Alexandrov meets Lott-Villani-Sturm

Anton Petrunin

(Communicated by Burkhard Wilking)

Abstract. Here I show the compatibility of two definitions of generalized curvature bounds: the lower bound for sectional curvature in the sense of Alexandrov and the lower bound for Ricci curvature in the sense of Lott-Villani-Sturm.

INTRODUCTION

Let me denote by $\operatorname{CD}[m, \kappa]$ the class of metric-measure spaces which satisfy a weak curvature-dimension condition for dimension m and curvature κ (see preliminaries). By $\operatorname{Alex}^{m}[\kappa]$, I will denote the class of all m-dimensional Alexandrov spaces with curvature $\geq \kappa$ equipped with the volume-measure (so $\operatorname{Alex}^{m}[\kappa]$ is a class of metric-measure spaces).

Main theorem. $Alex^m[0] \subset CD[m, 0].$

The question was first asked by Lott and Villani in [6, Rem. 7.48]. In [12], Villani formulates it more generally:

$$\operatorname{Alex}^{m}[\kappa] \subset \operatorname{CD}[m, (m-1) \cdot \kappa].$$

The latter statement can be proved along the same lines, but I do not write it down.

About the proof. The idea of the proof is the same as in the Riemannian case (see [4, Thm. 6.2] or [6, Thm. 7.3]). One only needs to extend certain calculus to Alexandrov spaces. To do this, I use the same technique as in [10]. I will illustrate the idea on a very simple problem.

Let M be a 2-dimensional nonnegatively curved Riemannian manifold and $\gamma_{\tau} : [0,1] \to M$ be a continuous family of unit-speed geodesics such that

(1)
$$|\gamma_{\tau_0}(t_0)\gamma_{\tau_1}(t_1)| \ge |t_1 - t_0|.$$

Set $\ell(t)$ to be the total length of the curve $\sigma_t : \tau \mapsto \gamma_{\tau}(t)$. Then $\ell(t)$ is a concave function; that is easy to prove.

Now, assume you have $A \in \text{Alex}^2[0]$ instead of M and a noncontinuous family of unit-speed geodesics $\gamma_{\tau}(t)$ which satisfies (1). Define $\ell(t)$ as the 1-dimensional Hausdorff measure of the image of σ_t . Then ℓ is also concave.

Here is an idea how one can proceed; it is not the simplest one but the one which admits a proper generalization. Consider two functions $\psi = \text{dist}_{\text{Im }\sigma_0}$ and $\varphi = \text{dist}_{\text{Im }\sigma_1}$. Note that geodesics $\gamma_{\tau}(t)$ are also gradient curves of ψ and φ . This implies that $\Delta \varphi + \Delta \psi$ vanishes almost everywhere on the image of the map $(\tau, t) \rightarrow \gamma_{\tau}(t)$ (the Laplacians $\Delta \varphi$ and $\Delta \psi$ are Radon sign-measures). Then the result follows from my second variation formula from [9] and calculus on Alexandrov spaces developed by Perelman in [8].

Remark. Although $CD[m, \kappa]$ is a very natural class of metric-measure spaces, some basic tools in Ricci comparison cannot work there in principle. For instance, there are CD[m, 0]-spaces which do not satisfy the Abresch-Gromoll inequality, (see [1]). Thus, one has to modify the definition of the class $CD[m, \kappa]$ to make it suitable for substantial applications in Riemannian geometry.

I am grateful to A. Lytchak and C. Villani for their help.

1. Preliminaries

Prerequisite. The reader is expected to be familiar with basic definitions and notions of optimal transport theory as in Villani's book [12], measure theory on Alexandrov spaces from paper of Burago, Gromov and Perelman [3], DC-structure on Alexandrov's spaces from Perelman's [8] and technique and notations of gradient flow as my survey [11].

What needs to be proved. Let me recall the definition of the class CD[m, 0] only; it is sufficient for understanding this paper. The definition of $CD[m, \kappa]$ can be found in [12, Def. 29.8].

Similar definitions were given by Lott and Villani in [6] and by Sturm in [13]. The idea behind these definitions, convexity of certain functionals in the Wasserstein space over a Riemannian manifold, appears in [7] by Otto an Vilani, [4] by Cordero-Erausquin, McCann and M. Schmuckenschläger, [14] by von Renesse and Sturm. In the Euclidean context, this notion of convexity goes back to [5] by McCann. More on the history of the subject can be found in the Villani's book [12].

For a metric-measure space X, I will denote by |xy| the distance between points $x, y \in X$ and by vol E the distinguished measure of Borel subset $E \subset X$ (I will call it *volume*). Let us denote by P_2X the set of all probability measures with compact support in X equipped with Wasserstein distance of order 2, see [12, Def. 6.1].

