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Abstract

This thesis centers around the study of the behavior of Nil-groups under localization
and its effect on the Farrell-Jones conjecture. We prove that under mild assumptions
we can always write the Nil-groups of the localized ring as a certain colimit over the
Nil-groups of the ring, generalizing a result of Vorst. For applications it is fruitful
to improve this result. For this purpose, we define Frobenius and Verschiebung
operations on certain Nil-groups. These operations provide the tool to prove that
Nil-groups are modules over the ring of Witt-vectors and are either trivial or not
finitely generated as abelian groups. We use the improved localization results to
show that Nil-groups of polycyclic-by-finite groups are torsion. As an important
corollary, we obtain the result that the Nil-groups appearing in the decomposition
of the K-groups of virtually cyclic groups are torsion groups. This implies that the
Farrell-Jones conjecture predicts that rationally the building blocks of the K-groups
of groups are the K-groups of finite groups.

3



4



Contents

Introduction 7

1 End- and Nil-Groups 19
1.1 End-Groups and END-categories . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 End(R)-Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.1.2 Waldhausen End-Groups . . . . . . . . . . . . . . . . . . . . . 21

1.2 Nil-Groups and NIL-categories . . . . . . . . . . . . . . . . . . . . . . 22
1.2.1 Bass Nil-Groups . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.2 Farrell Nil-Groups . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.2.3 Waldhausen Nil-Groups of Generalized Free Products . . . . . 25
1.2.4 Waldhausen Nil-Groups of Generalized Laurent Extensions . . 26

2 The Behavior of Nil-Groups under Localization 29
2.1 Homological Facts about NIL-categories . . . . . . . . . . . . . . . . . 29
2.2 Colimits in the Category of Exact Categories . . . . . . . . . . . . . . 34
2.3 The Long Exact Localization Sequence of NIL-Categories . . . . . . . 35
2.4 The Behavior of Nil-Groups under Localization . . . . . . . . . . . . . 50

3 Farrell and Waldhausen Nil-Groups as Modules over the Ring of Witt
vectors 53
3.1 Nil-Groups as Modules over End0 . . . . . . . . . . . . . . . . . . . . . 53
3.2 Operations on Farrell and Waldhausen Nil-Groups . . . . . . . . . . . 55

3.2.1 Frobenius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.2 Verschiebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Non Finiteness Results . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.2 The Relation Vn(y∗Fnx) = (Vny) ∗ x on Farrell Nil-Groups . . 63
3.3.3 The Relation Vn(y∗Fnx) = (Vny)∗x on Waldhausen Nil-Groups 66

3.4 Farrell and Waldhausen Nil-Groups as Modules over the Ring of Witt
vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Applications 73
4.1 Improved Localization Results . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Transfer and Induction on Nil-Groups . . . . . . . . . . . . . . . . . . 75
4.3 Regular Group Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5



Contents

4.4 Torsion Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5 The Relative Assembly Map . . . . . . . . . . . . . . . . . . . . . . . . 81

Bibliography 85

6



Introduction

In general, Nil-groups measure the difference between the K-groups of a ground ring
and the K-groups of a certain ring built up out of this ring. We start by briefly
recalling the importance of the various kinds of Nil-groups.

The most basic kind of Nil-group is given by Bass’s definition of the abelian groups
Nili(R) [Bas68, Section 12.6]. The so called Fundamental Theorem of algebraic K-
theory [BHS64] gives a description of the K-groups of the Laurent polynomial ring
of a ring R in terms of the K-groups of R and the groups Nili(R) for all i ∈ Z:

Ki(R[t, t−1]) = Ki(R)⊕Ki−1(R)⊕Nili−1(R)⊕Nili−1(R).

If α is a ring automorphism of R Farrell introduced the abelian groups Nili(R;α)
[Far72]. He generalized, together with Hsiang, the Fundamental Theorem of algebraic
K-theory to K1 of the twisted Laurent polynomial ring [FH70]. They proved that
the sequence

K1(R)
1−α∗ // K1(R) // K1(Rα[t, t−1])/ Nil0(R,α)⊕Nil0(R,α−1) //

// K0(R)
1−α∗ // K0(R)

is exact. This decomposition was extended by Grayson to higher algebraic K-theory
[Gra88].

For applications in topology, the K-groups of group rings are of special importance.
If Γ = GoαZ is the semidirect product of a group G, an automorphism α of G and the
infinite cyclic group, the group ring of Γ can be seen as a twisted Laurent polynomial
ring. In this context, the statement gives that the sequence

// Ki(RG)
1−α∗ // Ki(RG) // Ki(RΓ)/ Nili−1(RG, α)⊕Nili−1(RG, α−1) //

// Ki−1(RG)
1−α∗ // Ki−1(RG) //

is exact.
An inclusion α : C → A of rings is called pure if A = α(C) ⊕ A′ as C-bimodules.

It is called pure and free if in addition A′ is free as a left C-module. Let α : C → A
and β : C → B both be pure and free. The generalized free product of A and B is
the push-out of α and β in the category of rings. Waldhausen introduced, for R-
bimodules X and Y , the abelian groups Nili(R;X, Y ) [Wal78a, Wal78b]. Nil-groups
of this kind relate the K-groups of the generalized free product to the K-groups of
the ground rings.
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Theorem (Waldhausen [Wal78a, Wal78b]). Let α : C ↪→ A and β : C ↪→ B both
be pure and free. Write A = α(C)⊕A′ and B = β(C)⊕B′. Let R be the generalized
free product of A and B. The groups Nili(C;A′, B′) are direct summands of Ki+1(R)
and there is a long exact sequence of groups

. . . // Ki+1(C) // Ki+1(A)⊕Ki+1(B) // Ki+1(R)/ Nili
(
C;A′, B′

)
// Ki(C) // · · · ,

where i ≥ 0.

For i < 0 the result is extended by Bartels and Lück [BL04].
A special case of a generalized free product comes from the amalgamated product

of groups. Let G1 and G2 be groups with a common subgroup H. The group ring
of G1 ∗H G2 is the generalized free product of the group rings of H, G1 and G2. In
the context of group rings, the previous theorem reads as follows:

Corollary. Let Γ = G1 ∗H G2 be the amalgamated product of the groups H, G1

and G2. The groups Nili
(
ZH; Z[G1−H], Z[G2−H]

)
are direct summands of Ki+1(Γ)

and there is a long exact sequence of groups

· · · // Ki+1(ZH) // Ki+1(ZG1)⊕Ki+1(ZG2) //

// Ki+1(Γ)/ Nili
(
ZH; Z[G1 −H], Z[G2 −H]

)
// Ki(ZH) // · · · ,

where i ∈ Z.

If the Nil-groups are ignored, the sequence given above is the analog of the Mayer-
Vietoris sequence for K-groups. It is a general belief that Nil-groups are the ob-
struction for K-theory to be a homology theory.

Let α, β : C → A be pure and free. The generalized Laurent extension with respect
to α, β is the universal ring R = Aα,β{t±1} which contains A and an invertible
element t which satisfies

α(c)t = tβ(c) for all c ∈ C.

The existence of such a ring is explained in [Wal78a]. For R-bimodules X, Y , Z and
W Waldhausen introduced the abelian groups Nili(R;X, Y, Z,W ) [Wal78a, Wal78b],
which are the most general kind of Nil-groups. Nil-groups of this kind relate the
K-groups of a generalized Laurent extension to the K-groups of the ground rings.

Theorem (Waldhausen [Wal78a, Wal78b]). Let R be the generalized Laurent
extension of pure and free maps α, β : C ↪→ A. Write A = α(C) ⊕ A′ and A =
β(C) ⊕ A′′. Denote by βAα the C-bimodule A with C-action from the left via β
and from the right via α. Let αA′α, βA′′β and αAβ be defined similarly. The groups
Nili

(
C;α A′α,β A′′β,β Aα,α Aβ

)
are direct summands of Ki+1(R) and there is a long

exact sequence of groups

· · · // Ki+1(C)
α−β

// Ki+1(A) //

8



Introduction

// Ki+1(R)/ Nili
(
C;α A′α,β A′′β,β Aα,α Aβ

)
// Ki(C) // · · · ,

where i ≥ 0.

Again, this is extended to i < 0 by Bartels and Lück [BL04].
A special case of a generalized Laurent extension comes from the HNN-extension

of groups. Let H be a group which is embedded into another group G in two different
ways. The group ring of the HNN-extension of H and G is the generalized Laurent
extension of RH and RG. In the setting of group rings, the previous theorem reads
as follows:

Corollary. Let Γ be the HNN-extension of the embeddings α, β : H ↪→ G. The groups
Nili

(
ZH; Z[G−α(H)], Z[G−β(H)],β ZGα,α ZGβ

)
are direct summands of Ki+1(ZΓ)

and there is a long exact sequence of groups

· · · // Ki+1(ZH)
α−β

// Ki+1(ZG) //

// Ki+1(ZΓ)/ Nili
(
ZH; Z[G− α(H)], Z[G− β(H)],β ZGα,α ZGβ

)
// · · · ,

where i ∈ Z.

To avoid confusion, Nil-groups of the form Nili(R) are called Bass Nil-groups,
Nil-groups of the form Nili(R;α) are called Farrell Nil-groups, Nil-groups of the
form Nili(R;X, Y ) are called Waldhausen Nil-groups of generalized free products
and Nil-groups of the form Nili(R;X, Y, Z,W ) are called Waldhausen Nil-groups
of generalized Laurent extensions. In general, Nil-groups are subgroups of the K-
groups of NIL-categories. Bass Nil-groups are subgroups of the K-groups of the NIL-
category NIL(R), for Farrell Nil-groups the NIL-category is denoted by NIL(R;α),
for Waldhausen Nil-groups of generalized free products the NIL-category is denoted
by NIL(R;X, Y ) and for Waldhausen Nil-groups of generalized Laurent extensions
the NIL-category is denoted by NIL(R;X, Y, Z,W ). For a definition of the different
kind of Nil-groups and NIL-categories see Chapter 1.

The Behavior of Nil-Groups under Localization

Nil-groups seem to be hard to compute. It is for example known that higher Bass Nil-
groups are either trivial or not finitely generated as abelian groups [Far77, Wei81].
However, in the first chapter of this thesis, it is proven that all these kinds of Nil-
groups behave nicely under localization.

Definition. Let R be a ring.

1. Let T ⊆ R be a multiplicatively closed subset of central non zero divisors. The
ring T−1R is denoted by RT .

2. Let s be a central non zero divisor and let S be the multiplicatively closed set
generated by s. We use the short hand notation Rs for RS .

9
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3. Let X be an R-bimodule. We define XT to be the RT -bimodule RT⊗RX⊗RRT .

4. If s is a central non zero divisor, we use the short hand notation Xs for Rs ⊗R

X ⊗R Rs.

The main theorem of the first chapter is the following theorem:

Theorem. Let R be a ring and let X, Y, Z and W be left flat R-bimodules. Let s be
an element of the center of R which is not a zero divisor and satisfies s · x = x · s
for all elements x ∈ X and similar conditions for Y , Z and W . We obtain an
isomorphism

Z[t, t−1]⊗Z[t] Nili(R;X, Y, Z,W ) ∼= Nili(Rs;Xs, Ys, Zs,Ws),

for i ∈ Z, and t acts on Nili(R;X, Y, Z, W ) via the map induced by the functor

Fs : NIL(R;X, Y, Z,W ) → NIL(R;X, Y, Z,W )
(P,Q, p, q) 7→ (P,Q, p · s, q · s).

The condition that the bimodules X, Y , Z and W are left flat does not seem to
be overly restrictive since in all the cases considered by Waldhausen X, Y , Z and W
are left free by the purity and freeness condition. The condition s ·x = x ·s translates
in Waldhausen’s setting of a generalized Laurent extension to the assumption that
s is mapped, under the maps α and β, to central elements.

In Remark 1.2.17, it is explained that Waldhausen Nil-groups of generalized Lau-
rent extensions are a generalization of the other kind of Nil-groups. Thus we get the
following corollaries:

Corollary. Let R be a ring and let X and Y be left flat R-bimodules. Let s be an
element of the center of R which is not a zero divisor and satisfies s · x = x · s for
all elements x ∈ X and a similar condition for Y . We obtain an isomorphism

Z[t, t−1]⊗Z[t] Nili(R;X, Y ) ∼= Nili(Rs;Xs, Ys),

for i ∈ Z, and t acts on Nili(R;X, Y ) via the map induced by the functor

Fs : NIL(R;X, Y ) → NIL(R;X, Y )
(P,Q, p, q) 7→ (P,Q, p · s, q · s).

Again, the assumption that X and Y are left flat modules is not overly restrictive
since in the case of a generalized free product X and Y are left free by the purity and
freeness condition. The condition s ·x = x ·s translates in the setting of a generalized
free product to the condition that s is mapped to central elements.

Corollary. Let R be a ring and let α : R → R be an automorphism. Let s be an
element of the center of R which is not a zero divisor and is fixed under α. We
obtain an isomorphism

Z[t, t−1]⊗Z[t] Nili(R;α) ∼= Nili(Rs;α),

10
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for i ∈ Z, and t acts on Nili(R,α) via the map induced by the functor

Fs : NIL(R;α) → NIL(R;α)
(P, ν) 7→ (P, ν · s).

Corollary. Let R be a ring. Let s be an element of the center of R which is not a
zero divisor. We obtain an isomorphism

Z[t, t−1]⊗Z[t] Nili(R) ∼= Nili(Rs),

for all i ∈ Z, and t acts on Nili(R) via the map induced by the the functor

Fs : NIL(R) → NIL(R)
(P, ν) 7→ (P, ν · s).

For Nili(R) the result was already known [Vor79].

Nil-Groups as Modules over the Ring of Witt vectors

For applications, it is fruitful to improve these results to an isomorphism between
Rs⊗R Nil(R) and Nil(Rs). To get this isomorphism, we develop in the third chapter
a Witt vector module structure on certain Nil-groups. In this chapter, the ring is
always assumed to be a either a group ring or more generally an algebra over a
commutative ring R. Let us briefly recall the definition of the ring of Witt vectors.
For an introduction to the ring of Witt vectors see [Blo77]. The ring of (big) Witt
vectors is the ring 1 + tRJtK of power series with constant term 1. The underlying
additive group of the ring of Witt vectors is the multiplicative group of 1 + tRJtK.
The multiplication is the unique continuous functorial operation ∗ for which

(1− at) ∗ (1− bt) = (1− abt)

holds for all a, b ∈ R. In the sequel, the ring of Witt vectors is denoted by W (R).
We define ideals IN := (1 + tNRJtK) for all N ∈ N. The resulting topology on the
ring of Witt vectors is called the t-adic topology.

There is a different approach to the ring of Witt vectors which emphasizes the re-
lation to K-theory. Let END(R) be the exact category of endomorphisms of finitely
generated projective right R-modules. The objects of this category are pairs (B,ϕ)
where B is a finitely generated projective R-module and ϕ is an endomorphism
of B. Maps from (B,ϕ) to (B′, ϕ′) are module homomorphisms f : B → B′ such
that ϕ′ ◦ f = f ◦ ϕ. A sequence is called exact if the underlying sequence of mod-
ule homomorphisms is exact. Since R is assumed to be commutative, the tensor
product induces a ring structure on K0

(
END(R)

)
. Denote by End0(R) the quotient

of K0

(
END(R)

)
by the ideal generated by elements of the form [(B, 0)]. Since the

characteristic polynomial

χ
(
(B,ϕ)

)
:= det(idB − t · ϕ)

11
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defines a map from END(R) into W (R) which is additive with respect to short exact
sequences and sends elements of the form [(B, 0)] to zero, it induces a map from
End0(R) into W (R). A theorem of Almkvist [Alm73, Alm74] states that this map
is an injective ring homomorphism whose image is dense in the ring of Witt vectors
with respect to the t-adic topology. Grayson gives an overview over this approach
to the ring of Witt vectors [Gra78].

In Section 3.4, we prove that certain kind of Nil-groups are modules over the ring
of Witt vectors. The most important Nil-groups of this kind are the Nil-groups
considered in the following proposition.

Proposition. Let R be a commutative ring, let G be a group and let α, β : G → G
be inner group automorphism. The groups Nili(RG;α) and Nili(RG;RGα, RGβ) are
modules over the ring of Witt vectors of R.

To get a Witt vector-module structure on Nil-groups, we first define an End0(R)-
module structure on the Nil-groups Nili(Λ; X, Y, Z,W ) where Λ is an algebra over
a commutative ring R. To obtain this module structure, we define in Section 3.1
an exact pairing between the categories END(R) and NIL(Λ; X, Y, Z,W ). For Bass
Nil-groups this pairing is induced by the tensor product

⊗ : END(R)×NIL(Λ) → NIL(Λ)
(B,ϕ)× (P, ν) 7→ (B ⊗R P,ϕ⊗ ν).

The machinery developed by Waldhausen [Wal78a, Wal78b] gives us a pairing on
K-groups:

K0

(
END(R)

)
×Ki

(
NIL(Λ; X, Y, Z,W )

)
→ Ki

(
NIL(Λ; X, Y, Z,W )

)
.

It is easily seen that this structure restricts to an End0(R)-module structure on
Nili(Λ; X, Y, Z,W ). In the sequel, this module multiplication is denoted by ∗.

For the proof that the End0(R)-module structure can be extended to a W (R)-
module structure we have to restrict to a certain class of Nil-groups containing Nil-
groups of the form Nili(RG;α) or Nili(RG;RGα, RGβ) where G is a group and α
and β are inner group automorphisms. In Section 3.2, we define Verschiebung and
Frobenius operations for Nil-groups of this kind. For Bass Nil-groups and End0

Verschiebung and Frobenius operations are well understood [Blo78, CdS95, Sti82,
Wei81].

The strength of the Verschiebung and Frobenius operations is that they satisfy
certain relations. If for a natural number n the Verschiebung operation is denoted
by Vn and the Frobenius operation by Fn, we prove in Section 3.3 that

FnVn(x) = x · n

for every x in Nili(RG;α) and a similar identity for Nili(RG;RGα, RGβ). This
implies the following corollary which is a generalization of a result by Farrell [Far77].
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Corollary. Let R be a ring, let G be a group, let X and Y be arbitrary RG-
bimodules and let α and β be inner group automorphisms of G. Then Nili(RG;α)
and Nili(RG;RGα ⊗ X, RGβ ⊕ Y ) are either trivial or not finitely generated as an
abelian group for i ∈ Z.

If y is an element of End0(R) and x an element of Nili(RG;α) or
Nili(RG;RGα, RGβ), we obtain that

Vn(y ∗ Fnx) = (Vny) ∗ x.

This relation is the main ingredient of the proof that the End0(R)-module
structure can be extended to a W (R)-module structure on Nili(RG;α) and
Nili(RG;RGα, RGβ).

Torsion Results

In the fourth chapter, we apply the at first glance totally unrelated results of the
previous chapters to prove that in important cases the Nil-groups are torsion groups.
To do so, we first improve the localization result into the following theorem:

Theorem. Let R be ZT for some multiplicatively closed set T ⊆ Z − {0}, Ẑp or a
commutative Q-algebra. Let G be a group and let α and β be inner automorphism
of G. Then for every multiplicatively closed set S ⊂ R of non zero divisors there are
isomorphisms of RS-modules

RS ⊗R Nili(RG;α) ∼= Nili(RSG;α)

and
RS ⊗R Nili(RG;RGα, RGβ) ∼= Nili(RSG;RSGα, RSGβ),

for all i ∈ Z.

The main application of this result are torsion results. A group G is called poly-
(infinite)cyclic if it has a finite chain of normal subgroups

1 = G0 C G1 C · · ·C Gm = G

such that every Gi/Gi−1 is (infinite) cyclic. A group is called polycyclic-by-finite if
it has a normal subgroup of finite index which is polycyclic.

Every polycyclic-by-finite group has a poly-infinite cyclic subgroup of finite in-
dex [Pas85, page 422]. In Section 4.3, we prove that if G is a polycyclic-by-finite
group with poly-infinite cyclic subgroup of finite index n then Nili(Z[1/n]G;α) and
Nili(Z[1/n]G; Z[1/n]Gα, Z[1/n]Gβ) vanish. Thus we get as an immediate corollary:

Corollary. Let G be a polycyclic-by-finite group. Then there exists a poly-infinite
cyclic subgroup of finite index n. If α and β are inner group automorphism, then the
groups Nili(ZG;α) and Nili(ZG; ZGα, ZGβ) are n-torsion groups for i ∈ Z.
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In this corollary, the assumption that α is an inner automorphism is too restrictive.
To get around this problem, we develop in Section 4.2 induction and transfer maps
for Nil-groups. These maps are generalizations of the induction and transfer maps in
algebraic K-theory [Mil71, Chapter 14]. They enable us to prove that the Nil-groups
are torsion groups even if α and β are not inner automorphism.

Theorem. Let G be a polycyclic-by-finite group. Then there exists a poly-infinite
cyclic subgroup of finite index n. Let α and β be group automorphisms of finite order
m and m′.

