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The icosahedral group and the homotopy

of the stable mapping class group

Johannes Ebert

(Communicated by Wolfgang Lück)

Abstract. We construct an explicit generator for π3(BΓ+
∞), the third homotopy group

of the classifying space of stable mapping class group after Quillen’s plus construction.
The construction relies on a very classical action of the binary icosahedral group on some
hyperelliptic Riemann surface.

1. Introduction and results

Let Fg be an oriented closed connected surface of genus g, let Diff+(Fg) be
the topological group of orientation-preserving diffeomorphisms of Fg and let

Γg := π0(Diff+(Fg)) be the mapping class group. If g ≥ 2, then all components

of Diff+(Fg) are contractible [3] and so BΓg ≃ BDiff+(Fg), in other words,
BΓg is the base space of the universal surface bundle Eg → BΓg of genus g.

It is known that Γg is a perfect group [17] if g ≥ 3 and so Quillen’s
plus construction—a familiar construction from algebraic K-theory, cp. [18,
p. 266]—can be applied to BΓg. The result is a simply-connected space BΓ+

g

and a homology equivalence BΓg → BΓ+
g . By definition, BΓg is aspherical

(i.e. all homotopy groups but the fundamental group are trivial), but BΓ+
g

has many nontrivial higher homotopy groups.
How can one construct elements in πn(BΓ+

g )? Suppose that M is an
n-dimensional homology sphere and suppose that π1(M) acts on Fg by ori-
entation preserving diffeomorphisms. Such an action yields an homomorphism
ρ : π1(M) → Γg. Let λ : M → Bπ1(M) be a classifying map for the univer-
sal covering of M . Consider the composition Bρ ◦ λ : M → BΓg. Quillen’s
plus construction gives a map M+ → BΓ+

g . On the other hand, any degree
one map M → Sn is a homology equivalence and so it induces a homotopy
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equivalence M+ ≃ Sn. We end up with a map Sn → BΓ+
g , giving an element

θM ;ρ ∈ πn(BΓ+
g ) which only depends on M and ρ.

The purpose of this note is to study an example of such an action when
M = S3/Ĝ is the Poincaré sphere (the quotient of S3 by the binary icosahedral

group Ĝ) and g = 14. Here is our main result.

Theorem 1. There exists an action of the binary icosahedral group Ĝ =
π1(M) on F14, such that θM ;ρ is a generator of π3(BΓ+

14)
∼= Z/24.

Before we delve into the details, we explain our motivation for this appar-
ently very specialized result. It comes from the recent homotopy theory of the
stable mapping class group. To define the stable mapping class groups, we
need to consider the mapping class groups of surfaces with boundary compo-
nents. Let F be an oriented surface of genus g with b boundary components, let
Diff(F, ∂F ) be the topological group of orientation preserving diffeomorphisms
which restrict to the identity on the boundary and put Γg,b := π0Diff(F ; ∂).
These groups are related by stabilization maps Γg,b → Γg,b+1, Γg,b → Γg,b−1,
Γg,b → Γg+1,b for b > 0, which are obtained by gluing in pairs of pants, a
disc or a torus in an appropriate way. The homological stability theorems
of Harer [6], as improved by Ivanov [9], [10], assert that these maps induce
isomorphisms on group homology Hk(BΓg,b; Z) as long as g ≥ 2k + 2. Let
Γ∞,b := colim(. . . → Γg,b+1 → Γg+1,b+1 → . . .). Abbreviate Γ∞ := Γ∞,0.
Quillen’s plus construction gives maps BΓ+

g,1 → BΓ+
∞ and BΓ+

g,1 → BΓ+
g .

These maps are highly connected because of Harer stability. In particular,
we get an isomorphism φ : πn(BΓ+

g ) → πn(BΓ+
∞) for all pairs (g, n) with

g ≥ 2n + 2, for example for (g, n) = (14, 3). So Theorem 1 is really about
π3(BΓ+

∞). Note that, however, the isomorphism φ is not induced from a group
homomorphism Γg → Γ∞. There is a map BΓg → BΓ+

∞ which induces φ, but
its construction requires the Madsen-Weiss theorem [13].

