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1 Introduction 
 
Cancer is the second leading cause of death in the western world after heart disease. Classical 

cancer treatments, including radiation- and chemotherapy, can have many unwanted side 

effects, often weakening the patient tremendously and reducing the patient’s quality of life [1, 

2]. The efficiency of drugs used in chemotherapy, and therefore also the amount of the active 

agent needed, is greatly influenced by the molecular and biochemical properties of the cancer 

to be eradicated. Different cancer subtypes contain their own subset of abnormalities in the 

genetic code which change signaling pathways, create proteins in wrong amounts or even 

proteins lacking any useful structure [3]. It is therefore essential to choose the right 

medication for a patient with a certain type of cancer to achieve best results, and also to 

minimize the amount of the drug that has to be administered.  

The overall rate of survival has risen constantly due to improvements in diagnosis and 

treatment made possible by the advances of cell, molecular, computational, developmental, 

and structural biology as well as biochemistry, genetics, molecular biophysics, bioinformatics 

and chemometrics. These once separate fields of activity have molten together in the last 

couple of years, urged by the need for an interdisciplinary approach to understand the 

complex patterns behind cancer cell biology. One example for this is the molecular 

characterization of a tumor to determine which drug or combination of therapies is the most 

effective for a patient. Research is done with state of the art DNA microarrays [4] (chapter 

3.4), increasing the knowledge of the genetic abnormalities responsible for certain subtypes of 

cancer. This information can then be used to design small, affordable diagnostic microarrays 

for medical applications. The first DNA based diagnostic biosensors will be approved for use 

in these fields in the very near future (chapter 3.4.5). These new devices have the promise of 

helping to further increase the effectiveness of anti-cancer therapies and to increase overall 

survival rates [5-7].  

Once a cancer type is recognized, it has to be treated with the right drug. The use of classical 

chemotherapy drugs including the classical DNA alkylating agents like cis-platin or 

triethylmelanine, the antimetabolites like pyrimidin- or pyrin-analogues and enzymes like L- 

asparaginase is often followed by many side effects as these drugs can also affect normal cells. 

When cis-platin, the most used chemotherapy agent, enters the cell nucleus, the chloro ligands 

are substituted by two adjacent guanine bases on a DNA strand. This makes the DNA duplex 

bend and unwind at the site of cisplatin attachment. The high-mobility-group domain (HMG) 

proteins then become attached to the structural damage, hereby preventing cancer cell 

replication [8]. As was reviewed in the Current Medicinal Chemistry – Anti Cancer Agents  
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journals (e.g. [9-11]), targeted therapies using novel drugs reduce side effects as scientists try 

to design these drugs so that they target properties unique to cancer, e.g. they disrupt certain 

signaling pathways [12], and thus avoid normal cells. One example is Gleevec, a drug 

designed to work against a certain, deadly type of leukemia (CML). It was introduced by 

Novartis in 2001 and revolutionized the treatment of CML. Gleevec works as a signal 

transduction inhibitor that interferes with cell signaling pathways in tumor development, 

blocking the abelson-tyrosinkinase without interfering with other tyrokinases abundant in all 

cells. Other so called smart drugs followed, most of them far less successful. Iressa for 

example, which received approval from the U.S. Food and Drug Administration in 2003, is a 

drug targeted at the epidermal growth factor receptor (EGFR), a protein involved in cancer 

cell growth. However, chemotherapy together with Iressa did not achieve better results than 

chemotherapy alone during phase III of clinical trials. This example, among others, has shown 

that a lot of research is still needed to truly understand the complex machinery of cancer 

creation and proliferation [13, 14].  

The role of chemometrics and bioinformatics in this research is to design and select optimal 

measurement procedures and experiments and to maximize the information which can be 

extracted from data. The application of a multi step analysis of the very complex multivariate 

data gathered in microarray experiments has to be done in an optimal way to obtain 

informative results that can be used to interpret the biological background of the data. The 

elements which are defining the speed at which progress is made in the bioanalytics sector are 

now the analysis and interpretation of this complex data and far less often technical reasons 

[15]. The optimal application of chemometrics is important during the research, the 

development and the design of  DNA biosensors as well as during analysis of actual samples 

from patients as it should never be forgotten that the data is gathered using tumour samples 

obtained from individual cancer patients with their own lives and hopes. 
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2 Aims & Scope 
 

The aim of this work was to create and enhance chemometric methods for the analysis of 

microarray data, to apply these methods, in order to obtain information on relevant genes 

useful for the characterization of different cancer subtypes and to use these genes for the 

creation of classifiers for the discrimination of unknown cancer samples. 

The main focus was put on the development of quality control routines for Affymetrix 

microarrays, which are the best developed DNA biosensor platform and will probably be the 

first technology applied in real world diagnostics in the very near future. Routines include 

quality control procedures for the processing of inhomogeneous background signals and 

procedures for obtaining information on the genetic traits of pediatric acute lymphocytic 

leukemia. 

Several hundred Affymetrix U133 microarrays were analyzed to create novel methods for the 

automatic detection of signal artifacts and to process these chips to remove inhomogeneous 

signal background and differences in signal scaling. These methods were applied on replicate 

measurements to show their efficiency in raising the quality of the obtained signals. Further, 

the methods were tested on microarrays with known and unknown defects to evaluate their 

ability to detect them. Different tools have been created for analysis, management and 

processing of data. A tool was created to facilitate the design of probe sequences for a custom 

made microarray. 

A pediatric leukemia dataset was analyzed with the intention of selecting genes best suited for 

discriminating different leukemia subtypes. This process was also used to compare different 

gene selection algorithms as well as different methods for the calculation of gene specific 

expression signals.  
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3 Theory  
 

3.1  Nucleic Acid: Structure and Function 
 

Nucleic acids as carriers of the genetic information can be subdivided into two classes:  

• deoxyribonucleic acid (DNA) with the sole purpose of storing information; 

• ribonucleic acid (RNA) with a role in gene-expression and protein biosynthesis.  

 

The genomic DNA is located nearly solely in the chromosomes of the nucleus of eukaryotic 

cells, whereas RNA can be found in the nucleus as well as in the cytoplasm [16]. 

DNA is an unbranched biopolymer composed of nucleotides and can reach considerable 

length. Each nucleotide consists of sugar (deoxyribose), a nitrogen containing base attached to 

the sugar, and a phosphate group. There are four different types of nucleotides found in DNA, 

differing only in the nitrogenous base. DNA can consist of the two purin-bases adenine (A) 

and guanine (G) and the two pyrimidine-bases cytosine (C) and thymine (T). RNA contains 

ribose as sugar component, and the structurally similar uracile (U) instead of thymine. The 

polymer is created by bondage of the sugar groups through the phosphate groups. The genetic 

information of the organism is stored in the sequence of the four bases, read in the same 

direction as it was synthesized, that is, from the 5’ to the 3’ – end. DNA is synthesized by 

recurrent attachment of an incoming deoxynucloside triphosphate to the free 3’ OH-group of 

the growing DNA sequence. 

DNA has a double helix structure in a natural surrounding, in which two complimentary DNA 

single strands are wound around the same axis. 

 

 
Fig. 3.1 DNA structure [from chromosome.com] 

 

The resulting macromolecule has a polar and a negatively charged surface created by the 

outside lying sugar-phosphate backbone. The interactions between the two DNA strands are 
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based on hydrogen bonds between the nucleic acid bases adenine and thymine on one hand, 

and guanine and cytosine on the other. 

3.2 Gene Expression 
 

Functional regions of the DNA are called genes, most genes coding proteins. Each amino acid 

component of a protein is coded by three base pairs in the DNA (codon). The information of a 

gene is transferred into a messenger RNA (mRNA). The RNA is then transformed multiple 

times and transferred to the ribosomes. Here it is read and the proteins are synthesized.  

Proteins are the building blocks of the organic tissues and fluids; they provide most of the 

molecular machinery. Different genes are expressed in different cell and tissue types and at 

different developmental stages. Cells at certain locations thus produce the proteins they need 

at certain times [16].  

 
 

Fig. 3.2 Transcription of information from DNA to mRNA and synthesis of 
polypeptides in the ribosome [source: Genentech]. 

 

Analysis of variations in gene expression can lead to an understanding of disease states, 

targeting of drugs to specific cells, tissues or individuals, development of agricultural 

products, etc. [17, 18]. Gene expression can be quantified by using microarrays in order to 

analyze simultaneously the amount of a large multitude of different mRNA in a sample.  
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This can then be the basis to gain more information on certain tissue types like tumors [19, 

20]. More information on nucleic acid analytics is given by Haberhausen et al. [21] , Pingoud  

and Urbanke [22],  and Christopoulos [23]. 

 

 

3.3 Cancer 

3.3.1 Overview 
 
The word “cancer” is a generic term describing more than 100 forms of the disease that can 

arise in most tissues [24]. Five general subgroups can be defined [American Cancer Society, 

ACS]: 

 

Carcinoma -  a tumor derived from epithelial cells - those cells that line the surface of the 

skin and the organs, also the surfaces of the digestive tract and the airways. 

This is the most common cancer type and represents about 80-90% of all 

cancer cases reported. 

 

Sarcoma -   a tumor derived from muscle, bone, cartilage, fat or connective tissues. 

 

Leukemia -  a cancer derived from blood cells or their precursors. The cells that form both 

white and red blood cells are located in the bone marrow.  

 

Lymphoma - a cancer of bone marrow derived from cells that affect the lymphatic system.  

 

Myelomas -  a cancer involving the white blood cells responsible for the production of 

antibodies. 

 

Each form of cancer can have very different properties, although the processes through which 

these diverse tumors arise are quite similar [25, 26]. The human body consists of 30 trillion 

cells which work together, they only proliferate when get the signal to do so. It is essential for 

certain tissues to retain their size and properties in order  to work in unison with the rest of the 

body. Cancer cells, on the other hand, leave this strict ruling, following their own schemes for 

reproduction. They can leave their site of origin and invade other tissues, often disrupting 

their function and thus becoming lethal [27]. Every part of the body can develop a primary 
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tumor, the most prominent regions being the lung (through smoking), the breast in women 

and the prostate in men (see figure 3.3). The probability of developing a certain cancer type is 

linked to many different factors like environment, lifestyle, genetic makeup and especially 

age.  

 

 

 
Fig. 3.3 Incidence rates of certain cancers diagnosed in Europe. Rates are calculated 

by division of the number of new cancer cases observed during the year 1998 
by the corresponding number of people in the population at risk. Results 
expressed as an annual rate per 100.000 persons at risk [28].  

 

These facts have been known for a long time, but the research during the last couple of years 

has shed light into the molecular sources of these characteristics. It is now common 

knowledge that the malignant transformation of a cell is the product of an accumulation of 

mutations of certain genes within it. If a gene is mutated, its function may be disrupted; it may 

be present at the wrong numbers producing a wrong amount of a protein; it may be located at 

the wrong area of the genome or it may be missing completely. Proto-oncogenes encourage 

the proliferation of the cell, tumor suppressor genes inhibit it. Together, these two classes of 

genes keep the cell in balance, making it a functioning part of the body [28, 29]. Mutated 

proto-oncogenes can become carcinogenic oncogenes, driving excess multiplication. Tumor 

suppressor genes can be switched off by mutation, also contributing to a forming malignancy. 

At least half a dozen growth-regulating genes have to be affected so that a malignant 

development can start. 

Brain, nervous system 8.82 6.64 Brain, nervous system 

Mouth, oral cavity    23 
5.97 Mouth, oral cavity 

Lung    82.52 23.87 Lung 

Stomach    22.95 
15.01 Stomach 

Bladder   30.99 

109.84 Breast 

8.56 Bladder 
Testis  4.81 

Prostate  78.94 
Colon / Rectum   61.82 

54.43 Colon / Rectum 
49.28 Uterus / Ovary 

Melanoma of the skin  8.96 11.38 Melanoma of the skin 

Leukemia  13.35 9.95 Leukemia 

Lymphoma   18.12 14.43 Lymphoma 

Incidence rates of cancer diagnosis in 1998 in Europe per 100.000 persons 

Source: The European Commission Health Monitoring Program  



Method development                                                                                                            8

Signals from outside are forwarded into the cell by means of a pathway built by many 

different genes. As members of this chain become deregulated, the net signal the cell receives 

can be distorted, leading, for example, to excessive multiplication. One example is the ras 

family of genes which are members of one certain signaling chain. Hyperactive ras proteins 

are found in about a quarter of all human tumors [30, 31].  

 

 
Fig. 3.4 Signal cascade from a cell receptor through a pathway built by many 

different genes down to the activation of interferon gamma. Hyperactive ras 
proteins are found in a quarter of all human tumors [Novartis] 

 

Signals between cells can be forwarded by means of certain proteins acting as growth-factors, 

docking onto the receptors of cells surrounding the one emitting these molecules. The myc 

proteins are normally only created when growth-factors dock onto the cell. But many cancers, 

especially those of the tissues producing blood, have a constantly high level of myc which 

then urges the cell to proliferate. Oncogenes can also stimulate a cell into producing too much 

of these growth-factors, thus affecting all cells surrounding it. Examples are sarcomas and 

gliomas. Genes creating the receptors of a cell may also be mutated, forming receptors that 

forward a signal into the cell that has never actually been received.  

Besides interpreting wrong growth signals, a cell must also become deaf to growth breaking 

signals from its surrounding neighbor cells. These inhibitory signals are also transmitted 

through the cell starting at receptors, just as growth signals do. This signal processing chain 

has to be compromised, too. One example are colon cancer cells inactivating a gene which 

create receptors for the transforming growth factor beta (TGF-β) which can stop a cell from 

growing. It could be shown through experiments that the introduction of a missing gene 
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related to the stopping of growth can restore the function of the cell in this regard, changing it 

into a healthier one [32]. The identification of a deregulation of a certain gene using the 

microarray technology can therefore help in designing novel genetic therapies and in the 

development of signaling molecules which can be applied to the tumor for signal induction 

[33].  

3.3.2 Leukemia 

3.3.2.1 Introduction 
 
Patients with leukemia produce abnormal blood cells, called leukemia cells. These cells may 

function almost normally but change the general composition of the blood and disturb the 

function of the other blood components like red blood cells, normal white blood cells and 

platelets. Chronic leukemia is a form of leukemia where patients may not feel any immediate 

symptoms. The symptoms arise slowly together with the increasing number of leukemia cells 

in the blood. In acute leukemia, the leukemia cells are so abnormal that they cannot perform 

their original function. Their number increases rapidly, clear symptoms arise [3]. The types of 

leukemia are also grouped by the type of white blood cell that is affected; leukemia can arise 

in lymphoid and myeloid cells. 

 

 
Fig. 3.5 Blood cells maturing from stem cells. 

Pluripotent stem cells branch off into myeloid and lymphoid stem cells, becoming blast cells, and 
then becoming red blood cells, white blood cells, or platelets.  [Source: American Cancer Society]. 
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The four common types of leukemia are: 

 

• Chronic Lymphocytic Leukemia (CLL) 

 Most people diagnosed with this disease are over age 55. 

 

• Chronic Myeloid Leukemia (CML)  

 This illness affects mainly adults. 

 

• Acute Lymphocytic Leukemia (ALL) 

 It is the most common type of leukemia in young children. About 650 children below 

the age of 15 fall ill with leukemia each year in Germany each year, 83% of these 

having ALL and 15% AML. 

 

• Acute Myeloid Leukemia (AML) 

 This illness affects mostly adults; children are only affected in seldom cases [34]. 

 

There are several other rare leukemia types like the hairy cell leukemia. Myeloid and 

lymphoid leukemia can be discerned based on morphological, cytochemical and 

immunological differences.  

Lymphocytes originate in the bone marrow and are involved in the immune system. 

Depending on the follow-up transformation of these cells, they either become T-cells or B-

cells. Those cells passing through the thymus become T-cells, responsible for cell-mediated 

immunity. Other lymphocytes pass through the bursa equivalent organ becoming B-cells 

which produce antibodies. 

Risk factors for falling ill with leukemia include high levels of radiation (as experienced in 

Japan at the end of WWII and in Chernobyl 1986 [35] ), certain chemicals like benzene and 

certain genetic traits. Patients with pediatric ALL have a mean age of 4 years [36]. The 

majority of the other leukemia cases arise at a higher age as seen in figure 3.6. 
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Fig. 3.6 Incidence rates of leukemia in the U.S.A. 1992-2000. Pediatric ALL 

incidences are clearly visible as are the higher incidence rates for men. 
[Source: Surveillance, Epidemiology, and End Results (SEER) Program] 

 

 

3.3.2.2 Diagnosis 
 

Patients may only feel weaker than usual if they have chronic leukemia, or they may feel 

several symptoms equal to having a bad flu (fevers, headaches, pain in the bones and joints); 

if patients have acute leukemia, they might experience easy bleeding and bruising, swelling or 

discomfort in the abdomen and swollen lymph nodes, especially in the neck or armpits. 

