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Alexandrov meets Lott-Villani-Sturm

Anton Petrunin

(Communicated by Burkhard Wilking)

Abstract. Here I show the compatibility of two definitions of generalized curvature bounds:
the lower bound for sectional curvature in the sense of Alexandrov and the lower bound for
Ricci curvature in the sense of Lott-Villani-Sturm.

Introduction

Let me denote by CD[m,κ] the class of metric-measure spaces which sat-
isfy a weak curvature-dimension condition for dimension m and curvature κ
(see preliminaries). By Alexm[κ], I will denote the class of all m-dimensional
Alexandrov spaces with curvature > κ equipped with the volume-measure (so
Alexm[κ] is a class of metric-measure spaces).

Main theorem. Alexm[0] ⊂ CD[m, 0].

The question was first asked by Lott and Villani in [6, Rem. 7.48]. In [12],
Villani formulates it more generally:

Alexm[κ] ⊂ CD[m, (m− 1)·κ].

The latter statement can be proved along the same lines, but I do not write it
down.

About the proof. The idea of the proof is the same as in the Riemannian
case (see [4, Thm. 6.2] or [6, Thm. 7.3]). One only needs to extend certain
calculus to Alexandrov spaces. To do this, I use the same technique as in [10].
I will illustrate the idea on a very simple problem.

Let M be a 2-dimensional nonnegatively curved Riemannian manifold and
γτ : [0, 1] →M be a continuous family of unit-speed geodesics such that

(1) |γτ0(t0) γτ1(t1)| > |t1 − t0|.

Set ℓ(t) to be the total length of the curve σt : τ 7→ γτ (t). Then ℓ(t) is a
concave function; that is easy to prove.
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Now, assume you have A ∈ Alex2[0] instead of M and a noncontinuous
family of unit-speed geodesics γτ (t) which satisfies (1). Define ℓ(t) as the
1-dimensional Hausdorff measure of the image of σt. Then ℓ is also concave.

Here is an idea how one can proceed; it is not the simplest one but the one
which admits a proper generalization. Consider two functions ψ = distImσ0

and ϕ = distImσ1
. Note that geodesics γτ (t) are also gradient curves of ψ and

ϕ. This implies that ∆ϕ + ∆ψ vanishes almost everywhere on the image of
the map (τ, t) → γτ (t) (the Laplacians ∆ϕ and ∆ψ are Radon sign-measures).
Then the result follows from my second variation formula from [9] and calculus
on Alexandrov spaces developed by Perelman in [8].

Remark. Although CD[m,κ] is a very natural class of metric-measure spaces,
some basic tools in Ricci comparison cannot work there in principle. For
instance, there are CD[m, 0]-spaces which do not satisfy the Abresch-Gromoll

inequality, (see [1]). Thus, one has to modify the definition of the class CD[m,κ]
to make it suitable for substantial applications in Riemannian geometry.

I am grateful to A. Lytchak and C. Villani for their help.

1. Preliminaries

Prerequisite. The reader is expected to be familiar with basic definitions
and notions of optimal transport theory as in Villani’s book [12], measure
theory on Alexandrov spaces from paper of Burago, Gromov and Perelman [3],
DC-structure on Alexandrov’s spaces from Perelman’s [8] and technique and
notations of gradient flow as my survey [11].

What needs to be proved. Let me recall the definition of the class CD[m, 0]
only; it is sufficient for understanding this paper. The definition of CD[m,κ]
can be found in [12, Def. 29.8].

Similar definitions were given by Lott and Villani in [6] and by Sturm in
[13]. The idea behind these definitions, convexity of certain functionals in
the Wasserstein space over a Riemannian manifold, appears in [7] by Otto an
Vilani, [4] by Cordero-Erausquin, McCann and M. Schmuckenschläger, [14] by
von Renesse and Sturm. In the Euclidean context, this notion of convexity
goes back to [5] by McCann. More on the history of the subject can be found
in the Villani’s book [12].

