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A note on Banach Cy(X)-modules

Walther Paravicini
(Communicated by Siegfried Echterhoff)

Abstract. The projective tensor product over Co(X) of locally Co(X)-convex non-degene-
rate Banach Co(X)-modules is again locally Co(X)-convex.

Let X be a locally compact Hausdorff space. A Banach Co(X)-module is
a Banach space E which is at the same time a (left) Co(X)-module such that
lIx-ell < llxllo llell for all x € Co(X) and e € E; such an E is called non-
degenerate if Co(X)E is dense in E. We suggest to call a non-degenerate
Banach Co(X )-module a Co(X)-Banach space. This naming is justified by the
fact that Co(X)-Banach algebras are, in particular, Co(X )-Banach spaces; more
precisely: a Co(X)-Banach algebra is a Banach algebra which is at the same
time a Co(X)-Banach space such that the product of the algebra is compatible
with the Co(X)-module structure. If E is a Banach space, then we write EX
for the Co(X)-Banach space Co(X, E).

The theorem about tensor products of locally Co(X )-convex spaces that we
prove in this note makes it easier to compare the KKP* -theories for Co(X)-
Banach algebras and for upper semi-continuous fields of Banach algebras over
X, see Section 1.3 of [12]. We give two additional applications of the theorem
at the end of the first section. In this first section, we explain what locally
Co(X)-convex Co(X)-Banach spaces are. In the second section, some alterna-
tive characterizations of local Co(X)-convexity are given to facilitate the proof
of the main theorem, which is carried out in the third section.

The results of this note are contained in the doctoral thesis [13]; I thank my
supervisor Siegfried Echterhoff for his numerous suggestions for improvement.
This research has been supported by the Deutsche Forschungsgemeinschaft
(SFB 478).

1. LocALLY Co(X)-CONVEX Co(X)-BANACH SPACES

The notion of local Co(X )-convexity is crucial if one wants to compare the
concept of a Co(X)-Banach space to the concepts of bundles or sheaves or
(upper semi-continuous) fields of Banach spaces over X (see [7]). The same
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notion appears under different names in the literature (for compact X, say):
Hofmann calls it “local C(X )-convexity” in [6] and so does Gierz in his extensive
discussion [4]; the same name is used in [7], but there also the abbreviated form
“local convexity” is proposed. Dupré and Gillette use “C(X)-convexity” in [2].
Kitchen and Robbins prefer “C(X)-local convexity” in [9] which is in line with
similar concepts in [11]. Finally, the same notion appears as “regularity” of
Co(X)-Banach algebras in the preprint [10]. For now, we stick to the lengthy
but accurate name “local C(X)-convexity”:

Definition 1.1. A Cy(X)-Banach space is called locally Co(X)-convex if

[Ix1e1 + xaea| < max{[ler]l, [le2[|}

holds for all x1,x2 € Co(X) with x1,x2 > 0 and x1 + x2 < 1 and for all
e1,es € F.

Closed subspaces, quotients and finite products of locally Co(X )-convex Co(X)-
Banach spaces are again locally Co(X)-convex. These and other properties of
the category of locally Co(X )-convex Co(X )-Banach spaces were studied in [9].
In the present article, we show the following additional result:

Theorem 1.2. Let E and F' be locally Co(X)-convex Co(X)-Banach spaces.
Then their Co(X)-tensor product E ®c,(xy F is locally Co(X)-conver.

By Co(X)-tensor product we mean the following:

Definition 1.3. Let E and F be Cy(X)-Banach spaces. Then the projective
tensor product over Co(X) or Co(X)-tensor product E ®c,(x) F of E and F is
defined to be the quotient of the complete projective tensor product £ @™ F
by the closed subspace generated by elements of the form ye ® f — e ® xf,
where x € Co(X),e€ E and f € F.

Note that the Co(X)-tensor product has the universal property for Co(X)-
balanced continuous bilinear maps on E X F'; a bilinear map (§ from E x F to
some Banach space G is called Co(X)-balanced if G(xe, f) = B(e, xf) for all
X €Cy(X),e€ Eand feF.