The examination by the physician will include the analysis of several different parameters, for 

example: 

 

• swelling of the lymph nodes and the liver, 

• blood composition, 

• antibody status, 

• coagulation rate, 

• x-ray of the thorax, the hand (bone status). 

• results of biomolecular and staining techniques.  

 

The physician might want to take a biopsy, removing some bone marrow from the patient’s 

hipbone. A hematologist will examine the swab under the microscope, studying the 
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morphology and cytochemistry [37, 38]. Surface antigen expression methods might be used to 

make leukemia cells visible under the microscope (figure 3.7).  

 

 

Fig. 3.7 Microscope image of a blood film from a patient with acute lymphoblastic 
leukemia (ALL). Leukemia cells are immunostained with the CD10 antigens. 
Application of different antigens gives information on the lymphoid leukemia 
deriving from the T-cell or B-cell lineage. 

 

The number of chromosomes is also studied, looking for diploidity, hypodiploidity and 

hyperdiploidity. Different methods might be used to further classify the sample like 

cytogenetics, interphase-FISH [39] and 24-color-FISH [40, 41]. 

 

  

Fig. 3.8 Interphase fluorescence in situ hybridisation (FISH) using probes for BCR 
and ABL genes. Translocation t(9;22)[BCR-ABL] becomes visible. 

 Left: Normal cell showing two red dots (two normal copies of the BCR gene)  and two yellow dots 
(two normal copies of the ABL gene). Right: Cell from a child with a certain acute lymphoblastic 
leukemia with translocation of chromosomes 9 and 22 (gene switching position from one 
chromosome to the other) [42].  

 

In this way, prognostically  unfavorable kinds of leukemia e.g. with translocation t(4;11) and 

t(9;22) can be detected. The aberration t(9;22) is rarely present in children with leukemia 

(2.2%) in contrast with hyperploidity (25 %) whit a  more favorable prognosis.  
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These bimolecular methods have gained importance during the last couple of years, especially 

within the detection of minimal residual disease (MRD). Examinations in the future will 

include the utilization of microarrays for the molecular diagnostic to gain more information 

on the subtype of the diagnosed leukemia [43]. 

 

 

3.3.2.3 Treatment and the significance of molecular differences of ALL subtypes 
 

An overall long-term event-free survival can only be achieved by using risk-adapted therapy 

that involves tailoring the intensity of the treatment to each patient’s risk of relapse. Pediatric 

leukemia for example is a heterogeneous disease consisting of several genetically distinct 

leukemia subtypes. B-cell leukemias can contain translocations (swapping of chromosome 

parts between different chromosomes)  like  t(9;22)[BCR-ABL]  (swapping of parts between 

chromosome 9 and 22), t(1;19)[E2A-PBX1], t(23;21)[TEL-AML1], rearrangements in the 

MLL gene on chromosome 11 or a hyperdiploid karyotype (i.e. > 50 chromosomes). The 

different genetic lesions in these leukemia subtypes have a great impact on the efficacy of 

cytotoxic drugs. Leukemias with t(1;19)[E2A-PBX1] for example respond poorly to 

conventional antimetabolite-based treatments. They have to be treated more intensively, this 

way reaching cure rates of about 80% [44].  

It is  difficult, time consuming and costly to accurate assign of a patient to a certain subgroup. 

Many hospitals do not have the facilities to perform all the tests, especially those in poorer 

countries. Even if the facilities are available, highly qualified personnel with much experience 

has to be found to do the analysis in the best possible way. Enhancing the prognostic criteria 

with results from microarray analysis will not only reduce the importance of this person-

bound quality criteria but give the medical examiners information that previously was not 

available. Examples would be the detection of novel cancer subgroups that might have to be 

treated in a different way and the understanding of genetic pathways playing a role in a 

certain cancer type.  
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3.4 DNA Biosensors 

3.4.1 Definition and Overview 
 

Biosensors rely on the direct spatial coupling of a selective biological component with a 

physical transducer [45, 46]. The analyte recognition is made possible through the use of the 

biological component while the transducer converts the resulting chemical or physical 

changes into an electrical signal, thus strongly influencing the sensitivity of the biosensor. 

The biological component can be composed of enzymes, antibodies, nucleic acids, receptors, 

microorganisms or even living cells. The most important classes of transducers are optical, 

electrochemical, piezoelectric and acoustic devices. The special advantage of biosensors is  

the  reversible interaction with the analyte so that the biosensor can be regenerated and used 

multiple times.  Many biosensors also characterize themselves as being easy to use, having 

low acquisition and operational costs, being small and of reducing the time needed for a 

measurement. 

DNA-biosensors are based on the specific hybridization between complimentary DNA single 

strands and make it thus possible to detect this bonding reaction. Single stranded  probe-

oligonucleotides are immobilized on the surface of the transducer, hence reacting with the 

complimentary target-sequences in the solution to be analyzed. Optical transducers are 

favored, many based on the exploitation of the phenomenon of surface plasmon resonance 

(SPR) and the evanescent field [47]. Also used in nucleic acid analytics are electrochemical 

transducers,  implemented in potentiometric, voltametric and amperometric detection systems. 

The probe-oligonucleotides can be immobilized on many different kinds of electrode 

materials. Many different methods for the creation of electrical signals for the detection of  

hybridization events have been implemented. Markers are either electro-active ligands that 

intercalate between the created double stranded DNA [48], or enzymes (e.g. peroxidases), that 

catalyze the reaction of electro-active substrates (e.g. H2O2) [49].  Immobilization of inosin-

substituted probe-oligonucleotides makes a labeling obsolete due to the detection of the 

guanine-signal after hybridization [50, 51]. 

Measurements without prior labeling can be accomplished by a variety of optical DNA-

biosensor-systems and piezoelectric methods like the quartz crystal microbalance (QCM) 

which registers the mass-change after hybridization on the surface of the sensor through a 

frequency change. This method is used less often as it exhibits a deficit in sensitivity 

compared to methods using other types of transducers.  An overview on the subject of DNA-

biosensors is given by Bier and Fürste [52] as well as by  Vercoutere and Akeson [53]. 
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3.4.2 DNA Microarray Technology 

3.4.2.1 Overview 
 

Huge advances have been made in the sector of the DNA-chip-technology during the last ten 

years. It has become a leading technology in nucleic acid analysis alongside the polymerase 

chain reaction (PCR) [54]. DNA-chips, also known as DNA microarrays, are miniaturized 

slides with known probe-oligonucleotides immobilized in high density on their surface as a 

grid (array). The probes are hybridized with complimentary, fluorophore labeled target-DNA 

from a sample-solution. Unbound target molecules are then removed by means of different 

washing steps. The bound fluorophores can be detected using a fluorescence scanner. The 

acquired signal pattern contains the information which sequences where present in the 

sample-solution.  

Depending on the target application, DNA microarrays can either be used for gene expression 

analysis or SNP (single nucleotide polymorphism) detection [55, 56]. DNA microarrays used 

for the former task are not only able to detect an expressed gene but, they can also quantify 

the expression. 

 

3.4.2.2 Spotted microarrays 
 

Probe-oligonucleotides can be immobilized on the surface of a slide by being spotted onto it. 

The resulting spots of oligonucleotides are round with an area without immobilized 

oligonucleotides between spots. This area can be used to query the background signal. 

 
Fig. 3.9 Image of a spotted microarray created at the ICB. Colors denote fluorescence 

intensities. The area of low intensity between spots can be used to query the 
background. 
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A dual gene expression analysis is made possible by the use of two sample-solutions, each 

labeled with a different fluorophore and applied onto one and the same chip. Signals of each 

sample can be detected by scanning the array using a wavelength according to the 

fluorophores used. Ratios of gene expression signals between both samples can be calculated, 

making it possible to compare them. This approach facilitates the data-analysis, as both 

samples are measured in one experiment and the effect of e.g. different hybridization 

efficiencies are taken into account.  As the rate of incorporation of the fluorophores into the 

oligonucleotides also depends on the type of fluorophore used, the two signal channels in this 

kind of experiment therefore also have to be scaled to be comparable. Further details on data 

preprocessing are discussed in the chemometrics chapter. 

 
 
 

3.4.2.3 Microarrays created by photolithography 
 

Oligonucleotides on microarrays produced by Affymetrix are not immobilized through 

spotting but created on the surface of the chip itself by photolithography. The oligonucleotide 

spots created by this process are square and reside tightly packed, so that there might not even 

be an area between spots that can be used to query the background signal (e.g. U133 

microarrays). The used technology was adapted from the semiconductor industry allowing 

these arrays to hold over half a million cells. This very high density makes it possible to 

create so called whole genome chips which can screen samples for gene expressions of more 

than 22000 different genes, each one sampled by several cells. The oligonucleotide probe 

synthesis occurs in parallel, adding the different nucleotides to growing chains simultaneously. 

A length of about 15-25 nucleotides (15-25 - mer) is used in the common commercial chips. 
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Fig. 3.10 Photolithographic steps in the creation of oligonucleotides directly on the 

surface of a microarray slide [source: Affymetrix, Inc.]. 
 

 

3.4.2.4 Medical Applications of DNA-biosensors 
 

DNA-biosensor-systems have been developed over the last ten years and have only been used 

for research purposes so far. DNA-biosensors are now at the brink of becoming true medical 

diagnostic devices [57, 58].  

In the last couple of years, high-density chips have increasingly been used to analyze the 

gene-expressions of several thousand genes in biological samples simultaneously in one 

experiment. The U133a chip of Affymetrix for example, can screen over 22000 genes. 

Researchers were thus able to analyze genetic pathways and to identify the role of genes faster 

and easier. A disadvantage of these chips lies in their cost. Thus, it is not feasible to perform a 

high-throughput screening of many samples. They are intended to help researchers and were 

not developed for medical applications, largely because as the interpretation of the data 

gained can be very tedious and difficult. 

Following the high-density chips are the so called low-density chips. These chips can detect 

the gene-expressions of only a few genes, these having been selected a priori with the 
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Fig. 3.11 : AmpliChip  

intention of obtaining certain information about the sample. It is therefore necessary to use 

high-density chips to design the low-density ones. A low-density chip normally costs less and 

can be evaluated using procedures adapted to this specific chip, thus making it possible to be 

used by non-experts. 

One example is the DNA-biosensor AmpliChip CYP450 

developed by Roche Diagnostics in cooperation with Affymetrix 

[59] which could become a landmark test case.  It is referred to 

by Roche as the company’s first microarray for clinical 

applications. It detects variations in two genes that affect the rate 

at which many drugs used, to treat cardiovascular diseases are 

metabolized. The information gained by using this device could 

help physicians to select the right drugs for their patients. This 

kind of tailor-made therapy is seen as the future of medical care 

by most pharmaceutical companies. 

Roche started marketing the AmpliChip CYP450 as an analyte-specific reagent (ASR) and a 

class 1 medical device which does not necessitate clinical demonstrations of effectiveness and 

safety. The Food and Drug Administration (FDA; Rockville, MD, USA) believes that the 

device has the potential of being used improperly, thus endangering patients through 

misdiagnosis, and should therefore be classified differently. As the FDA believes that 

genomic data and technologies have increasing importance in pharmaceutical research, a 

novel regulation of microarray devices for diagnostic purposes is expected to be put into 

action in the very near future. 

 

3.4.3 Affymetrix Microarrays 
 

3.4.3.1 Physical construction 
 

Affymetrix microarrays are created by using a photolithography process (see figure 3.10). The 

created spots on these microarrays are square and called cells by Affymetrix. The U133a [60] 

microarrays contain 712 x 712 cells, each cell composed of about 6 x 6 pixels in the raw data 

provided by the microarray scanner.  
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A 

 

B 

 
 

Fig. 3.12 U133 microarray from Affymetrix (A) [source: Affymetrix Inc.] and upper left 
corner of the image created by scanning the chip (B). Colors code the 
fluorescence intensity. Some cells are used to provide alignment help 
(checkerboard pattern at the boarder) and give information on the type of 
chip (GeneChip U133). 

 

 

The U133a microarray enables a researcher to quantify the gene expressions of 22285 genes. 

The gene expression of a certain gene is queried by several cells. These cells are called a 

probeset as they contain the probe oligonucleotides designed to hybridize with one certain 

gene. Most probesets are composed of 22 cells, 11 perfect match (PM) cells, and 11 mismatch 

(MM) cells [61].  

 

 
Fig. 3.13 Configuration of a probeset containing several cells. One probeset is  
  designed to query the gene expression of one certain gene. 
 

A perfect match cell is thus always paired with a mismatch cell. The oligonucleotides used in 

such a MM cell are the same as those in the PM cell, except for one mismatch in the center of 

the sequence. The mismatch base is the complimentary base of the corresponding Watson-

Cricks basepair (e.g. A interchanged with T, G interchanged with C).  Sequences in different 

probepairs differ from each other, designed to match the sequence of the target gene at 

different positions.  

Probeset 

Probepair 

Perfect Match Cell 
 

Mismatch Cell 
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Both cells of one probepair are always located besides each other on the microarray, different 

probepairs of one probeset are randomly spread throughout the chip to minimize the risk of 

loss of a complete probeset due to artifacts (see x- and y-pos in table 3.1). 

 

Tab. 3.1 Perfect match probe sequences for the gene 212019_at (Affymetrix 
identification code). 

 
  Name  X-pos Y-pos  Probesequence 

 212019_at 138 131 AACACTCAGCTTTTCGCAACATAAT 

 212019_at 124 179   CACTCAGCTTTTCGCAACATAATCC 

 212019_at 4 187 CAGCTTTTCGCAACATAATCCCAGC 

 212019_at 18 319 GCTTTTCGCAACATAATCCCAGCAC 

 212019_at 581 211 CTTTTCGCAACATAATCCCAGCACT 

 212019_at 426 333 GCACTTTGGAACGCTGGGTGGATTG 

 212019_at 98 669 TTTGGAACGCTGGGTGGATTGCTTG 

 212019_at 668 589 TGCAATGGGCCATGATCACGATCCT 

 212019_at 366 167 CAATGGGCCATGATCACGATCCTGC 

 212019_at 231 155 AATGGGCCATGATCACGATCCTGCA 

 212019_at 206 131 AACAGAGAGAGACAGTCCCTGGCCC 

 
 Notice the sliding character of the sequence selections. X- and Y-pos 

denote the position of the cell on the microarray. Mismatch sequences are 
the same as the PM sequences except for one mismatch in the exact center 
of the sequence. Corresponding MM cells have an Y-position increased 
by one.  

 

 

The Affymetrix rational for using PM and MM cells is as follows: the role of a perfect match 

cell is to provide the signal of the hybridization reaction of the probe oligonucleotides with 

the matching target oligonucleotides from the gene the sequence was designed for plus any 

additional signals from cross hybridizations with similar target oligonucleotides and 

background; the mismatch cell in contrast provides the signal of cross hybridizations and 

background only, therefore making it possible to calculate the signal of the selective 

hybridization.  

3.4.3.2 Calculation of gene expressions 
 

An experiment using Affymetrix microarrays yields many signals corresponding to all the 

cells (e.g. 506944 for the U133A chip).  These signals have to be translated into gene 

expression values. The procedure is as follows: 



Method development                                                                                                            21

 

1. background correction of the entire microarray, 

2. application of a gene expression summary algorithm to gain a single value for each 

probeset, 

3. normalization of signals from different microarrays of one study. 

 

The MicroArray Suit (MAS) calculates probeset values using PM and MM cells of each 

probeset. Researchers have discussed the necessity of using MM cells, arguing that these cells 

may also detect a signal corresponding to specific binding  as well as non-specific binding and 

should therefore be omitted [62-64]. New gene expression summary algorithms have been 

created, achieving good reproducibility in signal calculation without using the MM cells (e.g. 

RMA [65, 66]). Some of these methods have also been used in chapter four. 

Different background correction and gene expression summary algorithms are discussed in 

the chemometrics chapter.  

 

 

3.5 Chemometrics 
 

3.5.1 Introduction 
 

Chemometrics is the application of mathematical, statistical, graphical or symbolic methods 

to design or select optimal measurement procedures and experiments and to maximize the 

information which can be extracted from data. Chemometric procedures can prove useful at 

any stage in an analysis, from the first conception of an experiment, to the extraction of all 

information [67-69].  

Pattern recognition approaches are used to identify similarities and regularities present in data. 

The most frequently used techniques have traditionally been those in the area of cluster 

analysis and classification. These methods help extract information out of data. Classification 

methods perform pattern matching and comparisons, helping to associate an unknown sample 

to known clusters of data. One of the primary goals of chemometrics is to reduce the number 

of dimensions needed to accurately portray the characteristics of a data set. A wide variety of 

methods are available to achieve this, either by selecting an important subset of the original 

variables (feature selection), or by creating a set of new composite variables, which are more 
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efficient than the original variables in describing the data (feature reduction). The creation of 

new variables can be approached in several ways; two of these are projection (e.g. principal 

component analysis) and mapping. 

