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Abstract. The notion of a linear Coxeter system introduced by Vinberg generalizes the
geometric representation of a finite Coxeter system. Our main theorem asserts that if v is
an element of the Tits cone of a linear Coxeter system and W is the corresponding Coxeter
group, then Wv ⊆ v − Cv, where Cv is the convex cone generated by the coroots α̌, for
which α(v) > 0. This implies that the convex hull of Wv is completely determined by the
image of v under the reflections in W . We also obtain an analogous result for convex hulls
of W-orbits in the dual space, although this action need not correspond to a linear Coxeter
system. Motivated by the applications in representation theory, we further extend these
results to Weyl group orbits of locally finite and locally affine root systems. In the locally
affine case, we also derive some applications on minimizing linear functionals on Weyl group
orbits.

Introduction

The present paper is motivated by the unitary representation theory of
locally finite, resp., locally affine Lie algebras and their analytic counterparts
[6, 7, 8]. In the algebraic context, these Lie algebras g contain a maximal
abelian subalgebra t for which the complexification gC has a root decomposition
gC = tC⊕

⊕
α∈∆ gα

C
and there is a distinguished class of unitary representations

(ρ, V ) of g on a pre-Hilbert space V for which the operators ρ(x), x ∈ g, are
skew-symmetric, on which ρ(t) is diagonalizable, and the corresponding weight
set PV ⊆ it∗ has the form

PV = conv(Wλ) ∩ (λ+Q),

where W ⊆ GL(t) is the Weyl group of the pair (g, t), and Q ⊆ it∗ is the root

group. Then
Ext(conv(PV )) = Wλ

is the set of extremal weights. For finite-dimensional compact Lie algebras g

and the unitary (=compact) forms of Kac–Moody algebras, this follows from
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the well-known description of the weight set of unitary highest weight modules
[3]. For the generalization to the locally finite, resp., locally affine case we refer
to [6], resp., [7] for details. Motivated by these representation theoretic issues,
the present paper addresses a better understanding of the convex hulls of Weyl
group orbits in t and t∗.

In the locally finite, resp., locally affine case, the Weyl group is a direct
limit of finite, resp., affine Coxeter groups, and it is the geometry of linear
actions of Coxeter groups that provides the key to the crucial information on
convex hulls of orbits. Therefore this paper is divided into two parts. The
first part deals with linear Coxeter systems [10]. These are realizations of
Coxeter groups by groups generated by a finite set (rs)s∈S of reflections of a
finite-dimensional vector space V satisfying the following conditions. We write
rs(v) = v − αs(v)α̌s with elements αs ∈ V ∗ and α̌s ∈ V and cone(M) for
the convex cone generated by the subset M of a real vector space. Then the
conditions for a linear Coxeter system are:

(LCS1) The polyhedral cone K := {v ∈ V | for all αs(v) ≥ 0} has interior
points.

(LCS2) αs 6∈ cone({αt | t 6= s}) holds for all s ∈ S.
(LCS3) wK0 ∩ K0 = ∅ holds for all w ∈ W \ {1}, where K0 denotes the

interior of K.

Note that the conditions (LCS1/3) refer to the canonical topology on a finite-
dimensional real vector space. This is why the set S is assumed to be finite
for a linear Coxeter system (cp. the discussion in Example 3.6).

For any linear Coxeter system, the set T := WK ⊆ V is a convex cone,
called the Tits cone. A reflection in W is an element conjugate to one of the
rs, s ∈ S. Any reflection can be written as rα(v) = v − α(v)α̌ with α ∈ V ∗

and α̌ ∈ V , where α belongs to the set ∆ := W{αs | s ∈ S} of roots and
α̌ ∈ ∆̌ := W{α̌s | s ∈ S} is a coroot. In these terms, our first main result
(Theorem 2.7) asserts that

(1) Wv ⊆ v − Cv for Cv := cone{α̌ | α(v) > 0} and v ∈ T = WK.

As an inspection of two-dimensional examples shows, the restriction to el-
ements of the Tits cone is crucial and that the boundary ∂T may contain
elements v for which Wv is not contained in v − Cv.

1

For the applications to orbits of weights, we also need a corresponding result
for elements in the dual space. Here a difficulty arises from the fact that the
concept of a linear Coxeter system is not preserved by exchanging the role of
V and V ∗, so that Theorem 2.7 cannot be applied directly. However, this can
be overcome by reduction to the subspace U ⊆ V ∗ generated by the dual cone
C⋆

S of CS := cone{α̌s | s ∈ S}. Then WC⋆
S is the Tits cone for a linear Coxeter

system on U (Theorem 2.12).

1The proof of Theorem 2.7 relies on various results from the unpublished diploma thesis
of Georg Hofmann [1] which contains already a proof for the special case where v ∈ K0, i.e.,
where the stabilizer of v is trivial.
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Structure of this paper: In Section 1 we recall some basics on linear Cox-
eter systems and generalize some results which are well-known for the geomet-
ric representation of a finite Coxeter system to linear Coxeter systems. Here
the main results are Theorem 1.10 relating positivity conditions to the length
function and Proposition 1.12 asserting that the stabilizer of an element in
the fundamental chamber K is generated by reflections. Our main results, (1)
and its dual version, are proved in Section 2. In Section 3 we turn to the
applications to Weyl group orbits of linear functionals for locally finite and
locally affine root systems (Theorems 2.7 and 2.12). The two final subsections
are motivated by the representation theoretic problem to determine maximal
and minimal eigenvalues of elements of the Cartan subalgebra in extremal
weight representations. In this context we provide in the locally affine case
a complete classification of the set P+

d of those linear functionals λ for which

λ(d) = min(Ŵλ)(d) holds for a certain distinguished element d and show that

any orbit of the affine Weyl group Ŵ intersects P+
d in an orbit of the cor-

responding locally finite Weyl group W . Writing Ŵ as a semidirect product
N ⋊W , where N acts by unipotent isometries of a Lorentzian form, the min-

imization of the d-value on a Ŵ-orbit turns into a problem of minimizing a
quadratic form on an infinite-dimensional analog of a lattice in a euclidean
space. These issues are briefly discussed in Subsection 3.17.

The results of the present paper constitute a crucial ingredient in the clas-
sification of semibounded unitary representations of double extensions of loop
groups with values in Hilbert–Lie groups carried out in [8].

Notation: For a subset E of the real vector space V we write conv(E) for its
convex hull and cone(E) for the convex cone generated by E. For a convex
cone C ⊆ V we write H(C) := C ∩ −C for the largest subspace contained in
C. The cone C is said to be pointed if H(C) = {0}. We also write

E⋆ := {α ∈ V ∗ | α(v) ≥ 0 for all v ∈ E}

for its dual cone in V ∗. For E ⊆ V ∗, we define its dual cone by

E⋆ := {v ∈ V | α(v) ≥ 0 for all α ∈ E}.

Contents

1. Linear Coxeter systems 465
2. A convexity theorem for linear Coxeter systems 471
3. Orbits of locally finite and locally affine Weyl groups 478

1. Linear Coxeter systems

In this section we recall Vinberg’s concept of a linear Coxeter system, gen-
eralizing the geometric representation of a Coxeter group.
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Definition 1.1. (a) Let V be a real vector space. A reflection data on V
consists of a family (αs)s∈S of linear functionals on V and a family (α̌s)s∈S of
elements of V satisfying

αs(α̌s) = 2 for s ∈ S.

Then rs(v) := v − αs(v)α̌s is a reflection on V . We write W := 〈rs | s ∈ S〉 ⊆
GL(V ) for the subgroup generated by these reflections and

(2) co(v) := conv(Wv)

for the convex hull of a W-orbit. We say that a reflection data is of finite type

if S is finite and dimV < ∞.
(b) We consider the following polyhedral cones in V resp. V ∗:

CS := cone{α̌s | s ∈ S} ⊆ V, ČS := cone{αs | s ∈ S} ⊆ V ∗,

and the fundamental chamber

K := {v ∈ V | αs(v) ≥ 0 for all s ∈ S} = (ČS)
⋆.

(c) A reflection data of finite type is called a linear Coxeter system (cp. [10])
if

(LCS1) K has interior points, i.e., the cone ČS ⊆ V ∗ is pointed.
(LCS2) αs 6∈ cone({αt | t 6= s}) holds for all s ∈ S.
(LCS3) wK0 ∩K0 = ∅ holds for all w ∈ W \ {1}.