1. The group Nili(ZG;α) is an (n ·m)-torsion group for i ∈ Z.

2. The group Nili(ZG; ZGα, ZGβ) is an (n ·m ·m′)-torsion group for i ∈ Z.

As an important application of this theorem, we get that the Nil-groups appearing
in the calculation of the K-groups of virtually cyclic groups are torsion groups. A
group is called virtually (infinite) cyclic if it has a (infinite) cyclic subgroup of finite
index. Virtually cyclic groups are of special importance because of the Farrell-Jones
conjecture [FJ93]. The conjecture implies that the building blocks of algebraic K-
theory of group rings are the K-groups of virtually cyclic groups.

There are three kinds of virtually cyclic groups:

I. the semidirect product G o Z of a finite group G and the infinite cyclic group;

II. the amalgamated product G1 ∗H G2 of two finite groups G1 and G2 over a
subgroup H such that [G1 : H] = [G2 : H] = 2;

III. finite groups.

For a calculation of the K-groups of the first two kinds of virtually cyclic groups,
the Nil-groups of finite groups are needed. In the case of a virtually cyclic group of
the first type Farrell Nil-groups of finite groups appear. If we consider a virtually
cyclic group of the second type the Nil-groups Nili(ZH, Z[G1−H], Z[G2−H]) relate
the K-groups of G1 ∗H G2 to the K-groups of H, G1 and G2. The group H is an
index two subgroup. Thus we can find automorphisms α and β of H such that the
ZH-modules Z[G1−H] and Z[G2−H] are isomorphic to ZHα and ZHβ . Since every
finite group is polycyclic-by-finite and every group automorphism is of finite order,
we get the following result about this kind of Nil-groups:

Corollary. Let G be a finite group of order n and let α and β be group automorphisms
of finite order m and m′. The group Nili(ZG; ZGα, ZGβ) is an (n ·m ·m′)-torsion
group for i ∈ Z.

The result that Nil-groups of finite groups are torsion groups was already known in
some cases. For Bass Nil-groups Weibel proved that if G is a finite group of order n,
then Nili(ZG) is n-torsion for i ≥ 0 [Wei81]. The torsion result is known not to be
sharp. Harmon proved that Nil0(ZG) and Nil−1(ZG) are the trivial group if n is
square-free [Har87]. If i ≤ −2, Bass Nil-groups of ZG are known to vanish.

14



Introduction

Connolly and Prassidis [CP02] took an approach which goes back to Carter [Car80]
and Farrell and Jones [FJ95] to prove that Nil−1(ZG;α) is torsion. Kuku and Tang
generalized this concept to prove that Nili(ZG, α) are n-torsion groups for i ≥ −1
[KT03]. In their paper it is also proven that Nili(ZG, α) is the trivial group for
i ≤ −2.

In the paper of Kuku and Tang it is proven that Nil0(ZH, Z[G1 −H], Z[G2 −H])
is torsion. Note that in this paper the Nil-groups appearing in the decomposition of
Waldhausen are denoted by Ñil

W

i (R;Rα, Rβ) and called Waldhausen Nil-groups.
It was not known that the groups Nili(ZH, Z[G1 − H], Z[G2 − H]) are torsion

groups for i bigger than zero, as was incorrectly stated in [LR04].
Another important application is that for an arbitrary group G the groups

Nili(QG;α) and Nili(QG; QGα, QGβ) are almost torsion free.

Theorem. Let G be a arbitrary group and let α and β be group automorphisms of
finite order m and m′.

1. The group Z[1/m]⊗Z Nili(QG;α) is an Q-algebra and therefore torsion free for
i ∈ Z. If G is a polycyclic-by-finite group, then Nili(QG;α) is the trivial group.

2. The group Z[1/(m · m′)] ⊗Z Nili(QG; QGα, QGβ) is a Q-algebra and there-
fore torsion free for i ∈ Z. If G is a polycyclic-by-finite group, then
Nili(QG; QGα, QGβ) is the trivial group.

The Farrell-Jones Conjecture

Before we start discussing the effect of the torsion results on the Farrell-Jones Con-
jecture, let us briefly recall the relevant notions. Let F be a family of subgroups
of a group G. A G-CW-complex, all whose isotropy groups belong to F and whose
H-fixed point sets are contractible for all H ∈ F , is called a classifying space for
the family F and will be denoted by EF (G). Such a space always exists and is
unique up to G-homotopy because it is characterized by the property that for any
G-CW-complex X, all whose isotropy groups belong to F , there is up to G-homotopy
precisely one G-map from X to EF (G). These spaces were introduced by tom Dieck
[tD72, tD87]. Lück wrote a survey concerning recent results [Lüc03].

Suppose we are given a family of subgroups F and a subfamily F ′ ⊆ F . By the
universal property of EF (G) we obtain a map EF ′(G) → EF (G) which is unique up
to G-homotopy. Thus for every G-homology theory HG

∗ we obtain a relative assembly
map

AF ′→F : HG
∗ (EF ′(G)) → HG

∗ (EF (G)).

By the universal property we obtain for every chain of families

F ′′ ⊆ F ′ ⊆ F

15
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the following commutative diagram:

HG
i (EF ′′G)

AF′′→F′//

AF′′→F

((

HG
i (EF ′G)

AF′→F// HG
i (EFG).

We denote the family of finite subgroups by FIN , the family of virtually cyclic
subgroups by VCY and the family of all subgroups by ALL.

In [DL98] it is explained how the K-theory spectrum of a ring R, in the sequel
denoted by KR, gives an equivariant homology theory, in the sequel denoted by
H?

i (−;KR).
The Farrell-Jones conjecture [FJ93] predicts that the assembly map

AVCY→ALL : HG
i (EVCY(G);KR) → HG

i (EALL(G);KR) ∼= HG
i (pt;KR) ∼= Ki(RG)

is an isomorphism. Assuming the Farrell-Jones conjecture is true, the computation of
Ki(RG) reduces to the computation of HG

i (EVCY(G);KR). This is much easier since
here we can use standard methods form algebraic topology such as spectral sequences,
Mayer-Vietoris sequences and Chern characters. The Farrell-Jones conjecture is
known to be true for a wide class of groups. For a survey on the Farrell-Jones
conjecture see for example [LR04].

It is known that the relative assembly map

AFIN→VCY : HG
i (EFIN ;KR) → HG

i (EVCY ;KR)

is split injective [Bar03]. In the last section, we prove that rationally this relative
assembly map is an isomorphism. The main ingredient of the proof is that Nil-groups
of finite groups are torsion. Since the FIN → ALL-assembly map factors over the
relative assembly map we obtain the following statement.

Theorem. Let G be a group for which the Farrell-Jones conjecture is known to be
true. Then the rationalized FIN -assembly map

AFIN : HG
i (EFIN ;KR)⊗Q → Kn(ZG)⊗Q

is an isomorphism.

This result is of special importance because the smaller the family F of subgroups
is, the easier it is to compute HG

i (EF (G);KR).

This thesis is built up in the following manner. In the first chapter we recall the
basic definitions of End- and Nil-groups and END- and NIL-categories. The concept
of End- and Nil-groups END and NIL-categories is also extended.

The second chapter is devoted to the proof that Z[t, t−1]⊗Z[t] Nili(R;X, Y, Z,W )
and Nili(Rs;Xs, Ys, Zs,Ws) are isomorphic. The proof is an application of the long

16
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exact localization sequence of NIL-categories, which is developed in Section 2.3. This
sequence is similar to the localization sequence of algebraic K-theory [Gra76]. To
get the sequence, we need to apply the Resolution Theorem and for this application
it is necessary to lift nilpotent endomorphisms (Section 2.1). The proof also requires
knowledge of the shape of a colimit of a functor from a small filtering category into
the category of exact categories. These colimits are studied in Section 2.2.

In Chapter 3, we first define an exact pairing which gives rise to an End0-module
structure on Nil-groups (Section 3.1). In the second section, we restrict to a class of
Nil-groups containing Nil-groups of the form Nili(RG;α) and Nili(RG;RGα, RGβ)
where α and β are inner automorphism. We define Frobenius and Verschiebung
operations on these kind of Nil-groups and prove that certain relations are fulfilled
(Section 3.2). The relations have two important applications. First of all, they give
the non finiteness results. Secondly, we use them to prove in Section 3.4 that the
End0(R)-module structure can be extended to a Witt vector-module structure.

In the first section of Chapter 4, we combine the results of Chapter 2 and 3
to sharpen the localization results for Nil-groups. The main application of these
improved results are the torsion results of Section 4.4. To get the torsion results,
we generalize the transfer and induction maps of algebraic K-theory to Nil-groups
(Section 4.2). Section 4.3 is concerned with the question whether we can find for a
given group G an n ∈ N such that the Nil-groups of Z[1/n]G vanish. The main result
is that for a polycyclic-by-finite group we can always find such an n. In Section 4.5
we proof that rationally the relative assembly from the family of finite subgroup to
the family of virtually cyclic subgroups is an isomorphism. The main ingredient of
the proof is the torsion results of Section 4.4.

Notations and Conventions

In the following, all rings are assumed to be associative and to have a unit. Ring
homomorphisms are always unital. If not stated otherwise, modules are always
assumed to be right modules.

A ring is usually denoted by R; only if we have an algebra over a commutative
ring in mind, the ring is denoted by Λ.

A bimodule is called left free if it is free considered as a left module. Left flat is
defined similarly.

The letters B, C, D, I, M and P are reserved for categories.

Acknowledgements
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1 End- and Nil-Groups

Various kinds of End- and Nil-groups have been defined [Bas68, Far72, Gra77,
Wal78a, Wal78b, Wal73] as subgroups of the K-groups of END- and NIL-categories.
In the following section, we give the general definition of an End- and Nil-group and
of an END and NIL-category.

1.1 End-Groups and END-categories

We begin by generalizing End-groups and END-categories.

Definition 1.1.1 (END-category). Let A be an abelian category and let A: A →
A be an exact functor. Let C ⊆ A be a full subcategory which is closed under
extension, i.e. if

0 // M0
// M1

// M2
// 0

is exact and both M0 and M2 belong to C then M1 belongs to C. Let END(C; A) be
the following category. Objects are pairs (M,m) consisting of an object M of C and
a morphism

m : M → A(M)

in A. A morphism f : (M,m) → (M ′,m′) in END(C; A) consist of a morphism
f : M → M ′ in C satisfying m′ ◦ f = A(f) ◦m, i.e. the following diagram commutes.

M
f

//

m

��

M ′

m′

��

A(M)
A(f)

// A(M ′).

Let S: END(C; A) → C be the forgetful functor mapping (M,m) to M and a
morphism f : (M,m) → (M ′,m′) to f : M → M ′. A sequence

(M0,m0)
f

// (M1,m1)
g

// (M2,m2)

is called exact at (M1,m1) if the sequence

M0
f

// M1
g

// M2

in C obtained by applying S is exact at M1. Short exact sequences, surjective and
injective morphism in END(C; A) are defined in the obvious way.
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1 End- and Nil-Groups

Proposition 1.1.2. Let the notation be as in the preceding definition. We addi-
tionally assume that C has a small skeleton. The category END(A;A) is an abelian
category and the category END(C;A) is an exact category.

Proof. One easily cheeks the required identities.

Let S: END(C; A) → C be the forgetful functor sending an object (M,m) to M
and let T: C → END(C; A) be the functor sending M to (M, 0). The functors S and
T are exact and we have S ◦ T = id. Thus we get maps

Ki(S) : Ki

(
END(C; A)

)
→ Ki(C)

Ki(T ) : Ki(C) → Ki

(
END(C; A)

)
such that Ki(S) ◦Ki(T) = id. We define

Endi(C; A) := Ker
(
Ki(S) : Ki

(
END(C; A)

)
→ Ki(C)

)
for i ≥ 0. These groups are called the End-groups of C and A.

We continue by defining maps between End-groups. Suppose that we have for
i = 0, 1 abelian categories Ai together with full subcategories Ci ⊆ Ai which are
closed under extension and exact functors Ai : Ai → Ai. Suppose that u : A0 → A1

is a functor and U : u◦A0 → A1◦u is a natural transformation of exact functors such
that u sends an object of C0 to an object of C1. Then we obtain an exact functor

END(u, U) : END(C0,A0) → END(C1,A1)

which sends an object m : M → A(M) to the object given by the composition

u(M)
u(m)

// u(A0(M))
U(M)

// A1(u(M)).

A morphism f : (M,m) → (M ′,m′) is sent to the morphism u(M,m) → u(M ′,m′)
whose underlying morphism in C is u(f) : u(M) → u(M ′). This is a well defined
functor since the following diagram commutes.

u(M)
u(m)

//

u(f)
��

u(A0(M))
U(M)

//

u(A(f))
��

A1(u(M))

A(u(f))
��

u(M ′)
u(m′)

// u(A0(M ′))
U(M ′)

// A1(u(M ′)).

Since also the diagram

END(C0,A0)
END(u,U)

//

S
��

END(C1,A1)

S
��

C0
u // C1

commutes we obtain for the given pair (u, U) a homomorphism

Endi(u, U) : Endi(C0,A0) → Endi(C1,A1).

20



1.1 End-Groups and END-categories

1.1.1 End(R)-Groups

In the following we show how the definition of Endi(R) fits into the given setting.

Definition 1.1.3 (END(C)). Let C be an exact category and let id be the identity
functor. We define END(C) to be END(C; id).

Remark 1.1.4. The objects of END(C) are pairs (M,ν) where M is an object in
C and ν is an endomorphism of M . Maps from (M,ν) to (M ′, ν ′) are morphisms
f : M → M ′ such that f ◦ ν = ν ′ ◦ f .

Definition 1.1.5 (Mall(R),P(R)). Let R be a ring.

1. We define Mall(R) to be the category of all right modules.

2. We define P(R) to be the category of all finitely generated projective right
R-modules.

As usual, the category END
(
P(R)

)
is denoted by END(R).

Definition 1.1.6 (Higher End-groups). Let R be a ring. For i ≥ 0, we define

Endi(R) := Endi(P(R); id).

The cone ring ΛZ of Z is the ring of matrices over Z such that every column and
every row contains only finitely many non-zero entries. The suspension ring ΣZ is
the quotient of ΛZ by the ideal of finite matrices. For a natural number n ≥ 2 we
define inductively ΣnZ = ΣΣn−1Z. For an arbitrary ring R we define the n-fold
suspension ring ΣnR to be ΣnZ ⊗ R. For an R bimodule X we define ΣnX to
be the ΣnR-bimodule ΣnR ⊗X where the right ΣnR-module structure is given by
x · z ⊗ r = zxr for x ∈ X, z ∈ ΣnZ and r ∈ R.

Definition 1.1.7 (Lower End-groups). Let R be a ring. For i < 0, we define

Endi(R) := End0(P(Σ−iR); id).

1.1.2 Waldhausen End-Groups

Definition 1.1.8 (END(C;X, Y )). Let R be a ring and let X and Y be left flat
R-bimodules. Let C be a subcategory of Mall(R) which is closed under extension.
Define

FX,Y : C × C →Mall(R)×Mall(R)

by sending (M,N) to (N ⊗X, M ⊗ Y ). We define END(C;X, Y ) to be the category
END(C × C; FX,Y ).

The category END(C;X, Y ) is called Waldhausen END-category.
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1 End- and Nil-Groups

Remark 1.1.9. Objects of END(C;X, Y ) are quadruples (M,N,m, n) with M and
N objects in C and m and n are R-module morphisms

m : M −→ N ⊗X

n : N −→ M ⊗ Y.

A morphism from (M,N,m, n) to (M ′, N ′,m′, n′) consists of module homomor-
phisms f : M → M ′ and g : N → N ′ such that

M

f

��

m // N ⊗X

g⊗idX

��

M ′ m′
// N ′ ⊗X

and a similar diagram involving the morphisms n and n′ commutes.

As usual, the category END
(
P(R);X, Y

)
is denoted by END(R;X, Y ).

Definition 1.1.10 (Waldhausen End-groups of generalized free products).
Let R be a ring and let X and Y be left flat R-bimodules. We define Waldhausen
End-groups, for i ≥ 0, by

Endi(R;X, Y ) := Endi(R; FX,Y )

and for i < 0 by

Endi(R;X, Y ) := End0(Σ−iR; FΣ−iX,Σ−iRY .)

1.2 Nil-Groups and NIL-categories

In the sequel the full subcategory of END(C; A) consisting of ”nilpotent” endomor-
phisms will become important.

Definition 1.2.1 (NIL-category). Let the notation be as in Definition 1.1.1, let
A0 be the identity functor C → C and for a natural number ` ≥ 1 let A` be the `-fold
composite A ◦A ◦ · · · ◦A. We define Fr` : END(C; A) → END(C; A`) to be the exact
functor which sends an object m : M → A(M) to the object given by the composite

A0(M) = M
A0(m)=m

// A(M)
A(m)

// A2(M)
A2(m)

// · · · A`−1(m)
// A`(M)

and a morphism f : (M,m) → (M ′,m′) in END(C; A) to the morphism Fr`(M) →
Fr`(M ′) given by the underling morphism f : M → M ′ in C. An object (M,m) in
END(C; A) is called nilpotent if for some natural number ` ≥ 1 the map Fr`(M,m)
is given by the zero morphism from M to A`(M). We call the smallest number with
this property the nilpotency degree of (M,m). Let NIL(C; A) be the full subcategory
of END(C; A) given by nilpotent objects.
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1.2 Nil-Groups and NIL-categories

Proposition 1.2.2. Let the notation be as in the preceding definition. We addi-
tionally assume that C has a small skeleton. The category NIL(A;A) is an abelian
category and the category NIL(C;A) is an exact category.

Proof. One easily checks the required identities.

Let S: NIL(C; A) → C be the forgetful functor sending an object (M,m) to M
and let T: C → NIL(C; A) be the functor sending M to (M, 0). The functors S and
T are exact and we have S ◦ T = id. Thus we get maps

Ki(S) : Ki

(
NIL(C; A)

)
→ Ki(C)

Ki(T): Ki(C) → Ki

(
NIL(C; A)

)
such that Ki(S) ◦Ki(T) = id. We define

Nili(C; A) := Ker
(
Ki(S) : Ki

(
NIL(C; A)

)
→ Ki(C)

)
for i ≥ 0. These groups are called the Nil-groups of C and A.

Note that by similar reasons as above we obtain for a pair (u, U) a morphism

Nili(u, U) : Nili(C0,A0) → Nili(C1,A1).

1.2.1 Bass Nil-Groups

The Nili(R)-groups appearing in the Fundamental Theorem of algebraic K-theory
are subgroups of the K-groups of the category of nilpotent endomorphisms of finitely
generated projective R-modules. We use the setup of the preceding section to extent
this definition to nilpotent endomorphisms of an arbitrary exact category (compare
[Bas68, Chapter 12.6]).

Definition 1.2.3 (NIL(C)). Let C be an exact category and id the identity functor.
We define NIL(C) to be NIL(C; id). The category NIL(C) is called Bass NIL-category.

Remark 1.2.4. The objects of NIL(C) are pairs (M,ν) where M is an object in
C and ν is an nilpotent endomorphism of M . Maps from (M,ν) to (M ′, ν ′) are
morphisms f : M → M ′ such that f ◦ ν = ν ′ ◦ f .

As usual, the category NIL
(
P(R)

)
is denoted by NIL(R).

Definition 1.2.5 (Bass Nil-groups). Let R be a ring. We define Bass Nil-groups,
for i ≥ 0, by

Nili(R) := Nili(R; id)

and for i < 0 by
Nili(R) := Nil0(Σ−iR; id).

Remark 1.2.6. Notice that the given definition for lower Nil-groups coincides with
the definition of NK given by Bass [Bas68]. This can be seen since for an arbitrary
ring R and a natural number i < 0 we have Ki(R) = K0(Σ−iR) and ΣR[t] = (ΣR)[t].
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1 End- and Nil-Groups

1.2.2 Farrell Nil-Groups

Farrell and Hsiang showed that for the calculation of the K-groups of a twisted
Laurent polynomial ring similar Nil-groups can be defined [FH70]. These Nil-groups
are subgroups of the K-groups of the category of semilinear nilpotent endomorphisms
of finitely generated projective modules. In the following, this concept is extended
to arbitrary modules.

Definition 1.2.7 (NIL(C;X)). Let R be a ring and let X be a left flat R-bimodule,
let C be a subcategory of Mall(R) which is closed under extension and let FX be
the exact functor from P(R) to Mall(R) which is induced by tensoring with X.
We define NIL(C;X) to be NIL(C; FX). The category NIL(C;X) is called Farrell
NIL-category.

Remark 1.2.8. Objects of NIL(C;X) are pairs (M,ν) with M a module in C and
ν an R-module homomorphism

ν : M → M ⊗X

such that `-fold composition

M
ν // M ⊗X

ν⊗id
// M ⊗X ⊗X

ν⊗id⊗id
// · · ·

is zero after finitely map steeps.
Morphisms from (M,ν) to (M ′, ν ′) are module homomorphism f : M → M ′ such

that ν ′ ◦ f = (f ⊗ id) ◦ ν.

