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Abstract. In this paper we study the Bruhat decomposition of not necessarily connected
reductive quasi-split groups G with respect to not necessarily connected parabolic subgroups.
If G is defined over a finite field, we construct a smooth morphism from the stack classifying
F-zips with G-structure to the stack classifying the generalized Bruhat cells and study the
relation between the resulting stratifications. We apply these general results to the twisted
orthogonal F-zip given by the second De Rham cohomology of a relative surface, focussing
on K3-surfaces.

INTRODUCTION

Background. Let X — S be a smooth proper morphism of schemes in char-
acteristic p > 0 whose Hodge spectral sequence degenerates and is compatible
with base change. In [11] Moonen and the author showed that its relative De
Rham cohomology HY, (X/S) carries the structure of a so-called F-zip over
S, i.e., it is a locally free sheaf of &g-modules of finite rank together with
two filtrations C* and D, (the “Hodge” and the “conjugate” filtration) and a
Frobenius linear isomorphism ¢, between the associated graded vector spaces
(the “Cartier isomorphism”). Very often these F-zips are equipped naturally
with additional structures (for instance induced by the cup product, by po-
larizations, or by the action of an algebra on X). In [14] Pink, Ziegler, and
the author provided a general framework of F-zips with G-structure, where
Gisa (not necessarily connected) reductive group defined over a finite field.
Specializing G to GL, one obtains F-zips of rank n, specializing to other clas-
sical groups one obtains F-zips with certain additional structure, e.g., with a
nondegenerate symmetric or alternating form.

Moreover, in [14] we introduced the notion for an F-zips with G-structure to
be of type u, where p is cocharacter of G. The type is locally constant on the
base scheme. For F-zips with GL,,-structure the type simply determines ranks
of the graded pieces of the filtration of the F-zips (i.e., the Hodge numbers if



530 TORSTEN WEDHORN

the F-zip is induced by a morphism X — S as above). F-zips with G-structure
of type u are parametrized by a quotient stack of the form [EH\CA?], where E,, is
certain linear algebraic group depending on the cocharacter . We studied this
quotient stack in detail in [13], classifying the E,-orbits in G by a subset "W
of the Weyl group of G and describing their closure relation using a variant
of the Bruhat order. This reduces the study of isomorphism classes of F-zips
with G-structure and their degeneration behavior to combinatorial questions
in Coxeter groups, which are nontrivial in general.

Bruhat strata and zip strata. In this paper this invariant is related to
a coarser invariant which encodes for GL,-zips simply the relative position
of the two flags given by the filtrations C'* and D,. In general it is given
by the double quotient [P\G/Q], where P and Q are certain (not necessarily
connected) parabolic subgroups of G.

Thus in the first section of the paper the quotient stack [P\G / Q] is studied
in detail. If G is connected and split and if P = Q B is a Borel subgroup,
then [P\G/Q) parametrizes the Bruhat cells of G. Thus we call [P\G/Q] a
Bruhat stack of G. We assume that G is quasi-split because this simplifies the
notation considerably and this assumption holds automatically in the rest of
the paper, where G is always defined over a finite field. If G is connected and
split, the quotient [P\G/Q] is of course well known and the results presented
here are modest generalizations to the nonconnected and the nonsplit case.
We determine the underlying topological space of the Bruhat stack (Proposi-
tion 1.16) and the dimension of all residual gerbes in each point of the Bruhat
stack (Proposition 1.18).

We then construct in the second section a smooth morphism S from the stack
of F-zips with G-structure of a fixed type p to a certain Bruhat stack of G which
specializes for G = GL,, to the morphism which attaches to an F-zip as above
the underlying flags of the two filtrations C* and D,. Hence one gets for every
F-zip with G-structure over a scheme S two stratifications (i.e., decompositions
into locally closed subschemes): The stratification by the isomorphism class
of the F-zip with G-structure (the zip stratification) and the stratification by
its class in the Bruhat stack (the Bruhat stratification). We describe the map
induced by § on its underlying topological spaces (Proposition 2.13) and hence
relate zip strata and Bruhat strata (Corollary 2.15).

Applications. In the third section we apply these results to HZg(X/9),
where X/S is a relative surface over an Fj,-scheme S with p odd satisfying
the conditions above. We mainly focus on K3-surfaces, but abelian surfaces or
Enriques surfaces yield further examples. The cup product yields the struc-
ture of an F-zip with GO(V, b)-structure on H3y (X/S), where GO(V, b) is the
group of orthogonal similitudes of a split quadratic space (V,b) over F,. For
p-principally polarized K3-surfaces we also consider the primitive De Rham
cohomology. If n := dim(V) is even, then GO(V,b) is of Dynkin type D,,/,
and nonconnected. If n is odd, it is of Dynkin type B(,_1)/2 and connected.
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We determine explicitly the underlying topological spaces of the Bruhat stack
and of the stack of F-zips with GO(V, b)-structure in this case. We show that
the Bruhat stack is connected in both cases and consists of precisely three
points id, s1, and w;y. In particular the primitive De Rham cohomology of a
p-principally polarized K3-surface over a scheme S yields three corresponding
Bruhat strata '45, *1.5, and “*S, and results of Ogus show that “'$ is the
open locus where the K3-surface is ordinary and that 14§ is the closed locus,
where X is supersingular of Artin invariant 1.

In a further paper [19] we will study the Bruhat stratification for Shimura
varieties of PEL type and use the results obtained here to prove geometric
properties of these strata such as smoothness and their dimension.

1. THE BRUHAT STACK

1.1. Double quotient stacks. Let X be a set, let G be a group acting on
X from the left. We denote by [G\X] the following category. Objects are the
elements of X and for z,7’ € X we set

Homye xj(z,2") :={g € G | gr =2"}.

Composition is defined by multiplication in the group G. Then this category
is a groupoid (i.e., every morphism is an isomorphism), and the isomorphism
classes in [G\X] are in bijective correspondence to the set of G-orbits on X.

Now let k£ be a field, S = Speck, let Z be a k-scheme, let G be a group
scheme of finite type over k acting on Z from the left. For every affine k-scheme
U = Spec R let [G\Z]}; be the groupoid [G(R)\Z(R)]. Every morphism of
affine k-schemes f : Uy — U induces a functor f* : [G\Z], — [G\Z]y;, by
functoriality. It is easy to check that we obtain a k-groupoid [G\Z]'. Let
[G\Z] its stackification. Then it is shown in [6] Tag 04WM that [G\Z] can be
identified with the quotient stack defined in [10, 2.4.2]. It is an algebraic stack
by [10, 10.13.1].

Similarly we define an algebraic stack [Z/G] if G is acting from the right
on Z.

Let H be a subgroup scheme of G. Then [H\G] is representable by a scheme
of finite type which we denote simply by H\G.

Let K be a second subgroup scheme of G. Let [K\_1G]| be the quotient by
the left action K x G — G, (k,g) — gk~—!. Then idg on objects and k + k~1
on morphisms yields an isomorphism of algebraic stacks (in fact of schemes)
[K\_1G] = [G/K] which we use to identify these two stacks.

We let H x K act on G from the left by (h, k) - g := hgk~! and denote the
corresponding quotient stack simply [H\G/K]. For K =1 or H = 1 we obtain
the schemes H\G and G/K, respectively. Multiplication from the left defines
a left action from H on G/K and multiplication from the right defines a right
action from K on H\G. It is easy to check (on the level of k-groupoids [ |" as
above) that there are equivalences

(1) [H\G/K] = [H\(G/K)| = [(H\G)/K].
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We also have the following lemma.
Lemma 1.2. The morphism
[H\G/K]| — [G\(G/H x, G/K)]
induced by g — (1,9) is an isomorphism of algebraic stacks.

Proof. Tt is straight forward to check that g — (1, g) already yields an isomor-
phism of k-groupoids [K\(G/H)] — [G\(G/H x,G/K)]'. Its inverse is given
by (g1, 92) — g7 'g2. In particular its stackification is an isomorphism. O

1.3. General notation. Let k be a field, choose a separable closure k*P of
k, and let Gal(k*°P/k) be its Galois group. For every k-scheme X and every
k-algebra R, we set Xp := X ®f R.