Further, we assume X is a proper geodesic space; in this case P_2X is geodesic.

Let μ be a probability measure on X. Denote by μ^r the absolutely continuous part of μ with respect to volume. I.e. μ^r coincides with μ outside a Borel subset of volume zero and there is a Borel function $\varrho: X \to \mathbb{R}$ such that $\mu^r = \varrho \cdot \text{vol.}$ Define

$$U_m \mu \stackrel{def}{=} \int_X \varrho^{1-\frac{1}{m}} \cdot d \operatorname{vol} = \int_X \frac{1}{\sqrt[m]{\varrho}} \cdot d\mu^r.$$

Then $X \in CD[m, 0]$ if the functional U_m is concave on P_2X ; i.e. for any two measures $\mu_0, \mu_1 \in P_2X$, there is a geodesic path μ_t , in P_2X , $t \in [0, 1]$, such that the real function $t \mapsto U_m \mu_t$ is concave.

Calculus in Alexandrov spaces. Let $A \in \text{Alex}^m[\kappa]$ and $S \subset A$ be the subset of singular points; i.e. $x \in S$ if and only if its tangent space T_x is not isometric to Euclidean *m*-space \mathbb{E}^m . The set *S* has zero volume ([3, Thm. 10.6]). The set of regular points $A \setminus S$ is convex ([9]); i.e. any geodesic connecting two regular points consists only of regular points.

According to [8], if $f: A \to \mathbb{R}$ is a semiconcave function and $\Omega \subset A$ is an image of a DC₀-chart, then $\partial_k f$ and the components of the metric tensor g^{ij} are functions of locally bounded variation which are continuous in $\Omega \setminus S$.

Further, for almost all $x \in A$ the Hessian of f is well-defined. I.e. there is a subset of full measure $\operatorname{Reg} f \subset A \setminus S$ such that for any $p \in \operatorname{Reg} f$ there is a bilinear form¹ Hess_p f on T_p such that

$$f(q) = f(p) + d_p f(v) + \text{Hess}_p f(v, v) + o(|v|^2),$$

where $v = \log_p q$. Moreover, the Hessian can be found using standard calculus in the DC₀-chart. In particular,

Trace Hess
$$f \stackrel{a.e.}{=} \frac{\partial_i (\det g \cdot g^{ij} \cdot \partial_j f)}{\det g}$$
.

The following is an extract from the second variation formula [9, Thm. 1.1B] reformulated with formalism of ultrafilters. Let ω be a nonprincipal ultrafilter on the natural numbers, $A \in \operatorname{Alex}^m[0]$ and [pq] be a minimizing geodesic in Awhich is extendable beyond p and q. Assume further that one of (and therefore each) of the points p and q is regular. Then there is a model configuration $\tilde{p}, \tilde{q} \in \mathbb{E}^m$ and isometries $\imath_p : \operatorname{T}_p A \to \operatorname{T}_{\tilde{p}} \mathbb{E}^m$, $\imath_q : \operatorname{T}_q A \to \operatorname{T}_{\tilde{q}} \mathbb{E}^m$ such that for any fixed $v \in \operatorname{T}_p$ and $w \in \operatorname{T}_q$ we have

$$\left|\exp_{p}\left(\frac{1}{n}\cdot v\right)\,\exp_{q}\left(\frac{1}{n}\cdot w\right)\right| \leqslant \left|\exp_{\tilde{p}}\circ\iota_{p}\left(\frac{1}{n}\cdot v\right)\,\exp_{\tilde{q}}\circ\iota_{q}\left(\frac{1}{n}\cdot w\right)\right| + o(n^{2})$$

for ω -almost all n (once the left-hand side is well-defined).

If $\tilde{\tau}$: $T_{\tilde{p}} \to T_{\tilde{q}}$ is the parallel translation in \mathbb{E}^m , then the isometry τ : $T_p \to T_q$ which satisfies the identity $\iota_q \circ \tau = \tilde{\tau} \circ \iota_p$ will be called the "parallel transportation" from p to q.

Laplacians of semiconcave functions. Here are some facts from my paper on harmonic functions [10].

¹Note that $p \in A \setminus S$, thus T_p is isometric to Euclidean *m*-space.

Given a function $f : A \to \mathbb{R}$, define its Laplacian Δf to be a Radon signmeasure which satisfies the following identity

$$\int_{A} u \cdot d\Delta f = -\int_{A} \langle \nabla u, \nabla f \rangle \cdot d \operatorname{vol}$$

for any Lipschitz function $u: A \to \mathbb{R}$.

1.1. Claim. Let $A \in \operatorname{Alex}^{m}[\kappa]$ and $f : A \to \mathbb{R}$ be λ -concave Lipschitz function. Then the Laplacian Δf is well-defined and

$$\Delta f \leq m \cdot \lambda \cdot \text{vol}$$
.

