
Predictive Modeling for Diagnostic Tests with High
Specificity, but Low Sensitivity: A Study of the Glycerol
Test in Patients with Suspected Menière’s Disease
Bernd Lütkenhöner*, Türker Basel

ENT Clinic, Münster University Hospital, Münster, Germany

Abstract

A high specificity does not ensure that the expected benefit of a diagnostic test outweighs its cost. Problems arise, in
particular, when the investigation is expensive, the prevalence of a positive test result is relatively small for the candidate
patients, and the sensitivity of the test is low so that the information provided by a negative result is virtually negligible. The
consequence may be that a potentially useful test does not gain broader acceptance. Here we show how predictive
modeling can help to identify patients for whom the ratio of expected benefit and cost reaches an acceptable level so that
testing these patients is reasonable even though testing all patients might be considered wasteful. Our application example
is based on a retrospective study of the glycerol test, which is used to corroborate a suspected diagnosis of Menière’s
disease. Using the pretest hearing thresholds at up to 10 frequencies, predictions were made by K-nearest neighbor
classification or logistic regression. Both methods estimate, based on results from previous patients, the posterior
probability that performing the considered test in a new patient will have a positive outcome. The quality of the prediction
was evaluated using leave-one-out cross-validation, making various assumptions about the costs and benefits of testing.
With reference to all 356 cases, the probability of a positive test result was almost 0.4. For subpopulations selected by K-
nearest neighbor classification, which was clearly superior to logistic regression, this probability could be increased up to
about 0.6. Thus, the odds of a positive test result were more than doubled.
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Introduction

An ideal diagnostic test has a high sensitivity combined with a

high specificity. However, tests that are used in daily routine do

rarely conform to this ideal. Instead, it is often necessary to find a

reasonable trade-off between sensitivity and specificity. This means

that a high sensitivity is achieved by accepting a relatively low

specificity and, conversely, a high specificity is reached by

compromising sensitivity. Specific tests are typically used to

confirm (or ‘‘rule in’’) a suspected diagnosis [1]. Specificity is

synonymous for true-negative rate, PTN , which is related to the

false-positive rate, PFP, as PTN~1{PFP. A high specificity

implicates that it is unlikely to get a positive result in a patient that

does not have the disease tested for. Thus, a positive outcome of a

specific test is quite informative and can have substantial

therapeutic consequences. A negative result, by contrast, is of

little value if the sensitivity of the test is low. This follows from the

fact that sensitivity is synonymous for true-positive rate, PTP,

which is related to the false-negative rate, PFN , as PTP~1{PFN .

Because a low sensitivity implicates a high false-negative rate, a

negative outcome of an insensitive test is a likely event that does

not give a compelling reason to rule out the disease tested for.

The performance of a diagnostic test can be illustrated by

making use of the so-called ROC (receiver operating character-

istic) space, which is a two-dimensional scheme where the

horizontal axis represents the false-positive rate (PFP, identical

with 1 minus specificity) and the vertical axis represents the true-

positive rate (PTP, corresponding to the sensitivity). A binary

classification (e.g., disease present or absent) is represented by a

single point in ROC space. A diagnostic test resulting in a

continuous variable can be reduced to a binary classification by

specifying a threshold (cut-off) [2]. Variation of this threshold

affects the trade-off between sensitivity and specificity so that the

ROC space representation of the test is no longer a single point,

but a curve: the ROC curve[3–9]. The ROC space is ideally

suited to compare the performances of alternative tests in terms of

sensitivity and specificity. However, these two measures alone are

insufficient to assess how useful a given test is in clinical practice

and how its utility compares to other tests. The reason is that a

ROC space representation is independent of class probabilities

(i.e., the prevalences of disease and ‘‘non-disease’’) and that a

ROC analysis does not account for misclassification costs (i.e., the

costs for false-positive and false-negative test results) [10].

However, both aspects are of crucial importance for a cost-benefit

analysis of a test.

A positive outcome of a specific test corroborates the hypothesis

that the investigated patient has a certain condition (e.g., suffering

from a suspected disease, possibly restricted to a certain stage). If

the sensitivity is low or moderate, the test is most useful when it is
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applied to a population of patients that were pre-selected based on

the results of previous, more unspecific tests. For the sake of

simplicity, we refer to this population as the population of

candidate patients (the patients may, for example, be suspected of

having a certain disease). The term ‘test’ is understood here in a

broad sense, which in the definition by Power et al. [11] ‘‘includes

not only laboratory tests, imaging investigations and diagnostic procedures, but

also questions in history-taking and items in the physical examination". We

extend this definition by also including approaches which reach a

diagnostic conclusion from the combination of various clinical

data by means of a mathematical model.

For many specific tests there is little doubt that each candidate

patient should be tested. This is especially clear if the test causes no

harm or major discomfort to the patient, the cost is low, and the

benefit is obvious and uncontroversial. It is also clear that a

practice which provides minimal or no health benefit is typically

wasteful, regardless of its cost [12]. A more detailed cost-benefit

analysis is mainly of interest for cases in between, where it is not so

easy to decide whether the benefit outweighs the cost. As the exact

measures of costs and benefits are often debatable [13], different

investigators may come to different conclusions about the cost-

benefit ratio. Thus, tests falling into the latter category may be

controversial and not generally accepted.

To understand why a cost-benefit analysis decisively depends on

the prevalence of the condition tested for, it is useful to make the

simplifying assumption that, in the case of a specific test with

relatively low sensitivity, a patient benefits only from a positive

outcome. The expectation of the benefit is then proportional to the

prevalence. As a consequence, the ratio of expected benefit and

cost can be less than unity if the prevalence of the condition tested

for is too low in the population of candidate patients. Under such

circumstances one would generally decide against the test

(although cost-effectiveness is not always crucial for providing

medical interventions [12]). In deciding so, it is implicitly assumed

that the probability of the condition tested for is the same for all

candidate patients. However, this presumption is not necessarily

true. Although all candidate patients fulfill, by definition, certain

criteria, they may considerably differ with respect to parameters

that are not covered by the criteria. Even parameters covered may

differ. For example, if a criterion for including a patient is that a

certain parameter exceeds a specific threshold, some patients may

fulfill this condition much more clearly than others.

The question addressed in this article is to what extent

differences within the population of candidate patients can be

utilized to estimate, individually for each patient, a pre-test

probability that predicts the outcome of the considered test better

than does the prevalence calculated on the basis of all candidate

patients. Such predictive modeling could be used to identify

candidate patients for whom the ratio of expected benefit and cost

reaches an acceptable level so that testing is reasonable even

though testing the whole population might be considered wasteful.

