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Abstract

Small electrodynamic shakers are becoming increasingly popular for diagnostic investiga-

tions of the human vestibular system. More specifically, they are used as mechanical stimu-

lators for eliciting a vestibular evoked myogenic potential (VEMP). However, it is largely

unknown how shakers perform under typical measurement conditions, which considerably

differ from the normal use of a shaker. Here, it is shown how the basic properties of a shaker

can be determined without requiring special sensors such as accelerometers or force

gauges. In essence, the mechanical parts of the shaker leave a signature in the electrical

impedance, and an interpretation of this signature using a simple model allows for drawing

conclusions about the properties of the shaker. The theory developed (which is quite gen-

eral so that it is usable also in other contexts) is applied to experimental data obtained for

the minishaker commonly used in VEMP measurements. It is shown that the experimental

conditions substantially influence the properties of the shaker. Relevant factors are, in par-

ticular, the spatial orientation of the shaker (upright, horizontal or upside-down) and the

static force acting on the table of the shaker (which in a real measurement corresponds to

the force by which the shaker is pressed against the test person’s head). These results

underline the desirability of a proper standardization of VEMP measurements. Direct mea-

surements of displacement and acceleration prove the consistency of the conclusions

derived from the electrical impedance.

Introduction

Small electrodynamic shakers proved to be well suited for diagnostic investigations of the

human vestibular system. Shakers used for that purpose are generally fitted with a short plastic

rod, which makes it possible to apply mechanical stimuli accurately and safely to specific

points on the head [1–3]. Suitable stimuli are, for example, pulses or 500-Hz tone-bursts hav-

ing a duration of a few milliseconds. The skull vibrations elicited by such stimuli do, of course,

not spare the inner ear, which means that they also reach the otolith organs, saccule and utri-

cle. The latter are sensors for linear accelerations, and they play an important role in control-

ling posture and eye movement. The muscle reflexes elicited by stimulating the otolith organs
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Citation: Lütkenhöner B (2017) What the electrical

impedance can tell about the intrinsic properties of

an electrodynamic shaker. PLoS ONE 12(3):

e0174184. https://doi.org/10.1371/journal.

pone.0174184

Editor: Jun Xu, Beihang University, CHINA

Received: December 6, 2016

Accepted: March 3, 2017

Published: March 22, 2017

Copyright:© 2017 Bernd Lütkenhöner. This is an
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are widely used for diagnostic testing of the vestibular system. To study these reflexes, elec-

trodes are placed on the skin above (or in close vicinity to) an affected muscle and the so-called

vestibular evoked myogenic potential (VEMP) is recorded. Depending on whether a cervical

or an ocular muscle is considered, the potential is denoted as cVEMP or oVEMP [4, 5]. The

two types of VEMP provide complementary diagnostic information about vestibular disorders

[6].

The shaker is commonly hand-held in VEMP investigations. Good contact with the test

person’s head is ensured by exerting a force of 10–20 N perpendicular to the surface at the

point of contact [2, 3]. This kind of usage significantly differs from the applications for which

currently available shakers are designed. Besides, a human head has a mass of the order of 4 kg

[7], which is a much heavier “payload” than is normally handled by a small shaker. [The maxi-

mum payload considered in the product data sheet for the shaker used here, the Brüel & Kjær

mini-shaker type 4810, is 186 g.] Thus, a prediction as to how the shaker performs under the

conditions typical for VEMP measurement is problematic. Such concern appears all the more

justified as an electrodynamic shaker performs less than ideal even when operated within the

certified limits [8–10]. This uncertainty gave rise to the work presented here. Most desirable

would, of course, be a model comprising the whole mechanical setup, which consists of the

shaker, the hand (and the arm) of the investigator holding the shaker, and the head (as well as

the neck) of the test person. With such a model it would be possible, for example, to tailor sti-

muli that are optimal in some respect. Simulations of that kind could have a significant impact

on future VEMP research. However, work towards this goal cannot commence before a solid

understanding of the shaker itself is reached. Thus, the question investigated here is how the

intrinsic properties of a shaker can be determined from simple measurements under standard-

ized conditions. In the first part of the article, previous modelling approaches [11–15] are

adapted to the needs of the situation at hand. Moreover, it is shown how to determine all the

model parameters from the electrical impedance of the shaker. In the second part of the article,

this theory is applied to measurements taken under a variety of conditions. The consistency of

the conclusion derived from the electrical impedance is finally checked by direct measure-

ments of displacement and acceleration.

Theory

Time-domain model

The theory developed here is largely based on the shaker model of Doebelin [11]. Fig 1a shows

a schematic drawing of the model considered. From a mechanical point of view, the shaker

consists of three structures: table, body, and coil. The associated masses are denoted as mt, mb,

and mc. The coupling between table and body is realized by a combination of spring and

damper, characterized by the spring constant kt and the damping coefficient bt. Correspond-

ingly, the coupling between coil and table is characterized by the parameters kc and bc, and the

coupling between body and foundation (this feature represents an extension to the model of

Doebelin [11]) by the parameters kb and bb. The coil is suspended in the magnetic field of a

permanent magnet incorporated into the body of the shaker. The poles of the magnet are

labeled N (north) and S (south) in the figure. When a current, i, is passed through the coil, a

force acting in the axial direction is produced, and this force is transmitted to the table

attached to the coil. The current is provided by an electrical circuit consisting of a power

amplifier with output voltage ei, a resistor R, and an inductor L. The latter represent the total

circuit resistance and inductance, comprising contributions from both the coil and the ampli-

fier [11].
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Fig 1. Shaker model. (a) The couplings between table and body, coil and table, and body and foundation are

each represented by a combination of a spring and a damper; the electrical circuit consists of a voltage

source, a resistor, and an inductor (model based on Doebelin [11]). (b) Modified electrical circuit that accounts

for semi-inductance at higher frequencies. The frequency dependence of the impedance of a semi-inductor is

in between that of a resistor (proportional toω0, i.e., constant) and that of an inductor (proportional toω1). To
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At equilibrium, the weights of table, body, and coil are balanced by restoring forces that are

caused by stretching or compressing the springs. Gravitational forces can be ignored when

considering deviations from this condition. The displacements of table, body and coil from the

respective equilibrium positions are denoted here as xt, xb, and xc. Equations of motion are

obtained by applying Newton’s second law, according to which the sum of forces acting on an

object equals the mass of that object multiplied by its acceleration. Three types of forces have

to be considered. First, the force exerted by a spring is proportional to the distance by which

the spring was stretched or compressed (Hooke’s law). Second, a viscous damper exerts a force

that is proportional to velocity. Third, a current passed through a coil suspended in a magnetic

field exerts a force that is proportional to the current. Applying these laws separately to table,

body, and coil, and taking into account that the forces caused by the springs and the dampers

oppose movement, yields three second-order differential equations:

mb€xb ¼ �kbxb � ktðxb � xtÞ � bb _xb � btð _xb � _xtÞ ð1Þ

mt€xt ¼ �ktðxt � xbÞ � kcðxt � xcÞ � btð _xt � _xbÞ � bcð _xt � _xcÞ ð2Þ

mc€xc ¼ �kcðxc � xtÞ � bcð _xc � _xtÞ þ kii ð3Þ

A fourth differential equation is obtained by considering the voltage in the electrical circuit:

ei ¼ iRþ L
di
dt
þ kið _xc � _xbÞ ð4Þ

The last term on the right-hand side of this equation reflects the fact that a voltage proportional

to the velocity of motion is generated when the coil moves relative to the magnet incorporated

into the body of the shaker (see, e.g., [12]).