For a metric-measure space X , I will denote by |xy| the distance between
points x, y ∈ X and by volE the distinguished measure of Borel subset E ⊂ X

(I will call it volume). Let us denote by P2X the set of all probability measures
with compact support in X equipped with Wasserstein distance of order 2, see
[12, Def. 6.1].

Further, we assume X is a proper geodesic space; in this case P2X is geo-
desic.

Let µ be a probability measure on X . Denote by µr the absolutely con-
tinuous part of µ with respect to volume. I.e. µr coincides with µ outside a
Borel subset of volume zero and there is a Borel function ̺ : X → R such that
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µr = ̺·vol. Define

Umµ
def
==

∫

X

̺1−
1
m · d vol =

∫

X

1
m
√
̺
· dµr.

Then X ∈ CD[m, 0] if the functional Um is concave on P2X ; i.e. for any two
measures µ0, µ1 ∈ P2X , there is a geodesic path µt, in P2X , t ∈ [0, 1], such
that the real function t 7→ Umµt is concave.

Calculus in Alexandrov spaces. Let A ∈ Alexm[κ] and S ⊂ A be the subset
of singular points; i.e. x ∈ S if and only if its tangent space Tx is not isometric
to Euclidean m-space Em. The set S has zero volume ([3, Thm. 10.6]). The set
of regular points A \S is convex ([9]); i.e. any geodesic connecting two regular
points consists only of regular points.

According to [8], if f : A → R is a semiconcave function and Ω ⊂ A is an
image of a DC0-chart, then ∂kf and the components of the metric tensor gij

are functions of locally bounded variation which are continuous in Ω \ S.
Further, for almost all x ∈ A the Hessian of f is well-defined. I.e. there is

a subset of full measure Reg f ⊂ A \ S such that for any p ∈ Reg f there is a
bilinear form1 Hessp f on Tp such that

f(q) = f(p) + dpf(v) + Hessp f(v, v) + o(|v|2),

where v = logp q. Moreover, the Hessian can be found using standard calculus
in the DC0-chart. In particular,

TraceHess f
a.e.
==

∂i(det g · gij · ∂jf)
det g

.

The following is an extract from the second variation formula [9, Thm. 1.1B]
reformulated with formalism of ultrafilters. Let Ñ be a nonprincipal ultrafilter
on the natural numbers, A ∈ Alexm[0] and [pq] be a minimizing geodesic in A
which is extendable beyond p and q. Assume further that one of (and therefore
each) of the points p and q is regular. Then there is a model configuration
p̃, q̃ ∈ E

m and isometries ıp : TpA → Tp̃E
m, ıq : TqA → Tq̃E

m such that for
any fixed v ∈ Tp and w ∈ Tq we have

∣

∣

∣
expp

(

1
n
·v
)

expq
(

1
n
·w

)

∣

∣

∣
6

∣

∣

∣
expp̃ ◦ıp

(

1
n
·v
)

expq̃ ◦ıq
(

1
n
·w

)

∣

∣

∣
+ o(n2)

for Ñ-almost all n (once the left-hand side is well-defined).
If τ̃ : Tp̃ → Tq̃ is the parallel translation in E

m, then the isometry τ :
Tp → Tq which satisfies the identity ıq ◦ τ = τ̃ ◦ ıp will be called the “parallel
transportation” from p to q.

Laplacians of semiconcave functions. Here are some facts from my paper
on harmonic functions [10].

1Note that p ∈ A \ S, thus Tp is isometric to Euclidean m-space.
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Given a function f : A → R, define its Laplacian ∆f to be a Radon sign-
measure which satisfies the following identity

∫

A

u· d∆f = −
∫

A

〈∇u,∇f〉· d vol

for any Lipschitz function u : A→ R.

1.1. Claim. Let A ∈ Alexm[κ] and f : A → R be λ-concave Lipschitz func-

tion. Then the Laplacian ∆f is well-defined and

∆f 6 m·λ· vol .
In particular, ∆sf—the singular part of ∆f—is negative.