It is critical for the data to be of good quality and to have been gathered using informative 

samples. Chemometrics should therefore be applied beforehand to design the experiment or 

measurement process. One important application is the analysis of how many experiments 

will be needed to obtain information that is statistically significant, and to optimize 

experimental parameters to improve the sensitivity and precision of analysis (e.g. simplex 

algorithm). Application fields include calibration techniques, resolution enhancement 

techniques (e.g. Fourier transformation, deconvolution), signal processing (e.g. dealing with 

noise), modelling and parameter estimation.  Data verification can be done by learning about 

the characteristics of the data like means, standard deviations, ranges, modes of distribution 

and other statistical measures. Process parameters for quality control can be estimated using 

this knowledge and possible outliers detected. 

 

3.5.2 The role of chemometrics in microarray experiments 
 

The use of microarray experiments has become popular due to its advantages for large-scale 

studies of gene expression and mutation analysis. This technology makes it possible to study 

complex systems in less time and to derive comprehensive information. Microarrays in 

combination with chemometrics and bioinformatics make it possible to tell, for instance, 

which genes behave differently in cancerous cells compared to healthy cells of the same tissue 

type. Researchers can hereby learn more about the processes in the cell and about factors that 

are involved in turning a healthy cell into a cancerous one. Moreover, the technique makes it 

possible to classify the cancer more precisely and to make a better decision on the treatment 

that should be applied.  

Many different steps are involved in the analysis of microarray data. At the beginning the 

relative gene expression level has to be obtained. Not only is noise inherent to the measured 

data, systematic errors can also be added during measurement and analysis alike. Errors must 

be detected and corrected before any downstream analysis, such as identification of 

differentially expressed genes and sample classification, can be performed [70]. The 

identification of noise components as well as systematic errors and artifacts is one major task 

of chemometrics. The data has to be pre-processed so that a comparison of different 

experiments becomes possible. The comparison itself also includes chemometric methods, for 
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example the application of t-tests, cluster analysis, principal component analysis and a whole 

range of other statistical calculations. Chemometrics provides the building blocks for the 

entire processing chain, starting from the processing of raw data up to the creation of models 

for the classification of samples and diagnosis. 

 

 
Fig. 3.14 Chemometrics provides means to process data and to create models for 

diagnosis. 
 

Different methods are explained in the chemometrics chapter, including basic techniques like 

PCA, clustering and cross-validation. Furthermore, this chapter includes explanations on 

different gene expression summary techniques that have been used to gain gene expression 

values for each probeset (see the Affymetrix technology chapter) as well as gene selection 

techniques that have been applied in order to select genes used for the classification of 

samples of different cancer subtypes. One major task of bioinformatics is to provide means 

for storing data reliably so that easy and fast access is possible. A databank system interfacing 

with Matlab was created for project management which is also explained in this chapter. 

Details on the application of methods for the analysis of a leukemia dataset can be found in 

chapter five. 

 

3.5.3 Pre-processing  
 
 
A common pre-processing step consists of mean centring, i.e. subtracting the mean over all 
samples for each variable: 
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A centred data cloud lies around the origin of the coordinate system (figure 3.15 II). 
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If the absolute values of the measured data are important, then centralisation should not be 

performed [71]. 

 

 

Fig. 3.15  (I) Raw data,    (II) Centered data,    (III) Standardised data. 

 

The  covariance, variance and standard deviation can easily be calculated by using two 

centred vectors: 
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One important aspect of pre-processing data is its standardisation.  
 

Standardisation: 
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The influence of arbitrary units (e.g. 1000m or 1 km) is eliminated through standardisation 

(figure 3.15 III ); all axis have the same scale. 

 
 

3.5.4 Cluster analysis – hierarchical clustering 
 

Cluster analysis can be defined as the unsupervised classification of similar objects into 

groups of which members and assignments are unknown a priori. The shape of a cluster can 

be characterised by its cluster-specific means, variance, and covariances that also have a 

geometrical interpretation [72, 73]. Objects in one subset will have similar properties.  The 

clustering algorithm defines by what kind of similarity measure objects are clustered together. 

Clustering is done by using an algorithm containing a distance calculation (Euclidean, 
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cityblock distance and other), and by using an updating part. Both parts can vary, depending 

on the used algorithm. The result of a cluster analysis can be displayed in a dendrogram. 
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Fig. 3.16  Exemplary dendrogram using Ward’s method on 13 objects. 
 
 
The dendrogram shows the distance between objects (index value where branches meet). 

Objects that lie near to each other (similarity measure) are connected through a branch at 

small index value. The used algorithm picks two objects that lie near to each other, connects 

them and continues working up to higher index values.  

It can be formulated as follows: 

 

1. Choose a distance measure. 

2. Calculate the distance matrix D for the dataset. 

3. Identify the smallest value dij in D (other than in the diagonal). 

4. Merge objects i and j. The so created new object is regarded as one new single entity. 

5. Update the distance between all other objects in D and the new entity. 

6. Return to number two and repeat until all objects are interconnected. 

 

The used Ward’s method calculates the distance between a new entity [AB], created through 

the merger of objects A and B, and an object C with the formula 
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It takes the number of samples in each of the united groups into account when updating the 

distance matrix, thus creating the new cluster center nearer to the group with more objects 

[74]. 

 

3.5.5 Principal component analysis 
 

3.5.5.1 Introduction 
 

Principal component analysis (PCA) seeks to maximize the variance information present in a 

data set in as few new dimensions as possible [75, 76]. Graphically, principal components 

analysis rotates the axes of the data to conform to axes which contain a maximum amount of 

variance information; this can be thought of as looking at the data from a different perspective 

in hyperspace. Principal component analysis is one of the most important multivariate data 

analysis techniques as it allows a good visualisation of underlying structures present in the 

data. It also allows for a dimensionality reduction, which can be used beneficially in 

subsequent tasks (classification, regression, and cluster analysis).  Figure 3.17 shows a plot of 

30 objects for which variables x1 and x2 were measured.  

 

Fig. 3.17  Plot of 30 objects with two variables (x1, x2) and first principal component y. 
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The axis y represents the first principal component (PC1). Of all one-dimensional subspaces 

(lines), this one covers best the variation of the data. Further principal components can be 

added, each successive component being orthogonal to the prior ones and covering as much as 

possible of the remaining variance. In figure 3.17 a second PC could be added thus reaching 

the maximal dimensionality possible for this data. Through the omission of insignificant low 

variance principal components a noise reduction is achieved. 

Principal components are linear combinations, i.e. a weighted sum of the original p measured 

variables [77]. If X is the data with n objects and p≤n variables, then a r ≤ p -dimensional 

linear subspace is looked for that covers the variance of the data the most. In order to achieve  

this, the eigenvectors and the eigenvalues of the covariance matrix of the data have to be 

determined. Normally, data will be pre-processed, undergoing centring and standardisation.  

 

3.5.5.2 Eigenvalues, eigenvectors 
 

Taken  X is a (n,n) symmetric matrix, then a v and λ exist so that 

 
X v = λ v  (1) 

 

λ are called eigenvalues, v eigenvectors. If (1) is written as Xv = λInv, the equivalent 

formulation (X - λIn) v = 0 is reached. In short: Av = 0 with A = X - λIn which is a linear 

equation. If A is not regular, then the only solution would be v = 0: 

  
 Ax = b ⇒ A-1Ax = A-1b ⇒ Inx = A-1b ⇒ x = A-1b ; 0 = A-1 0 
 
The null-vector is not seen as an eigenvector and is discarded. There is not only one 

eigenvector corresponding to an eigenvalue; they span a subspace (normally a line) because if 

a vector v solves equation (1), then also multiples αv that do so, too: 

 
X(αv) = αXv =αλv = λ (αv). 

 
Not every matrix has eigenvectors / eigenvalues, though symmetric (n,n)-matrices like 

covariance-, correlation- and distance-matrices that are often used in data-analysis always 

have n, not necessarily different, eigenvalues / eigenvectors forming  n „Eigen-pairs“ (λi , vi) 

that solve the equation: 

 
Xvi = λvi          
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It can also be written as a matrix-product, with the eigenvectors as columns of an eigenvector-

matrix and the eigenvalues constituting the diagonal of an eigenvalue-matrix: 
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or, in short:  
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The λi  are normally sorted to be in decreasing order λ1 ≥ λ2 ≥ ... ≥ λn. 

Different eigenvectors of symmetric matrices are orthogonal to each other. 

 

 

3.5.5.3 Calculations in Principal Component Analysis 
 

After pre-processing the (n, p)-data-matrix X, the (n-1)-1XTX-Matrix is calculated. If X were 

centred, then this newly calculated matrix would be the covariance matrix. If X were also 

standardised, it would be the correlation matrix. The main step in principal component 

analysis is the calculation of the p eigenvalues and eigenvectors of this matrix. The 

components of the eigenvectors contain the weights of the original variables needed for each 

principal component while the eigenvalues contain the variance it covers. Different 

algorithms can be used for the calculation of the eigenvalues / vectors [76]. 

 

 

 

3.5.6 Cross Validation 
 

The number of training observations usually is much larger than the number of features in a 

standard discriminant analysis. In microarray studies however,  the number of tissue samples 

measured is typically far smaller than the number of gene-expression detected. It becomes 

necessary to use cross validation to verify the credibility of a model, as the number of 

available samples is constricted. In cross validation samples are left out to create a training 

dataset. A model is created by using this subset and applied to the data points that were left 
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out. Several different methods for cross validation are available. In the leave-one-out (LOO) 

method each point of the dataset is left out successively to create the model.  Several data 

points can be left out, either in a Venetian-blind-, a block- or random-order-pattern. Cross 

validation prevents overfitting a created model to the dataset used, as it is validated using 

samples unknown to the model because they have been left out. It has to be taken into account 

that using all samples to select those features (genes) best suited for the construction of the 

model will introduce a prediction error. This selection bias can be evaded if the gene selection 

is performed in the cross validation process [78].  

 

3.5.7 Support Vector Machines (SVM) 
 

In a binary linear classification problem, a linear hyperplane which divides space into two 

regions corresponding to the two classes is looked for [79-81]. The class of an object i is 

defined by yi being +1 or -1.  The optimal hyperplane is orthogonal to the shortest line 

connecting the convex hulls of the two classes (see figure 3.18) and intersects it half-way 

between the two classes.  

 

 

 

w

 
Fig. 3.18 Binary linear classification using SVM. 

Diamonds are separated from circles by a hyperplane (solid line). Objects are classified using the 
weight vector w and the threshold b satisfying (w*x)+b ≥ 0 for all diamonds and (w*x)+b<0 for all 
circles.  

 

(w*x)+b < 0

(w*x)+b > 0

(w*x)+b = 0

yi = +1 

yi = -1 
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The hyperplane is defined by the weight vector w and the threshold b. These are defined so 

that   

 (w*x)+b ≥ 0 for all yi = +1, 

 (w*x)+b < 0 for all yi = -1. 

 

If w and b are scaled so that the distance between points closest to the hyperplane measures 

1/||w|| then all points with yi [ (w*xi)+b ] = 1 are called support vectors, all other objects 

having  yi [ (w*xi)+b ] > 1. The broadness of the separating region is then 2/||w||.  The aim is 

to maximize the minimal distance of the training data to the separating hyperplane [82, 83]. 

As data might not be perfectly separable, such a separating hyperplane may not always exist. 

It is thus necessary to use methods that deal with misclassification. A slack variable ξi  is 

introduced so that  

 

 (w*x)+b ≥ +1-ξi  for all yi = +1, 

 (w*x)+b ≤ -1+ξi for all yi = -1. 

   ξi≥0. 

 

There are three possibilities: 

 

 ξi = 0 : xi was classified correctly and lies at the border or outside of the 

separating region. 

 0<ξi<1 : xi was classified correctly but lies inside of the separating region. 

 ξi ≥ 1 : xi was classified incorrectly. 

 

Note that all samples with ξi ≠ 0 are considered as margin errors. 

The aim is to reduce the rate of misclassification and to maximize the separating region. The 

new optimization of  yi [ (w*xi)+b ]  ≥ 1-ξi  is 
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The trade-off parameter C penalizes margin errors for the training data. It can be optimized 

e.g. through cross-validation techniques. 
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3.5.8 Gene selection Methods 
 
 

3.5.8.1 Gene shaving 
 

Gene shaving extracts coherent, typically small clusters of genes that vary as much as possible 

across samples [84]. The shaving procedure is as follows (see also figure 3.19): 

 

1. Use the entire expression matrix X, row centred to have zero mean. 

2. Calculate the first principal component. 

3. Discard a certain percentage of genes with the smallest absolute inner-product with the 

principal component. 

4. Repeat steps two and three until only one gene remains. A nested sequence of clusters  

SN § Sk § Sk1 § Sk2 § S1 where Sk denotes a cluster of k genes is created. The optimal 

cluster size k̂ is calculated using the gap statistic described in [84]. 

5. Orthogonalize each row of X with respect to 
kSx
ˆ
, the average gene in k

S ˆ  to promote the 

discovery of  different (uncorrelated) clusters in further iterations of the procedure. 

6. Steps 1-5 are repeated with the orthogonalized data to find the second optimal cluster. 

This process is continued until a maximum of M clusters is found. The value of M is 

chosen a priori. 
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Fig. 3.19 Schematic of the gene shaving process (source: [84] ). 

 

3.5.8.2 Significance analysis of microarrays (SAM) 
 

Coherent patterns of gene expression can be found by using cluster analysis. This method 

does not provide much information on the statistical significance of the selection of genes. 

Conventional t-tests are often used  but have the drawback that, applied to microarray data 

with thousands of genes, several genes will be identified by chance even when using p=0.01. 

This led to the development of SAM by Virginia Goss Tusher, Robert Tibshirani and Gilbert 

Chu [85]. Genes with statistically significant changes in expression are selected with SAM by 

assimilation of a set of gene-specific t-tests. A score is assigned to each gene based on the 

change in gene expression relative to the standard deviation of repeated measurements for that 

gene. A gene is rated as potentially significant if its score is higher than a threshold. The false 

discovery rate is identified by analyzing permutations of the measurements. Although the 

signal to noise ratio decreases with decreasing gene expression, the fluctuations for a specific 
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level of expressions are gene specific. These fluctuations are assessed with the relative 

difference d(i): 

0)(
)()(

)(
sis

ixix
id BA

+
−

=  

with )(ixA  and )(ixB  defined as the average levels of expression for gene (i) in groups A and 

B respectively, and s(i) defined as the standard deviation of repeated expression 

measurements.  To ensure that the variance of d(i) is independent of gene expression, a small 

positive constant s0 is added to the denominator (see [85] page 5117). 

Significant changes in gene expression are found by ranking genes by the magnitude of their 

d(i) values, so that d(1)>d(2)>…>d(i). Relative differences dp(i) are also calculated for 

permutations of measurements balanced for different subgroups, and genes again ranked in 

such way  that dp(1)>dp(2)>…>dp(i). The expected relative difference dE(i) is then defined as 

the average over all Np balanced permutations: ∑= p pE Npidid /)()( . Changes in expression 

which might be significant can be identified using a scatter plot of the observed relative 

difference d(i) vs. the expected relative difference dE(i) as seen in figure 3.20. 

 

 

 
Fig. 3.20 Scatter plot of the observed relative difference d(i) vs. the expected relative 

difference dE(i). Genes with significant changes in expression are highlighted 
as gray squares. The threshold (dashed lines) was set to a fold change of three. 
TheE2A-PBX1 and T-ALL sample subgroups from the leukemia dataset [86] 
were compared. 
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3.5.8.3  Predication Analysis of Microarrays (PAM) 
 

Class prediction is based on an enhancement of the simple nearest prototype (centroid) 

classifier which works as follows: for each class a training-set nearest-centroid (average 

expression of each gene in the subgroup) is computed and the overall gene expression 

centroid subtracted. The resulting values are differences from the overall centroid. The 

squared distance from the gene expression profile of every test sample to each of the class 

centroids is computed. The predicted class is the one whose centroid is closest to the 

expression profile of the test sample.  This method uses all genes in the dataset. A 

modification of this nearest-centroid method, called nearest shrunken centroid was developed 

by Robert Tibshirani, Trevor Hastie, Balasubramanian  Narasimhan and Gilbert Chu, which 

only uses a subset of the genes [87, 88].   