In particular, $\Delta^s f$ —the singular part of Δf —is negative. Moreover,

$$\Delta f = \text{Trace Hess } f \cdot \text{vol} + \Delta^s f$$

Proof. Let us denote by $F_t : A \to A$ the f-gradient flow for the time t.

Given a Lipschitz function $u: A \to \mathbb{R}$, consider the family $u_t(x) = u \circ F_t(x)$. Clearly, $u_0 \equiv u$ and u_t is Lipschitz for any $t \ge 0$. Further, for any $x \in A$ we have $\left|\frac{d^+}{dt}u_t(x)\right|_{t=0} \le C$ onst. Moreover

$$\frac{d^+}{dt}u_t(x)|_{t=0} \stackrel{a.e.}{=} d_x u(\nabla_x f) \stackrel{a.e.}{=} \langle \nabla_x u, \nabla_x f \rangle.$$

Further,

$$\int_{A} u_t \cdot d \operatorname{vol} = \int_{A} u \cdot d(F_t \# \operatorname{vol}),$$

where # stands for push-forward. Since $|F_t(x)F_t(y)| \leq e^{\lambda t} \cdot |xy|$ (see [11, 2.1.4(i)]) for any $x, y \in A$ we have

$$F_t \# \operatorname{vol} \ge \exp(-m \cdot \lambda \cdot t) \cdot \operatorname{vol}$$

Therefore, for any nonnegative Lipschitz function $u: A \to \mathbb{R}$,

$$\int_{A} u_t \cdot d \operatorname{vol} = \int_{A} u \cdot d(F_t \# \operatorname{vol}) \ge \exp(-m \cdot \lambda \cdot t) \cdot \int_{A} u \cdot d \operatorname{vol}$$

Therefore

$$\int_{A} \langle \nabla u, \nabla f \rangle \cdot d \operatorname{vol} = \frac{d^{+}}{dt} \int_{A} u_{t} \cdot d \operatorname{vol} \Big|_{t=0} \ge -m \cdot \lambda \cdot \int_{A} u \cdot d \operatorname{vol} \cdot$$

I.e. there is a Radon measure χ on A such that

$$\int_{A} u \cdot d\chi = \int_{A} [\langle \nabla u, \nabla f \rangle + m \cdot \lambda \cdot u] \cdot d \operatorname{vol}$$

Set $\Delta f = -\chi + m \cdot \lambda$, this is a Radon sign-measure and $\chi = -\Delta f + m \cdot \lambda \ge 0$.

To prove the second part of the theorem, assume u is a nonnegative Lipschitz function with support in a DC₀-chart $U \to A$, where $U \subset \mathbb{R}^m$ is an open subset. Then

$$\int_{A} \langle \nabla u, \nabla f \rangle = \int_{U} \det g \cdot g^{ij} \cdot \partial_{i} u \cdot \partial_{j} f \cdot dx^{1} \cdot dx^{2} \cdots dx^{m}$$
$$= -\int_{U} u \cdot \partial_{i} (\det g \cdot g^{ij} \cdot \partial_{j} f) \cdot dx^{1} \cdot dx^{2} \cdots dx^{m}$$

Thus

$$\Delta f = \partial_i (\det g \cdot g^{ij} \cdot \partial_j f) \cdot dx^1 \cdot dx^2 \cdots dx^m \stackrel{a.e.}{=} \operatorname{Trace Hess} f.$$

Gradient curves. Here I extend the notion of gradient curves to families of functions, see [11] for all necessary definitions.

Let \mathbb{I} be an open real interval and $\lambda : \mathbb{I} \to \mathbb{R}$ be a continuous function. A one parameter family of functions $f_t : A \to \mathbb{R}$, $t \in \mathbb{I}$, will be called $\lambda(t)$ -concave if the function $(t, x) \mapsto f_t(x)$ is locally Lipschitz and f_t is $\lambda(t)$ -concave for each $t \in \mathbb{I}$.

We will write $\alpha^{\pm}(t) = \nabla f_t$ if for any $t \in \mathbb{I}$, the right/left tangent vector $\alpha^{\pm}(t)$ is well-defined and $\alpha^{\pm}(t) = \nabla_{\alpha(t)}f_t$. The solutions of $\alpha^+(t) = \nabla f_t$ will be also called f_t -gradient curves.

The following is a slight generalization of [11, 2.1.2 and 2.2(2)]; it can be proved along the same lines.

1.2. Proposition-Definition. Let $A \in \operatorname{Alex}^{m}[\kappa]$, let \mathbb{I} be an open real interval, let $\lambda : \mathbb{I} \to \mathbb{R}$ be a continuous function and let $f_t : A \to \mathbb{R}$, $t \in \mathbb{I}$ be a $\lambda(t)$ -concave family.