Thus, in essence, the idea is to use predictive modeling for defining

a subpopulation of candidate patients in which the prevalence of

the condition tested for is higher than in the total population. The

motivation for this study came from our recent retrospective

analysis of a special test: the glycerol test, which is used to

corroborate a suspected diagnosis of Menière’s disease [14]. But

the methodological approach presented below is quite general,

and most concepts are almost universally applicable. With this in

view, the main ideas will be presented in a way that they can be

applied to basically any diagnostic test. A detailed analysis of our

glycerol-test data then serves as an illustrative example.

Some of the key concepts presented below are typically applied

in a different context, which may give rise to confusion. Thus, a

few clarifications shall be made in advance in order to prevent

misunderstanding. In essence, we propose a two-stage design,

where a laborious gold standard test is reserved to patients who

had a positive result in a preceding screening test. Indeed,

referring to the broad-sense definition given above, predictive

modeling with the aim to estimate the prospects of a considered

diagnostic test may itself be regarded as a diagnostic test, which is

virtual in nature, though: Instead of requiring a renewed

interaction with the patient, the procedure relies on information

from previous tests that was not fully exploited when assigning the

patients to the population of candidates. This means that decision

making based on predictive modeling may be regarded as

screening. The glycerol test, on the other hand, can formally be

considered as a gold standard test, although not for Menière’s

disease per se, but for a specific stage of the disease (not necessarily

implying that all patients pass through that stage). The evaluation

of data gathered in such a two-stage design is complicated by the

fact that patients screened negative are not further investigated

(see, e.g., section 7.2 in [15]). But this is an issue only for future

investigations. The present study is not affected by this problem,

because it relies on data that were obtained by unconditionally

testing all candidate patients. As to the ROC analyses presented

below, the goal is to assess how well specific prediction methods

(‘‘virtual screening tests’’) are able to forecast the outcome of a

medical test (glycerol test in our example). By contrast, comparable

analyses in other articles typically aim to assess how well a medical

test can detect a disease. Hence, when comparing methodological

aspects it should be born in mind that, with respect to the

theoretical framework, ‘‘result of predictive modeling’’ and ‘‘test

result’’ may correspond to ‘‘test result’’ and ‘‘disease status’’ in

other studies where the context is different. Finally, we want to

emphasize that this study is not about evaluating given methods.

The original objective was to find a reasonable prediction method

for the problem at hand (considering the limited amount of data

available, we refrained from seeking for an ‘‘optimal’’ method) and

to answer the question under what assumptions a prediction is

useful at all.

Methodological Approach

Predictive Modeling: Inference and Decision
The data relevant for predicting the outcome of a considered

diagnostic test are assumed to be organized as a vector of M
predictors, x~(x1,x2, . . . ,xM ). The predictors may be imagined

as the results of previous tests, where the term ‘test’ refers to the

broad-sense definition given in the Introduction. The basis for the

prediction is provided by data from N previous patients (training

set). It is assumed that for each of these patients not only the vector

of predictors, xn, is available, but also the outcome of the test, yn

(the index n, 1ƒnƒN , represents a consecutive patient number).

This study is confined to binary classifications, where the values 0

and 1 correspond to a negative and a positive outcome,

respectively. The corresponding classes are referred to as C0 and

C1. What exactly ‘‘positive outcome’’ means is often a matter of

definition. In fact, a test may first result in a continuous variable so

that it is necessary to reduce this outcome, in a subsequent step, to

a binary classification, for example by requiring that a certain

threshold is exceeded.

The objective of predictive modeling is to forecast, on the basis

of the data from the N previous patients, the test result (class

membership) for a new patient, for whom the vector of predictors

x was obtained. Two probabilistic approaches are used for that

purpose. The first approach, K-nearest neighbor classification,

goes back to ideas developed by Fix and Hodges in 1951, which

Predictive Modeling for Diagnostic Tests
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were only published many years later [16,17]. The applicability of

the method is limited by the fact that it cannot readily be used with

predictors corresponding to categorical variables (although there

are ways to overcome this restriction [18]). If the vectors of

predictors of both the previous patients and the new patient are

represented as points in an M-dimensional Euclidean space

(possibly after an appropriate metric adjustment [19]), the class

membership of the new patient can be predicted by determining

the nearest neighbours of this patient’s vector of predictors, x,

looking up the respective class labels, and finally taking a majority

vote [20]. Alternatively, instead of deciding straight away, a

posterior probability of class membership can be calculated as

p(CkDx)~Kk=K , where K is the number of neighbours considered

and Kk is the number of neighbours from class Ck[21]. The latter

approach has the advantage that it is, for example, possible to

account for the costs of false decisions, as will be explained below.

The second method is logistic regression, which represents an

application of the generalized linear model[22–24]. In essence, the

posterior probability of class C1 is obtained by evaluating the

logistic sigmoid function,

s(z)~
1

1z exp ({z)
, ð1Þ

for an argument corresponding to a linear combination of the

predictors [21], i.e.,

p(C1Dx)~s b0z
XM
m~1

bmxm

 !
: ð2Þ

The parameters bm (0ƒmƒM ) are estimated by maximum

likelihood, i.e., they are determined such that the probability of

obtaining the observed data is maximized [25]. In the present

study this was accomplished by calling the function ‘‘ GLMFIT’’

(with the link function ‘‘ LOGIT’’) of the MATLAB Statistics

Toolbox (The Mathworks, Inc., Natick, MA).

What the two methods have in common is that they provide

posterior probabilities of class membership. In a subsequent step,

these posterior probabilities can be used to decide whether or not

the new patient should be tested. The decision has to take into

account the cost for performing the test as well as possible harms

and benefits. This can be formalized by introducing a loss matrix

L (or, alternatively, a utility matrix defined as {L): The loss that

results from assigning a patient with a true class Ck to class Cj

corresponds to the element Lkj of the loss matrix (k and j may be

identical) [21]. The optimal decision is the one that minimizes the

expected loss. The corresponding decision rule is to assign a new

patient with predictor x to class Cj if and only if the expected loss

for this decision,

E½Lj �~
X

k

Lkj p(Ck Dx), ð3Þ

is smaller than the expected loss for any other decision [21]. With

only two classes, and because of p(C0Dx)~1{p(C1Dx), the rule for

an assignment to class C1 becomes p(C1Dx)wT , where T is a

threshold probability defined as

T~
L01{L00

L01zL10{L00{L11
: ð4Þ

With DL0~L01{L00 and DL1~L10{L11 the equation can be

rewritten as

T~
DL0

DL0zDL1

~
1

1zDL1=DL0

: ð5Þ

The same formula was obtained by Pauker and Kassirer [26],

although in a somewhat different context (therapeutic decision

making). They denoted DL0 as the cost and DL1 as the benefit.