Then T := WK is called the associated Tits cone.

Definition 1.2. Let V be a real vector space endowed with a symmetric
bilinear form β. A symmetric reflection data on V consists of a family (α̌s)s∈S

of nonisotropic elements of V for which the linear functionals

αs(v) :=
2β(v, α̌s)

β(α̌s, α̌s)

define a reflection data on V . Then the reflections

rs(v) = v − αs(v)α̌s = v − 2
β(v, α̌s)

β(α̌s, α̌s)
α̌s

preserve β, so that W ⊆ O(V, β).

Remark 1.3. (a) Condition (LCS2) means that, for each s ∈ S, the dual
cone of cone{αt | t 6= s} is strictly larger than K, i.e., there exists an element
v ∈ K ∩ kerαs with αt(v) > 0 for t 6= s. Then K ∩ kerαs is a codimension 1
face of the polyhedral cone K.

(b) Typical examples of linear Coxeter systems arise from the geometric
representation of a Coxeter system (W , S) (cp. [2, §5.3], [10]).

The following criterion for the recognition of linear Coxeter systems will be
convenient in many situations because conditions (C1) and (C2) are preserved
by the passage to the dual reflection data obtained by exchanging V and V ∗.

Münster Journal of Mathematics Vol. 7 (2014), 463–487



On convex hulls of orbits of Coxeter groups 467

Proposition 1.4. Let (V, (αs)s∈S , (α̌s)s∈S) be a reflection data of finite type

satisfying (LCS1). Then it defines a linear Coxeter system if and only if the

following conditions are satisfied for s 6= t ∈ S:

(C1) αs(α̌t) and αt(α̌s) are either both negative or both zero.

(C2) αs(α̌t)αt(α̌s) ≥ 4 or αs(α̌t)αt(α̌s) = 4 cos2 π
k
for some natural number

k ≥ 2.

In this case (W , (rs)s∈S) is a Coxeter system.

Proof. According to [10, p. 1085], for a reflection data of finite type satisfying
(LCS1/2), condition (LCS3) is equivalent to both conditions (C1/2).

Therefore it remains to show that (C1) implies (LCS2). So we assume that
αs =

∑
t6=s λtαt with each λt ≥ 0. Then (C1) leads to the contradiction

2 = αs(α̌s) =
∑

t6=s

λtαt(α̌s) ≤ 0.

Therefore (C1) implies (LCS2). That (W , (rs)s∈S) is a Coxeter system follows
from [10, Thm. 2(6)]. �

Remark 1.5. As a consequence of the preceding proposition, we obtain for
every subset S0 ⊆ S and every linear Coxeter system (V, (αs)s∈S , (α̌s)s∈S) a
linear Coxeter system

(V, (αs)s∈S0
, (α̌s)s∈S0

).

Remark 1.6. (a) If (V, (αs)s∈S , (α̌s)s∈S) is a reflection data, then we also
consider the elements α̌s as linear functionals on V ∗. We thus obtain a re-
flection data (V ∗, (α̌s)s∈S , (αs)s∈S). Suppose that (V, (αs)s∈S , (α̌s)s∈S) is a
linear Coxeter system. Then (C1/2) also hold for the dual reflection data
(V ∗, (α̌s)s∈S , (αs)s∈S). Hence it is a linear Coxeter system if and only if (LCS1)
holds, i.e., if the convex cone CS is pointed, i.e., H(CS) = {0}.

(b) If CS is not pointed, then we still obtain a linear Coxeter system by
replacing V ∗ by the smaller subspace

U := span(C⋆
S) = H(CS)

⊥ ⊆ V ∗.

Let q : V → V/U⊥ ∼= U∗ denote the canonical projection. We put

S̃ := {s ∈ S | α̌s 6∈ U⊥ = H(CS)}.

Proposition 1.4 implies that (U, (q(α̌s))s∈S̃
, (αs)s∈S̃

) is a linear Coxeter system

because the convex cone Č
S̃
⊆ ČS is pointed. We write

WU := 〈rs | s ∈ S̃〉 ⊆ GL(U)

for the corresponding reflection group.

To relate this group to W , we first claim that U isW-invariant. For s ∈ S\S̃
the relation α̌s ∈ U⊥ implies that the reflection rs acts trivially on the subspace
U ⊆ V ∗. Next we observe that, if an element

∑
s∈S λsα̌s ∈ CS with λs ≥ 0 is
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contained in H(CS), then λs > 0 implies that α̌s ∈ H(CS), i.e., s ∈ S \ S̃. We
conclude that

H(CS) = cone{α̌s | s ∈ S \ S̃} = C
S\S̃ .

For s ∈ S̃ we now derive from (C1) that αs ∈ −(C
S\S̃)

⋆ = −H(CS)
⋆ =

U. Therefore U is also invariant under rs. Hence U is W-invariant. As the
reflections rs, s ∈ S \ S̃, act trivially on U , we see that the restriction map

R : W → WU , w 7→ w|U

is a surjective homomorphism.

Lemma 1.7. Let a ≥ 2 and

r1 :=

(
−1 a
0 1

)
, r2 :=

(
1 0
a −1

)
∈ GL2(R).

If e1 and e2 denote the standard basis of R2, then

(r1r2)
ne1, r2(r1r2)

ne1 ∈ cone{e1, e2} for n ∈ N0.

The matrix r1r2 is of infinite order.

Proof. We define a linear functional on R
2 by β(x) := x1 − 1

2ax2. First we
show by induction on n that

(r1r2)
ne1 ∈ cone{e1, e2} and β((r1r2)

ne1) ≥ 0 hold for any n ∈ N0.

For n = 0 this is trivial. So let v := (r1r2)
ne1 and assume that the assertion

holds for some n ∈ N0. With

r1r2 =

(
a2 − 1 −a

a −1

)

we then obtain

β(r1r2v) = (a2 − 1)v1 − av2 −
1

2
a(av1 − v2) = (

a2

2
− 1)v1 −

a

2
v2

= (
a2

2
− 2)

︸ ︷︷ ︸
≥0

v1 + β(v) ≥ 0.

We also have

(a2 − 1)v1 − av2 = (a2 − 3)v1 + 2
(
v1 −

a

2
v2

)
≥ v1 + 2β(v) ≥ 0

and

(3) av1 − v2 =
1

a

(
(a2 − 2)v1 + 2(v1 −

a

2
v2)

)
≥

1

a
(2v1 + 2β(v)) ≥ 0.

This proves that r1r2v ∈ cone{e1, e2} and completes our induction.
For v′ := r2v = r2(r1r2)

ne1, we finally obtain with (3)

v′1 = v1 ≥ 0 and v′2 = av1 − v2 ≥ 0,

hence that v′ ∈ cone{e1, e2}.
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From det(r1r2) = 1 and tr(r1r2) = a2− 2 ≥ 2 it follows that, for a > 2, r1r2
is diagonalizable with real eigenvalues 0 < λ1 < 1 < λ2 := λ−1, and for a = 2
it is unipotent but different from the identity matrix. Hence r1r2 is of infinite
order for every a ≥ 2. �

Lemma 1.8. Let (V, (αs, αt), (α̌s, α̌t)) be a reflection data satisfying (C1/2)
and W ⊆ GL(V ) be the subgroup generated by rs and rt. Then (W , {rs, rt}) is
a Coxeter system. Its length function ℓ satisfies for g ∈ W:

ℓ(grs) ≥ ℓ(g) ⇒ gα̌s ∈ CS = cone{α̌s, α̌t}.

Proof. Let g ∈ W with ℓ(grs) ≥ ℓ(g). Then every reduced expression for g is
an alternating product of rs and rt ending in rt. After normalizing the pair
(αs, α̌s) suitably, we may assume that αs(α̌t) = αt(α̌s). Let

a := −αs(α̌t) ≥ 0 and U := span{α̌s, α̌t}.

Then

det

(
αs(α̌s) αs(α̌t)
αt(α̌s) αt(α̌t)

)
= 4− a2

shows that, if a2 6= 4, then α̌s and α̌t are linearly independent and the same
holds for the restrictions of αs and αt to U .

If α̌s and α̌t are linearly independent, then the corresponding matrices of
the restrictions of rs and rt to U are given by

r1 :=

(
−1 a
0 1

)
and r2 :=

(
1 0
a −1

)
.