Driven harmonic motion

If the shaker is driven by an electric potential ei ¼ Ei exp ðiotÞ, the current as well as the

displacements of table, body, and coil oscillate at the same frequency, so long as the system

is in a steady state. Thus, the solutions to the differential Eqs (1) to (4) have the form

xb ¼ Xb exp ðiotÞ, xt ¼ Xt exp ðiotÞ, xc ¼ Xc exp ðiotÞ, and i ¼ I exp ðiotÞ. All we need to do

now is to determine the complex amplitudes Xb, Xt, Xc, and I. To begin with, complex ampli-

tude ratios are calculated. For the sake of convenience, they are denoted by the Greek letter

ρ, with a subscript specifying the complex amplitudes involved. The notations ρtb and ρic, for

example, mean Xt/Xb, and kiI/Xc, respectively. Moreover, the notation �rtb is introduced for

ρtb − 1 = (Xt − Xb)/Xb. Analogous notations apply to other ratios. These notational conventions

obviously imply that identities such as ρbt = 1/ρtb or �1=�rbt ¼ 1 þ 1=�rtb or ρbc = ρbtρtc hold. A

combination of such identities yields, e.g.,

�
1

�rbc
¼ 1 þ

1

�rcb
¼ 1 þ

1

rcb � 1
¼ 1 þ

1

ð1 þ �rctÞð1 þ �rtbÞ � 1
: ð5Þ

Because of such identities, only a few fundamental ratios (such as �rct or �rtb) are required to cal-

culate any other ratio of interest.

indicate this fact, the symbol representing the semi-inductor, S, is a combination of the symbols for a resistor

and an inductor. As suggested by Thorborg and Unruh [16], the semi-inductor is connected in parallel with a

second inductor, L2.

https://doi.org/10.1371/journal.pone.0174184.g001
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Applying these concepts to Eqs (1) and (2) results in

�rtb≔
Xt � Xb

Xb
¼

kb þ iobb � o2mb

kt þ iobt
ð6Þ

and

�rct≔
Xc � Xt

Xt
¼

m0

kc þ iobc
; ð7Þ

with

m0 ¼
1

kt þ iobt
þ

1

kb þ iobb � o2mb

� ��1

� o2mt: ð8Þ

Moreover, Eq (3) can be used to relate Xc to the current I, yielding

ric≔
kiI
Xc

¼
1

m0

þ
1

kc þ iobc

� ��1

� o2mc: ð9Þ

The relationship between potential Ei and current I is usually characterized by means of the

ratio Z = Ei/I, called the impedance. From Eq (4) we get

Z ¼ Rþ ioLþ Zm; ð10Þ

where

Zm ¼ iok2

i =m; ð11Þ

with

m≔
kiI

Xc � Xb
¼

ric

��rbc
; ð12Þ

represents the contribution of the mechanical part of the shaker to the overall electrical imped-

ance (for the calculation of �1=�rbc see Eq (5)). Numerical computations can now be done as

follows. Given the potential Ei, the current is calculated as

I ¼ Ei=Z: ð13Þ

The other complex amplitudes are then successively calculated as Xc = kiI/ρic, Xt = Xc/ρct, and

Xb = Xt/ρtb.

Simplified shaker: Coil and table rigidly attached to one another

The coupling between the coil and the table of the shaker would ideally be rigid [11]. Indeed,

shakers are normally designed so that deviations from this ideal condition become noticeable

only at high frequencies. Thus, for examinations at lower frequencies it is generally sufficient

to consider a simplified shaker, in which coil and table are rigidly attached to one another.

This corresponds to the limit kc!1, for which Eq (7) reduces to �rct ¼ 0, meaning ρct = 1 or

Xc = Xt. Eq (9) then simplifies to ρic = μ0 − ω2mc. Further simplification is achieved by under-

standing mt as the combined mass of coil and table. With such a redefinition of mt, Eq (9) can

be replaced by ρic = μ0. The displacement of the table can then be calculated more directly as

Xt ¼
kiI
m0

; ð14Þ

What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker

PLOS ONE | https://doi.org/10.1371/journal.pone.0174184 March 22, 2017 5 / 32

https://doi.org/10.1371/journal.pone.0174184


and Eq (12) can be rewritten as

m ¼
kiI

Xt � Xb
¼

m0

1 � rbt
: ð15Þ

The body of the shaker typically shows much smaller displacements than the table so that the

approximation ρbt� 0 can be used. This eventually yields μ� μ0.

Resonance frequencies

A first guess of the resonance frequencies to be expected (in this theoretical part of the article,

the term ‘frequency’ always means ‘angular frequency’) is obtained by decomposing the shaker

into three mass-spring systems, each one representing one of the mechanical components:

table, body, and coil. The resonance frequency of an undamped mass-spring system is

o0ðk;mÞ ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; ð16Þ

where k and m denote the spring constant and the mass of the system [17, 18]. Thus, the shaker

is expected to show resonance when it is driven at frequencies around ωt = ω0(kt, mt), ωb =

ω0(kb, mb), and ωc = ω0(kc, mc), respectively.

These estimates are, of course, rough approximations at best, because interactions between

body, table, and coil are ignored. The purpose of the following considerations is to get a more

realistic idea. For the sake of simplicity, the analysis is confined to the case that coil and table

are rigidly attached to one another. This means that Eq (14) is applicable. Provided that the

current, I, is roughly constant in the frequency range of interest (as is the case if the impedance

is dominated by the resistance R), Eq (14) suggests that the resonance frequencies of the shaker

can be determined by calculating the minima of |μ0|. To further simplify the calculations,

mechanical damping is considered negligible, i.e., bb = bt = 0. Eq (8) then becomes

m0ðoÞ ¼ mt
1

o2
t

þ
mt=mb

o2
b � o2

� ��1

� o2

 !

: ð17Þ

The resonance frequencies are now found by determining the roots of μ0(ω). This task is facili-

tated by introducing the auxiliary quantity

O ¼
ob

ot
þ

ot

ob
1 þ

mt

mb

� �

ð18Þ

and rewriting Eq (17) as

m0ðoÞ ¼
mto

2
bo

2
t

o2
b þ o2

t mt=mb � o2

o2

obot

� �2

�
o2

obot
O þ 1

" #

: ð19Þ

As to the roots of μ0(ω), only the term in square brackets is relevant, which means that a qua-

dratic equation in ω2 has to be solved. The two solutions are

o2

�
¼

obot

2
O �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O

2
� 4

p� �
: ð20Þ

The inequalities

O
2
� 4 >

ob

ot
þ

ot

ob

� �2

� 4 ¼
ob

ot
�

ot

ob

� �2

� 0 ð21Þ
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and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O

2
� 4

p
< O ensure that both o2

þ
and o2

�
are greater than zero, for all conceivable

parameter constellations.

Supposing that ωt and ωb differ by at least an order of magnitude, Eq (20) can be replaced

by simple approximations. The situation that the body of the shaker is more or less rigidly

attached to the foundation corresponds to the assumption ωt/ωb� 1. A series expansion then

leads to the approximations o2
þ
� o2

b and o2
�
� o2

t . Only the latter approximation matters

here, because the assumption ωb� ωt normally implies that ωb is outside the frequency range

of interest. With regard to a hand-held shaker, the reverse condition is of interest: Assigning a

low stiffness to the coupling between the body of the shaker and the “foundation” (the latter

being represented by the investigator’s body) is equivalent to assuming ωb/ωt� 1. A series

expansion for this condition leads to the approximations

o2

þ
� o2

t � 1 þmt=mbð Þ ¼ kt 1=mb þ 1=mtð Þ ð22Þ

and

o2

�
� o2

b = 1 þmt=mbð Þ ¼ kb=ðmb þmtÞ: ð23Þ

According to these approximations, the upper resonance frequency, ω+, is higher than the res-

onance frequency of the isolated table, whereas the lower resonance frequency, ω−, is lower

than the resonance frequency of the isolated body. Note that, in these approximations, the

upper resonance frequency does not depend on kb, whereas the lower resonance frequency

does not depend on kt. The assumption ωb� ωt normally implies that ω− is outside the fre-

quency range of interest.