Due to the work of Tillmann, Madsen, Weiss and Galatius [20], [12], [13],
[5], the homology of BΓ∞ is completely understood, at least in theory and
one also gets some information about the homotopy groups of BΓ+

∞. Let us
describe this story briefly.

Madsen and Tillmann [12] constructed a spectrum MTSO(2) and maps
αg,b : BΓg,b → Ω∞

0 MTSO(2) ([12] uses the notation CP∞
−1 for MTSO(2)).

The maps αg,b are compatible with the gluing maps and so they define a limit
map α∞ : BΓ∞ → Ω∞

0 MTSO(2). The rational homology of Ω∞
0 MTSO(2)

is easy to determine (it is isomorphic to the rational homology of BU , see
[12]). The very complicated homology with Fp-coefficients for all primes p was
computed by Galatius [5].

Madsen and Weiss showed that α∞ is a homology equivalence. Therefore,
the plus construction (α∞)+ : BΓ+

∞ → Ω∞
0 MTSO(2) is a homotopy equiva-

lence. Then βg = (α+
∞)−1 ◦ αg : BΓg → Ω∞

0 MTSO(2) → BΓ+
∞ induces the

isomorphism φ above after plus construction.
The first few homotopy groups of Ω∞

0 MTSO(2) and hence of BΓ+
∞ are

given by the following theorem.
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Theorem 2.

πk(BΓ+
∞) ∼= πk(Ω∞

0 MTSO(2))











0 if k = 1

Z if k = 2

Z/24 if k = 3.

This is proved in [12, p. 537], but the proof of the third isomorphism is only
sketched. The proof can easily been completed using the computations of the
first few stable homotopy groups of CP∞ from [16, p. 199].

We should remark that the idea of defining elements of πn(X+) using homol-
ogy spheres is not new. For n = 3 and X = BGl∞(Z), Jones and Westbury [11]
give detailed computations. Their results could be used to prove Theorem 1,
but our computations are more elementary and do not depend on [11].

Outline of the paper: In Section 2, we construct a homomorphism η :
π3(BΓ+

∞) → Q/Z which will be used later on to detect homotopy classes. It is
closely related to the classical e-invariant K3(Z) → C/Z in algebraic K-theory,
as we will explain in Section 3.

In Section 4, we recall some facts about the icosahedral groups and we
construct the action of Ĝ on F14 of Theorem 1. The computations leading to
Theorem 1 are given in Section 5.

Acknowledgements: This paper is an improved version of a chapter of the
author’s PhD thesis [4]. The author wants to express his thanks to his PhD
advisor, Carl-Friedrich Bödigheimer, for his constant support and patience.
Also, I want to thank the Max-Planck-Institute for Mathematics in Bonn for
financial support during my time as a PhD student. The final writing of this
paper was done while the author stayed at the Mathematical Institute of the
Oxford University, which was made possible by a grant from the Deutscher
Akademischer Austauschdienst.

2. An invariant η : π3(BΓ+
∞) → Q/Z

Our procedure to detect elements in π3(BΓ+
∞) is based on two theorems by

Harer. The first one [8] is the isomorphism (for g ≥ 8)

(3) H3(BΓg; Q) = 0,

which can also be derived from Theorem 2. The second one is thatH2(BΓ∞; Z)
∼= Z, [7]. We need a precise description of the second cohomology group.

The mapping class group Γg acts on the cohomology of the surface Fg pre-
serving the intersection form. The action defines a group homomorphism
Γg → Sp2g(Z) → Sp2g(R). Because U(g) ⊂ Sp2g(R) is a maximal compact
subgroup, BSp2g(R) ≃ BU(g). We obtain a map Φg : BΓg → BU(g).