In [9], the tensor product of locally Co(X)-convex Co(X)-Banach spaces was
defined to be the so-called Gelfand transform of our Co(X)-tensor product to
make sure that it was also locally Co(X)-convex. Theorem 1.2 shows that this
extra step is not necessary.

One reason to consider locally Co(X)-convex Co(X)-Banach spaces is that
they are determined by their fibers: If E is a Co(X)-Banach space, then the
subspace Co(U)FE is closed in E for every open subset U C X. If z € X, then
the fibre E, of E is defined as the quotient

By = B/ (Co(X \ {a})E).
For all e € E, we will denote by e, the corresponding element of the fibre E,.
The canonical projection map from E onto E, will be denoted by 7£. For

all e € E, the function  — |le.||; is upper semi-continuous and vanishes at
infinity.
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For example, if E = EyX = Co(X, Ep) for some Banach space Ejy, then
E, = E, for all # € X and the map 7 can be identified with evaluation at x.

In [2], Theorem 2.5., it is shown that E is locally Co(X)-convex if and only
if

lle|l = sup [[ex]| forallec E,
weX

i.e., the Gelfand representation in the sense of [9] is isometric.

There is an important consequence of local Cy(X)-convexity which con-
cerns linear operators between Cy(X )-Banach spaces. Note that Co(X )-Banach
spaces form a category: If E and F' are Cy(X)-Banach spaces, then we take
the bounded linear Co(X)-linear maps from E to F as morphisms and denote
the set of these by L, (x)(E, I).

Let E and F be Co(X)-Banach spaces and let x € X. Let T' € L¢,(x) (£, F).
Then there is a unique linear map 7. : £, — F} such that the following diagram
commutes

T
—_—

E F
Ty

E,——F,

It satisfies || T|| < ||T||. If T is isometric, so is T,: This can be read off the
following formula of Varela (compare [14], Lemma 1.2) which also follows from
Lemme 1.10 of [1]: For every x € X and every e € E, we have
(1)

llez]] = inf {]|ee] : ¢ € Ce(X),z € U C X open,ply =1, 0 < ¢(z) < 1}.
Also other properties of T are inherited by the fibres, e.g. if T has dense image,
is a quotient map or an isometric isomorphism, then the same is true for 7.
By a quotient map we mean not only a surjective map, but what is also called
a metric surjection, i.e., we say that T' € L(E, F) is a quotient map if | T|| < 1
and if for all f € F' and all € > 0 there is an e € E such that

T(e)=f and el <[f]l+e,
or, alternatively,
(2) [f=T(e)[<e and |e] <|f].

Now local Co(X)-convexity comes into play if one wants to prove results which
are converse to the above observations:

Proposition 1.4. Let E and F be Co(X )-Banach spaces andT' € Le,(x) (E, F')
such that | T| < 1.

1) If E is locally Co(X)-convez, then T is isometric if and only if the
operator T,.: E, — F, is isometric for all x € X.

2) If F is locally Co(X)-convex, then T has dense image if and only if the
operator T, : E, — F, has dense image for all x € X.
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3) If E and F are locally Co(X)-convex, then T is surjective and a quo-
tient map if and only if the operator T, : E, — F, is surjective and a
quotient map for all x € X.

4) If E and F are locally Co(X)-convex, then T is an isometric isomor-
phism if and only if the operator T,,: E, — F, is an isometric isomor-
phism for all x € X.

Proof. In all four cases, we only prove that T inherits the property in question
from its fibres T, under the respective convexity condition.
1) Let e € E. We have

llell = sup [lex|| = sup [|To(ex)|| < T (e)l| < lle] ,
zeX rzeX

so we have equality throughout, and hence T is isometric.

2) The image of T is fiberwise dense. Since F' is locally Co(X)-convex, a
compactness argument shows that the image of T, being a Co(X)-invariant
subspace, is dense in F'.