Then for any $x \in A$ and $t_0 \in \mathbb{I}$ there exists an f_t -gradient curve α which is defined in a neighborhood of t_0 and such that $\alpha(t_0) = x$.

Moreover, if $\alpha, \beta : \mathbb{I} \to A$ are f_t -gradient then for any $t_0, t_1 \in \mathbb{I}, t_0 \leq t_1$,

$$|\alpha(t_1)\beta(t_1)| \leq L \cdot |\alpha(t_0)\beta(t_0)|,$$

where $L = \exp\left(\int_{t_0}^{t_1} \lambda(t) \cdot dt\right)$.

Note that the above proposition implies that the value $\alpha(t_0)$ of an f_t gradient curve $\alpha(t)$ uniquely determines it for all $t \ge t_0$ in \mathbb{I} . Thus we can define the f_t -gradient flow as a family of maps $F_{t_0,t_1}: A \to A$ such that

$$F_{t_0,t_1}(\alpha(t_0)) = \alpha(t_1)$$
 if $\alpha^+(t) = \nabla f_t$

1.3. Claim. Let $f_t : A \to \mathbb{R}$ be a $\lambda(t)$ -concave family and F_{t_0,t_1} be f_t -gradient flow. Let $E \subset A$ be a bounded Borel set. Fix t_1 and consider the function

Münster Journal of Mathematics Vol. 4 (2011), 53-64

 $v(t) = \operatorname{vol} F_{t,t_1}^{-1}(E)$. Then

$$v\Big|_{t}^{t_{1}} = \int_{t}^{t_{1}} \Delta f_{t} \big[F_{t,t_{1}}^{-1}(E) \big] \cdot dt$$

Proof. Let $u : A \to \mathbb{R}$ be a Lipschitz function with compact support. Set $u_t = u \circ F_{t,t_1}$. Clearly every $(x,t) \mapsto u_t(x)$ is locally Lipschitz. Thus, the function

$$w_u: t \mapsto \int\limits_A u_t \cdot d \operatorname{vol}$$

is locally Lipschitz. Further

$$w'_u(t) \stackrel{a.e.}{=} - \int_A \langle \nabla u_t, \nabla f_t \rangle \cdot d \operatorname{vol} = \int_A u_t \cdot d\Delta f_t.$$

Therefore

$$w_u\Big|_t^{t_1} = \int_t^{t_1} d\xi \cdot \int_A u_{\xi} \cdot d\Delta f_{\xi}.$$

The last formula extends to an arbitrary Borel function $u : A \to \mathbb{R}$ with bounded support. Applying it to the characteristic function of E we get the result.

2. GAMES WITH HAMILTON-JACOBI SHIFTS.

Let $A \in \operatorname{Alex}^{m}[0]$. For a function $f : A \to \mathbb{R} \cup \{+\infty\}$, let us define its Hamilton-Jacobi shift² $\mathcal{H}_{t} f : A \to \mathbb{R}$ for the time t > 0 as follows

$$(\mathcal{H}_t f)(x) \stackrel{\text{def}}{=\!\!=} \inf_{y \in A} \left\{ f(y) + \frac{1}{2t} \cdot |xy|^2 \right\}.$$

We say that $\mathcal{H}_t f$ is well-defined if the above infimum is $> -\infty$ everywhere in A. Note that

(2)
$$\mathcal{H}_{t_0+t_1}f = \mathcal{H}_{t_1}\mathcal{H}_{t_0}f$$

for any $t_0, t_1 > 0$. (The inequality $\mathcal{H}_{t_0+t_1} f \leq \mathcal{H}_{t_1} \mathcal{H}_{t_0} f$ is a direct consequence of the triangle inequality and it is actually equality for any intrinsic metric, in particular for Alexandrov space.)

Note that for t > 0, $f_t = \mathcal{H}_t f$ forms a $\frac{1}{t}$ -concave family, thus, we can apply Proposition-Definition 1.2 and Claim 1.3. The next theorem gives a more delicate property of the gradient flow for such families; it is an analog of [11, 3.3.6].

2.1. Claim. Let $A \in \operatorname{Alex}^{m}[0]$, $f_0 : A \to \mathbb{R}$ be a function and let $f_t = \mathcal{H}_t f_0$ be well-defined for $t \in (0, 1)$. Assume that $\gamma : [0, 1] \to A$ is a geodesic path which is an f_t -gradient curve for $t \in (0, 1)$ and that $\alpha : (0, 1) \to A$ is another

²There is a lot of similarity between the Hamilton-Jacobi shift of a function and an equidistant for a hypersurface.

 f_t -gradient curve. Then if for some $t_0 \in (0,1)$, $\alpha(t_0) = \gamma(t_0)$, then $\alpha(t) = \gamma(t)$ for all $t \in (0,1)$.

