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Summary: 

Proteoglycans and glycosaminoglycans and their degradative enzymes are involved in normal 

tissue homeostasis and cancer. Abnormal changes in their expression cause an imbalance between 

tissue homeostasis and cancer, resulting in changes in cell plasticity with an increase invasion, 

metastasis and dedifferentiation. These three processes are regulated by embryonic stem cell like 

gene signatures which contribute to the formation and maintenance of (cancer) stem cells (CSCs), 

or tumor initiating cells. The transmembrane heparan sulfate proteoglycan Syndecan-1, provides a 

structural framework for proper tissue organization in the intestinal tract, and acts as an important 

coreceptor for multiple signalling pathways. It is a substrate for heparanase (HPSE) the only 

mammalian enzyme capable of cleaving HS. Increased HPSE expression and reduced Sdc-1 

expression during progression of colon cancer is associated with increased invasion and metastasis, 

and poor patient survival. The aim of this thesis was to investigate whether expression of Sdc-1 

and HPSE influences cancer stem cell properties and invasiveness in colon cancer cell lines 

(Caco2 and HT29). Using an siRNA approach, we demonstrate that depletion of Sdc-1 increased 

the stem cell phenotype based on in vitro sphere-forming and flow cytometry-based assays (side 

population (SP), ALDH and CD133). Moreover, we observed an increase in matrigel invasiveness 

linked to EMT-induced conditions. Mechanistically, we observed an increase in integrin-induced 

actin remodeling via β1- integrin, focal adhesion kinase and Wnt signaling activities. The increase 

in SP, CD133 and colonospheres could be blocked using a FAK specific inhibitor. The impact of 

Sdc-1 depletion on the CSC phenotype was substantially enhanced by SP sorting and enrichment, 

where we also saw a relative increase in the number of colonies following irradiation, indicating 

that Sdc-1 depletion renders radioresistance to SP-enriched cells. Furthermore, our in vitro results 

correlated with xenograft experiments where we saw an increase in the tumor size in 

Sdc-1-depleted HT29 cells. To elucidate the interplay between Sdc-1 and HPSE, and the role of 

HPSE in colon cancer stemness, we applied both stable overexpression and transient knockdown 

methods (Caco2 and HT29 cells). Sdc-1 depletion regulated HPSE at the transcriptional level 

through an EGR1-FAK feedback signaling loop. Pharmacological HPSE inhibition caused a 

decrease in the invasion and SP levels in Sdc-1 depleted. Stable HPSE overexpression increased 

the SP, but, decreased colonosphere formation through the FAK and Wnt signaling axis. Taken 

together, our results report for the first time the dynamic interplay between Sdc-1 and HPSE in 

stemness-associated colon cancer properties via  signaling axis involving EGR1, pFAK and Wnt. 

These findings could form a conceptual framework for establishing novel therapeutic approaches 

to treat colon cancer. 
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1. Introduction 

    1.1 Cancer  

            The word cancer broadly describes a collection of diverse diseases. Cancer is accountable 

for a great number of morbidities and mortality around the world; hence it symbolizes a major 

health worry concern across the continents (http://globocan.iarc.fr). Several years of cancer 

research have led to advancement in cancer treatment. However, it is a challenging approach to 

prevent the tumor recurrences. At the cellular level, cancer initiation and progression is mainly 

characterized by uncontrolled cellular proliferation and self-renewal of cancer cells (“hallmarks of 

cancer”), which are under the control of a wide range of signaling networks (Hanahan D and 

Weinberg RA, 2000). According to the tumor growth properties two main types of cancer can be 

distinguished: Solid tumors (e.g. colon cancer - abnormal growths) and hematological cancers 

(leukaemia - abnormal increase of white blood cells). In January 2000, Douglas Hanahan and 

Robert Weinberg wrote a review on the “The Hallmarks of Cancer” which theorized six common 

characteristics to all types of cancer (Hanahan D and Weinberg RA, 2000). It includes the 

properties of sustaining proliferative signaling, evading growth suppressors, resisting cell death 

inducing angiogenesis, enabling replicative immortality and activating invasion and metastasis. In 

2011 they revised their concepts and introduced two additional concepts to understand the 

dimensions of cancer complexity - inexhaustible self-renewal (replicative) capacity- the notion of 

cancer stem cells and the reprogramming of energy metabolism. (Hanahan D and Weinberg RA, 

2011). During normal physiological conditions the human body maintains tissue homeostasis: cells 

proliferate, differentiate, migrate and react to signals for apoptosis. Under pathological conditions, 

cells are not responsive to development controls, induce oncogenic loads and finally lead to cancer 

initiation and progression. For the initial signals for tumourigenesis, a combination of several 

pathogenic events is required. For example, successful colon cells require a minimum of mutations 

in five genes in order to be come malignant (Cho and Vogelstein 1992). In recent years, a 

mountain of research by several scientists identified the low but unique, population of cells called 

‘Cancer stem cells’ or ‘Tumor initiating cells’, which are the main reasons for tumor recurrences 

and relapse (Blanpain, C et al., 2013). It is this subpopulation of cells which are in the focus of this 

thesis. 

 1.1.1 Colon cancer: 

Colon cancer is the third most commonly diagnosed cancer and one of the leading causes of cancer 

deaths in both men and women globally (Velde CJ et al., 2005; Kemeny N et al., 2010).                              
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Also known as colorectal cancer (rectal cancer or bowel cancer), colon cancer is the development of 

cancer by uncontrolled cell proliferation in the colon or rectum (large intestine). Two 

inflammation- driven diseases, crohn's disease and ulcerative colitis (inflammatory bowel disease) 

can enhance the risk of colorectal cancer (Lerner I et al., 2011). 

      During the last decades, due to technological advancement several drugs have been 

successfully targeting colon cancer, including Adrucil, Fluorouracil, Avastin (Bevacizumab), 

CAPOX (American Cancer Society: cancer Facts and Figures 2015). In addition, patients benefit 

from earlier diagnosis (American Cancer Society: cancer Facts and Figures 2015) But therapeutic 

targeting at the metastatic stage is often not completely successful due to the drug-associated 

toxicity and ultimately poor patient survival (Helling TS et al., 2014). Even though patients get 

better with therapies, after a certain time they succumb to the disease due to tumor relapse, which 

is hypothesized to be linked to the existence of cancer stem cells, as will be outlined below. 

         At the molecular level, accumulation of complex genetic and epigenetic landscapes in colon 

epithelial cells transforms into adenocarcinomas and then to invasive colorectal cancer (Baker AM 

et al., 2014).  Most colorectal cancer cases acquire mutations in the adenomatous polyposis coli 

(APC-tumor suppressor gene). In fact, it is observed that APC inactivation is an early event for 

initiation of colon cancer in ∼70–80% of colorectal adenomas and carcinomas (Kinzler & 

Vogelstein, 1996). This mutation regulates the multistep signaling pathways involved in tumor 

progression. Oncogenic loads- i.e. mutational inactivation of tumor-suppressor genes- APC, TP53, 

TGF-β and activation of oncogenes- RAS and BRAF, and Phosphatidylinositol 3-Kinase drives 

colorectal cancer. Signaling pathways like several growth factor pathways- epidermal growth 

factor receptor, vascular endothelial growth factor and activation of prostaglandin signaling and 

stem cell pathways- Wnt, BMP, Shh further regulate colon cancer malignancy. Mutations in cell 

cycle regulators- Cyclin E, FBXW7, CMYC and CDK8 control colon cancer tumour cell 

proliferation (Fearon ER, et al., 2010; D. Markowitz et al., 2011). 

 

1.2 Cancer Stem cells (CSCs) 

        Previously, cancer was considered as a homogenous mass of fast proliferating cells, which 

were therapeutically targeted by chemotherapy. Recent studies suggeste that tumor cells are 

heterogeneous (not all the cells in a tumor behave the same) due to the presence of stem cells, 

progenitors, and differentiated cells. This heterogeneity is present within the tumor at different 

regions (intra-tumor) and also among different tumors of same type (inter-tumor) (Morrison SJ et 

al., 2013). 
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      Several groups independently reported that cancer cells express ES (embryonic stem cells) 

cell-like signatures in many human cancers (Chen L et al., 2012). The current concept of the 

cancer stem cell model implies the theory of the famous surgeon Stephen Paget - the ‘Seed and 

Soil’ theory. (Fidler, I. J. et al., 2003). In the 19th century, the hypothesis of cancer including stem 

cells was first identified observing the histological closeness between fetal developing cells and 

teratocarcinoma (Récamier, J.C.A.et al., 1829). Again in 1971, it was reported that only a small set 

of myeloma cells was forming tumor colonies (Park, C.H. et al.,1971). Later in 1977, a paper came 

out describing the isolation of a stemcell-like population from epithelial tumors (Hamburger A. W 

et al., 1977). 

        Several independent cell tracing and lineage studies strongly support that malignancies 

associated with cancer originate from a small population of stem cell-like cells with increased 

tumor-seeding ability and chemo-radio resistance causing subsequent relapse after treatment 

(Blanpain, C et al., 2013; Chen J et al., 2012). Such cells are referred to as tumor initiating cells, 

cancer stem cells or tumor stem cells (Al-Hajj M et al., 2003).  

 

1.2.1 CSCs share the three important hallmarks of stem cells: 

 Self- renewal (long term renewal capacity) - the potential for long-term stable proliferation and 

differentiation to maintain a constant stem cell pool. 

 Differentiation (no renewal capacity) - the capability to develop into fully mature cells in a multi-

lineage differentiation process. 

 Homeostasis Homeostatic control-the capacity to balance between self-renewal and 

differentiation (Dalerba P et al., 2007; Clevers H et al., 2011) 

According to the current cancer stem cell hypothesis, several steps can trigger the tumor formation 

like mutation in stem cell, progenitor or even the differentiated cells has the capacity to de-

differentiate into cancer stem cell like population. 

 

  1.2.2   Five Key Characteristics of CSCs: 

1. Only a minor portion of cells in a given tumor has tumorigenic capacity when xenografted 

into mice. 

2. Cancer stem cells can be separated and characterized from tumor cells by sorting with 

specific cell surface markers. 

3. Tumors derived from CSCs contain both tumorigenic and non-tumorigenic cells. 

4. The cancer stem cell population can be constantly transplanted in several generations, 
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indicating that these cells have self-renewing strength. 

5. These CSCs are resistant to traditional therapies such as chemotherapy,  

radiotherapy, by virtue of several signaling networks and gene signatures.  

      Scientists claim that not all cancers follow the CSC concept because all cells are uniformly 

tumorigenic (Kelly PN et al., 2007; Sugihara E et al., 2013). Based on the concept of tumour 

heterogeneity in cancer cells, currently two models describe the tumour growth - stochastic clonal 

evolution models   (Reya T et al., 2011) and the cancer stem cell (CSC) hypothesis. Recently, two 

more models have been developed to understand the concept of heterogeneity of tumor cells in the 

context of given genetic or epigenetic changes (Blanpain C et al., 2013) (Figure 1). 

1) “Stochastic” model:  All tumor cells are equal and they form progenitor and differentiated 

cells.  

2) Cancer stem cell (CSC) model: Tumor growth is due to the presence of cells having long-

term self-renewal giving rise to progenitors (limited proliferation ability) and followed by 

differentiated cells. 

3) Clonal evolution in the “Stochastic” model: Due to accumulation of mutations in 

progenitor or differentiated cells.  

4) Clonal evolution in CSC model: Mutations in stem cell, progenitor cell or even the 

differentiated cells. 

 

. 

 

                   

Figure 1. A schematic representation of current cancer stem cell models. 



   
  

 5 

a) In the stochastic model of tumour growth, all tumour cells are equal and every cancer cell has a 

probability to self-renew or differentiate, defining tumor heterogenesity. b) In the cancer stem cell (CSC) 

model, only a minor proportion of cancer cells has the ability to form long term- self renewal and give rise 

to progenitors and eventually differentiate. c,d) In both models, distinct new somatic mutations can induce 

clonal diversity, which further enhances tumour heterogenesity. Figure adapted from Blanpain C et al., 

2013. 

 

1.2.3 Current approaches for isolating Cancer Stem Cells: 

a) Cell  Markers (surface antigens) 

      Based on the high expression of surface antigens several markers have been reported in both 

hematopoietic and solid tumors such as leukemia, (Singh, S. K et al., 2003), liver cancer  (Terasaki, 

M et al., 2003), and colon cancer (Gallinger, S et al., 2007; Pilozzi, E et al., 2007). Subsequently, 

in breast cancer, CD44 high and CD24 low cells are considered as a cancer stem cell population 

(Benito-Hernandez et al., 2003). In colon cancer, the combination of CD44+/CD166+/ESAhi 

assert as the tumorigenic population with tumor initiating properties (Pilozzi, E et al., 2007). 

Furthermore, CD133 is considered as one of the prominent markers for colon cancer (Ren F et al., 

2013).  

b) “Side-Population” Cells 

The cell population capable of ejecting dye from a specific batch of cells, detectable on a flow 

cytometer, is called the “side-population” (SP) cells. SP cells were first identified in hematopoietic 

stem cells by Goodell et al., (1996). Under normal conditions, these pumps (ABC transporter 

proteins) eliminate metabolic products, drugs and toxic compounds.  Likewise in cancer, due to 

the high expression of these pumps, they non-specifically efflux anticancer drugs. In this way 

these transporters have a higher protective function for drugs, making the tumor cells more 

chemoresistant. Based on the property of chemoresistance, these ABCG2-expressing cells are 

considered to be enriched in cancer stem cells (Dean M., et al 2005; Greve B et al., 2012). 

Technically, Hoechst 33342 is used a vital DNA dye to stain these side population cells (Y. W et 

al., 2006; Inoue, H. et al., 2006). 

c) Aldehyde Dehydrogenase 

One more approach to study the cancer stem cells is based on the high aldehyde dehydrogenase 
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(ALDH) activity, particularly ALDH1. ALDH oxidizes intracellular aldehydes to carboxylic acids, 

which are involved in retinoid metabolism (Labrecque, J, et al., 1993). These retinoids are of 

importance for the differentiation of pre-progenitor cells. Based on the ALDH1 activity in stem 

cells and progenitor cells they are considered as cancer stem cells (Labrecque J., et al. (2006). 

These ALDH positive cells are observed in various human cancers like breast, colorectal, liver, 

leukemia (Charafe-Jauffret, I. K. et al., 2007). The major disadvantage of the Side population and 

ALDH techniques is that they can’t be applied in tissue sections.  

d) Sphere Formation- direct functional assay 

Sphere formation assay is a simple assay to measure the strength of self-renewing capacity of 

cancer stem cells. It was first identified to check the sphere formation ability of neural stem cells 

(Weiss, S. et al 1992). This assay is mainly based on the peculiar property of stem cells to self-

renew to form spheres, followed by progenitor cell formation. This method is widely accepted for 

the characterization of CSC in various cancers- including colorectal and breast (Todaro, M., et al 

2005; Ponti, D., et al 2008). 

1.2.4 CSCs as targets for therapeutic applications 

            Currently, cancer is targeted by surgery, chemotherapy, radiation and immunotherapy. The 

vast majority of anticancer drugs available in the market target the bulk population of the tumor 

cells, mainly the differentiated cells (Pattabiraman DR et al., 2014). These drugs kill the tumor 

cells or mass but will not completely act on the cancer stem cells, resulting in tumor recurrence. 

Due to the advancement in the technology, presently chemotherapy treatments are successful in 

eradicating the leukemia and lymphoma, which could be because of the killing hematopoietic stem 

cell population ie., killing again CSCs. For instance, a stem-cell-related inhibitor that targets the 

Notch pathway is γ-secretase inhibitor. (Tsiftsoglou AS et al., 2009). The important and 

challenging question to target CSCs is to understand the ‘stem cell niche’. The balance between 

self-renewal, progenitor and differentiated cells tightly controls the homeostatic process. This 

process is under the control of several intrinsic and extrinsic regulators (matrix proteins and 

growth factors), called the tumor microenvironment also know as the ‘niche’ (Sneddon JB et al., 

2007). This niche keeps CSC in an undifferentiated state by activating specific signaling pathways. 

In brain tumors it was observed that the “vascular niche” harbours CSCs. (Yang ZJ et al., 2007). 

New combinational drugs/therapies may build a platform to kill the CSCs specifically without 

affecting the normal stem cells and not disrupting the regeneration of tissues. 
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1.2.5 Cancer stem cells and their link to induced pluripotent stem cells (iPS cells) 

 

         Understanding early developmental processes has become easier with the advancement in the 

iPSC technology. In 2006, the generation of induced pluripotent stem cells from mouse fibroblasts 

by retroviral transduction of Oct4, Sox2, Klf4 and c-myc has been reported (Yamanaka et al. 2006) 

- a revolutionary breakthrough that has sparked immense interest. Embryonic stem (ES) and 

induced pluripotent stem cells (iPSCs) have generated new interested in regenerative medicine 

applications.  Understanding the regulatory mechanisms involved in the maintenance of self-

renewal and pluripotency became also a very important area to understand the several diseases 

including cancer. Several human cancers express ES cell-like signatures (Ittai Ben-Porath et al., 

2010) As mentioned above, stem cells and cancer stem cells share similar properties like 

asymmetric division, self-renewal, unlimited fast proliferation, slow replication and more 

importantly common regulatory signaling mechanisms. Based on these parallel routes shared 

between stem cells and cancer stem cells it became a very promising approach to understand the 

normal stem cells in development and its link to cancer stem cells suggesting new possibilities for 

cancer therapy. For example, the transcription factor Myc, which is a well-studied oncogene, also 

facilitates reprogramming into induced pluripotent stem cells (Utikal J et al., 2009). These 

observations lead further hopes and theories to understand the bilateral connection between 

pluripotency and tumorigenesis. 

           Compelling evidence showed the iPSCs and cancer cells share common characteristics like 

high telomerase activity, fast progression through the cell cycle, signaling pathways like Wnt, 

Hedgehog, Notch, and functionally they are involved in self-renewal and unlimited proliferation 

(Ruiz i Altaba et al., 2011). Therefore, it is a very important approach to model carcinogenesis 

using non-malignant cells. From these iPSCs cell lines, directed differentiation may provide the 

platform to understand the early developmental processes or related phenotypes that contribute to 

cancer development. These studies also provide the biological parallels between induced 

pluripotency and oncogenesis.  More recently, several groups have reported the reprogramming of 

cancer cells into iPSCs (cancer iPSCs). These approaches will give very valuable information on 

reprogramming and oncogenic transformation. Further studies may pay an attention to understand 

the early developmental signals, experimental access to early stages of the disease and more 

importantly potential cancer inducing and repressing genes. (Chen L et al,, 2012; Kim J et al., 

2015). 
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1.2.6 Contribution of CSCs to invasive cell behaviour 

         Apart from unlimited proliferation, cancer invasion is one of the processes among the 10 

hallmarks of cancer which is most closely related to cancer related death (Hanahan D et al., 2011). 

The molecular engine involved in the invasion of colon tumours is a hetergenous process. Tissues 

are composed of epithelial cells and mescenhymal cells. Epithelial cells adhere and form cell-to-

cell contacts. In contrast, mesenchymal cells are capable of migrating (Chanmee T et al., 2014). A 

large proportion of tissues are filled with extracellular space, which is made up with complex of 

sugars and proteins of the extracellular matrix (ECM) (Yip et al., 2006; Ibrahim SA et al., 2014). 

          During the process of tumor invasion several complex molecular events are involved. 

Tumor cells mainly gain two important properties-cell proliferation and ability to migrate. In 

cancer, cell growth and proliferation are activated by altered regulation of signaling pathways, 

which are under the control of oncogenic load- tumor suppressor and proto-oncogenes. Tumor 

cells gain cell migration ability during the process of invasion. These two processes are under the 

control of ECM space which are filled with several components of adhesion molecules like 

heparan sulfate proteoglycans, laminin, collagen, fibronectin etc. (Frantz C et al., 2010) Adhesion 

molecules such as integrins and cadherins play a major role with their inside to outside signaling to 

sense the cancer cell response to tumor microenvironment (Frantz C et al., 2010). Furthermore, 

proteolytic enzymes and their inhibitors such as serine urokinase-type plasminogen activator and 

matrix metalloproteinases (MMPs), cysteine proteases (cathepsin), heparanase and TIMPs recede 

the extracellular layers. Strikingly, they are also involved in presenting growth factors, cytokinesis, 

chemokines to the other receptors through the process of paracrine signaling (Lamouille S et al., 

2014). These molecules are therefore directly or indirectly involved in several signaling pathways 

which in turn regulate cancer cell invasion. Deregulated expression of integrins and the release of 

several proteases remodel the ECM, favoring conditions for cancer cell invasion.  Cells form 

protrusions, cell –matrix interactions form focal contacts, and localization of proteases to the ECM 

promotes invasion and detachment of the cell from the ECM  (Friedl P et al., 2011). In the 

following section, we will highlight some mechanisms by which CSCs contribute to the 

invasiveness and metastatic behavior ot tumor cells. 
 

1.2.6.1 Epithelial to mesenchymal transition (EMT) 

            The process of invasion is also promoted by the adaptive trans-differentiation program 

called epithelial to mesenchymal transition (EMT), with a change in plasticity of cell- cell 

junctions. This process ultimately involves the invasion of cancer cells into the basement 

membrane in the neighboring microenvironment along the lymph and blood vascular systems, an 
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event that further contributes to the intra and extra-vasation of the tumor cells (Chambers AF et al., 

2002; Mani SA et al., 2008). This process is mainly initiated by the increase in the expression of 

Rac-dependent genes and promotes the cells to gain mobile mesenchymal cells. During the process 

of EMT, several upstream regulators like TGFβ, WNT, FGF, and EGF control the activation of 

transcriptional repressors- SNAIL1 and 2, TWIST and ZEB1, which inhibits the transcription of E-

cadherin (Kang Y et al., 2004: Burk U et al., 2008). 

For example, in colon cancer cells a serine protease, TMPRSS4, activates EMT associated with 

ZEB transcription and a decrease in E-cadherin expression (Jung H et al., 2008). Several upstream 

signals control this process. For example, the TGF-β targets integrin β4 and α6 (Jonathan M et al., 

2006) promote EMT conditions in colon cancer progression (Jonathan M et al.,2006). Furthermore, 

in colon cancer, activation of the PI3K/AKT pathway regulates the expression of Snail 1 (Wang et 

al., 2007a).  Deregulation of the Wnt pathway leads to loss of E-cadherin expression further 

inducing the EMT process in colon cancer (Brabletz et al., 2001). Finally, aregulatory cascade of 

microRNAs is also involved in EMT process by promoting transcription of genes promoting this 

process (Burk et al., 2008). Interestingly, colon cancer cells undergoing the EMT process are 

resistant to immune and chemotherapy (Yang et al., 2006b).  

       Recent evidence suggests that EMT confers to stem cell properties (Mani et al., 2008). This 

process of attaining stem cell properties was understood from initial studies using embryonic stem 

(ES) cells. When human ES cell clusters were grown on matrigel they gained the properties of 

EMT with a change in molecular switch from  E- to N-cadherin along with a gain in the expression 

of vimentin, metalloproteases, and Snail (Ullmann et al., 2007; Eastham et al., 2007). Interestingly, 

these cells also maintain the expression of Oct-4 and Nanog without losing their pluripotency. 

These expression profile and phenotypical studies revealed that ES cells could support a 

mesenchymal phenotype and also stem cell traits. The other interesting observation of 

mesenchymal cells controlling stem cells is made from reprogramming adult cells to gain the 

property of induced pluripotent stem cells. Skin fibroblasts acquired an undifferentiated 

mesenchymal phenotype when they were cultured with the removal of growth/differentiation 

factors. So, these cells remained in an EMT state with co-expressing mesodermal and endodermal 

markers (Lysy et al., 2007). These observations suggest that mesenchymal like stem cells, through 

the acquisition of a transient EMT conditions can regain pluripotency. So based on these studies, it 

is possible to consider normal stem cells and cancer stem cells to share a mesenchymal like cell 

state that may further regulate or preserve stemness. Upon transfection of untransformed 

immortalized human mammary epithelial cells with Snail1 and stimulation with TGFβ1, cells meet 

with EMT phenotype. When the cells are transformed by Ras, it regulated the population of 
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CD44high/CD24low stem cell-like cells with the induction of EMT phenotype (Morel et al., 2008; 

Mani et al., 2008), resulting in the formation of stem cells. So EMT contributes in the formation of 

high-grade invasive cells with stem cell-like signatures (Visvader JE et al., 2008). Cells that have 

undergone the EMT process are able to form spheroids and are high tumorigenic when they are 

xenografted at low dilution. Whether cancer stem cell in primary tumors drives EMT, or if it is 

during the process of EMT that these cells are originated is not yet completely understood 

(Brabletz T et al., 2005). 

 

1.2.6.2 Migrating CSCs 
               Several recent studies observed that tumor recurrence and remission is due to the 

presence of metastatic precursors - cancer stem cells (Shiozawa Y et al., 2013; Brabletz T et al., 

2012; Dieter et al., 2011). Metastasis is a process that spreads cancer from one part of the body 

(primary site) to other parts of the body (secondary site). Cancer cells exit from the primary tumor 

site, attains an EMT phenotype, travels to the blood stream or the lymph system and forms 

metastatic colonies in the secondary site of the tumor. This process is facilitated by CSCs. These 

cells having migratory properties and stem-cell-like features are called “mobile cancer stem cells” 

accordin to the `Migrating Cancer Stem Cell`(MCS)- concept. This process is strongly enhanced 

by EMT (Mani et al., 2008). It is also observed that circulating tumor cells (CTCs) link to CSC 

activity. During the process of metastasis, cells infiltrate the circulation and turn into circulating 

CSCs. These CTCs express stem cell markers (Aktas et al., 2009; Kasimir-Bauer et al., 2012). For 

example, CTCs obtained from colon cancer patients showed high CD133 positive cells (Hou et al., 

2012). It is also observed that tumor- or cancer-associated fibroblasts enhance the metastases 

through an EMT process associated with CSC-like state (Aktas et al., 2009; Gregory et al., 2008). 

These cancer stem signatures or mesenchymal stem cell-like phenotype further differentiate to 

epithelial-like cells at the secondary tumor mass.  Consequently, this process occurs through the 

transient de- differentiation (EMT)- to re-differentiation (MET). Mesenchymal to epithelial 

transition (MET) is an important driving force for the development of macrometastasis (Brabletz 

et al., 2001; Brabletz et al., 2005) (Figure 2). 
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Figure 2.  A schematic diagram of colon cancer malignancy – the concept of migrating cancer stem 

cells.

Normal stem cells are placed at a basal crypt region of the normal colon mucosa. Stationary cancer stem 

(SCS) cells are located in benign adenomas and can also be observable in carcinomas and metastases. A 

crucial step en route to malignancy is the promotion of epithelial to mesenchymal transition (EMT) of 

cancer cells, along with unique CSC-cells, that act as mobile, migrating cancer stem (MCS) cell. B) Precise 

perspective of the unique function of MCS cells in carcinomas and metastases. MCS undergoes asymmetric 

division in a primary tumour to form one daughter cell (non stem cell) and stem cell. Daugther cells 

programmed to proliferate and differentiae (a). This MCS or the new stem cells (cancer stem cells) increase 

the primary tumour mass (b), or ultimately diffuse through blood or lymphatic vessels and starts metastasis 

at the secondary location (c). Accordingly, the same mechanism involved in primary carcinomas and 

metastases. Picture adapted from Thomas Brabletz et al., 2005. 

1.2.6.3 De-Differentiation: 

         Cancer is associated with multiple levels of heterogeneity (one of the hallmarks of cancers). 

