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Alexandrov meets Lott-Villani-Sturm

Anton Petrunin
(Communicated by Burkhard Wilking)

Abstract. Here I show the compatibility of two definitions of generalized curvature bounds:
the lower bound for sectional curvature in the sense of Alexandrov and the lower bound for
Ricci curvature in the sense of Lott-Villani-Sturm.

INTRODUCTION

Let me denote by CD[m, x| the class of metric-measure spaces which sat-
isfy a weak curvature-dimension condition for dimension m and curvature k
(see preliminaries). By Alex™[k], T will denote the class of all m-dimensional
Alexandrov spaces with curvature > k equipped with the volume-measure (so
Alex™[k] is a class of metric-measure spaces).

Main theorem. Alex™[0] C CD[m,0].

The question was first asked by Lott and Villani in [6, Rem. 7.48]. In [12],
Villani formulates it more generally:

Alex™[xk] € CD[m, (m — 1)-&].

The latter statement can be proved along the same lines, but I do not write it
down.

About the proof. The idea of the proof is the same as in the Riemannian
case (see [4, Thm. 6.2] or [6, Thm. 7.3]). One only needs to extend certain
calculus to Alexandrov spaces. To do this, I use the same technique as in [10].
I will illustrate the idea on a very simple problem.

Let M be a 2-dimensional nonnegatively curved Riemannian manifold and
v+ 1 [0,1] = M be a continuous family of unit-speed geodesics such that

(1) Vo (to) Yra (T1)] = [t1 — tol.

Set £(t) to be the total length of the curve o : 7+ 7-(t). Then £(¢) is a
concave function; that is easy to prove.
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Now, assume you have A € Alex?[0] instead of M and a noncontinuous
family of unit-speed geodesics ~,(t) which satisfies (1). Define £(t) as the
1-dimensional Hausdorff measure of the image of o;. Then ¢ is also concave.

Here is an idea how one can proceed; it is not the simplest one but the one
which admits a proper generalization. Consider two functions ¥ = distim o,
and ¢ = distyy », - Note that geodesics 7, (t) are also gradient curves of ¢ and
. This implies that Ay + A vanishes almost everywhere on the image of
the map (7,t) — - (t) (the Laplacians Ap and Ay are Radon sign-measures).
Then the result follows from my second variation formula from [9] and calculus
on Alexandrov spaces developed by Perelman in [§].

Remark. Although CD[m, k] is a very natural class of metric-measure spaces,
some basic tools in Ricci comparison cannot work there in principle. For
instance, there are CD[m, 0]-spaces which do not satisfy the Abresch-Gromoll
inequality, (see [1]). Thus, one has to modify the definition of the class CD[m, k]
to make it suitable for substantial applications in Riemannian geometry.

I am grateful to A. Lytchak and C. Villani for their help.

1. PRELIMINARIES

Prerequisite. The reader is expected to be familiar with basic definitions
and notions of optimal transport theory as in Villani’s book [12], measure
theory on Alexandrov spaces from paper of Burago, Gromov and Perelman [3],
DC-structure on Alexandrov’s spaces from Perelman’s [8] and technique and
notations of gradient flow as my survey [11].

What needs to be proved. Let me recall the definition of the class CD[m, 0]
only; it is sufficient for understanding this paper. The definition of CD[m, ]
can be found in [12, Def. 29.8].

Similar definitions were given by Lott and Villani in [6] and by Sturm in
[13]. The idea behind these definitions, convexity of certain functionals in
the Wasserstein space over a Riemannian manifold, appears in [7] by Otto an
Vilani, [4] by Cordero-Erausquin, McCann and M. Schmuckenschléger, [14] by
von Renesse and Sturm. In the Euclidean context, this notion of convexity
goes back to [5] by McCann. More on the history of the subject can be found
in the Villani’s book [12].

For a metric-measure space X, I will denote by |zy| the distance between
points z,y € X and by vol E' the distinguished measure of Borel subset £ C X
(I will call it volume). Let us denote by P, X the set of all probability measures
with compact support in X equipped with Wasserstein distance of order 2, see
[12, Def. 6.1].

Further, we assume X is a proper geodesic space; in this case Po X is geo-
desic.