Moreover,

∆f = TraceHess f ·vol+∆sf.

Proof. Let us denote by Ft : A→ A the f -gradient flow for the time t.
Given a Lipschitz function u : A→ R, consider the family ut(x) = u◦Ft(x).

Clearly, u0 ≡ u and ut is Lipschitz for any t > 0. Further, for any x ∈ A we

have
∣

∣

d+

dt
ut(x)|t=0

∣

∣ 6 Const. Moreover

d+

dt
ut(x)|t=0

a.e.
== dxu(∇xf)

a.e.
== 〈∇xu,∇xf〉.

Further,
∫

A

ut· d vol =
∫

A

u· d(Ft#vol),

where # stands for push-forward. Since |Ft(x)Ft(y)| 6 eλt·|xy| (see [11,
2.1.4(i)]) for any x, y ∈ A we have

Ft#vol > exp(−m·λ·t)· vol .
Therefore, for any nonnegative Lipschitz function u : A→ R,

∫

A

ut· d vol =
∫

A

u· d(Ft#vol) > exp(−m·λ·t)·
∫

A

u· d vol .

Therefore
∫

A

〈∇u,∇f〉· d vol = d+

dt

∫

A

ut· d vol
∣

∣

∣

∣

t=0

> −m·λ·
∫

A

u· d vol .

I.e. there is a Radon measure χ on A such that
∫

A

u· dχ =

∫

A

[〈∇u,∇f〉+m·λ·u] · d vol

Set ∆f = −χ+m·λ, this is a Radon sign-measure and χ = −∆f +m·λ > 0.
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To prove the second part of the theorem, assume u is a nonnegative Lipschitz
function with support in a DC0-chart U → A, where U ⊂ R

m is an open subset.
Then

∫

A

〈∇u,∇f〉 =
∫

U

det g · gij · ∂iu · ∂jf · dx1·dx2 · · · dxm

= −
∫

U

u · ∂i(det g · gij · ∂jf) · dx1·dx2 · · · dxm.

Thus

∆f = ∂i(det g · gij · ∂jf) · dx1·dx2 · · · dxm a.e.
== TraceHess f.

�

Gradient curves. Here I extend the notion of gradient curves to families of
functions, see [11] for all necessary definitions.

Let I be an open real interval and λ : I → R be a continuous function. A
one parameter family of functions ft : A→ R, t ∈ I, will be called λ(t)-concave
if the function (t, x) 7→ ft(x) is locally Lipschitz and ft is λ(t)-concave for each
t ∈ I.

We will write α±(t) = ∇ft if for any t ∈ I, the right/left tangent vector
α±(t) is well-defined and α±(t) = ∇α(t)ft. The solutions of α+(t) = ∇ft will
be also called ft-gradient curves.

The following is a slight generalization of [11, 2.1.2 and 2.2(2)]; it can be
proved along the same lines.

1.2. Proposition-Definition. Let A ∈ Alexm[κ], let I be an open real

interval, let λ : I → R be a continuous function and let ft : A→ R, t ∈ I be a

λ(t)-concave family.

Then for any x ∈ A and t0 ∈ I there exists an ft-gradient curve α which is

defined in a neighborhood of t0 and such that α(t0) = x.

Moreover, if α, β : I → A are ft-gradient then for any t0, t1 ∈ I, t0 6 t1,

|α(t1)β(t1)| 6 L·|α(t0)β(t0)|,

where L = exp
(

∫ t1

t0
λ(t)· dt

)

.

Note that the above proposition implies that the value α(t0) of an ft-
gradient curve α(t) uniquely determines it for all t > t0 in I. Thus we can
define the ft-gradient flow as a family of maps Ft0,t1 : A→ A such that

Ft0,t1(α(t0)) = α(t1) if α+(t) = ∇ft.

