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1
Introduction

The present study deals with reasoning ability and intelligence. Intelli-

gence is a human ability vitally important at school, work, and day-to-day

life as it provides a basis for all cognitive abilities and skills. Reasoning

ability constitutes a central construct in numerous theories on human in-

telligence. It is further is a fundamental part of fluid intelligence and of

particular importance to new situations: The ability to reason is indispens-

able when problem solving skills are required, thus in situations in which

experienced operations and algorithms for problem solution are not avail-
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1 Introduction

able or cannot be retrieved. Without reasoning, already acquired knowl-

edge and experiences could not be applied to new situations.

The topic of the dissertation refers to the construction of a rule-based fig-

ural analogy test. This study is part of an extensive research project of the

chair of statistics and quantative methods of the psychological institute of

the University of Münster, Germany. This research project engages in rule-

based test construction and development of computer-generated adaptive

tests capturing various cognitive abilities, in particular reasoning. In the

course of this project, rule-based test construction and computerized gen-

eration algorithms had been successfully implemented for figural matrix

items (Freund, Hofer, & Holling, 2008). In line with the addressed project,

this study issues another type of reasoning task, the figural analogy, and

accomplishes exploratory research to the rule-based test construction with

the superior, long-term aim of an adaptive computer-generated test ver-

sion. Besides the potential of identifying item components and their diffi-

culty parameters, rule-based tests enable targeted practicing of the rules or

transformations. Practicing enables equal a priori test conditions for sub-

jects and hence differences in test scores can be almost exclusively ascribed

to differences in ability and not to differences in test familiarity. This study

chooses and applies an adequate experimental design to elucidate whether

the knowledge of rules has impact on test scores.

The following objectives are pursued with the present research. This

study aims to derive and provide psychometric and content fundamentals

for the development of a test measuring reasoning ability. Analogy tasks of

figural content are chosen for subsequent account: In literature reasoning

2



1 Introduction

tasks hold a status as valid indicator of general intelligence. Contentwise,

geometric or figural analogies constitute culture-fair tasks because they en-

able measurement of intellectual abilities regardless of environmental in-

fluences and cultural background of the subject tested. Thus, with apply-

ing a reasoning test, measurement of this important component of analytic

intelligence is pursued as well as further access to fundamental human

thought-processes and its structure.

However, the new test must account for complex exigencies and criteria.

Scaling according to probabilistic test theories must be accomplished since

the fit with the unidimensional model of this theory displays a condition

precedent for item component analysis. Item response theory is chosen as

a basis for characterizing these psychometric properties since it illustrates

the relationship between the item response of the examinee and the ability

score, thus the extent of the latent trait to be captured. Means of identify-

ing item components provide an important tool to predict item difficulties.

This is necessary in order to construct test items of particular difficulty

to precisely measure different ability levels. With regard to the aptitude

level of the subject, only test items of adequate difficulty and thus a small

measurement error can provide sufficient information. Knowing the item

components and their impact on item difficulty is inalienable, for example,

in the instance of adaptive or tailored testing.

The study provides the following structure: Subsequently to this introduc-

tion the theoretical and empirical background of reasoning in general and

of analogical reasoning in particular is presented in chapter 2. The chapter

3



1 Introduction

is composed of different sections, starting with an assignment and defini-

tion of reasoning in section 1. Section 2 illustrates why, considering the

wide range of intelligence research, engaging in reasoning ability in par-

ticular. Scientific debates on the property and measurement of reasoning

are motivated by factor-analytic findings and numerous theories about the

relationship between this ability and what is generally understood as in-

telligence. Factor-analytic approaches proved that reasoning ability is a

central constituent of intelligence. How different theories integrate reason-

ing into models of intelligence is analyzed and presented in this section.

Section 3 of the second chapter outlines information-processing theories

of analogical reasoning. Different theories on the components involved in

the solution process of analogy tasks are reviewed to reveal what consti-

tutes reasoning. Section 4 of the second chapter refers to the findings be-

tween reasoning ability and academic achievement. Reasoning tests, with

their property as indicator of general intelligence, have become popular

among entrance and recruiting tests, thus empirical evidence concerning

their predictive validity for academic achievement seems appropriate and

is outlined. The last section of chapter 2 presents effects of training and

instruction on test performance.

Chapter 3 analyzes the cognitive structures in analogical reasoning tasks.

An introduction to rule-based test construction and analysis of its advan-

tages and practical implications is presented at the begining of this chapter.

Subsequently, before methods of validating the cognitive structure are out-

lined, a short review on modern probabilistic test theory as opposed to

classical test theory is given in section 2. Understanding of item response

4



1 Introduction

theory in general, and of the 1-parameter logistic model in particular, is

important for the linear logistic test model as means of analyzing and vali-

dating cognitive structures presented in section 3. Besides the linear logistic

test model, the linear logistic test model including random item effects is

introduced as means to examine the parameters that constitute item dif-

ficulty. The linear logistic test model with random effects accounts for

additional item variation and refers to models with both random person

and random item effects. This model presents a very realistic approach

to validate the cognitive structure. Finally, empirical findings on informa-

tion structure and components of analogy tasks are presented in the fourth

section of chapter 3 before findings are summarized.

Chapter 4 addresses the research topics of the study and presents the

three pretests that were conducted before the final test version for the main

examination was decided on and composed.

Subsequently, chapter 5 presents the main examination of the disserta-

tion. Before the test material is presented in section 2, the hypotheses of the

study are specified in the beginning of the chapter (section 1). Then the test

instruction, the testing procedure (section 3), and the sample (section 4) of

the main examination are described. Section 5 investigates the results in the

following order: First, data is analyzed according to classical test theory,

referring to item statistics, test reliability and test validity. Confirmatory

factor analysis is then conducted and provided. Further, parameters are

estimated according to item response theory; tests to estimate the good-

ness of model fit are presented. By focusing on item construction a main

topic of the study is addressed: The linear logistic test model and the lin-

5



1 Introduction

ear logistic test model with random item effects are applied as methods to

test predefined hypotheses on parameters influencing item difficulty. The

impact of the transformations as well as the impact of the elements on the

difficulty of the figural analogy tasks are further explored.

The sixth chapter summarizes and discusses preceding results and pre-

pares future prospects for further examinations and test applications.

Summarized, the present study provides the design of new rule-based

reasoning tasks, aiming to meet the demand for methodologically sound

tasks. It is beyond doubt that reasoning is a central construct in human in-

telligence and necessary to accomplish easy and complex real life cognitive

tasks. It is also assumed to also hold predictive validity for academic and

educational performances. However, former or classic reasoning tasks are

mostly scalable according to classical test theory only, with its - to some ex-

tent deficient - assumptions of ability measurement. Therefore, scalability

to item response theory is aimed for.

6



2
Reasoning Ability: Theoretical

and Empirical Background

2.1 Reasoning Ability: Assignment and Definition

Reasoning is essential in everyday life. When we have to make a decision in

a surrounding that is new to us or when the decision refers to content that

is unknown, we tend to relate to similar past experiences to find an answer.

To simply illustrate what constitutes everyday reasoning, one might refer

7



2 Reasoning Ability: Theoretical and Empirical Background

to Sternberg (1977a):

We reason analogically whenever we make a decision about

something new in our experience by drawing a parallel to some-

thing old in our experience. When we buy a new pet hamster

because we liked our old one or when we listen to a friend’s

advice because it was correct once before, we are reasoning ana-

logically. (p. 99)

Different modes of reasoning can be distinguished. Carroll (1989) defined

three kinds of reasoning: deductive, inductive, and quantitative (induc-

tive and deductive mathematical reasoning) reasoning. In logic, deduction

means inferring or deducing specific statements from premises that have

general character. A certain statement is therefore inferred from one or

several preceding statements, namely from the general to the individual

case. If the premises are concerned with true statements, the conclusion

inferred from these statements must also be true if the principle of deduc-

tion had correctly been applied. It is therefore a matter of syllogisms which

means deductive argumentation that draws a logical conclusion from two

premises. Each premise shares a term with the other premise and one with

the conclusion. Deduction is fulfilled via rules of reasoning. Three kinds of

deductive reasoning can be distinguished: implications from a more gen-

eral statement to a less general statement, from one generality to the same

generality, and the implication from the specific to the particular. Induc-

tion refers to a procedure of inferring from the particular to generality and

recognizing principles. It is about concluding from a basic set to theories.

Induction, therefore, plays an important role in testing hypotheses and co-

8



2 Reasoning Ability: Theoretical and Empirical Background

herence. Induction thus constitutes an established procedure in science as

various scientific disciplines attempt to conclude, for example, from sam-

ples to the total population. However, in contrast to deductive reasoning,

the premises in inductive reasoning do not inevitably lead to the right con-

clusion since hypotheses are only tested. Thus, deductive and inductive

reasoning differ in the certainty of a right conclusion. In deductive reason-

ing a true premise leads to a true conclusion, but in inductive reasoning

true conclusions cannot necessarily be derived from the premise.

2.2 Reasoning Ability in Influential Intelligence

Models

Models of intelligence vary in the structural concept they assume for the

construct of intelligence. By means of factor analytic approaches researchers

developed different models with different implications in terms of the

constitution of intelligence. In the meantime some of these models have

evolved to classic and well-known intelligence models that are different in

quantity, content, generality or specificity of factors. Furthermore, these

models differ in the acceptance or non-acceptance of whether a general

factor of intelligence. It is further distinguished between hierarchical mod-

els and non-hierarchical models. Hierarchical models are models in which

factors represent a certain arrangement and ranking and thus differ in their

extent of generality. Non-hierarchical models assume the same generality

for all factors. Below, some classical models of intelligence are elucidated

in terms of the reasoning component implied in the model. The follow-

9



2 Reasoning Ability: Theoretical and Empirical Background

ing paragraphs thus do not provide an exhaustive description of classical

intelligence models but aim to illustrate the role of reasoning in selected

models.

Spearman’s General Factor Theory

Spearman’s g-factor in his General Factor Theory or the Theory of two factors

(Spearman, 1904) is connected with reasoning ability: Since most tests that

proved loadings on g implied abstract reasoning, he concluded that g was

an essential part of human intelligence. Spearman documented empirical

support for his thesis (Spearman, 1927) by presenting a correlation of .84

of Otis (1918) between tests containing analogies and g.

Raven (1936) constructed his first figural matrices test, the Standard Pro-

gressive Matrices, according to Spearman’s theory, designing the tasks in

order to capture the factors of intelligence defined by Spearman.

Thurstone’s Primary Factor Model

Thurstone (1938), in his Primary Factor Model, interpreted one of his seven

primary abilities as reasoning and detecting rules. He defined induction

as rule finding. In Thurstone’s model, according to Wilhelm (2005), “the

reasoning factor is marked mostly by inductive tasks” (p. 377). Thurstone

reported factor loadings of .39 for pattern analogies on the inductive rea-

soning factor and of .60 for verbal analogies on a verbal factor.

10



2 Reasoning Ability: Theoretical and Empirical Background

Cattell’s Fluid and Crystallized Intelligence

Cattell (1971) assumed that intelligence is composed of two factors, fluid

and crystallized intelligence. Fluid intelligence refers to the ability of devel-

oping problem solving approaches and strategies for situations that do not

provide ad hoc solving techniques and procedures. Fluid intelligence gen-

erally implies the ability to detect relations, and is therefore a highly rele-

vant process for reasoning. Referring to Horn and Cattell (1966), Sternberg

(1986, p. 282) stated that “the Horn-Cattell (1966) theory of fluid and crys-

tallized abilities also suggests that performances on induction tests can be

understood in terms of a single factor (namely, that of fluid ability) ”. Crys-

tallized intelligence is the ability of applying afore acquired knowledge.

Further, crystallized intelligence is environmental because knowledge and

its acquirement are not free of cultural impact. Regarding the relationship

between fluid and crystallized intelligence it can be assumed that fluid in-

telligence is a requirement for crystallized intelligence. The status or extent

of crystallized intelligence is in turn the result of fluid intelligence. Cattell

(1971) also considered reasoning indispensable in forming crystallized in-

telligence, thus learning and acquisition of knowledge.

Jäger’s Berlin Model of Intelligence Structure

In Jäger’s Berlin model of intelligence structure (BIS; Jäger, 1982) the opera-

tion facet processing capacity corresponds to reasoning ability as it refers to

processing of complex information, detecting relations, and logical think-

ing in situations or tasks when no experienced solving algorithms are avail-

able. In this model every intelligent performance is defined by one of the

11



2 Reasoning Ability: Theoretical and Empirical Background

four operational facets and one content facet referring to the stimulus ma-

terial. This can be figural-spatial, verbal or numerical, thus reasoning tasks

can be further distinguished depending on the kind of material involved.

Carroll’s Three Stratum Theory

In the Three-Stratum Theory of Carroll (1993), fluid intelligence is - to a

certain degree - defined by reasoning ability that in turn consists of three

factors from the lowest stratum: sequential reasoning, induction, and quan-

titative reasoning. This structure can also be found in the model of Horn

and Cattell (1966) apart from that their model does not provide a level of

higher generality and thus no g. Reasoning ability (G f ) is the fundamental

component for the more specific factors that can be measured by several

tasks. Factor analytic research revealed high loadings of figural reasoning

on fluid intelligence. It is therefore assumed that the relationship between

figural reasoning and G f can be judged as almost perfect (Süß & Beaudu-

cel, 2005). Reasoning ability is often a synonym for the general intelligence

factor g (Carroll, 1993). Carroll, who developed a hierarchical model of in-

telligence, considered the ability to reason the crucial point of intelligence

(Carroll, 1989).

Gustafsson: Documentation of Intelligence-Reasoning Coherence

To conclude the discussion on intelligence and reasoning, findings of Gustafs-

son (1984) concerning this issue are illumined. Thus, not a model but em-

pirical evidence for the relation of general intelligence and fluid intelligence

is presented.

12



2 Reasoning Ability: Theoretical and Empirical Background

Gustafsson (1988) described that general intelligence is commonly equated

with fluid intelligence and furthermore with inductive reasoning. Reason-

ing ability seems to be rather similar to fluid intelligence and thus con-

stitutes a central factor in numerous cognitive tasks and learning aptitude

tests. Gustafsson believed that the extent of benefit from instruction is de-

termined by reasoning ability. Given that, the performance especially in

novel tasks could only be successful if the subject transferred instruction

onto the task to be processed via reasoning. However, it seems that rea-

soning ability and fluid intelligence constitute at least similar if not same

constructs and reasoning ability can thus be assumed to be an important

component of intelligence. Sternberg (1986) states as follows:

An interesting finding that emerges from the literature attempt-

ing to relate cognitive task performance to psychometrically

measured intelligence is that the correlations of task perfor-

mance and IQ seems to be a direct function of the amount of rea-

soning involved in a given task, independent of the paradigm or

label given to the paradigm ... Thus, reasoning ability appears

to be central to intelligence. (pp. 309-310)

Gustafsson (1984) applied a battery of 16 tests and examined a sample of

more than 1000 subjects. Conducted factor analysis resulted in a model

with factors on three levels. According to the author the factors on the

first level can be interpreted following Thurstone or Guilford. The model

further contained three factors of second order which are fluid intelligence

(G f ), crystallized intelligence (Gc) and visuo-spatial ability (Gv). These

three second-order factors in turn loaded on one single factor of third order

13
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which is interpreted as general intelligence (g). Gv showed factor loadings

of .80, Gc of .76 and G f of 1.00 on g. According to this model general

intelligence and fluid intelligence constitute identical constructs. Further

inspection of the factors on second and first level revealed that the G f -

factor of the second and therefore more general level has a very strong,

almost perfect relationship with one first order factor construed as induc-

tion (the tasks number series and letter grouping loaded on this factor).

Expressing this relation in terms of a numerical coefficient, a correlation

coefficient of .99 was obtained. To prove this nearly perfect correlation by

more than one empirical reference, Gustafsson alluded to another study

(Gustafsson, Lindström, & Björck-Åkesson, 1981) that illustrated loadings

of the fluid factor on the third-level factor g of 1.00.

However, the hypothesis of coherence between G f and general intelli-

gence is contentious and depends on methodological procedures. Gustafs-

son (1984) referred to the rotation procedures in factor analysis and argued

that “when Multiple Factor analysis is used with orthogonal rotation, the

general factor is ‘roted away’ ” (p. 200), resulting in only weak loadings

of general intelligence on all existing factors. Oblique rotation, however,

displays the general factor as correlations between the other factors. Ac-

cording to Gustafsson though, oblique rotation underestimates the extent

of correlations among factors. Since in oblique rotation the rotation an-

gle is arbitrary, “ ‘objective’ empirical information on the amount of actual

correlation between factors” cannot be obtained (Gustafsson, 1984, p. 200).

Because of this criticism Gustafsson emphasized the advantages of confir-

matory factor analysis and structure equation modeling (LISREL), which
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he also applied onto his data.

Undheim and Gustafsson (1987) considered the LISREL-method an ade-

quate method of testing hypotheses in hierarchical models. They again ap-

plied it to examine possible equivalence of G f and g. Structural equation

modeling was based on data of 144 eleven-year old pupils that were tested

with a test battery embodying 12 subtests (Undheim, 1976). The resulting

hierarchical model contained ten first-order factors, four second-order fac-

tors and g as the only factor of third order. Undheim and Gustafsson (1987)

evaluated their main hypothesis that G f and G are uniform constructs as

confirmed although factor loadings of G f on g were with 1.15 larger than 1

and therefore the Heywood case occurred. The Heywood case refers to neg-

ative eigenvalues or communalities above one, which however could only

vary as sum of squared correlations between 0 and 1. Since the loadings

of G f on g were above one the factor variance was subsequently negative.

Undheim and Gustafsson however argued that t-values for negative resid-

ual variance did not prove to be significant and their hypothesis on the

equivalence of G f and g would therefore be supported. Modification of

the model resulted in one in which the previous four second-order factors

now turned into first-order factors and the previous latent variable of third

order now represents a second-order factor. Due to their numerical rela-

tionship of 1.01 Undheim and Gustafsson considered G f and g as unitary

constructs.

In a second study Undheim and Gustafsson (1987) reanalyzed data of

149 thirteen-year-olds. However, the model proved inadequate fit with the

data and the hypothesis of a perfect relationship between g and G f could
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therefore not be approved. A modified model with five first-order factors

and g as the only second-order factor, G f proved factor loadings of .95 on

g which was judged non-significantly deviating from 1.00.

In a third study, testing 148 fifteen-year-old subjects (Undheim & Gustafs-

son, 1987), the hypothesis of uniform constructs could again be supported:

In a first LISREL-model, G and G f showed correlations of .97. In a simpli-

fied one-factor model, G f proved with .94 the highest loading on g.

2.3 Information-Processing Theories of Analogy

Tasks

Looking at the precedent models of intelligence that have coined and de-

veloped an idea on the structure and components of human intelligence,

one might conclude that reasoning ability constitutes a central construct

in human intelligence. These models ascribe different significance to rea-

soning ability within each model, but all models consider it a core and

fundamental ability of human intelligence, and reasoning ability is repre-

sented in each model. However, the models do not describe components

and processes, neither of reasoning in general nor of analogical reasoning

in particular. But for a solid understanding of reasoning, the processes

involved have to be analyzed. The following section therefore presents

several selected information-processing theories of analogical reasoning.
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Spearman’s Information Processing Theory

Besides his theory of a general factor, Spearman also proposed an information-

processing theory of reasoning (Spearman, 1923). He put forth three princi-

ples of cognition. In the first principle Apprehension of Experience, Spearman

stated that “any lived experience tends to evoke immediately a knowing of

its characters and experiencer” (p. 48). The second principle, called Educ-

tion of Relations, means that “the mentally presenting of any two or more

characters (simple or complex) tends to evoke immediately a knowing of

relation between them” (p. 63). Spearman defines relation as “any at-

tribute which mediates between two or more fundaments” (p. 66). He

distinguishes between real and ideal relations: Real relations are accord-

ing to Spearman (1923) attribution (relating something to its fundament),

identity (refers to the preservation of an object), time, space, cause, objectivity,

and constitution. Ideal relations are likeness (refers to resemblance as well as

dissimilarity), evidence (in terms of reasoning), conjunction, and intermixture

(intermixture of any relations stated before). The third principle Eduction of

Correlates represents “the presenting of any character together with any re-

lation tends to evoke immediately a knowing of the correlative character”

(p. 91).

To illustrate his principles, Spearman (1923) provided several examples

from different domains. For the domain of perception he gave following

example of a quint of musical harmony: When two tones are given, the

subject tested might recognize that these tones are related by a musical

fifth (second principle). When a third tone is presented and the subject

mentally represents the concept of the musical fifth, he might be able to
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generate or mentally represent a tone that corresponds to the afore heard

tone, thus to educe a correlate (third principle) in the relation of a musical

fifth. Spearman also demonstrated examples for analogies. In the analogy

“WHITE is to BLACK as GOOD is to ...” (p. 100) it may be recognized that

the first two terms constitute opposites (second principle) and by finding

the opposite of the third term C, and thus generating the same relation that

connects A and B, the third principle of educing correlates is fulfilled.

Sternberg’s Componential Model of Analogical Reasoning

In literature several models of analogical reasoning have been proposed.

Among these, Sternberg’s componential model of analogical reasoning is

a popular model (Sternberg 1977a). Sternberg referred to four process-

ing models of analogical reasoning that differ in the sequence of processes

applied. In all models, processes were the same and serial execution of

processes is given. Models however, differed in the sequence and frequen-

cies of processes. Sternberg presented the models with steady regard to

one example (Washington : 1 :: Lincoln : (a.10, b.5)) presented in Table 2.1.

In Model 1 the first step is the encoding of term A (Washington) followed

by the encoding of term B (1). Attributes for each term are recalled from

long-term memory and stored in working memory. Then attributes of the

A term (president, portrait on currency, revolutionary war hero) and the B

term (counting number, ordinal position, amount) are related to each other,

representing the third step of inferring a relation between A and B. The at-

tribute president is related to the attribute ordinal position (first president),

portrait on currency is related to the attribute amount (portrait on one dol-
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lar note), and between revolutionary and counting number no relation is

inferred and marked with ∅ in Table 2.1. In the next step, called mapping,

the C term (Lincoln) is encoded and related to the A term (Washington).

The result of relating the two terms to each other might be the discovery

that both were presidents, are portrayed on currencies and were heroes in

wars. Then the response options (a.10 , b.5) are encoded and applied onto

the C term in the last step: The A term Lincoln is related to the answer

options in terms of the attributes (president, currency, war hero). Relating

Lincoln to answer option a (10) fails (Lincoln was not the 10th president

and not portrayed on a 10 dollar bill), but answer option b (5) can be re-

lated to the attribute currency (portrayed on 5-dollar note). Thus, A and C

are related by the attribute currency.

Summarized, Sternberg’s first model presents a sequence of seven steps

(encode A −→ encode B −→ infer A to B −→ encode C −→ map A to C

−→ encode D−→apply C to D) to solve the verbal analogy. The model can

be divided into two basic components: Attribute identification (encoding)

and attribute comparison. Attribute comparison refers to three obligatory

processes: inferring, mapping, and application. These represent the steps

of finding a rule relating A to B (inferring), finding a rule relating A to C

(mapping), and apply the rule from C to D (application). Sternberg (1977a)

stated that the additional and optional attribute-comparison component of

justification is necessary in forced choice answering formats as a validation

process when none of the response choices exactly presents the answer

generated by the subject. A control component was also implied in the

model, and necessary in order to guide the process of solving an item and
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responding to the item.

Whenever attribute lists are needed in the model, working memory ca-

pacity is required since attributes have to be stored and retrieved for con-

ducting the steps of inference, mapping, and application.

Models II-IV referred to the same information-processing components

but components were differently organized. Sternberg (1977a) summarized

that in Model I, all attribute comparison components (inferring, mapping,

applying) are “exhaustive processes” (p. 139) because each component

refers to all attributes. In Model II, only the processes of inference and

mapping are exhaustive since they compare all attributes, “but application

is self-terminating” (p. 140) because not all attributes have to be applied. If

the subject compares the first attribute and finds a match with the answer

option, the process of applying is terminated. In Model III, inference is

exhaustive. The subject might then find a correct solution after mapping

the first attribute and the processes of mapping and applying are thus

self-terminating. In Model IV, all three processes can be self-terminating

whenever not all attributes have to be inferred to solve the analogy.

Empirical research for model validation was carried out by Sternberg

conducting three experiments using analogies of different content: People-

piece analogy, verbal analogy, and geometric analogy (Sternberg 1977a).

Impact of the components was quantified in latencies, i.e time for each

operation and errors (difficulty of operation).

By creating different experimental groups, Sternberg enabled the mea-

surement of the component latencies and thus parameter estimation. The

experimental groups differed in the numbers of cues presented before the
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total analogy was presented. The precuing condition was defined by the

number of cues presented: In the 0-cue condition, none of the analogy

terms was presented before the whole analogy was shown. In the 1-cue

condition, only the A term was presented before the full term, in the 2-cue

condition the A and B terms were presented and in the 3-term condition

the A, B and C terms were shown. After precuing, subjects had to indicate

whenever they were ready to proceed. After having seen the full analogy,

subjects were asked to judge if the analogy was true or false (people-piece

experiment and verbal-analogy experiment) or to choose between two re-

sponse choices offered (geometric analogy).

Thus a regression model for the solution time could be generated with

the latencies of encoding, inference, mapping, and application as regres-

sors. The equations for the cuing conditions differed in terms of the regres-

sors involved (e.g. the 2-cue condition had no inference parameter since the

relation between the A term and the B term was inferred in the precuing

phase; the 3-cue condition had no inference and no mapping parameter).

Across all conditions Model III accounted for the most variance in the

people-piece experiment (92%) and the verbal analogies (86 %), whereas in

the experiment of geometric analogies Models II, III and IV all explained

80% of variance each, and Model I 74 % only. Looking at the regression

models with all components as parameters, analogies from the 0-cue con-

dition were analyzed only. In the people-piece and verbal analogy exper-

iments Model III yielded the best fit (89% in people-piece experiment and

62% in verbal experiment) and Model II and III each explained 80% of vari-

ance in the geometric analogy experiment. Sternberg (1977b) concluded
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that Model III was the predominantly best model and Model I with its

fully exhaustive operations yielded the worst statistical explaining power.

Referring to response errors as the variable to be explained, Models III

and IV yielded the best fit for all three experiments. Discriminating be-

tween exhaustive and self-terminating operations, Sternberg (1977b) in-

ferred that only the self-terminating parameters were useful to predict

errors. Thus, besides contributing to shorter solution times, these com-

ponents convey error making.

Sternberg (1977a) also provided two strategies for applying a correspond-

ing analogous rule from the C term to the D term. These two strategies are

called sequential option scanning and altering option scanning. In the first one,

all response options are evaluated one after another by applying all at-

tributes onto the first option. Then all attributes are applied onto the next

answer option until all options have been scanned. The strategy of check-

ing all options is used to prevent incorrect responses. The second strategy

refers to the alternate checking of the answer options. Single attributes are

applied to each option before the application process continued to apply

the next attribute onto the options. The application of strategies is only

useful when a forced-choice response format is used. Sternberg (1977b)

therefore analyzed model fit only for the geometric analogy experiment to

compare alternating and sequential scanning procedures. The alternating

scanning method was judged as superior since alternating scanning models

accounted for more variance than the sequential scanning models: The al-

ternating Model III explained 80% of variance as opposed to the sequential

Model III explaining only 68%.
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Another interesting topic emerging from Sternberg’s analysis (1977b)

refers to the processing time of the components in the process of the anal-

ogy solution (according to Model III). Figure 2.1 illustrates the distribution

of processing times for the people-piece analogy, the verbal analogy task,

and the geometric analogy task. Compared to the people-piece analogy

(1435 msec) and the verbal analogy (2408 msec), geometric analogies (5.7

sec) have longer processing times. In terms of percentaged portions of pro-

cessing times for components, encoding claims 54% of processing time in

the verbal analogy vs. 36% in the geometric analogy. In the geometric

analogy the processes of inferring, mapping, applying, and justifying re-

quire the most time (57%) whereas only about 30% of processing time is

spent on attribute comparison processes in the verbal analogy. Sternberg

(1977b) states “that encoding of words is much more time-consuming than

encoding of simple schematic figures” (p. 372) and that the processes of

attribute comparisons in geometric analogies take longer because they are

of a higher level of difficulty than the ones of the verbal analogy or the

people-piece analogy.