Moreover, r1 and r2 are orthogonal with respect to the symmetric bilinear form
〈·, ·〉 defined with respect to the basis (α̌s, α̌t) by the matrix

(
1 −a

2
−a

2 1

)

because αs(v) = 2〈α̌s, v〉 and αt(v) = 2〈α̌t, v〉 hold for each v ∈ U .

Case 1: a2 < 4. In this case the bilinear form on U is positive definite and
the assertion follows from the argument in [2, p. 112].

Case 2: a2 > 4. In this case the bilinear form on U is indefinite and the
assertion follows immediately from Lemma 1.7.

Case 3: a2 = 4. Here we have to distinguish two cases. If α̌s and α̌t are
linearly dependent, then CS = U = Rα̌s follows from αt(α̌s) = −a < 0 and
αt(α̌t) = 2 > 0. In this case the assertion follows from the invariance of U
under W . If α̌s and α̌t are linearly independent, then the assertion follows
from Lemma 1.7. �

The following proposition generalizes the corresponding well known result
for the geometric representation of a Coxeter group to arbitrary linear Coxeter
systems (cp. [2, Thm. 5.4]).
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Proposition 1.9. Let (V, (α)s∈S , (α̌s)s∈S) be a reflection data of finite type

satisfying (C1/2). Let W ⊆ GL(V ) be the subgroup generated by the reflections

(rs)s∈S and assume that (W , (rs)s∈S) is a Coxeter system. Let ℓ : W → N0

denote its length function and g ∈ W, s ∈ S.

(i) If ℓ(grs) > ℓ(g), then gα̌s ∈ CS.

(ii) If ℓ(grs) < ℓ(g), then gα̌s ∈ −CS.

Proof. First we note that (ii) is a consequence of (i), applied to the element
g′ = grs and using gα̌s = −g′α̌s.

We prove (i) by induction on the length of g. The case ℓ(g) = 0, i.e., g = 1

is trivial. If ℓ(g) > 0, then there exists a t ∈ S with ℓ(grt) = ℓ(g) − 1. Then

t 6= s follows from ℓ(grs) > ℓ(g). Let S̃ := {s, t} and consider the subgroup

W̃ := 〈rs, rt〉 ⊆ W with the length function ℓ̃. Let

A := {f ∈ W | f ∈ gW̃ , ℓ(g) = ℓ(f) + ℓ̃(f−1g)}.

Obviously g ∈ A, so that A is not empty. Pick f ∈ A with minimal length

ℓ(f) and put f ′ := f−1g ∈ W̃ . Then g = ff ′ with ℓ(g) = ℓ(f) + ℓ̃(f ′).

We also note that grt ∈ A follows from ℓ(g) = ℓ(grt) + 1 = ℓ(grt) + ℓ̃(rt).
Hence the choice of f implies that ℓ(f) ≤ ℓ(grt) = ℓ(g) − 1. We now want
to apply the induction hypothesis to the pair (f, rs). To this end, we have to
compare the length or f and frs. If ℓ(frs) < ℓ(f), then ℓ(frs) = ℓ(f)− 1 and
we have

ℓ(g) ≤ ℓ(frs) + ℓ(rsf
−1g) ≤ ℓ(frs) + ℓ̃(rsf

−1g)

≤ ℓ(f)− 1 + ℓ̃(f−1g) + 1 = ℓ(f) + ℓ̃(f−1g) = ℓ(g).

We conclude that ℓ(g) = ℓ(frs) + ℓ̃(rsf
−1g), so that frs ∈ A, contradicting

the minimality of ℓ(f). This implies that ℓ(frs) > ℓ(f) because ℓ(frs) 6= ℓ(f)
(see [2, p. 108]), so that the induction hypothesis leads to fα̌s ∈ CS . By the
same argument we obtain ℓ(frt) > ℓ(f) and therefore fα̌t ∈ CS .

From

ℓ(f) + ℓ̃(f ′) = ℓ(g) < ℓ(grs) = ℓ(ff ′rs) ≤ ℓ(f) + ℓ(f ′rs) ≤ ℓ(f) + ℓ̃(f ′rs)

we further derive that ℓ̃(f ′) ≤ ℓ̃(f ′rs). Now Lemma 1.8 implies that

f ′α̌s ∈ C
S̃
= cone{α̌s, α̌t}.

and thus gα̌s = ff ′α̌s ∈ fC
S̃
⊆ CS . �

Theorem 1.10. Let (V, (αs)s∈S , (α̌s)s∈S) be a linear Coxeter system and

ℓ : W → N0 be the length function with respect to the generating set {rs |
s ∈ S}. Then the following assertions hold for g ∈ W:

(i) If ℓ(grs) > ℓ(g), then gα̌s ∈ CS and gαs ∈ ČS .

(ii) If ℓ(grs) < ℓ(g), then gα̌s ∈ −CS and gαs ∈ −ČS.

Proof. In view of Proposition 1.4, the linear Coxeter system (V, (αs)s∈S ,
(α̌s)s∈S) and its dual (V ∗, (α̌s)s∈S , (αs)s∈S) satisfy the assumptions of Propo-
sition 1.9 because the fact that (W , (rs)s∈S) is a Coxeter system implies that
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the adjoints r∗s ∈ GL(V ∗) define a Coxeter system in the subgroup W ∼=
〈r∗s | s ∈ S〉 ⊆ GL(V ∗). This implies the assertion. �

Remark 1.11. For s ∈ S and g ∈ W the condition gαs ∈ ČS = K⋆ is equiv-
alent to the linear functional gαs taking nonnegative values on K. Therefore
Theorem 1.10 implies in particular that each linear functional

α ∈ W{αs | s ∈ S}

either is positive or negative on K0.

Proposition 1.12. If (V, (αs)s∈S , (α̌s)s∈S) is a linear Coxeter system, v ∈ K
and

I := {s ∈ S | αs(v) = 0},

then the subgroup WI ⊆ W generated by the reflections {rs | s ∈ I} coincides

with the stabilizer Wv = {w ∈ W | wv = v}.

Proof. Clearly WI ⊆ Wv because the generators of WI fix v. If WI is strictly
smaller than Wv, there exists an element g ∈ Wv \ WI of minimal positive
length. Then ℓ(grs) > ℓ(g) for every s ∈ I (recall that ℓ(grs) 6= ℓ(g) by [2,
p. 108]) implies that gαs ∈ ČS (Theorem 1.10). If s 6∈ I, then αs(v) > 0 implies
that (gαs)(v) = αs(g

−1v) = αs(v) > 0. Therefore gαs takes positive values on
K0 which entails gαs ∈ ČS (Remark 1.11). We thus arrive at gČS ⊆ ČS . As
the element g−1 ∈ Wv \WI has the same length, we also obtain g−1ČS ⊆ ČS ,
and thus gČS = ČS . Now K = (ČS)

⋆ leads to gK = K, and by (LCS3) further
to g = 1, contradicting g 6∈ WI . �

2. A convexity theorem for linear Coxeter systems

Before we come to our main theorem in this section (Theorem 2.7), we have
to define the roots and coroots of a linear Coxeter system. This is crucial to
obtain a formulation of the theorem which does not depend on the generat-
ing system. This will be essential for the infinite-dimensional generalization
where roots and coroots still make sense but W need not be a Coxeter group
(cp. Example 3.6).

2.1. Roots and coroots.

Definition 2.2. Let (V, (αs)s∈S , (α̌s)s∈S) be a linear Coxeter system.
(a) We define the set of roots by

∆ := W{αs | s ∈ S} ⊆ V ∗ and put ∆± := ∆ ∩ ±K⋆ = ∆ ∩±ČS .

Roots in ∆+ are called positive and roots in ∆− are called negative. Re-
mark 1.11 shows that

∆ = ∆+∪̇∆−.

We likewise define the corresponding sets of coroots

∆̌ := W{α̌s | s ∈ S} ⊆ V.
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(b) The subset

R := {wrsw
−1 | w ∈ W, s ∈ S} ⊆ W

is called the set of reflections in W . If r = wrsw
−1 is a reflection, α := wαs

and α̌ := wα̌s, then

(4) r(v) = v − α(v)α̌ for v ∈ V

and Fix(r) = kerα = w kerαs.