The concept of progression of differentiated cells to “dedifferentiated” cells with stem cell 

signatures in cancer was controversial for long period of time. However, recent studies show that 

this transition of differentiated cells to dedifferentiated cells has an important role in cancer stem 
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cell formation and tumorigenesis (Catherine A 2014; D Friedmann et al.,2014; Tata PR et al., 2013; 

A Jilkine et al., 2014). The exact mechanism that provides a detailed understanding of the process 

is not understood. It is stated that the capacity of differentiated cells/transit-amplifying cells to 

convert into CSCs occurs through the process of dedifferentiation by endogenously expressing 

pluripotent stem cell factors and their reprogramming networks. These processes are dynamically 

regulated by several factors like tumor microenvironment, epigenetic changes.  It was reported that 

the expression of reprogramming transcription factors in cancer cells induced the stem cell like 

features with an unknown dedifferentiation mechanism (Y Li et al., 2012). So if upon inducing 

pluripotency to cancer cells, transforms them into a stem-cell state, it is possible that in cancer 

cells pluripotency genes also have the capacity to transit from cancer cell/progenitor to cancer 

stem cells with the associated process of dedifferentiation. This process, as stated above, will 

facilitate metastatic spread (Figure 2). Moreover, this dynamic, bidirectional network between 

differentiated cancer cells and tumor-propagating CSCs has appreciable implications in developing 

cancer therapeutics (Scheel C et al., 2010) (Figure 3).  

                                 

 

Figure 3. A schematic representation of the dedifferentiation mechanism in cancer. 
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Cancer progenitor cells gain stem cell like population by a dedifferentiation process. Figure 3 emphasizes 

the possible functional networks of signal transduction pathways, transcriptional networks, 

microenvironmental signals, and the epigenetic landscape, that can promote the dedifferentiation of cancer 

progenitor cells into a CSC phenotype. The embryonic transcriptional factor network acts as a central 

activator of the dedifferentiation process. Picture adapted from Yunqing Li et al., 2012. 

1.2.7 Colon cancer stem cells 

     Colorectal cancer is one of the best-studied models to understand the characteristics of cancer 

stem cells among all solid tumors due to the presence of active stem cells at the crypt of intestine. 

The intestine is most widely studied organ in both development and also in malignancy (Barker N 

et al., 2008). The inner lining of the intestine is one of the most widely dividing tissues in the body. 

Intestinal stem cells (ISCs) develop greater than 1010 new cells every day in the human gut and it 

has the capacity to renew new cells every 5 days (Nick Barker et al., 2008). In the colon, stem cells 

and transit amplifying cells (TA) are located at the base of the epithelial crypts (Figure 4). Cells 

exit from the crypts, enter villi and differentiate into enterocytes, goblet cells, or enteroendocrine 

cells, whereas the paneth cells escape this process and move to the crypt at the bottom. 

      Many researchers identified that intestinal stem cells (ISCs) regulate the normal intestine 

development, maintain tissue homeostasis, avoid tissue damage and controls the tumor growth. In 

the colorectum, deregulation of the AKT/PKB, Wnt and/or bone morphogenic protein (BMP) 

signaling pathways disturbs intestinal stem cell self-renewal (Elsa N Garza-Treviño et al., 2015). 

This crosstalk is regulated by key signaling pathways including the Wnt, Hedgehog (HH) and 

bone morphogenic protein (BMP) pathways). These pathways directly or indirectly gauge the self-

renewal of intestinal stem cells. Disruption of these tumors by oncogenic load leads to tumor 

promotion and progression. With lineage tracing experiments (Barker N et al., 2007) it was shown 

that two important genes are involved in the homeostatic control between tissue development and 

cancer progression. One is the Wnt target gene Lgr5/GPR49, which is highly expressed in the 

crypt base columnar cells (CBCs) (Clevers H et al., 2014).  

       A single Lgr5+ stem cell can form a long-lived, self-renewing “short minimal- gut” (Toshiro 

Sato et al., 2009). The other interesting factor, Bmi1, which is known to be involved in the self-

renewal of neural stem cells and hematopoietic cells, is also highly expressed in the intestinal 

crypts (Sangiorgi E et al., 2008). Using lineage tracing technology in mouse models, it was clearly 

shown that homeostasis and malignancy of small intestine epithelium is controlled by Lgr5 and 

Bmi1, which are involved in the self-renewal, proliferation and give rise to all differentiated 
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lineages. Among both the genes the concepts and theories of Lgr5 apears most convincing and this 

set up that Lgr5 is the powerful stem cell marker for tracing the development of intestine. However, 

the exact link between the Bmi1 and Lgr5 needs to be answered. 

    Among all the available markers for colorectal cancer, CD133+ was the first marker to isolate 

and characterize the colon cancer stem cell properties (Ricci-Vitiani et al., 2007). Mushasi-1, a 

marker for neuronal stem cells is also proposed as a candidate marker for colon epithelial crypt 

cells (Okano H et al., 2002). A study also reported that a cell population characterized by the 

combined expression of CD133+ and Msi1+ has the highest metastatic ability compared to other 

marker combinations (Todaro, M et al., 2008). In addition to cell surface antigens/markers, high 

expression of ABCG2 and ALDH1 in colon cancer cells is considered as a well-established marker 

for detecting colon cancer stem cell population (Garza-Treviño EN et al., 2015). Colon cancer 

stem cell can generate in vitro undifferentiated colonospheres under serum-free conditions. In 

addition, several studies confirm the formation of tumors in NOD/SCID mice with implantation of 

a low percentage of colon cancer stem cells (Todaro, M et al., 2008).  All these strategies suggest 

that colon cancer is  a prime model to understand the concepts and theories of cancer stem cells. 

 

1.2.8 Colon cancer stem cells - Role of Wnt signaling  

        It has been shown that few colon cancer cells in the primary tumor can acquire the properties 

of cancer stem cells through the process of EMT, and more importantly this process promotes 

secondary tumor formation in the process of metastasis (Brabletz T, et al., 2005). Even though the 

environmental factors that trigger the re-differentiation of cancer stem cells to metastases at the 

secondary site is not completely understood, it was clearly observed that Wnt signaling activities 

are coordinately involved in EMT-driven metastases (Barker N et al., 2007). This key switch of 

the Wnt signaling pathway is regulated depending on the tumor stage, primary growth and 

metastasis. In colon cancer, hyperactive canonical WNT signaling is mainly involved in promoting 

tumor-initiating cells (tumor stemness) with complex oncogenic events (Arnaud Duquet et al, 

2014). A previous study showed that Wnt signaling acts as an antagonist in driving metastasis of 

colon cancer by coordinating the feedback regulation between Wnt and HH-GLI signaling, which 

further controls the expression levels of stemness associated genes SOX2, OCT4 and KLF4 in 

colon cancer (Ruiz i Altaba A. 2011). So rather than Wnt signaling, HH-Gli regulated stemness-

associated genes which could induce a reprogramming event in cancer stem cells that promotes 
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high invasion and metastasis. These observations also gave a platform to understand the activities 

of Wnt signaling and associated genes in regulation of the normal and malignant ISCs indicating 

the link between intestinal stem cell biology and cancer These findings showcase the mechanisms 

by which the tumor cells are restricted from metastasizing, which is very useful in light of 

developing therapeutic targets. 

                       

 
 

Figure 4. A schematic diagram of the human colonic crypt. (Left) The stem cell compartment is located 

at the base of the crypt. Transit-amplifying (TA) cells arise from this population and further differentiate 

into the enterocytes, goblet cells, or enteroendocrine cells (functional cells) of the colon. (Right) The 

common source of the colon CSC is not clearly understood. One particular transforming mutation (mutation 

that can transform completely) in a somatic intestinal stem cell could give rise to a CSC, whereas two 

mutations (one transforming and one de-differentiating) act as a positive selection force to drive the TA or 

differentiated colonic cell into a CSC. Figure adapted from Anderson E.C. et al., 2011. 
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1.3 Extracellular matrix dynamics 

          The extracellular matrix (ECM) and its associated components are involved in various 

functions in the normal cellular and tumor microenvironment. ECM remodeling is an important 

trigger for several cellular functions like branching, angiogenesis, morphogenesis and importantly 

ECM dynamics also involves in the regulation of stem cell niches. These dynamic changes involve 

changes in cell fate behavior through cell-cell contact and cell-ECM interactions (Daley et al., 

2008). 

Metalloproteinases (MMP) and disintegrins (ADAMTS) are the two important enzymes involved 

in the ECM remodeling targeting the glycoproteins and proteoglycans (Barter MJ et al., 2010). 

More importantly, the proteoglycan-associated enzymes like heparanase, involved in 

glycosaminoglycan (GAG) degradation, and GAG structural modification enzymes (SULF1 and 

SULF2) regulate the ECM dynamics that are under the tight homeostatic control of several 

signaling pathways (Ibrahim SA et al., 2014; Gomes AM et al., 2015). It is well appreciated that 

biophysical dialogue between ECM components plays multiple roles in the stem cell niches 

(Gattazzo F et al., 2014). This functional link is one of the reasons for the use of ECM receptors as 

surface markers for characterization of stem cells (Raymond et al., 2009). ECM receptors are in 

fact involved in several downstream signaling loops in turn regulating stem cell properties 

(Gattazzo F et al., 2014). Moreover, deletion of ECM receptor integrins inhibits the MYC levels 

decreasing the numbers of neural stem cells (Frye et al., 2003). One mode of how ECM molecules 

regulate stem cell niches is by the enhancement of signaling of FGF2, BMP4, and Wnt by heparan 

sulftate proteoglycans (Lanner F et al., 2010). Furthermore,  in neural stem cells, FGF2 and BMP4 

signaling is modulated by the expression levels of tenascin C (Garcion et al., 2004). 

 

 1.3.1 ECM dynamics in cancer progression 

        Mounting evidence suggests that ECM components and their degradative enzymes are 

associated with normal tissue homeostasis, while their dysregulation is associated with cancer (Lu 

P et al., 2011). For example, enhanced or decreased proteoglycan levels have a  prognostic value 

for breast cancer and colon cancer (Fujiya M et al., 2001; Yip GW et al. 2006). Expression of 

various ECM remodeling enzymes is misregulated in many human cancers. For example, 

Heparanase, MMPs, sulfatases, are highly expressed in many cancers, whereas some HS 

sulfotransferases are silenced (Ibrahim SA et al., 2014; Vijaya Kumar A et al., 2014; Gotte and 

Yip Cancer Res 2006; Yip GW et al. 2006).  Interestingly,  recent reports showed the regulation of 
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the “metastatic niche,” by the “cancer stem cell niche”, with abnormal changes in the ECM 

dynamics (Lu P et al., 2012; Filatova A et al., 2013). 

 

1.3.2 Integrin signaling 

          During 1980s, several interesting findings identified integrins as highly expressed receptor 

proteins in the ECM, attracting many scientists in the field of biology. Integrins are involved in 

cell-cell adhesion and cell-matrix contacts, in turn regulating several downstream signaling 

pathways through cytoskeleton interactions (Hynes RO et al., 2202). Admitting the importance of 

integrins as one of the major components in the ECM region, several non-integrin receptors also 

occupy this region. Interestingly, symbiotic association between integrins and surface receptors act 

cooperatively in t integrin-mediated cell adhesions (Xian X et al., 2011). 

Integrins are dimeric (heterodimers) transmembrane proteins consisting of α (alpha) and β (beta) 

subunits. In mammals, there are eighteen α and eight β subunits.  Integrins structurally have three 

conformations in major - inactive, active and ligand bound states (Alberts B et al., 2002) It is 

stated that inactive integrins have a bent – V shaped confirmation whereas, if the ligand is binding 

to the integrin it attains the straight conformation, ie., the plasma membrane is rearranged towards 

the integrin ligands (Gahmberg CG et al., 2009). Integrins are involved in both “outside-in” and 

“inside-out” signaling. During “inside-out signaling” cytoskeleton-associated proteins such as 

vinculin and talin binds to the β-subunit of integrins, increase the integrin affinity to bind to 

extracellular ligands, in turn regulating cell migration, invasion and also the cell adhesion process 

through ECM binding and assembly. Whereas in “outside-in” signaling, the ligand binds at the 

extracellular domain of the integrin clusters, and activates changes in the cytoskeleton and gene 

expression regulating several downstream pathways. This signaling network in turn regulates the 

cell polarity, survival, migration and proliferation (Mas-Moruno C. et al., 2010). The other 

interesting function of integrins is their interaction with growth factor receptors, thus mediating 

crosstalk regulating several signaling cascades and cellular responses (Morgan MR et al., 2007).  

  

1.3.3 Interplay between Integrins and focal adhesion kinase (FAK) 

        Integrins remodel the ECM and control three important phenomena at the cellular level - 

focal adhesions, podosomes and invadopodia. Focal contacts are activated by the clustering of 

integrins which have the capacity to drive the mechanical forces of the cell body through the focal 

adhesion kinase (FAK)/Src signaling complex (Schwartz MA et al., 2010). FAK is a non-receptor 
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tyrosine kinase that is activated upon integrin activation and promotes the complex network of 

signaling pathways important for cell survival, proliferation, migration and invasion 

(Golubovskaya VM et al., 2014). Recent reports showed the importance of FAK in the EMT 

process and also in the maintenance of cancer stem cell traits (Williams KE et al., 2015). The N-

terminal domain of FAK is called FAK the FERM domain, which has the function of preventing 

the activation of kinases. FAK is brought to the adhesion site through integrin and paxillin. Upon 

binding of the ligand to integrins, FAK is autophosphorylated at Tyr397 creating the affinity to 

bind to the SH2 domain of Src. This FAK/Src complex in turn phosphorylates and promotes the 

activation of several proteins further regulating the several signaling pathways and gene 

expression (Seong J et al., 2011). 

 

1.4 Heparan sulfate proteoglycans   

              Proteoglycans are composed of a core protein and a glycosaminoglycan (GAG) part, 

which are covalently attached to each other. Based on the composition of GAG, four main classes 

of GAGs exists: heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS) and keratan 

sulfate (KS). Heparan sulfate proteoglycans (HSPG) are principally decorated with heparan sulfate 

(HS) GAG chains, but may contain additional modifications, e.g. CS (Bernfield et al., 1999). 

HSPG are mainly found at the cell surface or in the extracellular matrix  Heparan sulfate is 

structurally closely related to heparin. They mainly differ in their disaccharide composition.  Both 

have alternating units of glucosamine (GLcN) with glucuronic acid (GLcA) or iduronic acid 

(IdoA). HS contains high proportion of glucurnonic acid, wheras heparin contains more iduronic 

acid, and  a higher degree of overall sulfation (Esko et al., 2002). HSPGs are major ECM 

components that interact with a plethora of ligands (Esko et al., 2009). Using several genetic 

models, it was shown that the composition of GAG and the expression of HSPGs control the 

cellular fate due to changes in the ECM dynamics (Kramer et al., 2003). An important feature of 

HSPGs is that they are involved in both embryonic development and in cancer, showing the 

possibilities to apply the principles and theories of development to understand the cancer 

progression.  

           According to the location, HPGSs are mainly three types: syndecans, (transmembrane 

proteoglycan), glypicans (glycosylphosphatidylinositol-anchored proteoglycans), agrin, perlecan, 

type XVIII collagen (extracellular matrix secreted HSPGs) and serglycin (secretory vesicle 

proteoglycan) (Bernfield et al. 1999). Membrane proteoglycans mainly act as a coreceptors for 
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growth factor receptors (e.g., fibroblast growth factors, FGFs) (Rapraeger et al. 1991), chemokines, 

cytokines, morphogens and several ECM ligands. Transmembrane proteoglycans coordinate with 

integrins and several ECM proteins (e.g., fibronectin) acting as cell adhesion receptors (Bernfield 

et al. 1999).  HSPG binds to chemokines and thereby regulate the leukocyte recruitment during 

inflammation (Wang et al. 2005, Vijaya Kumar et al. 2015). Glypicans are involved in morphogen 

gradient formation, which is an important signal for development (Jackson et al. 1997). The HS 

chain of HSPGs is cleaved by the enzyme-heparanase, whereas core proteins of some 

transmembrane HSPGs can be cleaved by matrix metalloproteinases (MMPs). For example, the 

extracellular domains of Syndecans can be shed by MMPs, and get transported along the ECM 

space and present HS bound growth factors to other receptors (Bernfield et al. 1999). With these 

functions they are involved in several cellular fates: cell proliferation, adhesion, migration, 

invasion, survival, matrix assembly, differentiation, endocytosis, inflammation, defense 

mechanism, angiogenesis and also in stem cell niche maintenance (Symes et al., 2010). 

       Depending on the tumor type and stage, HSPGs are deregulated in various cancers and indeed 

correlates with poor prognosis in several malignancies (Cattaruzza et al., 2008; Frankel et al., 

2008). Sonic Hedgehog (Shh) signaling - an extremely complex signaling pathway involved in 

embryonic development and in cancer is well established (Gupta S et al., 2010).. Recent evidence 

indicates that this pathway involves in a variety of cancer stem cell properties. For example, a few 

reports highlighted the importance of the proteoglycan interaction with Sonic Hedgehog in 

promoting human malignancies (Rosalind A Segal et al., 2009: Glise et al., 2005). In this context, 

the Cardin-Weintraub motif present in the N terminus of SHH ligand binds to heparan sulfate, 

triggers a specific transduction cascade, and regulates the transcriptional factor, Gli, thus driving 

continuous proliferation (Denis M et al., 2009). 

1.4.1 Heparan sulfate proteoglycans and the stem cell niche 

         Stem cell niches are very complex locations, which still need to be completely understood 

(Nurcombe and Cool 2007). A few reports showed the contribution of HSPGs in stem cell 

maintenance and differentiation: Using embryonic stem cells (ESCs), it was shown that HSPGs 

expression is involve in the self-renewal i.e., pluripotent state and also in the differentiation of 

committed cells to specific lineages through a promotion of Wnt, FGF and BMP signaling (Sato et 

al. 2004). One important observation was that the GAG composition and the HSPG expression 

levels were very crucial for the maintenance of self-renewal of pluripotent cells and also for 

differentiation to a specific cell fate (Johnson et al. 2007). By biochemistry-based studies, it was 
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shown that normal ESCs produce majorly around 80% of HS and a lesser percentage of 

chondroitin sulfate (CS). Strikingly, the level of CS was increased along with HS during ESC 

differentiation (Nairn et al., 2007). During the transition of ESCs from an undifferentiated to a 

committed cell type the level of HS sulfation was increased (Hirano et al., 2012). The level of 

ECM components is very important during embryoid body (EB) formation. For example, during 

the differentiation of mesoderm lineage, particularly cardiac lineage high expression of fibronectin 

is important. GAG expressed during the EB formation binds to ECM molecules and regulates 

lineage specificity (Shukla et al., 2010).  For example, there was a strong increase in the 

expression of the HS biosynthetic enzymes Ndst-4, 3-HSst-3a, and 3-HSst-5 (highly expressed in 

brain tissues) during the transition of undifferentiated ESCs into a Sox1+ neural differentiated 

cells (Johnson et al., 2007). From ex vivo studies, it was observed that mouse embryonic stem 

cells carrying mutations in HS biosynthetic genes (Ext1) were not capable to differentiate upon 

withdrawal of leukemia inhibitory factor (Kraushaar et al. 2010). Supporting this observation, 

deletion of Ndst1/2 in mouse embryonic stem cells reduced FGF binding due to reduced sulfation 

and cells were able to differentiate into specific lineage fate (Lanner et al. 2010). The important 

observation was lack of Ext1 and Ndst1/2 failed to differentiate into ectoderm, mesoderm and 

endoderm but static to maintain the expression of ESC markers (Lanner et al., 2010; Forsberg et 

al., 2012). So it is suggested that HS- binding ligands Wnt, BMP, FGFs may have anti-

differentiation effects (Ying et al., 2003). Upon closer examination it is observed that HS binds to 

FGFs in ESC cells. For instance, presence of HS in ESC cells inhibits expression of the 

pluripotency gene Nanog. Additionally, in Ext deleted ESCs a high level of Nanog expression was 

observed (Kraushaar et al., 2010). This indicates that lack of HS and associated enzymes may not 

be important for pluripotent status. These findings paid important contributions of HSPGs in 

understanding the stem cell based disease models and also improving the iPSC technology 

protocols.  

1.4.2 Syndecans 

          Syndecans are family of conserved transmembrane heparan sulfate proteoglycans classified 

into Syndecan 1, 2, 3 and 4 depending on their molecular weight, location and function (Götte M 

et al., 2003). Invertebrates have only one type of syndecan (Bernfield et al. 1999). They play major 

role in the process of embryonic development, angiogenesis and in tumorigenesis. Each syndecan 

has three main structural domains: the conserved cytoplasmic, and  transmembrane domains and 

an extracellular domain (Figure 5). The extracellular domain part is finely decorated with the 

GAGs heparan sulfate (HS) and less of chondroitin sulfate (CS) at least for some syndecan 
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members (Couchman JR et al., 2003). The exact role of CS is not clear, but the HS of syndecan 

binds to a variety of ligands- FGFs, transforming growth factor-β (TGF-β), vascular endothelial 

growth factors (VEGFs), and platelet-derived growth factors. It also binds to several extracellular 

matrix proteins, such as fibronectin, collagen, laminin and the plasma protein antithrombin-1 

(Tkachenko E et al., 2005). 

        Depending on the cell type and location, the expression of syndecans has different functions. 

Each syndecan has spatial expression pattern during development. Syndecan-1 is highly expressed 

in epithelial and mesenchymal cells, syndecan-2 in mesenchymal, epithelial, endothelial cells and 

fibroblasts and neuronal cells, syndecan-3 in musculo-skeletal tissues and neuronal cells, 

syndecan-4 is almost expressed is all cell type particularly high expression in fibroblasts (Götte M 

et al., 2003; Couchman JR et al., 2003). In a signaling and functional context, it is generally 

considered that syndecan-1 and syndecan-3 form one group and syndecan-2 and syndecan-4 form 

another subfamily. For example, in general syndecan-1 and syndecan-3 frequently inhibit cell 

growth whereas syndecan-2 and syndecan-4 promotes cell growth. One possible structural reason 

could be the higher amino acid sequence homology of Syndecan-1 and Syndecan-3 compared to 

Syndecan-2 and Syndcan-4 (Tkachenko E et al., 2005). 

1.4.2.1 Syndecan-1 

    Among the HS proteoglycans, Syndecan-1 (Sdc-1) represents the predominant epithelial HSPG 

preserving the structural integrity of the intestine (Bode, L et al., 2008). It binds to an array of 

proteins: FGF2, VEGF, HGF, along with several ECM components fibronectin, collagen I, III, V 

and tenascin. Functionally, within the tumor microenvironment, Sdc-1 acts as a co-receptor for 

growth factor signaling and mediate cell proliferation, survival, invasion, cell matrix assembly 

(Bernfield M et al., 1992). Sdc-1 participates in integrin-mediated signaling events by cooperating 

with integrins and other cell adhesion receptors to facilitate cell-ECM attachment, cell–cell 

interactions, and cell motility thus providing a physical and functional link to the cytoskeleton. 

Sdc-1 KO mice showed viable offsprings, but abnormality in the re-epithelialization after injury 

was observed with increased leukocytic infiltration (Kumar AV  et al., 2015). Syndecan-1 

decreases Wnt-1 signaling activities in Sdc-1 knockout mice compared to the wild type in 

mammary gland specific tumors (Liu BY et al., 2003). It was observed that Sdc-1 is essentially 

involved in controlling intestinal inflammation and DSS treatment to Sdc-1 KO mice worsened the 

phenotype with high lethality (Floer, M et al., 2010). The exact signaling mechanism of syndecans 

is an area of effective research. Even though the mechanisms are understood with many studies it 



   
  

 22 

is still a matter of controversy. Syndecan-1 is involved in inflammation (Götte M et al., 2003) with 

an increase in the leukocyte–endothelial interactions in Sdc-1 KO mice (Götte M et al., 2002). One 

possible mechanism is the enhancement of leukocyte integrin-ICAM-1 interactions in the absence 

of Sdc-1 (CPVijaya Kumar et al. 2015). Increased expression or shedded syndecan-1 has an 

inhibitor effect on cell proliferation due to lack of FGF2 induced proliferation (Mali M et al., 

2003). Downregulation of syndecan-1 expression in epithelial cells by siRNA results in a change 

in cell plasticity with loss of cell polarity and decreased the expression of E-cadherin levels, which 

suggest an important transition switch during development and in wound healing through 

epithelial–mesenchymal transition (Couchman JR et al., 2001). Syndecan-1 overexpressing mice 

had delayed dermal wound repair due to the inhibitory role of soluble syndecan-1 ectodomain, 

which enhanced proteolysis in the granulation tissue. (Elenius, V et al., 2004). 

 

1.4.2.1.1 Role of syndecan-1 in malignancy 

 It has been reported that during tumor development, complex changes occur in the 

expression pattern of Sdc1 and loss of syndecan-l is associated with local tumor stage and 

metastasis (Gotte, M et al., 2007; Hashimoto, Y et al., 2008). Sdc-1 functions as a double-edged 

sword depending on the tumor context it either promotes or inhibits tumorigenesis. However, it is 

poorly understood how Sdc-1 integrates these two routes of signaling and what the consequences 

for malignant cell behavior are. It is observed that Sdc-1overexpression or shed form of Sdc-1 

inhibits the cell growth, cell migration and invasion. However, in certain conditions heparanase 

can promote degradation of the HS within the syndecan-1 ectodomain to become an activator. For 

instance, if HS is bound to FGF2, it promotes mitogenicity (Kato M et a1., 1998). So, in a way 

functions of syndecan-1 may depend on the availability of heparanase, which can generate HS 

fragments capable of enhancing signaling. In breast cancer, highly expressed syndecan-1 is able to 

bind to the FGF-1 and FGF-2 and increases mitogenicity (Fernig et al., 2000). Notably, in MCF-7 

cells siRNA knockdown of Sdc-1 reduces FGF-2-dependent activation of MAP kinase activity 

(Floer et al., 2010). In myeloma cells, high expression of syndecan-1 is prone to poor survival like 

breast cancer. It was reported that syndecan-1 acts as a coreceptor that binds to HGF and mediates 

mitogenic signaling (Derksen et al., 2002). Furthermore, the soluble form of syndecan-1 inhibits 

the proliferation compared to the transmembrane form in breast cancer cells, which may be 

because of competitive binding of ligands (Nikolova et al., 2009). In contrast, in  endometrial 

cancer cells, overexpression of Sdc-1 increased cancer cell proliferation through the activation of 

nuclear factor kappaB (Oh et al., 2009). Moreover, addition of purified Sdc-1 ectodomain induced 

apoptosis with the downregulation of cyclin D1 in myeloma cells (Dhodapkar et al., 1998). The 
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expression of cell adhesion molecule E-cadherin (E-cad) is proportional to the expression of 

syndecan-1 in many tumor cells like colon carcinoma, prostate cancer, and in breast cancer cell 

lines (Bernfield et al., 1999; Nikolova et al., 2009). For example, loss of cell surface syndecan-1 

decreases the E-cadherin expression levels in cell culture models. In colon cancer, decreased 

expression of syndecan-1 indicates an aggressive tumor type with poor patient survival and 

prognosis (Day RM et al., 1999; Fujiya M et al., 2001; Conejo JR et al., 2000; Mennerich, D et al., 

2004). So, as syndecan-1 expression maintains epithelial integrity, loss of expression results in a 

change in epithelial morphology, polarity promoting epithelial-mesenchymal transition (Lind et al., 

2004) but interestingly, syndecan-1 expression restored the epithelial phenotype (Leppä S et al., 

1992, 1996). 

      Consistent with these findings, the malignant transformation of Caco2 cells resulted in a 

decrease in the syndecan-1 expression (Levy P et al., 1996). This loss of syndecan-1 expression 

changes the epithelial morphology, forms filopodia and exhibits the anchorage-independent 

growth with changes in focal adhesions (Bernfield et al., 1999). So, these syndecan-1 low cells 

acquire a migratory phenotype altering the ECM dynamics through the activation of integrins and 

FAK signaling pathways, which further regulates the Rho-GTPase-dependent actvities in tumor 

cells (Ishikawa T et al., 2010). 

 

                                    

Figure 5. Schematic diagram of the structure of Syndecan-1: It acts as a transducer between the 

ECM and the cytoskeleton. Syndecan-1 coordintae with integrins and regulate cell adhesion and 
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cytoskeltol rearrangement. It possesses conserved transmembrane domains, a cytoplasmic domain 

and a unique ectodomain. The ectodomain is exposed to the ECM and it is which is decorated with 

heparan sulfate (HS) glycosaminoglycan chains. Several growth factors, chemokines and ECM 

components like firbonectin bind to the extracellular HS. The cytoplasmic domain is involved in  

the activation of several cytoplasmic kinases, and is capable of binding scaffolding proteins which 

can interact with cytoskeletal elements (not shown). 