Sternberg’s information-processing models can be applied to forced-choice

formats with different numbers of answering options as well as to true-false

answer formats. Regarding content, Sternberg (1977a) stated that the mod-

els provide information-processing flows not only for verbal analogies but

also for geometric analogies.

Sternberg (1977a) evaluated and judged his own componential theory

of information-processing as complete (process of solving an item is pro-

vided from the beginning to the end), specific (describes details of attribute-
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Geometric Analogy

36% Encode

7% Response
15% Justify

12% Apply

16% Map

14% Infer

Verbal Analogy

54% Encode

17% Response

7% Apply

10% Map

12% Infer

People-Piece Analogy

39% Encode

31% Response

7% Apply

14% Map

9% Infer

Figure 2.1: Component Processing Times According to Sternberg (1977b)

comparisons components), general (analogies with a variety of contents can

be applied), parsimonious (only five mandatory and one optional process),

and plausible (in contrast to other models, Sternberg’s model contains the

process of mapping, and provides experimental data to prove that the com-

ponent of mapping also accounts for predicting solution latencies, error

rates, and individual differences in experiments).

In his unified theory of human reasoning (Sternberg, 1986), Sternberg pro-

posed “that reasoning can be understood in terms of the mediated, con-

trolled application of selective encoding, selective comparison, and selec-

tive combination to inferential rules” (p. 310). Thus, according to Stern-

berg, these elementary information processes define reasoning. Selective

encoding refers to selecting relevant problem-solving information. Selec-

tive comparison refers to comparing information - selected in the first step

and stored in working memory - with declarative and procedural knowl-
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edge from long-term memory relevant to the problem. The third process,

selective combination, combines the selectively encoded or compared infor-

mation. However, Sternberg (1986) stated that task and test taker interact

and influence the degree of automatization since the degree of task novelty

to the test taker determines to which extent the processes are controlled.

Sternberg explained that the processes of encoding and comparison are

rather inductive and the selective combination is rather deductive. Thus,

analogy tasks with their inductive nature (“analogies ... are considered al-

most prototypical of inductive reasoning tasks” (Sternberg, 1986, p. 294))

do not involve the process of combination as elements or terms never have

to be combined to new units.

Selective combination is therefore not required in analogical reasoning

but in deductive tasks such as those involving syllogisms. However, within

the analogy task one must distinguish between verbal and geometric/figural

analogies in terms of the degree of selective encoding and selective com-

parison involved. In verbal analogies, comparison of the encoded task

information with declarative knowledge from long-term memory is more

essential than in geometric analogies where selective encoding of informa-

tion is an important process. According to Sternberg, because of the pro-

cesses of encoding and comparison involved (in contrast to combination),

analogies are representative of inductive reasoning tasks.

Induction and Deduction as Components of Analogical Reasoning

Johnson (1962) identified two core processes of reasoning: induction and

deduction. He investigated verbal analogies by means of serial exposure.
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He divided the problem solving process of analogies into two stages. The

first phase called preparation period, in which the relation between the A

term and the B term has to be educed, is referred to as induction. Deduc-

tion is executed when the inferred relation is applied onto the C term to

generate the D term (second period). According to Johnson, item difficulty

can be led back to either induction or deduction, depending on the de-

gree of familiarity of the stimuli. He assumed that in items, in which the

words applied in the A term and the B term are familiar and the C term

is unfamiliar (deduction problem), more time will be spent on the deduc-

tion compared to time spent on the deduction part in induction problems

(A and B are unfamiliar, C is familiar). In induction problems, time spent

on the induction part or preparation period is supposed to be longer than

time spent on deduction. Johnson analyzed three task formats regarding

these hypotheses. The first task format required the subject to produce the

D term, i.e write it down. The second task format was a multiple choice

question format with five response options. The third format was like a

multiple choice test format but offered initial letters only. A mixture of 25

deduction tasks and 25 induction tasks was constructed for each format

and processed by 20 subjects in each condition.

His results proved, that for all three test formats, significantly more time

was needed for the induction phase in induction problems than in deduc-

tion problems and that, vice versa, time for deduction was significantly

longer in deduction problems than in induction problems (not in the mul-

tiple choice format). Total processing time between induction and deduc-

tion only significantly differed in the multiple choice format with less time
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needed for the deduction part. In terms of error rates, no significant differ-

ences between induction and deduction were reported for all test formats.

As expected, deduction time was significantly longer in production prob-

lems (due to writing) than in initial and multiple choice formats.

Evans (1968)

Evans (1968) designed a computer program called ANALOGY that was

constructed to solve geometric analogy items. The - here extremely simpli-

fied - basic solving process implemented in the computer algorithm to solve

the item involves the finding of the transformation that changes A to B, and

C to the answer options presented. The algorithm provides two phases in

the solution process. In the first phase, figures are decomposed and the re-

lations and properties of the resulting subfigures are analyzed. Similarity

between figures is calculated and, together with the information that orig-

inates from the decomposition and relation process, forwarded to the sec-

ond part of the program dealing with rule construction. Rules, according

to which objects of figure A are transformed into figure B, are constructed

by considering changes in properties, relations, and sub-components. Po-

tential rules are then gathered and generalized before deciding on the most

adequate one.

Semantic Relationships of Concepts

The model of Rumelhart and Abrahamson (1973) cannot be described as a

process theory of analogical reasoning but provides a model of semantic

relationships of concepts. They differ in reasoning and remembering, with
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the former referring to relationships and the latter referring to the retrieval

of specific information from memory. Following Henley (1969), Rumelhart

and Abrahamson assumed that the memory structure of certain concepts

can be organized in an Euclidean space. Each element can be represented

as a point in multidimensional space. Judging similarities and dissimi-

larities of concepts constituted reasoning and the closeness of concepts in

memory served as indicator for the degree of similarity. Considering the

analogy format A:B::C:D in a multidimensional representation, the vector

distance between A and B represents the similarity of concepts between

these two terms. The term C should be equally similar to a chosen con-

cept (D) as A is to B. The terms C and D should thus have the same vector

distance as the concepts of A and B. Animal terms were chosen for the

empirical examination of compliance between predicted responses by the

model and empirical responses. Subjects were presented 30 analogy prob-

lems with four response options each. They were instructed to rank the

options according to their analogical degree. Results showed that almost

71% of the rank 1 answers were given to the closest concept (closest con-

cept to the ideal answer). Further, a correlation of r = .93 was computed

between the predicted and observed number of subjects.

Components of Geometric Analogy Solution

In their study Components of geometric analogy solution, Mulholland, Pel-

legrino, and Glaser (1980) suggested a combined model for the solution

process of geometric analogies. Their model was based on the models of

Sternberg (1977a) and Evans (1968) and is illustrated in Figure 2.2.
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The process model relates to true or false analogies and presents solu-

tion processes and emerging products and latencies. The first step in the

model is the comparison and decomposition of the A term and the B term

resulting in element lists. Mulholland et al. assumed that the reaction time

(RT) needed for such processes is a function of the number of elements (E)

involved in the A-B term. The second step refers to analyzing the trans-

formations that change A into B and generating rules. The resulting list

of objects and transformations is thought to be stored in working memory.

Mulholland et al. (1980) set up the equation so that the reaction time for

this process is a function of the number of transformations (T) of an item,

since “previous research on the processing of spatial transformations of ge-

ometric stimuli (e.g., Bundesen & Larsen, 1975; Shepard, 1975) has shown

that separate rotations, reflections, and size changes appear to be individu-

ally and additively executed” (p. 257). These processes are again executed

when the C term and the D term are analyzed and reaction times are again

functions of the number of elements, respectively transformations. Before

responding, the rule comparison process is conducted to evaluate the de-

gree of correspondence between rules. The total processing time of an item

is thought to be predicted by the latencies of the different steps (RT = xE+

yT + k).

Summary

Before making a statement on which theory is the most adequate one and

adopted as underlying information-processing model for the present study,

theories outlined beforehand are evaluated and summarized where neces-
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Element list 
(geometric patterns, 

lines, etc.)

Element- 
transformation list 
(Object-operation 

proposition)

Element List

Element- 
transformation List

Product

RT1  = eE

Latency

RT2  = tT

RT3 = eE

RT4  = tT

RT5 = cT

RT6  = k

Pattern comparison 
and decomposition of 

A and B

Transformation 
analysis and rule 

generation for A - B

Pattern comparison 
and decomposition of 

C and D

Transformation 
analysis and rule 

generation for A - B

Rule comparison

Respond

Process

Figure 2.2: Model of the Geometric Analogy Solution Process (Mulholland
et al., 1980)

sary. Here, guidelines of evaluation are some criteria according to Stern-

berg (1977a), such as empirical support provided by the authors, generality

of the theory, completeness, and parsimony.

Spearman’s theory (Spearman, 1923) provides three principles: appre-

hension of experience, eduction of relations, and eduction of correlates.

Yet, the actual information processes are not really explained, thus suffi-

cient understanding of the solution process is not allowed for. However,

the theory is very general and probably applicable to a wide range of anal-

ogy tasks. This, nevertheless, remains an assumption since no experimental
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data is reported to reinforce his theory.

Johnson identified induction and deduction as features of analogical rea-

soning and components of item difficulty in his experiment. However, the

theory does not offer detailed insight into the cognitive processes involved

in solving an analogy task.

Evans’ computer program ANALOGY (Evans, 1968) consisted of two

parts. The first referred to decomposing of the figures and the second

to generating a rule according to which A was transformed into B and

accordingly C into D. However, the theory might not be judged very par-

simonious due to the complex problem solving algorithm implemented in

the computer program. It is further not very general since it was applied to

geometric stimuli only. Taking over this theory for the present study was

however not considered since the solving process constituted a computer

algorithm that was not available and adoptable for the purposes of this

research.

The model of Rumelhart and Abrahamson (1973) referred to the rela-

tionship of semantic concepts and thus did not come into question as basic

principle for a figural analogy test due to its content and specificity. Apart

from that the model does not constitute an information-processing model

as it does not state processes involved in the solution process of an analogy

item. It was introduced as an alternative model for analogy tasks of verbal

content.

Based on the processing theory of Sternberg and the work of Evans, the

component model of Mulholland et al. (1980) is very specific regarding

the solution processes involved in the course of solving analogy tasks. It
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additionally takes into account reaction times of the components and de-

fines the total time needed to solve an item as a function of the number

of elements and transformations involved. The authors proved empirical

support for the model, although only for geometric stimuli, thus generality

might be restricted.

Sternberg’s componential model of analogical reasoning (Sternberg 1977a,

1977b) can be evaluated as a very complex and specific model. Despite

differentiating between different models within his componential model,

Sternberg defined six component processes: encoding, inference, mapping,

application, justification, and control. He rightly judged his own theory

as complete and specific since it describes the full process and cognitive

components involved when solving an analogy task (Sternberg 1977a). He

concluded that “the theory thus manages to be complete while at the same

time retaining parsimony” (p. 146). Generality is clearly given by the

support of empirical data concerning different analogy contents: Besides

geometric analogies and verbal analogies the theory could be applied to

people-piece analogies and animal analogies. Since Sternberg’s componen-

tial model of analogical reasoning fulfills the evaluation criteria the best

and reflects and explains the cognitive processes involved in solving an

analogy item in most detail, it is consulted as underlying information-

processing theory in the present study.

Summarized, the different models of information processing can also be

classified and assigned to the subsequent three processing theories, follow-

ing Sternberg (1977b). Since researchers agree on the processes of encoding
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and responding, only the processes of inference, mapping, and application

guide the assignment of the antecedent information-processing models to

the following three theories.

Process theory with inference and application, but no mapping: The theories

of Spearman (1923) and Johnson (1962) can be assigned to the process the-

ory with inference and application without mapping. Their introduced

terms of inductive and deductive operation (Johnson, 1962) and eduction

of relations and eduction of correlates (Spearman, 1923) corresponds to

Sternberg’s concept of encoding, inference, and application.

Process theory with inference and mapping, but no application: According to

Sternberg (1977a), theories based on Evans (1968) can be subsumed under

the process theory with inference and mapping but no application. After

terms are encoded and relations between A and B and between C and the

response alternatives are inferred, mapping occurs between the relation of

A and C, and C and the answer options until the correct answer is found.

Thus mapping induces the response and the process of application is not

explicitly performed.

Process theory with inference, mapping, and application: The information-

processing theory of Sternberg (1977a, 1977b) takes into account inference,

mapping, and application. The different models within the theory only

differ in whether the components are exhaustive or self-terminating.
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2.4 Empirical Findings between Cognitive

Abilities and Academic Achievement

In the following paragraphs empirical findings between intelligence and

academic achievement are outlined. The coherence of reasoning and aca-

demic achievement is of particular interest because reasoning tests are fre-

quently applied among selection procedures. Proving its predictive validity

is therefore of particular importance.

However, specific findings on the relationship between analogical reason-

ing and academic achievement are seldomly examined or reported. Thus

analysis of this relation had to be extended to findings regarding academic

achievement and intelligence in general presented in the first part of this

section. Hence, the repertory of studies is accounted for. First, findings

on the coherence of intelligence and academic or scholastic performance

are reported, considering different intelligence dimensions and measures

as well as different operationalizations for scholastic achievement. Further,

results of the study of Rindermann and Neubauer (2004) are presented,

testing hypotheses of the relation between processing speed, intelligence,

creativity, and school performance by means of structure equation models,

to elucidate the causal relationship among variables. The second part of

this section presents findings regarding the Miller Analogy Test, represent-

ing evidence of the predictive validity of analogy tests.

Thus, with regard to the predictive validity (concerning scholastic achieve-

ment) of the analogy test constructed in the present study, the aim of this

section is to analyze and exhibit evidence for the relationship between in-
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telligence and academic performance, and to provide benchmarks for the

evaluation of the predictive validity of the figural analogy test.

Intelligence and Scholastic Achievement

In the United Kingdom reasoning tests have a long history of assessing and

predicting academic performances. The Cognitive Ability Test (CAT) is the

most commonly applied test assessing academic achievement of about one

million pupils each year (Deary, Strand, Smith, & Fernandes, 2007). Deary

et al. applied the subsequent version of the CAT, CAT2E (Thorndike, Ha-

gen, & France, 1986) to measure verbal, quantitative and nonverbal rea-

soning abilities. The General Certificate of Secondary Education (GCSE)

referred to is a national public examination school students take in year 11

at the age of 15 or 16 to prove and certify their educational performances

of secondary school. A correlation of r = .69 between the GCSE overall

score and the g factor was obtained. Further, Deary et al. report following

results: Among science subjects, mathematics provided the highest correla-

tion of .77 with the g factor measured by the CAT. Subjects such as physics

(.50), chemistry (.46) and biology (.51) showed lower correlations probably

due to restricted range because of high ability students. Among arts and

humanities the subject English provided the highest correlations (.67) and

the subject drama (.47) the lowest. Looking at the subjects representing

social sciences, geography correlated .65 and information technology only

.47 with the CAT g score. The correlations with the practical subjects such

as art and design, music and physical education ranged from .43 to .55.

Deary et al. (2007) applied structural equation modeling to analyze the
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structure of CAT-measures and GCSE-measures and to quantify the re-

lationship between the latent trait of reasoning ability and educational

achievement. A correlation of .81 between the latent mental ability trait

measured by the CAT2E (at the age of 11) and educational achievement

obtained as scores from the GCSE is reported.

According to Strand (2006) reasoning tests such as the Cognitive Ability

Test are applied by about two-thirds of secondary schools in England.

Strand refers to Thomas and Mortimore (1996) and reports correlations

ranging from .67 to .74 between CAT scores and GCSE results with the

cognitive abilities measured six years before the GCSE was taken. These

results support the assumption that reasoning abilities as measured by the

CAT can validly predict educational performances even over a long pe-

riod of time. Practical implications, apart from predicting future academic

performances, involve diagnosing strengths and weaknesses of students

(Strand, 2006).

Süß (2001) reviewed different studies referring to the predictive validity

of intelligence tests concerning scholastic achievement. Validity of school

grades was obtained by meta-analyses that showed that grades of the school

subject mathematics had high validity for Studienerfolg [academic success]

(Baron-Boldt, Schuler, & Funke, 1988) and Ausbildungserfolg [educational

success] (Baron-Boldt, Funke, & Schuler, 1989), followed by the grades

obtained in physics. Meta-analytic studies yielded different correlations

of intelligence and school grades: Süß reported correlations of r = .34
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(Steinkamp & Maehr, 1983), r = .43 (Fleming & Malone, 1983), r = .48

(Boulanger, 1981), and r = .51 (Hattie & Hansford, 1982). According to

Jensen (1980), correlations vary with the type of school: Elementary schools

show highest correlations of between .60 and .70, high schools of .50 to .60

and graduate schools of .30 to .40. Correlations thus decrease with increas-

ing school level (Jensen, 1998). Amongst other reasons for decreasing cor-

relations, Süß assumed that higher education is accompanied by restricted

variance in ability.

Süß provided results of regression analyses referring to the predictive

validity of The Berlin intelligence structure model (Jäger, 1982). Single school

subjects were aggregated to two separate factors, a science factor consisting

of grades of mathematics, physics and chemistry, and a factor referring to

language consisting of German and foreign languages. Among all model

components, the operative component reasoning capacity had the highest

predictive validity for the science factor and the verbal ability was most

predictive for the language factor. Together, the three content-related com-

ponents (numerical, figural, verbal) explained more variance of the lan-

guage factor (R2 = .281) than of the science factor (R2 = .134). Contrary, the

components of the operative abilities (reasoning capacity, speed, memory,

creativity) explained more variance of the science factor (R2 = .238) than of

the language factor (R2 = .000).

Freund, Holling, and Preckel (2007) also analyzed the relationship between

cognitive abilities and scholastic achievement. They generated composite

scores (natural sciences & mathematics, language, and social science) of the
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grades reported by the subjects. Following cognitive abilities according to

the BIS (Jäger, 1982) were assessed: reasoning capacity, speed, creativity,

and memory. The Berlin Structure of Intelligence Test for Youth: Assessment

of Talent and Giftedness (BIS-HB; Jäger et al., 2006) was applied to measure

these cognitive abilities and to examine their predictive validity for scholas-

tic achievement. Multivariate analysis with the factors reasoning capacity,

creativity, memory, and speed as independent predictors of the dependent

variable school achievement, operationalized as composite scores of maths

and natural sciences, languages, and social sciences, showed that reason-

ing capacity and creativity had highly significant influence (p < .001) on all

three subjects. However, reasoning capacity had more impact on maths and

natural sciences (.472) and languages (.268) than creativity had on maths

and natural sciences (.104) and on languages (.100). Influence on social

sciences was greater for creativity (.228) than for reasoning capacity (.163).

Memory had no significant influence on maths & natural sciences (p >

.05), but significant impact on languages (.109, p < .001) and social sci-

ences (.065, p < .05). Speed was nonsignificant for languages and social

sciences and of minor influence for maths and natural science (.069, p <

.05). General intelligence had the strongest impact on maths & natural

sciences (.542), followed by languages (.443) and social sciences (.408).

The findings of Freund et al. (2007) thus indicate that among the cog-

nitive abilities captured by the test based on the BIS, especially reason-

ing ability influences scholastic performance in mathematics and sciences,

whereas creativity best accounts for performances in social sciences.
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Holling, Preckel, and Vock (2004) referred to Amelang and Bartussek (1997)

and Jensen (1998) and stated that intelligence and scholastic achievement

correlate at about r = .50 in meta-analytic studies. They report findings that

specific cognitive operations measured by the BIS scales correlated with

single subjects: Dimensions such as Verbale Denkfähigkeit [verbal cogitation]

correlated higher with language-related subjects (r = .-52), than with maths

and sciences (r = .-38). The negative values were due to the scoring of the

grades, with low values indicating better achievement.

In their study, Luo, Thompson, and Detterman (2003) analyzed the source

of the relation between intelligence and scholastic achievement. Since “it is

not clear whether the basic cognitive processes involved in scholastic per-

formance are qualitatively equivalent to those involved in psychometric g”

(p. 69), they conducted complex analyses to examine the role of cognitive

abilities as mediator of the correlation between intelligence and scholastic

performance. Psychometric g was measured by subtests of the Wechsler In-

telligence Scale for Children-Revised (WISC-R) and scholastic performance

was assessed by the Metropolitan Achievement Test (MAT). The Cogni-

tive Ability Test (CAT) was adopted to capture the cognitive processes.

These tests were thus applied to test the assumption that the relationship

between g and scholastic achievement (operationalized by applying the

WISC-R, respectively MAT) is causally determined by the cognitive abili-

ties as measured by the CAT. Results show that variability between psycho-

metric intelligence and scholastic performance can be well explained by the

CAT. Zero-order correlations, thus no control of variables, of .53 between
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the general factor of the WISC-R and the MAT were obtained, indicating

shared variance between the two variables of about 30%. Controlling the

general factor of the cognitive ability variable, semipartial correlations of

.248 were yielded and thus only 6% of shared variance between psycho-

metric g and scholastic performance. Further, the measures of the general

factor of the CAT explained about 60% of the variance in the general fac-

tor of the WISC-R and about 25% of the variance in scholastic performance.

Rindermann and Neubauer (2004) analyzed the relationship between pro-

cessing speed, intelligence, creativity and school performance. They as-

sumed that school performance is used “as probably the most valid ex-

ternal criterion for intelligence” (p. 575). However, they further aimed

at testing how processing speed, intelligence and creativity are related to

school performance. By means of structure equation modeling they tested

the following models. The first model (three-factor model) assumes that

school performance is influenced by the factors processing speed, intelli-

gence and creativity. The impact of these three factors is supposed to be

of direct and independent nature. The second model (speed-factor mod-

els) incorporates two versions but generally assumes that processing speed

has direct impact on intelligence and creativity, but direct and indirect im-

pact on school performance. The third model (intelligence-factor model)

refers to direct influence of intelligence on processing speed and creativity,

but direct and indirect influence on school performance. The last model,

model four (creativity-factor model), ascribes creativity direct impact on

processing speed and intelligence, and direct and indirect impact on school
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performance.

Intelligence was operationalized by applying Raven’s Advanced Progres-

sive Matrices (Heller, Kratzmeier, & Lengfelder, 1998; Raven, 1958) and

the Kognitiver Fähigkeits-Test [cognitive ability test] (KFT; Heller, Gaedike,

& Weinläder, 1985), measuring verbal, numerical and figural competency.

Processing speed was assessed using tests (ZVT; Oswald & Roth, 1978 and

KDT; Lindley, Smith, & Thomas, 1988) that required solving tasks within

a given limited period of time. Creativity was measured applying two cre-

ativity tests (VKT; Schoppe, 1975 and VWT; Facaoaru, 1985). Grades were

obtained by the school reports of the testees and assigned to the categories

of languages, mathematics & physics, natural sciences, and humanities to

operationalize school performance. Regarding the relation of school per-

formance with the other variables, correlations of the means of the four

variables (processing speed, intelligence, creativity, school performance)

showed that intelligence and school performance correlated the highest (r

= .52) followed by processing speed (r = .35) and creativity (r = .25). Pro-

cessing speed correlated .31 with intelligence and .33 with creativity and

intelligence and creativity showed a correlation of only .14. Stepwise re-

gression proved that all three regressors had significant impact on school

performance (R2 = .33). Intelligence (β = .45) had the highest explaining

power as regressor on school performance, followed by processing speed

(β =.17) and creativity (β = .13).

Testing the models, Rindermann and Neubauer (2004) concluded that

the speed-factor model provided the best fit with the data, indicating that

intelligence and creativity are influenced by processing speed and further
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influence school performance. According to this model, processing speed

provided a total effect on school performance of β = .39 with a direct effect

of β = .08 and an indirect effect of β = .31 (indirect effect greater via intel-

ligence (β = .21) than via creativity (β = .10)). In the three-factor model,

intelligence had the highest direct effect on school performance (β = .53),

followed by creativity (β = .19) and processing speed (β = .09). In the

intelligence-factor model, intelligence yielded a total effect of β = .63 on

school performance, with a direct effect of β = .54 and thus an indirect

effect, mediated by creativity and processing speed, of β = .09 (cf. Figure

2.3). According to the creativity-factor model, creativity obtained a direct

effect of β = .26 on school performance. Figure 2.3 shows the intelligence-

factor model according to the structure equation modeling of Rindermann

and Neubauer (2004). Although it is not the model with the best model-fit,

this model is illustrated due to the focus on the influence of intelligence on

school performance.

Across all models, explained variance of school performance by the vari-

ables (intelligence, processing speed and creativity) constitutes at R2 = .43

and is thus higher than in stepwise regression due to assumptions of error-

free measurement in structure equation modeling.

Analogical Reasoning and Scholastic Achievement

In the following paragraph the predictive validity of analogical reasoning

tests is analyzed by presenting findings of the Miller Analogy Test (MAT;

Miller, 1960).

The Miller Analogy Test has a long history as an admission test to grad-
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Intelligence
School 
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Speed

Creativity

ZVT KDT

Languages
KFT

APM

VKT VWT

Math-Phys.

Science

Humanities

.42

.54

.09

.18.28

(.12)

.90 .72

.90

.61

.83 .42

.82

.82

.71

.85

.82

.92

.19 .49

.19

.63

.27

.49

.32

.32

.31 .83

.13

Figure 2.3: Intelligence-Factor Model According to Rindermann &
Neubauer (2004)

uate schools in the United States. The MAT is composed of analogy items

from different domains, such as humanities, language, mathematics, nat-

ural sciences, and social sciences. Relationships refer to word meanings,

logical and mathematical objectives, classification and association. Items

have the format of A:B::C:D and one of the terms is always missing and the

correct term has to be chosen from answer options presented. Kuncel, He-

zlett, and Ones (2004) conducted a meta-analysis to examine the measure-

ment of cognitive abilities by the MAT and to estimate the predictive valid-

ity of cognitive abilities measured by the MAT for different academic and

work criteria. Regarding correlations to other ability measures, besides the

Graduate Record Examination-Verbal test (GRE-V; Briel, O’Neill, & Sche-

uneman, 1993) and the GRE-Quantitative test (GRE-Q), tests of the studies

included in the meta-analysis were assigned to the category of either verbal

ability tests, mathematical ability tests or general cognitive ability and rea-
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soning tests. Results showed that the MAT proved correlations with other

measures of cognitive abilities (Kuncel et al. 2004). The MAT provided

high estimated true score correlations of ρ = .88 (k = 15, N = 8,328) to the

GRE-V and ρ = .88 (k = 23, N = 3,614) to other verbal ability tests. Further

correlations of ρ = .57 (k = 15, N = 7,055) to the GRE-Q were obtained and

of ρ = .68 (k = 18, N = 2,874) to other mathematical ability tests. High true

score correlations of ρ = .75 (k = 15, N = 1,753) were reported with tests

measuring general cognitive ability and reasoning tests. The validity of the

MAT was analyzed in terms of three criteria categories: academic criteria,

school-to-work transition criteria, and job performance criteria. Following

eight academic criteria were generated with the estimated true score valid-

ity in parentheses: graduate grade point average (.39), first-year graduate

grade point average (.41), faculty ratings (.37), comprehensive examination

scores (.58), research productivity (.19), degree attainment (.21), time to fin-

ish degree (.35), and number of courses/credits completed (-.06). Apart

from one criteria, the MAT could validly predict academic criteria with an

average coefficient of ρ = .32. Six transitional school-to-work criteria were

composed, among these internship ratings as well as potential ratings and

creativity ratings. The MAT proved to be a valid predictor of all criteria,

apart from the criteria student-teaching performance ratings, with an av-

erage coefficient of ρ = .29. To analyze the criterion-related validity for

work settings, four criteria were examined: job performance (ρ = .41, k =

7, N = 598), counseling performance (ρ = .51, k = 2, N = 92) educational

administration (ρ = .27, k = 10, N = 225) and membership in a professional

organization (ρ = .27, k = 3, N = 278). Thus, all work related criteria could
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be validly predicted by the MAT with an average coefficient of ρ = .37.