As usual, the category NIL
(
P(R);X

)
is denoted by NIL(R;X). The bimodules

appearing in the decomposition of Farrell and Hsiang are of the form X = R where
the left R-module structure is given by multiplication and the right R-module struc-
ture comes from an automorphism α of the ring R. These kind of bimodules are
denoted by Rα and NIL(R;Rα) is denoted by NIL(R;α). Now we define Farrell
Nil-groups Nili(R;α) appearing in the decomposition of the K-groups of a twisted
Laurent polynomial ring.

Definition 1.2.9 (Farrell Nil-groups). Let α be an automorphism of a ring R.
We define Farrell Nil-groups, for i ≥ 0, by

Nili(R;α) := Nili(R; FRα)

and for i < 0 by
Nili(R;α) := Nil0(Σ−iR; FΣ−iRα

).

Remark 1.2.10. Notice that the given definition for lower Farrell Nil-groups co-
incides with the usual definition of lower Farrell Nil-groups. Again, this can be
seen since for an arbitrary ring R and an arbitrary endomorphism α of R we have
ΣRα[t] = (ΣR)id⊗α[t].
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1.2 Nil-Groups and NIL-categories

1.2.3 Waldhausen Nil-Groups of Generalized Free Products

Waldhausen defines Nil-groups which relate the K-groups of a generalized free prod-
uct of two rings to the K-groups of the ground rings [Wal78a, Wal78b]. These kind
of Nil-groups are subgroups of the K-groups of categories of certain morphisms of
finitely generated projective modules. In the following, this concept is extended to
arbitrary modules.

Definition 1.2.11 (NIL(C;X, Y )). Let R be a ring and let X and Y be left flat
R-bimodules. Let C be a subcategory of Mall(R). Define

FX,Y : C × C →Mall(R)×Mall(R)

by sending (M,N) to (N ⊗X, M ⊗ Y ). We define NIL(C;X, Y ) to be the category
NIL(C × C; FX,Y ).

The category NIL(C;X, Y ) is called Waldhausen NIL-category of generalized free
products.

Remark 1.2.12. Objects of NIL(C;X, Y ) are quadruples (M,N,m, n) with M and
N objects in C and m and n are R-module morphisms

m : M −→ N ⊗X

n : N −→ M ⊗ Y

such that the sequences

M
m // N ⊗X

n⊗id
// M ⊗ Y ⊗X

m⊗id⊗id
// · · ·

and

N
n // M ⊗ Y

m⊗id
// N ⊗X ⊗ Y

n⊗id⊗id
// · · ·

are zero after finitely many steeps.
A morphism from (M,N,m, n) to (M ′, N ′,m′, n′) consists of module homomor-

phisms f : M → M ′ and g : N → N ′ such that

M

f

��

m // N ⊗X

g⊗idX

��

M ′ m′
// N ′ ⊗X

and a similar diagram involving the morphisms n and n′ commutes.

As usual, the category NIL
(
P(R);X, Y

)
is denoted by NIL(R;X, Y ). In the fol-

lowing, we define the Nil-groups Nili(R;X, Y ) appearing in the decomposition of
Waldhausen.
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1 End- and Nil-Groups

Definition 1.2.13 (Waldhausen Nil-groups of generalized free products).
Let R be a ring and let X and Y be left flat R-bimodules. We define Waldhausen
Nil-groups of generalized free products, for i ≥ 0, by

Nili(R;X, Y ) := Nili(R; FX,Y )

and for i < 0 by
Nili(R;X, Y ) := Nil0(Σ−iR; FΣ−iX,Σ−iY ).

1.2.4 Waldhausen Nil-Groups of Generalized Laurent Extensions

Waldhausen defines Nil-groups which relate the K-groups of a generalized Laurent
extension of two rings to the K-groups of the ground rings [Wal78a, Wal78b]. Nil-
groups of this kind are subgroups of the K-groups of categories of certain morphisms
of finitely generated projective modules. In the following, this concept is extended
to arbitrary modules.

Definition 1.2.14 (NIL(C;X, Y, Z,W )). Let R be a ring and let X, Y , Z and W
be left flat R-bimodules. Let C be a subcategory of the category Mall(R) which is
closed under extension. Define

FX,Y,Z,W : C × C →Mall(R)×Mall(R)

by sending (M,N) to (N⊗X⊕M⊗Z,M⊗Y ⊕N⊗W ). We define NIL(C;X, Y, Z,W )
to be the category NIL(C × C; FX,Y,Z,W ). The category NIL(C;X, Y, Z,W ) is called
Waldhausen NIL-category of generalized Laurent extensions.

Remark 1.2.15. Objects of NIL(C;X, Y, Z,W ) are quadruples (M,N,m, n), with
M and N objects in C and m and n are R-module homomorphisms

m : M −→ N ⊗X ⊕M ⊗ Z

n : N −→ M ⊗ Y ⊕N ⊗W

such that the sequences

M
m //

N ⊗ X
⊕

M ⊗ Z

n ⊗ id
⊕

m ⊗ id
//

M ⊗ Y
⊕

N ⊗W

⊗ X⊕N ⊗ X
⊕

M ⊗ Z

⊗ Z

// · · ·

and
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1.2 Nil-Groups and NIL-categories

N
n //

M ⊗ Y
⊕

N ⊗W

m ⊗ id
⊕

n ⊗ id
//

N ⊗ X
⊕

M ⊗ Z

⊗ Y⊕M ⊗ Y
⊕

N ⊗W

⊗W

// · · ·

are zero after finitely many steeps.
A morphism from (M,N,m, n) to (M ′, N ′,m′, n′) consists of module homomor-

phisms f : M → M ′ and g : N → N ′ such that the diagram

M
m //

f

��

N ⊗X ⊕M ⊗ Z

g⊗id⊕f⊗id
��

M ′ m′
// N ′ ⊗X ⊕M ′ ⊗ Z

and a similar diagram for n and n′ commutes.

As usual, NIL
(
P(R);X, Y, Z,W

)
is denoted by NIL(R;X, Y, Z,W ). In the follow-

ing, we define the Nil-groups appearing in the decomposition of Waldhausen.

Definition 1.2.16 (Waldhausen Nil-groups of generalized Laurent exten-
sions). Let R be a ring and let X, Y , Z and W be left flat R-bimodules. We define
Waldhausen Nil-groups of generalized Laurent extensions, for i ≥ 0, by

Nili(R;X, Y, Z,W ) := Nili(P(R); FX,Y,Z,W )

and for i < 0 by

Nili(R;X, Y, Z, W ) := Nil0(P(Σ−iR),FΣ−iX,Σ−iY,Σ−iZ,Σ−iW ).

Remark 1.2.17. Note that the NIL(R;X, Y, Z,W )-category is a generalization of
the other kinds of NIL-categories. To see this, let X and Y be the trivial module
and let Z and W be R seen as an R-bimodule. The category NIL(R; 0, 0, R, R)
is equivalent to NIL(R) × NIL(R). Let α be an R-automorphism. The category
NIL(R; 0, 0, Rα, Rα−1) is equivalent to NIL(R;α)×NIL(R;α−1). To obtain the Wald-
hausen NIL-category of generalized free products let X and Y be R-bimodules. The
category NIL(R;X, Y, 0, 0) is equivalent to NIL(R;X, Y ).

On the other hand we can ask when NIL(R;X, Y, Z, W ) is completely deter-
mined by NIL(R;X), NIL(R;Y ) and NIL(R;X, Y ). This question is answered
by Waldhausen [Wal78a, page 157]. Let α, β : C ↪→ A be pure and free maps
of rings. The category NIL(C;α A′α,β Aβ ,β Aα,α Aβ) has as retracts the categories
NIL(C;α A′α,β A′′β), NIL(C;β Aα) and NIL(C;α Aβ). If α and β are both isomor-
phisms, NIL(C;α A′α,β Aβ,β Aα,α Aβ) reduces to that product.
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2 The Behavior of Nil-Groups under
Localization

In this chapter, we prove that Nil-groups behave nicely under localization. The main
result is Theorem 2.4.1 saying that

Z[t, t−1]⊗Z[t] Nili(R;X, Y, Z,W ) ∼= Nili(Rs;Xs, Ys, Zs,Ws)

for all i ∈ Z. The Z[t]-module structure on Nili(R;X, Y, Z,W ) is given by the
map which is induced by the functor Fs. This result is an application of the long
exact localization sequence of NIL-categories which is developed in Section 2.3. In
Section 2.1 we provide basic homological facts about NIL-categories which are needed
for the proof of the exactness of the localization sequence. The proof also requires
knowledge about the shape of a colimit in the category of exact categories. Colimits
of this kind are studied in Section 2.2.

2.1 Homological Facts about NIL-categories

To prove the exactness of the localization sequence of Nil-categories, basic homolog-
ical facts about NIL-categories are needed. In this section, we provide these facts.

Lemma 2.1.1. Let A be an abelian category and let C be a subcategory which is closed
under extension. Let A : C → A be an exact functor. The subcategory NIL(C;A) of
END(C;A) is closed under extension.

Proof. Let

0 // (P, p) // (M,m) // (P ′, p′) // 0

be a short exact sequence in END(C; A) with (P, q) and (P ′, p′) in NIL(C; A). Let
(P, p) be of nilpotency degree L and let (P ′, p′) be of nilpotency degree L′. We are
going to show that (M,m) is of nilpotency degree at most L + L′. For n ∈ N we
define mn : M → An to be the composite of

mn : M
m // A(M)

A(m)
// · · ·A

n−1(m)
// An(M).
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2 The Behavior of Nil-Groups under Localization

The morphism pn and p′n are defined similarly. Since A is exact, we get a commu-
tative diagram with exact rows:

0 // P //

pL′

��

M //

mL′

��

P ′ //

0
��

0

0 // AL′(P ) //

0
��

AL′(M) //

(mL′ )L

��

AL′(P ′) //

(p′L
′
)L

��

0

0 // AL′+L(P ) // AL′+L(M) // AL′+L(P ′) // 0.

The obvious diagram chase gives that mL′ : M → AL′(M) factors over AL′(P ) and
therefore the lemma.

Lemma 2.1.2. Let the notation be as in the preceding lemma. Let

0 // (M ′,m′)
f ′

// (M,m)
f ′′

// (M ′′,m′′) // 0

be a short exact sequence in NIL(C;A). Let (P ′, p′) and (P ′′, p′′) be projective objects
in NIL(C;A) admitting surjections

π′P : (P ′, p′) � (M ′,m′)
π′′P : (P ′′, p′′) � (M ′′,m′′).

Since P ′ ⊕ P ′′ is projective, we can construct a surjection

πP : P ′ ⊕ P ′′ � M

out of π′P and π′′P .
There is an object (P ′ ⊕ P ′′, p) in NIL(C;A) such that the diagram

0 // (P ′, p′) //

π′P
����

(P ′ ⊕ P ′′, p) //

πP
����

(P ′′, p′′) //

π′′P
����

0

0 // (M ′,m′)
f ′

// (M,m)
f ′′

// (M ′′,m′′) // 0

commutes.

Proof. Consider the map

σ := m ◦ πP −A(πP ) ◦
(

p′

p′′

)
from P ′⊕P ′′ to A(M). A diagram chase gives us that the image of σ is in the image
of A(P ′ ⊕ 0) under A(πP ). Since P ′′ is projective, we obtain a lift σP such that the

30



2.1 Homological Facts about NIL-categories

diagram

P ′′
σP //

σ

""EE
EE

EE
EE

E A(P ′)

A(πP )

��

A(M)

commutes. We define

p :=
(

p′ σP

p′′

)
.

Another diagram chase gives us that P ′ is in the kernel of σ. Thus the diagram

P ′ ⊕ P ′′

πP

��

p
// A(P ′ ⊕ P ′′)

A(πP )

��

M
m // A(M)

commutes.
The following diagram commutes by construction of p and the reasoning given

above.

A(P ′) //

A(π′P )
����

A(P ′ ⊕ P ′′)

A(πP )
����

// A(P ′′)

A(π′′P )
����

P ′

p′ ::uuuuu
//

π′P

����

P ′ ⊕ P ′′

πP

����

p 66mmmmmm
// P ′′

π′′P

����

p′′ 99sssss

A(M ′)
A(f ′)

// A(M)
A(f ′′)

// A(M ′′)

M ′ f ′
//

m′ ::ttttt
M

m 66lllllllll f ′′
// M ′′.

m′′ 99sssss

The object (P ′ ⊕ P ′′, p) is, by Proposition 2.1.1, in NIL(C; A).

Lemma 2.1.3. Assume the following conditions for an abelian category A with
subcategory C which is closed under extension and an exact functor A:

1. For any object M in C there exists an object P in P which is projective and
admits an epimorphism c : P → M ;

2. Any object in A can be written as a colimit of a directed system {Mi|i ∈ I}
such that each structure map is injective and each object belongs to C;

3. The functor A commutes with colimits over directed systems and injective struc-
ture maps;

4. For any epimorphism f : M → N in A for which M belongs to C also N belongs
to C;
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2 The Behavior of Nil-Groups under Localization

5. Suppose that the object N in A is the colimit of a directed system {Mi|i ∈ I}
such that each structure map is injective and each object belongs to C. Let
k : N ′ → N be an injective morphism with N ′ ∈ C. Then there exists an index
i ∈ I such that the image of k is contained in the image of Ni → N .

Then we can find for any object (M,m) in NIL(C;A) an object (P, p) in NIL(C;A)
together with an epimorphism from (P, p) onto (M,m) such that P is projective.
The nilpotency degree of (P, p) is smaller or equal to one plus the nilpotency degree
of (M,m).

Proof. The result is proven by induction on the nilpotency degree L. For L = 1 we
have m = 0. Let PM be a projective object surjecting onto M . The trivial map from
PM to A(PM ) is a lift of m.

For the induction step from L to L + 1 let (M,m) be an object of NIL(C; A) of
nilpotency degree L + 1. For ` ≥ 1 define m` : M → A`(M) to be the composite

m` : M
m // A(M)

A(m)
// · · · A`−1(m)

// A`(M).

Let N be the kernel of m`. Consider the exact sequence

0 // N
i // M

m`
// A`(M) // 0

where i is the inclusion. Since F is exact, the following sequence is also exact.

0 // A(N)
A(i)

// A(M)
A(m`)

// A`+1(M) // 0.

The image of m is contained in the kernel of m`, since m`+1 = 0. The given exact
sequence implies that the image of m is contained in the image of A(i) : A(N) →
A(M). By assumption we can write

N = lim−→i∈I
Ni

for a directed system with injective structure maps such that each Ni belongs to C.
By assumption the canonical map

lim−→i∈I
A(Ni) = A(N)

is bijective. The image of m : M → A(M) belongs, by assumption, to C since M
belongs to C. Thus we can find an index i0 ∈ I such that the image of m belongs to
the image of A(Ni0) → A(N). Put MIm = Ni0 .

The object MIm has the property that the image of m is contained in A(MIm).
This has two implications. First of all we can restrict m to a morphisms of MIm. The
object (MIm,m|MIm

) is of nilpotency degree L. By construction, MIm is an object in
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2.1 Homological Facts about NIL-categories

NIL(C; A). Thus, by our induction hypothesis, we get a projective object PMIm
and

a nilpotent lift m̃Im such that the diagram

PMIm

m̃Im //

����

A(PMIm
)

����

MIm

m|MIm //
� _

��

A(MIm)� _

��

M
m // A(M)

commutes.
Let PM be a projective object surjecting onto M . The second implication is that

since PM is projective there is a map m̃M making the diagram

PM
m̃M //

����

A(PMIm
)

����

M
m // A(MIm)

commutative. Plugging these maps together in the matrix

m̃ :=
(

0 0
m̃M m̃Im

)
we get a commutative diagram

PM ⊕ PImM

m̃ //

����

A(PM ⊕ PImM
)

����

M
m // A(M).

This lift of m is nilpotent since m̃Im is. Thus the object
(
PM ⊕ PImM

, m̃
)

is a
projective object of nilpotency degree L + 2 surjecting onto (M,m).

Definition 2.1.4 (M(R)). Let R be a ring. The category M(R) is the category of
all finitely generated right R-modules.

Corollary 2.1.5. Let R be a ring, let X, Y, Z and W be left flat R-bimodules and
let F be one of the functors id, FX , FX,Y and FX,Y,Z,W . Let (M,m) be an object
in NIL

(
M(R);F

)
. There exists an object (P, p) in the subcategory NIL

(
P(R);F

)
admitting a surjection onto (M,m).

Proof. One easily checks that F has the required properties.
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2 The Behavior of Nil-Groups under Localization

2.2 Colimits in the Category of Exact Categories

It is well known that the category of exact categories is closed under colimits over
small filtering categories [Qui73, page 104]. In the following, we review basic defini-
tions and properties of these kind of colimits.

Definition 2.2.1 (Filtering category). A nonempty category I is called filtering
if the following conditions hold.

1. For every i, j ∈ Obj I, there are arrows

i
��

<<

k

j

AA��

to some k ∈ Obj I.

2. For every two parallel arrows u, v : i ⇒ j, there is an arrow w : j → k such that
w ◦ u = w ◦ v.

The dual notion is called cofiltering.

Example 2.2.2. Let ω be the category where objects are non-negative integers and
there is exactly one morphism from i to j if and only if i is smaller or equal to j.
The category ω is small and filtering.

Let us briefly recall the definition of a colimit [ML98, page 67].

Definition 2.2.3. Let I and E be categories.

1. Denote the functor category from I to E by EI . The diagonal functor

∆: E → EI

sends each object x to the constant functor ∆x, whose value on each i ∈ I is
the object x.

2. Let F be a functor from I into E . The colimit of F is an object in E , written
lim−→i∈I

F(i), together with a universal natural transformation S from F to the
functor ∆ lim−→i∈I

F(i).

3. The natural transformation S induces maps from F(i) into lim−→i∈I
F(i). These

maps are denoted by Si and called structure maps.

In an arbitrary category a colimit need not to exist.

Proposition 2.2.4. Let I be a small filtering category and let F be a functor from I
into the category of exact categories. The colimit over F exists in the category of
exact categories.

34



2.3 The Long Exact Localization Sequence of NIL-Categories

Quillen constructs such a colimit [Qui73, page 104]. This is done by defining a
new category C by

Obj C = lim−→i∈I
ObjF(i)

Ar C = lim−→i∈I
ArF(i).

The colimit in the definition given above is the set-theoretical colimit. A sequence
in C is exact if we can find an exact sequence in some F(i) mapping onto it under
the structure maps.

Example 2.2.5. In Section 2.3, colimits of functors from ω to the category of
exact categories E of the following type will become important. Let Fs be an exact
endofunctor of an exact category NIL. Define a functor F from ω to E by sending
every object of ω to the category NIL and the morphisms from i to j to the (i−j)-fold
suspension of Fs.

A colimit in this case consist of an exact category lim−→ω
NIL and structure functors

Si : NIL → lim−→ω
NIL

which are universal among functors making the diagram

· · · // NIL

Si−1 $$JJJJJJJJJ
Fs // NIL

Si

��

Fs // NIL

Si+1zzttttttttt
// · · ·

lim−→ω
NIL

commutative.
Note that every object and morphism in lim−→ω

NIL needs to be in the image of
some Si. In the following, we use the short hand notation xi for Si(x).

Let i ≤ j. Morphisms in lim−→ω
NIL from xi to yj are for example elements of

lim−→n∈ω
morNIL

(
Fn+i−j

s (x),Fn
s (y)

)
. A sequence is exact if it becomes exact after ap-

plying Fs sufficiently often. In particular, if Fs has the property that for every
morphism f the image Fs(f) is an isomorphism iff f is a isomorphism, a morphism
in lim−→ω

NIL is an isomorphism iff the inverse image under the structure functors
contains just isomorphisms.

2.3 The Long Exact Localization Sequence of
NIL-Categories

The behavior of algebraic K-theory under localization is well understood. If s ∈ R
is a central non zero divisor, we define Hs(R) to be the exact category of finitely
generated R-modules with the property that modules have projective dimension

35



2 The Behavior of Nil-Groups under Localization

smaller or equal to 1 and are s-torsion. Quillen proved [Gra76] that there is a long
exact sequence

· · · // Ki+1(Rs) // Ki

(
Hs(R)

)
// Ki(R) // Ki(Rs) // · · · .

This sequence is called localization sequence of algebraic K-theory. In the following,
we develop a similar sequence for NIL-categories. More precisely, Theorem 2.3.7
states that the sequence

· · · // Ki+1

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
// Ki

(
Hs(R)

)
⊕Ki

(
Hs(R)

) I //

I // lim−→Ki

(
NIL(R;X, Y, Z,W )

) L // Ki

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
// · · · ,

is exact. The colimit is of the form considered in Example 2.2.5. To obtain this
statement, we first prove that a similar sequence (Lemma 2.3.10) is exact. In the
second part of this section the different K-groups appearing in the exact sequence
of Lemma 2.3.10 are identified with the K-groups in the given sequence.

The proof that the localization sequence of NIL-categories is exact follows a proof
of the exactness of the localization sequence of algebraic K-theory [Gra87, Sta89].
Let us briefly recall how the exactness of this sequence is proven.

Lemma 2.3.1. Let C and D be exact categories. The categories C and D can be
seen as Waldhausen categories, by defining a map to be a weak equivalence if it
is an isomorphism and to be a cofibration if it is an admissible monomorphism.
Denoted by isoC and isoD the categories of weak equivalences and by coC and coD
the categories of cofibrations. If not stated otherwise C and D are always considered
with this Waldhausen category structure.

