature points and include information on the unknown behavior
U of the solution in the dominant direction in the reduction space Ym. For that purpose we define a
parameter vector µ, which contains both the quadrature points xql , l = 1, ..., Q, and the evaluations
U(xql ) and ∂kxU(xql ), k = 1, ..., n, l = 1, ..., Q, occurring in (2.27). The parameter µ thus has the
form µ = (xql , U(xql ), ∂

k
xU(xql ), U(x0), ∂kxU(x0), U(x1), ∂kxU(x1)), l = 1, ..., Q, k = 1, ..., n, where

x0 and x1 have been defined in §2.1 as the interval boundaries of Ω1D. The evaluations in x0
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and x1 occur in µ if non-homogeneous Neumann or Robin boundary conditions are prescribed in
the full problem (2.1) on Γ0 or Γ1, where Γi, i = 0, 1 are defined in (2.4). Moreover, if x0 or
x1 ∈ {xql }

Q
l=1, the respective quadrature point(s) and the evaluations U(xi) and ∂kxU(xi), i = 0, 1,

which can be inferred from the prescribed boundary conditions drop out of µ. The parameter
space D of dimension P , which contains all feasible parameter values of µ, is then defined as
D := [Ω1D×I0×· · ·×In]Q×I0×· · ·×In×I0×· · ·×In ⊂ RP , where the intervals Ik ⊂ R, k = 0, ..., n
contain the ranges of ∂kxU(x), k = 0, ..., n. To determine the latter no a priori information on the
full solution is needed. The numerical tests in §2.6 show that the choice of the intervals Ik ⊂ R,
k = 0, ..., n has little influence on the outcome. We obtain the following parametrized 1D partial
differential equation in the transverse direction:

Given any µ ∈ D, find P(µ) ∈ Y : aq(P(µ), υ ;µ) = fq(υ ;µ) ∀υ ∈ Y. (2.28)

Assuming that the quadrature points xql , l = 1, ..., Q are sorted in ascending order, the weights αl,
l = 1, ..., Q in (2.26) we have used for the numerical tests in §2.6 are defined as

α1 :=
xq1 + xq2

2
− x0, αl :=

xql+1 − x
q
l−1

2
, l = 2, ..., Q− 1, αQ := x1 −

xqQ−2 + xqQ−1

2
. (2.29)

In §2.6 we compare the modified composite rectangle formula, obtained by choosing the weights as
in (2.29), also with a standard composite trapezoidal rule (cf. [107]). Regarding reasonable values
for Q the numerical test cases §2.6 show that for all purely diffusive problems in §2.6 one quadrature
point is sufficient, whereas for problems with a dominant advection it is better to use two or three.

2.3.2 Example: An advection-diffusion problem
To exemplify the derivation of the parametrized 1D partial differential equation we revisit the
example of the advection-diffusion problem defined in §2.1.2. By applying the quadrature formula
defined in (2.26), we obtain the reduced problem with quadrature: Given any U ∈ X, find P ∈ Y
such that: ∫

ω̂
Ā(y)dPdy

dυ
dy + B̄(y)dPdy υ + C̄(y)P υ dy =

∫
ω̂
F̄(y) υ dy ∀υ ∈ Y, (2.30a)

where the coefficients Ā(y), B̄(y), C̄(y) and F̄(y) are given by

Ā(y) =

Q∑
l=1

αlk(xql , y)U2(xql ), B̄(y) =

Q∑
l=1

αlb2(xql , y)U2(xql ),

(2.30b)

C̄(y) =

Q∑
l=1

αlk(xql , y)(∂xU(xql ))
2 + b1(xql , y)∂xU(xql )U(xql ) F̄(y) =

Q∑
l=1

αls(x
q
l , y)U(xql ).

Here we have omitted the v on the integrands (cf. (2.26)) to simplify notation. We note that also
the 1D problem in the transverse direction (2.30) additionally contains a reactive term due to the
dimensional splitting. We assume that x0, x1 /∈ {xql }

Q
l=1. As we prescribe homogeneous Dirichlet

boundary conditions (cf. §2.1.2) and (2.30) only contains first derivatives of U , the parameter
µ and the parameter space D are defined as µ = (xql , U(xql ), ∂xU(xql )), l = 1, ..., Q, and D :=

[Ω1D × I0 × I1]Q, respectively. To shorten notations we set µ = [µl,1, µl,2, µl,3]Ql=1 where µl,1
replaces xql , µl,2 replaces U(xql ), and ∂xU(xql ) is replaced by µl,3. The parametrized 1D PDE in
transverse direction then reads: Given any µ ∈ D, find P(µ) ∈ Y such that∫

ω̂

A(y;µ)
dP(µ)

dy

dυ

dy
+ B(y;µ)

dP(µ)

dy
υ + C(y;µ)P(µ) υ dy =

∫
ω̂

F(y;µ) υ dy ∀υ ∈ Y, (2.31a)
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Algorithm 2.3.1: Adaptive training set extension and snapshot generation
1 AdaptiveParameterRefinement(G0,ΞG0

,mmax, imax, nΞ, θ, σthres, NH′)
2 Initialize G = G0,ΞG = ΞG0

, φ0 = ∅, ρ0(G) = 0
3 for m = 1, . . . ,mmax do
4 Compute PhG
5 [η(G), σ(G)] = ElementIndicators({φk}m−1

k=1 ,PhG, G, ρ(G), NH′)
6 for i = 1, . . . , imax do
7 G := Mark(η(G), σ(G), θ, σthres)
8 (G,ΞG) := Refine(G,ΞG , nΞ)
9 ρ(G \ G) = ρ(G \ G) + 1

10 Compute PhG
11 [η(G), ρ(G), σ(G)] = ElementIndicators({φk}m−1

k=1 ,PhG , NH′)
12 end
13 {φk}mk=1 := POD(PhG,m)

14 end
15 return PhG,ΞG

where the coefficients A(y;µ),B(y;µ), C(y;µ) and F(y;µ) are given by

A(y;µ) =

Q∑
l=1

αlk(µl,1, y)µ2
l,2, B(y;µ) =

Q∑
l=1

αlb2(µl,1, y)µ2
l,2,

(2.31b)

C(y;µ) =

Q∑
l=1

αlk(µl,1, y)µ2
l,3 + b1(µl,1, y)µl,3µl,2 F(y;µ) =

Q∑
l=1

αls(µl,1, y)µl,2.

For the sake of completeness, we remark that if x0, x1 ∈ {xql }
Q
l=1, the parameter µ has the form

µ = (xql , U(xql ), ∂xU(xql ), ∂xU(x0), ∂xU(x1)), l = 2, ..., Q−1, assuming without loss of generality that
xq1 = x0 and xqQ = x1. Note that the prescribed homogeneous Dirichlet boundary conditions imply
U(x0) = U(x1) = 0. The parameter space D can thus be defined as D := [Ω1D×I0×I1]Q−2×I1×I1.

2.3.3 Discretization of the parametrized 1D problem in transverse di-
rection

For the computation of snapshots (i.e. solutions of (2.28) for a given parameter µ), we introduce
a subdivision τh of ω̂ with elements τj = (ŷj−1, ŷj) of width hj = ŷj − ŷj−1 and maximal step
size h := maxτj hj . Furthermore, we introduce an associated conforming Finite Element space
Y h ⊂ Y with dim(Y h) = nh < ∞, and basis υhj , j = 1, ..., nh. The parameter dependent discrete
1D problem then reads:

Given any µ ∈ D, find Ph(µ) ∈ Y h : aq(Ph, υhj ;µ) = fq(υhj ;µ) for j = 1, ..., nh. (2.32)
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2.3.4 Basis generation with RB techniques: The Adaptive-HMR-POD
algorithm

In this subsection we introduce the Adaptive-HMR-POD algorithm to construct the low dimen-
sional reduction space Y hm = span(φ1, . . . , φm) ⊂ Y h based on sampling strategies from the RB
framework. We first define the solution manifold Mh and a snapshot set Y hM , M := dim(Y hM )
through

Mh := {Ph(µ)|µ ∈ D}, Y hM := {Ph(µ)|µ ∈ Ξtrain}, (2.33)

where Ph(µ) solves (2.32), and Ξtrain ⊂ D of the size ntrain = |Ξtrain| denotes a finite training
set. For an efficient snapshot generation and hence construction of Y hM , we use an adaptive training
set extension resembling the one introduced in [61, 62]. This adaptive refinement of the parameter
space is performed by Algorithm 2.3.1 AdaptiveParameterRefinement, which is described in
detail below. Algorithm 2.3.1 is a greedy algorithm of the same type as Algorithm 2.2.1, which
enhances a preliminary basis in each iteration and additionally refines the parameter space. Note
that different to Algorithm 2.2.1 we are interested in finding snapshots that yield a good approxi-
mation pHm of a certain 2D FE reference solution pH×h with respect to an energy norm. Therefore,
we refine the parameter space near the parameter value for which pH×h is best approximated by pHm
in order to find snapshots Ph(µ) which may even yield a better approximation. Finally, we apply
in Algorithm 2.3.2 a proper orthogonal decomposition (POD) (cf. 2.2.1) to determine the principal
components of Y hM , which in turn span the reduction space Y hm with m < M .

Algorithm 2.3.1: AdaptiveParameterRefinement Let G denote a hyperrectangular,
possibly non-conforming, adaptively refined grid in the parameter space D, g a cell of G and NG the
number of cells inG. Different from the approach in [61,62], the training set Ξg consists of parameter
values which are sampled from the uniform distribution over the cell g. nΞ denotes the sample size
of Ξg and is chosen identical for all cells. Finally, we define the overall training set ΞG = ∪g∈GΞg.
Inspired by [61, 62] we use a local mesh adaptation with a SOLVE → ESTIMATE → MARK →
REFINE strategy to generate G and ΞG from a given coarse partition G0 of the parameter space
and an associated initial train sample ΞG0 . To estimate the error between pHm and pH×h in the
V -norm, we derive in §2.4 a reliable and efficient error estimator ∆m. In order to detect the best
approximating parameter values µ, we define a cell indicator

η(g) := min
µ∈Ξg

∆m(µ). (2.34)

Next, we fix θ ∈ (0, 1] and mark in each iteration the θNG cells with the smallest indicators η(g)
for refinement. It is well known in the context of adaptive FEM that such an indicator may cause
problems if the initial mesh is too coarse to resolve local structures of the data. Thus, we use as
in [61, 62] an additional criterion to decide, if a cell is marked for refinement or not and define a
second indicator

σ(g) := diam(g) · ρ(g). (2.35)

Here, ρ(g) counts the number of iterations in which the cell g has not been refined, since its last
refinement and diam(g) denotes the diameter of g. If σ(g) lies above a certain threshold σthres, the
cell g is marked for refinement as well. This leads asymptotically to a refinement of all cells. All
cells marked for refinement are bisected in each direction, leading to 2P − 1 new cells per refined
cell. To generate the training sets of the new cells, we first sort Ξgparent into the new cells gchildren.
Then, in each children gchildren we sample new parameter values from the uniform distribution over
gchildren until the sample size of Ξgchildren reaches nΞ. The complete adaptive snapshot generation
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Algorithm 2.3.2: Construction of the reduction space Y hm
1 Adaptive-HMR-POD(G0,mmax, imax, nΞ, θ, σthres, NH′ , εtol)
2 Initialize ΞG0

3 [PhG,ΞG] = AdaptiveParameterRefinement(G0,ΞG0
,mmax, imax, nΞ, θ, σthres, NH′)

4 Y hm := POD(PhG, εtol), such that ePOD
m ≤ εtol.

5 return Y hm

procedure is described in Algorithm 2.3.1 in an abstract way. During each loop over the model
order m, first the snapshots PhG and the cell indicators η(G) and σ(G) are computed for all cells in
G. Then the parameter space is adaptively refined in order to find the best approximation using
m basis functions. Finally, the m principal components {φk}mk=1 of the set of snapshots PhG are
identified by a POD. We highlight that throughout Algorithm 2.3.1 the computations dependent on
the number of degrees of freedom in the dominant direction, namely the computation of the reduced
solution and the error indicator η(g), are not performed in the possibly high-dimensional space V Hm
but in the lower-dimensional space V H

′

m of dimension NH′ ·m. This completes the description of
Algorithm 2.3.1.

As G is a product-like hyper-rectangular grid, the applicability of Algorithm 2.3.1 is limited to small
parameter dimensions P , where our numerical experiments showed a limit of P = 8. Furthermore,
we mention that in contrast to [61,62] where the vertices of G generate the training set, we choose
Ξg randomly in order to avoid repetitions, due to parameters lying on the same edge of an cell. We
have borrowed the idea to choose the training sets of the cells randomly from [46]. Here, the two
parameter values of the cell for which the highest value of the error estimator is attained are chosen
as so-called anchor points and the cell is divided between these two points by using a Voronoi tes-
sellation. In [83] an anisotropic refinement of the parameter space is proposed employing a distance
function, which is based on the Hessian of the reduced basis approximation for each µ ∈ Ξtrain.
As neither of the two last-mentioned approaches relies on a product-like background grid, they
could be feasible options to extend the HMR-RB approach to higher parameter dimensions. The
generation of {φk}mk=1 can also be done by a Greedy algorithm which adds in each iteration the
basis function belonging to the parameter µ with the smallest value of ∆m. However, numerical
experiments showed much better performance for the POD approach, as more linear independent
snapshots are found during the application of Algorithm 2.3.1.

Algorithm 2.3.2: Adaptive-HMR-POD First, we initialize the train sample ΞG0
by sam-

pling nΞ parameter values from the uniform distribution over each cell g ∈ G0. Then Algorithm
2.3.1 is called for the efficient generation of the snapshots PhG. Setting Ξtrain = ΞG, we identify the
principal components of Y hM by a POD, where the POD spaces Y POD

k , k = 1, ...,m, are defined as
(cf. §2.2.1)

Y POD
k = arg inf

Wk⊂span{Y hM}
dim(Wk)=k

 1

ntrain

∑
µ∈Ξtrain

inf
wk∈Wk

‖Ph(µ)− wk‖2L2(ω̂)

 . (2.36)
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Demanding that the POD-error ePOD
m (2.21) satisfies

ePOD
m =

 1

ntrain

∑
µ∈Ξtrain

inf
wk∈Y POD

m

‖Ph(µ)− wk‖2L2(ω̂)

1/2

≤ εtol, (2.37)

where εtol is a prescribed error tolerance, we set Y hm := Y POD
m . This completes the description

of Algorithm 2.3.2 (Adaptive-HMR-POD). The choice of the input parameters mmax, imax, nΞ,
σthres and NH′ will be discussed in detail in §2.6.

Note that the L2(ω̂)-norm could also be replaced by the H1(ω̂)-norm in (2.36). However, as the
POD based on the L2(ω̂)-norm performed slightly better in our numerical experiments, we decided
to use (2.36). We point out that by definition the POD space approximates Y hM (2.33). A validation
if the selected basis functions approximate the solution p(x, y) of the full problem 2.1 with the same
approximation quality as Y hM will therefore be performed in §2.6.

2.4 A posteriori error estimation

2.4.1 An a posteriori error estimator based on the Riesz representative
of the residual

In this subsection we derive a reliable and efficient error estimator. For this purpose we use as in
the RB framework [97,110] the error residual relationship to bound the error between the discrete
reduced solution pHm, computed using basis functions {φk}mk=1 constructed by Algorithm 2.3.2, and
a reference solution. To define an appropriate reference solution in the HMR context, we initially
introduce a partition T̂ := TH × τh of Ω̂ induced by the subdivisions TH of Ω1D and τh of ω̂ defined
in §2.1.3 and §2.3.3, respectively. The elements of T̂ are defined as Ti,j := Ti × τj , where Ti ∈ TH
and τj ∈ τh. Following the notation of [19] we assume that XH and Y h, defined in §2.1.3 and
§2.3.3, coincide with Lagrange FE spaces of k-th and l-th order and can therefore be defined as
XH := {wH ∈ C0(Ω1D) : wH |Ti ∈ P1

k(Ti), Ti ∈ TH} and Y h := {wh ∈ C0(ω̂) : wh|τj ∈ P1
l (τj), τj ∈

τh}, respectively. Here, P1
k(Ti) denotes the set of polynomials of order ≤ k over Ti in one variable.

We further suppose that ξHi , i = 1, ..., NH and υhj , j = 1, ..., nh are the associated nodal bases.

Proposition 2.3. The set of functions

{ϕi,j(x, ŷ) := ξHi (x) · υhj (ŷ), i = 1, ..., NH , j = 1, ..., nh} (2.38)

forms a nodal basis of the conforming Tensor Product FE space

V H×h :=
{
vH×h ∈ C0(Ω̂) | vH×h|Ti,j ∈ Qk,l, Ti,j ∈ T̂

}
⊂ V, (2.39)

where Qk,l is defined as Qk,l := {
∑
j cjvj(x)wj(ŷ) : vj ∈ P1

k, wj ∈ P1
l }.

Proof. We restrict our considerations to an element Ti,j ∈ T̂ , assuming without loss of generality
that Ti,j = [0, 1]2. It is then sufficient to exploit the fact that for all q ∈ Qk,l(Ti,j) there holds

q ≡
∑

0≤s≤k
0≤t≤l

q1

( s
k

)
q2

( t
l

) k∏
i=0
i6=s

l∏
j=0

j 6=t

kx− i
s− i

lŷ − j
t− j

,

where q1 ∈ P1
k(Ti), Ti ∈ TH and q2 ∈ P1

l (τj), τj ∈ τh.
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We remark that since Y hm ⊂ Y h there holds V Hm ⊂ V H×h. We denote V H×h the reference FE space.
The reference FE approximation of the full problem (2.1) then reads:

Find pH×h ∈ V H×h : a(pH×h, vH×h) = f(vH×h) ∀ vH×h ∈ V H×h. (2.40)

Due to the problem formulations for pH×h (2.40) and pHm (2.12) the model error em := pH×h − pHm
satisfies

a(em, v
H×h) = rH×hm (vH×h) ∀vH×h ∈ V H×h. (2.41)

Here, the residual rH×hm (vH×h) ∈ (V H×h)∗, where (V H×h)∗ denotes the dual space to V H×h, is
defined as

rH×hm (vH×h) := f(vH×h)− a(pHm, v
H×h) ∀vH×h ∈ V H×h. (2.42)

The Riesz representation RH×hm of the residual then satisfies the equation

(RH×hm , vH×h)V = rm(vH×h) ∀vH×h ∈ V H×h, (2.43)

where the V -inner product has been defined in (2.2).

Proposition 2.4 (A posteriori error bound). The error estimator ∆m defined as

∆m := ‖RH×hm ‖V /c0 (2.44)

satisfies

‖pH×h − pHm‖V ≤ ∆m ≤
c1
c0
‖pH×h − pHm‖V , (2.45)

where the coercivity constant c0 and the continuity constant c1 of the bilinear form a(·, ·) have been
defined in (2.3).

Proof. The proof follows the ideas in [46, 97, 110]. To prove the lower bound in (2.45) we choose
vH×h = em in (2.41) and exploit (2.43), the Cauchy-Schwarz inequality, and coercivity to obtain

c0‖em‖2V ≤ a(em, em) = rm(em) = (RH×hm , em)V ≤ ‖RH×hm ‖V ‖em‖V

and thus the lower bound in (2.45). To obtain the upper bound in (2.45) we choose vH×h = RH×hm

in (2.41) and exploit (2.43) and continuity to get

‖RH×hm ‖2V = rm(RH×hm ) = a(em,RH×hm ) ≤ c1‖em‖V ‖RH×hm ‖V .

Recalling the definition (2.44), this yields the upper bound in (2.45).

Note that if the bilinear form a(·, ·) is symmetric there holds RH×hm = em due to the definition of
the V -inner product in (2.2). We remark that an error bound for the error between pH

′

m and the
corresponding reference solution pH

′×h in the V -norm can be analogously derived by replacing TH
and V Hm by their coarse counterparts defined in §2.1.3.

2.4.2 A localized residual-type a posteriori error estimator
In this subsection we derive an a posteriori error bound for the error between the discrete reduced
solution pHm of (2.12) and the exact solution p of the full problem (2.1). We suppose only in
this subsection that the transformation ψ(·;x) defined in 2.5 is a C2-diffeomorphism and that the
transformation Ψ is twice differentiable with respect to z. In contrast to the previous subsection
we do not suppose that the basis functions {φk}mk=1 are generated by Algorithm 2.3.2 but allow all
set of functions fulfilling the following assumption.
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Assumption 2.5 (Assumptions on the basis functions). Let τh be a subdivision of ω̂ with elements
τj = (ŷj−1, ŷj) of width hj = ŷj − ŷj−1, j = 1, ..., ñh, and maximal step size h := maxτj hj.
We assume that the set of linear independent functions {φk}mk=1 is in C0(ω̂) and that φ′k|τj ∈
H(div; τj) := {v ∈ L2(τj) : div(v) ∈ L2(τj)}, j = 1, ..., ñh.

We remark that both, smooth basis functions (ñh = 1) like trigonometric or Legendre polynomials,
and basis functions generated by Algorithm 2.3.2 fulfill Assumption 2.5. As the residual type
error estimator of this subsection is only used for purely diffusive problems and moreover shows a
relatively poor performance for advection-diffusion equations, we restrict ourselves in this subsection
to the Poisson problem. We thus consider

a(w, v) :=

∫
Ω

k∇p0∇v dx dy and f(v) :=

∫
Ω

sv dx dy+

∫
ΣN

gNv dσ−
∫

Ω

k∇gD∇v dx dy, (2.46)

where k ∈ L∞(Ω) with 0 < c3 ≤ k ≤ c4 for constants c3, c4 ∈ R+ and s ∈ L2(Ω). Furthermore, ΣN
denotes the Neumann boundary and gN ∈ L2(ΣN ). gD ∈ H1(Ω) shall be the Dirichlet expansion of
the Dirichlet boundary conditions. The solution p of the full problem is then defined as p := p0+gD.

Proposition 2.6. Let V ∗ denote the dual space of V . Defining the residual rm ∈ V ∗ as

rm(v) := f(v)− a(pHm, v) ∀v ∈ V (2.47)

we have
‖p− pHm‖V ≤

1
√
c3

sup
w∈V
w 6=0

|rm(w)|
‖∇w‖L2(Ω)

. (2.48)

Proof. The error e := p− pHm satisfies

a(e, v) = rm(v) ∀v ∈ V. (2.49)

Coercivity of a(·, ·) — defined in (2.46) — with respect to the H1-half norm and the V -norm and
(2.49) then yields

sup
w∈V
w 6=0

| rm(w) |
‖∇w‖L2(Ω)

≥ rm(e)

‖∇e‖L2(Ω)
= ‖e‖V

‖e‖V
‖∇e‖L2(Ω)

≥
√
c3‖e‖V .

An alternative proof of Proposition 2.6 using duality techniques is given in the Appendix A.2. Here,
a slightly different constant in the estimate is obtained. To get a computable estimator, we further
estimate the right hand side of (2.48). For this purpose we introduce a partition T̂ := TH × τh
of Ω̂ induced by the subdivisions TH of Ω1D and τh of ω̂ defined in §2.1.3 and Assumption 2.5,
respectively. As in the last subsection the elements of T̂ are defined as Ti,j := Ti × τj , where
Ti ∈ TH and τj ∈ τh. Using the FE expansion of the coefficients p̄Hl , l = 1, ...,m, (cf. §2.1.3)
and Assumption 2.5 yields ∇pHm(Ψ−1(x̂, ŷ)))|Ti,j ∈ H(div;Ti,j) for all Ti,j ∈ T̂ . This allows us to
integrate by parts on the rectangles Ti,j ∈ T̂ in (2.48) and to deduce a computable, local error
estimator. As we lack an interpolation estimate for the term ‖∇w − ∇wHm‖L2(Ψ−1(T )), we expect
that the residual-type error estimator we would get, neither has the right order in H nor in m.
Therefore, we propose to reconstruct the discrete reduced solution pHm locally by polynomials of
one order higher than the ones used in the computation of pHm with FE. By this means, we improve
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the order of the estimator in H. This approach is inspired by the work of Akrivis, Makridakis
and Nochetto [3], in which the numerical solution of a parabolic equation, being continuous and
piecewise linear in time, is locally reconstructed by a continuous and piecewise quadratic polynomial
in time. For this reconstruction they derive optimal order a posteriori error estimates. We define
a spatial local reconstruction operator as follows.

Definition 2.7 (Local reconstruction operator). We define SkH := {sH ∈ C0(Ω1D) : sH|Ti ∈
P1
k(Ti), Ti ∈ TH} and W l

h :=
{
wh ∈ C0(ω̂) : wh|τj ∈ P1

l (τj), τj ∈ τh
}
, where P1

k is the space of
polynomials of order ≤ k in one variable. Then we introduce the local reconstruction operators

(i) Rx : SkH → Sk+1
H with Rx(u) ∈ X for u ∈ XH ,

(ii) Ry : W l
h →W l+1

h with Ry(q) ∈ Y for q ∈ Y h,

where XH and Y h have been defined in §2.1.3 and §2.3.3, respectively.

We define a reconstructed discrete reduced solution pHm,rec as

pHm,rec(x, ψ
−1(ŷ;x)) =

m∑
l=1

p̄Hl,rec(x) · φl,rec(ŷ) + gD(x, ψ−1(ŷ;x)),

(2.50)

where φl,rec :=

{
Ry(φl) if φl ∈ Y h,
φl if φl is a smooth function

and p̄Hl,rec := Rx(p̄Hl ).

Let S be an edge of an element Ti,j and w ∈ L2(Ω̂) with w|Ti,j ∈ C0(Ti,j) for all Ti,j ∈ T̂ . Then we
define the jump of w across S in the direction of the outer normal ν as [w] := limt→0+ w((x, ŷ) +
tν)− limt→0+ w((x, ŷ)− tν) ∀ (x, ŷ) ∈ Ti,j . The localized error estimator then reads as follows.

Theorem 2.8 (A localized residual-type a posteriori error estimator). Let Ψ : Ω→ Ω̂ be the map-
ping of Ω onto Ω̂, T̂ = TH×τh the induced partition on Ω̂ and let Ψ and Ω fulfill the assumptions in
§2.1. Let {p̄Hj,rec}mj=1 denote the set of reconstructed discrete coefficient functions, {φj,rec}mj=1 the set
of reconstructed basis functions and pHm,rec the reconstructed discrete reduced solution. Furthermore,
the basis functions {φl}ml=1 shall fulfill Assumption 2.5. We then have

‖p− pHm‖V ≤ C(Ω) ∆rec
m +

√
c4‖pHm,rec − pHm‖V , with ∆rec

m :=

 ∑
Ti,j∈T̂

∆rec
m,Ti,j

1/2

(2.51)

and

∆rec
m,Ti,j :=

∥∥∥∣∣D−1
2 (x, ψ−1(ŷ;x))

∣∣− 1
2

(
div
[
k(x, ψ−1(ŷ;x))dHm(x, ŷ)

∣∣D−1
2 (x, ψ−1(ŷ;x))

∣∣])
+s(x, ψ−1(ŷ;x))

∣∣D−1
2 (x, ψ−1(ŷ;x))

∣∣ 1
2

∥∥∥2

L2(Ti,j)

+
1

2

∑
S⊂∂Ti,j\∂Ω̂

∥∥∥[ k(x, ψ−1(ŷ;x)) dHm(x, ŷ) · ν
]
·
∣∣D−1

2 (x, ψ−1(ŷ;x))
∣∣ 1

2

∥∥∥2

L2(S)

+
∑

S⊂∂Ti,j∩Ψ(ΣN )

∥∥∥( gN (x, ψ−1(ŷ;x))− k(x, ψ−1(ŷ;x)) dHm(x, ŷ) · ν
)
·
∣∣D−1

2 (x, ψ−1(ŷ;x))
∣∣ 1

2

∥∥∥2

L2(S)
,
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where

dHm(x, ŷ) :=

[( m∑
j=1

p̄Hj,rec(x)φ′j,rec(ŷ)

)
+
dgD(x, ψ−1(ŷ;x))

dŷ

](
D1(x, ψ−1(ŷ;x))

D2
1(x, ψ−1(ŷ;x)) +D2

2(x, ψ−1(ŷ;x))

)

+

[( m∑
j=1

φj,rec(ŷ)
dp̄Hj,rec(x)

dx

)
+
dgD(x, ψ−1(ŷ;x))

dx

](
1

D1(x, ψ−1(ŷ;x))

)

and C(Ω) := max{(3cp/
√
c3), (3ct(cp + 1)/

√
c3)} and ct and cp denote the constants in the trace

theorem and the Poincaré inequality, respectively.

For the sake of clarity we do not prove Theorem 2.8 but the following Corollary 2.9, which is the
analogue of Theorem 2.8 for a rectangular domain Ω. The ideas for the proofs of Theorem 2.8 and
Corollary 2.9 are the same and the proofs only differ in the more complicated computations due to
the transformation Ψ in the case of a non-rectangular domain.

Corollary 2.9 (A localized residual-type a posteriori error estimator for rectangular domains). Let
Ω be a rectangle, T̂ = TH × τh and pHm,rec the reconstructed discrete reduced solution. Furthermore,
the basis functions {φl}ml=1 shall satisfy Assumption 2.5. Then there holds

‖p− pHm‖V ≤ C(Ω)∆rec
m +

√
c4‖pHm,rec − pHm‖V with ∆rec

m =

 ∑
Ti,j∈T̂

∆rec
m,Ti,j

1/2

(2.52)

and

∆rec
m,Ti,j = ‖s+ div

(
k∇ pHm,rec

)
‖2L2(Ti,j)

+ 1
2

∑
S⊂∂Ti,j\∂Ω

‖[k∇ pHm,rec · ν]‖2L2(S)

+
∑

S⊂∂Ti,j∩ΣN

‖gN − k∇ pHm,rec · ν‖2L2(S).

Proof. Proposition 2.6 and continuity of a(·, ·) yields

‖p− pHm‖V ≤
1
√
c3

sup
w∈V
w 6=0

∣∣∣∫Ω sw − k∇pHm,rec∇w dxdy +
∫

ΣN
gNw dσ

∣∣∣
‖∇w‖L2(Ω)

+
√
c4‖pHm,rec − pHm‖V . (2.53)

We exploit pHm,rec ∈ H1(Ti,j ; div) for Ti,j ∈ T̂ , the trace theorem, the Cauchy-Schwarz inequality
and the Poincaré inequality to further estimate the first term on the right side of (2.53).

∣∣∣∣ ∫
Ω

sw − k∇pHm,rec∇w +

∫
ΣN

gNw

∣∣∣∣ =

∣∣∣∣∣∣
∑
Ti,j∈T̂

∫
Ti,j

sw − k∇pHm,rec∇w +

∫
ΣN∩Ti,j

gNw

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
Ti,j∈T̂

∫
Ti,j

sw + div(k∇pHm,rec)w −
∑

S⊂∂Ti,j\∂Ω

∫
S

k∇pHm,rec · νw

+
∑

S⊂∂Ti,j∩ΣN

∫
S

(
gNw − k∇pHm,rec · νw

)∣∣∣∣∣∣
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≤
∑
Ti,j∈T̂

(
‖s+ div

(
k∇pHm,rec

)
‖L2(Ti,j)‖w‖L2(Ti,j) +

1

2

∑
S⊂∂Ti,j\∂Ω

∫
S

‖[k∇pHm,rec · ν]‖L2(S)‖w‖L2(S)

+
∑

S⊂∂Ti,j∩ΣN

∫
S

‖gN − k∇pHm,rec · ν‖L2(S)‖w‖L2(S)

)

≤
∑
Ti,j∈T̂

(
‖s+ div

(
k∇pHm,rec

)
‖L2(Ti,j)‖w‖L2(Ti,j)

+
ct
2

∑
S⊂∂Ti,j\∂Ω

∫
S

‖[k∇pHm,rec · ν]‖L2(S)‖w‖H1(Ti,j)

+ ct
∑

S⊂∂Ti,j∩ΣN

∫
S

‖gN − k∇pHm,rec · ν‖L2(S)‖w‖H1(Ti,j)

)

≤

 ∑
Ti,j∈T̂

‖s+ div
(
k∇pHm,rec

)
‖2L2(Ti,j)

 1
2

‖w‖L2(Ω)

+
ct
2

 ∑
Ti,j∈T̂

∑
S⊂∂Ti,j\∂Ω

∫
S

‖[k∇pHm,rec · ν]‖2L2(S)

 1
2

‖w‖H1(Ω)

+ ct

 ∑
Ti,j∈T̂

∑
S⊂∂Ti,j∩ΣN

∫
S

‖gN − k∇pHm,rec · ν‖2L2(S)

 1
2

‖w‖H1(Ω)

≤ cp

 ∑
Ti,j∈T̂

‖s+ div
(
k∇pHm,rec

)
‖2L2(Ti,j)

 1
2

‖∇w‖L2(Ω)

+
ct(cp + 1)

2

 ∑
Ti,j∈T̂

∑
S⊂∂Ti,j\∂Ω

∫
S

‖[k∇pHm,rec · ν]‖2L2(S)

 1
2

‖∇w‖L2(Ω)

+ ct(cp + 1) ·

 ∑
Ti,j∈T̂

∑
S⊂∂Ti,j∩ΣN

∫
S

‖gN − k∇pHm,rec · ν‖2L2(S)

 1
2

‖∇w‖L2(Ω).

Finally, we present an example for the reconstruction operator Ry : W 1
h → W 2

h introduced in
Definition 2.7. The same technique can be used for Rx : S1

H → S2
H . Let φl(ŷ) be computed using

linear FE. To reconstruct φl(ŷ) on the interval τj = (ŷj−1, ŷj), we also take into account the values
φl(ŷj−2) and φl(ŷj+1) of the two adjacent nodes on the left and right side of the interval. Then
one possible and cheap reconstruction is to keep the linear function on the interval τj and add a
quadratic correction of the form a2 ·(ŷ−ŷs)2−a2 ·(h2

j/4), where ŷs denotes the barycenter of τj . The
coefficient a2 is computed by a least square approach, demanding that the quadratic polynomial
also interpolates the values φl(ŷj−2) and φl(ŷj+1). If we use this reconstruction technique, there
holds φl,rec ∈ Y and respectively p̄Hl,rec ∈ X.
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2.5 Analysis of the computational costs of the HMR-RB ap-
proach

In this section we compare the total computational costs for the computation of the discrete reduced
solution pHm using the HMR-RB approach with the costs for the computation of the associated
reference solution pH×h of (2.40). As all numerical experiments have been conducted using linear
FE in both directions, we restrict ourself in this section also for the sake of clarity to the case
XH =

{
vH ∈ C0(Ω1D) : vH |Ti ∈ P1

1(Ti), Ti ∈ TH
}
, Y h =

{
vh ∈ C0(ω̂) : vh|τj ∈ P1

1(τj), τj ∈ τh
}
,

and V H×h = {vH×h ∈ C0(Ω̂) : vH×h|Ti,j ∈ Q1,1, Ti,j ∈ T̂}. Analogous to the RB framework
[97,110] the computation of the reduced solution pHm can be decomposed in an nh-dependent offline
stage where we construct the reduction space Y hm and a subsequent nh-independent online stage
where the coupled system (2.12) is solved. The total computational costs for computing pHm consist
of both offline- and online costs and can be derived as follows.

(i) Offline stage: Construction of Y hm by Algorithm 2.3.2 (Adaptive-HMR-POD): First, we
assemble the matrices and right hand sides of the linear systems of equations for the com-
putation of the snapshots Ph(µ) (2.32) and the reduced solutions pH

′

m in O(nh) and O(NH′)
operations, respectively. Re-utilizing these matrices we can assemble the V -inner product for
the computation of the Riesz representative based error estimator ∆m (2.44) in O(nhNH′)
operations. When using the localized error estimator ∆rec

m (2.51) we precompute the integrals
on the elements Ti,j ∈ T̂ in O(nhNH′) operations. In Algorithm 2.3.2 Adaptive-HMR-POD
we compute the set of snapshots Ph(µ), µ ∈ Ξtrain, in O(ntrainnh) operations by a Thomas
algorithm [107]. The associated reduced solutions pH

′

m are computed in O(ntrainNH′) opera-
tions by a preconditioned conjugate gradient (pcg) or preconditioned stabilized bi-conjugate
gradient (bi-cgstab) method, which scaled linearly in the offline stage for the considered test
cases in §2.6. We then either compute the error estimators ∆m or ∆rec

m in O(ntrainnhNN ′)
operations using a pcg method for the computation of the former. The costs for the PODs in
Algorithm 2.3.1 are dominated by the costs for the POD after the refinement of the param-
eter space which requires O(n2

trainnh) operations for the formation of the correlation matrix
and O(n3

train) operations for the solution of the eigenvalue problem. Finally, we compute
the integrals in y-direction in (2.12) depending on the basis functions {φl}ml=1 in O(m2nh)
operations.

(ii) Online stage: Solution of the coupled system (2.12): We assemble the coupled system (2.12)
in O(m2NH) operations. The solution of the resulting linear system of equations (2.12) with
a pcg (§2.6, test case 2) or bi-cgstab method (§2.6, test case 3) required O(NHm

2) and
O(N1.4

H m2) operations, respectively.

Analyzing these results, we detect a threshold in the offline costs due to the mesh size independent
factor ntrain. If NH′ is chosen independently of NH , the offline costs, dominated by the com-
putational costs for the error estimator, amount to O(ntrainnh) operations. As the offline costs
in turn dominate the online costs, we thus expect a linear scaling of the HMR-RB approach in
max{nh, NH}, if NH′ is chosen constant. The numerical experiments in the next section §2.6 show
that the latter is sensible.
For the computation of the reference solution pH×h we assemble the linear system of equations in
O(NHnh) operations. Its solution with a pcg (§2.6, test case 2) or bi-cgstab method (§2.6, test case
3) required O(N2.5

H ) and O(N3
H) operations, respectively. We conclude that if ntrain is sufficiently

small compared to the mesh sizes NH and nh, we expect that starting from a certain mesh size the
HMR-RB approach - including offline and online parts - outperforms the bilinear FEM. Although
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Figure 2.2: Test case 1: The relative model error ‖em‖relV of the HMR-RB ansatz for increasing m and different
H (a). Comparison of the relative total error ‖e‖relV of the HMR approach [101] (b) and the HMR-RB approach (c)
for increasing model order m and different mesh sizes H.

the sample size has to increase for more complex problems, we anticipate that in these situations
also the grid resolution and hence NH has to increase due to the higher complexities, and the
HMR-RB approach still outperforms the bilinear FEM. The comparison of the total computational
costs of the HMR-RB approach and bilinear FEM in test case 2 and 3 of §2.6 supports these two
claims. Finally, we discuss the memory aspect. For the bilinear FEM in particular a sparse ma-
trix with 9nhNH non-zero elements has to be stored. For the HMR-RB approach, most storage is
needed for the full ntrain × nh-matrix containing the snapshots, and for the sparse matrix of the
coupled system with 3m2NH non-zero elements. Therefore, in general, less memory is needed for
the HMR-RB approach than for the bilinear FEM.