3) We use Equation (2): let f € F and € > 0. For every x € X, we pick some
e® € E such that ||[(T(e*) — f)|] < €/2, ||€®]| < ||f«|l (this is possible since
T, o7, is a quotient map for all z € X). Find a compact subset K of X such
that || fz|| < e for all z C X \ K. Since for all x € X the function |T'(e®) — f|
is upper semi-continuous, the sets U, := {y € X : [[(T'(e®) — f)yll < €}
are open (and contain z). So the set {U, : z € K} forms an open cover
of K. Let S C K be a finite set such that {Us : s € S} is a cover of K.
Find a continuous partition of unity on K subordinate to this cover, i.e., a
family (ps)ses of elements of Co(X) such that 0 < @5 < 1, supp ps C Uy and
Y segws(k) =1 for all k € K as well as ) _g¢s < 1 on the whole of X.

Define
€= Z pse® € E.
seS

Since E is locally Co(X)-convex, we conclude that |le]| < sup,cg || fs|| < ||f]l-
Let ¢ :=1-3 cgps. Notethat f =3 _cosf+of. Let x € X ands € S. If
z € U®, then [|T(e®)s — fall <€, s0 [ T(pse’)s — (psfall < ps(z)e. Iz ¢ U,
then [|T'(¢se®)z — (s f)all = 0 < ps(2)e. So

T(e)s — Z‘PSf < Z‘PS(m)E <e.

ses ses
On the other hand, ||(¢f)z]] <€, so

T(e)r - Z s f
ses

This is true for all x € X, so ||T(e) — f|| = supgex | T(e) — f|| < 2¢ because
F is locally Co(X)-convex. So T is surjective and a quotient map.

4) This follows from 1. and 2. (or 3.). O

|7 - 1] < @1 < 2.
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We now turn to the fibres of tensor products of Cy(X)-Banach spaces.

Proposition 1.5. If E and F are Co(X )-Banach spaces and x € X, then there
is an tsometric isomorphism

(E®cyx) F)a = E,®"F,.

Proof. We define maps in both directions which are linear and of norm less
than or equal to one and which are inverse to each other; in both cases, we use
suitable universal properties.

Firstly, we can regard F, as a Co(X)-Banach space by defining xe := x(z)e
for x € Co(X) and e € E,; we can do the same with F,. Then the map
(e, f) — ez @ fy is a continuous Co(X)-balanced bilinear map from E x F to
E, ®" F, which hence gives rise to a Co(X)-linear map from E ®¢,(x) F to
E, ®™ F,, of norm less than or equal to one. Its kernel contains the kernel of
WJ;E@CO(X)F, so it induces a linear map ® from (E ®¢,(x) F). to E, @7 Fy. If
ec Eand f € F, then ((e® f)z) =€z ® fa-

To define an inverse map, we give a bilinear continuous map g of norm less
than or equal to one from E, x F, to (E®c,(x) F)z- Let ¢’ € E, and f' € F,.
Let e € E and f € F such that e,, = ¢’ and f, = f’. Define u(e’, f') := (e®f),.
A short calculation shows that p(e’, f) does not depend on the choice of e and
f and, moreover, one can choose e and f so that |le|| and || f| are as close as
desired to |[e’|| and ||f’||, respectively, showing that ||u| < 1. It follows that
there is a continuous linear map ¥ from E, @™ F, to (E ®¢,(x) F'). sending
ex @ [z to (e® f), for every e € E and f € F. This precisely says that ¥ is
an inverse to ® and that ® and ¥ are isometric. (]

We now give two corollaries of Theorem 1.2:
Corollary 1.6. Let E and F' be Banach spaces. Then
EX @cyx) FX=2(E®" F) X.
Proof. Define
¢: EX ®cyx) FX — (EQ®"F)X,
e®f — (vee(x)® f()).

This map is Co(X)-linear and of norm less than or equal to one. Let x € X.
If we identify the fibre at = on both sides with £ ®™ F, then &, is simply the
identity and hence an isometric isomorphism.

From Theorem 1.2 and Proposition 1.4, 4., we can deduce that ® is an
isometric isomorphism. O

Recall that a Banach algebra B is called self-induced (in the sense of [5]) if the
canonical map from B ® g B to B is an isometric isomorphism.