This map classifies a complex vector bundle V1 → BΓg, which has the
following alternative description. Consider the universal surface bundle π :
Eg → BΓg. One can choose a complex structure on the vertical tangent
bundle TvEg of this bundle, turning π : Eg → BΓg into a family of Riemann
surfaces. Let V1 be the vector bundle whose fiber over x ∈ BΓg is the dual
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of the g-dimensional vector space of holomorphic 1-forms on π−1(x). This
is indeed a vector bundle once the topology is appropriately chosen, see [2].
The isomorphism class of V1 does not depend on the choice of the complex
structure because that complex structure is unique up to homotopy. The
Hodge decomposition theorem shows that Φg is a classifying map for V1.

There exists a universal map Φ : Ω∞MTSO(2) → BU , such that ι ◦ Φg ∼
Φ ◦αg (ι : BU(g) → BU is the inclusion). This is shown in [12, p. 539 f] (they
denote Φ by η′). Details can also be found in [4, Ch. 6].

The map Φ can be used to obtain cohomology classes of Ω∞MTSO(2) and
hence, via αg, on each BΓg. We put ζi := α∗

gΦ
∗ci and γi := α∗

gΦ
∗si; si =

i!chi ∈ H2i(BU ; Z) the ith component of the integral Chern character. The
following is the main result of [7]1, which also can be derived from Theorem 2.

Theorem 4. The group H2(BΓg; Z) is infinite cyclic, generated by ζ1.

We remark that ζ1 is the first Chern class of the determinant bundle det(V1)
of the bundle V1. Another result we will need was proved by Morita [15, p. 555],
as a consequence of Chern-Weil theory.

Lemma 5. The class γ2i ∈ H2i(BΓ+
∞) is a torsion class.

Now we want to construct a homomorphism

(6) η : π3(BΓ+
∞) → Q/Z.

For any space X , let qX
n : τ≥nX → X be the (n − 1)-connected cover of

X . The space τ≥nX is (n − 1)-connected and qX
n induces an isomorphism

πk(τ≥nX) → πk(X) for all k ≥ n. If X is understood, we write qn := qX
n . The

assignmentX 7→ τ≥nX is a functor on the homotopy category of pointed spaces
and the maps qX

n define a natural transformation of functors qn : τ≥n → id.
If X = BΓ+

∞ and n = 3, then τ≥3BΓ+
∞ is the homotopy fiber of ζ1 : BΓ+

∞ →
K(Z; 2) by Theorem 2 and Theorem 4 and we can view τ≥3BΓ+

∞ as the total
space of the circle bundle associated with det(V1).

Lemma 7. The cohomology class q∗3ζ2 ∈ H4(τ≥3BΓ+
∞; Z) is a torsion class.

Proof. Recall the relation

(8) s2 = c21 − 2c2 ∈ H4(BU ; Z).

Applying Φ∗ yields γ2 = ζ2
1 − 2ζ2 ∈ H4(BΓ+

∞; Z). Consequently, q∗3(γ2) =
q∗3(ζ2

1 ) − 2q∗3(ζ2) = 0 − 2q∗3(ζ2). By Lemma 5, γ2 is a torsion class. �

Because of Theorem 2, H3(τ≥3BΓ+
∞; Q) = 0. Therefore we get an exact

sequence
(9)

0 // H3(τ≥3BΓ+
∞; Q/Z)

δ // H4(τ≥3BΓ+
∞; Z) // H4(τ≥3BΓ+

∞; Q)

1This is stated falsely in [7], but Harer corrected the mistake in [6].
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from the Bockstein exact sequence. Thus there exists a unique

ζ̄2 ∈ H3(τ≥3BΓ+
∞; Q/Z) such that δ(ζ̄2) = q∗3ζ2.

Let x : S3 → BΓ+
∞ be a map representing an element x ∈ π3(BΓ+

∞). There is a
unique lift x̃ : S3 → τ≥3BΓ+

∞ of x. We define a homomorphism η : π3(BΓ+
∞) →

Q/Z by

(10) η(x) := 〈x̃∗ζ̄2; [S
3]〉 ∈ Q/Z.

