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Abstract. Given two elliptic curves over Q that have good ordinary reduction at an odd
prime p, and have equivalent, irreducible mod p Galois representations, we study congru-
ences between the Euler characteristics and special L-values over certain noncommutative
extensions of Q.

Introduction

Let p be an odd prime, and E1, E2 be two elliptic curves defined over Q with
good ordinary reduction at p. Suppose that the residual representations E1[p]
and E2[p] are isomorphic as Gal(Q̄/Q)-modules and are irreducible. Consider
the field K = Q(µp) and F = K(m1/p) where m is an integer which is p-
power free and coprime to the conductors of E1 and E2. For a field extension
L of Q, let Lcyc denote the cyclotomic Zp-extension of L and Sel(Ej/Lcyc)
be the p-Selmer group of Ej , j = 1, 2. We denote the False Tate extension

Kcyc(m
1/p∞

) by F∞. For a finite set of places Σ0 ofQ, the imprimitive p-Selmer

group (see Section 1) of Ej , j = 1, 2, with respect to Σ0 is denoted by SelΣ0 .
In [12], Greenberg and Vatsal study the Iwasawa invariants of the imprimitive
p-Selmer groups of E1 and E2 over Qcyc for certain choices of Σ0, and prove
that they are equal under additional hypotheses. In addition, they compare
the special values of the p-adic L-functions of E1 and E2, establishing certain
congruence results between them. Our goal in this article is twofold. First, we
study the Euler characteristics of the Selmer groups of E1 and E2 (when they
are finite), both over the cyclotomic extensions Kcyc and Fcyc as well as over
the extension F∞(see Theorem 3.4). We study the conditions under which the
Euler characteristics of Sel(Ej/L), j = 1, 2, are simultaneously trivial where
L is either of these cyclotomic extensions or F∞ (see Section 3). Second,
we compare certain p-adic L-values of E1 and E2 over F , when p = 3 (see
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Theorem 3.8). Further, we also consider similar questions when F is a dihedral
extension ofQ of degree 2pn for some integer n ≥ 1. For establishing the results
on the Euler characteristics, we extend the method of [12] to study the Iwasawa
invariants of the imprimitive Selmer groups. But our analysis of the optimal set
Σ0 requires results of Hachimori–Matsuno [13] and those of Emerton–Pollack–
Weston [8]. In particular, the optimal set Σ0 that is considered here is smaller
than that of Greenberg and Vatsal. For the results on L-values, we rely on
the results of Bouganis [1], [18] and of [12]. In addition, we have made use of
results of Hachimori and Venjakob [14] and T. and V. Dokchitser [5], especially
in studying the Euler characteristics over F∞.

The article consists of five sections, Section 1 introduces notation and is
preliminary in nature. In Section 2, we study the Euler characteristics of
the imprimitive Selmer groups, while in Section 3, we establish congruence
results for the Euler characteristics over the False Tate extension and compare
the p-adic L-values for p = 3. In Section 4, we establish analogous results in
the dihedral setting. The final section illustrates our theoretical results with
concrete numerical examples.

The first author warmly thanks the University of British Columbia for hos-
pitality provided while this work was being completed. The second author
gratefully acknowledges the support of an NSERC grant, and also the hospi-
tality accorded at Universität Münster during the early stages of this work. We
warmly thank Tim Dokchitser for help with the numerical examples. Finally,
we would like to thank the referee for the helpful comments which helped us
improve the exposition.

1. Notation

Let E be an elliptic curve defined over a number field k and p be an odd
prime such that E has good ordinary reduction at primes of k lying above p.
Let Σ be a finite set of primes of k containing the primes of k lying above p,
the infinite primes and the primes of bad reduction of E. Denote by kΣ the
maximal extension of k unramified outside Σ. Given an extension L such that
k ⊂ L ⊂ kΣ, the Selmer group Sel(E/L) of E over L is defined as the kernel
of the “global to local” map

(1) H1(kΣ/L,Ep∞)
γL−−→

∏

v∈Σ

Hv(L,E),

where for a finite prime v of k, Hv(L,E) :=
∏

w|v H
1(Lw, E[p∞])/ im(κL

w).

Here w runs over finite places of L that lie above v, Lw is the union of com-
pletions of number fields L′ at w, such that k ⊆ L′ ⊂ L, and κL

w denotes the
local Kummer map

(2) E(Lw)⊗Qp/Zp −→ H1(Lw, Ep∞).

Since p is odd, for an archimedean prime v we have Hv(L,E) = 0. Let Σ0

be a subset of Σ such that if v|p, then v /∈ Σ0. The imprimitive Selmer group
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SelΣ0(E/L) is defined as

SelΣ0(E/L) := Ker(H1(kΣ/L,Ep∞)
γ
Σ0
L−−→

∏

v∈Σ−Σ0

Hv(L,E)).

We have the following exact sequence

(3) 0 −→ Sel(E/L)
iL−→ SelΣ0(E/L)

j
Σ0
L−−→

∏

v∈Σ0

Hv(L,E).

PutXΣ0(E/L) := Hom(SelΣ0(E/L),Qp/Zp). If L/k is Galois, then XΣ0(E/L)

(resp. SelΣ0(E/L)) is a compact (resp. discrete) module over Zp[[Gal(L/k)]].
For a compact p-adic Lie group G and a finitely generated Zp[[G]]-module X ,
the G-Euler characteristic of X is defined as

χ(G,X) :=
∏

i

#(Hi(G,X))(−1)i ,

provided the groups Hi(G,X) are finite for all i and vanish for large i. When
this is the case, we say that the G-Euler characteristic χ(G,X) of X exists.
Similarly, for a discrete Zp[[G]]-module M , put

χ(G,M) :=
∏

i

#(Hi(G, M̂))(−1)i ,

where M̂ is the compact Pontryagin dual of M . For a number field k and
a p-adic Lie extension L of k, let τ be an Artin representation of Gal(L/k)
with coefficients in Zp. Let X

Σ0((E/L)⊗ τ) be the twisted imprimitive Selmer
group and put

χ(L/k, τ, E; Σ0) := χ(Gal(L/k), XΣ0(E/L)⊗ τ).