Summarized, the meta-analysis proved that an analogy test such as the

MAT, which was originally constructed as admission test to educational

settings, is not only capable of predicting academic-related performances,

but also provides a tool to validly predict job performance.

Summary

The preceding sections examined the potential of cognitive ability tests to

predict scholastic achievement. The validity of a variety of such measures

could be confirmed for different scholastic achievement criteria. For the

Miller Analogy Test, as an example for analogical reasoning tests, valid-

ity was not only proven for several educational and academic criteria but

further for several job-related performance criteria in work settings.

Besides expounding the empirical findings and status quo for the coher-

ence of intelligence and reasoning measures with scholastic achievement,

the section is insofar of high relevance for the figural analogy test of the

present study, as it provides informative basis for the hypotheses regard-

ing its relationship with academic achievement. Further, benchmarks for

critical evaluation of the empirical found coherence of the figural analogy

test with academic performance criteria are thus provided.
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2.5 Effects of Training and Instruction on Test

Performance

The following section presents several empirical findings on the effects of

training and instruction types on the performance in cognitive ability tests

and in analogy tasks. Training effects and effects of different instructions

imply important practical implications. Different benefit from different

instructions can, for example, influence test performance. Awareness of

such effects is therefore crucial to correctly attribute and interpret inter-

individual differences in test performance to such testing conditions and

maybe not to real differences in performance. Effects must also be known

in order to choose the most adequate instruction type or to create equal

conditions for all subjects via practicing.

The first part of this section reviews and reports findings on training

effects of analogical reasoning tasks and meta-analytic findings of train-

ing effects of cognitive abilities before effects of instruction on test perfor-

mance are outlined. The last part summarizes findings of the effects of

training and instruction on test performance and features implications for

the research questions regarding the figural analogy test constructed for

the present study.

2.5.1 Training Effects

In their study referring to training of analogical reasoning processes, White

and Caropreso (1989) analyzed the effect of instruction on test performance

of low socioeconomic status preschool children. In a 2 x 3 test design, they
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tested three groups in pre- and posttests to assess the effect of training on

test performance. Besides the training group, one control group and one

play group were established. They applied geometric analogies of the for-

mat A:B::C:D. The training group was instructed in three sessions. Training

referred to the explanation of the solution process of analogies, following

the model of Sternberg (1977a). Concrete and abstract toy objects were ap-

plied in the first, respectively second training session and practice of the

solution process of geometric analogies was topic of the third training ses-

sion. The three groups showed no significant inter-group differences in

vocabulary knowledge (however, all three groups were below the standard

score mean) and in an analogy pretest. Results proved that training sig-

nificantly influenced test performance as test score means were higher in

the posttest for the trained group. White and Caropreso concluded that

training had significant impact on test performance in an geometric anal-

ogy test for the trained group by posttest scores (F = 3.72, d f = 2,23, p =

.038).

The impact of training was already examined by White and Alexander

(1986) in a precedent study, again testing preschool children without a fo-

cus on the socioeconomic status. The performance of two groups (trained

vs. non-trained) was investigated by applying geometric analogy tasks.

Performance was measured two weeks before the training sessions (pretest),

within one week after the training (immediate posttest) and a month after

the training (delayed posttest). The results of White and Alexander indi-

cated a significant impact of training on test performance when comparing
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the scores of trained and untrained. At both points in time (immediate

and delayed), significant differences between the groups could be observed

(F(1,27)= 41.47, p < .0001). Time itself did not significantly influence test

scores of the trained and untrained as comparisons between the immediate

test and the delayed test showed (F(1,28) = 2.31, p > .05). Inter-group-wise,

test scores significantly increased for the trained group from pretest to the

immediate posttest (t = 8.48, d f = 1,38, p <. 0001) and from pretest to

delayed posttest (t = 9.88, d f = 1,38, p < .0001 ). The untrained group did

not show increased test scores compared to the pretest, neither at the im-

mediate posttest (t = 1.16, d f = 1,18, p > .05), nor at the delayed posttest (t

= .41, d f = 1,18, p > .05).

Effects of training could also be proven for performance on verbal analo-

gies (Alexander, Haensly, Crimmins-Jeanes, & White, 1986). The effect of

age and training as well as the effect of ability and training was analyzed.

The Woodcock Reading Mastery Test, Forms A and B (Woodcock, 1973) were

applied measuring verbal analogy ability. Task format was again A:B::C:D.

Operationalizing the age variable, subjects from different grades (4th grade,

8th grade, 10th grade) were recruited. The eighth graders were judged as

gifted as they were enrolled in gifted language art programs according to

different test criteria. Training was conducted as in-class training sessions

of the analogy components according to Sternberg (1977a). Half of the sub-

jects from each age level took part in the componential analogy training

and half of the subjects were controls. For the fourth graders (whose re-

sults were separately analyzed since they received a different test version),
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subjects having received the training scored significantly higher on imme-

diate (F = 17.82, d f = 1,33, p < .001) and delayed (F = 11.54, d f = 1,33,

p < .002) posttests. On the test performance of the 8th and 10th graders,

training also had significant impact (F = 27.33, d f = 1,121, p < .0001). The

trained 8th graders showed higher posttest scores than the trained 10th

graders indicating significant impact of ability (F = 10.29, d f = 1,121, p <

.002). Higher gifted students thus seemed to gain more benefit from train-

ing than students with average ability.

To summarize training effects of cognitive abilities in general, meta-analytic

reviews should be considered. The effect of training in inductive reason-

ing was examined in a meta-analysis by Klauer (2001) who showed that

training inductive thinking has mediocre effect (d = .60, 61 studies). Score

increases can also be obtained due to retesting without any interventions

between test administrations. These gains in test scores are usually referred

to as practice effects (Hausknecht, Halpert, Di Paolo, & Moriarty Gerrard,

2007; Freund, 2008). In their meta-analysis of practice effects for cognitive

ability tests, Hausknecht et al. (2007) showed that overall practice effects

of d = .24 from the first to the second test and of d = .18 from the second

to the third test and of d = .51 from the first to the third test were yielded.

Besides mere repetition, Hausknecht et al. related different moderators to

increases in test scores. For samples that received test coaching (k = 23)

effect sizes of d =.64 were obtained as opposed to samples that did not

receive test coaching (k = 75, d = .21). Effect sizes for the moderator vari-

able study context did not significantly differ and were quite similar for
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operational contexts (d = .27) and research contexts (d = .22). Hausknecht

et al. further supported their hypothesis that the effect size for identical

test forms (d = .40) is larger than the effect size for alternate forms (d = .22).

With regard to the present study, a relevant hypothesis of the meta-analysis

referred to effect size estimates of different cognitive ability dimensions.

Practice effects for tests referring to verbal ability (such as analogies, vo-

cabulary, reading comprehension tasks), qualitative ability (eg. arithmetic

computation, mathematical reasoning) and analytical ability (use of logic,

inductive and deductive reasoning items) were analyzed. Hausknecht et

al. assumed that larger effect sizes for quantitative and analytical ability

tests than for verbal ability tests, since score gains of verbal ability tests are

tied to the acquisition of new information as opposed to quantitative and

analytical ability tests, where performance improvement might be led back

to increased test familiarity when retested and the use of skills involving

general problem solving. However, the meta-analytic results proved larger

effect sizes for analytical tests (d = .29) and quantitative tests (d = .27) than

for verbal tests (d = .17) but the differences between the effect size estimates

were not significant.

2.5.2 Effects of Instruction on Test Performance

Bisanz, Bisanz, and LeVevre (1984) analyzed the effect of instructions on

individual differences in analogical reasoning. They referred to incom-

plete instruction and assumed that the degree of benefit from incomplete

instruction indicates aspects of intelligence. Individual differences were

thought to stem from selecting the right task-relevant strategies from in-
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complete instruction. According to Bisanz et al. instruction frequently

applied in intelligence tests, is often not very explicit. In analogy testing,

usually instruction of the test format is given such as finding the relation

between A and B and then picking an adequate D that is related to C.

The authors judged such instructions as confusing, especially for younger

children as task-appropriate strategies have to be derived from such in-

struction and a few examples. Bisanz et al. assessed subjects of different

age (9, 11, 13 and 19 years) to analyze the different profit of incomplete

instruction. They applied dot analogies that were true to different criteria

(true by magnitude and direction, true in direction but false in magnitude,

true in magnitude but false in direction; for a more detailed explanation

see Bisanz et al., 1984). Direction referred to the calculating operation of

plus or minus, and magnitude referred to the value added or subtracted.

They distinguished between low-demand (values 1-7 in the C & D terms)

and high-demand (values 7-12) tasks. Subjects worked through eight ex-

amples before processing the actual test. Results showed that performance

varied with age with older subjects yielding higher scores. The authors

related the improvement of performance with age to a more frequent use

of the magnitude and direction strategy. Significant interaction of age and

demand was found. However, contrary to expectance, high-demand prob-

lems had impact on the performance of adults and not of younger subjects.

In their study entitled Do written examples need instruction?, LeFevre and

Dixon (1986) examined the impact of information gained by more spe-

cific example instruction as opposed to general, written instruction on the
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performance in inductive reasoning tasks (series completion and classifi-

cation). They compared the use of instruction information versus example

information by conducting several experiments using a 15-item test version

in experiments 1-3 and a revised version in experiments 4-6.

In their first experiment the influence of conflicting information, i.e. in-

struction and example suggested different procedures (eg. one suggests

series procedure and the other classification procedure), was determined.

Conflicting information was tested against non-conflicting information to

determine the source of information subjects referred to. Thus, two non-

conflicting and two conflicting conditions were generated. Results showed

that in nonconflicting items 96% of the consistent (consistently follow one

procedure vs. ambiguous or inconsistent behavior) subjects applied the

correct procedure, and in conflicting items 92% of the subjects were geared

to the example. LeFevre and Dixon attempted to explain the strong pref-

erence of following the example and applying its suggested procedure by

the similarity of the examples and actual items, although written abstract

instruction might represent cognitive procedures used in the task more dis-

tinctly. They conducted a series of experiments to elucidate this responding

behavior, testing two sets of hypotheses. One referred to the good composi-

tion of the examples and stressed the nature of the example (strong example

hypothesis) and the other referred to the insufficient character of the in-

structions (weak instruction hypotheses) and thus emphasized the nature of

the instruction.

Experiment 2 tested a weak instruction hypothesis comparing the appli-

cation of instruction procedures and example procedures after instructions
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or examples were presented to the subjects. The weak instruction hypoth-

esis could not be supported since no significant difference was found and

procedures were followed equally often.

Experiment 3 tested if the example effect corresponded to a recency ef-

fect due to a higher degree of salience of the example appearing after the

instruction. A strong example hypothesis was thus tested and orders of

instruction and example were reversed. Results however showed that 93%

of the consistent subjects followed the example and only 7% the instruc-

tion. The favor of the example did therefore not depend on the order of

presentation.

In Experiment 4, LeFevre et al. analyzed if the information regarding

incorrect answers, provided by the examples, had impact on the choice

to adopt the example procedure. By presenting the correct as well as in-

correct answer alternatives, examples indicated inappropriate procedures,

referred to as disconfirming information which was thought to be responsi-

ble for the example effect. Thus another strong example hypothesis was

tested. Disconfirming information was shifted from the example to the in-

struction. Again results showed the favor of the example indicating that

disconfirming information did not affect the choice of procedure. Testing

a weak instruction hypothesis, Experiment 5 analyzed if the disregard of

the instruction information was to be led back to the short and not very

detailed nature of the instruction. Instructions were therefore made long

and redundant. However, results showed that subjects did not assign such

importance to the length of instruction as they still preferred the exam-

ple and no effect of length of instruction was obtained. Questioning the
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subjects on their responding behavior, a higher usefulness and importance

was ascribed to the examples. Significant differences between the percent-

age of subjects preferring the examples (76%) and the instructions (24%)

were yielded. Referring to this type of task, 50% thought that examples

were better in general and the authors concluded that the results proved a

weak instruction hypothesis and that disregard of instruction was not due

to its insufficient nature but to the assumption that “instructions are weak

by virtue of subjects’ belief about the usefulness or importance of instruc-

tions” (p. 24). In their last experiment, LeFevre and Dixon (1986) therefore

tested the belief hypothesis assuming that subjects followed the example

because they assigned the instruction no importance. Importance of in-

structions was manipulated by not only making them visually more salient

but also by telling the subjects that the instructions were very important.

The use of instruction procedures increased but still only a third of the

consistent subjects followed the instructions in the conflicting condition.

In general, these experiments showed a robust example effect insofar as

examples were generally preferred compared to instructions regardless of

order, disconfirming information, length of instruction, or emphasis on in-

struction. However, presenting instruction or examples individually, no

preference or superior performance could be observed. Possible practical

implications inferred are, that when information is meant to be transferred

via instruction information, additional examples should not be presented

as well since the instruction would be disregarded. In general, however,

application of examples should also depend on their accurateness, appro-

priateness and distinctiveness.
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2.5.3 Concluding Remarks on the Effects of Training and

Instruction

According to Freund (2008) “concluding from the empirical evidence on

practice effects in intelligence testing, it seems that the extent of a general

practice effect is rather small” (p. 24). However, specific practice effects of

different extent result and depend on test, item, and context features and

cognitive dimensions as shown in the moderator analysis by Hausknecht

et al. (2007). In terms of analogical reasoning, training effects, as results

of in between test interventions, could be exemplarily demonstrated on the

basis of three studies showing score gains in geometric, respectively verbal

analogy tests when subjects were retested.

With regard to the present study, implications of these findings are im-

portant when regarding the construction of this study’s analogy test in

terms of pure research for higher ranking objectives. Adaptive testing and

computerized item generation could be considered as such as objectives

as they represent means to construct numerous alternate and parallel test

forms to enable retesting and experimental manipulation to examine train-

ing effects for the figural analogy test.

Empirical findings regarding test instruction on test performance ap-

peared less frequent when literature was reviewed. Findings referring to

effects of instruction on individual differences in analogical reasoning were

reported in the preceding section. Further the impact of instruction infor-

mation vs. example information on an inductive reasoning test was out-

lined. Evidence for the influential power of instruction on performance in

reasoning tests was thus obtained and aroused interest regarding the rule-
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based figural analogy test of this study. Since one research question should

address the effect of instruction - in fact the effect of explaining the cogni-

tive operations involved in the solution process - on test performance, the

findings reported above guided the expectancies of that research question

(see chapter 4).
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Analysis of Cognitive Structure

The topic of this chapter refers to the analysis of cognitive structures. The

intention of this chapter is to emphasize on the importance and practi-

cal implications of rule-based test construction and to provide a basis for

understanding the procedure of analyzing cognitive task structures. The

issue and advantages of rule-based test construction are elucidated in the

first section of this chapter. Then test theories are shortly outlined before

methods of validating the cognitive structure are introduced in the third

part of this chapter. Subsequently, empirical findings on information struc-
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ture and components of item difficulty are presented. This will conclude

this chapter of the analysis of the cognitive structure.

3.1 Rule-based Test Construction

As already stated in the introduction of this dissertation, the present study

is part of a complex research project concerning the rule-based test con-

struction of various cognitive ability tests and the implementation of com-

puterized generation algorithms. Along with this research project, Freund,

Hofer & Holling (2008) previously illustrated that “matrix items can be

decomposed into different basic components. This composite character

makes the task format a good choice for rule-based item construction” (p.

195). Thus, the ability to rationally construct items of that task type en-

abled Freund et al. (2008) to implement algorithms and generate figural

matrix items by the computer.

Since rule-based test development and implementing computerized al-

gorithms for item generation already proved to be successful for figural

matrix items (Freund et al., 2008), the same process should be accomplished

for another task type. The present study was therefore designed to provide

basics for the superior objective of implementation of computerized gen-

eration algorithms for another task type, namely figural analogies. Thus

specification of task parameters, fit with the Rasch model, and analyses

within the linear logistic test models (which are introduced later on in this

chapter) are prominent topics of this study.

Specification of task parameters refers to identifying the parameters in-
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volved in solving the items, such as the cognitive operations that have to

be applied to correctly answer the items. Like figural matrix items, figural

analogy items feature a composite character. Cognitive operations, defined

by the relation of elements (eg. relation between the A and B term of an

item), can be pre-specified and constitute construction rules according to

which items are generated. Besides applying only one cognitive operation

per item, different cognitive operations can be applied in single items. As

opposed to arbitrarily construct items, a method of systematically and ra-

tionally composing items is possible. Besides the advantage of knowing the

contributions of the task parameters to item difficulty, a cognitive theory

of the item solving process can be developed. If the cognitive theory can

then be validated, statements on the construct validity of the items can be

made.

The ability to sufficiently explain item difficulty by the task parameters,

entails several important implications. Knowing the contribution of each

parameter to item difficulty enables one to create items of designated dif-

ficulties. This is a tremendous advantage, for example, regarding adap-

tive testing: By applying items of adequate difficulty, regarding the ability

level of the subject tested, psychometric advantages such as minimizing

the standard errors of the ability estimates result. Usually in traditional

paper-pencil testing all subjects process the same items without consider-

ing that certain items might be too difficult or too easy for some subjects

and in turn provide only little, if any, information. This is at the expense

of motivation and test economy because a large number of items has to be

applied for a reasonable precise ability estimate.
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According to Freund et al. (2008) “the main advantages of computerized

item generation are increased economy, avoidance of construction errors,

and higher comparability of items due to more stringent construction al-

gorithms” (p. 201). Further issues of computerized item generation (for

a more detailed outline see Freund et al., 2008) are not elucidated at this

point. Computerized item generation, however, still remains a long-term

objective for the figural analogy test, but its premises have to be analyzed

and accounted for first and are thus the object of the present study. There-

fore, the rule-based construction of a figural analogy test according to an

underlying rationale and the evaluation of the cognitive structure, not only

by means of the linear logistic test model but also by means of the linear

logistic test model with random item effects, constitute the central topic of

the present research.

3.2 Test Theory

In general, test theory refers to assumptions on the relationship between

traits and empirically obtained test scores. Objectives of test application

are reliable statements on the characteristic of the measured trait. In this

section, besides stating the characteristics of the classical test theory (CTT),

important features of the probabilistic test theory are outlined and its dif-

ferent models are presented.
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3.2.1 Classical Test Theory and Item Response Theory

The item response theory (IRT) is based on the fundamental assumption

that the response to a certain task is determined by the underlying abil-

ity. Since the latent trait is not observable but assumed to be continuous,

measurable characteristics influenced by the latent trait are operated. Item

responses are used as indicators for this underlying basic disposition and

the probability of making a certain response is a function of the latent

trait. This theory, making use of the probability, is therefore also referred

to as probabilistic test theory which describes the relationship between a

subject’s ability level and the likelihood to solve a task. IRT assumes that

the probability of solving a task varies as a function of the feature char-

acteristic. High-ability subjects are more likely to solve tasks than less

competent subjects. The relationship between ability and solution is there-

fore described in terms of likelihoods: The probability of certain discrete

responses to an item is described as the function of the latent trait or per-

son parameter. It is assumed that the resulting function that represents

the relation between ability score and solving probability is monotonically

increasing. Higher ability therefore corresponds to a larger likelihood in

solving the item.

Amongst other differences, theories differ in assumptions concerning

test reliability. In classical test theory reliability is defined by the error of

measurement which equals the discrepancy between the individual’s true

score and observed score. The extent of measurement precision is usu-

ally expressed by an index describing the test’s average reliability. Unlike

classical test theory, the item response theory enables one to calculate test
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reliabilities for different ability scores as it presumes that reliability is not

the same for different test scores. Statements on measurement accuracy for

different ability levels can therefore be made. Models based on the IRT,

such as the 1-parameter logistic model (1PL model), also assume that esti-

mated parameters do not depend on items applied or samples tested. On

the contrary, in CTT the ability estimate does not only depend on the test

taker but also on the difficulty and content of the tasks applied.

Task parameters of classical test theory are therefore population and

sample dependent, which means that according to the sample tested and

its characteristics, different values for test parameters can be obtained. The

one-parameter logistic model therefore suggests specific objectivity which

refers to the idea that the estimation of item parameters is independent of

the estimation of person parameters and vice versa. Thus, due to advan-

tages offered by the probabilistic test theory, the present study aims that

items are scalable according to the IRT to examine the disposition mea-

sured (ability score, latent construct) and item features such as difficulty

and item discrimination.

The item response theory offers great opportunities to further exam-

ine tasks components. The claim of rule-based item construction can be

reassessed by means of the linear logistic test model (LLTM) by Fischer

(1972). The characteristics of the LLTM are described in the subsequent

part of this chapter after different probabilistic test models have been pre-

sented.
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3.2.2 Probabilistic Test Models

Probabilistic test models differ in their number of parameters assumed but

share some joint features. Common constituents of probabilistic test theory

are unidimensionality and local stochastic independence. Unidimensional-

ity refers to the assumption that all items applied in the test measure the

same latent construct in all examinees. Unidimensionality is therefore a

“property of the items” (Lord, 1980, p. 20). In the 1PL model unidimen-

sionality implies that all items measure the same construct. In multidi-

mensional models however, thus in tests measuring more than one latent

trait, the requirement of unidimensionality refers to groups of items among

which unidimensionality should be found.

For test items that are dichotomously scored, IRT distinguishes three

different models that commonly assume one-dimensional underlying la-

tent traits but differ in the number of parameters specified in each model.

These models are presented below and are generally referred to as the one-

parameter logistic (1PL) model, also known as the Rasch model (Rasch,

1960), the two-parameter logistic (2PL) model, and the three-parameter lo-

gistic (3PL) model (Birnbaum, 1968). Person parameters and item parame-

ters are located on the same scale and are therefore directly comparable.

1PL model. Within item response theory the Rasch model (Rasch, 1960),

also referred to as the 1PL model, constitutes a well-known model and is

fundamental to all item response models. The response format is dichoto-

mous and the 1PL model contains only one parameter, the item difficulty

parameter (σ). It therefore postulates that all items have the same item
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discrimination and can thus be displayed as parallel functions on a contin-

uous ability axis. Location on this axis represents item difficulty. In the

1PL model (equation 3.1) the relation between the latent trait, item diffi-

culty and the likelihood to solve the item is defined as follows:

P(xvi = 1)|θv, σi) =
e(θv−σi)

1 + e(θv−σi)
(3.1)

In equation 3.1, P(xvi = 1) denotes the probability that examinee v solves

item i, θv denotes the person parameter of person v, and σi the item diffi-

culty parameter of item i.

Item characteristic curves for items of the 1PL model are on the same

latent scale and parallel positions of the items indicate identical item dis-

crimination parameters and only different difficulty parameters.

2PL model. The 2PL model goes back to Birnbaum (1968) and contains two

parameters: item difficulty (σ) and item discrimination (β). Contrary to the

Rasch model, items may vary in their discrimination, thus in their ability

to differentiate between test takers. Highly discriminating items effectively

distinguish between good and bad test takers. The function describing the

relationship between item difficulty, item discrimination, and likelihood to

solve the task can be expressed as follows:

P(xvi = 1)|θv, σi, βi) =
e(βi(θv−σi))

1 + e(βi(θv−σi))
(3.2)
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In equation 3.2, P(xvi = 1) denotes the probability that examinee v solves

item i, θv denotes the person parameter of person v, σi the item difficulty

parameter of item i, and βi indicates the item discrimination parameter of

item i.

3PL model. The 3PL model is not only composed of the parameters item dif-

ficulty and item discrimination, but also contains a guessing parameter (γ).

The parameter refers to the probability with which examinees can solve an

item through guessing. For items with a multiple choice response format

this probability can be deducted from the number of response alternatives.

The function describing the 3PL model is displayed below:

P(xvi = 1)|θv, σi, βi, γi) = γi + (1− γi)
e(βi(θv−σi))

1 + e(βi(θv−σi))
(3.3)

In equation 3.3, P(xvi = 1) again denotes the probability that examinee v

solves item i, θv describes the person parameter of person v, σi refers to the

item difficulty parameter of item i, βi is the item discrimination parameter

of item i, and γi indicates the guessing parameter of item i.

Since the 2PL model and the 3PL model have item discrimination param-

eters, specific objectivity, an important property of the 1PL model, cannot

be sustained in these models. Rasch used the term specific objectivity to

describe that comparisons between persons and therefore the ranking of ex-

aminees according to their ability remain the same even if different items
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are used. Reciprocally, specific objectivity implies that estimates of item

parameters do not depend on the test takers.

Psychometric information on items is provided by item characteristic

curves. Item response functions, also referred to as item characteristic

curves, display the characteristics of an item. The item parameter difficulty

determines the item’s location on the ability scale. The item discrimination

parameter determines the slope and the guessing parameter determines

the intercept on the y-axis. Item characteristic curves can be transformed

into item information functions which offer enormous information about

the property of the item. They provide information on how informative an

item is (i.e information on how accurate an item measures the latent con-

struct). This information is important when choosing items to measure a

certain ability level. Item information serves as a parameter introduced by

IRT, similar to the standard error of measurement and reliability. The item

information is important for adaptive testing as it enables item selection so

that items adequate in difficulty can be selected for each examinee.

3.3 Methods of Validating the Cognitive Structure

In order to predict item difficulty, to construct or choose items with an ade-

quate difficulty regarding the ability of the test taker, sufficient knowledge

on how each item component contributes to item difficulty is required. The

item difficulty can be specified using the cognitive operations involved in

that item by relating the psychometric property (item difficulty) to item

components (cognitive operations). Performance on items can thus be de-
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scribed as a function of cognitive operations involved in that item.

Gaining insight into this relationship enables one to design items of a de-

sired difficulty and selection of items appropriate to the examinee’s ability

level. This, in turn, offers tremendous opportunities in assessing abilities

since procedures such as adaptive testing may be applied. However, mere

knowledge of the cognitive operation involved is not sufficient. The impact

of the operation needs to be quantified and a validation of the cognitive

structure is required.

Two of such methods are described in the following: The linear logis-

tic test model (LLTM) and its extension the linear logistic test model with

random item effects are introduced as means to validate cognitive struc-

tures. Subsequently a short outline of optimal designs as means to provide

balanced test designs is presented.

3.3.1 Linear Logistic Test Model

Among the models of the item response theory, the 1PL model enables

the application of the linear logistic test model (Fischer, 1972) to examine if

rule-based item construction fulfills its demand. The LLTM can only be ap-

plied to 1PL models as other parameters than item difficulty such as item

discrimination are not accounted for in the model. In an analogy test each

item has certain structure characteristics such as elements, transformation

rules or cognitive operations. The resulting item structure can be related to

item difficulty. The impact of these features on item difficulty can be ana-

lyzed and the claim of rule-based item construction can thus be validated.

The LLTM therefore constitutes a means that requires pre-experimental hy-
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potheses on item structure characteristics which are then to be tested. To

analyze the factors that constitute item difficulty, procedures decomposing

the items into its components can be applied. Embretson (1984) described

the LLTM as “a unidimensional model in which components are identified

from item scores on complexity factors that are postulated to determine

item difficulty” (p. 176).

In the LLTM the item parameters are a function of basic component

parameters representing the cognitive components involved in solving an

item. The components, assumed to influence the solving process, can be

specified in a design matrix in which every item has a certain predefined

value on each component. The difficulty (σ) of each item is additively

composed of the basic components (ηj) required to solve the item i and a

normalizing constant (c) (equation 3.4) (Fischer, 1983). Equation 3.5 again

illustrates the constitution of the item difficulty.

σi = ∑
j

qijηj + c (3.4)

σi = qi1η1 + qi2η2 + qi3η3 + ... + qijηj (3.5)

The basic parameters (ηj) represent the difficulty of each cognitive opera-

tion involved in the item and Q is a matrix of weights (qij). The matrix

therefore represents single weights indicating if, and if applicable how of-

ten, the cognitive component or operation is needed. Q can thus adopt

integers such as 0 (operation/cognitive component not required), or 1 (op-
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eration/cognitive component required), or > 1 if that operation needs to

be applied more than once to solve the item. However, the weights (qij) are

not estimated but represent predetermined hypotheses of the component

structure of the item.