1.3. Claim. Let ft : A→ R be a λ(t)-concave family and Ft0,t1 be ft-gradient

flow. Let E ⊂ A be a bounded Borel set. Fix t1 and consider the function
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v(t) = volF−1
t,t1

(E). Then

v
∣

∣

t1

t
=

t1
∫

t

∆fţ
[

F−1
ţ,t1

(E)
]

· dţ

Proof. Let u : A → R be a Lipschitz function with compact support. Set
ut = u ◦ Ft,t1 . Clearly every (x, t) 7→ ut(x) is locally Lipschitz. Thus, the
function

wu : t 7→
∫

A

ut· d vol

is locally Lipschitz. Further

w′
u(t)

a.e.
== −

∫

A

〈∇ut,∇ft〉· d vol =
∫

A

ut· d∆ft.

Therefore

wu

∣

∣

t1

t
=

t1
∫

t

dţ ·
∫

A

uţ· d∆fţ.

The last formula extends to an arbitrary Borel function u : A → R with
bounded support. Applying it to the characteristic function of E we get the
result. �

2. Games with Hamilton-Jacobi shifts.

Let A ∈ Alexm[0]. For a function f : A → R ∪ {+∞}, let us define its
Hamilton-Jacobi shift2 Ht f : A→ R for the time t > 0 as follows

(Ht f)(x)
def
== inf

y∈A

{

f(y) + 1
2t ·|xy|

2
}

.

We say that Ht f is well-defined if the above infimum is > −∞ everywhere in
A. Note that

(2) Ht0+t1 f = Ht1 Ht0 f

for any t0, t1 > 0. (The inequality Ht0+t1 f 6 Ht1 Ht0 f is a direct consequence
of the triangle inequality and it is actually equality for any intrinsic metric, in
particular for Alexandrov space.)

Note that for t > 0, ft = Ht f forms a 1
t
-concave family, thus, we can

apply Proposition-Definition 1.2 and Claim 1.3. The next theorem gives a
more delicate property of the gradient flow for such families; it is an analog of
[11, 3.3.6].

2.1. Claim. Let A ∈ Alexm[0], f0 : A → R be a function and let ft = Ht f0
be well-defined for t ∈ (0, 1). Assume that γ : [0, 1] → A is a geodesic path

which is an ft-gradient curve for t ∈ (0, 1) and that α : (0, 1) → A is another

2There is a lot of similarity between the Hamilton-Jacobi shift of a function and an
equidistant for a hypersurface.
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ft-gradient curve. Then if for some t0 ∈ (0, 1), α(t0) = γ(t0), then α(t) = γ(t)
for all t ∈ (0, 1).

x
z

y

p

ℓ

α

γ

σ
Proof. Set ℓ = ℓ(t) = |α(t)γ(t)|; this is a lo-
cally Lipschitz function defined on (0, 1). We
have to show that if ℓ(t0) = 0 for some t0, then
ℓ(t) = 0 for all t.

According to Proposition-Definition 1.2,
ℓ(t) = 0 for all t > t0. In order to prove that
ℓ(t) = 0 for all t 6 t0, it is sufficient to show
that

ℓ′ > −[ 1
t
+ 2

1−t
]·ℓ

for almost all t.
Since α is locally Lipschitz, for almost all t, α+(t) and α−(t) are well-defined

and opposite3 to each other.
Fix such t and set x = γ(0), z = γ(t), y = γ(1), p = α(t), so ℓ(t) = |pz|.

Note that the function

(3) ft +
1

2(1−t) · dist
2
y

has a minimum at z. Extend a geodesic [zp] by a both-sides infinite unit-
speed quasigeodesic4 σ : R → A, so σ(0) = z and σ+(0) = ↑[zp]. The function

ft ◦ σ : R → R is 1
t
-concave and from (3),

ft ◦ σ(s) > ft(z) + 〈γ+(t), ↑[zp]〉·s− 1
2(1−t) ·s2.

It follows that

〈∇pft, σ
+(ℓ)〉 > dpft(σ

+(ℓ))

= (ft ◦ σ)+(ℓ)
> 〈γ+(t), ↑[zp]〉 − [ 1

t
+ 2

1−t
]·ℓ.