Let F : C → D be an exact functor. We give C a new Waldhausen structure by
defining a map to be a weak equivalence if it maps to a weak equivalence under F.
Denote this new category of weak equivalences by wC. Let Ker(F) be the kernel of
F, i.e., the full Waldhausen subcategory of all objects C in C such that there exists a
weak equivalence 0 w // F(C) in D.

If the functor F induces an equivalence

coSrC ∩ wSrC → isoSrD

after taking the nerve and realization for every r ∈ N, then

Ker(F) // C F // D

induces a long exact sequence on K-groups.

Proof. We denote the inclusion functor

I : Ker(F) → C
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2.3 The Long Exact Localization Sequence of NIL-Categories

by I. Proposition 1.5.5. in [Wal85] gives that∣∣s•Ker(F)
∣∣ I //

∣∣s•C∣∣ //
∣∣s•S•( Ker(F) I // C

)∣∣
is a fibration up to homotopy. The main step is to prove that F identifies∣∣s•S•( Ker(F) I // C

)∣∣
with ∣∣N•isoS•D

∣∣,
where N• is the •-th part of the nerve of a category. First observe that by reversal
of priorities we can replace the bisimplicial set

(m,n) � // smSn

(
Ker(F) I // C

)
by the equivalent bisimplicial set

(m,n) � // sn

(
Sm Ker(F) I // SmC

)
.

Since Ker(F) is a Waldhausen subcategory of C, the category Sm Ker(F) is a Wald-
hausen subcategory of SmC. Thus following Waldhausen [Wal85, page 344], we can
replace

sn

(
Sm Ker(F) I // SmC

)
by

Fn

(
Sm Ker(F), SmC

)
.

The functor F induces a map of bisimplicial sets from

(m,n) � // Fn

(
Sm Ker(F), SmC

)
to

(m,n) � // Nn

(
isoSmD

)
.

The next step is to identify Fn

(
Sm Ker(F), SmC

)
also with the nerve of a category.

Consider the category
coSmC ∩ wSmC.

The bisimplicial set
(m,n) � // Fn

(
Sm Ker(F), SmC

)
is equivalent to

(m,n) � // Nn(coSmC ∩ wSmC).

Thus by the realization lemma, to prove the statement it suffices to show that for
each r ≥ 0 the induced functor
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2 The Behavior of Nil-Groups under Localization

Fr : coSrC ∩ wSrC // isoSrD

realizes to a homotopy equivalence. But this is one of our assumptions.

Recall the categories which give rise to the localization sequence of algebraic K-
theory.

Definition 2.3.2. Let R be a ring and let s be a central non zero divisor of R.

1. Let PIm(Rs) be the full exact subcategory of P(Rs) consisting of those objects
isomorphic to P ⊗R Rs for some P ∈ P(R).

2. Let Pd1(R) be the exact category of finitely generated R-modules of projective
dimension smaller or equal to 1 with the additional assumption that P⊗RRs ∈
PIm(Rs) for all objects P in Pd1(R).

Remark 2.3.3. These categories are closed under extension in either the category
of all R-modules or the category of all Rs-modules.

Let L be the functor from Pd1(R) into PIm(Rs) whose value at P is P ⊗R Rs.
Note that the kernel of L is the category Hs(R). One way of proving the exactness
of the localization sequence of algebraic K-theory is to apply Lemma 2.3.1 to

Hs(R) // Pd1(R) L // PIm(Rs).

This is possible since we can apply Quillen’s Theorem A to the functor

Lr : coSrPd1(R) ∩ wSrPd1(R) → isoSrPIm(Rs),

by proving that the comma category

Lr/M

is nonempty and cofiltering for every M ∈ isoSrPIm [Sta89]. Note that if the functor
L would not be surjective on isomorphism classes of objects, then the comma category
is empty for a ceratin M ∈ isoPIm and therefore it is not possible to apply Quillen’s
Theorem A.

In the second step, Ki

(
Pd1(R)

)
is identified with Ki

(
P(R)

)
via the Resolution

Theorem and Ki

(
PIm(R)

)
with Ki

(
P(Rs)

)
since PIm(R) is cofinal in P(Rs).

To transfer the ideas to the setting of the NIL-categories, we use the generalized
notion of NIL(R;X, Y, Z,W ) introduced in Chapter 1. Proposition 1.2.2 gives us that
for left flat R-bimodules X, Y , Z and W the categories NIL

(
Hs(R);X, Y, Z,W

)
,

NIL
(
Pd1(R);X, Y, Z,W

)
and NIL

(
PIm(R);X, Y, Z,W

)
are exact categories.

As a next step, we need to define localization and inclusion functors on NIL-
categories. The generalization of the inclusion functor is obvious. In the following,
all different inclusion functors are denoted by I. For the definition of a localization
functor a little bit more work is needed. If s ∈ R is an central nonzero divisor, denote
the exact functor from Mall(R) to Mall(Rs) given by localization at s by us. We
denote the obvious natural transformation between the functors us ◦ FX,Y,Z,W and
FXs,Ys,Zs,WS

◦ us by Us.
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2.3 The Long Exact Localization Sequence of NIL-Categories

Definition 2.3.4. Let R be a ring, let s ∈ R be a central non zero divisor and let
X, Y , Z and W be left flat R-bimodules.

1. Define
L: NIL(R;X, Y, Z,W ) → NIL(Rs;Xs, Ys, Zs,Ws)

to be the functor induced by the tuple (us, Us).

2. The functor L restricts to a functor from NIL
(
Pd1(R);X, Y, Z, W

)
to

NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
which is also denoted by L.

We can not transfer the ideas of the proof of the long exact localization sequence
of algebraic K-theory one to one to the NIL-categories. In general, we can not hope
that

NIL
(
Hs(R);X, Y, Z, W

) I // NIL
(
Pd1(R);X, Y, Z,W

) L // NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
induces a long exact sequence in K-theory. The problem is that in the cate-
gory NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)
there are no requirements on the nilpotent mor-

phisms. This implies that the localization functor is not necessarily surjective on
isomorphism classes of objects. Therefore the comma category

L1/M

might be empty for some M ∈ isoS1 NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
. Hence we can

not apply Quillen’s Theorem A to the functor

L1 : coS1 NIL
(
Pd1(R);X, Y, Z,W

)
∩ wS1 NIL

(
Pd1(R);X, Y, Z,W

)
→ isoS1 NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)
.

To get around this problem, we have to pass to the colimit.

Definition 2.3.5 (Fs). Let C be an exact subcategory of Mall(R) and let s be a
central element in R. We define Fs to be the exact endofunctor of NIL(C;X, Y, Z,W )
defined by

Fs : NIL(C;X, Y, Z,W ) → NIL(C;X, Y, Z, W )
(P,Q, p, q) 7→ (P,Q, p · s, q · s).

Thus Fs is defined on all the different NIL-categories considered above. In the
following, all colimits are colimits taken over the functor from the small filtering
category ω into the category of exact categories which sends an object of ω to one
of the different NIL-categories and the morphism from i to j to the (j − i)-fold
composition of the functor Fs (compare Example 2.2.5).

Definition 2.3.6. Let R be ring, let s ∈ R be a central non zero divisor and let X,
Y , Z and W be R-bimodules.
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2 The Behavior of Nil-Groups under Localization

1. Since the inclusion functor

I : NIL
(
Hs(R);X, Y, Z,W

)
→ NIL

(
Pd1(R);X, Y, Z,W

)
commutes with Fs, we get a functor

I : lim−→NIL
(
Hs(R);X, Y, Z,W

)
→ lim−→NIL

(
Pd1(R);X, Y, Z,W

)
.

By abuse of language both of these functors are denoted by I.

2. In the same way as above localization functors

L: lim−→NIL(R;X, Y, Z,W ) → lim−→NIL(Rs;Xs, Ys, Zs,Ws)

and

L: lim−→NIL
(
Pd1(R);X, Y, Z,W

)
→ lim−→NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)
are defined.

3. Since Fs is ”invertible” on NIL(Rs;Xs, Ys, Zs,Ws) we get a map

L: lim−→Ki

(
NIL(R;X, Y, Z,W )

)
→ Ki

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
.

Theorem 2.3.7. Let R be a ring and let s be a central non zero divisor of R. Let
X, Y , Z and W be left free R bimodules with s ·x = x · s for all elements x ∈ X and
similar assumptions for Y , Z and W .

Localization at s induces a long exact sequence

· · · // Ki

(
Hs(R)

)
⊕Ki

(
Hs(R)

) I // lim−→Ki

(
NIL(R;X, Y, Z, W )

) L //

L // Ki

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
// Ki−1

(
Hs(R)

)
⊕Ki−1

(
Hs(R)

)
// · · · ,

where K0

(
NIL(R;X, Y, Z,W )

)
→ K0

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
is not necessarily

surjective.

For the proof of this theorem, a whole bunch of lemmas is needed. Without further
mentioning we will always use the notation of the preceding theorem.

Lemma 2.3.8. The functor

L : lim−→NIL
(
Pd1(R);X, Y, Z,W

)
→ lim−→NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)
is surjective on isomorphism classes of objects.

Proof. Let (M,N, p, q)k be an object of lim−→NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
. By con-

struction, (M,N, p, q) is isomorphic to some element (P ⊗Rs, Q⊗Rs, p, q) where P
and Q are finitely generated projective R-modules.

The modules P and Q are finitely generated and the relation s ·x = x · s holds for
every x ∈ X and similar conditions hold for the bimodules Y , Z and W . Thus
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p(a⊗ id) · s` =
∑

j qj(a)⊗R id⊗Rs id⊗R xj(a)⊗R id⊕ pj(a)⊗R id⊗Rs id⊗R zj(a)⊗R id

q(b⊗ id) · s` =
∑

j pj(b)⊗R id⊗Rs id⊗R yj(b)⊗R id⊕ qj(b)⊗R id⊗Rs id⊗R wj(b)⊗R id

for every a ∈ P and b ∈ Q and some ` ∈ N, xj(a) ∈ X, yj(b) ∈ Y , zj(a) ∈ Z and
wj(b) ∈ W . The maps

P → Q⊗X ⊕ P ⊗ Z

a 7→
∑

qj(a)⊗ xj(a)⊕ pj(a)⊗ zj(a)

Q → P ⊗ Y ⊕Q⊗W

b 7→
∑

pj(b)⊗ yj(b)⊕ qj(b)⊗ wj(b)

are not necessarily R-module morphisms. But, by construction, every relation
is satisfied up to s-torsion. Since the modules P and Q are finitely generated
projective and therefore finitely presented the maps defined above become an R-
module homomorphism after multiplication with a certain multiple of s. Thus
F`′

s

(
(M,N, p, q)

)
is isomorphic to an element in the image of the localization functor

from NIL
(
Pd1(R);X, Y, Z,W

)
to NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)
.

In the preceding section, we have seen that F`′
s

(
(M,N, p, q)

)
k+`′

and (M,N, p, q)k

represent the same object in lim−→NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
. Thus (M,N, p, q)k

is isomorphic to an element in the image of L.

Lemma 2.3.9. Let P and Q be finitely generated projective R-modules. Let (f, g)
be a monomorphism in NIL

(
Pd1(R);X, Y, Z, W

)
from (P,Q, p, q) to an arbitrary

object. If the cokernel of f and g is s-torsion, then (f, g) is admissible.

Proof. To prove this statement, first observe that the quadruple
(Coker(f),Coker(g), p|Coker(f), q|Coker(g)) is well-defined. The long exact se-
quence of Ext-groups associated to the maps f and g gives that Coker(f) and
Coker(g) are of projective dimension smaller or equal to 1. Since Coker(f)⊗R Rs =
Coker(g) ⊗R Rs = 0, we get that (Coker(f),Coker(g), p|Coker(f), q|Coker(g)) is an
object in NIL

(
Pd1(R);X, Y, Z, W

)
.

Lemma 2.3.10. Let R be a ring and let s be a central non zero divisor. Let X,
Y , Z and W be left free R bimodules with s · x = x · s for all elements x in X and
similar assumptions for Y , Z and W . Let I and L be the functors defined above.
The sequence

lim−→NIL
(
Hs(R);X, Y, Z, W

) I // lim−→NIL
(
Pd1(R);X, Y, Z,W

) L //

L // lim−→NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
of functors induces a long exact sequence on K-theory.
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2 The Behavior of Nil-Groups under Localization

Proof. For the proof, NIL
(
Hs(R);X, Y, Z,W

)
, NIL

(
Pd1(R);X, Y, Z,W

)
and

NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
are denoted by NILHs , NILd1 and NILIm.

The kernel of the functor L: lim−→NILd1 → lim−→NILIm is lim−→NILHs . Thus to apply
Lemma 2.3.1, it suffices to show that for each M ∈ isoSr lim−→NILIm the comma cate-
gory Lr/M is contractible. This will follow since Lr/M is nonempty and cofiltering
[BK72, page 318].

For r = 0, there is nothing to prove.
For r = 1, the objects of L1/(M,N,m, n)j can be seen in two different ways.

One way is by simply taking an object to be a map f in iso lim−→NILIm between
(M,N,m, n)j and an object L

(
(V,W, v, w)i

)
with (V,W, v, w)i in lim−→NILd1. Since

Fs has the property that a morphism is an isomorphism iff the image under Fs is an
isomorphism, these are the maps such that the inverse image of f under the structure
functors are tuples (f1, f2) which are an isomorphism in NILIm. Since the diagram

W ⊗X ⊕ V ⊗ Z
� � // W ⊗Rs ⊗Xs ⊕ V ⊗Rs ⊗ Zs

f2⊗id⊕f1⊗id
// N ⊗Xs ⊕M ⊗ Zs

V
� � //

v

OO

V ⊗Rs

vs

OO

f1
// M

m

OO

commutes we get that (f1, f2) is induced by a tuple of R-module homomorphism
between (V,W, v, w) and (M,N,m, n) which become a isomorphisms under localiza-
tion at s. Thus a second way to see an object in L1/(M,N,m, n)j is to see it as a
morphism f from L

(
(V,W, v, w)i

)
to (M,N,m, n)j such that the inverse image of f

under the structure functors are maps which are R-module homomorphisms which
become isomorphisms under localization at s.

Arrows are morphisms in lim−→NILd1 such that the inverse images of the structure
functors are monomorphism such that triangles like

(V,W, v, w)
g

//

f

((PPPPPPPPPPPP
(V ′,W ′, v′, w′)

f ′

vvmmmmmmmmmmmmm

(M,N,m, n),

commutes and the the cokernel of g is in NILHs .
The category L1/(M,N,m, n)j is non empty since L is surjective on isomorphism

classes (Lemma 2.3.8).
Given two objects

L
(
(V,W, v, w)i

) f
// (M,N,m, n)j L

(
(V ′,W ′, v′, w′)i′

)f ′
oo

to prove that L1/(M,N,m, n)j is cofiltering we need to find an object which maps
on both. Since the category ω is filtering we can find an object k in ω such that
the inverse image of f and f ′ under the k-th structure functor are induced by tuples
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(f1, f2) and (f ′1, f
′
2) of R-modules homomorphism which become isomorphisms un-

der localization. Additional we can assume that (M,N,m, n)j is isomorphic to an
object L

(
(PM , PN , pm, pn)k

)
with (PM , PN , pm, pn) in NIL(R;X, Y, Z,W ). To avoid

confusion, we assume that j = i = i′ = k. For the general case, we have to multiply
the nilpotent morphisms by a certain multiple of s.

With this assumption, we get R-module morphisms

V
f1

// M V ′
f ′1oo

and

W
f2

// N W ′.
f ′2oo

There exists an s ∈ {si}i such that we can find gM , g′M , gN and g′N making the
diagrams

PM
s //

gM

��

PM

ιM
��

PM
soo

g′M
��

V
f1

// M V ′
f ′1oo

and
PN

s //

gN

��

PN

ιN
��

PN
soo

g′N
��

W
f2

// N W ′
f ′2oo

commute. The point is now that the diagram

PN ⊗X ⊕ PM ⊗ Z
s⊗id⊕s⊗id

//

gN⊗id⊕gM⊗id

��

PN ⊗X ⊕ PM ⊗ Z

ιN⊗id⊕ιM⊗id

��

PN ⊗X ⊕ PM ⊗ Z
s⊗id⊕s⊗id

oo

g′N⊗id⊕g′M⊗id

��

PM

pm
66llllllllll s //

gM

��

PM

ιM

��

pm
66llllllllll

PM
soo

g′M

��

pm
66llllllllll

W ⊗X ⊕ V ⊗ Z
f2⊗id⊕f1⊗id

// N ⊗X ⊕M ⊗ Z W ′ ⊗X ⊕ V ′ ⊗ Z
f1⊗id⊕f2⊗id

oo

V
f1

//

v
66lllllllllll

M

m
66lllllllllll

V ′

v′
66lllllllllllf ′1oo

and a similar diagram for N commutes after a slight modification. The lower part
of the diagram commutes by construction of (f1, f2) and (f ′1, f

′
2). The front and

back parts commutes by construction of the g’s. The middle part commutes by the
definition of (PM , PN , pm, pn). The upper part of the diagram commutes since pm is
an R-linear map. The right and the left hand side will commute after a modification.
In the following, the right hand side is treated, similar arguments work for the left
hand side. Since f1 ⊗ id ⊕ f2 ⊗ id becomes an isomorphism after localization at s,
the elements in the kernel need to be s-torsion. Thus the difference between v′ ◦ g′M
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2 The Behavior of Nil-Groups under Localization

and (g′N ⊗ id ⊕ g′M ⊗ id) ◦ pm need to be s-torsion. Since PM is finitely generated,
we can choose s ∈ {si}i such that v′ ◦ g′M · s and (g′N · s⊗ id⊕ g′M · s⊗ id) ◦ pm agree.
Now replace g′M , g′N , ιN and ιM by g′M · s, g′N · s, ιN · s and ιM · s. It is easily seen
that the new diagram commutes.

Let g and g′ be the maps in NILd1 induced by gM , gN and g′M , g′N . By construction,
these maps become isomorphisms after localization at s. Since PM and PN are
projective, g and g′ are monomorphisms with a cokernel which is s-torsion. Since in
NILd1 such a monomorphism is by Lemma 2.3.9 admissible, we get exact sequences

0 // (PM , PN , pm, pn)
g

// (V,W, v, w) // (H,K, h, k) // 0

0 // (PM , PN , pm, pn)
g′

// (V ′,W ′, v′, w′) // (H ′,K ′, h′, k′) // 0,

where (H,K, h, k) and (H ′,K ′, h′, k′) are in NILHs . The image of this construction
under the j-th structure functor constructs an object

(PM , PN , pm, pn)j
s // (PM , PN , pm, pn)j

ι // (M,N,m, n)j

in L1/(M,N,m, n)j which maps to the given objects

L
(
(V,W, v, w)j

) f
// (M,N,m, n)j

and

L
(
(V ′,W ′, v′, w′)j

) f ′
// (M,N,m, n)j .

Suppose that we have two maps

h1 :
(
L
(
(V,W, v, w)i

) fk // (M,N,m, n)j

)
//

(
L
(
(V ′,W ′, v′, w′)i′

) f ′
k′ // (M,N,m, n)j

)
and

h2 :
(
L
(
(V,W, v, w)i

) fk // (M,N,m, n)j

)
//

(
L
(
(V ′,W ′, v′, w′)i′

) f ′
k′ // (M,N,m, n)j

)
.

By the same arguments as above, we can assume that j = i = i′ = k = k′ and that
the maps are induced by R-module morphisms in degree j. We get maps

h1 :
(
(V,W, v, w)

f
// (M,N,m, n)

)
//
(
(V ′,W ′, v′, w′)

f ′
// (M,N,m, n)

)
and

h2 :
(
(V,W, v, w)

f
// (M,N,m, n)

)
//
(
(V ′,W ′, v′, w′)

f ′
// (M,N,m, n)

)
.

To show that the category is cofiltering, we need to find a map g in L1/(M,N,m, n)j

such that h1 ◦ g = h2 ◦ g. As above, we find g
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g :
(
(PM , PN , pm, pn) s // (PM , PN , pm, pn) ι // (M,N,m, n)

)
//

(
(V,W, v, w)

f
// (M,N,m, n)

)
.

Since all maps become isomorphisms after localization at s, elements of
Ker(h1 ◦ g − h2 ◦ g) are s-torsion. Since PM and PN are projective and
therefore s-torsion free, we get that h1 ◦ g = h2 ◦ g as desired. Define an
element in L1/(M,N,m, n)j which is the image of (PM , PN , pm, pn) under the
j-th structure functor and a map gj from (PM , PN , pm, pn)j → (M,N,m, n)j to
(V,W, v, w)j → (M,N,m, n)j . This map has the property that h1 ◦ gj = h2 ◦ gj .

For r ≥ 2, the arguments can be extended in the following manner. An object of
Lr/M amounts to a map f of a diagram

0 // // L
(
(V,W, v, w)1,0

i1,0

)
����

// // . . . // // L
(
(V,W, v, w)r,0

ir,0

)
����

0 // // . . . // // L
(
(V,W, v, w)r,1

ir,1

)
����. . .