Proof. Set $\ell = \ell(t) = |\alpha(t)\gamma(t)|$; this is a locally Lipschitz function defined on (0, 1). We have to show that if $\ell(t_0) = 0$ for some t_0 , then $\ell(t) = 0$ for all t.

According to Proposition-Definition 1.2, $\ell(t) = 0$ for all $t \ge t_0$. In order to prove that $\ell(t) = 0$ for all $t \le t_0$, it is sufficient to show that

$$\ell' \ge -[\frac{1}{t} + \frac{2}{1-t}] \cdot \ell$$

for almost all t.

Since α is locally Lipschitz, for almost all t, $\alpha^+(t)$ and $\alpha^-(t)$ are well-defined and *opposite*³ to each other.

Fix such t and set $x = \gamma(0)$, $z = \gamma(t)$, $y = \gamma(1)$, $p = \alpha(t)$, so $\ell(t) = |pz|$. Note that the function

(3)
$$f_t + \frac{1}{2(1-t)} \cdot \operatorname{dist}_y^2$$

has a minimum at z. Extend a geodesic [zp] by a both-sides infinite unitspeed quasigeodesic⁴ $\sigma : \mathbb{R} \to A$, so $\sigma(0) = z$ and $\sigma^+(0) = \uparrow_{[zp]}$. The function $f_t \circ \sigma : \mathbb{R} \to \mathbb{R}$ is $\frac{1}{t}$ -concave and from (3),

$$f_t \circ \sigma(s) \ge f_t(z) + \langle \gamma^+(t), \uparrow_{[zp]} \rangle \cdot s - \frac{1}{2(1-t)} \cdot s^2.$$

It follows that

$$\begin{aligned} \langle \nabla_p f_t, \sigma^+(\ell) \rangle &\ge d_p f_t(\sigma^+(\ell)) \\ &= (f_t \circ \sigma)^+(\ell) \\ &\ge \langle \gamma^+(t), \uparrow_{[zp]} \rangle - [\frac{1}{t} + \frac{2}{1-t}] \cdot \ell. \end{aligned}$$

Now,

(a) the vectors $\sigma^{\pm}(\ell)$ are polar, thus $\langle \alpha^{\pm}(t), \sigma^{+}(\ell) \rangle + \langle \alpha^{\pm}(t), \sigma^{-}(\ell) \rangle \ge 0$, (b) the vectors $\alpha^{\pm}(t)$ are opposite, thus $\langle \alpha^{+}(t), \sigma^{\pm}(\ell) \rangle + \langle \alpha^{-}(t), \sigma^{\pm}(\ell) \rangle = 0$, (c) $\alpha^{+}(t) = \nabla_{p} f_{t}$ and $\sigma^{-}(\ell) = \uparrow_{[pz]}$. Thus, $\langle \nabla_{p} f_{t}, \sigma^{+}(\ell) \rangle + \langle \alpha^{+}(t), \uparrow_{[pz]} \rangle = 0$. Therefore $\ell' = -\langle \alpha^{+}(t), \uparrow_{t-1} \rangle - \langle \gamma^{+}(t), \uparrow_{t-1} \rangle \ge -[\frac{1}{2} + \frac{2}{2}] \cdot \ell$

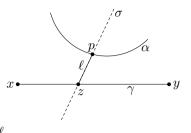
$$\ell' = -\langle \alpha^+(t), \uparrow_{[pz]} \rangle - \langle \gamma^+(t), \uparrow_{[zp]} \rangle \ge -[\frac{1}{t} + \frac{2}{1-t}] \cdot \ell.$$

2.2. Proposition. Let $A \in \operatorname{Alex}^{m}[0]$, let $f : A \to \mathbb{R}$ be a bounded continuous function and let $f_t = \mathcal{H}_t f$. Assume that $\gamma : (0, a) \to A$ is an f_t -gradient curve which is also a constant-speed geodesic. Assume that the function

$$h(t) \stackrel{aef}{=} \operatorname{Trace} \operatorname{Hess}_{\gamma(t)} f_t$$

⁴A careful proof of existence of quasigeodesics can be found in [11].