By a linear algebraic group over £ we mean a smooth affine group scheme
over k. If H is a linear algebraic group over k, we denote its identity com-
ponent by H and the finite étale group scheme of connected components by
mo(H) := H/H; and similarly for other letters of the alphabet. Note that the
unipotent radical R, H of H (if it exists over k) is a normal subgroup of H. Any
homomorphism of algebraic groups é : G — H restricts to a homomorphism
¢o:G— H.

From now on let G be a linear algebraic group over k such that G is re-
ductive. To simplify the assertions we assume that G is quasi-split (this is the
only case we will use). We choose a maximal torus 7" and a Borel subgroup
B DO T of G. Consider the finite groups

W = Normg(kscp) (T(ksep))/T(ksep),

W = Normg eep) (T (k%)) /T (k*°P),

Q= (Normé(kscp)(T(ksep)) N Norme jeep (B(E>P))) / T (k*P).
The fact that W acts siznply transitively on the set of Borel subgroups contain-
ing Tgser implies that W = W x Q, and the fact that G(k°P) acts transitively
on the set of all maximal tori of Ggser implies that Q = W /W = mo(G)(k5°P).

Also, let I C W be the set of simple reflections associated to the pair (7', B).
As (T, B) is unique up to conjugation by G(k*P) and as

Normg(gser) (T'(k*P)) N Normegser) (B(K*P)) = T (k*P),
the Coxeter system (W,I) and the groups W and Q are, up to unique iso-
morphism, independent of the choice of T and B. For any w € W we fix a
representative w € Normg(T')(k*P). By choosing representatives attached

to a Chevalley system (see [1, Exp. XXIII, §6]) for all wi,ws € W with
L(wiwe) = £(w1) + £(ws) we obtain

(2) wle = (wlwg)'.
In particular the identity element 1 € W is represented by the identity element
1 € G(k®P).
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The Galois group Gal(k*P/k) acts continuously on the (discrete) group W
preserving W, Q and I. In particular it acts on (W, I) by automorphisms of
Coxeter systems. For any family X = (X;); of subsets of W we call its field of
definition the finite field extension x(X) D k in k%P given by

Gal(k*P/k(X)) = {v € Gal(K*P/k) | Vi:v(X;) = X, }.

Lemma 1.4. Assume that G is semisimple adjoint or that G is semisimple
simply connected or that the cohomological dimension of k is < 1. Then for
w € W the representative w can be chosen in Normg(T)(k(w)).

Proof. Considering W as a finite étale group scheme over k, the fiber of
Normg(T') — W over the point Specx(w) — W is a torsor under 7. But
H(k,T) = 0 under any of these assumptions: If cd(k) < 1, then this is Lang’s
theorem (e.g. [15]). As T is contained in a Borel subgroup of G, the other
assumptions imply that 7" is the product of tori of the form Res; /4, (G, ), where
[ D k is a finite separable extension ([1, Exp. XXIV, Prop. 3.13]) which also
implies H!(k,T) = 0 by Shapiro’s lemma and Hilbert 90. O

Recall that the length of an element w € W is the smallest number ¢(w)
such that w can be written as a product of ¢(w) simple reflections and that
the Bruhat order < on W is defined by w’ < w if for some (and equivalently
for any) expression of w as a product of £(w) simple reflections, by leaving out
certain factors one can obtain an expression of w’ as a product of £(w’) simple
reflections. As the action of Gal(k*P/k) on W preserves I it also preserves the
length of elements and the Bruhat order.

We extend the Bruhat order to W = W x Q by defining

(3) ww < w'w' e w<w and w=w

for w,w’ € W and w,w’ € Q.

For any subsets J, K C I, we denote by W the subgroup of W generated
by J and by YW (resp. WX, resp. W) the set of w € W that are of minimal
length in the left coset Wyw (resp. in the right coset wWi, resp. in the double
coset WywWi). Then TWwE = wnwk.

We let wg € W denote the unique element of maximal length in W, and
wo, s the unique element of maximal length in W;. Then

(4) Wo,JWo € Tw
is the unique element of maximal length in /W and
(5) é(’LU()’J’LU()) = é(wo) - é(’LU()’J).

1.5. Automorphisms of the Weyl group induced by isogenies. Let ¢ :
Giser — Gpser be an isogeny, i.e. a finite surjective homomorphism of linear
algebraic groups. Then (Tyser) is a maximal torus of Gpsep and @(Byser ) is a
Borel subgroup containing o(Tkser ). Let g € G(k5°P) such that

gQD(Bk;sep) = Bksep and gQO(Tksep) = Tksep.
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As Normg(B) N Normg(T) = T, the element ¢ is unique up to left multi-
plication with an element of T'(k*P). Therefore the isomorphism of Coxeter
systems

(6) g (W.1) = (W,1)

induced by int(g) o ¢ : Normg(T')(k*P) — Normeg(T')(k*P) does not depend

on the choice of g.
Let 9 : Gser — Giser be a second isogeny. We claim that

(7) pop=goy.
Indeed, let h € G(k*P) be such that

" ((Bpgsen ), t(Ther )) = (Thoer, Bigsen ).
Then
96 (o) (Bpeen )), @(1b(Theer ))) = (Theen , Bgeen ).
This shows the claim.

For g € G(ksep), conjugation with ¢ yields an automorphism of Gyser and
hence an automorphism 6(g) of (W, I) as in (6). By (7), we obtain a homomor-
phism of groups & : G(k*P) — Aut(W,I). For g € G(k*P) one has d(g) = 1
by definition and hence one obtains a homomorphism

(8) 0 : mo(G)(K*P) — Aut(W, I).

It is easy to check that this action is the canonical action of Q on W via the
isomorphism 7o (G)(k%P) = Q.

1.6. Parabolic subgroups of nonconnected reductive groups. We fix
a subset J of I and set k = k(J). We denote by P} the unique parabolic
subgroup of the (split) reductive group Gyser of type J which contains Bysep.
As G is quasi-split over k, we have the following result (cp. [3, 6.3]).

Lemma 1.7. The field of definition of P} is k(J).

In particular there is a (necessarily unique) parabolic subgroup Py of G ()
of type J containing Bi(j)-
As Normg (Py) NGy = Py, the canonical homomorphism

Normg, (Py)/Py — mo(Gx)
is an open and closed immersion. Its image €2 is the finite étale group scheme
such that Q;(k%¢P) is the finite subgroup of m(G)(k*P) that consists of those
connected components G’ of Gyser such that for one (or, equivalently, for all)

’

g € G'(k*°P) the parabolic subgroup 9 (Pj)gses of Giser is G(kS°P)-conjugate
to (Py)gser. In other words, £ is the stabilizer of J under the action 6 (8).
We fix a closed étale k-subgroup scheme © of Normg, (P;)/P; and define an

algebraic subgroup P 7,0 of G,. as the inverse image of © under the composition

NOI“IIIGK(PJ) — NorméN(Pj)/PJ =0y C WQ(GN).

The identity component of 15]7@ is indeed Py = PJ’@ NG, and WQ(PJ) = 0.
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We denote by
Par;e 1= Parg ;o = CAT'N/PL@

the quotient. Again this quotient depends on the choice of T and B only up
to unique isomorphism. If G = G is connected, one necessarily has © = 1 and

ParJ = ParG,JJ = GN/PJ

is the standard partial flag variety of parabolic subgroups of G of type J.

1.8. Bruhat decomposition for not necessarily connected groups. In
this subsection we assume that k = kP is separably closed. All schemes X
occurring in this section are smooth over k, allowing us to confuse X and X (k).
We fix two subsets J, K C I and two subgroups © C Q; and A C Q. We
want to describe the (]5 7,05 PK, A)-double cosets of G. To do this we recall first
the connected case and then generalize to the nonconnected case.