 

1.4.3 Heparanase           

       Mounting evidence suggests that ECM components and their degradative enzymes are 

associated with the normal tissue homeostasis and cancer. Several reports showed the influence of 

heparanase in tissue remodeling, cancer progression with invasion, metastasis and angiogenesis 

(Vlodavsky I et al., 2001) properties. With its endo-β glucuronidase activity heparanase cleaves 

the HS chains into large fragments of about 2-10kD or around 10-20 sugar units, which are 

sequestered with protein ligands promoting their biological functions (Vreys V et al., 2007; 

Zcharia E et al., 2009). The pH optimum for heparanase catalysis peaks at 5 and the enzyme 

possesses little activity above 7 (Freeman C et al., 1998). Heparanase is expressed as a latent 65-

kDa pro-enzyme that is enzymatically inactive and requires cellular processing to form an active 

dimer of 8 and 50kDa subunits (Vlodavsky I et al., 2001). Recently, a close homologue, 

heparanase 2 has been described, which appears to show enzymatic inhibitory functions (Levy-

Adam F et al., 2010). Heparin, which is endogenously released by activated mast cells and 

eosinophils, controls the enzymatic activity of heparanase (Temkin V et al., 2004). 

    a) Expression: The transcriptional control of heparanase is not well understood. The expression 

of heparanase differs between normal and pathological conditions. In normal/noncancerous cells, 

expression is low due to heparanase promoter methylation, and also wild type p53 suppresses the 

heparanase transcription by directly binding to its promoter (Ogishima T et al., 2005; Baraz L et al., 

2006). In cancer, mutational inactivation of p53 promotes heparanase transcription. It is observed 

that the transcription factor early growth response 1 (EGR1) acts as an activator or a repressor of 

heparanase promoter depending on the cell type and tissue (de Mestre AM et al., 2005). 

    b) Role in inflammation. Heparanase controls the sequestering and release of 

chemokines/cytokines in the ECM region and is involved in the leukocyte recruitment and 

migration at the inflamed sites. It was furthermore reported that heparanase involves in the 

activation of leukocytes with endothelial cells and initiates the innate immune response through 
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toll-like receptor (TLR) 4 (Akbarshahi H et al., 2011). 

  c) Role in malignancy.  The role of heparanase in cancer progression is known for almost three 

decades. It is very clearly observed that heparanase is overexpressed in highly invasive and 

metastatic tumors (Vlodavsky I et al., 1983). Later on, many reports demonstrated that heparanase 

promotes and enhances tumor growth in many human cancers (including colon, prostate carcinoma, 

myeloma, and breast) (Edovitsky E et al 2004 ;Lerner I, et al., 2008). Further studies with 

heparanase gene silencing clearly showed the inhibitory activities of malignancy showing the 

direct evident of heparanase in pro-tumorigenic functions (Roy M et al., 2005). Interestingly, it 

was reported that heparanase acts as a pivotal gene in inflammation-driven colon cancer (Lerner I 

et al., 2011). 

              Heparanase cleavage of HS generates fragments bound to cytokines such as FGF2, VEGF 

etc., which travel across a gradient along the ECM space and present these ligands to several 

receptors, in turn facilitating various signaling networks (Figure 6). With this function, heparanase 

acts as a pro-tumorigenic agent, and at cellular level it promotes cell proliferation invasion, 

metastasis and angiogenesis (Myler HA et al., 2002). Strikingly, enzymatically inactive mutant 

heparanase also regulates adhesion dependent signaling. It was shown that the inactive latent 

enzyme triggers the PI3K/Akt signaling pathway without the involvement of heparan sulfate. 

Further studies in several cancer cell lines showed that latent or enzymatically inactive form is 

involved in several signaling networks (Gingis-Velitski S et al., 2004; Cohen E et al., 2008). These 

observations lead to further investigations of the role of heparanase in signaling. As a result of 

these studies, it was confirmed that heparanase regulates several downstream targets including Akt, 

Src, p38 MAPK, EGFR, and STAT3, even though the exact functions and receptors are not clear 

(Zetser A et al., 2006; Cohen-Kaplan V et al.,2008; 2012). Strikingly, heparanase exposure 

increased the levels of β1 integrin in a glioma cell line (Zetser A et al., 2003), adding another level 

of non-cytokine-dependent signaling. Several drugs are currently developed to target the 

expression of heparanase in several human cancers, these include small-molecule inhibitors, 

phosphomannopentaose sulfate (PI-88), polyanionic molecules like laminarin sulfate, modified 

heparin, the fully sulfated HS mimetic PG545 and a novel inhibitor SST0001, another modified 

heparin (Ritchie JP et al. 2011). 
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Figure 6. Schematic diagram of some of heparanase functions. The side chains of HSPGs, bind to 

several ligands (eg: growth factors, cytokines, morphogens). Heparanase cleaves HS at specific 

sites, generates small fragments and presents them to several unknown receptors through the 

process of paracrine signaling.. Cleavage of HS also, remodels the ECM membrane, promotes 

several adhesion dependent signals, which further controls the several cytoskeletol-signaling 

events. These functions of heparanase regulate tumor invasion and metastasis. 

1.4.4 The Syndecan-1- heparanase axis       

         Recent studies indicate that the interplay between Syndecan-1 and heparanase show 

important functional connections in the progression of colorectal cancer and myeloma. For 

example, in colon cancer progression there is a gradual increase in the expression of heparanase 

(HPSE) (Friedmann Y et al., 2000) and decrease in the Syndecan-1 (Sdc-1) (Hashimoto, Y et al., 

2008) expression from the well differentiated to poorly differentiated colon carcinoma. Deeply 

invading colon carcinoma cells showed decreased expression of Sdc-1 (Fujiya M et al., 2001) and 

increased expression of HPSE  (Takaoka Met al., 2003; 

Levy P et al.,1996). Overall loss of Sdc-1 and increase in HPSE levels showed a change in cell 

plasticity with an increase in invasiveness but the underlying mechanism is not understood.  

Even though it is not fully understood, it gives an impression that heparanase regulates the 

structure of syndecan-1 by degrading its HS chains, and augments growth factor signals 

(Purushothaman A et al., 2012; Ma P et al., 2006). Interestingly, this heparanase/syndecan-1 axis 

is involved in tumour and host cell signaling events including immune cells, endothelial cells, and 

fibroblasts in the tumor stroma.  It was observed that heparanase enhances the HGF expression and 

in myeloma cells syndecan-1 binds to the hepatocyte growth factor HGF. Apparently, the cross 

talk between heparanase, syndecan-1 and HGF promotes myeloma malignancy (Derksen PW et al., 

2002). Up-regulation or addition of heparanase enhances syndecan-1 shedding in myeloma cells. It 
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is reported that heparanase activates ERK signaling, and regulates matrix metalloproteinase-9 

(MMP-9) to cleave syndecan-1 (Purushothaman A et al., 2008). Notably, heparanase clusters 

syndecan-1 and promotes cell adhesion through a cascade of signaling networks, which include the 

Rac1, Src and PKC pathways in glioma cells (Levy-Adam F et al., 2008). Strikingly, activated 

heparanase modifies heparan sulfate, increases the affinity for efficient binding of FGF2 and 

regulates focal adhesion kinase phosphorylation (Reiland J et al,, 2006). It could also be possible 

that enhanced heparanase may not directly cleave heparan sulfate chains but may increase the 

expression of MMP, which in turn mediates the sheddase activity of syndecan-1 (Purushothaman 

A et al., 2008) 

           Interestingly, syndecan-1 and heparanase are also expressed in the nucleus. The exact 

mechanism is not understood but it was reported that heparanase in the nucleus decreases the 

nuclear syndecan-1 and favours the histone acetyl transferase enzyme (HAT) activity 

(Purushothaman A et al., 2011). Recent reports also showed the expression of heparanase and 

syndecan-1 in exosomes (Thompson CA et al., 2013), which could be the transport mechanism to 

the nucleus. 
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     1.5 Aims of the thesis 

           Dysregulation of heparan sulfate proteoglycans (HSPGs) and associated enzymes 

involved in their processing and biosynthesis has been known for decades (Iozzo RV et al., 1982; 

Götte et al., 2007). Their use as diagnostic and prognostic markers in several cancers underscores 

their clinicopathological relevance. The HSPG Syndecan-1 (Sdc-1) touches upon modern aspects 

of biology serving multiple biological roles. Even though Sdc-1 functions such as its role as a 

coreceptor for multiple signaling pathways and as a matrix receptor are well-studied, current 

strategies to target Sdc-1 are not yet successful due to its diverse functions of Sdc-1 in the tumor 

microenvironment. In colon cancer, e.g., a decrease in the expression of Sdc-1 correlates with 

poor patient survival in spite of its role as a coreceptor for FGF signaling. Restoring the functions 

of cell surface Sdc-1 may enhance the FGF signaling leading to more aggressive phenotype, and 

drugs targeting the shed Sdc-1 (soluble Sdc-1) may enhance the efficiency of fibronectin binding 

to integrins thereby enhancing their downstream signaling. Moreover, targeting of Sdc-1 at the 

expression level can cause off target effectss by increasing the expression of other syndecans 

(Gharbaran R et al., 2015), thus hindering the success of current colon cancer therapeutics. To 

overcome these problems, we aim to determine novel Sdc-1dependent molecular mechanisms in 

order to target the Sdc-1 influenced downstream signals with combinational therapies and drugs 

which may provide more efficient anti-tumor effects. 

              With reference to the clinical data, loss of Sdc-1 expression and increase in HPSE 

expression are observed during progression from well-differentiated to poorly differentiated colon 

carcinoma, ultimately correlating with poor patient survival (Vlodavsky I et al., 1983; Day RM 

etal., 1999; Fujiya M etal.,2001; Edovitsky E et al 2004; H Wang et al., 2010). This expression is 

gauged by the degree of cancer cell plasticity, which acts as a positive selective force in 

controlling the cancer stem cell population thus speeding carcinogenesis (Scheel, C et al., 2012). 

Owing to the role of Sdc-1 and HPSE in tumor growth, invasion and, metastasis we aim to 

investigate the contribution of Sdc-1 in cancer stem cell properties in two well-established colon 

cancer cell lines (Caco2 and HT29). 

 Specifically, we want to address the following key questions: 

1) Contribution of Sdc-1 to colon cancer stem cell properties, its possible link to the process of 

epithelial-to-mesenchymal transition (EMT), and the underlying molecular signaling mechanisms 

(Figure 7). 

2)  To investigate the molecular interplay between Sdc-1 and HPSE and their influence on colon 

cancer stemness-related molecular signatures and functions. (Figure 8). 
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Figure 7. Potential roles of Sdc-1 in colon CSC function. 

During colon cancer development, complex changes occur in the expression pattern of Sdc1 from 

well differentiated to undifferentiated tumours. This loss of Syndecan-1 is associated with a 

change in phenotypic plasticity with an increase in invasiveness, metastasis and dedifferentiated 

cells. Empirical evidence showed that this change in phenotypic plasticity allow cancer cells to 

dynamically enter into embryonic stem-cell or induced pluripotent stem cell like state. So, we are 

interested to investigate if the decrease in Sdc-1 expression has any influence on stem cell like 

properties in cancer cells. 
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Figure 8.  Possible functions of heparanase and its interplay with syndecan-1 in CSC 

function. 

During colon cancer progression, a decrease of Sdc-1 and increase of HPSE expression are 

observed from well differentiated to undifferentiated tumours. This complementary change in 

expression is associated with change in phenotypic plasticity with an increase in invasiveness, 

metastasis and dedifferentiated cells. So, we are interested to investigate the interplay of Sdc-1 and 

HPSE and the role of this axis in invasion, and its influence o stem cell like properties in colon 

cancer cells. 
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2. Materials and methods: 

 

Caco-2 

ATCC® Number:   HTB-37™ 

Type:                     Colorectal adenocarcinoma 

Species:                   human 

Culture medium: RPMI 1640 supplemented with 1% Glutamine, 1% Penicillin/Streptomycin 

and 10% FCS  

Culture conditions:  37 °C, 5% CO2, 100% relative humidity 

 

HT-29 

ATCC® Number:    HTB-38™ 

Type:                      Colorectal adenocarcinoma 

Species:                    human 

Culture medium:  DMEM high glucose supplemented with 1% Glutamine, 1%      

Penicillin/Streptomycin and 10% FCS  

Culture conditions:   37 °C, 8% CO2, 100% relative humidity  

 

COLO 205 

ATCC® Number:    CCL-222™ 

Type:                      Colorectal adenocarcinoma, derived from metastatic site 

Species:           human 

Culture medium:  DMEM high glucose supplemented with 1% Glutamine, 1%  

Penicillin/Streptomycin and 10% FCS  

Culture conditions:   37 °C, 8% CO2, 100% relative humidity  

 

 

 2.1.2 Cell culture media und supplements 

 

BMCyclin® Hoffmann-La Roche, Basel, CH 

DMEM High Glucose (4,5 g/l)  Gibco Invitrogen, Paisley, GB 

DMEM High Glucose (4,5 g/l) without phenol PAA Laboratories GmbH, Pasching, A 
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red  

DPBS 10X Gibco Invitrogen, Paisley, GB 

Fetal calf serum (FCS)  PAA Laboratories GmbH, Pasching, A 

Freezing medium  70% culture medium, 20% FCS, 10% DMSO 

HEPES-reagent (1 M)  Gibco Invitrogen, Karlsruhe 

Insulin 10 mg/ml Sigma-Aldrich, Steinheim 

L-Glutamine (200 mM)  PAA Laboratories GmbH, Pasching, A 

OPTI-MEM I Gibco Invitrogen, Paisley, GB 

Penicillin/Streptomycin (100X)  PAA Laboratories GmbH, Pasching, A 

RPMI 1640  PAA Laboratories GmbH, Pasching, A 

Trypsin/EDTA (0.05%, 1X) Gibco Invitrogen, Paisley, GB 

Kanamycin Biochrom AG, Berlin 

 

2.1.3 Bacterial media 

 

Luria-Bertani 

(LB) medium 
   1% (w/v)Tryptone  

0.5% (w/v) Yeast extract  

   1% (w/v) NaCl  

0.5% (w/v) Yeast extract  

    1% (w/v) NaCl 

 1.5% (w/v) Agar 

 

2.1.4 Chemicals and Cytokines: 

 

1,4-Dithiothreitol (DTT) Merck KGaA, Darmstadt 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromid 

(MTT) 
Sigma-Aldrich, Steinheim 

Acetic acid 100% (Glacial) Merck KGaA, Darmstadt 

Agar  AppliChem, Darmstadt 
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Agarose  Sigma-Aldrich, Steinheim 

Ammonium persulfate (APS) Bio-Rad Laboratories 

Inc., Hercules, USA 

Bidistilled water Clinic Pharmacy of the 

University Hospital 

Münster, Münster 

 

Boric acid (Crystalline)  Merck KGaA, Darmstadt 

Bovine serum abumin (BSA)  Sigma-Aldrich, Steinheim 

Bromophenol blue Merck KGaA, Darmstadt 

Dimethylsulfoxide (DMSO)  Carl Roth GmbH & Co. 

KG, Karlsruhe 

Ethanol absolute Merck KGaA, Darmstadt 

Ethylendiamintetracetic acid (EDTA)  AppliChem, Darmstadt 

FAK inhibitor (PF-573228) 

 

Gelatin Type A: porcine skin, G-2625 

Sigma-Aldrich 

(Deisenhofen, Germany) 

Sigma-Aldrich, Steinheim 

Glycerol Merck KGaA, Darmstadt 

Glycine Merck KGaA, Darmstadt 

GRGDSP-peptide 

HGF 

 

R&D Systems GmbH, 

Wiesbaden 

Calbiochem (EMB 

Biosciences Inc. La Jolla, 

CA) 

 

Human fibronectin BD, Becton & Dickinson 

Biosciences, Heidelberg 

Hydrochloric acid (HCl) fumed 37% Merck KGaA, Darmstadt  
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Laminin Sigma-Aldrich, Steinheim 

Methanol Merck KGaA, Darmstadt 

Methylene blue Sigma-Aldrich, Steinheim 

N,N-Dimethylformamide 99% Sigma-Aldrich, Steinheim 

PMA Fluka, Buchs, Switzerland 

Potassium chloride (KCl) Merck KGaA, Darmstadt 

ProMMP-2, ProMMP-9 Merck KGaA, Darmstadt 

Skimmed milk powder Sigma-Aldrich, Steinheim 

Sodium bicarbonate (NaHCO3) Merck KGaA, Darmstadt 

Sodium carbonate (Na2CO3) Merck KGaA, Darmstadt 

Sodium Chloride (NaCl) J.T. Baker, Phillipsburg, 

NJ, USA 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich, Steinheim 

Sodium Fluoride (NaF) Sigma-Aldrich, Steinheim 

Sodium hydroxide (NaOH) Merck KGaA, Darmstadt 

Sodium orthovandate (NaVO3) Sigma-Aldrich, Steinheim 

Tris (Tris-(hydroxymethyl)-aminomethane)  Carl Roth GmbH & Co. 

KG 

Tris-Hcl Merck KGaA, Darmstadt 

Triton X-100 Sigma-Aldrich, Steinheim 

Triton X-114 Sigma-Aldrich, Steinheim 

Tryptone AppliChem, Darmstadt 

Tween 20 

WNT inhibitor IWP-2 

 

WNT1 ligand 

Fluka, Buchs, Switzerland 

Sigma-Aldrich 

(Deisenhofen, Germany) 

Peprotech (Hamburg, 

Germany) 
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Xylol/Xylene  Merck KGaA, Darmstadt 

Y-27632 dihydrochloride monohydrate Sigma-Aldrich, Steinheim 

Yeast extract AppliChem, Darmstadt 

β-Glycerophosphate Sigma-Aldrich, Steinheim 

 

2.1.5 Buffers and solutions: 

2.1.5.1 Buffers: 

Unless stated, all buffers were diluted with bidistilled water. Stock solutions (10X or 5X) of the 

buffers were prepared and immediately diluted before using. The required pH was adjusted, if 

necessary, by adding appropriate volume of HCl or NaOH. 

 

2.1.5.1.1 Protein chemistry and Western blot: 

 

Blocking buffer (diluting buffer of the 

secondary antibody) 

5% (w/v) Skimmed milk powder 

0.1% (v/v) Tween 20 

in TBS 1X 

 

Blotting buffer, 10X 0.25 M Tris 

1.92 M Glycine 

 

Blotting buffer, 1X 10% (v/v) Blotting buffer, 10X 

20% (v/v) Methanol 

 

Diluting buffer of the primary antibody 5% (w/v) BSA in PBS 

 

Fractionation lysis buffer 50 mM HEPES pH 7.5 

50 mM NaCl  

1 mM MgCl2  
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2 mM EDTA  

10 mM NaF  

1 mM DTT 

1% (v/v) Protease Inhibitor Cocktail 

10 mM β-Glycerophosphate 

1 mM NaVO3 

 

Resolving buffer, 2.5X, pH 6.7 1.875 M Tris 

0.5% (w/v) SDS 

 

RIPA buffer 20 mM Tris-HCl pH 7.4 

137 mM NaCl 

1% (v/v) Triton X-100 

2 mM EDTA 

1% (v/v) Protease Inhibitor Cocktail 

10 mM β-Glycerophosphate 

10 mM NaF 

1 mM NaVO3 

 

Running buffer, 5X 0.5 M Tris 

1.92 M Glycine 

0.5% (w/v) SDS 

 

Sample buffer, 5X 1 M Tris-HCl pH 6.8 

25% (v/v) Glycerol  

5% (w/v) SDS 
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0.1% (w/v) Bromophenol blue 

 

Stacking buffer, 5X, pH 8.9 0.3 M Tris 

0.25% (w/v) SDS 

 

Stopping solution (film development) 1% (v/v) Acetic acid 

 

Stripping buffer, pH 2.5 0.1 M Glycine 

0.15 M NaCl 

 

TBS, 10X, pH 7.6 0.15 M Tris-HCl 

1.37 M NaCl 

 

Washing buffer 0.1% (v/v)Tween 20 in TBS, 1X 

 

2.1.5.1.2 Cell viability assay (MTT): 

 

MTT ((3-(4, 5-dimethylthiazolyl-2)-2, 5-

diphenyltetrazolium bromide) solution 

0.5% (w/v) MTT in PBS 

sterile filtered (0.22 µm) 

 

Stopping buffer, pH 4.7 10% (w/v) SDS 

50% (v/v) N,N-Dimethyl formamide 

 

2.1.5.1.3 Cell adhesion assay: 

 

Blocking buffer 0.5% BSA in DMEM without FCS 
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Borate buffer, pH 8.5 0.01 M Boric acid 

 

Fixative 3.7% (v/v) PBS-buffered formaldehyde 

 

Washing buffer 0.1% BSA in DMEM without FCS 

 

2.1.5.1.4  Immunofluorescence microscopy: 

 

Blocking buffer 10% (v/v) Aurion BSA in PBS 

 

Diluting solution of primary and secondary 

antibodies 

1% (w/v) BSA in PBS 

Fixative Ice cold methanol or 3.7% (v/v) PBS-

buffered formaldehyde 

 

Permeabilization solution 0.1% (v/v) Triton-X100 in PBS 

 

2.1.5.1.5  Zymography: 

 

Destaining solution Acetic acid/Isopropanol/Bidistilled water. 1:3:6 

 

Resolving bufffer, 2.5X, pH 6,7 1.875 M Tris 

0.5% (w/v) SDS 

 

Running buffer, 5X 0.5 M Tris 

1.92 M Glycine 

0.5% (w/v) SDS 
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SDS-Loading buffer 20 mM Tris-HCl 

20% (v/v) Glycerin 

2% (w/v) SDS 

0.01% (w/v) Bromophenol blue 

 

Stacking buffer, 5X, pH 8.9 0.3 M Tris 

0.25% (w/v) SDS 

 

Staining solution 0.5% (w/v) Coomassie-Brilliant-Blue R250 in 

destaining solution 

 

Substrate buffer, pH 8.5 50 mM Tris-HCl 

5 mM CaCl2 

2.1.5.1.6  Molecular biology: 

 

TBE, 10X 0.9 M Tris 

25 mM EDTA 

0.9 M Boric acid 

 

Buffer E1 50 mM Tris-HCl (pH 8.0) 

10 mM EDTA 

100 μg/ml RNase 

 

Buffer E2 200 mM NaOH 

1% (w/v) SDS 

 

Buffer E3 3.1 M Potassium acetate (pH 5.5 with acetic 

acid) 

 

Buffer E4 100 mM Sodium acetate (pH 5.0 with acetic 
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acid) 

600 mM NaCl 

0.15%  (v/v) Triton X-100 

 

Buffer E5 100 mM Sodium acetate (pH 5.0 with acetic 

acid) 

800 mM NaCl 

 

Buffer E6 100 mM Sodium acetate (pH 5.0 with acetic 

acid) 

1.5 M NaCl 

 

2.1.5.2  Solutions ready to use: 

 

4', 6'-diamidino-2-phenylindole (DAPI) Molecular Probes, Karlsruhe 

Acrylamide/Bis Solution 30% Bio-Rad Laboratories Inc., Hercules, USA 

Aurion BSA-c® (10%) AURION Immuno Gold Reagents & 

Accessories, Wageningen, NL 

DNA Ladder 100bp 500µg/mL New England Biolabs, Inc., Ipswich, USA 

DPBS 10x Gibco Invitrogen, Paisley, GB 

Ethidium bromide solution 1%  AppliChem, Darmstadt 

Formaldehyde solution 37%  Merck, Darmstadt 

G150 (Developer)  AGFA, Dübendorf, CH 

G354 (Fixative)  AGFA, Dübendorf, CH 

Goat serum (Normal) DakoCytomation, Glostrup, Denmark 

PageRuler™ Prestained Protein Ladder Fermentas GmbH, St. Leon-Rot 

Ponceau S solution Sigma-Aldrich, Steinheim 

Prestained SDS-PAGE Standard High Range Bio-Rad Laboratories Inc., Hercules, USA 

Prestained SDS-PAGE Standard Low Range Bio-Rad Laboratories Inc., Hercules, USA 
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Protease Inhibitor Cocktail 100x Sigma-Aldrich, Steinheim 

Protein A/G PLUS-Agarose Immunoprecipitation 

Reagent 

Santa Cruz Biotechnology Inc., Santa Cruz, 

USA 

TaqMan Universal PCR Master Mix, No 

AmpErase®UNG 

Applied Biosystems, Foster City, USA 

N,N,N’,N’-tetramethylenediamine (TEMED) Bio-Rad Laboratories Inc., Hercules, USA 

Transfection reagent DharmaFECT® 1 Dharmacon, Lafayette, USA 

Trypan blue solution 0.4%  Sigma-Aldrich, Steinheim 

VECTASHIELD® Mounting Medium Vector Laboratories, Burlingame, CA, USA 

 

2.1.5.2.1  Antibodies: 

 

Antibody Source 

rabbit polyclonal anti-phospho FAK Y925 Cell Signaling, Beverly, MA, USA 

rabbit polyclonal anti FAK Cell Signaling, Beverly, MA, USA 

mouse anti-human E-cadherin Becton Dickinson Biosciences, 

Heidelberg,Germany 

rabbit monoclonal anti-human TCF4 Cell Signaling, Beverly, MA, USA 

rabbit monoclonal anti-human EGR1 Cell Signaling, Beverly, MA, USA 

mouse anti-human anti-Integrin β1  Millipore, Darmstadt, Germany 

rabbit polyclonal anti-Vimentin  Santa Cruz Biotechnology, USA 

Rabbit polyclonal anti-Vinculin  Santa Cruz Biotechnology, USA 

mouse anti-human α-Tubulin Sigma-Aldrich, Munich, Germany 

 

Horse radish peroxidase-conjugated goat-anti-

mouse IgG 

Merck-Millipore, Darmstadt, Germany 

Horse radish peroxidase-conjugated goat-anti-

rabbit IgG   

Merck-Millipore, Darmstadt, Germany 
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Horse radish peroxidase-conjugated anti-rabbit 

IgG  

CellSignaling, Beverly, MA, USA 

Horse radish peroxidase-conjugated anti-goat 

IgG 

Merck KGaA, Darmstadt, Germany 

Mouse anti-human IgG-PE MiltenyiBiotec GmbH, Germany 

Mouse anti-human IgG-PE MiltenyiBiotec GmbH, Germany 

Alexa-Fluor 488 anti-mouse IgG, Goat Invitrogen Corporation, Carlsbad, USA 

Alexa-Fluor 555 anti-mouse IgG, Rabbit Invitrogen Corporation, Carlsbad, USA 

 

2.1.5.2.2 Oligonucleotide primers, TaqMan®-probes, SYBR green primers:  

Taqman probes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gene    Primer code 

18S rRNA Hs99999901_s1 

CDH1(E-cadherin) Hs00170423_m1 

KLF4 Hs00358836_m1 

MMP-2 Hs00234422_m1 

MMP-9 Hs00234579_m1 

SDC1 Hs00174579_m1 

HPSE Hs00180737_m1 

COX-2  Hs00153133_m1 

miR10b Tm2218 

miR 200b Tm002251 
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SYBR green primers: 

 

Gene Forward Primer Reverse Primer 

ITGA2 GGGAATCAGTATTACACAACGGG CCACAACATCTATGAGGGAAGG 

FN1 CGGTGGCTGTCAGTCAAAG AAACCTCGGCTTCCTCCATAA 

ARHGAP28 CAGAAATGGTTACGGAGGCTC TGCTTCAGTTAAGCCAAATCTG 

ACTB1 CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 

ZEB 2 TGGGCTAGTAGGCTGTGTCCA TCATCTTCAACCCTGAAACAGA 

GSNAI1 CCTGTTTCCCGGGCAATTTA TTCTGGGAGACACATCGGTCA 

TCF7L2 AAACCAGCTGCCGCTTTTATG GCAACATCAACATGCCTAGGTT 

CD133 TCAAAGATTGGCCATGTTCCAC TGTCAGATGGAGTTACGCAGGT 

EPCAM GATGGGTGAGATGCATAGGGAAC CGTCCCACGCACACACATT 

LGR5 TGTTCTCTCTGGATAACCCACTTGA CAGCCATTTGGTTTGGATGTAT 

SOX2 TGGCGAACCATCTCTGTGGT CCAACGGTGTCAACCTGCAT 

VIM 

 