Münster Journal of Mathematics Vol. 4 (2011), 53-64



³I.e. $|\alpha^+(t)| = |\alpha^-(t)|$ and $\measuredangle(\alpha^+(t), \alpha^-(t)) = \pi$

is defined for almost all $t \in (0, a)$. Then

$$h' \leqslant -\frac{1}{m} \cdot h^2$$

in the sense of distributions; i.e. for any nonnegative Lipschitz function $u: (0, a) \to \mathbb{R}$ with compact support,

$$\int_{0}^{a} \left(\frac{1}{m} \cdot h^{2} \cdot u - h \cdot u'\right) \cdot dt \ge 0$$

Proof. Since h is defined a.e., all $T_{\gamma(t)}$ for $t \in (0, a)$ are isometric to Euclidean *m*-space. From (2),

$$f_{t_1}(x) = \inf_{y \in A} \left\{ f_{t_0}(y) + \frac{|xy|^2}{2 \cdot (t_1 - t_0)} \right\}$$

Thus, for a parallel transportation $\tau : T_{\gamma(t_0)} \to T_{\gamma(t_1)}$ along γ , we have

$$\operatorname{Hess}_{\gamma(t_1)} f_{t_1}(y) \leqslant \operatorname{Hess}_{\gamma(t_0)} f_{t_0}(x) + \frac{|\tau(x) y|^2}{2 \cdot (t_1 - t_0)}$$

for any $x \in T_{\gamma(t_0)}$ and $y \in T_{\gamma(t_1)}$. Taking trace leads to the result.

3. Proof of the main theorem

Let $A \in Alex^m[0]$; in particular A is a proper geodesic space. Let μ_t be a family of probability measures on A for $t \in [0, 1]$ which forms a geodesic path⁵ in P₂A and both μ_0 and μ_1 are absolutely continuous with respect to volume on A.

It is $sufficient^6$ to show that the function

$$\Theta: t \mapsto U_m \mu_t$$

is concave.

According to [12, 7.22], there is a probability measure π on the space of all geodesic paths in A which satisfies the following: If $\Gamma = \text{supp } \pi$ and $e_t : \Gamma \to A$ is evaluation map $e_t : \gamma \mapsto \gamma(t)$ then $\mu_t = e_t \# \pi$.

The measure π is called the *dynamical optimal coupling* for μ_t and the measure $\pi = (e_0, e_1) \# \pi$ is the corresponding *optimal transference plan*. The space Γ will be considered further equipped with the metric

$$|\gamma \gamma'| = \max_{t \in [0,1]} |\gamma(t)\gamma'(t)|.$$

First we present μ_t as the push-forward for gradient flows of two opposite families of functions. According to [12, 5.10], there are optimal price functions $\varphi, \psi: A \to \mathbb{R}$ such that

$$\varphi(y) - \psi(x) \leq \frac{1}{2} \cdot |xy|^2$$

⁵i.e. a constant-speed minimizing geodesic defined on [0, 1].

⁶It follows from [12, 30.32] since Alexandrov's spaces are nonbranching.

Münster Journal of Mathematics Vol. 4 (2011), 53-64

for any $x, y \in A$ and equality holds for any $(x, y) \in \text{supp } \pi$. We can assume that $\psi(x) = +\infty$ for $x \notin \text{supp } \mu_0$ and $\varphi(y) = -\infty$ for $y \notin \text{supp } \mu_1$.

Consider two families of functions

$$\psi_t = \mathcal{H}_t \psi$$
 and $\varphi_t = \mathcal{H}_{1-t}(-\varphi).$

Clearly, ψ_t forms a $\frac{1}{t}$ -concave family for $t \in (0, 1]$ and φ_t forms⁷ a $\frac{1}{1-t}$ -concave family for $t \in [0, 1)$.

It is straightforward to check that for any $\gamma \in \Gamma$ and $t \in (0, 1)$

$$\pm \langle \gamma^{\pm}(t), v \rangle = d_{\gamma(t)} \psi_t(v) = -d_{\gamma(t)} \varphi_t(v);$$

in particular,

(4)
$$\gamma^+(t) = \nabla \psi_t \text{ and } \gamma^-(t) = \nabla \varphi_t.$$

For $0 < t_0 \leq t_1 \leq 1$, let us consider the maps $\Psi_{t_0,t_1} : A \to A$, the gradient flow of ψ_t , defined by

$$\Psi_{t_0,t_1}\alpha(t_0) = \alpha(t_1) \quad \text{if} \quad \alpha^+(t) = \nabla \psi_t.$$

Similarly, $0 \leq t_0 \leq t_1 < 1$, define map $\Phi_{t_1,t_0} : A \to A$

$$\Phi_{t_1,t_0}\beta(t_1) = \beta(t_0) \quad \text{if} \quad \beta^-(t) = \nabla\varphi_t.$$

According to Proposition-definition 1.2,

(5) Ψ_{t_0,t_1} is $\frac{t_1}{t_0}$ -Lipschitz and Φ_{t_1,t_0} is $\frac{1-t_0}{1-t_1}$ -Lipschitz.