Let T' C B be a Borel pair of G. Let N = Normg/(T). If G = G is connected,
it is well known (e.g., [16, Thm. 5.2]), that as G is split over k%P, the tuple
(G(k%P), B(k®°P), N (k%°P), I) is a Tits system in the sense of [5, Chap. IV, §2.1,
Def. 1]. The subset JWE is a system of representatives for the set of double
quotients W;\W/Wpg. Hence the Bruhat decomposition for Tits systems ([5,
Chap. IV, §2.5, Rem. 2]) implies that the map

WX - P\G/Px,
w — CJ’K(W) = PjuwPk

9)

is bijective (and independent of the choice of the representative w in N for
w € W). Moreover, by [4, §3] one has for w,w’ € W
(10) Crrk(w') CCri(w) & v <w.

We will now generalize this first to the case that G is not necessarily con-
nected, but still P;e = Py and Px A = Pg. For eachw € Q fix a representative
w € Normg (B) N Normg (T') and for @ = ww € W with w € W and w € Q set

W = WW.

Define
(11) JWK::{w:wweW:WQ|w€Q7w€JWw(K)}.
Lemma 1.9. The map
J - K R A .
W — P;\G/Px, & — PjwPg

is a bijection. One has

PJ/LZ}/PK C PjwPrx < @/Sd},

where “<” denotes the extended Bruhat order (3).
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Proof. The subgroup “Pyx is a parabolic subgroup of G of type wK. As
w € Normg(B), it contains B and hence “Px = P, (k). Therefore one has

PriwPkg = PjwP,gyw. As G = [l,cqGw, the lemma follows from the
Bruhat decomposition in the connected case ((9) and (10)). O

Finally consider the general case. Let L; be the unique Levi subgroup of
Pj containing T" and set

(12) Lje :=Normp _(Ly).

Define subgroups of W as follows

(13) VAVL@ = Normﬁj’e(T)/T,
Qo = (Normﬁjye(B) N Norm; (T))/T.

These subgroups satisfy

Wie =W;xQe,

Qo =2 mo((Lye)ker) = mo((Pre)ksen).

As w € Normg (Py) we have

(15) Pro= [ Pw= ][] @Ps

weEN o weN o

(14)

We have analogous definitions and properties for Ly, L KA VAVK, A, and Qg A.

Lemma 1.10. Let w1 € Qy and ws € Q.

J o K J o K
(1) Forw e W  one has again witbws € W .
(2) Let w,w' € W with w < @'. Then witws < wiws.

Proof. One has wi(J) = J and wo(K) = K as explained in the definition of
Q. Let 0 = ww with w € Q and w € "W). Then wiwwws = w1 (w)wiwws
with

W1(’LU) c wl(J)lew(K) — Jlewwg(K)

J s K

and hence wjwwws € W .
The second assertion follows from the fact that the action of £ on W pre-
serves the set of simple reflections and hence the Bruhat order. O

The Lemma shows that we can form the double quotient

J,©_+ K,A J ~ K
(16) w = QJ’@\ W /QK,A
. A . J,©_+ K,A
and that the partial order on W induces a partial order on W . For
J A K J,O_~ KA
w e W  we denote by [w] € =W its image. Then we deduce from

Lemma 1.9 and from (15) the following.
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Proposition 1.11. The map
J,0_ s KA . SN . P
W = P;o\G/Pk.a, [W] = PjeowPk.a
is a bijection. One has
pL@’llL)IpK’A - .PJ7@/LZ.\/_ISK7A & [’lfjl] < [’lf)]

Remark 1.12. Recall that we may consider any partially ordered set (Y, <)

as a topological space (a subset U C Y is open if and only if for all u € U
1,0+ K,A
one has {y € Y | u <y} C U). In particular we may consider =~ W as

a topological space. For elements & = ww and @' = w'w’ in W we have by
definition @ < ' if and only if w < w’ and w = w’. Thus W — Q, ww — w
induces a continuous map

J,0 ~ KA
(17) w _>QJ7@\Q/QK,A,
where the right hand side is endowed with the discrete topology (associated to
the trivial partial order).

The topological space associated to a partially ordered set of the form W%
is irreducible (and in particular connected) because the unique maximal ele-
ment of "W is a generic point. In particular we obtain the following result.

0+ KA
Lemma 1.13. The fibers of (17) are the connected components ofJ WK .

1.14. The Bruhat stack. Now let k be again an arbitrary field. We keep
fixing two subsets J, K C I and subsets © C Q; and A C Qg as above. Set
k:=k(J,0,K,A), and T' := Gal(k*P/k). Therefore the subsets J, ©, K, and
A are I'-invariant by definition. This implies that the I'-action also preserves
the subset JWK of W and induces an action on J7®WK’A. To simplify the
notation we omit for schemes defined over a subfield of x the base change to
k. For instance we write simply G instead of G.

Consider the left diagonal action of G on Par 7,0 X Parg A. The quotient
stack

(18) Bre k= BJ@,K,A(G') = [é\(ParJ7@ X ParK,A)]
is called the Bruhat stack of G of type (J,0,K,A).
Remark 1.15. By Lemma 1.2 one has Bjo kA = [pJ7@\G/pK’A].

Proposition 1.16. The algebraic stack Bjeo, kA is of finite type and smooth
of relative dimension —dim(Ly) over k. The underlying topological space of
J,0_~ KA
Bjeo,k,a is homeomorphic to T\~ W . One has
mo(Bue.x.a) = \(2,0\2/Qk.a).

1,0+ KA .
Here we consider as usual the partially ordered set =~ W as topological

space (Remark 1.12). As I is also compatible with the Bruhat order, it acts by
1O+ K,A JO_~ KA .
continuous automorphism on =~ W and T\ = W denotes the quotient

space.
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Proof. The first assertion is clear because Par;g and Parg a are smooth
and of finite type over x and because dim(G) — (dim(Pye) + dim(Pg.a)) =
—dim(Ly). The description of its underlying topological space follows from
Proposition 1.11 and the general description of the underlying topological space
of quotient stacks given in [14, 1.2]. The description of its set of connected
components follows from the description of its underlying topological space
and Lemma 1.13. |

Write w € JW as 1 = ww with w € Q and w € W) We set
Jo = w(K)Nw ! Jw,

and let Wy x be the element of maximal length in T w(k) (4). Then wi s

is the element of maximal length in /W N WywWky by a result of Howlett
([13, 2.7 and 2.8]). We define

(19) €J7K('li}) = f(U}’llA}J,K).
By loc.cit. one has
(20) Ly k(W) = w) + (W k) =L(w) + L(wo,x) — l(wo,1,)-

Remark 1.17. It is easy to check that left (resp. right) multiplication of w
with elements of {1; (resp. of Q) does not change ¢ k(). Moreover, the
I-action preserves the length of elements and the sets J and K. Therefore
@],K(UA)) = éJ’K(’y(ﬁ))) for all v € T.

For z € I‘\J’GVT/K’A we denote by ¥, the corresponding residual gerbe (in
the sense of [10, (11.1)]) of Bse k,a. This is the unique reduced locally closed
algebraic substack of Bje,x,A whose underlying topological space consists of
the point z.

Proposition 1.18. The residual gerbe 9, is an algebraic stack smooth of rel-
ative dimension £ i (r) — dim(Pg) over Speck.

Proof. One has
Gy R k5P = H G
[w]ezc” CW
where % is the residue gerbe of the point [@] of Bje,k,A(Grser). Therefore
we may assume that k is separably closed and hence I' = 1 and z = [&] for
some [W] € PO 1o simplify the notation we will for the rest of the proof
confuse smooth algebraic groups H and their k°°P-valued points. We write
W = ww with w € Q and w € W),
The image of
Pre x Pxa — G, (p,q) v~ piig
is a locally closed subset. If we endow it with its reduced scheme structure
it is a smooth subscheme Cje g a(W) of G (being an orbit under the action
of PJC—) X PK A). As PJ@ and PK A are smooth, it is the fppf orbit of W and
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Y] = [.PJ7@\CJ}@7K7A(@)/.PK’A]. This shows that ¢, is smooth of relative
dimension
(21) dim(%g/k) = dim Oy kA (W) — dim Py g — dim P A
over k. To galculate the rigbt hand side we note that it does not change if
we replace Pre by Py and Pg A by Px. Thus we assume from now on that
J s K

© = A =1 and hence [@] = @ for some & = ww € W . Moreover, by right
multiplication with w™! we may also assume that w = 1.