If τ is the trivial character then we shall drop τ from the notation of the Euler
characteristic. Similarly, if Σ0 is empty, then we shall suppress it from the
notation of the imprimitive Selmer group and Euler characteristic.

Let m be a positive integer such that m1/pn

/∈ k(µpn) for all n ≥ 1. Put

Kn = Q(µpn) and Fn = Kn(m
1/pn

) for n ≥ 1, and F∞ = ∪nFn. For a
number field k ⊂ F∞, we denote by Gk the Galois group Gal(F∞/k), and
Γk := Gal(kcyc/k).

2. Imprimitive Euler characteristic

Let E be an elliptic curve defined over a number field k ⊂ F∞ with good
ordinary reduction at primes of k lying above p. We shall assume that Σ
contains the primes of k lying above the prime divisors of m. To simplify
matters, we shall also assume that m is coprime to the conductor NE of the
elliptic curve. In particular, this latter assumption implies that the reduction
type of E does not change in any finite subextension of F∞ containing k. We
have the following result (see [16],[11, Cor. 4.9], [15]).
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Theorem 2.1. Suppose that Sel(E/k) is finite or k/Q is an abelian extension
and E is defined over Q. Then Sel(E/kcyc) is a cotorsion Zp[[Γk]]-module.

Corollary 2.2. Suppose that Sel(E/k) is finite or k/Q is an abelian extension

and E is defined over Q. Then γkcyc and jΣ0

kcyc
defined respectively in (1) and

(3) are surjective.

Proof. For the surjectivity of γkcyc , see [14, Thm. 7.2]. The surjectivity of jkcyc

follows by a simple argument using the snake lemma. �

Corollary 2.3. The maps γF∞
and jΣ0

F∞

are surjective.

Proof. It is well known (see [4]) that the surjectivity of γKcyc implies that the

map γF∞
is surjective. The surjectivity of jΣ0

F∞

follows from that of γF∞
. �

Definition 2.4. We define the following subsets of Σ. The set Σ1(E) is the
set of primes v of k such that v ∈ Σ0, v ∤ m and E has split multiplicative
reduction at v. Define Σ2(E) to be the set of primes v of k such that v ∈ Σ0,
v ∤ m, E has good reduction at v and the reduced curve has a point of order p.
Finally, Σ3(E) is the subset of Σ containing the primes v of k such that v | m,
v ∤ p, E has good reduction at v and the corresponding reduced curve has a
point of order p.

We remark that the set Σ3(E) is the set denoted by P k
1 (E) in [14]. Let l be

a finite prime of Q. For a finite prime v ∤ l of k, let

Pv(E, T ) := det(1− Frob−1
v T |Ml(E))

denote the characteristic polynomial of E at v, where Ml(E) denotes the l-
adic Galois representation associated to the Tate module of E. As the notation
suggests, the definition of Pv(E, T ) is independent of the choice of the prime
l. Recall that the local L factor Lv(E, s) of E at v is defined as

Lv(E, s) := (Pv(E,Normk/Q(v)
−s))−1,

where Normk/Q denotes the norm map from k to Q.

Lemma 2.5. For a finite prime v ∤ p of k where E has bad reduction, the
local Euler factor Lv(E, 1) at v is a p-adic unit if and only if E has nonsplit
multiplicative reduction or additive reduction at v. If v ∤ p is a finite prime of
k where E has good reduction, then Lv(E, 1) is a non p-adic unit if and only
if the corresponding reduced curve at v has a point of oder p.

Proof. This is well known (cp. [5, Rem. 4.6]). �

We remark that the above lemma says that if E has split multiplicative
reduction at a prime v ∤ p, then vp(Lv(E, 1)) ≤ −1, where vp denotes the
p-adic valuation such that vp(p) = 1.
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Lemma 2.6. Let E be an elliptic curve over a number field k and consider the
extension F∞ = k(µp∞ ,m1/p∞

). If χ(F∞/k,E; Σ0) exists, then we have that

χ(F∞/k,E; Σ0) = χ(F∞/k,E)×
∏

v∈Σ1(E)∪Σ2(E)

|Lv(E, 1)|p

where |.|p denotes the p-adic valuation normalized such that |p|p = 1/p.

Proof. For a prime w ∤ p, it is a well known fact that κF∞

w = 0, where we recall
that κF∞

w is the local Kummer map (cp. (2)). Thus we have for a prime v in
Σ0,

Hv(F∞, E) =
∏

w|v

H1(Fw,∞, Ep∞).

Fix a prime w of F∞ that lies above v. Denote by Gw the decomposi-
tion subgroup of Gk associated to w. We have that χ(Gk, Hv(F∞, E)) =
χ(Gw, H

1(Fw,∞, Ep∞)). This follows from Shapiro’s Lemma, and on using the

fact that Hv(F∞, E) = coindGk

Gw
(H1(Fw,∞, Ep∞)). In fact,we see from [14,

Prop. 4.7] that

χ(Gk, Hv(F∞, E)) = #H0(Gk, Hv(F∞, E)) = #H0(Gw , H
1(Fw,∞, Ep∞))

as the higher cohomology groups Hi(Gw, H
1(Fw,∞, Ep∞)) vanish for i ≥ 1.

If v|m then v ramifies in F∞ and in this case H1(Fw,∞, Ep∞)) = 0 (see [14,
Lemma 4.8]). Thus the Gk-Euler characteristic of Hv(E, k) vanishes if v|m.
Next, suppose that v ∤ m, and consider the restriction map resw

H1(kv, Ep∞)
resw−−−→ H1(Fw,∞, Ep∞))Gw .