2.6 Numerical experiments

In this section we present several numerical test cases to demonstrate the approximation properties
and computational efficiency of the proposed method. First, we study the convergence rate of
the HMR-RB approach on a numerical example with an analytical solution, where we observe an
exponential order of convergence in the model order m. We compare these rates with the results
of the HMR approach with sine functions presented in [102]. The solution of the second test case
exhibits little spatial regularity both in the dominant and transverse direction as the source term
is only in H1(Ω) ∩ C0(Ω) and not more. Nevertheless, we observe an exponential convergence
rate in the model order m. In the third test case we consider an advection-diffusion equation in
a long symmetric channel with sinusoidal wavy walls. Due to a strong advective field the solution
exhibits a main stream and dominant spatial features along the x-direction. Finally, we test the
proposed method on a Poisson problem whose source term cannot be expressed as a sum of tensor
products. Again, we compare the outcome with the results obtained by the HMR approach with
sine functions [48, 102]. All test cases are computed using linear FE in x- and y-direction, i.e.
XH =

{
vH ∈ C0(Ω1D) : vH |Ti ∈ P1

1(Ti), Ti ∈ TH
}
, Y h =

{
vh ∈ C0(ω̂) : vh|τj ∈ P1

1(τj), τj ∈ τh
}
,

and V H×h = {vH×h ∈ C0(Ω̂) : vH×h|Ti,j ∈ Q1,1, Ti,j ∈ T̂}. The relative model error in the V -
or L2-norm is defined as ‖em‖relV := ‖em‖V /‖pH×h‖V , or ‖em‖relL2(Ω) := ‖em‖L2(Ω)/‖pH×h‖L2(Ω),
respectively, for em = pH×h − pHm. To take into account the discretization error, we compare
the discrete reduced solution pHm either with the exact solution p of (2.1) (test case 1) or with a
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Figure 2.3: Test case 2: In comparison from left to right and top to bottom:
the reference 2D bilinear FE solution pH×h and the discrete reduced solution
pHm using 3, 5 and 7 basis functions; NH = nh = 800, NH′ = 80.

Figure 2.4: Test case 2: Source
term s(x, y) defined in (A.25) in
§A.3

very finely resolved bilinear finite element solution pfine (test cases 2, 3 and 4). We denote the
relative total error in the V -norm ‖e‖relV := ‖p−pHm‖V /‖p‖V and ‖e‖relV := ‖pfine−pHm‖V /‖pfine‖V ,
respectively. e can be decomposed into the model error em and the discretization error eH . We also
define relative error estimators ∆rel

m := ∆m/‖pH×h‖V and ∆rel
m,rec := ((3/

√
c3)∆rec

m +
√
c4‖pHm,rec−

pHm‖V )/‖pfine‖V . To discuss the decay behavior of the coefficient functions we introduce ēL
2

m :=

(
∑M
j=m+1 ‖p̄Hj ‖2L2(Ω1D))

1/2 and ēH
1

m := (
∑M
j=m+1 ‖∂xp̄Hj ‖2L2(Ω1D))

1/2, where M is the dimension of
Y hM . We will see below that we usually haveM � ntrain. The implementation of our algorithm has
been done in MATLAB. For the computation of the integrals we have used a composite trapezoidal
rule. As the result of Algorithm 2.3.2 Adaptive-HMR-POD depends on a random choice of
parameters, we performed several runs and determined averages for our error plots. For the first,
second and third test case we performed 200 runs, and for the last test case we did 50 runs. For
the generation and refinement of Ξtrain we have used the same sequence of randomly generated
numbers drawn from the standard uniform distribution for each block of 200/200/200/50 runs.
Furthermore, we have used equidistant grids in x- and y-direction for the computations of all four
test cases and for the reconstruction we have applied the technique introduced at the end of §2.4.2.
Unless otherwise stated the Riesz representative based error estimator has been used in Algorithm
2.3.2. All computations were done on a computer with an Intel Core i7 (4 cores) with 2.8 GHz.
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(a) ‖em‖relV and ēH
1

m (b) ‖em‖relL2(Ω)
, ePOD
m and ēL

2

m
(c) λm and ‖p̄Hm‖L2(Ω1D)

Figure 2.5: Test case 2: Illustration of the model error convergence (a) ‖em‖relV for different H and ēH
1

m for
H = 0.001375, (b) ‖em‖relL2(Ω)

, ePOD
m and ēL

2

m for H = 0.001375, and (c) λm and ‖p̄Hm‖L2(Ω1D) for H = 0.001375.

Test case 1
First, we consider a numerical example with an analytical solution. We choose test case 2 of [102] in
order to compare the convergence behavior of our new HMR-RB approach with the one of the HMR
framework introduced in [48,102]. We solve a Poisson problem on Ω = (0, 2)×(0, 1). The analytical
solution is chosen to be p(x, y) = y2(1 − y)2(0.75 − y)x(2 − x) exp(sin(2πx)). The error values of
the HMR ansatz are taken from [101] and have been divided by ‖p‖V to obtain relative errors. We
use the same mesh sizes H in x-direction as in [101] and choose h = H. If we analyze the behavior
of the model error ‖em‖relV of the HMR-RB approach (Fig. 2.2a), we see that ‖em‖relV converges
exponentially fast in m. In contrast, the usage of sine functions in the orthonormal expansion of
the HMR approach excludes a priori exponential convergence rates also for smooth functions like
C∞-functions [25]. The expected convergence rate of the model error for the present example is
m−1 [26]. This rate can be detected for a sufficiently small H (here H ≤ 0.025) in Fig. 2.2b, where
the total error ‖e‖relV of the HMR ansatz is depicted, as for H ≤ 0.025 the model error dominates
the discretization error. Hence, the slope of ‖e‖relV most closely approximates the one of ‖em‖relV
for H = 0.0125. Regarding the convergence behavior of the total error ‖e‖relV of the HMR-RB
approach (Fig. 2.2c), we see that for m ≥ 3 or even m ≥ 2 the discretization error dominates the
model error. For the HMR ansatz and H ≤ 0.05 this is not even the case for a model order m = 16.

Test case 2
This test case has been chosen in order to demonstrate that it is possible that the HMR-RB approach
approximates a full solution exponentially fast, which exhibits both little spatial and parametric
regularity. In detail, we choose Ω = (0, 1.1)× (0, 1.1) and a diffusion tensor

K =

(
0.25 0

0 25

)
. (2.54)

The source term s is depicted in Fig. 2.4 and defined in (A.25) in the appendix. We emphasize
that s ∈ H1(Ω) ∩ C0(Ω) but s /∈ H2(Ω). On Γ0 — defined in (2.4) — we prescribe homogeneous
Neumann boundary conditions and on the remaining part of ∂Ω homogeneous Dirichlet boundary
conditions. The reference solution pH×h for NH = nh = 800 is displayed in the first picture of
Fig. 2.3 and shows a stronger variation in x-direction. We have done a convergence study to ensure
that pH×h contains all essential features of the exact solution. We compare pH×h with the discrete
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Figure 2.6: Test case 2: ‖e‖relV for increasing m and different mesh sizes H and ‖em‖relV for H = 0.001375 using
∆m (a) and ∆rec

m (b); ∆rel
m,rec for increasing m and ‖em‖relV for H = 0.001375 (c); ‖e‖relV and ∆rel

m,rec for decreasing
H (d); Comparison of ‖em‖relV and ‖em‖relL2(Ω)

for using ∆m (solid) and ∆rec
m (dash-dotted) (e).

reduced solution pHm for m = 3, 5, 7, NH = nh = 800 and NH′ = 80 (Fig. 2.3), where NH′ has been
defined in §2.1.3. We see a very good visual agreement of pH×h and pH7 . Furthermore, already pH5
contains all essential features of the reference solution.

In order to quantify the approximation properties of the HMR-RB approach, we study the conver-
gence behavior of the model error, the coefficient functions and the POD error for increasing model
order m. In Fig. 2.5a, ‖em‖relV is depicted for various values of H in a semi-logarithmic scale and
compared with ēH

1

m for H = 0.001375. It can be seen that ‖em‖relV converges exponentially fast
in m. We remark that by exploiting the fact that V H×h is a finite dimensional space it is always
possible to derive an exponential rate, which, however, depends on the mesh size of the discretiza-
tion (cf. [24] for the proof of this statement for the Proper General Decomposition approach). As
the convergence rate of ‖em‖relV in Fig. 2.5a does not change for decreasing mesh size, and stays
the same even for very fine meshes, we argue that this exponential convergence rate does not re-
sult from the fact that V H×h is of finite dimension. Moreover, we see that the convergence rates
of ‖em‖relV and ēH

1

m agree very well. In Fig. 2.5b we compare ‖em‖relL2(Ω), e
POD
m (2.37) and ēL

2

m for
H = 0.001375, again in a semi-logarithmic scale. All three quantities exhibit the same exponential
convergence rate. Finally, also the convergence behavior of the eigenvalues of the POD λm and of
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Figure 2.7: Test case 2: Comparison of ∆rec
m,x(x) (solid) and ex(x) (dashed) — both defined in (2.55) — for discrete

reduced solutions pHm using 1, 2, 4 and 6 basis functions and NH = nh = 400 and NH′ = 40.

‖p̄Hm‖L2(Ω1D) coincide, as depicted in Fig. 2.5c. We have chosen NH′ = NH/10 for the computa-
tions of all quantities in Fig. 2.5. Altogether, we infer that the convergence behavior of the POD
transfers to the coefficients ‖p̄Hm‖L2(Ω1D), ēL

2

m , ēH
1

m and to the model error ‖em‖relL2(Ω),‖em‖
rel
V . We

therefore conclude that the discrete solution manifold Y hM (2.33) and the reference solution pH×h
are approximated with the same approximation quality by the reduction space Y hm. If we compare
the total error ‖e‖relV for increasing m and various mesh sizes H with the model error ‖em‖relV for
H = 0.001375 (Fig. 2.6a), we detect an interaction of the model error and the discretization error.
Up to a certain model order m, for example m = 8 for H = 0.001375, the model error clearly
dominates the discretization error. Then the proportion of the discretization error increases and
finally dominates the model error for higher orders of m (for instance m ≥ 11 for H = 0.001375).
We also observe in Fig. 2.6a that the total error ‖e‖relV converges linearly in H, which is the ex-
pected rate. Using the localized error estimator ∆rec

m (2.51) in Algorithm 2.3.2 produces the same
behavior of the total error ‖e‖relV (Fig. 2.6b). Moreover, if we compare ‖em‖relV and ‖em‖relL2(Ω) for
the two error estimators ∆m (2.44) and ∆rec

m (2.51) for increasing m and various mesh sizes H in
Fig. 2.6e, we observe only very small differences. Thus we conclude that at least for the present
test case the choice of the error estimator has barely any influence on the outcome of the proposed
HMR-RB method. As the bilinear form a(·, ·) is symmetric we have ∆m = ‖em‖V (see §2.4.1) and
the behavior of ∆rel

m can therefore be seen in Fig. 2.5a. Concerning ∆rel
m,rec, we observe in Fig. 2.6c

that the relative error estimator clearly overestimates the relative error, but captures the qualitative
behavior. Furthermore, the convergence rate of ∆rel

m,rec in m is worse than the actual rate of ‖em‖relV
in m. This can be explained by the fact that ∆rel

m,rec does not contain information stemming from
an interpolation estimate for ‖∇v − ∇vm‖L2(Ω), v ∈ V , vm ∈ Vm (cf. §2.4.2). However, we see in
Fig. 2.6d, that the reconstruction technique introduced in §2.4.2 produces the expected linear order
in H. As we do not use ∆rel

m,rec as a stopping criterion in Algorithm 2.3.2 Adaptive-HMR-POD,
the reduced rate with respect to m does not influence our adaptive algorithm. It is much more
important that the error estimator detects relevant structures of the solution in x-direction and
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Figure 2.8: Test case 2: Comparison of the total run-time [s] of the bilinear FEM and the HMR-RB approach
(NH′ = NH/10, 10) for NH = nh = 50, 100, ..., 800 elements (left) and versus ‖e‖relV (right) using ∆m (2.44) and
∆rec
m (2.51).

that the right regions of the parameter space D are refined. To analyze this, we define

∆rec
m,x(x) :=

ñh∑
j=1

∆rec
m,Ti,j

max
i∈{1,...,ÑH}

(
ñh∑
j=1

∆rec
m,Ti,j

) , ex(x) :=

ñh∑
j=1

eTi,j

max
i∈{1,...,ÑH}

(
ñh∑
j=1

eTi,j

) , (2.55)

for (i − 1)H ≤ x < iH, i = 1, ..., ÑH , where ÑH denotes the number of elements Ti ∈ T ,
eTi,j := ‖K∇(pfine − pm)‖2L2(Ti,j)

, Ti,j ∈ T̂ , and ∆rec
m,Ti,j

, Ti,j ∈ T̂ , has been defined in (2.52).
To make the values comparable, we have normalized ∆rec

m,x and ex. In Fig. 2.7 we compare ∆rec
m,x(x)

with ex(x) for discrete reduced solutions pHm computed with m = 1, 2, 4 and 6 basis functions and
NH = nh = 400. The locations of all peaks of ex(x) are reproduced exactly by ∆rec

m,x(x). In addition,
also the graphs of ∆rec

m,x(x) and ex(x) coincide for m = 1, 2, 6 except for some small discrepancies.
Hence, the local indicators ∆rec

m,x capture the behavior of the total local error in x-direction ex very
well.

Next, we compare the run-times of the HMR-RB approach with the ones of the standard bilinear
FEM for various mesh sizes NH . For the computation of the reference solution pH×h we have run
the algorithm 200 times to determine averaged run-times. To compute pHm we have run Algorithm
2.3.2 Adaptive-HMR-POD with a subsequent solve of the coupled system (2.12) 200 times for
each value of NH and NH′ , where NH′ has been defined in §2.1.3. We emphasize that the run-times
of the HMR-RB approach depicted in Fig. 2.8 are total run-times, including both offline and online
costs. To make the run-times of the HMR-RB approach and the bilinear FEM fully comparable we
have used the same routines for the assembling of matrixes and right hand sides and the same pcg
method with the same settings for the solution of the linear systems of equations. The tolerance
for the POD (see §2.3.4) has been chosen as εtol = 10−5. In the left picture of Fig. 2.8 the average
run-times of the bilinear FEM and the HMR-RB approach for NH′ = NH/10 and NH′ = 10 are
compared for NH = nh = 50, 100, 200, 400 and 800 using one time the estimator ∆m (2.44) in Al-
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Figure 2.9: Test case 2: Plot of the adaptively refined
training set generated by Algorithm 2.3.2 Adaptive-
HMR-POD.
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Figure 2.10: Test case 2: ‖em‖relV for different pa-
rameter spaces D = Ω1D × · · ·

gorithm 2.3.2 and the other time ∆rec
m (2.51). An actual run-time complexity of the bilinear FEM

between O(N2
H) and O(N3

H) can be detected. In contrast, the HMR-RB approach scales linearly
in NH for NH′ = 10 and a bit worse than linearly for NH′ = NH/10. This confirms the theoretical
run-time complexities derived in §2.5. Also the supposed threshold due to the factor ntrain can
be detected. The average run-times for NH′ = NH/10 lie well above the ones for NH′ = 10 for
NH = 400, 800, which can be explained by the higher costs of Algorithm 2.3.1 AdaptiveParame-
terRefinement for higher values of NH′ . While the total run-times for the usage of ∆m and ∆rec

m

coincide for NH′ = 10, the computational costs when using ∆m are much higher than the ones for
the usage of ∆rec

m for NH′ = NH/10. This can be explained by the fact that when calculating ∆rec
m

the vast majority of the computations can be conducted either in O(nh) or O(NH′) operations,
whereas the computational costs of ∆m are clearly dominated by the ones of the pcg method, which
solves the linear system of equations (2.43) in O(nhNH′) operations. In the right picture of Fig. 2.8
the total computational costs of the bilinear FEM and the HMR-RB approach are plotted versus
the respective relative total error ‖e‖relV . As NH′ = 10 yields the same relative total error in a
much shorter run-time than NH′ = NH/10 for both estimators, we conclude that it is sufficient
and most efficient to use only NH′ = 10 finite elements in the dominant direction in Algorithm
2.3.1 for the present example. Finally, we emphasize that for ‖e‖relV ≤ 10−2 the HMR-RB approach
with NH′ = 10 clearly outperforms the bilinear FEM for NH = nh and also when using a coarser
discretization in y-direction with nh = 0.5NH in the bilinear FEM. For smaller values of ‖e‖relV the
gain of using the HMR-RB approach instead of the standard bilinear FEM increases.

In Fig. 2.9 a plot of an adaptively refined training set Ξtrain constructed with Algorithm 2.3.2
Adaptive-HMR-POD for D = [0, 1.1]× [−0.1, 0.1]× [−1, 1],mmax = 2, imax = 1, nΞ = 6 and θ =
0.05 is depicted. All results that have been reported for this test case so far have been computed with
these settings. Based on the obtained numerical results, we choose σthres = (imax−1)·ddiam(g)e+1,
to achieve (imax − 1) · diam(g) ≤ σthres ≤ imax · ddiam(g)e, where diam(g) is the length of the di-
agonal of an element of the initial grid G0 = [0, 0.275, 0.55, 0.825, 1.1] × [−0.1, 0.1] × [−1, 1] in the
parameter space D and d·e denotes the ceiling function. This choice of σthres causes a nonrecurring
refinement of all elements which have not been marked for refinement by the first element indicator
η(g). Altogether, this results in a sample size of ntrain ≈ 220. It can be seen in Fig. 2.9 that the
first error indicator η(g) causes a refinement of D in the region 0 ≤ x ≤ 0.2 due to the source term
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(see Fig. 2.4) and the Neumann boundary at Γ0. Due to the second indicator σ(g) also the rest of
the parameter space is refined once, such that the local maxima in the solution between x = 0.4
and x = 0.7 are detected, too, and included in the discrete reduced solution pHm (see Fig. 2.3). We
conclude that η(g) causes a refinement of the relevant parts of D and that also small structures
in the solution are detected due to the second indicator. To address the choice of the intervals
Ik, k = 0, 1, which enclose the ranges of ∂kxU(x), k = 0, 1, and have been defined in §2.3.1, we
compare in Fig. 2.10 the relative model error ‖em‖relV for different values of I0 and I1. First, we
state that neither the size of I0 and I1, the sign of their limits, or the ratio of I0/I1 seem to have
much influence on the convergence rate of ‖em‖relV . Although the reference solution pH×h ranges
from 0 to 0.007 (see Fig. 2.3), also the choice I0 = [−5, 5] yields a very good model convergence
rate. The fact that D = [0, 1.1] × [−0.01, 0.01] × [−0.1, 0.1] performs worst might be explained by
the fact that I0 is chosen too small and hence does not allow enough variation in the parameter to
include all essential features of the full solution in the manifoldMh.

Finally, we discuss the choice of the inputs mmax, imax and nΞ of Algorithm 2.3.2 Adaptive-
HMR-POD (see §2.3.4), where D = [0, 1.1]× [−1, 0]× [−1, 1]. First, we observe a low sensitivity of
‖em‖relV with respect to a change in the input parameters for a fixed sample size of approximately
220, where ntrain ≈ 280 for mmax = 4, imax = 1 and nΞ = 1 (Fig. 2.11a). Nevertheless, we detect
that the convergence rate becomes better from mmax = 1 to mmax = 2, but a further increase
produces no additional improvement. Regarding imax it can be stated that an increase of imax
deteriorates the convergence rate. The associated total run-times for NH = nh = 200 in Fig. 2.11b
support these findings as the choice of imax = 1 always performs best by yielding a better relative
error for comparable run-times. As the choice mmax = 3 performs worse than mmax = 2 and the
choice mmax = 4 reduces the relative error only at considerably additional cost, we conclude that
mmax should be chosen either equal to one or two and that imax = 1 is the best choice. Fixing
mmax = 2 and imax = 1, we see in Fig. 2.11c that the convergence rate of ‖em‖relV gets worse for
growing nΞ whereas M = dim(Y hM ) increases. The same behavior can be observed for the other
combinations of mmax and imax listed in Fig. 2.11a, except for mmax = 1 and imax = 1, where the
model error improves for increasing nΞ until nΞ = 6. We further see in Fig. 2.11c that for nΞ ≤ 3 a
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Figure 2.12: Test case 3: In comparison from left to right and top to bottom: the reference 2D bilinear FE solution
pH×h and the discrete reduced solution pHm using 6, 9 and 12 basis functions; NH = 1200, nh = 400, NH′ = 20.

tolerance of 10−3 can in general not be achieved, as the number M of linear independent snapshots
in Ξtrain is too small. Trading off the worsening of the convergence rate and the increase of the
computational costs for growing nΞ against the augmentation of M , we have chosen nΞ = 6, but
nΞ = 5, ..., 8 yields comparable results.

Test case 3

This test case, which is very similar to test case 4 in [102], comes from the field of hemodynamics,
modeling a Bellhouse membrane oxygenator for extracorporeal circulation (cf. [15]). We model oxy-
gen transport within a symmetric channel with sinusoidal wavy walls, which is a typical geometry
in this context. To this end we define Ω as the domain which is bounded by the functions x = 0,
y = 1 − 0.25 sin(2πx), x = 4 and y = 2 + 0.25 sin(2πx) and consider (2.9) for k = 1, b = (100, 0)t

and s = 0, where p models the oxygen concentration in the blood. We prescribe non-homogeneous
Dirichlet boundary conditions on the inflow boundary Γ0 by setting p(0, y) =

√
2 sin(π(y+ 1)), ho-

mogeneous Neumann boundary conditions on the outflow boundary Γ1 and homogeneous Dirichlet
boundary conditions on Γ∗. The reference solution pH×h for NH = 1200 and nh = 400 is depicted
in the first picture of Fig. 2.12 and shows a main stream along the dominant x-direction, where
we have conducted a convergence study to ensure grid convergence. Boundary layers, caused by
the curved boundary of Ω induce also a transverse behavior of the solution that is not negligible.
Note that the mesh size of H = 1/3 · 10−3 yields a local Péclet number which is for the prescribed
advection field strictly less than 1. Also for values of H resulting in local Péclet numbers that are
greater than 1, no oscillations have been observed either, indicating that also for these discretiza-
tions the scheme is stable. Because of that we have not applied a stabilization scheme. We compare
pH×h with the discrete reduced solution pHm for m = 6, 9, 12, NH = 1200, nh = 400 and NH′ = 20
(Fig. 2.12). pH6 reproduces the behavior of pH×h for 0 ≤ x ≤ 0.75 quite well, but shows a bad
approximation quality for x ≥ 2, due to a major refinement of D in the interval [0.5, 1] during
Algorithm 2.3.2 Adaptive-HMR-POD (Fig. 2.13). pH9 already captures the behavior of the main
stream very well but exhibits some oscillations caused by the irregular shape of Ω. We finally see
a very good visual agreement of pH×h and pH12. Fig. 2.13 shows that during Algorithm 2.3.2 the
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Figure 2.13: Test case 3: Adaptively refined training set generated by Algorithm 2.3.2 Adaptive-HMR-POD.

parameter space D = [0, 4]× [−2, 2]× [−5, 5] is mostly refined at the constriction of the domain Ω at
x = 0.75. The other parts of D are refined only once due to the second indicator σ(g). We therefore
conclude that Algorithm 2.3.2 Adaptive-HMR-POD is able to detect recurring structures in the
full solution p.

Studying the convergence behavior of ‖em‖relV (Fig. 2.14a) and ‖em‖relL2(Ω) (Fig. 2.14b, solid line
with circle), we detect an error plateau as the relative error does not drop until m = 6. However,
for m ≥ 6 we see that ‖em‖relV and ‖em‖relL2(Ω) converge exponentially fast and that the convergence
rates of ‖em‖relL2(Ω) and ePOD

m coincide (Fig. 2.14b, solid lines). If we compare λm and ‖p̄Hm‖L2(Ω1D)

(Fig. 2.14c, solid lines), we observe that ‖p̄Hm‖L2(Ω1D) increases until m = 5, subsequently drops and
for m ≥ 8 exhibits the same convergence rate as λm. We therefore conclude that the coefficients in
the dominant direction add relevant information to the reduced solution pHm, which has not been
included in the solution manifold Mh. This could also explain the flattening of ‖p̄Hm‖L2(Ω1D) for
m = 14 in Fig. 2.14c and ēH

1

m in Fig. 2.14a, which vanishes for higher sample sizes ntrain. These
computations have been done using one quadrature point in the derivation of the parameter de-
pendent 1D problem (see §2.3.1) with weights as defined in (2.29). To increase the amount of
information from the dominant direction in the basis functions, we have recomputed the HMR-
RB approximation for approximately the same sample size using a modified two point-rectangle
formula (2.29) or a three point-trapezoidal rule. The convergence rate of ‖p̄Hm‖L2(Ω1D) improves
considerably, as there is only a small increase of ‖p̄Hm‖L2(Ω1D) until m ≤ 3 before the subsequent
drop (Fig. 2.14c). This transfers to the convergence behavior of ‖em‖relV (Fig. 2.14d) and ‖em‖relL2(Ω)

(Fig. 2.14b, dashed line with circle), which exhibit only a small error plateau for m ≤ 3 and a
significantly improved rate. We remark that the trapezoidal rule performs slightly better than the
two point-rectangle formula. Altogether we conclude that due to the strong advection field b, which
is reinforced by the transformation Ψ (Fig. 2.1), the usage of one quadrature point yields a bad
convergence behavior for smaller m, as the discrete solution manifold Y hM (2.33) does not contain
all essential features of the solution (in contrast to test case 2). Using a quadrature rule with higher
accuracy improves the convergence rates significantly. Comparing the behavior of the total error
‖e‖relV for one quadrature point in Fig. 2.14e with ‖e‖relV of test case 2 (Fig. 2.6a), we observe that in
test case 3 substantially more basis functions — for example 15 for ‖e‖relV = 0.0131955 (H = 1/300)
— are needed to balance the influences of the model and the discretization error than in test case
2, where we need 9 basis functions to obtain ‖e‖relV = 0.00799781 (H = 0.00275). Again, we detect
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Figure 2.14: Test case 3: Comparison of the model error convergence for different quadrature rules for NH′ =

NH/10 in the V -norm/H1-half-norm : (a) ‖em‖relV for different H and ēH
1

m for H = 0.00333 for the one point
rectangle formula (1qp), and for H = 0.00333 in the L2-norm: (b) ‖em‖relL2(Ω)

and ePOD
m for the one point- and

two point-rectangle formula (2qp), (c) λm and ‖p̄Hm‖L2(Ω1D) for one point-, two point-rectangle formula and the
trapezoidal rule (trapez), (d) ‖em‖relV for the one point-, two point-rectangle formula and the trapezoidal rule, (e)
relative total error ‖e‖relV for different H and ‖em‖relV for H = 0.00333 and (f) ∆rel

m for different H and ‖em‖relV for
H = 0.00333 both for the one point-rectangle formula.

the expected linear convergence rate in H. Validating ∆m, a slight overestimation of ‖em‖relV for
smaller m can be detected, which can be explained by the fact that the bilinear form a(·, ·) of this
test case is non-symmetric. For higher values ofm (m ≥ 8) the effectivity indices are very close to 1.

For the comparison of the run-times of the HMR-RB approach with standard bilinear FEM we have
run the respective algorithms 200 times, using the same routines for the assembling and the solu-
tion of the respective linear systems of equations. Again, the reported run-times include the total
computational costs for the computation of the reference solution pH×h and the discrete reduced so-
lution pHm, respectively. The tolerance for the POD (see §2.3.4) has been set to εtol = 10−4. In order
to account for the geometry of Ω, we have chosen nh = 1/3NH . Comparing the averaged run-times
of the bilinear FEM and the HMR-RB approach for the one point- and two point-rectangle formula
and the three point-trapezoidal rule for NH′ = 10 and NH′ = 20, we detect an actual run-time
complexity of the bilinear FEM between O(N2

H) and O(N3
H), whereas the HMR-RB approach scales
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and the HMR-RB approach (NH′ = 10, 20) for the one point- (1qp) and
two point-rectangle formula (2qp) and the trapezoidal rule (trap.) for nh =

1/3NH (left) and per ‖e‖relV (middle and right).

1 5 10 15
10

−3

10
−2

10
−1

10
0

m

||
e

m
||

Vre
l

 

 

[−2,2]× [−10,10]

[0,2]× [−2,0]

[−2,2]× [−5,5]

[−2,2]× [−2,2]

[−5,5]× [−2,2]

[0,2]× [0,2]

Figure 2.16: Test case 3:
‖em‖relV for different parameter
spaces D = Ω1D × · · ·

linearly in NH (Fig. 2.15, left picture). Also for this test case the theoretical run-time complexities
derived in §2.5 are confirmed and the supposed threshold due to the factor ntrain can be detected.
If we compare the run-times of the HMR-RB approach for the considered quadrature rules, we
observe that the run-time for the one point-rectangle formula is highest, closely followed by the one
for the three point-trapezoidal rule, and that both are significantly higher than the run-time for the
two point-rectangle formula (Fig. 2.15). As all three quadrature rules yield the same relative total
error ‖e‖relV , we conclude that the two point-rectangle formula performs best for the present test
case. Since NH′ = 10 yields the same relative total error in a much shorter run-time than NH′ = 20
for all three quadrature rules, we further conclude that it is sufficient and most efficient to choose
also for this numerical example NH′ = 10. Finally, for ‖e‖relV ≤ 0.03 the HMR-RB approach with
NH′ = 10 clearly outperforms the bilinear FEM for nh = 1/3NH and also for the coarser dis-
cretization in y-direction with nh = 1/4NH for the bilinear FEM. Moreover, the advantage of using
the HMR-RB approach instead of the standard bilinear FEM increases significantly for decreasing
‖e‖relV . We emphasize that although Ξtrain is twice as large as in test case 2, the HMR-RB approach
outperforms the bilinear FEM even for higher values of the relative total error ‖e‖relV — 0.03 in the
present example and 0.01 in test case 2 — as the boundary layers (Fig. 2.12) require in relation
to test case 2 a much higher grid resolution. As Algorithm 2.3.1 AdaptiveParameterRefine-
ment is able to detect recurring structures in the full solution (Fig. 2.13) and thus possibly limits
the growth of the sample size also for more complex problems to some extent, we expect that the
increase of ntrain and the grid resolution balance for more complex problems as in the present test
case, and hence the HMR-RB approach still outperforms the bilinear FEM.

Finally, we address the choice of the input parameters of Algorithm 2.3.2 Adaptive-HMR-POD.
First, we detect a much stronger sensitivity of ‖em‖relV with respect to the values of I0 and I1
(Fig. 2.16) than in test case 2 (Fig. 2.10). However, except for D = [0, 4] × [0, 2] × [0, 2], all
choices exhibit the same convergence rate after the error plateau. If we choose the same intervals
I0 and I1 also for the respective intervals in the quadrature formulas of higher accuracy, except
for D = [0, 4] × [0, 2] × [0, 2] all choices yield a comparable gain, whereas the gain for the latter
is very small. Concerning the required run-time per ‖e‖relV we have observed that all considered
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Figure 2.17: Test case 3: ‖em‖relV for D = [0, 4]× [−2, 2]× [−5, 5] for different combinations of inputs of Algorithm
2.3.2 Adaptive-HMR-POD: Varying [mmax, imax, nΞ] for ntrain ≈ 440 (a) with associated total run-times (b);
mmax = 2, imax = 3 and varying nΞ (c).

domains require less or the same run-time than the choice D = [0, 4]× [−2, 2]× [−5, 5] for the same
‖e‖relV and that the differences between the parameter domains are relatively small— for instance
one second between the smallest and the highest run-time for NH = 1200, nh = 400 and NH′ = 20.
We therefore conclude that in spite of the relatively high sensitivity of the convergence rate ‖em‖relV
with respect to the values of I0 and I1, the choice of I0 and I1 has little influence on the performance
of the HMR-RB approach, when considering the required run-time per ‖e‖relV . Regarding the choice
of mmax, imax and nΞ we detect for D = [0, 4] × [−2, 2] × [−5, 5] a low sensitivity of ‖em‖relV with
respect to a change in the input parameters for a fixed sample size of approximately 440, where
ntrain ≈ 403 for mmax = 3, imax = 1 and nΞ = 4 and ntrain ≈ 337 for mmax = 4, imax = 1 and
nΞ = 1 (Fig. 2.17a). However, we observe an improvement of the convergence rate for increasing
mmax (Fig. 2.17a, left picture) and except for mmax = 1, imax = 1 also an improvement for growing
imax (Fig. 2.17a, right picture). The associated run-times for growing mmax increase, whereas for
imax no trend is detectable (Fig. 2.17b). Because of the strong variation for mmax = 1 (Fig. 2.17a,
Fig. 2.17b), which makes it difficult to determine a suitable choice of nΞ, and the fact thatmmax = 2
performs better than mmax = 3 or mmax = 4, we prefer mmax = 2. Fixing mmax = 2 and imax = 3,
we see in Fig. 2.17c that the convergence rate of ‖em‖relV gets worse for growing nΞ whereas M
increases. An equal behavior can be detected for all other combinations of mmax and imax listed
in Fig. 2.17a. To trade off the worse convergence behavior for growing nΞ against the increase
of M , nΞ = 4, ..., 7 are reasonable choices, where all computations for this test case have been
conducted for mmax = 2, imax = 3 and imax = 5 for the one point-rectangle formula. For the two
point-rectangle formula we have chosen mmax = imax = 1 and nΞ = 5 and for the trapezoidal rule
mmax = 2, imax = 1 and imax = 6 and for both θ = 0.025 and σthres = imaxddiam(g)e+ 1.
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Figure 2.18: Test case 4: In comparison from left to right and top to bottom: the 2D bilinear FE solution pH×h for
NH = 640 and nh = 320 and the discrete reduced solution pHm using 2, 3 and 4 basis functions for NH = 80, nh = 40

and NH′ = 10.

Test case 4

As a last experiment, we consider a test case with a source term that cannot be expressed as
a linear combination of tensor products. We choose the numerical example from [48], which is
revisited as test case 5 in [102]. Hence, we consider a Poisson problem in Ω = (0, 2) × (0, 1)
with homogeneous Dirichlet boundary conditions. The source term is the characteristic function
s(x, y) = χD1∪D2∪D3

, where D1 = {(x, y) ∈ Ω : (x − 0.5)2 + (y − 0.25)2 ≤ 0.01}, D2 = {(x, y) ∈
Ω : (x − 0.5)2 + (y − 0.75)2 ≤ 0.01}, and D3 = {(x, y) ∈ Ω : (x − 1.5)2 + (y − 0.5)2 ≤ 0.01}.
The circular plateaus in the source term yield a quite challenging test case for an approach based
on a truncated tensor product decomposition. The bilinear FE solution pH×h for NH = 640 and
nh = 320 is displayed in the first picture of Fig. 2.18 and exhibits peaks at the centers of the
circles Di, i = 1, 2, 3. Again a convergence study has been done to ensure that pH×h contains all
essential features of the exact solution. The HMR approach requires eight sine functions for a good
approximation for NH = 100 [48]. If the domain Ω is split into two subdomains Ω1 = (0, 1)× (0, 1)
and Ω2 = (1, 2)× (0, 1) and a domain decomposition scheme is applied, m = 7 in Ω1 and m = 5 in
Ω2 sine functions should be used to get a good approximation for H = 0.02 [102]. For the HMR-RB
approach, we compare pH×h with the discrete reduced solution pHm using m = 2, 3 and 4 basis func-
tions for NH = 80, nh = 40 and NH′ = 10 in Fig. 2.18. Already pH2 contains all essential features of
the full solution, namely the three peaks, and pH3 exhibits only small deviations from pH×h around
x = 1.5. Finally, the contour lines of pH×h and pH4 coincide. Thus, also for this test case, we observe
a much better modal convergence behavior of the HMR-RB approach than the HMR ansatz. This
statement is supported by the convergence behavior of the model error ‖em‖relV for increasing m.
As s ∈ L2(Ω), we expect the HMR ansatz to converge linearly in m−1 [26]. If we analyze the con-
vergence behavior of ‖em‖relV of the HMR-RB approach (Fig. 2.19d), we detect a limit convergence
rate of m−1.8. For H = 0.025, m ≥ 10, and H = 0.0125, m ≥ 20, we even observe an exponential
convergence rate, which however depends heavily on the mesh size. As expected, the error in the
L2-norm is one order better and we detect a rate of m−2.8 for ‖em‖relL2(Ω) in Fig. 2.19b. As can

be seen in Fig. 2.19a,2.19b, the rates for ‖em‖relV and ēH
1

m , as well as ‖em‖relL2(Ω) and ēL
2

m coincide
perfectly for H = 0.003125. Also the rates for ePOD

m and ‖em‖relL2(Ω) are quite comparable, although
ePOD
m converges slightly better for m ≥ 30. Likewise, λm converges approximately with the same
order as ‖p̄Hm‖L2(Ω1D) (Fig. 2.19c). We thus conclude that the convergence rate of the POD seems to
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Figure 2.19: Test case 4: Illustration of the error convergence for NH′ = NH/10 for H = 0.003125 in the V -
norm/H1-half-norm: (a) ‖em‖relV and ēH

1

m , and the L2-norm: (b) ‖em‖relL2(Ω)
, ePOD
m and ēL

2

m , (c) λm and ‖p̄Hm‖L2(Ω1D)

and in the V -norm for different H (d) ‖em‖relV , (e) ‖e‖relV , and (f) ∆rel
m .

transfer to the coefficients ‖p̄Hm‖L2(Ω1D), ēL
2

m , ēH
1

m and to the model error ‖em‖relL2(Ω),‖em‖
rel
V . Hence,

the discrete solution manifold Y hM and the reference solution pH×h are approximated with the same
accuracy by the reduction space Y hm. Although the modal convergence rate is only polynomial for
this test case, we see in Fig. 2.19e that comparatively few basis functions are needed to balance the
contributions of the model and the discretization error. For instance, for H ≤ 0.00625 eleven basis
functions and for H = 0.003125 m = 17 basis functions are sufficient to diminish the contribution
of the model error to less than ten percent. Therefore, we conclude that also for this test case
the HMR-RB approach performs very well. As in the present example the coercivity constant c0
equals to 1 and the bilinear form a(·, ·) is symmetric and hence ‖em‖relV = ∆rel

m (see §2.4.1), we
expect for ∆rel

m an effectivity index of 1, which is demonstrated in Fig. 2.19f. As in test case 2
we observe the same behavior of ‖e‖relV (Fig. 2.20a) when replacing ∆m (2.44) by ∆rec

m (2.51) in
Algorithm 2.3.2. Also the comparison of ‖em‖relV and ‖em‖relL2(Ω) for the two error estimators ∆m

and ∆rec
m in Fig. 2.20d and Fig. 2.20e shows only very small variations in the error behavior when

changing the estimator. Hence we conclude that also for the present example the choice of the error
estimator does hardly affect the outcome of the HMR-RB method. In Fig. 2.20b it can be seen that
∆rel
m,rec overestimates the relative error, but captures the qualitative behavior. In contrast to test

case 2 the expected linear convergence rate in H is not recovered for ∆rel
m,rec (Fig. 2.20c), which can
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Figure 2.20: Test case 4: Comparison of ‖e‖V (a) and ∆rel
m,rec (b) for increasing model order m and different mesh

sizes H. Both are also compared with ‖em‖relV for H = 0.003125. ∆rel
m,rec and ‖e‖relV for decreasing mesh size H and

model order m = M (c). ‖em‖relV (d) and ‖em‖relL2(Ω)
(e) for ∆rec

m (solid) and ∆m (dashed).

be ascribed to the discontinuities in s in combination with our proposed reconstruction technique
(see §2.4.2). To analyze whether ∆rel

m,rec detects the relevant structures in x-direction, we compare
∆rec
m,x(x) and ex(x) (2.55) in Fig. 2.21 for discrete reduced solutions pHm computed with m = 1, 2 and

4 basis functions and NH = 640, nh = 320, NH′ = 64. We see that also for the present test case the
peaks of ex are exactly recovered by ∆rec

m,x. Also the graphs for ex(x) and ∆rec
m,x(x) match pretty well.