Our understanding of cost and benefit is somewhat different.

Conceptually, we define ‘cost’ as the loss that would be caused by

performing a diagnostic test and accidentally erasing the result

before anybody could take notice of it. The difference in loss

between testing and not testing a patient is then the cost for testing

minus the benefit of the information provided by the test. If B0 and

B (with B0ƒCvB) are the benefits in the case of a negative and a

positive outcome, respectively, we get DL0~C{B0 and

DL1~B{C, and (5) simplifies to

T~
C{B0

B{B0
: ð6Þ

Provided that the sensitivity of the considered diagnostic test is

relatively low, as supposed in this study, it is justified to make the

simplifying assumption that a negative outcome has no benefit,

i.e., B0~0. The threshold T then corresponds to the cost-benefit

ratio C=B. A small benefit B0 does not invalidate this interpre-

tation: B0 reduces both the cost C and the benefit B so that T may

be interpreted as the ratio of the effective cost and the effective

benefit.

Evaluation of Predictive Modeling by Cross-validation
At least as important as knowing how to predict the outcome of

a considered diagnostic test is being able to evaluate the quality of

the prediction, which is the basic prerequisite for comparing the

performances of different approaches and their numerous variants.

The basis for the prediction are the data from N previous patients,

and exactly these data can be used to evaluate an algorithm before

applying it to make predictions for new patients. The method

which makes this possible is cross-validation. In the leave-one-out

approach [21,27,28] that will be used here, each of the previous

patients serves, in turn, for validation while the other N{1
patients represent the respective training set.

Cross-validation provides an easy way not only to compare

different approaches such as K-nearest neighbour classification or

logistic regression, but also to investigate which combination of

predictors yields the best prediction. Although this is an attractive

possibility, there is also a risk, because the procedure violates the

requirement that ‘‘when doing comparative evaluations, everything that is

done to modify or prepare the algorithms must be done in advance of seeing the

test data’’ [29]. Thus, if cross-validation is used to sift the approach

with the best performance out of a greater number of alternatives,

the capability to make correct predictions for unseen data (known

as generalization) may be low for the ‘‘winning’’ approach, and

this problem worsens as the number of cases in the training set

decreases [30]. To be able to recognize this problem, which is due

to overfitting, it is necessary to keep aside a certain proportion of

the dataset (test set) until these data are eventually used for

assessing the performance of the finally selected approach [21]. A

successful prediction can provide evidence that overfitting has not

occurred [31].

Predictive Modeling for Diagnostic Tests
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ROC Curve, Likelihood Ratio, and Related Issues
The performances of different approaches can be compared by

considering ROC curves. This necessitates to count, for a given

threshold T , the number of true-positives, NTP(T), false-positives,

NFP(T), true-negatives, NTN (T), and false-negatives, NFN (T).
The false-positive rate (i.e., 1{ specificity), is then calculated as

PFP(T)~
NFP(T)

NFP(T)zNTN (T)
ð7Þ

and the true-positive rate (sensitivity) as

PTP(T)~
NTP(T)

NTP(T)zNFN (T)
: ð8Þ

Moreover, the rate of positive predictions (corresponding to the

proportion of candidate patients that would be selected for testing

by the predictive model) can be calculated as

PP(T)~
NTP(T)zNFP(T)

N
: ð9Þ

Of interest are also the positive and the negative predictive

value [2,9]. In the present context, the positive predictive value,

PPV(T)~
NTP(T)

NTP(T)zNFP(T)
, ð10Þ

is the probability that a positive prediction as to the outcome of a

diagnostic would be confirmed by actually doing the test.

Accordingly, the negative predictive value,

NPV(T)~
NTN (T)

NTN (T)zNFN (T)
, ð11Þ

is the probability that a negative prediction would be confirmed.

A plot of PTP(T) versus PFP(T) yields the ROC curve, as

described in the Introduction. If different ROC curves are to be

compared it is convenient to characterize each curve by a single

number. The most popular one-number summary index is the

area under the curve (AUC) [2]. In this study, ROC curves were

obtained using the function ‘‘ perfcurve’’ of the MATLAB

Statistics Toolbox, which readily provides the AUC. If a binary

classification is based on a normally distributed continuous

variable which, for class Cj , has a mean of mj and a standard

deviation of sj , the AUC is

AUC~W
m1{m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

0zs2
1

q
0
B@

1
CA, ð12Þ

where W(x) is the cumulative distribution function of a standard

normal distribution [2,32]. With the definition

da~
m1{m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(s2
0zs2

1)=2
q , ð13Þ

Eq. (12) can be rewritten as AUC~W(da=
ffiffiffi
2
p

), and solving for da

yields

da~
ffiffiffi
2
p

W{1(AUC), ð14Þ

where W{1 is the inverse of function W. The measure da, called

area related index [33], provides an alternative way to character-

ize a ROC curve. The advantage of this measure is that it can be

interpreted as a signal-to-noise ratio. In fact, under the assumption

of equal variances (s2
0~s2

1), which appears to be reasonable for the

data considered in this article, da reduces to the widely used index

of dectability d ’[33,34]. The ROC curve corresponding to that

simple model has the parametric representation (1{W(t),
1{W(t{d ’)).

The ratio of true-positive and false-positive rate is known as the

likelihood ratio positive,

LRz~PTP=PFP, ð15Þ

which can be used to transform a pre-test probability (corre-

sponding to the prevalence of the condition tested for) into a post-

test probability [35,36]. For such a transformation it is convenient

to work with odds instead of probabilities. The odds corresponding

to a probability P are Q~P=(1{P), and given odds can be

converted into the corresponding probability using the formula

P~Q=(1zQ). If Q denotes the pre-test odds, then the post-test

odds are simply Qz~Q:LRz.