From the proof [14, Lemma 4.8] we have that

#Ker(resw)/#Coker(resw) = #H1(kv(µp∞)/kv, E(kv(µp∞)p∞).

Let cv denote the local Tamagawa number of E at v and |.|p be the p-adic
valuation such that |p|p = 1/p. It is known (cp. [3, Lemma 3.4]) that |cv|−1

p =

#H1(kv(µp∞)/kv, E(kv(µp∞)p∞). We remark that [14, Lemma 4.8] is proved
under the assumption that p ≥ 5, but the same proof works even for p = 3.
On the other hand, we have that #H1(kv, Ep∞) = |Lv(E, 1)|p/|cv|p (see [3,
Lemma 1.11]). Thus we obtain #H0(Gw, H

1(Fw,∞, Ep∞)) = |Lv(E, 1)|p.
Therefore

χ(Gk, Hv(F∞, E)) = |Lv(E, 1)|p
From Corollary 2.3, we have that jF∞

is surjective. Since the Euler character-
istic is multiplicative in exact sequences, we have that

χ(F∞/k,E; Σ0) = χ(F∞/k,E)×
∏

v∈Σ0

χ(Gk, Hv(F∞, E)).

We have already remarked that the Gk-Euler characteristic of Hv(E/k) van-
ishes if v|m. Further, if v is a prime such that E has bad but not split mul-
tiplicative reduction, then by Lemma 2.5, we have that the local L-factor
Lv(E, 1) is a p-adic unit at v. The lemma now follows from the definition of
the sets Σ1(E) and Σ2(E). �
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Lemma 2.7. If Sel(E/k) is finite, then we have

χ(Kcyc/k,E; Σ0) = χ(Kcyc/k,E)×
∏

v∈Σ1(E)∪Σ2(E)

|Lv(E, 1)|p.

Proof. Let v ∈ Σ0. Let w be a prime of Kcyc such that that w|v. Then by an
argument similar to Lemma 2.6 we have that

χ(Gal(Kcyc/k), Hv(Kcyc, E)) = |Lv(E, 1)|p.

From Corollary 2.2, we have that jΣ0

kcyc
is surjective. The lemma now follows

by an argument similar to the proof of Lemma 2.6. �

Corollary 2.8. Let k ⊂ F∞ be a number field and put K = k(µp). If
χ(F∞/k,E; Σ0) exists, so does χ(Kcyc/k,E; Σ0) and we have that

χ(F∞/k,E; Σ0) = χ(Kcyc/k,E; Σ0)×
∏

v∈Σ3(E)

|Lv(E, 1)|p

Proof. From [14, Thm. 4.10] if χ(F∞/k,E; Σ0) exists then χ(Kcyc/k,E; Σ0)
also exists, and we have,

χ(F∞/k,E) = χ(Kcyc/k,E)×
∏

v∈Σ3(E)

|Lv(E, 1)|p.

We mention that [14, Thm. 4.10] is proved under the assumption that p ≥ 5.
This assumption was required in the proof of [14, Lemma 4.8]. A similar result
holds under the assumption that the reduction type of E does not change in
F∞ at every prime of bad reduction, which is valid in our case as (m,NE) = 1.
Now the corollary follows from Lemma 2.6, Lemma 2.7 and the definition of
the set Σ3(E). �

3. Congruence

As before, let k ⊂ F∞ be a number field. We shall assume through out this
section that k ⊃ µp. We shall need an equivalent but different definition of
the Selmer group of an elliptic curve with good ordinary reduction at p. We
shall use the same notation to denote this Selmer group. Let E be an elliptic
curve defined over k with conductor NE and good ordinary reduction at the

primes above p. For every prime v|p of k let Ẽv denote the reduced curve at
v. Since E has ordinary reduction at the primes above p, for every prime v|p
of k, Ẽv[p

∞] is of Zp-corank one. Put

F+
v Ep∞ := kernel(E[p∞] −→ Ẽv[p

∞]).

The subgroup F+
v Ep∞ has Zp-corank one and is invariant under the action of

the decomposition group Gv at v. We mention that the Gv-submodule F+
v Ep∞

is equal to Êv[p
∞], where Êv is the formal group associated to E at v.
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For a prime v of k and a prime w|v of kcyc let Cw = Ep∞ if w ∤ p and

Cw = Ep∞/F + vEp∞
∼= Ẽv[p

∞] if w|p. Let Σ be a finite set of primes of k as
in Section 1. Suppose v ∈ Σ is a prime of k. If v ∤ p then put

Jv(E, kcyc) =
∏

w|v

H1(kw,cyc, Cw).

If v|p then set

Jv(E, kcyc) =
∏

w|v

H1(kurw,cyc, Cw),

where w varies over primes of kcyc and kurw,cyc denotes the maximal unramified
extension of kw,cyc. The Selmer group Sel(E/kcyc) is defined as the kernel of
the map

H1(kΣ/kcyc, Ep∞) −→
⊕

w∈Σ

Jv(E, kcyc)

For the equivalence between the above definition of the Selmer group and the
definition considered in Section 1, we refer the reader to [12, p. 42]. We further
mention that in [12] the case of k = Q is considered. But the equivalence
of the two definitions of the Selmer groups considered over the cyclotomic
extension of a more general number field can be proved similarly. For any
subset Σ0 of Σ not containing the primes of k lying above p, the imprimitive
Selmer group SelΣ0(E/kcyc) associated to the set Σ0 is defined similarly by
ignoring the local Galois cohomology groups at primes in the set Σ0. The
Selmer group SelΣ0(E[p]/kcyc) associated to the residual representation E[p] is
analagously defined by replacing the group Ep∞ by E[p] and Ep∞/F+Ep∞ by
(Ep∞/F+Ep∞)[p].