The input arguments of Algorithm 2.3.2 Adaptive-HMR-POD, have been chosen as
G0 = [0, 0.4, 0.8, 1.2, 1.6, 2] × [−0.2, 0.2] × [−1, 1], mmax = 2, imax = 2, nΞ = 6, θ = 0.05,
σthres = (imax − 1) · ddiam(g)e + 1 for an element g ∈ G0 and εtol = 5 · 10−5 for all computa-
tions for this test case. The average sample size is ntrain ≈ 335. In Fig. 2.22 the adaptive training
set constructed with Algorithm 2.3.1 AdaptiveParameterRefinement is displayed. The scat-
ter plot shows that the element indicator η(g) detects the essential features of the solution, here
induced by the heterogeneities in the source term around x = 0.5 and x = 1.5. Regarding the
choice of I0 and I1, we observed a very low sensitivity of ‖e‖relV with respect to the values of I0
and I1, being even lower than in test case 2. In contrast to test case 2 and 3, the relative model
error ‖em‖V decreases for increasing mmax, imax and nΞ until it reaches the limit convergence rate
m−1.8, which can be observed in Fig. 2.23a for mmax = 2, imax = 2 and growing nΞ. This can be
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Figure 2.21: Test case 4: Comparison of ∆rec
m,x(x) (solid) and ex(x) (dashed) for discrete reduced solutions pHm

using 1, 2 and 4 basis functions and NH = 640, nh = 320, NH′ = 64.
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Figure 2.22: Test case 4: Adaptively refined train-
ing set generated by Algorithm 2.3.2 Adaptive-
HMR-POD.
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Figure 2.23: Test case 4: ‖em‖relV for increasing nΞ (a)
and different quadratures (b).

explained by the fact that each refinement of D around x = 0.5 and x = 1.5 seems to add relevant
information to the discrete solution manifold Y hM (2.33) and thus improve the convergence rate of
‖em‖relV until a certain saturation is reached. Comparing different quadrature rules in Fig. 2.23b
we observe that the one point-rectangle rule yields the best convergence rate of ‖em‖relV followed
by the two point-rectangle formula, whereas for the three point-trapezoidal rule ‖em‖relV exhibits a
worse convergence rate of order −1.3. As moreover for the two point-rectangle formula Algorithm
2.3.1 refined for the second quadrature point the parts of D, where s equals 0, we conclude that for
the present test case it is best to construct Y hM using snapshots which contain only the information
at one quadrature point in Ω1D. Here, we have chosen mmax = 1, imax = 1, nΞ = 4 for the two
point-rectangle formula, mmax = 2, imax = 1, nΞ = 6 for the trapezoidal rule, and θ = 0.025 and
σthres = imaxddiam(g)e+ 1 for both of them.

We conclude the numerical experiments with some remarks on the choice of the input parameters of
Algorithm 2.3.2. Test cases 1,2 and 4 demonstrate that it is sufficient to use the one point-rectangle
formula (2.29) for purely diffusive problems, whereas for advection-dominated problems as the one
in test case 3 quadrature rules of higher accuracy should be used. Due to its better performance
in the test cases 3 and 4 the two point-rectangle formula seems to be preferable to the three point-
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trapezoidal rule. We have observed a low sensitivity of the performance of the HMR-RB approach
with respect to the choice of the intervals Ik, defined in §2.3.1 for intervals of length 0.1 − 20,
where the sign of the interval boundary seems to have no influence on the outcome. Using the one
point-rectangle formula mmax = 2, imax = 2 and nΞ = 5, ..., 8 yielded good result for all considered
test cases. For the two point-rectangle formula mmax = 1, imax = 1 and nΞ = 4, ..., 8 performed
well.



Chapter 3

Application of the HMR-RB
approach to nonlinear partial
differential equations

This chapter is devoted to the adaption of the HMR-RB approach to nonlinear PDEs with a
nonlinear operator A : H1

0 (Ω) → H−1(Ω). The results are exemplified for the nonlinear diffusion
equation with an elliptic and bounded nonlinearity. Due to the assumptions on A the obtained
results also apply to the stationary Kirchhoff transformed Richards equation (cf. [16])

−div(∇u+ k(b−1(u))g) = 0.

Here, u is the so-called generalized pressure, k is the relative permeability, b−1 is the inverse of the
Kirchhoff transformation and g denotes the gravity vector.
This chapter is organized as follows. First, we derive the reduced problem in the HMR setting
and formulate a Newton method for the solution of the discrete reduced problem in Section 3.1.
As the nonlinear operator A prevents the conduction of a dimensional reduction, we introduce
the Empirical Projection Method (EPM) in Section 3.2. The key idea in the design of the EPM
is to use an orthonormal expansion in a L2-orthonormal basis on the transverse direction and
approximate the integrals in the coefficients by an automatic numerical integration program based
on the Empirical Interpolation Method [12]. This allows us to control the integration error in the
coefficients and to derive rigorous a priori and a posteriori bounds. In this section we also give an
overview on the literature on the Empirical Interpolation Method and its variants. In Section 3.3
we first formulate the HMR-RB approximation using the EPM for nonlinear PDEs. Afterwards,
the derivation of a parametrized nonlinear 1D PDE and of parametrized 1D operator evaluations
in the transverse direction is described. The reduction and collateral basis space are generated by
Algorithm 3.3.3, which is subsequently introduced. In Section 3.4 we derive a reliable and efficient
a posteriori error bound based on the Brezzi-Rappaz-Raviart theory [20, 23] extending the results
in [27] from quadratically nonlinear to general nonlinear PDEs. By employing the a priori and a
posteriori bounds for the EPM to estimate the error caused by the approximation of the nonlinear
operator, we obtain a fully rigorous a posteriori error bound. As the requirements for the application
of the error estimator based on the BRR-theory can be too restrictive for small ellipticity constants
and thus small inf-sup stability factors, we derive a second error estimator similar to the one in [121],
which is less sharp but whose requirements for the application are less strict. Again, we prove the
reliability and effectivity of the error bound under certain assumptions. Finally, based on the results

45
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in [41] we define a third error estimator which is particularly suited for degenerate equations as it
does not depend on the inf-sup stability factor. However, to our best knowledge it cannot be proved
that the latter is a reliable error bound. We close this section by proposing a method for the efficient
computation of the inf-sup stability factor which is based on the ideas in [127]. In Section 3.5 we
discuss the computational complexity of the HMR-RB approach in the nonlinear setting. In the
numerical experiments in Section 3.6 we analyze the convergence behavior and the computational
efficiency of the HMR-RB approach for the elliptic nonlinear diffusion equation. Furthermore, we
investigate the reliability and effectivity of the proposed error estimators and test the applicability
of the a priori and a posteriori bounds for the EPM. Finally, we study the applicability of the HMR-
RB approach for decreasing ellipticity constants to get an idea of its performance for degenerate
equations.

3.1 The Hierarchical Model Reduction framework for nonlin-
ear partial differential equations

Let Ω ⊂ R2 be a computational domain with Lipschitz boundary ∂Ω. We follow the hierarchical
model reduction framework introduced in [48,102] and described in detail in §2.1 in Chapter 2 and
therefore assume that Ω can be considered as a two-dimensional fiber bundle

Ω =
⋃

x∈Ω1D

{x} × ωx,

where Ω1D =]x0, x1[ denotes the computational domain in the dominant direction and ωx is the
fiber associated with x ∈ Ω1D. ω̂ =]y0, y1[ denotes the reference fiber in the transverse direction
and the mapping ψ(·;x) is defined as ψ(·;x) : ωx → ω̂ for x ∈ Ω1D. For the sake of simplicity
we restrict ourselves in this chapter to homogeneous Dirichlet boundary conditions and choose the
solution space H1

0 (Ω). We denote with 〈·, ·〉 the dual pairing between H−1(Ω) and H1
0 (Ω). Let

A : H1
0 (Ω) → H−1(Ω) be a nonlinear operator and f ∈ H−1(Ω) a continuous linear form. We

consider the nonlinear problem

Find p ∈ H1
0 (Ω) : 〈A(p), v〉 = 〈f, v〉 ∀v ∈ H1

0 (Ω), (3.1)

or, to shorten notations,

Find p ∈ H1
0 (Ω) : 〈F (p), v〉 = 0 ∀v ∈ H1

0 (Ω), (3.2)

where 〈F (p), v〉 := 〈A(p), v〉 − 〈f, v〉. The problem (3.1) is denoted as the full problem and the
existence and uniqueness of a solution p ∈ H1

0 (Ω) of (3.1) is assumed.

The following nonlinear diffusion equation will serve as a model problem for (3.1) in this whole
chapter:

〈A(p), v〉 :=

∫
Ω

d(p)∇p∇v dxdy and 〈f, v〉 :=

∫
Ω

sv dxdy ∀p, v ∈ H1
0 (Ω), (3.3)

where s ∈ L2(Ω) and d : R → R+ is in C2(R) and uniformly elliptic and bounded, i.e. there exist
constants ck > 0, k = 0, 1, 2, 3, such that

c0‖w‖2 ≤ d(p)w · w, ‖d(p)w‖ ≤ c1‖w‖,
(3.4)

‖d′(p)w‖ ≤ c2‖w‖, ‖d′′(p)w‖ ≤ c3‖w‖, ∀w ∈ R2, ∀p ∈ R.



3.1. THE HMR FRAMEWORK FOR NONLINEAR PDES 47

Theorem 3.1. The problem

Find p ∈ H1
0 (Ω) : 〈A(p), v〉 = 〈f, v〉 ∀v ∈ H1

0 (Ω), (3.5)

for A : H1
0 (Ω) → H−1(Ω) and f ∈ H−1(Ω) as defined in (3.3) has a unique solution p ∈ H1

0 (Ω).
Moreover, for s ∈ L∞(Ω), we have p ∈W 2,q

0 (Ω), 1 ≤ q <∞.

Proof. The existence and uniqueness of a solution p ∈ H1
0 (Ω) is proven in [35] with the aid of the

Kirchhoff transformation u(x, y) :=
∫ p(x,y)

0
d(z) dz and the Lax-Milgram theorem. The improved

regularity can be proven using standard elliptic regularity results as the function κ(t) :=
∫ t

0
d(z) dz

is in C1(R+) and a monotone increasing function (cf. [23]), and we require that Ω has a Lipschitz
boundary (cf. [4], p. 430).

3.1.1 Formulation of the reduced problem
We introduce a set of L2-orthonormal basis functions {φk}k∈N ∈ H1

0 (ω̂). At this point we assume
that the basis functions {φk}k∈N are given to us. Possible choices are sine functions or Legendre
polynomials [102] or a posteriori determined basis functions, whose construction will be described
in §3.3. We combine the reduction space Ym := span(φ1, ..., φm) with H1

0 (Ω1D) and define the
reduced space

Vm =

{
vm(x, y) =

m∑
k=1

vk(x)φk(ψ(y;x)), with vk(x) ∈ H1
0 (Ω1D), x ∈ Ω1D, y ∈ ωx

}
, (3.6)

where
vk(x) =

∫
ω̂

vm(x, ψ−1(ŷ;x))φk(ŷ) dŷ, k = 1, ...,m.

We use a Galerkin projection onto Vm and obtain the reduced problem:

Find pm ∈ Vm : 〈A(pm), vm〉 = 〈f, vm〉 ∀vm ∈ Vm. (3.7)

Exploiting the orthonormal expansion of pm, namely, pm(x, y) =
∑m
k=1 pk(x)φk(ψ(y;x)), (3.7) can

be rewritten as: Find pk ∈ H1
0 (Ω1D), k = 1, ...,m, such that〈

A

(
m∑
k=1

pkφk

)
, ξφl

〉
= 〈f, ξφl〉 ∀ ξ ∈ H1

0 (Ω1D) and l = 1, ...,m. (3.8)

To compute the coefficient functions pl(x), l = 1, ...,m, we use the subdivision TH of Ω1D with
elements Ti = (xi−1, xi) of width Hi = xi − xi−1 and maximal step size H = maxTi Hi defined
in §2.1.3. We introduce an associated conforming Finite Element space XH ⊂ H1

0 (Ω1D) with
dim(XH) = NH <∞ and basis ξHi , i = 1, ..., NH . Moreover, we assume that for all w ∈ H1

0 (Ω1D)
there exists a wH ∈ XH such that limH→0 ‖wH − w‖H1(Ω1D) → 0 (density hypothesis). By com-
bining XH with Ym we define the discrete reduced space

V Hm =

{
vHm(x, y) =

m∑
k=1

vHk (x)φk(ψ(y;x)), with vHk (x) ∈ XH , x ∈ Ω1D, y ∈ ωx

}
. (3.9)

Using a Galerkin projection onto V Hm and rewriting the discrete reduced solution pHm as pHm(x, y) =∑m
k=1 p

H
k (x)φk(ψ(y;x)), we obtain the discrete reduced problem: Find pHk ∈ XH , k = 1, ...,m,

such that〈
A

(
m∑
k=1

pHk φk

)
, ξHi φl

〉
= 〈f, ξHi φl〉 for i = 1, ..., NH and l = 1, ...,m. (3.10)
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The existence of solutions of (3.10) is assumed. We emphasize that in contrast to the case of linear
PDEs described in Chapter 2 the integrals in the transverse direction in (3.10) cannot be precom-
puted due to the nonlinear operator A. This implies that (3.10) is still of full dimension. We finally
use the coarse subdivision TH′ of Ω1D defined in §2.1.3 and define an associated low-dimensional
conforming FE space XH′ ⊂ H1

0 (Ω1D) with dim(XH′) = NH′ < NH < ∞. V H
′

m and pH
′

m denote
the coarse counterparts of V Hm and pHm.

The reduced problem for the model problem (3.3) reads as follows

Find pm ∈ Vm :

∫
Ω

d(pm)∇pm∇vm dx dy =

∫
Ω

s vm dx dy ∀vm ∈ Vm. (3.11)

Furthermore we obtain the discrete reduced problem: Find pHk ∈ XH , k = 1, ...,m, such that

m∑
n=1

∫
Ω

d

(
m∑
k=1

pHk φk

)
∇(pHn φn)∇(ξHi φl) dx dy =

∫
Ω

s ξHi φl dx dy (3.12)

for i = 1, ..., NH , l = 1, ...,m.

Theorem 3.2. Under the assumptions of Theorem 3.1 there exists a reduced solution pm ∈ Vm of
problem (3.11) and a discrete reduced solution pHm ∈ V Hm of (3.12).

Proof. Letm be fixed. As d is uniform elliptic (3.4), we have that 〈A(u),u〉
‖u‖H1(Ω)

→∞ for ‖u‖H1(Ω) →∞.
Therefore, we can infer as in the proof of the Theorem of Browder and Minty in [111], that there
exists R > 0, such that for all ‖u‖H1(Ω) ≥ R

〈A(u), u〉 ≥ (1 + 2‖f‖H−1(Ω))‖u‖H1(Ω) > 0.

Thus for ‖pHm‖H1(Ω) = R we have

〈A(pHm), pHm〉 − 〈f, pHm〉 ≥ (1 + ‖f‖H−1(Ω))‖pHm‖H1(Ω) > 0.

As d ∈ C1(R) we can apply a technical corollary (cf. [49], p.493) of Brouwer’s fixed point theorem to
deduce that there exists a solution pHm ∈ V Hm of (3.12) with ‖pHm‖H1(Ω) ≤ R withR independent ofH.
The boundedness of d (3.4) then yields ‖A(pHm)‖H−1(Ω) ≤ c1R. Due to these a priori bounds we may
extract weakly converging subsequences pHjm ⇀ pm (Hj → 0) in H1(Ω) and A(pHim ) ⇀ c (Hi → 0)
in H−1(Ω). Finally, the density hypothesis on XH and the compactness of the embedding of H1

0 (Ω)
into L2(Ω) yield the convergence of the Galerkin method for H → 0 and the existence of a solution
of (3.11).

3.1.2 Solution of the discrete reduced problem with Newton’s method
Problem (3.10) can be solved by Newton’s method. However, for some problems as for instance the
model problem (3.3) the mapping F : H1

0 (Ω)→ H−1(Ω) is not C1. In order to take also such type
of problems into account, we require that the mapping F , considered from W 1,p

0 (Ω) into W−1,p(Ω),
p ≥ 2, has a Fréchet derivative F ′(z) : W 1,p

0 (Ω) → W−1,p(Ω) for z ∈ W 1,p
0 , p ≥ 2. We therefore

demand that
φk ∈W 1,p(ω̂) ∩H1

0 (ω̂), k = 1, ...,m, for p ≥ 2. (3.13)

As p̄Hk ∈ XH ⊂ W 1,t
0 (Ω1D), t ≥ 1, we obtain pHm ∈ W 1,p

0 (Ω), p ≥ 2. We remark that these
assumptions include both the cases where F : H1

0 (Ω) → H−1(Ω) is in C1, and where F has to be
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considered as a mapping from W 1,p
0 (Ω) into W−1,p(Ω), p > 2. Next, we define the inf-sup stability

factor and the continuity constant

βHMR(zHm) := inf
wHm∈V Hm

|wHm|W1,p(Ω) 6=0

sup
vHm∈V Hm

|vHm|W1,q(Ω) 6=0

〈F ′(zHm)wHm, v
H
m〉W−1,p(Ω)W 1,q(Ω)

|wHm|W 1,p(Ω)|vHm |W 1,q(Ω)
for zHm ∈ V Hm , (3.14)

γHMR(zHm) := sup
wHm∈V Hm

|wHm|W1,p(Ω) 6=0

sup
vHm∈V Hm

|vHm|W1,q(Ω) 6=0

〈F ′(zHm)wHm, v
H
m〉W−1,p(Ω)W 1,q(Ω)

|wHm|W 1,p(Ω)|vHm |W 1,q(Ω)
for zHm ∈ V Hm , (3.15)

where 1
p + 1

q = 1, and 〈·, ·〉W−1,p(Ω)W 1,q(Ω) denotes the duality pairing between W−1,p(Ω) and
W 1,q(Ω). Finally, |v|W 1,p(Ω) := ‖∇v‖Lp(Ω) designates the W 1,p-half norm, which is equivalent to
the W 1,p-norm in W 1,p

0 (Ω) due to Poincaré’s inequality.

Assumption 3.3. We assume that F ′(zHm) : W 1,p
0 (Ω) → W−1,p(Ω) is uniformly bounded, i.e.

there exists a constant γ < ∞, independent of m and H, such that γHMR(zHm) < γ < ∞ for all
zHm ∈ V Hm . Furthermore we assume local inf-sup stability, i.e. there exists a constant β(m,H) > 0,
such that βHMR(zHm) > β(m,H) > 0 for all zHm ∈ B(pHm, R) ⊂ V Hm , where B(pHm, R) := {v ∈ V :
|v − pHm|W 1,p ≤ R} denotes the ball around the solution pHm of (3.10) of radius R.

Then for a suitable initial datum p0
m,H we solve in each Newton step for the correction δpjm,H :

〈F ′(pjm,H) δpjm,H , v
H
m〉 = −〈F (pjm,H), vHm〉 ∀vHm ∈ V Hm , j = 0, 1, 2, ...

(3.16)
and update pj+1

m,H = pjm,H + σδpjm,H ,

where σ is a damping parameter. As the local inf-sup stability implies that F ′ is invertible in an
environment of pHm, Assumption 3.3 implies the convergence of the Newton iteration to the solution
pHm of (3.2) if the initial datum p0

m,H is close enough to pHm [113]. If we further assume that F ′ is
Lipschitz continuous, i.e.

‖F ′(vHm)− F ′(wHm)‖W 1,p(Ω),W−1,p(Ω) ≤ LHMR| vHm − wHm |W 1,p(Ω), (3.17)

where ‖ · ‖W 1,p(Ω),W−1,p(Ω) denotes the operator norm, we obtain that the Newton scheme (3.16)
converges quadratically for an initial datum p0

m,H close to pHm and σ = 1 [113]. For the damped
Newton scheme with line search we have a global linear convergence [113] if we further suppose
global inf-sup stability, i.e. βHMR(zHm) > β(m,H) > 0 for all zHm ∈ V Hm .
To compute an approximation of pHm with the Newton scheme (3.16) we have to assemble in each
Newton step the jacobian and the residual. However, due to the nonlinearity of the operator A the
integrals in the transverse direction cannot be precomputed. Hence, the assembling of the jacobian
and the residual requires the computation of two-dimensional integrals, which is why solving for pHm
is still a full dimensional problem. In order to obtain a one-dimensional problem in the dominant
direction we introduce in the next section §3.2 the Empirical Projection Method and apply it in
the HMR-RB framework in §3.3.1.

As indicated at the beginning of this subsection the mapping F : H1
0 (Ω) → H−1(Ω) of our model

problem (3.3) is in general not C1. Thus we consider instead F : W 1,p
0 (Ω) → W−1,p(Ω) with

2 < p <∞:

〈F (w), v〉W−1,p(Ω)W 1,q
0 (Ω) =

∫
Ω

d(w)∇w∇v dxdy −
∫

Ω

sv dxdy, ∀w ∈W 1,p
0 (Ω), ∀v ∈W 1,q

0 (Ω).

(3.18)
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Denoting with L(W,Z) the space of continuous linear mappings from the Banach space W into the
Banach space Z and with C1(W,Z) the space of functions that are continuous differentiable for all
w ∈W , we obtain the following result.

Theorem 3.4. Under the hypotheses of Theorem 3.1, the mapping F : W 1,p
0 (Ω) → W−1,p(Ω) is

in C1(W 1,p
0 (Ω),W−1,p(Ω)) for 2 < p < ∞ and for the solution p of (3.3) the Fréchet derivative

F ′(p) ∈ L(W 1,p
0 (Ω),W−1,p(Ω)) is an isomorphism. Furthermore, there exist constants γmod, βmod

and Lmod such that

0 < βmod ≤ inf
w∈W 1,p

0 (Ω)

|w|W1,p(Ω) 6=0

sup
v∈W 1,q

0 (Ω)

|v|W1,q(Ω) 6=0

〈F ′(p)w, v〉W−1,p(Ω)W 1,q
0 (Ω)

|w|W 1,p(Ω)|v|W 1,q(Ω)
, (3.19)

and ∞ > γmod ≥ sup
w∈W 1,p

0 (Ω)

|w|W1,p(Ω) 6=0

sup
v∈W 1,q

0 (Ω)

|v|W1,q(Ω) 6=0

〈F ′(z)w, v〉W−1,p(Ω)W 1,q
0 (Ω)

|w|W 1,p(Ω)|v|W 1,q(Ω)
∀z ∈W 1,p

0 (Ω), (3.20)

‖F ′(v)− F ′(w)‖W 1,p(Ω),W−1,p(Ω) ≤ Lmod| v − w |W 1,p(Ω). (3.21)

Proof. As W 1,p(Ω) ↪→ C0(Ω) for p > 2 and Ω ⊂ R2 (cf. [49], p. 270), it is easy to prove that under
the assumptions on d (3.4), F ∈ C1(W 1,p

0 (Ω),W−1,p(Ω)). The Fréchet derivative can be determined
as

〈F ′(z)w, v〉W−1,p(Ω)W 1,q
0 (Ω) =

∫
Ω

d′(z)w∇z∇v + d(z)∇w∇v dxdy
(3.22)

=

∫
Ω

∇(d(z)w)∇v dxdy ∀z, w ∈W 1,p
0 (Ω), ∀v ∈W 1,q

0 (Ω).

Again employing the assumptions on d (3.4) we obtain that (3.20) and (3.21) apply, where

γmod = c2cs(1 + cpp)
1/p| z |W 1,p(Ω) + c1,

Lmod = cs(1 + cpp)
1/p(2c2 + c3cs(1 + cpp)

1/p) min{| v |W 1,p(Ω), |w |W 1,p(Ω)}.

Here, ck, k = 0, ..., 3, are the ellipticity and continuity constants of d, defined in (3.4), cp is the
constant in Poincaré’s inequality and cs denotes the Sobolev embedding constant in the estimate
‖v‖C0,1−(2/p)(Ω) ≤ cs‖v‖W 1,p(Ω). As the Laplacian operator with homogeneous boundary conditions
is an isomorphism from W 1,p

0 (Ω) onto W−1,p(Ω) [105] we infer that F ′(p) ∈ L(W 1,p
0 (Ω),W−1,p(Ω))

is an isomorphism and hence (3.19). For details see [105].

Remark 3.5. Following the argumentation in [105], one can prove by using the Hahn-Banach the-
orem that F ′(p) ∈ L(W 1,p

0 (Ω),W−1,p(Ω)) admits a continuous extension from H1
0 (Ω) into H−1(Ω).

The Lax-Milgram theorem then yields that the Laplacian operator is an isomorphism from H1
0 (Ω)

onto H−1(Ω) and thus, that F ′(p) is an isomorphism from H1
0 (Ω) onto H−1(Ω). Hence, we obtain

inf
w∈H1

0 (Ω)

|w|H1(Ω) 6=0

sup
v∈H1

0 (Ω)

|v|H1(Ω) 6=0

〈F ′(p)w, v〉
|w|H1(Ω)|v|H1(Ω)

≥ βH
1

mod > 0. (3.23)
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3.2 The Empirical Projection Method (EPM)

As noted in the previous section the nonlinearity of the operator A : H1
0 (Ω) → H−1(Ω) in (3.10)

prevents a dimensional reduction of the full problem. The goal of this section is thus to derive an
efficient approximation of possibly non-smooth nonlinear operators A : H1

0 (Ω)→ H−1(Ω) allowing
for the derivation of a lower dimensional coupled system for the coefficients p̄Hl ∈ XH . Due to the
Theorem on the characterization of H−1 (cf. [49], p. 283) there exist functions u1, u2 ∈ L2(Ω) such
that

〈A(z), v〉 =

∫
Ω

u1 ∂x v + u2 ∂y v dx dy for v, z ∈ H1
0 (Ω). (3.24)

For the sake of clarity we restrict our exposition in this section to functions u ∈ L2(Ω), which are
either given or can be identified with A(z) ∈ H−1(Ω), z ∈ H1

0 (Ω), A : H1
0 (Ω)→ H−1(Ω), via (3.24).

In the latter case, the Empirical Projection Method has to be applied to u1 and u2 separately. The
key idea in the design of the Empirical Projection Method (EPM) is to use an orthonormal expansion
in L2-orthonormal basis functions {κn}n∈N ∈ L2(ω̂) and approximate the integrals

∫
ω̂
uκn dŷ by

an automatic numerical integration program based on the Empirical Interpolation Method [12].
The main novelty is that we are able to prove rigorous a priori and a posteriori bounds in the
continuous setting for the Empirical Projection Method, which do not require additional regularity
of u. Next, we describe the construction of the EPM in detail and subsequently derive the error
bounds. Let WK := {u(µ, ŷ), µ ∈ Ξ1D} be a given set of snapshots of the function u, where
Ξ1D ⊂ Ω1D is a finite dimensional train sample of size |Ξ1D| = n. The orthonormal basis functions
{κn}kn=1 ∈ L2(ω̂), the so-called collateral basis, is then computed by a POD and the collateral basis
space Wk = span{κ1, ..., κk} is thus defined as

Wk = arg inf
W̃k⊂span{WK}

dim(W̃k)=k

 1

n

∑
µ∈Ξ1D

inf
w̃k∈W̃k

‖u(µ, ·)− w̃k‖2L2(ω̂)

 . (3.25)

In case u can be identified with A(z) ∈ H−1(Ω), z ∈ H1
0 (Ω), A : H1

0 (Ω) → H−1(Ω), we will intro-
duce a new ansatz for the derivation of the snapshot set WK and thus the collateral basis functions
{κn}kn=1 in the next section §3.3.

For the orthogonal projection

Pk[u](x, y) :=
k∑

n=1

∫
ω̂

u(x, ψ−1(ŷ;x))κn(ŷ) dŷ κn(ψ(y;x)) (3.26)

of u ontoWk :=
{
wk(x, y) =

∑k
n=1 w̃n(x)κn(ψ(y;x)), w̃n(x) ∈ L2(Ω1D), x ∈ Ω1D, y ∈ ω̂

}
we have

‖u− Pk[u]‖L2(Ω) = inf
wk∈Wk

‖u− wk‖L2(Ω). (3.27)

Thus the coefficients
∫
ω̂
u(x, ψ−1(ŷ;x))κn(ŷ) dŷ, n = 1, ..., k, are optimal in a L2-sense and in order

to compute Pk[u] we have to find an efficient quadrature formula for the integrals
∫
ω̂
u(x, ψ−1(ŷ;x))

κn(ŷ) dŷ, n = 1, ..., k. Here, we use the term efficient in the sense that a quadrature formula
is more efficient than another if it requires less evaluations of u to achieve the same accuracy.
As standard Newton-Cotes formulae lack efficiency and the computation of generalized Gaussian
quadratures requires, at least to our knowledge, that the basis functions {κn}kn=1 form a Chebychev
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Algorithm 3.2.1: Empirical interpolation - Construction of the interpolation points
1 EIM(Wk,ω̂)
2 Set

t1 := arg ess
y∈ω̂

sup |κ1(ŷ)|, ζ1 =
κ1

κ1(t1)
, and B1

11 = 1.

3 for l = 1, . . . , k do
4 Solve for the coefficients σl−1

j :

l−1∑
j=1

σl−1
j ζj(ti) = κl(ti), i = 1, ..., l − 1.

5 Compute the residual

rl(ŷ) := κl(ŷ)−
l−1∑
j=1

σl−1
j ζj(ŷ).

6 Set
tl = arg ess

y∈ω̂
sup |rl(ŷ)|, ζl =

rl
rl(tl)

, and Blij = ζj(ti), 1 ≤ i, j ≤ l.

7 end
8 return Tk, Zk := {ζ1, ..., ζk}, Bk

system1 [79, 128], which is in general not the case, we have to pursue a more subtle approach. We
propose to approximate the function u in the integrals by an empirical Lagrangian interpolant IL[u],
where the interpolation points are determined using the Empirical Interpolation Method (EIM),
introduced in [12] and analyzed more detailed in [59, 80, 118]. The EIM was originally introduced
in [12] as a strategy to determine an efficient offline-online decomposition of a bilinear or linear form
in a parametrized PDE in the case of a non-affine parameter dependence. The idea is to approximate
a non-affine parametrized data function g : Ω × D → R, g(·;µ) ∈ L∞(Ω), with a Lagrangian
interpolant IL[g] =

∑L
n=1 γn(µ)ζn(x), such that already for a very small number L a high accuracy

can be achieved. To this end the collateral basis space Wk is computed by a greedy algorithm of
the same type as Algorithm 2.2.1. The construction of the interpolation points Tk := {t1, ..., tk},
sometimes also called ’magic points’ [80], for the collateral spaceWk over ω̂ is decribed in Algorithm
3.2.1. Here, we have simplified the notation by setting κl(ti) := lim

ε→0

1
|Bε(ti)|

∫
Bε(ti)

κl(ŷ) dŷ. We

remark that we compute the space Wk by a POD, as the POD is optimal in a L2-sense (cf. 2.2.1),
which better fits our goal to approximate u with respect to the L2-norm. The following lemma
collects some well-known statements on the EIM.

Lemma 3.6. Let the collateral basis space Wk be given and the set of interpolation points Tk be
constructed by Algorithm 3.2.1. Then we have

1. The matrix B is invertible. As a consequence the construction of the interpolation points Tk
is well-defined.

1Following Karlin and Studden [71] a collection of k real-valued continuous functions q1, ..., qk defined on an
interval I ⊂ R is a Chebyshev system if any nontrivial linear combination, i.e. a combination where not all coefficients
are zero, has at most k − 1 distinct zeros in I.
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2. The interpolation is exact for all w ∈Wk.

Proof. The proof of 1. can be found in [12] and for the proof of 2. see [80].

We remark that constructing the interpolation points Tk with the ’best points’ interpolation method
[87] is also an option. But as the computation of the ’best points’ requires the solution of a
least-squares minimization problem, which has to be solved in the context of HMR-RB for every
parameter value in the train sample Ξtrain (see §3.3.5), we have opted for the EIM.

Algorithm 3.2.2: Empirical Projection Method
1 EPM(Wk, WK , εint

tol, N int
max, Ξ1D)

2 Initialize I = ω̂, and aI = y0, bI = y1.
3 Compute [T Ik , Z

I
k , B

I
k ]= EIM(Wk,I).

4 for j = 1, ..., N int
max do

5 foreach I ∈ I do
6 Compute

eIj :=
1

n

∑
µ∈Ξ1D

‖
k∑
l=1

∫
ω̂

(u(µ, ŷ)− IL[u](µ, ŷ))κl(ŷ) dŷ κl‖2L2(I) (3.28)

7 if eIj ≤
|I|
|ω̂| · ε

int
tol then

8 Continue
9 else

10 Set
11 Ileft := [aI , (aI + bI)/2],

12 Iright := [(aI + bI)/2, bI ].
13 Compute
14 [T

Ileft
k , Z

Ileft
k , B

Ileft
k ] = EIM(Wk|Ileft , Ileft),

15 [T
Iright
k , Z

Iright
k , B

Iright
k ] = EIM(Wk|Iright , Iright),

16 Update I
17 end
18 end
19 Set eint =

∑
I∈I e

I
j .

20 if eint ≤ εint
tol then

21 Break
22 end
23 end
24 return T Ik , Z

I
k , B

I
k , eint.

To formulate an adaptive integration algorithm and thus the Empirical Projection Method 3.2.2,
we introduce a non-uniform partition I of ω̂ with cells I. aI and bI denote the left and right interval
boundary of I, respectively. We first compute the standard EIM for the whole reference fiber ω̂ in
line 3. If the integration error

eω̂j :=
1

n

∑
µ∈Ξ1D

‖
k∑
l=1

∫
ω̂

(u(µ, ŷ)− IL[u](µ, ŷ))κl(ŷ) dŷ κl‖2L2(ω̂),
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is smaller then the prescribed tolerance εint
tol we stop without refining at all. Otherwise we bisect in

each iteration those intervals for which eIj > (|I|/|ω̂|)·εint
tol holds. On the new intervals we perform the

EIM to contruct the local interpolants IIleftL [u] and IIrightL [u]. We stop either if eint =
∑
I∈I e

I
j ≤ εint

tol

or if the maximal number of iterations N int
max is reached. The approximation of u can then be

computed as

PLk [u](x, y) :=
k∑

n=1

∫
ω̂

IL[u](x, ψ−1(ŷ;x))κn(ŷ) dŷ κn(ψ(y;x)), (3.29)

where

IL[u](x, ψ−1(ŷ;x)) :=
L∑
l=1

u(x, tl)ϑl(ŷ), (3.30)

and the ϑl fulfill ϑl(ti) = δi,l for all ti ∈ T Ik . The ϑl are computed on the respective interval I ∈ I
as
∑k
l=1B

I
ilϑ

I
l = ζIi , i = 1, ..., k, and extended by zero to the other intervals I ∈ I. We have proven

in §B.1 in the discrete setting under certain additional assumptions the convergence of Algorithm
3.2.2. Unfortunately the used technique cannot be applied in the continuous setting. For the EIM,
at least to our knowledge, only one a priori result has been proven until now (cf. [80]), which can-
not be invoked either as the proof heavily relies on the fact that the collateral basis functions are
chosen as ζl := arg maxwK∈WK

‖wK −Il−1[wK ]‖L∞(ω̂). As numerical experiments for the EIM and
also the quadrature formula based on the EIM yield very good convergence results (see amongst
others [43, 59, 80] for the former and §3.6 for the latter), we expect that the employed quadrature
formula indeed converges. If Algorithm 3.2.2 EPM does not converge, the integration error eint is
returned and can be used to derive fully rigorous a priori and a posteriori bounds (§3.2.1). Before
moving to this subject we compare the EPM to some related methods.

It has been demonstrated in [119] for the so-called Least-Squares Empirical Interpolation Method,
that for functions lacking spatial regularity, choosing L > k can improve the convergence rate of
the EIM significantly. Here, a least-squares problem is solved to fit the coefficients to additional
interpolation points. We emphasize that in contrast to the Least-Squares Empirical Interpolation
Method, the interpolant IL[u] (3.30) still fulfills IL[u](x, ψ−1(ti;x)) = u(x, ψ−1(ti;x)), i = 1, . . . , L,
as it is computed locally by a EIM. Thus, the properties collected in Lemma 3.6 still apply locally.
Compared to the EIM, the EPM might seem inefficient as it requires the computation of the
additional integrals over ω̂ in (3.29). However, for the special case k = L, we have the following
lemma.