Estimation of the shaker parameters from measurements of the

electrical impedance

From Eq (10) it can be concluded that by measuring the frequency dependence of the electrical

impedance it is possible to determine not only the electrical, but also the mechanical properties

of the shaker. Indeed, regarding the simplicity of the first two terms on the right-hand side of

the equation, Z represents, in essence, a fingerprint of the mechanical part of the shaker, which

determines the third term. A complicating issue is that the third term has more parameters

than can be estimated from the data of a single experiment. To get around this problem, a dif-

ferent parametrization is needed.

The intrinsic properties of the shaker are preferably studied under conditions where con-

founding factors are avoided as far as possible. The following analysis is therefore confined to

the case that the shaker is rigidly attached to the foundation. In the model, this situation corre-

sponds to the limit kb!1. Eq (8) reduces, under such circumstances, to m0 ¼ kt þ iobt
�o2mt . Moreover, in the case of the simplified shaker model, μ can be replaced by μ0 in Eq

(11). If ωt is the resonance frequency of the isolated table, as defined above, and

zt ¼
bt

2
ffiffiffiffiffiffiffiffiffi
mtkt

p ð24Þ

is the corresponding damping ratio [17, 19], the formula for μ0 can be rewritten as

m0 ¼ mt o2

t � o2 þ 2iootzt

� �
: ð25Þ

Thus, all in all, Eq (11) can be replaced by

Zm ¼
~k2
i

2otzt þ iðo2 � o2
t Þ=o

; ð26Þ
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with

~k2

i ¼ k2

i =mt: ð27Þ

This reparameterization reduces the number of parameters by one, and model fitting is possi-

ble irrespective of whether or not the mass of the table, mt, is known. If so, the original parame-

ters (kt, bt, ki) are easily calculated using Eqs (16), (24) and (27). If not, it can be exploited that

attaching a payload to the table changes the resonance frequency. Such an approach requires

that mt is understood as the combined mass of table and payload, i.e.,

mt ¼ mT þmP; ð28Þ

where mT is the mass of the table alone and mP is the mass of the payload. Applying Eq (16) we

then get

o�2

t ¼ ðmT þmPÞ=kt: ð29Þ

Provided that data is available for at least two different values of mP, the linear dependence of

o�2
t on mP offers an easy way to determine both mT and kt (for details see the experimental sec-

tion below).

Closer examination of the table resonance

The quantity Zm as specified in Eq (26) is ideally suited for studying the table resonance. Multi-

plying Zm and its complex conjugate yields

jZmj
2
¼

~k4
i

4o2
t z

2

t þ ðo2 � o2
t Þ

2
=o2

: ð30Þ

It is evident from this formula that |Zm| reaches its maximum when the second term in the

denominator vanishes: for ω = ωt. The value of this maximum is

max jZmjð Þ ¼ ZmðotÞ ¼ k2

i =bt: ð31Þ

Provided that the electrical impedance Z is dominated by the electrical resistance R (so that the

inductance term, ioL, is negligible for the frequency range of interest), the maximum of |Zm|

coincides with that of the table velocity j _Xtj. In order to show this, we first substitute Ei/Z for I
in Eq (14). The approximation Z� R + Zm combined with Eqs (25) to (27) then yields

Xt

Ei
�

c=mt

o2
t � o2 þ io½Rc2=mt þ 2otzt�

; ð32Þ

where

c ¼ ki=R ð33Þ

is a constant having the units N/V. For the table velocity, _Xt ¼ ioXt , this means:

_Xt

Ei
�

c=mt

Rc2=mt þ 2otzt þ iðo2 � o2
t Þ=o

: ð34Þ

The right-hand side of this equation has essentially the same structure as the right-hand side of

Eq (26). Hence, j _Xtj reaches its maximum at the same frequency as Zm: at ω = ωt. In both cases

the maximum is caused by the real part, whereas the corresponding imaginary part is zero.

The maximum of the table displacement, jXtj ¼ j _Xtj=o typically occurs at a frequency that is
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somewhat lower than ωt, whereas the maximum of the table acceleration, j€Xtj ¼ oj _Xtj, typi-

cally occurs at a somewhat higher frequency.

Eq (30) can be rewritten as

jZmj ¼
~k2
i

2otzt
1 þ

x

zt

� �2
 !�1=2

; ð35Þ

where

x≔
o2 � o2

t

2oot
¼

1

2

o

ot
�

ot

o

� �

ð36Þ

is basically a normalized frequency difference. [With Δω = ω − ωt we get 2ξ = (1 + Δω/ωt) −
(1 + Δω/ωt)

−1. For Δω� ωt, the latter term can be approximated as 1 − Δω/ωt. Thus, we finally

get ξ� Δω/ωt.] The full width at half maximum (FWHM) of |Zm|, measured on the ξ scale

rather than the ω scale, is easily calculated as

FWHMx ¼ 2
ffiffiffi
3

p
zt: ð37Þ

This equation offers a simple possibility for numerically determining the parameter zt from

given data.

Simple approximations for the acceleration of the table

Users of a shaker are generally more interested in the acceleration achieved by the table rather

than the impedance of the electrical circuit. It is noteworthy therefore that, for frequencies

being much lower or higher than the resonance frequency, a rough estimate of the acceleration

can be obtained using very simple approximations, provided that Eq (32) is applicable. The

approximation for low frequencies (ω! 0) is

€Xt=Ei � �o2c=kt; ð38Þ

and the approximation for high frequencies (ω!1) is

€Xt=Ei � c=mt: ð39Þ

The latter approximation offers an especially easy way to determine the parameter c by

accelerometry.

A complicating issue: semi-inductance

In the experimental section of this article it will be shown that the assumption of a resistor and

an inductor in series (as in Fig 1a) is not sufficient to explain the electrical impedance mea-

sured at higher frequencies. Similar conclusions were reached in studies of electrodynamic

loudspeakers, which bear some resemblance to the shaker considered here [14]. Vanderkooy

[20] explained the peculiarities observed at higher frequencies by eddy currents in the iron

pole structure of the speaker. Several authors tried to mimic the effect by means of simple ana-

logue circuits [16, 21–24]. Here, a solution developed by Thorborg and Unruh [16] is

employed. Their model makes use of a so-called semi-inductor. While in the case of an induc-

tor the impedance is proportional to frequency and the phase of the current lags the phase of

the voltage by 90 degrees, the impedance of a semi-inductor is proportional to the square root

of frequency, and the phase lag is 45 degrees [25]. To implement the model of Thorborg and

Unruh [16], the electrical circuit is modified as indicated in Fig 1b. Eq (10) then has to be
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replaced by

Z ¼ Rþ ioLþ Zsemi þ Zm; ð40Þ

where the term

Zsemi ¼
1

ioL2

þ
1
ffiffiffiffiffi
io

p
S

� ��1

ð41Þ

allows for modeling semi-inductance. While L2 is measured in units of henry, S is measured in

units of semihenry [25]. For fitting the model to experimental data it is convenient to rewrite

Eq (41) as

Zsemi ¼
ioL2

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
io=osemi

p ; ð42Þ

with osemi ¼ S2=L2
2
. In the latter formula, Zsemi is linearly dependent on L2, whereas the other

parameter, ωsemi, controls the transition from Zsemi � ioL2 (valid for ω! 0) to Zsemi � ðioÞ
1=2S

(valid for ω!1).

Methods

Measurement hardware

The shaker studied was a Brüel & Kjær mini-shaker Type 4810. As specified by the manufac-

turer, the dynamic weight of the moving system is 18 g, whereas the total weight is 1.1 kg. The

shaker was driven by a Brüel & Kjær power amplifier Type 2718. This amplifier has a flat fre-

quency response from 10 Hz to 20 kHz (±0.5 dB). The input to the power amplifier was pro-

vided by a TDT RP2.1 real-time processor (Tucker-Davis Technologies, Alachua, FL), which

has 24-bit digital-to-analog (D/A) converters. The power amplifier allows for monitoring both

the output voltage and the current in the electrical circuit. These two signals were fed to the

24-bit analog-to-digital (A/D) converters of the real-time processor. The real-time processor

communicated with a PC via USB.