Let p be a probability measure on X. Denote by u” the absolutely con-
tinuous part of p with respect to volume. I.e. " coincides with pu outside a
Borel subset of volume zero and there is a Borel function ¢ : X — R such that
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u" = p-vol. Define

def [ -1 1 r
Unpt /Q m-dvolz/—-d,u .
4 Ve

X

Then X € CD[m,0] if the functional Uy, is concave on PX; i.e. for any two
measures po, 1 € P2X, there is a geodesic path g, in P2 X, ¢t € [0, 1], such
that the real function ¢ — U,y is concave.

Calculus in Alexandrov spaces. Let A € Alex™[x] and S C A be the subset
of singular points; i.e. x € S if and only if its tangent space T, is not isometric
to Euclidean m-space E™. The set S has zero volume ([3, Thm. 10.6]). The set
of regular points A\ S is convex ([9]); i.e. any geodesic connecting two regular
points consists only of regular points.

According to [8], if f: A — R is a semiconcave function and Q C A is an
image of a DCg-chart, then Oy f and the components of the metric tensor g%
are functions of locally bounded variation which are continuous in Q2 \ S.

Further, for almost all x € A the Hessian of f is well-defined. I.e. there is
a subset of full measure Reg f C A\ S such that for any p € Reg f there is a
bilinear form! Hess,, f on T, such that

f(a) = f(p) + dpf(v) + Hess, f(v,0) +o|v]?),
where v = log,, g. Moreover, the Hessian can be found using standard calculus
in the DCy-chart. In particular,
we Oi(detg-g7 -9;f)
det g '

Trace Hess f

The following is an extract from the second variation formula [9, Thm. 1.1B]
reformulated with formalism of ultrafilters. Let ® be a nonprincipal ultrafilter
on the natural numbers, A € Alex™[0] and [pg] be a minimizing geodesic in A
which is extendable beyond p and g. Assume further that one of (and therefore
each) of the points p and ¢ is regular. Then there is a model configuration
D, ¢ € E™ and isometries 4, : TpA — T5E™, 12, : TgA — TZE™ such that for
any fixed v € T, and w € T, we have

‘expp (%v) exp, (%w)‘ < ‘ exp; ozp(%-v) exp; ozq(%-w)‘ + o(n?)

for @-almost all n (once the left-hand side is well-defined).

If 7 : Ty — Ty is the parallel translation in E™, then the isometry 7 :
T, — T, which satisfies the identity 24 o 7 = 7 01, will be called the “parallel
transportation” from p to q.

Laplacians of semiconcave functions. Here are some facts from my paper
on harmonic functions [10].

INote that p € A\ S, thus T} is isometric to Euclidean m-space.
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Given a function f : A — R, define its Laplacian Af to be a Radon sign-
measure which satisfies the following identity

/u-dAf = —/(Vu,Vf)-dvol

A A

for any Lipschitz function v : A — R.

1.1. Claim. Let A € Alex"[k] and f : A — R be A-concave Lipschitz func-
tion. Then the Laplacian Af is well-defined and

Af <m-A-vol.

In particular, A® f—the singular part of Af—is negative.
Moreover,
Af = Trace Hess f-vol +A® f.

Proof. Let us denote by F; : A — A the f-gradient flow for the time ¢.

Given a Lipschitz function u : A — R, consider the family u:(x) = uo Fi(z).
Clearly, ug = u and wu, is Lipschitz for any ¢ > 0. Further, for any x € A we
have ‘%ut(x)hzo‘ < Const. Moreover

() 1m0 2= dpu(Ve f) 2= (Vau, Vo f).

Further,

/ut-dvolz/u-d(Ft#vol),
A A

where # stands for push-forward. Since |F;(z)Fy(y)| < e M-|zy| (see [11,
2.1.4(1)]) for any z,y € A we have

Fi# vol > exp(—m-A-t)-vol.
Therefore, for any nonnegative Lipschitz function v : A — R,
/ut- dvol = /u d(Fy#£vol) > exp(—m'/\-t)-/u- dvol.
A A A

Therefore

/(Vu,Vf>-dvol =4 [ u-dvol
A A

> —m-/\-/u-dvol.
t=0 A

Le. there is a Radon measure x on A such that

/u- dx = /[(Vu, V) +m-Au]-dvol
A A
Set Af = —x + m-], this is a Radon sign-measure and x = —Af +m-A > 0.
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To prove the second part of the theorem, assume u is a nonnegative Lipschitz
function with support in a DCy-chart U — A, where U C R™ is an open subset.
Then

/(Vu,Vf> :/detg-gij-6iu-8jf-dx1-dx2---dxm
A U

= —/u-Bi(detg-gij -0;f)- daxt-da? - - da™.
U
Thus

Af = i(detg - g% - o;f) - det-da? - - - da™ == Trace Hess f.
U

Gradient curves. Here I extend the notion of gradient curves to families of
functions, see [11] for all necessary definitions.