TCAGCATCACGATGACCTTGAA 

 

CTGCAGAAAGGCACTTGAAAGC 

 
NANOG GGTCTCGTATTTGCTGCATCGT TTGAAACACTCGGTGAAATCAG 

KLF2 AGACCACGATCCTCCTTGACG ACCCGGTGGGAGAGAAGATG 
 

 

2.1.5.2.3 Reaction system (Kits): 

 

Affymetrix One Cycle cDNA synthesis  Affymetrix, Santa Clara, CA 

Diff-Quik® staining system for invasion filters  Dade Behring, Düdingen, Switzerland 

JETSTAR 2.0 MAXI columns with lysate 

filtration unit (LFU) 

GENOMED GmbH, Löhne 

LUC-PairTM miR Luciferase Assay GeneCopoeia, Inc., Rockville, MD, USA 
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Micro BCA™ Protein Assay Thermo Fisher Scientific Inc., Rockford, USA 

RNA-Preparation system basicrna-OLS OMNI Life Science GmbH, Hamburg 

RNA-Transcription system ”First strand cDNA 

Synthesis Kit” 

Fermentas GmbH, St. Leon-Rot 

Western Blot Detection system „Super Signal 

West Pico Chemiluminescent Substrate” 

Thermo Fisher Scientific Inc., Rockford, USA 

 

2.1.6 Equipment and Materials 

 

Agarose gel chamber SUB-CELL® GT  Bio-Rad Laboratories Inc., Hercules, USA 

Autoclave Hiclav® HV-50 HMC Europa GmbH, Engelsberg 

BD Falcon® High-Clarity Polypropylene 

Conical Tube (15 mL, 50 mL) 

Becton  Dickinson Biosciences, Heidelberg 

BioDoc Analyze system Biometra GmbH, Göttingen 

Cell culture flasks BD Falcon® (25 cm², 75 cm², 

150 cm²)  

Becton  Dickinson Biosciences, Heidelberg 

Cell culture plates Multiwell® Falcon®, (6-Well, 

24-Well, 96-Well)  

Becton  Dickinson Biosciences, Heidelberg 

Cell scraper Costar® Vitaris AG, Baar 

Centrifuge Biofuge fresco (Molecular biology)  Kendro-Heraeus, Berlin 

Centrifuge Multifuge 3 S-R(cell culture)  Kendro-Heraeus, Berlin 

Cover slips (different sizes) Diagonal GmbH & Co. KG, Münster 

Cryo-freezing device (NU200) Nunc GmbH & Co. KG, Wiesbaden 

Cryotubes Brand GmbH & Co. KG, Wertheim 

ELISA-Reader VersaMax® Microplate Reader Molecular Devices, Sunnyvale, CA, USA 
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Gel electrophoresis-voltage source PowerPac® 

300 

Bio-Rad Laboratories Inc., Hercules, USA  

GeneChip Fluidics 450 station AFFYMETRIX, INC.Santa Clara, CA, USA 

GeneChip Hybridization Oven Manual Tissue Arrayer MTA-1, Beecher 

Instruments, Silverspring, USA 

Incubators BB6060 Kendro-Heraeus, Berlin 

Invasion Chamber BD BioCoat® Matrigel® Becton  Dickinson Biosciences, Heidelberg 

Inverted microscope Axiovert25 Carl Zeiss, Inc. Göttingen 

Labmixer Vortex Genie 2 Scientific Industries, Bohemia, NY, USA 

Laminar flow hood HS15 Kendro-Heraeus, Berlin 

Light microscope with camera Axiovert-100 Carl Zeiss AG, Jena 

Magnetic stirrer Ikamag® Ret Ika-Werke GmbH & Co. KG, Staufen 

Microlumat plus LB 96V Berthold technologies, Bad Wildbad 

Micropipets Eppendorf Research® variabel  Eppendorf, Hamburg 

Microwave Micromat  AEG-Electrolux, Nürnberg 

Migration assays, Costar® Transwell-Clear 

inserts, 8 µm pore size 

Corning Life Sciences, Schiphol-Rijk, NL 

Neubauer Haemocytometer Paul Marienfeld GmbH & Co. KG, Lauda-

Königshofen 

Nitrocellulose membrane Hybond TM ECL  GE Healthcare, General Electric Company, 

Chalfont St. Giles, GB 

PCR-Reaction plate 96 Well Multiply® (real 

time PCR) 

Sarstedt AG & Co., Nümbrecht 

PCR-Reaction tube Multiply®-µStrip 8-fold 

(conventional PCR) 

Sarstedt AG & Co., Nümbrecht 

PCR-Thermocycler Applied Biosystems 7300 

real-time PCR system (real time PCR) 

Applied Biosystems Foster City, CA, USA 

PCR-thermocycler Biometra T1 (conventional Biometra GmbH, Göttingen 
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PCR) 

Pipette tips epT.I.P.S. Eppendorf, Hamburg 

Pippettes, serological (1 mL, 5 mL, 10 mL, 25 

mL, 50 mL) 

Becton & Dickinson Biosciences, Heidelberg 

Savant SpeedVac concentrator Thermo Fisher Scientific Inc., Rockford, USA 

SDS-PAGE chambers Minigel-Twin Biometra GmbH, Göttingen 

Sensitive balance TE 214S-oCE Sartorius, Göttingen 

Slides for IHC, SuperFrost® plus, 75 x 25mm R. Langenbrinck Labor und Medizintechnik, 

Emmendingen 

Slides, normal 76 x 26 mm Diagonal GmbH & Co. KG, Münster 

Standard eppendorf tubes 1,5 mL, 2mL Eppendorf, Hamburg 

Sterile filters Millex® GP  Millipore, Bedford, MA, USA 

Thermomixer Eppendorf, Hamburg 

Ultracentrifuge avanti 30 compact Beckman Instruments, München 

UV-Spectrophotometer BioDoc Analyze Biometra GmbH, Göttingen 

Video cameras (Models XC-ST70CE and XC-

77CE) 

Hamamatsu/Sony, Japan 

Water bath GFL-1004 GFL, Burgwedel 

X-ray films CL-XPosureTM   Thermo Fisher Scientific Inc., Rockford, USA 

 

2.1.7 Softwares 

Adobe Photoshop 7 Adobe Systems Inc., San Jose, USA 

AMIRA software TGS Inc., San Diego, CA, USA 

AxioVision 4.3 (evaluation of Migration and 

Invasion assays) 

Carl Zeiss AG, Jena 

HiPic and WASABI softwares Hamamatsu/Sony, Japan 

JAVA programs and the NIH ImageJ software http://rsb.info.nih.gov/ij/ 
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MS Excel   Microsoft Corporation, Redmond, USA 

MS Power Point  Microsoft Corporation, Redmond, USA 

MS Word  Microsoft Corporation, Redmond, USA 

Sequence Detections Software (SDS) Version 

1.4 (evaluation of real-time PCR-Analysis)  

Applied Biosystems Foster City, CA, USA 

 

 2.2 Methods: 

     2.2.1  Adherent cell culture 

The human colon cancer cell lines Caco2, HT29 and Colo205 were provided by the German 

Collection of Microorganisms and Cell Cultures, Department of Human and Animal Cell 

Cultures, Braunschweig, Germany. Cells were maintained with RPMI-1640 (HT29) or DMEM 

(Caco2) supplemented with 10% (v/v) FCS, 1% (v/v) glutamine and 1% (v/v) 

penicillin/streptomycin in a humidified atmosphere of 5% and 7% CO2 at 37°C. Cells were 

cultured to 80% confluence. 

    2.2.2  siRNA knockdown 

siRNA knockdown was performed using siRNA #12634, #17258, # 4537 (Ambion, 

Cambridgeshire, UK) targeting the coding region of Syndecan-1, GPCR5A, and EGR1,and a 

negative control siRNA (negative control #1, Ambion). In pilot experiments, we optimized 

conditions for the efficient transfection of Caco2 and HT29 cells. We found that optimal 

conditions were achieved with serum starvation for 5h before transfection at 50–70% confluence 

using 40nM siRNA and Dharmafect reagent (Dharmacon, Lafayette, CO, USA) according to the 

manufacturer’s instructions. Fresh medium was added 16 h after transfection, and experiments 

were conducted 48 h after transfection. Target downregulation was confirmed by qPCR. 

 

     2.2.3  Stable overexpression of Heparanase 

Caco2 cells were stably transfected with a pcDNA3.1 control plasmid (Invitrogen, Karlsruhe, 

Germany), a HPSE overexpression plasmid or a plasmid for overexpression of HPSE double 

mutated in Glu225 and Glu343 (Hulett MD et al., 2000) (plasmids were donated by Israel 

Vlodavsky, Hadassah-Hebrew University Medical Center, Jerusalem, Israel). Stable clones were 

selected using 800ug/ml G418. Caco2 cells were maintained in RPMI media containing 10% fetal 

calf serum (FCS), 1% glutamine, 1% penicillin/streptomycin and 800 μg/ml G418 in a humidified 

atmosphere of 5% CO2 at 37°C.  



   
  

 48 

     2.2.4  Promoter reporter assay 

For HPSE promoter assays, we used a plasmid where the 1.9-kb region of the human heparanase 

promoter [HPSE (-1791/+109)-LUC] had been subcloned upstream of the LUC gene in a pGL2 

basic reporter plasmid (Promega, Madison, WI, USA) (Elkin et al., 2003; Zcharia et al., 2005). 

24h after siRNA transfection cells were replaced with serum media for 6h and procced for co-

transfection of the reporter construct of 1ug/ well (6 well) using FuGENE 6 Transfection Reagent 

(Promega) according to the manufacturers protocol. Control cells were transfected with basic 

pGL2 plasmid containing the LUC gene alone (without promoter). 46h after transfection, 

luciferase assay was done using the Luciferase Reporter Assay system (Promega-E1500). The 

relative light units were determined in each sample with a luminometer and results were 

normalized against beta-galactosidase activity measured by a colorimetric assay. Data are 

presented as the means of quadruplicates s.d., and all experiments were repeated at least three 

times with similar results. 

 

2.2.4  Enrichment of Caco2 and HT-29 cells with sphere formation capacity 

 

a) Enrichment of spheres 

Sphere cultures of Caco2 cells were generated by plating single cells obtained from adherent 

culture in low attachment plates (Corning) at the concentration of 1000 cells/ml into RPMI-1640 

supplemented with B-27 (Life Technologies), 25 ng/ml basic fibroblast growth factor (bFGF, 

Sigma-Aldrich), 20 ng/ml mouse recombinant epidermal growth factor (EGF, Sigma-Aldrich), 

a n d  4 ng/ml Heparin (Sigma-Aldrich) (“Sphere media”). Unless indicated otherwise, sphere 

cultures of HT29 cells were generated by plating single cells obtained from adherent culture in 

low attachment plates at the concentration of 1000 cells/ml into DMEM supplemented 

with 5% FBS B-27, 25 ng/ml bFGF, 20 ng/ml mouse recombinant EGF, a n d  4 ng/ml Heparin. 

b) Sdc-1 silencing in sphere cultures 

For siRNA treatment 9,500 Caco2 and HT29 cells were plated in 24 well-plates under 

adherent conditions 48 hours before the treatment. The transfection was performed either with 50 

nM Sdc1 siRNA (#12634, Ambion) or negative control siRNA (Ambion), using the 

INTERFERin® reagent (Polyplus Transfection TM) according to the manufacturer’s 

instructions. After 24 hours, the cells were washed, trypsinized (0.25% Trypsin-EDTA, Gibco, 

Life Technologies, Germany), counted and seeded in suspension culture. Fresh sphere medium 

was added each three days. Caco2 and HT29 spheres were counted after 7 days. 
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c) FAK inhibitor (PF-562271) treatment 

siRNA-treated Caco2 cells were seeded at a density of 20,000 cells/cm2. After 24 h, the 

growth medium was changed and cells were either treated with the inhibitor PF-562271 

(Sigma-Aldrich) (10μg/ml), DMSO (0.05%) or with vehicle only (controls). After 48 h, cells were 

washed, trypsinized, counted and plated as single cells in sphere medium containing the same 

inhibitor or DMSO, respectively. Media were replaced after 3 days, and spheres generated 

from each cell type and treatment were counted after 7 days from suspension plating. 

 

c) HPSE inhibitor (SST0001) treatment 

siRNA-treated Caco2 cells were seeded at a density of 20,000 cells/cm2. After 24 h, the 

growth medium was changed and cells were either treated with the inhibitor SST0001 

(10μg/ml), DMSO (0.05%) or with vehicle only (controls). After 48 h, cells were washed, 

trypsinized, counted and plated as single cells in sphere medium containing the same inhibitor or 

DMSO, respectively. Media were replaced after 3 days, and spheres generated from each cell 

type and treatment was counted after 7 days from suspension plating. 

 

2.2.5  Cell Viability assay: (MTT assay) 

48 h after control and Sdc-1 siRNA transfection, 5 × 103 cells/well were seeded in complete 

growth medium into a 96-well plate and incubated at 37°C overnight. Subsequently, cells were 

incubated with 10 μl/ well of MTT dye solution for 4 h at 37Co. The number of viable cells was 

directly proportional to the production of formazan, which was dissolved in 100 µl/well stopping 

buffer for 20 h, and measured spectrophotometrically at 570/650 nm in a Softmax Microplate 

reader. 

 

  2.2.6  Cell adhesion assay 

 Briefly, ninety-six-well plates were coated with 50μg x mL-1, fibronectin, 100μg x mL-1 GRGDSP 

peptide and 10 μg x mL-1 BSA as a negative control overnight at 4 °C, and washed twice with 

washing solution (0.1% BSA in DMEM). The plate was then incubated for 45 min with 0.5% BSA 

in DMEM (blocking solution) to block nonspecific binding at room temperature, and washed once. 

Seventy-two hours after transfection, control and Sdc-1 siRNA-transfected cells were released 

from the plates with 2 mM EDTA in NaCl/Pi, washed twice, and resuspended in blocking solution. 

Cells (2.5∗104 per well) were added to the coated wells, and allowed to attach for 1 h at 37 °C in a 

cell culture incubator. Nonadherent cells were removed by three gentle washes with NaCl/Pi 
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buffer, and subsequently fixed with 3.7% NaCl/Pi-buffered formaldehyde for 30 min. Attached 

cells were stained with 1% methylene blue in 0.01% borate buffer (pH 8.5) for 30 min following 

four washes with borate buffer, the cells were lysed in ethanol/0.1 M HCl (1 : 1), and the released 

stain was quantified in a Softmax Microplate reader  at 620 nm.  

 

2.2.7  Invasion assay 

Bio Coat Matrigel Invasion Chamber (BD Biosciences, Heidelberg, Germany) assays were 

performed exactly as recommended by the manufacturer using an invasion time of four days 

for Caco2 50,000 cells.  

For inhibitor studies, compound SST0001 was added to both compartments 24 h after cell plating 

(Upper chamber 0.5ug/500ul and lower chamber 0.7ug/700ul). 

Relative invasiveness was expressed as percentage of the cell number on compound-treated inserts 

compared with control inserts.  

 

2.2.8  Quantitative real-time PCR 

Total cellular RNA was isolated using rna-OLS (OMNI Life Science, Hamburg, Germany) and 

reverse transcribed (Advantage First strand cDNA synthesis kit; Fermentas, St. Leon-Rot, 

Germany). qPCR and melting curve analysis were performed using Qiagen QuantiTect SYBR 

Green PCR kit in a LightCycler (Roche, IN). Expression of additional mRNAs was analyzed 

using TaqMan probes on an ABI PRISM 7300 Sequence Detection System following the 

standardized cycling conditions recommended by the manufacturer. The 2-∆∆ Ct method was 

used to determine relative gene transcript levels after normalization to 18S rRNA expression. 

 

2.2.9 Immunoblot and Immunoprecipitation 

2.2.9.1  SDS-PAGE and immunoblot 

30-60 µg total protein was mixed with 5X sample buffer (1:4) and boiled at 95οC for 5 min. The 

boiled samples were briefly centrifuged and loaded onto the gel along with 5 µl pre-stained marker. 

Electrophoresis was performed at 15 mA/gel for the stacking gel for about 15 min. Then, the 

current was increased to 20 mA/gel for the separating gel until the marker reached the end of the 

gel. After gel running, the gels were removed from electrophoresis chamber and the stacking gel 

was cut with scalpel. The resolving gel was equilibrated in transfer buffer at 4Cο to remove SDS. 

At the meantime, the membrane was pre-wetted for 2 min in distilled water and then in transfer 

buffer at 4οC for 10 min. The safety cover of the Trans-Blot SD cell was removed and a gel 
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sandwich was prepared in the following order: anode, soaked filter paper, membrane, gel, soaked 

filter paper air bubbles between layers were rolled out using glass pipette. The cathode plate was 

added and 16 volt was applied for 1-2 h. The membrane was subsequently removed and prepared 

for immunodetection. The membrane bound proteins can be detected using specific antibodies. In 

the present study, we entirely used the indirect method using horseradish peroxidase (HRP) 

conjugated secondary antibodies. Before the addition of the primary antibody, the membrane first 

must be incubated with blocking buffer to prevent interactions between non-specific binding sites 

of the membrane and the antibodies. Secondly, the membrane can be probed with the primary 

antibody that will bind the corresponding epitope of the protein of interest. Excess primary 

antibody is removed by washing. Consequently, secondary antibody directed to the to the Fc 

portion of the primary antibody will be added. Enhanced chemiluminescent substrates produce 

light in proportion to the amount of protein, which can be detected with the aid of X-ray films. 

HRP catalyzes the oxidation of luminol in the presence of hydrogen peroxide. The luminol, which 

is in an excited state immediately following the reaction, decays via a light-emitting pathway. This 

emission of light can be enhanced up to a 1000-fold by the addition of compounds, such as 

phenols. The image of the blot is visualized by exposing the blot to a film or a digital camera. 

After the transfer, the blot was stained Ponceau S stain for 2 min to determine the efficiency of 

protein transfer. The blot was destained in water for additional 5 min and directly used for 

antibody incubation. Blocking of the membrane was performed in blocking buffer for 1 hr at RT 

followed by incubation with the appropriate dilution (2.1.5.2.1) of primary antibody overnight at 

4°C with gentle shaking. The membrane was washed 2X with washing buffer for 5 min each 

followed by 1X washing for 20 min. Consequently, the membrane was incubated with the 

corresponding HRP conjugated secondary antibody diluted in blocking buffer for 1 h at RT with 

gentle shaking followed by 3X washing for 5 min each. The blot was then incubated with 

appropriate amount of chemiluminescent substrate solution for 1 min. The excess substrate was 

drained and the membrane was put in a polythene sheet for detection. In a dark room, the signal 

was detected by exposing the membrane to an X-ray film and the film was developed by briefly 

swirling in developer, acetic acid 1% and fixer, rinsed briefly in tap water and finally dried. 

 

2.2.9.2  Immunoprecipitation (IP) 

For IP, lysates of Caco2 cells were prepared 72 hr after transfection with control or Syndecan-1 

siRNA as described above. Two hundred microgram protein was incubated with 1:50 dilution of 

primary antibody rabbit monoclonal anti human EGR1 at 4°C on a rocker platform overnight. 

Afterwards, the mixture was incubated analogously with 20 µL resuspended protein A/G-PLUS-
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Agarose. Immunoprecipitates were pelleted by centrifugation (1,000g, 5 min, 4’C), washed four 

times with RIPA buffer and boiled in 40-µL SDS sample buffer (5 min). SDS-PAGE, Western 

blotting, stripping and reprobing were performed as described above using 30–60 µg of 

protein/lane on 7.5– 12% gels.  

 

 2.2.9.3  Zymography 

Conditioned media from the upper chambers of invasion filters were collected on ice and 

centrifuged for 10 min at 4°C.  The supernatant was diluted with SDS sample buffer for 

zymography in a ratio of 1:4 and loaded onto a 10% polyacrylamide gel containing 1 % gelatin. 

Mmp2 and Mmp9 were loaded as positive controls. Electrophoresis was carried out at 4°C at 

80V.The gel was rinsed twice with 2.5% TritonX-100, followed by H2O for 20 min prior to 

overnight incubation in developing buffer (50 mM Tris/HCl, pH 7.8, 5 mM CaCl2, 0.05% Brij) at 

37 °C. Then, the gel was placed in 0.5% Coomassie blue for 30 mins and rinsed in destaining 

solution (acetic acid/isopropanol/water at a ratio 1:3:6) for 30 mins. 

  

 2.2.10 TOPFLASH/FOPFLASH Reporter Assay 

24h after siRNA transfection, cells were cultured in serum-containing media for 6h and 

processed for co-transfection of TOPFLASH/FOPFLASH luciferase reporters (addgene, 

Cambridge, MA, USA, plasmid # 1256 and 12457). 1ug of plasmid/ well (6 well) was 

tranfected using FuGENE 6 Transfection Reagent (Promega, Mannheim, Germany), 

according to the manufacturer's instructions. Per well, 0.5 ng Renilla control luciferase 

plasmid was cotransfected to normalize for transfection efficiency. 46h after transfection, cells 

were lysed with 1× passive lysis buffer (GeneCopoeia, Rockville, MD, USA), and luciferase 

activity was assayed in a luminometer using the Dual-Luciferase Reporter Assay Kit 

(GeneCopoeia). TOPFLASH and FOPFLASH values were normalized to Renilla activity, and fold 

induction was calculated as normalized relative light units of TOPFLASH divided by normalized 

relative light units of FOPFLASH. 

 

 2.2.11 Affymetrix microarray expression analysis 

Affymetrix gene array analysis was performed by our collaboration partners (Prof. Dr. G.W. Yip 

and colleagues) at the Department of Anatomy, National University of Singapore. The initial 

sample preparation steps and independent target confirmation were performed by Sampath Kumar 

Katakam. Total RNA was isolated from three biological replicates of control and Syndecan-1 

siRNA transfected cells using the basic RNA-OLS Kit (OLS, Bremen, Germany). Preparation 
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of biotin-labeled cRNA using the 1-cycle labeling protocol, hybridization, and scanning of the 

arrays was performed essentially as previously described (Nikolova et al. 2009). 3.6 µg of 

purified RNA and poly-A controls were used to generate cDNA, which was used to 

synthesize biotin-labeled cRNA. Fragmented cRNA was hybridized to Human Genome U133 plus 

2.0 arrays for 16h at 60°C in a GeneChip Hybridization Oven 640 at 60 rpm. The arrays were 

washed and stained in a GeneChip Fluidics 450 station (Affymetrix), followed by scanning 

(Affymetrix GeneChip Scanner 3000). The raw data image was processed with GeneChip 

Operating Software v1.2 and analyzed using GeneSpring GX 11.0 with Robust Multiarray 

Average (RMA) normalization. A list of differentially expressed genes was generated using 

the filtering criteria of p < 0.05 after Benjamini Hochberg false discovery rate control and fold 

change of at least 2. The Database for Annotation, Visualization and Integrated Discovery 

(DAVID) 2008 was used to verify the annotations of the filtered genes (n = 396) and classify the 

genes into different ontology groups. The GEO accession number of this screening is GSE58751. 

 

2.2.12 Flow cytometry 

2.2.13 Side population analysis 

Side population (SP) cells were first identified in murine HSCs by Goodell et .,1996). These SP 

cells are resistant to anticancer drugs with their unique effleuxing properties via ATP-binding 

cassette transporter proteins such as ABCG/Brcp1. It is based on the unique property to efflux 

lipophilic fluorescent dyes out of the cell. SP cells have been considered as a stem cell population 

in many cancers like colorectal, breast and liver cancer (Haraguchi, N et al., 2006; Olempska, M et 

al., 2007). The assay was performed 72 hr after control and Syndecan-1 siRNA transfection 

using the Hoechst 33342 dye exclusion technique. 1x106 cells were incubated in DMEM 

containing 2% (v/v) FCS for 90 min at 37°C either with 5 μg/mL Hoechst 33342 (Sigma-

Aldrich) or in the presence of 50 μM verapamil (Sigma-Aldrich). Finally, 2 μg/mL propidium 

iodide was added for cell death discrimination, and cells were stored on ice until analysis. 

Cells were analysed on a CyFlow Space (Partec, Münster, Germany) using a 16 mW 375 nm 

UV laser for excitation, emission was measured at 475 nm (BP 455/50) and at 665 nm (LP 665 

nm). Signals were slivered by a dichroic mirror of 610 nm to measure Hoechst signal intensity 

in both channels. All cells with a low Hoechst fluorescence and which were not visible in the 

verapamil control were gated (R2) as SP cells. SP analysis was further combined with CD133 

analysis. In this case the SP staining was done first and followed by the cell surface marker 

protocol. For stimulation experiments WNT1 ligand was used at a concentration of 50ng/ml and 
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for WNT signaling inhibition, IWP-2 was used at a concentration of 10uM/ml for 1 hr. SST0001 

was used at a concentration of 10mg/ml for 1 hr. SP cells and non-SP cells were sorted and 

enriched in adherent conditions using MammoCult media (Stem Cell Technologies, Cologne, 

Germany) and in suspension conditions using sphere media. 

 

2.2.14 Identification of ALDH-1 positive cells 

The ALDEFLUOR™ fluorescent reagent detects a unique approach to the identification of stem or 

progenitor population based on their expression of the enzyme aldehyde dehydrogenase (ALDH), 

especially ALDH1. This enzyme mediates the oxidation of intracellular aldehydes to carboxylic 

acids in the cytosol and is involved in retinoid metabolism (Labrecque, J et al., 1993). It was first 

identified in the hematopoietic stem cells (HSC). In mice it has been shown that in HSCs, retinoids 

mainly contribute for the terminal differentiation of late progenitors and the self-renewal of early 

precursor cells (Purton, L. E et al., 1999; Chute, J. P et al., 2006). Several studies showed that 

ALDH+ populations has high tumorogenic properties in many cancers. For example in colorectal 

and breast cancers (Dalerba, P et al., 2007). ALDH-1 activity was assessed 72 hr after siRNA 

transfection by using the ALDEFLUORTM kit (StemCell Technologies, Köln, Germany). Briefly, 

1x 106 cells were resuspended in assay buffer containing ALDH substrate (1 µmol/L). Half of this 

suspension was used as a negative control and transferred into another tube containing 50 mmol/L 

of the specific ALDH-1 inhibitor diethylaminobenzaldehyde (DEAB). The cells were incubated 

for 1 hr at 37°C in a water bath in the dark and agitated every 10 minutes. After a final 

centrifugation at 400g for 5 min the cells were resuspended in 1 ml assay buffer and stored on ice 

prior to flow cytometry on a CyFlow Space (Partec) using the 488 nm blue laser for excitation. 

Fluorescence emission was measured at 545 nm (BP 527/30 nm). Gates were set by comparing the 

fluorescence of the DEAB control with that of the original sample. 

 2.2.15 Cell surface marker detection 

Monoclonal mouse anti-CD133 PE conjugated antibody (clone AC133) was used to quantify stem 

cells, mouse IgG1-PE was used as isotype control (both from Miltenyi Biotec, Bergisch Gladbach, 

Germany). 10 μl of each antibody was given to 1 x 106 cells suspended in 90 μl PBS and 

incubated for 20 min in the dark. Flow cytometric analysis was performed on a CyFlow Space 

(Partec, Münster, Germany) equipped with a 25 mW 638 nm red laser diode. Fluorescence 

emission was detected at 640 nm (BP675/20 nm), as also measured over the whole population 

by setting a region gate (RN1) in FL2. 
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2.2.16 Activated β1 integrin detection 

  Monoclonal mouse anti-human-Integrin β1 antibody clone HUTS-4 (Millipore) was used to 

analyse the active conformation of human β1 integrins. About 1 x 106 cells were incubated with 

2.5 μg of β1 integrin antibody for 1hr at room temperature. Cells were then washed once with PBS 

and resuspended in 100μl of the 1:1000 diluted Alexa 488 conjugated goat anti-mouse 

secondary antibody (Invitrogen, Oregon, USA). Incubation took place for 30 min at room 

temperature in the dark. After a final washing step cells were ready for flow cytometric analysis. 