Remark 2.3. We claim that a reflection r ∈ W is uniquely determined by its
hyperplane of fixed points. So let r ∈ R. Then the hyperplane Fix(r) intersects
the interior T 0 of the Tits cone T = WK (cp. Remark 1.3(a)). Since each W-
orbit in T 0 meets K exactly once (see [10, Thm. 2]), there exists a unique face
F ⊆ K of codimension one and some w ∈ W with Fix(w−1rw)∩K = F . Then
there exists a uniquely determined s ∈ S with F = kerαs ∩K (Remark 1.3).
Now w−1rw and rs are two reflections in the same hyperplane kerαs, hence
fixing F pointwise. Therefore w−1rw(K0)∩ rs(K

0) 6= ∅ leads to rs = w−1rw,
so that r = wrsw

−1.
Next we note that, if α = wαs = w′αt for some w,w′ ∈ W and s, t ∈ S,

then wrsw
−1 and w′rt(w

′)−1 are both reflections with the same sets of fixed
points, so that the preceding argument implies that they are equal: wrsw

−1 =
w′rt(w

′)−1. This in turn shows that wαs ⊗wα̌s = w′αt ⊗w′α̌t = wαs ⊗w′α̌t,
and hence that wα̌s = w′α̌t.

Definition 2.4. In view of the preceding remark, we can associate to each
root α ∈ ∆ a well-defined coroot α̌ ∈ ∆̌ such that the map Γ : ∆ → ∆̌, α 7→ α̌
is W-equivariant and the reflections in W have the form (4).

Remark 2.5. Since the roots αs, s ∈ S, are positive by definition, Theo-
rem 1.10 implies that

cone(∆+) = cone{αs | s ∈ S} = ČS ,

and hence that

K = (ČS)
⋆ = {v ∈ V | α(v) ≥ 0 for all α ∈ ∆+}.

2.6. Convex hulls of orbits in the Tits cone. The following theorem
strengthens the corresponding assertion for elements v ∈ K0 in [1, p. 20]
substantially because it provides also sharp information if the stabilizer Wv is
nontrivial.

Theorem 2.7. Let (V, (αs)s∈S , (α̌s)s∈S) be a linear Coxeter system and T =
WK ⊆ V be its Tits cone. For v ∈ T we have

Wv ⊆ v − Cv, where Cv := cone{α̌ ∈ ∆̌ | α(v) > 0}.

Proof. As T = WK and Cgv = gCv, we may w.l.o.g. assume that v ∈ K.
We put I := {s ∈ S | αs(v) = 0} and recall from Proposition 1.12 that the
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corresponding parabolic subgroup WI ⊆ W coincides with the stabilizer Wv

of v. Let

WI := {g ∈ W | ℓ(grs) > ℓ(g) for all s ∈ I},

so that W = WIWI by [2, p. 123].
We now show gv − v ∈ −Cv by induction on the length ℓ(g) of g. The

assertion is trivial for g = 1, i.e., ℓ(g) = 0. Suppose that ℓ(g) > 0. Then
g−1 = h−1gI with h−1 ∈ WI and gI ∈ WI satisfying

ℓ(g) = ℓ(g−1) = ℓ(h−1) + ℓ(gI) = ℓ(h) + ℓ(gI)

(see [2, p. 123]). If gI 6= 1, then ℓ(h) < ℓ(g) and our induction hypothesis leads
to

gv − v = g−1
I hv − v = g−1

I (hv − v) ∈ −g−1
I Cv = −Cv

because the stabilizer WI = Wv of v preserves the cone Cv. We may therefore
assume that gI = 1, i.e., g−1 ∈ WI . By Theorem 1.10, g−1ČI ⊆ ČS . In
particular, g−1 maps the set

∆+
I := ∆ ∩ cone({αs | s ∈ I}) = {α ∈ ∆+ | α(v) = 0}

into ∆+.
Pick s ∈ S with ℓ(grs) < ℓ(g). If αs(v) = 0, then gv − v = grsv − v ∈ −Cv

by the induction hypothesis. We may therefore assume that αs(v) > 0. Then
our induction hypothesis implies

gv − v = (grs)rsv − v = (grs)(v − αs(v)α̌s)− v

= (grs)v − v − αs(v)(grs)α̌s ∈ −Cv + αs(v)gα̌s.

In view of αs(v) > 0, it remains to see that gα̌s = (gαs)̌ ∈ −Cv (cp. Defini-
tion 2.2(c)), so that it suffices to verify that (gαs)(v) < 0. As g(−αs) ∈ ∆+ ⊆
ČS by Theorem 1.10, we have (gαs)(v) ≤ 0. If (gαs)(v) = 0, then

−αs ∈ g−1{β ∈ ∆+ | β(v) = 0} = g−1∆+
I ⊆ ∆+

by construction of g; but this leads to the contradiction −αs ∈ ∆+. This
proves that (gαs)(v) < 0, which completes the proof. �

Corollary 2.8. For v ∈ T , the following assertions hold:

(i) cone(Wv − v) = −Cv.
(ii) v is an extreme point of co(v) if and only if the cone Cv is pointed.

(iii) For λ ∈ V ∗,

λ(v) = min λ(Wv) ⇔ λ ∈ −C⋆
v .

Proof. (i) For any v ∈ V with α(v) > 0 the relation rα(v) = v−α(v)α̌ implies
that

−α̌ ∈ R+(Wv − v),

so that Theorem 2.7 implies for v ∈ T that cone(Wv − v) = −Cv.
(ii) and (iii) follow immediately from (i). �

Corollary 2.9. The following conditions are equivalent:
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(i) The cone CS is pointed, i.e., (V ∗, (α̌s)s∈S , (αs)s∈S) is a linear Coxeter

system.

(ii) There exists a v ∈ K0 which is an extreme point of co(v).
(iii) Each v ∈ K0 is an extreme point of co(v).

Proof. This is immediate from Corollary 2.8 and the fact that CS = Cv for
v ∈ K0. �

Problem 2.10. From Theorem 2.7 we obtain for v ∈ T the relation

co(v) ⊆
⋂

w∈W

w(v − Cv).

When do we have equality?

The following example shows that, in general, not every element v ∈ V
satisfies Wv ⊆ v − Cv.

Example 2.11. We take a closer look at linear Coxeter systems with a 2-
element set S = {s, t} and dimV = 2.

First we show that αs and αt are linearly independent. If this is not the
case, then αs(α̌t) ≤ 0 implies that αs = λαt for some λ < 0, but this leads to
the contradiction K = ∅. Therefore αs and αt are linearly independent.

(a) Suppose that αs(α̌t) = αt(α̌s) = −2. Then αs and αt vanish on α̌s+ α̌t,
and since V ∗ is spanned by αs and αt, it follows that α̌t = −α̌s. In particular,
the cone CS = Rα̌s is not pointed.

This implies that the action of W on V leaves all affine subspaces of the
form v + CS invariant. If α∗

s , α
∗
t ∈ V is the dual basis of αs, αt, then

K = R+α
∗
s + R+α

∗
t and α̌s = −α̌t = 2(α∗

s − α∗
t ).

The linear map rtrs fixes the line CS pointwise and induces on V/CS the
identity, hence is unipotent. Moreover,

rtrs(α
∗
s) = rt(α

∗
s − α̌s) = rt(−α∗

s + 2α∗
t ) = −α∗

s + 2α∗
t − 2α̌t

= −5α∗
s + 6α∗

t = α∗
s − 3α̌s,

so that the convexity of the Tits cone implies that

T 0 = CS + R
×
+α

∗
s

is an open half plane and T = T 0 ∪ {0}. We further have

co(v) = v + CS for v ∈ T 0

and

∆̌ = {α̌s, α̌t} = {±α̌s},

whereas ∆ = W{αs, αt} is infinite. More precisely, we have

rtrsαs = rt(−αs) = −αs + αs(α̌t)αt = −αs − 2αt = αs − 2(αs + αt),

and since W = {rs(rtrs)n, (rtrs)n | n ∈ Z}, it follows that

∆ = {±αs,±αt}+ 2Z(αs + αt).
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The two coroots α̌s and α̌t lie in the boundary of the Tits cone and Wα̌s =
{±α̌s}. Moreover,

{α ∈ ∆ | α(α̌s) > 0} = {αs,−αt}+ 2Z(αs + αn),

so that

Cα̌s
= cone{α̌ | α(α̌s) > 0} = R+α̌s

has the property that

Wα̌s ⊆ α̌s − Cα̌s
.