����

0 // // L
(
(V,W, v, w)r,r−1

ir,r−1

)
����

0

to the diagram

M = 0 // // (M,N,m, n)1,0
j1,0

����

// // . . . // // (M,N,m, n)r,0
jr,0

����

0 // // . . . // // (M,N,m, n)r,1
jr,1

����. . .

����

0 // // (M,N,m, n)r,r−1
jr,r−1

����

0,

where the inverse image of the maps in the different components under the structure
functors are induced by R-module morphisms which become isomorphisms under
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2 The Behavior of Nil-Groups under Localization

localization at s. By the same arguments as above, we can assume that all the
i’s and j’s are equal to some j and that there are (P i,i−1

M , P i,i−1
N , pi,i−1

m , pi,i−1
n ) ∈

NIL(R;X, Y, Z, W ) such that

L
(
(P i,i−1

M , P i,i−1
N , pi,i−1

m , pi,i−1
n )

) ∼= (M,N,m, n)i,i−1.

To show that Lr/M is non empty, an object with (P i,i−1
M , P i,i−1

N , pi,i−1
m , pi,i−1

n ) in
position (i, i − 1) is constructed inductively. To define components in the positions
(i + 1, i− 1), consider the exact sequences

(M,N,m, n)i,i−1 // // (M,N,m, n)i+1,i−1 // // (M,N,m, n)i+1,i .

By Lemma 2.1.2 we can find an element
(
(P i,i−1

M ⊕ P i+1,i
M )⊗Rs, (P

i,i−1
N ⊕ P i+1,i

N )⊗
Rs, pM , pN

)
of NIL(Rs;Xs, Ys, Zs,Ws) such that

L
(
(P i,i−1

M , P i,i−1
N , pi,i−1

m , pi,i−1
n )

) ∼= //

��

��

(M,N,m, n)i,i−1
��

��(
(P i,i−1

M ⊕ P i+1,i
M )⊗Rs, (P

i,i−1
N ⊕ P i+1,i

N )⊗Rs, pM , pN

)
//

����

(M,N,m, n)i+1,i−1

����

L
(
(P i+1,i

M , P i+1,i
N , pi+1,i

m , pi+1,i
n )

) ∼= // (M,N,m, n)i+1,i

commutes. By the same arguments as Lemma 2.3.8 is proven we can prove that
the localization functor from lim−→NIL(R;X, Y, Z,W ) to lim−→NIL(Rs;Xs, Ys, Zs,Ws)
is surjective on isomorphism classes. This implies that we can find an object
(P (i+1,i−1)

M , P
(i+1,i−1)
N , p

(i+1,i−1)
m , p

(i+1,i−1)
n ) in NIL(R;X, Y, Z,W ) such that(

(P i,i−1
M ⊕ P i+1,i

M )⊗Rs, (P
i,i−1
N ⊕ P i+1,i

N )⊗Rs, pM , pN )
)
j

∼= L
(
(P (i+1,i−1)

M , P
(i+1,i−1)
N , p(i+1,i−1)

m , p(i+1,i−1)
n )

)
k

W.l.o.g. we can assume that k = j (otherwise multiply the nilpotent morphism by
a certain multiple of s). The map from (P (i+1,i−1)

M , P
(i+1,i−1)
N , p

(i+1,i−1)
m , p

(i+1,i−1)
n )

to (M,N,m, n)i+1,i−1 becomes an isomorphism after localization at s, because the
other morphisms in the short exact sequence have this property. If we apply this
construction r-times, we get an object of Sr NILd1 and a map to the diagram M
which becomes an isomorphism after localization at s. Thus Lr/M is non empty.

To show that Lr/M is cofiltering, assume there are two objects

P
f

// M P ′.
f ′

oo

Again, we can assume that P , P ′ and M are induced by diagrams in
Sr NILd1/Sr NILIm in degree j. The components of the diagram which induces P
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are denoted by (V,W, v, w)i,k and the components of the diagram which induces P ′

are denoted by (V ′,W ′, v′, w′)i,k. As above, we can construct for every part

(V,W, v, w)i,i−1
fi,i−1

// (M,N,m, n)i,i−1 (V ′,W ′, v′, w′)i,i−1
f ′i,i−1

oo

of the diagram an object (PM , PN , pm, pn)i,i−1 ∈ NIL(R;X, Y, Z,W ) such that

(PM , PN , pm, pn)i,i−1

uukkkkkkkkkkkkkkk

**TTTTTTTTTTTTTTT

(V,W, v, w)i,i−1
fi,i−1

// (M,N,m, n)i,i−1 (V ′,W ′, v′, w′)i,i−1
f ′i,i−1

oo

commutes. In the same matter as above, an element in Sr NILd1 is constructed which
maps on both P , P ′. The image under the j-th structure functor gives an element
in Lr/M mapping on both.

Given two maps

h1 :
(
P

f
// M

)
−→

(
P ′

f ′
// M

)
h2 :

(
P

f
// M

)
−→

(
P ′

f ′
// M

)
,

as above, we find a diagram PM in Sr NIL(R;X, Y, Z,W ) and a map g

g :
(

PM
s // PM

ι // M
)
−→

(
P

f
// M

)
such that h1 ◦ g = h2 ◦ g, using the argument above pointwise.

This proves that Lr/M is non empty and cofiltering and therefore the lemma.

In the last part of this section we derive Theorem 2.3.7 out of Lemma 2.3.10. To
do so we prove the following three identities

Ki

(
lim−→NIL

(
Hs(R);X, Y, Z, W

)) ∼= Ki

(
Hs(R)×Hs(R)

)
Ki

(
NIL

(
Pd1(R);X, Y, Z,W

)) ∼= Ki

(
NIL(R;X, Y, Z,W )

)
Ki

(
lim−→NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)) ∼= Ki

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
.

We start with Ki

(
NIL

(
Hs(R);X, Y, Z,W

))
.

Lemma 2.3.11. We have

Ki

(
lim−→NIL

(
Hs(R);X, Y, Z,W

)) ∼= Ki

(
Hs(R)×Hs(R)

)
for i ≥ 0.
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Proof. First, we prove that we have an equivalence of categories

lim−→NIL
(
Hs(R);X, Y, Z,W

) ∼= lim−→
(
Hs(R)×Hs(R)

)
.

Let
I : lim−→

(
Hs(R)×Hs(R)

)
→ lim−→NIL

(
Hs(R);X, Y, Z,W

)
be the inclusion functor and let

P: lim−→NIL
(
Hs(R);X, Y, Z,W

)
→ lim−→

(
Hs(R)×Hs(R)

)
be the forgetful functor whose value at (H,K, h, k)i is (H,K)i.

Clearly, P ◦ I = id. Thus it remains to prove that I ◦ P ∼= id. Let (H,K, h, k)j be
an object of lim−→NIL

(
Hs(R);X, Y, Z,W

)
. We have

I ◦ P
(
(H,K, h, k)j

)
= (H,K, 0, 0)j .

Since H and K are finitely generated and s-torsion for ` big enough, we have

F`
s

(
(H,K, h, k)

) ∼= (H,K, 0, 0).

This implies that

(H,K, h, k)j
∼= (H,K, 0, 0)j+` = (H,K, 0, 0)j

and therefore I ◦ P ∼= id on objects.
Morphisms stay the same under the functor I ◦P. This implies that the categories

lim−→NIL
(
Hs(R);X, Y, Z,W

)
and lim−→

(
Hs(R)×Hs(R)

)
are equivalent.

Since K-theory commutes with colimits over small filtering categories, we get

Ki

(
lim−→NIL

(
Hs(R);X, Y, Z, W

)) ∼= lim−→Ki

(
Hs(R)×Hs(R)

)
.

To prove the lemma, note that the functor Fs induces the identity on Hs(R) ×
Hs(R) and therefore

lim−→Ki

(
Hs(R)×Hs(R)

)
= Ki

(
Hs(R)×Hs(R)

)
.

Lemma 2.3.12. We have

Ki

(
lim−→NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)) ∼= Ki

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
for i ≥ 1 and there is an injective map on K0.

Proof. Since K-theory commutes with colimits over small filtering categories, we
have

Ki

(
lim−→NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)) ∼= lim−→Ki

(
NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

))
.
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Since Fs is ”invertible” on NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
, we have

lim−→Ki

(
NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)) ∼= Ki

(
NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

))
.

Since NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
contains all quadruples, where P and Q are free

modules, NIL
(
PIm(Rs);Xs, Ys, Zs,Ws

)
is cofinal in NIL(Rs;Xs, Ys, Zs,Ws). There-

fore
Ki

(
NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

)) ∼= Ki

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
for i ≥ 1 and there is an injective map on K0.

Last but not least, we have to take care of Ki

(
NIL

(
Pd1(R);X, Y, Z,W

))
. To

apply the Resolution Theorem, some work is needed:

Lemma 2.3.13. Let (M,N,m, n) be an object in NIL
(
Pd1(R);X, Y, Z,W

)
and let

(P,Q, p, q) be an object in the subcategory NIL(R;X, Y, Z,W ). Let

(f, g) : (P,Q, p, q) → (M,N,m, n)

be a surjective morphism in NIL
(
Pd1(R);X, Y, Z,W

)
. The quadruple

(Ker(f1),Ker(f2), p|Ker(f1), q|Ker(f2)) is a well defined object in NIL(R;X, Y, Z,W ).

Proof. The exact categories NIL
(
Pd1(R);X, Y, Z,W

)
and NIL(R;X, Y, Z, W )

are subcategories of the abelian category NIL
(
Mall(R);X, Y, Z, W

)
.

Thus (Ker(f1),Ker(f2), p|Ker(f1), q|Ker(f2)) is a well defined object in
(Ker(f1),Ker(f2), p|Ker(f1), q|Ker(f2)). Since

0 // Ker(f) // P
f

// M // 0

and

0 // Ker(g) // Q
g

// N // 0

are exact, Schanuel’s Lemma gives that Ker(f) and Ker(g) are finitely generated
projective R-modules. Thus (Ker(f),Ker(g), p|Ker(f), q|Ker(g)) is an object in the
subcategory NIL(R;X, Y, Z,W )

Now everything is set up to apply the Resolution Theorem.

Lemma 2.3.14. We have

Ki

(
NIL

(
Pd1(R);X, Y, Z,W

)) ∼= Ki

(
NIL(R;X, Y, Z,W )

)
for i ≥ 0.
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2 The Behavior of Nil-Groups under Localization

Proof. The preceding lemma and the lift constructed in Section 2.1 (Corol-
lary 2.1.5) give that any object in NIL

(
Pd1(R);X, Y, Z,W

)
has a length one

NIL(R;X, Y, Z, W )-resolution. To apply the Resolution Theorem, it is necessary to
check that NIL(R;X, Y, Z,W ) is closed under kernels in NIL

(
Pd1(R);X, Y, Z,W

)
,

i.e., if

0 // (M,N,m, n) // (P ′, Q′, p′, q′) // (P,Q, p, q) // 0

is an exact sequence in NIL
(
Pd1(R);X, Y, Z,W

)
with (P ′, Q′, p′, q′) and (P,Q, p, q)

in NIL(R;X, Y, Z,W ), then (M,N,m, n) is also in NIL(R;X, Y, Z,W ). This follows
since the category P(R) has this property in Pd1(R).

Now everything is set up to proof the main theorem of this section.

Proof of Theorem 2.3.7. Combining the Lemmas 2.3.11, 2.3.12 and 2.3.14, we get
that Theorem 2.3.7 is implied by Lemma 2.3.10.

Remark 2.3.15. The reason for the long exact sequence stated in The-
orem 2.3.7 not to be surjective in degree zero is that the groups
lim−→Ki

(
NIL

(
PIm(Rs);Xs, Ys, Zs,Ws

))
and Ki

(
NIL(Rs;Xs, Ys, Zs,Ws)

)
are not

necessarily the same in degree zero.

2.4 The Behavior of Nil-Groups under Localization

In this section, the main theorem of this chapter is proven.

Theorem 2.4.1. Let R be a ring and let X, Y, Z and W be left flat R-bimodules. If
s is an element of the center of R which is not a zero divisor and satisfies s ·x = x ·s
for all x ∈ X and similar conditions for Y , Z and W , we obtain an isomorphism

Z[t, t−1]⊗Z[t] Nili(R;X, Y, Z,W ) ∼= Nili(Rs;Xs, Ys, Zs,Ws),

for all i ∈ Z, and t acts on Nili(R;X, Y, Z,W ) via the map induced by the functor

Fs : NIL(R;X, Y, Z,W ) → NIL(R;X, Y, Z,W )
(P,Q, p, q) 7→ (P,Q, p · s, q · s).

From now on, Z[t, t−1]⊗Z[t] Nili(R;X, Y, Z,W ) is denoted by Nili(R;X, Y, Z,W )s.
For the proof of Theorem 2.4.1, we first need a general lemma which implies that
Nili(R;X, Y, Z,W )s can be seen as a certain colimit.

If F is a functor from the category ω into the category of abelian groups the colimit
over F exists and a model for lim−→ω

F (i) is for example given by

∞⊕
i=0

F(i)/〈g + fi j(g)〉, fi j : F(i) → F(j),

[Lan02, page 160].
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Lemma 2.4.2. Let G be an abelian group and let ϕ be an endomorphism of G.
Define a functor F from ω into the category of abelian groups by sending every object
of ω to the abelian group G and a morphism from i to j to the (j−i)-fold composition
of ϕ with itself. Define a Z[t]-module structure on G where t operates via ϕ.

The map
φ : lim−→ω

F (i) → Z[t, t−1]⊗Z[t] G

induced by
∞⊕
i=0

gi 7→ t−i ⊗ gi

is a group isomorphism.

Proof. The proof that φ is a group homomorphism is left to the reader.
The morphism φ is surjective since the image contains the elements t−i ⊗ g which

form a generating set of the group Z[t, t−1]⊗Z[t] G.
Define a map

ξ : Z[t, t−1]⊗Z[t] G → lim−→F (i)

by ( ∑
λit
−i

)
⊗ g 7→

∞⊕
i=0

λig.

Again, the proof that ξ is a group homomorphism is left to the reader.
It remains to prove that ξ ◦ φ = id. This is easily seen on generators:

λit
−i ⊗ g

� φ
// λig

� ξ
// t−i ⊗ λig = λit

−i ⊗ g .

As a corollary of the preceding lemma we obtain that Nili(R;X, Y, Z,W )s is iso-
morphic to lim−→ω

Nili(R;X, Y, Z, W ).
In the following, all colimits are of the type considered above. After this general

lemma we start with the proof of Theorem 2.4.1.

Proof of Theorem 2.4.1. The following diagram is commutative

0 // Nili(R;X, Y, Z,W ) � � //

Fs

��

Ki

(
NIL(R;X, Y, Z,W )

) ι //

Fs

��

Ki(R)⊕Ki(R) //

id

��

0

0 // Nili(R;X, Y, Z,W ) � � // Ki

(
NIL(R;X, Y, Z,W )

) ι // Ki(R)⊕Ki(R) // 0

and Nili(R;X, Y, Z,W )s is the colimit of the left hand side by Lemma 2.4.2. Since
taking colimits over a filtered system preserves exact sequences, we obtain

Nili(R;X, Y, Z,W )s = Ker
(

lim−→Ki

(
NIL(R;X, Y, Z,W )

)
→ Ki(R)⊕Ki(R)

)
.

In Theorem 2.3.7 it is proven that the following commutative diagram has an exact
row in the middle. The lowest row is the localization sequence of algebraic K-theory
and therefore exact
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2 The Behavior of Nil-Groups under Localization

// 0 //

��

Nili(R;X, Y, Z,W )s
//

��

Nili(Rs;Xs, Ys, Zs,Ws) //

��

// Ki

(
Hs(R)

)
⊕Ki

(
(Hs(R)

)
//

∼=��

lim−→Ki

(
NIL(R;X, Y, Z,W )

)
//

��

Ki

(
(NIL(Rs;Xs, Ys, Zs,Ws)

)
//

��
// Ki

(
Hs(R)

)
⊕Ki

(
Hs(R)

)
// Ki(R)⊕Ki(R) // Ki(Rs)⊕Ki(Rs) // .

The snake lemma implies now that Nili(R;X, Y, Z,W )s and Nili(Rs;Xs, Ys, Zs,Ws)
are isomorphic, which is the statement of Theorem 2.4.1 for i ≥ 1.

To obtain the isomorphism for i = 0 note that

Ker
(
K0

(
NIL(PIm(Rs);Xs, Ys, Zs,Ws)

)
→ K0

(
PIm(Rs)× PIm(Rs)

))
and Nil0(Rs;Xs, Ys, Zs,Ws) are isomorphic since elements of the form [(P,Q, 0, 0)]
are trivial in Nil0(Rs;Xs, Ys, Zs,Ws).

To obtain the statement for i < 0 note that the suspension construction commutes
with localization, i.e. (ΣR)s = ΣRs.

Remark 2.4.3. We have not used the fact that the morphism are nilpotent in the
preceding two section. Thus Theorem 2.4.1 stays valid if we replace Nil by End.
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3 Farrell and Waldhausen Nil-Groups as
Modules over the Ring of Witt vectors

In this chapter, we develop a Witt vector-module structure on a certain class of Nil-
groups including the important cases Nili(RG;α) and Nili(RG;RGα, RGβ) where G
is a group, R is a commutative ring and α and β are inner group automorphism.
In the first section, we prove that if Λ is an algebra over a commutative ring R,
then Nili(Λ; X, Y, Z,W ) carries a natural End0(R)-module structure. As pointed
out in the introduction, End0(R) is a dense subring of the ring of Witt vectors.
To extend the End0(R)-module structure to a Witt vector-module structure, we
define Frobenius and Verschiebung operations on Nil-groups in Section 3.2. For this
definition we have to restrict to Nil-groups of the form Nili(C; A) where we have
natural transformations between the identity and A. Examples are Nili(RG;α) or
Nili(RG;RGα, RGβ) where α and β are inner group automorphism. The strength
of the Frobenius and Verschiebung operations is that they satisfy certain relations
(Section 3.3). One implication of these relations is that Nil-groups of the given kind
are either trivial or not finitely generated as an abelian group. Another relation is
the main ingredient of the proof that Nil-groups of the given kind are modules over
the ring of Witt vectors (Section 3.4).

3.1 Nil-Groups as Modules over End0

In this section we define a End0-module structure on certain Nil-groups. As an
application we obtain an End0(R)-module structure on Nili(Λ; X, Y, Z,W ) if Λ is
an algebra over a commutative ring R. On Nili(Λ) a similar module structure is
defined by Weibel [Wei81]. In this case, the module structure is induced by the
tensor product. For general Nil-groups we have to be slightly more careful.

Definition 3.1.1. Let A be an abelian category and let A: A → A be an exact
functor. Let C ⊆ A be a full subcategory which is closed under extension. Let B be
an exact category with an exact pairing

B ×A → A
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3 Farrell and Waldhausen Nil-Groups as Modules over the Ring of Witt vectors

which restricts to C. Let U be a natural transformation between the functors

B × C → A
F1 : (b, c) 7→ b×A(c)
F2 : (b, c) 7→ A(b× c).

We define a an exact pairing

END(B)×NIL(C; A) → NIL(C; A)
(B, b)× (M,m) 7→ (B ×M,U(B,M) ◦ (b×m)).

Remark 3.1.2. To see that the given pairing is well-defined on morphisms, note
that the diagram

B ×M

h×f

��

b×m
// B ×A(M)

h×A(f)
��

U(B,M)
// A(B ×M)

A(h×f)
��

B′ ×M ′ b′×m′
// B′ ×A(M ′)

U(B′,M ′)
// A(B′ ×M ′)

commutes.

Proposition 3.1.3. Let the notation be as in the preceding definition. If we addi-
tionally assume that we have a pairing

B × B → B

satisfying
b× (b′ × c) ∼= (b× b′)× c

for b, b′ ∈ B and c ∈ C. Then End0(B) carries a ring structure and Nili(C;A) is an
End0(B)-module.

Proof. The machinery developed by Waldhausen [Wal78a, Wal78b] implies that we
get pairings

K0

(
END(B)

)
×Ki

(
NIL(C; A)

)
→ Ki

(
NIL(C; A)

)
.

By our assumption we have (B, b)× (B′, b′)× (M,m) ∼=
(
(B, b)× (B′, b′)

)
× (M,m).

This implies that we get a K0

(
END(B)

)
-module structure on Ki

(
NIL(C; A)

)
. Pair-

ing with objects of the form (B, 0) reflects END(B) into B and NIL(C; A) into C.
Thus the K0(END(B))-module structure restricts to an End0(B)-module structure
on Nili(C; A).

Corollary 3.1.4. Let Λ be an algebra over a commutative ring R. Let X, Y , Z
and W be arbitrary Λ-bimodules. The groups Nili(Λ), Nili(Λ; X), Nili(Λ; X, Y ) and
Nili(Λ; X, Y, Z,W ) are modules over the ring End0(R) for all i ∈ Z.
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3.2 Operations on Farrell and Waldhausen Nil-Groups

Proof. We proof the result for Nili(Λ; X). Similar arguments work for the other kind
of Nil-groups. Let Ψ be the canonical isomorphism between B ⊗R (P ⊗Λ X) and
(B ⊗R P )⊗Λ X. The map Ψ induces the required natural transformation to obtain
a pairing

END(P(R))×NIL(P(Λ); FX) → NIL(P(Λ); FX).