Flow cytometric analysis was performed on a CyFlow Space (Partec, Münster, Germany) 

equipped with a 25 mW 638 nm red laser diode. Fluorescence emission was detected at 640 

nm (BP675/20 nm), as also measured over the whole population by setting a region-gate (RN1) in 

FL2. 

 

   2.2.13 Radiation exposure 

   Irradiation of transfected colon cancer cells was performed at room temperature using 6 MV 

photons of a linear accelerator (Varian Medical Systems, Palo Alto, California, USA). The dose 

rate was 2Gy per minute and a dose of 2Gy was applied. 

 

  2.2.14 Colony forming assay 

To measure the colony forming ability, 2x105 knockdown cells were either irradiated or left 

untreated and subsequently trypsinised and counted. 1 x 103 cells were resuspended in 1 ml 

culture medium, plated into 3.5 cm petri dishes with a 2.5 mm grid (Nunc, Langenselbold, 

Germany) and incubated for about 6 days in a CO2 incubator at 37°C. Cell colonies with more than 

50 cells were counted using a microscope (Olympus, Hamburg, Germany). The survival fraction 

was calculated as follows: plating efficiency treated/plating efficiency control. 

 

 2.2.15 NOD/SCID mice xenograft model 

  In vivo xenograft experiments were performed by our collaboration partners (Dr. Rolland Reinbold 

and colleagues) at the ITN, Segrate, Milan, Italy. Generation of siRNA-treated and stably 

transfected Colon cancer cell lines, as well as post-mortem analysis of tumor tissues were 

performed by Sampath Kumar Katakam, partially in Milan and in Münster.The specific small 

interference RNA (siRNAs) used to knockdown Syndecan-1 in the xenografted cells was siRNA 

#12634 Sdc1 siRNA, (Ambion, Cambridgeshire, UK), and the control siRNA was negative control 

#1, (Ambion). For siRNA treatment HT29 cells were plated in adherent condition 72 hours before 
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the treatment, 5x104 cells cells in 6 well-plates. The transfection was performed with both siRNAs, 

Sdc1 siRNA and Control siRNA, using the INTERFERin® reagent (Polyplus Transfection TM) 

according to the manufacture’s instructions. The siRNA concentration used in the experiments was 

50 nM. After 48 hours from transfection the cells were washed, trypsinized (0.25% Trypsin-EDTA, 

Gibco, Life Technologies), counted and seeded at the density of 1x104 cells/cm2. After 48 hours 

from replating the cells were washed, trypsinized, counted and prepared for injection. HT29 cells 

treated with both siRNAs were injected into NOD/SCID mice. Mice received 1x105 cells or 2x105 

cells for both conditions. Injections were subcutaneous in the neck. Tumor development was 

checked daily until suspect tumors were detected. Tumor size was estimated using calipers by 

measuring the difference in the suspect tumor width, which includes the width of the animal skin, 

subtracted from width of the folded animals skin of a control region of the animal.  

 

   2.2.16 HPSE activity assay 

   HPSE activity was measured using a commercial HS degrading enzyme assay kit 

(Takara.Mirus.Bio, Madison, WI) which is based on the measurement of HPSE-induced 

degradation of biotinylated-HS (b-HS) fragments. The assay carried out according to the 

manufacturer’s protocol. Briefly, 1x106 cells were collected and suspended in 400 mL extraction 

buffer. After cell debris removal by centrifugation, the supernatant was incubated with 

biotinylated-HS (b-HS) for 45 minutes at 37°C. The mixture was then incubated on a FGF-coated 

plate and undegraded b-HS was detected by HRP-streptavidin. This b-HS fragment is specifically 

designed so that it cannot bind to FGF when being degraded by HPSE, thus resulting in a lower 

HRP signal. The absorbance was mea sured at 450 nm. 

 

2.2.17 Statistical analysis 

Data were expressed as mean ± SEM or SD, as indicated. Statistical analysis was performed using 

the Sigma Stat 3.1 software (Systat Software, Point Richmond, CA). An unpaired t-test was used 

when groups passed the normality test, otherwise, the Mann–Whitney U-test was used. A two-

sided P-value <0.05 was considered statistically significant. 
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3 Results: 
 

3.1 Part 1 

3.1.1 Silencing of Syndecan-1 enhances the cancer stem cell phenotype in cultured human 

         colon cancer cell lines. 

To characterize a potential role for Sdc-1 in human colon cancer stem cell function, we employed 

an siRNA knockdown approach in the human colon cancer cell lines Caco2 and HT29, which are 

known to contain a CSC population (Haraguchi N et a., 2008; Yeung TM et a., 2010).  Several 

approaches have been utilized to identify stem cell like populations from various human malignancies, 

including the side population (SP) phenotype, analysis of cell surface markers, and aldehyde 

dehydrogenase (ALDH) activity assays (Tirino V et al., 2013). Analysis of the side population 

phenotype, which is based on the expression of cell surface transporters (ABCG2) to exclude vital 

dyes such as Hoechst 33342 preferentially from CSCs, but not from non-CSC differentiated cells, 

revealed a relative increase in the SP of Sdc-1silenced compared to control Caco2 and HT29 cells 

(Fig.1.1A,D).  As the role of the SP in colon CSCs is controversially discussed (Xie ZY et al., 2013) 

we next  tested the activity of ALDH isoform 1 (ALDH1) as an additional colon cancer stem cell-

associated parameter (Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, 

Wicha MS, Boman BM. (Huang EH et al., 2009).  Similar to the impact on the SP, Sdc-1 silencing 

significantly  increased ALDH1 activity in both Caco2 and HT29 cell lines (Fig.1.1B,D). Colon 

CSCs have also been shown to be enriched in the CD133+ population (Ricci-Vitiani L et al., 2007). 

In Sdc-1-silenced Caco2 and HT29 cells, there is an increase in CD133 expression compared to 

controls (Fig.1C,D). Quantitative analysis of the SP revealed a 60% and 55% increase, ALDH 60% 

and 150% increase and CD133 measurements showed a 10% and 70% increase in Caco2 and HT29 

respectively upon Sdc-1 KD compared to the controls (Fig.1.1C,D). To complement our analysis, we 

investigated a panel of additional CSC and pluripotency markers. Sdc-1depletion was associated with 

significantly increased mRNA expression of the intestinal stem cell markers CD133, EPCAM, and 

LGR5 (Hirsch D et al., 2014,(Xie ZY et al., 2014) and the pluripotency-associated markers KLF2, 

SOX2 and NANOG (Fig. 1.1E). These results suggest that Sdc-1 may be involved in the regulation of 

the colon CSC compartment. 
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Figure 1. Syndecan-1 siRNA knockdown enhances the stem cell phenotype in colon cancer 

cells. Flow cytometric analysis of putative stem cell pools in the Sdc-1silenced colon cancer cell 

lines Caco2 and HT29 reveals enhanced SP phenotype, ALDH1 activity and CD133 

expression in Sdc-1silenced cells. (Fig.1.1A) Side population analysis. Control and Sdc-

1depleted cells were stained with Hoechst 33342 dye in the presence (left) or absence (center, 

right) of 50 µM verapamil and analyzed by flow cytometry. Gate R1, SP cells appeared as a dim 

‘tail’. (Fig.1.1B) Representative example displaying aldehyde dehydrogenase (ALDH) activity. 

Control and Sdc-1 knockdown cells were incubated with fluorescent ALDH substrate in the 

presence or absence of the inhibitor diethylaminobenzaldehyde (DEAB), followed by flow 

cytometric analysis. FL1 (green fluorescence) and FSC (forward scatter). (Fig.1.1C) Example of 

flow cytometric analysis for the cell surface expression of CD133 protein. Control and Sdc-1 

knockdown cells were incubated with isotype IgG-APC and CD133 APC antibodies followed 

by flow cytometry analysis. (Fig.1.1D) Quantitative analysis revealed a 60% and 55% increase 

of SP (D), 60% and 150% increase of ALDH1 activity and a 10% and 70% increase of CD133 

expression in Caco2 and HT29, respectively upon syndecan-1 knockdown compared to the 

controls. Data are expressed as mean percentage +/- SEM relative to the controls (set to 100%) 

(n=3-5, *=P< 0.05, ***=P< 0.001). (Fig.1.1E) SYBR green qPCR analysis of pluripotency-

associated genes in Sdc-1silenced Caco2 cells show a significant increase in the mRNA 

expression of CD133, EPCAM, LGR5, KLF2, SOX2, and NANOG compared to the controls. Data 

are expressed as mean percentage +/- SEM relative to the controls (set to 100%) (n=3-5, *=P< 

0.05, **=P< 0.01). 

 

3.1.2 Sdc-1 levels regulate self-renewal and tumorigenicity of colon CSCs. Next we extended our 

study to investigate the self-renewal capacity of Sdc-1silenced cells. The formation of 

tumorspheres is one of the key characteristics of cancer stem-like cells.  Such cell aggregates are 

often considered to be a surrogate for tumors as they appear to mirror the cellular architecture and 

composition and behaviour of tumors in vivo (Zucchi I et al., 2007). To determine whether 

absence of Sdc-1 is critical for the self-renewal, we generated spheres from the Sdc-1silenced 

colon cancer cells lines using serum-free suspension cultures (Fig.1.2A).  Interestingly, as we saw 

a highly significant increase of the sphere-forming ability in Sdc-1deficient cells (Fig.1.2B). Next, 

we performed MTT assays to assess possible changes in viability caused by the depletion of Sdc-1. 
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We observed a significant increase in the viability of Sdc-1knockdown cells both in the Caco2 and 

in the HT29 cell line (Fig.1.2C).  Overall, these results support the idea that Sdc-1 is implicated in 

the regulation of self-renewal in colon CSCs.  

 
 Figure 1.2. Syndecan-1 silencing increases the formation of spheres in Caco2 and HT29 cells.  

Caco2 and HT29 cells were transfected with a control siRNA or Sdc-1 siRNA, followed by sphere 

enrichment. After 1 week, the spheres formed by Sdc-1 transfected Caco2 and HT29 cells are 

larger and there are much more aggregates compared to controls (central panel) (Fig.1.2A). The 

insert shows enlarged Sdc-1depleted spheres. Each sphere is not much larger than 64 to 100 

cells. (Fig.1.2B) Quantitative analysis of the sphere formation efficiency in control and Sdc-

1siRNA treated Caco2 and HT29 cells. Syndecan-1 siRNA-treatment results in a significant 

reduction of sphere formation efficiency (P<0.001, n=6). (Fig.1.2C) Quantitative analysis of cell 

viability, as determined by MTT assay in control and Sdc-1 siRNA-treated Caco2 and HT29 cells. 

Data are expressed as mean percentage +/- SEM relative to the controls (set to 100%) (n=13, *=P< 

0.05, **=P< 0.01). 

 

3.1.3 Sdc-1 silencing has an impact on the canonical Wnt signaling pathway. 

Canonical Wnt signaling is an important gatekeeping pathway in the regulation of  colon cancer 

stem cell properties  (Ragusa S et al., 2014; Fevr T et al., 2007). Work in cell lines and animal 

models has demonstrated the importance of different syndecan members, and of specific heparan 
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sulfate structures for Wnt signaling in development and tumorigenesis (Liu BY et al., 2003; 

Ibrahim SA et al., 2013; Astudillo P et al., 2014; Vijaya Kumar A et al, 2014). However, the 

function of Sdc-1 in this context has not been elucidated in colon cancer. To test this possibility, 

we first evaluated the expression of the Wnt effector TCF7L2, a transcription factor required for 

intestinal epithelial stem cell proliferation (van Es JH et al., 2012).  qPCR revealed a significantly 

increased expression of TCF7L2 in Sdc-1depleted Caco2 and HT29 cells (Fig.1.3A). Increased 

expression was confirmed at the protein level by Western blotting (Fig.1.3B). By using a 

TOPFlASH luciferase reporter plasmid, which contained the β-catenin/TCF binding sites in the 

promoter region of a luciferase gene, we could furthermore demonstrate an increase in the 

TCF/LEF-1 transcriptional activity in the Sdc-1silenced cells (Fig.1.3C). To provide additional 

evidence that the Wnt signaling pathway is modulated by Sdc-1 in colon CSCs, Sdc-1 depleted 

and control cell lines were stimulated with Wnt1, a relevant ligand in colon CSCs (Mao J et al., 

2014) or treated with the small molecule WNT inhibitor IWP-2 (Arensman MD et al., 2014). Wnt-

1 stimulation resulted in an increase in the control SP, whereas the SP of Sdc-1 depleted cells 

showed an even further increase. Importantly, application of the Wnt inhibitor IWP-2 abolished 

the increase in the proportion of SP cells caused by the knockdown of Sdc-1 (Fig.1.3D). Along 

with the increased expression of the Wnt target genes LGR5, CD133, and EPCAM (Hirsch D et al., 

2014) in the Sdc-1 silenced cells (Fig.1.1E), these results indicate that the effect of Sdc-1 levels on 

colon CSC population is at least in part mediated through the Wnt signaling pathway. 
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Figure 1.3. Syndecan-1 siRNA depletion enhances the activity of the Wnt-pathway in colon 

cancer cells. (Fig.1.3A) SYBR green qPCR analysis of TCF7L2 expression in Caco2 and HT29 

cells shows a 2.5-fold increase in Sdc-1delpeted cells compared to controls. **=p≤0.01, 

*=p>0.05, n≥3, error bars=SEM. (Fig.1.3B) Western blot analysis showing the increased 

expression of TCF7L2/TCF4 upon Sdc-1 knockdown compared to the controls. Data shown are 

triplicates from a single experiment representative of three independent experiments. (Fig.1.3C) 

Assessment of β-catenin/Tcf– dependent transcriptional activity in Sdc-1 silenced Caco2 cells using 

Top flash assay indicates 80% increase in its activity. *=p>0.05, n≥4, error bars=SEM. (Fig.1.3D) 

Side population analysis in cells stimulated with WNT1 ligand for 1 hr shows, a ~40% & ~20% 

increase in the side population pool in Sdc-1 depleted Caco2 and HT29 cells respectively 

compared to the untreated cells. Treatment with the WNT inhibitor IWP-2 abolishes the Sdc-

1dependent increase in the SP. a=p<0.05 compared to DMSO control, b=p<0.01 compared to 

DMSO Sdc-1 siRNA, c= p<0.01 compared to WNT1 Sdc-1 siRNA, n≥3, error bars = SEM. 

 

3.1.4 Sdc-1 knockdown induces an EMT-like phenotype in colon cancer cells. 

The process of epithelial-to-mesenchymal transition (EMT) is an important contributing factor to 

the acquisition of an invasive phenotype in cancer. Notably, EMT has been linked to a CSC 

phenotype, and it has been suggested that EMT may trigger reversion of into a CSC-like 

phenotype (Singh A et al., 2010; Götte M et al., 2010; Scheel C et al., 2012; Findlay VJ et al., 

2014). Histopathological investigations have demonstrated that a reduced expression of Sdc-1 is 

associated with a more advanced TNM stage and lymph node metastasis in colon cancer 

(Hashimoto Y et al., 2008;  Pap Z et al., 2009;  Mennerich D et al., 2004). Owing to the critical 

role of EMT-related invasiveness and a potentially linked CSC function, we assessed the 

invasiveness of Sdc-1depleted cells using the Matrigel invasion chamber assay. Sdc-1 knockdown 

substantially increased invasiveness of Caco2 cells compared to controls (Fig.1.4A). Notably, 

increased invasiveness of Sdc-1depleted cells was associated with a decreased expression of the 

epithelial homotypic cell adhesion molecule E-cadherin, a known suppressor of metastasis (Miyaki 

M et al., 1995). Dedifferentiation and decreased expression of adhesion molecules, E-cadherin and 

ZO-1, in colorectal cancer are closely related to liver metastasis (Karamitopoulou E et al., 2011) as 

revealed by Western blotting (Fig.1.4B). Consistent with this finding, the mRNA expression of the 

EMT-related mesenchymal markers Snail, vimentin, fibronectin and ZEB2 was significantly 

upregulated, and expression of the EMT-related microRNAs miR-10b and miR-200b (Scheel et al., 

and Weinberg et al., 2012) was significantly downregulated in Sdc-1-depleted Caco2 cells 
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compared to controls (Fig.1.4C). These data are in accordance with the previously observed 

inverse correlation of Snail and Sdc-1 expression in prostate cancer (Poblete CE et al., 2014). This 

suggest that altered EMT may contribute to the invasion-related phenotype of Sdc-1depleted colon 

cancer cells.  

 

 

 
Figure 1.4. Silencing of Sdc-1 increases EMT-associated functional and molecular changes in 

Caco2 cells. (Fig.1.4A) Sdc-1 knockdown significantly increases matrigel invasion by 3.8 fold 

in Caco2 cells. (error bars=SEM N=4 ** ** P<0.01 Left panel = representative images of stained 

matrigel matrix filters. t = 72 h. (Fig.1.4B) Western blot analysis reveals the decreased

expression of E-cadherin upon Sdc-1 knockdown compared to the controls. Data shown are 

triplicates from a single experiment representative of three independent experiments. (Fig.1.4C) 

SYBR green and TaqMan® qPCR analysis of EMT regulator genes in Sdc-1 silenced Caco2 

cells indicates a significant increase in EMT- related genes (like Snail, Vimentin, Zeb-2, 

fibronectin), and a significant decrease in the expression of the EMT-related microRNAs miR-

10b and miR-200b. N=9, error bars=SEM, *=P<0.05, **=P<0.01, ***=P<0.001. 

 

3.1.5 Sdc-1 depletion results in an increased activation of integrin signaling in colon cancer 

cells. 

To understand the possible molecular mechanisms by which Sdc-1 depletion may mediate an 

invasive CSC phenotype, we performed a transcriptomic Affymetrix microarray analysis for 
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control and Sdc-1 siRNA-treated Caco2 cells. Affymetrix gene array analysis was performed by 

our collaboration partners (Prof. Dr. G.W. Yip and colleagues) at the Department of Anatomy, 

National University of Singapore. The initial sample preparation steps and independent target 

confirmation were performed by Sampath Kumar Katakam. 22 genes were significantly 

upregulated and 48 genes downregulated in Sdc-1depleted cells by at least a factor of 1.5 

(Fig.1.5A) Differentially regulated genes were placed into categories based on their Gene 

Ontology annotations (Fig.1.5B) and candidate genes potentially involved in Sdc-1 dependent 

phenotypic changes were further analysed. Notably, genes involved in cell adhesion, cell motility 

and integrin-mediated signaling were differentially regulated (Fig.1.5 B, C) in accordance with 

altered invasiveness of Sdc-1depleted cells and with a role of integrin-matrix-interactions in cancer 

stem cell function (Farahani E et al., 2014). By qPCR, we could independently confirm 

upregulation of the integrin subunit ITGA2, of the integrin substrate fibronectin, and of the RhoA 

modulator ARHGAP28 in Sdc-1depleted cells (Fig.1.5 C). The retinoic acid inducible orphan 

receptor GPRC5A/RAI3 is upregulated in colon cancer  (Zougman A et al., 2013) and was found to 

by dysregulated upon Sdc-1 knockdown according to our Affymetrix screening. At the functional 

level, we were able to demonstrate that siRNA knockdown of GPRC5A significantly reduced the 

impact of Sdc-1 knockdown on cell proliferation (Fig.1.5 D). Importantly, flow cytometric 

analysis revealed a significantly increased expression of the active conformation of beta1 integrin 

in Sdc-1depleted colon cancer cells (Fig.1.5 E,F). As these data suggested an upregulation and 

increased activation of integrin-mediated signaling in Sdc-1 siRNA-treated cells, we investigated 

focal adhesion kinase (FAK) activation as a downstream readout of integrin activation. Western 

blotting revealed an increased phosphorylation of FAK in Sdc-1depleted Caco2 (Fig.1.5 G) and 

HT29 (Fig.1.5 H) cells. Interestingly, enzymatic degradation of heparan sulfate by heparinases 

also resulted in increased FAK activation, suggesting a potential role of the heparan sulfate chains 

of Sdc-1 in this process (Fig.1.5 I). As the active conformation of beta1 integrin was expressed 

more prominently in Sdc-1depleted cells (Fig.1.5 E,F), we next tested a potential influence on 

adhesion to its substrate fibronectin (upregulated in Sdc-1depleted cells). Adhesion of Sdc-

1depleted Caco2 and HT29 cells to fibronectin was significantly increased compared to controls 

(Fig.1.5 J). Pretreatment of the cells with the peptide GRGDSP, which contains the RGD integrin 

binding site of fibronectin, abolished the differentially increased adhesion caused by Sdc-1 

knockdown, thus demonstrating the importance for increased beta1 integrin activation on Sdc-1 

modulated cell adhesion.  
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Figure 1.5. siRNA knockdown of Syndecan-1 results in activation and upregulation of integrin-

associated pathways. A-C) Affymetrix microarray analysis for differential gene expression 

between control and Sdc-1 siRNA-transfected Caco2 cells. cDNA generated from control and 
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Sdc-1 siRNA-treated cells was subjected to Affymetrix microarray analysis. Differentially 

expressed genes were selected based on the criteria of p < 0.05 after Benjamini–Hochberg 

correction. (Fig.1.5A) Volcano plot of genes with at least a two fold change in expression levels 

in syndecan-1 silencing cells compared against control, with p < 0.05 (black triangles). (Fig.1.5B) 

Gene Ontology groupings of up- and downregulated genes detected in the Affymetrix microarray 

screen that have known functions relevant to the observed phenotypic changes (Fig.1.5C). 

Confirmation of differential gene expression of ITGA2, FN1 and ARHGAP28 by S Y B R  

g r e e n  qPCR analysis in Sdc-1 siRNA- vs. control-transfected Caco2 colon cancer cells. *p < 

0.05, **p < 0.01, n=9, error bar = SEM. (Fig.1.5D) MTT assay. siRNA knockdown of GPRC5A 

abolishes the increase in cell viability caused by Sdc-1 siRNA knockdown. *p < 0.05, n=3, error 

bar = SEM (Fig.1.5E) Flow cytometric detection of the active conformation of human β1 integrin 

reveals the presence of higher amounts of active integrin in Sdc-1depleted cells. (Fig.1.5F) 

Quantitative analysis of active ß1 integrin expression reveals a 40% and 50% increase in Sdc-

1depleted Caco2 and HT29 cells, respectively, compared to controls. n=3, error bar = SEM, 

*p < 0.05. Representative plot of flow cytometric analysis.Western blot analysis of FAK 

phosphorylation in Caco2 (Fig.1.5G) and HT29 (Fig.1.5H) cells shows increase in 

phosphorylation levels upon Sdc-1 knockdown in both the cell lines. Data shown are 

triplicates from a single experiment representative of three independent experiments. (Fig.1.5I) 

Treatment of control and Sdc-1 knockdown Caco2 cells with Heparinase I & III shows an 

increase in FAK phosphorylation levels. Data shown are duplicates from a single experiment 

representative of two independent experiments. (Fig.1.5J) Cell adhesion to the ECM substrate 

fibronectin is significantly increased upon Sdc-1 silencing. Interference with integrin-fibronectin 

interactions using the GRGDSP peptide (RGD) results in a strong inhibitory effect on both 

control and Sdc-1 depleted cells. N=18, Error bars = SEM, *** =p <0.001, *= p <0.05. 

 

3.1.6 Increased FAK activation in Sdc-1depleted cells is mechanistically related to the 

augmented CSC phenotype. 

Several reports have provided evidence for a role of beta1 integrin and FAK-mediated signaling in 

mediating EMT and stemness related cellular functions in breast cancer, squamous cell carcinoma, 

colon cancer and additional tumor entities (Luo M et al., 2009; Schober M et al., 2011; Ashton GH 

et al., 2010; Shibue T et al., 2009) As FAK activation was increased in Sdc-1 depleted cells, we 

hypothesized that a possible mechanistic link to the augmented stem cell phenotype in these cells.  

Application of the FAK inhibitor PF-562271 (Roberts WG et al., 2008) lowered the increased 

expression of TCF7L2/TCF-4 at the mRNA and protein levels in Sdc-1 depleted Caco2-cells 
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compared to controls (Fig.1.6 A, B). Notably, the increased SP observed in Sdc-1 depleted Caco2 

and HT29 cells was abolished by FAK inhibitor treatment (Fig.1.6 C). Moreover, the differentially 

increased ALDH1 activity of Sdc-1 knockdown Caco2 cells could be blocked by PF-562271 

(Fig.1.6 D). At the gene expression level, FAK inhibition abolished the Sdc-1dependent increase 

of LGR5, EPCAM, CD133 and NANOG expression relative to controls (Fig.1.6 E). Finally, we 

could demonstrate that FAK inhibition significantly inhibited the substantial increase in the sphere 

formation capacity of Sdc-1 depleted Caco2 cells (Fig.1.6 F,G). Overall, our results show that Sdc-

1 and FAK drive the self-renewal of colon CSCs. These results strengthen our hypothesis that the 

stem cell phenotype in colon cancer cells is augmented via a FAK-Wnt signaling axis, which is 

enhanced in the absence of Sdc-1. 
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Figure 1 .6 . Impact of Sdc-1dependent FAK activation on the stem cell phenotype of human 

colon cancer cells. Pharmacological inhibition of FAK reduces Sdc-1 dependent upregulation 

of the transcription factor TCF4 (TCF7L2). (Fig.1.6 A) SYBR green qPCR analysis of 

TCF7L2 expression in control and Sdc-1 depleted Caco2 cells subjected to treatment with or 

without 10ug/ml FAK inhibitor PF-573228 (1h). Sdc-1dependent upregulation of TCF7L2 is 

reduced by FAK inhibition. ***p < 0.01, n=9, error bar = SEM. (Fig.1.6 B) Western blot analysis 

of TCF7L2 expression in Caco2 cells after 2h of treatment with 10ug/ml PF-573228 shows a 

decrease in expression levels upon Sdc-1 knockdown. Data shown are duplicates from a single 

experiment representative of three independent experiments. (Fig.1.6 C). FAK inhibitor treatment 

decreases the Sdc-1 dependent increase in the side population of Caco2 and HT29 cells. n=3-6 

P=<0.05 error bars=SEM (Fig.1.6 D) FAK inhibitor treatment decreases the Sdc-1dependent 

increase in ALDH activity in Caco2 cells. n=3-6 P=<0.05 error bars=SEM (Fig.1.6 E). SYBR 

green qPCR analyis reveals that increased mRNA expression of LGR5, EPCAM, CD133, NANOG, 

Sox2 and KLF2 in Sdc-1deficient Caco2 cells is abolished by FAK inhibitor treatment. **p < 0.05,  
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n= 3-6, error bars= SEM. FAK inhibition abolishes the Sdc-1-dependent increase in sphere 

forming capacity of Caco2 cells. (Fig.1.6 F). Representative micrograph of spheres formed from 

Caco2 cells subjected to +/- Sdc-1 siRNA knockdown and +/- FAK inhibitor treatment. 

(Fig.1.6G). Quantitative analysis of sphere formation as shown in (Fig.1.6 F). Sdc-1 knockdown 

results in a significant ~5 fold increase compared to controls, while FAK inhibition completely 

suppresses sphere formation in both controls and Sdc-1depleted cells. ***p < 0.001, n=3-6, error 

bar = SEM. 

 

3.1.7 Sdc-1 siRNA knockdown modulates the stem cell phenotype, but not survival in response 

to irradiation. 