Let E1 and E2 be two elliptic curves defined over k with good ordinary
reduction at the primes above p, and such that E1[p] ∼= E2[p] as a Gal(Q/k)-
module. Let N1 and N2 be the conductor of E1 and E2 respectively and N̄
denote the prime to p part of the conductor of E1[p]. For the rest of the section,
the set Σ will denote the finite set of primes v of k such that v satisfies one of
the following four conditions: (i) v|N1N2, (ii) v|m, (iii) v|p, (iv) v is an infinite
prime of k. We shall also assume that m is coprime to N1N2.

Definition 3.1. Let Σ(Ej) denote the subset of Σ of primes v such that v ∤ N̄
and Ej has split multiplicative reduction at v for j = 1, 2. In the case p = 3,
we shall further assume that Σ(Ej) also contains the finite primes v of k which
satisfy the following conditions: (i) v | Nj/N̄ , (ii) Ej has additive reduction at
v and (iii) the local Tamagawa number cv is not a 3-adic unit.

Let Σ0 be a subset of Σ(E1) ∪ Σ(E2).
The following well known lemma will be crucial for what follows.

Lemma 3.2. Let M be a discrete Zp[[Γk]] ∼= Zp[[X ]]-module such that its

Pontryagin dual M̂ is a finitely generated and torsion Zp[[Γk]]-module. Let
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f(X) be a generator of the characteristic ideal of M̂ . If MΓ is finite, then
χ(Γk,M) exists and we have

f(0) = χ(Γk,M).

Proof. See [9, Lemma 4.2] �

Remark 3.3. We remark that in particular the above lemma says that if
χ(Γk,M) exists, then it is always an integer. Further, it follows from this

lemma and the structure of the torsion Zp[[Γk]]-module M̂, that if χ(Γk,M) =

1, then M is finite. In particular, if χ(kcyc/k,E1; Σ0) = 1 then SelΣ0(E1/kcyc)

is finite. In fact, the finiteness of SelΣ0(E1/kcyc) implies that SelΣ(E1/kcyc) = 0
(cp. [9, Prop. 4.14]).

Theorem 3.4. Suppose that

(a) E1(k)[p] = 0.
(b) Σ(E2) ⊂ Σ0 ⊂ Σ(E1) ∪ Σ(E2).

If χ(F∞/k,E1; Σ0) = 1, then Σ0 = ∅ and

χ(F∞/k,E2; Σ0) = χ(F∞/k,E1) = χ(F∞/k,E2) = 1.

Proof. Suppose that χ(F∞/k,E1; Σ0) = 1. As the cyclotomic Euler character-
istic is integral, Corollary 2.8 along with the hypothesis χ(F∞/k,E1; Σ0) = 1,
implies that χ(kcyc/k,E1; Σ0) = 1 and Σ3(E1) = ∅. Recall that Σ3(Ej) for
j = 1, 2, is defined (see Definition 2.4) as the set of finite primes v of k such
that v|m and the corresponding reduced curve at v has a rational point of
order p. Note that Lv(E2, 1) is not a p-adic unit if and only if the reduced
curve at v has a point of order p (see Lemma 2.5). Thus for every v|m, we
have that Lv(E1, 1) is a p-adic unit. Since E1[p] ∼= E2[p] and m is coprime to
N1N2, we get that for every v|m, Pv(E1, T ) ≡ Pv(E2, T ) mod p. This implies
that Lv(E2, 1) is also a p-adic unit. This implies that Σ3(E2) = ∅.

Since χ(kcyc/k,E1; Σ0) = 1, from Remark 3.3 we have that SelΣ0(E1/kcyc) =

0. We shall show that SelΣ0(E2/kcyc) = 0 as well. To do this, it is convenient
to use the second definition of the Selmer group. Consider the natural map

SelΣ0(Ej [p]/kcyc)
aj−→ SelΣ0(Ej/kcyc)[p].

It follows from the proof of [12, Prop. 2.8] that aj is injective for j = 1, 2.

Since SelΣ0(E1/kcyc) = 0, we get that SelΣ0(E1/kcyc)[p] = 0 and therefore

SelΣ0(E1[p]/kcyc) = 0. This implies that SelΣ0(E2[p]/kcyc) = 0. Let v ∈ Σ\Σ0

be a finite prime of k such that v ∤ p. Assume that w is a prime of kcyc lying
above v. Consider the map

H1(kw,cyc, E2[p])
gw−−→ −→H1(kw,cyc, E2,p∞)[p].

The kernel of gw is given by H0(kw,cyc, E2,p∞)/p. We claim that gw is injective,
and prove this statement by considering the following different cases:
a) Suppose that E2 has good reduction at v. Then it follows from the proof of
[8, Lemma 4.1.2] that H0(kw,cyc, E2,p∞) is divisible, and gw is injective.
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b) If E2 has nonsplit multiplicative reduction at v, then H0(kw,cyc, E2,p∞) = 0
(see [13, Prop. 5.1(iii)]) and again gw is injective for such primes.
c) Next, suppose that E2 has additive reduction at v. We have two further
subcases here, depending on whether v ∤ N2/N̄ and v | N2/N̄ . Assume first
that v ∤ N2/N̄. We then have ordv(N2) = ordv(N̄) and the conclusion follows
from [8, Prop. 4.1.2]. Suppose now that v | N2/N̄ and either p ≥ 5, or
p = 3 and the local Tamagawa number cv is a 3-adic unit. The vanishing of
H0(kw,cyc, Ep∞) then follows by [13, Prop. 5.1(iii)], and hence gw is injective.
Finally, we are left with the case p = 3 and cv is not a 3-adic unit. In this case,
the prime v belongs to Σ0 which is a contradiction, since we have started with
v in Σ \ Σ0. Hence the claim is proved.

We now consider the case when v|p. Consider the map

H1(kurw,cyc, E2,p∞/F+
v E2p∞ [p])

gw−−→ H1(kurw,cyc, E2,p∞/F+
v E2,p∞)[p].