Threshold Dependence of the Loss
After having investigated N patients, the expected loss for

testing a single patient can be estimated as

L(T)~C0z
1

N
(NTN (T)L00zNFP(T)L01zNFN (T)L10

zNTP(T)L11),

ð16Þ

where C0 denotes the cost caused by the prediction itself. If not

explicitly stated otherwise, the prediction is assumed to be made at

minimal expense on the basis of readily available data so that C0

will be set zero, for the sake of simplicity. In what follows, t is the

probability that a randomly selected candidate patient is tested

positive (prevalence of a positive test result). The above equation

can then be rewritten as

L(T)~C0zt:½L10zPTP(T):(L11{L10)�

z(1{t):½L00zPFP(T):(L01{L00)�:
ð17Þ

This reformulation (which is equivalent to Eq. (3.5) in [37] for

C0~0 and to Eq. (2.17) in [15] for L00~0, although the contexts

differ) makes clear that not the individual losses, but only the

differences L11{L10 and L01{L00 are relevant when it comes to

comparing two prediction methods or the same method at

different thresholds (the terms tL10 and (1{t)L00 cancel out if

two expected losses are subtracted). Thus, two of the four losses

can be chosen ad libitum. Here, this indeterminacy is resolved by

postulating that a perfect classifier has a loss of zero, which

requires L00~L11~0. Referring to the above considerations

about costs and benefits we therefore get

L~
0 C{B0

B{C 0

� �
ð18Þ

as the loss matrix. Equation (16) then simplifies to

Predictive Modeling for Diagnostic Tests
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L(T)~C0z
1

N
(NFP(T)(C{B0)zNFN (T)(B{C)): ð19Þ

A false-positive classification contributes the effective cost, C{B0,

whereas a false-negative classification contributes the missed

effective benefit, B{C. If the predictive model works well,

minimization of (19) with respect to T should yield a value that is

roughly consistent with the threshold obtained from (6).

In other contexts it can be advantageous to use a different loss

matrix. Here, we also consider the case that, in a research project,

a certain diagnostic test is an integral component of an elaborate

investigation which has to be completed before the outcome of the

test finally becomes available. But the investigation is assumed to

be of minor value if the outcome of the test is negative. It is

assumed, furthermore, that an ethical review board gave the

permission to investigate up to Ntest subjects. The goal of

predictive modeling, then, is to ensure that as many of the Ntest

subjects as possible are tested positive, while it may be acceptable

to falsely reject a large proportion of candidate subjects as being

ineligible for the test (false negatives). Under such circumstances,

C0 comprises not only the cost for making the prediction, but also

the costs for finding candidates and doing preinvestigations. These

screening costs may be quite substantial, setting an upper limit for

the number of subjects that can be screened. A suitable loss matrix

is

L~
0 C

0 C{B

� �
: ð20Þ

The cost C is to be paid for each patient tested (true-positive as

well as false-positive predictions), whereas a benefit B is received

only for true-positive predictions.

As in the consideration before, the threshold T has to be

determined such that the expected loss is minimized. However,

Eq. (16) is not applicable here, because it is based on the

assumption that the total number of subjects, N, is a known

constant. But the number of subjects screened depends on T now.

To get a formula for the expected loss, it is helpful to first ask the

question as to how often the three losses (C0, C, and {B) can be

expected to arise. The number of patients required for screening

(each causing the loss C0) can be estimated by dividing Ntest by the

rate of positive predictions, PP(T). The number of subjects

actually tested (each causing the cost C) is, by definition, Ntest. The

number of tested subjects for which we can expect a positive

outcome (providing the benefit B) is obtained by multiplying Ntest

by the positive predictive value, PPV(T). In summary, the

expected loss for testing one of the Ntest subjects is

L(T)~CzC0=PP(T){PPV(T)B, ð21Þ

where PP(T) and PPV(T) are calculated using Eqs. (9) and (10),

respectively.

An Illustrative Example: The Glycerol Test

Background
Menière’s disease is characterized by episodes of vertigo,

hearing loss, and tinnitus or aural fullness. As yet, the diagnosis

is mainly based on the case history, the exclusion of other diseases,

and an elementary investigation of the patient’s hearing abilities.

Many efforts have been made to find objective correlates of

Menière’s disease [38,39], but there is still no method that could

be considered as the ‘gold standard’. One of the methods proposed

is the glycerol test [40], which relies on the fact that, in Menière

patients, oral application of glycerol can temporarily improve the

threshold of hearing, whereas the threshold does not systematically

change in normal hearing subjects or patients with other hearing

disorders. The glycerol test perfectly fits the category of tests that

was the focus of the above methodological considerations:

Although the test is assumed to have a high specificity, it is

discussed controversially because it is time-consuming, somewhat

uncomfortable for the patient, and not overly sensitive.

The glycerol test involves a comparison of two pure-tone

audiograms: The first one (pretest audiogram) is obtained

immediately before glycerol is orally administered to the patient,

and the second one is obtained a couple of hours later (four hours

in this study). The outcome is considered positive if the second

audiogram provides evidence of improved hearing (lower thresh-

olds in a certain frequency range). Many suggestions have been

made as to how the improvement should be ascertained. The

criterion used here is an aggregate threshold reduction (ATR) of at

least 30 dB in a contiguous frequency range. The criterion is

associated with a false-positive rate of approximately 5% [14].

A First Look at the Data
In a previous article [14] we presented a retrospective analysis of

N~356 glycerol tests in patients with suspected Menière’s disease.

Among other things, it was shown that the probability of a positive

test result depends on the pretest audiogram. A typical audiogram

comprises the thresholds of hearing at about 10 distinct

frequencies. While the thresholds are normally displayed in a

standardized form as hearing loss versus frequency, they may also

be arranged as a vector of predictors, x~(x1,x2, . . . ,xM ). It can

be useful to reduce the dimensionality of the original data, for

example by ignoring some frequencies or averaging thresholds

over certain frequency ranges. Moreover, it may be advantageous

to transform the original data, for example by subtracting two

thresholds. As a consequence, the number of predictors, M, may

be smaller than the number of estimated thresholds.

To illustrate the predictive value of the pretest audiogram, Fig. 1

shows all test results as points in a two-dimensional predictor

space: the abscissa represents the mean low-frequency hearing loss

(frequency range 150 to 1500 Hz), whereas the ordinate represents

the difference of mean high-frequency hearing loss (frequency

range 2000 to 8000 Hz) and mean low-frequency hearing loss.

The outcome of the test is indicated by the type of symbol. Most

common is a small cross, which indicates a negative outcome

(ATRv30). Circles, by contrast, represent a positive outcome (the

two types of filled circles indicate strong and very strong effects,

repectively). The distribution of the crosses clearly differs from the

distribution of the circles, especially from the distribution of the big

circles, which represent cases with ATR§125: Symbols repre-

senting patients that were tested positive are more likely to be

found below the zero line, which means that the hearing loss is

more pronounced in the low-frequency range. A related observa-

tion in our previous article [14] gave rise to a simple rule of thumb:

A positive outcome of the glycerol test is particularly likely if the

mean low-frequency hearing loss is between 30 and 70 dB and the

mean high-frequency loss does not exceed the mean low-frequency

loss. In Fig. 1, this concept is visualized as an area framed by thick

gray lines (the arrows indicate that there is no lower bound).

To draw quantitative conclusions, an exhaustive search

algorithm was used to identify regions where the probability of

finding an ATR of at least 30 dB is as high as possible (the borders

were systematically changed in steps of 5 dB; a similar analysis was

described in our previous article [14]). In Fig. 1, the area shaded in
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gray is the optimal region under the constraint that at least 5% of

the cases are to be included. Solid and dotted lines bound optimal

regions comprising at least 20 and 50% of the cases, respectively.