Let I be an open real interval and A : I — R be a continuous function. A
one parameter family of functions f; : A — R, ¢ € I, will be called A(t)-concave
if the function (¢,z) — fi(z) is locally Lipschitz and f; is A(t)-concave for each
tel

We will write a*(t) = Vf; if for any ¢ € I, the right/left tangent vector
a(t) is well-defined and o (t) = V) fi. The solutions of at(t) = Vf; will
be also called fi-gradient curves.

The following is a slight generalization of [11, 2.1.2 and 2.2(2)]; it can be
proved along the same lines.

1.2. Proposition-Definition. Let A € Alex™[k], let I be an open real
interval, let A : 1 — R be a continuous function and let fy : A —- R, t €1 be a
A(t)-concave family.

Then for any x € A and tg € I there exists an fi-gradient curve o which is
defined in a neighborhood of to and such that a(ty) = x.

Moreover, if a, 8 : 1 — A are fi-gradient then for any to,t1 € 1, to < t1,

la(t1)B(t1)] < Lefalto) B(to)|,
where L = exp( til A(t)- dt) .

Note that the above proposition implies that the value a(tp) of an f;-
gradient curve a(t) uniquely determines it for all ¢ > tp in I. Thus we can
define the f;-gradient flow as a family of maps Fi, 4 : A — A such that

Fio 1, (ato)) = a(ty) if o (t)=Vf.

1.3. Claim. Let f;: A — R be a A(t)-concave family and Fi, ¢, be fi-gradient
flow. Let E C A be a bounded Borel set. Fix t1 and consider the function
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v(t) = vol F;} (E). Then

t1
oy = [ AnlFE)-a
t

Proof. Let u : A — R be a Lipschitz function with compact support. Set
us = u o Fyy. Clearly every (z,t) — wut(x) is locally Lipschitz. Thus, the
function

Wy /ut-dvol
A
is locally Lipschitz. Further
w;(t) = —/(Vut,Vft>-dvol = /UtdAft

A A

ty
wal;! :/d;f-/u;-dAf;.
t

A
The last formula extends to an arbitrary Borel function v : A — R with
bounded support. Applying it to the characteristic function of E we get the
result. O

Therefore

2. GAMES WITH HAMILTON-JACOBI SHIFTS.

Let A € Alex™[0]. For a function f : A — R U {+o0}, let us define its
Hamilton-Jacobi shift? H; f : A — R for the time ¢ > 0 as follows

(Mo f)(@) == inf () + 35 |oy}

We say that H; f is well-defined if the above infimum is > —oco everywhere in
A. Note that

(2) Higty [ =Hey Heo f

for any tg,t; > 0. (The inequality Hi,++, f < Hey, He, [ is a direct consequence
of the triangle inequality and it is actually equality for any intrinsic metric, in
particular for Alexandrov space.)

Note that for ¢t > 0, f; = H; f forms a %—concave family, thus, we can
apply Proposition-Definition 1.2 and Claim 1.3. The next theorem gives a
more delicate property of the gradient flow for such families; it is an analog of

11, 3.3.6).

2.1. Claim. Let A € Alex™[0], fo : A = R be a function and let fr = H; fo
be well-defined for t € (0,1). Assume that v : [0,1] — A is a geodesic path
which is an fi-gradient curve for t € (0,1) and that o : (0,1) — A is another

2There is a lot of similarity between the Hamilton-Jacobi shift of a function and an
equidistant for a hypersurface.
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fe-gradient curve. Then if for some tg € (0,1), afto) = v(to), then a(t) = v(t)
for all t € (0,1).

Proof. Set £ = £(t) = |a(t)y(t)]; this is a lo-
cally Lipschitz function defined on (0,1). We
have to show that if £(¢g) = 0 for some to, then
£(t) =0 for all ¢.