The LLTM, as a unidimensional model, constitutes an extension of the

Rasch model (equation 3.1), taking into account the cognitive operations

involved in solving an item. Equation (3.6) expresses the linear logistic test

model according to Fischer (1972):

P(xvi = 1) =

exp

(
θv −

h

∑
j=1

qijηj − c

)

1 + exp

(
θv −

h

∑
j=1

qijηj − c

) (3.6)

Further, the goodness of fit of models with different numbers of complexity

factors can be compared (Whitley & Schneider, 1981) and the difficulty of

items in terms of operations etc. can be explored and explained. Whitely

and Schneider analyzed analogical reasoning tasks and reported that dif-

ferent transformations necessary to compose the analogy have different im-

pact on the difficulty of the item. These findings are presented in detail in

the section of empirical findings on information structure and components

of item difficulty.

Generally, the LLTM as method of explaining the cognitive components

that constitute item difficulty has important practical implications as the

knowledge of the factors composing the item difficulty helps predicting the

difficulty of new items. Concerning adaptive testing, the necessity of large
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item pools for examinees with different proficiency levels is facilitated.

3.3.2 Linear Logistic Test Model with Random Item Effects

Since in item response theory correct responses to an item depend on char-

acteristics of the person tested and on item properties, the probability of

solving the item can be described as a function of person and item effects.

“Person effects are usually defined as a random sample from a population

distribution” (Van den Noortgate, De Boeck, & Meulders, 2003, p. 369). In

the traditional LLTM item effects are fixed and person effects are random.

However, when additional item variation is assumed, “models with crossed

random effects are obtained” (Janssen, Schepers, & Peres, 2004, p. 189). Ac-

cording to Janssen et al. random item effects are, for example, referred to

when applying “domain-referenced testing” as items are randomly chosen

from a predefined item pool of that domain. However, Janssen et al. dis-

tinguish between random item variation due to item properties and item

variation due to belonging to item groups. Thus item property or item

group can be predictors of item difficulty.

Janssen et al. introduce a relaxation of the LLTM in the following regres-

sion model where the Rasch item difficulties βi are explained by the item

predictors Xik and εi describing the item-specific error term with εi ∼ N(0,

σ2
ε ) :

βi =
K

∑
k=0

βkXik + εi (3.7)

Thus by applying the traditional linear logistic test model accurate pre-
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dictions of item difficulties by item properties can hardly be yielded due

to the strict assumption of the LLTM. The LLTM including random item

effects can, however, be described as an LLTM with relaxed assumptions:

According to Rijmen and De Boeck (2002, p. 277) the LLTM is extended

and relaxed “by adding an item-specific error term to the decomposition

of the item difficulty in terms of the basic parameters”. Thus by adding

an item-specific error and obtaining a model with random person effects

and random item effects, a model with diminished assumption for decom-

posing item difficulty is created. Referring to the error term, Rijmen and

De Boeck (2002) explain that normal distribution is presumed and “hence,

the item difficulties are considered to be random effects” (p. 277). They

further state that the incorporation of the error term enables to condemn

the requirement “that items with the same combination of values on the

predictors ... are of equal difficulty” (p. 277). Rijmen and De Boeck as-

cribe variability in item difficulty to item characteristics such as item con-

tent. They further accomplish that “in contrast with the RWLLTM [random

weights LLTM] in which the effects are random across persons, the effects

in the random-effects LLTM are random across items belonging to the same

item group” (p. 277).

The linear logistic test model with the assumption of additional item

variation therefore represents a model with less strict assumptions and

thus represents a more realistic approach. Both models, the LLTM and

the LLTM with random item effects, are applied to the data of the present

study. Accordingly, results are presented in chapter five.
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3.3.3 Optimal Design

Not only methods of evaluating the cognitive structure, such as the LLTM,

are important among the process of examining the rule-based test construc-

tion approach, but also means to combine task parameters within the test

design present the first step of this process. The aims of the present study

to construct a rule-based figural analogy test and to analyze the difficulty

of the items by decomposing the items into its components shall be pur-

sued referring to efficient designs as basis of the test. In a full-factorial

design all factor levels (cognitive operations) are combined, and thus all

possible combinations are presented in the experiment. However, depend-

ing on the number of factor levels such an experiment could be very time

consuming and might have an impact on motivation and test performance

and, regarding practical aspects, such an experiment could not efficiently

be conducted.

The efficiency of designs captures the degree of balance and orthogo-

nality of an design and can be quantified. “The D-optimal design mini-

mizes the generalized variance of the parameter estimators. This is done

by minimizing the determinant of the variance-covariance matrix of the

parameter estimators or, equivalently, by maximizing the determinant of

the information matrix” (Goos, 2002, p. 14). Since the determinant of the

variance-covariance matrix specifies the standard errors of estimating the

parameters, D-efficient designs yield small standard errors and the aim

of well-estimated parameters can be pursued. In conclusion optimal de-

signs can be regarded as an approach to efficiently select factor level com-

binations and reciprocally optimal efficiency is obtained when designs are
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orthogonal and balanced. The analogy test of the present study was con-

structed according to efficient designs and the test design and test material

of the main examination are presented in chapter 5.1.1.

3.4 Empirical Findings on Information Structure

and Components of Item Difficulty

Different studies regarding the information structure and components of

item difficulty of figural or geometric analogy tests were reviewed and are

presented in the following paragraphs. The empirical findings presented

serve to examine the impact of transformation rules on item difficulty re-

garding the choice of operations for the test construction. Findings are of

particular importance for the research questions stated in chapter 4 and

when evaluating and discussing the results of this study’s figural analogy

test.

Whitely & Schneider (1981)

Whitely and Schneider (1981) explored the information structure for ge-

ometric analogies and judged that information structures contain impor-

tant practical implications as tests or items of certain difficulty can be con-

structed “by controlling information structure” (p. 396). Information pro-

cesses influence performance and can be examined by cognitive component

analysis. Whitely and Schneider analyzed how information processes are

related to item difficulty. They applied 30 analogy items of the Cognitive

Ability Test (Thorndike & Hagen, 1974) and used the linear logistic test
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model to investigate how transformations and elements contributed to item

difficulty. Different transformations occurred in the test: number (adding,

removing, dividing elements), shade, size, shape, rotation, reflection, and

spatial exchanges. In one model, these transformations were assigned to

two groups of transformations: spatial displacement and spatial distortion.

The transformations referring to disorientation of elements from A to B

such as rotation, reflection and exchanges were assigned to the group of

displacement. The transformations size, shade, shape, and number consti-

tuted the group of spatial distortion. Three models with different levels

of parsimony were proposed. Besides transformations, each model also

took the elements of the A stimulus into account. Whitely and Schneider

compared the different models in terms of how different transformations

related to item difficulty. Different transformations yielded different im-

pact on item difficulty.

The first model did not distinguish between the different transformations

but referred to the number of transformations only and was judged as the

most parsimonious. However, results showed that the number of transfor-

mations did not have a significant impact on item difficulty. The second

model categorized the number of transformations into two classes refer-

ring to spatial displacements and distortions. This model obtained better

model fit and proved that the two types of transformations significantly in-

fluenced item difficulty. With the number of displacement-transformations,

the prediction of items with high difficulty was possible, whereas the num-

ber of distortion-transformations enabled the prediction of items with low

difficulty. The number of elements did not have a significant impact on
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item difficulty in this model. The third and least parsimonious model took

into account each transformation separately. This model yielded the best

model fit but led only to an increase of accounted variance of 7%, which is,

according to the authors, disproportionate to the complexity of the model

due to five more parameters. Results proved that transformations had dif-

ferent impact on item difficulty. The transformations number and shad-

ing did not significantly influence item difficulty. All other transformation

were highly significant in impact with again opposite effects on item diffi-

culty for different types of transformations: The transformations shape and

size, thus referring to distortion, led to lower item difficulty and transfor-

mations referring to displacement (reflection, spatial exchanges, rotation)

led to higher item difficulties.

Summarizing the findings of Whitely and Schneider (1981), transforma-

tions referring to spatial displacements led to an increase in item difficulty

whereas transformations referring to distortion caused an opposite effect

(the “number of spatial displacement transformations was positively re-

lated to item difficulty, while number of spatial distortions was negatively

related”, p. 395). Important practical implications therefore concern test

construction and item design as the item parameter difficulty can system-

atically be influenced by the type and number of transformations chosen.

Mulholland, Pellegrino & Glaser (1980)

Besides proposing a solution process model of geometric analogies (cf.

chapter 2), Mulholland, Pellegrino and Glaser (1980) also analyzed the

nature and impact of transformations applied in analogy tasks by exam-
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ining the performance on true and false analogy tasks. They stated that

“item difficulty appears to be related to increases in both the number of el-

ements and transformations in an item” (p. 258). They applied six types of

elements (line, triangle, circle, cross, rectangle, pentagon) and six transfor-

mations (identity, increase in size, 45 degree rotation to the right, reflection

about the x-axis, addition of an element, removal of one-half of an ele-

ment). Analyzing the factors contributing to item difficulty, the number of

transformations yielded a significant effect on error rates in true analogy

tasks. Number of transformations and number of elements interacted and

significantly effected the amount of errors made. However, the number of

elements alone did not influence item difficulty in terms of verification er-

rors but an increase of elements led to an increase in solution times. The

processing of transformations was more time consuming than the process-

ing of elements. Analyses of the performance on false analogies showed

that the detection of the first false partition of an item led to termination

of processing and judging the item as false. The information on the false

partition could stem from an element or transformation, but it seemed that

elements were analyzed before transformations were analyzed. Processing

time increased with an increase in the number of elements and transforma-

tions and an increase in transformations conveyed error rates.

Mulholland et al. concluded that “the largest single source of errors

was multiple transformations of single elements” (p. 282), thus an increase

in the number of transformation to be performed. This can be referred

to as transformational complexity which promotes verification errors and

therefore item difficulty. Working memory load is assumed to account for
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an increase in error rate due to an increase in transformational complex-

ity and thus an increased amount of information needs to be stored and

processed in working memory.

Regarding the results of the precedent study, Whitely et al. (1981) stated

that the findings of Mulholland et al. (1980) did not comply with their

findings in which types of transformations differ in their impact on item

difficulty.

Novick & Tversky (1987)

Novick and Tversky (1987) analyzed the order of cognitive operations in

geometric analogy tasks. They proposed that subjects processing geomet-

ric analogy tasks would perform cognitive operations in a specific order

of precedence and that this sequence would be applied to reduce work-

ing memory load. They assumed that the difficulty of each transformation

would be predictor of transformation order and that operations would be

performed in order of decreasing difficulty to diminish working memory

load. In the first experiment of the study of Novick and Tversky (1987)

two groups of subjects worked on 21 geometric analogy items with two

transformations each. One group of 48 subjects was instructed to iden-

tify the operations that had to be applied to transform the A term into B.

Subsequently they had to mentally construct the D term by applying the

identified operations onto the C term. They then had to sequence the op-

erations by numbering them according to the order of application. With

an average Spearman-rank order correlation of .44, the authors concluded

on concordance (ω = .45, χ2(6, N = 48) = 129.12, p < .001) between sub-
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jects on the sequence of cognitive operations (move, rotate/reflect, remove,

size, add, shading) . The difficulty of the eight different types of transfor-

mations (rotate, reflect, move, size, add half, add part, remove, shading)

applied was examined to analyze the assumption that cognitive operations

were serially performed in order of decreasing difficulty to reduce working

memory load. The transformation rotate was the most difficult one (15.8 %

errors) followed by size (13.1%), reflect (11.0%), shading (10.6%), add half

(10.4%), move (7.7%), add part (6.3%) and remove (4.2)%. Transformations

were not applied in decreasing order of difficulty and the working-memory

hypothesis could not be confirmed.

This hierarchy of transformation difficulty is almost consistent with the

research of Whitely and Schneider (1981) who confirmed higher item diffi-

culty for tasks containing spatial displacement in contrast to tasks implying

distortions. Therefore - neglecting the operation size being the second most

difficult operation - in order to construct tests of higher difficulty level,

tasks should obtain more spatial displacements. To create easier tasks,

transformations involving distortions should be applied.

To examine if the order of transformations was influenced by item dif-

ficulty, Novick and Tversky (1987) constructed a test of 12 analogy items

with three transformations each and tested a group of 59 students (Ex-

periment 3). Pairwise comparison across 51 subjects was conducted and

a Spearman correlation of .19 was obtained. A Spearman correlation re-

ferring to rank-order of .91 between the transformation sequence of this

experiment and Experiment 1 was yielded. The transformations move and

rotate/reflect changed position and move became the second transforma-
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tion in the sequence instead of the first (Experiment 1). Contrary to Ex-

periment 1, where high and low ability subjects did not differ in preferred

transformation order or in the degree of consistency concerning the order-

ing, in Experiment 3 ability groups differed: High- and low-ability groups

showed diverse performance. Low-ability subjects did not process items

with a consistent pattern of transformation ordering and for middle-ability

subjects the application of a certain order was not as consistent as for high-

ability subjects, but transformations were applied in a likewise sequence.

Regarding the very similar transformation sequence of Experiment 1 and

Experiment 3, Novick and Tversky inferred that “...there must be cognitive

constraints other than difficulty operating to determine transformation or-

dering” (p. 62).

Bethell-Fox, Lohman, & Snow (1984)

Among their complex study on componential and eye movement anal-

ysis of geometric analogy performance, Bethell-Fox, Lohman, and Snow

(1984) also analyzed the impact of figural and spatial transformations, re-

spectively the cognitive component processes accompanying these trans-

formations. They suggested that not all processed items involved the same

processing components but differed in the cognitive components activated

depending on item characteristics. They tested spatial and figural trans-

formations, assuming that spatial transformations evoked additional pro-

cesses. Spatial transformations referred to mental rotation and reflection

and figural transformations referred to halving, size-change and doubling

of elements. Results revealed that spatial transformations were positively
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related to latencies and errors. They also yielded higher correlations with

the fluid-visualization ability composed of scores of tests capturing the

constructs fluid-analytic ability and visualization.

Bethell-Fox et al. assumed that these findings were due to additional

cognitive components involved in items containing spatial transformations.

They suggested spatial inference and spatial application as such compo-

nents. Spatial inference was thought to be the process of inferring the

spatial transformation between the terms A and B, and spatial application

was thought to be necessary to apply this inferred transformation onto the

C term to find the appropriate D term. Analyzing the fit of different mod-

els, Bethell-Fox et al. were able to validate their suggested components.

The components of spatial inference and spatial application were only rel-

evant for items involving spatial transformations and it seemed that these

processing components could be activated or deactivated depending on

the item. An additional finding referred to the justification component of

Sternberg (1977a): Justification was only important when ambiguous items

had to be processed and not when unambiguous items had to be processed.

In ambiguous items the surmised correct answer was not presented among

the response choices whereas in non-ambiguous items it was. Thus the jus-

tification component could also be activated depending on requirements of

the tasks.
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3.5 Summary

Chapter 3 was designed to make the origination of the research questions

presented in chapter four, and the statistical analyses conducted and pre-

sented in chapter five, comprehensible, by consecutively introducing the

three parts of the chapter. First, the issues and amenities of rule-based

test construction as an approach to rational and objective item generation

were outlined. Then, in order to understand the procedures applied in

this study to evaluate, if rule-based test construction was successful and

to judge if the pre-defined task parameters could reasonably well explain

item difficulty, part two referring to test theory and part three present-

ing methods of validating the cognitive structure were included. Classical

test theory as opposed to item response theory was presented and three

item response theory models were shortly introduced. As methods of val-

idating the cognitive structure two approaches were presented differing in

their strictness of implied assumptions. Both approaches aim at explain-

ing item difficulty by relating the psychometric property (item difficulty) to

item components. Contrary to the LLTM, the linear logistic test model with

random item effects assumes an additional error and represents a more re-

alistic way to evaluate the contribution of different task parameters to item

difficulty. Finally, empirical evidence concerning the information structure

and components of difficulty of geometric analogy items was featured.
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Research Questions and Pretests

The first section of this chapter addresses research questions of the present

study. Research questions resulted from two sources. The first source refers

to the general superior objective of this study: rule-based test construction

of a figural analogy test. The first question adresses the requirements of

different analyses. The second source relates to the theoretical assumptions

and empirical findings of chapter 2 and 3. Based on these findings, the sec-

ond and third research questions evolved. The second part of this chapter

presents the pretests that were conducted before deciding on a final test
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version and procedure. Administration of these pretests resulted from the

first research question regarding the rule-based test construction of the fig-

ural analogy test. Pretests were required to provide basic research and first

results.

4.1 Research Questions

Looking at the role of reasoning in more ancient as well as recent theories

on human intelligence, reasoning ability or fluid intelligence constitutes a

central construct among the theories. Thus, since it seems that fluid in-

telligence is such a distinct indicator of general intelligence, it is beyond

question why construction and examination of tasks measuring reasoning

ability, and therefore fluid intelligence, shall be conducted and why the

application of such tasks to assess general intelligence is subject-matter of

this dissertation.

Three research topics can be defined: The first research question arose

within the topic of rule-based test construction of a figural analogy test.

It refers to the rational construction of test items and thus the task param-

eters as fundamental components of the items. Because of the composite

character of figural analogy items, items can in turn be decomposed into

its components such as transformation rules and elements. To predict item

difficulty, decomposing items into its components and analyzing the im-

pact of the single components on item difficulty is necessary. Practical

relevance of the prediction of item difficulty - amongst others - lies in the
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application of adaptive testing and accurate estimation of ability. The first

research question therefore is:

1. What constitutes item difficulty?

In the context of this question the impact of the transformation rules shall

eminently be analyzed. According to empirical findings among the analy-

sis of the cognitive structure (eg. Whitely & Schneider, 1981) the following

specific hypotheses are formulated: Transformations referring to spatial

displacements (eg. reflect, rotate) increase item difficulty and transforma-

tions referring to spatial distortions (eg. size) decrease item difficulty. Fur-

ther, the increase in the number of transformations per item is assumed to

enhance item difficulty, too.

The linear logistic test model as means to estimate the contribution of

the task parameters to item difficulty is applied to analyze the data of the

main examination. However, contrary to previous studies that only ex-

amined components of item difficulty by means of the linear logistic test

model, the present study additionally applies the LLTM with random item

effects. The advantages of the LLTM with random item effects (cf. chap-

ter 3) account for a substantial progress of this research. Further, besides

analyzing the impact of the transformation rules, the impact of elements

as constituents of item difficulty is also addressed. However, a directional

hypothesis concerning the impact of elements on item difficulty is not pre-

sented, but their influence is nevertheless evaluated.
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The second research question addresses the effect of different instruction

modes on test performance. It is assumed that the performance of subjects

introduced to the transformation rules differs from the test performance of

subjects that did not receive an introduction to the transformation rules.

Thus the second research question is formulated:

2. Does the introduction to the rules that determine the relation between A

and B influence test performance?

To explore this issue the research design provided randomly assigned sub-

jects to two groups (one with instruction of rules and one without instruc-

tion of rules). On basis of findings of effects of training and instruction it is

assumed that the instructed group gains benefit from the knowledge of the

transformation rules and thus outperforms the non-instructed group. The

specific hypothesis thus reads as follows: The instructed group is expected

to perform significantly better than the non-instructed group.

Further, subgroup analyses are supposed to examine if the impact of the

basic constituents on item difficulty differ between the instruction group

and the non-instruction group. Thus, besides analyzing the difference in

performance of the two groups with the assumption that the instruction

group outperforms the non-instruction group it shall be analyzed if differ-

ence in performance goes along with the different impact of the transfor-

mation rules on item difficulty. The specific hypotheses for this issue reads

as: The impact of the transformation rules as basic components of the item

does not differ for the groups in terms of order of difficulty and absolute
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value. It is assumed that, although the subjects of the instruction group are

expected to perform significantly better on the analogy test due to benefit-

ing from the knowledge of the transformation rules, the degree of influence

of the single transformation rules on item difficulty are the same for both

groups as they are not expected to differ in their cognitive structure and

processes.

The third and last research question concerns scholastic achievement as ex-

ternal validation criteria. Literature reviews in chapter two proved that cog-

nitive abilities can validly predict academic performances. The criterion-

related validity regarding academic achievement is analyzed for the rule-

based analogy test of this study. The corresponding research question is:

3. Can performance on the analogy test be related to academic perfor-

mance?

Referring to the analysis of the relation between intelligence and academic

performance following assumptions due to the empirical findings reported

in the theoretical background are made: Intelligence as measured by the

figural analogy test is expected to moderately correlate with average school

grades (still a high predictive validity compared to other criteria). Among

the school grades, mathematics and sciences are supposed to show higher

correlations with the analogy test score than subjects referring to languages,

social sciences or music and art. The corresponding hypothesis is: Com-

pared to other school grades, maths & natural sciences correlate higher
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with the analogy test score.

4.2 Pretests

Three different pretests were performed prior to the main examination. The

pretests pursued different purposes. Firstly, by accomplishing the pretests,

the rational item construction approach applied in this study should be

scrutinized for the first time. Thus, apart from specific hypotheses and re-

search questions expressed for the main examination, examination of the

rule-based construction of the test served to evaluate whether the transfor-

mation rules applied in the test significantly contributed to item difficulty.

The direction and magnitude of the impact of the transformations were also

a matter of particular interest. The psychometric properties of the items

had to be analyzed before deciding on a final test version. Psychometric

properties involve parameters such as item difficulties and item discrimi-

nation and these parameters were examined by applying the preliminary

test versions. Further the reliability and validity of the test should be ex-

amined. Before presenting the pretests and their results, the test format

underlying the pretests is briefly outlined.

A general note concerning the results of all pretests refers to the statistical

analyses conducted. Since the number of participants of each pretest was

rather small, analyses were restricted to classical test theory and analyses

according to probabilistic test theory could therefore not be applied in the

pretests but in the main examination. Thus, in the pretests, regression

analyses were conducted instead of LLTM analyses.
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The test format A : B = C : ? was chosen as the basic format of this

figural analogy test. Figural analogy studies were reviewed in order to

decide on cognitive transformations (cf. chapter 3). Transformations such

as adding, removing, or dividing elements were not applied as transfor-

mation rules since they could only be applied to composite elements and

not to holistic elements such as letters and digits that were chosen for the

present test. Further, transformations such as shade and shape were ex-

cluded as they were expected to make items too easy. Operations such

as rotation of elements, reflection of elements on its x-axis or y-axis and

change in size are frequently applied transformations in analogy research

(eg. Whitely and Schneider, 1981; Mulholland et al., 1980) and were thus

selected as operations for the figural analogy test. Although the operation

size was expected to be related to the easiness of an item (Whitely and

Schneider, 1981) it was nevertheless included to ensure variability. Further,

the direction operation applied to the dot analogies in the study of Bisanz,

Bisanz, and LeVevre (1984) (cf. chapter 2) that referred to the calculating

operation of plus or minus gave reason to include such an operation in

the present study, namely sequence. Thus, categories of cognitive trans-

formations included in the analogy test were size, rotation, reflection, and

sequence. Referring to the category of size, two transformations were al-

lowed: Elements could be increased in size, size plus (sp) or decreased in

size, size minus (sm). In Figure 4.1 the cognitive operations chosen for the

analogy test are illustrated. Among the rotation category, three different

types of rotation were distinguished: 180◦ rotation (r180), 90◦ rotation right

(rr), and 90◦ rotation left (rl). The category reflection contained two types of
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transformations: reflection about the x-axis (rfx) and reflection about the y-axis

(rfy). Sequence referred to sequence plus (sqp) and sequence minus (sqm).

As stimuli, alphabetical letters and single digits were chosen. The rules

sequence plus and sequence minus required the participant to go forward

or backward in the alphabet when letters were presented and to add or

subtract when digits were presented. Elements of the A term and C term

had to be different from each other but could vary in their initial position,

i.e they could already present transformed elements in the A term or C

term (for example a reflected or rotated element etc.). Letters in the A &

B terms could be paired with letters or digits in the C & D terms and vice

versa. However, A and B, and C and D had to be of the same element

category. Five distractors per item were presented plus the alternative that

the right solution was not among the response choices.
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Figure 4.1: Cognitive Operations
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4.2.1 Pretest 1

Sample and Procedure

Forty-eight males and 78 females, thus a total of 126 subjects represented

the sample of the first pretest. All subjects tested were German year 11

and year 12 students from a local high school (German Gymnasium). The

sample tested had a mean age of 18.49 years (SD = .74) with a minimum

age of 17 years and a maximum age of 20 years. A figural analogy test of 20

items, containing the transformations outlined above, was constructed and

applied to provide information on item difficulties, item discrimination and

testing procedure. Further, the impact of difficulty of the different cognitive

operations chosen should be evaluated. To estimate the extent to which this

new analogy test corresponds to other tests measuring reasoning ability, a

total of 106 students were also tested with the revised German version of

Cattell’s Culture Fair Test of Intelligence (CFT-20 R; Weiß, 2006) for validity

reasons.

The students were first familiarized with the figural analogy test format

and examples were then presented to illustrate the cognitive operations.

All testees were told that testing time was limited and that they should

follow the test instructor’s orders. The analogy test of the first pretest con-

sisted of 20 items, distributed to two subtests for time management reasons.

For each subtest the start and halt sign was given by the test instructor and

five minutes testing time was allowed for each subtest. Subjects were also

instructed that taking any kind of notes was not allowed.
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Results

Item difficulty, defined as the percentage of correct answers per item, ranged

from .10 (item 2.7) to .92 (item 1.6) with a mean difficulty of .40 (SD = .22).

According to Lienert and Raatz (1998) difficulties should vary between .15

and .85. and only one item exceeded the upper bound of .85 and three

items the lower bound of .15 and can be regarded as too easy, respectively

too difficult, and might therefore not provide sufficient information. Thus,

in terms of item difficulty the descriptive statistical analysis of these tasks

provided satisfactory results.

Item discrimination measured by corrected item-total correlation (rit)

ranged from -.07 (item 2.2) to .27 (item 1.1) with a mean of .08 (SD = .09).

Items therefore did not meet the demand of mediocre discrimination (.30

< r <.50) according to Lienert and Raatz (1998). However, looking at the

three items with negative discrimination no salient indication was obtained

for these insufficient parameters.

Reliability measured by Cronbach’s α for the 20 items applied was α =

.37 and hence too low. Statistics for each item are presented in Table 4.1.

To estimate validity, the figural analogy sum scores of 106 students that

additionally took the intelligence test CFT-20 R (Weiß, 2006), were corre-

lated with the sum scores of the CFT-20 R. The two sum scores did not

significantly correlate (r = .08, p = .42).

A regression analysis was conducted to estimate the influence of the cog-

nitive operations on item difficulty. Item difficulty was used as dependent

variable and the cognitive operations specified in the design matrix of the

test were used as regressors. In some items the operations rotation (90◦

92



4 Research Questions and Pretests

left or 90◦ right) and reflection (about the x-axis or about the y-axis) were

used simultaneously (items 1.10, 2.1, 2.2, 2.6, 2.7, 2.9, 2.10). In the design

matrix, whenever these operations appeared isochronally, they were not

coded as both reflection and rotation but a new joined operation (rot & ref)

was created and coded with 1 for these items. Of the 20 items applied,

one test item implied only one cognitive transformation (item 7), whereas

12 items had two transformations (items 1-6, 8-11, 13, 14), five items had

three transformations (items 15-19) and two items (items 12 and 20) had

four transformations. In the description above, the transformation rot &

ref was always counted as two transformations.

Table 4.2 presents the regression weights of the parameters. Negative

estimates indicate an increase in difficulty, thus a decrease in the probabil-

ity of solving an item, when applying the respective transformation. The

transformation rotation 90◦ right seemed to be the most difficult one as it

reduced the probability of solving an item the most, followed by sequence

minus, size plus, rot & ref, reflection x-axis, size minus, and sequence plus.

Contrary, the transformations reflection y, rotation 180◦, and rotation 90◦

left made tasks easier. Summarizing the regression analytic evaluation of

this pretest one may find that no coherent statement on the impact of cate-

gories of cognitive operations may be found. In contrast to the findings of

Whitely and Schneider (1981) who concluded that spatial distortions such

as size make items easier, the operations size plus and size minus of this

pretest decreased the probability of solving an item. According to Whitely

and Schneider spatial displacements such as the category of rotation (90◦

right, 90◦ left, 180◦) and reflection (x and y) should decrease the probability
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of solving an item. The results of the first pretest are, however, not consis-

tent with these findings since operations of the same category had opposed

impact: The transformations 90◦ rotation right and reflection about the x-

axis increased item difficulty as expected, and others such as rotation left

and rotation 180◦ decreased item difficulty, i.e. made items easier. None of

these parameters yielded significant influence (p > .05) on item difficulty.