More information is provided in Table 1, where also two

additional constraints (inclusion of at least 10% and 100% of the

cases, respectively) are considered. In the upper half of the table,

the optimized regions are defined, and it is stated how many cases

are actually found in those region. The lower half of the table

provides the probabilities that specific criteria are fulfilled. The

rightmost column was not obtained by optimization, but

represents the simple rule of thumb explained above, for the sake

of comparison. The table shows that the probability of obtaining a

positive test result can be substantially increased by testing only a

subpopulation of patients. For new patients, somewhat lower

probabilities are to be expected, though (see Discussion).

Predictive Modeling
A two-dimensional predictor space such as the one considered

in Fig. 1 has the advantage of being well-suited for visualization.

However, important information might get lost by reducing the

dimensionality of the data. In fact, the starting point for this study

was the question to what extent more sophisticated methods of

predictive modeling are superior to the above-mentioned rule of

thumb.

An evaluation of the K-nearest neighbor approach (with K~20)

by means of leave-one-out cross-validation is provided in Fig. 2.

The pre-test hearing losses at seven distinct frequencies (125–

3000 Hz) served to predict the outcome of the glycerol test, and

this prediction was checked against the true outcome. The choice

of the frequency range reflects the fact that higher frequencies are

generally of minor importance for Menière’s disease. Panel A

shows, as a function of threshold T , the number of true-positive

predictions (black curve with filled circles) and false-positive

predictions (gray curve with filled circles). The complementary

curves, representing the number of false-negative (black) and true-

negative predictions (gray), are shown as well, for the sake of

completeness. An appropriate rescaling yields the true-positive and

false-positive rates presented in panel B. The third curve in that

panel shows the rate of positive predictions, corresponding to the

proportion of candidate patients that would be subjected to testing.

Subsequent considerations will show that choosing a threshold of

0.5 (dotted vertical line) is a reasonable, although not necessarily

optimal strategy for the problem at hand. The rate of positive

predictions for this threshold is 0.38. Dividing the true-positive

rate by the false-positive rate yields the likelihood ratio LRz,

which is shown in panel C (only considering thresholds with more

than 20 positive predictions). For a threshold of 0.5, this ratio is

Figure 1. The results of all 356 glycerol tests projected into a two-dimensional predictor space. The two axes represent the mean low-
frequency hearing loss (horizontal) and the difference between mean high-frequency and mean low-frequency hearing loss (vertical). The type of
symbol indicates the aggregate threshold reduction (ATR) that was observed four hours after the glycerol intake. The gray area indicates the optimal
region under the constraint that at least 5% of the cases are to be included. Optimal regions with at least 20% and 50% of the cases are bounded by
solid and dotted lines, respectively. The area framed by thick gray lines with downward arrows represents a simple rule of thumb[?] according to
which a glycerol test should be considered as a diagnostic option when a patient with suspected Menière’s disease has a mean low-frequency
hearing loss between 30 and 70 dB and a mean high-frequency hearing loss that does not exceed the mean low-frequency loss.
doi:10.1371/journal.pone.0079315.g001
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2.11, which means that the odds of getting a positive test result are

more than doubled.

The curves in Fig. 2 D show the positive predictive value (black)

and the negative predictive value (gray). To ensure a certain

minimum quality of the estimated values, only thresholds with

more than 20 positive or negative predictions, respectively, were

considered. The choice of a small threshold is tantamount to

making a positive prediction for almost all patients. This explains

why, for T?0, the positive predictive value) corresponds to the

prevalence of a positive glycerol test, which is t&0:39 for the

present data (lower dotted line). Starting from this level, the

positive predictive value tends to increase with increasing

threshold. The choice of a threshold close to one, by contrast,

gives rise to a negative prediction for almost all patients. Thus, the

negative predictive value for T?1 is 1{t&0:61 (upper dotted

line).

A ROC-space representation of the the data points in Fig. 2 B is

provided in Fig. 3 (circles). Dotted lines mark the data point

corresponding to a threshold of 0.5. The smooth curve represents

a simple Gaussian model with an index of detectability (d ’) of

0:698 (the value was calculated from the estimated area under the

curve, as desribed in the context of Eq. (14)). Dashed lines indicate

different levels of the likelihood ratio LRz, namely 1 (the

diagonal), 2, and 3. It can be concluded that, for T§0:5, the

likelihood ratio LRz is typically between 2 and 3 (also shown in

Fig. 2 C). The filled square represents the above-mentioned rule of

thumb. Remarkably, this simple rule appears to perform similarly

to the investigated K-nearest neighbor approach for a threshold of

0:5.

The question remains how the investigated approach compares

to alternative prediction methods. An answer can be obtained by

comparing the AUC values compiled in Tab. 2. The first column

gives a mnemonic for the predictor space, the other columns

provide the AUC for the K-nearest neighbor approach and two

variants of logistic regression: one working only with the original

predictors (‘linear’), the other using the predictors squared as

additional predictors (‘quadratic’). The mnemonics nF (1ƒnƒ10)

refer to investigations in which the hearing losses at the lowest n
frequencies served as predictors. This means that 7F refers to the

predictor space considered in Figs. 2 and 3. The mnemonic LH

refers to a two-dimensional space with the mean low-frequency (L)

and the mean high-frequency hearing loss (H) as predictors

(considered in Fig. 8 of our previous article [14]). The space LH- is

identical, except that the predictor H is replaced by the difference

of H and L (considered in Fig. 1 of the present article). The

predictor space 7F3d operates on the same frequency range as 7F,

but the thresholds at neighboring frequencies were averaged

(pairwise, except for the three lowest frequencies), which reduced

the dimensionality from 7 to 3. The table suggests that, in spaces of

low dimensionality, the performance of logistic regression can be

moderately improved by including the squared predictors. All in

all, however, the K-nearest neighbor approach is superior. Its

performance improves as the number of frequencies increases, but

including more than 6 frequencies appears to be detrimental,

which would mean that the 7F space considered in Figs. 2 and 3 is

suboptimal. A comparison of the spaces 7F and 7F3d suggests that

reducing the dimensionality of the predictor space is advantageous

mainly for the quadratic version of logistic regression.

Cost-benefit Analyses
In what follows, it is investigated how the optimal threshold for

performing the glycerol test depends on the assumptions about

cost and benefit. The curves in Fig. 4 A, showing the expected loss

as a function of threshold, were calculated for the loss matrix

defined in Eq. (18), under the assumption that the cost for the test

is C~1 and that a negative outcome has no benefit, i.e., B0~0.