That this remains true on the boundary ∂T is due to the fact that the W-
action on this line can also be obtained from the one-dimensional reflection
datum (∂T, αs, α̌s).

(b) Suppose that αs(α̌t) = αt(α̌s) = −3. Then

det

(
αs(α̌s) αs(α̌t)
αt(α̌s) αt(α̌t)

)
= 4− 9 < 0

implies that α̌s and α̌t are linearly independent. In this case the symmetric
bilinear form (·, ·) on V represented by the matrix

A =

(
1 − 3

2
− 3

2 1

)

with respect to the basis α̌s, α̌t is W-invariant. If α∗
s , α

∗
t ∈ V is the dual basis

of αs, αt, then

K = R+α
∗
s + R+α

∗
t and α∗

s = −
2

5
α̌s −

3

5
α̌t, α∗

t = −
3

5
α̌s −

2

5
α̌t.

Now (α∗
s , α

∗
s) = (α∗

t , α
∗
t ) < 0 implies that

T = WK ⊆ {v ∈ V | (v, v) ≤ 0, (v, α∗
s) ≤ 0}.

From the case a = 3 in Lemma 1.7 we derive that the matrix of rsrt with
respect to the basis (α̌s, α̌t) is

B :=

(
a2 − 1 −a

a −1

)
=

(
8 −3
3 −1

)
.

From detB = 1 and trB = 7 it follows that it has two eigenvalues λ and λ−1

with 6 < λ < 7. We conclude that, for every v0 ∈ K and any norm ‖ · ‖ on
V , the limit of 1

‖(rsrt)nv0‖
(rsrt)

nv0 for n → ∞ is a unit eigenvector v1 for λ,

and that, for n → −∞, we obtain a unit eigenvector v2 for λ−1. From the
W-invariance of T , we derive that v1, v2 ∈ T . As rsrt is orthogonal w.r.t. (·, ·),
we have (v1, v1) = 0 = (v2, v2). This implies that

T = R+v1 + R+v2 = {v ∈ V | (v, v) ≤ 0, (v, α∗
s) ≤ 0}.

We claim that the element v1 ∈ ∂T satisfies Wv1 6⊆ v1 − Cv1 . Pick α ∈ ∆.
Then α is W conjugate to αs or αt, so that kerα intersects the interior of T ,
which implies that (α̌, α̌) > 0 and hence further (α̌, vj) 6= 0 for j = 1, 2.
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If α(v1) > 0, then rαv1 ∈ T leads to

0 ≥ (v1, rαv1) = (v1, v1)− α(v1)(v1, α̌) = −α(v1)︸ ︷︷ ︸
<0

(v1, α̌),

so that (v1, α̌) > 0. This implies that {v ∈ Cv1 | (v, v1) = 0} = {0}, and thus
±v1 6∈ Cv1 . Now rsrtv1 = λv1 leads to Wv1 6⊆ v1 − Cv1 .

The element α̌s satisfies (α̌s, α̌s) > 0, so that it is not contained in ±T . For
this element we have

rsrt(α̌s) = rs(α̌s + 3α̌t) = −α̌s + 3(α̌t + 3α̌s) = 8α̌s + 3α̌t

and
rtrs(α̌s) = rt(−α̌s) = −α̌s − 3α̌t,

so that
7

2
α̌s =

1

2
(rtrs(α̌s) + rsrt(α̌s)) ∈ co(α̌s)

shows that α̌s is an interior point of co(α̌s).
On the other hand, the cone

Cα̌s
= cone{α̌ | α(α̌s) > 0} = cone{α̌ | (α̌, α̌s) > 0}

is proper, so that Wα̌s 6⊆ α̌s − Cα̌s
.

In general the dual of a linear Coxeter system is not a linear Coxeter system.
However, we have seen in Remark 1.6(b) that we always obtain a linear Coxeter
system on the subspace U = span(C⋆

S) ⊆ V ∗. For orbits in the corresponding
Tits cone, we have the following variant of Theorem 2.7.

Theorem 2.12. (Convexity Theorem for V ∗) Let (V, (αs)s∈S , (α̌s)s∈S) be a

linear Coxeter system and Ť = WC⋆
S ⊆ V ∗. For any λ ∈ Ť we then have

Wλ ⊆ λ− Cλ for Cλ := cone{α ∈ ∆ | λ(α̌) > 0}.

Proof. We may w.l.o.g. assume that λ ∈ C⋆
S . Consider the subspace

U := span(C⋆
S) = H(CS)

⊥ ⊆ V ∗

and recall from Remark 1.6(b) that (U, (q(α̌s))s∈S̃
, (αs)s∈S̃

) is a linear Cox-
eter system with fundamental chamber C⋆

S for which we have the surjective
restriction map

R : W → WU , w 7→ w|U .

It follows in particular that, for λ ∈ C⋆
S ⊆ U , we have Wλ = WUλ. Applying

Theorem 2.7, we obtain

(5) Wλ = WUλ ⊆ λ− CU
λ , where CU

λ = cone{α ∈ ∆̌U | λ(α̌) > 0}.

On the other hand W|U = WU implies

∆̌U = WU{αs | s ∈ S̃} = W{αs | s ∈ S̃} ⊆ U.

For s ∈ S\S̃ we have α̌s ∈ U⊥, hence alsoWα̌s ∈ U⊥ because U isW-invariant
and thus λ(Wα̌s) = {0}. This shows that

Cλ = cone{α ∈ ∆̌ | λ(α̌) > 0} = CU
λ ,
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and by (5), the proof is complete. �

The following proposition extends Proposition 1.12 to stabilizers of elements
in C⋆

S .

Proposition 2.13. If λ ∈ C⋆
S , then Wλ = 〈rs | λ(α̌s) = 0〉.

Proof. We recall the subspace U := (ČS)
⋆−(ČS)

⋆ ⊆ V ∗ and the related objects
also used in the preceding proof. We then have a surjective homomorphism
R : W → WU , w 7→ w|U , and λ ∈ U implies that kerR ⊆ Wλ.

For s ∈ S \ S̃ we have α̌s ∈ H(CS) ⊆ kerλ, which leads to rs ∈ kerR ⊆ Wλ.
Therefore

Sλ := {s ∈ S | λ(α̌s) = 0} ⊇ S \ S̃.

Let S̃λ := S̃ ∩ Sλ. Since C⋆
S is the fundamental chamber of the linear Coxeter

system in U , Proposition 1.12 yields

WU,λ = 〈rs | s ∈ S̃, λ(α̌s) = 0〉.

This implies that Wλ ⊆ 〈rs | s ∈ S̃λ〉 · kerR.

Next we observe that, for s ∈ S̃ and t ∈ S \ S̃ we have αs ∈ U and
α̌t ∈ H(CS) = U⊥, so that αs(α̌t) = 0. From (C1) we now also obtain
αt(α̌s) = 0 and this implies that rsrt = rtrs:

rsrt(v) = rs(v − αt(v)α̌t) = v − αt(v)α̌t − αs(v)α̌s + αt(v)αs(α̌t)α̌s

= v − αt(v)α̌t − αs(v)α̌s + αs(v)αt(α̌s)α̌t = rtrs(v).

Therefore

W = 〈rs | s ∈ S〉 = 〈rs | s ∈ S̃〉〈rt | t ∈ S \ S̃〉 = W
S̃
W

S\S̃

is a product of two commuting subgroups. Since the subgroup W
S̃
of W is a

Coxeter group with Coxeter system {rs | s ∈ S̃}, the restriction homomorphism
R : W → WU maps W

S̃
bijectively onto WU . On the other hand, W

S\S̃ ⊆

kerR, so that kerR ∩W
S̃
= {1} leads to kerR = W

S\S̃ . We finally arrive at

Wλ = W
S̃λ

kerR = W
S̃λ

W
S\S̃ = WSλ

. �

The following proposition describes the subset of a W-orbit in T on which a
linear functional λ ∈ C⋆

S takes its maximal values as the orbit of the stabilizer
of Wλ and we also provide a dual version.

Proposition 2.14. Let λ ∈ C⋆
S and v ∈ K = (ČS)

⋆, so that

λ(v) = maxλ(Wv).

If g ∈ W satisfies λ(gv) = maxλ(Wv), then gv ∈ Wλv and g−1λ ∈ Wvλ.