We have previously shown that Sdc-1 siRNA knockdown increases the resistance of MDA-MB-

231 breast cancer cells to radiotherapy (Hassan H et al., 2013). To investigate a potential link of 

the enhanced stem cell phenotype of Sdc-1depleted colon cancer cells to radiation resistance, we 

subjected Sdc-1 depleted and control Caco2 and HT29 cells to irradiation with a therapeutically 

relevant dose of 2 Gy. Side population analysis revealed a differential impact of Sdc-1 siRNA 

knockdown on Caco2 and HT29 cells under irradiation conditions: In both cell lines, irradiation 

increased the control cell SP, whereas Sdc-1 knockdown increased the SP even further (Fig.1.7A). 

qPCR analysis of stemness-related gene expression revealed an impact of irradiation on LGR5 

expression in control cells, and a substantial increase in Sdc-1depleted cells. Expression of 

EPCAM, NANOG and KLF2 was not substantially altered by irradiation (Fig.1.7B). In accordance 

with an enhanced stem cell phenotype, an investigation of colony formation of Sdc-1depleted cells 

revealed an increased survival compared to controls. However, under irradiation conditions, 

survival was reduced both in control and Sdc-1 siRNA knockdown cells to a similar extent 

(Fig.1.7 C). As increased stemness has been linked to increased resistance to chemotherapy due to 

increased expression of multidrug resistance proteins (Ghisolfi L et al 2012; Richard V et al., 

2013), we tested the impact of cisplatin and doxorubicine treatment on the viability of Sdc-

1depleted Caco2 and HT29 cells. While Sdc-1 siRNA treatment did not alter sensitivity to 

cisplatin (results not shown), we observed an increased resistance to doxorubicine in Sdc-1 

depleted HT29 cells (Fig.1.7 D). 
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Figure 1.7. Sdc-1 depletion modulates changes in the colon cancer stem cell pool in response to 

irradiation. (Fig.1.7 A) Control and Sdc-1 siRNA-treated Caco2 and HT29 cells were subjected 

to irradiation of 2 Gy. After 4 h of radiation, the side population was analyzed by flow 

cytometry. a=p<0.05 compared to unirradiated control, b=p<0.01 compared to unirradiated 

control.  n≥3, error bars = SEM. (n=3-6, *=P<0.05B). (Fig.1.7 B) Radiation with 2 Gy induces 

significant increases in the expression of the stem cell markers LGR5, EPCAM, NANOG, and 

KLF2, as assessed by SYBR green RT-PCR (n=3-6, *=p<0.05). (Fig.1.7 C) Colony survival 

assay shows an increase in the survival rate upon Sdc-1 knockdown in both the cell lines 

Irradiation significantly reduces the colony survival rate independent of Sdc-1 (n=3-6, *=P<0.05, 

**=P<0.01). (Fig.1.7 D) Sdc-1 depleted HT29 cells shows increased resistance to doxorubicin in 

Sdc-1 depleted HT29 cells. 

                        

1.7A) 1.7B)

1.7C) 1.7D)
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3.1.8 The impact of Sdc-1 depletion on the CSC phenotype is substantially enhanced by SP 

enrichment. 

We next asked the question if the stemness-associated phenotype of Sdc-1 depleted colon cancer 

cells could be enhanced by sorting of the side population and subsequent culturing in specialized 

stem cell media. Upon SP enrichment and subsequent culturing in Mammocult media, we saw a 

significant increase in the SP levels and CD133 expression in Sdc-1depleted cells, whereas the 

increase ALDH activity was non statistically significant (p=0.13) (Fig.1.8 A,B ).Consistent with 

this observation, by using two different kinds of media Mammocult media (adherent conditions) 

and sphere media (suspension), we observed an increase in the ability of the Sdc-1 depleted sorted 

cells to form tumorospheres when grown in suspension culture (Fig.1.8 C,D) indicating increased 

self-renewal (a fundamental characteristic of stem cells. In the cells cultured in Mammocult media 

we saw an increase in pFAK (Fig.1.8 E) and TCF4 (Fig.1.8 F) expression in Sdc-1 depleted SP 

sorted cells compared to SP control cells. And also we observed an increase in the number of 

colonies in irradiated Caco2 cells upon Sdc-1 siRNA knockdown, indicating that Sdc-1depletion 

renders SP-enriched cells more radioresistant (Fig.1.8 G). 
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     Figure 1.8. Side population-enrichment and culturing in MammoCult media enhance the cell 

phenotype of Sdc-1 silenced Caco2 cells. The side population of Caco2 cells was sorted by flow 

cytometer, cultured in MammoCult or Sphere media respectively and re-analyzed for stemness-

associated parameters. (Fig.1.8 A, B) The side population and CD133 of Sdc-1 depleted Caco2 cells 

cultured in Mammocult shows a significant increase of ~3 and ~1.5 folds. *=p>0.05, n=3, error 

bars=SEM. (Fig.1.8 C) Sdc-1depleted side population enriched Caco2 cells showed increased cell 

numbers/plated cell in MammoCult media, and increased sphere numbers when cultured in 

sphere media. Representative morphology of Caco2 cells cultured in MammoCult or sphere 

media, respectively. (Fig.1.8 D) Quantitative analysis of cell and sphere numbers in SP enriched 

Sdc-1silenced and control Caco2 cells cultured in sphere or MammoCult media, respectively. 

*=p>0.05, n=3, error bars=SEM (Fig.1.8 E,F) Increased expression of pFAK and Tcf4 in SP-

enriched Sdc-1depleted Caco2 cells cultured in Mammocult media as analyzed by western 

blotting. (Fig.1.8 G) Sdc-1depleted SP enriched Caco2 cells cultured in Mammocult media 

show a substantial increase in the colony survival rate, with an increased survival rate after

irradiation compared to controls (compare with Figure 1 . 7C). Data are expressed as mean 

percentage +/- SEM relative to the controls (set to 100%) (n=3, *=P< 0.05, **=P< 0.01). 

 

     3.1.9 Loss of Sdc-1 increases the colon cancer tumorigenicity in vivo 

    To assess the loss of Sdc-1 response to tumorigenicity we implanted Sdc-siRNA and control siRNA   

treated HT29 cells in NOD/SCID mice. In vivo xenograft experiments were performed by our 

collaboration partners (Dr. Rolland Reinbold and colleagues) at the ITN, Segrate, Milan, Italy, with 

help by Sampath Kumar Katakam. We found an increase in tumor growth, suggesting that loss of 
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Sdc-1 significantly increased tumorigenicity in vivo which could be becuase of the presence of 

tumor initiating cells (Fig.1.9 ). 

 

 
Figure 1.9. Sdc-1 depletion increases colon cancer tumorigenicity in vivo. Control and Sdc-1 

siRNA-treated HT29 cells were injected into NOD/SCID mice. Increase in tumor growth was 

observed from day 48 to day 55.(n=3,**=P< 0.01***=P<0.001).  
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3.2 Part 2: Functional interplay of heparanase and Syndecan-1 in colon CSCs. 

 

3.2.1 Loss of Sdc-1 regulates the expression of HPSE. 

During tumor progression, specific sets of genes control the regulation of heparan sulfate 

proteoglycans and their associated enzymes. (Yang Y et al., 2007; Peretti T et al., 2008). Previously, 

we showed that expression of HS3ST2 (Vijaya Kumar A et al., 2014) and HS2ST1 (Vijaya Kumar 

A, 2014) to have a profound effect on breast cancer cell malignancy. Gene array analysis and 

confirmatory qPCR of Sdc-1siRNA transfected MDA-MB-231 breast cancer cells previously 

showed an increase in the transcription levels of HPSE compared to the controls (Ibrahim et al., 

2012). Transcriptional studies show that loss of Sdc-1 (Fujiya M et al., 2001; Lundin M et al., 2005; 

Wang H et al., 2010) and enhanced expression of HPSE (Lerner I et al., 2011; Doviner V et al., 

2006; Nobuhisa T et al., 2005) correlates with tumor growth, invasion metastatic potential, and 

reduced postoperative survival of cancer patients (Mikami S et al., 2001). With these changes in the 

expression patterns of Syndecan-1 and heparanase, we hypothesized that loss of Syndecan-1 may 

regulate the heparanase levels in colon cancer cells. To test our hypothesis, we used human Caco2 

cells as an in vitro system. Interestingly, it was previously shown that induction of oncogenes Ras 

and SRC in Caco2 cells showed a decrease in the expression of Syndecan-1 and an increase in the 

heparanase activity. (Lévy P et al., 1997). In a first step we attempted to verify altered expression 

by quantitative real-time PCR. We found that knockdown of Syndecan-1 in Caco2 and COLO205 

cells upregulated the mRNA expression of heparanase, whereas this effect was not seen in HT29 

cells (Fig 2.1A). When Syndecan-1 was overexpressed ectopically, heparanase expression was also 

markedly rescued in Caco2 and HT29 cells (Fig 2.1B) These results suggested that HT29 might 

employ a different mechanism contributing to heparanase-promoted cell invasion. Syndecan-1-

depleted Caco2 cells were next tested for heparanase activity using an assay based on the 

measurement of heparanase-induced degradation of biotinylated-HS fragments (b-HS). In this assay, 

heparanase degrades a b-HS fragment, which is specifically designed so that it does not bind to FGF 

when degraded by heparanase, thus resulting in a lower strepatavidin-HRP signal. By this method, 

we were able to distinctly measure a 34% increase in the activity of Sdc-1siRNA Caco2 cells 

compared to controls, whereas in HT29 cells, Sdc-1siRNA showed no significant difference in 

heparanase activity (Fig 2.1C) Thus, heparanase activity correlated with Syndecan-1 expression in 
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Caco2, but not in HT29 cells. To test if the Sdc-1-dependent regulation of heparanase expression 

occurred at the transcriptional level, we performed a HPSE promoter luciferase reporter assay 

(Baraz L et al., 2006). We found that the promoter activity was significantly increased in Sdc-1 

siRNA-treated cells compared to the control siRNA (Fig 2.1D). To test if the transcriptional 

increase of heparanase has a role in cancer cell invasiveness, we performed matrigel invasion 

chamber assays. Consistent with previous findings, knockdown of Sdc-1 expression dramatically 

increased the cell invasiveness. The influence of heparanase in contributing to invasiveness was 

determined by treating the Sdc-1siRNA and control siRNA transfected cells with an inhibitor that 

targets heparanase activity, SST0001.   Previous reports have highlighted the therapeutic role of this 

non-anticoagulant N- acetylated glycol split heparin in myeloma (SST0001, a Chemically Modified 

Heparin, Inhibits Myeloma Growth and Angiogenesis via Disruption of the Heparanase/Syndecan-1 

(Joseph P et al., 2011). Interestingly, a decrease of ∼50% in colon cancer cell invasion was observed 

upon SST0001 inhibitor treatment, suggesting that the increase in heparanase expression contributes 

to the increased invasion of Sdc-1 knockdown cells (Fig 2.1E). To test a possible influence of 

MMP’s in the Sdc-1-mediated invasion phenotype, we performed gelatin zymography using the 

conditioned media obtained from the invasion assay. We did not observe any significant difference 

in the activity of MMP2 and MMP9, suggesting that the influence of heparanase in invasion of Sdc-

1-depleted cells is indeed stronger than a possible effect of gelatinolytic MMPs (Fig 2.1F). qPCR 

analysis revealed no strong effect on the expression of several MMPs, whereas TIMP1 expression 

was decreased (Fig 2.1G). Overall, the moderate transcriptional up- and downregulation of several 

proteolytic factors was not uniform and did not indicate a preferential direction. Taken together, 

these results indicated that decreased expression of Syndecan-1 regulate the activation of 

heparanase transcription, playing a critical role in the promotion of invasiveness of colon cancer 

cells. 
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Figure 2.1. Sdc-1 depletion increases HPSE expression. 

(Fig 2.1A) TaqMan® qPCR analysis of HPSE expression with Sdc-1KD in Caco2, COLO 

205 and HT29 cells shows a highly significant increase of 2.6, 2.2 folds in Caco2 and COLO 

205, respectively while in HT29, a significant decrease of ∼50% in HPSE expression was 

observed  compared to controls. N=9, error bars=SEM, *=P<0.05, **=P<0.01, ***=P<0.001 
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(Fig 2.1B) qPCR analysis of HPSE expression with Sdc-1 over expression in Caco2 shows a 

significant decrease of 35% whereas in HT29 cells showed a significant increase of 2.1 folds 

compared to controls. N=9, error bars=SEM, *=P<0.05. (Fig 2.1C) HPSE activity was 

determined by comparison with known standard concentrations using heparan degrading 

enzyme assay kit (Takara Mirus Biomedical Inc., Madison, WI). Sdc-1siRNA KD showed a 

significant increase of 34% in the activity of HPSE compared to the controls in Caco2 cells 

whereas Sdc-1siRNA treatment in HT29 caused no significant difference in the activity. Data 

are representative of three independent experiments performed. N=3, error bars=SEM, 

*=P<0.05. (Fig 2.1D) Heparanase activity was determined by luciferase assay using the 

heparanase promoter (HPSE-LUC). The relative light units in each sample were normalized 

against beta-galactosidase activity, measured by a colorimetric assay. Sdc-1KD showed a 

significant increase of 2.5 folds in heparanase activity compared to controls. N=15, error 

bars=SEM, *=P<0.05. Each transfection was carried out in triplicate and the data are 

representative four independent experiments performed. (Fig 2.1E) Sdc-1KD significantly 

increased invasion by 4.1 folds in Caco2 cells compared to controls whereas a highly significant 

decrease of ∼50% in invasion was observed upon  SST0001 inhibitor treatment. Representative 

images of stained matrigel matrix filters. t=72hrs. Data are representative of one of the three 

independent experiments performed. N=4, error bars=SEM, *=P<0.05, ***=P<0.001. (Fig 2.1F) 

Gelatin zymography showed no difference in the activity of gelatinolytic proteases MMP2 and 

MMP9 suggesting the influence of HPSE in invasion. Data shown are triplicates from a single 

experiment representative of three independent experiments. (Fig 2.1G) TaqMan® qPCR 

analysis of MMPs and TIMPs in Sdc-1 silenced Caco2 showed no difference in the mRNA 

expression of MMP2, MMP9, MMP14 and TIMP2 whereas MMP14 showed a slight increase in 

the expression and TIMP1 showed a significant decrease of 31% . Data  are expressed as mean 

percentage +/- SEM relative to the controls (set to 100%) (n=3-5, *=P< 0.05, **=P< 0.01). 

 

3.2.2 EGR1 regulates HPSE promoter activity in Sdc-1 depleted cells.  

As described in the Figure 2.1D, Sdc-1 depletion positively regulates HPSE expression at the 

transcriptional level. To determine the molecular mechanisms, we first searched the HPSE promoter 

sequence for potential transcriptional regulators of in the 1.9-kB region of the HPSE promoter 

utilized in our reporter assay. Using bioinformatics search engines (Genomatix, TRANSFAC) we 

identified and selected potential transcription factors (NF-κB, SNAIL, EGR1) predicted to bind to 
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the HPSE promoter. In fact, it is known from previous studies that NF-κB and EGR1 contribute to 

the regulation of the HPSE promoter (Meirovitz A et al., 2011). To test if these transcription factors 

regulate the expression of HPSE in Sdc-1 depleted colon cancer cells, we performed promoter 

reporter assays. Transactivation studies using an NF-κB expression vector co-transfected with a 

reporter construct containing the 1.9-kB region of HPSE promoter showed a decrease in the activity 

in Sdc-1 depleted cells (Fig 2.2A). Supporting western blot analysis demonstrated a decrease in the 

expression of NF-κB in Sdc-1 depleted cells (Data not shown), suggesting that NF-κB may indeed 

act as a repressor regulating the HPSE promoter in Sdc-1 depleted cells. Next we checked the 

influence of SNAIL, using a SNAIL expression vector, co-transfected with a reporter construct 

containing the 1.9-kB region of HPSE promoter. We observed an increase in the promoter activity 

in Sdc-1 depleted cells and control cells (Fig 2.2B). Next we identified designated EGR1 binding 

sites in the 1.9-kB region of the HPSE promoter using bioinformatics analyses (see above). The 

EGR1 transcription factor is an important regulator of heparanase promoter activity. EGR1 was 

shown to control heparanase expression acting as either activator or repressor of heparanase 

transcription, depending on the cell and tissue type (de Mestre AM et al., 2005). qPCR analysis 

demonstrated an increase in the expression of EGR1 and another heparanase regulator, COX2 in 

Sdc-1 depleted cells (Fig 2.2C). It is well known that EGR1 up-regulates HPSE transcription in 

breast, prostate, and colorectal tumor cell lines, whereas in melanoma cells it represses the activity 

(de Mestre AM et al., 2005). To further investigate the expression of EGR1 at the protein level, we 

performed an immunoprecipitation (IP) assay using the anti-EGR-1 antibody. As shown in Fig 2.2D, 

we saw an increase in the expression of EGR1 in  Sdc-1siRNA- compared to control siRNA-treated 

cells. To test the role of EGR1 in Sdc-1-dependent HPSE regulation, we performed a double 

knockdown experiment using Sdc-1 and EGR1 siRNA. While we saw an increase in HPSE activity 

in Sdc-1depleted cells, the double knockdown of Sdc-1 and EGR1 resulted in decreased HPSE 

activity (Fig 2.2E). To test if this regulation was truly occurring at the promoter level, we performed 

a luciferase assay using 1.9-kB region of HPSE promoter with Sdc-1siRNA and double knock down 

of Sdc-1 and EGR1. The results were in accordance with the RT-PCR data, showing an increase in 

the promoter activity in Sdc-1 depleted cells, whereas double knock down of Sdc-1 and EGR1 

resulted in decreased activity compared to the respective controls (Fig 2.2F). 
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   Altogether, these results support the notion that EGR1 acts as a trans-activator in 

driving HPSE promoter activity in Sdc-1-depleted Caco2 cells. 

 
 

 
 

Figure2.2 Sdc-1 depletion increases HPSE expression through EGR1. 

(Fig 2.2A) An expression vector encoding human  NF-κB was co-transfected with the HPSE 

promoter (HPSE-LUC), at a ratio of 1:2. Luciferase light units and beta-galactosidase activities 

were measured 48h later. Sdc-1KD showed a significant increase of 2.2 folds in heparanase activity 

compared to the control, whereas co-transfection with NF-κB  showed  an increase in the activity 

compared to its corresponding untreated controls. N=7, error bars=SEM, *=P<0.05. (Fig 2.2B) An  
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expression vector encoding human Snail was co-transfected with the HPSE promoter (HPSE-LUC), 

at a ratio of 1:2. Luciferase light units and beta-galactosidase activities were measured 48h later. 

Sdc-1KD showed a significant increase of 2 folds in heparanase activity compared to controls 

whereas co-transfection of SNAIL showed a significant increase in the activity in both control and 

Sdc-1KD compared to the control. N=7, error bars=SEM, *=P<0.05. (Fig 2.2C) SYBR green PCR 

analysis of EGR1 and COX2 expression with Sdc-1KD in Caco2 cells shows a highly significant 

increase of 4 and 2 folds respectively compared to controls. N=9, error bars=SEM,  ***=P<0.001. 

Data are representative of three independent experiments performed. (Fig 2.2D) Protein 

homogenates were incubated with 2.5 μl anti-Egr-1 antibody as indicated, the Egr-1/antibody 

complex collected by protein A-Sepharose and solubilized. Equal aliquots were electrophoresed 

through SDS-PAGE and immunoblotted with anti-Egr-1 antibody. Immunopreciptation analysis 

showing the increased expression of EGR1 upon Sdc-1KD compared to the controls. Data shown 

are singlet, representative of three independent experiments. (Fig 2.2E) SYBR green qPCR analysis 

of EGR1 expression with Sdc-1KD in Caco2 cells shows a highly significant increase of 4 folds 

whereas upon Sdc-1siRNA and Egr1siRNA, there is a 40% decrease compared to controls. N=9, 

error bars=SEM,  ***=P<0.001. (Fig 2.2F)Sdc-1KD showed a significant increase of 2 folds in 

HPSE promoter (HPSE-LUC) activity compared to controls whereas with double knock down of 

Sdc-1 and EGR1 showed a decrease in the activity compared to corresponding controls. With the 

Sdc-1 and EGR1 double knock down there is a significant decrease in the activity compared to Sdc-

1siRNA control. N>4, error bars=SEM, *=P<0.05. 

  

3.2.3 EGR1/FAK cross-talk regulates the expression of HPSE in Sdc-1-depleted cells. 

We next wanted want to look into the molecular consequences of altered HPSE expression in Sdc-1 

knock down cells. Previously, we saw that loss of Syndecan-1 in Caco2 cells resulted in changes in 

integrin activity with a concomitant increased phosphorylation  of FAK (see results, Part 1). To test 

if FAK might be contributing to the HPSE regulation in Sdc-1-depleted cells, we used a FAK 

inhibitor (PF-562271).  Treatment of Sdc-1 siRNA and control siRNA transfected cells with FAK 

inhibitor decreased the expression of HPSE as analyzed by qPCR (Figure 2.3A). Further, we 

checked the influence of FAK inhibition on the enzymatic activity of HPSE. Treatment with PF-

562271 showed only a minor decrease in HPSE activity in Sdc-1-depleted cells compared to the 

controls, suggesting that the regulation occurs predominantly at the mRNA level (Figure 2.3B). It is 

observed that integrin-dependent signals are involved in regulating EGR1 expression. Moreover, 

EGR1 transcription has been previously linked to Erk1/2 MAPK activity acting on the EGR1 
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promoter (Cabodi S et al., 2009). We therefore asked if FAK may also be involved in EGR1 

regulation. As analyzed by qPCR a moderate decrease in the expression of EGR1 was observed 

upon FAK inhibitor treatment compared to untreated Sdc-1 KD cells (Figure 2.3C). To determine 

which signal acts first in this regulatory axis, we performed a double knockdown experiment using 

Sdc-1 and EGR1 siRNAs. Western blot analysis of Sdc-1 KD cells revealed an increase in FAK 

phosphorylation while using siRNA targeting EGR1, a decrease in FAK phosphorylation was 

observed compared to Sdc-1siRNA alone. A further decrease in phosphorylation levels was evident 

upon Sdc-1 and EGR1 double KD (Figure 2.3D). This result suggests that loss of Sdc-1 increases 

the expression of EGR1, which further regulates  phosphorylation of FAK, probably in an indirect 

manner. These data indicate that the classic focal adhesion pathway is involved in transcriptional 

activation of heparanase through the transcription factor EGR1. 

 
Figure 2.3. An EGR1-FAK feedback loop is involved in regulating HPSE expression in Sdc-1 

depleted cells. 

(Fig 2.3A) TaqMan® qPCR analysis of HPSE expression in Sdc-1KD Caco2 cells showed an 

increase of 2.4 fold whereas treatment, with 10ug/ml PF-573228 inhibitor for 1hr decreased the 

expression compared to the control. N=4, error bars=SEM, *=P<0.05. (Fig 2.3B) Sdc-1KD cells 

show a significant increase of 31% in heparanase activity. Note that the reduction of labeled 

substrate corresponds to an increase in enzyme activity. With PF-573228 inhibitor treatment for 

6hrs the activity decreased compared to the control. N=3, error bars=SEM, *=P<0.05. (Fig 2.3C) 
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Upon Sdc-1KD, a significant increase of 3.8 fold in the expression of EGR1 was observed, while 

PF-573228 inhibitor treatment for 1hr decreased its expression. (Fig 2.3D) Western blot analysis of 

Sdc-1 KD cells showed an increase in FAK phosphorylation, while using siRNA targeting Egr1, a 

decrease in FAK phosphorylation was observed compared to Sdc-1siRNA. A further decrease in 

phosphorylation levels was evident upon Sdc-1: Egr1 double KD. Data shown are representative of 

three independent experiments. 

 

3.2.4 Role of the Syndecan-1 and heparanase axis in cancer stem cell signatures. 

  We next wanted to address the question whether the Sdc-1-HPSE regulatory mechanism affects 

the phenotype and functional properties of Cancer stem cells. In the first part of the results section, 

we had demonstrated that Sdc-1 regulates the stem cell population in colon cancer cells. So to this 

end, we tested the hypothesis if increased expression of HPSE controls the stemness in Sdc-1-

depleted cells.  Flow cytometric analysis had previously shown an increase in the SP phenotype 

with Sdc-1 silencing in Caco2 and HT29 (Results, Part 1). Interestingly, treating Caco2 cells with 

the HPSE inhibitor SST0001 effectively inhibited the side population compared to untreated Sdc-1 

KD cells, while only a slight decrease in the SP was observed in inhibitor-treated Sdc-1 KD HT29 

cells compared to untreated controls (Fig 2.4A). To further identify the stem cell targets, we 

screened for a panel of genes and we found that VIM, LGR5, CD-133, NANOG and SOX2 were 

upregulated upon Sdc-1 KD, whereas upon SST0001 treatment this upregulation of stemness-

associated genes was abolished (Fig 2.4B). 
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Figure 2.4 Inhibition of HPSE abolishes the Sdc-1-dependent enhancement of a colon CSC 

phenotype. 

(Fig 2.4A) Quantitative SP analysis revealed a 30% and 35% increase in Sdc-1-depleted Caco2 

and HT29 cells compared to siRNA controls. Treating Caco2 cells with HPSE inhibitor 

(SST0001) for 1 hr effectively inhibits the side population by 50% compared to Sdc-1KD 

treated and its corresponding untreated control. An 11% decrease in the SP was observed in 

inhibitor treated Sdc-1 KD HT29 cells compared to its corresponding untreated control. N=3, 

error bars=SEM, *=P<0.05, **=p≤0.01, error bars=SEM. (Fig 2.3B) Increased mRNA 

expression of VIM, LGR5, CD-133, NANOG and SOX2 in Sdc-1 deficient Caco2 cells was 

observed by SYBR green qPCR analysis, while treatment with SST0001 abolished this increase. 

N= 3-6 , error bars= SEM.   

3.2.5 Enhanced HPSE expression decreases Sdc-1 expression.  

To further evaluate the role of heparanase in colon cancer, we performed gain-of-function studies 

by generating transfected cell pools that stably express human heparanase (HPSE) and 

enzymatically inactive mutant heparanase (mut-HPSE-dominant HPSE). We confirmed increased 

expression levels of heparanase by qPCR (Fig 2.5A). Next, we sought to determine whether 
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upregulation of heparanase influences the expression of genes that are involved in the Sdc-

1dependent regulation of heparanase. As heparanase is firmly related to the process of syndecan-1 

shedding (Mahtouk K et al., 2007) we checked the expression of Syndecan-1 by qPCR  and we 

found a decrease in its expression. While two other heparanase regulators, EGR1 and COX2 (Lerner 

I et al., 2011) were decreased in the heparanase overexpressiong clones, these data did not reach 

statistical significance (Fig 2.5B). The decreased syndecan-1 expression was further confirmed by 

flow cytometry in heparanase overexpressing cell clones. This finding may support the concept that 

heparanase sheds the Syndecan-1 ectodomain, an important trigger of the switch from autocrine to 

paracrine signaling (Wang H et al., 2001)(Fig 2.5C). In addition to its catalytic activity, heparanase 

promotes the expression of other glycosaminoglycan processing enzymes. For example, it was 

shown that heparanase influences the expression of HS editing enzymes of the Sulf family (Escobar 

Galvis ML et al., 2007; Hammond E et al., 2014). When we examined HPSE and mut-HPSE clones 

by qPCR analysis, we observed an increase in the expression of SULF1 and SULF2 and a decrease 

in the expression of HS2ST1 relative to vector controls (Fig 2.5D). It has been observed that these 

genes are involved in enzymatic modification of HS, promoting tumor growth and progression by 

enhancement of protumorigenic signaling events (Lai JP et al., 2008; Uchimura K et al., 2006; 

Vijaya Kumar A, 2014).  
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Figure 2.5. Increased expression of HPSE decreases Sdc-1 expression. 

(Fig 2.5A) Caco2 cells were stably transfected with pcDNA 3.1 vector, HPSE and mut- HPSE cDNA. 

Confirmation of increased expression by TaqMan® qPCR analysis showed a highly significant 

increase of 6.5 and 5 fold expression of HPSE and mut-HPSE  compared to the vector (pcDNA3). 

N=9, error bars=SEM, ***=P<0.001. (Fig 2.5B) HPSE induces a significant decrease of 40% in the 

expression of   Sdc-1 while there is no significant effect on EGR1 and COX2 expression. Mut-HPSE 

did not alter the expression of Sdc-1, EGR1 and COX2 as assessed by TaqMan® and SYBR green 

RT-PCR (n=3-6, *=P<0.05,). (Fig 2.5C) Representative result displaying flow cytometric analysis of 

CD138 (Sdc-1)  expression. HPSE overexpression in Caco2 cells induced a decrease in the 

expression of Sdc-1 by 35% compared to vector control. (Fig 2.5D) HPSE over expression in Caco2 

cells induced a significant increase in the expression of sulfatases, SULF1 and SULF2 by 2.5 and 4.3 

folds respectively and a decrease of 60% in the expression of a HS sulfotransferase, HS2ST1 

compared to vector control. mut-HPSE overexpression in Caco2 resulted in significant increase in the 

expression of SULF1 by 1.8 fold while no significant effect was observed in SULF2 and HS2ST1 

expression at mRNA level. (n=3-6, *=P<0.05, **=P<0.01). 
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3.2.6 Heparanase expression regulates the cancer stem cell phenotype. 