Measurement software

The real-time processor executed low-level assembly code that was generated using the graphi-

cal design interface RPvdsEx (Tucker-Davis Technologies, Alachua, FL). In essence, this code

served to send out a discrete-time signal to a D/A converter while simultaneously acquiring

data from the A/D converters. The real-time processor was controlled by custom Matlab soft-

ware running on the PC. The Matlab software not only generated the discrete-time signal for

the D/A converter (sent to the real-time processor before starting the measurement), but also

saved the output streams of the A/D converters to a hard disk drive.

The signal sent to the D/A converter was a tone-burst. Both the rise time and the fall time

corresponded to one cycle of the tone. Tone-bursts with a frequency greater than 80 Hz had a

plateau duration of 100 ms; for lower frequencies the plateau duration corresponded to eight

cycles of the tone (this means, for example, that a 1-Hz tone-burst had a plateau duration of 8

seconds). To determine the frequency dependence of the electrical impedance, the frequency

of the tone-burst was generally varied between 1 Hz and 5 kHz, using 48 discrete frequencies

per octave (all in all yielding 590 discrete frequencies; overall measurement time: about 30

minutes). If not stated otherwise, the tonebursts were amplified such that the maximum input

to the shaker was 1 V. This amplification level will be referred to as 0 dB. The digitization rate
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was about 48.8 kHz for the investigation of frequencies above 500 Hz and about 9.8 kHz for

the investigation of lower frequencies.

Mechanical setup

In the main experiments, the shaker was firmly mounted on a solid foundation having a mass

of about 10 kg (two 5-kg counterweights of an astronomical telescope mount were attached

together). Measurements were done for three different orientations of the shaker: upright,

upside-down, and horizontal. For the conditions ‘upright’ and ‘horizontal’, the foundation was

placed on the floor of the laboratory. For the condition ‘upside-down’, the foundation was sup-

ported by two heavy pedestals. The latter were arranged so that the space between them

allowed for mounting the shaker underneath the foundation. The moving mass was systemati-

cally varied by screwing different objects to the table of the shaker. The most heavy object was

a solid brass cylinder with a mass of 1073 g, which is roughly the total mass of the shaker itself.

Two other brass cylinders had masses of 487 g and 243 g, respectively. The three brass cylin-

ders, which were specially manufactured for this project, will be referred to as the 1100-g, the

500-g, and the 250-g payload. In order to become more flexible as to the choice of the weights,

also a small vice was manufactured (mass 93.1 g). The vice made it possible to attach arbitrary

small objects to the table (mainly washers of different sizes were used). Masses smaller than

that of the vice were realized using various combinations of screw-nuts and washers. The mas-

ses attached to the table were determined using a letter scale with a digital display.

Supplementary experiments were done with the shaker hold in the hand of an investigator

(the author himself). To keep the overall measuring time within acceptable limits, only a few

exemplary conditions were considered. Moreover, the measuring time per condition was sub-

stantially reduced by limiting the investigation to the frequency range between 10 Hz and

1000 Hz (319 frequencies; overall measuring time per condition: about 5 minutes).

Data analysis

After completing the measurements, impedances were calculated from the stored data, i.e., the

simultaneous recordings of the amplifier output voltage and the current in the electrical cir-

cuit. The calculations (successively done for all frequencies and all experimental conditions)

were based on the assumption that the shaker operated under steady-state conditions during

the second half of a tone-burst presentation. In a first step, a complex amplitude was estimated

separately for the voltage and the current. This was done by means of a least-squares fit in the

time domain, confined to the time range that corresponds to the second half of the plateau. [It

is straightforward to find an analytical solution for this linear optimization problem. Great

care was used to correct for the hardware-specific delays associated with D/A and A/D conver-

sion.] In the second step, the impedance was calculated by dividing the complex amplitude

estimated for the voltage by the complex amplitude estimated for the current.

In a subsequent step, which was performed separately for each experimental condition, the

frequency dependence of the measured impedance was interpreted by fitting a model to the

data. This was done using the Matlab routine FMINSEARCH, which employs the simplex search

method of Lagarias et al. [26]. The function minimized by this routine corresponded to the

sum of the squared differences between the measured impedances and the impedances pre-

dicted by the model (real and imaginary part were handled as two separate data values). The

model impedance generally corresponded to Eq (10), with Zm as specified in Eq (26). Thus, all

in all, five parameters had to be estimated: R, L, ~k2
i , ωt, and zt. The routine FMINSEARCH explicitly

handled only the optimization of the latter two parameters, because for almost each choice of

ωt and zt, optimal values for R, L, and ~k2
i are easily determined by solving a linear optimization
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problem (Matlab routine REGRESS was used for that purpose). An initial value for ωt was

obtained by numerically determining the root of the imaginary part of the measured imped-

ance. Using this rough estimate for ωt, the ω scale was transformed into the ξ scale (cf. Eq

(36)), and FWHMξ was estimated from the measured impedances. An initial value for zt was

finally obtained from Eq (37).

If the theoretical impedance was given by Eq (40), with Zsemi as specified in Eq (42), FMIN-

SEARCH also had to determine the parameter ωsemi. An initial value for this parameter was

obtained by trial and error. The parameter L2 was estimated by linear optimization, simulta-

neously with R, L, and ~k2
i .

Supplementary measurements of acceleration and static displacement

To check the consistency of the acceleration predicted from the measured electrical imped-

ance, acceleration measurements were carried out by connecting a Brüel & Kjær accelerometer

(type 4535-B-001, operated through a signal conditioner type 1704-A-002) rather than the

voltage monitor of the power amplifier to the A/D converter module. Apart from that, the pro-

cedure was analogous to the measurement of the electrical impedance.

Another consistency check was done by measuring the static displacement caused by

attaching a weight to the table of the shaker. The length measurements were done with a digital

calliper having an error limit of 0.03 mm (MarCal 16 EWR, Mahr GmbH, Esslingen, Ger-

many). To reduce the measurement error caused by manually placing the tips of the calliper

on specific reference points of the shaker, the results of 10 independent measurements were

averaged.

Results

Electrical impedance for an exemplary condition

Fig 2 shows the frequency dependence of the electrical impedance for an exemplary condition.

The shaker was in an upright position, and the 250-g payload was attached to its table. Real

and imaginary part are considered separately. The thick grey curves represent the measured

data, whereas the other curves show different model fits. The solid black curves were obtained

for the standard model represented by Eq (10), with Zm as defined in Eq (26). The frequency

range accounted for by the fit algorithm was 1 to 200 Hz (indicated by an increased line thick-

ness). The model reproduces the data quite well in this frequency range. Most conspicuous

is the concurrence of a pronounced peak of the real part and a root of the imaginary part.

This feature can be explained by a resonance of the table (more precisely: table with attached

payload). The estimated resonance frequency is 32.25 Hz, and the estimated damping ratio is

zt = 0.109. The other parameters provided by the fit algorithm are R = 3.54 O, L = 258.6 μH,

and ~k2
i ¼ 47:02ðN=AÞ2

=kg. Although the exact mass of the table is unknown at this point,

Eq (16) allows us to derive at least a first estimate of the shaker parameter kt, because the

attached payload was an order of magnitude heavier than the table itself. Assuming that table

plus attached payload have a mass of about 0.26 kg, a value of 10.7 N/mm is estimated for kt.
The Eqs (24) and (27) then provide the values 11.5 N/(m/s) and 3.50 N/A for the parameters bt
and ki, respectively.