Now,

(a) the vectors σ±(ℓ) are polar, thus 〈α±(t), σ+(ℓ)〉+ 〈α±(t), σ−(ℓ)〉 > 0,
(b) the vectors α±(t) are opposite, thus 〈α+(t), σ±(ℓ)〉+ 〈α−(t), σ±(ℓ)〉 = 0,
(c) α+(t) = ∇pft and σ

−(ℓ) = ↑[pz].
Thus, 〈∇pft, σ

+(ℓ)〉+ 〈α+(t), ↑[pz]〉 = 0. Therefore

ℓ′ = −〈α+(t), ↑[pz]〉 − 〈γ+(t), ↑[zp]〉 > −[ 1
t
+ 2

1−t
]·ℓ.

�

2.2. Proposition. Let A ∈ Alexm[0], let f : A→ R be a bounded continuous

function and let ft = Ht f . Assume that γ : (0, a) → A is an ft-gradient curve

which is also a constant-speed geodesic. Assume that the function

h(t)
def
== TraceHessγ(t) ft

3I.e. |α+(t)| = |α−(t)| and ∡(α+(t), α−(t)) = π
4A careful proof of existence of quasigeodesics can be found in [11].

Münster Journal of Mathematics Vol. 4 (2011), 53–64



60 Anton Petrunin

is defined for almost all t ∈ (0, a). Then

h′ 6 − 1
m
·h2

in the sense of distributions; i.e. for any nonnegative Lipschitz function

u : (0, a) → R with compact support,

a
∫

0

(

1
m
·h2·u− h·u′

)

· dt > 0.

Proof. Since h is defined a.e., all Tγ(t) for t ∈ (0, a) are isometric to Euclidean
m-space. From (2),

ft1(x) = inf
y∈A

{

ft0(y) +
|xy|2

2·(t1 − t0)

}

.

Thus, for a parallel transportation τ : Tγ(t0) → Tγ(t1) along γ, we have

Hessγ(t1) ft1(y) 6 Hessγ(t0) ft0(x) +
|τ(x) y|2
2·(t1 − t0)

for any x ∈ Tγ(t0) and y ∈ Tγ(t1). Taking trace leads to the result. �

3. Proof of the main theorem

Let A ∈ Alexm[0]; in particular A is a proper geodesic space. Let µt be a
family of probability measures on A for t ∈ [0, 1] which forms a geodesic path5

in P2A and both µ0 and µ1 are absolutely continuous with respect to volume
on A.

It is sufficient6 to show that the function

Θ : t 7→ Umµt

is concave.
According to [12, 7.22], there is a probability measure Π on the space of all

geodesic paths in A which satisfies the following: If Γ = suppΠ and et : Γ → A

is evaluation map et : γ 7→ γ(t) then µt = et#Π.
The measure Π is called the dynamical optimal coupling for µt and the

measure π = (e0, e1)#Π is the corresponding optimal transference plan. The
space Γ will be considered further equipped with the metric

|γ γ′| = max
t∈[0,1]

|γ(t)γ′(t)|.

First we present µt as the push-forward for gradient flows of two opposite

families of functions. According to [12, 5.10], there are optimal price functions
ϕ, ψ : A→ R such that

ϕ(y)− ψ(x) 6 1
2 ·|xy|

2

5i.e. a constant-speed minimizing geodesic defined on [0, 1].
6It follows from [12, 30.32] since Alexandrov’s spaces are nonbranching.
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for any x, y ∈ A and equality holds for any (x, y) ∈ suppπ. We can assume
that ψ(x) = +∞ for x 6∈ suppµ0 and ϕ(y) = −∞ for y 6∈ suppµ1.

Consider two families of functions

ψt = Ht ψ and ϕt = H1−t(−ϕ).
Clearly, ψt forms a 1

t
-concave family for t ∈ (0, 1] and ϕt forms7 a 1

1−t
-concave

family for t ∈ [0, 1).
It is straightforward to check that for any γ ∈ Γ and t ∈ (0, 1)

±〈γ±(t), v〉 = dγ(t)ψt(v) = −dγ(t)ϕt(v);

in particular,

(4) γ+(t) = ∇ψt and γ−(t) = ∇ϕt.