To better understand the potential role of heparanase in controlling the stemness of colon cancer 

cells, we analyzed the cancer stem cell properties by flow cytometry(Figure 2.6A). Hoechst 

33342 dye exclusion assays showed an increase of the SP in HPSE- and also interestingly in 

mut-HPSE-overexpressing clones compared to vector controls (Figure 2.6D). We next analyzed 

other colon cancer stem cell-associated parameters, the activity of ALDH isoform 1 (ALDH1) 

and the colon cancer surface marker CD133 (Figure 2.6B and 2.6C). We only detected a minor 

increase of these parameters in HPSE- and mut-HPSE overexpressing clones, while interestingly, 

we saw an increase in CD24 expression in HPSE overexpressing clones compared to vector 

(Figure 2.6E). In order to obtain a more detailed view of the possible roles of HPSE in cancer 

stemness, we examined the expression profile of various genes involved in colon CSC functions. 

Strikingly, we saw a significant increase in the expression of NANOG and KLF4 in HPSE-

transfected clones whereas mut-HPSE overexpressing cells showed an increase in NOTCH1 and 

NOTCH3 expression (Figure 2.6F). These results collectively provided further evidence that 

HPSE is involved in regulating stem-like characteristics of colon cancer cells.  
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Figure 2.6. Upregulation of HPSE enhances the colon cancer stem cell phenotype. 

(Fig 2.6A, 2.6B and 2.6C) Representative result displaying the side population phenotype, 

ALDH activity and CD133 expression. (Fig 2.6D) Quantitative analysis of the SP revealed a 8.2 

fold and 8 fold increase in HPSE and mut-HPSE overexpressing clones, respectively. n≥3, error 

bars=SEM, ***=P<0.001. (Fig 2.6E) Fluorescence intensity of ALDH and CD133 did not show 

a difference, whereas CD24 revealed a 4 folds increase in HPSE compared to vector and mut-

HPSE over expressing clones. n≥3, error bars=SEM. (Fig 2.6F) SYBR green qPCR analysis. 

HPSE overexpression in Caco2 induced a significant increase in the mRNA expression of 

NANOG and KLF4 by 3.2 and 3.6 folds, respectively, while no significant effect was observed in 

SNAIL, NOTCH1 and NOTCH3 compared to vector control. mut-HPSE over expression in 

Caco2 resulted in significant increase in the expression of NANOG and NOTCH1 by 3.4  and 2.5 

folds while no effect was observed in SNAIL, KLF4 and NOTCH3 expression at mRNA level. 

N=9, error bars=SEM, *=P<0.05, **=P<0.01, ***=P<0.001. 

 

3.2.7 Enhanced heparanase decreases the sphere formation ability in colon cancer cells. 

 In striking contrast to the phenotypic marker characterization, the HPSE-overexpressing cells 

failed to form spheres (Figure 2.7B and 2.7C). In contrast, in cells overexpressing the dominant-

negative mutant of HPSE, we observed no difference compared to vector controls (Fig 2.7C). 

Therefore, the enzymatically active form of HPSE may remodel the ECM and in turn the cells 

may lose the ability to generate spheres under suspension culture conditions. Having found that, 
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we attempted to further investigate this effect by using heparanase inhibitor (SST0001) in 

untransfected Caco2 and HT29 cells, followed by sphere formation assays (Fig 2.7D). 

Surprisingly, we saw a decrease in sphere formation with SST0001 in both Caco2 and HT29 

cells at the physiological expression levels of heparanase. 
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Figure 2.7. Increased expression of enzymatically active HPSE decreases colonosphere 

formation. 

 (Fig 2.7A) Representative results displaying the morphology of vector, HPSE and mut-HPSE 

transfected Caco2 cells undeer adherent culture conditions. (Fig 2.7B) Representative figure 

displays the spheres generated from the cells shown in panel 2.7A after 10 days. HPSE 

overexpression decreases the formation of spheres compared to vector and mut-HPSE cells. (Fig 

2.7C) Quantitative analysis of the sphere formation efficiency in HPSE over expressing Caco2 

resulted in a highly significant decrease in the spheres by 97% compared to control vector and 

mut-HPSE. N=9, error bars=SEM, *=P<0.05, **=P<0.01, ***=P<0.001. (Fig 2.7D) Quantitative 

analysis of the sphere formation efficiency after HPSE inhibitor (SST0001) treatment. Caco2 and 

Vector controls revealed a 25% and 20 % decrease in spheres at 5ug/ml inhibitor concentration. 

Treating the cell with  (5ug/ml) inhibitor and further adding the inhibitor (5ug/ml) to the generated 

spheres showed a 40% decrease in sphere formation in both Caco2 and vector. . Treating the cells 

with HPSE inhibitor in HPSE over expressing cell completely abolished sphere formation. mut-

HPSE showed a 10% decrease in spheres. N=9, error bars=SEM, *=P<0.05, **=P<0.01, 

***=P<0.001. 

 

3.2.8 Heparanase expression enhances WNT signaling and Integrin activation. 

   In an extension of this work, we wanted to look for the intracellular signaling pathways involved 

in heparanase-induced stem cell properties. As Wnt/b-catenin signaling is a potential direct 

downstream target for colon cancer stemness, we wanted to investigate the influence of Wnt 

signaling regulation in HPSE overexpressing cells. To test this hypothesis, we analyzed the SP in 

the presence or absence of a WNT inhibitor (IWAP2). Analysis of the side population in HPSE- 

and mut-HPSE- overexpressing Caco2 cells showed an increase of 1.8 and 1.6 fold compared to 

the vector controls.  In contrast, treatment of the cells with WNT inhibitor (IWAP2) inhibited the 

side population in HPSE overexpressing Caco2 cells compared to the untreated HPSE 

overexpressing cells (Fig 2.8A).  Furthermore, by western blot analysis we saw an increase in the 

expression of the Wnt-related transcrioption factor TCF4 in HPSE overexpressing cells compared 

to vector controls and mut-HPSE cells (Fig 2.8B). This indicates that activation of the Wnt 

signaling is crucial for enhancement of stemness activities in HPSE overexpressing cells. To 

further identify the intracellular signaling pathway underlying this phenotype, we sought to 

investigate the involvement of integrins. Western blot analysis furthermore revealed an increased 
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phosphorylation of FAK as a readout of increased integrin activation (Fig 2.8C) (Zetser A et al., 

2003). 

 
 

 
Figure 2.8. Enhanced HPSE expression modulates cancer stem cell like cells through Wnt 

and FAK signaling.  

  (Fig 2.8A) Analysis of the side population in Caco2 HPSE and mut-HPSE overexpressing cells 

showed an increase of 1.8 and 1.6 fold compared to the vector control. Treating the cells with 

WNT inhibitor (IWAP2) for 1 hr effectively inhibited the side population by 64% in HPSE 

overexpressing Caco2 cells compared to the untreated HPSE overexpressing cells, while no 

significant difference was observed in mut-HPSE over expressing clones. **=p≤0.01, n≥3, error 

bars=SEM.  (Fig 2.8B) Western blot analysis showing the increased expression of TCF7/L2 in 
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HPSE over expression Caco2 cells compared to the vector control and mut-HPSE. Data shown are 

representative of three independent experiments. (Fig 2.8C) Western blot analysis showing the 

increased expression of pFAK in HPSE overexpressing Caco2 cells compared to the vector 

control and mut-HPSE. Data shown are representative of three independent experiments. 

 

3.2.9 Influence of heparanase expression on the radio- and chemosensitivity of colon cancer 

cells. 

As FAK activation has been linked to radiation resistance (Eke I et al., 2012)  

,we further investigated the anchorage-independent growth properties of HPSE overexpressing 

cells following irradiation by colony formation assays. We saw a decrease in the number of 

colonies in HPSE and mut-HPSE overexpressing cells compared to vector controls. Irradiation 

with 2Gy showed a slight decrease in colony survival compared to the non-radiated controls 

meaning that HPSE overexpressing cells are more resistant to radiation in comparison to irradiated 

vector controls (Fig. 2.9A). In colon cancer, even though most of the chemotherapeutic regimens 

are principally sensitive, drug failures occur in highly metastatic cancers, which is attributed to 

therapeutic resistance (Dalerba, P et al., 2007)As therapeutic resistance has been linked to CSC 

properties such as high expression of multidrug resistance proteins, we wanted to investigate the 

chemo resistance properties of the HPSE overexpressing cells.  When we treated these cells with 

paclitaxel and cisplatin, surprisingly mut-HPSE overexpressing cells showed increased resistance 

to paclitaxel and cisplatin, whereas HPSE overexpressing cells did not show a clear effect 

compared to vector (Fig 2.9B and 2.9C). Taken together, our data suggest that HPSE 

overexpression is associated with changes in the resistance of colon cancer cells to chemo- and 

radiotherapy, involving a differential role for the enzymatic activity of HPSE. 
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Figure 2.9: Increased expression of HPSE influence radio- and chemo- resistance Of colon 

cancer cells. 

(Fig 2.9A)Colony survival assay showed a highly significant decrease of 63% in the survival rate 

in HPSE while only a 40% decrease was observed in mut-HPSE over expressing Caco2 cells 

compared to vector control. Irradiation of Caco2 cells with 2Gy showed a profound decrease in the 

colony survival compared to the non-radiated ones. HPSE overexpressing Caco2 cells upon 

irradiation showed a further significant decrease in the survival rate of 21% compared to its non-

radiated counterpart. N=9, error bars=SEM, *=P<0.05, **=P<0.01, ***=P<0.001. (Fig 2.9B and 

2.9C) HPSE overexpression slightly increases the sensitivity to the chemotherapeutic drug 

paclitaxel, whereas mut-HPSE overexpression increases resistance to both paclitaxel and cisplatin 

relative to vector controls. N=9, error bars=SEM, *=P<0.05, **=P<0.01, ***=P<0.001. 
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4 Discussion: 

 

4.1 Role of Sdc-1 in colon cancer stemness. 

 

    In this study, we have demonstrated a novel function of the HSPG Sdc-1 as a regulator of a 

colon CSC phenotype. siRNA-mediated knockdown of Sdc1 resulted in an increase in 

phenotypic stem cell markers (including the SP, ALDH, CD133, LGR5, SOX2, NANOG), 

acquisition of an EMT-like phenotype, and in enhanced stemness-associated properties including 

colony formation ability, sphere formation, and increased tumor growth in a xenograft model. 

These stemness-associated alterations were associated with changes in clinicopathologically 

relevant parameters, including an increase in invasiveness (partially linked to EMT), increased 

proliferation and tumor growth in vivo (potentially linked to a higher proliferative potential), 

increased resistance to chemotherapy (known to be associated with the SP phenotype (Richard V 

et al., 2013) and increased resistance to radiation (Ghisolfi L et al., 2012) in the SP-enriched 

population of Sdc1-depleted cells. Assisted by a transcriptome-wide analysis of Sdc1-depleted 

Caco2 cells, we were able to attribute the enhanced CSC phenotype to increased signaling 

through several pathways. While some aspects such as changes in cell viability could be 

functionally linked to lesser known factors such as GPRC5A (Fig.5D) (Zougman A et al., 2013), 

two major pathways appear to be closely linked to the Sdc1-dependent enhancement of the CSC 

phentoype, namely Wnt signalling and enhanced integrin/FAK activation. In deadly, remedyless 

metastatic cancers, the gain of oncogenic mutations and the loss of tumor suppressors lead to the 

oncogenic hindrance that controls the regulation of several cancer signaling pathways for 

example, Wnt (TCF4), Hedgehog (GLI code) and Notch, with differential regulation of cancer 

stemness signatures. Several publications have established and confirmed that canonical Wnt 

signaling is an important gate keeping pathway in the regulation of CSC function in colon  (Fevr 

T et al.,  2007; Guo H et al., 2014) . The key switch of theWnt signaling pathway is regulated 

depending on the tumor stage, primary growth and metastasis. In colon cancer, hyperactive 

canonical Wnt signaling is mainly involved in promoting tumor-initiating cells (tumor stemness) 

with complex oncogenic events. Wnt signaling regulated stemness associated genes induce a 

reprogramming events in cancer that promotes high invasion and metastasis (Fevr T et al., 2007; 

Vermeulen L et al., 2010; Ragusa S et al., 2014;). Cells with the highest Wnt activity were found 

to define colon CSCs (Vermeulen et al. 2010), whereas single Lgr5-positive stem cells were 

capable of building crypt-villus structures in vitro even in the absence of a mesenchymal niche 
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(Sato T et al., 2009). In fact, the Wnt/β-catenin pathway regulates growth and maintenance of 

colonospheres (Kanwar SS et al., 2010; Yeung TM et al., 2010). Notably, inhibition of the Wnt 

signaling pathway via silencing of beta-catenin was shown to decrease the chemotherapy-

resistant side-population colon cancer cells (Chikazawa N et al., 2010), underscoring the 

clinicopathological significance of this pathway.  Recent results indicate that post-translational 

glycoprotein modifications regulate colon CSCs and colon adenoma Progression in in a 

genetically altered mouse model of colon cancer through altered Wnt receptor signalling (Guo H 

et al., 2014). Data from model organisms such as Drosophila have indicated an important role for 

HS in mediating Wnt signalling (Pataki CA et al., 2015).  Notably HSPG of the Syndecan and 

Glypican families have been identified as Wnt coreceptors (Niehrs C et al., 2012). However, 

their individual roles appear to be context-dependent, as data from Syndecan-1-deficient mice 

suggest that this proteoglycan is required to maintain a Wnt-responsive mammary progenitor cell 

population (Alexander CM et al., 2000), whereas Syndecan-4 is apparently capable of inbibitng 

Wnt/beta catenin-signaling through regulation of LRP6 and R-spondin 3, as determined by gain- 

and loss-of-function experiments in mammalian cell lines and Xenopus embryos (Astudillo P et 

al., 2014). The possibility of shedding of syndecans adds further complexity, as it has been 

shown that shedding of Syndecan-1 in cancer cells can switch syndecan-dependent signalling 

responses to members of the glypican family (Ding K et al., 2005). Finally, we have recently 

shown that specific alterations in the sulfation pattern of HS, such as increased 3-O-sulfation can 

lead to an upregulation of TCF4, a transcription factor downstream of Wnt, with a resulting 

change in proliferation and invasiveness of breast cancer cells (Vijaya Kumar et al., 2014), 

indicating that changes in the fine structure of Syndecan-1 HS can also have an impact on the 

signalling response. While all of these results underscore the importance of Syndecan-1 in Wnt 

signalling in an oncological context, our data indicate that downregulation of colon cancer cell-

autonomous Syndecan-1 leads to enhanced Wnt signalling. This finding may be at least partially 

due to upregulation of the Wnt coreceptor LGR5, resulting in enhanced activation of TCF4. 

Moreover, the increased SP in Sdc-1-depleted cells would apparently be associated with a 

relative increase in Wnt signalling in the overall cell population, as stated above. Apart from an 

increased activation of the Wnt signaling pathway, we detected enhanced integrin activity in 

Sdc-1-depleted colon cancer cells, which was due to increased gene expression (ITGA2) and 

activation (beta1 integrin), respectively. Via specific interactions with ECM ligands such as 

fibronectin or laminins, these dimeric transmembrane receptors mediate cell adhesion and 

motility (Harburger DS et al., 2009) Indeed, ITGA2 enhances the metastatic activity of colon 
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cancer cells (Ferraro A et al., 2014; Chin SP et al., 2015). It was reported that PHLDA1, a 

candidate marker for epithelial stem cells in the human intestine, is regulate by modulation of 

ITGA2 expression levels. (Sakthianandeswaren A et al., 2011.) In association with the beta1 

subunit, alpha 2 -integrin expression increased tumorigenicity and loss of the differentiated 

epithelial phenotype in colon cancer. (Kirkland SC et al., 2008) (Okazaki K et al., 1998). 

Particularly β1 integrins are key regulators of proliferation and homeostasis in the intestine 

which influence signaling pathways relevant to stem cell function, oincluding the hedgehog 

pathway. (Jones RG et al., 2006) In addition, they promote metastatic behaviour in colon cancer 

cells (Fujimoto K et al., 2002; Shibue T et al., 2013). Interestingly, it was also reported that TCF-

4, which was dysregulated in our experimental system upon Sdc-1-siRNA knockdown, 

mislocalizes in the intestinal epithelia of the β1 integrin–deleted mice (Jones RG et al., 2006). 

These data provide another link between ß1 integrin function and the Wnt-signaling pathway, 

and suggest a crosstalk of the signaling pathways affected by Sdc-1-depletion in colon cancer 

cells. The demonstration that E-cadherin, which is also dysregulated upon Sdc-1-depletion, acts 

as a ligand for alpha2beta1 integrin further supports this view (Whittard JD et al., 2002) 

         Finally, enhanced expression of the ECM ligand fibronectin in Sdc-1-depleted Caco2 cells 

may have enhanced signaling via these pathways, thus enhancing both cell motility and stem 

cell properties. An important downstream signal transducer of integrin signaling is focal 

adhesion kinase, which was recently shown to co-immunoprecipitate with syndecan-1 in human 

breast cancer cells (Ibrahim SA, et al. (2012)). Consistent with previous findings in breast 

cancer cells (Ibrahim et al. 2012), and with increased integrin activation in our cells, we could 

detect enhanced activation of FAK upon Sdc-1-depletion in Caco2 cells.  Notably, enzymatic 

removal of HS also enhanced FAK signaling (Fig. 1.5E), suggesting a role of the HS chains of 

Sdc-1- in this process. These findings are of clinicopathological relevance, as overexpression of 

FAK has been demonstrated in several tumor entities, including colon cancer (Lark AL et al., 

2003). Using a pharmacological inhibitor of FAK, we could block several of the phenotypic 

changes caused by Sdc-1siRNA depletion, suggesting that increased FAK activation may be a 

pivotal point in the Sdc-1-dependent signaling network. Notably, these changes are probably not 

only linked to enhanced invasive behaviour and resistance to radiation (see Hassan H et al., 

2013, for discussion), but also to the CSC phenotype and properties: FAK was shown to be 

linked to the Wnt pathway and to regulated intestinal regeneration and tumorigenesis. It was 

required down-stream of Wnt/c-Myc signaling to induce AKT-mTOR signaling pathways and 
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promote intestinal tumorigenesis in mice following Apc tumor-suppressor loss (Ashton GH et 

al., 2010). Also, FAK regulates expression of WNT3a in human breast cancer cells, where 

down-regulation of FAK with siRNA caused decreased WNT3a transcription and increased 

WNT3a protein levels (Fonar Y et al., 2011). In addition, downregulation of FAK ctivity with 

an autophosphorylation inhibitor in colon cancer cells decreased transcription of the Wnt 

(co)receptors Frizzled and LRP5 and increased transcription of the WNT pathway inhibitor, 

Dickkopf-1 (DKK1), demonstrating that FAK also acts upstream of WNT pathway (Fonar Y et 

al., 2011). Recently, targeted deletion of FAK in mammary epithelium was shown to suppress 

mammary tumorigenesis demonstrating that FAK plays a significant role in the maintenance of 

mammary cancer stem cells (Luo M  et al., 2009). Using the mammary cancer stem cell markers 

aldehyde dehydrogenase, CD24, CD29 and CD61 it was shown that down-regulation of FAK 

reduced the stem cell pool, self-renewal sphere formation and migration of mammary cancer 

stem cells in vitro (Luo M  et al., 2009). FAK kinase activity preferentially regulated 

proliferation and tumor sphere formation of luminal progenitors, while scaffolding function of 

FAK was required for regulation of the basal mammary stem cells (Luo M et ala., 2013) 

Furthermore, down-regulation of another stemness-ssociated pathway, the Notch pathway, by 

silencing of Notch 1 expression caused a decrease of FAK and downstream AKT 

phosphorylation in MDA-231 breast cancer cells, which decreased cell migration and invasion 

(Wang J et al., 2011), demonstrating cross-talk of Notch and FAK signaling. These reports show 

novel functions of FAK in cancer stem cells and cross-talk with main cancer stem cell signaling 

pathways, and also demonstrate that both functions of FAK, kinase-dependent and kinase-

independent (scaffolding function) are critical for cancer stem cell functions and tumorigenesis. 

Another level of regulation, has been suggested based on studies on the pluripotency-associated 

transcription factor Nanog, which was also found to be dysregulated in Sdc-1-depleted cells in 

our study. Nanog was recently shown to induce FAK promoter activity (Ho B et al., 2012) and 

increased Nanog protein expression caused increase of FAK expression and induced 

tumorigenesis (Lin YL et l., 2011). Both Nanog (Lin T et al., 2005) and FAK (Golubovskaya V 

et al., 2004) transcription are repressed by p53. It was shown that inactivation of p53 increased 

induced pluripotent stem cell generation (Krizhanovsky V et al., 2009; Hong H  et al., 2009; 

Kawamura T  et al., 2009; 99–102), and p53 mutations and inactivation correlated with FAK 

overexpression in tumors (Golubovskaya VM  et al., 2008) The detailed molecular mechanisms 

of FAK and WNT interaction and cross-signaling pathways in cancer stem cells need to be 

elucidated in more detail, however, our data support the notion of a crosstalk of these pathways.  
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Figure. Role of Sdc-1 in cancer stemness - Proposed model.  

Based on our presented data, we hypothesize that, in colon cancer cell lines, down-

regulation of Sdc-1 could activate  EMT like conditions to promote tumor cell invasion, 

further regulating the stem cell like population. Loss of Sdc-1 activates  1 integrin with 

an increases in focal adhesion kinases (pFAK), could activate  EMT like conditions to 

promote tumor cell invasion, further regulating the stem cell like population. Loss of Sdc-1 

activates  1 integrin with an increases in focal adhesion kinases (pFAK), which inturn 

induces TCF4 expression promoting FAK: WNT signaling axis, driving EMT like state 

with an increase in invasion and further pushing the cells to stem cell like state. Using a 

FAK specific inhibitor (PF-573228) there is an  decrease in WNT signaling with an 

decrease in CSC signatures in a coordinated manner. 
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4.2 The Sdc-1- HPSE axis in colon cancer invasion and stemness. 
 

Further on to what have been discussed so far about the importance of syndecan-1 in cancer stem 

cell properties, the second part of the project was focused on the interplay between syndecan-1 

and heparanase in invasion and associated stemness. HSPGs are essential major components of 

the extra cellular matrix and cell surfaces, which fabricate the dynamic network in normal tissue 

architecture and homeostasis (Bernfield et al. 1999). In the tumour microenvironment, 

dysregulated expression of HSPGs and their processing enzyme heparanase has been reported in 

numerous tumor entities  (Yip GW et al. 2006 Götte and Yip, 2006). With reference to the 

clinical data, transcriptional reduction of Syndecan-1 and increase in heparanase expression has 

been observed in several cancers particularly in colon cancer enhancing tumorigenesis, invasion, 

and metastasis (Vishnu C. Ramani 2013; Mikami S 2001:Karene Mahtouk 2007; Yang Yang 

2007; Anurag Purushothaman 2011). This demonstrates the relevance, but also the complexity of 

altered expression of HSPGs and their processing enzymes in clinico-pathological settings. The 

underlying molecular mechanism of this regulation remains poorly investigated. This project 

mainly focused on the understanding of the interplay between syndecan-1 and heparanase and 

the possible molecular signaling routes. We report for the first time a new mechanism in which 

loss of Syndecan-1 regulates the expression of heparanase at the transcriptional level. This 

observation reveals new possibilities to understand the long term driven functions of syndecan-1 

and heparanase in malignancies. 

        Our results mainly emphasize that (i) loss of syndecan-1 enhances the transcriptional 

regulation of heparanase (ii) this enhanced heparanase expression increases the invasion which is 

reversed by targeting heparanase, (iii) a molecular cross talk between EGR1 and activation of 

FAK upon loss of syndecan-1 which collectively drives the heparanase expression, (iv) that this 

expression further boosts colon cancer stem cell properties, (iv) that over expression of 

heparanase enhances the colon cancer stemness with their extra cellular remodeling properties, 

and (v) that the active form of  the enzyme, heparanase inhibits the colonosphere formation 

ability. These results adds to the findings of the first part of this study on syndecan-1 and its role 

in colon  cancer stemness. Upon downregulation of syndecan-1, we observed an increase in 

heparanase expression in Caco2 and COLO 205, whereas in HT29 cells its expression decreased, 

as   measured by qPCR. The underlying causes for the decrease in HPSE expression in HT29 

cells with loss of syndecan-1 are unknown, but may be due to the difference in oncogenic 

mutations between Caco2 and HT29 (Ahmed D et al., 2013) In contrast, a rescue experiment 
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with the over expression of syndecan-1 in Caco2 showed a decrease in heparanase expression but 

an increase in HT29, which is further supported by heparanase activity assay. These observations 

indicated the existence of strong feed back mechanism. We furthermore observed an increase in 

heparanase promoter activity upon syndecan-1 KD in Caco2. Co-transfection of Caco2 cells with 

NF-κB further increased the heparanase promoter activity. Even though NF-κB regulates the 

heparanase expression positively in some contexts (Elkin et al., 2011; Deepak et al., 2015; 

Jin-Min Wu, 2005), NF-κB showed a negative regulation of HPSE promoter activity with loss of 

syndecan-1 in Caco2 cells. Notably, it was shown that increase in expression of syndecan-1 

regulates the NF-κB expression (Min CK et al., 2009) whereas loss of syndecan-1 showed 

decrease in its expression (Götte et al., 2013). This may indicate a potential role of syndecan-1-

dependent NF-κB regulation in heparanase transcription. In support of this, we have also seen a 

decrease in the NF-κB expression with the loss of syndecan-1 (data not shown). Interestingly, we 

found that SNAIL coexpression increased heparanase promoter activity, which could explain the 

EMT driven properties of heparanase. Also it is observed that SNAIL represses the expression of 

syndecan-1 (Contreras et al., 2014). So it could be that in the presence of low levels of 

syndecan-1, SNAIL positively regulates heparanase expression. As bioinformatic analyses reveal 

that there are putative binding sites for SNAIL in both syndecan-1 and heparanase promoters, it is 

tempting to suggest an active role of SNAIL in unknown feedback mechanism of syndecan-1 and 

heparanase expression. Also, increase in the EGR1, an early growth response gene expression 

with the loss of syndecan-1 correlates with the increase in HPSE expression. Based on 

mutagenesis and trans-activation studies it was shown that EGR1 binds to the heparanase 

promoter and up-regulates HPSE transcription in colon cancer cells (Hulett et al., 2005). In 

colitis and the associated tumorigenenic in vivo models it was also shown that EGR1 acts as a 

potent inducer of heparanase in colonic epithelium tumor cells  (Elkin et al., 2011). Together 

with these observations our results further support that EGR1 directly regulates HPSE 

transcription. Increase of invasion in syndecan-1 KD cells may be due to the degradation of HS 

chains, which impairs cellcell contact and cell-matrix adhesion interactions. Heparanase acts as a 

key in controlling the cell barrier with its HS degradative and syndecan-1 sheddase activity 

(Purushothaman A et al., 2008), making it worthy to think that absence of syndecan-1 at the cell 

membrane will favour proinvasive conditions. Several pharmacodynamic studies has been 

demonstrated that SST0001, a potent HPSE inhibitor to have potential anti-tumor activity in 

different cancer models. (Joseph P. Ritchie 2011: Anurag Purushothaman 2011) As heparanase 

has multiple functions in the tumor microenvironment it is worthy to think that SST0001 
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decreases the invasion of syndecan-1 depeleted cells through an unknown cascade of signaling 

events (G. Cassinelli 2013). Regarding additional factors, it was reported that EGR1 regulates 

the HGF-induced cell invasion through the coordination of MMPs in HCC cells (Evin Ozen 

2012). So the increase in EGR1 expression also may contribute to the increase in invasion in 

syndecan-1 depleted cells. However, at least in syndecan-1-depleted Caco2 cells, we observed 

only moderate changes in MMP expression and activity, suggesting that HPSE regulation may be 

the more important mechanism. At least the increase in invasion upon loss of syndecan-1 could 

be because of EGR1 expression. Moreover, it has been previously identified that heparanase 

regulates HGF expression (Ramani VC et al. 2011). So it could be possible that syndecan-1 loss 

increases heparanase expression and in turn this heparanase may regulate the HGF signaling in a 

feed back loop to control invasion of tumor cells. Furutre studies elucidating the interplay of 

Syndecan-1 and HGF in this context appear worthwhile. 