Recall that we chose a Borel B of G with B C P; N Px. Then

PP = U BuB.
vEW jwWi

But by a result of Howlett every v € Wj;wWy is uniquely expressible in the
form wywwy with wy; € Wy and wx € 7" Wi (e.g., [8, Prop. 4.18]). Moreover
L(v) =Ll(wy) + l(w) + ¢(wk). Thus we obtain

U BOB = U U B jiini ¢ B

veEW ;wWi wr€lw Wik wieEW;
= J BuwsBwixkB= |J PriikB.
wg €Jw Wi wgEWs wi €7 Wi

The double coset Pyw s x B is open and dense in this union and hence
dim CJ)K(?U) = dim PJU')’LUJ)KB.
Therefore (21) yields the desired description of dim(¥;/k). O

1,0~ KA . .
Definition 1.19. Let z € T\ W . For every morphism of algebraic stacks

B:8 = Bjo k. we denote by “S(8) the locally closed substack of S defined
by the following two-cartesian diagram

“S(8)

|

B
S——Bje,kA-

EZ

The family (“S(8)). is called the Bruhat stratification of S associated to (3.

Remark 1.20. For a morphism of algebraic stacks 8 : S — B, k,a the in-
verse images of the connected components of B e, x A, which are parametrized
by I'\(2;,6\Q/Qk, A) by Proposition 1.16, form open and closed algebraic sub-
stacks of S.

1.21. Examples.

Example 1.22. The Bruhat stratification allows the following reinterpretation
of the notion of relative position of two parabolic subgroups of G. Assume we
are given & € W such that x(J) = k(K) = k(z) = k. Let S be a k-scheme
and let P and @ be parabolic subgroups of Gg of type J and K, respectively.

Miinster Journal of Mathematics VoL. 7 (2014), 529-556



540 TORSTEN WEDHORN

Then (P, Q) corresponds to a morphism S — Par; x, Parg. Composing with
the canonical quotient map to Bjx we obtain a morphism S — Bjx and
hence for z € T\’W¥ a subscheme S* of S.

Definition 1.23. We say that P and @ are in relative position x if S* = S.

Example 1.24. Let (V,{, )) be a symplectic space of dimension 2g over k
and let G = GSp(V, (, )) be the corresponding general symplectic group. Let
(W, I) be the Weyl group of G together with its set of simple reflections. As
G is a split reductive group, the Galois action on (W, ) is trivial. Let L C V
be a Lagrangian subspace (i.e., a totally isotropic subspace of dimension g)
and let P C G be its stabilizer. As G(k’) acts transitively on the set of
Lagrangian subspaces of Vi for every extension k' of k, G/P is isomorphic to
the k-scheme parametrizing Lagrangian subspaces of V. In other words for a
k-scheme S the set of S-valued points (G/P)(S) is the set of totally isotropic
locally direct summands of V ®j Og of rank g. Let J C I be the type of P
and set K := J. Then an easy calculation shows that the partially ordered set
W™ is isomorphic to the totally ordered set {0,...,g} (see for instance [17,
A3g)).

The attached Bruhat stack B j(G) is the stack in groupoids fibered over the
category of k-schemes whose fiber over a k-scheme S is the category of triples
(Z,(,)),2Z,%"), where (Z,(,)) is a locally free Os-module of rank 2g
endowed with a symplectic pairing and where ¥ and %’ are Lagrangian sub-
spaces of .#. The morphisms ((%1,(, );),-41, L)) = (F2,(, )y), %>, %) in
this category are symplectic similitudes 1 : % — F5 such that ¥(£4) = %
and (L) = %,.

If S — By ;(G) is a morphism corresponding to a triple ((%, (, )),Z,Z’)
as above, then for z € {0,...,g} = TWE the locally closed subscheme S is
defined by the following property. A morphism of schemes f : T' — S factors
through “S' if and only if f*.%/(f*(Z) + f*(£")) is locally free of rank g — .

Remark 1.25. In [19] we will study the Bruhat stratification attached to the
Hodge filtration and the conjugate filtration of the universal abelian scheme
over the special fiber of Shimura varieties of PEL type of good reduction.
Then Example 1.24 will show that in the Siegel case the Bruhat stratification
is nothing but a scheme-theoretic version of the stratification by the a-number.

2. THE BRUHAT STRATA INDUCED BY F-ZIPS WITH ADDITIONAL
STRUCTURES

2.1. é-zip functors. In this section G is a linear algebraic group with re-
ductive identity component G over a finite field F, with ¢ elements. We fix
an algebraic closure F, of F,. Otherwise we use the general notation intro-
duced 1.3. In particular (W, I) denotes the Weyl group of G. We let @ be
the automorphism of W induced by the geometric Frobenius & — x'/¢ which
topologically generates Gal(F,/F,). This is also the automorphism induced
by the Frobenius isogeny F' : G — G as explained in Section 1.5. We denote
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by G’—Rep the F,-linear abelian tensor category of finite-dimensional rational
representations of G over F,.

Let S be an Fy-scheme. Recall from [11] that an F-zip over S is a tuple
M = (M,C*, D,,p,) consisting of a locally free sheaf of &s-modules of finite
rank .# on S, a descending filtration C* and an ascending filtration D, of .Z,
and an Og-linear isomorphism ¢; : (gri, #) @ 5 grP 4 for every i € Z,
where ( )(q) denotes the pullback by the Frobenius morphism z — z?. In a
natural way (see [14, Sec. 6]) the F-zips over S are the objects of an exact
F,-linear tensor category F-Zip(S).

More generally, as F-zips satisfy effective descent with respect to fpqc cover-
ings, there is also the obvious generalization of an F-zip over an algebraic stack
S defined over F,. We obtain the exact Fy-linear tensor category F-Zip(S).

In [14] “F-zips with G-structures” over an F,-scheme S are defined. These
arise for instance from the De Rham cohomology of smooth proper S-schemes
X whose Hodge spectral degenerates and commutes with arbitrary base change
S’ — S (see [14, Sec. 9] for details and further examples). We now explain
how every such “F-zip with G-structure over S” yields a Bruhat stratification
of S.

First recall the precise definition of “F-zip with G-structure”.

Definition 2.2. A G-zip functor over S is an exact F,-linear tensor functor
3 : G-Rep — F-Zip(S).

Again, as also G—zip functors satisfy effective descent with respect to fpqc
coverings ([14, Prop. 7.2]), there is also the obvious generalization of a G-
functor over an algebraic stack.

Let £ be a finite extension of F,; and let ;2 be a cocharacter of Gy. To simplify
later notation we assume that WO(G) % is a constant group scheme (which always
holds after passing to a finite extension of k). The homomorphism p induces a
grading on Vi, := V ®p, k for every representation V' of G and thus an Fg-linear
tensor functor vy, from G—Rep to the category of graded k-vector spaces. On
the other hand, any G-zip functor 3 over S induces an F4-linear tensor functor
from G’—Rep to the category of graded locally free sheaves of &g-modules on S
which sends V' to grg,(3(V)). Then j is called of type p if the graded fiber

functors gr¢, o3 and vy, are fpqc-locally isomorphic.

Remark 2.3. For classical groups G-zip functors of type p are indeed equiva-
lent to certain F-zips with additional structures. For instance, for G = GL,, F,
evaluating a G-zip functor over S in the standard representation yields by [14,
8.1] an equivalence of the category of G-zip functors over S and the category
of F-zips (A ,C*, Ds, ps) of rank n (i.e., tkgg (#) = n) over S. Here such an
F-zip corresponds to a G-zip functor of type p if and only if p is conjugate to
t — diag(t™,...,t™) (with r; € Z) and

(22) rkﬁs(gric///):#{je{l,...,n}|7“j:i}.
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For further examples see the application using orthogonal groups below and
[14, Sec. 8].