This is not surprising since the number of items and subjects tested was

rather small. It can be concluded that the parameter estimates are more

informative and important as they provide information on the impact of

the transformation on item difficulty.

Table 4.1: Descriptive Statistics of Pretest 1

Item M SD rit Item M SD rit
1.1 .25 .44 .27 2.1 .32 .47 .23
1.2 .28 .45 .11 2.2 .12 .33 -.07
1.3 .63 .49 .08 2.3 .45 .50 .19
1.4 .79 .41 .00 2.4 .13 .33 .20
1.5 .50 .50 -.02 2.5 .33 .47 .15
1.6 .92 .27 .11 2.6 .53 .50 .01
1.7 .60 .49 .19 2.7 .10 .31 .04
1.8 .25 .44 .09 2.8 .53 .50 .13
1.9 .36 .48 .15 2.9 .29 .46 .14
1.10 .33 .47 -.01 2.10 .18 .39 .02

Summarized Findings Pretest 1

Evaluation of the first pretest leads to the following conclusions. Item dif-

ficulties proved satisfactory: values scattered over almost the whole ability

range and showed, with an average difficulty of .40, a medium test diffi-

culty. Item discrimination parameters fell far short and need enhancement.
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Table 4.2: Parameter Estimates of Pretest 1

Variables B SE t p

Constant .572 .255 2.248 .051
sp -.208 .154 -1.351 .210
sm -.033 .117 -.283 .784
rr -.288 .307 -.936 .374
rl .381 .312 1.219 .254
r180 .113 .261 .433 .675
rot & ref -.199 .224 -.887 .398
rfx -.126 .251 -.501 .628
rfy .057 .273 .209 .839
sqm -.277 .167 -1.659 .131
sqp -.005 .129 -.037 .971

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rot & ref = rotation and reflection, rfx =
reflection about x-axis, rfy = reflection about y-axis, sqm = sequence minus,
sqp = sequence plus

Reliability measured by Cronbach’s α and external validity were both dis-

satisfying. Regression analytic evaluation revealed no taxonomy of impact

of the transformations on item difficulty. Within transformational cate-

gories, impact on item difficulty was sometimes contrary. Transformations

of mental rotation were positively as well as negatively related to item diffi-

culty, just like reflection. Both size transformations increased item difficulty

as did both sequence transformations.

Shortcomings of pretest 1 thus provided the job definition of pretest 2.

4.2.2 Pretest 2

To find out if testing time might have influenced item discrimination and

to again analyze the cognitive operations as regressors on item difficulty, a

second pretest with extended testing time was conducted. For this test, the
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test format, design matrix and cognitive operations and elements remained

the same. Again two subtests of 10 items each were applied. In subtest 1

none of the items were changed, but in subtest 2 some items were modified.

In item 2.4 the element applied as distractors was exchanged: The digit

7 was used instead of the digit 3 to facilitate visual discrimination. The

orientation of each distractor remained the same. In items 2.8 and 2.10

the elements applied in the A, B and C terms were altered and thus the

elements used as distractors were altered, too.

Testing procedure and instructions corresponded to the ones of pretest 1

and are therefore not presented again.

Sample

Fifty-eight year 11 to year 13 students were tested. Their age ranged from

16 to 19 years with an average age of 17.53 years (SD = .68). Of the 58

subjects, 22 were male and 36 female.

Results

Descriptive statistics are presented in Table 4.3. For this pretest item dif-

ficulty ranged from .07 (item 1.10) to .72 (item 1.6) with a average item

difficulty of .37 (SD = .20). Item discrimination parameters varied from

-.10 (item 1.2) to .41 (item 1.5) with a mean of .14 (SD = .16).

For the three items amended, descriptive statistics changed from pretest

1 to pretest 2. In item 2.4 the digit 7 was used instead of the digit 3 as

distractors, since difficulties in discrimination between the differently ori-

entated digit 3 as distractor might have caused a low percentage of correctly
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Table 4.3: Descriptive Statistics of Pretest 2

Item M SD rit Item M SD rit

1.1 .36 .48 -.08 2.1 .36 .48 .21
1.2 .26 .44 -.10 2.2 .17 .38 -.02
1.3 .50 .50 .11 2.3 .64 .48 .36
1.4 .69 .47 .07 2.4 .36 .48 .14
1.5 .52 .50 .41 2.5 .57 .50 .26
1.6 .72 .45 .38 2.6 .47 .50 .29
1.7 .38 .49 .31 2.7 .21 .41 .18
1.8 .09 .28 .00 2.8 .38 .49 -.05
1.9 .10 .31 .06 2.9 .24 .43 .17
1.10 .07 .26 .10 2.10 .22 .42 .08

solved items. Applying the digit 7 in item 2.4 of pretest 2 led to a difficulty

index of .36. Exchanging the elements in item 2.8 did not lead to a large

difference in item difficulty but worsened item discrimination. For item

2.10 correct response probability increased from .18 in pretest 1 to .22 in

pretest 2.

Evaluating the leverage of the cognitive operations by means of regres-

sion analysis (Table 4.4), the cognitive operations proved different influ-

ence. Only the basic parameters sequence minus and size plus were posi-

tively related to item difficulty (i.e. increased item difficulty) but all other

basic parameters decreased item difficulty.

Reliability measured by Cronbach’s α resulted in a coefficient of α = .49,

and to estimate validity the figural analogy sum score was correlated with

the CFT-20 R sum score (N = 58). A highly significant correlation of r = .45

(p < .001) was yielded.
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Table 4.4: Parameter Estimates of Pretest 2

Variables B SE t p

Constant .078 .236 .332 .748
sp -.071 .142 -.496 .632
sm .089 .108 .825 .431
rr .085 .284 .298 .773
rl .557 .289 1.926 .086
r180 .421 .242 1.743 .115
rot & ref .139 .208 .670 .519
rfx .269 .233 1.156 .277
rfy .387 .252 1.533 .160
sqm -.111 .155 -.718 .491
sqp .096 .119 .804 .442

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rot & ref = rotation and reflection, rfx =
reflection about x-axis, rfy = reflection about y-axis, sqm = sequence minus,
sqp = sequence plus

Summarized Findings Pretest 2

In this second pretest item difficulty was again satisfactory. With the ex-

tended testing time the objective of improved item discrimination param-

eters was pursued. The average discrimination parameters consequently

improved but still did not attain adequate magnitude. Further, reliability

of the 20 item test increased to α = .49. To estimate external test validity, the

CFT-20 R was again referred to. A correlation of r = .45 between the figural

analogy test score and the CFT-20 R test score was obtained and proved

a coherence of an expected and acceptable extent. Regression parameters

were estimated but most parameters had positive algebraic signs indicating

their property of only facilitating tasks.
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4.2.3 Pretest 3

To give consideration to the findings of pretest 2 and the involved require-

ments and criteria for sound tasks, the third pretest had following charac-

teristics for several reasons. In this third pretest, five subtests were gener-

ated and applied. Two of these (subtest 2 and 3) were taken from pretest

1 and partly contained items including rotation transformations as well

as reflection transformations, since for these subtests no restrictions con-

cerning the combination of transformations were made. The other three

subtests were newly compiled in order to meet the demand of task with

distinct cognitive requirements. Subtest 1 contained nine items with only

one transformation each and six distractors, including the response option

“no solution right”, were presented per item. For subtests 4 and 5 the

restriction was implemented that the cognitive operations of the category

reflection (x and y) would never be combined with the cognitive operations

of the category rotation (90◦ right, 90◦ left and 180◦). Subtests 4 and 5 in-

cluded 12 items each, with two cognitive operations per item for subtest 4

and three cognitive operations per item for subtest 5. Instead of displaying

six distractors a new format with ten distractors, amongst the “no solution

right” - option, was introduced.

These different types of subtests were chosen in order to compare subtest

characteristics before deciding on a final test version for the main exami-

nation.
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Sample

The resulting figural analogy test was applied testing a sample of 52 sub-

jects of which 35 were year 12 pupils and 17 were first year psychology

students. The mean age of the test takers ranged from 17 to 23 years with

an average age of 19.08 (SD = 1.30). The sample consisted of 24 females

and 28 males.

Results

First, descriptive analyses (Table 4.5) were conducted to statistically eval-

uate the items applied. For subtest 1, difficulty (percentage of correctly

solved items) varied between .12 and .96 with a mean difficulty of .56 (SD

= .28). Item discrimination averaged at .12 (SD = .21). For subtest 2 dif-

ficulty ranged from .12 to .81 with a mean difficulty of .50 (SD = .21). A

mean item discrimination of .21 (SD = .26) was obtained. Subtest 3 con-

tained items with difficulties between .19 and .63 (M = .39, SD = .14) and

an average item discrimination of .07 (SD = .18). Subtest 4 ranged from

.19 to .75 in item difficulty with a mean of .47 (SD = .18) and items had a

mean discrimination of .29 (SD = .21). In subtest 5, item difficulty varied

between .06 and .67 (M = .37, SD = .21) and the mean item discrimination

was .21 (SD = .20).

Reliability was estimated calculating Cronbach’s alpha. Across all sub-

tests (53 items) a coefficient of α = .73 was obtained: For the 20 items of

the subtests 2 and 3 a reliability coefficient of α = .44 was yielded. For the

items of subtests 1, 4 and 5 (33 items) α reached .71.

For criterion related validity estimates, a subsample of 29 students addi-

100



4 Research Questions and Pretests

tionally took the CFT-20 R. Sum scores of the analogy test and the CFT-20

R were correlated and a significant correlation of .43 (p < .05) resulted.

Two separate regression analyses were conducted. The first regression

analysis (Table 4.6) refers to the subtests for which the constraint con-

cerning the combination of the transformations rotation and reflection was

implemented (subtests 1, 4, and 5). The second analysis (Table 4.7) was

applied to the data resulting from subtests 2 and 3: Here no restriction re-

garding the combination of the cognitive operations reflection and rotation

was made. Looking at the regression equations of subtests 1, 4 and 5 (Table

4.6), significant (p < .05) estimations of the basic parameters rotation right,

rotation left, reflection x, reflection y, sequence plus and sequence minus

were obtained. The impact of size plus, size minus and rotation 180◦ was

nonsignificant. Among the significant basic parameters, the operation re-

flection about the x-axis increased difficulty the most, followed by rotation

left, reflection about the y-axis, rotation right, sequence plus and sequence

minus.

Summarized Findings Pretest 3

Regarding the results of pretest 3 following findings can be summarized.

Looking at item difficulty, again no fault could be found with the param-

eters, both across all test items and within single subtests. Average item

discrimination parameters were still too low, but tended to be higher for

the subtests that included items in which the transformations rotation and

reflection were not combined.

Reliability for all items was α = .73 and α = .71 for the 33 items of the
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Table 4.5: Descriptive Statistics of Pretest 3

Item M SD rit Item M SD rit

1.1 .37 .49 .06 4.1 .52 .51 .40
1.2 .38 .49 -.34 4.2 .75 .44 .30
1.3 .96 .19 .34 4.3 .19 .40 .19
1.4 .90 .30 .22 4.4 .56 .50 .41
1.5 .12 .32 .10 4.5 .25 .44 -.10
1.6 .54 .50 .11 4.6 .56 .50 .45
1.7 .77 .43 .18 4.7 .50 .51 .43
1.8 .35 .48 .38 4.8 .42 .50 -.11
1.9 .65 .48 .05 4.9 .27 .45 .28

4.10 .31 .47 .31
4.11 .67 .47 .40
4.12 .63 .49 .57

2.1 .35 .48 .22 5.1 .46 .50 .49
2.2 .38 .49 .47 5.2 .06 .24 -.17
2.3 .71 .46 .34 5.3 .15 .36 .07
2.4 .71 .46 -.01 5.4 .62 .49 .09
2.5 .52 .51 .48 5.5 .50 .51 .38
2.6 .81 .40 .29 5.6 .65 .48 .56
2.7 .52 .51 .39 5.7 .67 .47 .23
2.8 .12 .32 -.23 5.8 .31 .47 .26
2.9 .52 .51 .29 5.9 .25 .44 .25
2.10 .37 .49 -.17 5.10 .25 .44 .08

5.11 .37 .49 .15
5.12 .15 .36 .15

3.1 .31 .47 .06
3.2 .29 .46 .14
3.3 .63 .49 -.09
3.4 .19 .40 .43
3.5 .60 .50 .29
3.6 .46 .50 .08
3.7 .33 .47 .06
3.8 .42 .50 -.20
3.9 .37 .49 -.05
3.10 .27 .45 .01
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Table 4.6: Parameter Estimates of Pretest 3 (Subtests 1, 4, 5)

Variables B SE t p

Constant .748 .083 9.018 .000
sp .036 .069 .519 .609
sm .082 .069 1.184 .249
rr -.236 .103 -2.286 .032
rl -.284 .090 -3.153 .004
r180 -.027 .093 -.286 .777
rfx -.435 .097 -4.505 .000
rfy -.279 .098 -2.858 .009
sqp -.214 .069 -3.104 .005
sqm -.158 .070 -2.246 .035

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

Table 4.7: Parameter Estimates of Pretest 3 (Subtests 2, 3)

Variables B SE t p

Constant .608 .235 2.587 .029
sp -.167 .142 -1.178 .269
sm .010 .108 .088 .932
rr -.307 .284 -1.083 .307
rl .192 .288 .666 .522
r180 .085 .241 .354 .731
rot & ref -.243 -.653 -1.175 .270
rfx -.213 .232 -.915 .384
rfy -.059 .252 -.233 .821
sqm -.146 .154 -.945 .369
sqp .079 .119 .663 .524

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180=rotation 180◦, rot & ref = rotation and reflection, rfx = reflec-
tion about x-axis, rfy = reflection about y-axis, sqm = sequence minus, sqp
= sequence plus
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subtests 1, 4 & 5 and .43 for the 20 items of the subtests 2 & 3. Validity

was again estimated by the correlations with the CFT-20 R test score and a

mediocre coherence was obtained.

To evaluate the results from the regression analyses one should distin-

guish between the subtests. For subtests 1, 4 & 5 six out of nine transfor-

mations yielded significant basic parameter estimates. Apart from the size

minus operation, all other transformations were positively related to item

difficulty, i.e. impeded items and thus reduced the probability to solve an

item. As in the preceding pretests, the transformations of subtests with

items involving rotation as well as reflection transformations (subtests 2 &

3) did not have a significant impact on item difficulty.

4.2.4 Summary and Conclusion on Pretests

Pretests were designed and conducted to provide an informative basis for

the rule-based construction of the figural analogy test applied in the main

examination. Since the cognitive operations chosen and their application to

the elements involved in the test had not been empirically analyzed before,

exploratory research concerning several issues had to be accomplished. For

each pretest, data was analyzed according to classical test theory as the

number of subjects tested in the pretests was too little to apply test proce-

dures according to item response theory. For each test descriptive statistics,

i.e. item difficulty and item discrimination, were inspected for each item.

Compared to pretest 1, time permitted to process the items was varied in

Pretest 2. This was done in order to examine if item discrimination pa-

rameters would improve with extended testing time. Difficulty, defined
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as the percentage of subjects that correctly solved the item, was calculated

to evaluate if difficulty was generally of an adequate level and variability.

Regression analyses provided information on the magnitude and direction

of the leverage that the transformations had on item difficulty. A first im-

pression concerning the construction approach was thus obtained. The

findings of the three pretests provided a basis and implied consequences

for the rule-based test construction of the figural analogy test material for

the main examination.

The most important implications from the pretests concerned the ratio-

nal and rule-based item construction: Of all pretests, parameter estimates

of the three subtests (1, 4 & 5) of pretest 3 showed that, apart from the

size operations, the application of other rules contributed to item difficulty,

i.e. increased item difficulty. Due to their property of incrementing item

difficulty these rules should be adopted in the final version of the figural

analogy test. Although the application of the size rules led to an increase

in the probability of solving an item they were still chosen as task param-

eters to retain the variation of item difficulty and to further analyze their

property as contributors to item easiness. Therefore, the rationale for the

construction of the analogy test for the main examination included the con-

straint regarding the combination of the rules rotation and reflection that

should be implemented in the design for the test of the main examination.
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Main Examination

The following chapter presents the main examination of this study. The

first section refers to the test material. Then instruction, testing procedure,

research design and the different measures collected are pointed out. In

the third section, the sample is presented and sample comparisons due to

the research design are made. The last and most extensive section of this

chapter presents the results of this study. The presentation of the results is

arranged according to different test theories and according to the objectives

of the respective analysis.
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5.1 Material

The several pretests conducted proved that subtests with no restriction re-

garding the combination of the rules rotation and reflection always yielded

nonsignificant basic parameter estimates. Further, to lead item difficul-

ties back to its components, the cognitive operations involved in solving

the item have to be clearly defined. Thus only the application of the prede-

fined and distinct operations should induce the correct response to an item.

The cognitive operations of each item therefore have to be well-defined in

order to apply statistical evaluation methods such as the linear logistic test

model. Subtests 1, 4 and 5 of the third pretest, for example, only contained

items in which the transformations of the category rotation and reflection

were never applied at the same time. These subtests also proved that al-

most all parameter estimates had significant impact on item difficulty in

the regression analytic evaluation. Thus information on the contribution

of each cognitive operation to item difficulty could be provided. Deeper

insight into task structure and basic assumptions on contributors to item

difficulty were obtained by the different pretests and pioneered the test

construction for the main examination.

5.1.1 Test and Items

Having conducted the pretests, the final version of the figural analogy tasks

consisted of four subtests with a total of 45 items. The division of the test

into different subtests was chosen for time management reasons and to

arrange groups of items with the same number of rules per item.
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The cognitive operations already introduced in the pretests are again

presented in Table 5.1. The category size with its facets size plus and size

minus was implemented as well as the category rotation of elements that

referred to 180◦ rotation, 90◦ left rotation, and 90◦ right rotation. The trans-

formation group reflection included reflection of the elements on its x-axis

or y-axis and the transformation sequence differed in whether the subject

had to increase or decrease the number or alphabet sequence.

Table 5.1: Cognitive Operations

Operation level 1 level 2 level 3

Size size plus (sp) size minus (sm)
Rotation 180◦ (r180) 90◦right (rr) 90◦left (rl)
Reflection x-axis (rfx) y-axis (rfy)
Sequence sequence minus

(sqm)
sequence plus

(sqp)
Note. Level 1, 2 and 3 represent the facets of the operations.

The construction of each subtest was based on an efficient design pro-

vided by the software SAS (version 9.1) with the implemented restriction

that the cognitive operations of the category reflection (x and y) would

never be combined with the cognitive operations of the category rotation

(90◦ right, 90◦ left, and 180◦). Considering the constraints, designs with a

maximum of efficiency were thus obtained. Four subtests were constructed

that differed in the number of cognitive operations involved per item. Each

subtest was constructed according to its efficient design that was generated

in order to provide balanced and orthogonal fractional factorial designs.

The software SAS was also chosen to implement the restriction concerning

the combination of operations. Subtest 1 contained nine items with one rule

each. Subtest 2 had 12 items with two rules each and subtests 3 and 4 had
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12 items each with three rules applied per item. Subtest 4 functioned as a

parallel version of subtest 3, thus these two subtests had identical design

matrices but different elements.

Tables 5.2 and 5.3 present the efficient design matrices generated by SAS

for the subtests. In the first column the item is indicated. Subsequent

columns then indicate which transformation rule was applied in the item

and the last column of each table indicates the accumulated number of

cognitive rules per item.

5.1.2 Distractors

The design of the distractors generally requires high precision. In terms of

the figural analogy test it should be assured that subjects solve the items

by applying the cognitive operations required to solve the particular item.

Salient features among the distractors or features that occur often across

distractors should be minimized to prevent subjects from developing their

own solving strategies. Thus, constructing the distractors, it was aimed

to equally distribute the occurrence of element features among the answer

options.

In subtest 1 six answer options (a - f) per item were displayed. Distrac-

tors a - e presented elements (letters and digits) and distractor f always

presented the answering option “no correct solution”. Subtests 2 - 4 had

ten distractors per item and of these, distractors a-i again presented stimuli

related to the item and distractor j offered the choice “no correct solu-

tion”. Subtest 1 had less distractors than the other subtests because only

one transformation rule per item was applied. Since all other subtests had
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Table 5.2: Optimal Design Matrix (Subtests 1 & 2)

Item sp sm rr rl r180 rfx rfy sqp sqm Σrules

1.1 0 0 0 0 0 1 0 0 0 1
1.2 0 0 0 1 0 0 0 0 0 1
1.3 1 0 0 0 0 0 0 0 0 1
1.4 0 1 0 0 0 0 0 0 0 1
1.5 0 0 1 0 0 0 0 0 0 1
1.6 0 0 0 0 0 0 0 1 0 1
1.7 0 0 0 0 1 0 0 0 0 1
1.8 0 0 0 0 0 0 0 0 1 1
1.9 0 0 0 0 0 0 1 0 0 1

2.1 0 0 0 0 1 0 0 1 0 2
2.2 0 1 0 0 1 0 0 0 0 2
2.3 0 0 0 0 0 1 0 1 0 2
2.4 0 0 1 0 0 0 0 0 1 2
2.5 0 0 0 0 0 0 1 1 0 2
2.6 1 0 0 0 0 0 0 0 1 2
2.7 1 0 0 1 0 0 0 0 0 2
2.8 0 0 0 0 0 0 1 0 1 2
2.9 0 0 0 1 0 0 0 0 1 2
2.10 0 1 0 0 0 1 0 0 0 2
2.11 0 1 0 0 0 0 0 1 0 2
2.12 1 0 1 0 0 0 0 0 0 2

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqp = sequence plus, sqm = sequence minus, Σrules = number
of rules applied in the item
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Table 5.3: Optimal Design Matrix (Subtests 3 & 4)

Item sp sm rr rl r180 rfx rfy sqp sqm Σrules

3.1 0 1 0 1 0 0 0 0 1 3
3.2 0 1 0 0 0 1 0 0 1 3
3.3 1 0 0 0 0 0 1 0 1 3
3.4 1 0 0 0 1 0 0 0 1 3
3.5 0 1 0 0 1 0 0 1 0 3
3.6 0 1 0 0 1 0 0 1 0 3
3.7 0 1 1 0 0 0 0 0 1 3
3.8 1 0 0 1 0 0 0 1 0 3
3.9 1 0 0 0 0 1 0 1 0 3
3.10 0 1 0 0 0 0 1 1 0 3
3.11 1 0 0 1 0 0 0 0 1 3
3.12 1 0 1 0 0 0 0 1 0 3

4.1 0 1 0 1 0 0 0 0 1 3
4.2 0 1 0 0 0 1 0 0 1 3
4.3 1 0 0 0 0 0 1 0 1 3
4.4 1 0 0 0 1 0 0 0 1 3
4.5 0 1 0 0 1 0 0 1 0 3
4.6 0 1 0 0 1 0 0 1 0 3
4.7 0 1 1 0 0 0 0 0 1 3
4.8 1 0 0 1 0 0 0 1 0 3
4.9 1 0 0 0 0 1 0 1 0 3
4.10 0 1 0 0 0 0 1 1 0 3
4.11 1 0 0 1 0 0 0 0 1 3
4.12 1 0 1 0 0 0 0 1 0 3

Note. sp = size plus, sm = size minus, rr=rotation 90◦ right, rl = rotation 90◦

left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection about
y-axis, sqp = sequence plus, sqm = sequence minus, Σrules = number of
rules applied in the item
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two or three transformation rules per item, more distractors had to be dis-

played in order to account for the different possible combinations evolving

from the increase in transformations.

5.2 Instruction, Procedure, and Measures

Two test versions (A and B) were designed to administer the figural anal-

ogy test. Items were the same in both tests but the instruction of the two

versions differed. Both test versions started with a general instruction to

the test. Test version A had this general instruction only and one sample

item, and in test version B, besides the general instruction, participants

were introduced to each of the nine transformation rules prior to the test,

illustrating the rules with two examples each (cf. Appendix B). This design

was chosen to test the hypothesis that participants having received the rule

explanations (test version B) performed better and achieved a significant

higher overall test result compared to those subjects that only received the

general instruction (test version A) . Subjects were randomly assigned to

two groups: the non-instruction group (receiving test version A) and the in-

struction group (receiving test version B). All participants were instructed

to follow the examiner’s start and stop signals. Items of each subtest were

always displayed on two pages and two minutes and 30 seconds processing

time were allowed for subtest 1, five minutes and 30 seconds for subtest 2,

and seven minutes each for subtests 3 and 4.

Before taking the figural analogy test, all subjects were asked to com-

plete a questionnaire of demographical items such as age and sex and to
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self-report recent grades for a variety of school subjects. After the figural

analogy test was conducted, most subjects also took the revised German

version of Cattell’s Culture Fair Test of Intelligence (CFT-20 R; Weiß, 2006).

In this test, subjects had to work on 56 items measuring general intelli-

gence.

Additionally, most subjects also completed the German version of the

NEO-FFI (Costa & McCrae, 1992; Borkenau & Ostendorf, 1993). The ques-

tionnaire was applied to assess the five central dimensions of personal-

ity (neuroticism, extraversion, openness, agreeableness, and conscientious-

ness). Further, a general interest test (AIST; Bergmann & Eder, 1999) mea-

suring scholastic and professional interests was applied in most testing

sessions. The AIST consists of 60 items and interests are measured on six

scales: realistic, investigative, artistic, social, enterprizing, and conventional

interests. However, the NEO-FFI and AIST were applied for motivational

purposes and results are not presented as these tests were not administered

for research purposes but for feedback reasons only.

Subjects were tested in groups and classrooms served as testing area.

General instructions were given at the beginning of the testing session and

task-specific instructions preceded each test.

5.3 Sample

The sample taking the Figural Analogy Test included 212 male and 272

female students and thus a total of 484 subjects. All participants were

Germans and recruited from various German high-schools. Age ranged
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from 15 to 20 years with a mean of 17.8 years (SD = .84).

Students were randomly assigned to the experimental group: 249 sub-

jects were members of the instruction group and 235 subjects were mem-

bers of the non-instruction group. Of the 484 subjects, 312 additionally

took the CFT-20 R and 480 self-reported their school grades. Besides serv-

ing as criteria for validity estimates of the test, the data of the CFT-20 R

and the school grades were applied for sample comparisons concerning

the instruction versus non-instruction group. Results of the sample com-

parison are subsequently reported before results of the figural analogy test

are presented.

Sample Comparison: CFT-20 R

Of all 312 subjects that took the CFT-20 R, 128 belonged to the instruc-

tion group and 184 belonged to the non-instruction group. The instruction

group obtained mean scores of 43.25 (SD = 5.85) and the non-instruction

group yielded mean scores of 43.55 (SD = 4.79). Inferential statistical anal-

ysis revealed that the two groups did not significantly differ in general

intelligence measured by this test (t = -.504, d f = 310, p = .615).

Sample Comparison: Scholastic Achievement

Subjects were asked to fill out a questionnaire on their recent grades. The

common German point format was used to assess academic achievement

(15 points = best grade versus 0 points = worst grade). Looking at the aver-

age self-reported grades, groups did not significantly differ (t = -.836, d f =

478, p = .404). For the instruction group a mean of 8.75 points (SD = 1.84)
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and for the non-instruction group a mean of 8.89 (SD = 1.61) was calcu-

lated from the data. To evaluate if the groups differed in different subjects,

an analysis looking beyond the average points obtained was conducted.

Composite scores of different subjects were computed to provide a well ar-

ranged presentation of results. A composite score (social) referring to the

subjects history, geography, politics, religious studies, education science

was generated as well es a composed language score (language) consisting

of the subjects German, Latin, English, and French. A combined score for

art & music was computed and the subjects mathematics, physics, chem-

istry and biology were integrated to a composite score (maths & sciences).

The instruction group did not significantly differ from the non-instruction

group in any of these composite scores.