Lemma 3.7. Let the collateral basis space Wk be given and let the set of interpolation points Tk be
computed by Algorithm 3.2.1. Then the computation of PLk [u] with Algorithm 3.2.2 and N int

max = 0
is equivalent to the Proper Orthogonal Interpolation Method (POIM) introduced in [119] and yields
the same approximation as the Discrete Empirical Interpolation Method (DEIM), which has been
introduced in [31] and is described in Algorithm B.1.1 in §B.1.

Proof. First, we note that in [119] the application of the EIM for a POD basis is denoted as Proper
Orthogonal Interpolation Method (POIM), which yields for k = L IL[u] in (3.29). Furthermore, it is
shown in [119] that the DEIM and the POIM yield the same interpolant and the same interpolation
points. For the sake of completeness we invoke the main steps of the proof. Obviously t1 is the
same for both methods. We then proceed by induction and assume that the two methods result
in the same set of interpolation points Tk−1. As both the POIM basis {ζ1, ..., ζk} and the DEIM
basis {κ1, ..., κk} span the same space, there exists a matrix M such that Zk−1 = Wk−1 ·M , which
implies (ζj(ti))

k−1
i,j=1 = (κj(ti))

k−1
i,j=1 ·M and thus that the interpolants coincide for k − 1. Finally,
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both methods maximize the same residual to compute tk and thus yield the same set of interpolation
points Tk. Due to the orthonormality of the collateral basis {κl}kl=1 the integrals in (3.29) disappear
and using the transformation matrix M we end up with a POIM approximation.

We finally remark that the DEIM has been introduced in [31] for the interpolation of discrete
operators in nonlinear systems of ordinary differential equations coming for instance from the
discretization of a nonlinear PDE with a finite difference scheme. The DEIM is very similar to
the Gauss-Newton with Approximated Tensors (GNAT) method [28–30], which uses a gappy POD
method [50] and the more general Empirical Operator Interpolation Method [42, 43], designed for
the interpolation of discrete nonlinear operators stemming from the discretization of a nonlinear
PDE by for example a finite volume scheme or a discontinuous Galerkin method.

3.2.1 Rigorous a priori and a posteriori error analysis for the EPM

First, we derive a rigorous a priori bound for the EPM. In [72, 73] Kunisch and Volkwein derived
error estimates for a POD-Galerkin approximation of parabolic nonlinear PDEs, where the POD is
applied to snapshots of the solution for different instants of time. The respective estimates contain
both the standard discretization and the POD error. This approach has been applied in [32]
for the DEIM in the discrete setting for systems of nonlinear ODEs. To control the projection
error ‖u− Pk[u]‖L2(Ω) by the POD error (2.22) we interpret the discrete L2-norm occurring in the
definition of the POD-space (3.25) as a numerical approximation of the corresponding integral with
the Monte Carlo method, which is one new contribution of the proof, and subsequently use ideas of
Kunisch and Volkwein [73]. The main new contribution of Theorem 3.8 is the control of the term
‖Pk[u] − PLk [u]‖L2(Ω), which is possible because of the design of the EPM and again the usage of
the Monte Carlo method. We obtain the following result.

Theorem 3.8 (An a priori error bound for the EPM). We assume that the parameter values
µ ∈ Ξ1D are sampled from the uniform distribution over Ω1D and denote with {λnl }

d(n)
l=1 the set

of eigenvalues of the correlation matrix eigenvalue problem that is equivalent to the optimization
problem (3.25). If Algorithm 3.2.2 converges till the given tolerance εint

tol , there exists an N such
that for all n > N

‖u− PLk [u]‖L2(Ω) ≤

 d(n)∑
l=k+1

λnl

1/2

+ (εint
tol )

1/2 +O(n−1/4). (3.31)

If furthermore λI,∞k 6= λI,∞k+1 there exists an N such that for all n > N

‖u− PLk [u]‖L2(Ω) ≤
√

2

( ∞∑
l=k+1

λ∞l

)1/2

+ (εint
tol )

1/2 +O(n−1/4), (3.32)

and λnl → λ∞l for 1 ≤ l ≤ k as n → ∞ and lim
n→∞

κnl = κ∞l for 1 ≤ l ≤ k, where {λ∞l }∞l=1 are the

eigenvalues and κ∞l are the eigenfunctions of the operator B : L2(ω̂)→ L2(ω̂), defined as

B(v) =

∫
Ω1D

∫
ω̂

v(ŷ)u(x, ŷ) dŷ u(x, ŷ) dx for v ∈ L2(ω̂). (3.33)

If Algorithm 3.2.2 stops at iteration N int
max without reaching the prescribed tolerance εint

tol , there exists
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an N such that for all n > N

‖u− PLk [u]‖L2(Ω) ≤

 d(n)∑
l=k+1

λnl

1/2

+ e
1/2
int +O(n−1/4). (3.34)

If furthermore λI,∞k 6= λI,∞k+1 there exists an N such that for all n > N

‖u− PLk [u]‖L2(Ω) ≤
√

2

( ∞∑
l=k+1

λ∞l

)1/2

+ e
1/2
int +O(n−1/4). (3.35)

Proof. We start by splitting the error in a projection error and an integration error:

‖u− PLk [u]‖L2(Ω) ≤ ‖u− Pk[u]‖L2(Ω) + ‖Pk[u]− PLk [u]‖L2(Ω). (3.36)

Due to the assumptions on Ξ1D, we can interpret for an arbitrary function f ∈ L2(Ω), the
term In(f) := (1/n)

∑
µ∈Ξ1D

‖f(µ, ·)‖2L2(ω̂) as a numerical approximation of the integral I(f) =∫
Ω1D

∫
ω̂
f2 dŷ dx with the Monte Carlo method [22, 107]. Thus the strong law of large numbers

ensures with probality 1 the convergence of In(f) to I(f) as n → ∞ with a convergence rate of
O(n−1/2) [22,107]. This yields together with the definition of the POD-error (2.22) that there exists
an N such that for all n > N

‖u− Pk[u]‖2L2(Ω) =

 1

n

∑
µ∈Ξ1D

‖u(µ, ·)−
k∑
l=1

∫
ω̂

u(µ, ŷ)κl(ŷ) dŷ κl‖2L2(ω̂)

+O(n−1/2)

≤

 d(n)∑
l=k+1

λnl

+O(n−1/2).

Approximating also the integral of the second term in (3.36) with a Monte Carlo method and using
the outcome of Algorithm 3.2.2, we obtain

‖Pk[u]− PLk [u]‖2L2(Ω)

=

 1

n

∑
µ∈Ξ1D

‖
k∑
l=1

∫
ω̂

u(µ, ŷ)κl(ŷ) dŷ κl −
k∑
l=1

∫
ω̂

IL[u(µ, ŷ)]κl(ŷ) dŷ κl‖2L2(ω̂)

+O(n−1/2)

=

 1

n

∑
µ∈Ξ1D

‖
k∑
l=1

∫
ω̂

(u(µ, ŷ)− IL[u(µ, ŷ)])κl(ŷ) dŷ κl‖2L2(ω̂)

+O(n−1/2)

≤ eint +O(n−1/2).

The operator T : L2(ω̂)→ L2(Ω1D), defined as

(Tv)(x) :=

∫
ω̂

u(x, ŷ)v(ŷ) dŷ, for v ∈ L2(ω̂),

is a Hilbert-Schmidt integral operator and thus compact [4]. Boundedness of the operator Y :
L2(Ω1D)→ L2(ω̂), defined as

Y(w) :=

∫
Ω1D

u(x, ŷ)w(x) dx, for w ∈ L2(Ω1D),
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yields that B is a compact operator as well. The remaining assertions can then be proven completely
analogous to the argumentation in subsection 3.2 of [73].

We remark that the assumptions on Ξ1D can be weakened in the sense that also an adaptive sam-
pling strategy can be considered. This can change the convergence rate of the Monte Carlo method,
but does not affect the proof of Theorem 3.8. Alternatively, a quasi-Monte Carlo method, based
on quasi-random points, can be used, which has an improved convergence rate of approximately
O((log n)cn−1) for some constant c [22]. Next, we employ the a priori bounds (3.31) and (3.34) in
Theorem 3.8 to derive a rigorous a posteriori bound by using a better approximation PL

′

k′ [u] and
considering the error ‖PL′k′ [u] − PLk [u]‖L2(Ω). This idea, sometimes called the M ′-trick, has been
introduced in [43] and applied within the context of DEIM in [127] and POIM in [119]. We em-
phasize that in contrast to the cited works the a posteriori error bound we will derive is completely
rigorous due to the application of the a priori bound of Theorem 3.8 for the determination of a
suitable better approximation PL

′

k′ [u].

Proposition 3.9 (An a posteriori error bound for the EPM). Let the assumptions of Theorem 3.8
be fulfilled and let εtol be a given tolerance. Then the error estimator

∆EPM := ‖PL
′

k′ [u]− PLk [u]‖L2(Ω) (3.37)

satisfies
‖u− PLk [u]‖L2(Ω) ≤ εtol + ∆EPM + e

1/2
int +O(n−1/4), (3.38)

where k′ can be automatically chosen by employing the a priori bounds of Theorem 3.8 and L′ is
determined by Algorithm 3.2.2 EPM.

Proof. Depending on whether Algorithm 3.2.2 converges or not, applying (3.31) or (3.34) results in

‖u− PLk [u]‖L2(Ω) ≤

 d(n)∑
l=k+1

λnl

1/2

+ e
1/2
int +O(n−1/4).

Choosing

k′ := arg min
l=k+1,...,d(n)

d(n)∑
j=l

λnj

1/2

≤ εtol,

and computing PL
′

k′ [u] with Algorithm 3.2.2 EPM yields

‖u− PLk [u]‖L2(Ω) ≤ εtol + ‖PL
′

k′ [u]− PLk [u]‖L2(Ω) + e
1/2
int +O(n−1/4)

and thus the claim.

Note that theoretically also the a posteriori bound for the EIM derived in [45] can be employed
to obtain an a posteriori estimate for the EPM. As the theory developed in [45] however requires
that the considered functions are smooth, it is unfortunately not applicable in our context. We
emphasize that by running Algorithm 3.2.2 with N int

max = 0 and additionally computing eω̂1 in (3.28),
Theorem 3.8 and Proposition 3.9 yield rigorous a priori and a posteriori bounds for the POIM [119]
and the continuous version of the DEIM [31] (Algorithm B.1.1), when the L2(Ξ1D;L2(ω̂))-norm
(2.16) is considered.
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3.3 The Hierarchical Model Reduction-Reduced Basis approach
for nonlinear partial differential equations (using the EPM)

The goal of this section is the efficient construction of a low-dimensional reduction space Ym and
a collateral basis space Wk which yield a fast convergence of the HMR-RB approximation to the
full solution. Following the approach in §2.3.1 we derive in §3.3.2 a parametrized nonlinear 1D
PDE, whose solution is employed for the definition of parametrized 1D operator evaluations in the
transverse direction in §3.3.3. The sets of solution and operator snapshots are generated simul-
taneously by an adaptive training set extension algorithm in §3.3.5, resembling the one in §2.3.4.
The principal components of the snapshot sets then form the reduction space Ym and the collateral
basis space Wk. We begin with formulating the HMR-RB approach with the Empirical Projection
Method in §3.3.1.

3.3.1 Formulation of the reduced problem in the HMR-RB framework
employing the EPM

We assume that a set of reduced basis functions {φl}ml=1 and a set of collateral basis functions
{κn}kn=1 are given to us. The reduced problem with EPM then reads

Find pm,k ∈ Vm : 〈PLk [A(pm,k)], vm〉 = 〈f, vm〉 ∀vm ∈ Vm, (3.39)

where PLk [A(pm,k)](x, y) =
k∑

n=1

∫
ω̂

IL[A(pm,k)](x, ψ−1(ŷ;x))κn(ŷ) dŷ κn(ψ(y;x))

=
k∑

n=1

L∑
l=1

∫
ω̂

A(pm,k(x, ψ−1(tl;x)))ϑl(ŷ)κn(ŷ) dŷ κn(ψ(y;x)).

Note that depending on the structure of the nonlinear operator it might be necessary to apply the
EPM componentwise. Rewriting pm,k as pm,k(x, y) =

∑m
s=1 ps,k(x)φs(ψ(y;x)) we obtain: Find

ps,k ∈ H1
0 (Ω1D), s = 1, ...,m, such that

k∑
n=1

L∑
l=1

〈
A

(
m∑
s=1

ps,kφs(tl)

)∫
ω̂

ϑl(ŷ)κn(ŷ) dŷ κn, ξφj

〉
= 〈f, ξφj〉 (3.40)

∀ ξ ∈ H1
0 (Ω1D) and j = 1, ...,m.

The corresponding discrete reduced problem reads: Find pHs,k ∈ XH , s = 1, ...,m, such that

k∑
n=1

L∑
l=1

〈
A

(
m∑
s=1

pHs,kφs(tl)

)∫
ω̂

ϑl(ŷ)κn(ŷ) dŷ κn, ξ
H
i φj

〉
= 〈f, ξHi φj〉 (3.41)

for i = 1, ..., NH and j = 1, ...,m,

or shortened

Find pHm,k ∈ V Hm : 〈PLk [F (pHm,k)], ξHi φj〉 = 0 for i = 1, ..., NH and j = 1, ...,m, (3.42)

where 〈PLk [F (pHm,k)], ξHi φj〉 = 〈PLk [A(pHm,k)], ξHi φj〉 − 〈f, ξHi φj〉, i = 1, ..., NH , j = 1, ...,m. We
emphasize that due to the application of the EPM we can now precompute the integrals in the
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transverse direction in (3.40) and (3.41) and as a result the computation of p̄s,k and p̄Hs,k reduces to
the solution of a coupled system of nonlinear one-dimensional PDEs of sizem (3.40) orm·NH (3.41).

Problem (3.41) can be efficiently solved by Newton’s method. It is possible to reuse the collateral
basis for a nonlinear operator also for the approximation of its Fréchet derivative [30,43]. To obtain
a better approximation of A′(pHm,k(x, ŷ)) and thus hopefully a faster convergence of the Newton
scheme solving for pHm,k, we propose to use a second collateral basis space Wf,kf := {κf1 , ..., κ

f
kf
} for

this approximation. Assuming that Wf,kf is given to us and that the analogue of Assumption 3.3
is satisfied, we solve in each Newton step for the correction δ(pHm,k)j :

〈PLfkf [F ′((pHm,k)j)] δ(pHm,k)j , vHm〉 = −〈PLk [F ((pHm,k)j)], vHm〉 ∀vHm ∈ V Hm , j = 0, 1, 2, ...
(3.43)

and update (pHm,k)j+1 = (pHm,k)j + σδ(pHm,k)j ,

where σ is a damping parameter, (pHm,k)0 is a suitable initial datum and PLfkf [F ′(pHm,k)] is computed
analogous to PLk [F (pHm,k)] with the EPM substituting Wk by Wf,kf . We remark that we do not
apply the Tensorized Empirical Interpolation Method (TEIM) [68] and compress the spaces Wk

and Wf,kf in one collateral basis space as the latter in general would have a higher dimension as k
and kf and thus would increase the costs for assembling the jacobian and the residual of (3.43).

3.3.2 Derivation of a parametrized 1D problem in transverse direction
To derive a lower dimensional parametrized PDE in the transverse direction we proceed as in §2.3.1
in Chapter 2 and assume that

p(x, ŷ) ≈ U(x) · P(ŷ), (3.44)

where the function U(x) represents the unknown behavior of the full solution in the dominant
direction. Using the test functions v(x, y) = U(x) · υ(ŷ) for all υ ∈ H1

0 (ω̂) yields the reduced
problem: Given any U ∈ H1

0 (Ω1D), find P ∈ H1
0 (ω̂) such that

〈A(UP), Uυ〉 = 〈f, Uυ〉 ∀υ ∈ H1
0 (ω̂). (3.45)

Next, we introduce for an integral I(t) :=
∫
ω̂

∫
Ω1D

t(x, ŷ) dxdŷ with an integrand t ∈ L1(Ω̂) the
quadrature formula

Q(t) :=

Q∑
l=1

αl

∫
ω̂

t̃(xql , ŷ) dŷ, t̃(xql , ŷ) := lim
ε→0

1

|Bε(xql )|

∫
Bε(x

q
l )

t(x, ŷ) dx, (3.46)

with weights αl, l = 1, ..., Q, and quadrature points xql , l = 1, ..., Q. We denote with 〈·, ·〉q the
approximation obtained by substituting the integral I(t) in 〈·, ·〉 by the quadrature rule Q(t) (3.46).
In this way we get the reduced problem with quadrature:

Given any U ∈ H1
0 (Ω1D), find P ∈ H1

0 (ω̂) : 〈A(UP), Uυ〉q = 〈f, Uυ〉q ∀υ ∈ H1
0 (ω̂). (3.47)

To include the unknown influence of the dynamics in the dominant direction U on the lower-
dimensional problems in the transverse direction and to find the optimal locations of the quadrature
points with RB methods (see §2.2 and §3.3.5) we parametrize (3.47). Therefore we introduce a
parameter vector µ = (xql , U(xql ), ∂

k
xU(xql )), l = 1, ..., Q, k = 1, ..., n, where for x0 or x1 ∈ {xql }

Q
l=1,

the associated quadrature point(s) and the evaluations U(xi), i = 0, 1 in the interval boundaries
x0 and x1 of Ω1D can be omitted. The P -dimensional parameter space D containing all admissible
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parameter values of µ, is defined as D := [Ω1D × I0 × · · · × In]Q, where the intervals Ik ⊂ R,
k = 0, ..., n, enclose the ranges of ∂kxU(x), k = 0, ..., n. We expect a greater sensitivity of the HMR-
RB approach with respect to the choice of the intervals Ik ⊂ R, k = 0, ..., n, compared to the linear
setting as the nonlinearity of A also applies to the parameter via the term A(UP). This can indeed
be observed in the numerical experiments §3.6. To get a rough estimate on the possible ranges of
∂kxU(x), k = 0, ..., n, and therefore obtain an optimal convergence rate of the HMR-RB approach
for instance a coarse approximation of the solution p of (3.1) can be precomputed. Finally the
parametrized 1D nonlinear partial differential equation in the transverse direction reads as follows:

Given any µ ∈ D, find P(µ) ∈ H1
0 (ω̂) : 〈A(P(µ);µ), υ;µ〉q = 〈f, υ;µ〉q ∀υ ∈ H1

0 (ω̂), (3.48)

or shortened:

Given any µ ∈ D, find P(µ) ∈ H1
0 (ω̂) : 〈F (P(µ);µ), υ;µ〉q = 0 ∀υ ∈ H1

0 (ω̂), (3.49)

where 〈F (P(µ);µ), υ;µ〉q := 〈A(P(µ);µ), υ;µ〉q − 〈f, υ;µ〉q for all µ ∈ D. One possible choice for
the αl, l = 1, ..., Q, in (3.46) are the weights

α1 :=
xq1 + xq2

2
− x0, αl :=

xql+1 − x
q
l−1

2
, l = 2, ..., Q− 1, αQ := x1 −

xqQ−2 + xqQ−1

2
, (3.50)

where the quadrature points xql , l = 1, ..., Q are expected to be sorted in ascending order. The
choice (3.50) yields a modified rectangle formula. Alternatively, for instance a standard composite
trapezoidal rule (cf. [107]) can be considered. The number of quadrature points is chosen automat-
ically by an adaptive algorithm, described in §3.3.5.

To compute snapshots we use the subdivision τh of ω̂ with elements τj = (ŷj−1, ŷj) of width
hj = ŷj − ŷj−1 and maximal step size h := maxτj hj introduced in §2.3.3. We introduce an
associated conforming Finite Element space Y h ⊂ H1

0 (ω̂) with dim(Y h) = nh < ∞, and basis
υhj , j = 1, ..., nh. We obtain the parameter dependent discrete 1D problem:

Given any µ ∈ D, find Ph(µ) ∈ Y h : 〈A(Ph(µ);µ), υhj ;µ〉q = 〈f, υhj ;µ〉q for j = 1, ..., nh, (3.51)

which can be solved by Newton’s method. Therefore we define the parameter dependent inf-sup
stability factor and the continuity constant

β1D(zh;µ) := inf
wh∈Y h

|wh|W1,p(ω̂) 6=0

sup
vh∈Y h

|vh|W1,q(ω̂) 6=0

〈F ′(zh;µ)wh, vh;µ〉qW−1,p(ω̂)W 1,q(ω̂)

|wh|W 1,p(ω̂)|vh|W 1,q(ω̂)
for zh ∈ Y h, (3.52)

γ1D(zh;µ) := sup
wh∈Y h

|wh|W1,p(ω̂) 6=0

sup
vh∈Y h

|vh|W1,q(ω̂) 6=0

〈F ′(zh;µ)wh, vh;µ〉qW−1,p(ω̂)W 1,q(ω̂)

|wh|W 1,p(ω̂)|vh|W 1,q(ω̂)
for zh ∈ Y h, (3.53)

where 1
p + 1

q = 1. As there might be parameters for which no solution of (3.51) exists, the condi-
tions for the convergence of Newton’s method, i.e. the boundedness of F ′(Ph(µ);µ) : W 1,p

0 (ω̂) →
W−1,p(ω̂) and the local inf-sup stability (see Assumption 3.3) have to be verified a posteriori [27].
If the analogue of Assumption 3.3 for the 1D case is fulfilled, we solve in each Newton iteration for
the correction δPhj :

〈F ′(Phj (µ);µ) δPhj (µ), υh;µ〉q = −〈F (Phj (µ);µ), υh;µ〉q ∀υh ∈ Y h, j = 0, 1, 2, ...
(3.54)

and update Phj+1(µ) = Phj (µ) + σδPhj (µ),

where Ph0 (µ) is an appropriate initial datum and σ is a damping parameter.
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3.3.3 The generation of parametrized 1D operator evaluations

In this subsection we introduce an approach for the generation of parametrized 1D operator evalu-
ations of the nonlinear operator A in the transverse direction. For this purpose we consider (3.48)
and define a parametrized 1D operator evaluation A(ŷ;µ) of the operator A(p(x, ŷ)) as

A(ŷ;µ) :=

Q∑
l=1

αl
|Ω1D|

A(P(ŷ;µ);µl), (3.55)

where µl := (xql , U(xql ), ∂
k
xU(xql )), |Ω1D| denotes the length of the interval Ω1D and P(ŷ;µ) is the

solution of (3.48). Provided that P(ŷ;µ) is able to capture the behavior of the full solution p in
the transverse direction, we expect that A(ŷ;µ) is a good approximation of the range of A(p(x, ŷ))
in that direction, which will be validated in §3.6. For V H×h defined in (2.39) we denote with
pH×h ∈ V H×h the reference FEM solution of

Find pH×h ∈ V H×h : 〈A(pH×h), vH×h〉 = 〈f, vH×h〉 ∀ vH×h ∈ V H×h, (3.56)

which will be discussed in greater detail in §3.4. A parametrized 1D operator evaluation of
A(pH×h(x, ŷ)) can the be defined as

Ah(ŷ;µ) :=

Q∑
l=1

αl
|Ω1D|

A(Ph(ŷ;µ);µl), (3.57)

where Ph(ŷ;µ) solves (3.51). Finally, we define a parametrized 1D operator evaluation of
A′(pH×h(x, ŷ)) as

Ahf (ŷ;µ) :=

Q∑
l=1

αl
|Ω1D|

A′(Ph(ŷ;µ);µl). (3.58)

3.3.4 Example: The nonlinear diffusion equation

We exemplify the derivation of the parametrized 1D partial differential equation and the genera-
tion of parametrized 1D operator evaluations of A(pH×h(x, ŷ)) for our model problem (3.3) on a
rectangular domain Ω, which implies Ω = Ω̂ and y = ŷ. First, we use the quadrature formula (3.46)
to get the reduced problem with quadrature: Given any U ∈ X, find P ∈ H1

0 (ω̂) such that:

Q∑
l=1

αl

(∫
ω̂

d(P U(xql ))
dP
dy

dυ

dy
U2(xql ) +

∫
ω̂

d(P U(xql ))P υ (∂xU(xql ))
2
)

(3.59)

=

Q∑
l=1

αl

∫
ω̂

s(xql , y) υ U(xql ) ∀υ ∈ H1
0 (ω̂),

where we have omitted the v on the integrands (cf. (3.46)) to simplify notation. Assuming that
x0, x1 /∈ {xql }

Q
l=1 we obtain µ = (xql , U(xql ), ∂xU(xql )), l = 1, ..., Q, and D := [Ω1D × I0 × I1]Q. By

replacing xql by µl,1, U(xql ) by µl,2 and ∂xU(xql ) by µl,3, the parameter vector can be shortened
to µ = [µl,1, µl,2, µl,3]Ql=1 and the parametrized 1D nonlinear PDE in transverse direction reads as
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follows: Given any µ ∈ D, find P(µ) ∈ H1
0 (ω̂) such that

Q∑
l=1

αl

(∫
ω̂

d(P(µ)µl,2)
dP(µ)

dy

dυ

dy
µ2
l,2 +

∫
ω̂

d(P(µ)µl,2)P(µ) υ µ2
l,3

)
(3.60)

=

Q∑
l=1

αl

∫
ω̂

s(µl,1, y) υ µl,2 ∀υ ∈ H1
0 (ω̂).

To solve the coupled system (3.10) with Newton’s method, we have additionally required in (3.13)
that the basis functions φk(ŷ), k = 1, ...,m, are in W 1,p(ω̂). Regarding the existence of solutions
P(µ) of (3.60) and their boundary regularity we have the following proposition.

Proposition 3.10. Let the assumptions (3.4) on d be fulfilled and let s be in L2(Ω1D, H
1(ω̂)) ∩

C0(Ω). Then for any given parameter µ ∈ D there exists a solution P(µ) ∈ H1
0 (ω̂). Furthermore,

we have P(µ) ∈ H2(ω̂) ∩W 1,∞(ω̂).

Proof. For µl,2 = 0 we have the trivial solution P ≡ 0. Let us thus assume that µl,2 6= 0. As the
terms µ2

l,2 and µ2
l,3 are positive and therefore do not affect the structure of the PDE it is sufficient to

verify if the assumptions on the data functions d and s allow for a solution P ∈ H2(ω̂)∩W 1,∞(ω̂).
Due to the uniform ellipticity of d, the boundedness of d and d′ (3.4) and the required regularity of
s the assumption (3.1), (3.2) and (5.7) in Chapter 4 of [74] are fulfilled. The assertion then follows
with Theorem 4.1, Theorem 5.2 and Theorem 8.2 in [74] (Chapter 4, pp. 270, 277, 297).

For the discretization of (3.60) we use the subdivision τh of ω̂ introduced in §2.3.3 and the associated
FE space Y h ⊂ H1

0 (ω̂) with basis υhj , j = 1, ..., nh, from the previous subsection. We obtain the
parameter dependent discrete 1D problem: Given any µ ∈ D, find Ph(µ) ∈ Y h such that

Q∑
l=1

αl

(∫
ω̂

d(Ph(µ)µl,2)
dPh(µ)

dy

dυhj
dy

µ2
l,2 +

∫
ω̂

d(Ph(µ)µl,2)Ph(µ) υhj µ
2
l,3

)
(3.61)

=

Q∑
l=1

αl

∫
ω̂

s(µl,1, y) υhj µl,2 for j = 1, ..., nh.

Due to the embedding H1(ω̂) ↪→ C0(ω̂) for ω̂ ⊂ R we have that F : H1
0 (ω̂)→ H−1(ω̂) is in C1 and

its Fréchet derivative at the solution Ph(µ)µ2 can be computed as

〈F ′(Ph(µ)µ2)ϑh, υh〉q =

Q∑
l=1

αl

(∫
ω̂

d′(Ph(µ)µ2,l)ϑ
h dPh(µ)

dy

dυh

dy
µ3
l,2 +

∫
ω̂

d(Ph(µ)µl,2)
dϑh

dy

dυh

dy
µ2
l,2 (3.62)

+

∫
ω̂

d′(Ph(µ)µl,2)ϑh Ph(µ) υh µl,2 µ
2
l,3 +

∫
ω̂

d(Ph(µ)µl,2)ϑh υhj µ
2
l,3

)
.

Note that due to the application of the chain rule we obtain the additional term µl,2 in the first
and third term of (3.62). The structure of the two-dimensional Fréchet derivative (3.22) is thus
maintained. Finally, we define the parametrized 1D operator evaluations of A(pH×h(x, y))

Ah1 (y;µ) =

Q∑
l=1

αl
|Ω1D|

d(Ph(µ)µl,2)Ph(µ)µl,3 and Ah2 (y;µ) =

Q∑
l=1

αl
|Ω1D|

d(Ph(µ)µl,2)
dPh(µ)

dy
µl,2,

(3.63)
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Algorithm 3.3.1: Computation of k′

1 EPM-Indicator(PhG,AhG, εerrtol , tolk′ , ε
c
tol, ε

int
tol, N int

max,mmax, NH′ ,ΞG)

2 {φl}mmax
l=1 := POD(PhG,mmax)

3 [{κl}kPODl=1 , {λl}kPODl=1 ] := POD(AhG, εerrtol )

4 [TkPOD , ZkPOD , BkPOD , eint] :=EPM({κl}kPODl=1 ,AhG,εint
tol, N int

max, ΞG, {φl}mPODl=1 , NH′)

5 k′ =EPM-Aposteriori-Bound(eint, tolk′ · εctol, {λl}
kPOD
l=1 )

6 Wk′ := {κl}k
′

l=1

7 Tk′ :=EPM({κl}k
′

l=1, AhG,εint
tol, N int

max, ΞG, {φl}mPODl=1 , NH′)
8 return Wk′ , Tk′

and the parametrized 1D operator evaluations of A′(pH×h(x, y))

Ahf,1(y;µ) =

Q∑
l=1

αl
|Ω1D|

d′(Ph(µ)µl,2)Ph(µ)µl,3, Ahf,2(y;µ) =

Q∑
l=1

αl
|Ω1D|

d′(Ph(µ)µl,2)
dPh(µ)

dy
µl,2,

(3.64)

and Ahf,3(y;µ) =

Q∑
l=1

αl
|Ω1D|

d(Ph(µ)µl,2).

3.3.5 Reduced and collateral basis generation with RB methods — the
Adaptive-HMR-RB algorithm

In this subsection we introduce the Adaptive-HMR-RB algorithm which simultaneously con-
structs the reduction space Y hm = span(φ1, . . . , φm) ⊂ Y h and the collateral basis space Wh

k =
span(κ1, . . . , κk) using sampling strategies from the RB framework. Algorithm Adaptive-HMR-
RB is a modification of Algorithm 2.3.2 Adaptive-HMR-POD, presented in §2.3.4. The solution
manifoldMh and the discrete solution manifold Y hM , M := dim(Y hM ), are defined as

Mh := {Ph(µ) |µ ∈ D}, Y hM := {Ph(µ) |µ ∈ Ξtrain}, (3.65)

where Ξtrain ⊂ D is a finite dimensional (discrete) surrogate of D of size ntrain = |Ξtrain| and
Ph(µ) is the solution of (3.51). Analogously we can define an operator manifold Mh

A and its
discrete counterpart Wh

K , K := dim(Wh
K) through

Mh
A := {Ah(µ) |µ ∈ D}, Wh

K := {Ah(µ) |µ ∈ Ξtrain}. (3.66)

To simplify notations we assume in this subsection that Ah(µ) denotes both the parameter depen-
dent snapshot for the operator defined in (3.57) and its Fréchet derivative (3.58) and accordingly
that Wh

k comprises Wh
f,k. The discrete manifolds Y hM and Wh

K are efficiently constructed in Algo-
rithm 3.3.2, described below, by an adaptive training set extension very similar to the one applied
in Algorithm 2.3.1 in Chapter 2 which in turn is based on [61,62]. Finally, the reduction space Y hm
and the collateral basis space Wh

k are formed by the principal components of Y hM and Wh
K , singled

out by a POD (Algorithm 3.3.3).
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Algorithm 3.3.2: Adaptive training set extension and snapshot generation
1 AdaptiveTrainExtension(G0,ΞG0

,Ξc,mmax, imax, nΞ, θ, σthres, NH′ , ...
2 ...εerrtol , ε

c
tol, tolk′ , ε

int
tol, N

int
max, Q0, Qmax)

3 Initialize G = G0,ΞG = ΞG0 , φ0 = ∅, κ0 = ∅, ρ0(G) = 0, Q = Q0

4 Compute Phc (Q), Ahc (Q)

5 [Wh
k′ , Tk′ ] =EPM-Indicator(Phc ,Ahc , εerrtol , tolk′ , ε

c
tol, ε

int
tol, N int

max,mmax, NH′ ,Ξc)

6 Q =QP-Indicator(Phc , NH′ ,Wh
k′ , Tk′ , Qmax)

7 Possibly adapt G and ΞG if Q has changed.
8 for m = 1, . . . ,mmax do
9 Compute PhG(Q), AhG(Q)

10 [η(G), σ(G)] =ElementIndicators({φk}m−1
k=1 ,PhG, {κk}

kc
k=1,AhG,Wh

k′ , Tk′ , G, ρ(G), NH′)
11 for i = 1, . . . , imax do
12 G := Mark(η(G), σ(G), θ, σthres)
13 (G,ΞG) := Refine(G,ΞG , nΞ)
14 ρ(G \ G) = ρ(G \ G) + 1

15 Compute PhG (Q), AhG(Q)

16 [η(G), ρ(G), σ(G)] =ElementIndicators({φk}m−1
k=1 ,PhG , {κk}

kc
k=1,AhG ,Wk′ , Tk′ , NH′)

17 end
18 {φk}mk=1 := POD(PhG,m)

19 {κk}kck=1 := POD(AhG, εctol)
20 [Wh

k′ , Tk′ ] =EPM-Indicator(PhG,AhG, εerrtol , tolk′ , ε
c
tol, ε

int
tol, N int

max,mmax, NH′ ,ΞG)

21 Q =QP-Indicator(PhG, NH′ ,Wh
k′ , Tk′ , Qmax)

22 Possibly adapt G and ΞG if Q has changed.
23 end
24 return Y hM ,W

h
K ,ΞG

Algorithm 3.3.2: AdaptiveTrainExtension We use the same notation as in Algorithm
2.3.1, which we shortly recall for the reader’s convenience. G denotes a hyper-rectangular possibly
non-conforming grid in the parameter space D, g is a cell of G and NG is the number of cells in G.
The parameter values in the training set Ξg are sampled from the uniform distribution over the cell g,
where Ξg has the same size nΞ for all cells g and ΞG = ∪g∈GΞg. As in Algorithm 2.3.1 and originally
in [61, 62] we use a local mesh adaptation with a SOLVE → ESTIMATE → MARK → REFINE
strategy for the generation of G and ΞG beginning with a given coarse partition G0 and an asso-
ciated initial training set ΞG0

. In §3.4 we derive an a posteriori error estimate ∆k
m for the error

between the solution pH
′

m,k of (3.41) and the reference solution pH
′×h defined in (3.56) which takes

into account both the model error and the error due to the approximation of the nonlinear opera-
tor. For the latter we use the a posteriori bound for the EPM derived in Proposition 3.9. A richer
collateral basis space Wh

k′ with associated interpolation points Tk′ has thus to be provided before
starting the SOLVE → ESTIMATE → MARK → REFINE-loop. Therefore we initially compute
the snapshots Phc and Ahc for a coarse train sample Ξc of G0 in line 4. To compute Wh

k′ and the
points Tk′ with Algorithm 3.3.1 EPM-Indicator, we first use a POD to find the principal com-
ponents {κl}kPODl=1 such that the POD-error ePOD

kPOD
= (
∑ntrain
l=kPOD+1 λl)

1/2 ≤ εerrtol , where ε
err
tol < εEPM

tol .
Next, we apply Algorithm 3.2.2 EPM for the computation of the interpolation points TkPOD , the
basis ZkPOD and the matrix BkPOD , where the computation of the interpolant in (3.29) necessitates
the solution of (3.41) and thus the computation of {φl}mmax

l=1 in line 2. As the error bound is
only employed during the adaptive training set extension, it is sufficient to restrict to m = mmax.
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Algorithm 3.3.3: Construction of the reduction space Y hm and the collateral basis space Wh
k

1 Adaptive-HMR-RB(G0,mmax, imax, nΞ, nc, θ, σthres, NH′ , ε
HMR
tol , εEPM

tol , ...
2 ...εerr

tol , ε
c
tol, tolk′ , εint

tol, N
int
max, Q0, Qmax)

3 Initialize ΞG0
, Ξc

4 [Y hM ,W
h
K ,ΞG] = AdaptiveTrainExtension(G0,ΞG0 ,Ξc,mmax, imax, nΞ, ...

5 ...θ, σthres, NH′ , ε
err
tol , ε

c
tol, tolk′ , ε

int
tol, N

int
max, Q0, Qmax)

6 Y hm := POD(PhG, εHMR
tol ), such that ePOD

m ≤ εHMR
tol .

7 Wh
k := POD(AhG, εEPM

tol ), such that ePOD
k ≤ εEPM

tol .
8 Tk =EPM(Wh

k ,AhG, εint
tol, N

int
max,ΞG, Y

h
m, NH′)

9 return Y hm, Wh
k , Tk

Then we use the a priori bound for the EPM from Theorem 3.8 to compute k′, which yields Wk′

and apply again Algorithm 3.2.2 to determine Tk′ . Wk′ and Tk′ are updated at the end of each
loop overm in line 20 to include the information from the snapshots generated during lines 9 and 15.

Another main difference to Algorithm 2.3.1 is the usage of the QP-Indicator, which chooses the
number of quadrature points Q used in (3.51). To decide whether Q has to be increased or not we
apply a POD to Phc in line 6 (PhG in line 21) and compare the convergence rates of the eigenvalues of
the POD with ‖p̄H′l,k′‖2L2(Ω1D), l = 1, .., 10, where the coefficients p̄H

′

l,k′ ∈ XH′ solve (3.41). If the rates
do not coincide, and Q is smaller than Qmax, we increment Q by one. The QP-Indicator thus
enforces the adaptation of the reduction space Y hm and the collateral basis spaceWh

k to the reference
solution pH×h and the nonlinear operator A(pH×h) by increasing the amount of information on the
dynamics in the dominant direction in the spaces Y hm and Wh

k , if necessary. The initial value Q0 is
usually set to 1. We have Qmax = 3, as the fact, that G is a product-like hyper-rectangular grid,
prevents the applicability of Algorithm 3.3.2 to higher parameter dimensions (cf. §2.3.4).