The contribution of the mechanical part of the shaker to the electrical impedance is negligi-

ble for ω� ωt [from Eq (26) it follows that |Zm| ! 0 for ω!1]. Thus, for high frequencies

one would expect that the real part of the impedance is basically equal to R and that the imagi-

nary part is basically equal to ωL. These expectation are represented by dotted curves in Fig 2

(mostly coinciding with the solid curves). But the measured data do not confirm this
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expectation. Instead of approaching a constant value, the real part of the impedance begins to

increase at about 100 Hz, and this increase accelerates with increasing frequency. The imagi-

nary part of the impedance shows a similar increase, which, however, falls short of the expected

increase. These discrepancies force us to conclude that a crucial aspect is missing in the stan-

dard model. The problem can be largely solved by using Eq (40) instead of Eq (10), which

means that the electrical circuit is assumed to comprise a semi-inductive component. The

Fig 2. Exemplary impedance function. The real and the imaginary part of the impedance are shown as functions of frequency. The thick

grey curves in the background represent the measured data. The other curves represent various model fits. The shaker was in an upright

position, and the 250-g payload was used.

https://doi.org/10.1371/journal.pone.0174184.g002
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dashed curves in Fig 2 show that, with this extension, the model fits the data fairly well in the

frequency range considered. [The values estimated for L, L2, and ωsemi are -61 μH, 414 μH, and

1.77 kHz, respectively. The other parameter values roughly correspond to the standard model.

Taken by itself, the negative value of the inductance L makes no sense. But the apparent incon-

sistency dissolves once the terms ioL and Zsemi in Eq (40) are combined: The overall induc-

tance in the low-frequency limit is L + L2 � 353 μH.] Nevertheless, considering the fact that

this study focuses on the mechanical properties of the shaker, which affect the electrical imped-

ance mainly at lower frequencies, the assumption of a semi-inductor represents a complication

that is better avoided. All the following analyses are therefore confined to frequencies below

200 Hz.

Impedance curves for different payloads

Fig 3 illustrates how varying the payload attached to the table alters the impedance curves. The

shaker was again in an upright position. As expected (cf. Eq (16)), the resonance frequency is

the lower, the higher the payload is: Without payload, the resonance frequency is 106.5 Hz,

whereas with the highest payload (1.073 kg) a resonance frequency of 20.45 Hz is observed.

Another striking finding is that the contribution of the mechanical part of the shaker to the

overall electrical impedance decreases with increasing payload. Eq (31) suggests that this effect

is caused by an increase of the damping coefficient bt (assuming that the parameter ki is basi-

cally constant). Considering the simplicity of the model, the fit between data and model is

satisfying.

Estimation of the mass of the table

In the theoretical part of this work it is generally assumed that the combined mass of table and

payload is known. Thus, in order to apply the equations derived, first of all the mass of the

table itself, mT, has to be estimated. Eq (29) is particularly suited for this purpose, because this

equation predicts a linear relationship between the payload, mP, and the squared reciprocal of

the resonance frequency, o�2
t . Fig 4a shows experimental data for three different spatial orien-

tations of the shaker: upright, horizontal, and upside-down. The maximum payload in these

experiments was 25.3 g (slightly larger than the expected mass of the table). The spatial orienta-

tion of the shaker turned out to be a decisive factor so that the analysis had to be done sepa-

rately for each condition. All in all, the data confirm the expectation that o�2
t (represented by

the ordinate) is a linear function of the payload (represented by the abscissa). By fitting a

straight line to the data (Matlab routine POLYFIT) it was possible to determine the parameters

mT and kt. The estimates obtained for mT are 17.5 g (upright), 14.0 g (horizonzal), and 12.2 g

(upside-down). The corresponding estimates for kt are 7.81 N/mm, 5.91 N/mm, and

4.80 N/mm, respectively.

Model parameters: Influence of moving mass and spatial orientation

Having estimated the mass of the table, the combined mass of table and payload (mt = mT +

mP), which will be referred to as the moving mass, can be used as the independent variable.

Fig 3 already led to the conclusion that the damping coefficient bt increases with increasing

payload. In the detailed analysis presented now, all shaker parameters are examined for a pos-

sible dependence on the moving mass. Besides, it is investigated to what extent the spatial ori-

entation of the shaker matters.

Fig 4b illustrates how the moving mass affects the resonance frequency (from now on mea-

sured in Hz rather than rad/s). Both axes are logarithmic, and since Eq (16) predicts a linear

relationship between the logarithm of the moving mass and the logarithm of the resonance
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frequency, the data points should scatter around a straight line. This is indeed the case, as long

as the moving mass does not exceed a certain limit. While this limit is around 100 g for the

upright and the horizontal condition, the limit appears to be as low as 40 g for the upside-

down condition. All in all, the horizontal condition shows the smallest deviation from

Fig 3. Family of impedance curves. The curves are displayed in basically the same way as the exemplary curves in Fig 2. The payload

was systematically varied between 0 and 1.073 kg.

https://doi.org/10.1371/journal.pone.0174184.g003
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Fig 4. Parameter estimation. (a) Estimation of the mass of the table, mT. The data obtained for small payloads

confirms the theoretical prediction that the squared reciprocal of the resonance frequency, o�2
t , is a linear function of

the payload, with an intercept corresponding to −mT. What was unanticipated is the substantial discrepancy between

the results for the three spatial orientations of the shaker (upright, horizontal, and upside-down). (b) Resonance

frequency as a function of the moving mass. (c) Spring constant as a function of the moving mass.

https://doi.org/10.1371/journal.pone.0174184.g004
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linearity. The solid lines show the resonance frequencies that would be obtained if the parame-

ter kt were constant (the value of kt was estimated from the data in Fig 4a).

A different view on the same data is obtained by converting the estimated resonance fre-

quency into the spring constant kt (using Eq (16)), which, in essence, characterizes the stiffness

of the link between table and body. The results are displayed in Fig 4c. For comparison, the

horizontal lines indicate the values that were estimated from the data in Fig 4a. The stiffness in

the upright condition is, over the whole mass range, higher than the stiffness in the upside-

down condition. When the moving mass increases above 200 g, the stiffness substantially

increases in both cases. In the horizontal condition, by contrast, the stiffness is relatively

constant.

Fig 5a shows the damping ratio, zt, as a function of the moving mass. As long as the moving

mass is small (up to about 40 g), the damping ratio is roughly the same for the three spatial ori-

entations. With increasing mass, however, the decrease of the damping ratio is less pro-

nounced for the horizontal condition. Using Eq (24), the damping ratio can be converted into

the damping coefficient, bt. The result is shown in Fig 5b. Unless the moving mass is small, the

estimated damping coefficients are roughly the same for the upright and the horizontal condi-

tion. This is interesting in so far as the horizontal condition clearly differs from the other two

conditions with respect to the damping ratio. The explanation can be found in Eq (24): The

special position of the horizontal condition with respect to the damping ratio can be ascribed

to the spring constant kt (cf. Fig 4c).

The remaining model parameters are considered in Fig 6. The electrical resistance, R,

shows no obvious dependence on the moving mass or the spatial orientation of the shaker

(Fig 6a). The inductance L is difficult to determine from the given data, because the contribu-

tion of the term ioL to the overall electrical impedance is almost negligibly in the frequency

range used for the fit. Thus, the estimates for L (Fig 6b) have to be interpreted with caution.

Most reliable are the estimates obtained for a large moving mass: The larger the moving mass,

the smaller is the resonance frequency, and the greater is the relative significance of the term

ioL at frequencies much higher than the resonance frequency (for which the contribution of

Zm is small). Applying this thought to the results for the upright and the horizontal condition

leads to the conclusion that L is about 250 μH. The deviant results for the upside-down condi-

tion are unclear at this point.

By means of Eq (27), the estimates obtaned for ~k2
i can be converted into estimates for ki.

The latter are shown in Fig 6c. All in all, the data suggest that ki is about 3.5 N/A. The seeming

dependence on the moving mass and the orientation of the shaker should not be overrated.