       Due to the loss of HSPG, epithelial cells lose their cell polarity, gain migratory and invasive 

properties via the process of epithelial to mesenchymal transition (EMT). Although underlying 

molecular processes remains poorly understood, it is observed that loss of syndecan-1, 

expression ehances formation of lamellipodia with an increase in invasive capabilities (Ibrahim 

et al. 2012). It is also observed that HSPG bind to several EMT-inducing factors, like TGF-b. So 

enhanced expression of heparanase may shed these bound HSPG’s which may further enhance 

EMT-like conditions (Kirkbride, K.C. et al. (2005). Also, a shift of syndecan-1 from epithelial 

cell surface to stroma might indicate the antimetastatic effects of syndecan-1 at the cancer cell 

surface where the loss of its expression can promote EMT (Mennerich, D. et al. (2004). 

Generation of the soluble form of syndecan-1 due to heparanase activity (Yang Y et al., 2007), 

may enhance EMT-associated signaling. This explains the maintenance of cell–cell contact by 

transmembrane syndecan-1 and the loss of its expression or shedding into its soluble form by 

heparanase and proteases initiates EMT properties (Nikolova, V. et al., 2009). It is observed that 

EGR1 mediates upregulation of Slug expression,and downregulates  E-cadherin, which 

consequently increases the invasive capability (Cheng JC et al., 2013). We cannot rule out the 

possibility that SNAIL represses the expression of syndecan-1 in a similar fashion to that of 

E-cadherin. Our results also clearly indicated that SNAIL increases heparanase promoter activity, 

which may further drive the EMT process (Cano A 2002). A mountain of evidence shows that 

these EMT-like conditions promote proliferation, metastasis, chemo-, immune- and radiotherapy 

resistance, all of which are relevant to cancer stem cell properties (Nieto MA et al.2012). 
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      As we previously observed in the first part of this work, the enhanced activation of integrins 

caused by loss of Syndecan-1 results in the increase of focal adhesion kinase activation. 

Therefore, we thought that FAK might be involved in the regulation of heparanase expression. 

Blocking FAK auto- phosphorylation with its potent inhibitor PF562271 decreased the 

heparanase activity in the absence of syndecan-1. It was previously reported that a heparanase 

receptor activates PI3K-AKT pathway (Anjum Riaz 2013), but it is not clear whether 

phosphorylated FAK activate the heparanase receptor.  Moreover, the authors observed that 

PF562271 effectively abolished heparanase-induced AKT activation (Anjum Riaz 2013). This is 

consistent with our results, where FAK inhibitor abolishes heparanase activity moderately. 

Notably, activation of b1 integrins concomitant with the loss of syndecan-1 may also be involved 

in the expression of EGR1. It was reported that integrin/EGFR cross-talk dependent adhesion 

signals regulate the EGR1 expression (Cabodi S et al., 2009). So, it could be that upon 

syndecan-1 loss, the beta1 integrin complex on the plasma membrane maytrigger the expression 

of the EGR1 through adhesion dependent signals, which would further lead to the activation of 

FAK. Integrin-dependent adhesion plays a role in Egr-1 regulation (Cabodi S et al., 2009). 

Overall, these data demonstrate that upon syndecan-1 loss, EGR1/pFAK cross-talk is required 

for expression of heparanase through a novel regulatory signaling cascade. In addition to this, we 

also showed that heparanase inhibitor decreased the side population in syndecan-1 depleted cells 

making it evident that loss of syndecan-1 increases the expression levels of HPSE. Whereas in 

HT29, the SST0001 didn’t show a clear effect on side population of syndecan-1 depleted cells, 

which could be explained by the fact that syndecan-1 loss decreases the heparanase levels in 

HT29 cells. Supporting to the SST0001 effect on side population of syndecan-1 depleted Caco2 

cells, we saw a decrease in the invasion associated gene (VIM) and known stem cell markers 

(VIM, LGR5, CD133, SOX2) that are know to be involved in mediating cancer stemness. These 

results for the first time showed a novel role of heparanase inhibitor SST0001 on side population 

levels. As SST0001 decreased invasion in syndecan-1 depleted cells, it is possible that genes 

involved in invasion may also further regulate the side population or it could be that SST0001 is 

directly acting on the genes associated with stemness. At least an effect with SST0001 on 

vimentin expression indicates that the process of invasion is also linked to cancer stemness. This 

is an interesting objective to further understand the molecular mechanism involved in two 

important coordinated mechanisms of cancer recurrence- invasion and cancer stemness. 
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      Forced expression of heparanase decreased the expression of syndecan-1 and also two no 

effect with  genes involved in heparanase regulation, Egr1 and Cox2. Also, as analyzed by flow 

cytometry, a decrease in syndecan-1 expression in clones with high heparanase expression 

indicates that heparanase may shed the syndecan-1 at the membrane, whereas the clones 

expressing the enzymatically inactive mutant form of heparanase didn’t show a strong decrease 

of syndecan-1.These results indicates the presence of a strong feed back loop of syndecan-1 and 

heparanase regulation in tumor malignancy. Strikingly, we report a role of heparanase in 

regulating cancer stem cell properties for the first time. The significant increase in the side 

population as a result of heparanase overexpression provides further evidence for the 

multifunctional role of heparanase in the tumor microenvironment. High levels of heparanase 

were associated with decreased SNAIL expression. Even though co-expression studies with 

SNAIL showed an increase in heparanase promoter activity, SNAIL has no influence on 

heparanase expression if cells already express high levels of heparanase as evident from the 

qPCR. Notably, at mRNA level we saw a high increase in the expression of NANOG and KLF4 

in both heparanase and mutant heparanase clones. Increase in NOTCH1 and NOTCH3 in mutant 

heparanase expressing cells could explain the reasons for the observed increase in the side 

population in dominant negative clones (Bu P, 2013). We saw a marked increase in ALDH and 

CD133 in heparanase high clones. ALDH (Shenoy A, 2012) (Emina H. Huang 2009) and CD133 

(Elsa N Garza-Treviño 2015) (Sanchita Roy 2012) are the widely accepted markers for colon 

cancer stemness along with other markers like CD24 (Ke J, 2012), CD44 etc., Particularly, CD24 

is very high in heparanase overexpressing clones. Heparanase expression is increased in human 

malignancies and in several xenografts models of human colon, breast, lung, prostate, pancreas 

and ovarian tumors (McKenzie E, 2000). So during the progression of the primary tumor 

heparanase, by promoting autocrine and paracrine signaling functions, appears to initiate 

non-stem cell epithelial cells to develop into tumor-initiating cells via the re-expression of stem 

cell markers, including pluripotency-associated transcripton factors. t is very well described that 

deeply invading colon carcinoma cells express high levels of heparanase (Friedmann, Y., et al. 

2000) and that the CSCs have post-EMT cell characteristics (Borovski T 2011). Dissociation of 

these invading cells from the basement membrane alters the dynamic cell-ECM interactions and 

the resulting signals to generate the characteristics of cancer stem cells via the process of 

epithelialmesenchymal transition (EMT). In fact, the observed over expression of SNAIL, and 

the associated increases in the heparanase promoter activity in syndecan-1 depleted cells may 

further drive the heparanase activity can trigger shedding of syndecan-1, which also acts as EMT 
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marker in some cancers.( Poblete CE et al., 2014; Zeisberg M et al., 2009). Notably, it is reported 

that heparanase is involved in a type 2 EMT process in which kidney tubule epithelial cells 

develop into myofibroblasts (Masola V, 2012). These data suggest that heparanase also may also 

influence the EMT process in a variety of tumor cells. 

           It is very well described that heparanase is involved in metastatic potential of human 

tumor cells (Vlodavsky, I, et al 1999: Hulett, MD, et al 1999; Nakajima, M 1988: Vlodavsky, I, 

et al 1994). Heparanase cleaves the HSPG, at the subendothelial basement membrane in turn 

facilitating initiation of a metastatic cascade and also tumor angiogenesis. Cleavage of HSPG by 

matrix degradation enzymes — MMPs and heparanase facilitate extravasation of bloodborne 

tumor cells by modulating growth factor activity and bioavailability for angiogenesis sprouting. 

(Israel Vlodavsky 2001). It has been estimated that during the process of metastasis few unique 

cells successfully colonize to the secondary site and spread the disease to distant organs and 

these as seeds for the secondary tumor growth formation, which is a major reason for tumor 

recurrence (Croker AK 2008; Li F2007; Chambers AF 2002; Pantel K2004). Stem cells and 

metastatic cancer cells share common properties that are crucial for this process. The expression 

of heparanase correlates with the metastatic potential of tumor cells and our results underscore 

the importance of heparanase in cancer stem cell propoertiess. As heparanase expression 

increases from early stage of human colon cancer (well-differentiated) to poorly differentiated 

colon carcinoma, our results may indicate that heparanase expressing cells may dedifferentiate to 

acquire a stem cell- like state. So it could be possible that high heparanase expression changes  

cell plasticity in poorly differentiated tumors. This may aid the conversion of de-differentiated 

like state with embryonic stem cell like signatures, with consecutive self-renewal of the 

proliferating cells (Schwitalla S 2013). This is supported by our finding of an, increased side 

population in cells expressing the dominant negative form of mutant heparanase. Indeed there are 

indications for a cell adhesion dependent function of enzymatically inactive heparanase 

(Goldshmidt et al., 2003; Vlodavsky I 2011; Levy-Adam et al., 2008). This mutant form of 

heparanase promotes cell attachment and Rho activation with the coordinated phosphorylation of 

signaling molecules like Akt and Src (Anjum Riaz 2013). Strikingly, in the sphere formation 

assay we saw a drastic decrease in sphere formation in heparanase high cells. This result 

supported by previous observations showing that inhibition of N-linked glycosylation using 

tunicamycin decreased sphere numbers (GG Jinesh et al 2013), which underscores the role of 

glycosylation in this process. While HS is attached to core proteins via O-glycosidic rather than 

N-glycosidic bonds, one could nevertheless envisage that high heparanase expression will cleave 
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heparan sulfate, which disrupts ECM dynamics at cell surfaces and basal membranes, thus 

causing the inability to form 3D spheres. Importantly, sphere formation is a process involving 

cell to cell contact. Each sphere contains a group of cells inside, so due to loosening of cell-cell 

contacts either via HS-ligand interactions or via downregulation of cadherins, a decrease of 

spheres may occur in heparanase overexpressing clones. It could also be that heparanase 

overexpressing clones can survive in adherent conditions, whereas in suspension culture they 

lose the property of survival due to loss of cell- cell contact. Future studies addressing these 

potential mechanisms are worthwhile. Notably, dominant negative heparanase clones formed 

spheres equal to that of vector controls, suggesting that the active heparanase indeed inhibits the 

formation of spheres due to changes in HS structure. Surprisingly, we also observed a decrease 

in the formation of spheres upon treatment of Caco2 control cells with the heparanase inhibitor 

SST0001. This may indicates that inhibition of physiological expression levels of heparanase 

could decreases sphere forming abilities mediating a decrease in cancer stemness, e.g. via a 

reduction in the side population, whereas with a high heparanase expression, cells may lose their 

cell to cell contact and therefore decreases the formation of spheres. Notably, in mutant form of 

heparanase even after treatment with SST0001, no effect on spheres was observed. It has to be 

noted that SST0001 binds at active site of the enzyme whereas in mutant heparanase clones, due 

to mutation at active site, SST0001 inhibitor did not show any effect. Slight decrease in spheres 

with the SST0001 treatment indicates it could be because of physiological expression of active 

heparanase in mutanat heparanase clones. 

          A range of signals have been shown to regulate the tumor initiating stem cell capacities of 

colon cancer, including Wnt pathway (Tesshi Yamada 2000). We observed a high expression of 

TCF4 in heparanase over expressing clones. Our results furthermore showed a decrease in the 

side population upon incubation with the Wnt inhibitor, IWAP2 (Chikazawa N 2010). IWAP2 

inhibits the palmitylation of Wnt proteins thereby blocks Wnt secretion and activity (Chikazawa 

N, 2010). Our results, plays an important role in formation of the side population. Also it is 

observed that MDR genes acts as target for the TCF4/β-catenin complex. (Tesshi Yamada 2003). 

e observed an increase in the autophosphotylation of FAK in colon cancer cells over expressing 

heparanase. Increased pFAK in high heparanase cells might be involved in adhesion-dependent 

signaling. Even though the clear molecular mechanism of heparanase in adhesion dependent 

signaling is not clear, it could be that heparanase degrades the ECM, which changes the adhesion 

properties or integrin activation. By this way, it may cause a similar situation as in 
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Sdc-1-knockdown cells, or as in cells treated with bacterial heparitinases, both of which showed 

increased FAK phosphorylation. Also it was shown that latent heparanase binds to the 

heparanase receptor regulating the AKT signaling. It is also observed that FAK inhibitor blocks 

heparanase  induced Akt signaling (Riaz A et al.,2013), suggesting that FAK and heparanase act 

as a feed back regulation to activate Akt signaling. As observed in the first part of the thesis, the 

increase in pFAK in heparanase over expressing cells may also contribute to cancer stemness. As 

there is a strong feed back mechanism between FAK and TCF4 according to our data, it is 

important to consider that they could act synergistically to regulate cancer stem cell properties. 

Moreover FAK and TCF4 can act independently to drive cancer stemness. It is also possible that 

FAK and TCF4 could compensate for each other in promoting genes involved in cancer stemness 

signaling. Thus, the observed increase in pFAK in heparanase over expressing cells may 

involves ECM remodeling and associated altered adhesion properties, which indicates an 

additional notion of heparanase functions in invasion, metastasis associated colon cancer stem 

cell signaling.  

            Closely linked to the previous observations is our finding that heparanase oveexpressing 

cells show increased beta1-integrin activation (O Goldshmidt, 2003), which along with the 

observed increased FAK activation indeed suggests that heparanase is involveds in 

adhesion-dependent signaling. The colony formation assay resulted in a decrease in the number 

of colonies respective to vector and mutant heparanase, even though it was previously reported 

that heparanase promotes colony formation, which could be due to different experimental 

systems. (Cohen-Kaplan V 2008). We have also seen a decrease in the proliferation in 

heparanase overexpressing cells compared to the vector controls. This result supported that the 

sheddase activity of heparanase might be contributing to the extra cellular matrix remodeling. 

The colony formation assay may vary between the knockdown vs over expressing cells 

depending upon the physiological expression levels of heparanase. Also its functions may be 

different depending on the in vitro vs. in vivo studies, which involve additional cell types and 

noncell autonomous effects. It was observed that high CD133 and CD44 expression, but not 

CD24, in colon cancer contributes to increased radio resistance (Sara Häggblad Sahlberg 2014).          

This supports our observation where we have seen high CD24 expression in heparanase 

overexpressing cells compared to vector controls. Irradiated heparanase overexpressing cells 

showed more radioresistance compared to untreated controls. In addition to this, we have also 

observed an increase in chemoresistance with paclitaxel and cisplatin treatment in mutant 

heparanase compared to vector and heparanase overexpressing clones, (Kobayashi Y 2011) 
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whereas in heparanase over expressing cells the effect of cisplatin is not clear. As discussed 

previously, the mutant form of heparanase is involved in adhesion dependent signaling which in 

turn may promote chemoresistance of cancer cells by increasing the side population.  It is also 

important to consider that side population is controlled by several additional factors like genetic 

alterations, the ECM niche microenvironment, micro RNA’s, stem cells and its quiescent vs 

active state (Vinitha Richard, 2013; K. Moitra 2011). As measured by ALDH activity, 

heparanase cells didn’t show high activity. So it could be possible that the combination of side 

population and ALDH may have strong synergistic effects on chemoresistance of 

tumor-initiating cells (J. Hilton, 1984; C. P. Huang, 2013). Altogether, the nature of drug 

resistance of tumor-initiating cells is multifactorial, with various signaling pathways and 

complex mechanisms that could fine-tune chemosensitivity. 

  

 

               

 
 

Figure.  Sdc-1 and  HPSE axis in colon cancer invasion and stemness - Proposed model: 

Based on our presented data, we hypothesize that, in Caco2, down-regulation of Sdc-1increases  

HPSE expression through transcription factor EGR1, which could activate  EMT like conditions 

to promote tumor cell invasion, further regulating the stem cell like population. Interplay 
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between of Sdc-1 and HPSE increases focal adhesion kinases (pFAK) levels. Over expression of 

HPSE inturn increases stem cell like signatures though FAK and WNT signaling axis. Using a 

HPSE specific inhibitor (SST0001) there is an decrease in invasion and  CSC signatures. 

 

           To summarize, we have shown for the first time the involvement of the heparan sulfate 

proteoglycan Sdc-1 and HPSE in colon cancer stem cell properties. siRNA mediated depletion of 

Sdc-1 increased the stem cell phenotype based on in vitro sphere-forming assays and flow 

cytometry-based assays (side population (SP), ALDH and CD133). In addition, we observed an 

increase in matrigel invasiveness linked to EMT-inducing conditions. Mechanistically, upon 

Sdc-1 depletion we observed the activation of β1 integrin with an increase in adhesion to 

fibronectin. Focal adhesion kinase was strongly activated following Sdc1 knockdown, suggesting 

that Sdc-1 may be linked to integrin-induced actin remodeling. Importantly, with Sdc-1 

knockdown, Wnt signaling is enhanced which in turn induceds TCF4 expression promoting the 

FAK:WNT signaling axis. The increase in SP, CD133 and colonospheres, which could be 

blocked using a FAK specific inhibitor. From the first part we conclude that loss of Sdc-1 

co-operatively enhances activation of integrins, focal adhesion kinase and WNT, which then 

generates signals for increased invasiveness and cancer stem cell properties. Interestingly, sorted 

Sdc-1 depleted SP and enriched population showed a furthern increase in colonospheres, and 

colony formation assays revealed increased resistance of Sdc1-depleted cells to irradiation. 

Importantly, Sdc-1 depleted HT29 cells showed an increase in the tumor size in an in vivo mouse 

model. In the second part of the study, Sdc-1 loss was shown to enhances HPSE promoter 

activity through the transcription factor EGR1 and FAK axis. Importantly, HPSE inhibitor 

(SST0001) abolisheds the Sdc-1 induced invasion. Stable over expression of heparanase 

increased cancer stem cell properties (SP,; ALDH, CD24) through the activation of Wnt 

signaling. Notably, the sphere formation ability was lost, which could be due to ECM 

degradation by heparanase Strikingly, at normal physiological conditions, a HPSE inhibitor 

decreased sphere formation. We hypothesize that loss of Sdc-1 cooperatively enhances activation 

of integrins and focal adhesion kinase, which then generates signals for increased invasiveness, 

cancer stem cell properties and resistance to irradiation. A graphical representation of the key 

findings is shown in the figure. 
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4.3 Schematic diagram of the overall summary: 

Syndecan-1 modulates cell-matrix adhesion and signaling via FAK and EGR1 resulting in  

transcriptional regulation of proinvasive factor HPSE leading to increased invasviness,  

promting  cancer cancer stem cell properties.  
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     4.4 Conclusion. 

       

      This work investigates the molecular impact of Sdc-1 and HPSE in colon cancer progression. Our 

findings provide a deeper insight into the co-operative regulation of Sdc-1 and HPSE and its 

downstream signaling loops involved in the cancer stem cell phenotype. What makes this study 

particularly interesting is how these two gene products cooperates in regulating the cancer stem 

cell signatures. Our data on the loss of Sdc-1 and increase in HPSE levels correlated with 

enhanced invasive and cancer stem cell properties, which suggested that Sdc-1 may play a 

negative role and heparanase acts as a positive driving force in colon cancer progression. While 

most of the mechanistic work presented in this study addressed the influence of Sdc-1 and HPSE 

on cell-autonomous properties of colon cancer cells, future studies need to extend this work to 

more complex in vivo models such as xenograft studies. Although the molecular complexity is 

challenging to understand the interdependent functional phenotype of syndecan-1 and heparanase, 

it is understood that loss of syndecan-1 increases the integrin activities and accelerates invasion 

and cancer stemness whereas heparanase, with several mechanisms (sheddase, autocrine- 

paracrine signaling and adhesion properties) in turn enhances the invasive properties and cancer 

stem cell signatures. Our results provided an important molecular evidence for novel mechanisms 

underlying the aggressive behavior of colon cancer at the highly metastatic stage.  Finally, we 

provide for the first time, the evidence for an involvement of heparanase in cancer stem cells, and 

for a feed back regulation of Sdc-1 and HPSE in EMT- driven colon CSC properties. Our results 

supported new possibilities of Sdc-1 and HPSE to be used as tumor specific stem cell markers and 

molecular targets in colorectal cancer. Our findings may provide a novel concept to target a 

stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer 

recurrence. 
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6. Abbreviations: 

 

µg Microgram 

µl Microlitre 

µM Micromolar 

µm Micrometer 

6-OST 6-O-Sulfotransferase 

A Absorbance 

ABCG2 

AMP 

ATP- binding cassette sub-family G member 2 

Adenosine monophosphate 

ANX Annexin 

APS 

ALDH 

Ammonium persulfate 

Aldehyde dehydrogenase 

ATF-2 Activating transcription factor-2 

ATP Adenosine tri phosphate 

APC 

BCA 

Adenomatous polyposis coli 

Bicinchonic acid 

BCL2 B-cell lymphoma/leukemia-2 

BMPs Bone morphogenetic proteins 

BRAF 

bp 

Rapidly accelerated fibrosarcoma 

Base pairs 

BSA Bovine Serum Albumin 

CDK Cyclin-dependent kinase 

cDNA Complementary DNA 

cm Centimeter 

CSC 

CMV 

Cancer stem cells 

Cytomegalovirus 

COL1A2 Collagen type I A2 

COX-2 Cyclooxygenase-2 

cRNA Complementary RNA 

CS 

CRC 

Chondroitin sulphate 

Colorectal cancer 
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CDK8 

DAPI 

Cell division kinase protein kinase 8 

4', 6'-diamidino-2-phenylindole  

DCIS Ductal breast carcinoma in situ 

DMEM Dulbecco’s modified Eagle’s medium 

DMSO Dimethylsulfoxide 

DNA Deoxyribonucleic acid 

dNTP Deoxyribonucleotide triphosphate 

DPBS Dulbecco’s phosphate buffered saline 

DS Dermatan sulphate 

dsDNA Double-stranded DNA 

dsRNA Double-stranded RNA  

DTT 1,4-Dithiothreit 

E.coli Escherichia coli 

E-cad E-cadherin  

ECM Extracellular matrix 

EDTA Ethylendiamintetracetic acid  

EGFR Epidermal growth factor 

EHS Engelberth-Holm-Swarm  

ELISA Enzyme-linked immunosorbent assay 

EMP2 Epithelial membrane protein 2 

EMT Epithelial mesenchymal transition 

ES 

ER 

Embryonic stem cells 

Estrogen receptor  

Erk1/2 Extracellular signal-regulated kinase 1/2 

ERM Ezrin, Radixin, Moesin  

EXT Exostose  

EGR1 

FAK 

Early growth response protein 1 

Focal adhesion kinase 

FN 

FCS 

Fibronectin 

Fetal calf serum  

FGF Fibroblast growth factor  

Fig Figure 
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GAGs Glycosaminoglycans 

GAIP Gα-interacting protein  

 Gal Galactose  

GALT Galactosyltransferase  

GAP GTPase-activating factor protein  

GDI Guanine dissociation inhibitor 

GEF Guanine exchange factor  

GLCAT Glucuronyltransferase 

GlcNAc N-acetylglucosamine  

GPCs Glycosylphosphatidylinositol -anchored glypicans  

GPI Glycosylphosphatidylinositol 

h 

HPSE 

hour 

Heparanase  

HRP Horseradish peroxidase  

HS Heparan sulfate 

HSPG Heparan sulfate proteoglycan 

IVT In vitro transcription  

JAM-A Junctional adhesion molecule A  

JHDM1D Jumonji C domain-containing histone demethylase1homolog D 

JMD Juxtamembrane domain  

JNK c-Jun NH2-terminal kinase 

kDa Kilodalton 

KLF4 Krueppel-like factor 4 

KS Keratan sulfate 

l Litre 

LB 

LGR5 

Luria-Bertina  

Leucine- rich repeat containing G-protein coupled receptor 5 

M Molar 

mA Milliampere 

MAGUK Membrane associated guanylate kinase 

MAPK Mitogen-activated protein kinase 

mg Milligram 
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min Minute(s) 

miRNA MicroRNA  

ml Millilitre 

mM Millimolar 

MMP Matrix metalloproteinase 

MPP4 Membrane palmitoylated protein-4  

mRNA Messenger RNA 

MT1-MMP Membrane type 1 matrix metalloproteinase  

MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide  

MCS Mesenchymal stem cells 

NADPH Nicotinamide adenine dinucleotide phosphate 

NDST N-deacetylase/N-sulfotransferase 

NF-kappaB Nuclear factor kappaB  

iPSCs 

OD  

OCT4 

Induced pluripotent stem cells 

Optical density 

Octomer binding transcription factor 4 

PAGE Polyacrylamide gel electrophoresis  

PAI Plasminogen activator inhibitor 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDK1 Phosphoinositide dependent kinase 1  

PDZ PSD-95, a postsynaptic protein; Discs-large, a Drosophila 

septate junction protein; and ZO-1, a tight junction protein 

PGE2 Prostaglandin E2  

PGs Proteoglycans 

PI3K Phosphatidylinositol-3-kinase 

PKB Protein Kinase-B 

PKCα Protein kinase Cα  

PLA2 Phospholipase A2 

PMA Phorbol 12-Myristate 13-Acetate 

PR Progesterone receptor  

PTEN Phosphatase and tensin homolog 
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qPCR Quantitative PCR 

RAS  

Rho 

Rat Sarcoma 

Ras homologue gene family member  

RIPA Radio-Immunoprecipitation Assay 

RISC RNA-induced silencing complex  

RNA Ribonucleic acid 

RNAi RNA interference  

ROCK Rho-associated protein kinase  

rpm Rotations per minute 

RPMI Roswell Park Memorial Institute 

RGD 

RQ 

Arg-Gly-Asp 

Relative quantification 

rRNA Ribosomal RNA 

RT Room temperature 

RTK Receptor tyrosine kinase 

RT-PCR Reverse transcription PCR 

s Second(s) 

SCID 

Sdc 

Severe Combined Immunodeficiency mice 

Syndecan 

SDS Sodium dodecyl sulphate  

SEM Standard error of the mean 

SP Side population 

SI Structural index  

siRNA Small interfering RNA  

SLRPs Small leucine-rich proteoglycans 

ssDNA Single-stranded DNA 

Sulfs Sulfatases  

Shh 

SNAIL 

SOX2 

Sonic hedgehog 

Zinc figure protein 

SRY (Sex determining region Y)- box2  

SULF 

Taq 

Sulfatase 

Thermus aquaticus 
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TA 

TBS 

Transit amplifying cells 

Tris buffered saline 

TEMED N,N,N,N-tetra methylene diamine  

TGF-β Transforming growth factor-β  

TIMP Tissue inhibitor of metalloproteinases  

TLR 

TWIST 

Toll-like receptor  

Twist related transcription factor 

TNF-α Tumor necrosis factor-alpha  

Tpl2 Tumor progression locus 2  

TRITC Tetramethylrhodamine isothiocyanante 

TSP-1 Thrombospondin-1 

uPA (PLAU) Urokinase-type plasminogen activator  

uPAR Urokinase-type plasminogen activator receptor 

UTR Untranslated region  

UV Ultraviolet 

v/v Volume/Volume 

VEGF Vascular endothelial growth factor 

Wnt 

w/v 

Wingless-type 

Weight/Volume 
οC Degrees centigrade 

ZEB1         Zinc finger E-box- binding homeobox-1 
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