We denote by G—ZipFunM(S) the category of G-zip functors of type 1L over
S (morphisms are morphisms of functors that are compatible with the tensor
product). As S varies, G-ZipFun” is a category fibered in groupoids over the
category of k-schemes. In fact, by results of [13] and [14] there is the following
description of G-ZipFun”.

Let P = L x U+ C Gy be the unique opposite parabolic subgroups with
common Levi component L and unipotent radicals Uy, such that LieU, is
the sum of the weight spaces of weights > 0, and LieU_ is the sum of the
weight spaces of weights < 0 in Lie G, under Ad o u. Set L= Centék (1) and
Py :=LxUy. Then Py C Normg (P+) and Py is the identity component of
Pi. We set

(23) 0 := mo(L) = mo(Py).

As G is defined over F,, one has G,(cq) =~ (. Via this isomorphism we can
consider x(9 again as a cocharacter of G}, with associated parabolic subgroups
PO _ 10 U9,

The associated zip group ([14, Sec. 3.4]) is the linear algebraic subgroup of
]5+ Xk P defined as

(24) Bg, = {(tuy 0Qu_) [ L€ L, uy e Up,u_ e U7}
It acts from the left hand side on Gy, by the formula
(25) (P+,p-) -9 = prgp=".

We explain now how to attach, for any k-scheme S, to g € G(S) a G-zip functor
3(g) of type p over S.

Let p : G — GL(V) be a finite-dimensional representation of G over Fq,
let Vs := V ®r, Os, and let p(g) € GL(Vs) be the image of g under p(S).
The cocharacter p yields a grading on Vj,. By base change to S we obtain a
grading Vs = @,., V& which induces a descending filtration C*(Vs). As V
is defined over F,, there is a natural identification Vs(q) = Vg. Thus we may
consider the decomposition @), p(9)((VE)@) as another grading of V. Let
D, (Vs) be the induced ascending filtration. Finally let ¢; for all i € Z be the
isomorphism
(26) ol aro(Vs) @ = (V) 5 plo)(VHW) = &l (Vs),

where the arrow in the middle is given by p(g). In this way we obtain a functor
3(g) by sending the representation p to the F-zip (Vg, C*(Vs), De(Vs), ©2) over
S.

Theorem 2.4. The above construction g — 3(g) induces an isomorphism

(27) B¢, \Gr] = G-ZipFun"
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of algebraic stacks. In particular, CAT'-ZipFunM is an algebraic stack, smooth of
relative dimension O over k.

Proof. This follows from combining the following results from [14]: Proposi-
tion 3.11, Theorem 7.13, and Corollary 3.12. O

Remark 2.5. Conjugation with g € G(k) yields an isomorphism

G-ZipFun” = G-zipFun " |

2.6. Zip strata. We now recall the description of the underlying topological
space of G- leFun It is again the topologlcal space attached to a finite par-
tially ordered set, and we obtain for every G—z1p over a scheme S a stratification
indexed by this partially ordered set. The strata are called zip strata.

Fix a cocharacter p of G, k finite extension of F,, as above. We replace
by int(g) o p for some g € G(k) such that there exists a maximal torus T' of G
and a Borel subgroup B of G containing T' (both defined over ) such that
u factors through T and is Bg-dominant. This implies T, C L and By C Pxy.
Let J C I be the subset of simple reflections associated to p, i.e.

(28) J:{Z€I|</Laal>:0}a
where «; € X*(T) is the B-simple root corresponding to i € I.

For the theory of G-zip functors we need only © as in (23). But for the
proof of Proposition 2.7 below we allow the added flexibility that © C Q is
an arbitrary subgroup scheme (automatically finite étale). We also set
(29) K :="¢(]) = ¢(""J)

(recall that wo denotes the greatest element in W). For the field of definitions
of J and K we have x(J) = k(K) C k. We finally define

(30) A= ¢(0).

If © is defined as in (23), then

(31) A = mo(L@) = 7o (P).

Let I' = Gal(F,/k) be the Galois group of k.

The parabolic subgroup Py is the unique parabolic subgroup of Gy, of type
J, i.e. Py = Pj, where P; denotes the standard parabolic subgroup with
respect to (T B) of type J (Section 1.6). As K is the type of the parabolic
subgroup P9 and as P'? contains the Borel subgroup Bl =wp , we find

P — %o p. Thus if © is defined as in (23), we find

(32) Py = Pje, P9 = Y Py a

because conjugation with an element in G(k) preserves each connected com-
ponent of G.
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For general © we still consider the algebraic zip datum (in the sense of [13,
Def. 10.1])

o Wo A

(33) Z = (éa PJ,@v PK,A) (p)v
where ‘
P fJJ,e — fJQ;(J),A = wOIiK,A
is the Frobenius isogeny. Let
(34) Bg ye ={ (ul,v0(0)) | u € Ru(Py),v € “Ru(Px),L € Lo}

be the associated zip group. )
Let zo be the longest element in & W?) . Then

(35) To = W, KWo = WoWo,p(J) € KW@(J),

where wo x and wp () denote the longest elements in Wi and in W),
respectively. Let go € Normg(T')(k) be a representative of zo (this exists by
Lemma 1.4 because k is finite).

The automorphism of W

(36) ¢ = int(zp) 0 @

is I'-equivariant, it induces an isomorphism of Coxeter system
U (W, J) = (W, K),

and it sends Q ;¢ to Qx A. The map

(37) (W, D) = Wy W = wibtp(w) "

defines a left action of Q; on “WQ ([13, Lemma 10.4]). As z is fixed by T,
this action is I'-equivariant. We denote the set of {2 ;eg-orbits of TWQ under
the action by

(38) EJ7@ = QJ7@\JWQ.
P

The set = ¢ is endowed with a partial order < as follows. For w, @' € TWQ
we define

(39) @' <1 :& there exists © € W;Q e such that 'y (d) " <.

This defines a partial order on 7 WQ ([13, Thm. 10.9]) preserved by the action
of I'' Moreover the above action of €2;¢ also preserves the partial order <
([14, Lemma 3.18]). Thus we obtain an induced partial order (and hence a
topology) on ;6.

Again we fix for w € € a representative

& € Normg,(B)(F,) N Normg (T)(F,),

and for v =ww € W, w € W, w € Q, we set w := ww € Normg (T)(Fy).
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Proposition 2.7. Attaching tow € "W the Eg 5 o(Fy)-orbit of vgo € G(F,)
yields a homeomorphism of the topological space associated to the partially
ordered set T\Z ;o with the underlying topological space of the algebraic stack

[EG7J,®\ék]'

Proof. It is easy to check that (T, gO_IB,gO) is a frame ([13, Def. 3.6]) for the
connected algebraic zip datum Z = (G,PJ,wOPK,gp). As Y0P, = go_lPK
conjugation by go yields the frame (T, B, go) of the connected algebraic zip
datum Z’ := (G,% Py, Pk, ), where again ¢ denotes the Frobenius. Let
Z = (GA,gOPJ7@,PK’A,()0) and let £’ be the attached zip group. By [13,
Prop. 7.3] the zip datum Z’ is orbitally finite. Hence the £’ (F,)-orbit of gow
is the subset denoted by G* in [13, (10.5)]. Therefore [13, Thm. 10.6] implies
that @ — gow induces a bijection from I'\Z ;e to the set of E'(F,)-orbits on
G(F,). Moreover [13, Thm. 10.9] shows that this map is a homeomorphism. By
composing with the inverse of the conjugation with gy we obtain the claim. [

Corollary 2.8. Denote by Il g the €jg-orbits on 0 under the left action
(0,w) — 05w = 0wp(0)~'. Then the homeomorphism in Proposition 2.7
induces a bijection

(40) M\Ise — mo([Eg,;0\Gkl)-

Proof. For ¢ = v0 withv € Wy, § € Q50 and ¥ = ww with w € TW,we
one has 9w (9)~! = whwp—1(0) for some w € W. Hence Proposition 2.7
implies the claim using the definition of the partial order (39) which induces
the topology of [E@’L@\Gk]- O

By combining Proposition 2.7 and Corollary 2.8 with Theorem 2.4 we obtain:

Corollary 2.9. The underlying topological space of é-ZipFunM is homeomor-
phic to the topological space associated to the partially ordered set T\Ejeo. The

set of connected components of é—ZipFunﬂ can be identified with T\I1;g.