First, the deviations from the mean appear more distinct than they really are (note the scale on

the ordinate). Second, the estimation of ki partially interferes with the estimation of other

parameters. The latter argument is corroborated by Fig 6d, which shows max (|Zm|) as a func-

tion of the moving mass. The data displayed in that panel is calculated from the estimates for

ki and bt (using Eq (31)). Part of the variability found in the plots for these two parameters

(cf. Figs 5b and 6c) evidently cancelled out when calculating max (|Zm|).

Level dependence

If the shaker were a linear system, the electrical impedance would not depend on the input

voltage. To see how well this applies, an exemplary experiment was done: The shaker was in an

upright position, and the 500-g payload was used. The input voltage was varied, in steps of

10 dB, between -20 dB and +10 dB, where 0 dB (the default level in this study) corresponds to

a maximum power-amplifier output of 1 V. The grey curves in Fig 7 represent the measured

impedance (real and imaginary part displayed in separate panels), whereas the black curves
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Fig 5. Parameter estimation (continued). Damping ratio (a) and damping coefficient (b) as functions of the moving mass.

https://doi.org/10.1371/journal.pone.0174184.g005
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Fig 6. Parameter estimation (continued). Resistance R (a), inductance L (b), parameter ki (c), and max (|Zm|) (d) as

functions of the moving mass.

https://doi.org/10.1371/journal.pone.0174184.g006
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represent the model fit. At the three lowest levels, data and model agree reasonably well. More-

over, the shapes of the curves are similar, as are the estimated resonance frequencies (26.98 Hz,

26.47 Hz, and 25.42 Hz, respectively). However, the situation at +10 dB is a different one. Most

notably, model and data fundamentally differ. As a consequence, the estimated resonance fre-

quency (22.37 Hz) considerably deviates from the frequencies at which the the real part of the

Fig 7. Level dependence of the electrical impedance. The real part of the impedance is considered in the upper panel, the

imaginary part in the bottom panel. Grey curves represent the measured impedance, and black curves represent the model fit.

The level was varied in steps of 10 dB between -20 dB and +10 dB, where 0 dB correspond to Ei = 1 V. The dotted vertical lines

indicate the estimated resonance frequencies. The 500-g payload was used in this exemplary experiment.

https://doi.org/10.1371/journal.pone.0174184.g007
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measured impedance has a maximum or the imaginary part is zero. This leads to the conclu-

sion that the performance of the shaker becomes increasingly nonlinear when the level

approaches +10 dB.

Hand-held shaker

In the experiments analysed so far, the shaker was firmly mounted on a solid foundation. With

respect to the application that motivated this study (measurement of VEMPs), the question

arises as to what extent the dynamical properties of a hand-held shaker differ. The exemplary

experiment considered in Fig 8 gives a first answer. The rows of the figure correspond to the

three spatial orientations that were investigated. The real part of the impedance is shown on

the left and the imaginary part on the right. The black curves represent the impedance of the

hand-held shaker, whereas the gray curves represent the corresponding reference conditions

(shaker mounted on the foundation). Four different payloads were investigated: 43 g, 243 g,

487 g, and 1073 g. The results for the upright and the horizontal condition agree in that the

hand-held shaker and the mounted shaker have roughly the same resonance frequency in the

case of the lowest payload, and that in the other three cases the resonance frequency of the

hand-held shaker is significantly higher than that of the mounted shaker. The upside-down

condition concurs as to the latter aspect, but for the lowest payload it is now the mounted

shaker which shows the highest resonance frequency. A finding common to the upright and

the upside-down condition is that the impedance curves of the hand-held shaker show, for the

three highest payloads, peaks with reduced amplitudes.

Exemplary accelerometer measurements

After having estimated the model parameters from the measured impedances, the model can

be used to make predictions as to the displacement, the velocity, and the acceleration of the

moving element of the shaker. These quantities can, of course, be measured also directly, and a

comparison between prediction and direct measurement offers the opportunity to check the

consistency of the model. An exemplary comparison is provided in Fig 9. An accelerometer

was clamped into a miniature vice that was attached to the table of the shaker, and this con-

struct then served as the payload (yielding a moving mass of about 118 g). The shaker was in

an upright position. The solid curves in Fig 9a show the real part (“Re”) and the imaginary part

(“Im”) of the measured acceleration as functions of frequency. The dotted curves represent the

corresponding model predictions. The latter are based on Eq (14), with I calculated from Eq

(13). Model prediction and data are in good agreement up to about 150 Hz. At higher frequen-

cies, the measured acceleration shows several resonances, which are presumably due to vibra-

tions of structural elements of the miniature vice. For the sake of completeness, the figure also

shows the absolute value of the measured acceleration (dashed curve). The vertical grey line

represents the resonance frequency estimated from the measured impedances (43.9 Hz).

Dividing the complex amplitude of the acceleration by io and −ω2, respectively, yields the

complex amplitudes of velocity and displacement. Fig 9b corresponds to Fig 9a, except that the

velocity rather than the acceleration is considered. All in all, the curves derived from the mea-

sured accelerations are in good agreement with those derived from the model, particularly

since the resonances at higher frequencies are not so conspicuous anymore. The correspond-

ing curves for the displacement are shown in Fig 9c. For frequencies higher than about 30 Hz,

the curves derived from the measured accelerations are again consistent with the correspond-

ing model predictions. However, discrepancies can be noticed at low frequencies. A conspicu-

ous, but unproblematic finding is that the displacement derived from the measured

acceleration appears rather noisy at the lowest frequencies. This is caused by the fact that the

What the electrical impedance can tell about the intrinsic properties of an electrodynamic shaker

PLOS ONE | https://doi.org/10.1371/journal.pone.0174184 March 22, 2017 21 / 32

https://doi.org/10.1371/journal.pone.0174184


Fig 8. Electrical impedance of a hand-held shaker. Three different spatial orientations are considered:

upright (top), horizontal (middle), and upside-down (bottom). The real part of the impedance is considered in

the left column, the imaginary part in the right column. The black curves represent the hand-held shaker,

whereas the grey curves show, for comparison, the corresponding results for the shaker firmly mounted on a

solid foundation. Payloads between 43 g and 1073 g were investigated.

https://doi.org/10.1371/journal.pone.0174184.g008
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Fig 9. Comparison between model prediction and direct measurement with an accelerometer. The

shaker was in an upright position, and the moving mass was 118 g. (a) The real and the imaginary part of the

measured acceleration are represented by the solid curves, whereas the magnitude is represented by the

dashed curve. The dotted curves show the model predictions for the real and the imaginary part. (b) Velocity

calculated from curves in (a). (c) Displacement calculated from curves in (a). The additional grey curve shows

an alternative model prediction of the magnitude of the displacement: The current actually measured rather
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calculation of the displacement involves a division by the squared frequency, which dramati-

cally increases the noise level for the lowest frequencies. More serious is another discrepancy:

While the model predicts a basically constant displacement at low frequencies, the displace-

ment derived from the measured acceleration (see the dashed curve) shows a decreasing mag-

nitude with decreasing frequency, particularly for frequencies below 3 Hz. But a significant

deviation from the model prediction can already be seen around 10 Hz: The displacement

derived from the measured acceleration shows an increasing imaginary part, whereas accord-

ing to the model, the imaginary part should become zero in the low-frequency limit.

The explanation for these discrepancies is that the model does not account for the fre-

quency characteristics of the power amplifier. Indeed, according to the manufacturer’s specifi-

cations, the lower 0.5-dB frequency of the amplifier is 10 Hz, and the lower 3-dB frequency is 4

Hz. To corroborate the argument that the observed discrepancies are caused by technical limi-

tations of the power amplifier rather than a deficiency of the shaker model, the displacement

Xt was calculated in an alternative way. The calculation was again based on Eq (14), but instead

of calculating the current using the model, the current actually measured was used. The idea

was that limitations of the power amplifier would be accounted for by this means. The results

basically confirm this hypothesis: The magnitude of the predicted displacement (grey curve)

is, indeed, roughly consistent with the magnitude of the displacement calculated from the mea-

sured accelerations (dashed curve). Considering the fact that the investigated frequencies are

well within the operating range of the accelerometer (having a low-frequency limit of 0.3 Hz),

it may be presumed that the remaining discrepancies are mainly caused by limitations of the

current monitor built into the Brüel & Kjær power amplifier (type 2718): At low frequencies,

the signal provided by this monitor may not accurately reflect the true current.