We have H0(kurw,cyc, E2,p∞/F+
v E2,p∞) = E2,p∞/F+

v E2,p∞ , which is a divisible
group . Thus gw is injective, and this shows that a2 is surjective. Therefore
SelΣ0(E2/kcyc)[p] = 0, as SelΣ0(E2[p]/kcyc) = 0. This implies that the Eu-
ler characteristic χ(F∞/k,E2; Σ0) = 1. It also follows from Lemma 2.6 that
χ(F∞/k,E1) = χ(F∞/k,E2) = 1.

Let us now show that Σ0 is empty in this case. We prove this by showing that
Σ(E2) = ∅ and Σ0∩Σ(E1) is empty. Note first that when p ≥ 5, the set Σ(E2)
does not contain a prime of additive reduction. If v ∈ Σ(E2), and E2 has split
multiplicative reduction at v, then v is in Σ1(E2). But χ(F∞/k,E2,Σ0) = 1
along with Lemma 2.5 then yields a contradiction. Next suppose that p = 3
and E2 has additive reduction at v. Then as v is in Σ(E2), cv is not a 3-adic
unit. The triviality of χ(F∞/k,E2,Σ0) then implies that χ(Fcyc/k,E2) = 1.
Hence it follows from the explicit formula for the Euler characteristic of Selmer
group (cp. [3, Thm. 3.3]) that cv is a 3-adic unit. This is again a contradiction
and we thus obtain that Σ(E2) = ∅. By a similar argument we have that
Σ(E1) ∩ Σ0 is empty. Thus we get that Σ0 is empty, since by assumption
Σ0 ⊂ Σ(E1) ∪Σ(E2).

�

Remark 3.5. In hypothesis (b) above, if the subset Σ(E2) of Σ0 is replaced by
Σ(E1), then the conclusion is that χ(F∞/k,E1; Σ0) = 1, if χ(F∞/k,E2,Σ0) =
1. In particular, whenever Σ0 contains either Σ(E1) or Σ(E2), and the corre-
sponding imprimitive Euler characteristic is one, then we obtain that

χ(F∞/k,E1) = χ(F∞/k,E2) = 1.

The next corollary is a consequence of the symmetry of relation E1[p] ∼=
E2[p].

Corollary 3.6. Suppose that

(a) E1(k)[p] = 0.
(b) Σ0 = Σ(E1) ∪ Σ(E2).
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Then χ(F∞/k,E1; Σ0) = 1 if and only if χ(F∞/k,E2; Σ0) = 1. Moreover if
χ(F∞/k,E1; Σ0) = 1 then Σ0 = ∅.

Proof. The assertion is clear from the above remark. �

Next we consider an application of Theorem 3.4 in the case p = 3. Let E1

and E2 be elliptic curves defined over Q with good ordinary reduction at 3.
Put K = K1 = Q(µ3) and F = F1 = K(m1/3).

Let k ⊂ F be a field extension of Q. To keep track of field extensions, we
shall add the superscript k to the finite set of primes Σ and write it as Σk.
Similarly we shall write Σk

0 to denote the corresponding subset Σ0 of Σ. The
sets Σk(Ej) for j = 1, 2 are defined as in Definition 3.1, and we define Σk

3 as
the set of primes v in k such that v | m, v ∤ p and (any of) the reduced curve
has a point of order p in the residue field Fv. Note that if E1 has a point of
order p in Fv for a prime v|m and v ∤ p, then the same is true for E2.

We continue to assume that m is coprime to N1N2, so that the reduction
type of E1 and E2 does not change in F∞. In particular, this assumption
implies that the sets Σk(Ej) contain precisely those primes of k which divide
the primes in the set ΣQ(Ej) for every k ⊂ F∞. Since F/K is a p-extension,
we have that the set ΣF

3 contains the primes lying above the primes in the set
ΣK

3 .
Let ∆Q(µ3) denote the fundamental discriminant of Q(µ3). For a number

field k ⊂ F , let LS(Ej/k, s) denote the imprimitive L-function associated to
Ej for j = 1, 2 over k, where we have removed the local L-factors at the primes
in the set S, for the usual L-function L(Ej , s) associated to Ej . Suppose that τ
is a two dimensional representation of Gal(F/Q) with coefficients in Zp. Then
LS(Ej , τ, s) denote the twist of the corresponding imprimitive L-function. Let

Ω+
Ej

and Ω−
Ej

denote the Néron periods associated to Ej .

Lemma 3.7. Suppose that one of the following conditions hold: i) There is a
prime v of Q such that E1 has nonsplit multiplicative reduction at v, ii) There
is a prime v of K such that E1 has additive reduction at v and cv is a 3-adic
unit, iii) E1[3] is an irreducible Gal(Q̄/Q)-module and N̄ is squarefree. Then
we have that H0(F,E1[3]) = 0.

Proof. If i) holds, then as the reduction type does not change in K, there
exists a prime in K, which we again denote by v, such that E1 has nonsplit
multiplicative reduction at v. By [13, Prop. 5.1(iii)], E1,3∞(K) = 0. Further, it
is clear from the proof of [13, Prop. 5.1(iii)] that if v is a prime of K where E1

has additive reduction then E1,3∞(Kv) 6= 0 if and only if cv is not a 3-adic unit.
If hypothesis ii) holds then cv is 3-adic unit and therefore E1,3∞(K) = 0. If iii)

holds, then noting that Q(µ3) = Q(
√
−3), it follows from [6, Lemma 3.24], that

the Gal(Q/Q(
√
−3))-module E1[p] is irreducible. Therefore H

0(K,E1[p]) = 0.
Since F/K is a degree 3 extension, we have that H0(F,E1[3]) = 0. �

Now, suppose that ΣK
0 = ΣK(E1) ∪ ΣK(E2). We show that when Σ0 = ∅,

then under additional hypotheses, if an algebraic special value of the complex
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L-function of E1 over K = Q(µ3) is a 3-adic unit, then the same holds true
for the corresponding special value of E2 over K.