Let 3 be a G-zip functor of type u over a scheme S. Then 3 corresponds to a
morphism ¢ : S — é—ZipFunH and we obtain a corresponding zip stratification
of S as follows.

For £ € I'\Z;0 let % be the corresponding residual gerbe of G—ZipFunN.
For every morphism of algebraic stacks { : S — G—ZipFun“ we denote by S¢(¢)
(or S¢(3) if 3 is a G-zip functor of type p corresponding to ¢ ) the locally closed
substack of S defined by the following 2-cartesian diagram

S4(¢)
¢

(41) l
S
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Definition 2.10. The family (5°(¢))¢er\z, is called the zip stratification
associated to ¢ (or to 3).

2.11. Zip strata and Bruhat strata. We now construct a morphism from
the algebraic stack of G-zips into the Bruhat stack. We keep the notation of
the previous section, i.e., we fix p and k as above. From these data we obtain
J (28). We fix ©. Again we are mainly interested in © as defined in (23).
From J and © we obtain K (29) and A (30). Finally we also fix a maximal
torus 7" and a Borel subgroup B of G and for every w in the Weyl group of G
with respect to T' a representative @ € Normg(T)(F,) as above. For w = z
(35) we denote a representative in Normg (T)(F,) by go.
Define a morphism of k-schemes

B:Gr— Parjeo x Parg A, g — (PJ}@,gU’)Q.PK’A).
We obtain a composition of morphisms of algebraic stacks
[Eé,p\ék] — [(PJ’@ X WDPK’A)\G;C] = [Gk\(ParJ,@ X ParK,A)],

where the first morphism is the canonical projection induced by the inclusion
Ees u C PJ’@ X MOPK A and where the second morphism is induced by B (it is
an isomorphism by Lemma 1.2). Hence by Theorem 2.4 we obtain a morphism

(42) 8 :G-zipFun" — BJo k.

Proposition 2.12. The morphism (5 is representable, of finite type and smooth
of relative dimension dim L ;.

Proof. This follows from the construction of 3 and the fact that the quotient

(PJ’@ X wOPKA)/EaM has dimension dim L ;. O

The morphism § induces an open continuous map of the underlying topo-
logical spaces of these algebraic stacks which is given by Proposition 2.7 and
Proposition 1.16 by a I'-equivariant map

(43) ﬂQZEJ7@_> ’ W

preserving the partial orders on these sets. We will now describe (.
Define a map

(44) Go W — W™

by sending w = ww € W with w € W and w € Q to w* ), where w* ) is
the element of minimal length in W wW,, (k).

~ J -
Proposition 2.13. The restriction of By to W induces the map Lo (43)
that describes the underlying continuous map of 5 (42).
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Proof. On quotient stacks, 3 is given by [EG’J@\G;@] — [Pr.o\Gi/Px.a]. The
diagram

[Eg ;1 \Gk] — [P11\Gx/Prc 1]

| |

[EaJ,e\ék] — [P1,0\Gr/Pr,

is commutative, where the vertical morphisms are the canonical projections
obtained by the inclusions Eé7J’1 - EC,J,@’ ]541 - ]54@, and ]3;(71 - PK,A.
Thus it suffices to prove the proposition in the case © = A = 1.

By base change to a finite extension of £ we may assume that I'" acts triv-
ially on w. By Remark 1.20, all connected components of [Pj’l\ék /]ADK,l]
are already geometric connected components. By Corollary 2.8, the set of
(geometric) connected components of [Eg J7®\G'k] is given by the set II; o of
2 ,0-orbits on £ under the action (6, w) — 6-;w, and the map induced by 8y on
the set of connected components is the canonical map II; e — Q50\Q/Qx A.
Hence by restricting By to connected components, we can reduce to the case
that G = G is connected.

Now note that 1wy Px = woto,x Px = gg ! Prc. Hence it follows from Propo-
sition 2.7 that the underlying continuous map of g is induced by the map

W = (G/P)(Fy) x (G/Pr)([Fy), w (Ps(Fy), ogogy ' P (Fy))

Via the description of a double quotient in Lemma 1.2 we thus see that fy is
induced by

W PJ(Fq)\G(Fq)/PK(Fq)v w PJ(Fq)wPK(Fq)-
This shows the claim. O

The fibers of § define the Bruhat stratification (wé—ZipFun#(ﬁ))reJ,e N

4%
on G-ZipFun" (Definition 1.19)

For many classical groups Ga @—zip functor is the same as an F-zip with
additional structures ([14, §8]). Moreover, often Parje and Parx a classify
flags with certain properties. Then § is simply given by attaching to an F-zip
(M, C*®, D, pe) with additional structure the underlying flags of C* and D,.
We make this more precise for GL.,.

Example 2.14. Let G=G= GL, r, and for integers r; > -+ > 1, let u be
the cocharacter ¢ — diag(¢™,...,t"). In particular we have k = F,. Let T
be the diagonal torus and B the Borel subgroup of upper triangular matrices.
Then p is dominant with respect to B. It induces a grading on V' = Fy and
hence a descending filtration C*® and an ascending filtration De on V. The
stabilizer of C*(V') in GL,, is the parabolic subgroup P; where J is defined as
in (28). The stabilizer of De(V') is “° Pg, where K = “°J.

As explained in Remark 2.3, evaluation in the standard representation of
GL,, identifies the category of GL,-zip functors of type p with the category
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F-7Zip"(S) of F-zips satisfying (22). Via this identification, the isomorphism
(27) is induced by attaching to g € GL,(Os) (S some F,-scheme) the F-zip
AM(g) = (Vs,C*(V)s,9(De(V)s, ¢a) with ¢f as in (26).

For G = GL,, the Bruhat stack B i is isomorphic to the algebraic stack
Flag; ;- classifying over an Fy-scheme S triples (M, F,G), where M is a finite
locally free @s-module of rank n and where .# (resp. ¢) is a flag of .# whose
stabilizer is a parabolic subgroup of GL,,(Os) of type J (resp. of type K).

By the description of 3 (42) we hence obtain a commutative diagram

GL,-ZipFun” '8—> Bk

ul lm

F-Ziph(S) —————Flag, g

where the lower horizontal morphism sends an F-zip (.#,C*®, Ds,pe) to the
triple (A, F1(C*®),F1(D,)), where F1(-) denotes the underlying flag of a filtra-
tion.

We now return to the case that © is defined by (23).

Given a G'—zip functor of type p over a k-scheme S which corresponds to
a morphism ¢ : S — (A}'—ZipFunM and hence a zip stratification (Sg)gep\EJ’@
(Definition 2.10) of S. Moreover composition of ¢ with 8 yields a morphism
S — Bje,ka and hence a Bruhat stratification (zs)wep\J,ewK,A (Defini-
tion 1.19). Hence by definition, every Bruhat stratum is a union of zip strata.
This union can be described as follows.

Corollary 2.15. Let z € F\J’QWK’A be the T-orbit of QjewwQk A with

weQ and w e "W Then the Bruhat stratum *S is the union of the zip
—1

strata given by the I'-orbits of Qe -y wywd where y € w(K)w JwWw(K) and

d € QK,A-

Proof. The automorphism ¢ (36) induces an isomorphism Q70 — Qx . Thus
for every double coset §2; oWk A representatives for the action (37) are given
by wé for § € Qi A. Moreover, the fiber in an element w € TWeE) of the
map ‘W — JW“’(K), w — w?%) induced by Bo consists of the elements wy
with y € @& )mwfleWw( &) by a corollary of a result of Howlett on Coxeter
groups ([13, Prop. 2.8]). O

3. THE EXAMPLE OF THE MODULI SPACE OF K3-SURFACES

3.1. Twisted orthogonal F-zips associated to surfaces. Let S be an
algebraic stack over F, where p is an odd prime. Let X be a surface over
S. By this we mean a smooth proper morphism f : X — S representable
by algebraic spaces and that has geometrically integral fibers of dimension 2
(these are automatically schemes). We assume that f satisfies the following
two conditions.
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(D1) The sheaves of &s-modules R f. (Q2%/5) are locally free of finite rank for
all a,b > 0.
(D2) The Hodge-de Rham spectral sequence

nB* = R f.(Q%)s) = HpR'(X/S)
degenerates at Fj.