To better visualize the accelerations measured at low frequencies, Fig 9d shows the magni-

tude of the acceleration on a logarithmic scale. Moreover, grey lines represent the low-

frequency approximation given in Eq (38) and the high-frequency approximation given in

Eq (39), respectively. These approximations offer a simple way to estimate the constant c
defined in Eq (33), provided that either kt or mt is known. In the present case, such estimations

are, of course, not required anymore, because, using the parameter values estimated before,

c can be determined directly from Eq (33). After rounding to one decimal place (R = 3.5 O,

ki = 3.5 N/A), we get c = 1 N/V. Thus, according to the high-frequency approximation given in

Eq (39), an amplifier input of 10 V results in a force of 10 N. The latter value corresponds

exactly to the the sine-peak force rating in the manufacturer’s specification.

Static displacement of the table of the shaker

In a first experiment, which was done with the shaker in an upright position, the distance

between the bottom of the shaker and the upper surface of the table was measured for different

static loads. A measurement without load served as reference. The curve in Fig 10a shows the

displacement of the table as a function of the load. Dividing the weight force by the resulting

displacement yields an estimate of the spring constant, which is represented by the curve in

Fig 10b. Under the static conditions investigated here, the spring constant shows, at most, a

minor increase with increasing load.

than the predicted current was used in this calculation. (d) Magnitude of the acceleration plotted using

logarithmic scales for both axes. The solid black curve represents the measured data, and the dotted curve

shows the model prediction. The vertical grey line represents the resonance frequency estimated from the

measured impedances (43.9 Hz). The other grey lines represent a low-frequency approximation (Eq (38)) and

a high-frequency approximation (Eq (39)).

https://doi.org/10.1371/journal.pone.0174184.g009
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Fig 10. Measurements of static displacements. (a) Static displacement as a function of the static load. (b) Spring constants

estimated from static displacements.

https://doi.org/10.1371/journal.pone.0174184.g010
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In a second experiment, the distance between the bottom of the shaker and the upper sur-

face of the static load was measured for the upright, the horizontal, and the upside-down con-

dition. The horizontal condition then served as reference for calculating the displacement

caused by the load. Two different loads (0.487 and 1.073 kg) were used in this experiment. The

results of this second experiment are also visualized in Fig 10, although slightly shifted along

the horizontal axis, to avoid overlapping with the results of the first experiment. The style of

the error bars (indicating ± one standard deviation) allows for distinguishing the different con-

ditions (see inset of Fig 10a). The results for the upright condition are roughly consistent with

those of the first experiment. What is remarkable, however, is that the spring constants calcu-

lated for the upside-down condition are considerably smaller than those obtained for the

upright condition.

Discussion

Model

The theoretical part of this article is based on the work of Doebelin [11], who investigated

driven harmonic motion for a simple shaker model. He already provided a formula relating

the table displacement Xt to the voltage Ei (see Eq 10.5 on page 417 of his book), but that for-

mula is rather complicated, difficult to verify (the author himself characterized his algebraic

reduction as “tedious and error-prone”), and inconvenient for further analytical consider-

ations. Moreover, the solution is incomplete because formulas for the other two unknowns in

the model (the current, I, and the displacement of the coil, Xc) are missing. The model investi-

gated here is a slightly extended version of the Doebelin model in so far as the body of the

shaker is allowed to move relatively to the foundation (in the terminology of the present article,

the original Doebelin model corresponds to the limit kb!1, for which Eq (6) yields

1=�rtb ¼ 0). The experimental data analysed by Doebelin clearly show a resonance associated

with the coupling between coil and table. With the parameter values he published, a resonance

frequency of 3375 Hz is estimated using Eq (16). However, the Brüel & Kjær mini-shaker

investigated in the present study does not have such a resonance in the frequency range inves-

tigated. The model could therefore be simplifed by assuming that coil and table are rigidly

attached to one another.

Shaker as a velocity sensor

In principle, the basic properties of a shaker could be easily determined by means of the

“pluck” test suggested by Lang [12]: The cable which normally connects the shaker to the

power amplifier is plugged into a device capable of monitoring the coil voltage, and using this

setup the response to an abrupt release of the table of the shaker (held under pressure up to

that time) is investigated. The induced voltage is proportional to the speed of motion, which

means that the shaker can serve as a velocity sensor (cf. Eq (4) with i = 0 and di/dt = 0). By

“plucking” the table of the shaker, a sine wave with an exponentially decaying envelope is elic-

ited. Two “pluck” tests, one performed without a payload and another one with a known pay-

load, are theoretically sufficient to characterize the mechanical properties of a simple shaker

[12]. But because developing standardized experimental testing procedures deemed difficult,

this approach was not pursued here. Instead, the electrical impedance was measured while the

power amplifier drove the shaker at various frequencies. Although this procedure appears to

have little in common with the “pluck” test, the two methods are related from a theoretical

point of view: The velocity-dependent term in Eq (4), on which the “pluck” test is founded, is

associated with Zm in Eq (10), being of pivotal interest in the present study. Thus, Zm can be

understood as a signature of the “velocity sensor” inherent in the shaker.
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Parameter estimation from experimental data

The experimental investigations aimed to find out how the basic properties of the shaker are

affected by external circumstances, particularly by the payload attached to the table and the

spatial orientation of the shaker. Unless the stimulation level was too high (as was the case for

the 10-dB condition in Fig 7), the model reasonably explained the data for each experimental

condition. This proves the adequacy of the model and ensures that the estimated model

parameters have a meaningful interpretation.

The dependence of the estimated parameters on external factors turned out to be more

complicated than originally anticipated, and without knowing constructional details of the

shaker it appears to be impossible to give comprehensive explanations for the observed effects.

Generally speaking, one has to bear in mind that a real shaker is a much more sophisticated

device than the simple model suggests. While there is only a single spring and a single damper

in the model, the corresponding structures in the real shaker are spatially distributed and pre-

sumably consist of multiple components. Moreover, the assumption that the vibration is

strictly confined to a single axis is certainly an idealization. If external conditions have some

influence on how the structural elements of the real shaker are positioned relative to each

other (which appears to be a realistic assumption), the way these elements interact is affected,

and the resulting modifications of the overall properties of the shaker are finally seen in the

model parameters estimated from the measured impedances.

After these general remarks, the individual model parameters are briefly discussed one after

the other. The spring constant kt (Fig 4c) does not depend on the moving mass as long as the

latter is small. But, by all means, the spatial orientation of the shaker matters. A plausible expla-

nation for the latter finding is that the suspension of the table of the shaker differs for different

spatial orientations. Another finding is that kt increases when the moving mass exceeds a cer-

tain limit, although only for the upright and the upside-down condition. This observation can

probably be attributed to the fact that the equilibrium position of the table depends on the pay-

load unless the shaker axis is horizontally oriented. The data can then be interpreted to the

effect that the suspension of the table exhibits a higher stiffness once a heavy payload shifted

the equilibrium position towards the largest possible displacement. These results differ from

those derived from the static displacement (Fig 10b): A pronounced dependence on the static

load is missing in the latter case. But the estimated spring constants have at least the same

order of magnitude. Moreover, the dynamic and static measurements consistently led to the

conclusion that the stiffness for the upright orientation is substantially greater than the stiff-

ness for the upside-down orientation.