5.4 Results

In the next sections the results of the data, analyzed according to different

test theories and procedures, are presented. With regard to the figural

analogy test, item 24 (3.3) was excluded in all following analyses due to

an construction error. The number of relevant test items was therefore

decreased to a total of 44 items.

5.4.1 Item Statistics According to Classical Test Theory

To analyze the data, scoring at item-level was applied: subjects always ob-

tained one point per correctly solved item. The average sum score of the

figural analogy test was 20.67 (SD = 6.12) and a minimum score of 3 and a
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maximum score of 37 were obtained. The distribution of the sum scores of

the figural analogy test seemed to be normally distributed as illustrated in

Figure 5.1 showing the histogram of the sum scores, and Figure 5.2 show-

ing the Q-Q diagram plotting the observed values against the expected nor-

mal values. The statistical analysis by means of the Kolmogorov-Smirnov

test (Z = 1.076, p > .05) confirmed the assumption that the distribution did

not significantly differ from the normal distribution (p = .197, d f = 484).
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Figure 5.1: Distribution of the Sum Scores of the Figural Analogy Test

The instruction group, having received an explanation of the operations

involved, significantly differed from the non-instruction group in the mean

of correctly solved items (Table 5.4). Subjects that had been introduced to

the transformation rules (instruction group) averagely solved 21.74 items

and subjects that had not been introduced to the transformation rules (non-

instruction group) averagely solved 19.54 items out 44. This difference was

significant (t = 4.024, d f = 482, p <.001) and an effect size of d = .36 was

yielded. An introduction to the cognitive operations applied in the test
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Figure 5.2: Q-Q Diagram: Testing the Sum Scores of the Figural Analogy
Test for Normal Distribution

therefore had impact on the average sum score, and participants who were

introduced to the transformation rules before taking the test, significantly

obtained a higher overall test score on the figural analogy test.

Comparing the sum scores of the figural analogies between male and

female no significant difference could be observed (t = -.319, d f = 482. p

= .750). Taking the group membership in terms of transformation explica-

tion received vs. not received into account, again no significant difference

between the sum scores of males and females was yielded, neither for the

instruction group (t = -1.032, d f = 247, p = .303) nor for the non-instruction

group (t = .504, d f = 233, p = .615).

Table 5.5 shows item statistics according to classical test theory for the

total sample: Item difficulty, standard deviation, item discrimination and

internal consistency (Cronbach’s α excluding single items) are presented.

Item difficulty for each item was defined as the percentage of subjects that
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Table 5.4: T-Test Means of the Instruction Group and the Non-Instruction
Group

Group N M SD d f t p

Instruction Group 249 21.74 6.19 482 4.024 .000
Non-Instruction Group 235 19.54 5.85

correctly solved that item. Item difficulties ranged from .11 (item 3.2) to

.93 (item 1.3) with two items of subtest 1 (with one transformation rule

each) yielding difficulty coefficients above .90. These two items are items

1.3 and 1.4, applying the transformation rules size plus and size minus re-

spectively. Item 3.2 was the most difficult one with only 11% of participants

solving that item, and the only item with p < .20. This item contained size

minus and reflection on the x-axis as cognitive operations. To which degree

these transformation rules or the property of the elements or the distrac-

tors chosen had impact on the item difficulty is analyzed when the item

construction and cognitive structure is focused on. Looking at the total of

the 44 items applied, a mean item difficulty of .47 (SD = .14) was obtained.

Items yielded a mean item discrimination of .22 (SD = .08) with a max-

imum of .40. Item 3.2 (the most difficult item of the test) had a negative

item discrimination of -.08 indicating that more subjects of the lower abil-

ity group answered that item correctly than of the higher ability group.

Eliminating item 3.2 from calculation an average item discrimination of .23

(SD = .09) was obtained. Overall item discriminations were rather low and

might be attributed to a shortage of testing time per subtest.

Looking at the average difficulties of the subtests, subtest 1 with one

transformation rule per item yielded an average difficulty of .63 (SD = .43)
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and was therefore easier than subtests 2 (M = .44, SD =.47), 3 (M = .40, SD

=.46) and 4 (M = .45, SD =.48). Thus, as expected, the first subtest was the

easiest one, since cognitive requirements were restricted to one transfor-

mation rule per item. On average, subtest 2, with two transformation rules

per item, obtained almost the same item difficulty as subtest 4, but was, as

expected, easier than subtest 3 with three transformation rules per item.

Table 5.5: Descriptive Statistics: Total Sample

Item M SD rit α Item M SD rit α

1.1 .36 .48 .24 .76 3.1 .48 .50 .24 .76
1.2 .45 .50 .29 .76 3.2 .11 .31 -.08 .77
1.3 .93 .26 .23 .76 3.4 .67 .47 .31 .75
1.4 .92 .27 .19 .76 3.5 .43 .50 .20 .76
1.5 .48 .50 .18 .76 3.6 .57 .50 .31 .75
1.6 .71 .45 .30 .76 3.7 .52 .50 .31 .75
1.7 .71 .46 .12 .76 3.8 .24 .43 .25 .76
1.8 .44 .50 .27 .76 3.9 .37 .48 .20 .76
1.9 .64 .48 .19 .76 3.10 .27 .44 .19 .76

3.11 .47 .50 .40 .75
3.12 .25 .43 .10 .76

2.1 .45 .50 .26 .76 4.1 .63 .48 .24 .76
2.2 .63 .48 .21 .76 4.2 .44 .50 .26 .76
2.3 .21 .41 .14 .76 4.3 .33 .47 .21 .76
2.4 .45 .50 .28 .76 4.4 .64 .48 .30 .76
2.5 .21 .41 .01 .77 4.5 .38 .49 .25 .76
2.6 .61 .49 .18 .76 4.6 .63 .48 .34 .75
2.7 .58 .49 .34 .75 4.7 .51 .50 .34 .75
2.8 .39 .49 .13 .76 4.8 .54 .50 .23 .76
2.9 .29 .45 .21 .76 4.9 .20 .40 .04 .76
2.10 .32 .47 .23 .76 4.10 .27 .45 .10 .76
2.11 .60 .49 .22 .76 4.11 .41 .49 .33 .75
2.12 .49 .50 .39 .75 4.12 .44 .50 .23 .76

Note. α = α without item

Statistics according to classical test theory are also separately presented

for the two groups (instruction vs. non-instruction group) in Table 5.6 and
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Table 5.7. The items applied in the instruction group had a mean item dis-

crimination of .23 (Min = -.14, Max = .45) and were thus slightly higher in

average discrimination than the items applied in the non-instruction group

(M = .21, Min = -.09, Max = .42). Looking at the item difficulties for both

groups, items were on average easier (M = .49, Min = .11, Max = .94) in the

instruction group than in the non-instruction group (M = .44, Min = .11,

Max = .94).

Table 5.6: Descriptive Statistics: Instruction Group

Item M SD rit Item M SD rit

1.1 .39 .49 .26 3.1 .49 .50 .28
1.2 .53 .50 .27 3.2 .11 .32 -.08
1.3 .92 .27 .30 3.4 .70 .46 .30
1.4 .94 .25 .16 3.5 .45 .50 .20
1.5 .52 .50 .18 3.6 .64 .48 .33
1.6 .86 .34 .31 3.7 .51 .50 .35
1.7 .69 .46 .14 3.8 .25 .44 .27
1.8 .52 .50 .28 3.9 .39 .49 .19
1.9 .68 .47 .22 3.10 .29 .45 .06

3.11 .51 .50 .37
3.12 .23 .42 .14

2.1 .44 .50 .25 4.1 .62 .49 .31
2.2 .64 .48 .27 4.2 .46 .50 .29
2.3 .22 .41 .09 4.3 .34 .48 .29
2.4 .49 .50 .26 4.4 .66 .48 .38
2.5 .20 .40 -.14 4.5 .43 .50 .27
2.6 .63 .48 .20 4.6 .66 .47 .35
2.7 .61 .49 .40 4.7 .56 .50 .40
2.8 .43 .50 .10 4.8 .55 .50 .22
2.9 .31 .47 .15 4.9 .22 .42 -.01
2.10 .37 .48 .23 4.10 .26 .44 .10
2.11 .59 .49 .21 4.11 .41 .49 .39
2.12 .53 .50 .45 4.12 .47 .50 .16
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Table 5.7: Descriptive Statistics: Non-Instruction Group

Item M SD rit Item M SD rit

1.1 .32 .47 .21 3.1 .47 .50 .12
1.2 .36 .48 .28 3.2 .11 .31 -.09
1.3 .94 .24 .18 3.4 .64 .48 .31
1.4 .90 .30 .20 3.5 .41 .49 .20
1.5 .44 .50 .15 3.6 .49 .50 .25
1.6 .54 .50 .24 3.7 .54 .50 .30
1.7 .72 .45 .11 3.8 .23 .42 .23
1.8 .36 .48 .21 3.9 .35 .48 .19
1.9 .59 .49 .14 3.10 .24 .43 .17

3.11 .42 .49 .42
3.12 .27 .44 .06

2.1 .46 .50 .29 4.1 .65 .48 .17
2.2 .62 .49 .15 4.2 .42 .49 .22
2.3 .21 .41 .20 4.3 .32 .47 .13
2.4 .40 .49 .27 4.4 .63 .49 .20
2.5 .23 .42 .18 4.5 .34 .48 .21
2.6 .59 .49 .15 4.6 .59 .49 .32
2.7 .55 .50 .26 4.7 .45 .50 .24
2.8 .34 .48 .15 4.8 .53 .50 .24
2.9 .26 .44 .26 4.9 .18 .38 .08
2.10 .27 .45 .20 4.10 .29 .45 .13
2.11 .60 .49 .24 4.11 .41 .49 .28
2.12 .45 .50 .31 4.12 .41 .49 .30

121



5 Main Examination

Reliability

Internal consistency according to Cronbach’s α for the total test of 44 items

for the total sample constituted to α = .76. Thus Anastasi’s reliability cri-

terion of .80 or .90 (Anastasi, 1982) was almost obtained for this figural

analogy test.

Validity

Criterion-related validity was estimated using the CFT-20 R scores. Of

all participants 312 subjects were additionally tested using the CFT-20 R.

Among these, 188 were female and 123 were male and the average age was

17.91 years (SD = .70). Minimum scores of 24 and maximum scores of 54

were obtained, resulting in a mean score of .43 (SD = 5.24). A correlation

of .36 (p = .000) between the sum scores of the figural analogy test and the

scores of the CFT-20 R was obtained. However, correlating the figural anal-

ogy scores of the instruction-group (N=128) with the CFT scores resulted

in a coefficient of .54 (p = .000). When transformations were not explained

in the non-instruction group (N = 184) a lower correlation coefficient of .24

(p = .001) between the analogy test score and the CFT-20 R was yielded.

Referring to academic achievement as external validation criterion, fol-

lowing observations were made: The figural analogy score correlated sig-

nificantly (p < .01) with the average grade score (r = .18). The composite

score maths & sciences correlated at r = .22 (p < .01) with the analogy score

and the art & music score correlated at r = .16 (p < .01) with the analogy

test score. The composed language score only correlated at r = .10 (p < .05)

and the score for the social sciences did not correlate significantly with the
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analogy score.

For reasons of comparison, the correlation of the CFT-20 R scores with

the composed scholastic measures are as follows: The CFT-score signifi-

cantly correlated at r = .19 with the average scholastic score, r = .25 with

the maths & science score and at r = .16 with the art & music score. The

composite scores for the social sciences and language did not prove signif-

icant correlations with the CFT-20 R score.

5.4.2 Confirmatory Factor Analysis

Confirmatory factor analysis was applied as statistical means to test the

hypothesis of one underlying latent variable regarding the structure of the

data. The software Mplus (version 5.1) was used to estimate the confir-

matory model fit. Two confirmatory factor analyses were conducted, the

first for the data of all 44 test items, and the second for the data of the

32 Rasch conform items (Rasch conform according to the χ2-statistics; cf.

Table 5.8). For the 44 items, the chi-square test of model fit was significant

(χ2 = 516.13, d f = 273, p = .000). Further the comparative fit index (CFI)

and Tucker-Lewis index (TLI) were obtained. These indices for model fit,

however, did not indicate very good model fit (CFI = .75, TLI = .77). Yet, the

RMSEA (root mean square error of approximation) indicated good model

fit (RMSEA = .043). For the 32 Rasch items following results were obtained:

the chi-square test of model fit was significant (χ2 = 387.24, d f = 212, p =

.000) and the comparative fit index and Tucker-Lewis index again could not

confirm very good model fit (CFI = .69, TLI = .71). The RMSEA, however

again proved good model fit for the Rasch items (RMSEA = .041). Thus,
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in both analyses, the assumption of unidimensionality was only weakly

supported.

5.4.3 Estimating Parameters According to IRT-Models

BILOG-MG software (Zimowski, Muraki, Mislevy, & Bock, 1996) was used

to estimate item parameters according to the item response theory. Ex-

pected a posteriori (EAP) estimates of ability were calculated using the

software.

For the total sample Table 5.8 presents item statistics for the 1PL model

and Table 5.9 for the 2PL model. Besides item difficulty, defined by the la-

tent underlying dimension where the probability to solve the item is 50%,

the standard error (SE) of the item difficulty is listed. Since the 1PL model

assumes equal item discrimination for all items, the discrimination param-

eters are only given for the 2PL model in Table 5.9. For the 1PL model

sigma varied between -4.65 (item 1.3) indicating a very easy item and 3.78

(3.2) indicating a very difficult item. These figures correspond to the diffi-

culty indices of the CTT listed above where item 1.3 represents the easiest

item with p = .93 and item 3.2 is the most difficult one with p = .11. Mean

IRT-item difficulty was .21 (SD = 1.61). For the 2PL model mean item dif-

ficulty was .49 (SD = 1.89) and item discrimination parameters dispersed

from .17 to .69 with an average discrimination of .40 (SD = .13).

In order to determine if single items showed significant deviation from the

1PL or the 2PL model, statistical tests of goodness of fit had to be calcu-

lated. The χ2-fit statistics are probably the most widely used in applied
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research. Unfortunately, they are often viewed as inconclusive evidence of

adequate fit, because of their sensitivity to sample size and their insensitiv-

ity to certain forms of misfit. Therefore, additional tests for significance can

be applied, given that the results of the χ2-test can only be interpreted with

certain restrictions. According to Rost (2004), the Q-index, here computed

by the program Winmira (von Davier, 2001), is a measure of task fit for the

1PL model based on the log-likelihood of observed item-pattern. Tests for

significance of Q therefore allow interpreting underfit (p < .05) and overfit

(p > .95) of tasks.

According to the Z statistic of the Q-index, 31 items of the test showed

model fit with the 1PL model. Only some items did not prove sufficient

model fit with the 1PL model (Table 5.8): Items 2.12, 3.11, 4.6, 4.7, 4.11

showed overfit (p > .95) and items 1.7, 2.5, 2.8, 3.2, 3.10, 3.12, 4.9, 4.10

showed underfit (p < .05). Referring to the χ2-fit indices, 32 test items fitted

the 1PL model. The following items showed deviations from the 1PL model

according to the χ2-fit indices (p < .05): 1.3, 2.5, 2.7, 2.12, 3.2, 3.6, 3.11, 4.4,

4.6, 4.7, 4.9, 4.11. Thus both model fit indices overlapped in rejecting 8 items

due to insufficient model fit with the 1PL model. For the 2PL model the

χ2-fit statistic indicated that only items 3.2 and 4.9 significantly deviated (p

< .05) from the model (Table 5.9).

Besides identifying the items deviating from the 1PL model by means of

the fit indices, analyses in terms of deviation from the 1PL model should

be extended with regard to item properties. Distinctive features such as

item difficulty, item discrimination and the item characteristic curves (Fig-

ure A.1 of Appendix A) might explain the deviation of certain items from
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the 1PL model. Item 1.3 was very easy: 93 % of the subjects correctly

solved that item. The item was thus considerably easier than the average

item difficulty of subtest 1. Looking at the item characteristic curve (ICC)

for that item (Figure 5.3), the probability of solving the item at medium

ability levels was a lot higher than to be expected according to the item

function of the 1PL model. This explains the misfit with the 1PL model

according to the χ2-index. Misfit according to the Q-index was also indi-

cated for item 1.7 which was rather easy but not too easy compared to the

other items of subtest 1. The ICC however shows that the item provided

higher discrimination at lower ability levels and was more informative for

these ability levels. Almost no item discrimination power was provided by

item 2.5. This item was quite difficult however, and looking at the ICC, a

very high ability level was required for a .50 probability to solve the item.

The item thus did not correspond to the function of the 1PL model. Item

2.7 and item 2.8 did not correspond to the 1PL model, according to the χ2-

index respectively the Q-index. However, neither the item parameters of

the items nor the ICCs seemed to provide explanations for the misfit of the

items to the 1PL model. Information provided by the item 2.7 was slightly

higher for the lower medium ability level whereas information provided by

item 2.8 was slightly higher for the upper medium ability level. Regarding

the item difficulty of item 2.12 no distinct feature in terms of difficulty was

yielded since about half of all subjects correctly solved the item. The item

however, provided rather high discrimination power compared to the other

test items and might thus not correspond to the 1PL model that assumes

equal item discrimination parameters for all test items. The misfit of that
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item according to the χ2-index and the Q-index might thus be warranted.

Item 3.2 proved to be a very difficulty item. Only 11% of the subjects cor-

rectly solved the item. Looking at the ICC, a medium solving probability

could not be obtained at medium ability levels as expected from the 1PL

model function. Further, the negative item discrimination parameter ex-

plained the misfit of the item to the 1PL model as indicated by the Q-index

as well as the χ2-index. With regard to the misfit of item 3.6 to the 1PL

model according to the χ2-index, no evident deviation from the 1PL func-

tion could be obtained looking at the ICC of that item. The same applied to

items 3.10 and 3.11 for which misfit was indicated by the Q-index, respec-

tively by both indices. Item 3.12 was rather difficult and only provided a

low discrimination power. Looking at the ICC, only higher ability subjects

were able to achieve a medium probability of solving the item. Thus the

item function of that item did not correspond to the function of the 1PL

model. With 64% of the subjects solving that item, item 4.4 was quite easy

compared to the items of its corresponding subtest. However, looking at

the ICC, no distinct deviations could be found. Just like item 4.4, item 4.6

appeared to be rather easy with a comparatively high item discrimination

power. This might explain the misfit to the 1PL model which assumes

equal discrimination parameters for all test items. Like the previous item,

item 4.7 might not fit to the 1PL model due to its higher discrimination

power compared to the other test items. The ICC of item 4.9 (Figure 5.4)

did not comply with the characteristics of the function according to the 1PL

model. With only 20% of all subjects solving the item, the item proved to be

very difficult. Subjects of medium ability had a clearly minor probability
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to solve that item than expected by the 1PL model. Almost the same issue

related to item 4.10, in alleviated manner though, since difficulty was not

as high and the item discrimination power not as low. Finally the misfit of

item 4.11 to the 1PL model was indicated according to the Q-index and the

χ2-index. Looking at the ICC for this item no distinct deviations from the

1PL model function, however, could be found.
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Table 5.8: Item Parameters 1PL Model (BILOG)

Item σ SEσ Fit χ2 Fit ZQ Item σ SEσ Fit χ2 Fit ZQ

1.1 1.10 .17 .19 .61 3.1 .16 .16 .69 .46
1.2 .39 .17 .35 .85 3.2 3.78 .24 .00 .00
1.3 -4.65 .31 .02 .82 3.4 -1.31 .18 .24 .90
1.4 -4.39 .29 .42 .66 3.5 .52 .16 .67 .28
1.5 .14 .16 .87 .09 3.6 -.50 .17 .02 .88
1.6 -1.63 .18 .35 .86 3.7 -.16 .17 .16 .89
1.7 -1.61 .17 .06 .03 3.8 2.11 .19 .26 .86
1.8 .43 .16 .38 .69 3.9 .98 .17 .61 .24
1.9 -1.03 .17 .92 .20 3.10 1.85 .18 .91 .03

3.11 .25 .17 .00 .99
3.12 2.03 .18 .15 .01

2.1 .35 .16 .21 .66 4.1 -1.01 .17 .90 .47
2.2 -.98 .17 .51 .30 4.2 .45 .16 .78 .64
2.3 2.37 .19 .98 .16 4.3 1.28 .17 .97 .41
2.4 .37 .16 .50 .75 4.4 -1.07 .17 .01 .82
2.5 2.39 .19 .00 .00 4.5 .87 .17 .54 .66
2.6 -.83 .16 .76 .13 4.6 -.94 .17 .01 .96
2.7 -.61 .17 .00 .94 4.7 -.04 .17 .01 .96
2.8 .84 .16 .37 .02 4.8 -.29 .16 .76 .38
2.9 1.67 .18 .89 .40 4.9 2.52 .19 .00 .00
2.10 1.38 .17 .61 .53 4.10 1.80 .18 .73 .01
2.11 -.70 .16 .62 .32 4.11 .65 .17 .04 .97
2.12 .07 .17 .00 .99 4.12 .43 .16 .94 .44
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Table 5.9: Item Parameters 2PL Model (BILOG)

Item σ SEσ β SEβ Fit χ2 Item σ SEσ β SEβ Fit χ2

1.1 1.03 .22 .37 .06 .55 3.1 .15 .16 .36 .06 .84
1.2 .32 .14 .44 .07 .99 3.2 7.30 2.05 .17 .05 .04
1.3 -2.95 .42 .61 .12 .86 3.4 -.99 .17 .49 .07 .49
1.4 -3.28 .55 .49 .09 .69 3.5 .58 .20 .31 .06 .85
1.5 .16 .19 .29 .05 .99 3.6 -.38 .13 .48 .07 .15
1.6 -1.20 .19 .51 .08 .88 3.7 -.11 .11 .53 .07 .54
1.7 -2.18 .48 .25 .05 .43 3.8 1.57 .24 .50 .08 .77
1.8 .37 .14 .42 .06 .63 3.9 1.13 .27 .30 .06 .70
1.9 -1.17 .28 .30 .06 .77 3.10 2.37 .52 .26 .06 .98

3.11 .15 .09 .69 .09 .25
3.12 2.74 .63 .25 .06 .46

2.1 .32 .14 .40 .07 .53 4.1 -.97 .22 .36 .06 .96
2.2 -.99 .23 .34 .06 .47 4.2 .41 .16 .39 .06 .63
2.3 2.59 .53 .31 .07 .82 4.3 1.14 .22 .40 .07 .99
2.4 .29 .13 .46 .07 .87 4.4 -.81 .16 .49 .07 .32
2.5 4.74 1.24 .17 .04 .09 4.5 .73 .17 .43 .07 .70
2.6 -.94 .24 .30 .06 .99 4.6 -.66 .14 .54 .08 .06
2.7 -.42 .12 .56 .07 .62 4.7 -.03 .11 .53 .08 .46
2.8 1.15 .32 .24 .05 .79 4.8 -.29 .17 .34 .06 .52
2.9 1.56 .27 .38 .06 .33 4.9 4.13 1.06 .20 .05 .01
2.10 1.29 .24 .38 .06 .86 4.10 2.50 .57 .24 .05 .79
2.11 -.70 .19 .35 .06 .61 4.11 .44 .11 .58 .08 .26
2.12 .04 .09 .68 .09 .38 4.12 .41 .16 .37 .06 .66
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Test Information

The test information curves below illustrate the measurement accuracy or

test information at different ability levels and standard errors of measure-

ment for the 1PL model (Figure 5.5) and 2PL model (Figure 5.6). As to

be expected, the information curve for the 1PL model indicates high test

information for medium scale scores (thus low standard errors) but larger

standard errors for lower and higher scale scores (low test information).

For the 2PL model high test information (low standard errors) was also

obtained for medium ability levels but ability at low and high levels could

only be estimated with higher standard errors as the test provided less

information at these ability levels.
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Figure 5.5: Test Information for the 1PL Model
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Figure 5.6: Test Information for the 2PL Model

5.4.4 Goodness of Fit

Information Theoretic Criteria

Faced with a choice between the fit of competing models to the same data

set, one needs to decide which model fits the data best. According to Rost

(2004), different information-theoretic selection criteria can be applied as

goodness of fit measures. Such measures are the AIC (Akaike information

criterion), the BIC (Bayes information criterion), and the CAIC (Consistent

AIC). Information criteria penalize models with additional parameters and

are therefore based on parsimony. BIC and CAIC do not only penalize

for model complexity, but also for sample size. Information criteria have

to be compared to determine which model provides the relative best fit
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to the data: The lower the AIC, BIC or CAIC values the better the model

in comparison to another. As can be seen in Table 5.10 the information-

theoretic criteria BIC and CAIC, based on the likelihoods provided by the

BILOG-MG software, suggest the relative best fit to the 1PL model while

the AIC has a lower index at the 2PL model.

Table 5.10: Goodness of Fit According to Likelihood and Information-
theoretic Criteria

Model Parameter
np

-2LogL AIC BIC CAIC

1PL 87 25680.45 25854.46 26218.29 26305.29
2PL 131 25545.39 25807.39 26355.23 26486.23

Specific Model Tests for the 1PL Model: Tests According to Martin-Löf

and Andersen

Specific model tests, the Martin-Löf-Test and the Andersen-Test, were ap-

plied to test assumptions of the Rasch model in order to judge the goodness

of fit. These tests apply conditional likelihood ratio tests to test the Rasch

model against a Rasch model with less restrictive assumptions.

Martin-Löf-Test

The Martin-Löf-Test estimates item homogeneity according to Martin-Löf

(1973). In terms of a significant Martin-Löf-Test the Rasch model’s assump-

tion of item homogeneity for the test have to be rejected for less restrictive

assumptions. A nonsignificant test would not reject the assumption that

different subgroups of items measure the same underlying latent dimen-

sion.
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For the total sample (N = 484) the Q-index indicated that 13 items did

not sufficiently fit the 1PL model and were thus eliminated from the item

pool for this analysis. The Q-index was chosen as reference criterion for

item selection for the specific model tests as it is according to Rost and von

Davier (1994) sensitive to “item and person misfit” (p. 180). The Martin-

Löf-Test (Table 5.11) was then conducted for the 31 Rasch homogeneous test

items using the software LPCM-Win 1.0 (Fischer & Ponocny-Seliger, 1998).

The item number (even vs. uneven), the number of transformation rules

applied per item (1 & 2 rules vs. 3 rules), and the item parameter (defined

as the median of the item difficulty parameter p according to CTT; median

= .48) were chosen as item selection criteria. The Martin-Löf statistics were

nonsignificant (p > .05) for all item selection criteria. Item homogeneity

could therefore not be rejected and it can be assumed that subgroups of

items measure the same latent dimension.

The Martin-Löf-Test was also applied for all 44 items without pre-selection

due to misfit and results are presented in Table 5.12. The same item selec-

tion criteria were reapplied and the test statistics were again nonsignificant

(p > .05). The assumption that items measure the same trait can therefore

not be rejected.

Andersen-Test

The Andersen-Test (Andersen, 1973) refers to person homogeneity as core

assumption of the Rasch model. A nonsignificant test result in the Andersen-

Test implies that the restrictive Rasch model has to be rejected in favor of

a less restrictive Rasch model, i.e. the Rasch model is valid in different
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score groups and estimates of item parameters in these score groups can

significantly differ. A nonsignificant test result would provide evidence

for the assumption of person homogeneity: Item parameters estimated by

different subgroups of subjects would not significantly differ.

To conduct the Andersen Test, four person selection criteria were chosen

to generate subgroups of subjects: score median, sex, age, and split-half

(according to subject number) of the sample. For the 31 Rasch conform

items (according to the Q-index), the selection criteria age was the only

selection criteria that provided subgroups that did not significantly differ

in estimates of item parameters by the groups (Table 5.13). It can therefore

be assumed that estimates of item parameters are not significantly different

in these two subgroups so that all subjects process the items due to the

same latent variable (Rost, 2004). However, Andersen tests conducted for

all other groups generated by various selection criteria did not support the

assumption of person homogeneity.