Apart form the just stated differences and the additional computation of the snapshots AhG in line 9
and 15, and the POD for the computation of the small collateral basis {κk}kck=1 in line 19, Algorithm
3.3.2 follows the lines of Algorithm 2.3.1. Thus we use the cell indicators

η(g) := min
µ∈Ξg

∆k
m(µ) and σ(g) := diam(g) · ρ(g), (3.67)

where ρ(g) counts the number of loops in which the cell g has not been refined, since its last refine-
ment. We mark for fixed θ ∈ (0, 1] in each iteration the θNG cells g with the smallest indicators η(g)
and additionally the cells for which σ(g) lies above a certain threshold σthres. Then all cells marked
for refinement are bisected in each direction. For details see §2.3.4. We finally emphasize that
for each parameter value in ΞG we compute the snapshots Ph(µ) and Ah(µ), add these snapshots
to the already computed small bases {φl}m−1

l=1 and {κl}kcl=1, compute the (coarse) solution pH
′

m,k of
(3.41) and use the a posteriori error estimator to assess if adding the current snapshots yields a
good approximation. This closes the description of Algorithm 3.3.2.
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Algorithm 3.3.3: Adaptive-HMR-RB At first, the training sets ΞG0
and Ξc are formed

by sampling nΞ or nc parameter values from the uniform distribution over each g ∈ G0, where
nc > nΞ. Then Algorithm 3.3.2 is called to generate the discrete manifolds Y hM (3.65) and Wh

K

(3.66). Finally we apply a POD to determine the principal components {φ1, ..., φm} and {κ1, ..., κk}
of Y hM and Wh

K , which then span the reduction space Y hm and the collateral basis space Wh
k . We

recall that the POD spaces Y POD
l , l = 1, ...,m, are the solutions of the optimization problem

Y POD
l = arg inf

Zl⊂span{Y hM}

 1

nΞNG

∑
µ∈ΞG

inf
zl∈Zl

‖Ph(µ)− zl‖2L2(ω̂)

 , (3.68)

and that the POD-error is defined as

ePOD
m :=

 1

nΞNG

∑
µ∈ΞG

inf
zl∈Y POD

m

‖Ph(µ)− zl‖2L2(ω̂)

1/2

. (3.69)

The POD spaces W POD
l , l = 1, ..., k, and the POD-error ePOD

k are defined analogously. We refer to
§2.2.1 for further details. This completes the description of Algorithm 3.3.3.
A thorough study on the choice of the input parameters mmax, imax, nΞ, σthres and NH′ has been
done in §2.6 for linear PDEs. For the nonlinear case similar results are obtained in §3.6. As the
spaces Y hm andWh

k approximate the discrete manifolds Y hM andWh
K (cf. (3.68)), we will also validate

in §3.6 if they approximate the reference solution pH×h and the range of the operator A(pH×h)
with the same approximation quality.

3.4 A posteriori error estimates

The goal of this section is to derive a rigorous a posteriori error bound for the error between the
reduced solution pHm,k of (3.41) and a reference solution pH×h. To define the latter we consider the
subdivision T̂ := TH × τh of Ω̂, defined in §2.4.1, with elements Ti,j := Ti× τj , Ti ∈ TH and τj ∈ τh,
and the reference FE-space

V H×h :=
{
vH×h ∈ C0(Ω̂) | vH×h|Ti,j ∈ Qk,l, Ti,j ∈ T̂

}
⊂W 1,p(Ω), (3.70)

where Qk,l is defined as Qk,l := {
∑
j cjvj(x)wj(ŷ) : vj ∈ P1

k, wj ∈ P1
l } and P1

k(Ti) denotes the set
of polynomials of order ≤ k over Ti in one variable. As Y hm ⊂ Y h we have V Hm ⊂ V H×h (see §2.4.1).
The reference FE approximation of problem (3.1) reads:

Find pH×h ∈ V H×h : 〈A(pH×h), vH×h〉 = 〈f, vH×h〉 ∀ vH×h ∈ V H×h, (3.71)

or in short
Find pH×h ∈ V H×h : 〈F (pH×h), vH×h〉 = 0 ∀ vH×h ∈ V H×h, (3.72)

where 〈F (pH×h), vH×h〉 = 〈A(pH×h), vH×h〉 − 〈f, vH×h〉 for all vH×h ∈ V H×h. We aim at an
estimate of the type

c
(
‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω) + ‖PLk [F (pHm,k)]‖W−1,p(Ω)

)
(3.73)

≤ |pH×h − pHm,k|W 1,p(Ω) ≤ c
(
‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω) + ‖PLk [F (pHm,k)]‖W−1,p(Ω)

)
.
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However, if the considered operator A is not strongly monotone2, (3.73) is a local result [93, 121],
which means that (3.73) can only be obtained if pHm,k is close enough to the reference solution
pH×h [121]. To assess whether the latter is fulfilled we apply the Brezzi-Rappaz-Raviart (BRR)
theory [20,23]. This has been first applied in the context of Reduced Basis Methods in [122] for the
parametrized steady incompressible Navier-Stokes equations, where an affine parameter dependence
of the data functions has been assumed. In [27] the results of [122] have been extended to data
functions with a non-affine parameter dependence. Again a quadratically nonlinear parametrized
PDE has been considered.

3.4.1 An a posteriori error bound based on the Brezzi-Rapaz-Raviart
Theory

We start with defining the inf-sup stability factor and the continuity and the Lipschitz constant:

βp := inf
wH×h∈V H×h
|wH×h|W1,p(Ω) 6=0

sup
vH×h∈V H×h
|vH×h|W1,q(Ω) 6=0

〈F ′(pHm,k)wH×h, vH×h〉W−1,p(Ω)W 1,q(Ω)

|wH×h|W 1,p(Ω)|vH×h|W 1,q(Ω)
, (3.74)

γp := sup
wH×h∈V H×h
|wH×h|W1,p(Ω) 6=0

sup
vH×h∈V H×h
|vH×h|W1,q(Ω) 6=0

〈F ′(pHm,k)wH×h, vH×h〉W−1,p(Ω)W 1,q(Ω)

|wH×h|W 1,p(Ω)|vH×h|W 1,q(Ω)
, (3.75)

Lp := sup
wH×h∈B(pHm,k,R)

‖F ′(wH×h)− F ′(pHm,k)‖W 1,p(Ω),W−1,p(Ω)

|wH×h − pHm,k |W 1,p(Ω)

, (3.76)

where R is supposed to be sufficiently large and the index p comes from the space W 1,p(Ω). Next
we define a proximity indicator [27,122]

τkm,p :=
2Lp
β2
p

(‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω) + ‖PLk [F (pHm,k)]‖W−1,p(Ω)), (3.77)

which will be used to validate whether pHm,k is close enough to pH×h. We obtain the following result.

Proposition 3.11 (A rigorous a posteriori error bound). If τkm,p < 1 then there exists a unique
solution pH×h ∈ B(pHm,k,

βp
Lp

) of (3.71) and the error estimator

∆k
m,p :=

βp
Lp

(1−
√

1− τkm,p) (3.78)

satisfies
|pH×h − pHm,k|W 1,p(Ω) ≤ ∆k

m,p. (3.79)

Proof. The proof follows the ideas in [27], which in turn uses ideas of [23,122]. To simplify notations
we set for this proof 〈·, ·〉 := 〈·, ·〉W−1,p(Ω)W 1,q(Ω). We define a mapping T : V H×h → V H×h as

〈F ′(pHm,k)T (wH×h), vH×h〉 = 〈F ′(pHm,k)wH×h, vH×h〉−〈F (wH×h), vH×h〉 ∀vH×h ∈ V H×h. (3.80)

Due to the assumption τkm,p < 1, T is well-defined and wH×h is a fixed point of T if and only
if wH×h solves (3.71). To prove the existence of a fixed point we apply the Banach fixed point

2An operator A : V → V ∗ is called strongly monotone if for all u, v ∈ V there holds
〈A(u)−A(v), u− v〉V ∗,V ≥ ‖u− v‖2V .
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theorem. First we show that T is a contraction on B(pHm,k, ε), where ε will be determined later on.
For wH×h1 and wH×h2 in B(pHm,k, ε) we have〈

F ′(pHm,k)(T (wH×h1 )− T (wH×h2 )), vH×h
〉

=
〈
F ′(pHm,k)(wH×h1 − wH×h2 ), vH×h〉 − 〈F (wH×h1 )− F (wH×h2 ), vH×h

〉
=

〈∫ 1

0

{
F ′(pHm,k)− F ′(wH×h2 + t(wH×h1 − wH×h2 ))

}
(wH×h1 − wH×h2 ) dt, vH×h

〉
.

Using (3.74), (3.76) and that wH×h2 + t(wH×h1 − wH×h2 ) ∈ B(pHm,k, ε) for t ∈ [0, 1] we obtain

βp |T (wH×h1 )− T (wH×h2 )|W 1,p ≤ Lpε|wH×h1 − wH×h2 |W 1,p(Ω).

Hence T is contractive for ε ∈ [0,
βp
Lp

). Next, we proof that T maps the ball B(pHm,k, ε) onto itself
for certain values of ε. Let for that purpose wH×h be in B(pHm,k, ε). We get

〈F ′(pHm,k)(T (wH×h)− pHm,k), vH×h〉
=
〈
F ′(pHm,k)(wH×h − pHm,k), vH×h

〉
−
〈
F (wH×h)− F (pHm,k), vH×h

〉
−
〈
F (pHm,k), vH×h

〉
=
〈
F ′(pHm,k)(wH×h − pHm,k), vH×h

〉
−
〈
F (wH×h)− F (pHm,k), vH×h

〉
−
〈
F (pHm,k)− PLk [F (pHm,k)], vH×h

〉
−
〈
PLk [F (pHm,k)], vH×h

〉
=

〈∫ 1

0

{
F ′(pHm,k)− F ′(pHm,k + t(wH×h − pHm,k))

}
(wH×h − pHm,k) dt, vH×h

〉
−
〈
F (pHm,k)− PLk [F (pHm,k)], vH×h

〉
−
〈
PLk [F (pHm,k)], vH×h

〉
.

Again we employ (3.74) and (3.76) to obtain

βp |T (wH×h)−pHm,k|W 1,p(Ω) ≤
1

2
Lpε

2 +‖F (pHm,k)−PLk [F (pHm,k)]‖W−1,p(Ω) +‖PLk [F (pHm,k)]‖W−1,p(Ω).

Thus |T (wH×h) − pHm,k|W 1,p(Ω) is bounded by ε if ε ∈ [∆k
m,p, (βp/Lp)(1 +

√
1− τkm,p)] and the

assumptions of the Banach fixed point theorem are fulfilled for ε ∈ [∆k
m,p, (βp/Lp)), which yields

the assertion.

We remark that ∆k
m,p (3.78) only takes into account the error caused by the approximation of

F (pHm,k) by PLk [F (pHm,k)], while the approximation PLfkf [F ′(pHm,k)] of the Fréchet derivative F ′(pHm,k)

does not occur. However, writing down Newton’s method for both pHm,k and pH×h it is easy to see
that in general the quality of the approximation of the Fréchet derivative only affects the speed of
convergence of Newton’s method but not the error in the residual. It is therefore reasonable that
∆k
m,p only contains the term ‖F (pHm,k) − PLk [F (pHm,k)]‖W−1,p(Ω) to measure the error due to the

approximation of the nonlinear operator. Next, we analyze as in [27] the effectivity ∆k
m,p/|pH×h −

pHm,k|W 1,p(Ω) of the error bound (3.78).
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Proposition 3.12 (Effectivity). Let us assume that

‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω) ≤ cerr‖PLk [F (pHm,k)]‖W−1,p(Ω) (3.81)

for cerr ∈ [0, 1) and set

Cerr :=
1− cerr
1 + cerr

.

If τkm,p ≤ 1
2Cerr we have

∆k
m,p ≤ 4C−1

err

γp
βp
|pH×h − pHm,k|W 1,p(Ω). (3.82)

Proof. Again we simplify notations by setting for this proof 〈·, ·〉 := 〈·, ·〉W−1,p(Ω)W 1,q(Ω). It is easy
to see (cf. [27]) that (3.81) implies

‖PLk [F (pHm,k)]‖W−1,p(Ω) + ‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω)
(3.83)

≤ C−1
err

(
‖PLk [F (pHm,k)]‖W−1,p(Ω) − ‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω)

)
.

The following estimate differs from [27], as in [27] a quadratic nonlinear PDE in a Hilbert space is
considered and the proof of the effectivity of the error bound heavily relies on these two assumptions.
As τkm,p ≤ 1

2Cerr ≤ 1 we can use Proposition 3.11 and get〈
F (pHm,k)− PLk [F (pHm,k)], vH×h

〉
+
〈
PLk [F (pHm,k)], vH×h

〉
= −〈F ′(pHm,k)(pH×h − pHm,k), vH×h〉

+

〈∫ 1

0

{
F ′(pHm,k)− F ′(pHm,k + t(pH×h − pHm,k))

}
(pH×h − pHm,k) dt, vH×h

〉
.

Employing (3.75) and (3.76) we obtain similarly to [121]

‖PLk [F (pHm,k)] + F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω)

≤ γp |pH×h − pHm,k|W 1,p(Ω) +
Lp
2
|pH×h − pHm,k|2W 1,p(Ω)

and thus

‖PLk [F (pHm,k)]‖W−1,p(Ω) − ‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω)

≤ γp |pH×h − pHm,k|W 1,p(Ω) +
Lp
2
|pH×h − pHm,k|2W 1,p(Ω).

(3.83) then yields

‖PLk [F (pHm,k)]‖W−1,p(Ω) + ‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω)
(3.84)

≤ C−1
err

(
γp |pH×h − pHm,k|W 1,p(Ω) +

Lp
2
|pH×h − pHm,k|2W 1,p(Ω)

)
.

As τkm,p ≤ 1 we have 1−
√

1− τkm,p ≤ τkm,p and thus obtain [27]

∆k
m,p =

βp
Lp

(
1−

√
1− τkm,p

)
≤ βp
Lp
τkm,p

(3.85)
=

2

βp

(
‖PLk [F (pHm,k)]‖W−1,p(Ω) + ‖F (pHm,k)− PLk [F (pHm,k)]‖W−1,p(Ω)

)
.
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Following the ideas in [27] we invoke (3.84), (3.85) and Proposition 3.11 to get

1

2
Cerrβp∆

k
m,p ≤ γp |pH×h − pHm,k|W 1,p(Ω) +

Lp
2
|pH×h − pHm,k|2W 1,p(Ω)

≤ γp |pH×h − pHm,k|W 1,p(Ω) +
1

2
∆k
m,p(Lp∆

k
m,p).

Using (3.85) again yields

1

2
Cerrβp∆

k
m,p ≤ γp |pH×h − pHm,k|W 1,p(Ω) +

1

2
∆k
m,pβpτ

k
m,p,

and thus as τkm,p ≤ 1
2Cerr

∆k
m,p ≤ 4C−1

err

γp
βp
|pH×h − pHm,k|W 1,p(Ω).

Note that the terms ‖F (pHm,k)−PLk [F (pHm,k)]‖W−1,p(Ω) and ‖PLk [F (pHm,k)]‖W−1,p(Ω) are computable
as V H×h is a finite dimensional space. Alternatively, as in §2.4.2, the dual norms can be estimated
by a localized residual type estimator (cf. [105]). To obtain the required interpolation estimate
for the terms |vH×h − vHm |W 1,p(Ω) we propose to replace vH×h in the latter term by vHm′ with
m′ > m. As the original problem (3.1) has been stated in the space H1(Ω) we finally derive an
error bound for |pH×h − pHm,k|H1(Ω) for problems where F has to be considered as a mapping from
W 1,p(Ω) onto W−1,p(Ω) for p > 2. As in [23] we assume that for all z ∈ B(pHm,k, R) := {z ∈
V H×h : |z − pHm,k|W 1,p(Ω) ≤ R}, F ′(z) : W 1,p(Ω) → W−1,p(Ω) can be extended as an operator
in L(H1(Ω), H−1(Ω)). In general this can be achieved by applying the Hahn-Banach theorem.
Furthermore, we require that

0 < β2 := inf
wH×h∈V H×h
|wH×h|H1(Ω) 6=0

sup
vH×h∈V H×h
|vH×h|H1(Ω) 6=0

〈F ′(pHm,k)wH×h, vH×h〉
|wH×h|H1(Ω)|vH×h|H1(Ω)

, (3.86)

and that there exists constants γ2 and L2 such that

〈F ′(pHm,k)wH×h, vH×h〉 ≤ γ2|wH×h|W 1,p(Ω)|vH×h|H1(Ω), (3.87)

‖F ′(vHm)− F ′(wHm)‖H1(Ω),H−1(Ω) ≤ L2 | vHm − wHm |W 1,p(Ω). (3.88)

Following the idea of the proof of Theorem 6.4 in [23] and taking into account the additional terms
due to the EPM, we obtain under the assumptions of Proposition 3.11

|pH×h − pHm,k|H1(Ω)

≤ 1

β2

(
L2|pH×h − pHm,k|H1(Ω)|pH×h − pHm,k|W 1,p(Ω)

+ ‖F (pHm,k)− PLk [F (pHm,k)]‖H−1(Ω) + ‖PLk [F (pHm,k)]‖H−1(Ω)

)
(3.89)

≤ 1

β2

(
L2|pH×h − pHm,k|H1(Ω) ∆k

m,p

+ ‖F (pHm,k)− PLk [F (pHm,k)]‖H−1(Ω) + ‖PLk [F (pHm,k)]‖H−1(Ω)

)
.
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As this bound requires the computation of the dual norms and the appearing constants both in the
W 1,p- and the H1-norm, we propose another ansatz. Due to the finite dimensionality of V H×h a
scaling argument yields the inverse estimate

| vH×h |W 1,p(Ω) ≤ ch| vH×h |H1(Ω) where ch := (H2 + h2)
2−p
2p . (3.90)

Based on that we define the proximity indicator

τkm,2 :=
2L2ch
β2

2

(‖F (pHm,k)− PLk [F (pHm,k)]‖H−1(Ω) + ‖PLk [F (pHm,k)]‖H−1(Ω)) (3.91)

and obtain the following result.

Proposition 3.13 (An error bound for the H1-norm). Let τkm,2 < 1 and (3.86), (3.87) and (3.88)
be fullfilled. Then there exists a unique solution pH×h ∈ B(pHm,k,

β2

L2ch
) of (3.71). If we further

assume that
‖F (pHm,k)− PLk [F (pHm,k)]‖H−1(Ω) ≤ cerr‖PLk [F (pHm,k)]‖H−1(Ω) (3.92)

for cerr ∈ [0, 1) and τkm,2 ≤ 1
2Cerr, where Cerr := (1− cerr)/(1 + cerr), the error estimator

∆k
m :=

β2

L2ch
(1−

√
1− τkm,2) (3.93)

satisfies
Cerr

4

β2

γ2ch
∆k
m ≤ |pH×h − pHm,k|H1(Ω) ≤ ∆k

m. (3.94)

Proof. Using (3.90) the proof is completely analogous to the proofs of Proposition 3.11 and 3.12.

As in §2.4.1 we use the Riesz representative to compute ‖PLk [F (pHm,k)]‖H−1(Ω) and ‖F (pHm,k) −
PLk [F (pHm,k)]‖H−1(Ω). As assembling 〈F (pHm,k) − PLk [F (pHm,k)], vH×h〉 requires the computation of
full dimensional integrals due to the nonlinearity of F , we invoke the a posteriori error bound
for the EPM derived in Proposition 3.9 to replace F (pHm,k) by PL

′

k′ [F (pHm,k)]. We define the Riesz
representatives RH×hm and EH×hk as the solutions of

(RH×hm , vH×h)H1 = (PLk [F (pHm,k)], vH×h)H1 ∀vH×h ∈ V H×h, (3.95)

and

(EH×hk , vH×h)H1 = (PL
′

k′ [F (pHm,k)]− PLk [F (pHm,k)], vH×h)H1 ∀vH×h ∈ V H×h, (3.96)

respectively. Here, (·, ·)H1 denotes the inner product associated with the H1-half norm. We thus
obtain

|RH×hm |H1(Ω) = ‖PLk [F (pHm,k)]‖H−1(Ω) (3.97)

and | EH×hk |H1(Ω) = ‖PL
′

k′ [F (pHm,k)]− PLk [F (pHm,k)]‖H−1(Ω). (3.98)

By doing so we maintain both reliability and effectivity of our error bound (3.93). To implement
the latter, we employ the a priori bound (3.31) for the EPM to verify (3.92) without computing
〈F (pHm,k), vH×h〉 and then use the following modification of (3.83)

‖PLk [F (pHm,k)]‖H−1(Ω) + ‖PL
′

k′ [F (pHm,k)]− PLk [F (pHm,k)]‖H−1(Ω)

≤ C−1
err

(
‖PLk [F (pHm,k)]‖H−1(Ω) − ‖F (pHm,k)− PLk [F (pHm,k)]‖H−1(Ω)

)
.
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Note that due to definition of the snapshot set Wh
K (3.66), the a priori bound (3.31) for the EPM

is only applicable, if Wh
K is a good approximation of the set {A(pH×h(µ, ŷ)), µ ∈ Ξtrain}. This can

be verified by comparing the convergence rates of the eigenvalues {λEPM
l }kPOD

l=1 of the POD applied
to WH

K and the coefficients ‖
∫
ω̂
IL[A(pHm,k)]κl‖2L2(Ω1D), l = 1, ..., kPOD. If the convergence rates do

not coincide we propose to replace {λEPM
l }kPOD

l=1 by ‖
∫
ω̂
IL[A(pHm,k)]κl‖2L2(Ω1D), l = 1, ..., kPOD, in

the a priori bound (3.31) for the EPM. This requires only the computation of kPOD − k additional
integrals in y-direction. As the behavior of the coefficients

∫
ω̂
IL[A(pHm,k)]κl strongly influences the

convergence behavior of PLk [A(pHm,k)] for increasing k we expect that (3.31) remains a reliable a
priori bound when substituting {λEPM

l }kPOD
l=1 by ‖

∫
ω̂
IL[A(pHm,k)]κl‖2L2(Ω1D), l = 1, ..., kPOD. This is

demonstrated by the numerical experiments in §3.6.

Remark 3.14. Instead of using the Riesz representative to compute ‖PLk [F (pHm,k)]‖H−1(Ω), the
latter can be estimated by a localized residual type estimator (cf. [105]). However, as the Riesz
representative yields the optimal estimate and exhibits the same scaling in NHnh as localized residual
type estimators, we have chosen to employ the former.

We remark that for small inf-sup stability factors, which often occur in subsurface flow, the re-
quirement τkm,2 < 1 is difficult to fulfill. In case τkm,2 > 1 the proximity indicator can be used as an
error estimator, which yields however a bad effectivity constant due to the factor β−2

2 . We therefore
derive additionally a less sharper error bound which is also computable for τkm,2 > 1.

Corollary 3.15. Under the assumptions of Proposition 3.13 the error estimator

∆k
m,2 :=

2

β2

(
‖F (pHm,k)− PLk [F (pHm,k)]‖H−1(Ω) + ‖PLk [F (pHm,k)]‖H−1(Ω)

)
(3.99)

satisfies
|pH×h − pHm,k|H1(Ω) ≤ ∆k

m,2. (3.100)

If ∆k
m,2 ≤

2γ2

L2
we obtain

∆k
m,2 ≤ 4C−1

err

γ2ch
β2
|pH×h − pHm,k|H1(Ω). (3.101)

Proof. (3.100) is the analogon of (3.85) for the H1-norm. To show (3.101) we estimate as in the
proof of Proposition 3.12

1

2
Cerrβ2∆k

m,2 ≤ ch γ2 |pH×h − pHm,k|H1(Ω) +
L2ch

2
|pH×h − pHm,k|H1(Ω)∆

k
m,2.

Inspired by [121] we use the assumption ∆k
m,2 ≤

2γ2

L2
to obtain

1

2
Cerrβ2∆k

m,2 ≤ 2ch γ2 |pH×h − pHm,k|H1(Ω)

and thus the claim.

Remark 3.16. Apart from the additional term for the EPM the error bound ∆k
m,2 coincides with

the bound proposed in Proposition 2.1 in the work by Verfürth [121], where |pH×h − pHm,k|H1(Ω) ≤
min{ β2

L2ch
, 2γ2

L2
} is assumed for the derivation of ∆k

m,2. Although this assumption cannot be verified,
it is less strict than requiring τkm,2 < 1, and therefore easier to fulfill.
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Finally, we mention that in a very recent work by Dolejsí, Ern and Vohralík [41] on a posteriori
error estimation for possibly degenerate nonlinear advection-diffusion equations, is proposed to use
an estimate for the dual norm of the residual as an error bound, and to omit the inf-sup stability
factor and the Lipschitz constant. Based on that we define a third error estimator ∆k

m,res as

∆k
m,res := ‖F (pHm,k)− PLk [F (pHm,k)]‖H−1(Ω) + ‖PLk [F (pHm,k)]‖H−1(Ω). (3.102)

In §3.6 we will compare ∆k
m (3.93), ∆k

m,2 (3.99) and ∆k
m,res(3.102) also for very small inf-sup

stability factors.

3.4.2 Computation of the inf-sup stability factor and the Lipschitz con-
stant

We close this section by addressing the computation of the inf-sup stability factor β2 and the
Lipschitz constant L2. As for many problems, including the considered model problem (3.3), global
bounds for the Lipschitz constant L2 are available, we will focus on the determination of the inf-sup
stability factor β2. Inspired by the idea in [127] to employ a matrix-DEIM approximation of the
jacobian for the computation of the Lipschitz constant of the considered nonlinear operator, we
propose to use the EPM to approximate β2. Precisely, we use the a posteriori error bound for the
EPM derived in Proposition 3.9, to find k′ such that PL

′

k′ [F ′(pHm,k)] approximates F ′(pHm,k) up to a
given tolerance and define

βapp
2 := inf

wH×h∈V H×h
|wH×h|H1(Ω) 6=0

sup
vH×h∈V H×h
|vH×h|H1(Ω) 6=0

〈PL′k′ [F ′(pHm,k)]wH×h, vH×h〉
|wH×h|H1(Ω)|vH×h|H1(Ω)

. (3.103)

βapp
2 equals the smallest singular value of the jacobian associated with 〈PL′k′ [F ′(pHm,k)]wH×h, vH×h〉.

Thus we determine the latter to compute βapp
2 . Theorem 3.8 yields the convergence of PL

′

k′ [F ′(pHm,k)]

to F ′(pHm,k) as k′ → K, which implies βapp
2 → β2 as k′ → K. Although we therefore expect βapp

2

to be a very good approximation of β2, which is demonstrated by the numerical experiments in
§3.6, it is not clear that βapp

2 is indeed a lower bound of β2. In the RB framework the successive
constraint method introduced in [65] is in wide use for the determination of a parametric lower
bound for the inf-sup stability factor, which is efficiently computable in the online stage by solving
a small optimization problem. However, this approach is not applicable in our context as (3.103)
does not depend on one parameter value µ ∈ D but on all "parameter values" x ∈ Ω1D at once.

3.5 Analysis of the computational costs of the HMR-RB ap-
proach employing the EPM

This section is devoted to the comparison of the total computational costs for computing the solution
pHm,k of (3.41) using the HMR-RB approach and the EPM with the computation of the reference
solution pH×h of (3.71). We consider the same FE-spaces as used for the numerical experiments in
§3.6, namely,

XH =
{
vH ∈ C0(Ω1D) : vH |Ti ∈ P1

1(Ti), Ti ∈ TH
}
, Y h = {vh ∈ C0(ω̂) : vh|τj ∈ P1

1(τj), τj ∈ τh},

and V H×h = {vH×h ∈ C0(Ω̂) : vH×h|Ti,j ∈ Q1,1, Ti,j ∈ T̂}. The application of the EPM allows us
to decompose the computation of the discrete reduced solution pHm,k in a nh-dependent offline and
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a nh-independent online stage, where the total computational costs for pHm,k comprise both offline-
and online costs. Offline we construct the reduction space Y hm and the collateral basis space Wh

k

and precompute the integrals in transverse direction occurring in (3.41). Afterwards we solve (3.41)
online with Newton’s method. In detail we arrive at the following total computational costs.

(i) Offline stage: Construction of Y hm and Wh
k by Algorithm 3.3.3 (Adaptive-HMR-RB): First,

we assemble the integrals for the source term in O(max{NH , nh}) operations. In the adap-
tive refinement step we compute the set of snapshots Ph(µ), µ ∈ Ξtrain, by Newton’s method
(3.54), where the computational costs are dominated by the assembling of the jacobian, which
takes O(ntrainnh) operations. As the jacobian is tridiagonal, the linear system of equations in
(3.54) can be solved by a Thomas algorithm in O(ntrainnh) operations [107]. To compute the
corresponding coarse reduced solutions pH

′

m,k of (3.41) we have used an inexact Newton method
(3.43) with a preconditioned stabilized bi-conjugate gradient (bi-cgstab) method, where the
latter scaled linearly for the considered test cases in §3.6. The linear system of equations
in (3.43) can be assembled in O(ntrainNH′) operations, which equals the number of opera-
tions required to compute pH

′

m,k. In order to compute ∆k
m (3.93) we apply a preconditioned

conjugate gradient (pcg) method for the computation of the Riesz representatives (3.95) and
(3.96) in O(ntrainnhNH′) operations and compute the required constants in O(ntrainnhNH′)
operations. The latter is dominated by the determination of the inf-sup stability factor, which
necessitates the assembling of the jacobian and the subsequent computation of its smallest
singular value. The latter can be identified by an inverse iteration in O(ntrainNH′nh) opera-
tions as the jacobian is sparse [107].

The computational costs for computing the richer collateral basis space Wh
k′ with Algorithm

3.3.1 EPM-Indicator account for O(nh) operations for the application of the EIM 3.2.1,
O(ntrainnhk) operations for performing the Algorithm 3.2.2 EPM, dominated by the compu-
tation of the integration error (3.28), and the costs for the POD to determine the complete
collateral basis space WkPOD . The computational costs of the QP-indicator mainly consist
of the costs for the application of the POD to compute the reduced basis. The costs for all
PODs in Algorithm 3.3.2 AdaptiveTrainExtension, including the ones to determine the
coarse bases at the end of each loop over m, are dominated by the costs for the PODs applied
to the discrete manifolds Y hM and Wh

K in Algorithm 3.3.3 Adaptive-HMR-RB to compute
the reduction space Y hm and the collateral basis space Wh

k . The PODs in Algorithm 3.3.3
require O(n2

trainnh) operations for the formation of the correlation matrixes and O(n3
train)

operations for the solution of the eigenvalue problems. Finally, we compute the integrals in
the transverse direction in (3.43), depending on the basis functions {φl}ml=1 and {κl}kl=1, in
O(km2nh) operations.

(ii) Online stage: Solution of the coupled system of nonlinear 1D PDEs (3.41): We solve (3.41)
with an inexact Newton’s method, applying the bi-cgstab method to solve the linear system of
equations in (3.43), where the bi-cgstab method takes O(m2NH) operations. The assembling
of the jacobian in each Newton step dominates the costs for computing pHm,k. It requires
the computation of the integrals in the dominant direction in O(LNH) operations and the
subsequent assembling of the matrix in O(km2NH) operations.

As in §2.5 a threshold can be detected in the offline costs due to the mesh size independent fac-
tor ntrain. Choosing NH′ constant and thus independently of NH the offline costs add up to
O(ntrainnh) operations and we obtain a linear scaling of the HMR-RB approach using the EPM
in max{nh, NH}. The numerical experiments in §3.6 confirm the latter. The reference solution
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Figure 3.1: The nonlinear function d(p) (a) and its derivatives d′(p) (b) and d′′(p) (c) for c0 = 0.1 and c4 = 36

(solid) and c4 = 12 (dashed).

pH×h of (3.71) is also computed by an inexact Newton method, which uses the bi-cgstab method
to solve the linear system of equations, where the latter required O(N2.75

H ) operations. Although
the jacobian can be assembled in O(NHnh) operations, it clearly dominated the computational
costs for the computation of pH×h in our numerical experiments §3.6. This is due to the fact that
the assembling necessitates the computation of a two-dimensional integral for each element, which
is very expensive due to the required evaluations of the nonlinear operator. Based on the above
analysis of the total theoretical runtimes we expect that for a sufficiently small sample size ntrain
compared to NH and nh, the HMR-RB approach outperforms the bilinear FEM beyond a certain
mesh size. This is confirmed by the numerical experiments in §3.6.

3.6 Numerical Experiments
In this section we demonstrate the applicability of the HMR-RB approach using the EPM to
nonlinear PDEs by investigating its convergence behavior and computational efficiency. Moreover
we analyze the effectivity of the a posteriori error estimators derived in §3.4, including a validation
of the employed a priori and a posteriori bounds for the EPM stated in Theorem 3.8 and Proposition
3.9. For this purpose we consider the model problem (3.3)

Find p ∈ H1
0 (Ω) :

∫
Ω

d(p)∇p∇v dxdy =

∫
Ω

sv dxdy ∀v ∈ H1
0 (Ω), (3.104)

where s ∈ L2(Ω) and

d(p) :=
36

c4

p2(1− p)2

(p3 + 12
c4

(1− p)3)2
+ c0. (3.105)

Here, c0 is the same constant as in (3.4) and c4 weights the contributions of the terms p3 and
(1− p)3. Furthermore we have d(p) = f ′(p) where f(p) = p3

12/(
p3

12 + (1−p3)
c4

) has been chosen in [85]
as the fractional flow function of the wetting fluid in the model for immiscible two-phase flow in
porous media considered in [85]. The function d(p) satisfies (3.4), where the boundedness can only
be obtained locally, as d(p), d′(p) and d′′(p), depicted in Fig. 3.1, may have singularities for some
choices of c4. In the first test case we prescribe again the analytical solution of test case 1 in
§2.6 to compare the convergence rates of the HMR-RB approach for linear and nonlinear prob-
lems. Also in the nonlinear case, the HMR-RB approach, no matter if the EPM is applied or
not, converges exponentially fast in the model order m. However, the convergence rate is worse
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than for the linear problem. In the other test case we prescribe a discontinuous source term s
resulting in a solution with little spatial regularity both in the dominant and transverse direction.
Still, we observe an exponential convergence rate of the HMR-RB approach using the EPM in the
model order m. Both test cases have been computed employing linear FE in x- and y-direction, i.e.
XH =

{
vH ∈ C0(Ω1D) : vH |Ti ∈ P1

1(Ti), Ti ∈ TH
}
, Y h =

{
vh ∈ C0(ω̂) : vh|τj ∈ P1

1(τj), τj ∈ τh
}
,

and V H×h = {vH×h ∈ C0(Ω̂) : vH×h|Ti,j ∈ Q1,1, Ti,j ∈ T̂}, using equidistant grids in x- and
y-direction. We have only applied a simplified version of Algorithm 3.3.3 Adaptive-HMR-RB in
the numerical experiments, as we have chosen the number of quadrature points employed in the
parameter dependent 1D problem (3.51) a priori. However, a comparison of the performance of the
HMR-RB approach using 1 or 2 quadrature points in (3.51) is provided for the second test case.
Furthermore we have applied the EPM 3.2.2 with N int

max = 0 and we thus obtain k = L in (3.29).
We have used the a priori bound (B.4). As for c4 = 36, d has a singularity near p = −2.26, we
could not apply the global constants γ2 and L2 of §3.4.2. Hence we computed local approximations
by evaluating d, d′ and d′′ in the discrete reduced solution pHm,k of (3.41). Unless otherwise stated
we have employed the error bound ∆k

m (3.93) in the Algorithm 3.3.3 Adaptive-HMR-RB.

For the efficient assembling of the correlation matrix of the POD and thus the efficient computation
of the collateral basis spaces Wh

k (3.66), we employed the projector Ph : L2(ω̂)→ Y h, satisfying∫
ω̂

Ph[Ah](µ)υh =

∫
ω̂

Ah(µ)υh ∀υh ∈ Y h, µ ∈ Ξ1D, (3.106)

and set Ãh1 (µ) = Ph[Ah1 ](µ), Ãhf,1(µ) = Ph[Ahf,1](µ) and Ãhf,3(µ) = Ph[Ahf,3](µ), where Ah1 (µ),
Ahf,1(µ) and Ahf,3(µ) have been defined in (3.63) and (3.64). Moreover, we define Ãh2 (µ)|τj =
1
h

∫
τj
Ah2 (µ) and Ãhf,2(µ)|τj = 1

h

∫
τj
Ahf,2(µ) for all τj ∈ τh. Note that we have ‖Ãh(µ)−Ah(µ)‖L2(ω̂) ≤

h‖Ah‖H1(ω̂) for A(µ) = Ah1 (µ),Ahf,1(µ),Ahf,3(µ) [114] and otherwise ‖Ãh(µ) − Ah(µ)‖L2(ω̂) → 0,
as h → 0, as Ãh2 (µ) and Ãhf,2(µ) are step functions. We designate with Wh

K,1 and Wh
K,2 the dis-

crete operator manifolds (3.66) and with WH
k,1 and Wh

k,2 the collateral basis spaces associated with
the projected parameter dependent snapshots Ãh1 (µ) and Ãh2 (µ). Analogously Wh

Kf ,1
, Wh

Kf ,2
, and

Wh
Kf ,3

denote the discrete manifolds and WH
kf ,1

, Wh
kf ,2

, and Wh
kf ,3

the collateral basis spaces, cor-
responding to the projected parameter dependent snapshots Ãhf,1(µ), Ãhf,2(µ), and Ãhf,3(µ).

Setting ekm := pH×h− pHm,k, where pH×h solves (3.71) and pHm,k (3.41), we define the relative model
error in the H1-half or L2-norm as

|ekm|relH1 := |ekm|H1/|pH×h|H1 and ‖ekm‖relL2(Ω) := ‖ekm‖L2(Ω)/‖pH×h‖L2(Ω).