3. Comparison with the e-invariant

Let us briefly describe the Adams-Quillen e-invariant, following [19]; it
is a homomorphism K2n−1(Cd) → C/Z. Here Cd denotes the complex
numbers with the discrete topology and the K-theory group is Kn(Cd) =
πn(BGl∞(Cd)

+). Let FC be the homotopy fiber of the Chern character ch :
BU →

∏

n≥1K(C, 2n). By Bott periodicity, π2k(FC) = 0 and π2k+1(FC) ∼=
C/Z. The “identity” Cd → C is continuous and induces a map T :
BGl∞(Cd)

+ → BGl(C) ≃ BU . By Chern-Weil theory, the induced map in
complex cohomology T ∗ : H∗(BU ; C) → H∗(BGl∞(Cd)

+; C) is trivial in pos-
itive degrees, cp. [14, Lem. 12] (the argument in loc.cit. generalizes easily to
reductive connected groups as Gln(C) and the passage to the limit n → ∞ is
also straightforward). It follows that there exists a lift in the diagram

(11) FC

��
BGl∞(Cd)

+ T //

T̃

88

BU.

This lift is not unique, but Chern-Weil theory defines a specific choice of
a lift, cp. [11, Sec. 2]. On homotopy groups, T̃ induces e : K2n−1(Cd) →
π2n−1(FC) ∼= C/Z, which is the Adams-Quillen e-invariant.

There is the following alternative description of the e-invariant K3(Cd) →
C/Z. Abbreviate X := τ≥3BGl∞(Cd)

+ and consider the Bockstein exact
sequence

(12) H3(X ; C) // H3(X ; C/Z)
δ // H4(X ; Z) // H4(X ; C)

for the coefficients Z → C → C/Z.
By (8), the class q∗3T

∗ch2 = 1
2q

∗
3T

∗s2 lies in H4(X ; Z) and it maps to zero

in H4(X ; C) by Chern-Weil theory. Therefore there is a class ǫ ∈ H3(X ; C/Z)
such that δǫ = 1

2q
∗
3T

∗s2. If x ∈ K3(Cd) = π3(X), then e(x) = 〈x∗ǫ; [S3]〉.
Let ψg be the composition BΓg → BSp2g(Z) → BGl2g(Z) → BGl2g(Cd)

given by the action on the first cohomology of the surface. There is an induced
map Ψ : BΓ+

∞ → BGl∞(Cd)
+ in the stable range. The composition T ◦Ψ differs

from the map Φ described in Section 2. More precisely, let c : BU → BU be
the map which sends a complex vector bundle V to V ⊗R C = V ⊕ V̄ . Then
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(13) T ◦ Ψ ≃ c ◦ Φ

by the Hodge decomposition theorem.

Proposition 14. The homomorphisms η and e ◦ (Ψ)∗ : π3(BΓ+
∞) → C/Z

coincide.

Proof. Because we are only interested in π3, we may as well pass to the 2-
connected covers of BΓ+

∞ and BU . We have to show that (τ≥3Ψ)∗ǫ = ζ̄2,
where τ≥3Ψ : τ≥3BΓ+

∞ → τ3BGl∞(Cd)
+ is induced from Ψ. Because ζ̄2 is

uniquely characterized by δζ̄2 = q∗3ζ2, it suffices to show δ(τ≥3Ψ)∗ǫ = q∗3ζ2. By
the definition of ǫ and the functoriality of the connected covers, we obtain:

δ(τ≥3Ψ)∗ǫ = (τ≥3Ψ)∗ 1
2q

∗
3T

∗s2 = (τ≥3Ψ)∗(τ∗≥3T )∗(1
2q

∗
3s2)

Using (8), it is easy to see that (τ≥3c)
∗q∗3s2 = 2s2. This relation, together with

(13) and the definition of ζ2 shows that

(τ≥3Ψ)∗(τ∗≥3T )∗(1
2q

∗
3s2) = (τ≥3Φ)∗(q∗3s2) = q∗3ζ2.