The numbers attached to the curves (1, 2, 3, and 10) indicate the

assumed benefit of a positive outcome, B. Since a benefit of 1

merely recoups the cost for testing, the expected loss increases as

the threshold decreases, owing to the increasing proportion of

patients for whom no benefit could be achieved. The optimal

strategy, therefore, is to refrain from testing. For a benefit of 2, a

flat minimum can be observed at a threshold of 0:5. The

highlighted curve (thick with filled symbols) represents the special

case that the benefit is equal to the reciprocal of the prevalence of

a positive test result, i.e., B~1=t&2:54. The expected loss for

T?1 is obtained by multiplying t (now corresponding to the false

negative-rate) by B{C~1=t{1, yielding 1{t. This is also the

expected loss for T?0 (irrespective of the assumed benefit). The

minimal loss is obtained for a threshold of 0.5 or somewhat below.

For a benefit of 3, the optimal threshold is about 0.35, and

refraining from testing (T?1) is worse than testing all subjects

(T?0). For a benefit of 10, the optimal strategy would be to test

almost every patient, because the missed benefit from a false-

negative decision represents a quite significant loss.

Figure 4B refers to the situation that a scientific study with a

fixed number of subjects would be most beneficial if an embedded

glycerol test has a positive outcome in as many subjects as possible

(see Eq. (21)). The cost for performing the test is, again, assumed to

be 1, whereas the benefit of a positive test result is set to 10. The

numbers attached to the curves (1/8, 1/4, 1/2, 1, and 2) indicate

the cost for screening, C0. In the case of the highlighted curve

Table 1. Optimal pretest conditions for the criterion ATR§30.

Percentage of cases to be included Rule of thumb

$5 $10 $20 $50 100

Actual number of cases 21 36 76 182 356 127

Pretest loss (dB HL)

at low frequencies 6065 55610 55615 60620 50650 50620

high minus low freqs. 215610 215610 220615 220630 0645 #0

Probability

of ATR $30 0.86 0.75 0.67 0.51 0.39 0.57

of ATR $50 0.62 0.56 0.46 0.31 0.22 0.37

of ATR $125 0.24 0.19 0.14 0.066 0.037 0.094

doi:10.1371/journal.pone.0079315.t001
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(thick with filled symbols), which may serve as a reference, the cost

for screening is significantly smaller than the cost for actually doing

the test, but it is not negligible (C0~1=4). A threshold of about 0.5

turns out to be optimal in this situation. Doubling the cost for

screening does not fundamentally change the situation, whereas

halving shifts the optimal threshold to the right, meaning that the

choice of subjects should become more selective. As to be

expected, screening for suitable subjects is of limited value if this

causes the same cost as actually doing the test (C0~1), and

screening becomes counterproductive if the cost is higher (C0~2).

Discussion

Decision Making based on the Cost-benefit Ratio
The predictive modeling approaches considered in this article

use the experiences with previous patients for estimating the

probability that performing a specific diagnostic test in a new

patient will have a positive outcome. If the model underlying the

prediction were perfect, the optimal strategy would be to test a

patient whenever the estimated probability exceeds the threshold

defined in Eq. (6), which corresponds to the cost-benefit ratio C=B
(under the simplifying assumption that a negative test result has no

benefit). However, if the goodness of the predictive model is

unknown, this simple rule is suitable only for qualitative

considerations. Problems are to be expected, for example, when

a K-nearest neighbor prediction is to be made for a point located

in the periphery of the points representing the previous patients:

The estimated probability may then be representative for the

center of the K neighbors, but not for the eccentrically placed

point of interest. A cost-benefit analysis using cross validation (as in

Fig. 4) does not only assess the true performance of the model, but

also gives an idea of how suboptimal decisions deteriorate the

performance.

Instead of considering the expected utility of the diagnostic test,

we modeled its negative counterpart: the expected loss. It is, of

course, not possible to unconditionally generalize the results

obtained for the illustrative example presented above, the glycerol

test. However, some conclusions are probably valid for other

diagnostic tests as well, especially since the parameters in the loss

matrix are, as a rule, not precisely known. Thus, a more qualitative

interpretation of our numerical results is advisable anyway.

Regarding the analysis presented in Fig. 4 A it appears appropriate

to distinguish three major conditions. Firstly, the benefit of a

positive test result may very clearly exceed the cost (e.g.,

B=C~10). Excluding a patient from testing because of an

erroneously predicted negative outcome would cause a significant

loss, and so a low threshold has to be chosen (e.g., T~0:1, in

accordance with Eq. (6)), which means that almost every patient is

Figure 2. Prediction of a positive outcome of the glycerol test
by K-nearest neighbor classification. (A) The curves with filled
circles show, as a function of threshold, the numbers of true-positive
(black) and false-positive predictions (gray). The other curves show the
numbers of false-negative (black) and true-negative predictions (gray).
(B) The curves with filled circles show the true-positive rate (black) and
the false-positive rate (gray). The other curve shows the rate of positive
predictions, corresponding to the proportion of candidate patients that
would be subjected to testing. (C) Likelihood ratio LRz. (D) Positive
predictive value (black) and negative predictive value (gray).
doi:10.1371/journal.pone.0079315.g002

Figure 3. Receiver operating characteristic. The open circles
represent the false-positive and true-positive rates displayed in Fig. 2 B,
whereas the filled square represents the rule of thumb considered in
Fig. 1. The three dashed lines indicate specific values of the likelihood
ratio LRz (1, 2, and 3).
doi:10.1371/journal.pone.0079315.g003
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tested. Secondly, the benefit may not be significantly higher than

the cost. In that case, it is advisable to choose a threshold close to 1

(again in accordance with Eq. (6)), which corresponds to refraining

from testing. Thirdly, the benefit may be in between the two

extremes (e.g., benefit-cost ratio of 2 or 3). A threshold of T~0:5
may then be considered as a reasonable default choice. Depending

on the cost-benefit ratio, this choice may be suboptimal, but the

disadvantage compared to the optimal choice can be expected to

be small. A particularly interesting situation arises if the benefit-

cost ratio equals the reciprocal of the prevalence of a positive test

result (thick curve with filled circles in Fig. 4 A): Testing all patients

(T~0) and testing no patient (T~1) causes exactly the same loss,

which is greater than the loss for any intermediate threshold. With

respect to decision making this means that testing a subpopulation

selected by predictive modeling is, in any case, better than the two

extreme alternatives: testing each patient or no patient at all.