Proof. (a) First we show that gv ∈ Wλv. In Proposition 2.13 we have seen
that Wλ = WSλ

is a parabolic subgroup of W . Let

Wλ := {w ∈ W | ℓ(rsw) > ℓ(w) for all s ∈ Sλ},

so that W = WλWλ by [2, p. 123].
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If there exists a g ∈ W with gv 6∈ Wλv and λ(gv) = maxλ(Wv), we choose
such an element g with minimal length. Then g ∈ Wλ with ℓ(g) > 0. We
pick an s ∈ S with ℓ(g−1rs) = ℓ(rsg) < ℓ(g) and observe that this implies
that s 6∈ Sλ, i.e., λ(α̌s) 6= 0 and therefore λ(α̌s) > 0 because λ ∈ C⋆

S . Then

g−1αs ∈ −ČS by Theorem 1.10, which leads to 0 ≥ (g−1αs)(v) = αs(gv). We
thus arrive at

λ(rsgv) = λ(gv)− αs(gv)︸ ︷︷ ︸
≤0

λ(α̌s)︸ ︷︷ ︸
>0

≥ λ(gv) ≥ λ(rsgv),

where the last inequality follows from the maximality of λ(gv). We conclude
that αs(gv) = 0, so that rsgv = gv 6∈ Wλv. This contradicts the minimality of
the length of g.

(b) Now we show that g−1v ∈ Wvλ. In Proposition 1.12 we have seen that
Wv is a parabolic subgroup of W generated by the reflections rαs

with

s ∈ Sv := {s ∈ S | αs(v) = 0}.

Let
Wv := {w ∈ W | ℓ(wrs) > ℓ(w) for all s ∈ Sv},

so that W = WvWv by [2, p. 123].
If there exists a g ∈ W with g−1λ 6∈ Wvλ and λ(gv) = maxλ(Wv), we

choose such an element g ∈ W of minimal length. Then g ∈ Wv with ℓ(g) > 0.
We pick an s ∈ S with ℓ(grs) < ℓ(g) and observe that this implies that s 6∈ Sv,
i.e., αs(v) 6= 0 and therefore αs(v) > 0 because v ∈ K. We further obtain
gα̌s ∈ −CS from Proposition 1.9, which leads to 0 ≥ λ(gα̌s) = (g−1λ)(α̌s). We
thus arrive at

λ(grsv) = λ(gv)− αs(v)︸ ︷︷ ︸
>0

λ(gα̌s)︸ ︷︷ ︸
≤0

≥ λ(gv) ≥ λ(grsv),

where the last inequality follows from the maximality of λ(gv). We conclude
that λ(gα̌s) = 0, so that rs(g

−1λ) = g−1λ 6∈ Wvλ. This contradicts the
minimality of the length of g. �

Problem 2.15. For v ∈ K and α ∈ ∆, the relation α(v) > 0 implies α ∈ ∆+ ⊆
ČS , so that Cv ⊆ CS and C⋆

S ⊆ C⋆
v . Is the conclusion of Proposition 2.14 still

valid under the weaker assumption λ ∈ C⋆
v ?

3. Orbits of locally finite and locally affine Weyl groups

Now we turn to the applications of Theorems 2.7 and 2.12 to Weyl group
orbits of linear functionals for locally finite and locally affine root systems.

3.1. Locally finite root systems. First we describe the irreducible locally
finite root systems of infinite rank (cp. [4, §8], [9]). Let J be a set and V := R

(J)

denote the free vector space over J , endowed with the canonical scalar product,
given by

(x, y) :=
∑

j∈J

xjyj .
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We write (ej)j∈J for the canonical orthonormal basis and we realize the root
systems in the dual space V ∗ ∼= R

J which contains the linearly independent
system εj := e∗j , defined by ε∗j(ek) = δjk. On span{εj | j ∈ J} we also

have a positive definite scalar product defined by (εi, εj) = δij for which the
canonical inclusion V →֒ V ∗ is isometric. The infinite irreducible locally finite
root systems are given by

AJ := {εj − εk | j, k ∈ J, j 6= k},

BJ := {±εj,±εj ± εk | j, k ∈ J, j 6= k},

CJ := {±2εj,±εj ± εk | j, k ∈ J, j 6= k},

DJ := {±εj ± εk | j, k ∈ J, j 6= k},

BCJ := {±εj,±2εj,±εj ± εk | j, k ∈ J, j 6= k}.

Let ∆ ⊆ V ∗ ∼= R
J be a locally finite root system of type XJ with X ∈

{A,B,C,D,BC}. For α ∈ span∆, we write α♯ ∈ V for the unique element
determined by

α(v) = (v, α♯) for v ∈ V.

For α ∈ ∆ we define its coroot by

α̌ =
2

(α, α)
α♯.

This leads to a reflection data (V,∆, ∆̌) and a corresponding group W , called
in this context the Weyl group.

Theorem 3.2. For λ ∈ V ∗ we have

Wλ ⊆ λ− Cλ for Cλ := cone{α ∈ ∆ | λ(α̌) > 0}.

Proof. Let w ∈ W and observe that w is a finite product of reflections rα1
, . . . ,

rαn
. We pick a finite dimensional subset F ⊆ J such that αj ∈ R

F for
j = 1, . . . , n. Accordingly, we have an orthogonal direct sum

V = V0 ⊕ V1 with V0 = R
F and V1 := V ⊥

0 = R
J\F

which is invariant under w.
Next we observe that ∆0 := ∆ ∩ R

F is a finite root system of type XF ,
which implies that the finite reflection system (V0,∆0, ∆̌0) comes from a finite
Coxeter system with finite Coxeter group W0 containing w. In this case the
Tits cones in V0 and V ∗

0 coincide with the whole space, so that

W0λ0 ⊆ λ0 − C0
λ0

holds for λ0 := λ|V0
and

C0
λ0

:= cone{α ∈ ∆0 | λ0(α̌) = λ(α̌) > 0} ⊆ Cλ.

Writing λ = λ0 ⊕ λ1 according to the decomposition V = V0 ⊕ V1, we now
obtain

wλ = wλ0 ⊕ λ1 ∈ (λ0 − C0
λ0
)⊕ λ1 = λ− C0

λ0
⊆ λ− Cλ. �
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Corollary 3.3. For d ∈ V and λ ∈ V ∗, the following are equivalent

(i) λ(d) = min〈Wλ, d〉.
(ii) d ∈ −C⋆

λ.

(iii) λ(α̌) > 0 ⇒ α(d) ≤ 0 holds for all α ∈ ∆.

Remark 3.4. Since the canonical inclusion V = R
(J) →֒ V ∗ ∼= R

J is W-
equivariant, Theorem 3.2 implies the corresponding result for W-orbits in V
itself:

Wv ⊆ v − Cv for Cv = cone{α̌ | α(v) > 0}.

We conclude this subsection with a brief discussion of the fact that the Weyl
groups of uncountable irreducible locally finite root systems are not Coxeter
groups.

Proposition 3.5. Let (W , (rs)s∈S) be an irreducible Coxeter system for which

the group W is locally finite, i.e., each finite subset generates a finite subgroup.

Then S is at most countable.

Proof. Let Γ be the corresponding Coxeter graph. Its vertices are the elements
of S and two such elements s, t are connected by an edge if ord(rsrt) > 2. The
irreducibility of (W , S) is equivalent to the connectedness of this graph. The
classification of the finite Coxeter systems (W , S) for which W is finite (see
[2, Thm. 2.7]) now implies that the order of any vertex in the graph Γ is at
most 3. Therefore Γ must be at most countable. �

Example 3.6. For the root system AJ , the Weyl groupW is the subgroup S(J)

of the group SJ of all permutations of J which is generated by all transpositions
τi,j exchanging i and j. Let A(J) denote the subgroup of index 2 consisting of
all even permutations in S(J).

If |J | ≥ 5, then A(J) is a direct limit of simple groups, hence simple. This
implies that, for any subset S ⊆ W for which (W , S) is a Coxeter system, this
Coxeter system is irreducible. Now Proposition 3.5 implies that W = S(J) is
not a Coxeter group if J is uncountable.

If J is countable, we may assume J = N, and then it is easy to see that the
transpositions S := {τi,i+1 | i ∈ N} lead to the Coxeter system (W , S).

Let V = R
(J) be the real vector space with basis (ej)j∈J , where ej =

(δji)i∈J . Then αij(x) = xi − xj and α̌ij = ei − ej form the reflection data of
the root system AJ .