The damping coefficient bt likewise depends on both the moving mass and the spatial ori-

entation of the shaker (Fig 5b), although it is difficult to find a conclusive and unambiguous

interpretation for the observed dependencies. A possible reason for this difficulty is that part

of the observed damping could have origins that one would not presume in the first place. A

conceivable damping mechanism is, for example, that the air within the shaker is forced to

expand and compress as the table and the coil move, which would cause a loss of heat energy

with each compression/expansion cycle [12]. Another mechanism could be friction. While the

damping incorporated into the model is associated with a force that is proportional to the

velocity of the moving object, friction is associated with a constant force. In classical friction

experiments, this force is proportional to the weight of the moving object. Thus, the assump-

tion of friction could help to explain why the estimated damping coefficient generally increases

with increasing moving mass. Although it would be relatively easy to implement friction in the

differential Eqs (1) to (3), such a modification of the model would enormously complicate the
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conisderation of driven harmonic motion. The much simpler case of an oscillator damped by

a constant-magnitude friction force was considered by Marchewka et al. [27].

A noteworthy point is that the spatial orientation of the shaker has, for a small moving

mass, almost no influence on the damping ratio (Fig 5a). Thus, from Eq (24) it can be con-

cluded that the considerable influence on the damping coefficient is essentially due to the

dependence of the spring constant kt on the spatial orientation.

As one would expect, the electrical resistance, R, is basically independent of the moving

mass and the spatial orientation of the shaker (Fig 6a). To what extend this also holds for the

inductance L (Fig 6b) is, for methodological reasons that were explained when describing the

results, difficult to decide. Methodological issues probably affected also the estimates obtained

for the parameter ki. But this does not exclude the possibility that part of the observed variabil-

ity reflects real effects: By influencing the position of the coil with respect to the permanent

magnet, the spatial orientation of the shaker and the mass attached to its table perhaps affected

the force developed by the shaker for a given current.

Nonlinearity

Nonlinearity was not a central issue in this study. Nevertheless, an exemplary investigation of

the level dependence of the electrical impedance revealed some nonlinear effects (Fig 7).

Most conspicuous is the decrease of the resonance frequency with increasing level. At low

levels the effect is small: The resonance frequencies at -20 dB and 0 dB differ by only about

1.5 Hz. But increasing the level from 0 dB to 10 dB lowers the resonance frequency by about

3 Hz. Probably more important is that the model cannot reasonably explain the 10-dB data.

The presumed reason is that, during certain phases of the harmonic motion, the displace-

ment of the table approached hard limits set by the design of the shaker: The maximum dis-

placement according to the manufacturer’s specifications is 2 mm. [More precisely, the

maximum peak-to-peak displacement is 4 mm. If the sign of the displacement did not matter,

this specification could be interpreted as meaning that the maximum displacement from a

suitably defined baseline (e.g, the equilibrium position when there is no payload) is ±2 mm.

However, considering the fact that the estimated spring constant significantly differs for the

upright and the upside-down condition, this interpretation of the peak-to-peak displacement

may be too simple.] This displacement limit would have been exceeded also in the experi-

ment considered in Fig 9c if the level had been 20 dB higher, because, in a linear approxima-

tion, such a level increase leads to a tenfold increase of the displacement. It should be noted,

however, that the risk of overdriving the shaker is confined mainly to the vicinity of the reso-

nance frequency.

Unless the shaker is horizontally oriented, a payload inevitably causes a static displace-

ment. For the harmonic motion of the table this implies a shifted equilibrium position,

which entails that the maximum possible displacement from the equilibrium position is

reduced in the direction of the shift. From Fig 10a it can be concluded that in the case of the

experiment considered in Fig 7 (shaker upright, payload of 0.487 kg) the equilibrium posi-

tion was shifted by about 0.7 mm. As 1.3 mm displacement still remain for the driven

motion, such a shift should be unproblematic in practice (unless the shaker is driven at fre-

quencies near the resonance frequency). But much larger shifts of the equilibrium position

are to be expected in typical VEMP experiments, in which the shaker is pressed against the

test person’s head with a force of 10–20 N [2, 3]. For the upper limit of this range, Fig 10a

predicts a shift of more than 2 mm so that pronounced nonlinear effects are to be expected

for the driven motion of the table.
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Peculiarities of a hand-held shaker

The comparison between a hand-held shaker and a shaker firmly mounted on a solid founda-

tion (Fig 8) revealed considerable differences. The example demonstrates, in particular, that

the resonance frequency of the moving element of the shaker changes as soon as the body of

the shaker is hold in the hand of an investigator. Quantitative modeling of the data obtained

for the hand-held shaker is clearly beyond the scope of this study. But Eq (22) provides at least

a qualitative explanation for the observation that the resonance frequency of a hand-held

shaker is generally higher than that of a solidly mounted shaker (the results for the lowest pay-

load represent an exception). For that purpose, the parameter mb is reinterpreted as the com-

bined mass of the body of the shaker and the hand of the investigator, whereas the spring

constant kb is used to characterize the coupling between the hand and the body of the investi-

gator (the latter representing the “foundation” now). As to the latter parameter, the exact value

does not matter as long as the table of the shaker has a resonance frequency (ωt) that is at least

an order of magnitude higher than (kb/mb)
1/2. Eq (22) correctly predicts that the relative dis-

crepancy between the resonance frequencies of the hand-held shaker and the firmly mounted

shaker increases with increasing mass mt.

Conclusions and perspectives

Although small electrodynamic shaker have gained significant importance for VEMP investi-

gations, their performance under typical measurement conditions, which greatly differ from

the conditions referred to in the manufacturer’s specifications, is largely unknown. This study

showed that the properties of an electrodynamic shaker can be determined without requiring

special sensors such as accelerometers or force gauges: In essence, the shaker itself can serve as

a vibration sensor, and the signature it leaves in the electrical impedance can be used to adjust

the parameters of a simple model. The theory developed in this article is quite general. Thus, it

is not only applicable to the special application that motivated the present study, but could be

useful also in other contexts.

The theoretical framework was successfully applied to experimental data obtained for a

Brüel & Kjær mini-shaker, which is the shaker generally used in VEMP studies. It turned out

that the properties of this shaker substantially depend on the experimental conditions. As to

the estimated model parameters, particularly the spring constant and the damping coefficient

are affected. With respect to VEMP measurements it can be assumed that the performance of a

shaker does not only dependent on its spatial orientation, but also on the force by which its

moving element is pressed against the test person’s head. If this force is too large, the table of

the shaker is statically displaced to such an extent that the maximum possible displacement is

reached even when there is no electrical input. The shaker response to an electrical input can

be expected to be fundamentally nonlinear under such circumstances. With that in mind, a

force of 20 N, which represents the upper bound of the present recommendation for VEMP

measurements [2, 3], could be a bit too high. The problem highlights, in any case, the desirabil-

ity of a proper standardization of VEMP measurements.

While this study was almost exclusively concerned with driven harmonic motion, the

shaker model is applicable to arbitrary electrical input signals, thus providing a means to

design an electrical input so that the mechanical stimulus provided by the shaker is optimal in

some sense. The idea to use a valid shaker model for tailoring the voltage ei such that the dis-

placement xt, the velocity _xt or the acceleration €xt has a desired waveform has already been

proposed by Doebelin [11]. Simulations of that kind would be based on Eqs (1) to (4). With

respect to VEMP measurements it would, of course, be preferable if the reaction of the test per-

son’s head to stimulation with the shaker could be simulated. Studies of bone conduction
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hearing [28, 29] showed that the head essentially behaves as a rigid body for low-frequency sti-

muli (e.g., a 200 Hz-tone), which means that the head basically moves as a whole without sig-

nificant deformation. Higher frequencies, by contrast, give rise to quite complicated vibration

patterns exhibiting numerous resonances and antiresonances [30–33]. While a detailed simu-

lation of the latter situation requires a sophisticated model [34], whole-head movements can

probably be described by relatively simple models. Thus, for a rough prediction of such move-

ments it may be sufficient to supplement Eqs (1) to (4) by just one or two other differential

equations.
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