For 0 < t0 6 t1 6 1, let us consider the maps Ψt0,t1 : A → A, the gradient
flow of ψt, defined by

Ψt0,t1α(t0) = α(t1) if α+(t) = ∇ψt.

Similarly, 0 6 t0 6 t1 < 1, define map Φt1,t0 : A→ A

Φt1,t0β(t1) = β(t0) if β−(t) = ∇ϕt.

According to Proposition-definition 1.2,

(5) Ψt0,t1 is t1
t0
-Lipschitz and Φt1,t0 is 1−t0

1−t1
-Lipschitz.

From (4), et1 = Ψt0,t1 ◦ et0 and et0 = Φt1,t0 ◦ et1 . Thus, for any t ∈ (0, 1),
the map et : Γ → A is bi-Lipschitz. In particular, for any measure χ on A,
there is a uniquely determined one-parameter family of “pull-back” measures
χ∗
t on Γ, i.e. such that χ∗

tE = χ(etE) for any Borel subset E ⊂ Γ.
Fix some z0 ∈ (0, 1) (one can take z0 = 1

2 ) and equip Γ with the measure
ν = vol∗z0 . Thus, from now on “almost everywhere” has sense in Γ, Γ × (0, 1)
and so on.

Now we will represent Θ in terms of families of functions on Γ. Note that
µ1 = Ψt,1#µt and Ψt,1 is 1

t
-Lipschitz. Since µ1 is absolutely continuous, so is

µt for all t. Set µt = ̺t·vol. Note that from (5), we get that
(

1− t1

1− t0

)m

6
̺t1(γ(t1))

̺t0(γ(t0))
6

(

t1

t0

)m

for almost all γ ∈ Γ and 0 < t0 < t1 < 1. For γ ∈ Γ set rt(γ) = ̺t(γ(t)). Then

(6) Θ(t) =

∫

A

̺
− 1

m

t · dµt =

∫

Γ

r
− 1

m

t · dΠ.

In particular, Θ is locally Lipschitz in (0, 1).

7Note that usually ϕt is defined with opposite sign, but I wanted to work with semiconcave
functions only.
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Next we show that the measure ∆ϕt is absolutely continuous on etΓ and that

rt(γ(t)) = ̺t(γ(t))·∆ϕt in some weak sense. From (5), vol∗t = ewt ·ν for some
Borel function wt : Γ → R. Thus

vol etE =

∫

E

ewt · dν

for any Borel subset E ⊂ Γ. Moreover, for almost all γ ∈ Γ, we have that the
function t 7→ wt(γ) is locally Lipschitz in (0, 1) (more precisely, t 7→ wt(γ) coin-
cides with a Lipschitz function outside of a set of zero measure). In particular
∂wt

∂t
is well-defined a.e. in Γ× (0, 1) and moreover

wt
a.e.
==

t
∫

z0

∂wţ

∂ ţ
· dţ.

Further, from Claim 2.1, if 0 < t0 6 t1 < 1 then for any γ ∈ Γ,

Ψt0,t1(x) = γ(t1) ⇐⇒ x = γ(t0),

Φt1,t0(x) = γ(t0) ⇐⇒ x = γ(t1).

Thus, for any Borel subset E ⊂ Γ,

et1E = Ψt0,t1 ◦ et0E = Φ−1
t1,t0

(et0E) ,

et0E = Φt1,t0 ◦ et1E = Ψ−1
t0,t1

(et1E) .

Set

v(t)
def
== vol etE =

∫

E

ewt · dν.

From Claim 1.3,

v′(t)
a.e.
== ∆ψt(etE)

a.e.
== −∆ϕt(etE).