�

4. An action of the icosahedral group on a surface

Consider a regular icosahedron I in Euclidean 3-space, centered at 0 and
such that all vertices lie on S2. It has 20 faces (which are triangles), 12 vertices
(at every vertex, exactly 5 edges and 5 faces meet) and 30 edges. Let G ⊂
SO(3) be the symmetry group of the icosahedron. We choose a vertex, an edge
and a face of the icosahedron. We denote the isotropy group of the midpoint
of the edge by G2, the isotropy group of the midpoint of the face by G3 and
the isotropy group of the vertex by G5. These groups are cyclic of order 2, 3, 5,
respectively, and we choose generators y2, y3, y5 of these groups. The group G
has order 60, it is generated by y2, y3 and y5 and G is a perfect group.

Let Ĝ the preimage of G under the 2-fold covering S3 → SO(3). The kernel

of Ĝ→ G agrees with the center Z(Ĝ) of Ĝ. We denote the unique nontrivial

element in Z(Ĝ) by h. It is known that the extension Z/2 → Ĝ → G is the

universal central extension of G. The group Ĝ is the binary icosahedral group.
We choose preimages xi of the generators yi. These set {x2, x3, x5} generates

Ĝ. The quotient Ĝ\S3 is the famous Poincaré homology 3-sphere.

Our analysis of G and Ĝ begins with the description of the Sylow subgroups.

Clearly 〈x2
3〉 and 〈x2

5〉 are the 3- and 5-Sylow subgroups of Ĝ, respectively.
The quaternion group Q8 = {±1,±i,±j,±j} ⊂ S3 ⊂ H is a 2-Sylow sub-

group of Ĝ. The abelianization is Q8/{±1} ∼= V4 := Z/2 × Z/2. Let U be

the standard representation of Ĝ ⊂ S3 = SU(2) as a subgroup and denote the

restriction to Q8 by the same symbol. Let u ∈ H4(BĜ; Z) be the second Chern
class of U . Again, the restriction to BQ8 will be denoted by u as well. Fur-
thermore Hom(Q8;U(1)) ∼= Hom(V4;U(1)) ∼= Z/2×Z/2 (the last isomorphism
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is not canonical). Let a, b ∈ H2(BQ8; Z) be the first Chern classes of a pair of
generators of Hom(Q8;U(1)).

Proposition 15. There is an isomorphism of rings H∗(BQ8; Z) ∼= Z[a, b, u]/I,
where I is the ideal generated by 8u, 2a, 2b, a2, b2 and ab− 4u.

The cohomology ring H∗(BĜ; Z) is isomorphic to Z[u]/(120u).

Proof. By Poincaré duality, the cohomology of the closed oriented manifold
S3/Q8 is given by H∗(S3/Q8; Z) ∼= Z for ∗ = 0, 3, H2(S3/Q8; Z) ∼= Z/2 × Z/2
and H∗(S3/Q8; Z) = 0 in all other cases. Now consider the commutative
diagram of fibrations

(16) S3 //

��

S3/Q8

��
ES3 //

��

BQ8

��
BS3 BS3.

The top horizontal map has degree 8. An application of the Leray-Serre spec-
tral sequence shows that the additive structure of H∗(BQ8) is as asserted and
that multiplication by u is an isomorphism Hp(BQ8) → Hp+4(BQ8) for all
p > 0. The products on H2(BQ8) are computed in [1, p. 60].

The computation for Ĝ is similar, but easier, because the full structure
follows from the spectral sequence. �

As a consequence of Proposition 15, the sum of the restriction maps to the
Sylow subgroups H4(BĜ) → H4(BQ8) ⊕ H4(BZ/3) ⊕ H4(BZ/5) ∼= Z/8 ⊕
Z/3 ⊕ Z/5 ∼= Z/120 is an isomorphism.

Remark 17. We will need a property of the representations of Q8. The
representation U is (up to isomorphism) the only irreducible representation
of Q8 in which the central element h acts as −1 and not as the identity. It
follows: If W is a Q8-representation, on which the central element acts by −1,
then V is a direct sum of copies of U .