Let xij be the expression for genes i=1,2, … p and samples j= 1, 2, …. n. Classes are 1, 2, … 

K and Ck are indices of the nk samples in class k. The ith component of the centroid for class k 

is ∑ ∈
=

kCj kijik nxx / , the mean expression value in class k for gene i;  the ith component of 

the overall centroid is ∑ =
=

n

j iji nxx
1

/ [87]. The class centroids are shrunken towards the 

overall centroids after having been standardized by the within-class standard deviation for 

each gene. Let 

   
)( oik

iik
ik ssm

xx
d

+∗
−

=  

 
with si the pooled within-class standard deviation for gene i , nnm kk /1/1 +=  and s0 be a 

positive constant. The method shrinks each dik toward zero, giving d’ik and yielding shrunken 

centroids '
0

' )( ikikiik dssmxx ++= .  Each dik is reduced by an amount ∆ in absolute value and 

is set to zero if its absolute value is less than zero. It is defined by  +∆−= ))((sign'
ikikik ddd  

with + meaning positive part (t+ = t if t>0 and zero otherwise). The threshold parameter ∆ is 

selected through cross validation. 
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Fig. 3.21 Shrunken differences d’ik for 40 genes having at least one nonzero difference. 

These genes are the PAM selection for the discrimination of E2A-BPX1 and 
T-ALL samples of the leukemia dataset [86]. 

 

 

 

3.5.8.4 Fisher’s Ratio  
 

Let { }11
1 1
,..., lxx=1X  and { }22

1 2
,..., lxx=2X  be samples from two different classes. Fisher’s 

linear discriminant is given by the weight vector w which maximizes 
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The rational behind maximizing J(w) is to find a direction which maximizes the projected 

class means (the nominator) while minimizing the class variance in this direction (the 

denominator). The weight vector w can thus be used to select those variables contributing the 

most in separating the two classes, making it possible to choose a  subset of variables best 

suited for class discrimination. 

 
 

3.5.9 Gene expression summary algorithms 
 

3.5.9.1 Affymetrix MicroArraySuit (MAS) 5.0 algorithm 
 

A signal is calculated by subtraction of an ideal mismatch IM value from the PM value. This 

IM value is a corrected MM value to assure that the resulting difference is larger than zero. 

The calculated signals after subtraction for each probepair are used to calculate the gene 

expression value for that probeset. This is done by means of a biweight estimator to provide a 

robust mean:  signal = Tukey Biweight. The exact algorithm is described in the Statistical 

Algorithm Description Document [89], page 3.  Further on, a detection call is calculated, 

giving the information of whether a transcript of a particular gene was deemed present or 

absent in an experiment. First, a discrimination score Ri, a measurement of the difference 

between the PM and MM intensities, is calculated for the ith probe pair: 

 

ii

ii
i MMPM

MMPM
R

+
−

=  

 

If the median( Ri ) is greater than a threshold τ (default τ = 0.015), the hypothesis that PM and 

MM are equally hybridizing to the sample can be rejected. Wilcoxon’s rank test is used to 

calculate a significance or p-value. This p-value is then compared with preset significance 

levels to make a call. 

 

0 0.02 0.04 0.06 0.08 0.1

Present Absent Marginal 

 
 
Fig. 3.22 Comparison of the calculated p-value with preset margins to make a call.  
 

p-value 
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3.5.9.2 MAS, perfect match only 
 

The same steps are used as in the MAS approach, except for the subtraction of an IM value 

from the PM one. MM cells are thus not used at all. 

 

 

3.5.9.3 Li – Wong  Model 
 

For each probeset n, Li and Wong’s measure [90, 91] is defined as the maximum likelihood 

estimate of the Θi, i = 1,...,I  obtained from fitting 

 

 PMij – MMij = Θi Φj  + εij  

 

with   j number of  probepair, 

 i number of sample, 

 Φj  representing probe-specific affinities and 

 εij assumed to be independent normally distributed errors. 

 

The estimation procedure includes rules for outlier removal. 

 

 

3.5.9.4 RMA  Model 
 

The robust mutli-array average (RMA) is a summary measure of background-adjusted, 

normalized and log-transformed PM values. 

 

For probeset n, fit a linear additive model 

 

 ijjiij baBGPM ε++=− )(log2  

 

with  i: label of chip, 

 j: label of probe, 

 BG: background 
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 εij: errors.  

 ai:  gives the expression for probe n on array i.  

 

RMA estimates ai for chip i using a robust method, such as median polish (fit iteratively, 

successively romoving row and column medians, and accumulating the terms, until the 

process stabilizes). 

 

 

 

4 Method development 
 

4.1 Databases 

4.1.1 Introduction 
 

Storing data in file systems is accompanied by several disadvantages: 

 

• Possible data redundancy and inconsistency. Data is often stored in many different file 

formats and data structures, especially if several different persons are working on the 

same project. 

• Concurrent access of the data is made difficult as new routines to access the 

information might  be needed for each new task.  Users might not be able to access or 

store files as these are used by others at the same time. 

• Supplementing certain information is difficult as many different files (with different 

formats) might have to be changed. 

• Integrity problems. The meaning of the data and vocabulary used in one file (created 

by a certain scientist) might not be used the same way by someone else creating a 

different file [92].    

 

 

In databases, data is stored as tables. The database management system (DBMS) interacts 

with these tables on the behalf of the researcher, making it possible to sort, search and fetch 

subsets of the data in the tables.  The strength of DBMSs: 
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• Provide fast access to selected parts of large databases. 

• Powerful ways to summarize and cross-link information in databases. 

• Concurrent access from multiple users running on multiple hosts while enforcing 

security on access to specific data. 

• Ability to act as a server to a wide range of clients,  independent of their geographical 

location. 

 

The user applies a Data Manipulation Language (DML) to interact with the database.  The 

most widely used nonprocedural language is the Structures Query Language (SQL). 

For a nonprocedural language the user specifies what data is required without specifying how 

to get that data. 

 

4.1.2 Microarray Data Management System 
  

Microarray data obtained in large studies can reach a size of several gigabytes. The data from 

the microarray measurement itself is usually stored on file servers so that they can be easily 

accessed by different users. In addition, the following corresponding clinical information for 

each sample has to be stored: 

 

• patient age, 

• patient prognosis, 

• classification of illness (e.g. ALL-lymphoma), 

• illness information (e.g. tumor stage), 

• sample processing information, 

• name of technician making the measurement, 

• data gained by other methods (e.g. pathological information gained by 

immunostaining, cytogenetics), 

• filenames of  the raw data, preprocessed data etc., 

• data gained in the microarray-data processing. 

 

 

The Microarray Data Management System (MDMS) was designed to provide easy access to 

the data without requiring the user to know the exact name of the data files or their  location 



Method development                                                                                                            40

on the fileserver.  Interaction in Matlab® [78] with the data was achieved using MySQL [72]. 

It is available under the GNU General Public License (GPL) and was in use more than four 

million times world wide by the end of the year 2003. The used MySQL interface in Matlab 

was written by Robert Almgren from the University of Toronto [93].  The MDMS structure is 

depicted in figure 4.1. 

 

 
 
Fig. 4.1  Structure of the Microarray Data Management System. 
 
 
Routines were written in Matlab to easily process the data, starting from the raw data files. 

Different processing steps could be applied to certain files by executing routines provided 

with specific database selection criteria.  

The Minimum Information About a Microarray Experiment (MIAME) project [94], approved 

by the Microarray Gene Expression Database group (MGED) in a Stanford University 

meeting in 2001, deals with the concept of a clear and structured storage of information. A 

similar mode of operation has been adopted by the macromolecular structure community (see, 

for example http://msd.ebi.ac.uk) where most journals require submission of a well-defined 

minimum of raw data associated with publications. The corner stones of MIAME are: 
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1. The recorded information about each experiment should be sufficient to interpret the 

experiment and should be detailed enough to enable comparisons to similar 

experiments.  

2. The information should be structured in a way that enables useful querying as well as 

automated data analysis and mining. 

 

The developed microarray data management system has been developed in concordance with 

these corner stones. 

 

 

4.2 Analysis of the raw data provided by the scanner 
 

A part of a raw microarray image provided by the scanner is seen if figure 4.2. The images 

often are skewed, i.e. the borders of the actual array in the center of the image form a 

parallelogram. One example of the left, vertical array boundary is shown in figure 4.2. The 

shift in position of the boundary to the left measures 5 pixels in this example. 

 
Fig. 4.2 Part of the image of a U133A chip provided by the scanner 
 

 The left border of the microarray is shown. The microarray itself is positioned in the center of the 
chip (and thus in the center of the image). Many cells merge together in this view, creating the 
illusion of there only being a few cells along the height of the image. The image is skewed, the 
microarray borders do  not form a rectangle. 
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The exact position of a cell in the microarray does not coincide with discrete pixel 

coordinates. The exact coordinates of all the features have to be linearly interpolated using the 

determined pixel-level coordinates of the corner features. If the coordinates of the corner 

features are determined incorrectly, erroneous cell values will be extracted from the image 

[90, 95]. A tool for the exact localization of the corner feature coordinates was developed in 

this work. The localization of the microarray boarders is possible by analysis of the first 

deviation of horizontal and vertical intensity profiles. An accurate detection of the position of 

the corner features is done within ±1 pixel. The interpolation leads to a certain amount of 

signal overlay in the border values of neighboring features. Further, it should be noted that the 

lithographic process used for the synthesis of the oligonucleotides also infers uncertainties 

concerning the exact sequence of the oligonucleotides at the border of each feature. As diffuse 

light shines onto the border of a neighboring feature that lies besides a cell that is illuminated, 

sequences might be created in this region which have not been explicitly designed.  

 

 

 

 

 
 
Fig. 4.3 Photolithographic process in which oligonucleotides are created on the 

surface of the microarray. 
  

Oligonucleotides are created on the surface nucleotide after nucleotide: light eliminates protecting 
groups at the end of the oligonucleotides, making it possible to extend those molecules with 
another nucleotide. As light also partially shines onto neighboring cells, oligonucleotides will be 
created in the border regions which have not been explicitly designed.  

 

 

 

 

Base 1 
 

Base 2 
 

Base 1+2 

Unprotection After addition of the next nucleotide. Mask
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This means that the border values of each feature must not be used to calculate the overall 

signal of a cell. It is therefore necessary to discard the outer perimeter of each feature; an 

average of 16-24 pixels from the center are used (from a total of ~36 pixel).  The values of the 

remaining pixels also differ from one another. As can be seen in figure 4.4, pixel intensity 

value are not homogenous.  

 
Fig. 4.4 Outtake of a raw U133A microarray image provided by the scanner 

Each cell has a dimension of about 6x6 pixels; pixel intensities in a cell deviate from one another. 
Z-axis values denote fluorescence intensities. 

 

The signals of these central pixels can deviate up to 30% from the mean fluorescence intensity 

of that feature (figure 4.5). 
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Fig. 4.5 Boxplot of standard deviations of signal intensities in features from three 

different measurements.  
 

Each feature consists of  16-24 pixels. The signal intensities of these pixels can deviate up to 30% 
in one feature. Measurements of three different studies were analyzed: (1) CD4 lymphocytes from 
peripheral blood dataset [96] , (2) Ross pediatric leukemia dataset [86], (3) proprietary dataset 
[97].  

 

The primary source of these in-cell signal deviations is thought to be the different 

hybridization efficiencies at different locations [98-100] . Heterogeneous hybridization can be 

improved by creating conditions enhancing the surface-near diffusion. The surface density of 

the probes also influences the ability of the immobilized probes to capture solution-phase 

targets. Bondage kinetics is lower in regions with high probe density, probably due to 

variations in target capture capabilities [98-100]. The surface density may also depend on the 

spatial positioning of the oligonucleotide (e.g. upright or parallel to the surface) and also on 

its geometrical conformation (e.g. linear or creating loops). 

 

4.3 Artifact detection 
 

Features on a U133 microarray from Affymetrix are of the size of 18 µm. With over half a 

million features packed side by side in one microarray, the detection of artifacts becomes 

essential. Artifacts can appear in very different shapes and sizes. The microarray analysis 

software of Affymetrix provides a tool for the user to mask cells per hand. As a detection of 

artifacts in raw signal images is often impossible and a selection by hand also likely to be 

imperfect due to the exhaustiveness of checking an area of 712 x 712 cells, an automatic 
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scheme for artifact detection was developed. This algorithm uses multiple microarrays to 

create a median-chip-image and a thresholding scheme to detect artifacts which become 

detectable as deviations from the median signal. 

 

4.3.1 Medianchip images for artifact detection. 
 

It is possible to detect artifacts reliably using several microarray chips. First a medianchip is 

created, by calculating the median of the signal of same cells over all preprocessed chips. The 

preprocessing takes account of background and scaling differences. 

 

 
Fig 4.6 Creation of a medianchip from several microarrays. The median of the signal 

of same cells over all preprocessed chips is calculated. 
 

 

This medianchip is used to calculate a ratiochip by dividing the signal of each cell from  a 

specific microarray by the value of the same cell on the medianchip and taking the logarithm. 

As cells with the same probe oligonucleotides are compared, only those cells which are 

differentially expressed should show a great deviation from the median. The rest of the cell 

values on the ratiochip should be more or less the same. The thresholding algorithm was 

tuned so that a small group of neighboring, differentially expressed cells is not masked but 

only larger areas of anomalies are, as seen in figure 4.7. 

 

 

Median
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A1 A2 

 
 

B1 B2 

 

Fig. 4.7 Artifacts on U133a microarrays seen in a raw image (A1) and ratio images. 
A1: raw image as taken by the CCD camera; A2 – B2: good recognition of artifacts in ratio images. 
Ratio images show log(cell signal/median signal). The horizontal pattern in B1 is a product of 
downscaling the image for presentation and not present in the data. Different colors denote different 
fluorescence signal values. 

 
 
 
 
 
 

4.3.2 Artifact detection algorithm 
 

A lowpass filter is applied on the ratioimage, eliminating all small features that might 

represent differentially expressed cells [101-103]. The lowpass filter was implemented using a 

moving window 9 by 9 pixel median filter. Its size was optimized to smooth out differentially 

expressed cells but not known artifacts. This lowpass image (see figure 4.8 B) is then 

converted into a mask image by thresholding (figure 4.8 C). The level of the threshold is 

calculated using a larger area of the image, thus gaining information of the overall signal in 

this image. This is done with another, larger moving window used to calculate the median 
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signal in that area. The chosen threshold is then chosen relative to this signal level, thus taking 

account of signal slopes etc. 
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Fig. 4.8 Process of masking. Left: ratioimage; Center: thresholded image using a 

lowpass filter; Right: masked areas. Shown measurement is JD-ALD416, E2A-
PBX1 subgroup of the Ross pediatric leukemia dataset [86]. It is further 
analysed in the leukemia data analysis chapter. 

 
 

The MAS software of Affymetrix also masks some cells using pixel-statistics, i.e. pixel 

information  for a cell in the raw images provided by the scanner [95].  
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Fig. 4.9 Position of cells masked by the MAS software in the measurement shown in 
figure 4.8A . As the masking is done using the pixel statistic of each cell, larger 
artifacts are neither recognized nor masked. 
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The larger artifacts are not recognized by this MAS masking algorithm. In this sample, 23500 

cells where masked by the newly developed thresholding algorithm. 45% of all probesets had 

at least one probepair in the masked areas, 80% of these having one probepair, 20% having 

two probepairs in this region. The distributions of cells masked by the MAS software seemed 

to be random in all analyzed studies (e.g. [86, 96, 97, 104, 105] ). Figure 4.10 displays the 

position of all masked cells in the entire Ross pediatric leukemia dataset [86]. 

 

 
 
Fig. 4.10 Homogeneous distribution of cells flagged as outliers by the MAS software in 

all the U133A microarrays in the Ross pediatric leukemia dataset. 
 

 

The masking algorithm is capable of recognizing and masking all kinds of artifacts commonly 

seen in U133 microarrays. Some artifacts in the pediatric leukemia dataset [86] and their 

masking  can be seen in figure 4.12.  
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Artifacts can also often be recognized in the scatter plots of a measurement against the 

medianchip. Figure 4.11A shows a plot of cell intensities of a sample without artifacts against 

the cell intensities of the medianchip. Figure 4.11B on the other hand, shows the scatter plot 

of the sample shown in figure 4.8A.  

 

 

A B 

 
Fig. 4.11 Scatter plots of  a sample without artifacts (A) and with artifacts (B , sample as 

shown in figure 4.8A) against the medianchip. The presence of an artifact can 
be seen in the abnormal form of the plot (red datapoints). 

 
 

The number of artifacts in one microarray varied from no artifacts at all to such an amount of 

artifacts that a measurements had to be discarded. All the analyzed studies [86, 96, 97, 104, 

105]  had a similar global amount of artifacts; no study was clearly worse then the others.  
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Fig. 4.12 Ratioimages with masked artifacts (defined by red contours). A close-up of 
the artifacts is visible at the right. All images were taken from the pediatric 
leukemia dataset [86]. Colors denote signal values, color range of right side 
images was chosen for best artifact display. 
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4.4 Background correction 
 

4.4.1 Background in Affymetrix Microarrays 
 

The background in a microarray measurement consists of signal intensity caused by non 

specific binding and autofluorescence of the array surface. Since probes are so densely packed 

on Affymetrix microarrays, there are no regions on the chip designed to query the background 

signal. Further, signals on U133 microarrays are not distributed in a homogeneous way:  

horizontal stripes exist on the chip containing high-intensity cells, brighter than their 

surroundings. 