Analogous to §2.6 the relative total error |e|relH1 is either defined as |e|relH1 := |p − pHm,k|H1/|p|H1 if
the full solution p of (3.104) is available as in test case 1 or as |e|relH1 := |pfine − pHm,k|H1/|pfine|H1 ,
where pfine denotes a very finely resolved bilinear FE solution. We distinguish between the PODs
for the HMR approach and the EPM by denoting with ePOD

m the POD-error associated with the
former and by ekPOD the POD-error corresponding to the latter. We further classify the POD-error
for the EPM by introducing ek,1POD and ek,2POD, which are associated to the respective collateral basis
spaces Wh

k,1 and Wh
k,2 defined at the beginning of this paragraph. Accordingly and analogous to

§2.6 we set ēL
2

m := (
∑M
j=m+1 ‖p̄Hj,k‖2L2(Ω1D))

1/2 and ekL2 := (
∑K
j=k+1 ‖

∫
ω̂
IL[A(pHm,k)]κk‖2L2(Ω1D))

1/2,
where M = dim(Y hM ), K = dim(Wh

K), and IL[·] has been defined in (3.30). We also further specify
the latter by introducing ek,1L2 and ek,2L2 , which are associated with Wh

k,1 and Wh
k,2. Furthermore
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Figure 3.2: Test case 1: Comparison of the behavior of the relative model error |em|relH1(Ω)
= |pH×h −

pHm|H1(Ω)/|pH×h|H1(Ω) (a) and the relative total error for |e|rel
H1(Ω)

= |p − pHm|H1(Ω)/|p|H1(Ω) (b) for the linear
problem (test case 1 in §2.6) and the nonlinear problem (3.104); Comparison of the behavior of the relative model
error when applying the EPM (|ekm|relH1(Ω)

) or not (|em|relH1(Ω)
) (c).

we denote with ∆k,rel
m , ∆k,rel

m,2 and ∆k,rel
m,res the relative error estimators ∆k,rel

m := ∆k
m/|pH×h|H1 ,

∆k,rel
m,2 := ∆k

m,2/|pH×h|H1 and ∆k,rel
m,res := ∆k

m,res/|pH×h|H1 , where ∆k
m, ∆k

m,2 and ∆k
m,res have been

defined in (3.93), (3.99) and (3.102), respectively. The relative proximity indicator τk,relm,2 is defined
as τk,relm,2 := τkm,2/|pH×h|H1 , where τkm,2 has been introduced in (3.91). For the validation of the
effectivity of the error bounds, we finally shorten the notation by setting ‖emod‖ := ‖PLk [F (pHm,k)]‖,
‖eEPM‖ := ‖PL′k′ [F (pHm,k)] − PLk [F (pHm,k)]‖ and ‖eexEPM‖ := ‖F (pHm,k) − PLk [F (pHm,k)]‖ either for the
H−1- or the L2-norm. The implementation of Algorithm 3.3.3 Adaptive-HMR-RB has been done
in MATLAB. All computations have been performed on a computer with an Intel Core i7 (4 cores)
with 2.8 GHz.

Test case 1

First, we investigate the convergence behavior of the HMR-RB approach for an analytical solution
p(x, y) = y2(1− y)2(0.75− y)x(2−x) exp(sin(2πx)), which has already been considered in test case
1 in §2.6 and originally in [48,102] solving the Poisson problem. Again we choose Ω = (0, 2)× (0, 1)
and c0 = 0.1 and c4 = 36 in (3.105). We compare the convergence behavior of the relative model
error |em|relH1(Ω) = |pH×h − pHm|H1(Ω)/|pH×h|H1(Ω) for the linear case — pHm solves (2.12) — with
the nonlinear case, where pHm is the solution of the discrete reduced problem (3.12) (without using
the EPM). We observe an exponential convergence rate of |em|relH1(Ω) also for the nonlinear problem
(3.104), which is worse than the one for the Poisson problem (Fig. 3.2a). Nevertheless, also for
the nonlinear case still 9 basis functions are sufficient to achieve |em|relH1(Ω) ≤ 10−3 (Fig. 3.2a).
Furthermore, at least for the considered mesh sizes the effects on the behavior of the relative total
error |e|relH1 = |p − pHm|H1/|p|H1(Ω) due to the deterioration of the model convergence rate are very
small (Fig. 3.1b). Applying the EPM preserves the convergence rate of the model error |em|relH1(Ω)

(Fig. 3.1c) until a so-called EPM-plateau (see [43,118] for the EIM-plateau) is reached. The model
error enters an EPM-plateau if the approximation properties of the collateral basis spaceWh

k prevent
a further reduction of the model error, i.e. k is chosen too small compared to m, and the nonlinear
operator is hence not approximated accurate enough. Our experiments showed that the tolerance
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Figure 3.3: Test case 1: Comparison of the convergence behavior of |ekm|relH1 for EPM-tolerances εEPM
tol =

10−4, 10−5, 10−7 (a), and for εEPM
tol = 10−7: |e|rel

H1 for different mesh sizes and |ekm|relH1 for H = 0.005 (b),

‖ekm‖relL2(Ω)
, ePOD
m and ēL

2

m (c) and λm and ‖p̄Hm,k‖
2
L2(Ω1D)

(d) for H = 0.005; Convergence behavior of |ekm|relH1

for increasing model order m and collateral basis size k for H = 0.01 (e); all plots NH′ = 10.

of the POD for the EPM εEPM
tol should be set to εEPM

tol = ctolε
HMR
tol with ctol ∈ [10−4, 10−3], to ensure

that k is chosen large enough. However, even if Wh
k is spanned by all linear independent functions

Ah(µ) ∈ Wh
K (3.66), a small error cannot be avoided due to the projection of the snapshots onto

the spaces of piecewise linear or piecewise constant functions and other numerical constraints. Note
that the level of the EPM-plateau lowers for decreasing H and lies for all considered mesh sizes well
below the total error |e|relH1 (Fig. 3.1b,3.1c). Hence it does not affect the latter. Finally, we remark
that in all computations for the plots in Fig. 3.1 we used the exact error in the application of the
Algorithms 2.3.2 Adaptive-HMR-POD or 3.3.3 Adaptive-HMR-RB (Fig. 3.1c) to assess only
the influence of the nonlinearity in Fig. 3.1a and Fig. 3.1b or the application of the EPM in Fig. 3.1c.

Comparing the convergence behavior of |ekm|relH1(Ω) for different POD-tolerances for the EPM in
Fig. 3.3a, we observe that for εEPM

tol = 10−4, 10−5 the error can even increase when entering the
EPM-plateau. For εEPM

tol = 10−7 the error stagnates in the EPM-plateau and the level of the plateau
decreases uniformly for dropping mesh sizes (Fig. 3.3a). Fig. 3.3e illustrates the error convergence of
|ekm|relH1(Ω) for a simultaneous increase of the model order m and collateral basis size k for H = 0.01.
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Figure 3.4: Test case 1: Comparison of ekPOD and ek
L2 for H = 0.005 and NH′ = 10 for the collateral basis spaces

WH
k,1, W

h
k,2 and WH

kf ,1
, Wh

kf ,2
, and Wh

kf ,3
.

Again we see that for small k the scheme might even get unstable if m exceeds a certain limit, which
is however not the case for higher values of k. Moreover, we observe that if the approximation of
the nonlinear operator is good enough a further increase of k does not reduce |ekm|relH1(Ω), if m is kept
fixed. Choosing εEPM

tol = 10−7 and thereby ensuring that the approximation properties of Wh
k are

sufficient, we finally see that for the considered mesh sizes the EPM-plateau has no effect on the
relative total error |e|relH1(Ω) (Fig. 3.3b). If we compare ‖em‖relL2(Ω), e

POD
m (3.69) and ēL

2

m for H = 0.005
in Fig. 3.3c, we detect that all three quantities exhibit the same exponential convergence rate until
‖em‖relL2(Ω) reaches the EPM-plateau. As also the convergence behavior of the eigenvalues of the
POD (3.68) λm and of the coefficients ‖p̄Hm,k‖2L2(Ω1D) coincide (Fig. 3.3d), we conclude that for the
present test case the convergence behavior of the POD transfers to the coefficients ‖p̄Hm,k‖2L2(Ω1D),

ēL
2

m and to the model error ‖ekm‖relL2(Ω),|e
k
m|relH1(Ω). Thus we infer that the discrete solution manifold

Y hM (3.65) and the reference solution pH×h are approximated with the same approximation accuracy
by the reduction space Y hm. Note that due to the coincidence of the convergence rates of λm and
‖p̄Hm,k‖2L2(Ω1D) (Fig. 3.3d), the QP-Indicator introduced in §3.3.5 would not have increased the
number of quadrature points used in (3.48). To assess the approximation quality of the collateral
basis spaces Wh

k,1, W
h
k,2, W

h
kf ,1

, Wh
kf ,2

, and Wh
kf ,3

we finally compare in Fig. 3.4 the convergence
rates of the respective POD-error ekPOD and ekL2 . We observe that the rates for the approximation
of d(pHm,k)∂xp

H
m,k, d

′(pHm,k)∂xp
H
m,k and d(pHm,k) coincide perfectly. The deviation for the other two

could possibly be explained by the fact, that we have projected the snapshots Ah2 (y;µ) (3.63) and
Ahf,2(y;µ) (3.64) onto the space of piecewise constant functions, which yields a worse convergence
behavior for decreasing h as the projection onto the space Y h. As apart from this deviation the
convergence rates coincide, we nevertheless conclude that the nonlinear operator A(pH×h) and its
Fréchet derivative A′(pH×h) and the discrete operator manifolds Wh

K,1, W
h
K,2, W

h
Kf ,1

, Wh
Kf ,2

, and
Wh
Kf ,3

are approximated with same approximation quality.

Next, we investigate the effectivity of the a posteriori error estimators derived in §3.4. First, we
remark that for the present test case we obtained the following approximate values of the inf-sup
stability factor

β2 = 0.5085 · 10−3 (H = 0.02), β2 = 0.1277 · 10−3 (H = 0.01), β2 = 0.3181 · 10−4 (H = 0.005),

which indicates that β2 ∼ H ·h, as H = h. A comparison of the approximate values with the exact
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m εEPM
tol = 10−5 (app) εEPM

tol = 10−5 (ex) εEPM
tol = 10−7 (app) εEPM

tol = 10−7 (ex)
1 0.000509853 0.000510013 0.000511465 0.000511595
2 0.000508364 0.000508648 0.000508366 0.000508641
3 0.000508312 0.000508587 0.000508295 0.000508561
4 0.000508484 0.000508758 0.000508476 0.000508744
5 0.000508482 0.000508785 0.000508526 0.000508827
10 0.000508419 0.000508601 0.000508515 0.000508823
15 0.000508446 0.000508749 0.000508515 0.000508823

Table 3.1: Test case 1: Comparison of the exact inf-sup stability factor (ex) with its approximate value (app) for
H = 0.02 and different tolerances εEPM

tol in the EPM and increasing model order m.

inf-sup stability factor in Tab. 3.1 shows that the approximation procedure proposed in §3.4.2 yields
indeed a lower bound for the inf-sup stability factor and moreover a very accurate approximation.
Here, we have used the MATLAB function svds to compute the smallest singular value of the
jacobian corresponding to 〈PL′k′ [F ′(pHm,k)], vH×h〉 to determine the approximate value. For the
computation of the exact inf-sup stability factor we applied the MATLAB function svd to the
jacobian associated with 〈F ′(pHm,k), vH×h〉 and took the minimum singular value. Due to the very
small inf-sup stability factor neither τkm,2 < 1 nor |ekm|H1(Ω) ≤ β2/(L2ch) (see Fig. 3.5a and Fig. 3.5b)
is fullfilled, where the latter would have allowed for an alternative rigorous derivation of ∆k

m,2 (see
§3.4.1). Nevertheless, it can be seen in Fig. 3.5a (εEPM

tol = 10−7) and Fig. 3.5b (εEPM
tol = 10−5)

that in contrast to ∆k,rel
m,res (3.102), τk,relm,2 (3.91) and ∆k,rel

m,2 (3.99) are reliable and efficient error
bounds for |ekm|H1(Ω), albeit the effectivity constants are very high due to the small inf-sup stability
factor. Fig. 3.5c shows the scaling of τk,relm,2 for decreasing mesh sizes. We see in Fig. 3.5a-3.5c that
for εEPM

tol = 10−5, τk,relm,2 , ∆k,rel
m,2 and ∆k,rel

m,res reproduce the convergence behavior of |ekm|H1(Ω) in m
perfectly. For εEPM

tol = 10−7 the behavior of |ekm|H1(Ω) until m = 8 (H = 0.02, 0.01) or m = 10
(H = 0.005) is reproduced. This can be explained by the fact that for εEPM

tol = 10−7, ‖eex
EPM‖H−1(Ω)

lies above ‖eEPM‖H−1(Ω) (see Fig. 3.5d), as the former also takes discretization errors into account
which are not included in the latter. For εEPM

tol = 10−5, ‖eEPM‖H−1(Ω) and ‖eex
EPM‖H−1(Ω) nearly

coincide (see Fig. 3.5d). We therefore conclude that the a posteriori bound for the EPM derived
in Proposition 3.9, yields a very good approximation of ‖eex

EPM‖L2(Ω) and thus ‖eex
EPM‖H−1(Ω) if the

discretization error is not dominant. Here, we have set the tolerance for the POD determining the
richer collateral basis space Wh

k′ to tolk′ε
EPM
tol with tolk′ = 10−2 (§3.3.5). This yielded on average

k′ − k ≈ 5 for εEPM
tol = 10−7 and k′ − k ≈ 8 for εEPM

tol = 10−5. To prove the effectivity of ∆k
m and

∆k
m,2, we required (3.92)

‖eEPM‖H−1(Ω) ≤ ‖eex
EPM‖H−1(Ω) ≤ cerr‖emod‖H−1(Ω) for cerr ∈ [0, 1). (3.107)

Fig. 3.5e illustrates the convergence behavior of ‖eEPM‖H−1(Ω) and ‖emod‖H−1(Ω) for increasing m
and H = 0.005. We observe that even if (3.107) is violated, i.e. cerr > 1, we maintain effectivity of
the error bounds (see Fig. 3.5a,3.5b and 3.5e). However, as cerr > 1 indicates that the EPM-plateau
is reached (Fig. 3.5a,3.5b and 3.5e), the adherence of (3.107) is necessary to avoid the plateau.
Finally, we investigate the a priori bound of the EPM derived in Theorem 3.8. As the convergence
behavior of λk and ‖

∫
ω̂
IL[A(pHm,k)]κk‖2L2(Ω1D) coincides (see Fig. 3.4) we may apply Theorem 3.8

as an error bound. Note that (3.31) is a probabilistic result and that the term O(n
−1/4
train) does

not provide an upper bound for the integration error due to the application of the Monte-Carlo
method [22]. However Fig 3.5f shows that apart from some deviations due to the EPM-plateau
the error ‖eEPM‖L2(Ω) and the POD-error ekPOD := ((ek,1POD)2 + (ek,2POD)2)1/2 have approximately the
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Figure 3.5: Test case 1: Comparison of the a posteriori error estimators τk,relm,2 , ∆k,rel
m,2 , ∆k,rel

m,res with |ekm|H1(Ω)

for εEPM
tol = 10−7 (a) and εEPM

tol = 10−5 (b) and H = 0.005; Comparison of τk,relm,2 and |ekm|H1(Ω) for decreasing
H and εEPM

tol = 10−7 (c) and ‖eEPM‖H−1(Ω) and ‖eexEPM‖H−1(Ω) for εEPM
tol = 10−5, 10−7 and H = 0.02 (d), and

‖emod‖H−1(Ω) and ‖eEPM‖H−1(Ω) for εEPM
tol = 10−5, 10−7 and H = 0.005 (e), and ‖eEPM‖L2(Ω), ‖eexEPM‖H−1(Ω),

and ekPOD for εEPM
tol = 10−7 and H = 0.02 (f).

same convergence rate. The integration error can thus be estimated by the POD-error. Hence we
employed the POD-error ekPOD as an apriori bound in our numerical experiments and decreased
the tolerance εtol in (3.38) by 10−1 to account for the integration error. Alternatively ekPOD can be
multiplied with a constant, which depends on n−1/4

train and tends to 1 for ntrain → ∞, for instance
c(n
−1/4
train) = (e1

POD + 10n
−1/4
train)/e1

POD.

Eventually, the input arguments of Algorithm 3.3.3 Adaptive-HMR-RB, have been chosen as
G0 = [0, 0.5, 1, 1.5, 2] × [−0.5, 0.5] × [−1, 1], mmax = 2, imax = 2, nΞ = 10, |Ξc| = 50, θ = 0.05,
σthres = (imax − 1) · ddiam(g)e+ 1 for an element g ∈ G0 and εHMR

tol = 10−5, εerr
tol = 10−9, εc

tol = 0.1
for all computations for this test case. The average sample size has been ntrain ≈ 515.
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Figure 3.6: Test case 2: Comparison from top to bottom: the reference 2D bilinear FE solution pH×h (3.71) and
the discrete reduced solution pHm,k using 2 and 5 basis functions for c0 = 0.15 (left) and c0 = 0.075 (right); c4 = 12,
NH = 400, nh = 200, NH′ = 10.

Test case 2

To get an idea of the performance of the HMR-RB approach when simulating subsurface flow, we
investigate in this test case the convergence behavior and computational efficiency of the HMR-RB
approach for the approximation of non-smooth solutions of (3.104). Furthermore we study how
the diminishing of c0 (3.4) affects the performance of our proposed method and the effectivity
of the error bounds, as c0 might approach 0 if the data functions in the Richards equation de-
generate. We choose Ω = (0, 2) × (0, 1) and prescribe as a source term the characteristic function
s(x, y) = χD1∪D2∪D3

, whereD1 = {(x, y) ∈ Ω : 0.4 ≤ x ≤ 0.6 and 0.2 ≤ y ≤ 0.36}, D2 = {(x, y) ∈
Ω : 0.4 ≤ x ≤ 0.6 and 0.64 ≤ y ≤ 0.8} and D3 = {(x, y) ∈ Ω : 1.4 ≤ x ≤ 1.6 and 0.4 ≤ y ≤ 0.6}.
Moreover, we choose c4 = 12 and compare the behavior of the HMR-RB approach for c0 = 0.15 and
c0 = 0.075. Theorem 3.1 then yields that the solution p of (3.104) is in W 2,q(Ω) for q < ∞. The
reference solutions pH×h (3.71) for c0 = 0.15 and c0 = 0.075 are depicted at the top of Fig. 3.6 for
NH = 400 and nh = 200, where a convergence study has been done to ensure that pH×h contains
all essential features of the exact solution. The strengthened nonlinear effects for decreasing c0 can
nicely be observed by means of the increased range of pH×h for c0 = 0.075 and the much more
localized peaks for c0 = 0.15. Comparing the reference solutions with its HMR-RB approximations,
we see that for both c0 = 0.15 and c0 = 0.075 already pH2,20 contains the three peaks and that the
contour lines of pH5,20 and pH×h coincide (Fig. 3.6).

The input arguments of Algorithm 3.3.3 Adaptive-HMR-RB have been chosen as
G0 = [0, 0.4, 0.8, 1.2, 1.6, 2] × [0, 1] × [−1, 1], mmax = 2, imax = 2, nΞ = 10, |Ξc| = 50, θ = 0.05,
σthres = (imax−1) ·ddiam(g)e+1 for an element g ∈ G0 and εHMR

tol = 10−3, εEPM
tol = 10−7, εerr

tol = 10−9

for all computations for this test case employing one quadrature point in (3.48) and thus setting
Q = 1 in (3.46). This resulted in an average sample size of ntrain ≈ 540. For two quadrature points
in (3.48) or Q = 2 in (3.46) we have chosen G0 = [0, 0.4, 0.8, 1.2, 1.6, 2] × [0, 2] × [−0.5, 0.5] for
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Figure 3.7: Test case 2: Plot of the adaptively refined training set generated by Algorithm 3.3.3 Adaptive-HMR-
RB when using 1 quadrature point in (3.48) (a) or 2 (b) for c0 = 0.075, NH = 200, nh = 100, NH′ = 10.

c0 = 0.075 and G0 = [0, 0.4, 0.8, 1.2, 1.6, 2] × [0, 1] × [−0.5, 0.5] for c0 = 0.15, mmax = 2, imax = 1,
nΞ = 4, θ = 0.01, σthres = imax · ddiam(g)e + 1, εEPM

tol = 10−8, and εerr
tol = 10−10, which yielded on

average ntrain ≈ 600. Fig. 3.7a illustrates the training set Ξtrain generated with Algorithm 3.3.2
AdaptiveTrainExtension for c0 = 0.075 and Q = 1. It can be seen that against expectations
the train sample is not refined around the peaks but at the boundary of Ω1D. Using two quadrature
points in (3.48) we observe a refinement of the training set in the expected regions, namely around
the peaks at x = 0.5 and x = 1.5 (Fig. 3.7b). This might be a reason that for the present test
case the error convergence of the HMR-RB approach improves significantly, if Q is increased from
1 to 2. Analyzing the convergence behavior of |ekm|relH1(Ω) for c0 = 0.15 (Fig. 3.8a) and c0 = 0.075

(Fig. 3.8d), we detect an exponential convergence rate, which is much better forQ = 2. Furthermore
we have observed for Q = 1 a much stronger increase of |ekm|relH1(Ω) when entering the EPM-plateau
especially for coarser mesh sizes. Note that additionally D has been shrunk when passing from
Q = 1 to Q = 2, which further improved the rates. However shrinking D without increasing Q
had no effect. A comparison of ‖em‖relL2(Ω) and e

POD
m (3.69) in Fig. 3.8b and Fig. 3.8e shows that for

Q = 2 the convergence rates coincide till ‖em‖relL2(Ω) approaches the EPM-plateau but clearly differ
for Q = 1. Regarding λm and ‖p̄Hm,k‖2L2(Ω1D) we observe that their convergence rates significantly
differ for Q = 1 for both c0 = 0.15 (Fig. 3.8c) and c0 = 0.075 (Fig. 3.8f) but coincide for Q = 2 for
m ≤ 12. The rise of ‖p̄Hm,k‖2L2(Ω1D) for m > 12 is probably caused by the EPM-plateau. Thus we
conclude that for the present test case for Q = 2 the discrete solution manifold Y hM (3.65) and the
reference solution pH×h are approximated with the same approximation quality by the reduction
space Y hm. Note that the QP-Indicator would have detected in line 6 of Algorithm 3.3.2 that an
increase of Q is necessary, but would not have raised Q further in line 21 due to the coincidence
of the rates of λm and ‖p̄Hm,k‖2L2(Ω1D) for m ≤ 10. Comparing the convergence behavior of the
HMR-RB approach with respect to a decrease of c0, we observe only a slightly worse convergence
rate of the model error and a bit stronger increase of |ekm|relH1(Ω) in the EPM-plateau. For Q = 1 the
coefficients ‖p̄Hm,k‖2L2(Ω1D) stagnate at a higher level. All in all we observe only minor changes in the
convergence behavior of the HMR-RB approach when decreasing c0 from 0.15 to 0.075. Fig. 3.9a
shows the error convergence of |ekm|relH1(Ω) for a simultaneous growth of m and k for H = 0.01. We
see on the one hand a strong increase of the error if m exceeds k but on the other hand a nice
error decay and only a small increase in the EPM-plateau if k ≥ m + 5 is satisfied. We suppose
that the worse behavior of pHm,k in the EPM-plateau compared to the previous test case (compare
Fig. 3.3e and Fig. 3.9a) is due to the fact that the full solution of the present test case is non-
smooth. Investigating the convergence behavior of the relative total error in Fig. 3.9b demonstrates
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Figure 3.8: Test case 2: Comparison of the convergence behavior of |ekm|relH1 for one quadrature point (1qp) and
two quadrature points (2qp) in (3.48) for c0 = 0.15 (a) and c0 = 0.075 (d); |ekm|relL2(Ω)

and ePOD
m for Q = 1, 2 in (3.46)

for c0 = 0.15 (b) and c0 = 0.075 (e) and H = 0.0025; ‖p̄Hm,k‖
2
L2(Ω1D)

and λm for Q = 1, 2 in (3.46) for c0 = 0.15 (c)
and c0 = 0.075 (f) and H = 0.0025. NH′ = 10 for all pictures.

that for Q = 2 the EPM-plateau has no effect on |e|relH1(Ω), which is unfortunately not true for
Q = 1. Comparing the convergence rates of λk with ‖

∫
ω̂
IL[A(pHm,k)]κk‖2L2(Ω1D) for the collateral

basis spaces Wh
k,1, W

h
k,2, W

h
kf ,1

, Wh
kf ,2

, and Wh
kf ,3

we see in Fig. 3.10 that they are comparable for
k ≤ 5 for Q = 1 and k ≤ 12 for Q = 2, but clearly differ for higher values. This is due to the
behavior of ‖p̄Hm,k‖2L2(Ω1D) (cf. Fig. 3.8c and Fig. 3.8f), which stagnate exactly for m = 5 (Q = 1)
and m = 12 (Q = 2). However we have observed that the level of the plateau of the coefficients
‖p̄Hm,k‖2L2(Ω) and ‖

∫
ω̂
IL[A(pHm,k)]κk‖2L2(Ω1D) lowers for decreasing mesh sizes which might indicate

that their stagnation is related to the EPM plateau. We hence suppose that since the solution of
the present test case is non-smooth, in contrast to the previous example, the behavior of pHm,k in
the EPM-plateau (compare Fig. 3.3e and Fig. 3.9a) also affects the coefficients ‖p̄Hm,k‖2L2(Ω) and
‖
∫
ω̂
IL[A(pHm,k)]κk‖2L2(Ω1D).

Next, we analyze the a posteriori error bounds derived in §3.4.1. The approximate values of the
inf-sup stability factor β2 (3.86) obtained with the method proposed in §3.4.2 are indicated in
Tab. 3.2 and imply that β2 ∼ H · h, as H = h. As in the previous test case the small values of β2

prevent that τkm,2 < 1 or |ekm|H1(Ω) ≤ β2/(L2ch) (see Fig. 3.11a and Fig. 3.11b) is fulfilled. In spite
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Figure 3.9: Test case 2: Convergence behavior of |ekm|relH1 for increasing m and k for NH = 200, nh = 100 (a) and
|e|rel
H1 for decreasing mesh size (b); both pictures: Q = 2 in (3.46), NH′ = 10 and c0 = 0.075.

Figure 3.10: Test case 2: Comparison of λk and ‖
∫
ω̂ IL[A(pHm,k)]κk‖2L2(Ω1D)

for Q = 1 in (3.46) (1qp) and Q = 2

in (3.46) (2qp) for H = 0.005 and NH′ = 10 for the collateral basis spacesWH
k,1, W

h
k,2 andWH

kf ,1
, Wh

kf ,2
, andWh

kf ,3
.

of that τk,relm,2 (3.91) and ∆k,rel
m,2 (3.99) are reliable error bounds for |ekm|H1(Ω), while ∆k,rel

m,res (3.102)
underestimates the error, albeit only slightly (Fig. 3.11a and Fig. 3.11b). Only very small differences
between the error estimators for c0 = 0.15 and c0 = 0.075 can be detected in Fig. 3.5b. While the
convergence behavior of |ekm|H1(Ω) in m is reproduced perfectly by τk,relm,2 , ∆k,rel

m,2 and ∆k,rel
m,res for

H = 0.005 and H = 0.0025 (Fig. 3.11a-3.11c), for coarser mesh sizes the error estimators are
not efficient for 5 ≤ m ≤ 10 (Fig. 3.11c). This is due to the fact that for m ≥ 8 there holds
‖eex

EPM‖H−1(Ω) ≥ ‖emod‖H−1(Ω) as ‖eex
EPM‖H−1(Ω) is dominated by discretization errors (Fig. 3.11d).

Thus the assumption (3.92)

‖eEPM‖H−1(Ω) ≤ ‖eex
EPM‖H−1(Ω) ≤ cerr‖emod‖H−1(Ω) with cerr ∈ [0, 1) (3.108)

is violated, which demonstrates that for the present test case satisfying (3.92) is crucial to maintain
the effectivity of the error estimators for Q = 2. Fig. 3.11d also shows that as in the previous
test case for moderate values of k ‖eex

EPM‖H−1(Ω) and ‖eEPM‖H−1(Ω) coincide perfectly, which nu-
merically proves that also for the present test case for a nondominant discretization error the a
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(a) c0 = 0.075 (1qp)
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(b) c0 = 0.075, c0 = 0.15 (2qp)
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m,2 , c0 = 0.075 (2qp)
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Figure 3.11: Test case 2: Comparison of the a posteriori error estimators τk,relm,2 , ∆k,rel
m,2 , ∆k,rel

m,res with |ekm|H1(Ω)

for c0 = 0.075, Q = 1 in (3.46) (1qp) and H = 0.0025 (solid) and H = 0.02 (dashed) (a) and c0 = 0.15 (dashed) and
c0 = 0.075 (solid) and Q = 2 in (3.46) (2qp) and H = 0.0025 (b); Comparison for c0 = 0.075 of 10−6τk,relm,2 (solid)
and |ekm|H1(Ω) (dashed) for decreasing H and Q = 2 (c) and ‖eEPM‖H−1(Ω), ‖eexEPM‖H−1(Ω) and ‖emod‖H−1(Ω) for
H = 0.02 and Q = 2 (d), and ‖emod‖H−1(Ω) and ‖eEPM‖H−1(Ω) for Q = 1, 2 and H = 0.0025 (e), and ‖eEPM‖L2(Ω),
‖eexEPM‖H−1(Ω), e

k
POD, and ekL2 for Q = 2 and H = 0.02 (f).

posteriori bound for the EPM (3.37) results in a very good approximation of ‖eex
EPM‖L2(Ω) and thus

‖eex
EPM‖H−1(Ω). As in the previous test case we have set εerr

tol = tolk′ε
EPM
tol with tolk′ = 10−2 (§3.3.5),

which yielded on average k′−k ≈ 8. Note that for Q = 1 in (3.46) the effectivity of the error bounds
is maintained even for H = 0.02 (Fig. 3.11a) and that ‖eex

EPM‖H−1(Ω) and ‖eEPM‖H−1(Ω) mainly coin-
cide even for high values of k due to the higher level of the EPM-plateau. Comparing ‖emod‖H−1(Ω)

and ‖eEPM‖H−1(Ω) for Q = 1, 2 in Fig. 3.11e we observe that ‖eEPM‖H−1(Ω) has improved much more
than ‖emod‖H−1(Ω) due to the increase of Q. Hence increasing Q seems to significantly reduce the
level of the EPM-plateau which in turn considerably improves the error behavior as has already been
assessed in the analysis of Fig. 3.8. In contrast to the previous test case, also for small tolerances
εEPM
tol a stagnation of ‖emod‖H−1(Ω) can be observed (compare Fig. 3.5e and Fig. 3.11e). Thus we
suppose that due to the worse behavior of pHm,k in the EPM-plateau compared to the previous test
case, the EPM-plateau affects the convergence behavior of the model error for the present example.
As the convergence behavior of λk and ‖

∫
ω̂
IL[A(pHm,k)]κk‖2L2(Ω1D) does not coincide (see Fig. 3.10),

we replace, as proposed in §3.4.1, λk by ‖
∫
ω̂
IL[A(pHm,k)]κk‖2L2(Ω1D) in the a priori bound (3.31) of

Theorem 3.8. Fig. 3.11f shows that ekL2 := ((ek,1L2 )2+(ek,2L2 )2)1/2 captures the behavior of ‖eex
EPM‖L2(Ω)



3.6. NUMERICAL EXPERIMENTS 87

100 200 400 800
0

50

100

150

200

250

300

N
H

R
u

n
−

ti
m

e
 i
n

 m
in

.

 

 

Bil. FEM

HMR−RB (1qp)

HMR−RB (2qp)

100 200 400 800
0

1

2

3

4

5

6

7

8

N
H

R
u

n
−

ti
m

e
 i
n

 m
in

.

 

 

Bil. FEM

HMR−RB (1qp)

HMR−RB (2qp)
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Figure 3.12: Test case 2: Comparison of the total computational costs for the 2D bilinear FEM and the HMR-RB
approach for Q = 1 in (3.46) (1qp) and Q = 2 in (3.46) (2qp) and NH′ = 10, c0 = 0.075.

c0 H = 0.02 H = 0.01 H = 0.005 H = 0.0025
0.15 0.7792 · 10−3 0.1948 · 10−3 0.4871 · 10−4 0.1218 · 10−4

0.075 0.4930 · 10−3 0.1232 · 10−3 0.3080 · 10−4 0.7697 · 10−5

Table 3.2: Test case 2: Approximate values of the inf-sup stability factor β2 (3.86).

and ‖eex
EPM‖H−1(Ω) perfectly for k ≥ m. The deviations for k < m are due to the EPM-plateau.

Although the snapshots set Wh
K and A(pH×h) are not approximated with the same approximation

quality due to the EPM-plateau (Fig. 3.10), we observe that ‖eex
EPM‖L2(Ω) and ‖eex

EPM‖H−1(Ω) coincide
for k ≤ 23. Thus, we conclude that for the present test case the modified version of the a priori
bound (3.31) of Theorem 3.8, obtained by substituting λk by ‖

∫
ω̂
IL[A(pHm,k)]κk‖2L2(Ω1D), can be

applied to obtain rigorous and efficiently computable a posteriori error estimators ∆k,rel
m and ∆k,rel

m,2 .

Finally, we compare the total computational costs of the HMR-RB approach using the EPM to
compute pHm,k (3.41), including offline and online costs, with the costs of the 2D bilinear FEM for
the computation of pH×h ∈ V H×h (3.71). For the solution of the linear system of equations within
Newton’s method we employed in both cases a bicgstab method with the same settings. Also the
tolerance for Newton’s method has been chosen identically. In Fig. 3.12a we see that the bilinear
FEM scales quadratically in NH , while the HMR-RB approach with the EPM scales linearly in
NH both for Q = 1 and Q = 2 in (3.46). The theoretical computational costs derived in §3.5 are
thus confirmed. In Fig. 3.12b the total computational costs of the bilinear FEM and the HMR-RB
approach are plotted versus the respective relative total error |e|relH1(Ω). Due to the EPM-plateau
the total error |e|relH1(Ω) for Q = 1 lies well above the one of the bilinear FEM for the same mesh
size, while only minimal deviations can be observed for Q = 2. However the run-time required to
achieve a certain error tolerance is very much smaller for the HMR-RB approach than for the bilin-
ear FEM. This huge gap is due to the well-known slow performance of MATLAB for for-loops. The
assembling of the jacobian for the bilinear FEM requires, at least to our knowledge, a for-loop over
NH or nh, to compute the two-dimensional integrals for each element. In the HMR-RB approach
the assembling of the jacobian requires only the computation of one-dimensional integrals in x and
y-direction due to the application of the EPM, which can be computed in a fully vectorized manner
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by employing the MATLAB-function trapz. Using another coding language as for example C++
will therefore probably reduce this huge difference in the total computational costs but not affect
the better scaling of the HMR-RB approach in NH . Therefore also for other coding languages we
expect the HMR-RB approach to outperform the 2D bilinear FEM starting from a certain mesh size.



Chapter 4

Approximation of skewed interfaces

In this chapter we address the approximation of a possibly skewed water table or similar interface
with a tensor-based model reduction procedure. If we consider subsurface flow, then, depending
on the permeability of the soil, the saturation profile may form a skewed interface along the water
table (cf. Fig. 4.1a). Due to the fact that for a full approximation of the skewed interface the satu-
ration profile in each point x in the dominant direction has to be included, skewed interfaces yield a
bad convergence behavior of model reduction approaches based on a tensor product decomposition
(Fig. 4.1b). In this chapter we propose a new ansatz to solve this problem, leading to significantly
improved convergence rates. The two key ideas are the location of the interface and the subsequent
removal of the interface of the solution by choosing the determined interface as the lifting function of
the Dirichlet boundary conditions. This chapter is organized as follows. In Section 4.1 we first out-
line our approach for the location of the interface using the example of subsurface flow (Subsection
4.1.1). Afterwards, we demonstrate for linear problems how the information on the location of the
information can be used to remove the interface from the model reduction procedure in Subsection
4.1.2. In Section 4.2 we exemplify this ansatz for the HMR-RB method and present an approach
for the derivation of a lower-dimensional parametrized problem particularly suited for the presence
of interfaces, which will be validated in Section 4.3. The capacity of the ansatz proposed in Section
4.1 to improve the convergence behavior is demonstrated in Section 4.3 for prescribed interfaces
and linear problems for the HMR-RB approach in several numerical experiments, including a test
case, where we do not include the exact interface but only an approximation.

(a) Schematic saturation profile
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Figure 4.1: Schematic picture of subsurface flow with a skewed water table (a). Behavior of the relative model
error ‖em‖relV defined in §2.6 for the HMR-RB approach for test case 1 in §4.3 if no information on the interface is
included in the model reduction process (b).
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4.1 An ansatz for approximating skewed interfaces with ten-
sor based model reduction approaches

Let Ω ⊂ R2 denote the computational domain with Lipschitz boundary ∂Ω and ΣD ⊂ ∂Ω the
Dirichlet boundary. Ω is supposed to satisfy the assumptions of §2.1 and we assume for the sake
of simplicity that H1(ΣD) > 0, where H1(ΣD) denotes the one-dimensional Hausdorff-measure of
ΣD.

4.1.1 Locating the interface
We demonstrate our approach for the location of the interface using the example of saturated-
unsaturated subsurface flow. For this purpose let Ω be occupied by a homogeneous soil. In the
time interval [0, T ] we consider the Richards equation (see e.g. [13,14,16]) for the water saturation
s : Ω× [0, T ]→ [0, 1] and the water pressure p : Ω× [0, T ]→ R

ds

dt
− div (Kk(s)(∇p+ g)) = 0 in Ω× [0, T ]. (4.1)

Here, k denotes the relative permeability, K the hydraulic conductivity1, and g the gravity vector.
We have normalized the porosity and the viscosity. To locate the water table, we first consider the
groundwater flow equation for the piezometric head ϕ = y + p/(ρg) with a free surface. The latter
is characterized by an atmospheric pressure and thus describes the location of the water table.
Furthermore, ρ denotes the density of the fluid and g designates the gravity acceleration. Assuming
the incompressibility of water and a flat bottom of the considered domain Ω at level y = 0, the
piezometric head or potential can be described by the following PDE [14]

−K∆ϕ = 0 t ∈ [0, T ] and 0 ≤ y ≤ w(x),
(4.2)

dϕ

dt
−K

[(
dϕ

dx

)2

+

(
dϕ

dy

)2
]

+
dϕ

dy
(K +N)−N = 0 t ∈ [0, T ] and y = w(x).

Here, N accounts for accretion and suitable initial conditions and additional boundary conditions
are prescribed. Starting from (4.2) one can derive a dimensionally reduced model for the height
of the water table w by assuming a hydrostatic pressure distribution [44] or by employing an
asymptotic expansion [37]. The respective PDE then reads

dw

dt
− K

2
∆w2 +N = 0, in Ω1D × [0, T ], (4.3)

where Ω1D denotes the computational domain in the dominant direction. Due to the structure
of (4.3), solving (4.3) has the same computational complexity as solving (4.1) with the HMR-RB
approach employing one basis function. It is therefore reasonable to solve (4.3) in a preprocessing
step, if the so gained information accelerates the convergence of the HMR-RB approach or another
employed tensor-based model reduction approach. Next, we describe how the information on the
location of the water table can be exploited within the model reduction procedure.