Let σ = 1 ⊕ ǫ be the Artin representation given by the sum of the trivial
character and the nontrivial character of Gal(Q(µ3)/Q). Let Pp(Ej , σ, T ), j =
1, 2 (resp. Pp(σ, T )) be the characteristic polynomial associated to the twist
of Ej by σ, (resp. to σ) at the prime p. Denote by uj and wj respectively
the p-adic unit root and non p-adic unit root of the characteristic polynomial
Pp(Ej , T ). Let Ω

+
Ej

and Ω−
Ej

be the Néron periods associated to elliptic curve

Ej . Put,

Lj(σ) := ǫp(σ) × u
−vp(Nσ)
j ×

Pp(σ, u
−1
j )

Pp(σ,w
−1
j )

× L{p,q|m}(Ej , σ, 1)

Ω+
Ej

Ω−
Ej

,(4)

where ǫp(σ) denotes the local epsilon factor of σ as in [5] and Nσ denotes the
conductor of σ. Further L{p,q|m}(Ej , σ, s) is the twisted L-function L(Ej , σ, s)
with local L-factors at the primes dividing p and m removed. We mention that
Lj(σ) is denoted by LEj

(σ) in [5], and by R(σ) in [1].

Theorem 3.8. Suppose that

(a) E1[3] is an irreducible Gal(Q/Q)-module.
(b) ΣK

0 is empty.
(c) N̄ is squarefree, and N1/N̄(resp. N2/N̄) and N̄ are coprime.
(d) χ(F∞/Q(µ3), E1) = 1.

Then
L(E1/Q(µ3),1)

√
|∆Q(µ3)|

Ω+
E1

Ω−

E1

is a 3-adic unit if and only if
L(E2/Q(µ3),1)

√
|∆Q(µ3)|

Ω+
E2

Ω−

E2

is a 3-adic unit. Moreover if
L(E1/Q(µ3),1)

√
|∆Q(µ3)|

Ω+
E1

Ω−

E1

is a 3-adic unit, then

L(E1/F, 1) and L(E2/F, 1) do not vanish, where we recall that F = Q(µ3,
m1/3).

Proof. From Lemma 3.7 and assumption (a) it follows that Ej(F )[3] = 0
for j = 1, 2. Since χ(F∞/Q(µ3), E1) = 1 it follows from Corollary 3.6 that
χ(F∞/Q(µ3), Ej) = 1 for j = 1, 2. This implies that Sel(Ej/F∞) = 0, and
hence χ(F∞/F,Ej) = 1 (see Corollary 2.8). By Remark 3.3 we get that
Sel(Ej/Fcyc) = 0 for j = 1, 2. From Lemma 3.7 and assumption (a) we have
that E(F )[3] = 0. Using the exact formula for the Euler characteristic of

Sel(E/Fcyc) and vanishing of the group E(F )[3], we obtain that Ẽ(F3)[p] = 0,

where Ẽ is the reduced curve at a prime v|3, and Fv is the residue field at v.
To simplify notation, put

(5) Lj :=
L(Ej/Q(µ3), 1)

√
|∆Q(µ3)|

Ω+
Ej

Ω−
Ej

, j = 1, 2.

From Theorem 3.4, we get that χ(F∞/Q(µ3), E1) = χ(F∞/Q(µ3), E2) = 1. It
is easily seen that χ(F∞/Q(µ3), E1) = 1 implies that the local Euler factor
Lv(E1/Q(µ3), 1) is a 3-adic unit for a prime v | m such that v ∤ p. A similar
assertion holds for Lv(E2/Q(µ3), 1) at a prime v | m such that v ∤ p. Using
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this fact, and the vanishing of Ẽ(F3)[3], it is shown in the proof (See top of
p. 619) of [1, Thm. A.1], that

(6) Lj is a 3-adic unit if and only if Lj(σ) is a 3-adic unit.

On the other hand, under the hypotheses of the theorem, it follows from
(cp. [18, Lemma 5.3]), that L1(σ) is a 3-adic unit if and only if L2(σ) is a
3-adic unit. Thus we conclude that L1 is a 3-adic unit if and only if L2 is. The
final assertion follows from Theorem A.1 of [1]. �

Corollary 3.9. If the assumptions of Theorem 3.8 hold and the Birch and
Swinnerton-Dyer conjecture is true for E1 over Q(µ3), then E1(F ) and E2(F )
are finite, and the complex L-functions associated to E1 and E2 over F do not
vanish at 1. In particular the analytic rank equals the algebraic rank for both
E1 and E2 over F .

Proof. The assumptions of Theorem 3.8 and Corollary 3.6 imply that
χ(F∞/Q(µ3), Ej) = 1 for j = 1, 2. Thus we have that Sel(Ej/F∞) = 0 for
j = 1, 2 (see [14, Prop. 4.12]). We once again mention that in [14] it is as-
sumed that p ≥ 5. But a similar result hold for p = 3 under the assumption
that N1N2 is coprime to m. Thus it follows that E1(F ) and E2(F ) are finite.
Since the Birch and Swinnerton-Dyer conjecture hold for E1 over Q(µ3) and
χ(F∞/Q(µ3), E1) = 1, from [5, Prop. 5.13(a)] it follows that L1(σ) is a 3-adic
unit. From (6) we have that L1 is 3-adic unit. Now the assertion follows from
Theorem 3.8.

�

Remark 3.10. Note that the above theorem has been proved using (6). We
emphasize that even though E1 is congruent to E2 mod 3, it is not necessary
that L1(σ) and L2(σ) are congruent mod 3. We shall illustrate this later with
numerical examples.