According to Proposition-Definition 1.2,
¢(t) =0 for all t > ty. In order to prove that =z
L(t) = 0 for all t < to, it is sufficient to show
that

0>~} + 50
for almost all ¢.
Since « is locally Lipschitz, for almost all ¢, ot (¢) and o~ () are well-defined
and opposite® to each other.
Fix such ¢ and set z = v(0), z = v(¢), y = v(1), p = «a(t), so £(t) = |pz|.
Note that the function

(3) ft 2(1 t) dlSt
has a minimum at z. Extend a geodesic [zp] by a both-sides infinite unit-
speed quasigeodesic? o : R — A, so 0(0) = z and o+ (0) = Ti2p)- The function
froo:R— Ris t-concave and from (3),
ft OU(S) > ft('z) < ( ) T[zp> (1 t) 82'
It follows that
(Vpft,0"(0) = dpfe(o™ (0))
= (froa)"(0)
Now,
(a) the vectors o (£) are polar, thus (« j[(t) (0) + {a*t(t), 0 (€)) =0,
(b) the vectors o (t) are opposite, thus (at(t), 0% (£)) + (a™ (t),0%(£)) =0,
(c) a*(t) = Vpfi and o~ (£) = 1.
Thus, (Vpfi, 0 (€)) + (@™ (1), Tp.)) = 0. Therefore
U= _<a+ (t)ﬂﬁpz]> - <A/+(t)7T[zp]> > _[% + ﬁ]f
U

2.2. Proposition. Let A € Alex™[0], let f: A — R be a bounded continuous
function and let fy = Hy f. Assume that v : (0,a) = A is an fi-gradient curve
which is also a constant-speed geodesic. Assume that the function

h(t)

def

Trace Hess,, (1) ft

SLe. |aT(t)| = |a= ()| and L(aT(t),a= (t)) ==
4A careful proof of existence of quasigeodesics can be found in [11].
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is defined for almost all t € (0,a). Then
/ 1 42
h' < —=-h
in the sense of distributions; i.e. for any mnonnegative Lipschitz function

u: (0,a) = R with compact support,

a

/ (%.hzu _ h-u’)-dt > 0.

0

Proof. Since h is defined a.e., all T, for ¢t € (0, a) are isometric to Euclidean
m-space. From (2),

|zy[®
= inf — .
o) = it { o) + 5
Thus, for a parallel transportation 7 : T, (;,) = T(,) along 7, we have
|7 (=) yI?
2-(t1 — to)
for any = € T, (4,) and y € T, (,). Taking trace leads to the result. g

Hessv(h) ftl (y) < Hess’y(to) fto (213) +

3. PROOF OF THE MAIN THEOREM

Let A € Alex™[0]; in particular A is a proper geodesic space. Let u; be a
family of probability measures on A for ¢ € [0, 1] which forms a geodesic path®
in P, A and both po and p; are absolutely continuous with respect to volume
on A.

It is sufficient® to show that the function

@It'—)Um/Lt

is concave.

According to [12, 7.22], there is a probability measure 11 on the space of all
geodesic paths in A which satisfies the following: If ' = suppmand e; : I' = A
is evaluation map e; : v — ~y(t) then p; = e;#1.

The measure 11 is called the dynamical optimal coupling for p; and the
measure ™ = (eg, e1)#1 is the corresponding optimal transference plan. The
space I' will be considered further equipped with the metric

= ma .
Iyl = max [7(t)y Y (@)
First we present py as the push-forward for gradient flows of two opposite

families of functions. According to [12, 5.10], there are optimal price functions
v, : A — R such that

o(y) — (x) < 3|ayl?

S5ie. a constant-speed minimizing geodesic defined on [0, 1].

61t follows from [12, 30.32] since Alexandrov’s spaces are nonbranching.
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for any z,y € A and equality holds for any (z,y) € suppn. We can assume

that (x) = 400 for x & supp po and p(y) = —oo for y & supp 1.
Consider two families of functions

Yy =Hip  and @ = Hit(—p).
Clearly, v, forms a %—concave family for ¢ € (0,1] and ; forms” a ﬁ—concave
family for ¢ € [0,1).
It is straightforward to check that for any v € T and ¢ € (0,1)
(75 (1), 0) = dyyve(v) = —dyype(v);

in particular,
(4) yP(t) =V and 7 (t) = V.
For 0 < t9 < t1 < 1, let us consider the maps Wy, ;, : A — A, the gradient
flow of 1, defined by
Uiy nalto) = a(ti) if  a(t) = V.
Similarly, 0 < to < t1 < 1, define map @4, 4, : A =+ A
Pty 1,B(t1) = B(to) if B (t) = V.
According to Proposition-definition 1.2,
(5) Wiy, is L-Lipschitz  and @y, 4, is =f2-Lipschitz.