Thus, ∆ψt +∆ϕt = 0 everywhere on etΓ. From Claim 1.1,

∆ψt 6
m
t
· vol, ∆ϕt 6

m
1−t

· vol .
Thus, both restrictions ∆ψt|etΓ and ∆ϕt|etΓ are absolutely continuous with
respect to volume. Therefore

v′(t)
a.e.
==

∫

etE

TraceHessϕt· d vol .

For the one parameter family of functions ht(γ) = TraceHessγ(t) ϕt, we have

v
∣

∣

t

z0
=

∫

E

(ewt − 1)· dν =

t
∫

z0

dţ ·
∫

E

hţ·ewţ · dν

or any Borel set E ⊂ Γ. Equivalently,

∂wt

∂t

a.e.
== ht
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From Proposition 2.2,
∂ht

∂t
6 − 1

m
·h2t .

Thus, for almost all γ ∈ Γ, the following inequality holds in the sense of
distributions:

∂2

∂t2
exp

(

wt(γ)

m

)

=

(

1
m2 ·h2t + 1

m
·∂ht
∂t

)

· exp
(

wt(γ)

m

)

6 0;

i.e. t 7→ exp
(

wt(γ)
m

)

is concave. Moreover precisely, t 7→ exp
(

wt(γ)
m

)

coincides

with a concave function almost everywhere.
Clearly, for any t we have µ = rt·ewt ·ν. Thus, for almost all γ there is a

nonnegative Borel function a : Γ → R>0 such that rt
a.e.
== a·e−wt . Continue

(6),

Θ(t) =

∫

Γ

r
− 1

m

t · dΠ =

∫

Γ

e
wt

m · m
√
a· dΠ

I.e. Θ is concave as an average of concave functions. Again, more precisely, Θ
coincides with a concave function a.e., but since Θ is locally Lipschitz in (0, 1)
we get that Θ is concave. �
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polation inequality à la Borell, Brascamp and Lieb, Invent. Math. 146 (2001), no. 2,
219–257. MR1865396 (2002k:58038)

[5] R. J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997),
no. 1, 153–179. MR1451422 (98e:82003)

[6] J. Lott and C. Villani, Ricci curvature for metric-measure spaces via optimal transport,
Ann. of Math. (2) 169 (2009), no. 3, 903–991. MR2480619 (2010i:53068)

[7] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the
logarithmic Sobolev inequality, J. Funct. Anal. 173 (2000), no. 2, 361–400. MR1760620
(2001k:58076)

[8] G. Perelman, DC Structure on Alexandrov Space, available on
http://www.math.psu.edu/petrunin/papers/papers.html

[9] A. Petrunin, Parallel transportation for Alexandrov space with curvature bounded be-
low, Geom. Funct. Anal. 8 (1998), no. 1, 123–148. MR1601854 (98j:53048)

[10] A. Petrunin, Harmonic functions on Alexandrov spaces and their applications, Electron.
Res. Announc. Amer. Math. Soc. 9 (2003), 135–141. MR2030174 (2005b:53067)

[11] A. Petrunin, Semiconcave functions in Alexandrov’s geometry, in Surveys in differen-

tial geometry. Vol. XI, 137–201, Surv. Differ. Geom., 11 Int. Press, Somerville, MA.
MR2408266 (2010a:53052)

[12] C. Villani, Optimal transport, Grundlehren der Mathematischen Wissenschaften, 338,
Springer, Berlin, 2009. MR2459454 (2010f:49001)

Münster Journal of Mathematics Vol. 4 (2011), 53–64



64 Anton Petrunin

[13] K.-T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006),
no. 1, 65–131. MR2237206 (2007k:53051a)

[14] M.-K. von Renesse and K.-T. Sturm, Transport inequalities, gradient estimates, entropy,
and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), no. 7, 923–940. MR2142879
(2006j:53048)

Received February 27, 2009; accepted July 19, 2010

Anton Petrunin
Department of Mathematics
Penn State University
University Park
PA 16802, USA
E-mail: petrunin@math.psu.edu
URL: http://www.math.psu.edu/petrunin/

Münster Journal of Mathematics Vol. 4 (2011), 53–64