 

A1 median intensities; horizontal profile     

0 200 400 600
180

200

220

240

260

280

300

320

Horizontal Position

Fl
uo

re
sc

en
ce

 In
te

ns
ity

A2 minimum intensities; horizontal profile 

0 100 200 300 400 500 600 700
65

70

75

80

85

Fl
uo

re
sc

en
ce

 In
te

ns
ity

B1 median intensities; vertical profile 
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B2 minimum intensities; vertical profile 
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Fig. 4.13 Median and minimum intensities distributed along the horizontal (A1) and 

vertical (B2) profile of an exemplary U133 microarray.  
  

 Regions with different intensities can be seen along the vertical profiles, also when regarding the 
minimum intensities along the vertical profiles (B2). 
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Without regions on the chip designed to measure the background signal, Affymetrix uses the 

lowest 2% of the signals in zones of the chip to define it. It is assumed that there are always 

cells not showing any signal except for the background, as they cannot hybridize with 

complimentary target oligonucleotides which are lacking in the sample solution. 

 

Affymetrix calculates the background as follows: 

 

• The array is split up into K rectangular zones ZK (k=1,…,K, default K=16); 

• Control cells and masked cells are not used in the calculation. 

• The cells are ranked and the lowest 2% are chosen as the background  for that zone. 

 

Distances are then computed for each cell to the center of each zone. The background of this 

cell is computed using the zone-backgrounds and the distances to the centers of these zones as 

a weighting function. Weights are calculated based on the reciprocal of a constant plus the 

square of the distance to all the zone centers. 

As can be seen in figure 4.13, it is vital to use zones that are large enough not to be influenced 

by the stripe pattern of the chips. Using large zones on the other hand limits how accurate the 

background can be sampled. 

 

4.4.2 Background estimation using the checkerboard pattern 
 

A different method for the calculation of the background is the use of the checkerboard 

pattern at the border of the chip (see chapter 3.4.3.1).  The cells of the checkerboard with low 

signals are a good representation of the background as there is a linear correlation between the 

median signal of these cells and the mean signal of the lowest 2% in the microarray as can be 

seen in figure 4.14.  
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Fig. 4.14  Linear dependency between the median signal of checkerboard cells and the 

mean signal of the lowest 2% in the microarray using several hundred chips of 
the type U133a of one study [97]. 

 
 
The ratio between the lowest 2% and the checkerboard signal can be easily obtained by 

measuring the lowest 2% at a few, large areas in the microarray and comparing it with the 

checkerboard signals. Using large areas eliminates any local effects. The checkerboard data 

points are a good estimate for the background after adaptation to the ratio (1:2 in this 

example) as seen in figure 4.15. A horizontal view was chosen, as the irregular distribution 

seen in figure 4.13 B2 is not perceived when dealing with columns (figure 4.13 A2).  
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Fig. 4.15  Lowest signals in columns (gray dots) and estimated background using the 

checkerboard method (black stars). 



Method development                                                                                                            54

These data points can be used for interpolation of the background in the microarray, the 

advantage of this method being that the background is sampled at many more points than with 

the zone approach described earlier.   

As can be seen in figure 4.16, the ratios between the mean lowest 2% signals and the median 

signals (measured at different locations of a chip and the entire chip) yield similar values in 

all analyzed U133A microarrays (raw, unscaled data).  
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Fig. 4.16 Mean lowest 2% signal against the mean overall signal of several 

microarrays from four different studies. 
  

The different studies are: Affymetrix spike-in dataset (gray dots) [105], Ross pediatric leukemia 
dataset (black dots) [86], PGA Human CD4+ Lymphocytes (gray pyramids) [96] and a PGA 
Human Muscle Obese dataset [104]. Shown are the signals gathered using all cells (excluding 
Affymetrix control cells). 

 

 

Raw signals of microarrays from one study can have very different scaling, independent of 

scanner-settings. Cells that should not show any specific hybridization, e.g. cells containing 

targets for probes not included in the sample-solution) and are therefore considered as the 

signal background seem also to be subjected to this scaling factor.   

One possible source of different scaling might be the amount of probe-molecules in the 

sample-solution used for analysis. Capture of the complementary target is modeled by Chan, 

Graves and McKenzie [98] using two different mechanisms by which targets can hybridize 

with the complementary probes:  
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1. direct hybridization from the solution, 

2. nonspecific adsorption followed by surface diffusion to the probe.   

 

If the surface diffusion is taken into account, this model might explain a correlation between 

low-level background cell signals and overall signal intensity. 

 

4.4.3 Interpolation using the Auto-leveling Method  (ALM) 
 

An iterative fitting process discards points above a threshold and fits the remaining points 

with a plane. First, a least squares plane is fitted to the anchor points. If there are fewer points 

above this plane than below it, they are classified as being outliers and are discarded. This 

process is repeated until the amount of anchor points above the plane is larger than or equal to 

those below the plane. The resulting plane which automatically reaches the level of the 

majority of the data points in this iterative procedure represents the fitted background [106]. 

 

 

4.4.4 Thin-plate interpolation 
 

4.4.4.1 Theory 
 

The interpolation of the background defined by the checkerboard cells is done by using a thin-

plate spline. Used correctly, this function will fit the data like a thin plate of metal, able to 

twist a little bit without overfitting the data. The spline function has to approximate many 

different data points in space that also contain noise [107, 108].  

The surface can be defined by 
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with  

φ(x) a fixed radially symmetric, basic function, 

λn a set of N weights corresponding to the N centers, 

p(x) a polynomial of degree k. 
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A datapoint  fn can be decomposed into a signal component yn and a noise component εn , i.e. 

 

nnn yf ε+= , 

 

with the εn being independent and normally distributed. Interpolation involves minimizing a 

penalty function.  

The penalty function in thin plate splines is 
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As it is not wanted to interpolate noisy data points exactly, a tradeoff is sought, minimizing 

the penalty function against the mean square error in fitting the data. This leads to the 

regularized least-squares problem: 
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The parameter v attunes the tradeoff between goodness of fit and smoothness. The problem 

now is to find the best value for v.  Exact solutions to the minimization problem can be found 

in [109]. The selection procedure for v is described further down. 

 

 

 

4.4.4.2 Background subtraction 
 

Background data can be fitted best with a nonlinear method. Using a linear background 

produces fits as seen in figure 4.17. 
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Fig. 4.17 Linear fit to noisy data points. 
 

A good fit or overfitting is achieved depending on the parameter v.  

 
Fig. 4.18 Nonlinear fit to noisy data using a thin-plate spline. 
 

As the checkerboard data is noisy, setting the thin-plate spline too soft can have immense 

overfitting effects as seen in figure 4.19. 
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Fig. 4.19 Nonlinear fit to noisy data using a very soft thin-plate spline resulting in 

overfitting. 
  

 A clear overfitting of the soft thin-plate spline is visible. The peak of the thin-plate spline in 
the back-left corner is created by the influence of a large amount of datapoints that are 
elevated in relation to the surrounding points. Sparse outliers as seen in the back-right 
corner only lead to overfitting effects once the thin-plate spline is set much softer. It is 
therefore not possible to counter the overfitting effect by eliminating some of the visible 
outliers at this stage. 

 

Although the smoothness parameter can be chosen using the technique of cross-validation to 

measure the predictive error of a surface [108], an approach using replicate microarray data 

was chosen. The Latin Square dataset from Affymetrix [105] was used to evaluate the 

goodness of fit of the calculated background spline. There are 42 very homogeneous replicate 

measurements of a complex human sample in the dataset, spiked with certain target 

oligonucleotides. These spike-in cells were discarded and the measurements were overlaid 

with an arcustangens function, creating a step in the microarray data image that should be 

fitted. 

 

0 100 200 300 400 500 600 700

100

150

200

 
Fig. 4.20 Profile of the simulated uneven background. 
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This function was added to the measurements in different orientations and in different 

amplitudes. The form of the step function as well as its amplitude range was selected to be as 

similar as possible to those steps seen in real-life measurements. The calculated fit was then 

subtracted from the data. The deviation between same cells of different measurements was 

compared to the unprocessed data and thus used to evaluate the goodness of fit.  It was 

calculated as a measure of the standard deviation between same cells on all microarrays.  
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with  x,y the horizontal and vertical dimension of the array, 

 cellxy a vector containing the values of all cells at position x,y, 

 n the number of microarrays in the study (and the length of the vector cellxy). 

 

 

Using only checkerboard cells for a thin-plate nonlinear interpolation shows bad performance, 

a clear indication of a bad fit. 
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Fig. 4.21 Comparison of goodness of fit of background interpolation methods.  

 Measurement of deviation between replicate measurements when no background was 
subtracted (Raw), interpolation using the auto-leveling method (ALM) or a nonlinear 
thin-plate spline (nonlinear). Only checkerboard data points were used for 
interpolation.  

 

 

D
ev

ia
tio

nI
nd

ex
 



Method development                                                                                                            60

Here, the strength of the thin-plate spline is also its weakness: it is only defined by border 

cells, its center is free to be stretched as governed by the smoothing factor.  

 

 

 

 
Fig. 4.22 Stretching of a thin-plate spline defined by border anchor points. 

Large steps in the data to be fitted result in a stretching of the thin-plate spline, 
resulting in a bad fit. 

 

 

 

This clearly shows that, at least when dealing with larger steps, anchor points within the 

microarray are needed to compensate for this overstretching. These anchor points were 

selected with a zone-method as used by Affymetrix. The chip is divided into zones and the 

mean of the lowest 2% is calculated for this zone. This value is seen as located in the center of 

the zone. The addition of these anchor points (25 used by default, corresponding to 5 x 5 

zones) greatly improves the performance of the nonlinear method. 
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Fig. 4.23 Good performance of the nonlinear, thin-plate spline interpolation.  

The thin-plate spline interpolation (Nonlinear), using anchor points at the border of 
the microarray (checkerboard) as well as in the spotted area, fits the background the 
best compared with unprocessed data (Raw) and the auto-leveling method (ALM). 

 

 

The optimization of the parameter v, achieved by this method using the dataset changed by 

the addition of the tanh-background, lead to a setting of v =10-5.  
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Fig. 4.24 Best results when fitting the surface using the thin-plate spline are achieved 

when the smoothing parameter is set to 10-5.  Higher values make the spline 
too inflexible, lower ones too flexible, leading to overfitting. 

 

This is the optimal value for background interpolation of the used dataset. The value selected 

using the tanh-changed measurements is a good choice for most measurements, as the dataset 

contained a non-uniform background with an intensity difference of a magnitude often seen in 
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U133 measurements. Application of this method on  measurements from different studies [86, 

96, 97, 104] showed its performance to be as expected. 

  

 

4.4.5 Application of a scaling factor 
 

Different measurements are scaled before comparison. These factors compensate for different 

signal ranges due to different amounts of sample RNA, different gain settings and 

hybridization efficiencies. The necessity of scaling can be seen in the effect on the histogram 

of the measurements [110]. As most genes are not differentially expressed in different tissues, 

the overall signal distribution in different experiments should be the same. This is achieved 

through scaling as seen in figure 4.25. 
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Fig. 4.25 Histograms of different measurements before and after scaling. 

Histogram of an experiment before (black line) and after scaling (dotted line) to 
match the signal distribution of another experiment (gray line).  

 

 

A homogenous microarray experiment exhibits the same overall signal distribution in 

different zones, as long as the zones that are chosen are large enough so that they are not 

subjected to the influence of the stripes with higher intensities as seen in figure 4.13.  
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Fig. 4.26  Histograms from different areas in one microarray experiment. 
Histograms at different areas (vertical fields of the width of 100 cells) taken from 
one experiment in the Latin Square dataset. Data not scaled. 

 

 

 

 

Many microarrays are not homogeneous, having different signal distributions in different 

areas. This can be due to a thermal effect, incomplete washing, diverse hybridization 

performance etc. One example is seen in figure 4.27. A clear intensity drift from left to right 

can be observed. The majority of the U133 microarrays of the leukemia dataset analyzed in 

chapter 5 had an uneven intensity profile, although not as pronounced as seen in figure 4.27. 

Another example is shown in the leukemia dataset analysis chapter. 
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Fig. 4.27  Microarray with horizontal intensity-drift.  
  

A) Microarray CEL-image, the colorbar denotes fluorescence intensities in logarithmic 
scale. An intensity drift from left to right can be observed, as well as the horizontal stripes 
common to U133 chips.  B)  Minimum intensity (red) and concurrent median intensity 
(blue) horizontal profiles. C) Histograms taken at different areas of the microarray (see 
figure 4.26). 
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The histograms in figure 4.27 C and analysis of microarrays from the leukemia dataset used in 

chapter 4 make it clear that an in-chip scaling is necessary. The intensity of the background in 

the microarray is subject to the same local scaling as the overall signal, as can be seen in 

figure 4.16, where overall mean signals are plotted against overall signal minima.  

It is thus possible to use the same algorithm to calculate a background surface, and a surface 

used to deduce the local scaling factors. The result of this local scaling of the microarray 

experiment shown in figure 4.27 is seen in figure 4.28 B. 
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Fig. 4.28 Histograms of different zones on one microarray before (A) and after local 

scaling (B), see also figure 5.2. 
  

 Microarray data in (A) was baseline corrected but not scaled. A clear deviation between 
histograms is visible but disappears through local scaling (B). 
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4.5 Probe Sequence Development 

4.5.1 Introduction 
 

To create a DNA microarray, oligonucleotides are immobilized onto the surface of a slide. 

These probes then hybridize with complimentary, fluorophore labeled target-DNA from a 

sample-solution. It is therefore essential to design a certain immobilized oligonucleotide so 

that only a target-DNA molecule with a matching sequence will hybridize with it in a highly 

selective way.  It is necessary to find a perfect match sequence for the hybridization with the 

target-DNA molecule that exhibits as many mismatches as possible towards other target 

sequences.  

A tool was created to facilitate the design of probe sequences for an animal species 

differentiation microarray under development at the Institute for Chemical and Biochemical 

Sensor Research (ICB).  This microarray was developed by V. Podsadlowski [111] for a fast 

genetic analysis of food samples using a real-time microarray hybridization and scanning 

device also developed at the ICB.  

 

 

4.5.2 Process of probe sequence development 
 

The first step in the development of optimal probe sequences is the alignment of the target 

sequences which are obtained after a PCR and meant for analysis. This is done using 

Clustal_W, a general purpose multiple sequence alignment program for DNA [112]. This 

program aligns the sequences, introducing gaps if needed. In a second step, a region in the 

aligned sequences is searched for which is the most different between the one sequence the 

probe molecule is meant to hybridize with and all the other sequences. If four samples are to 

be differentiated, the aligned sequence of sample 1 is taken and compared with the sequences 

of the other samples, then sample 2 is chosen and so forth. Tables 4.1 and 4.2 show 

subsequences (20 bases long) derived from the entire aligned sequence of two samples. A 

mismatch score is calculated for the 20 bases long excerpt by the algorithm in a moving-

window approach . 
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Tab. 4.1: Sequences of two samples aligned using Clustal W.  Mismatch scores are 

calculated in a 20-bases long moving window scheme. 
 

Sample 1      CCATGAGGACAAATATCATTCTGAGGAGCAACAGTCATTACCAACCTTCTCTCAGCAATT 

Sample 2      CCATGAGGACAAATATCATTCTGAGGAGCAACAGTTATTACCAATCTTCTCTCAGCAATC 

 

Sample 1      CCATATATTGGGACAAACCTAGTCGAATGGATCTGAGGGGGCTTTTCAGTAGACAAAGCA 

Sample 2      CCATACATTGGTACAAACCTAGTTGAATGAATCTGAGGAGGCTTTTCAGTAGACAAAGCA 

 

Sample 1      ACCCTAACCCGATTTTTCGCTTTCCACTTTATTCTCCCATTTATCATCGCAGCACTCGCT 

Sample 2      ACCTTAACTCGATTCTTCGCTTTCCACTTTATTCTACCATTCATCATTGCGGCACTTGCT 

 

Sample 1      ATAGTACACTTACTCTTCCTTCACGAGACAGGATCTAATAACCCAACAGGAATTCCATCA 

Sample 2      ATAGTACATTTACTCTTTCTTCACGAGACAGGATCCAATAACCCAACAGGAATCCCATCA 

 

Sample 1      GACGCAGACAAAATCCCCTTTCATCCTTATTATACCATTAAAGATATCTTAGGCATCTTA 

Sample 2      GATGTAGATAAAATTCCCTTTCATCCCTACTACACCATTAAAGATATTTTAGGCATCCTA 

 

Sample 1      CTTCTAGTACTCTTCTTAATATTACTAGTATTATTCGCACCAGACCTACTTGGAGACCCA 

Sample 2      TTCCTATTTCTCTTCTTAATAACACTAGTACTATTTGCACCAGACTTGCTTGGAGACCCA 

 

Sample 1      GATAACTACACCCCA 

Sample 2      GACAAATACACTCCA 

 

 
Tab. 4.2: Mismatch scores for five different 20 bases long excerpts from the sequence 

in table 1 at different positions. 
 