Since R is assumed to be commutative, P(R) carries a product structure

P(R)× P(R) → P(R)
P × P ′ 7→ P ⊗R P ′.

The tensor product also induces a pairing between P(R) and P(Λ) which satisfies the
assumptions of the preceding proposition. Thus we obtain the corollary for higher
Nil-groups. To prove the same statement for lower Nil-groups note that if Λ is an
algebra over a ring R then ΣΛ is also an algebra over R.

In the following, this module multiplication is denoted by ∗.

3.2 Operations on Farrell and Waldhausen Nil-Groups

We define Verschiebung and Frobenius operations on Nili(C; A) if there is a natu-
ral transformations between A and the identity or the identity and A. As a spe-
cial case we obtain Verschiebung and Frobenius operations on Nili(RG;α) and
Nili(RG;RGα, RGβ) where R is a not necessarily commutative ring, G is a group and
α and β are inner group automorphism. On Bass Nil-groups and End0(R) similar
operations are well studied [Blo78, CdS95, Sti82, Wei81].

3.2.1 Frobenius

Frobenius Operations on Nil-Groups

On Bass Nil-groups, for a natural number n the n-th Frobenius is defined to be the
map induced by the functor whose value at (P, ν) is (P, νn). The main problem
with the definition of the Frobenius operation on more general Nil-groups is that in
general A(ν) ◦ ν is an object in NIL(C; A2) and not in NIL(C; A). To get around this
problem, we use the assumption that we have a natural transformation between A`

and the identity.

Definition 3.2.1. Let A be an abelian category and let A: A → A be an exact
functor. Let C ⊆ A be a full subcategory which is closed under extension. For a
natural number n ≥ 1, we define a functor

Frn : NIL(C; A) → NIL(C; An)

by sending an object m → A(M) to the object given by the composite

M
m // A(M)

A(m)
// A2(M)

A2(m)
// · · · An−1(m)

// An(M).
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3 Farrell and Waldhausen Nil-Groups as Modules over the Ring of Witt vectors

A morphism f from (M,m) to (M ′,m′) is sent to the morphism from Frn(M,m) to
Frn(M ′,m′) whose underlying morphism in C is f again.

For applications it is useful to have operators which are endomorphisms. For this
purpose one needs a natural transformation U : A` → idA.

Definition 3.2.2 (Frobenius). Let the notation be as in the preceding definition.
Let U be a natural transformation U : A` → idA for some ` ∈ N. For a natural
number n we define

F`n+1 : NIL(C; A) → NIL(C; A)

to be the functor which is the composition of Frn`+1 : NIL(C; A) → NIL(C; A`n+1)
and the functor NIL(id, U `n) : NIL(C; A`+1) → NIL(C; A). The maps induced by
F`n+1 on Nili(C; A), for i ≥ 0, are also denoted by F`n+1 and called Frobenius oper-
ations.

Example 3.2.3 (Frobenius on Farrell Nil-groups). Let R be a ring, let G be a
group, let X be an arbitrary RG bimodule and let α be an inner group automorphism
of G. Since

α(x) = gxg−1

for some group elements g, we can define the RG-module homomorphism

.g : P ⊗RG (RGα ⊕X) → P

by
p⊗ (r ⊕ x) 7→ prg

for p ∈ P , r ∈ RG and x ∈ X. The map .g induces a natural transformation between
the functor FRGα⊕X and the identity. Thus we obtain for every n ∈ N and i ∈ N
a Frobenius operation on Nili(RG;RGα ⊕X). Since ΣRG = (ΣR)G we can define
Frobenius operations on lower Nil-groups in the obvious way.

Example 3.2.4 (Frobenius on Waldhausen Nil-groups). Let R be a ring,
let G be a group, let X and Y be arbitrary RG-bimodules and let α and β be
inner group automorphism of G induced by group elements g and g′. The maps
.(gg′) and .(g′g) induce a natural transformation between F2

RGα⊕X,RGβ⊕Y and the
identity. Thus we obtain for every odd n ∈ N and i ∈ N a Frobenius operation on
Nili(RG;RGα ⊕ X, RGβ ⊕ Y ). The Frobenius operations on lower Nil-groups are
defined in the obvious way.

By the definition of Fn, it is obvious that the functors satisfy the following two
relations.

Proposition 3.2.5. With the notation of the preceding definition, we obtain:

1. Let (M,m) be an object of NIL(C;A). If (M,m) is of nilpotency degree L, then

Fn

(
(M,m)

)
= (M, 0)

for n ≥ L.
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3.2 Operations on Farrell and Waldhausen Nil-Groups

2. For n1, n2 ∈ N, we have
Fn1Fn2 = Fn1·n2 .

3.2.2 Verschiebung

The main problem with the definition of Verschiebung operations is that in general
we do not have a map from M to A(M) which plays the role of the identity. We use
the assumption that we have a natural transformation between the identity and A
to get such a map.

Verschiebung on Farrell Nil-Groups

Definition 3.2.6 (Verschiebung). LetA be an abelian category and let A: A → A
be an exact functor. Let C ⊆ A be a full subcategory which is closed under extension.
Suppose that we have a natural transformation U : idA → A of exact functorsA → A.
Then we define, for n ∈ N,

Vn : NIL(C; A) → NIL(C; A)

by sending an object m : M → A(M) to the object

(
Mn,


0 m

U(M)
. . .

. . . 0
U(M) 0


)
.

A morphism f from (M,m) to (M ′,m′) is mapped to the morphism f⊕n. The maps
induced by this functors on Nili(C; A), for i ≥ 0, are also denoted by Vn and called
Verschiebung operations.

Remark 3.2.7. To see that the functors Vn are well-defined, note that for every
morphism f from M to M ′ the diagram

M
U(M)

//

f

��

A(M)

A(f)

��

M ′ U(M ′)
// A(M ′)

commutes. In particular

M
U(M)

//

m

��

A(M)

A(m)

��

A(M)
U(A(M))

// A2(M)
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commutes. This together with the fact that m is nilpotent implies that the morphism
0 m

U(M)
. . .

. . . 0
U(M) 0


is nilpotent.

Example 3.2.8 (Verschiebung on Farrell Nil-groups). Let R be a ring, let
G be a group, let X be an arbitrary RG bimodule and let α be an inner group
automorphism of G. Since

α(x) = gxg−1

for some group element g ∈ G, we can define the RG-module homomorphism

.g−1 : P → P ⊗RG (RGα ⊕X)

by
p 7→ p⊗ (g−1 ⊕ 0)

for p ∈ P . The map .g−1 induces the required natural transformation between the
identity and FRGα⊕X . Thus we obtain Verschiebung operations on Nili(RG;RGα ⊕
X) for i ∈ N. The Verschiebung operations on lower Nil-groups are defined in the
obvious way. Note that .g−1 is the right inverse of .g. If X is the trivial module the
natural transformation .g−1 is also a left inverse of .g.

Consider N with the multiplication. This gives N the structure of a semigroup. We
define ZN to be the ”semigroup ring” of N with coefficients in Z. The next identity
implies that we get a ZN-module structure on Nili(C; A), where n ∈ N operates on
Nili(C; A) via Vn.

Proposition 3.2.9. Let n1 and n2 be natural numbers. With the assumptions of the
preceding definition, we have

Vn1Vn2 = Vn1·n2

as operations on Nili(C;A).

Proof. This relation follows since there is an isomorphism between the two functors.
(Isomorphism is meant in the sense that there is a natural transformation between
the functors Vn1Vn2 and Vn1·n2 such that the map Vn1Vn2(x) → Vn1·n2(x) is an
isomorphism for every object x in NIL(C; A)). An application of Proposition 1.3.1.
in [Wal85] yields the identity on Ki

(
NIL(C; A)

)
and therefore on Nili(C; A).

Remark 3.2.10. The given definition of the Verschiebung operation is a gener-
alization of the Verschiebung operation on Bass Nil-groups. In the case of Bass
Nil-groups, it is known that if G is a finite group, Nil−1(ZG) is finitely generated as
a ZN-module [CdS95]. We do not know whether Nili(C; A) is finitely generated as a
ZN-module.
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Verschiebung on Waldhausen Nil-Groups of generalized free products

To define a Verschiebung operation on Waldhausen Nil-groups of generalized free
products we proceed in a similar manner as for Farrell Nil-groups.

Definition 3.2.11 (Verschiebung on Waldhausen Nil-groups). Let A be an
abelian category and let A1,A2 : A → A be exact functors. Let AW be the endofunc-
tor of A×A whose value at (a, a′) is (F1(a′),F2(a)). Let C ⊆ A be a full subcategory
which is closed under extension. Suppose that we have natural transformations

U1 : idA → A1

U2 : idA → A2

of exact functors A → A. For ` ∈ N we define an exact functor

V2`+1 : NIL(C × C; AW ) → NIL(C × C; AW )

(M,N,m, n)

7→
(
(M ⊕N)` ⊕M, (N ⊕M)` ⊕N,


0 m

U1(M)
. . .

. . . 0
U1(N) 0

,


0 n

U2(N)
. . .

. . . 0
U2(M) 0


)
.

If (f, g) is a morphism from (M,N,m, n) to (M ′, N ′, n′,m′) of NIL(C × C; AW ), we
define V2`+1

(
(f, g)

)
to be the morphism

(
(f ⊕ g)⊕` ⊕ f, (g ⊕ f)⊕` ⊕ g

)
.

The maps induced by these functors on Nili(C×C; AW ), for i ≥ 0, are also denoted
by V2`+1 and called Verschiebung operations.

The functors V2`+1 are well-defined by the same reasoning as above.

Example 3.2.12 (Verschiebung on Waldhausen Nil-groups). Let R be a ring,
let G be a group, let X and Y be arbitrary RG-bimodules and let α and β be inner
group automorphism of G induced by group elements g and g′. The maps .g−1

and .g′−1 induce a natural transformations between the identity and FRGα⊕X and
FRGβ⊕Y . Thus we obtain for every odd n ∈ N and i ∈ N a Verschiebung operation
on Nili(RG;RGα ⊗X, RGβ ⊕ Y ). Verschiebung operations on lower Nil-groups are
defined in the obvious way. Note that the natural transformations induced by .g−1

and g′−1 are a right inverse of the natural transformation induced by .g and .g′. If X
and Y are the trivial module the natural transformations induced by .g−1 and g′−1

are also a left inverse.

Proposition 3.2.13. Let the notation be as in the preceding definition. Let n1 and
n2 be odd natural numbers. With the assumptions of the preceding definition, we
have

Vn1Vn2 = Vn1·n2

as operations on Nili(C × C;AW ).

Proof. The identity follows in the same manner as above.
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3.3 Relations

In the first part of this section, we prove that the Frobenius and Verschiebung oper-
ations satisfy the relations

FnVn(x) = x · n

on Nili(C; A) and a similar relation on Nili(C × C; AW ). We also apply this relation
to prove that the given kind of Nil-groups are either trivial or not finitely generated
as abelian groups.

In the second part the relation

Vn(y ∗ Fnx) = (Vny) ∗ x.

is proven.

3.3.1 Non Finiteness Results

We start with the proof of the first identity.

Definition 3.3.1 (σ). Let the notation be as in Definition 3.2.11. We addition-
ally assume that U1 and U2 have a left inverse U−1

1 and U−1
2 . We define an exact

endofunctor

S: NIL(C × C; AW ) → NIL(C × C; AW )

(M,N,m, n) 7→ (N,M,U1(N) ◦ U−1
2 (N) ◦ n, U2(M) ◦ U−1

1 (M) ◦m)

The induced map on Nili(C × C; AW ) is denoted by σ.

Note that σ is an group automorphism of order two.

Proposition 3.3.2. Let A be an abelian category.

1. Let A : A → A be an exact functor. Let C ⊆ A be a full subcategory which
is closed under extension. Suppose that we have a natural transformation
U : idA → A of exact functors A → A together with an left inverse natural
transformation U−1. For n ∈ N, we have

FnVn(x) = x · n

for all x in Nili(C;A) and i ∈ N.

2. Let A1,A2 : A → A be exact functors. Let AW be the endofunctor of A × A
whose value at (a, a′) is (A1(a′),A2(a)). Let C ⊆ A be a full subcategory which
is closed under extension. Suppose that we have natural transformations

U1 : idA → A1

U2 : idA → A2
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of exact functors A → A together with left inverse natural transformations U−1
1

and U−1
2 . For odd n = 2` + 1, we have

FnVn(x) = x · (` + 1) + σ(x) · `

for all x in Nili(C × C;AW ) and i ∈ N.

Proof. We prove the identity for Nili(C × C; AW ), similar arguments work for
Nili(C; A).

Let (M,N,m, n) be an object in NIL(C × C; AW ). Then

F2`+1V2`+1

(
(M,N,m, n)

)
=

= F2`+1

(
(M ⊕N)` ⊕M, (N ⊕M)` ⊕N,

0 m

U1(M)
. . .

. . . 0
U1(N) 0

,


0 n

U2(N)
. . .

. . . 0
U2(M) 0


)

∼=
(
(M ⊕N)` ⊕M, (N ⊕M)` ⊕N,

m
U1(N) ◦ U−1

2 (N) ◦ n

. . .
m

,


n

U2(M) ◦ U−1
1 (M) ◦m

. . .
n


)

∼= (` + 1)(M,N,m, n)⊕ `S
(
(M,N,m, n)

)
.

The last two ∼=-signs are meant in the sense that the corresponding functors are
isomorphic.

Thus we obtain the identity on Ki

(
NIL(C × C; AW )

)
and therefore on Nili(C ×

C; AW ).

Corollary 3.3.3. Let R be a ring, let G be a group, let X and Y be arbitrary RG-
bimodules and let α and β be inner group automorphism of G. For n ∈ N and i ∈ Z,
we have

FnVn(x) = x · n

for all x in Nili(RG;RGα ⊕X). For odd n = 2` + 1, we have

FnVn(x) = x · (` + 1) + σ(x) · `

for all x in Nili(RG;RGα ⊕X, RGβ ⊕ Y ).

Proof. By the preceding proposition we obtain the identity on Nil(RG;RGα ⊕ X)
and Nili(RG;RGα ⊕X, RGβ ⊕ Y ) for i ≥ 0. Since ΣRG = (ΣR)G the statement is
also true for i < 0.
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3 Farrell and Waldhausen Nil-Groups as Modules over the Ring of Witt vectors

Lemma 3.3.4. Let G be an abelian group with finite torsion subgroup T . Let σ be
a group automorphism of order two. If n ∈ N is −1 modulo |T | then

Φn(x) := x · (n + 1) + σ(x) · n

is a monomorphism.

Proof. First we prove that Φn(x) = 0 implies x ∈ T . We define ux := σ(x) + x and
vx(x) := −σ(x) + x. We have

ux + vx = 2x

σ(ux) = ux

σ(vx) = −vx.

Since Φn(x) = 0 implies that Φn(2x) = 0, we have

0 = Φn(ux + vx)
= (n + 1)(ux + vx) + n(ux − vx)
= (2n + 1)ux + vx.

Applying σ to this equality yields

(2n + 1)ux − vx = 0.

Hence ux ∈ T . Therefore, vx ∈ T and also ux + vx ∈ T . In particular 2x ∈ T and
x ∈ T .

Assume now n = k|T | − 1. Let x ∈ G, such that Φn(x) = 0. By the arguments
given above we have x ∈ T . We have

0 = Φn(x) = (n + 1)x + nσ(x)
= k|T |x + (k|T | − 1)σ(x)
= 0 +−σ(x).

Thus x = 0 which implies the lemma.

Corollary 3.3.5. Let the notation be as in the preceding proposition. The groups
Nili(C;A) and Nili(C × C;AW ) are either trivial or not finitely generated as abelian
groups for i ∈ N.

Proof. Since Fn and Vn satisfy the relation stated in Proposition 3.3.2 and Fn(x) =
0 for n bigger than a certain number M , we can apply a trick which is due to
Farrell [Far77]. We prove the result for Nili(C × C; AW ), similar arguments work for
Nili(C; A).

We denoted the category which is used in Quillen’s Q-construction by QNIL(C ×
C; AW ). Let Qm NIL(C × C; AW ) be the full subcategories of QNIL(C × C; AW )

62



3.3 Relations

consisting of objects of nilpotency degree smaller or equal to m. For a category C
we denote the classifying space by BC. We have

Ki

(
NIL(C × C; AW )

)
= πiΩBQNIL(C × C; AW )
= lim−→m

πiΩBQm NIL(C × C; AW )

and

Ki

(
C × C

)
= πiΩBQ0 NIL(C × C; AW ).

Assume now that Nili(C × C; AW ) is a finitely generated abelian group. Thus we
can find an L such that the generators of Ki

(
NIL(C × C; AW )

)
are contained in

πiΩBQL NIL(C × C; AW ). Thus there is an L such that Fn, whenever defined, is
the trivial map for n ≥ L (Proposition 3.2.5). Let T be the torsion subgroup of
Nili(C×C; AW ). Since Nili(C×C; AW ) is finitely generated we have that |T | is finite.
Choose ` ∈ N such that 2`|T | − 1 ≥ L. By the preceding lemma V2`|T |−1F2`|T |−1 is a
monomorphism. On the other hand, since 2`|T | − 1 ≥ L, the group Nili(C × C; AW )
is in the kernel of F2`|T |−1. Thus Nili(C × C; AW ) is the trivial group.

Corollary 3.3.6. Let R be a ring, let G be a group, let X and Y be arbitrary
RG-bimodules and let α and β be inner group automorphisms of G. The groups
Nili(RG;RGα⊕X) and Nili(RG;RGα⊕X, RGβ⊕Y ) are either trivial or not finitely
generated as abelian groups for i ∈ Z.

Proof. The preceding corollary proves the statement for higher Nil-groups. The same
statement for lower Nil-groups follows in the obvious way.

3.3.2 The Relation Vn(y∗Fnx) = (Vny) ∗ x on Farrell Nil-Groups

In this section we restrict to the case that we have an algebra Λ over a ring R, a
left flat Λ-bimodule X and a natural transformation between the identity and FX

together with an right inverse natural transformation. For example if R is a ring,
G is a group and α is an inner group automorphism induced by g ∈ G, then .g−1

induces a natural transformation between the identity and FRGα with a right inverse
natural transformation induced by .g.

The proof of the relation

Vn(y ∗ Fnx) = (Vny) ∗ x

requires a little bit more machinery. The basic idea, which is due to Stienstra [Sti82],
is to define some exact category END(Z[x, y];Sn) and an exact pairing

END(Z[x, y];Sn)× END(R)×NIL(Λ; X) −→ NIL(Λ;X)
c× x× y −→ (c, x, y).

Then we prove that there are objects C1 and C2 of END(Z[x, y];Sn) such that Vn(x×
Fny) = (C1, x, y) and (Vnx) × y = (C2, x, y). Using the product map developed
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3 Farrell and Waldhausen Nil-Groups as Modules over the Ring of Witt vectors

by Waldhausen [Wal78a, Wal78b], we can now prove the relation by proving that
[C1] = [C2] as elements in K̃0

(
END(Z[x, y];Sn)

)
.

To start this program, we define the category END(R;T ).

Definition 3.3.7 (END(R;T )). Let R be a ring and let T ⊂ R[t] be a multiplica-
tively closed subset containing t.

1. We define END(R;T ) to be the the full subcategory of END(R) consisting of
tuples (C, γ) such that there exist a polynomial

∑
tiλi ∈ T with∑

γiλi = 0.

A sequence in END(R;T ) is called exact if the underlying sequence of R-
modules is exact.

2. We define End0(R;T ) to be the kernel of the map on K0 which is induced by
the forgetful functor from END(R;T ) onto P(R) whose value at (C, γ) is C.

To see that the exact sequences in END(R;T ) define the structure of an exact
category on END(R;T ) consider an exact sequence

0 // (C1, γ1) // (C, γ) // (C2, γ2) // 0

in END(R), with (C1, γ1) and (C2, γ2) in END(R;T ). The morphisms γ1 and γ2

satisfy polynomial equations p1(t) =
∑

tiλi and p2(t) =
∑

tjµj in T . The arguments
given in the proof of Proposition 2.1.1 imply that, that p1(γ) ◦ p2(γ) vanishes. Thus
for an arbitrary x ∈ C

0 = p1(γ) ◦ p2(γ)(x)

=
∑

γi
( ∑

γj(x)µj

)
λi

=
∑

γi+j(x)µjλi

= p1 · p2(γ)(x).

This implies that γ is annihilated by a polynomial in T and therefore that END(R;T )
is closed under extension in END(R). We obtain that END(R;T ) is an exact cate-
gory.

For commutative rings R the K-groups of the exact categories END(R;T ) are
well-studied [Gra77, Sti82].

In the following END(Z[x, y];Sn), where Sn ⊆ Z[x, y][t] is the multiplicatively
closed set generated by t and tn − xn · y will become important. Objects of this
category are for example

(
Z[x, y]n,


0 xny

1
. . .