From (4), $e_{t_1} = \Psi_{t_0,t_1} \circ e_{t_0}$ and $e_{t_0} = \Phi_{t_1,t_0} \circ e_{t_1}$. Thus, for any $t \in (0,1)$, the map $e_t : \Gamma \to A$ is bi-Lipschitz. In particular, for any measure χ on A, there is a uniquely determined one-parameter family of "pull-back" measures χ_t^* on Γ , i.e. such that $\chi_t^* E = \chi(e_t E)$ for any Borel subset $E \subset \Gamma$.

Fix some $z_0 \in (0,1)$ (one can take $z_0 = \frac{1}{2}$) and equip Γ with the measure $\nu = \operatorname{vol}_{z_0}^*$. Thus, from now on "almost everywhere" has sense in Γ , $\Gamma \times (0,1)$ and so on.

Now we will represent Θ in terms of families of functions on Γ . Note that $\mu_1 = \Psi_{t,1} \# \mu_t$ and $\Psi_{t,1}$ is $\frac{1}{t}$ -Lipschitz. Since μ_1 is absolutely continuous, so is μ_t for all t. Set $\mu_t = \varrho_t \cdot \text{vol.}$ Note that from (5), we get that

$$\left(\frac{1-t_1}{1-t_0}\right)^m \leqslant \frac{\varrho_{t_1}(\gamma(t_1))}{\varrho_{t_0}(\gamma(t_0))} \leqslant \left(\frac{t_1}{t_0}\right)^m$$

for almost all $\gamma \in \Gamma$ and $0 < t_0 < t_1 < 1$. For $\gamma \in \Gamma$ set $r_t(\gamma) = \varrho_t(\gamma(t))$. Then

(6)
$$\Theta(t) = \int_{A} \varrho_t^{-\frac{1}{m}} \cdot d\mu_t = \int_{\Gamma} r_t^{-\frac{1}{m}} \cdot d\Pi$$

In particular, Θ is locally Lipschitz in (0, 1).

⁷Note that usually φ_t is defined with opposite sign, but I wanted to work with semiconcave functions only.

Next we show that the measure $\Delta \varphi_t$ is absolutely continuous on $e_t \Gamma$ and that $r_t(\gamma(t)) = \varrho_t(\gamma(t)) \cdot \Delta \varphi_t$ in some weak sense. From (5), $\operatorname{vol}_t^* = e^{w_t} \cdot \nu$ for some Borel function $w_t : \Gamma \to \mathbb{R}$. Thus

$$\operatorname{vol} e_t E = \int_E e^{w_t} \cdot d\nu$$

for any Borel subset $E \subset \Gamma$. Moreover, for almost all $\gamma \in \Gamma$, we have that the function $t \mapsto w_t(\gamma)$ is locally Lipschitz in (0,1) (more precisely, $t \mapsto w_t(\gamma)$ coincides with a Lipschitz function outside of a set of zero measure). In particular $\frac{\partial w_t}{\partial t}$ is well-defined a.e. in $\Gamma \times (0,1)$ and moreover

$$w_t \stackrel{a.e.}{=} \int_{z_0}^t \frac{\partial w_t}{\partial t} \cdot dt.$$

Further, from Claim 2.1, if $0 < t_0 \leq t_1 < 1$ then for any $\gamma \in \Gamma$,

$$\begin{split} \Psi_{t_0,t_1}(x) &= \gamma(t_1) & \Longleftrightarrow \quad x = \gamma(t_0), \\ \Phi_{t_1,t_0}(x) &= \gamma(t_0) & \Longleftrightarrow \quad x = \gamma(t_1). \end{split}$$

Thus, for any Borel subset $E \subset \Gamma$,

$$e_{t_1}E = \Psi_{t_0,t_1} \circ e_{t_0}E = \Phi_{t_1,t_0}^{-1}(e_{t_0}E),$$

$$e_{t_0}E = \Phi_{t_1,t_0} \circ e_{t_1}E = \Psi_{t_0,t_1}^{-1}(e_{t_1}E).$$

Set

$$v(t) \stackrel{def}{=} \operatorname{vol} e_t E = \int\limits_E e^{w_t} \cdot d\nu.$$

From Claim 1.3,

$$v'(t) \stackrel{a.e.}{=} \Delta \psi_t(e_t E) \stackrel{a.e.}{=} -\Delta \varphi_t(e_t E).$$

Thus, $\Delta \psi_t + \Delta \varphi_t = 0$ everywhere on $e_t \Gamma$. From Claim 1.1,

$$\Delta \psi_t \leqslant \frac{m}{t} \cdot \operatorname{vol}, \qquad \Delta \varphi_t \leqslant \frac{m}{1-t} \cdot \operatorname{vol}.$$