4. Congruence for dihedral extensions

In this section, we discuss how the results in [18] allow us to prove a version
of Theorems 3.4 and 3.8 for certain dihedral extensions. Let p be an odd prime,
and let now K = Q(

√
−d) be a totally imaginary quadratic extension of Q,

and let F be an extension of degree pn over K such that F/Q is a dihedral
extension. Let fF/K be the conductor of F/K, and D be the fundamental
discriminant of K/Q. Assume that fF/K is prime to D′, where D′ denotes the
prime to p part of D. We shall assume that m := D · NormK/Qfχ is coprime
to N1N2. This integer m will now play the role of m that was considered in
the False Tate extension. Let k ⊂ F be a field extension of Q. As before, let
Σk be a finite set of primes of k containing the prime divisors of p, the primes
dividing m, the prime divisors of N1N2 and the infinite primes. Let Σk

0 ⊂ Σk

be a finite set of finite primes of K such that if v | p then v /∈ Σk
0 . The sets

Σk(Ej) is defined as in Definition 3.1, and we define Σk
3 as the set of primes v
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in k such that v | m, v ∤ p and (any of) the reduced curve has a point of order
p in the residue field Fv. Now suppose that

(7) Σk
0 = Σk(E1) ∪ Σk(E2) ∪ Σk

3 .

Theorem 4.1. Let k ⊂ F where F is a dihedral extension of Q of degree
2pn. Assume that E1(K)[p] = 0. Then χ(kcyc/k,E1; Σ

k
0) = 1 if and only if

χ(kcyc/k,E2; Σ
k
0) = 1.

Proof. The key point is to note that χ(kcyc/k,E1; Σ
k
0) = 1, is equivalent to the

vanishing of the Selmer group SelΣ
k
0 (E1/kcyc) (see Remark 3.3). Arguing as in

the proof of Theorem 3.4, it can be seen that SelΣ
k
0 (E1/kcyc) vanishes if and

only if SelΣ
k
0 (E2/kcyc) vanishes. �

In order to prove the analog of Theorem 3.8, we first establish the following
lemma. Consider the Artin representation σ = 1⊕ ǫ, where ǫ is the nontrivial
character of Gal(K/Q). Let Pp(Ej , σ, T ), j = 1, 2, (resp. Pp(σ, T )) be the
characteristic polynomial associated to the twist of Ej by σ, (resp. to σ) at the
prime p. Denote by uj (resp. wj) the p-adic unit root (resp. non p-adic unit
root) of the characteristic polynomial Pp(Ej , T ).

Lemma 4.2. Suppose that Ẽj(Fv)[p], j = 1, 2, is trivial for the primes v of
K dividing p. Then

Pp(σ, u
−1
j )

Pp(σ,w
−1
j )

Pp(Ej , σ, 1/p)

is a p-adic unit.

Proof. There are three cases:
Case i): p is ramified in K. In this case, Pp(σ, T ) = (1 − T ) and the proof

is similar to that in [5, Lemma 5.14].
Case ii): p splits in K. We then have Pp(σ, T ) = (1 − T )2 and the proof is

again similar to loc.cit.
Case iii): p is inert in K. We have Pp(σ, T ) = (1 − T )(1 + T ). By a

computation similar to loc.cit., it is easily seen that up to a p-adic unit, we
have

Pp(σ, u
−1
j ) = (1− ap(j) + p)(1 + ap(j) + p), and Pp(σ,w

−1
j ) = 1/p2,

where ap(j) is the p-th Fourier coefficient of the modular form associated to
the curve Ej . Further, Pp(Ej , σ, T ) = Pp(Ej , T )Pp(Ej , ǫ, T ). Since p is inert
in K we have that ǫ(Frp) = −1, where Frp is the Frobenius at p. Thus we have
that,

Pp(Ej , σ, 1/p) =
(1 + ap(j) + p)(1− ap(j) + p)

p2
.

Therefore, up to a p-adic unit, we get

Pp(σ, u
−1
j )

Pp(σ,w
−1
j )

Pp(Ej , σ, 1/p) = ((1− ap(j) + p) · (1 + ap(j) + p))2,
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Since Lp(Ej , σ, s) = Pp(Ej , σ, 1/p
s)−1, we have for j = 1, 2,

((1− ap(j) + p) · (1 + ap(j) + p))2 = p4 × (Lp(Ej , σ, 1))
−2.

Let v be the unique prime of K above p. Then by the Artin formalism, we
have

Lp(Ej , σ, 1)
−1 = Lv(Ej/K, 1)−1 =

|Ẽj(Fv)|
NormK/Q(p)

=
|Ẽj(Fv)|

p2
.

Therefore, we obtain

Pp(σ, u
−1
j )

Pp(σ,w
−1
j )

Pp(Ej , σ, 1/p) = |Ẽj(Fv)|2

up to a p-adic unit. The conclusion now follows from the hypothesis.
�

Analogous to the proof of Theorem 3.8, we have the L-values Lj (cp. (5))
and the twisted p-adic L-values Lj(σ) (which is denoted by R(σ) in [18]). The
following is now the analog of Theorem 3.8.

Theorem 4.3. Suppose that

(a) E1[p] is an irreducible Gal(Q̄/Q)-module and E(K)[p] = 0.
(b) ΣK

0 = ∅.
(c) N̄ is squarefree, and N1/N̄ (resp. N2/N̄) is coprime to N̄.
(d) χ(Kcyc/K,E1) = 1.

Then χ(Fcyc/F,Ej) = 1, j = 1, 2, and the L-value
L(E1/K,1)

√
|∆K|

Ω+
E1

Ω−

E1

is a p-adic

unit if and only if
L(E2/K,1)

√
|∆K |

Ω+
E2

Ω−

E2

. Moreover, if
L(E1/K,1)

√
|∆K |

Ω+
E1

Ω−

E1

is a p-adic

unit, then L(E1/F, 1) and L(E2/F, 1) do not vanish.