Corollary 1.7. Let B be a Co(X)-Banach algebra, i.e., a Banach algebra which
is also a Co(X)-Banach space such that the product is Co(X)-bilinear. Assume
that B is locally Co(X)-convex. Then B is self-induced if and only if B, is
self-induced for oll x € X.
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Proof. First observe that the tensor product B ® g B is Co(X)-balanced, so it
is indeed a quotient of B ®¢,(x) B. In particular, it is locally Co(X)-convex
by Theorem 1.2 as a quotient of a locally Co(X)-convex space. The canonical
linear map T from B ®p B to B is Co(X)-linear (where we put the obvious
Co(X)-Banach space structure on B ®pg B). Let 2 € X. Note that (B®p B).
is canonically isomorphic to B, ®p, B,. Moreover, T,: (B ®p B)y — B,
can be identified with the canonical map from B, ®p, B, to B;. Now apply
Proposition 1.4 to see that T is an isometric isomorphism if and only if T}, is
an isometric isomorphism for all z € X. O

2. ALTERNATIVE CHARACTERIZATIONS OF LOCAL Co(X )-CONVEXITY
In this section, let E be a Co(X)-Banach space.

Proposition 2.1. The following are equivalent:
1) E is locally Co(X)-convex.
2) ||(¢1 + ¢2)el| = max{|pie|,||p2el|} holds for all e € E, 1,02 €
Cp(X) with p102 = 0.
3) l(p1 +pa)ell = max{[[prel, [[p2ell} holds for all e € E, ¢1,42 €
Co(X) with P1P2 = 0.
4) [[(p1 +p2)ell = max{|[prel, [[pzell} holds for all e € E, 1,42 €
Ce(X) with w12 = 0.
Proof. 1. < 2.: This is part of proposition 7.14 of [4].
The implications 2. = 3. and 3. = 4. are trivial.
4. = 2.: Take a bounded approximate unit (xx)rea of Co(X) which is con-
tained in C.(X). Let e € E and ¢1, 2 € Cp(X) such that p1p2 = 0. Then

[(p1 + @a)ef| = lim |Oxapr +xap2)el =
= limmax{|pogrell s xapeel} = max{flprell, [lpzel }
since (xa¢1)(xap2) = 0 for every A € A (allowing us to apply 4.). O

For technical reasons, we want to refine this proposition a tiny bit. The con-
dition @12 = 0 says that the sets U, :=={zx € X : ¢;(z) # 0}, i = 1,2, are
disjoint. We can impose the slightly stronger condition that the supports, being
the closures of these sets, do not intersect either. This is an easy consequence
of the following trivial observation:

Lemma 2.2. Let ¢ be an element of Co(X) and e > 0. Let U, := {x € X :
o(x) # 0}. Then there is a function ¢° € C.(X) of compact support contained
in U, such that ||¢ — ¢°|| < e.

From this it follows:

Lemma 2.3. The Co(X)-Banach space E is locally Co(X)-convex if and only
if it has the following property:

) (o1 + w2)e]l = max{||¢ie|l, |le2ell} holds for all e € E, @1,02 €
Cc(X) with supp @1 Nsupp g2 = 2.
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Proof. 1t is clear that 4) = 4’). For the opposite direction, let e € E and
1, p2 € Co(X) such that @12 = 0. Let € > 0. Find functions ¢§ and ¢§ in
Cc(X) such that the support of ¢5 is contained in Uy, := {x € X : ¢;(x) # 0}
and such that |¢; — ¢5|| < e. Note that the supports of these two functions
are separated by the open sets U,,. We can hence apply 4’) to get

(1 +@2)ell = [I((pr — 1) + ¢1 + (92 — ¥3) + 3 )ell
< (T + el + 11(pr — oD)ell + [[ (w2 — @3 )el|
< (e + wh)ell + 2¢ le]|
2 max{lgiel s lesell} + 2 el
< max{|lgiel| +ellel], [lzell + € lel|} 4 2 e
= max{l|piell, [[p2e]} + 3¢ €] -
Since € was arbitrary, we get the desired result. O

Definition 2.4. Let ¢ € E. The support supp e of e is defined as

suppe := X \ {z € X : there exists U C Xopen with z € U,
and we =0 for all ¢ € Co(U)}.
Define
E.:={e€ E: suppe is compact}.