Score Sequence 1   Sequence 2 Mismatch position 
1 TCCTTCACGAGACAGGATCT TTCTTCACGAGACAGGATCC -*-----------------* 

8 ACAGGATCTAATAACCCAAC ACAGGATCCAATAACCCAAC --------*----------- 

13 CCTAGTCGAATGGATCTGAG CCTAGTTGAATGAATCTGAG ------*-----*------- 

17 CTCCCATTTATCATCGCAGC CTACCATTCATCATTGCGGC --*-----*-----*--*-- 

29 ATCTTA CTTCTAGTACTCT ATCCTA TTCCTATTTCTCT   ---*---*-*---*-*---- 

 

The weighting of the mismatch score for each mismatch is primarily based on an analysis of 

the position of the mismatch in the 20 bases long subsequence. It is known that mismatches at 

the border of the sequence affect a hybridization less than a mismatch in the center of the 

sequence. As can be seen in table 4.2, an aligned subsequence with a mismatch in its center 

scores higher than a subsequence with two mismatches near its borders. The location 

dependant weighting function has to take into account the above mentioned behavior. The 

function used in table 4.2, for example, rises linearly with growing proximity to the 

subsequence center; the score bsc,p for each basepair at the position p of the subsequence of 

length L is    
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One further consideration is the so called GC-content of an aligned subsequence. The GC 

base pair ineraction is stronger than the AT one, as one more hydrogen bridge is created 

(moving the equilibrium of the hybridization reaction farther in direction of the hybridized 

species). The chosen sequence should therefore also have a high GC content. 

Figure 4.29 shows the result of the mismatch score analysis of the comparison of a coney 

CytB-gene sequence with the CytB sequence derived from five different animals (pork, fallow 

deer, horse, rabbit, human) [111].  

 

 

 
Fig. 4.29 Mismatch scores for the comparison of a CytB coney sequence with the same 

gene from five other species. 
 
 Compared were subsequences of a 360 bases long CytB gene sequence. The optimal subsequence 

region is marked with a line at base number ~300.  
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Application of the tool showed an useful selection to have a mismatch score of at least 15 in 

all coney / other species comparisons  and a GC content of at least 45 %. It was shown during 

the design phase of the animal species differentiation microarray that the algorithm worked as 

predicted, facilitating the microarray development. Table 4.3 shows the results of food 

samples analyzed by the CVUA (Chemischen und Veterinär Landesuntersuchungsamt, 

Münster) and by means of the microarray developed at the ICB [111].  All animal species 

were detected correctly. 

 

Tab. 4.3 Results of food samples analzed by the CVUA and by means of the 
microarray developed at the ICB [111] 

 

Sample source identification 
by CVUA 

Identification using the microarray 
developed at the ICB 

haunch of venison venison 
wild boar roast wild boar 
haunch of hare hare 
deer medallions deer 
haunch of deer deer 

 

Some of the developed sequences are for the identification of origin for samples from the 

species horse, goat, buffalo, fallow deer, deer, sika deer, red deer, hare, coney, human and dog. 

4.6 Discussion of signal processing methods 
 

Almost all of the several hundred U133 microarrays analyzed contained artifacts. Their size 

and form varies substantially, from small round speckles or fine scratches up to large areas 

containing ten thousands of cells. Detection of these cells is important as their utilization in 

the calculation of the expression value for a certain probeset can have drastic consequences 

depending on the gene expression summary algorithm used. As the MicroArray Suite of 

Affymetrix does not provide for an automatic artifact detection scheme, the method developed 

in this work proves to be a good way to tackle this task in an easy and reliable way. The 

algorithms have been fine-tuned using hundreds of microarrays so that a minimal number of 

differentially expressed cells are flagged as being outliers. Outlier detection is done by 

calculating the deviation of a cell from the median signal of this cell over several microarrays. 

This implies that several microarray experiments have been made to gain the necessary 

amount of data. Median chips created by using measurements of different studies can differ 

from one another, the best and most reliable method therefore being the utilization of data 

from one and the same study for analysis and the creation of the medianchip. To provide for a 
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medianchip when only very few measurements are made, a library of medianchips can be 

created. A medianchip that has the closest fit to the new measurements can then be selected. 

The storage of medianchips can be easily done by using the developed microarray data 

management system. This management system was developed in accordance with the rules of 

the MIAME project approved by the Microarray Gene Expression Database group. 

Detailed information on the nature of the artifacts further provide quality measures giving 

information on the entire analysis process. One example is the absence of small round 

artifacts, previously found very often on microarrays, the reason being that scientists have 

switched from using powdered to non-powdered laboratory gloves when doing microarray 

experiments. These measures therefore provide information that can be helpful for the entire 

research process, the ultimate goal being the enhancement of the quality of the entire process 

and the beforehand reduction of the possibility of artifact creation.  

Unfortunately, U133 microarrays do not show a homogeneous signal distribution. There are 

horizontal stripes with higher signal intensities. These stripes make a more direct 

identification of abnormalities impossible. This includes the calculation of the background 

signals, as the U133 microarrays do not provide any direct means to measure it. A 

disadvantage of the Affymetrix method for background correction is the small number of 

anchor points available for the interpolation of the background signal, as the zones defined 

have to be large enough to evade the effect of the intensity stripes previously discussed (4x4 

zones are normally used). The developed method, on the other hand, uses the information of 

these anchor points as well as several hundred additional points provided by the checkerboard 

area of the microarray. The number of available data points makes a thin-plate interpolation 

possible. This method has shown to be well suited in interpolating noisy data in many sectors 

like meteorology and geology. The importance of a good area dependant background 

correction scheme becomes visible when regarding histograms from different areas on the 

microarray before and after background correction (see figure 5.2). The second step is the 

scaling. The MicroArray Suite scales the entire microarray by one value, ignoring area 

dependant differences in overall signal values. This area dependant discrimination is essential 

to match the different signal distributions present at different areas on a microarray. The 

developed method for the interpolation of background signals can also be used for the area-

dependant scaling of the data. When applied to several different microarray measurements 

from different series a good matching of histograms from different areas was observed. 

Application of the methods on replicate measurements provided by Affymetrix showed a 

clear improvement in signal quality. 
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5 Analysis of Leukemia Data 

5.1 Introduction 
 

A public pediatric leukemia dataset [86] was selected and analyzed to find a list of genes best 

suited to differentiate several subgroups of cancer and to analyze the effect of using different 

gene selection methods. Classification was done using a SVM classifier. The selection 

algorithms used were Fisher ratio, gene shaving, significance analysis of microarrays (SAM) 

and prediction analysis of microarrays (PAM). The different gene expression summary 

algorithms used include the Li-Wong model,  RMA and the MAS perfect match only model.  

5.2 Data Source and Composition 
 

The data used was first presented in the paper „Classification of pediatric acute lymphoblastic 

leukemia by gene expression profiling“  published in BLOOD, 15 October 2003, Vol. 102, 

Number 8 [86].  

As described in the leukemia chapter, the exact classification of the disease into several 

subgroups is essential for a tailored therapy and good survival prognostics. The pediatric 

acute lymphoblastic leukemia (ALL) dataset that has been analyzed can be subdivided into 

several sample subgroups. These groups differ in their cellular and molecular characteristics 

and also in their response to therapy. The leukemia subgroups contained in the dataset are 

shown in table 5.1. 

 

Tab. 5.1 Subgroup distribution of samples in the dataset 

Sample Type   Numbers

 T-ALL   14 
 B-Cell lineage:       
  BCR-ABL   15 
  E2A-PBX1   18 

  Hyperdiploid with more than 50 
chromosomes 17 

  MLL    20 
  TEL-AML1   20 
  Others:     
    Novel   13 
    Hypodiploid   4 
    Normal_diploid   3 
    Pseudodiploid   8 

 Total Sample Number   132 
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The Novel-subgroup was found in an ALL study performed with U95 microarrays. This study 

is the predecessor of the above mentioned paper and was published in 2002 (“Classification, 

subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by 

gene eypression profiling”, Yeoh EJ, Ross ME, Shurtleff SA, et al., Cancer Cell, 2002; 1:133-

143) [113].  The new study analyzed here uses a subset of the data analyzed by Yeoh et al. 

The Novel subtype can also be seen in the data obtained using U133 microarrays. 

 

5.3 Preprocessing 
 

The gene expression value for each probeset was calculated using different methods. The data 

preprocessing consisted of the following steps: 

1. The same background correction and scaling methods were used as described by the 

authors of the different gene expression summary techniques. 

2. Data of one sample was scaled independently for each U133A and U133B chip to a 

trimmed mean of 250 and then combined.  

3. Genes having the following characteristics were discarded: 

o expression below 100 in all samples,   

o flagged as not present in more than half the samples (using the MAS flags), 

o being in saturation. 

4. Genes were auto-scaled. 

 

The Li-Wong, RMA and MAS pm only models were applied using the statistical software R 

[114]. 

 

5.4 Quality Aspects 
 

5.4.1 Time of measurement 
 

The date at which the sample was scanned is included in each Affymetrix CEL-file. It is 

possible to analyze if there is a relation between the information extracted from the data or 

about the data (e.g. sample subgroup) and the measurement time. The ideal measurement 

procedure would be to measure all samples randomly and as close as possible in time. 
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Fig.  5.1 Chart of measurement dates of the samples (color coded) and chip types
  (squares = U133A;  circles = U133B ). 
  

Measurement took place throughout three and a half months. A and B chips were scanned 
separately and some sample groups were scanned nearly completely as one block (Others and 
MLL samples U133A microarrays). The ideal would have been a complete random scanning of 
all samples to evade a possible influence of measurement time, although no apparent influence 
can be seen in this study. Samples are represented as colored circles or squares, some of these 
being drawn close to one another (some are not visible in their entire breadth). 

 

Both chips, the U133A and U133B, should be measured together. As can be seen in figure 5.1,  

some groups of samples were measured nearly completely in one block (e.g. MLL or Others). 

U133A and U133B chips were scanned at two different time intervals.  

 

 

U
13

3 
B

 
U

13
3 

A
 

tim
e 

Number of  samples scanned in one day



Analysis of Leukemia Data                                                                                                            74

5.4.2 Homogeneity of Chips  
 

In-chip background and scaling can vary greatly. Background correction and scaling are 

essential, as can be seen in figure 5.2. Signal distributions at different location of chip JD-

ALD051 (MLL subgroup, B-chip) differ greatly before preprocessing. A background 

correction as is done by default in the MAS software helps considerably to make the overall 

signal distribution more homogeneous. An area-dependant scaling is also necessary to match 

the histograms but is not done by the MAS software and thus not provided for in the original 

data. 
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Histograms from the raw 

image. Histograms from 

different areas differ greatly, 

displaying the necessity for 

image preprocessing.  

 

 

 

 
Histograms after background 

correction. Histograms still 

have different maxima at 

different positions. 

 

 

 
 

Histograms after background 

correction and local scaling. 

The positions of the histogram 

maxima are the same and their 

values nearly equal. 

 

Fig. 5.2 Histograms from different sectors in measurement JD-ALD051 (MLL 
subgroup). Background correction and in-chip scaling are essential for 
making the data usable. 
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Fig. 5.3 Ratioimage of the microarray (logarithmic scale) discussed in figure 5.2. 

Clear differences in signal distribution are visible. 
 

5.4.3 GAPDH 3’ / 5’ Ratio 
 

RNA can degrade during cDNA synthesis. The result is first-strand cDNA containing a mix of 

truncated and full-length transcripts. Measurement of 5’-end and 3'-end fragments of a long 

RNA, here glyceraldehyde-3’-phosphate dehydrogenase (GAPDH), can give information on 

the quality of the RNA. The ratio of the 3' to 5' amplified fragments provides a direct 

indication of RNA integrity since in most cases RNA degradation starts in the 5'-end region of 

a RNA molecule. 
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Fig. 5.4  Boxplot of the GAPDH 3’/5’ ratios of all 132 samples. All samples have a 

ratio below 3. 
 

Quality control during creation of the dataset enforced the 3’ / 5’ ratio to be well below 3. 

More important, no trend for a specific ratio for a certain sample subgroup can be found. 
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5.4.4 Present Calls  
 

Analysis of the present calls of the samples showed that all U133A chips have higher present 

calls than U133B chips. This is usually the case as U133B chips contain more expressed 

sequence tags (ESTs), while U133A chips contain a higher amount of known gene sequences. 

Median present calls are 36% for U133A and 21 % for U133B chips in this study. Also, 

different sample subgroups neither had overall different present calls nor were the values time 

related (see figure 5.5). 
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present call in %
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U133B

U133A 

 

Fig. 5.5 Percent of signals called present in U133A chips (circles) and U133B chips 
(squares). The fraction of present calls is higher in U133A chips as expected, 
with a mean around 35 % as observed in many other studies. U133B chips 
have a lower overall percentage as they contain many ESTs. 

 

 

5.4.5 Number of Affymetrix Outliers and Masked Cells 
 

The number of outliers as flagged by the MAS software is generally higher in U133B chips 

with a wider distribution. Two U133A samples have a higher number of outliers (JD-ALD109, 

TEL-AML1 subgroup and JD-ALD-052, MLL subgroup) but a normal amount of masked 

cells, baseline levels and signal distributions.  
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Fig. 5.6 Boxplot showing the number of Affymetrix outlier cells in different 

microarrays. 
 

The number of cells masked by the new algorithm (see chapter 4.2.2) is also higher in U133B 

chips. One U133A chip distinguishes itself by having nearly 35000 masked cells (marked as 

A in figure 5.7). This is a microarray with a very large artifact in the upper left corner (JD-

ALD416, E2A-PBX1 subgroup) which was already analyzed closer in chapter 4.3.2. It is 

therefore possible to select these kinds of microarrays automatically by monitoring the 

deviation concerning masked cell numbers from that of the rest of the population. 
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Fig. 5.7 Boxplot showing the number of masked cells in different microarrays. One 

microarray, marked as (A), contains a very large artifact (JD-ALD416, E2A-
PBX1 subgroup). It is analyzed closer in chapter 4.3.2. 
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Generally, there is no connection between the number of masked cells and the number of 

Affymetrix outlier cells.  

The authors of the original paper wrote “Microarray scan images were visually inspected for 

apparent defects […].”  ( [86] page 2952). It is interesting to note that the microarray denoted 

as (A) in figure 5.7 did not have any flagged cells in the raw data provided by the authors. 

Cells in the area of the artifact were thus probably also used for the calculation of the probeset 

specific gene expressions using the MAS software, although it is possible that the authors of 

the paper had used a different set of files with flagged cells. 

 

 

5.4.6 Relation between sample class and sample quality  
 

The relationship between samples as well as the relationship between variables can be 

visualized by using a principal component biplot in which the scores-plot as well as the 

loadings-plot of the principal component analysis are diplayed in the same diagram. Figure 

5.8 contains the bi-plots of all U133A as well as all U133B samples using their corresponding 

values of the quality criteria (scan-date, percentage present calls, 3’/5’ ratio, number of 

outliers). It can be seen that the number of present-calls is anti-correlated with the height of 

the 3’/5’ ratio, i.e. samples with a low ratio also have a high present call value thus being of 

overall good quality. Samples with below average quality have both high 3’/5’ ratios and low 

present call values. It is visible that there is no clear separation of any sample-subgroup exists. 