From (4), ey, = Wy, 1, 0 €, and ey, = Py, 4, 0 eg,. Thus, for any t € (0,1),
the map e; : I' — A is bi-Lipschitz. In particular, for any measure xy on A,
there is a uniquely determined one-parameter family of “pull-back” measures
x; on I', i.e. such that xjE = x(e.E) for any Borel subset £ C T

Fix some zp € (0,1) (one can take zg = %) and equip I' with the measure
v = vol} . Thus, from now on “almost everywhere” has sense in I', ' x (0, 1)
and so on.

Now we will represent © in terms of families of functions on I'. Note that
1 = Ve F#p and Wy is %—Lipschitz. Since w7 is absolutely continuous, so is
ue for all t. Set py = g4 vol. Note that from (5), we get that

<1—t1)m . 0t (7(t1)) - <t_1)m
1—to 01, (7(t0)) to
for almost all y € I' and 0 < tg < t1 < 1. For v € I" set r:(y) = 0¢(7(¢)). Then

(6) o) = [ o "= [, *edn

A r

In particular, © is locally Lipschitz in (0,1).

"Note that usually ¢ is defined with opposite sign, but I wanted to work with semiconcave
functions only.
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Next we show that the measure Ay is absolutely continuous on eI’ and that
re(v(t)) = 0t (7(t))-Apy in some weak sense. From (5), volj = et-v for some
Borel function w; : I' —+ R. Thus

vole; B = /ewt-du
E

for any Borel subset E C I'. Moreover, for almost all v € I'; we have that the
function ¢ — w;(7y) is locally Lipschitz in (0, 1) (more precisely, t — w; () coin-
cides with a Lipschitz function outside of a set of zero measure). In particular

85‘? is well-defined a.e. in I" x (0,1) and moreover

t
a.e. 8’[1};
0
zZ0 ;

Further, from Claim 2.1, if 0 < tp < t; < 1 then for any v € T,

o0 (@) = 7(
(I)thto ({E) = 7(
Thus, for any Borel subset £ C T,

— &1
etlE - \Ilto,tl o etoE - (I’tl,to (etoE) )

tl) — T = ’Y(to)a

to) <~ x:’y(tl).

€t0E = (I)tl,tg e} €t1E = \Il;:h (etlE) .

Set
def w
v(t) = vole,E = /e - du.
E

From Claim 1.3,

U/(t) EEE A1/)t(etE) L2 —A(pt(etE).
Thus, Ay + Apy = 0 everywhere on e;I'. From Claim 1.1,

Aty < F-vol, Apy < 775 vol.

Thus, both restrictions Aty|e,r and Apyle,r are absolutely continuous with
respect to volume. Therefore

V' (t) = /TraceHessgpt-dvol.
et B

For the one parameter family of functions () = Trace Hess, ) ¢, we have

t
v|t20 = /(ewt - 1)~d1/:/d;f-/h;.ew;.du
E 20 E

or any Borel set £ C I'. Equivalently,

8wt a.e.

el
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From Proposition 2.2,
Ohy
ot
Thus, for almost all v € T', the following inequality holds in the sense of
distributions:

1 2
<L ond

& w(7) 1 2, 1 Ol w(7y)
%p< m ) =\ mehi gy e 7 ) SO
ie t— exp(thm) is concave. Moreover precisely, ¢ — exp(th('Y)) coincides

with a concave function almost everywhere.
Clearly, for any t we have p = ri-e®t-v. Thus, for almost all v there is a
nonnegative Borel function a : I' = R3¢ such that r; £2 g.e~ . Continue

(6),
@(t):/rfm-dnz e - {/a du

r r
I.e. © is concave as an average of concave functions. Again, more precisely, ©
coincides with a concave function a.e., but since © is locally Lipschitz in (0, 1)
we get that © is concave. O
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