Table 5.14 presents the results of the Andersen-Test for all 44 items ap-

plied in the figural analogy test. Selection criteria to generate subgroups

were again median, sex, age, and split-half. The subgroups generated by

means of the criteria age and sex did not significantly differ in item parame-

ter estimates (p> .05), indicating person homogeneity for these subgroups.

The selection criteria median and split-half, however, divided the sample

into subgroups for which person homogeneity cannot be claimed as item

parameter estimates of the groups significantly differed according to the

Andersen-Test.
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5.4.5 Item Construction in Focus

Calculation of a Linear Logistic Test Model

To validate the hypothesized task structure defined by the cognitive oper-

ations and to analyze the impact of these components on item difficulty,

the linear logistic test model (LLTM) was applied. The goal of this analysis

was to explain item difficulty by the underlying construction rationale of

the items. Thus item difficulty was assumed to be additively composed of

the cognitive operations applied in the items. Further, different cognitive

operations were expected to diversely contribute to item difficulty.

The program LPCM-Win 1.0 (Fischer & Ponocny-Seliger, 1998) was used

to calculate the linear logistic test model. The LLTM compares its estimated

item difficulties to the 1PL model estimates of the item difficulties. By

means of the conditional likelihood ratio (CLR) test the maximum of the

conditional likelihood of the data under the LLTM was compared to the

maximum conditional likelihood of the data under the 1PL model. In a first

step all 44 items were included in the calculation of the linear logistic test

model in order to estimate the basic parameters. The LLTM was calculated

for the data of the total sample of 484 subjects as well as for the instruction

and non-instruction groups separately. The following three subsections

present the results of the LLTM calculations for the total sample followed

by the results referring to the instruction group and the non-instruction

group.
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Total Sample

Analyzing the 44 items of the total sample the total likelihood of the LLTM

was -11788.45 and the likelihood of the 1PL Rasch model was -11275.02.

The statistic of the CLR, the Andersen χ2-test statistic displayed by the pro-

gram LPCM-Win 1.0, proved that the LLTM provided a significant worse

fit to the data than the Rasch model (χ2 =1026.86 , d f = 34 , p < .01). How-

ever, the correlation of r = .84 between item difficulties of the LLTM and

the 1PL model indicated that the parameters indeed did not show perfect,

but all the same high coherence. Thus about 70 % of variance in item diffi-

culty could be explained by rules of the construction rationale. Table 5.15

presents estimates of the item parameters according to the LLTM and the

Rasch model calculated by LPCM-Win. Comparing these Rasch parameter

estimates with the parameter estimates presented in Table 5.8 as calculated

by BILOG, to some extent considerable differences between parameter esti-

mates occur. This is due to the different estimate algorithms applied by the

programs: The discrimination parameter of the items presented by BILOG

is not 1 but the mean of the item discrimination parameters of the 2PL

model.

As can be seen in Table 5.16, all parameters were significant (p < .01).

Looking at the estimates for the basic parameters one can derive their im-

pact on item difficulty. The cognitive operations referring to size facilitated

items and thus increased the probability of solving the items involving such

operations. The operation reflection on x-axis contributed the most to item

difficulty, i.e. applying this operation in an item decreased the probability

of solving an item. Reflection-y had the second highest impact on item
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difficulty followed by rotation right, rotation left, sequence plus, sequence

minus, and rotation 180◦.

Table 5.15: LLTM vs. Rasch Parameter: Total Sample (LPCM-Win)

Item LLTM
(rescaled)

LLTM1 RM Item LLTM
(rescaled)

LLTM1 RM

1.1 -.49 -.69 -.52 3.1 -.06 -.08 .03
1.2 .25 .36 -.10 3.2 -.80 -1.13 -2.10
1.3 1.71 2.40 2.88 3.4 .58 .81 .90
1.4 1.70 2.39 2.73 3.5 .21 .29 -.18
1.5 .23 .33 .04 3.6 .21 .29 .42
1.6 .46 .64 1.09 3.7 -.08 -.11 .22
1.7 .88 1.24 1.08 3.8 -.41 -.58 -1.12
1.8 .82 1.15 -.13 3.9 -1.16 -1.63 -.45
1.9 .00 .00 .73 3.10 -.67 -.95 -.97

3.11 -.05 -.07 -.02
3.12 -.43 -.61 -1.07

2.1 -.08 -.11 -.08 4.1 -.06 -.08 .72
2.2 1.17 1.64 .70 4.2 -.80 -1.13 -.14
2.3 -1.45 -2.04 -1.27 4.3 -.30 -.43 -.63
2.4 -.37 -.51 -.09 4.4 .58 .81 .76
2.5 -.96 -1.35 -1.28 4.5 .21 .29 -.39
2.6 1.11 1.56 .61 4.6 .21 .29 .68
2.7 .55 .77 .48 4.7 -.08 -.11 .15
2.8 -.60 -.84 -.37 4.8 -.41 -.58 .29
2.9 -.34 -.48 -.86 4.9 -1.16 -1.63 -1.36
2.10 -.21 -.29 -.69 4.10 -.67 -.95 -.93
2.11 .74 1.04 .54 4.11 -.05 -.07 -.26
2.12 .53 .74 .09 4.12 -.43 -.61 -.13

Note. LLTM1 = variance adjusted parameters; RM = Rasch Model

LLTM for the Instruction Group

The calculation of the LLTM was also separately carried out for the experi-

mental group that received an explanation of the transformation rules prior

to the test (N = 249). Again all 44 items were taken into account and the
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Table 5.16: LLTM: Basic Parameter Estimates, Total Sample (LPCM-Win)

Operation Basic
parameter

SE z-value p

sp .29 .04 7.31 .00
sm .29 .04 7.35 .00
rr -1.19 .06 20.75 .00
rl -1.16 .06 21.08 .00
r180 -.54 .06 9.79 .00
rfx -1.91 .06 32.31 .00
rfy -1.42 .06 23.60 .00
sqp -.96 .04 23.05 .00
sqm -.60 .04 14.52 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

nine basic parameters were estimated. The LLTM total likelihood resulted

in -6037.52 and the Rasch model total likelihood in -5738.32. With a χ2-

statistic of 598.40 (d f =34) the estimated LLTM and Rasch item parameters

(Table 5.18) significantly differed, thus the LLTM again provided a signif-

icant worse fit to the data compared to the Rasch model. However, the

Pearson correlation between parameters of the Rasch model and the LLTM

was r = .83, indicating that the item design variables accounted for a quite

large proportion of explained variance. Table 5.17 presents the estimates of

the basic parameters by the LLTM. Like for the data of the total sample, the

transformations size plus and size minus were equally easy and represent

the transformations that make items easier. The transformation reflection

x was again the most difficult one followed by reflection y, rotation right,

rotation left, sequence plus, rotation 180◦, and sequence minus.
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Table 5.17: LLTM: Basic Parameter Estimates, Instruction Group (LPCM-
Win)

Operation Basic
parameter

SE z-value p

sp .20 .06 3.51 .00
sm .20 .05 3.63 .00
rr -1.30 .08 15.66 .00
rl -1.29 .08 16.17 .00
r180 -.67 .08 8.41 .00
rfx -2.04 .08 24.09 .00
rfy -1.60 .09 18.76 .00
sqp -.97 .06 16.15 .00
sqm -.61 .06 10.64 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

LLTM for the Non-Instruction Group

For the data of the non-instruction group (N = 235) the LLTM provided

a significant worse fit compared to the Rasch model (LLTM total likeli-

hood: -5741.59, Rasch model total likelihood : -5480.11, χ2 = 522.97, d f

= 34). However, the Pearson correlation between LLTM and Rasch item

parameters presented in Table 5.20 was r = .82. Looking at the basic pa-

rameters (Table 5.19) the operations referring to size were again the easiest

transformations with size plus being slightly easier than size minus. The

transformations sequence minus and rotation 180◦ changed positions, but

the order of all other operation corresponded to the rank of the transforma-

tions of the instruction-group with reflection on the x-axis being the most

difficult transformation and thus decreasing the probability of solving an

item the most.
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Table 5.18: LLTM vs. Rasch Parameter: Instruction Group (LPCM-Win)

Item LLTM
(rescaled)

LLTM1 RM Item LLTM
(rescaled)

LLTM1 RM

1.1 -.43 -.58 -.50 3.1 -.09 -.12 -.05
1.2 .31 .42 .13 3.2 -.84 -1.13 -2.19
1.3 1.79 2.42 2.61 3.4 .52 .71 .94
1.4 1.80 2.42 2.86 3.5 .17 .23 -.23
1.5 .29 .40 .08 3.6 .17 .23 .64
1.6 .63 .86 1.99 3.7 -.10 -.14 .04
1.7 .93 1.26 .87 3.8 -.45 -.61 -1.16
1.8 .99 1.34 .09 3.9 -1.20 -1.62 -.48
1.9 .00 .01 .83 3.10 -.76 -1.02 -.96

3.11 -.09 -.13 .06
3.12 -.47 -.63 -1.30

2.1 -.02 -.04 -.25 4.1 -.09 -.12 .54
2.2 1.13 1.53 .62 4.2 -.84 -1.13 -.16
2.3 -1.39 -1.88 -1.37 4.3 -.40 -.55 -.70
2.4 -.30 -.41 -.02 4.4 .52 .71 .71
2.5 -.96 -1.29 -1.50 4.5 .17 .23 -.32
2.6 1.19 1.60 .58 4.6 .17 .23 .73
2.7 .51 .69 .51 4.7 -.10 -.14 .27
2.8 -.60 -.81 -.30 4.8 -.45 -.61 .20
2.9 -.29 -.39 -.84 4.9 -1.20 -1.62 -1.35
2.10 -.23 -.32 -.59 4.10 -.76 -1.02 -1.11
2.11 .83 1.13 .41 4.11 -.09 -.13 -.37
2.12 .49 .67 .15 4.12 -.47 -.63 -.11

Note. LLTM1 = variance adjusted parameters; RM = Rasch Model

145



5 Main Examination

Table 5.19: LLTM: Basic Parameter Estimates, Non-Instruction Group
(LPCM-Win)

Operation Basic
parameter

SE z-value p

sp .40 .06 6.95 .00
sm .38 .06 6.74 .00
rr -1.07 .08 13.55 .00
rl -1.05 .08 13.66 .00
r180 -.42 .08 5.41 .00
rfx -1.79 .08 21.40 .00
rfy -1.24 .08 14.65 .00
sqp -.96 .06 16.16 .00
sqm -.59 .06 9.95 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

To analyze whether the parameter estimates differed in size, a test con-

cerning the differences between the parameter estimates obtained by the

instruction group and the non-instruction group was conducted. Results

are presented in Table 5.21 and show that apart from the transformation

rules sqp and sqm parameter estimates differed between the instruction

group and the non-instruction group.

LLTM Including Random Item Effects

As shown when calculating the LLTM above, accurate predictions of item

difficulties by item properties can hardly be yielded due to strict assump-

tions of the LLTM. The linear logistic test model with random item effects,

however, represents a more realistic approach to validating the cognitive

structure (as described in chapter 3).

Table 5.22 presents the estimates of the parameters. Apart from the op-
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Table 5.20: LLTM vs. Rasch Parameter: Non-Instruction Group (LPCM-
Win)

Item LLTM
(rescaled)

LLTM1 RM Item LLTM
(rescaled)

LLTM1 RM

1.1 -.55 -.81 -.55 3.1 -.02 -.03 .12
1.2 .18 .27 -.36 3.2 -.76 -1.11 -2.00
1.3 1.63 2.38 3.16 3.4 .62 .91 .85
1.4 1.61 2.35 2.61 3.5 .23 .35 -.13
1.5 .15 .23 -.01 3.6 .23 .35 .19
1.6 .27 .40 .43 3.7 -.05 -.07 .39
1.7 .81 1.19 1.27 3.8 -.36 -.54 -1.07
1.8 .64 .94 -.38 3.9 -1.11 -1.62 -.42
1.9 -.00 -.01 .61 3.10 -.58 -.84 -.97

3.11 -.00 .00 -.11
3.12 -.39 -.58 -.83

2.1 -.14 -.20 .08 4.1 -.02 -.03 .89
2.2 1.19 1.74 .77 4.2 -.76 -1.11 -.11
2.3 -1.51 -2.20 -1.15 4.3 -.19 -.28 -.55
2.4 -.43 -.63 -.17 4.4 .62 .91 .79
2.5 -.96 -1.40 -1.04 4.5 .23 .35 -.46
2.6 1.04 1.52 .63 4.6 .23 .35 .61
2.7 .58 .85 .45 4.7 -.05 -.07 .01
2.8 -.59 -.86 -.44 4.8 -.36 -.54 .37
2.9 -.40 -.59 -.87 4.9 -1.11 -1.62 -1.38
2.10 -.17 -.26 -.80 4.10 -.58 -.84 -.74
2.11 .65 .96 .65 4.11 -.00 .00 -.13
2.12 .55 .81 .01 4.12 -.39 -.58 -.15

Note. LLTM1 = variance adjusted parameters; RM = Rasch Model
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Table 5.21: Comparison of Parameter Estimates: Instruction Group vs.
Non-Instruction Group

Operation I-G NI-G Delta SE
(I-G)

SE
(NI-G)

S
(pooled)

Z

sp .20 .40 .20 .06 .08 .07 2.84
sm .20 .38 .18 .05 .08 .07 2.72
rr -1.30 -1.07 .23 .08 .08 .08 2.88
rl -1.29 -1.05 .24 .08 .08 .08 3
r180 -.67 -.42 .25 .08 .08 .08 3.13
rfx -2.04 -1.79 .25 .08 .08 .08 3.13
rfy -1.6 -1.24 .36 .09 .08 .09 4.22
sqp -.97 -.96 .01 .06 .08 .07 .14
sqm -.61 -.59 .02 .06 .08 .07 .28

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus, I-G = parameter
estimates for the Instruction Group, NI-G = parameter estimates for the
Non-Instruction Group

erations size plus and size minus, the estimates of all operations were sig-

nificant. Since the LLTM with random item effects was calculated with the

software SAS, the LLTM was again calculated using SAS to compare the es-

timates of the LLTM with estimates of the LLTM with random effects. The

estimates of the basic parameters for the LLTM are presented in Table 5.23.

For the LLTM calculated by SAS, algebraic signs are reversed and have to

be multiplied by −1 to check them against the estimates of the LLTM with

random item effects.

Comparing the results of both analyses, the standard errors of the model

with random item effects were considerably larger than the ones of the

model with fixed item effects due to the additional error term. Comparison

of the parameter estimates showed - as expected - nearly perfect coherence

(r = .999, p = .000). However, the parameters of the random effects model
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were larger due to the additional random effects that improved the descrip-

tion of the data and led to “larger estimates of the other effects” (Janssen

et al., 2004, p. 204). According to Janssen et al. (2004) small differences be-

tween parameter estimates of the models indicate that item difficulty can

be well described by the item parameters. Thus, analysis of the data by the

linear logistic test model with random effects was effective, and implied ex-

ceeding advantages: Referring to the linear logistic test model with random

effects is less restrictive than the LLTM with fixed item effects and therefore

generally much more realistic. The model with random effects defies the

idealistic premise and accounts for more pragmatic assumptions.

The linear logistic test model with random effects was also calculated

separately for the instruction group and the non-instruction group. The

parameter estimates for the instruction group showed almost perfect corre-

lation with the parameter estimates of the total sample (r = .996, p = .000).

Again both size transformations contributed to the easiness of an item,

but not significantly. A highly significant correlation was also obtained for

the parameter estimates of the non-instruction group with parameter esti-

mates of the total sample (r = .995, p = .000). For the non-instruction group

size again did not significantly contribute to item difficulty, and the trans-

formation 180◦ did not have significant impact on item difficulty either.

Regarding the instruction group and the non-instruction group, a correla-

tion of r = .984 (p = .000) of the parameter estimates was obtained. Tables

of the results of the LLTM analysis with random effects for the instruction

group and the non-instruction group are presented in Appendix A (Tables

A.1 and A.3). The corresponding analyses of the LLTM conducted by SAS
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are also presented in Appendix A (Tables A.2 and A.4).

Table 5.22: LLTM with Random Item Effects: Basic Parameter Estimates,
Total Sample (SAS)

Operation Basic
parameter

SE t-value p

constant 1.49 .29 5.15 .00
sp .34 .23 1.51 .13
sm .30 .22 1.37 .17
rr -1.36 .32 -4.25 .00
rl -1.34 .31 -4.35 .00
r180 -.70 .31 -2.27 .02
rfx -2.10 .32 -6.58 .00
rfy -1.58 .34 -4.71 .00
sqp -1.05 .23 -4.59 .00
sqm -.71 .23 -3.10 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

LLTM with Random Item Effects for Rasch Conform Data

The linear logistic test model with random effects was also calculated for

a model containing only Rasch conform items. The Rasch conform items

were selected according to the χ2-fit statistic (Table 5.8). According to the

χ2-fit statistic, 12 items were not conform to the Rasch model and were thus

excluded from the analysis. Table 5.24 shows the results for the analysis

with the 32 remaining Rasch conform items. Parameter estimates for the

transformation rules as well as standard errors for the estimates and sig-

nificance parameters are presented. Parameter estimates for the 32 Rasch

conform items and estimates for the 44 test items analyzed according to the

LLTM with random effects (Table 5.22) significantly correlated (r = .997, p
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Table 5.23: LLTM: Total Sample (SAS)

Operation Basic
parameter

SE t-value p

sp -.29 .04 -7.40 .00
sm -.29 .04 -7.39 .00
rr 1.18 .06 20.94 .00
rl 1.16 .05 21.28 .00
r180 .54 .05 9.86 .00
rfx 1.91 .06 32.30 .00
rfy 1.42 .06 23.82 .00
sqp .96 .04 23.58 .00
sqm .60 .04 14.88 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

= .000). The impact of both size transformations was again not significant.

Further, the cognitive operation rotation 180◦ did not yield significant im-

pact on item difficulty either.

Looking at the parameter estimates of the LLTM with random effects

for the Rasch conform items, both size operations proved almost identical

estimates, as did the transformations 90◦ rotation right and 90◦ rotation

left. Thus, an alternative, more parsimonious model was considered. The

two size transformations were integrated and a new parameter size, com-

bining the transformations size plus and size minus, was generated. The

rotation transformations 90◦ left and 90◦ right were subsumed and a joint

transformation rotation was created. The transformation 180◦ rotation was

not subjoined, since its parameter estimate was too different from both 90◦

rotation transformations, indicating a difference in execution of this oper-

ation. The cognitive operations reflection about the x-axis and reflection
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Table 5.24: LLTM with Random Item Effects for Rasch Conform Items (k =
32, N = 484) (SAS)

Operation Basic
parameter

SE t-value p

constant 1.26 .34 3.77 .00
sp .28 .29 .98 .33
sm .30 .24 1.23 .22
rr -1.12 .37 -3.04 .00
rl -1.12 .35 -3.18 .00
r180 -.66 .35 -1.86 .06
rfx -1.64 .37 -4.43 .00
rfy -1.35 .36 -3.69 .00
sqp -1.00 .28 -3.52 .00
sqm -.58 .29 -2.02 .04

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

about the y-axis were combined to reflection and it was further not distin-

guished between sequence plus and sequence minus operations, since the

transformation sequence accounted for both. Thus only five parameters (in-

stead of nine parameters) were included in the model, analyzing the 32

Rasch conform items. Table 5.25 presents the results. The size operation

still did not yield significant impact on item difficulty, but the estimate

of the 180◦ rotation-transformation significantly influenced difficulty. All

other parameter estimates were significant, and the cognitive operation re-

flection again contributed to difficulty the most.

Two linear logistic models with random item effects were thus obtained

for the Rasch conform items. The first model incorporated all nine trans-

formation rules as model parameters (cf. Table 5.24) and the second model

resulted by combining parameters of the first model to a more parsimo-
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nious model with only five parameters. A likelihood ratio test (LRT) was

applied for comparison of the likelihood of the data given the parsimo-

nious model with the likelihood of the data given the original model. The

LRT was significant (χ2 = 18.3, d f = 4, p = .001) and the more parsimonious

model with five parameters only could thus not explain the data as well as

the complex model with nine parameters.

Table 5.25: LLTM with Random Item Effects: Parsimonious Model for
Rasch Conform Items (k = 32, N = 484) (SAS)

Operation Basic
parameter

SE t-value p

constant 1.29 .33 3.90 .00
size .24 .22 1.09 .28
r180 -.72 .35 -2.06 .04
rotation -1.10 .31 -3.55 .00
reflection -1.52 .32 -4.78 .00
sequence -.78 .25 -3.13 .00

Note. r180 = rotation 180◦

5.4.6 Impact of Elements on Item Difficulty

Besides analyzing the influence of cognitive operations on item difficulty,

a closer look was also taken on the impact of the different elements. It was

assumed that letters and digits had different impact on item difficulty and,

depending on the type of element chosen, inferring the relation between

the A term and the B term might be unequally difficult.

Having applied two categories of elements in the items (letters and dig-

its), four ways of combining the A & B terms with the C & D terms were

generated. Letters of the A & B terms could be combined with letters of

the C & D terms (ll). Further, digits of the first two terms could be com-
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bined with digits of the C & D terms (dd). The restriction imposed on the

application of elements necessitated that elements in A and B, and in C and

D had to be of the same category, but categories between A & B and C & D

could differ. Therefore items could also contain digits in the A & B terms

and letters in the C & D terms (dl), or letters in the first terms and digits in

the latter (ld).

Like in the LLTM-analysis of the transformations, the program LPCM-

Win 1.0 (Fischer & Ponocny-Seliger, 1998) was applied to analyze the im-

pact of elements on item difficulty. As can be seen in Table 5.26, inferring

the transformation rule from letters and applying the rule to letters (ll) sig-

nificantly increased item difficulty. Item difficulty was also significantly

increased when digits of the A & B terms were combined with letters of

the C & D terms (dl). Further, the combination of letter-digit elements (ld)

did not significantly contribute to item difficulty. The probability to solve

an item was significantly increased, and items thus facilitated, when the

transformation rule had to be inferred from digits in the A & B terms and

applied to digits in the C & D terms (dd).

Table 5.26: LLTM: Combination of Letters and Digits (LPCM-Win)

Element Basic
parameter

SE z-value p

ll -.13 .03 4.0791 .00
dd .43 .03 12.5037 .00
dl -.24 .03 7.0972 .00
ld -.05 .03 1.6509 .09

Note. ll = letter-letter combination of A- and C-elements, dd = digit-digit
combination of A- and C-elements, dl = digit-letter combination of A- and
C-elements, ld = letter-digit combination of A- and C-elements
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Table 5.27: LLTM: Orientation of A-Elements (LPCM-Win)

Element orientation Basic
parameter

SE z-value p

A normally oriented .20 .04 5.01 .00
A 90◦ left rotated .29 .04 8.15 .00
A reflected on x-axis .37 .08 4.52 .00
A 180◦ rotated -.03 .04 0.72 .47
A 90◦ right rotated -.40 .04 11.17 .00
A reflected on y-axis -.43 .04 10.24 .00

Further, the impact of the initial position or orientation of elements was

of particular interest. For this purpose the orientation of the A-elements

was examined and recorded. In the existing test version, A-elements were

either “normally” orientated, rotated 90◦ to the left or right, or 180◦ rotated.

A-elements were also presented as reflected elements about their x-axis or

y-axis. Results are shown in Table 5.27. Apart from when the element

was presented in a 180◦ rotated position, all orientations of elements were

significantly related to item difficulty. Normally orientated elements, 90◦

left rotated elements, and elements rotated about the x-axis made items

easier. Elements orientated 90◦ to the right and elements reflected on the

y-axis increased item difficulty and therefore reduced the probability of

solving an item.

The format in which C-elements were displayed was analyzed likewise.

When digits were applied as elements in the C term, item difficulty sig-

nificantly decreased whereas when letters were applied as elements, item

difficulty significantly increased (Table 5.28). Every orientation of the C-

element applied in the test significantly contributed to item difficulty. Nor-

mally angled C-elements, 90◦ right rotated elements, as well as elements
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reflected on the x-axis, were positively related to item difficulty, thus in-

creased difficulty. Elements that were presented 90◦ rotated to the left or

180◦ rotated contributed to the easiness of an item, thus facilitated items.

Table 5.29 presents summarized findings of the analysis on elements

when A-elements and C-elements were jointly examined. All basic param-

eters analyzed yielded significant impact on item difficulty. However, con-

sistent as well as inconsistent findings concerning the impact of A- and C-

elements on item difficulty are reported. Corresponding findings apply to

the 90◦ rotations: left rotated A-elements and left rotated C-elements both

increased the probability of solving an item, and right rotated elements, in

the A term as well as the C term decreased the probability of solving an

item. Looking at the values of these parameters, left rotated A-elements

influenced difficulty to the same degree as did left rotated C-elements. The

value of the parameter for right rotated A-elements was more than twice

as high as the value of the parameter for the right rotated C-elements.

Opposed findings on the impact of elements on item difficulty were re-

vealed for all other parameters: Normally oriented A-elements eased items

whereas normally oriented C-elements impeded items. The same finding

could be observed for elements reflected on the x-axis where A-elements

decreased item difficulty and C-elements increased item difficulty. Regard-

ing the elements presented in a 180◦ rotated position, A-elements were

positively related to item difficulty whereas C-elements facilitated items.

Finally, impact of elements on item difficulty and impact of transforma-

tion rules on item difficulty were jointly analyzed by means of the linear

logistic test model. A review of the parameter estimates of the elements
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Table 5.28: LLTM: C-Elements (LPCM-Win)

Element Basic
parameter

SE z-value p

C letter -.14 .04 3.90 .00
C digit .14 .04 3.90 .00
C normally oriented -.22 .04 5.89 .00
C 90◦ left rotated .28 .04 7.50 .00
C reflected on x-axis -.27 .04 7.07 .00
C 180◦ rotated .35 .03 10.79 .00
C 90◦ right rotated -.14 .03 4.11 .00

Table 5.29: LLTM: Elements A & C (LPCM-Win)

Element Basic
parameter

SE z-value p

A normally oriented .21 .05 4.23 .00
A 90◦ left rotated .41 .04 9.67 .00
A reflected on x-axis .79 .10 8.22 .00
A 180◦ rotated -.50 .06 8.61 .00
A 90◦ right rotated -.44 .04 11.28 .00
A reflected on y-axis -.48 .05 9.11 .00
A letter -.32 .04 8.32 .00
A digit .32 .04 8.32 .00
C letter -.10 .04 2.90 .00
C digit .10 .04 2.90 .00
C normally oriented -.23 .05 4.90 .00
C 90◦ left rotated .42 .05 8.59 .00
C reflected on x-axis -.36 .04 8.31 .00
C 180◦ rotated .33 .04 8.88 .00
C 90◦ right rotated -.17 .04 4.05 .00
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of the A and C terms (cf. Table 5.29) and the cognitive transformations

applied in the test (cf. Table 5.16) should thus be obtained. To reduce the

number of parameter estimates, it was not further distinguished between

the degree of element rotation or reflections on the x-axis or y-axis but

combined parameters (A rotated, A reflected, C rotated and C reflected)

resulted. Looking at the results of the LLTM analysis (Table 5.30) it is

noticeable that the absolute value of the estimates of the elements was

generally by far lower than the absolute values of the transformation pa-

rameter estimates (apart from the size operations). Among the A-element

estimates, reflected A-elements, as well as letters and digits as elements

contributed to item difficulty whereas rotated A-elements contributed to

item easiness. Rotated C-elements as well as reflected C-elements and dig-

its enhanced the easiness of items whereas normally oriented C-elements

and letters contributed to item difficulty. Among the transformation rules,

estimates showed that reflection of elements on their x-axis increased item

difficulty the most, followed by rotation right, reflection on the y-axis, and

rotation left. Then, with less impact in terms of the absolute value, but still

related to the difficulty of an item, sequence plus, sequence minus, and ro-

tation 180◦ followed. Again, as expected, both size operations made items

easier.
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Table 5.30: LLTM: Elements and Transformations (LPCM-Win)

Element/Transformation Basic pa-
rameter

SE z-value p

A normally oriented .03 .05 .60 .55
A rotated .12 .04 3.49 .00
A reflected -.15 .05 3.28 .00
A letter -.17 .04 4.45 .00
A digit .17 .04 4.45 .00
C normally oriented -.19 .04 4.40 .00
C rotated .13 .04 3.66 .00
C reflected .06 .04 1.28 .20
C letter -.16 .04 4.30 .00
C digit .16 .04 4.30 .00
sp .34 .04 8.38 .00
sm .37 .04 9.04 .00
rr -1.55 .07 23.47 .00
rl -1.19 .06 19.58 .00
r180 -.62 .06 10.60 .00
rfx -1.90 .06 32.68 .00
rfy -1.49 .06 23.35 .00
sqp -.87 .04 19.57 .00
sqm -.65 .04 15.22 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus
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6
Summary and Discussion

The aim of this dissertation was the rule-based construction of a figural

analogy test, the empirical examination of its psychometric properties, and

the validation of the underlying rationale. Figural analogies as subject

of the test were chosen because of their indicative function of reasoning

ability, a core concept of human intelligence.