No subgroup can be discriminated from the rest of the samples by using quality measure alone 

or a combination of these. 
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A   
PCA Biplot showing U133A 

samples and quality criteria 

 

 

 

 

 

 

 

 

 

 

B   
PCA Biplot showing U133B 

samples and quality criteria 

(legend as seen under A) 

Fig. 5.8 Biplots created using quality measures.  No subgroup can be discriminated 
from the rest of the samples by use of any quality measure alone or a 
combination of these. 
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5.5 Gene Selection 
 

5.5.1 Introduction 
 

Not all sample subgroups are separated well using all genes for discrimination as can be seen 

in figure 5.9. The only subgroup falling entirely into one cluster is T-ALL, thus being clearly 

separated from all other samples, that is, members of the B-cell lineage. Most genes measured 

are not differentially expressed. The including of these non-informative genes in a classifier 

would only increase the amount of noise in the system. These genes therefore have to be left 

out. Even when regarding only those genes that are differentially expressed, it is important not 

to use too many genes. Although the apparent error rate (the proportion of  training tissues 

misclassified) of a classifier would decrease when using more informative genes, its error rate 

in classifying tissues outside of the training set would eventually increase. It is therefore 

necessary to select a few, highly selective genes for better discrimination [115]. This goes 

hand in hand with the desire to shrink the number of genes used for discrimination to make it 

possible to design a low-density diagnostic chip. Therefore, the target is to select a minimum 

number of genes suited to achieve the best separation of sample subgroups [116].  Four 

methods were used for gene selection, one being the calculation of the Fisher ratios of each 

sample subgroup against the rest of the samples. This provides genes that have the most 

different gene expression patterns between these two sample groups. The second procedure is 

the so-called gene shaving which clusters genes according to similar gene expression patterns 

across samples. The third and fourth are the significance analysis of microarrays (SAM) [85] 

and the prediction analysis of microarrays (PAM) [87] methods. The data was preprocessed as 

described in 5.3 if not otherwise described. 



Analysis of Leukemia Data                                                                                                            81

0 0.5 1 1.5 2 2.5

x 105

0

20

40

60

80

100

120

Index value

    BCR-ABL

    BCR-ABL

    BCR-ABL

    BCR-ABL

    BCR-ABL    BCR-ABL
    BCR-ABL

    BCR-ABL

    BCR-ABL    BCR-ABL
    BCR-ABL

    BCR-ABL

    BCR-ABL

    BCR-ABL

    BCR-ABL

   E2A-PBX1
   E2A-PBX1   E2A-PBX1
   E2A-PBX1

   E2A-PBX1

   E2A-PBX1

   E2A-PBX1

   E2A-PBX1

   E2A-PBX1

   E2A-PBX1
   E2A-PBX1
   E2A-PBX1
   E2A-PBX1
   E2A-PBX1   E2A-PBX1

   E2A-PBX1

   E2A-PBX1

   E2A-PBX1

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0Hyperdip

5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

Hyperdip
5
0

        MLL

        MLL

        MLL
        MLL

        MLL

        MLL

        MLL

        MLL        MLL

        MLL

        MLL

        MLL

        MLL        MLL
        MLL

        MLL
        MLL

        MLL        MLL

        MLL

      T-ALL

      T-ALL      T-ALL

      T-ALL

      T-ALL

      T-ALL

      T-ALL

      T-ALL

      T-ALL

      T-ALL

      T-ALL

      T-ALL

      T-ALL

      T-ALL

   TEL-AML1   TEL-AML1
   TEL-AML1

   TEL-AML1

   TEL-AML1

   TEL-AML1

   TEL-AML1   TEL-AML1

   TEL-AML1

   TEL-AML1

   TEL-AML1

   TEL-AML1   TEL-AML1

   TEL-AML1

   TEL-AML1

   TEL-AML1

   TEL-AML1

   TEL-AML1

   TEL-AML1   TEL-AML1

     others     others
     others

     others

     others

     others

     others

     others     others     others

     others

     others

     others

     others
     others

     others

     others

     others

     others

     others

     others

     others
     others

     others

     others     others

     others

     others

Dendrogram using Ward's method

 
Fig. 5.9 Dendrogram of all samples using all genes. Samples of the same subgroups 

do not necessarily fall into same clusters. Only T-ALL is clearly distinguished 
from all B-cell lineage samples. A gene selection procedure is necessary to 
increase sample subgroup separation.  

 

A SVM-classification (see classification chapter) using all genes provided a classification 

accuracy of 92.1%. A comparison with accuracies reached using fewer genes (see further 

below) also illustrates the necessity of gene-selection. 

 

MLL  blue 
TEL-AML1 magenta 
BCR-ABL  green 
Other  grey 
E2A-PBX1  cyan 
Hyperdiploid black 
T-ALL  red 
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5.5.2 Gene selection using Fisher ratio calculations 
 

Fisher ratios were calculated comparing one sample subgroup with the rest of the samples. As 

can be seen in figure 5.10, where an exemplary top 100 genes from each comparison are 

displayed, the overall quantitative pattern of expression of discriminating genes varied 

significantly between leukemia subtypes. Blocks of genes with clear up-regulation for each 

sample subgroup compared to the rest of the samples can be distinguished. The Other-

subgroup was divided into its own subgroups. 

 

 

-----------                                                                      BCR-ABL                                                                  ----------------------                                                                                          E2A-PBX1                                                                             ----------------------                                                                             Hyperdipothers                                                                                                                                    -----------

 
Fig. 5.10 Heatmap showing the gene expressions of the top 100 genes from every 

cluster selected by Fisher ratio. Others-subgroup consists of groups Novel, 
Normal_diploid, Pseudodiploid and Hypodiploid (in that vertical order). 
Colors denote standard deviation units. 

 

 

The top five genes from each comparison were selected, yielding a total of 35 genes. The 

mean signal difference and the Fisher’s separability criterion can be used to assess the 

homogeneity of the sample subgroups, gaining information that shows which subgroup 

separations could be problematic. 
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Fig. 5.11 Difference between the median signal of top 100 discriminating genes in one 

sample subgroup in relation to the rest of the samples and Fisher’s 
separability criterion for the top 100 genes.  

  

 The other-sample-group is splitted into its Novel, Normal_diploid, Pseudodiploid and Hypodiploid 
subgroups. High values for the Normal_diploid and Hypodiploid subgroups are to be regarded 
with caution as these groups only consist of three and four samples respectively.  

 
 

Values for the Other-subgroups have to be regarded with caution, as some only consist of 

three or four samples.  

 

 

 

5.5.3 Gene selection using Gene shaving 
 

Gene shaving was performed on the data selecting 200 clusters with highly covariant genes. 

Several groups of genes were found with an expression pattern highly selective for one certain 

leukemia subgroup (figure 5.12) as well as gene clusters with significantly varying expression 

patterns for BCR-ABL, E2A-PBX1, Hyperdiploid>50, MLL, T-ALL and TEL-AML1 and the 

Others-novel sample subgroups. The novel group was easily identified. Signal patterns of 

genes differentiating members of the rest of the Other samples found by gene shaving are less 

distinct.  
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-----------                                                                      BCR-ABL                                                                  ----------------------                                                                                           E2A-PBX1                                                                             ----------------------                                                                             Hyperdip
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Fig. 5.12 Heatmap of all samples (rows) and 8 groups of genes selected by gene shaving. 

Colors denote standard deviation units. 
 
Top 15 genes were selected from each cluster having the highest correlation with the cluster  

expression pattern.  

 

 

5.5.4 Gene selection using Significance Analysis of Microarrays (SAM) 
 

The utilization of SAM yielded a list of genes whose expression patterns are highly individual 

for each corresponding sample subgroup (see figure 5.13). Each subgroup was compared with 

the rest of the samples. The top genes of each comparison were selected using scores provided 

by SAM, resulting in 98 selected genes in total. 
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-----------                                                                      BCR-ABL                                                                  ----------------------                                                                                           E2A-PBX1                                                                             ----------------------                                                                             Hyperdipothers                                                                                                                                    -----------

 
Fig. 5.13 Heatmap of all samples (rows) and 7 groups of genes selected by significance 

analysis of microarrays (SAM). Colors denote standard deviation units. 
 

 

5.5.5 Gene selection using Prediction Analysis of Microarrays (PAM) 
 

PAM was used to select the genes best suited for a discrimination of sample subgroups. The 

threshold was selected by analysis of the training- and misclassification-errors (see chapter 

3.5.8.3). The aim was to maximize the threshold and to minimize the errors and number of 

genes (see figure 5.14).  
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Fig. 5.14 Training- and misclassification errors for different thresholds. A threshold of 

7 was selected, yielding a total of 336 genes. 
 

A threshold of 7 was selected, yielding a total number of 336 genes which are suited well to 

differentiate different sample subgroups. The number of genes was then further downsized to 

achieve a selection with an amount of genes comparable to the one achieved with the other 

methods. This was done using the gene-scores for each centroid yielding a total of 89 selected 

genes. 

-----------                                                                      BCR-ABL                                                                  ----------------------                                                                                           E2A-PBX1                                                                             ----------------------                                                                             Hyperdipothers                                                                                                                                    -----------

 
Fig. 5.15 Heatmap of all samples (rows) and 7 groups of genes selected by prediction 

analysis of microarrays (PAM). Colors denote standard deviation units. 
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5.5.6 Separation of sample subgroups using selected genes 
 

Highly selective genes for a better discrimination of sample subgroups were selected from the 

Fisher ratio and gene shaving clusters. The selected top 5 genes of each Fisher ratio cluster 

where supplemented with certain genes from gene-shaving clusters as these were the most 

different compared to the Fisher ratio selection as can be seen in table 5.2. Those genes from 

gene shaving clusters were used that were unique and had references in online databases 

denoting them as being cancer related. This selection of these 66 genes made a better 

subgroup separation possible. 
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Dendrogram using Ward's method

 

Fig. 5.16 Dendrogram of all samples using 66 genes. Most sample subgroups fall into 
their own clusters. The two BCR-ABL samples marked with the arrow also 
have a hyperdiploid karyotype and are therefore also clustered correctly. 
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The heterogeneous character of the BCR-ABL subgroup was already mentioned in the original 

data publication paper [86]. Two cases of BCR-ABL (marked with an arrow in figure 5.16) 

have a karyotype showing the presence of both the Philadelphia chromosome and a 

hyperdiploid karyotype consisting of more than 50 chromosomes, including trisomy of 

chromosomes X and 21. They are therefore clustered correctly according to their karyotype.  

This can also be seen in figure 5.17.  

 

 

 
Fig. 5.17 Plot of samples using the first three principal components. The disperse 

distribution of BCR-ABL samples is visible (with the two BCR-ABL samples 
having hyperdiploid karyotype marked with arrows [A], and a third sample 
often misclassified as member of the hyperdiploid>50 subgroup, marked with 
arrow [B]).  
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5.5.7 Selection of genes for differentiation of the Other-subgroups 
 

Samples in the group denoted as Others have normal, pseudodiploid and hypodiploid 

karyotypes. Some of these samples have a distinct gene expression profile and have been 

defined as members of the Novel subgroup in the original paper [86]. This novel subgroup 

could also be identified using gene-shaving. A clear grouping of the samples from different 

Other-subgroups is visible using the top 5 genes selected by a Fisher ratio calculation 

comparing one Other-subgroup with the rest of the Other-samples (see figure 5.18). 

 

 

 
Fig. 5.18 Separation of samples from different Other-subgroups using 20 genes in total, 

selected by one against the rest Fisher ratio calculation. 
 

 

It is also possible to differentiate between samples from the Novel group and all other samples 

using the genes from the gene shaving cluster 7 (figure 5.12). 
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Fig. 5.19 Separation of samples from the Novel-subgroup from all other samples using 

86 genes selected by gene-shaving (genes from cluster 7 in figure 5.12). 
 

 

As a differentiation and cross-validation of some subgroups of the Other sample-group is not 

feasible because they only contain three or four samples, only one classifier for the 

differentiation of the Novel subgroup was created. Samples in this subgroup can be separated 

from the rest of the samples in the Other-group using one gene. 

 

-1 -0.5 0 0.5 1 1.5 2 2.5
gene expression [SD]

 
Fig. 5.20 Separation of samples from the Novel group from the rest of samples of the 

Other group using only one gene. Pyramids: Samples in the Novel group; 
Circles: rest of the samples in the Other-group. Values denote the gene 
expression in standard deviations. 

 

A good separation of the rest of the Other-subgroups (Hypodiploid, Normal_diploid and 

Pseudodiploid) seems possible. More samples of this category should be analyzed to 

determine the feasibility of this discrimination. As can be seen in figure 5.21, Hypodiploid, 

Normal_diploid and Pseudodiploid samples are separated using genes selected by Fisher ratio 

calculations. 
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 A   Separation of 

Hypodiploid samples 

(pyramids)  from the 

rest. 

 

B  Separation of 

Normal_diploid 

samples (pyramids) 

from the rest. 

 

C  Separation of 

Pseudodiploid 

samples (pyramids) 

from the rest. 
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Fig. 5.21 (A) Separation of the four Hypodiploid samples from the rest of the samples 
(128 in total); the diagonal between the first and second principal component 
is shown. (B) Separation of the three Normal_diploid samples from the rest of 
the samples (129 in total). (C)  Separation of the eight Pseudodiploid samples 
from the rest of the samples (124 in total), each time using genes selected by 
Fisher ratio calculations  

 

5.5.8 Comparison of different selection methods 
 

Each method for gene selection yielded a different gene-list. The top genes from each 

selection were compared with one another to gain information on the resemblance of the 

selections. 

 

Tab. 5.2A Resemblance of gene lists selected using different methods (top 100 genes) 
 

A   Percentage of genes contained in 

  
  Fisher Ratio SAM PAM Gene-Shaving 

Fisher Ratio 100 63 53 37 

SAM 45 100 56 36 

PAM 45 65 100 35 
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Gene-Shaving 25 33 30 100 
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Tab. 5.2B Classification accuracies using the top genes from each selection  

 

 B   
Fisher 
Ratio SAM PAM Gene-

Shaving 
Accuracy 98.5% 98.2% 96.8% 93.4% 

7 groups 
Number of genes 70 98 89 105 

Accuracy 99.4% 99.1% 98.8% 96.0% 
6 groups 

Number of genes 60 84 88 90 
 

The selection process was done using all samples. 30% of the samples were then left out in cross 
validation for classification. Classification was done with a linear-SVM classifier. The number of 
genes was selected using selection scores provided by the different algorithms. Classification was 
done using all groups and only six groups (leaving out the Others sample subgroup). This was done 
as the centroid for this seventh class only yielded one gene. 

 

It is interesting to note that the highest similarity in selection for the SAM list lies in the PAM 

list and vice versa. The highest accuracy when classifying the samples using a linear SVM 

classifier (see also chapter 5.6) was achieved by using the Fisher ratio selection, followed by 

the SAM and the PAM selections. The classification of the Other-samples leads to a high 

misclassification rate using the PAM list, as only one gene was selected by the algorithm in 

the shrunken centroid of this sample subgroup. To confirm the order of the classification 

accuracies, classifications were performed using only six sample subgroups and discarding 

the samples of type Other. The same order of accuracies was observed, as can be seen in table 

5.2B. It is to be noted that the differences in accuracies are only slight ones (except for the 

gene shaving selection) and the different methods perform very similarly using this dataset. 

The classification by PAM itself yielded a classification accuracy of  96.3%. 

 

5.6 Sample Classification 

5.6.1 Introduction 
 

Cross validation was used to evaluate the accuracy of a classification model. 30% of each 

sample subgroup were left out in the training of the classifier and classified afterwards (38 

samples in total). This was done 100.000 times.  A linear support vector machine classifier 

was used for classification. The routines used are from the OSU SVM toolbox (v3.0) for 

Matlab by Junshui Ma, Yi Zhao, and Stanley Ahalt, Department of Electrical and Computer 

Engineering, Ohio State University. 

 



Analysis of Leukemia Data                                                                                                            93

5.6.2 Main Classifier 
 

The mean misclassification rate using the 66 genes selected  in 5.5.6 was 1.2 %. The main 

erroneous classifications being  

 

1. classifying a BCR-ABL sample as Hyperdiploid>50, 

2. classifying an Other sample as TEL-AML1. 

 

96% of the misclassified BCR-ABL samples were the two samples that also had the 

hyperdiploid>50 karyotype. Only one other BCR-ABL sample was misclassified (sample bcr-

abl#3). To minimize this error, two further classifiers were appended to the classification 

process. 

 

5.6.3 BCR-ABL classifier 
 

Fisher ratio calculations were performed comparing BCR-ABL samples with hyperdiploid>50 

samples and the top10 genes were selected.  

 

 
Fig. 5.22 Plot of the first three principal components using ten genes selected by Fisher 

ratio calculations using BCR-ABL and hyperdiploid>50 sample subgroups 
only. 

 

All samples previously classified as BCR-ABL could now be classified as hyperdiploid>50. It 

is to be noted that a classification of the two BCR-ABL samples marked in figure 5.16 and 

PC1
PC2
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5.17 as members of the hyperdiploid>50 sample subgroup is also correct but as the BCR-ABL 

translocation has a worse survival prognostics, a clear identification of a sample as being a 

member of this group is essential to administer the best treatment possible. The third BCR-

ABL sample also classified this way should be analyzed further to determine if it does not 

actually also have these sorts of genetic lesions. The differentiation of BCR-ABL from 

Hyperdiploid>50 samples in this step had an accuracy of 100%. This makes it possible to 

define those BCR-ABL samples having a hyperdiploid>50 karyotype with an accuracy of 96%.  