For J = N and S := {τi,i+1 | i ∈ N} we obtain a smaller reflection data.
The corresponding cone

K := {v ∈ V | αs(v) ≥ 0 for all s ∈ S} = {x ∈ R
(N) | xn+1 ≤ xn for all n ∈ N}

has no interior points in any vector topology on V . This is the main reason
why the concept of a linear Coxeter system is problematic for infinite sets S.
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3.7. Locally affine root systems. Let V = R
(J) be as above and ∆ ⊆ V ∗ ∼=

R
J be a locally finite root system of type XJ . We put

V̂ := R× V × R and ∆(1) := {0} ×∆× Z ⊆ R× V ∗ × R ∼= V̂ ∗.

We also define a Lorentzian form on V̂ by

((z, x, t), (z, x′, t′)) := (x, x′)− zt′ − z′t.

Suppressing the first component, we have Yoshii’s classification [11, Cor. 13].

Proposition 3.8. The irreducible reduced locally affine root systems of infinite

rank are the following, where J is an infinite set: A
(1)
J , B

(1)
J , C

(1)
J , D

(1)
J , or

B
(2)
J :=

(
BJ × 2Z

)
∪
(
{±εj | j ∈ J} × (2Z+ 1)

)
,

C
(2)
J := (CJ × 2Z) ∪

(
DJ × (2Z+ 1)

)

(BCJ )
(2) := (BJ × 2Z) ∪

(
BCJ × (2Z+ 1)

)
.

Let ∆̂ ⊆ V̂ ∗ be one of these locally affine root systems. We write

∆n := {α ∈ ∆ | (0, α, n) ∈ ∆̂},

so that

∆̂ = ({0} ×∆0 × 2Z)∪̇({0} ×∆1 × (2Z+ 1)).

A quick inspection shows that all reflections corresponding to roots in ∆1 are
also obtained from ∆0. Therefore we obtain an injection

ιW : W ∼= 〈r(0,α,0) : α ∈ ∆0〉grp →֒ Ŵ .

Since ∆̂ consists of nonisotropic vectors for the Lorentzian form, we can also

define for α = (0, α, n) ∈ ∆̂ the coroot by

(6) α̌ =
2

(α, α)
α♯ =

2

(α, α)
(−n, α♯, 0) =

( −2n

(α, α)
, α̌, 0

)

and obtain a reflection data (V̂ , ∆̂,
ˇ̂
∆) and a corresponding (affine) Weyl group

Ŵ . In the following we write

c := (1, 0, 0) and d := (0, 0, 1)

for these two distinguished elements of V̂ .

Theorem 3.9. For λ ∈ V̂ ∗ with λ(c) 6= 0 the following assertions hold:

(i) Ŵλ ⊆ λ− Cλ for Cλ := cone{α ∈ ∆̂ | λ(α̌) > 0}.

(ii) If λ(d) = min(Ŵλ)(d), then any µ ∈ Ŵλ with µ(d) = λ(d) is contained

in the orbit of W ∼= Ŵd.

Proof. (i) Since we can argue as in the locally finite case, it suffices to show

that, if J is finite and ∆̂ of type X
(t)
J for t = 1, 2, then λ ∈ V̂ ∗ is contained

in the Tits cone, so that Theorem 2.12 applies. To this end, we have to recall
the itemize of affine root systems with respect to a simple system of roots.
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Since λ(c) 6= 0, the Ŵ-orbit contains an element which is either dominant or
antidominant (see [7, Prop. 4.9] and also [3, Prop. 6.6] and [5, Thm. 16]), i.e.,

there exists a simple systems of roots Π ⊆ ∆̂ such that λ is dominant. This
means that λ is contained in the corresponding fundamental chamber, hence
in particular in the Tits cone. Now the assertion follows from Theorem 2.7.

(ii) With the same argument as before, it suffices it suffices to prove the
assertion for the case where J is finite and λ is antidominant with respect to a

given simple system Π of roots. So assume that ∆̂ is of type X
(t)
J for some finite

set J . We write Π = {α0, . . . , αr} for a set of simple roots, where α1, . . . , αr are
simple roots of the corresponding finite root system ∆ and α0 = (−θ, 1), where
θ is the “highest weight” in ∆1 with respect to the positive system defined by
{α1, . . . , αr} (cp. [3]).

Now αj(d) = 0 for j = 1, . . . , r and α0(d) = 1 imply that d ∈ K = (ČS)
⋆.

Further, the antidominance of λ with respect to Π means that λ ∈ −C⋆
S . If

µ = w−1λ satisfies µ(d) = λ(wd) = λ(d) = min(Ŵλ)(d), we obtain µ ∈ Ŵdλ
from Proposition 2.14.

Finally, we note that the stabilizer group Ŵd is a parabolic subgroup of Ŵ
generated by the fundamental reflections rαj

fixing d, which is the case for

j > 0. Therefore Ŵd
∼= W is the Weyl group of the corresponding finite root

system XJ . �

Corollary 3.10. For d = (0, 0, 1) and λ ∈ V̂ ∗, the following are equivalent

(i) λ(d) = min〈Ŵλ, d〉.
(ii) d ∈ −C⋆

λ.

(iii) λ(α̌) > 0 ⇒ α(d) ≤ 0 holds for all α ∈ ∆̂.

(iv) n > 0 ⇒ (α,α)
2n λ(α̌) ≤ λ(c) holds for all α = (0, α, n) ∈ ∆̂).

Proof. The equivalence of (i) and (ii) follows from Theorem 3.9(i), and (iii) is
a reformulation of (ii). The equivalence of (iii) and (iv) follows by negating
the implication, inserting the formula for the coroot and using α(d) = n. �

Definition 3.11. Linear functionals λ ∈ V̂ ∗ satisfying the equivalent condi-
tions in Corollary 3.10 are called d-minimal.

3.12. Characterization of d-minimal weights. For λ ∈ V̂ ∗, let λc := λ(c).

Lemma 3.13. If (Ŵλ)(d) is bounded from below, then λc ≥ 0. If, in addition,

λc = 0, then λ is fixed by Ŵ.

Proof. If (0, α, n) ∈ ∆̂, then also (0, α, n + 2k) ∈ ∆̂ for every k ∈ N, so that
Corollary 3.10(iv) implies λc ≥ 0.

If λc = 0, then (0.α, n) ∈ ∆̂ for some n 6= 0 implies the additional condition

λ(α̌) = 0. Hence λc = 0 leads to λ(α̌) = 0 for every α ∈ ∆̂, so that λ is fixed

by Ŵ. �

Proposition 3.14. Suppose that ∆̂ is one of the 7 irreducible locally affine

root systems. For λ ∈ V ∗ with λc > 0, the following are equivalent:
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(i) λ is d-minimal.

(ii) (0, α, n) ∈ ∆̂ ⇒ |λ(α̌)| (α,α)2n ≤ λc holds for all α ∈ ∆, n = 1, 2.

Proof. That (ii) follows from (i) is a consequence of Corollary 3.10(iv) and the

observation that (0, α, n) ∈ ∆̂ implies (0,−α, n) ∈ ∆̂.
If, conversely, (ii) holds, then the 2-periodic structure of the root system

implies the condition in Corollary 3.10(iv). �

Theorem 3.15. For the seven irreducible locally affine root systems X
(r)
J = ∆̂

of infinite rank, a linear functional λ = (λc, λ, λd) ∈ V̂ ∗ with λc > 0 is d-
minimal if and only if the following conditions are satisfied by the corresponding

function λ : J → R, j 7→ λj:

(A
(1)
J ) maxλ−minλ ≤ λc.

(B
(1)
J ) |λj |+ |λk| ≤ λc for j 6= k.

(C
(1)
J ) |λj | ≤ λc/2 for j ∈ J .

(D
(1)
J ) |λj |+ |λk| ≤ λc for j 6= k.

(B
(2)
J ) |λj | ≤ λc for j ∈ J .

(C
(2)
J ) |λj |+ |λk| ≤ λc for j 6= k.

(BC
(2)
J ) |λj | ≤ λc/2 for j ∈ J .

Proof. In the untwisted case r = 1 we have ∆̂ = {0} ×∆× Z = X
(1)
J , so that

Proposition 3.14 asserts that λ is d-minimal if and only if |λ(α̌)| (α,α)2 ≤ λc for
α ∈ ∆.