Then the formation of the Hodge—de Rham spectral sequence commutes with
base change S’ — S, and Hy(X/S) is locally free of finite rank for all d > 0.

To simplify the exposition we assume that the locally constant Hodge num-
bers h*" 1=tk (R’ f.(2%/5)) are in fact constant. Below we will focus on the
case that X is K3-surface over S, and then (D1) and (D2) are always satisfied
(cp. [7, Prop. 2.2]).

The assumptions (D1) and (D2) imply that the De Rham cohomology
HRR(X/S) carries the natural structure of an F-zip over S (with ¢ = p). As
explained in [14, Sec. 9.2], the cup product yields a nondegenerate symmetric
pairing
(45) Ut Hpp(X/S) ® Hpp(X/S) — 1(2),

where 1(d) denotes the Tate F-zip of weight d ([14, Ex. 6.6]). In other words,
the triple Hp (X/S) := (H3R(X/S),1(2),UV) is a twisted orthogonal F-zip in
the following sense.

Definition 3.2. A twisted orthogonal F-zip over S is a triple (4 ,.%, B) con-
sisting of an F-zip .4 over S, an F-zips .Z of rank 1 over S and a homomor-
phism of F-zips B : Sym? (A) — &£, whose underlying symmetric pairing is
perfect.

The type of the F-zip H3x(X/S) is n = (n;)icz with ng = ny =1 (because
of our assumption that f has geometrically integral fibers), n; = h'!, and
n; =0 for i #£0,1,2.

Note that all these assertions may be checked fpqc-locally on S and thus
follow from the analogue results in the case that S is a scheme.

3.3. Classification of some twisted orthogonal F-zips. The case of sur-
faces leads us to study the following general situation. Let ¢ be an odd power
of a prime. We let G,, (resp. p,) be the multiplicative group (resp. the group
scheme of r-th roots of unity) over IF,.

We now study a general twisted orthogonal F-zip (#,.Z, B) over an F,-
scheme S, where .Z has type n = (n;)icz with ng =ngo =1, h:=n; > 0, and
n; = 0 for ¢ # 0,1,2, and where £ has type 2. Let n = h + 2 = rkg, (A),
let b be a nondegenerate split symmetric bilinear form on V' = Fy, and let
GO(V,b) be the group of orthogonal similitudes of (V,b). Thus we have an
exact sequence of algebraic groups

1= O(V,b) — GO(V,b) -5 G — 1,

where 1 denotes the multiplier homomorphism.
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Fix n as above. Let u be a cocharacter of GO(V,b) (unique up to conjuga-
tion) whose weights on the standard representation V' of GO(V,b) are ¢ with
multiplicity n; for all i. By [14, 8.6] and Theorem 2.4 the following algebraic
stacks are equivalent.

(i) The stack of twisted orthogonal F-zip .# of type n.

(ii) The stack of GO(V,b)-zip functors of type pu.
(iii) The quotient stack [Egov,p),.\ GO(V,b)].
Hence the twisted orthogonal F-zip (#,.Z, B) yields a zip stratification and
a Bruhat stratification on S. We describe these strata in more detail.

Flags and orthogonal spaces. We start by reviewing some standard definitions.
Let S be a scheme and let .# be a finite locally free &s-module. A flag in
A is a set F of local direct summands of the &s-module .# which is totally
ordered by inclusion, which contains 0 and .#, and such that &(s) C &’(s) for
all s € S whenever & C &' are two elements of F. The type of F is the set of
locally constant functions

{tkoy (&) | £ € F, 6 £0,.4 ).

If & is a local direct summand of .#, we denote by &+ C .#" its orthogonal
in the dual .ZV.

Definition 3.4. Let S be any scheme over Z[1/2]. A triple (.#,.Z,b), where
A is a finite locally free Os-module, .Z is an invertible &s-module, and where
b: Symz(/// ) — £ is a perfect symmetric pairing, is called a space of orthog-
onal similitudes. Its rank is the rank of the ¢-module .Z.

A flag of (M, ZL,b) is a flag F of A, such that for all & € F there exists
&' € F such that b (considered as an isomorphism .# = .#V ® &) induces
an isomorphism & = (6')t @ Z.

Again, all these notions satisfy effective descent for fpqc-coverings and in
particular generalize immediately to the case that S is an algebraic stack.

There is the obvious notion of an isomorphism of spaces of orthogonal simil-
itudes over a fixed Z[1/2]-scheme S. Let S0S,(S) be the category of spaces of
orthogonal similitudes of rank n over S where all morphisms are isomorphisms.
Letting S vary over all F,-schemes and with the obvious notion of pull backs
for scheme morphisms S’ — S we obtain a category S0S,, fibered in groupoids
over the category of IF;-schemes.

Lemma 3.5. S0S,, is the classifying algebraic stack [GO(V,b)\ Spec(F,)] of
GO(V,b).

Proof. As descent data of spaces of orthogonal similitudes and their morphisms
are clearly effective for fpqc coverings, S0S,, is a stack. Then the lemma follows
from the fact that any two spaces of orthogonal similitudes of the same rank
on a Z[1/2]-scheme S are locally for the étale topology isomorphic ([9]). O

We will now describe the groups GO(V,b) and their Weyl groups. Recall
that n = dimg, (V) > 3.
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Case: n odd. If n is odd, then there is an isomorphism
SO(V,b) x G,,, — GO(V,b), (g,A) — Xidy og.

Hence GO(V, b) is a connected split reductive group with root system of Dynkin
type By, with m := (n—1)/2 (with the convention By := A;). Its Weyl group
can be identified with

W:={oceS,|o@)+on+1—i)=n+1lforalli=1,...,n}

Then every w € W is already uniquely determined by (w(i))1<i<m and w(m+
1) = m+1. The longest element wy is given by the permutation ¢ — n+1—i and
hence wy is central. The set of simple reflections is given by I = {s1,...,sm},
where

si=0i+1)(n—in—i+1),i=1,....m—1, sy = (m,m+2).

Here (i,j) denotes the transposition of ¢ and j. As GO(V,b) is split, the
automorphism @ of (W, I) is trivial. The cocharacter p yields by (28) and (29)
the sets

J=K="{s2,...,8m}-

Lemma 3.6. The Bruhat order and the order < (39) on ' W coincide and are
total orders. The length function induces an isomorphism of totally ordered
sets

(46) TW =5{0,...,n =2}, w s £(w).
Under this isomorphism the subset Twk ofJW corresponds to the set {0,1,n—
2}.
Proof. Tt is easy to check that
{0,...,n—2}y ='W,
dH{sl...sd, 0<d<m,

S$1.+-8mSm—1---82m—d, m+1<d<2m—1,

defines an inverse of (46). This shows that (46) is an isomorphism of totally
ordered sets, where YW is endowed with the Bruhat order. The order < is
a refinement of the Bruhat order which still satisfies the relation w <X w' =
(w) < L(w') (by [13, Thm. 5.11]). Thus it has to agree with the Bruhat order.
The last assertion is clear. (]

Finally note that Z;; = /W (38) because GO(V, b) is connected. Therefore
the underlying topological space of the stack of twisted orthogonal F-zips of
type n (with n as above and n odd) is the topological space attached to the
totally ordered set {0,...,n — 2}.
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Case: n even. If n is even, GO, has two connected components and the
homomorphism GO,, — o, g — 71(g)/det(g)™? induces an isomorphism
70(GO,,) = p2. The identity component G' of GO,, is a split reductive group
of Dynkin type D,, with m := n/2 (with the convention Dy := A; + A; and
D3 := A3). The case m = 2 would require some extra notation, thus we assume
for simplicity m > 3. The Weyl groups of G and of GO,, can be identified with
W:={oeS,|o(@)+on+1—i)=n+1},

W:={oceW|#{1<i<m|o(i)>m}isan even number }.
Again, every i € W is determined by (1 (i))1<i<m. We set
w:=(m,m+1),
where again (4, j) denotes the transposition of ¢ and j. Then
Q = {id,w}.
The set of simple reflections is given by I = {s1,..., s, } with
si=0i+1)(n—in—i+1),i=1,...,m—1,
Sm = (m —1,m+1)(m,m+2),

Note that $,,_18m = SmSm—1. Let wg € W be the permutation i — n + 1 — 4.
Then the longest element wy of W is given by

wo,  if m is even,
Wo =9 . . .
wow, if m is odd.