Comparison with Related Work
Our approach is closely related to decision curve analysis as

proposed by Vickers and Elkin [41]. While we use a loss matrix,

they assign a ‘value’ to each outcome of a simple decision tree,

which is, of course, equivalent. Moreover, their equation (1)

corresponds to our equation (4). Remarkably, the unnumbered

equation on page 567 of their article is a special case of our

equation (17). To show this, we transcribe their equation using our

own notation (we also apply their Eq. (1) and account for the fact

they fixed a{c at 1):

{L(T)~
NTP(T)

N
{

NFP(T)

N
(({L00){({L01)) ð22Þ

The equation can be rewritten as

L(T)~{tPTP(T)z(1{t)PFP(T)(L01{L00), ð23Þ

which is equivalent to (17) if C0~L00~L10~0 and L11~{1.

Note that the only free parameter in the loss matrix, L01, can be

interpreted as a cost-benefit ratio. The assumption L00~0 (also

made in the present article) is without any reasonable alternative.

Worded in neutral terms it means that refraining from action in

cases where no action is required causes a loss of zero. The

assumption L10~0 in the approach by Vickers and Elkin is

consistent with our definition of a loss matrix in Eq. (20). Worded

in neutral terms again, the zero of the loss scale is assigned to the

Figure 4. Expected loss as a function of threshold (cost-benefit analysis for the glycerol test). (A) Analysis based on the loss matrix
defined in Eq. (18). The cost for the test is C~1, a negative test result has no benefit (B0~0), and a positive test result has the benefit indicated by
the number attached to each of the four standard curves (1, 2, 3, and 10). In the case of the highlighted curve (thick with filled symbols), the benefit is
the reciprocal of the prevalence of a positive test result. (B) Analysis based on the loss matrix defined in Eq. (21). The cost for performing the test is 1
and the benefit of a positive test result is 10. The numbers attached to the curves indicate the cost for screening.
doi:10.1371/journal.pone.0079315.g004

Table 2. Comparison of various prediction methods in terms
of the area under the ROC curve (AUC).

space K-nearest logistic regression

neighbor linear quadratic

1F 0.594 0.600 0.603

2F 0.624 0.609 0.629

3F 0.688 0.615 0.628

4F 0.667 0.616 0.623

5F 0.688 0.615 0.621

6F 0.704 0.641 0.635

7F 0.689 0.636 0.628

8F 0.678 0.631 0.619

9F 0.652 0.629 0.615

10F 0.655 0.623 0.605

LH 0.634 0.635 0.648

LH- 0.657 0.635 0.650

7F3d 0.690 0.655 0.674

doi:10.1371/journal.pone.0079315.t002
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situation that, regardless of any predictive information, no action is

taken. By contrast, in the loss matrix defined in Eq. (18) we assume

L11~0, which means that the zero is assigned to the hypothetical

situation that decisions about an envisaged action are made using

a perfect classifier. However, as already explained in the context of

Eq. (17), the definition of the zero point is irrelevant when

comparing two methods. In conclusion, up to here our approach is

basically equivalent to that of Vickers and Elkin [41].

The crucial difference is the way Eq. (4) is handled. Vickers and

Elkin [41] assign a pivotal role to this equation in that they

consider cost-benefit ratio and threshold probability as measures

that can be converted into each other as desired. By contrast, we

consider Eq. (4) as a theoretical relationship that cannot be

expected to be strictly valid when dealing with real-world

problems. We therefore ignore the equation in the first instance

and consider threshold probability and benefit-cost ratio as

parameters that can be independently varied. Plotting a family

of curves as in Fig. 4 A is a convenient means to visualize how

these two parameters affect the expected loss. Under ideal

conditions, each curve would show a minimum at the threshold

predicted by Eq. (4). Thus, the minima of the curves would be

located on a graph comparable to the decision curve of Vickers

and Elkin (of course, the fact remains that we consider loss rather

than ‘value’ and that we define the zero point in a different way).

Although our results roughly confirm this expectation, two aspects

prevent perfect agreement. First, the optimal threshold calculated

using Eq. (4) refers to the expected value of the loss, whereas our

estimations are based on limited data. Second, the benefit-cost

ratio is a continuous variable, whereas, for the K-nearest neighbor

method considered in Fig. 4 A, the threshold probability is of a

discrete nature.

Despite these formal discrepancies, it can be assumed that our

approach and that of Vickers and Elkin [41] generally lead to

similar conclusions. Thus, from the users’ point of view the

differences between the two approaches are chiefly of a practical

nature. In the approach by Vickers and Elkin, the user is assumed

to already have an opinion about the threshold probability (and

thus, implicitly, also about the cost-benefit ratio). Decision curve

analysis can then be used to check whether it is sensible to apply

this threshold to decision making using a specific predictive model.

By contrast, our approach allows for the possibility that a user

might have nothing more than a vague idea of the benefit-cost

ratio. The questions asked under such circumstances are inevitably

less focused, and a multi-step procedure might be appropriate. In

the first step, it could be investigated for which range of benefit-

cost ratios the predictive model promises to be beneficial.

Supposing that this range includes the presumed benefit-cost

ratio, the next step would be to determine the optimal threshold.

Finally, it might be of interest to ask whether this threshold would

be acceptable also for slightly different assumptions about the

benefit-cost ratio. A plot such as the one in Fig. 4 A appears to be

well-suited for considerations of this kind.

We are not aware of other articles coming as close to ours as

does that of Vickers and Elkin [41]. But, of course, many authors

considered related problems. For example, Moskowitz and Pepe

[42] proposed a method for quantifying and comparing predictive

accuracy of continuous prognostic factors. Their work differs from

ours in that they consider single factors, whereas we consider

multiple factors. Nevertheless, their idea of a standardized scale

based on the cumulative distribution function of the respective

prognostic factor could be useful also in the context of our K-

nearest neighbor approach, because that way it would be possible

to build up meaningful predictor spaces from factors of quite

different nature (such as hearing loss and age). Another difference

between our approach and that of Moskowitz and Pepe [42] is that

we pursue loss minimization, whereas they advocate considering

positive and negative predictive values. For the sake of conciseness,

we abstain from comprehensively reviewing possible alternatives to

our methodological approach. Instead, we refer to a review article

by Gerds et al. [43]. They not only illuminate the broader context,

but also present a unifying framework that shows clear parallels to

our approach. Risk prediction models, as considered in their

article, use prognostic factors available at time t~0 to determine

the probability of a patient having a certain status at time t§0. In

our article, ‘status’ refers to the outcome of the glycerol test, and

the prediction is evidently made for time t~0. Amongst other

things, Gerds et al. [43] compare traditional methods such as

logistic or Cox regression with machine learning concepts such as

classification trees and random forests. The former belong to the

culture of data modeling, whereas the latter, just as the nearest

neighbor method considered in the present article, belong to the

culture of algorithmic modeling [44]. Gerds et al. [43] urge that

performance measures should be applicable to all statistical

cultures, and they regard crossvalidation and bootstrap to be the

heart of internal validation. Our study is in line with these

concepts. Moreover, their idea that the predicted probabilities can

be considered as a new ‘single continuous marker’ corresponds to

our interpretation of predictive modeling as a virtual screening

test.