Lemma 2.5. Let e € E. If ¢ € C.(X) such that suppp Nsuppe = &, then
pe = 0.

Proof. Let K be the support of ¢. For all k € K C X \ suppe, there is
an open neighborhood Uy of k such that ¥e = 0 for all ¥ € Cy(Ug). Now
{Ur : k € K} is an open covering of K, so we can find a finite set S C K
such that {U, : s € S} covers K. Find a continuous partition of unity (xs)ses
on K subordinate to (Us)ses (with xs € Cc(X)). Then xs¢ is in Co(Us) so
xspe =0. But Y o xsp = @, so pe = 0. O

Lemma 2.6. Ife € E and ¢ € Cy(X), then supp(pe) C supp ¢ Nsuppe.

Proof. Let x € X such that = ¢ (suppp Nsuppe). If x ¢ suppyp, then
U := X \ suppy is a neighborhood of z. Let ¢ € Co(U). Then ¢(pe) =
(pp)e = 0e = 0, so x ¢ supp(pe). If x ¢ suppe, then U := X \ suppe is
a neighborhood of x. Let ¢ € Co(U). Then t(pe) = p(pe) = 90 = 0, so
x ¢ supp(ype). O

Lemma 2.7. Let e € E. Then e € E. if and only if there is a ¢ € C.(X)
such that pe = e. Ife € E., then ¢ can be chosen to be supported in any given
compact neighborhood of supp e and such that 0 < ¢ < 1.

Proof. If pe = e for some ¢ € C.(X), then this means supp e C supp ¢, so the
support of e is compact.

If K :=suppe is compact and L is a compact neighborhood of K, then we
can find a function ¢ € C.(X) such that ¢|r =1 and 0 < ¢ < 1. Let M be a
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compact set containing the support of ¢ and x s be a function in C.(X) such
that xa|p =1 and 0 < xar < 1. Then xar¢ = ¢ and hence yprpe = pe. On
the other hand we have supp(xa —¢) € X \ K and hence (xa —)e =0, i.e.,
xme = pe. If M gets larger and larger, then x,se approaches e, so e = pe. O

Lemma 2.8. The Co(X)-Banach space E is locally Co(X)-convex if and only
if it has the following property:
5) |lex + ezl = max{|le1|l, |le2||} holds for all ey, es € E. with the property
that supp e; Nsupp ez = J.

Proof. Assume that 5) is satisfied. We show 47). Let e € E and 1, p2 € C.(X)
such that supp ¢ Nsuppys = @. Let e; := w;e for ¢ = 1,2. Then suppe; C
Supp ¢; so supp e Nsupp ez = &. An application of 5) now gives 4’).

Assume now that 4’) holds. Let e, es € E. such that supp e; Nsupp ez = &.
Find ¢1, p2 € C.(X) such that p;e; = e; for i = 1,2 and supp 1 Nsupp w2 = .
Define e := e; + e5. Note that pae; = 0 = p1ea, s0 ;e = ¢;. An application
of 4’) now gives 5). O

3. THE PROOF OF THE THEOREM

Lemma 3.1. Let E and F be Co(X)-Banach spaces and e € E., f € F, such
that suppe Nsupp f = . Then e® f =0 € E ®cyx) F-