As above, the automorphism @ of W is trivial and the cocharacter 1 yields the
sets
{s2,...,8m}

J: =
<i<m-—2and w($m—1) = S$m. In particular

We have w(s;) = s; for 1

w(K) = K and hence
J o K

W =TwruIwre.
Moreover, Centgo, (1) = GOp—_2 XG,,. Hence if we define © and A as in (23)
and (30), then we get
O =A=my(GOp_2) = 2

JO - KA |
and hence Q0 = Qx .o = Q. It follows that the map TWE 577w is an

isomorphism of partially ordered sets which we use to identify these partially
ordered sets.
We have a direct sum of partially ordered sets

TWQ="wu'Ww

and the action (37) of Qe = § preserves this decomposition.
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Lemma 3.7. The Bruhat order and the order < (39) on "W coincide. It is
given by

to:=1id <ty := 57

<tm—2:=81"""Sm-2

!
Stm—1:=81"""Sm—28m—1, typy_1 = 81" " Sm—28m
<tm: =81 "Sm

<tlmy1 =81 SmSm—2

<tom—2:= 81" SmSm—2" " S1,

and each element is written as a reduced product of simple reflections (in par-
ticular £(t;) = i). Moreover Twk = {id, t1,tom—2}. The action of w on Tw
fizes the t; for i #m — 1, and it interchanges ty,—1 and t, .

Proof. For the Bruhat order this is easy to check. The order < is a refinement
of the Bruhat order which also satisfies the relations w < w' = f(w) < £(w’)
and

w 2w l(w) =L(w) = w=u

(again by [13, Thm. 5.11]). Thus it has to agree with the Bruhat order. The
remaining assertions are clear. U

Hence we see that the partially ordered set Z;¢ (38), which describes the
underlying topological space of the stack of twisted orthogonal F-zips of type
n (n as above, n even), is the direct sum (as partially ordered set) of the two
totally ordered sets Q\7W and Q\”Ww. For both of these totally ordered sets
the length function is an isomorphism of ordered sets with {0,...,n — 2}.

Description of the Bruhat stack and the zip stack. In both cases (i.e., n odd
and n even) we see that there are precisely three Bruhat strata parametrized
by
0,7 _~» K,A )
Twk = 7w = {id, s1, w1 },

where w; is the element of maximal length in 7 W . Therefore Proposition 1.16
implies that the Bruhat stack Bjx(GO(V,b)) has three points id, s, and
wy, where id is a specialization of s1, and s; is a specialization of w;. The
corresponding residual gerbes classify the following data.

Remark 3.8. For every Fy-scheme S the group GO(V,b)(S) acts étale lo-
cally on S transitively on the set orthogonal flags in (V,b)g of type {1,n— 1}.
This, together with Lemma 3.5, implies that the Bruhat stack B x (GO(V, b))
classifies over an Fg-scheme S tuples (#,b,.Z, F,G), where (A4 ,b, L) is a
space of orthogonal similitudes of rank n over S and where F = { %1, %, 1}
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and § = {4,%,-1} are two flags of (#,b, ) that both have the type
{1,n — 1}. Moreover the Bruhat stratification is given as follows:

(1) 5 is the closed subscheme of S where F = G. More precisely, it is the
unique closed subscheme of S such that a morphism f : 7" — S of schemes
factors through S if and only if f*F = f*G.

(2) °*Sis the locally closed subscheme of S where %1 C 4,1 (or, equivalently,
% C #,_1) and where %7 + 4 is a direct summand of .# of rank 2.

(3) “S is the open subscheme of S, where %, +9,,_1 = .# (or, equivalently,
G+ Fpq = .//)

Now we can use Proposition 2.7 to deduce that the underlying topological
space of the stack of twisted orthogonal F-zips of type n is the topological
space attached to the partially ordered set

(47) En = EJ7@,
and the description of Z,, obtained above yields the following result.

Proposition 3.9. Ifn is odd (resp. if n is even) the stack of twisted orthogonal
F-zips of type n has one (resp. two) connected components which are also
geometrically connected. The underlying topological space of each connected
component is homeomorphic to the topological space associated to the totally
ordered set {0,...,n — 2}.

3.10. Zip strata and Bruhat strata for K3-surfaces. Let S be an alge-
braic stack over F,, (p an odd prime) and let X — S be a K3-surface over
S. By this we mean that X is a surface over S as defined in the beginning of
Subsection 3.1 such that each geometric fiber Xz — Spec(k(8)) is a K3-surface
in the usual sense (i.e., Q% is trivial and H'(X5, Ox,) = 0).

Then the conditions (D1) and (D2) above are satisfied and we obtain a
twisted orthogonal F-zip

M= M(X) := Hpp(X/S)

as explained in Subsection 3.1. Its rank is 22.

If we endow X with a p-principal polarization, we may attach also a prim-
itive version of M. For this recall that a polarization on X is a class A €
Picy,g(X) (where Picx,s denotes the relative Picard scheme) such that for
every geometric point § of S the fiber A; is the class of an ample line bundle.
Then for s € S the self intersection number d(s) := (As.A5) (5 some geometric
point over s) is always an even integer and the function d : S — 27Z is locally
constant on S. A polarization \ is called p-principal if its degree is prime to
.

If A is a polarization on X, its first Chern class ¢1(A) is a global section of
H2Rr(X/S) with

(48) c1t(A)Uer(X) =d(X) € T(S, Os).
Form now on we assume that A is p-principal. Then (48) shows that
HPR(X/S) = Hprim(X, ) @ (c1(V),
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where (c1())) is the Og-module generated by c¢1(A) and where Hppim (X, A) is
defined as the orthogonal complement of {c;(\)) in H3g(X/S). Moreover, it
follows from results of Ogus ([12]), that (c1(A)) = 1(1) and that the cup prod-
uct induces on (c;(A)) the canonical pairing 1(1) ® 1(1) — 1(2). In particular
we see that the cup product induces the structure of a twisted orthogonal F-zip
on Hprim (X, A). We denote it by M’ = M’(X, ). Its rank is 21 and its type
is 0/ with n{, =n5y=1,n] =19 and n; =0 for i # 0,1, 2.

Let (X, A) be a p-principally polarized K3-surface over S of constant degree
2d. The twisted orthogonal F-zips M(X) and M'(X, \) induce zip strata

S = U(Sé)ﬁeEzz = U Sg’:'Em

and Bruhat strata
§=Hgumngums="9uU"s Uy

The description of the Bruhat strata in Remark 3.8 shows that these two
Bruhat stratifications coincide.

The two connected components Zgo 1 = Q\JW and Egg9 = Q\JWOJ of
Ego yields a decomposition of S into two open and closed substacks S; and
So. It is easy to see that this decomposition is given by the discriminant of
orthogonal F-zips explained in [18, (4.3)]. As the discriminant is the class of
—2d in F/(F))? (by [18, Lemma 5.3]), we see that one of this open and closed
substacks is empty. More precisely, So = @ if and only if —2d is a square in
Fx.

pFinally, the comparison between zip strata and Bruhat strata (Corol-
lary 2.15) shows that

idS _ Sidusw _ S/id,

5= J st= U 95
€822 £E€Ea

1<0(£)<19 1<0(£)<18
wlS — Stzo U Stgow — Slwl-
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