. . . 0
1 0


)

64



3.3 Relations

and (
Z[x, y]n,


0 xy

x
. . .

. . . 0
x 0


)

which are annihilated by tn − xny.
Let Λ be an algebra over a ring R, let X be an Λ bimodule and let U be a

natural transformation between the identity and FX with a right inverse natural
transformation U−1. We define an exact pairing

END(Z[x, y];Sn)× END(R)×NIL(Λ; X) → NIL(Λ; X)

(C, γ)× (B,ϕ)× (P, ν) 7→
(
C ⊗Z[x,y] B ⊗R P, γ ⊗ id⊗ U(P )

)
,

where x acts on B ⊗R P via id ⊗ U−1(P )−1 ◦ ν and y acts on B ⊗R P via ϕ ⊗ id.
To show that the pairing is a well-defined exact pairing we need to prove two things.
First of all, we need to check that this defines a pairing, i.e., that C ⊗Z[x,y] B ⊗R P
is a finitely generated projective RG-module and that (γ⊗ id⊗U(P )) is a nilpotent
morphism. Secondly, we need to verify the exactness.

The morphism (γ ⊗ id ⊗ U(P )) is nilpotent since γ satisfies a relation in Sn.
The module C ⊗Z[x,y] B ⊗R P is a finitely generated projective Λ-module since C
is a finitely generated projective Z[x, y]-module and B ⊗R P is a finitely generated
projective Λ-module. The second part follows since C is a projective Z[x, y]-module
and therefore flat.

Theorem 3.3.8. Let R be a ring, let Λ be an algebra over R, let X be an Λ-
bimodule and let U be a natural transformation between the identity and FX with an
right inverse natural transformation U−1. Let y be an element of End0(R) and let x
be an element of Nili(Λ; X) for i ∈ Z. For n ∈ N, we have

Vn(y ∗ Fnx) = (Vny) ∗ x

where ∗ is the module multiplication defined in Section 3.1.

Proof. We prove the statement for higher Nil-groups. The arguments extend to
lower Nil-groups in the obvious way. The pairing between the categories END(R)×
NIL(Λ; X) and END(Z[x, y];Sn) defined above gives that for every object (C, γ) of
END(Z[x, y];Sn) we get an exact endofunctor of END(R)×NIL(Λ; X). Since objects
of the form (C, 0) reflect END(R) × NIL(Λ; X) into the subcategory where objects
are of the form (P, 0) we get that every element in End0(Z[x, y];Sn) gives rise to an
operation on End0(R)×Nili(Λ; X).

Let (B,ϕ) be an object of END(R), let (P, ν) be an object of NIL(Λ;X). We
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3 Farrell and Waldhausen Nil-Groups as Modules over the Ring of Witt vectors

define νn to be ν ◦ (U−1(P ) ◦ ν)n−1 We have

Vn

(
(B,ϕ)× Fn(P, ν)

)
=

(
(B ⊗ P )n,


0 ϕ⊗ νn

U(B ⊗ P )
. . .

. . . 0
U(B ⊗ P ) 0


)

∼=
(
Z[x, y]n,


0 xny

1
. . .

. . . 0
1 0


)
× (B,ϕ)× (P, ν)

and

(
Vn(B,ϕ)

)
× (P, ν) =

(
Bn ⊗ P,


0 ϕ

1
. . .

. . . 0
1 0

⊗ ν
)

∼=
(
Z[x, y]n,


0 xy

x
. . .

. . . 0
x 0


)
× (B,ϕ)× (P, ν).

Thus it remains to show that

[(
Z[x, y]n,


0 xny

1
. . .

. . . 0
1 0


)]

and [(
Z[x, y]n,


0 xy

x
. . .

. . . 0
x 0


)]

represent the same element in End0(Z[x, y];Sn).
For End0(Z[x, y];Sn) it is known [Sti82, page 87] that the characteristic polynomial

induces an injective map into the ring of Witt vectors. Thus, since the two elements
have the same characteristic polynomial, we obtain the required identity.

3.3.3 The Relation Vn(y∗Fnx) = (Vny) ∗ x on Waldhausen Nil-Groups

Similarly we proceed for Waldhausen Nil-groups.

Definition 3.3.9 (END(R; id, id;T )). Let R be a ring. Let T ⊂ R[t] be a multi-
plicatively closed set containing t. We define END(R; id, id; T ) to be the full sub-
category of END(R;R,R) consisting of quadruples (P,Q, p, q) such that there exist
polynomials p1(t) =

∑
tiλi and p2(t) =

∑
tiµi in T with

∑
(p ◦ q)iλi = 0 and∑

(q ◦ p)iµi = 0.
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We obtain, in the same manner as above that END(R; id, id; T ) is an exact cate-
gory.

Remark, the category NIL(R;R,R) is the category END(R; id, id; S), where S ⊆
R[t] is the multiplicatively closed set generated by t.

Let δ be the ring automorphism of Z[y, v, w] induced by mapping v to w and w to
v. Let S′n be the multiplicatively closed subset of the polynomial ring of the twisted
polynomial ring Z[y, v, w]δ[x] generated by t, tn− v2n · y2 ·x2n and tn−w2n · y2 ·x2n.
In the following the category END(Z[y, v, w]δ[x]; id, id; S′n) will become important.
Objects are for example

(
Z[y, v, w]δ[x]n, Z[y, v, w]δ[x]m,


0 yxnv
v 0

w
. . .

. . . 0
w 0

,


0 yxnw
w 0

v
. . .

. . . 0
v 0


)

and

(
Z[y, v, w]δ[x]n, Z[y, v, w]δ[x]n,


0 yxv
xv 0

xv
. . .

. . . 0
xv 0

,


0 yxw

xw 0

xw
. . .

. . . 0
xw 0


)
.

which are annihilated by (tn − v2n · y2 · x2n) · (tn − w2n · y2 · x2n).
Let Λ be an algebra over a ring R, let X and Y be left flat Λ-bimodules and let

UX and UY be natural transformations between the identity and FX and FY with
right inverse natural transformation U−1

X and U−1
Y . We define an exact pairing

END(Z[y, v, w]δ[x]; id, id; S′n)× END(R)×NIL(Λ; X, Y ) → NIL(Λ; X, Y )

where
(C,D, c, d)× (B,ϕ)× (P,Q, p, q)

is mapped to(
C ⊗Z[y,v,w]δ [x] B ⊗R (P ⊕Q), D ⊗Z[y,v,w]δ [x] B ⊗R (P ⊕Q),

c⊗ id⊗ UX(P ⊕Q), d⊗ id⊗ UY (P ⊕Q)
)
,

x acts on B ⊗R (P ⊕Q) via id⊗
(

0 U−1
Y (Q) ◦ q

U−1
X (P ) ◦ p 0

)
, y acts via ϕ⊗ id, v

acts via id⊗
(

1 0
0 0

)
and w acts via id⊗

(
0 0
0 1

)
.

We obtain in the same manner as above that this is a well defined exact paring.
Before we can start with the proof that the Frobenius and Verschiebung operations

satisfy the relation stated above we need to define the group EndD1
0 (Λ; id, id; S′n).

This is necessary since we do not have something like an injective characteristic
polynomial for End0(Λ; id, id; S′n).
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Definition 3.3.10 (ENDD1(Λ; id, id;T )). Let Λ be a ring and let T ⊆ Λ[t] be a mul-
tiplicatively closed set containing t. Let ENDD1(Λ; id, id; T ) be the full subcategory
of END(Mall(Λ); Λ,Λ) consisting of those objects which have a END(Λ; id, id; T )-
resolution of length one.

Proposition 3.3.11. Let the notation be as above. The category ENDD1(Λ; id, id;T )
is closed under extension in the abelian category END(Mall(Λ); Λ,Λ) and therefore
an exact category.

Proof. The proposition is proven in the same manner as Lemma 2.1.2 is proven.

Definition 3.3.12 (End0(Λ; id, id;T ), EndD1
0 (Λ; id, id;T )). Let the notation be as

above.

1. We define End0(Λ; id, id; T ) to be the kernel of the map on K0 which is induced
by the forgetful functor from END(Λ; id, id; T ) onto P(Λ)×P(Λ) whose value
at (C,D, c, d) is (C,D).

2. Let PD1(Λ) be the full subcategory of Mall(Λ) consisting of those object which
have a P(Λ)-resolution of length one.

3. We define EndD1
0 (Λ; id, id; T ) to be the kernel of the map on K0 which is in-

duced by the forgetful functor from ENDD1(Λ; id, id; T ) onto PD1(Λ)×PD1(Λ)
whose value at (M,N,m, n) is (M,N).

Lemma 3.3.13. Let the notation be as above. The inclusion map

End0(Λ; id, id;T ) −→ EndD1
0 (Λ; id, id;T )

is an isomorphisms.

Proof. The category P(Λ) is a subcategory of PD1(Λ). Every object in PD1(Λ)
has, by construction, a finite P(Λ)-resolution. To apply the Resolution Theorem it
remains to show that P(Λ) is closed under kernels. Let

0 // M // P // P ′ // 0

be a short exact sequence in PD1(Λ) with P and P ′ in P(Λ). The sequence splits
since P ′ is a projective module. Since P is projective we get that M is projective.
Thus P(Λ) is closed under kernels in PD1(R). An application of the Resolution
Theorem gives now that the inclusion map from K0

(
P(Λ)

)
into K0

(
PD1(Λ)

)
is an

isomorphism.
Since the exact structure on END(Λ; id, id; T ) and ENDD1(Λ; id, id; T ) comes from

the underlying exact structure of P(Λ) and PD1(Λ), we obtain that the inclusion
map from K0

(
END(Λ; id, id; T )

)
into K0

(
ENDD1(Λ; id, id; T )

)
is an isomorphism

by the same reasoning as above.
Combining these two results we get the lemma.
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Theorem 3.3.14. Let Λ be an algebra over a ring R, let X and Y be left flat Λ-
bimodules and let UX and UY be natural transformations between the identity and
FX and FY with right inverse natural transformations U−1

X and U−1
Y . Let y be an

element of End0(R) and let x be an element of Nili(Λ; X, Y ) for i ∈ Z. For odd
n ∈ N, we have

Vn(y ∗ Fnx) = (Vny) ∗ x

where ∗ is the module multiplication defined in Section 3.1.

Proof. We prove the statement for higher Nil-groups. The arguments extend to
lower Nil-groups in the obvious way. The pairing between the categories END(R)×
NIL(Λ; X, Y ) and END(Z[y, v, w]δ[x]; id, id; S′n) defined above gives that for every
object (C,D, c, d) of END(Z[y, v, w]δ[x]; id, id; S′n) we get an exact endofunctor of
END(R) × NIL(Λ; X, Y ). Since objects of the form (C,D, 0, 0) reflect END(R) ×
NIL(Λ; X, Y ) into the subcategory where elements are of the form (P,Q, 0, 0) we
get that every element in End0(Z[y, v, w]δ[x]; id, id; S′n) gives rise to an operation on
End0(R)×Nili(Λ; X, Y ).

Let (B,ϕ) be an object of END(R), let (P,Q, p, q) be an object of NIL(Λ;X, Y ),
let n = 2` + 1 for ` ∈ N. We define pn to be p ◦ (U−1

Y (P ) ◦ q ◦ U−1
X (P ) ◦ p)2`. The

morphism qn is defined similarly. We have

Vn

(
(B,ϕ)× Fn(P,Q, p, q)

)
⊕ (B ⊗Q,B ⊗ P, 0, 0)`+1 ⊕ (B ⊗ P,B ⊗Q, 0, 0)`

= Vn

(
(B ⊗ P ), (B ⊗Q), ϕ⊗ pn, ϕ⊗ qn · g−`)

)
⊕ (B ⊗Q,B ⊗ P, 0, 0)`+1

⊕ (B ⊗ P,B ⊗Q, 0, 0)`

=
(
(B ⊗ P ⊕B ⊗Q)` ⊕ (B ⊗ P ), (B ⊗Q⊕B ⊗ P )` ⊕ (B ⊗Q),

0 ϕ⊗ pn

UX(B ⊗ P )
. . .

. . . 0
UX(B ⊗Q) 0

,


0 ϕ⊗ qn

UY (B ⊗Q)
. . .

. . . 0
UY (B ⊗ P ) 0


)

⊕ (B ⊗Q,B ⊗ P, 0, 0)`+1 ⊕ (B ⊗ P,B ⊗Q, 0, 0)`

∼=
(
Z[y, v, w]δ[x]n, Z[y, v, w]δ[x]n,


0 yxnv
v 0

w
. . .

. . . 0
w 0

,


0 yxnw
w 0

v
. . .

. . . 0
v 0


)

× (B,ϕ)× (P,Q, p, q)
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and(
Vn(B,ϕ)

)
× (P,Q, p, q)⊕ (B ⊗Q,B ⊗ P, 0, 0)n

=
(
Bn ⊗ P,Bn ⊗Q,


0 ϕ

1
. . .

. . . 0
1 0

⊗ p,


0 ϕ

1
. . .

. . . 0
1 0

⊗ q
)
⊕ (B ⊗Q,B ⊗ P, 0, 0)n

∼=
(
Z[y, v, w]δ[x]n, Z[y, v, w]δ[x]n,


0 yxv
xv 0

xv
. . .

. . . 0
xv 0

,


0 yxw

xw 0

xw
. . .

. . . 0
xw 0


)

× (B,ϕ)× (P,Q, p, q).

Thus it remains to show that

C1 :=
(
Z[y, v, w]δ[x]n, Z[y, v, w]δ[x]n,


0 yxnv
v 0

w
. . .

. . . 0
w 0

,


0 yxnw
w 0

v
. . .

. . . 0
v 0


)

and

C2 :=
(
Z[y, v, w]δ[x]n, Z[y, v, w]δ[x]n,


0 yxv
xv 0

xv
. . .

. . . 0
xv 0

,


0 yxw

xw 0

xw
. . .

. . . 0
xw 0


)

represent the same elements in End0(Z[y, v, w]δ[x]; id, id; S′n).
Since EndD1

0 (Z[y, v, w]δ[x]; id, id; S′n) and End0(Z[y, v, w]δ[x]; id, id; S′n) are natu-
rally isomorphic it is enough to prove that the objects represent the same element
in EndD1

0 (Z[y, v, w]δ[x]; id, id; S′n).
Consider the map ι : C1 → C2 in EndD1

0 (Z[y, v, w]δ[x]; id, id; S′n) which is induce
by the injective maps

ι1 :=


1

x
. . .

xn−1

,

ι2 :=


1

x
. . .

xn−1

.

The object

C :=
( n−1⊕

i=0

Z[y, v, w]δ[x]/xi,

n−1⊕
i=0

Z[y, v, w]δ[x]/xi,
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
0

0

xv
. . .

. . . 0
xv 0

,


0

0

xw
. . .

. . . 0
xw 0


)

is the cokernel of ι in ENDD1(Z[y, v, w]δ[x]; id, id; S′n). Thus we get a short exact
sequence

0 // C1
ι // C2

// C // 0

in ENDD1(Z[y, v, w]δ[x]; id, id; S′n).
Notice that objects of the form

[( ⊕n
i=0 Mi,

⊕n
i=0 Mi,m1,m2

)]
with m1 and m2

lower triangular matrices vanish in EndD1
0 (Z[y, v, w]δ[x]; id, id; S′n). Thus[(

C
)]

= 0

in EndD1
0 (Z[y, v, w]δ[x]; id, id; S′n), which implies that [C1] and [C2] represent the

same element in EndD1
0 (Z[y, v, w]δ[x]; id, id; S′n) and therefore the required identity.

3.4 Farrell and Waldhausen Nil-Groups as Modules over the
Ring of Witt vectors

In this section, we prove that if we have natural transformations UX and UY be-
tween the identity and FX and FY which have a right inverse then Nili(Λ; X) and
Nili(Λ; X, Y ) are modules over the ring of Witt vectors of R.

In Section 3.1, we have seen that Nil-groups are modules over End0(R). As men-
tioned in the introduction, End0(R) is a dense subring of the ring of Witt vectors with
the t-adic topology. The ideals which give rise to the topology are IN := {1+tNRJtK}.
To extend the End0(R)-module structure to a Witt vector-module structure we need
to prove that for each x ∈ Nil there is an N such that x is annihilated by IN . For
Bass Nil-groups this is proven by Stienstra [Sti82].

Theorem 3.4.1. Let Λ be an algebra over a commutative ring R, let X and Y be
left flat Λ-bimodules. If we have natural transformations UX and UY between the
identity and FX and FY which have right inverse natural transformations then for
every x in Nili(Λ; X) or Nili(Λ; X, Y ) there is an N such that x is annihilated by
the ideal IN . Thus Nili(Λ; X) and Nili(Λ; X, Y ) are modules over the ring of Witt
vectors.

Proof. This result follows from Theorem 3.3.8/3.3.14 in the same manner as Corol-
lary 3.3.5 is obtained from Proposition 3.2.5.
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4 Applications

In the second chapter, the behavior of Nil-groups under localization was studied.
The main result is Theorem 2.4.1 saying that

Z[t, t−1]⊗Z[t] Nili(R;X, Y, Z, W ) ∼= Nili(Rs;Xs, Ys, Zs,Ws).

for all i ∈ Z. In the third chapter, we developed a Witt vector-module structure
on certain Nil-groups. In Section 4.1, we combine these at first glance totally un-
related results to improve Theorem 2.4.1 to the statement that if R is ZT for some
multiplicatively closed set T ⊆ Z − {0}, Ẑp or a commutative Q-algebra, if S is a
multiplicatively closed subset of non zero divisors of R, if Λ is an algebra over R and
X and Y are Λ-bimodules with natural transformations from the identity to FX and
FY which have a left inverse, we have

RS ⊗R Nili(Λ; X) ∼= Nili(ΛS ;XS)

and
RS ⊗R Nili(Λ; X, Y ) ∼= Nili(ΛS ;XS , YS).

for all i ∈ Z. The given assumptions are, for example, satisfied if G is a group and
Λ is RG, X is RGα and Y is RGβ for inner automorphism α and β.

The main applications are torsion results. Whenever we know that the Nil-groups
of the ring Z[1/n]G vanish, we get that the Nil-groups of ZG are n-torsion. In
Section 4.3, it is proven that for every polycyclic-by-finite group we can find such
an n.

The assumption that α and β are inner group automorphisms is quite restrictive.
To weaken the assumptions on α, we define in Section 4.2 induction and transfer
maps on Nil-groups which are similar to the induction and transfer maps in algebraic
K-theory [Mil71, Chapter 14].

In the Section 4.4, we use this machinery to prove that Nil-groups of polycyclic-by-
finite groups are torsion groups if α and β are group automorphism of finite order.
As an important corollary we get that the Nil-groups of finite groups are torsion
groups.

As an application of the torsion results we prove in Section 4.5 that the relative
assembly map from the family of finite subgroups to the family of virtually cyclic
subgroups is rationally an isomorphism.
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4.1 Improved Localization Results

In this section, we use the Witt vector-module structure developed in the preceding
chapter to improve Theorem 2.4.1.

Lemma 4.1.1. Let Λ be an algebra over a commutative ring R and let X and Y
be Λ-bimodules such that there are natural transformations from the identity to the
functor FX and FY which have right inverse natural transformations. Then for every
multiplicatively closed set S ⊂ R of non zero divisors satisfying s · x = x · s for all
s ∈ S and x ∈ X and a similar condition for Y we have

{(1− st) | s ∈ S}−1W (R)⊗W (R) Nili(Λ; X) ∼= Nili(ΛG;Xs)

and
{(1− st) | s ∈ S}−1W (R)⊗W (R) Nili(Λ; X, Y ) ∼= Nili(ΛS ;XS , YS),

for all i ∈ Z.

Proof. In the following, Nili(Λ; X) is treated, the same arguments work for
Nili(Λ; X, Y ).

Lemma 4.1.1 is proven for the special case that S is generated by a single element s.
Iterated use of the argument shows that

{(1− st) | s ∈ 〈s1, . . . , sm〉}−1W (R)⊗W (R) Nili(Λ; X) ∼= Nili(Λ〈s1,...,sm〉;X〈s1,...,sm〉)

for finitely generated S = 〈s1, . . . , sm〉. To get the general case we need to pass to
the colimit. Checking on generators we obtain that

{(1− st) | s ∈ 〈s1〉}−1W (R)⊗W (R) Nili(Λ; X)
� _

��

∼= // Nili(Λ〈s1〉;X〈s1〉)

L
��

{(1− st) | s ∈ 〈s1, s2〉}−1W (R)⊗W (R) Nili(Λ; α)
� _

��

∼= // Nili(Λ〈s1,s2〉;X〈s1,s2〉)

L
��

...
...

commutes. Thus we get an isomorphism between

lim−→
(
{(1− st) | s ∈ 〈s1, . . . , sm〉}−1W (R)⊗W (R) Nili(Λ; X)

)
and

lim−→Nili(Λ〈s1,...,sm〉;X〈s1,...,sm〉),

which are {(1− st) | s ∈ S}−1W (R)⊗W (R) Nili(Λ; α) and Nili(ΛS ;XS).