 

5.6.4 TEL-AML classifier 
 

Fisher ratio calculations were performed comparing TEL-AML samples with the Other-

subgroup samples. The top genes were selected and supplemented with genes from the gene 

shaving clusters assigned to these two sample groups.  

 
Fig. 5.23 Plot of the first three principal components using 11 genes selected by Fisher 

ratio calculations and gene shaving clusters using TEL-AML1 and Other 
sample subgroups only. 

 

Utilization of 11 genes produced an overall classification accuracy of 100%. 
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5.6.5 Novel-group Classifier 
 

The classification of Novel-samples with an accuracy of 100% was added to the classification 

chain, providing a means to classify a sample into 8 different groups (BCR-ABL, E2A-PBX1 , 

Hyperdiploid>50, MLL, T-ALL, TEL-AML1, Novel and Others ). 

 

 

5.6.6 Final sample subgroup classification  
 

The main classifier was used to make a preliminary classification. All samples classified as 

hyperdiploid>50 or TEL-AML1 were then subjected to their respective follow-up classifier. 

This resulted in an average accuracy of class assignment in cross-validation using a total of 88 

genes of 99.97%, with a range from 99.9% to 100%.  

 

 

Tab. 5.3 Subgroup prediction accuracies using 88 genes selected with Fisher ratio 
calculations and gene shaving. 

 
 

Subgroup Apparent 
Accuracy Sensitivity Specificity 

BCR-ABL 100.0 100.0 100.0 
E2A-PBX1 100.0 100.0 100.0 

Hyperdip50 100.0 100.0 100.0 
MLL 99.8 99.8 100.0 

T-ALL 100.0 100.0 100.0 
TEL-AML1 100.0 100.0 100.0 

Others 99.8 99.9 100.0 
Novel* 99.8 99.9 100.0 

 

The differentiation into the Novel group was done using only the samples 
previously classified as being members of the Others-subgroup. This 
differentiation of the Others-subgroup had an accuracy of 100%. 
 

 

5.7 Feature selection bias and true accuracies 
 
 
The performance of a classifier using a subset of genes is assessed by using cross validation 

as described above. If the subset of genes was selected using all samples, there is a selection 
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bias, leading to too optimistic classification accuracies. A better estimate of true accuracies 

can be gained by applying the feature selection itself inside a cross-validation scheme, i.e. 

using a group of samples for selection of genes suited the best for class separation and 

applying a classifier using these genes on the rest of the samples that were completely hidden 

in the selection process [78]. A leave-one-out approach makes it possible to implement this 

procedure when working with a small number of samples that is common when dealing with 

microarray data.  

70% of the samples of the leukemia dataset were used to select genes through Fisher ratio 

calculation in each of the 30 performed iterations. These genes were then used  to perform the 

above mentioned classifications of the 30% of the samples completely withheld previously.  
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Fig. 5.24 Misclassification rates for the classification of previously withheld samples. 

Boxplots show upper and lower 25th percentile. 30% of the samples were withheld from the gene-
selection procedure. A certain number of genes was  selected and classification then performed on 
the 30% of the samples previously left out. This procedure was performed 30 times for each 
number of genes. 

 

 

An accuracy of 98.1% using 120 genes could be reached using this method of increased 

selection bias correction. 
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Tab. 5.4 Subgroup prediction accuracies using 120 genes selected with Fisher ratio 
calculations after selection bias correction 

 

Subgroup True Accuracy Sensitivity Specificity 

BCR-ABL 88.4 88.4 100.0 
E2A-PBX1 100.0 100.0 100.0 

Hyperdip50 100.0 100.0 99.1 
MLL 100.0 100.0 100.0 

T-ALL 97.6 97.6 100.0 
TEL-AML1 100.0 100.0 100.0 

Others 100.0 100.0 100.0 
 

5.8 Effects of using different gene expression summary algorithms 
 

The different gene expression summary algorithms used were the Li-Wong model, the RMA 

model, the MAS perfect match only model and the MAS model implemented in the 

BioConductor packages for R. The same background correction and scaling methods were 

used as described by the authors of the different gene expression summary techniques.  

Several probesets are located on the U133A as well as the U133B chip. The gene expression 

summary algorithm should calculate very similar values for these replicates when regarding 

one and the same sample. Replicate pairs were used to assess this similarity of calculated 

signals. The mean relative difference in signal between replicates was calculated to estimate 

how good each summary technique performed. Figure 5.25 shows that the RMA method 

performed best, with a mean deviation of 0.2%. The MAS method performed worst, with a 

mean deviation of 1.3%.  
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Fig. 5.25 Mean deviation of the signals of duplicate probesets in percent. Boxplots 

show upper and lower 25th percentile. 
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These findings concur with the results of Speed et al. [117]. The MAS PM only method, 

which is the same as the MAS method without subtraction of the MM value (or rather the IM, 

Ideal Mismatch value, see [89]), produces data with clearly lower signal deviations between 

replicates. This concurs with the findings of Irizarry et al. that a subtraction of MM signals 

increases the noise [118]. The Li-Wong method also performs worse than the RMA method. 

Although this also concurs with the findings of Calogero et al. [119] and Irizarry (RMA 

having better precision), the reason for such strong differences could also be that not enough 

microarrays for a good convergence of  the Li-Wong model had been used. The authors of the 

method suggest using at least 10 microarrays. Eleven microarrays were used to generate the 

data, as a higher number was not possible due to memory problems during computation.  

Results of a comparison of the genes selected by Fisher ratio can be seen in table 5.5. There 

are great differences in selection, at least when regarding the top 20 or even the top100 genes 

for each class. 

 
 
Tab. 5.5 Percent of genes being the same in the top 20 genes found by Fisher ratio 

one – against – rest selection using different gene–expression gene 
expression summary algorithms 

 
Genes compared with top 20 genes from 

 
Li-Wong MAS PM only MAS RMA 

Li-Wong 100% 54% 52% 49% 

MAS PM only 54% 100% 62% 51% 

MAS  52% 62% 100% 51% 

To
p 

20
 g

en
es

 
fr

om
 

RMA 49% 51% 51% 100% 

  
Fisher ratios were calculated using samples from one group and compared with all other samples. The 
seven resulting groups of top 20 genes were compared individually with the same group calculated, 
using a different summary algorithm. Results were then combined to create the overall percentage of 
similarity. This overall percentage is very similar to the percentages in single comparison groups. The 
percentages stay on the overall same level if the top 100 genes are compared (deviation of  ± 2-
3 %points). 

 
 
Samples were classified using a linear SVM classifier using genes selected by Fisher ratio 

calculations (20 genes for the differentiation of each subclass against the rest) and by PAM 

(225 genes selected by score). As PAM had difficulties selecting genes for the centroid of the 

class Others, only six sample subgroups were used in this analysis. Genes were selected using 

the entire dataset. 
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Tab. 5.6 Misclassification rates using a linear SVM classifier applied to six samples 

subgroups (Others omitted) using genes selected by Fisher ratio criterion and 
PAM.  

 
 Li-Wong MAS PM only RMA MAS 

Fisher Ratio, 60 genes 2.0% 1.2% 1.4% 1.3% 

PAM, 225 genes 1.6% 1.5% 2.3% 1.9% 

 
The classifier performed best when using the data generated by the MAS PM only method in 

both the Fisher ratio and PAM case. The other method’s order varies depending on the gene 

selection procedure used. The MAS perfect match only method yields the best results in 

classification and the RMA method in signal reproducibility; these methods are thus to be 

favored. 

 

5.9 Discussion of leukemia data analysis  

 

Data analysis can only yield informative results if the data used has the needed quality [120, 

121]. Analysis of quality parameters has shown the leukemia dataset to be of overall good 

quality. One drawback is the time sequence in which the samples were measured [69]. U133A 

and U133B chips were measured at completely separate time intervals and some sample 

subgroups were not shuffled with other samples well enough and can be found in almost 

completely continuous blocks. Although these facts did not prove to have any detectable 

effects on the data or class assignment, a correct implementation of the measurement 

sequence could have easily been done without any further cost.  

Signal distributions on the microarrays often showed an area dependant background and 

signal intensity drift. This drift was more pronounced than in other measurement series like 

the Latin Square dataset [105], a CD4 Lymphocytes dataset [96] or a proprietary dataset 

containing several hundred measurements from Haferlach et al.[97]. As could be shown with 

histogram comparisons, a global scaling, as performed by the authors of the original dataset, 

is not enough to compensate for these scaling differences. These different background and 

scaling values can be accounted for using the novel methods created in this work.  

Further, large artifacts could be found in the data. These cells were not flagged in the original 

CEL-files and were thus incorporated in the downstream analysis using the MicroArray Suite. 

The artifacts could be easily found using the novel, automatic detection scheme developed. 
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As expected, the use of all genes for class separation yielded worse results than when using a 

subset of genes. This is only logical, as most genes do not show any differential expression. 

Including them in the class separation procedure means incorporating a higher noise 

component, barely contributing to the net informative signal [122].  

Several different gene selection algorithms were used to select the differentially expressed 

genes, yielding several groups of genes with an expression pattern highly individual for one 

certain leukemia subgroup. Gene lists created using these methods differed from one another 

as the methods are based on different statistical methods. The most different list in 

comparison with the other lists was created by the gene-shaving procedure. This coincides 

with the fact that this method was the only one used without the a priori class assignment 

information. The preliminary classification results using a linear SVM classifier showed the 

gene lists selected by Fisher’s ratio calculations, SAM and PAM, to perform similarly. The 

classification using genes selected by gene-shaving performed worse, showing that the 

selected genes are less well suited for class separation than those selected by the other 

methods. This fact can be attributed partially to the lack of a priori knowledge [123] but also 

infers a selection of subsets of genes with coherent expression patterns and large variation 

across subgroups which were not optimal. In gene-shaving, each shaving sequence starts with 

the entire expression matrix which is then shaved down to a minimal cluster size. The 

adequate size of a cluster is derived from the gap estimate [84]. This estimate was not optimal 

at all the times, leading to clusters that included less predictive genes which might also have 

contributed to the worse classification results.  

The Novel sample-subgroup previously defined by Yeoh et al. [113] could be clearly seen 

when using gene-shaving. Using the genes hereby selected made it possible to separate these 

samples from all other samples in the dataset.  A separation of the different Others sample-

subgroups seems possible but could not be further analyzed due to the lack of enough samples. 

The promising preliminary class separation results speak in favor of analyzing further samples 

of these types.  

The dataset also included two samples which were classified as BCR-ABL samples and also 

had a hyerdiploidity with more than 50 chromosomes. These samples were primarily 

classified as members of the hyperdiploid>50 group. Although this classification is 

molecularly correct, it was defined as a misclassification as the detection of the BCR-ABL 

status is far more important due to less good survival predictions for this leukemia subgroup 

[3]. Including these two samples into the study therefore made an evaluation of classification 

rates more difficult but also helped make it more realistic, as these kind of samples can also 
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appear in real life diagnostics. A detection of these two samples that have a BCR-ABL as well 

as a hyperdiploid>50 status was only possible whenever the gene selection was done using all 

samples. This selection procedure introduces a selection bias as those samples which are to be 

classified are also used in the selection step [78]. This bias can be accounted for by 

implementing the feature selection step into the cross-validation routine. The overall 

classification accuracy dropped from 99.9% using 88 genes to 98.1% using 120 genes 

selected in this unbiased manner. The latter value is a more realistic estimate of the 

classification accuracy. Although a 100% accuracy is desired, the reality shows that complex 

cancer subtype classifications like the one at hand frequently fall short of this goal. It will 

have to be determined what level of diagnostic accuracies is needed to move this 

biomolecular approach into a clinical setting. One major advantage of these methods over 

classical diagnostic techniques like cytogenetic analysis is that their accuracies do depend far 

less on the level of expertise of the practitioner. Although the classification might be 

improved by the use of more selected genes that are informative, raising their numbers does 

not only hamper the creation of a low-density chip but it is also difficult to gain the license 

rights needed to use all of these genes for a certain task or a certain device [124]. 

Analysis of different gene expression summary algorithms showed the MAS perfect match 

only approach to yield more reproducible values than the MAS method. This concurs with the 

opinion of Naef et al. [62] and others that the expression measure should only be based on the 

PM signal.  
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6 Summary and Outlook 
 
 

The life sciences are currently undergoing a rapid revolution that is driven by large-scale 

genome sequencing, advances in structural and chemical biology, bioinformatics, 

chemometrics, imaging technology and bioanalytics. These disciplines have long existed as a 

collection of knowledge fields with well-defined territories but are now merging together to 

form new, powerful interdisciplinary domains. One of these new domains deals with the 

measurement of gene-expressions by quantitative analysis of the amount of the corresponding 

mRNA-molecule-content in cells. This bioanalytic technique, combined with state of the art 

chemometrics and bioinformatics, makes it possible not only to gain information on the role 

of certain genes in diseases like cancer, but also to classify unknown samples as being, for 

example, members of a certain cancer subtype. This molecular approach makes it possible to 

use specially designed therapies to maximize the rate of survival of cancer patients.  

Methods were developed in this work dealing with the complete processing chain used for the 

analysis of Affymetrix U133 DNA biosensor data. The aim was to increase the overall 

quality of the signals derived from microarray experiments, to find indicators applicable in 

quality management and to select diagnostic markers for the differentiation of pediatric 

leukemia cancer subtypes as one example application.  

A novel method for the calculation and subtraction of background signals and signal scaling 

was created based on thin plate-spline interpolation. Many microarrays exhibit spatially 

inhomogeneous signal intensity distributions. This can be due to thermal effect, incomplete 

washing, diverse hybridization performances etc. It is important to correct these deviations in 

order to make signals from different parts of the microarray comparable. The developed 

methods use the information of several hundred data points provided by the border area of the 

microarray. The number of available data points makes a nonlinear interpolation possible. 

This method has shown to be well suited in interpolating noisy data without giving rise to 

overfitting. The application of the interpolation method to calculate the area dependant 

background signal and the deviations in signal scaling made it possible to improve the overall 

signal quality of Affymetrix U133 microarrays. 

The data used was handled using a newly developed microarray data management system 

combining a SQL database and a file server with Matlab.  This system made it possible to 

store all data as well as analysis results in a safe and reliable way and is compliant with the 

MIAME standard. This data included quality measures calculated using novel methods, one 

main aspect being the automatic detection of signal artifacts on microarrays. This constitutes a 
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major enhancement as the MicroArray Suite of Affymetrix does not provide for an automatic 

artifact detection scheme. Almost all of the several hundred U133 microarrays analyzed 

contained artifacts. Their size and form varies significantly - from small round speckles or 

fine scratches up to large areas containing ten thousands of cells. The detection of these cells 

is important as their usage can have drastic consequences in the calculation of the expression 

value of the corresponding gene. The developed methods are able to detect these artifacts in a 

fast and reliable way and were fine-tuned to flag only a minimal number of differentially 

expressed cells as outliers. Detailed analysis of the artifacts provides information on the 

quality of the measurement which can be used to raise the quality of the entire analysis 

process. Artifact detection is achieved by using data from several microarrays, combining 

these signals to a virtual microarray containing the median values of same cells from all 

sensors. It is possible to detect anomalies on a microarray by comparing it with this median-

microarray. Detection of known and previously unknown artifacts showed this procedure to 

be very reliable.  

Microarray measurements of leukemia samples were used to select a group of genes suited 

best for differentiation of seven pediatric leukemia subtypes (BCR-ABL, E2A-PBX1, 

Hyperdiploid with more than 50 chromosomes, MLL, T-ALL, Others). A classification 

accuracy of 98.1% was achieved using 120 genes, performing a rigorous cross-validation by 

also including the gene selection process in the cross-validation procedure. Otherwise a 

potentially large selection bias, i.e. an optimistically biased error assessment, might arise. 

Different selection methods were compared, showing that Fisher ratio calculation, SAM and 

PAM perform similarly when applied to the pediatric leukemia dataset. Gene-shaving 

performed worse as it does not contain a priori class assignment knowledge. The Novel 

sample subgroup previously defined by Yeoh et al. [113] was found using gene-shaving. It 

was possible to separate all samples of this subgroup from all other samples using the genes 

selected by this method. 

Analysis of different gene expression summary algorithms (MAS, MAS PM-only, Li-Wong-

model, RMA) showed the MAS PM-only approach to yield more reproducible values than the 

MAS method. This concurs with the opinion of Naef et al. [62] and others that the expression 

measure should only be based on the PM signal. Further, the MAS PM-only as well as the 

RMA methods are good choices to achieve low deviation between replicate measurements and 

good classification results.  

It will have to be determined what level of diagnostic accuracies is needed to move this 

biomolecular approach of cancer detection and classification into a clinical setting, especially 
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as it may also be difficult to gain the license rights needed to use certain genes for a certain 

task or a certain device. But there is no doubt that DNA biosensors based on the Affymetrix 

technology will be used in clinical diagnostics in the near future. 
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