1Following [14] the hydraulic conductivity describes the ability of the soil to conduct water through it under
hydraulic gradients.
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4.1.2 Removing the interface from the model reduction procedure
Employing the location of the water table (or a similar interface) described by the solution w
of (4.3), we can define a function h : Ω → R which describes the corresponding saturation (or
concentration) profile. We propose to prescribe this profile as the lifting function of the Dirichlet
boundary conditions. For the sake of clarity we restrict ourselves for the rest of this chapter to
linear PDEs. The ideas in the nonlinear setting are the same. We define the solution space V such
that H1

0 (Ω) ⊆ V ⊆ H1(Ω) and consider the following full problem:

Find p ∈ V : a(p, v) = f(v)− a(h, v) ∀v ∈ V, (4.4)

where a(·, ·) is a coercive and continuous bilinear form and f ∈ V ∗, V ∗ denoting the dual space of
V . The full solution is given as p̃ := p+ h and lies in the space V + h. We define the spaces X and
Y such that

H1
0 (Ω1D) ⊆ X ⊆ H1(Ω1D) and H1

0 (ω̂) ⊆ Y ⊆ H1(ω̂),

supposing compatibility with the boundary conditions prescribed on ∂Ω. We approximate p by a
linear combination of tensor products

pm :=

m∑
l=1

p̄l(x)φl(ψ(y;x)), (4.5)

where p̄l ∈ X and φl ∈ Y , l = 1, ...,m and define the reduced solution p̃m := pm +h. Depending on
the chosen method pm either fulfills a reduced problem as for instance in the Hierarchical Model
Reduction (HMR) [102] or the HMR-RB approach (cf. Chapters 2 and 3) or as for example in the
Proper Generalized Decomposition method (cf. [24, 77]) minimizes a variational functional.2 We
emphasize that if we assume for the solution p of the full problem (2.1) and the integral operator
(Tg)(x) :=

∫
ω̂
p(x, ŷ)g(ŷ) dŷ an exponential convergence of the Kolmogorov n-width (cf. (2.14)),

i.e. dn(T (L2(ω̂));L2(Ω1D)) = ce−βn, where ω̂ = Ω1D and c, β > 0, it is clear that we obtain for
the inclusion of the exact interface h in (4.4) dn(T̃ (L2(ω̂));L2(Ω1D)) = ce−βn, where (T̃ g)(x) :=∫
ω̂
p̃(x, ŷ)g(ŷ)dŷ and p̃ is the full solution of (4.4). Here, the weak form (4.4) only differs from (2.1)

with respect to the Dirichlet boundary conditions. Thus both the solution p of (2.1) and the solution
p̃ of (4.4) can be approximated by a tensor based model reduction approach with the same, possibly
exponential rate, with respect to the L2-norm (see for instance [104] for the correlation between
the stated Kolmogorov n-width, Hilbert-Schmidt integral operators, and the approximation of a
Hilbert-Schmidt kernel by a tensor product decomposition). Of course it depends on the applied
tensor based model reduction approach if these optimal rates can be realized or not.

2 Using the Proper Generalized Decomposition method (cf. [24,77]), we obtain pm by computing sequentially the
pair of functions (p̄l, φl), l = 1, ...,m, as the solution of the minimization problem

(p̄m, φm) = argmin
p̄∈X,φ∈Y

E
(
m−1∑
l=1

p̄l(x)φl(ψ(y;x)) + p̄(x)φ(ψ(y;x))

)
,

where E : H1(Ω) → R shall be the variational functional whose minimizer p ∈ V is the unique solution of (4.4) for
symmetric bilinear forms a(·, ·).
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4.2 Exemplification for the HMR-RB approach

To obtain a good approximation of solutions exhibiting a skewed interface, we have to eliminate
the interface in the solutions of the lower-dimensional problem. It is therefore crucial to reproduce
the balance of the relative terms in the equation of the full problem (4.4). This is difficult to realize
using the approach introduced in §2.3.1 as choosing the evaluation of the unknown part of the
solution in x-direction as a parameter allows too much variation in the scaling of the respective
terms to counterbalance them. Thus, we present in §4.2.2 a new approach for the derivation of
a lower dimensional problem based on the discretization of the full problem introduced in §2.1.3
and exemplify it for an advection-diffusion equation in §4.2.3. We also comment briefly in §4.2.2
on necessary adaptations of Algorithm 2.3.1 AdaptiveParameterRefinement and Algorithm
2.3.2 Adaptive-HMR-POD due to the exchange of the parametrized 1D problem. We begin this
section by formulating the reduced problem of the HMR approach for the full problem 4.4.

4.2.1 Formulation of the reduced problem

We assume orthonormality of the set of functions {φl}ml=1 with respect to the L2-inner product on
ω̂ and define the reduced space

Vm =

{
vm(x, y) =

m∑
k=1

vk(x)φk(ψ(y;x)), with vk(x) ∈ X, x ∈ Ω1D, y ∈ ωx

}
, (4.6)

where

vk(x) =

∫
ω̂

vm(x, ψ−1(ŷ;x))φk(ŷ) dŷ, k = 1, ...,m.

By using the Galerkin projection we obtain the reduced problem:

Find pm ∈ Vm : a(pm, vm) = f(vm)− a(h, vm) ∀ vm ∈ Vm, (4.7)

which can be rewritten as

Find pk ∈ X, k = 1, ...,m :
m∑
k=1

a(pkφk, ξφl) = f(ξφl)− a(h, ξφl) ∀ ξ ∈ X and l = 1, ...,m. (4.8)

For the subdivision TH of Ω1D with elements Ti = (xi−1, xi) of width Hi = xi − xi−1 and maximal
step size H = maxTi Hi defined in §2.1.3, we introduce an associated conforming Finite Element
space XH ⊂ X with dim(XH) = NH < ∞ and basis ξHi , i = 1, ..., NH . We define the discrete
reduced space

V Hm =

{
vHm(x, y) =

m∑
k=1

vHk (x)φk(ψ(y;x)), with vHk (x) ∈ XH , x ∈ Ω1D, y ∈ ωx

}
(4.9)

and obtain the discrete reduced problem: Find pHk ∈ XH , k = 1, ...,m, such that

m∑
k=1

a(pHk φk, ξ
H
i φl) = f(ξHi φl)− a(h, ξHi φl) for i = 1, ..., NH and l = 1, ...,m, (4.10)

where the discrete reduced solution is defined as p̃Hm := pHm+h for pHm(x, y) =
∑m
k=1 p

H
k (x)φk(ψ(y;x)).
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4.2.2 Derivation of a parametrized 1D problem in transverse direction
Using the subdivisions TH of Ω1D and τh of ω̂ defined in §2.1.3 and §2.3.3 and the associated FE
spaces XH := {wH ∈ C0(Ω1D) : wH |Ti ∈ P1

d(Ti), Ti ∈ TH} ⊂ X and Y h := {wh ∈ C0(ω̂) :
wh|τj ∈ P1

s(τj), τj ∈ τh} ⊂ Y with nodal bases ξHi , i = 1, ..., NH and υhj , j = 1, ..., nh, we obtain
the reference FE approximation of the full problem (4.4): Find Phi ∈ Y h, i = 1, ..., NH , such that

NH∑
i=1

a(ξHi Phi , ξHk υhj ) = f(ξHk υ
h
j )− a(h, ξHk υ

h
j ) k = 1, ..., NH , j = 1, ..., nh, (4.11)

where Phi (ŷ) =
∑nh
j=1 pi,jυ

h
j (y), i = 1, ..., NH . We introduce as in §2.3.1 for an arbitrary integrand

t ∈ L1(Ω̂) of an integral I(t) :=
∫
ω̂

∫
Ω1D

t(x, ŷ) dxdŷ the quadrature formula

Q̄(t) :=

Q̄∑
l=1

αl

∫
ω̂

t̃(xql , ŷ) dŷ, t̃(xql , ŷ) := lim
ε→0

1

|Bε(xql )|

∫
Bε(x

q
l )

t(x, ŷ) dx. (4.12)

where αl, l = 1, ..., Q̄ are the weights, and xql , l = 1, ..., Q̄ are the quadrature points. Replacing I(t)
by Q̄(t) in the bilinear form a(·, ·) and the linear form f(·), we obtain the approximations aq̄(·, ·)
and f q̄(·). The discrete problem with quadrature then reads: Find Phi ∈ Y h, i = 1, ..., NH , such
that

NH∑
i=1

aq̄(ξHi Phi , ξHk υhj ) = f q̄(ξHk υ
h
j )− aq̄(h, ξHk υhj ) k = 1, ..., NH , j = 1, ..., nh. (4.13)

Next we parametrize (4.13) by introducing a parameter vector µ with entries µl = xql , l = 1, ..., Q̄,
in order to find the optimal locations of the quadrature points by applying RB methods (§2.3.4)
and thus to find the optimal points in Ω1D for solving the lower-dimensional problem in transverse
direction. The parameter space D is defined as D := [Ω1D]Q̄. As solving (4.13) is for reasons
of efficiency only feasible for small values of Q̄, the dimension of D is limited to Q̄ � NH , and
even further limited to Q̄ ≤ 8, when applying Algorithm 2.3.1. The latter is due to the fact that
Algorithm 2.3.1 is based on a product-like hyper-rectangular grid, which limits its applicability to
small parameter dimensions (cf. §2.3.4). Therefore, we have in general supp(ξHi ) ∩ supp(ξHi′ ) = ∅
for functions ξHi , ξHi′ ∈ χH := {ξHi : supp(ξHi ) ∩ µl 6= ∅, l = 1, ..., Q̄}, where dim(χH) ≤ Q̄ ≤ 8.
To introduce a coupling and an exchange of information between the respective functions we first
replace the functions ξHi , i = 1, ..., NH , by the basis functions ξqi associated with a new subdivision,
which is obtained by deleting all nodes of TH in the open intervals (d(xql /H)eH, b(xql+1/H)cH),
l = 1, ..., Q̄. Here and also for the remainder of this subsection we assume that the quadrature
points are sorted in ascending order and that x0 ≥ 0, where x0 has been defined in the beginning of
§2.1 as the left interval boundary of Ω1D. d·e denotes the ceil and b·c the floor function. Moreover,
we enhance the set of quadrature points by the points xq

Q̄+l
:= 0.5(xql + xql+1), l = 1, ..., Q̂, if

b(xql+1/H)c − b(xql /H)c ≥ 2. The weights of the quadrature αl, l = 1, ..., Q with Q = Q̄ + Q̂ that
we have used for the numerical tests in §4.3 are defined as

αl :=



H if bx
q
l−1

H c 6= b
xql
H c and bx

q
l

H c 6= b
xql+1

H c,
xql+x

q
l+1

2 − bx
q
l

H c if bx
q
l−1

H c 6= b
xql
H c,

dx
q
l

H e −
xql+x

q
l−1

2 if bx
q
l

H c 6= b
xql+1

H c,
xql+1−x

q
l−1

2 else.

(4.14)
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This closes the description of the quadrature rule

Q(t) :=

Q∑
l=1

αl

∫
ω̂

t̃(xql , ŷ) dŷ, t̃(xql , ŷ) := lim
ε→0

1

|Bε(xql )|

∫
Bε(x

q
l )

t(x, ŷ) dx. (4.15)

Using the quadrature formula Q(t) (4.15) instead of Q̄(t) (4.12) we obtain the following coupled
system of parametrized 1D partial differential equations in the transverse direction:

Given any µ ∈ D, find Phl (µl) :=
∑
ξqi

µl∈supp(ξqi )

ξqi (µl)Phi ∈ Y h, l = 1, ..., Q̄,

(4.16)

such that aq(Phl (µl), υ
h
j ξ

q
k ;µ) = fq(υhj ξ

q
k ;µ)− aq(h, υhj ξ

q
k ;µ) for j = 1, ..., nh, ξ

q
k ∈ χ

q,

where χq := {ξqi : supp(ξqi ) ∩ µl 6= ∅, l = 1, ..., Q̄}. Note that (4.16) is a coupled system of size ≤
dQ̄nh×dQ̄nh, where d has been defined in the beginning of this subsection as the polynomial order of
the FE space XH . We emphasize that in contrast to §2.3.1 we are solving in (4.16) for the unknown
parts of the solution in the dominant direction via the coefficient functions Phi (ŷ) and do not consider
them as part of the parameter as it has been done in §2.3.1. The numerical experiments in §4.3 show
that while choosing Q̄ = 1 yields a bad convergence behavior of the HMR-RB approach, due to a
limited variation in the solutions of (4.16), the choice Q̄ = 2 leads to good approximation results.
The fact that solving (4.16) without the artificial coupling is equivalent to solving Q̄ coupled systems
of size dnh×dnh, which yields as just mentioned a bad convergence behavior, stresses the importance
of the introduction of the artificial coupling. Finally, we emphasize that in contrast to §2.3.1 we
obtain Q̄ snapshots Ph(µ) per parameter vector µ = (µ1, ..., µQ̄) — one for each component. As a
consequence one has to slightly modify Algorithm 2.3.1 AdaptiveParameterRefinement and
Algorithm 2.3.2 Adaptive-HMR-POD introduced in §2.3.4. First, the error indicators η(G) and
σ(G) in Algorithm 2.3.1 have to be computed Q̄ntrain times, but in return the training set can be
reduced significantly. The Mark and Refine strategies are maintained. For the application of the
POD in Algorithm 2.3.2 O(Q̄2n2

trainnh) operations for the assembling of the correlation matrix and
O(Q̄3n3

train) operations for the solution of the eigenvalue problem are required. The higher costs
for the computation of the snapshots Ph(µ) are still dominated by the costs for the computation
of the error estimator. Overall, we do not expect a significant effect on the computational costs of
the HMR-RB approach by changing the parametrized 1D problem due to the trade-off between the
factor Q̄ and the smaller sample size ntrain.

4.2.3 Example: An advection-diffusion problem
To exemplify the derivation of the coupled system of parametrized 1D partial differential equations
we consider the bilinear and linear form (2.9) with associated assumptions on the data functions on
a rectangular domain Ω together with non-homogeneous Dirichlet boundary conditions with lifting
function h ∈ H1(Ω). The spaces X and Y thus coincide with H1

0 (Ω1D) and H1
0 (ω̂), respectively. By

applying the quadrature formula defined in (4.12), we obtain the discrete problem with quadrature:
Find Phi ∈ Y h, i = 1, ..., NH , such that

NH∑
i=1

∫
ω̂

Āi,k(y)
dPhi
dy

dυhj
dy

+ B̄i,k(y)
dPhi
dy

υhj + C̄i,k(y)Phi,k υhj dy

=

∫
ω̂

F̄k(y) υhj dy −
∫
ω̂

H̄1,k(y)
dυhj
dy

+ H̄2,k(y) υhj dy for j = 1, ..., nh, k = 1, ..., NH ,
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where the coefficients Āi,k(y), B̄i,k(y), C̄i,k(y), F̄k(y), H̄1,k(y) and H̄2,k(y) are given by

Āi,k(y) =

Q̄∑
l=1

αlk(xql , y)ξHi (xql )ξ
H
k (xql ), B̄i,k(y) =

Q̄∑
l=1

αlb2(xql , y)ξHi (xql )ξ
H
k (xql ),

C̄i,k(y) =

Q̄∑
l=1

αlk(xql , y)∂xξ
H
i (xql )∂xξ

H
k (xql ) + b1(xql , y)∂xξ

H
i (xql )ξ

H
k (xql ),

F̄k(y) =

Q̄∑
l=1

αls(x
q
l , y)ξHk (xql ), H̄1,k(y) =

Q̄∑
l=1

αlk(xql , y)∂yh(xql , y)ξHk (xql ),

H̄2,k(y) =

Q̄∑
l=1

αlk(xql , y)∂xh(xql , y)∂xξ
H
k (xql ) + (b1(xql , y)∂xh(xql , y) + b2(xql , y)∂yh(xql , y))ξHk (xql ).

Here we have omitted the v on the integrands (cf. (4.12)) to simplify notations. Using the artificial
coupling introduced in the previous subsection and the associated quadrature formula (4.15) we
obtain the parametrized coupled 1D PDE in transverse direction: Given any µ ∈ D, find

Phl (µl) :=
∑
ξqi

µl∈supp(ξqi )

ξqi (µl)Phi ∈ Y h, l = 1, ..., Q̄, such that (4.18)

Q̄∑
l=1

∫
ω̂

Alk(y;µ)
dPhl (µl)

dy

dυhj
dy

+ Blk(y;µ)
dPhl (µl)

dy
υhj + Clk(y;µ)

dPhl (µl)

dx
υhj dy

=

∫
ω̂

Fk(y;µ) υhj dy −
∫
ω̂

H1,k(y;µ)
dυhj
dy

+H2,k(y;µ) υhj dy for j = 1, ..., nh,

where the coefficients Alk(y;µ),Blk(y;µ), Clk(y;µ),Fk(y;µ),H1,k(y;µ) and H2,k(y;µ) are given by

Alk(y;µ) =
∑

xqn∈(µl−1,µl+1)

αnk(xqn, y)ξHk (xqn), Blk(y;µ) =
∑

xqn∈(µl−1,µl+1)

αnb2(xqn, y)ξHk (xqn),

Clk(y;µ) =
∑

xqn∈(µl−1,µl+1)

αnk(xqn, y)∂xξ
H
k (xqn) + b1(xqn, y)ξHk (xqn),

Fk(y;µ) =

Q∑
l=1

αls(x
q
l , y)ξHk (xql ), H1,k(y;µ) =

Q∑
l=1

αlk(xql , y)∂yh(xql , y)ξHk (xql ),

H2,k(y;µ) =

Q∑
l=1

αlk(xql , y)∂xh(xql , y)∂xξ
H
k (xql ) + (b1(xql , y)∂xh(xql , y) + b2(xql , y)∂yh(xql , y))ξHk (xql )

and for notational convenience (µ0, µ2) and (µQ̄−1, µQ̄+1) stand for [µ1, µ2) and (µQ̄−1, µQ̄], respec-

tively. We finally remark that dPhl (µl)
dx has to be interpreted as

dPhl (µl)

dx
=

∑
ξqi

µl∈supp(ξqi )

dξqi (µl)

dx
Phi ∈ Y h, l = 1, ..., Q̄.
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Figure 4.2: Test case 1: Comparison of the discrete reduced solution pHm using the lifting function gD (4.22) (left
side) for m = 5, 10, 15, 20, 30 (top-bottom), pHm using h (4.20) as the lifting function (right) and m = 5, 10, 15, 20

with the exact solution p̃ (right,bottom) for NH = 800, nh = 400, NH′ = 80.

4.3 Numerical Experiments

In this section we demonstrate in several numerical experiments the capacity of the ansatz pro-
posed in Subsection 4.1.2 to improve the convergence behavior for tensor based model reduction
approaches using the example of the HMR-RB method. We therefore compare the convergence be-
havior of the model error of the HMR-RB approach in case we include information on the interface
with the approximation behavior if we use an arbitrary lifting function of the Dirichlet boundary
conditions. In the first test case, the full solution p of (4.4) is chosen as a multiple of the solution
of test case 1 in §2.6 to have a benchmark for the convergence rate. We see a considerable improve-
ment of the convergence behavior of the model error. An even more substantial improvement can
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be observed for the second test case, where the solution exhibits more complex structures and little
spatial regularity due to a discontinuous source term. While we include in test case 1 and 2 the exact
interface, we use in test case 3 only an approximation of the interface as the lifting function of the
Dirichlet boundary conditions and still observe a significant improvement of the convergence behav-
ior of the HMR-RB approach. In all three test cases we have used linear FE in x- and y-direction, i.e.
XH =

{
vH ∈ C0(Ω1D) : vH |Ti ∈ P1

1(Ti), Ti ∈ TH
}
, Y h =

{
vh ∈ C0(ω̂) : vh|τj ∈ P1

1(τj), τj ∈ τh
}
,

and V H×h = {vH×h ∈ C0(Ω̂) : vH×h|Ti,j ∈ Q1,1, Ti,j ∈ T̂}. We recall that the relative model error
in the V - or L2-norm has been defined in §2.6 as ‖em‖relV := ‖em‖V /‖pH×h‖V , or ‖em‖relL2(Ω) :=

‖em‖L2(Ω)/‖pH×h‖L2(Ω), respectively, for em = pH×h− pHm. The implementations has been done in
MATLAB. We performed various runs to obtain averaged error values. We did 100 runs if including
h both in the weak and strong formulation of 4.7 in test case 1 and also for the inclusion of h in
the strong form in test case 2. For all other cases we performed 50 runs. Finally, we have used
equidistant grids in x- and y-direction for the computations of all three test cases and the Riesz
representative based error estimator §2.4.1.

Test case 1
First, we consider a numerical example with an exact solution, where the full solution p of (4.4) is
a multiple of the analytic solution of test case 1 in §2.6 to enable a comparison with the situation
where no interface is present. In detail, we solve a Poisson problem on Ω = (0, 2) × (0, 1) with an
exact solution p̃ = p+ h, where the interface h and p are given as

h(x, y) =


1 if y + 0.4x < 0.8,

0.1 if y + 0.4x > 0.9,

0.55 + 0.45 cos(10π(y + 0.4x− 0.8)) if 0.8 ≤ y + 0.4x ≤ 0.9

, (4.20)

and p(x, y) = 5y2(1− y)2(0.75− y)x(2− x) exp(sin(2πx)). (4.21)

The solution p̃ is displayed in the last picture of Fig. 4.2 and the skewed interface h is clearly
recognizable. First, we compare p̃ with the discrete reduced solution p̃Hm, which has been computed
using the lifting function

gD = (−0.5x+ 1)h(0, y) + 0.5xh(2, y) (4.22)

for m = 5, 10, 15, 20, 30, NH = 800, nh = 400 and NH′ = 80 (Fig. 4.2, left), where NH′ has been
defined in §2.1.3. Whereas 15 basis functions are sufficient to obtain a good approximation of the
interface h, we detect strong oscillations of p̃H15 in the other parts of the domain yielding still a
bad approximation of p (4.21). These oscillations decrease for increasing m and for m = 30 we
obtain a reasonable approximation of p̃. If we use h as the lifting function of the Dirichlet boundary
conditions to compute p̃Hm (Fig. 4.2, right) no oscillations can be detected. The contour lines of
p̃H20 match perfectly with the ones of p̃ and already for m = 10 and 15 only small deviations can
be observed. All in all we see a much better qualitative convergence behavior for the solution of
(4.10).
To analyze the capacity of the proposed method to improve the convergence behavior also from

a quantitative viewpoint, we compare the convergence behavior of the relative model error ‖em‖relV
for increasing model order m. Using gD requires more than 70 basis functions to obtain ‖em‖relV ≤
0.01 for H ≤ 0.00625 (Fig. 4.3a), which can be attained for m = 16 if choosing h (Fig. 4.3b).
However we see in Fig. 4.3b that the convergence rate has only improved slightly and that the
improvement of the convergence behavior can be mainly ascribed to a better relative error already
for m = 1 of the solution of (4.10). We have thus recomputed the HMR-RB approximation,
employing a reconstruction of the derivative of the interface in the dominant direction, for the
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(a) ‖em‖relV , lifting function gD (4.22)
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(b) ‖em‖relV , solution of (4.10), Q̄ = 2
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(c) ‖em‖relV , including ∆h
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(f) ‖em‖relV , solution of (4.10), Q̄ = 1

Figure 4.3: Test case 1: Comparison of the model error convergence of ‖em‖relV , if using the lifting function gD
(4.22) (a), including h in the strong formulation of (4.7) (c) or in the weak form of (4.7) and choosing Q̄ = 2 in (4.16)
(b) or Q̄ = 1 (f); comparison of ‖em‖relL2(Ω)

and ePOD
m for the solution p̃Hm of (4.10) with ePOD

m if including ∆h in
strong form ( +∆h) or using gD (gD) (d) and λm and ‖p̄Hm‖L2(Ω1D) for the solution of (4.10) (e); all computations:
NH′ = 10.

derivation of the parameterized lower dimensional system (4.16). This reconstruction mimics the
behavior of the derivative in two space dimensions. One example for such a reconstruction is the
Riesz representative RH×h, defined as∫

Ω̂

RH×hvH×h = a(h, vH×h). (4.23)

Note that prescribing RH×h is equivalent to adding ∆h to the source and sink term directly in
the strong formulation of (4.7), if h is sufficiently regular. By doing so we obtained the expected
fast exponential convergence rate of ‖em‖relV (Fig. 4.3c), already observed in test case 1 in §2.6
(Fig. 2.2). As the convergence rates of ‖em‖relL2(Ω) and ePOD

m and also λm and ‖p̄Hm‖L2(Ω1D) for the
solution of (4.10) coincide to a great extend (Fig. 4.3d and Fig. 4.3e), we conclude that already the
discrete solution manifold Y hM — defined in (2.33) — used for the computation of the reduction
space Y hm and thus the discrete reduced solution p̃Hm of (4.10) can be badly approximated by a m-
dimensional subspace. Hence although the reference solution pH×h of (4.11) could be approximated
exponentially fast (Fig. 4.3c), this approximation quality cannot be realized due to a deficient
construction of Y hM . We further infer that the equivalence of including h in the strong or weak
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Figure 4.4: Test case 1: Typical snapshots of the discrete solution manifold Y hM (2.33) if the lifting function gD
(4.22) is used and therefore no information on the interface is included in the model reduction preocedure (a), if ∆h

is added in the strong formulation of (4.7) (b), (4.16) is solved with Q̄ = 2 (c) and Q̄ = 1 (d).

formulation of (4.7) cannot be reproduced properly by the lower-dimensional problems, because
otherwise the convergence rates of ePOD

m would be the same for both cases. This statement can
be confirmed by comparing the discrete solution manifold Y hM for the different cases. If using gD
as the lifting function the snapshots Ph(µ) contain all the sharp interface, have seldom the right
slope in the other part of ω̂ and exhibit often strong oscillations (Fig. 4.4a), explaining both the
qualitative and quantitative convergence behavior obtained in this case. If we add ∆h in the strong
formulation of the PDE we see in Fig. 4.4b that the snapshots Ph(µ) resemble evaluations of p
(4.21). In contrast the snapshots of (4.16) for Q̄ = 2 are either located peaks or additionally
contain small peaks at the location of the interface (Fig. 4.4c), showing that the interface h has not
been removed completely from the snapshots Ph(µ) as it has been possible in the case of adding
∆h (Fig. 4.4b). This confirms the assertion that the equivalence of including h in the strong or
weak formulation of (4.7) cannot be reproduced properly with the approach for the derivation of
the parametrized 1D problem proposed in §4.2.2. Nevertheless, we emphasize that a significant
improvement of the convergence behavior has been achieved (Fig. 4.3b) for 2 quadrature points
which is not possible if following the ansatz of §2.3.1. Finally, we remark that for Q̄ = 1 we observe
for m ≥ 20 a stagnation of ‖em‖relV (Fig. 4.3f). This can be ascribed to the fact that although the
snapshots Ph(µ) ∈ Y hM in Fig. 4.4d show a certain similarity to the snapshots in Fig. 4.4b, they all
contain different slopes of the interface, which are not present in p (4.21), prohibiting a convergence
to the reference solution.

Test case 2
In this test case we consider a problem in which the solution exhibits more complex features than
in the previous example due to a discontinuous source term. In detail, we solve a Poisson problem
on Ω = (0, 2)× (0, 1.1) with a concentration profile h and a source term s defined as

h(x, y) =


1 if y + 0.4x < 0.8,

0.1 if y + 0.4x > 0.9,

0.55 + 0.45 cos(10π(y + 0.4x− 0.8)) if 0.8 ≤ y + 0.4x ≤ 0.9.

(4.24)
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Figure 4.5: Test case 2: Comparison of the discrete reduced solution pHm using the lifting function gD (4.26) (left
side) for m = 5, 10, 15, 20, 30 (top-bottom), pHm using h (4.24) as the lifting function (right) and m = 5, 10, 15, 20

with the reference solution p̃H×h (right,bottom) for NH = 800, nh = 440, NH′ = 80.

and

s(x, y) = −∆h+



2.25 if 0.15 ≤ x ≤ 0.35, 0.05 ≤ y ≤ 0.25,

2.25 if 0.55 ≤ x ≤ 0.75, 0.6 ≤ y ≤ 0.8,

4 if 0.95 ≤ x ≤ 1.05, 0.15 ≤ y ≤ 0.35 and 0.75 ≤ y ≤ 0.95,

4 if 1.25 ≤ x ≤ 1.45, 0.35 ≤ y < 0.55,

2 if 1.25 ≤ x ≤ 1.45, 0.55 ≤ y ≤ 0.75,

2.25 if 1.65 ≤ x ≤ 1.85, 0.85 ≤ y ≤ 1.05,

(4.25)

We prescribe non-homogeneous Dirichlet boundary conditions on the whole ∂Ω, where the respective
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(a) ‖em‖relV , lifting function gD (4.26)
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(b) ‖em‖relV , solution of (4.10), Q̄ = 2
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Figure 4.6: Test case 2: Comparison of the model error convergence of ‖em‖relV , if using the lifting function gD
(4.26) (a), including h in the strong formulation of (4.7) (c) or in the weak form of (4.7) and choosing Q̄ = 2 in (4.16)
(b) or Q̄ = 1 (f); comparison of ‖em‖relL2(Ω)

and ePOD
m for the solution p̃Hm of (4.10) with ePOD

m if including ∆h in
strong form ( +∆h) or using gD (gD) (d) and λm and ‖p̄Hm‖L2(Ω1D) for the solution of (4.10) (e); all computations:
NH′ = 10.

boundary values are obtained by evaluating h on ∂Ω. The reference solution p̃H×h for NH = 800,
nh = 440 is depicted in the last picture of Fig. 4.5 and contains apart from the skewed interface
h also a part pH×h induced by the source term. We have done a convergence study to ensure
that p̃H×h contains all essential features of the exact solution. Comparing p̃H×h with the discrete
reduced solution p̃Hm, computed using the lifting function

gD = (−0.5x+ 1)h(0, y) + 0.5xh(2, y) (4.26)

for m = 5, 10, 15, 20, 30, NH = 800, nh = 440 and NH′ = 80 (Fig. 4.5, left), we observe that 30
basis functions are required to obtain an acceptable approximation of p̃H×h. The oscillations are
even stronger than in the previous example and result in a very slow approximation of pH×h. Note
that even for m = 15 no resemblance between the contour lines of p̃H15 and p̃H×h can be detected.
In contrast already p̃H15 — the solution of (4.10) for m = 15 — contains all essential features of
the solution including the two small peaks around x = 1 and we see a very good visual agree-
ment of p̃H20 and p̃H×h. Altogether we observe a very much better qualitative convergence behavior,
when choosing h as the lifting function, where the gap is even greater than in the previous test case.
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Figure 4.7: Test case 2: Typical snapshots of the discrete solution manifold Y hM (2.33) if the lifting function gD
(4.26) is used and therefore no information on the interface is included in the model reduction procedure (a), if ∆h

is added in the strong formulation of (4.7) (b), (4.16) is solved with Q̄ = 2 (c) and Q̄ = 1 (d).

Studying the convergence behavior of ‖em‖relV we observe a bigger improvement of the convergence
behavior for m ≤ 60 for H = 0.003125, if including h, in comparison to the previous example
(Fig. 4.6a, Fig. 4.6b, Fig. 4.3b). For m > 60 the convergence behavior is comparable. Adding ∆h
directly to the source term s in the strong formulation of (4.7) yields an exponential convergence
rate of ‖em‖relV (Fig. 4.6c). The behavior of ‖em‖relV in both cases — either including h in the
weak (Fig. 4.6b) or in the strong formulation (Fig. 4.6c) — demonstrates the capacity of the ansatz
proposed in §4.1 to improve the convergence behavior for the HMR-RB approach. As however the
convergence rates of ePOD

m and ‖em‖relL2(Ω) and λm and ‖p̄m‖L2(Ω1D), respectively, for the solution of
(4.10) are roughly the same (Fig. 4.6d, 4.6e) and differ from the ones obtained if including ∆h in the
strong formulation of (4.7), we conclude that also for this test case the equivalence of including h
in the strong or weak formulation of (4.7) cannot be reproduced by the parametrized 1D problem,
prohibiting an exponentially fast approximation of the reference solution p̃H×h of (4.11) by p̃Hm
— the solution of (4.10). Finally, we observe again a significant deterioration of the convergence
rate of ‖em‖relV for the solution of (4.10) for one quadrature point in comparison to Q̄ = 2 (Fig. 4.6f).

In Fig. 4.7 some exemplary snapshots Ph(µ) are depicted in order to help to explain the convergence
behavior observed in Fig. 4.6. In case we add ∆h, the snapshots look like the profile of pH×h in
the transverse direction (Fig.4.7b), whereas the solutions of (4.16) for Q̄ = 2 additionally exhibit
a peak around the interface (Fig.4.7c). If we use gD as the lifting function, the snapshots Ph(µ)
feature very strong oscillations but barely resemble the slope of pH×h (Fig.4.7a). Also the snapshots
for Q̄ = 1 in (4.16) contain only few information on the profile of pH×h in the transverse direction
(Fig.4.7d), indicating that the artificial coupling introduced in §4.2.2 is necessary to obtain a good
approximation behavior of the HMR-RB approach.
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Figure 4.8: Test case 3: Comparison of the discrete reduced solution p̃Hm using the lifting function gD (left side) for
m = 5, 10, 15, 20 (top-bottom), p̃Hm using h̄ (4.29) as the lifting function in (4.10) and m = 5, 10, 15, 20 (middle), p̃Hm
if including ∆h̄ in the strong formulation of (4.7) for m = 5, 10, 15 (right) with the exact solution p̃ (right, bottom)
for NH = 800, nh = 400, NH′ = 80.

Test case 3

Finally, we consider a test case in which we do not include the exact interface h but only an
approximation h̄ as we usually cannot expect to be able to determine the exact interface but rather
only an approximation. We solve a Poisson problem on Ω = (0, 2) × (0, 1), where we choose the
exact solution p̃ = p+ h where

h(x, y) =


1 if y + 0.4x− j(x) < 0.8,

0.1 if y + 0.4x− j(x) > 0.9,

0.55 + 0.45 cos(10π(y + 0.4x− 0.8− j(x))) if 0.8 ≤ y + 0.4x− j(x) ≤ 0.9

(4.27)

for j(x) =

{
0.1 sin2( 5π

3 (x− 1)) if 1 ≤ x ≤ 1.6,

0 else,

and p(x, y) = 5y2(1− y)2(0.75− y)x(2− x) exp(sin(2πx)), (4.28)

which is the same choice of p as in test case 1. The exact solution p̃ is depicted in the last picture
of Fig. 4.8 and it can be seen that h is curved between x = 1 and x = 1.6. In Fig. 4.8 on
the left we see the discrete reduced solution p̃Hm, computed with the same lifting function gD =



104 CHAPTER 4. APPROXIMATION OF SKEWED INTERFACES

10 20 30 40 50 60 70
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

m

||
e

m
||

Vre
l

 

 

H = 0.025

H = 0.0125

H = 0.00625

H = 0.003125

(a) ‖em‖relV , lifting function gD

10 20 30 40 50 60 70
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

m

||
e

m
||

Vre
l

 

 

H = 0.025

H = 0.0125

H = 0.00625

H = 0.003125
g

D

(b) ‖em‖relV , solution of (4.10), Q̄ = 2

10 20 30 40 50 60 70
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

m

||
e

m
||

Vre
l

 

 

H = 0.025

H = 0.0125

H = 0.00625

H = 0.003125

−a(h, ⋅)
g

D
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10 20 30 40 50 60 70
10

−6

10
−4

10
−2

10
0

m

||
e

m
||

L
2
(Ω

)

re
l

; 
 e

P
O

D

m

 

 

||e
m

||
L

2
(Ω)

rel

||e
m

||
L

2
(Ω)

rel
 (+∆ h)

e
POD

m

e
POD

m
 (+∆ h)

e
POD

m
 (g

D
)

(d) ‖em‖relL2(Ω)
and ePOD

m

10 20 30 40 50 60 70
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

m

λ
m

; 
 |
|p

mH
||

L
2

 

 

λ
m

λ
m

 (+∆ h)

||p
m

H
||

L
2

||p
m

H
||

L
2 (+∆ h)

(e) λm and ‖p̄Hm‖L2(Ω1D)

10 20 30 40 50 60 70
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

m

||
e

m
||

Vre
l

 

 

H = 0.025

H = 0.0125

H = 0.00625

H = 0.003125

(f) ‖em‖relV , solution of (4.10), Q̄ = 1

Figure 4.9: Test case 3: Comparison of the model error convergence of ‖em‖relV , if using the lifting function gD
(4.26) (a), including h in the strong form of (4.7) (c) or in the weak form of (4.7) and choosing Q̄ = 2 in (4.16) (b) or
Q̄ = 1 (f); comparison of ‖em‖relL2(Ω)

and ePOD
m for the solution p̃Hm of (4.10) with ePOD

m if including ∆h in strong form
( +∆h) or using gD (gD) (d) and λm and ‖p̄Hm‖L2(Ω1D) for the solution of (4.10) (e); all computations: NH′ = 10.

(−0.5x + 1)h(0, y) + 0.5xh(2, y) as in test case 2 for m = 5, 10, 15, 20, NH = 800, nh = 400 and
NH′ = 80 and observe a qualitative convergence behavior very similar to the one in test case 1
(Fig. 4.2, left). Next, we compare the exact solution p̃ with the discrete reduced solution p̃Hm, which
has been computed using the approximating interface

h̄(x, y) =


1 if y + 0.4x < 0.8,

0.1 if y + 0.4x > 0.9,

0.55 + 0.45 cos(10π(y + 0.4x− 0.8)) if 0.8 ≤ y + 0.4x ≤ 0.9

(4.29)

for m = 5, 10, 15, 20, NH = 800, nh = 400 and NH′ = 80 (Fig. 4.8, middle). We observe that the
bending of the actual interface h, which is not included in the approximation h̄, causes oscillations
in the interval [0.9, 1.6] ⊂ Ω1D yielding a slower approximation behavior of p̃Hm than in test case
1 (Fig. 4.2, right). Eventually, 20 basis functions are required to obtain a good approximation
of p̃. Overall we still observe a significant improvement of the qualitative convergence behavior if
including an approximation of the interface, but, as expected, the gain is not as big as if including
the exact interface. If we add ∆h̄ in the strong formulation of (4.7) and compute the associated
discrete reduced solution for m = 5, 10, 15, NH = 800, nh = 400 and NH′ = 80 (Fig. 4.8, right), we
detect only few oscillations and see already for p̃H15 a good visual agreement with the exact solution p̃.
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Figure 4.10: Test case 3: Typical snapshots of the discrete solution manifold Y hM (2.33) if the lifting function gD
(4.26) is used and therefore no information on the interface is included in the model reduction preocedure (a), if ∆h

is added in the strong formulation of (4.7) (b), (4.16) is solved with Q̄ = 2 (c) and Q̄ = 1 (d).