Subsequently, results are summarized and discussed in accordance with

the stated research questions and hypotheses of this thesis. The first re-

search question referred to constituents of item difficulty and the analysis
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of cognitive components. Besides the impact of cognitive transformations

applied in the tasks, the impact of different elements on item difficulty was

analyzed. The second research question concerned the difference between

the test scores of the instruction group and the non-instruction group. The

last research question engaged in the relationship of the test to scholastic

achievement. In the discussion, references to the research questions and

hypotheses are made where appropriate. Concluding remarks of this dis-

cussion are on future prospects and related research topics with regard to

this study.

For the rule-based test construction the following components were cho-

sen to design the items. Letters and digits were chosen as elements of this

test. As elements of the A term they had to be asymmetric in their vertical

and horizontal axis to ensure that rules changing the element from A to

B could be univocally inferred by the participants of the study. For rules

transforming the elements from A to B and thus from C to D, nine dif-

ferent rules were applied. These rules could be assigned to four different

categories: Reflection, rotation, size, and sequence. The category reflection

referred to reflecting the element about its x-axis or y-axis. The rotation

category involved rotations of the elements in different angles: 90◦ right,

90◦ left, and 180◦. Size transformations were used to increase or decrease

elements in their visual appearance. In the category sequence, sequence

plus and sequence minus transformations were distinguished. When se-

quence plus was applied letters were consecutive according to the alphabet

and digits were increased according to arithmetic addition. Sequence mi-

161



6 Summary and Discussion

nus required to go backwards in the alphabet when letters were applied,

and to subtract when digits were applied. The absolute value or alpha-

betic interval between the C term and the D term was determined by the

equivalent value or interval between the A term and B term.

The test was composed of four subtests with a total of 44 items. In the

first subtest one transformation rule per item was applied. In the second

subtest two rules per item were applied, and items of the third and fourth

subtests contained three rules each. Apart from items of subtest 1, all items

displayed nine response alternatives plus the option “no solution right”.

Items of subtest 1 presented only five distractors plus the “no solution

right” - option.

In the main examination of the study 484 students of various German

high schools were tested with the analogy test. Testing time was limited

for each subtest. Subjects were randomly assigned to two different exper-

imental groups: In the instruction group the transformation rules applied

in the test were explained to the subjects on basis of examples. In the non-

instruction group subjects only received general test instruction and were

not introduced to the cognitive operations applied in the test.

Regarding the evaluation according to the classical test theory for the total

sample, item difficulty parameters yielded satisfactory values: Parameters

ranged from .11 to .93, and only one item yielded a parameter below .20

and only two items proved parameters above .80. Excluding one item (item

3.2) due to its negative discrimination parameter, item discrimination pa-

rameters yielded a mean discrimination power of .23. Interpreting the item
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discrimination parameters, the relation between item difficulty and dis-

crimination power has to be taken into account. Very difficult and very

easy items can obtain lower item discrimination parameters compared to

items of medium difficulty. In this test only two items proved solving

probabilities of above 90% and only one item was solved from 11% of the

subjects. This was the most difficult item and the only item processed by

the total sample that had a negative discrimination parameter. However,

the low mean item discrimination parameter of the test cannot only be ex-

plained in terms of extreme item difficulties since only these three out of

44 items accumulated at the extreme ends of the difficulty scale. A pos-

sible reason for the low discrimination parameters might have been the

constraint of testing time. The time limit chosen might have been too tight

so that, for example, good but slow participants were not able to process

certain items. Thus, extended testing time, generous enough for most of

the subjects to process all items could possibly enhance the discrimination

power of the items and the test.

Mean comparisons between the analogy scores obtained by the instruc-

tion group and the non-instruction group showed that the instruction group

significantly outperformed the non-instruction group. Sample compar-

isons confirmed that subjects of the two groups did not a priori significantly

differ, neither in the CFT-20 R test, nor in school performance as measured

by composite scores. Difference in performance on the analogy test could

therefore be attributed to the different instructions received. Thus subjects

that were introduced to the various cognitive operations, that had to be

inferred from A to B and applied onto the C term to generate D, score-wise
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benefited from this instruction. These findings support the hypothesis of

the second research question, assuming that the instructed group performs

significantly better than the non-instructed group.

Validity estimates of the figural analogy test were obtained by corre-

lations with the CFT-20 R test scores and a coefficient of r = .36 was

calculated. Discriminating between the instruction group and the non-

instruction group different validity estimates were indicated. The analogy

test scores of members of the non-instruction group correlated only r =

.24 with the CFT-20 R test scores whereas the analogy test scores of the

instruction group correlated r = .54 with the CFT-20 R test scores.

Further, self-reported school grades were consulted for additional va-

lidity estimation by scholastic achievement. For this purpose, composite

scores of the reported school grades were established. Correlations be-

tween the analogy test score and the composite scores were calculated:

Apart from the social science composite score all correlations were highly

significant. In accordance with the hypothesis of the third research ques-

tion, among all composite scores the maths & science score correlated the

highest with the analogy test score (r = .22). Art & music correlated r = .16

and the language composite score correlated r = .10 with the analogy test

score. For each participant an average grade score of all reported grades

was calculated and this composite score correlated at .18 with the analogy

score. However, the mediocre relationship between scholastic achievement

and the analogy test score, that was assumed in the third research question

could not be confirmed.
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The test was also analyzed according to item response theory models.

According to the χ2-fit statistic 12 items showed misfit when parameters

were estimated applying the 1PL model. Under the 2PL model, two items

showed misfit. Analyzing all items, among the information-theoretic crite-

ria, the BIC- and CAIC- indices suggested the relatively best fit for the 1PL

model whereas the AIC suggested the relatively best fit for the 2PL model.

For both, the 1PL model and the 2PL model, test information curves of

all items indicated highest test information for medium ability levels and

showed that standard errors increased as a function of increasing or de-

creasing ability levels (increasing or decreasing from the medium ability

level). Thus, test information decreased with extreme ability levels.

The main issue of the study referred to the first research question and thus

the validation of the cognitive structure of the analogy test and the estima-

tion of the impact of the item components on item difficulty by means of

the linear logistic test model.

Ranking the transformation rules according to their difficulty, follow-

ing order of increasing difficulty was obtained for the total sample: Size

plus/size minus, 180◦ rotation, sequence minus, sequence plus, 90◦ rota-

tion left, 90◦ rotation right, reflection about the y-axis, and reflection about

the x-axis. Both size operations were equally easy and made items easier.

All other transformations were positively related to item difficulty, thus de-

creased the probability to solve an item. The 90◦ rotation transformations

almost equally contributed to item difficulty, whereas the 180◦ rotation

was relatively easier. Reflection transformations contributed to difficulty
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the most.

The linear logistic test model was also separately conducted for the in-

struction group and the non-instruction group. For the non-instruction

group the transformation rules showed the same ranking as for the total

sample and the size operations again made items easier. Size plus was

slightly easier than size minus and reflection about the x-axis again in-

creased difficulty the most. For the instruction group both size operations

were equally easy and once more the easiest transformations. Sequence mi-

nus and the 180◦ rotation transformation were interchanged in rank with

sequence minus being marginally easier than the 180◦ rotation. The rank

order of all other transformations remained the same. Thus, in all analyses

every cognitive transformation significantly influenced item difficulty.

The stated hypothesis among this issue suggested that transformations

referring to displacement increase item difficulty and transformations re-

ferring to distortion decrease item difficulty. Because of their character,

the transformations sequence minus and sequence plus could neither be

assigned to the displacement type, nor to the distortion type. As the re-

sults show, findings here are consistent with other research (eg. Whiteley

& Schneider, 1981): Cognitive operations of the category rotation and re-

flection significantly contributed to item difficulty the most except for the

transformation 180◦ rotation. Both size operations significantly contributed

to item facileness as they increased the probability of solving an item. Thus

neglecting the transformation 180◦ rotation the hypothesis of the first re-

search question of the study can be confirmed for the total sample as well

as for the instruction group and the non-instruction group. With minor
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deviations in the rank order of transformations obtained by the instruction

group, the second hypothesis of the second research question falls into

line here, assuming that, conducting separate analyses for the instruction

group and the non-instruction group, cognitive operations do not differ

in their order of difficulty for those groups. However, the hypothesis as-

sumes further that the absolute values of parameter estimates do not differ.

To analyze this issue precisely, a test concerning the differences between

the parameter estimates obtained by the instruction group and the non-

instruction group was conducted. Results showed that experimental varia-

tion effected all parameters except sqp and sqm. Thus, the assumption of

equal parameter estimates cannot be confirmed. However, looking at the

SE estimates for both groups obtained by the random effect models and

conducting a test of differences, no differences between the groups are ob-

served and the hypothesis can therefore confirmed. Thus, depending on

the model chosen, the hypothesis can either be rejected or confirmed.

Different cognitive processes involved in the transformations seem to

be responsible for the variability in the impact of the transformation cat-

egories on item difficulty. In general, reflection of elements is more diffi-

cult than rotation of elements, which is more difficult than sequence and

size transformations. Different cognitive operations involved in the trans-

formation processes of the elements account for the different parameter

estimates: The process of reflecting elements is more complex than the

process of rotating elements since reflecting involves an additional abstract

process. Performance of sequence processes mainly involves relational re-

quirements and size operations mainly require visual thinking. Thus, the
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role of different information-processes involved in various transformation

categories and their impact on item difficulty offer a great potential for fur-

ther research.

Further, the impact of the elements applied in the items processed by the

total sample was analyzed by means of the linear logistic test model. First,

the impact of the type of element (digit or letter) in the A & B terms and

in the C & D terms was studied. Digit-digit combinations (A & B elements

and C & D elements are both digits) significantly made items easier and

letter-digit combinations (A & B elements represent letters whereas C &

D elements represent digits) did not significantly contribute to item diffi-

culty. Letter-letter combinations and digit-letter combinations were both

significantly related to item difficulty and decreased the probability of cor-

rectly solving an item. In comparison digit-letter combinations were more

difficult than letter-letter combinations.

It was also examined if the orientation of the A term elements played

a significant role for item difficulty when relations were inferred from A

to B. Analysis of only the A-elements showed that presentation of the A-

element in a 180◦ rotated initial position did not yield significant impact

on item difficulty. Normally oriented, and 90◦ left rotated A-elements, and

elements reflected about the x-axis significantly decreased item difficulty,

thus increased the probability of solving an item. When the A-element was

presented in a 90◦ right rotated orientation or reflected on its y-axis, item

difficulty increased.

Analyzing the C-elements, different orientations and types always proved
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significant impact on item difficulty. When the C-element was a digit, 90◦

left or 180◦ rotated, a contribution to the easiness of an item was made.

When the C-element was a letter, normally orientated, reflected on its x-

axis, or 90◦ right rotated, item difficulty was significantly enhanced.

A joint analysis of the A- and C-elements revealed following significant

impact: Normally oriented, 90◦ left rotated, and x-reflected A-elements

made items easier. Further, 90◦ left and 180◦ rotated C-elements made

items easier, too. Among the features increasing item difficulty 180◦ ro-

tated A-elements contributed to item difficulty the most. Digits chosen as

elements for A and C predicted items of minor difficulty whereas letters

chosen as A- and C-elements predicted items of high difficulty.

Thus, the impact of element orientation was not always consistent and

provided no clear structure. Future research should analyze the impact

of single digits and letters applied. Transformation of the element K, for

example, might have a different difficulty than the transformation of the

element B or the digit 3. Knowing the impact of single elements and their

interaction with element orientation will certainly clarify the above stated

findings regarding the impact of element orientation on item difficulty.

Summarized, the pre-hypothesized task structure could be validated. To

construct items of enhanced difficulty only transformations and elements

positively related to item difficulty should be allowed for, if one aims to

construct difficult test items. Hence, it should be considered to apply only

such transformations and elements and ignore those that ease items. Pro-

viding the participants with information on the transformational rules ap-
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plied in the test, enables one to practice these cognitive operations required

to correctly solve the items, and enhances the establishment of equal a pri-

ori test conditions for all subjects. Only then, differences in test scores can

be attributed to real differences in ability and not to differences in practice

and test taking experience. The predictive validity of the test for school

performance was confirmed but can be improved since correlations were

lower than expected.

Critical reflection can be allowed on two further issues: The culture-fairness

of the test and the sample comparison of the instruction and non-instruction

group. Culture-fair tests aim to capture the subject’s ability independent

of his or her cultural background. Thus emphasis on knowledge depend-

ing on education and cultural background should not be made. However,

this study’s transformations sequence plus and sequence minus, applied

to digits and letters as elements, require the knowledge of the order of

numbers and knowledge of the alphabet. Therefore, strictly speaking, this

cognitive demand does not correspond to the characteristic of pure culture-

fair tests, since participants of different backgrounds might not meet these

requirements or do not provide such knowledge. The test can therefore

be considered a merely restricted culture-fair reasoning test because of the

constraint imposed by the sequence transformations.

The sample comparison conducted only alluded to some of the subjects,

and did not include all participants because not all test takers were required

to take part in the CFT-20 R test. Thus the statement that the instruction

group and the non-instruction group did not differ in the CFT-20 R test
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score is inferred from subsamples that provided these measures.

6.1 Future Prospects

Effects of learning and training, and the stability of the construct reasoning

ability measured by analogies should be examined by retesting samples

several times and measure their increase, decrease or invariance of profi-

ciency. To reliably predict performance across time, the test-retest reliability

of these tasks have to be explored. Retest-reliability indicates the extent to

which test scores can be generalized over a period of time. The greater the

reliability, the less susceptible the scores are to random daily variations and

fluctuations in subjects’ constitution and testing environment.

Another important issue refers to computerized adaptive testing (CAT).

IRT-scaled items are requirement for computer adaptive testing since tests

are tailored to the ability level of each test taker. Examinees thus receive

different sets of items to estimate their proficiency level and IRT allows

computing and comparing scores due to its postulate of invariance. Local

independence is therefore required to ensure sample-independence of item

and ability estimation which in turn is fundamental for adaptive testing.

To adapt the test to the examinee’s ability level, item difficulty esti-

mated by the IRT-model must be known to choose items of a difficulty

that matches the proficiency level of the test taker. The Rasch model offers

good characteristics for CAT as it assumes a continuous scale for item diffi-

culty (σ) and ability (θ). Selecting items adequate in difficulty, information
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can be maximized while minimizing the standard error of measurement

(Gershon, 2005). Thus the difference between item difficulty and ability

needs to be minimized in order to obtain highest measurement precision.

Advantages of CAT are therefore maximized precision of measurement

or ability estimates due to item selection on basis of its information, whilst

applying tests that are shorter than most paper and pencil tests. Test moti-

vation can therefore be increased. However, CAT requires large numbers of

items, pre-calibrated according to IRT in order to provide sufficient items

for each ability level. Large item pools are supposed to ensure that the

same items are not overused for same ability levels but different items of

similar difficulty levels can be applied. Exposure control algorithms can

be applied to ensure test security. Automatic item generation is therefore

needed to allocate large item pools necessary for CAT and constitutes an

important topic of further research.

Having mentioned computerized testing another related research topic

referring to information-processing theories of reasoning tasks and work-

ing memory in particular arises. Computerized test versions enable one to

additionally measure working memory capacity and its role within anal-

ogy and reasoning tasks. The A, B and C terms could be sequently pre-

sented and then masked or faded out and thus the D term would have

to be inferred from memory. Participants could then choose either among

distractors displayed in the item or self-construct their response by means

of drag & drop of presented elements. This test format would enhance fur-

ther research on information-processing theories of reasoning, the essence

of human intelligence.
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Table A.1: LLTM with Random Item Effects: Instruction Group (SAS)

Operation Estimate SE t-value p

constant 1.80 .31 5.76 .00
sp .22 .24 .89 .38
sm .21 .24 .88 .38
rr -1.49 .34 -4.35 .00
rl -1.46 .33 -4.43 .00
r180 -.84 .33 -2.55 .01
rfx -2.24 .34 -6.55 .00
rfy -1.78 .36 -4.96 .00
sqp -1.03 .25 -4.18 .00
sqm -.71 .25 -2.87 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

Table A.2: LLTM: Instruction Group (SAS)

Operation Estimate SE t-value p

sp -.20 .06 -3.51 .00
sm -.20 .05 -3.68 .00
rr 1.30 .08 16.09 .00
rl 1.29 .08 16.41 .00
r180 .66 .08 8.48 .00
rfx 2.04 .08 24.30 .00
rfy 1.60 .08 18.87 .00
sqp .97 .06 16.86 .00
sqm .61 .06 10.71 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus
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Table A.3: LLTM with Random Item Effects: Non-Instruction Group (SAS)

Operation Estimate SE t-value p

constant 1.19 .30 3.98 .00
sp .45 .23 1.93 .05
sm .38 .23 1.69 .09
rr -1.24 .33 -3.78 .00
rl -1.22 .32 -3.88 .00
r180 -.57 .32 -1.82 .07
rfx -1.97 .33 -5.99 .00
rfy -1.39 .35 -4.05 .00
sqp -1.04 .24 -4.42 .00
sqm -.70 .24 -2.96 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus

Table A.4: LLTM: Non-Instruction Group (SAS)

Operation Estimate SE t-value p

sp -.40 .06 -7.02 .00
sm -.38 .06 -6.83 .00
rr 1.07 .08 13.50 .00
rl 1.05 .08 13.64 .00
r180 .42 .08 5.47 .00
rfx 1.79 .08 21.31 .00
rfy 1.24 .08 14.73 .00
sqp .96 .06 16.47 .00
sqm .59 .06 10.33 .00

Note. sp = size plus, sm = size minus, rr = rotation 90◦ right, rl = rotation
90◦ left, r180 = rotation 180◦, rfx = reflection about x-axis, rfy = reflection
about y-axis, sqm = sequence minus, sqp = sequence plus
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Item 1.1 - 1.7

Item 1.8 - 2.5

Item 2.6 - 2.12

Item 3.1 - 3.8

Item 3.9 - 4.3

Item 4.4 - 4.10

Item 4.11 -4.12

 

Figure A.1: Item Characteristic Curves of the Figural Analogy Test Items
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Test Materials

The German instructions of the test versions A and B are presented in the

following sections.
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Testversion A

Figurale Analogien

Sie sehen in den folgenden Aufgaben zwei Elemente vor dem Gleichheit-

szeichen. Diese zwei Elemente stehen in einer bestimmten Beziehung zueinan-

der. Hinter dem Gleichheitszeichen stehen ein anderes Element und ein

Fragezeichen. Rechts daneben finden Sie verschiedene Antwortalterna-

tiven.

Bitte wählen Sie die Antwortalternative aus, die Ihrer Meinung nach anstelle

des Fragezeichens einzusetzen ist, damit zwischen den Elementen hin-

ter dem Gleichheitszeichen dieselbe Gesetzmäßigkeit besteht wie zwischen

den Elementen vor dem Gleichheitszeichen.

Aufgabe ist es also, zuerst die Regeln zu erkennen, nach denen sich das er-

ste Element zum zweiten verhält. Diese Regeln sollen dann zur Ermittlung

des vierten Elementes angewandt werden.

Jede Antwortalternative ist mit einem Buchstaben gekennzeichnet. Bitte

streichen Sie den Buchstaben unter der richtigen Lösung durch.

In dem folgenden Beispiel ist die Antwortalternative b richtig.

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

Sollten sie bei manchen Aufgaben der Meinung sein, dass die richtige Lö-

sung nicht unter den Antwortalternativen ist, so streichen sie bitte den

Buchstaben unter dem Kästchen “Keine Lösung richtig” durch.
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Im Folgenden sind vier Tests mit unterschiedlich vielen und unterschiedlich

schwierigen Aufgaben zu bearbeiten. Für die Bearbeitung der einzelnen

Tests steht Ihnen nur begrenzte Zeit zur Verfügung. Jeder Test besteht aus

zwei Seiten.

Bitte blättern sie innerhalb eines Tests selbständig um und warten Sie nach

jedem Test mit dem Umblättern bis Sie dazu aufgefordert werden!

Der Versuchsleiter gibt vor jedem Test das Startsignal und nach Ablauf

der Testzeit das Stoppsignal. Notizen sind nicht erlaubt. Sollten Sie noch

Fragen zum Test haben, dann stellen Sie diese bitte jetzt!
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Testversion B

Figurale Analogien

Sie sehen in den folgenden Aufgaben zwei Elemente vor dem Gleichheit-

szeichen. Diese zwei Elemente stehen in einer bestimmten Beziehung zueinan-

der. Hinter dem Gleichheitszeichen stehen ein anderes Element und ein

Fragezeichen. Rechts daneben finden Sie verschiedene Antwortalterna-

tiven. Bitte wählen Sie die Antwortalternative aus, die Ihrer Meinung

nach anstelle des Fragezeichens einzusetzen ist, damit zwischen den El-

ementen hinter dem Gleichheitszeichen dieselbe Gesetzmäßigkeit besteht

wie zwischen den Elementen vor dem Gleichheitszeichen. Aufgabe ist es

also, zuerst die Regeln zu erkennen, nach denen sich das erste Element

zum zweiten verhält. Diese Regeln sollen dann zur Ermittlung des vierten

Elementes angewandt werden. Jede Antwortalternative ist mit einem Buch-

staben gekennzeichnet. Bitte streichen Sie den Buchstaben unter der richti-

gen Lösung durch. Insgesamt gibt es neun Regeln, die die Relation zwis-

chen den Elementen bestimmen. Im Folgenden wird jede Regel anhand

von 2 Beispielen erklärt. Sollten sie bei manchen Aufgaben der Mein-

ung sein, dass die richtige Lösung nicht unter den Antwortalternativen

ist, so streichen sie bitte den Buchstaben unter dem Kästchen “Keine Lö-

sung richtig” durch.
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Regel 1: Vergrößerung

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

Regel 2: Verkleinerung

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

Regel 3: 90◦ Rotation rechts

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

Regel 4: 90◦ Rotation links

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig
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Regel 5: 180◦ Rotation

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

Regel 6: Spiegelung an der x-Achse

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

Regel 7: Spiegelung an der y-Achse

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

Regel 8: Addition Zahlen/Buchstaben

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig
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Regel 9: Subtraktion Zahlen/Buchstabe

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

: := ?
a              b                c                d        e                  f

Keine 
Lösung 

 
richtig

Im Folgenden sind vier Tests mit unterschiedlich vielen und unterschiedlich

schwierigen Aufgaben zu bearbeiten. Für die Bearbeitung der einzelnen

Tests steht Ihnen nur begrenzte Zeit zur Verfügung. Jeder Test besteht aus

zwei Seiten.

Bitte blättern sie innerhalb eines Tests selbständig um und warten Sie nach

jedem Test mit dem Umblättern bis Sie dazu aufgefordert werden!

Der Versuchsleiter gibt vor jedem Test das Startsignal und nach Ablauf

der Testzeit das Stoppsignal. Notizen sind nicht erlaubt. Sollten Sie noch

Fragen zum Test haben, dann stellen Sie diese bitte jetzt!
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Zusammenfassung

Schlussfolgerndes Denken oder Reasoning ist in zahlreichen alltäglichen Si-

tuationen unabdingbar. In der Wissenschaft spielt Reasoning in vielen ein-

flussreichen Intelligenzmodellen eine große, oft zentrale Rolle (z.B. Thur-

stone, 1938; Cattell, 1971; Carroll, 1993). Analogieaufgaben gelten im Rah-

men der Erfassung der analytischen Intelligenz als prototypische Aufga-

benart und wurden zum Gegenstand für die Testentwicklung der vorlie-

genden Arbeit bestimmt. Sternbergs Modell der Informationsverarbeitung

(Sternberg 1977a, 1977b) wurde als zugrundeliegendes Prozessmodell für

das Lösen von Analogieaufgaben ausgewählt und ausführlich referiert.

Des Weiteren konnte die prädiktive Validität von Intelligenzleistungen im

Allgemeinen und von Analogieaufgaben im Besonderen bezüglich akade-

mischer Erfolgskriterien aufgezeigt werden, auch um Nutzen und Impli-

kationen für die Praxis zu verdeutlichen.

Im Rahmen der Analyse kognitiver Strukturen in Testaufgaben wurden

Vorteile der regelgeleiteten Testkonstruktion aufgeführt. Voraussetzung der

regelgeleiteten Testentwicklung ist die Spezifikation der Aufgabenparame-

ter, also der kognitiven Operationen, die am Lösungsprozess der Aufgabe

beteiligt sind. Items werden somit nicht willkürlich konstruiert, sondern

werden auf Basis einer zugrundeliegenden Rationalen und prä-experimen-

tellen Hypothesen zur Aufgabenstruktur generiert. Durch Validierung die-

ser kognitiven Struktur und Erklärung der Aufgabenschwierigkeit durch

die Aufgabenparameter entstehen substantielle psychometrische Vorteile.

Beispielsweise können durch Generierung von Items mit adäquaten Schwie-

rigkeiten hinsichtlich des Fähigkeitslevels der Testperson verminderte Stan-



dardschätzfehler realisiert werden.

Im Rahmen der vorliegenden Arbeit wurde ein regelgeleiteter Test zur Er-

fassung des schlussfolgernden Denkens entwickelt. Da es sich um ein neu

konstruiertes Testverfahren handelt, wurde der Test zuerst in mehreren

Vorstudien hinsichtlich seiner psychometrischen Eigenschaften untersucht.

Außerdem verfolgten die Voruntersuchungen das Ziel, erste Aussagen zum

Einfluss der im Test verwandten Regeln auf die Aufgabenschwierigkeit zu

machen. In der anschließenden Hauptuntersuchung wurden 484 Schüle-

rinnen und Schüler der gymnasialen Oberstufe getestet.

Der figurale Analogietest bestand aus vier Untertests, die auf effizienten

Designs beruhten. Die resultierenden Daten der Testitems wurden mit Ana-

lyseverfahren der klassischen Testtheorie und der probabilistischen Test-

theorie ausgewertet. Im Rahmen der klassischen Testtheorie wurden zu-

nächst deskriptive Statistiken der Items dargestellt und Reliabilitätsanaly-

sen durchgeführt. Die Validität des Tests wurde über den Zusammenhang

zum Intelligenztest CFT-20 R (Weiß, 2006) bestimmt. Außerdem wurde zur

Prüfung der prädiktiven Validität für Schulerfolg der Zusammenhang des

Tests mit verschiedenen Schulnoten berechnet. Anschließend wurden die

Itemparameter im Rahmen der probabilistischen Testmodelle geschätzt.

Die vergleichende Passung der Modelle auf den Datensatz und spezifi-

sche Modellgeltungstests für das eindimensionale Rasch Modell wurden

durchgeführt.

Die Überprüfung des Konstruktionsansatzes wurde nicht nur mittels des

Linear Logistischen Testmodells vorgenommen, sondern auch durch An-

wendung des Linear Logistischen Testmodells mit zufälligen Itemeffekten,



um realistischere Annahmen zu gewährleisten. Die prä-experimentell an-

genommene Aufgabenstruktur konnte so validiert werden, da die im Test

angewandten Regeln zur Erklärung der Itemschwierigkeiten herangezo-

gen werden konnten. In der Diskussion wurden diese Ergebnisse kritisch

reflektiert und diskutiert. Ein Ausblick auf die Möglichkeit des Compu-

ter adaptiven Testens und automatischer Itemgenerierung bildete den Ab-

schluss der Arbeit.