Proof. Let K be a compact neighborhood of suppe and let L be a compact
neighborhood of supp f such that K N L = @. Find functions ¢ and ¢ in
C.(X) such that suppp C K and e = ¢ and suppy C L and ¢f = f. Now
e® f=(pe)®(Wf) =e®(ppf) =e®0=0. O
Proof of Theorem 1.2. We use Lemma 2.8. Let ¢; and ty be tensors in
(E ®cox) F' )c such that suppt; Nsuppts = @. Without loss of generality
we assume that both, ¢; and to, are non-zero. Let Ly, Ls be compact neigh-
borhoods of suppt; and suppte, respectively, such that Ly N Ly = @. Find
functions ¢; and ¢y such that suppy; C L;, 0 < ¢; < 1 and ¢;t; = t;, for
i = 1,2. Note that
il = llei(ts + t2)[| < lloall llt1 + tf| = [[t2 + t2|

for i = 1,2, which shows ||¢t; + t2|| > max{||t1]|,||t2]|}- The other inequality is
the non-trivial one. Let € > 0. Find sequences (el )nen and (e2),en in E and
(fHnen and (f2)nen in F such that

(3) ti=) e, @ fn and Y [lep]|[I£] < lltall +e

neN neN

for i = 1,2. Without loss of generality we can assume that for all i € {1,2}
and n € N,

(4) supp e, supp fi. C L,
(5) I £ill =1,
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(6) ||e,11|| > HeiH for all n € N or ||e711|| < HeiH for all n € N.
Before justifying these assumptions, we show how to use them to finish the
proof. Assume that the first part of (6) holds. From (4), it follows that
en®fn=0=e,®fp,
for all n € N and hence
Dlente)@nt )= en@fat Y e ®fi=t+ta
neN neN neN

Moreover, we have

et + €2 @ max {[lek ]| e ]|} € flet]
and

17+ 22 2 max (|2 12210 21 = |£2)
for all n € N. It follows that

[t + 22l <> Jlek + ezl 12+ £2] =

neN

= ST leA I < el + & < max {fjta]], e} + <.
neN

If the second part of (6) holds, then we arrive at the same inequality. Since we
have shown this for all € > 0, it follows that

t1 + tao|l < max {[|t1], [[t2]l} -

Now we justify the assumptions (4)-(6), step by step.

1) For (4), consider the sequences (p;e; nen and (i i) pen for i = 1,2. They
satisfy the conditions supp p;e;, C L; and supp ¢; f}I CL;foralln e N,i=1,2.
Moreover,

Y i @eifi =0l Y eh® fi=piti=1

neN neN
for i = 1,2 because p;t; = t;. Additionally,

Do lleienllleasill < D llenll Al < el + <,

neN neN

so substituting e! with ¢;e!, and fi with o; fi gives sequences which satisfy
(3) as well as (4).

2) We show that we can assume (5). Let ¢ € {1,2}. We can assume that
fi £ 0 for all n € N: Because t; # 0 by assumption, there has to exist an
f§ € F such that supp f§ C L; and f§ # 0. If n € N such that f; = 0, then

substitute e}, by zero and f;, by fg.
Now consider the sequences ||fl H el )nen and (

;)HEN If we take these

sequences instead of (ef)nen and (f!)nen, then (3 ) ( ) and (5) are satisfied.
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3) For (6), we have to work a little harder. First note that, because of (5), we
have 37, oy lenll = Xpen llenllllfall < I[till+e < oo fori =1,2; s0 ([le},])nen is
in ['(N). We may assume Y |leb || = >, cn €2, without loss of generality.
We show that in this case we can assume for all n € N that ||el| > [|e2]|.

Note that we have the freedom to rearrange the sequences (e, fi),en in any
order we like and that we can, informally speaking, replace some entry (e, f2)
by the two entries (el f2) and ((1 — N)el, fi) for any A € [0, 1]. Both moves
will not affect the properties (3), (4) or (5). Our strategy is to take one entry of
(€2)nen after the other and split it up into smaller entries which we can match
with entries of (e},)nen of the same size. Since Y-, o |len|| = 2 ,cn |l€2 ]|, it
will be possible to match all entries of the sequence (e2),en with entries of the
other sequence. There might still be some bits of (el),en which are left over,
but these entries will be matched with zero entries.

For technical reasons, we would like to assume that (e2),en has infinitely
many non-zero entries: Because to # 0 we know that at least one entry is
non-zero. Substitute this entry by infinitely many “copies with weight 277,
where n runs through the natural numbers.