Thus, both restrictions $\Delta \psi_t|_{e_t\Gamma}$ and $\Delta \varphi_t|_{e_t\Gamma}$ are absolutely continuous with respect to volume. Therefore

$$v'(t) \stackrel{a.e.}{=} \int_{e_t E} \operatorname{Trace Hess} \varphi_t \cdot d \operatorname{vol}.$$

For the one parameter family of functions $h_t(\gamma) = \text{Trace Hess}_{\gamma(t)} \varphi_t$, we have

$$v\Big|_{z_0}^t = \int_E (e^{w_t} - 1) \cdot d\nu = \int_{z_0}^t dt \cdot \int_E h_t \cdot e^{w_t} \cdot d\nu$$

or any Borel set $E \subset \Gamma$. Equivalently,

$$\frac{\partial w_t}{\partial t} \stackrel{a.e.}{=} h_t$$

From Proposition 2.2,

$$\frac{\partial h_t}{\partial t} \leqslant -\frac{1}{m} \cdot h_t^2.$$

Thus, for almost all $\gamma \in \Gamma$, the following inequality holds in the sense of distributions:

$$\frac{\partial^2}{\partial t^2} \exp\left(\frac{w_t(\gamma)}{m}\right) = \left(\frac{1}{m^2} \cdot h_t^2 + \frac{1}{m} \cdot \frac{\partial h_t}{\partial t}\right) \cdot \exp\left(\frac{w_t(\gamma)}{m}\right) \leqslant 0;$$

i.e. $t \mapsto \exp\left(\frac{w_t(\gamma)}{m}\right)$ is concave. Moreover precisely, $t \mapsto \exp\left(\frac{w_t(\gamma)}{m}\right)$ coincides with a concave function almost everywhere.

Clearly, for any t we have $\mu = r_t \cdot e^{w_t} \cdot \nu$. Thus, for almost all γ there is a nonnegative Borel function $a : \Gamma \to \mathbb{R}_{\geq 0}$ such that $r_t \stackrel{a.e.}{=} a \cdot e^{-w_t}$. Continue (6),

$$\Theta(t) = \int_{\Gamma} r_t^{-\frac{1}{m}} \cdot d\Pi = \int_{\Gamma} e^{\frac{w_t}{m}} \cdot \sqrt[m]{a} \cdot d\Pi$$

I.e. Θ is concave as an average of concave functions. Again, more precisely, Θ coincides with a concave function a.e., but since Θ is locally Lipschitz in (0, 1) we get that Θ is concave.

References

- U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), no. 2, 355–374. MR1030656 (91a:53071)
- [2] J. Bertrand, Existence and uniqueness of optimal maps on Alexandrov spaces, Adv. Math. 219 (2008), no. 3, 838–851. MR2442054 (2009j:49094)
- [3] Yu. Burago, M. Gromov and G. Perel'man, Aleksandrov spaces with curvatures bounded below. (Russian) Uspekhi Mat. Nauk 47 (1992), no. 2(284), 3–51, 222; translation in Russian Math. Surveys 47 (1992), no. 2, 1–58. MR1185284 (93m:53035)
- [4] D. Cordero-Erausquin, R. J. McCann and M. Schmuckenschläger, A Riemannian interpolation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), no. 2, 219–257. MR1865396 (2002k:58038)
- [5] R. J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997), no. 1, 153–179. MR1451422 (98e:82003)
- [6] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2) 169 (2009), no. 3, 903–991. MR2480619 (2010i:53068)
- [7] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal. **173** (2000), no. 2, 361–400. MR1760620 (2001k:58076)
- [8] G. Perelman, DC Structure on Alexandrov Space, available on http://www.math.psu.edu/petrunin/papers/papers.html
- [9] A. Petrunin, Parallel transportation for Alexandrov space with curvature bounded below, Geom. Funct. Anal. 8 (1998), no. 1, 123–148. MR1601854 (98j:53048)
- [10] A. Petrunin, Harmonic functions on Alexandrov spaces and their applications, Electron. Res. Announc. Amer. Math. Soc. 9 (2003), 135–141. MR2030174 (2005b:53067)
- [11] A. Petrunin, Semiconcave functions in Alexandrov's geometry, in Surveys in differential geometry. Vol. XI, 137–201, Surv. Differ. Geom., 11 Int. Press, Somerville, MA. MR2408266 (2010a:53052)
- [12] C. Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften, 338, Springer, Berlin, 2009. MR2459454 (2010f:49001)

- [13] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006), no. 1, 65–131. MR2237206 (2007k:53051a)
- [14] M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), no. 7, 923–940. MR2142879 (2006j:53048)

Received February 27, 2009; accepted July 19, 2010

Anton Petrunin Department of Mathematics Penn State University University Park PA 16802, USA E-mail: petrunin@math.psu.edu URL: http://www.math.psu.edu/petrunin/