Remark 18. The last fact we need is that any automorphism of the 3- and
5-Sylow subgroups of Ĝ is induced by conjugation with an element in Ĝ. The
quickest way to see this uses the well-known isomorphism Ĝ ∼= Sl2(F5). This

observation has the following consequence. If W is any representation of Ĝ
and p = 3 or p = 5, then the restriction of W to Z/p ⊂ Ĝ is isomorphic to
nC ⊕ m(

⊕

1≤r≤p−1 Lp,r) for appropriate n,m ∈ N, where Lp,r denotes the

representation 1 7→ exp(2πir
p ) of Z/p on C.

Now we construct certain actions of Ĝ on Riemann surfaces which in the
end will give interesting elements in π3(BΓ+

g ). The construction is based on

an easy lemma. Let O(k) be the kth tensor power of the Hopf bundle on CP1.
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The bundle O(k) is an Sl2(C)-equivariant bundle over the Sl2(C)-space CP1.
If k is odd, then the central element −1 ∈ Sl2(C) acts as −1 on O(k) (i.e.
on any fiber of the bundle). If k is even, then −1 acts trivially on O(k), i.e.
the action descends to an action of PSl2(C). Recall that the vector space of
global holomorphic sections of O(k) can be identified with the vector space of
homogeneous polynomials of degree k in C[t1, t2] (as Sl2(C)-representations).

Lemma 19. Let G ⊂ PSl2(C) be a finite subgroup and let Ĝ ⊂ Sl2(C) be
preimage of G in Sl2(C) (it is a central extension of G by Z/2). Let m ∈ N

be positive. Let s be a G-invariant holomorphic section of O(2m) having only

simple zeroes. Then there exists a connected Riemann surface F with a Ĝ-
action and a two-sheeted Ĝ-equivariant branched covering f : F → CP1, whose
branch points are precisely the zeroes of s.

If m is odd, then the central element h ∈ Ĝ acts as the hyperelliptic involu-
tion on F , if m is even, then h acts trivially on F .

Proof. Let S ⊂ O(2m) be the image of the section s. It is a surface of genus 0
and it is stable under the G-action on O(2m). Let q : O(m) → O(2m) be the

squaring map, let F := q−1(S) and let f := q|F . Clearly, F has a Ĝ-action and
f is equivariant. The other statements of the Lemma are trivial to verify. �

From now on, let G again be the icosahedral group. The following example
is the basis for the computation leading to Theorem 1.

Example 20. Let z1, . . . , z30 ∈ S2 be the midpoints of the edges of the icosa-
hedron and consider them as points on CP1 after the choice of a conformal
map S2 ∼= CP1. The precise value of the points does not play a significant role
in this discussion.

Now we take holomorphic sections si, i = 1, . . . , 30, of the Hopf bundle
O(1) with simple zeroes precisely at zi. Such sections exist and are unique
up to multiplication with a complex constant. Put s := s1 ⊗ . . . ⊗ s30 ∈
H0(CP1,O(30)).

For g ∈ Ĝ, there exists a c(g) ∈ C× with gs = c(g)s, because gs has the

same zeroes as s. The map c : g 7→ c(g) is a homomorphism Ĝ → C×. Since

Ĝ has no abelian quotient, c is constant. Thus s is a Ĝ-invariant section.
If we apply the construction of Lemma 19 to s, we obtain a surface of genus

14 (by the Riemann-Hurwitz formula) with a Ĝ-action.

Proposition 21. The number of fixed points of the elements x2, x3, x5 ∈ Ĝ
in Example 20 is 2, 0, 0, respectively. All powers x2r

3 , r 6≡ 0 (mod 3) and x2r
5 ,

r 6≡ 0 (mod 5) have precisely 4 fixed points.

The proof is an elementary consideration, using the fact that the number
of fixed points of an automorphism of a Riemann surface is less or equal than
2g + 2 with equality holding only for hyperelliptic involutions.