To gain space, we want the sequences to be indexed over a larger set; for
notational convenience, we take Z. So define e} := €7 := 0 € E for all k €
{0,—1,-2,...} and choose arbitrary f and f7 in F with norm 1 such that
supp ff C L;. Then the double-sequences (e%)rez and (fi)rez satisfy the
relations (3), (4) and (5) (with Z replacing N).

Description of the inductive procedure: We are going to give an
inductive definition of a sequence (ne',,f',ne% nf 2)n€N0 of four-tuples of

double-sequences, starting with the four double-sequences (e!, f1,€?, f?) =:
(0", 0", 0€%, 0f?) we have just defined. In each step, an entry of the sequence
corresponding to (e3)ken is set to zero and “moved to the negative part of the
double-sequence”. Also some (parts of) entries of the sequence corresponding
to (et )ken are moved to the negative part, to ensure that the negative part of
the sequences is always “balanced” in the sense that

(7) |lnex|| = ||ner]| for all n € Ny and all k € Z<.

Also, the procedure is designed in a way ensuring that the relations (3), (4) and
(5) remain true. In the limit, all positive entries of the sequences corresponding
to (e2)ren vanish and we are left with sequences which are “balanced” on the
negative side. There might still be some non-vanishing entries of the sequence
corresponding to (e}, )ren, but the sequence corresponding to (e )ren vanishes,
so Condition (6) holds. Also the other relations hold for the limit.

The inductive definition: Let n € N and assume that we have already
defined the quadruple (n,lel, ne1fl, n_1€, n,lfg), satisfying the relations (3),
(4) and (5) as well as anlelch = ||n,1ezH forallk € Z<oand ),y ||n,1e,£|| >
Y keN ||n,1e%||, and such that the set {k € Z<o: ,_1€} # 0} is finite whereas
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{k € N: ,,_1e} # 0} is infinite. Note that
ln-senll < 2 lln-reill < 3 lln-rem]
meN meN

and so we can find a p € N such that r := Y71, |ln—1eb|| < ||n-1€2]| and
) Hn,le}nH > ||n,1e%|| . Find N € Z< such that ,,_1e? = 0 for all kK < N.
Define

n—1€} if Kk = N — [ for some
le{l,...,p—1}
[ o
. mnflep ifk=N-—-p
"= 0 ifkef{l,....p—1}
n-1ep || =(|[n-1€l||-7) .
|| 1€ || |1|81 1€ || T n,le%) — nfleg-) — ne}\f—p 1f k =p
n—1%p
n—1€p else,

1 no1fl ifk=N—1forsomele{l,...,p}
nfk = 1
n—1f; else,

1
n:;zé”n—le% it k=N —1forsomele{l,...,p—1}
nfleg -r 2 .
nei = ||n—1en” n—1€5 lf k =N —-p
0 ifk=n
n—1€% else,

9 no1ff ifk=N—1forsomele{l,...,p}
nfk = 2
n—1fi else.

The resulting quadruple (net,, f!, ne?,  f?) has all the properties of the origi-
nal quadruple (n—1€', 1, n_1€%, n_1f?) listed above, plus it satisfies ,e2 =
0. Note that ||ne1 — n—161H1 =2 Hele = HneQ — n—1€2||1- Hence (,e!),en and
(ne?)nen converge in [*(Z). The sequences (,,f')nen and (5 f2)nen converge
pointwise and are uniformly bounded by 1. Let (ooel, ot s0€?, oon) denote
the limit-quadruple. The recursively defined sequences ((ne}c ® n f/i)keZ)n N
and ((nez ® ”f/%)kez)neN converge in [* ( the sums being ¢; and t, respec-
tively). Hence the limit-quadruple satisfies (3). The relations (4), and (5)
are stable under pointwise convergence of the involved sequences, hence they
remain true in the limit as they are true in each step of the induction. The
negative part of the sequences are “balanced” in every step of the induction,
and «e; = 0 for all k¥ € N. Hence (6) is true in the limit. O
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