A
(1)
J : For the root system ∆ = AJ , all roots α satisfy (α, α) = 2, so that

the d-minimality condition on λ is

λj − λk ≤ λc for j 6= k ∈ J.

This can also be written as maxλ−minλ ≤ λc.

B
(1)
J : For ∆ = BJ , the roots εj satisfy (εj , εj) = 1 and ε̌j = 2ej. This leads

to the d-minimality conditions

|λj | ≤ λc and |λj ± λk| ≤ λc

which is equivalent to |λj |+ |λk| ≤ λc for j 6= k.

C
(1)
J : For the root system CJ , the roots 2εj satisfy (2εj )̌ = ej and (2εj, 2εj)

= 4. The d-minimality thus implies |λj | ≤ λc/2. This also implies
that |λj ± λk| ≤ λc for j 6= k ∈ J , so that it characterizes the d-
minimal weights.

D
(1)
J : For the root system DJ , we find the conditions |λj ± λk| ≤ λc which

are equivalent to |λj |+ |λk| ≤ λc for j 6= k ∈ J.

B
(2)
J : In this case ∆0 = BJ and ∆1 = {±εj | j ∈ J} with ‖εj‖ = 1.

In view of ε̌j = 2ej, we obtain from the roots in ∆1 the condition
|λj | = 1

2 |2λj | ≤ λc. For the roots εj ± εk ∈ ∆0 we obtain the
additional condition |λj ± λk| ≤ 2λc which is redundant.
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C
(2)
J : In this case ∆1 = DJ and ∆0 = CJ with ‖2εj‖2 = 4 lead to the

conditions
|λj ± λk| ≤ λc and |λj | ≤ λc,

which is equivalent to |λj |+ |λk| ≤ λc for j 6= k ∈ J.

BC
(2)
J : Here ∆1 = BCJ and ∆0 = BJ with ‖2εj‖2 = 4 lead to the condi-

tions |λj | ≤ λc/2 for the roots α = ±2εj, and the roots α = ±εj
provide no additional restriction. For the roots α = εj±εk we obtain
|λj ± λj | ≤ λc, which also is redundant. �

Remark 3.16. (a) The preceding theorem implies that d-minimal weights λ ∈

V̂ ∗ define bounded functions λ : J → R and, moreover, that the boundedness

of λ is equivalent to the existence of a λc > 0 such that λ = (λc, λ, λd) ∈ V̂ ∗ is
d-minimal.

(b) If λ ∈ V ∗ satisfies λ(α̌) ∈ Z for each α ∈ ∆̂, then the subset λ+Q̂ ⊆ V ∗,

where Q̂ = 〈∆̂〉grp is the root group, is invariant under the Weyl group Ŵ .

Therefore (Ŵλ)(d) ⊆ λ(d) + Z. If (Ŵλ)(d) is bounded from below, we thus

obtain the existence of a d-minimal element in Ŵλ.

For general functionals which are not integral weights, the situation is more
complicated, as Example 3.19 below shows.

3.17. The affine Weyl group. Recall the inclusion

ιW : W ∼= 〈r(0,α,0) : α ∈ ∆0〉grp →֒ Ŵ

of the locally finite Weyl group W into Ŵ and note that it provides a section

of the quotient homomorphism q : Ŵ → W corresponding to the passage from

V̂ to V . For n ∈ Z and (0, α, n) ∈ ∆̂, the elements r(0,α,0)r(0,α,n) generate the
normal subgroup N := ker q.

To make the structure of N more explicit, we consider for x ∈ V the endo-

morphism τx = τ(x) of V̂ , defined by

τx(z, y, t) :=
(
z + 〈y, x〉+

t‖x‖2

2
, y + tx, t

)
.

The maps τx are isometries with respect to the Lorentzian form and an easy
calculation shows that

τx1
τx2

= τx1+x2
for x1, x2 ∈ V

and that r(0,α,0)r(0,α,n) = τnα̌ for (0, α, n) ∈ ∆̂. This leads to

N = τ(T ) for T := 〈nα̌ : α ∈ ∆×
n , n ∈ N〉grp.

Proposition 3.18. For the untwisted root systems of type X
(1)
J , the group T

coincides with the group Ř := 〈∆̌〉grp of coroots. For the three twisted cases,

it is given in V in terms of the canonical basis elements (ej)j∈J by:

(i) T = 2Z(J) for B
(2)
J .

(ii) T =
{∑

j∈J njej |
∑

j nj ∈ 2Z
}
for C

(2)
J .

Münster Journal of Mathematics Vol. 7 (2014), 463–487



On convex hulls of orbits of Coxeter groups 485

(iii) T =
∑

J Zej ∼= Z
(J) for BC

(2)
J .

Proof. (i) For B
(2)
J we derive from ∆1 = {±εj | j ∈ J}, ∆0 = BJ and ε̌j = 2ej,

(εj ± εk)̌ = ej ± ek that T is the subgroup of V generated by the elements

2(ej ± ek), j 6= k and 2ej, j ∈ J.

(ii) For C
(2)
J we have ∆1 = DJ and ∆0 = CJ , which leads to the generators

±ej ± ek, j 6= k and 2ej , j ∈ J.

(iii) For BC
(2)
J we obtain from ∆1 = BCJ and ∆0 = BJ the generators

±ej,±ej ± ek for j 6= k. �

Note that

Ŵd = Nd =
{(‖x‖2

2
, x, 1

)
| x ∈ T

}

leads to

(7) (Ŵλ)(d) =
{
λc

‖x‖2

2
+ λ(x) + λd | x ∈ T

}
.

This formula shows immediately that if λc > 0 and

‖λ‖22 :=
∑

j∈J

|λj |
2 < ∞,

which is in particular the case if supp(λ) is finite, then (Ŵλ)(d) is bounded
from below. Since T is not a vector space, we cannot expect that the condition

that (Ŵλ)(d) is bounded from below implies that ‖λ‖2 < ∞, and Theorem 3.15
does indeed show that this is not the case. It only implies that λ is bounded.
The following example illustrates the situation further.

Example 3.19. We provide an example of an element λ ∈ V̂ ∗ for which

(Ŵλ)(d) is bounded from below, but contains no minimum.

We consider the root system AN (J = N) and λ = (1, λ, 0) ∈ V̂ ∗ defined by

λ : N → R, λ2k = 0 and λ2k−1 = 1 +
1

k2
for k ∈ N.

On T = {x ∈ Z
(J) |

∑
n xn = 0} we then consider the function f : T → R,

given by

f(x) := 1
2‖x‖

2λc + λ(x) = 1
2‖x‖

2 +

∞∑

n=1

xnλn := 1
2‖x‖

2 +

∞∑

k=1

x2k−1

(
1 +

1

k2

)
.

We claim that f is bounded from below but that it does not have a minimal
value.

If x2k−1 ≤ −3 for some k, then we consider the element x̃ := x+e2k−1−e2k̃,

where k̃ is such that x2k̃ = 0. Then

f(x)− f(x̃) = 1
2 (x

2
2k−1 − (x2k−1 +1)2− 1)−

(
1+

1

k2

)
= −x2k−1 − 2−

1

k2
≥ 0.
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To show that f(T ) is bounded from below, it therefore suffices to consider f(x)
for elements x ∈ T satisfying x2k−1 ≥ −2 for every k ∈ N. This leads to

f(x) = 1
2‖x‖

2 +

∞∑

k=1

x2k−1

(
1 +

1

k2

)
≥ 1

2‖x‖
2 +

∞∑

k=1

x2k−1 − 2

∞∑

k=1

1

k2
,

and since 1
2‖x‖

2 +
∑∞

k=1 x2k−1 ≥ 0 for every x ∈ T by Theorem 3.15(A
(1)
J ),

we see that f is bounded from below.
If f(x0) = min f(T ), then

f(x0 + x) = 1
2‖x+ x0‖

2 + 〈λ, x+ x0〉 =
1
2‖x‖

2 + 〈λ+ x0, x〉+ f(x0)

implies that the function µ := λ + x0 defines a d-minimal functional µ =
(1, µ, 0), so that

supµ− inf µ ≤ µc = 1.

Since x0 has finite support, supµ > 1, so that inf µ ≤ 0 leads to a contradiction.

Therefore Ŵλ contains no d-minimal element.
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