Of course, one can apply a similar construction to the midpoints of the faces
or to the vertices of the icosahedron. The results are surfaces of lower genus
and elements in π3(BΓg)

+ of lower order.
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5. Computations

The proof of Theorem 1 starts with the computation of the characteristic
class ζ2 for the bundle on BĜ given by the action ρ : Ĝ → Γ14 constructed
before.

Proposition 22. The characteristic class Bρ∗ζ2 ∈ H4(BĜ; Z) ∼= Z/120 has
order 24.

Proof. The Ĝ-action on F is holomorphic by construction and therefore there
is an induced linear action Ĝ y H1(F ;O). The cohomology class Bρ∗ζ2
of Proposition 22 is the same as the second Chern class of this linear Ĝ-
representation, which will be briefly denoted by c. According to the struc-
ture of H4(BĜ) described above, we need to show: The restriction of c to
H4(BZ/3) has order 3, the restriction to H4(Z/5) is trivial and the restriction
to H4(BQ8) has order 8.

By the Dolbeault theorem, there is an isomorphism of complex Ĝ-represent-
ations:

(23) H1(F ;O) ⊗R C ∼= H1(F ; C).

The Lefschetz fixed point formula, applied to the result of Proposition 21,
allows us to determine the decomposition of the representation of Z/3 ∼= Ĝ(3) =

〈x2
3〉 on the 28-dimensional space H1(F ; C). The result is H1(F ; C) ∼= 8C ⊕

10L1⊕10L2. By (23) and Remark 18, it follows thatH1(F ;O) ∼= 4C⊕5L1⊕5L2

as Z/3-modules. The Chern polynomial of Ln is 1 + nv; v ∈ H2(Z/3) an
appropriate generator. It follows that c|BZ/3 = v2.

The result for the subgroup Z/5 follows by an analogous argument. The
decomposition of H1(F ;O) as a Z/5-module is 2C ⊕ 3(L1 ⊕ L2 ⊕ L3 ⊕ L4).

We have seen that the central element h ∈ Q8 ⊂ Ĝ acts as a hyperelliptic
involution. Thus it acts on H1(F ;O) by −1. By Remark 17, this implies that
H1(F,O), as a Q8-module, decomposes into seven copies of the twodimensional
representation U . The first Chern class of U is zero, while the second is a
generator of H4(BQ8). Thus c|BQ8

is seven times a generator and thus again
a generator. �

LetM = S3/Ĝ be the Poincaré homology sphere and let θM ;ρ ∈ π3(BΓ+
∞) be

the element determined by M and the action Ĝ y F14. In view of Theorem 2,
the following proposition is enough to establish Theorem 1.

Proposition 24. The order of η(θ) ∈ Q/Z is 24.

Proof. Consider the 2-connected covering q3 : τ≥3BΓ+
∞ → BΓ+

∞ with homo-
topy fiber K(π2(BΓ+

∞; 1)) ≃ S1. By elementary obstruction theory (and the

knowledge of the cohomology of BĜ), there exists a unique (up to homotopy)
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lift

(25) τ≥3BΓ+
∞

��

BĜ+
Bρ

//

B̃ρ
::

BΓ+
∞.

Comparing the Bockstein sequences for the spaces and maps BĜ+ →

τ≥3BΓ+
∞ → BΓ+

∞, we see that B̃ρ
∗
ζ̄2 ∈ H3(BĜ+; Q/Z) ∼= Z/120 has order

24 (use (7), Lemma 3 and Proposition 22).

Now consider the map λ+ : S3 ≃ M+ → BĜ+ which is induced from the
classifying map λ : M → BĜ of the universal covering of M . Observe that
λ∗ : H3(BĜ+; Q/Z) → H3(S3; Q/Z) is injective, which follows from a straight-
forward consideration of the Leray-Serre spectral sequence for the fibration
S3 →M → BĜ.

Thus λ∗B̃ρ
∗
ζ̄2 has order 24 in H3(S3; Q/Z). But B̃ρ ◦ λ represents the

element θ ∈ π3(BΓ+
∞) which we consider. �
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