Proof. As in the proof of Theorem 3.8, assumptions (b), (d) and Theorem 4.1
allow us to conclude that χ(Kcyc/K,Ej) = 1 for j = 1, 2. This in particular
implies that the Selmer groups Sel(Kcyc/k,Ej) vanish for j = 1, 2, and hence
the µ-invariant and λ-invariant are both zero for E1 and E2. We remark that
the assumption (m, N1N2) = 1 implies that the primes in F of bad reduction
are unramified. Further, under assumption (b), we see that if v is a prime of

K such that v|m and v ∤ p, then Ẽj(Fv)[p] = 0. Since F/K is a p-extension,
a similar conclusion holds for the primes of F dividing m. This implies that
ΣF

0 = ∅, and by [13, Thm. 3.1], we obtain that the λ and µ-invariants for
Sel(Fcyc/F,Ej) are also zero. In particular, the Selmer groups Sel(Fcyc/F,Ej)
vanish and we have χ(Fcyc/F,Ej) = 1, j = 1, 2.

Since, χ(Kcyc/K,Ej) = 1 for j = 1, 2, using the assumption E(K)[p] = 0,
it follows from the formula for the Euler characteristic of Sel(Kcyc/K,Ej) that

Ẽj(Fv)[p] = 0 for all primes v|p of K. From Lemma 4.2, we then see that
Pp(σ,u

−1
j

)

Pp(σ,w
−1
j

)
.Pp(Ej , σ, 1/p) is a p-adic unit. Using this fact, assertion (6) can be

proved in this case as well by a method similar to the proof [1, Thm. A.1].
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The conclusion now follows by an argument analogous to that in Theorem 3.8.
This completes the proof of the theorem. �

Finally we remark that we need the extra assumption in the above theorem
that E(K)[p] = 0. If K = Q(µ3) and p = 3 then the assumption that E1[3]
is an irreducible Gal(Q̄/Q)-module implies that E(F )[p] = E(K)[p] = 0(see
Lemma 3.7). We do not have an analog of Lemma 3.7 for a more general
quadratic imaginary extension K.

5. Numerical examples

The following numerical examples illustrate the results proved in this article,
especially Theorem 3.8. We are very grateful to Tim Dokchitser for his help
with the numerical computations.

Let E1 be the elliptic curve 11A3 and E2 be the elliptic curve 77C1 in
Cremona’s tables. Since there exists no 3-isogeny of E1 over Q, we have that
E1[3] is an irreducible module over Gal(Q/Q). By Lemma 3.7, Ej(F )[3] = 0
for j = 1 , 2. We have Σ(E1) = φ, and the elliptic curve E2 has nonsplit mul-
tiplicative reduction at 7 (cp. [5, Table 3-77C1]). Thus Σ(E2) = φ. We also
have Sel(E1/Kcyc) = 0 (cp. [5]), and χ(Kcyc/K,Ej) = 1 for j = 1, 2 by Corol-
lary 3.6. Let m be an integer coprime to 3 and 77 such that if v|m, then the
local L-factor Lv(E1/K, 1) is a 3-adic unit. Then we get that the Euler char-
acteristic χ(F∞/Q(µ3), E1) = 1. From [14], we conclude that Sel(Ej/F∞) = 0,

for j = 1, 2. This implies that χ(F∞/Q(µ3,m
1/p), Ej) = 1. It is known that

L(E1/Q(µp),1)
√

|∆Q(µp)|

Ω+
E1

Ω−

E1

is a 3-adic unit, as can be checked using the tables in

[5]). Thus the assertion of the above theorem holds for E2.
The above example is obtained using the result on congruence between mod-

ular forms by raising the level [7]. We next consider the elliptic curves 203A1
and 203C1 from Cremona’s tables, and p = 3. In this case, Tim Dokchitser has
computed (using the Néron period) that L1(σ) = 1 mod 3 and L2(σ) = 2 mod
3 for m = 2, 5. Using this, it can be shown that L1 is a 3-adic unit if and only
if L2 is a 3-adic unit. This example also illustrates Remark 3.10.

Here is another pair of elliptic curves namely E1 = 158C1 and E2 = 158E2,
for which the special values are 3-adic units over Q(µ3). The residual repre-
sentations at p = 3 are again irreducible with conductor equal to 158. Hence
Σ0 = ∅. Further |Ẽ(Fp)| is a 3-adic unit. We are grateful to T. Dokchitser for
confirming computationally that Lj(σ) is indeed a 3-adic unit for j = 1, 2. By
Lemma 4.2, we get that Lj is a 3-adic unit for j = 1, 2.

The pair of elliptic curves 106A1 and 106C1 are congruent mod 3. It turns
out that the values Lj(σ) for j = 1, 2 for m = 7 are simultaneously non-3-adic
units. Using this, it can be shown that Lj are also non-3-adic units. In fact,

in this case, the reduced curves Ẽ1 and Ẽ2 have a point of order 3 at the
prime 3, and therefore on using the formula for the Euler characteristic of the
corresponding Selmer groups over F∞ (see [14]), one obtains that the Euler
characteristics are nontrivial.
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Consider the following pair of elliptic curves E1 and E2 where E1 = 235A1
and E2 = 235B1, which are congruent mod 3. However, E1 has rank 1 and
E2 has rank 0. Thus χ(Qcyc/Q, E2) exists but χ(Qcyc/Q, E1) is not defined.
In this case, the set Σ0 is nonempty as the prime 5 ∤ N̄j for j = 1, 2, and E1

has split multiplicative reduction at 5. This shows that our hypotheses are in
fact essential. The pair of elliptic curves E1 = 11A1 and E2 = 121C1 which
are congruent mod 3, also does not satisfy the hypothesis of Theorem 3.8. In
this case it turns out that if we take m = 3 and K = Q(µ3) then L1(σ) is a
3-adic unit. On the other hand L2(σ) = 0.

Finally, we remark that Rubin and Silverberg have shown that there are
infinitely many elliptic curves E defined over Q with a given Galois module
structure on E[p] for p = 3 and p = 5 (see [17]). Using the level raising
technique of [7], one knows that such congruences for Hecke eigenforms exist
for all odd primes. We believe that our methods should carry over for Hecke
eigenforms of weight 2 ordinary at p in general.
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