As pointed out in the introduction, End0(R) is a dense subring of W (R). The
elements (1 − st) belong to the objects [(R, s)] in End0(R). Since (R, s)×? ∼= Fs,
Theorem 2.4.1 implies that

{(1− st) | s ∈ 〈s〉}−1W (R)⊗W (R) Nili(Λ; X) ∼= Nili(Λs;Xs).
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Theorem 4.1.2. Let R be ZT for some multiplicatively closed set T ⊆ Z− {0}, Ẑp

or a commutative Q-algebra and let Λ be an R-algebra. Let X and Y be Λ-bimodules
such that there are natural transformations from the identity to the functor FX and
FY which have a right inverse. Then for every multiplicatively closed set S ⊂ R
of non zero divisors satisfying s · x = x · s for all s ∈ S and x ∈ X and a similar
condition for Y there are isomorphisms of RS-modules

RS ⊗R Nili(Λ; X) ∼= Nili(ΛS ;XS)

and
RS ⊗R Nili(Λ; X, Y ) ∼= Nili(ΛS ;XS , YS),

for all i ∈ Z.

Proof. This proof follows Weibel’s proof of the same identity for Bass Nil-groups
[Wei81, page 489]. Again just the groups Nili(Λ; X) are treated, the same arguments
work for Nili(Λ; X, Y ).

Let WN (R) := W (R)/IN be the truncated ring of Witt vectors.
The group Nili(Λ; X) is a colimit over the family of finitely generated W (R)-

submodules M . Since M is assumed to be finitely generated, Theorem 3.3.8 and
Proposition 3.2.5 imply that the W (R)-module structure restricts to a WN (R)-
module structure for a certain N . For a ring R which is ZT for some multiplicatively
closed set T ⊆ Z− {0}, Ẑp or a commutative Q-algebra Weibel [Wei81, Proposition
6.2] proves the identity

{(1− st) | s ∈ S}−1WN (R) ∼= WN (RS).

Since R is a λ-ring, M caries an R-module structure. We have

RS ⊗R M ∼= W (RS)⊗W (R) M

∼= WN (RS)⊗W (R) M

∼= {(1− st) | s ∈ S}−1WN (R)⊗W (R) M

∼= {(1− st) | s ∈ S}−1W (R)⊗W (R) M.

Taking the colimit of both sides gives

RS ⊗R Nili(Λ; X) ∼= {(1− st) | s ∈ S}−1W (R)⊗W (R) Nili(Λ; X).

Thus Lemma 4.1.1 implies

RS ⊗R Nili(Λ; X) ∼= Nili(ΛS ;XS).

4.2 Transfer and Induction on Nil-Groups

In algebraic K-theory, it is well-known that if we have a ring Γ and a subring Λ
such that Γ is finitely generated projective as a module over Λ, we can define maps
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ιi : Ki(Γ) → Ki(Λ). These so called transfer maps are induced by the functor whose
value at a projective Γ-module is the same module, seen as a Λ-module. The inclusion
map ι : Λ ↪→ Γ induces maps ιi : Ki(Λ) → Ki(Γ), the so called induction maps. We
generalize this concept to Nil-groups.

Definition 4.2.1 (Induction and Transfer). Let Γ be a ring with a subring Λ.
Let ι : Λ ↪→ Γ be the inclusion map and let α and β be a ring automorphisms of Γ
which restricts to Λ.

1. Define a functor u from Mall(Λ) to Mall(Γ) which sends a Λ-module M to the
Γ-module M ⊗Λ Γ. We denote the natural transformation between u◦FΛα and
FΓα ◦ u which is induced by the map

Λα ⊗Λ Γ → Γα

λ⊗ γ 7→ λ · α(γ),

by U . We define ιi to be Nili(u, U) : Nili(Λ; α) → Nili(Γ;α). We call these
maps induction maps.

2. We denote the natural transformation between u◦FΛα,Λβ
and FΓα,Γβ

◦u which
is induced by the map

Λα ⊗Λ Γ → Γα

λ⊗ γ 7→ λ · α(γ),
Λ⊗Λ Γ → Γ

λ⊗ γ 7→ λ · β(γ),

by UW . We define ιi to be Nili(u, UW ) : Nili(Λ; Λα,Λβ) → Nili(Γ; Γα,Γβ). We
call these maps induction maps.

If we have additionally that Γι is a finitely generated projective right Λ-module, we
can define transfer maps.

1. We define a functor T from NIL(Γ;α) to NIL(Λ; α) whose value at an object
(P, ν) is (Pι, ν). On morphisms, T is the identity. The map which is induced
on the i-th Nil-groups is denoted by ιi and called transfer map.

2. We define a functor T from NIL(Γ; Γα,Γβ) to NIL(Λ; Λα,Λβ) whose value at an
object (P,Q, p, q) is (Pι, Qι, p, q). On morphisms, T is the identity. The map
which is induced on the i-th Nil-groups is denoted by ιi and called transfer
map.

Example 4.2.2. The situation which will become important is that we have a
group G and a group automorphism α of finite order m. In this case we can form the
semidirect product of G and the cyclic group of order m, which is denoted by Cm.
Conjugation with the element (id, 1) extends α to an inner group automorphism of
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G oα Cm, which is denoted by α̃. The group ring RG oα Cm, seen as a bimodule
over RG, is isomorphic to

⊕n−1
i=0 RGαi . Thus we get induction maps

ιi : Nili(RG;α) → Nili(RG o Cm; α̃)

and transfer maps
ιi : Nili(RG o Cm; α̃) → Nili(RG;α).

If β is a group automorphism of finite order m′. By the same reasoning as above
we can define induction maps

ιi : Nili(RG;RGα, RGβ) → Nili(RG o Cm·m′ ;RG o Cm·m′ α̃, RG o Cm·m′ β̃)

and transfer maps

ιi : Nili(RG o Cm·m′ ;RG o Cm·m′ α̃, RG o Cm·m′ β̃) → Nili(RG;RGα, RG).

Proposition 4.2.3. Let the notation be as in the preceding example. We have

ιi ◦ ιi(x) = x ·m,

for x in Nili(RG;α) and i ∈ Z. We have

ιi ◦ ιi(x) = x ·m ·m′,

for x in Nili(RG;RGα, RGβ) and i ∈ Z.

Proof. We prove the identity for Nili(RG;α) the same arguments hold for
Nili(RG;RGα, RG). The identity is proven for higher Nil-groups. Since ΣRG =
(ΣR)G we obtain the identity for lower Nil-groups in the obvious way.

Let (P, ν) be an object of NIL(RG;α). We have

T ◦NIL(U, u)
(
(P, ν)

)
=

(
P ⊗

m−1⊕
i=0

RGαi , U(P ) ◦ (ν ⊗ id)
)
.

Right multiplication with the element (id,m− i) induces an RG-bimodule isomor-
phism between RGαi and RG which commutes with α. The induced RG-bimodule
isomorphism between

⊕m−1
i=0 RGαi and

⊕m−1
i=0 RG is denoted by g̃. We have

g̃ ◦ α̃ ◦ g̃−1(x) = α̃(x)

for all x ∈ RG o Cm. The map g̃ induces an isomorphism between(
P ⊗

m−1⊕
i=0

RGαi , U(P ) ◦ (ν ⊗ id)
)

and (
P ⊗

m−1⊕
i=0

RG, (id⊗ g̃) ◦ U(P ) ◦ (ν ⊗ id) ◦ (id⊗ g̃−1)
)
.
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Using the identity g̃ ◦ α̃◦ g̃−1 = α̃ we obtain that the canonical isomorphism between
P ⊗

⊕n−1
i=0 RG and Pn provides an isomorphism to

(
Pn,


ν

ν
. . .

ν

 )
.

Thus we obtain the identity on Ki

(
NIL(RG;α)

)
and therefore on Nili(RG;α).

4.3 Regular Group Rings

Let G be an arbitrary group. In view of Theorem 4.1.2, the question whether we can
find n ∈ Z such that Nili(Z[1/n]G;X[1/n]) or Nili(Z[1/n]G;X[1/n], Y[1/n]) vanishes
arises. The main result of this section is that for polycyclic-by-finite groups we can
always find such an n.

Definition 4.3.1 (Regular). A ring is called regular if it is right noetherian and
every finitely generated right module has a finite resolution of finitely generated
projective right modules.

Examples of regular rings are fields, Z and ZT if T is a multiplicatively closed
subset of Z.

It is a result of Waldhausen that for i ≥ 0 and for a regular ring R the
group Nili(R;X, Y, Z,W ) vanishes [Wal78a, Wal78b]. The result is extend to lower
Nil-groups in [BL04]. Thus we can rephrase the question, stated at the beginning,
to the question whether we can find an n such that Z[1/n]G is regular. To find a
class of groups with this property we need the following definition:

Definition 4.3.2. Suppose P and S are properties of groups. A group is called
poly-P if there exists a finite chain of normal subgroups:

1 = G0 / G1 / · · · / Gm = G

such that every Gi/Gi−1 has property P.
A group is called P-by-S if G has a normal subgroup N such that N has property

P and G/N has property S.

Lemma 4.3.3. Let R be a ring, let G be a group and let H be a subgroup of finite
index n with the property that RH is regular. If n is invertible in R, then RG is also
regular.

Proof. The ring RG is right-noetherian since RH is right noetherian and RG is a
finitely generated right module over RH. Let M be a finitely generated RG-module.
The module M seen as an RH-module is denoted by res M . Since RH is regular,
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4.3 Regular Group Rings

res M has a finite projective RH-resolution. Applying − ⊗RH RG yields an RG-
resolution of res M ⊗RH RG. Let S be a set of representatives of right cosets. Since
n is invertible in R, we can define the following RG-module map:

M → res M ⊗RH RG

m 7→ 1/n
∑
g∈S

mg−1 ⊗ g.

This is an RG-module map since for λ ∈ G we have

1/n
∑
g∈S

mλg−1 ⊗ g = 1/n
∑
g∈S

m(gλ−1)−1 ⊗ g(λλ−1)

= 1/n
∑
g∈S

m(gλ−1)−1 ⊗ (gλ−1)λ

= 1/n
∑
g∈S

mg−1 ⊗ gλ.

Since the composition of this map with the canonical map from res M ⊗RH RG
to M is the identity, we get that M , as an RG-module, is a direct summand of
res M ⊗RH RG. Hence M has a finite projective resolution.

Proposition 4.3.4. Let G be a polycyclic-by-finite group. Then there exists a poly-
infinite cyclic subgroup of finite index n. If n is invertible in a regular ring R, then
the group ring RG is also regular.

Proof. The family of polycyclic-by-finite groups coincides with the family of poly
infinite cyclic-by-finite groups [Pas85, page 422]. Thus we can always find a poly
infinite cyclic subgroup of finite index n. If we can show that for every poly infinite
cyclic group H and regular ring R the group ring RH is regular, Lemma 4.3.3
implies the statement. This is done by induction on the length of the chain of
normal subgroups with infinite cyclic quotient. In the case of a chain of length one
we have RH0 = R which is regular. For the induction step from m to m + 1 let

1 = H0 / H1 / · · · / Hm+1 = H

be a chain of subgroups such that Hi+1/Hi is infinite cyclic. By our induction
hypothesis RHm is regular. Since Hm+1/Hm is cyclic, we get an exact sequence

1 // Hm
// Hm+1

// Z // 0.

This sequence splits since Z is free. Thus we get

Hm+1
∼= Hm o Hm+1/Hm

and therefore
RHm+1

∼= RHm α[t, t−1]

for some automorphism α. It is a result of Farrell and Hsiang that a twisted Laurent
polynomial ring of a regular ring is regular [FH70]. Therefore RH is regular, which
proves the statement.
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4.4 Torsion Results

In this section, we prove that the Nil-groups of polycyclic-by-finite groups are torsion
groups. We obtain as an important corollary that the Nil-groups appearing in the
calculation of the K-theory of virtually cyclic groups are torsion groups.

Theorem 4.4.1. Let G be a polycyclic-by-finite group. Then there exists a poly-
infinite cyclic subgroup of finite index n. Let α and β be group automorphisms of
finite order m and m′.

1. The group Nili(ZG;α) is an (n ·m)-torsion group for i ∈ Z.

2. The group Nili(ZG; ZGα, ZGβ) is an (n ·m ·m′)-torsion group for i ∈ Z.

Proof. In the following, Nili(ZG;α) is treated, the same arguments work for
Nili(ZG; ZGα, ZGβ). Since α is of finite order m, we can form the semidirect product
of G and the cyclic group with m elements Cm. Conjugation with the element (id, 1)
extends α to an inner automorphism of G o Cm, which is denoted by α̃. Since α̃ is
an inner automorphism, we can apply Theorem 4.1.2. We have

Z[1/n, 1/m]⊗Z Nili
(
ZG o Cm; α̃

) ∼= Nili
(
Z[1/n, 1/m]G o Cm; α̃

)
.

The right hand side is the trivial group by Proposition 4.3.4. Thus Nili(ZGoCm; α̃)
is (n · m)-torsion. An application of Proposition 4.2.3 yields that Nili(ZG;α) is
(n ·m)-torsion.

Corollary 4.4.2. Let G be a finite group of order n. Let α and β be group auto-
morphisms of finite order m and m′.

1. The group Nili(ZG;α) is an (n ·m)-torsion group for i ∈ Z.

2. The group Nili(ZG; ZGα, ZGβ) is an (n ·m ·m′)-torsion group for i ∈ Z.

Theorem 4.4.3. Let G be an arbitrary group and let α and β be group automor-
phisms of finite order m and m′.

1. The group Z[1/m]⊗Z Nili(QG;α) is a Q-algebra and therefore torsion free for
i ∈ Z. If G is a polycyclic-by-finite group then Nili(QG;α) is the trivial group.

2. The group Z[1/(m · m′)] ⊗Z Nili(QG; QGα, QGβ) is a Q-algebra and there-
fore torsion free for i ∈ Z. If G is a polycyclic-by-finite group then
Nili(QG; QGα, QGβ) is the trivial group.

Proof. The proof of this result follows the same pattern as Theorem 4.4.2 is proven.
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4.5 The Relative Assembly Map

In the final section, we prove that the relative assembly map from the family of finite
groups to the family of virtually cyclic groups is rationally an isomorphism. The
main ingredient of the proof is the torsion result of the preceding section. We begin
by briefly recalling the relevant notions. For a survey on the various isomorphism
conjectures see [LR04].

Definition 4.5.1 (Families of Subgroups). Let G be a group. A family F of
subgroups of G is a set of subgroups of G closed under conjugation and finite inter-
section.

We denote the family of finite subgroups by FIN , the family of virtually cyclic
subgroup by VCY and the family of all subgroups by ALL.

Definition 4.5.2 (Classifying space for a family of subgroups). Let F be a
family of subgroups of a group G. A model EFG for the classifying G-CW-complex
for the family F is a G-CW-complex EFG which has the following properties:

1. All isotropy groups of EFG belong to F .

2. For any G-CW-complex Y , whose isotropy groups belong to F , there is up to
G-homotopy precisely one G-map Y → EFG.

The classifying G-CW-complex of a family always exists and is unique up to G-
homotopy.

Example 4.5.3. 1. Let G be a finite group. The point with the trivial G-action
is a model for EFING.

2. Let V be a virtually cyclic group of the first type, i.e. V is the semidirect
product of a finite group H and Z. Since V admits a surjection onto Z with
finite kernel, a model for EFINZ gives a model for EFINV . The Z-push out
of

S0 × Z //

��

Z

D1 × Z

is a model for EFINZ and gives therefore a model for EFINV . This model
can be pictured by the real line

◦ ◦ ◦ ◦ ◦

where Z acts via translation.

3. Let V be a virtually cyclic group of the second type, i.e. V is the amalga-
mated product of two finite groups G1 and G2 over a subgroup H of index
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2. Since V admits a surjection onto Z2 ∗ Z2 with finite kernel [FJ95], a model
for EFINZ2 ∗ Z2 gives a model for EFINV . The group Z2 ∗ Z2 admits two
canonical surjections onto Z2, let k1 and k2 be the kernels of these surjections.
In the following Z2 ∗ Z2/kj is identified with {+/ − 1} and S0 with the set
of two points {pt1, pt2}. We define qi

1 : Z2 ∗ Z2/k1 × S0 → Z to be z2i for
z ∈ Z2 ∗ Z2/k1 and pt1 ∈ S0 and z(2i + 2) for z ∈ Z2 ∗ Z2/k1 and pt2 ∈ S0

and we define qi
2 : Z2 ∗ Z2/k2 × S0 → Z to be z2i + 1 for z ∈ Z2 ∗ Z2/k2 and

pt1 ∈ S0 and z(2i + 2) + 1 for z ∈ Z2 ∗ Z2/k2 and pt2 ∈ S0.

The Z2 ∗ Z2-push out of

∐
i∈Z

(
Z2 ∗ Z2/k1 × S0

∐
Z2 ∗ Z2/k2 × S0

) ∐
i∈Z(qi

1

∐
qi
2)

//

��

Z

∐
i∈Z

(
Z2 ∗ Z2/k1 ×D1

∐
Z2 ∗ Z2/k2 ×D1

)
is a model for EFINZ/2Z∗Z/2Z and gives therefore a model for EFINV . This
model can be pictured by the real line

←→ ←→

• ◦ • ◦ • ◦

where the two copies of Z2 act via reflection on the different vertical axes.

A G-homology theory is the obvious generalization of a homology theory to the
equivariant setting. In particular if G is the trivial group than a G-homology theory
is just a homology theory. For a definition of a G-homology theory see [LR04].
Suppose we are given a family of subgroups F and a subfamily F ′ ⊆ F . By the
universal property of EF (G) we obtain a map EF ′(G) → EF (G) which is unique up
to G-homology. Thus for every G-homology theory HG

∗ we obtain a relative assembly
map

AF ′→F : HG
∗ (EF ′(G)) → HG

∗ (EF (G)).

An equivariant homology theory consist of G-homology theories for every group G
with an so called induction structure which connects the different homology theories.
Again, for a definition we refer to [LR04]. In [DL98] it is explained how the K-theory
spectrum of a ring R, in the sequel denoted by KR, gives a equivariant homology
theory, in the sequel denoted by H?

i (−;KR).
The Farrell-Jones conjecture [FJ93] predicts that the VCY-assembly map

AVCY : HG
i (EVCY(G);KR) → HG

i (EALL(G);KR) ∼= HG
i (pt;KR) ∼= Ki(RG)
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is an isomorphism. It is known that the relative assembly map

AFIN→VCY : HG
i (EFIN ;KR) → HG

i (EVCY ;KR)

is split injective [Bar03]. In this section, we prove that rationally the relative assem-
bly map is an isomorphism.

Theorem 4.5.4. Let G be a group and let i be a natural number. If i ≥ 0 then the
rationalized relative assembly map

AFIN→VCY : HG
i (EFIN ;KZ)⊗Q → HG

i (EVCY ;KZ)⊗Q

is an isomorphism. For i < 0, the relative assembly map is an isomorphism even
integrally.

Proof. The proof follows closely a proof of the statement that the relative assem-
bly map is an isomorphism for a regular ring R in which the orders of all finite
subgroups of G are invertible [LR04, Proposition 2.14]. Because of the Transitivity
Principle [LR04, Theorem 2.9] we need to prove that the FIN -assembly map is an
isomorphism for virtually cyclic groups V . As mentioned in the introduction we can
assume that either V ∼= H oZ or V ∼= G1 ∗H G2 with finite groups H, G1 and G2. In
both cases we obtain long exact sequences involving the algebraic K-theory of the
constituents, the algebraic K-theory of V and additional Nil-groups. If V is a virtu-
ally cyclic group of the first type or a virtually cyclic group of the second type the
Nil-groups vanish rationally by Corollary 4.4.2. Thus we get long exact sequences

· · · // Ki(RH)⊗Q // Ki(RH)⊗Q //

// Ki(RV )⊗Q // Ki−1(RH)⊗Q // Ki−1(RH)⊗Q // · · ·

and

· · · // Ki(RH)⊗Q //
(
Ki(RG1)⊕Ki(RG2)

)
⊗Q // Ki(RV )⊗Q //

// Ki−1(RH)⊗Q //
(
Ki−1(RG1)⊕Ki−1(RG2)

)
⊗Q // · · · .

One obtains analogous exact sequences for the sources of the various assembly maps
from the fact that the sources are equivariant homology theories and the models for
EFINV given in Example 4.5.3. These sequences are compatible with the assembly
maps. The assembly maps for finite groups H, G1 and G2 are bijective. Now a
Five-Lemma argument shows that also the one for V is bijective.

We obtain the stronger statement for i < 0 because the lower Nil-groups are known
to vanish [FJ95].
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Theorem 4.5.5. Let G be a group for which the Farrell-Jones conjecture is known
to be true. If i ≥ 0 then the rationalized FIN -assembly map

AFIN : HG
i (EFIN ;KR)⊗Q → Ki(ZG)⊗Q

is an isomorphism. For i < 0, the FIN -assembly map is an isomorphism even
integrally.

Proof. The statement is implied by the preceding theorem since the FIN -assembly
map factors over the relative assembly map.
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