Analyzing the convergence behavior of the relative model error ‖em‖relV , we see in Fig. 4.9b that on
the one hand solving (4.10) with the approximating interface h enhances the convergence behavior
but on the other hand the improvement is much smaller than in the two previous examples. Includ-
ing ∆h in the strong formulation of (4.7) further improves both the convergence behavior and rate
of ‖em‖relV (Fig. 4.9c) and ePOD

m (Fig. 4.9d) but not to the same extend as in the test cases 1 and
2. This supports the findings gained for the qualitative convergence behavior. As the convergence
rate of ePOD

m is better than the one of ‖em‖relL2(Ω) if we include ∆h, the convergence behavior of the
model error may perhaps be further improved for instance by increasing the sample size. Finally,
we state that the convergence behavior of ‖em‖relV for choosing Q̄ = 1 in (4.16) is only slightly
worse than the one for Q̄ = 2. This can be explained by the fact that the snapshots of (4.16) for
Q̄ = 1 (Fig. 4.10d) resemble very much both the snapshots of (4.16) for Q̄ = 2 (Fig. 4.10c) and the
snapshots Ph(µ) if including ∆h (Fig. 4.10b). Also for this test case the snapshots computed using
the lifting function gD contain hardly any information on the profile of p (Fig. 4.10a), prohibiting
a fast convergence to the exact solution.

We conclude the numerical experiments with some remarks on the reconstruction procedure. As
computing RH×h with (4.23) is as expensive as solving the reference solution, this strategy is not
feasible from a computationally viewpoint. We therefore propose to use an ansatz, which has some
similarities with an oversampling strategy (see e.g. [1,58,90] and references therein), that is employed
in the field of Multiscale Methods. Precisely, when deriving the parametrized dimensionally reduced
problem (4.16) for a parameter value µ ∈ Ξtrain, we first solve∫

B(µ,R)×ω̂
RH×hµ vH×h = a(∇h, vH×h)B(µ,R)×ω̂. (4.30)

Here, B(µ,R) denotes the ball of radius R around µ. RH×hµ (µ, ·) can then be added to the source
term in the parametrized dimensionally reduced problem (4.16). Studying such type of reconstruc-
tions is a task for future research.
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Chapter 5

Conclusion and Perspectives

Conclusion

In this thesis we have introduced a dimensional reduction approach which uses a highly nonlinear
approximation based on Reduced Basis (RB) methods to determine the reduction space Ym in
the Hierarchical Model Reduction (HMR) framework. Starting from the full problem, initially a
parametrized lower dimensional problem in the transverse direction has been derived. Here, the
parametrization enabled us to include the unknown behavior of the full solution in the dominant
direction in Ym. The generation of snapshots is based on a reliable and efficient a posteriori error
estimator combined with an adaptive training set extension. Finally, a proper orthogonal decom-
position (POD) is applied to the set of snapshots to select the principal components, which form
the reduction space Ym. Numerical experiments show a fast convergence of the Hierarchical Model
Reduction-Reduced Basis (HMR-RB) approximation to the full solution and demonstrate the com-
putational efficiency of the proposed method.

To approach the long-term goal of our ongoing research, namely the treatment of saturated-
unsaturated subsurface flow, modeled by Richards’ equation, we first introduced the HMR-RB
approach for linear partial differential equations (PDEs) and subsequently adapted the concept to
nonlinear PDEs. Finally, we addressed the approximation of a skewed water table.
In the linear setting the numerical experiments demonstrate that the set of solution snapshots
and the reference solution are approximated by the reduction space Ym with the same accuracy
for the purely diffusive problems. For problems with a dominant advective term a comparable
approximation rate can be achieved by using quadrature rules of higher accuracy when deriving
the parametrized problem. Thus, we conclude that the proposed ansatz for the derivation of the
parametrized 1D problems is able to transfer the essential transverse features of the solution to
the solution manifold. Furthermore, numerical experiments demonstrate that the new approach
converges exponentially fast with respect to the model order m for problems with smooth solutions
as well as for a test case where the source term is only continuous. Even for a test case where the
source term does not allow a tensor product decomposition and only a polynomial convergence rate
in m is achieved, very few basis functions suffice to balance the model and the discretization errors.
Our new approach shows faster convergence with respect to the model order than the classical
HMR ansatz using trigonometric polynomials in all test cases. An analysis of the computational
costs shows that the HMR-RB approach scales linearly in the number of degrees of freedom used for
the computations in the dominant direction, whereas the corresponding finite element reference ap-
proximation exhibits at best a quadratic scaling. Finally, we demonstrated that the new approach
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is indeed particularly beneficial for problems that exhibit a main stream and hence a dominant
spatial direction.
To conduct a dimensional reduction also for nonlinear PDEs we expanded the nonlinear operator in
a orthonormal (collateral) basis in the transverse direction. Also for the construction of the collat-
eral basis space Wk we used a highly nonlinear approximation. A manifold of parametrized lower
dimensional operator evaluations has been generated by using the solutions of the parametrized
dimensionally reduced problem and the corresponding parametrization. In this way we included in-
formation on the evaluation of the nonlinear operator in the unknown full solution in the dominant
direction in Wk. Operator and solution snapshot sets have been simultaneously generated with an
adaptive training set extension, and by applying a POD to the former the collateral basis space is
constructed. The coefficients of the operator approximation have been computed with the newly
introduced Empirical Projection Method (EPM), which is an adaptive integration algorithm based
on the Empirical Interpolation Method [12]. While for the basis selection with the greedy algorithm
and the POD several convergence results are already proven, to the best of our knowledge no result
that could have been employed, has been proven until now for the approximation of a nonlinear
operator. This gap has been closed by the introduction of the Empirical Projection Method and the
proven rigorous a priori and a posteriori error bounds. We used these bounds to derive a rigourous
and effective error estimator based on the Brezzi-Rappaz-Raviart theory, which is employed for
the construction of the snapshot sets. Here, we extended the results on the effectivity of the error
estimator in [27] from quadratically nonlinear PDEs to general nonlinear PDEs. The numerical
experiments for the nonlinear diffusion equation show that the reference solution and the set of so-
lution snapshots are approximated by the reduction space Ym with the same approximation quality.
Here, a quadrature formula of higher accuracy had to be employed for a test case with a non-smooth
solution. The evaluation of the nonlinear operator in the reference solution and the set of operator
snapshots are approximated by the collateral basis spaceWk with the same spproximation accuracy
for a problem with an analytic solution and a comparable quality for a problem with a non-smooth
solution. Hence, we conclude that by employing the suggested ansatz for the generation of the
solution and the operator manifold we are able to transfer the relevant transverse dynamics of the
reference solution and the operator evaluation to the respective manifolds. Furthermore, the nu-
merical experiments demonstrate an exponential convergence behavior of the HMR-RB approach
both for a problem with an analytical solution and a test case with a non-smooth solution also for
small ellipticity constants. The applicability of the theoretical results including the bounds for the
EPM is demonstrated, too. Run-time experiments show a linear scaling of the HMR-RB approach
in the number of degrees of freedom used for the computations in the dominant direction, while
the respective finite element reference approximation scales quadratically. This demonstrates the
computational efficiency of the proposed method also in the nonlinear setting.
Finally, we have suggested a new ansatz for the approximation of a possibly skewed water table
and similar interfaces with tensor-based model reduction approaches. First, we compute the height
of the water table by solving the dimensionally reduced problem which is derived by employing the
Dupuit assumption. By choosing the obtained saturation profile as the lifting function of the Dirich-
let boundary conditions, we remove the part of the full solution which can be badly approximated
by a tensor-based model reduction approach, and thus prevents a fast convergence of the latter.
For other applications one can proceed in the same manner, if a dimensionally reduced problem
which locates the interface can be derived. Exemplifying the proposed ansatz for the HMR-RB
approach we derived a coupled parametrized lower dimensional problem starting from the reference
finite element approximation, where the parameter vector coincides with the quadrature points.
We solve for the unknown parts of the solution in the dominant direction via the coupling. For
prescribed interfaces the numerical experiments demonstrate that the convergence behavior im-
proves considerably also if we can locate the interface only approximately. The validation of the
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proposed derivation of the parametrized coupled 1D problem shows that the 1D problems do not
reproduce properly the equivalence of including the interface in the strong or the weak formulation
of the PDE. Here, we have obtained a worse approximation behavior for the inclusion in the weak
form. A possible ansatz to solve this problem is to use a reconstruction of the derivative of the
interface in the dominant direction which mimics its behavior in two space dimensions. Using the
Riesz representative of the lifting function is one example for such a reconstruction. The numerical
experiments demonstrated that by employing this reconstruction the features of the full solution
apart the interface can be approximated exponentially fast if these features allow for such a rate.
Finally, the numerical tests show that the features of the full solution apart the water table (in-
terface) are approximated very slowly if no information on the interface is included. We therefore
expect the proposed ansatz to be also beneficial when applied within the context of subsurface flow.

Perspectives
The dimensional reduction approach introduced in this thesis and its generalization to nonlinear
PDEs offers several starting points for future research. Having the application of the HMR-RB
approach to the Richards equation in mind, we plan to extend our proposed method to time-
dependent problems. Here, existing methodologies from the field of RB methods (see e.g. [63] and
references therein) can be used. Another issue is the treatment of degenerate equations, including
the derivation of reliable a posteriori error bounds. The study of the behavior of the HMR-RB
approach for decreasing ellipticity constants in Section 3.6 can be seen as a first step in that
direction. As the considered computational domains in applications within the field of subsurface
flow typically have a great horizontal extension, we plan to derive a local HMR-RB approach
by integrating our proposed method in the domain decomposition framework introduced in [102].
Here, considering different sets of basis functions in different parts of the domain will hopefully
allow us to efficiently deal also with large computational domains. Finally, proving convergence of
the proposed method and deriving convergence rates is another task for future investigation. Here,
the techniques employed for the proof of the a priori bound of the Empirical Projection Method
give a hint how to proceed.
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Appendix A

Appendix to Chapter 1

A.1 Exemplification of the HMR-RB approach for an advection-
diffusion-reaction problem on a domain with a curved
boundary

We consider an advection-diffusion-reaction problem. Let Ω ⊂ R2 be the computational domain
with Lipschitz boundary ∂Ω and outer normal ν. Let ΣR, ΣD ⊂ ∂Ω be two relatively open, pair-
wise disjoint one-dimensional Lipschitz manifolds, such that ∂Ω = ΣR ∪ΣD. Here ΣR is the Robin
and ΣD is the Dirichlet boundary. We assume for the sake of simplicity H1(ΣD) > 0, where
H1(ΣD) denotes the one-dimensional Hausdorff-measure of ΣD. Furthermore we assume homoge-
neous Dirichlet boundary conditions and refer to Chapter 4 for the treatment of non-homogeneous
Dirichlet boundary conditions. We consider the following problem for p : Ω→ R

−∇ · (k∇ p− b p) + dp = s in Ω,

p = 0 on ΣD, (A.1)
−(k∇ p− b p) · ν = gR(p) on ΣR.

To guarantee well-posedness of the problem in the weak form (see below), we assume k ∈ L∞(Ω)
with 0 < c0 ≤ k ≤ c1 for constants c0, c1 ∈ R+, b ∈ [W 1,∞(Ω)]2, d ∈ L∞(Ω), s ∈ L2(Ω) and
d+ 1/2∇ · b ≥ 0 and b · ν ≤ 0 on ΣR. The Robin boundary conditions are assumed to be affine in
p, i.e.

gR(p) = gR,1 p− gR,2
where gR,1 ∈ L∞(ΣR) and gR,2 ∈ L2(ΣR). Let furthermore be V = {v ∈ H1(Ω) | v = 0 on ΣD}.
Then we define for v, w ∈ V the bilinear form

a(w, v) :=

∫
Ω

k∇w∇v −
∫

Ω

bw∇v +

∫
Ω

dw v +

∫
ΣR

gR,1 w v, (A.2)

and the linear form
f(v) :=

∫
Ω

s v +

∫
ΣR

gR,2 v. (A.3)

Thus the corresponding weak formulation of (A.1) reads:

Find p ∈ V such that a(p, v) = f(v) ∀ v ∈ V. (A.4)
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A.1.1 Formulation of the reduced problem in the Hierarchical Model
Reduction framework

The reduced problem reads: Find pm ∈ Vm such that for all vm ∈ Vm there holds∫
Ω

k∇pm∇vm −
∫

Ω

b pm∇vm +

∫
Ω

d pm vm +

∫
ΣR

gR,1 pm vm =

∫
Ω

s vm +

∫
ΣR

gR,2 vm.

We rewrite pm as pm(x, y) =
∑m
l=1 pl(x)φl(ψx(y)) and choose the test functions vk(x, y) =

ξ(x)φk(ψx(y)), k = 1, ...,m, for an arbitrary ξ(x) ∈ X. Then we use the gradient expansion

∇ (ξ(x)φk(ψ(y;x))) = φk(ψ(y;x))

(
dξ(x)
dx
0

)
+ ξ(x)φ′k(ψ(y;x))

(
D1(z)
D2(z)

)
for k = 1, ...,m, and ξ ∈ X, where φ′k(ψ(y;x)) means dφk(ψ(y;x))/dŷ at the point ψ(y;x). After
transforming Ω into Ω̂ via Ψ, we get the following problem for the coefficient functions:

m∑
l=1

∫
Ω1D

Alk(x)
dpl(x)

dx

dξ(x)

dx
+B1,lk(x)

dpl(x)

dx
ξ(x) +B2,lk(x)pl(x)

dξ(x)

dx
+Dlk(x)pl(x)ξ(x)dx

+Glk(x0) pl(x0)ξ(x0) =

∫
Ω1D

Fk(x) ξ(x) +Gk(x0), (A.5)

with

Alk(x) =

∫
γ̂

k(x, ψ−1(ŷ;x))φl(ŷ)φk(ŷ)|D−1
2 (x, ψ−1(ŷ;x))| dŷ,

B1,lk(x) =

∫
γ̂

k(x, ψ−1(ŷ;x))φl(ŷ)φ′k(ŷ)D1(x, ψ−1(ŷ;x))|D−1
2 (x, ψ−1(ŷ;x))| dŷ,

B2,lk(x) =

∫
γ̂

[
k(x, ψ−1(ŷ;x))φ′l(ŷ)φk(ŷ)D1(x, ψ−1(ŷ;x))

−b1(x, ψ−1(ŷ;x))φl(ŷ)φk(ŷ)

]
|D−1

2 (x, ψ−1(ŷ;x))| dŷ,

Dlk(x) =

∫
γ̂

[
k(x, ψ−1(ŷ;x))φ′l(ŷ)φ′k(ŷ)

{[
D1(x, ψ−1(ŷ;x))

]2
+
[
D2(x, ψ−1(ŷ;x))

]2}
−b(x, ψ−1(ŷ;x))φl(ŷ)φ′k(ŷ) ·

(
D1(x, ψ−1(ŷ;x))
D2(x, ψ−1(ŷ;x))

)
+d(x, ψ−1(ŷ;x))φl(ŷ)φk(ŷ)

]
|D−1

2 (x, ψ−1(ŷ;x))| dŷ

+gR,1(x, ψ−1
x (y0))φl(y0)φk(y0)|D−1

2 (x, ψ−1
x (y0))|,

Glk(x0) =

∫
γ̂

gR,1(x0, ψ
−1
x0

(ŷ))φl(ŷ)φk(ŷ)|D−1
2 (x0, ψ

−1
x0

(ŷ))| dŷ,

Fk(x) =

∫
γ̂

[
s(x, ψ−1(ŷ;x))φk(ŷ)

]
|D−1

2 (x, ψ−1(ŷ;x))| dŷ

+gR,2(x, ψ−1
x (y0))φk(y0)|D−1

2 (x, ψ−1
x (y0))|,

Gk(x0) =

∫
γ̂

gR,2(x0, ψ
−1
x0

(ŷ))φk(ŷ)|D−1
2 (x0, ψ

−1
x0

(ŷ))| dŷ.

We emphasize that due to the transformation Ψ the coupled system (A.5) contains additional
advective and reactive terms.
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A.1.2 Derivation of the parameter dependent one-dimensional problem
in the HMR-RB approach

We assume that
p(x, ŷ) ≈ U(x) · P(ŷ), (A.6)

for an unknown function U(x). Inserting (A.6) into (A.4) and applying the quadrature formula
defined in (2.26), yields the reduced problem with quadrature: Given any U ∈ X, find P ∈ Y such
that: ∫

γ̂

A(ŷ) ∂ŷ P(ŷ) ∂ŷ υ(ŷ) +B1(ŷ) ∂ŷ P(ŷ) υ(ŷ) +B2(ŷ)P(ŷ) ∂ŷ υ(ŷ) +D(ŷ)P(ŷ) υ(ŷ) dŷ

+G1(y0)P(y0)υ(y0) =

∫
γ̂

F (ŷ) υ(ŷ) dŷ +G2(y0) υ(y0),

where

A(ŷ) =

Q∑
l=1

αl k(xql , ψ
−1(ŷ;xql )) (U(xql ))

2 [D2
1(xql , ψ

−1(ŷ;xql ))

+D2
2(xql , ψ

−1(ŷ;xql ))] |D
−1
2 (xql , ψ

−1(ŷ;xql ))|,

B1(ŷ) =

Q∑
l=1

αl k(xql , ψ
−1(ŷ;xql )) ∂x U(xql )U(xql )D1(xql , ψ

−1(ŷ;xql )) |D
−1
2 (xql , ψ

−1(ŷ;xql ))|

B2(ŷ) =

Q∑
l=1

αl k(xql , ψ
−1(ŷ;xql )) ∂x U(xql )U(xql )D1(xql , ψ

−1(ŷ;xql ))

− b(xql , ψ
−1(ŷ;xql )) (U(xql ))

2 ·
(
D1(xql , ψ

−1(ŷ;xql ))
D2(xql , ψ

−1(ŷ;xql ))

)
|D−1

2 (xql , ψ
−1(ŷ;xql ))|

D(ŷ) =

Q∑
l=1

αl

{[
k(xql , ψ

−1(ŷ;xql ))(∂xU(xql ))
2 − b1(xql , ψ

−1(ŷ;xql )) ∂xU(xql )U(xql )

+ d(xql , ψ
−1(ŷ;xql ))(U(xql ))

2
]
· |D−1

2 (xql , ψ
−1(ŷ;xql ))|

}
+ gR,1(x0, ψ

−1(ŷ;x0)) (U(x0))2 |D−1
2 (x0, ψ

−1(ŷ;x0))|,

G1(y0) =

Q∑
l=1

αlgR,1(xql , ψ
−1(y0;xql )) (U(xql ))

2 |D−1
2 (xql , ψ

−1(y0;xql ))|,

F (ŷ) =

Q∑
l=1

αl

{
s(xql , ψ

−1(ŷ;xql ))U(xql )|D
−1
2 (xql , ψ

−1(ŷ;xql ))|
}

+ gR,2(x0, ψ
−1(ŷ;x0))U(x0) |D−1

2 (x0, ψ
−1(ŷ;x0))|,

G2(y0) =

Q∑
l=1

αlgR,2(xql , ψ
−1(y0;xql ))U(xql ) |D

−1
2 (xql , ψ

−1(y0;xql ))|.

Note that also for the 1D problem the advection and reaction is reinforced due to the transformation
Ψ. Assuming that x0, x1 /∈ {xql }

Q
l=1 the parameter µ and the parameter space D read as µ =

(xql , U(xql ), ∂xU(xql ), U(x0)), l = 1, ..., Q, and D := [Ω1D × I0 × I1]Q × I0. We shorten notations by
setting µ = ([µl,1, µl,2, µl,3]Ql=1, µb) where µl,1 replaces xql , µl,2 replaces U(xql ), µl,3 replaces ∂xU(xql )
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and µb stands for U(x0). We obtain the parametrized 1D PDE in transverse direction:∫
γ̂

A(ŷ) ∂ŷ P(ŷ) ∂ŷ υ(ŷ) +B1(ŷ) ∂ŷ P(ŷ) υ(ŷ) +B2(ŷ)P(ŷ) ∂ŷ υ(ŷ) +D(ŷ)P(ŷ) υ(ŷ) dŷ

+G1(y0)P(y0)υ(y0) =

∫
γ̂

F (ŷ) υ(ŷ) dŷ +G2(y0) υ(y0),

where

A(ŷ) =

Q∑
l=1

αl k(µl,1, ψ
−1(ŷ;µl,1))µ2

l,2 [D2
1(µl,1, ψ

−1(ŷ;µl,1))

+D2
2(µl,1, ψ

−1(ŷ;µl,1))] |D−1
2 (µl,1, ψ

−1(ŷ;µl,1))|,

B1(ŷ) =

Q∑
l=1

αl k(µl,1, ψ
−1(ŷ;µl,1))µl,3 µl,2D1(µl,1, ψ

−1(ŷ;µl,1)) |D−1
2 (µl,1, ψ

−1(ŷ;µl,1))|

B2(ŷ) =

Q∑
l=1

αl k(µl,1, ψ
−1(ŷ;µl,1))µl,3 µl,2D1(µl,1, ψ

−1(ŷ;µl,1))

− b(µl,1, ψ
−1(ŷ;µl,1))µ2

l,2 ·
(
D1(µl,1, ψ

−1(ŷ;µl,1))
D2(µl,1, ψ

−1(ŷ;µl,1))

)
|D−1

2 (µl,1, ψ
−1(ŷ;µl,1))|

D(ŷ) =

Q∑
l=1

αl

{[
k(µl,1, ψ

−1(ŷ;µl,1))µ2
l,3 − b1(µl,1, ψ

−1(ŷ;µl,1))µl,3 µl,2

+ d(µl,1, ψ
−1(ŷ;µl,1))µ2

l,2

]
· |D−1

2 (µl,1, ψ
−1(ŷ;µl,1))|

}
+ gR,1(x0, ψ

−1(ŷ;x0))µ2
b |D−1

2 (x0, ψ
−1(ŷ;x0))|,

G1(y0) =

Q∑
l=1

αlgR,1(µl,1, ψ
−1(y0;µl,1))µ2

l,2 |D−1
2 (µl,1, ψ

−1(y0;µl,1))|,

F (ŷ) =

Q∑
l=1

αl

{
s(µl,1, ψ

−1(ŷ;µl,1))µl,2|D−1
2 (µl,1, ψ

−1(ŷ;µl,1))|
}

+ gR,2(x0, ψ
−1(ŷ;x0))µb |D−1

2 (x0, ψ
−1(ŷ;x0))|,

G2(y0) =

Q∑
l=1

αlgR,2(µl,1, ψ
−1(y0;µl,1))µl,2 |D−1

2 (µl,1, ψ
−1(y0;µl,1))|.

A.2 Alternative proof of Proposition 2.6

In this section we present an alternative proof of Proposition 2.6 yielding slightly different constants
in the estimate (2.51). Due to ‖p− pHm‖V = ‖p0 − pmH0 ‖V it is sufficient to derive an estimate for
the latter. We set W = (L2(Ω))2 and denote by V ∗ and W ∗ the dual spaces of V and W . The
corresponding dual pairings are designated 〈 . , . 〉V and 〈 . , . 〉W and we identify W ∗ with W . We
denote the conjugate of a functional L ∈ V ∗ or W ∗ as L∗ and recall its definition L∗(v∗) :=
supv∈V {〈v∗, v〉V − L(v)} for L ∈ V ∗ (cf. [47]). Next we define the primal and the corresponding
dual problem (cf. [47]).
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Definition A.1 (Primal problem P). Find p0 ∈ V such that

J(p0,∇p0) = inf
v∈V

J(v,∇v), (A.7)

where

J(v,∇v) : = F(v) +G(∇v), with

F(v) :=

−
∫
Ω

s v dx dy −
∫

ΣN

gN v dx dy if v ∈ V,

+∞ otherwise,
(A.8)

and G(∇v) :=
1

2

∫
Ω

k | ∇v |2 dx dy +

∫
Ω

k∇gD∇v dx dy.

Definition A.2 (Dual problem P∗). Find q∗ ∈W ∗ such that

−J∗(−div q∗,−q∗) = sup
y∗∈W∗

− J∗(−div y∗,−y∗), (A.9)

where

J∗(−div y∗,−y∗) = F∗(−div y∗) +G∗(−y∗), with (A.10)

F∗(−div y∗) =

{
0 if y∗ ∈ Q∗c ,
+∞ otherwise,

(A.11)

G∗(−y∗) =

∫
Ω

1

2
k−1| y∗ |2 +∇gD · y∗ +

1

2
k∇gD · ∇gD dx dy, (A.12)

and Q∗c :=
{
y∗ ∈W ∗ :

∫
Ω
∇v · y∗ + fv dx dy +

∫
ΣN

gNv dx dy = 0 ∀v ∈ V
}
.

The following existence theorem is well known in the context of duality theory.

Theorem A.3. Let the functionals J(v,∇v),F(v) and G(v) be given as in (A.8). Then there exists
a minimizer p0 to the primal Problem P and a maximizer q∗ to the dual problem P∗. Futhermore
there holds

J(p0,∇p0) = −J∗(−div q∗,−q∗) (A.13)

and

(i) F(p0) + F∗(−div q∗)− 〈− div q∗, p0〉V = 0, and (ii) G(∇p0) +G∗(−q∗) + 〈q∗,∇p0〉W = 0.
(A.14)

Proof. See for instance [47,109].

For an arbitrary function in v ∈ V we define e := p0 − v and the function g : R2 → R, g(∇v) =
1
2 k |∇v|

2 +∇gD∇v. It is easy to prove that

1

2
‖e‖2V ≤ J(v,∇v)− J(p0,∇p0) ∀v ∈ V, (A.15)

that G∗ is Gâteaux differentiable, and that it fulfills the following estimates

‖G∗′(y∗)−G∗′(z∗)‖W ≤
1

c3
‖y∗ − z∗‖W , (A.16)

〈y∗ − z∗,G∗′(y∗)−G∗′(z∗)〉W ≤
1

c3
‖y∗ − z∗‖2W . (A.17)

Therefore we can apply the theory developed in [109] and obtain the following result.
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Proposition A.4. Let the functionals J(v,∇v),F(v) and G(v) be given as in (A.8). Then there
holds the following estimate

1

4
‖e‖2V ≤MD(y∗,∇v) +MR(y∗) ∀y∗ ∈W ∗, (A.18)

where

MD(y∗,∇v) =
1

2

∫
Ω

(g(∇v) + g∗(−y∗) + y∗ · ∇v) dx dy +
c3
4

∫
Ω

(g∗′(−y∗)−∇v)
2
dx dy

 ,
(A.19)

MR(y∗) =
c2p
c3
‖r(y∗)‖2V ∗ ,

(A.20)

and

‖r(y∗)‖V ∗ := sup
w∈V
w 6=0

∣∣∣∫Ω sw + y∗∇w dxdy +
∫

ΣN
gNw dxdy

∣∣∣
‖∇w‖L2(Ω)

. (A.21)

cp is the constant in the Poincaré inequality.

Proof. See [109].

The first term MD(y∗,∇v) is equal to zero if and only if

∇v = g∗′(−y∗), (A.22)

which is equivalent to
y∗ = −g′(∇v). (A.23)

Choosing v = pmH0 and y∗ = −g′(∇pmH0 ) = −k∇pmH0 −k∇gD completes the proof of the following
proposition, which is the analogue of Proposition 2.6.

Proposition A.5. Let p ∈ V be the solution of the full problem (2.1) and pHm ∈ V Hm the solution
of the discrete reduced problem (2.12). Then we have

‖p− pHm‖V ≤
2cp√
c3

sup
w∈V
w 6=0

∣∣∣∫Ω sw − k∇pHm∇w +
∫

ΣN
gNw

∣∣∣
‖∇w‖L2(Ω)

, (A.24)

where cp is the Poincaré constant and c3 the coercivity constant of the diffusion coefficient k.

A.3 Definition of the source term s of test case 2

The source term s used in test case 2 and depicted in Fig. 2.4 is defined as follows.

s(x, y) := 1.5e−5x · sin(πy) +
5∑
i=1

sx,i(x) · sy,i(y) (A.25)
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with

sx,1(x) :=


−800x2 + 120x− 2.5 for 0.025 ≤ x ≤ 0.125,

−800x2 + 1000x− 310.5 for 0.575 ≤ x ≤ 0.675,

0 else,

sx,2(x) :=


−400x2 + 140x− 11.25 for 0.125 ≤ x ≤ 0.225,

−800x2 + 1160x− 418.5 for 0.675 ≤ x ≤ 0.775,

0 else,

sx,3(x) :=


−560x2 + 308x− 40.95 for 0.225 ≤ x ≤ 0.325,

−800x2 + 1320x− 542.5 for 0.775 ≤ x ≤ 0.875,

0 else,

sx,4(x) :=


−400x2 + 300x− 55.25 for 0.325 ≤ x ≤ 0.425,

−800x2 + 1480x− 682.5 for 0.875 ≤ x ≤ 0.975,

0 else,

sx,5(x) :=


−800x2 + 760x− 178.5 for 0.425 ≤ x ≤ 0.525,

−800x2 + 1640x− 838.5 for 0.975 ≤ x ≤ 1.075,

0 else,

sy,1(y) := −100y2 + 30y − 1.25

for 0.05 ≤ y ≤ 0.25,

sy,2(y) := −200y2 + 280y − 96

for 0.6 ≤ y ≤ 0.8,

sy,3(y) :=



−140y2 + 70y − 7.35

for 0.15 ≤ y ≤ 0.35,

−140y2 + 238y − 99.75

for 0.75 ≤ y ≤ 0.95,

0 else,

sy,4(y) :=



−200y2 + 180y − 38.5

for 0.35 ≤ y ≤ 0.55,

−100y2 + 130y − 41.25

for 0.55 ≤ y ≤ 0.75,

0 else,

sy,5(y) := −100y2 + 190y − 89.25

for 0.85 ≤ y ≤ 1.05.
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Appendix B

Appendix to Chapter 3

B.1 Convergence of the EPM in the discrete setting

For the sake of completeness in Algorithm B.1.1 DEIM a continuous version of the Discrete Em-
pirical Interpolation Method [31] is described. Here, we use the same notation as in §3.2.

Algorithm B.1.1: Discrete Empirical Interpolation Method
1 DEIM(Wk,ω̂)
2 Set

t1 := arg ess
y∈ω̂

sup |κ1(ŷ)|, and ζ1 = κ1.

3 for l = 1, . . . , k do
4 Solve for the coefficients σl−1

j :

l−1∑
j=1

σl−1
j ζj(ti) = κl(ti), i = 1, ..., l − 1.

5 Compute the residual

rl(ŷ) := κl(ŷ)−
l−1∑
j=1

σl−1
j ζj(ŷ).

6 Set
tl = arg ess

y∈ω̂
sup |rl(ŷ)|, and ζl = κl, 1 ≤ i, j ≤ l.

7 end
8 return Tk

Next we prove convergence of the EPM 3.2.2 in the discrete setting. The main ingredients are again
the usage of the POD error (2.22) and a special case of

Lemma B.1 (Lebegue’s lemma [39]). If P is a projector of V onto W ⊂ V , then we have

‖f − P [f ]‖ ≤ (1 + ‖P‖)‖f − f∗‖,

121
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where f∗ denotes the best approximation of f in W with respect to the considered norm.

For the L∞-norm the operator norm of IL coincides with the ’Lebesgue constant’ [12,80,107], which
is defined as

ΛIk := ess sup
ŷ∈I

k∑
l=1

|ϑIl (ŷ)|. (B.1)

As the operator norm of IL can in general not be bounded in the L2-norm we prove convergence
only in the discrete setting employing the inverse estimate between the L∞- and L2-norm. To define
a discrete approximation of u, we use the partition T̂ := TH × τh of Ω̂ and the bilinear FE-space

V H×h :=
{
vH×h ∈ C0(Ω̂) | vH×h|Ti,j ∈ Q1,1, Ti,j ∈ T̂

}
⊂ H1

0 (Ω̂),

introduced in §2.4.1. We introduce the projector PH×h : L2(Ω̂)→ V H×h satisfying∫
Ω

PH×h[u]vH×h =

∫
Ω

uvH×h ∀vH×h ∈ V H×h, (B.2)

and set uH×h := PH×h[u]. For u ∈ H1(Ω) we have ‖u−uH×h‖L2(Ω) ≤ (h2 +H2)1/2‖u‖H1(Ω) [114].
We obtain the following result.

Proposition B.2 (Convergence of the EPM in the discrete setting). We assume that u ∈ H1(Ω).
Let Wh

K := {uH×h(µ, ŷ), µ ∈ Ξ1D} be a set of snapshots of the function uH×h, where Ξ1D ⊂ Ω1D

is a finite dimensional train sample of size |Ξ1D| = n and the parameter values µ ∈ Ξ1D are
sampled from the uniform distribution over Ω1D. The collateral basis space Wh

k = span{κh1 , ..., κhk}
is determined by a POD and can thus be defined as

Wh
k = arg inf

W̃h
k ⊂span{Wh

K}
dim(W̃h

k )=k

 1

n

∑
µ∈Ξ1D

inf
w̃hk∈W̃

h
k

‖uH×h(µ, ·)− w̃hk‖2L2(ω̂)

 . (B.3)

Finally, {λnl }
d(n)
l=1 denotes the set of eigenvalues of the correlation matrix eigenvalue problem that

is equivalent to the optimization problem (B.3). Then we have for each interval I ∈ I(
1
n

∑
µ∈Ξ1D

‖
∫
ω̂

∑k
l=1(uH×h(µ, ŷ)− IL[uH×h](µ, ŷ))κhl (ŷ) dŷ κhl ‖2L2(I)

)1/2

(B.4)

≤
√
k(1 +

(∑
I∈I(ΛIk)2

)1/2
h−1)

(
d(n)∑
l=k+1

λnl

)1/2

.

Proof. Let I be an arbitrary interval in I.
∫
ω̂
κhi κ

h
j = δij and some simple transformations and

estimates yield

1

n

∑
µ∈Ξ1D

‖
∫
ω̂

k∑
l=1

(uH×h(µ, ŷ)− IL[uH×h](µ, ŷ))κhl (ŷ) dŷ κhl ‖2L2(I)

≤ 1

n

∑
µ∈Ξ1D

k∑
l=1

(∫
ω̂

(uH×h(µ, ŷ)− IL[uH×h](µ, ŷ))κhl (ŷ) dŷ

)2

(B.5)

≤ 1

n

∑
µ∈Ξ1D

k‖uH×h(µ, ·)− IL[uH×h](µ, ·)‖2L2(ω̂).
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For each µ ∈ Ξ1D we can further estimate:

‖uH×h(µ, ·)− IL[uH×h](µ, ·)‖L2(ω̂)

≤ ‖uH×h(µ, ·)− IL[Pk[uH×h]](µ, ·)‖L2(ω̂)︸ ︷︷ ︸
(i)

+ ‖IL[Pk[uH×h]](µ, ·)− IL[uH×h](µ, ·)‖L2(ω̂)︸ ︷︷ ︸
(ii)

,

where Pk[uH×h] is defined analogous to (3.26). Exploiting that the EIM is exact on the spaceWh
k |I

(Lemma 3.6) we obtain for (i):

‖uH×h(µ, ·)− IL[Pk[uH×h]](µ, ·)‖2L2(ω̂) =
∑
I∈I

‖uH×h(µ, ·)− IL[Pk[uH×h]](µ, ·)‖2L2(I)

=
∑
I∈I

‖uH×h(µ, ·)− Pk[uH×h](µ, ·)‖2L2(I) (B.6)

= ‖uH×h(µ, ·)− Pk[uH×h](µ, ·)‖2L2(ω̂).

Using the definition of the Lebesgue constant (B.1) we get for (ii):

‖IL[Pk[uH×h]](µ, ·)− IL[uH×h](µ, ·)‖2L2(ω̂) =
∑
I∈I

‖IL[Pk[uH×h]](µ, ·)− IL[uH×h](µ, ·)‖2L2(I)

(B.7)
≤
∑
I∈I

(ΛIk)2‖Pk[uH×h](µ, ·)− uH×h(µ, ·)‖2L∞(ω̂).

The estimates (B.6) and (B.7) and the inverse estimate ‖υh‖L∞(ω̂) ≤ h−1‖υh‖L∞(ω̂), which holds
for all υh ∈ Y h, yield

‖uH×h(µ, ·)− IL[uH×h](µ, ·)‖L2(ω̂)

≤ ‖uH×h(µ, ·)− IL[Pk[uH×h]](µ, ·)‖L2(ω̂) + ‖IL[Pk[uH×h]](µ, ·)− IL[uH×h](µ, ·)‖L2(ω̂)
(B.8)

≤ ‖uH×h(µ, ·)− Pk[uH×h](µ, ·)‖L2(ω̂) +

(∑
I∈I

(ΛIk)2

)1/2

‖Pk[uH×h](µ, ·)− uH×h(µ, ·)‖L∞(ω̂)

≤ (1 +

(∑
I∈I

(ΛIk)2

)1/2

h−1)‖uH×h(µ, ·)− Pk[uH×h](µ, ·)‖L2(ω̂).

Note that (B.8) is a special case of Lebesgue’s lemma B.1. The estimates (B.5) and (B.8) together
with the definition of the POD-error (2.22) yield

1

n

∑
µ∈Ξ1D

‖
∫
ω̂

k∑
l=1

(uH×h(µ, ŷ)− IL[uH×h](µ, ŷ))κhl (ŷ) dŷ κhl ‖2L2(I)

≤ 1

n

∑
µ∈Ξ1D

k(1 +

(∑
I∈I

(ΛIk)2

)1/2

h−1)2‖uH×h(µ, ·)− Pk[uH×h](µ, ·)‖2L2(ω̂)

≤ k(1 +

(∑
I∈I

(ΛIk)2

)1/2

h−1)2

 d(n)∑
l=k+1

λnl


and thus the claim.
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Regarding the behavior of the Lebesgue constant it has been shown in [12] that ΛIk ≤ 2k − 1. Al-
though this bound can be actually reached [80], ΛIk ≤ 2k−1 is a very pessimistic result and in numer-
ical experiments a very moderate behavior is observed (cf. [43,80,87]). Note that (B.4) only yields
convergence of the EPM if the POD-error converges faster than (

√
k(1 +

(∑
I∈I(ΛIk)2

)1/2
h−1))−1.
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