Comparison of Predictive Modeling Approaches
Diagnostic testing is most useful when the presence of disease is

neither very likely nor very unlikely [1]. The information theoretic

explanation of this fact is that a test with a binary result (Yes/No

decision) is most informative if the two alternatives have the same

probability, because this is the condition under which the binary

entropy function reaches its maximum (corresponding to one bit)

[45]. The glycerol test considered here approximately satisfies this

condition: The prevalence of a positive test result was almost 0.4

for the population of candidate patients, and with predictive

modeling the positive predictive value increased up to about 0.6

(see Fig. 2 D), which means that the odds of obtaining a positive

test result were more than doubled. It should be noted that this

improvement was achieved with a relative simple predictive

model, which was defined before the data were analyzed. Table 2

suggests that this model (K-nearest neighbor approach for the

space 7F) is probably suboptimal, which means that a better

performance might be attainable by employing a different

combination of predictors, possibly with optimized weights

(although the gain to be made by weighting may not be worth

the extra effort [46]). However, in view of the limited amount of

data available, we refrained from systematically seeking for an

optimal model, because this would involve the risk of overfitting,

with the consequence that the optimized model may not

generalize well to new data [30]. Besides, as long as the analysis

depends on rough guesses of cost and benefit, reaching indisput-

able conclusions is impossible anyway.

But these limitations do not preclude a more general

comparison of methods. A convenient possibility is to calculate

the area under the ROC curve (AUC), although the approach

must be considered with reservation because this widely used

measure was shown to be incoherent [47,48]. We start the

discussion of Tab. 2 by considering the predictor space LH-. The

visualization of this space in Fig. 1 shows that the probability of a

positive test result is clearly enhanced if the predictor represented

by the horizontal axis (low-frequency hearing loss) has an

intermediate value. A linear regression model is not able to

adequately account for this observation, and therefore it is not
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surprising that including the predictors squared as additional

predictors yields an improvement: Even though the effect is

relatively small, the quadratic version of logistic regression

approximately reaches the performance of the K-nearest neighbor

approach in this space. The latter method is distinguished by the

fact that predictions are made locally, on the basis of small subsets

of data. This gives the method a high flexibility, which may

explain why it turned out to be superior in spaces of higher

dimensionality (greater than two). An additional reason for this

superiority is that the inclusion of quadratic terms in the logistic

regression approach is apparently counterproductive when the

dimension of the space is greater than five, presumably because

generalization to new data becomes a problem.

A comparison of the spaces 1F to 10F confirms the initial

hypothesis that the hearing thresholds at the three highest

frequencies have no predictive value. To be exact, Tab. 2 suggests

that only the thresholds at the six lowest frequencies contribute

substantial information (K-nearest neighbor approach and linear

logistic regression are consistent in this respect). A comparison of

the spaces 7F and 7F3d suggests that averaging over appropriately

chosen frequency bands can improve the performances of the two

variants of logistic regression, whereas there is no obvious

advantage for the K-nearest neighbor approach. However, for

other data transformations the situation may be the other way

around, as suggested by a comparison of the spaces LH and LH-.

The latter was derived from the former by subtracting the two

predictors and substituting the result for one of the original

predictors. While this step had basically no effect on the

performances of the two logistic regression approaches, the

performance of the K-nearest neighbor approach slightly im-

proved. Thus, it is conceivable that more complex and possibly

nonlinear transformations of the data (resulting in predictors that

describe the shape of the pretest audiogram in terms of, e.g.,

‘curvature’ or ‘frequency of the steepest gradient’) would allow us

to outperform the approaches considered in Tab. 2. Nevertheless,

it appears doubtful that striking improvements are possible without

introducing additional predictors. To better characterize the

pretest hearing status, it might be helpful to consider, for example,

measures of frequency selectivity and compression [49].

Predictive Modeling versus Simple Rule of Thumb
A simple rule of thumb turned out to be competitive with the

much more sophisticated predictive modeling approaches. This

result was not expected, but it is not too surprising either. There

are probably two reasons that contributed to this outcome. First,

the use of expert knowledge of the condition tested for avoids the

need to make potentially unreliable estimations based on a limited

amount of data (e.g., considering the K nearest neighbors). If the

key information contained in the predictors can be captured by a

simple rule (which, in the present example, apparently concerns

the relationship between low- and high-frequency hearing loss), it

may be difficult for unspecific prediction methods to achieve a

significantly better performance. The argument is supported by

the fact that the predictor space underlying the rule of thumb (LH-

) is only a mediocre choice (see K-nearest neighbor method in

Tab. 2). In reverse, this means that it might be worthwhile to seek

for a rule of thumb operating in a different low-dimensional space

(such as 7F3d). Second, the data used for establishing and

evaluating the rule of thumb were the same. Thus, it might be the

case that applying the rule to new data would result in a somewhat

lower performance. The predictive modeling approaches, by

contrast, were evaluated using cross-validation so that there is no

reason to assume that the performance will differ for a population

of new patients, provided that the external conditions and the

inclusion criteria remain the same. Regardless of these consider-

ations, predictive modeling has the principle advantage that the

proportion of patients tested can easily be varied by adjusting the

threshold, thus allowing us to account for the presumed cost-

benefit ratio of the test. The latter may critically differ even from

patient to patient. For example, a test providing mainly prognostic

information [50] is beneficial only to patients who want to know

the prognosis.

Conclusions

The performance of a diagnostic test is commonly characterized

in terms of its sensitivity and specificity. However, these two well-

known measures are not necessarily sufficient for assessing how

useful a test is in daily practice. To reach a well-founded

conclusion, it is indispensable to consider additional factors such

as the cost for performing the test and the benefit of a positive and

a negative test result, respectively. Of crucial importance is also the

prevalence of the condition tested for, which, by definition,

depends on the population of patients. Thus, the utility of a test

may crucially depend on how the tested patients are selected. As

yet, the selection is typically based on relatively coarse criteria.

The patients may, for example, be suspected of having a certain

disease. Predictive modeling opens up the possibility to come to

individualized decisions, with the consequence that a diagnostic

test may be considered useful for a particular patient even when

testing a broader population of patients with the same suspected

diagnosis is discussed controversially. Moreover, if alternative tests

are available, predictive modeling may help to choose the one that

is most promising for the particular patient.
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