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Abstract

The simulation of the propagation of pressurized, fluid-filled fractures in the subsurface is of great
interest since it allows to numerically evaluate the safety of modern techniques such as hydraulic
fracturing and the extraction of geothermal energy. The main challenge for numerical experiments
is the evolving domain, forcing standard finite element methods to require remeshing whenever
fractures propagate. To overcome that problem unfitted methods as the unfitted discontinuous
Galerkin (UDG) method and the extended finite cloment method (X-FEM) introduce new basis
functions along the crack. Alternatively, phase-field approaches describe the erack implicitly and
regularize it in the sense of [-convergence. In contrast to the former, the latter antomatically
deals with branching and joining of cracks as well as predicting the direction and velocity of a
propagating crack. On the other hand, implicit methods are computationally far more expensive
as the phase ficld must have a high resolution in the proximity of cracks. The present thesis
combines a phase-field approach with the UDG method to exploit the advantages of both. CQuasi-
static evolution of fluid-filled, pressurized fractures is considered. The implicit representation of
cracks predicts the propagation path and velocity and handles changes in the crack topology. An
explicit representation of the crack is then reconstructed as medial axis of a lovel set of the phase
field. Applying the UDG method allows for jumps of the displacement along the reconstructed
cracks. The capability of our method to simulate the crack propagation is shown in some numerical
experiments.

To present, the regularization of the implicit crack description was merely studied for pure linear
elasticity. In this thesis I'-convergence of the approximating functionals to the potential energy of
the system in the presence of additional pressure terms is proven. As a result the inclusion of a
pressurized fluid in phase-field approaches 1z justified.
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Zusammenfassung

Um die Sicherheit modernen Techniken wie Hydraulic Fracturing und Geothermie zu untersuchen,
st die numerische Simulation von Rissen im Untergrund, die mit einer unter Druck stehenden
Flussigheit gefullt sind, von grofler Bedeutung. Das grofite Problem dabet ist das sich verandernde
Gebiet. Standard Finite Elemente Methoden miissen das Gitter stéindig an den propagierenden
Riss anpassen. Nicht ans Gitter angepasste Methoden, wie die *unfitted discontinuous Galerkin”
(UDG) Methode und die “extended finite element method™ (X-FEM) fihren zur Lésung dieses
Problems neue Basisfunktionen entlang von Rissen ein. Alternativ stellen Phasenfeldansitze Risse
nur implizit dar und regularisieren diese Darstellung im Sinne der I'-Konvergenz. Im Gegensatz zu
Ersteren ist bei Letzteren ein automatischer Umgang mit versweigenden und zusammenwachsen-
den Rizsen und die exakte Bestimmung der Ausbreitungsrichtung und -geschwindighkeit moglich.
Dafir muss bei impliziten Methoden das Phasenfeld in der Umgebung von Rissen fein aufgelost
sein, wodurch sie wesentlich rechenintensiver sind. Die vorliegende Dissertation kombiniert deshalb
einen Phasenfeldansatz mit einer UDG Methode um die Vortelle beider Methoden auszunutzen.
Dabet wird die quasi-statische Entwicklung von fliissighatsgefiillten, unter Druck stehenden Rissen
betrachtet. Die implizite Darstellung von Rissen wird verwendet, um Ausbreitungsrichtung und
-geschwindigkeit zu prognostizieren und topologische Anderungen zu behandeln. Daraus wird eine
explizite Darstellung der Risse als mediale Achse einer Niveaumenge des Phasenfeldes gewonnen.
Die UDG Methode erlaubt dann Sprunge fiir die Verschiebung entlang der rekonstruierten Risse.
Wir zelgen die Anwendbarkeit unserer Methode zur Simulation von Rissaushreitung in verschiede-
nen numerischen Experimenten.

Die Regularsierung der impliziten Rissdarstellung ist bis jetzt nur im Falle linearer Elastizitit un-
tersucht. In der vorliegenden Arbeit wird I'-Konvergenz der approxdmierenden Funktionale gegen
die potenticlle Energie des Systems auch im Falle von zusétzlichen Drucktermen bewiesen. Dieses
Ergebnis rechtfertigt die Einbezichung einer unter Druck stechenden Flussighkeit in Phasenfeldmo-
dellen.
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1 Introduction

In recent years the interest in predicting the path fractures take in the subsurface has increased
tremendously. Accurate and efficient predictions are one of the major challenges for new technolo-
gies In energy and environmental research. The best-known application might be the controversial
technique of hydraulic fracturing. Injecting a pressurized liquid into the subsurface via wells in-
duces and enlarges cracks in the rock. As a consequence the flow of oil or gas can be simplified.
While the described technique allows to obtain such fossil resources from unconventional deposits,
its risks for the environment, especially the ground water, yet remain to be investigated thoroughly.
A similar process is used in enhanced geothermal systems. To increase the energy extraction from
underground heat reservoirs, cold water 1s pumped into the rock at high pressure. By this process
called hydro-shearing the permeability of the rock 1z enhanced. Both of these examples have in
common that a fuid-filled fracture propagates due to high pressures. The contrary is the goal
when geologically sequestrating carbon diccdde in the ground. While injecting C'0s into geological
storages one wants to keep the pressure at acceptable lovels. Indeed, if the pressure were exceed-
ingly high as to cause hydro-fracturing, the surrounding matrix could be harmed. As a result, the
05 would no longer be sealed properly.

All three described technologies have the potential to contribute substantially to the fight against
climate change and play an important role for modern energy solutions. However, prior to being
able to apply them safely, the risks for the environment and the population must be understood.
In addition to direct impacts on the ground water, the changed fracture network and permeability
might also affect carthquake probabilities. Due to the dangers and the large scales involved, it s
rather difficult and expensive to conduct risk studies in-situ. As a consequence, numerical modeling
of the propagation of fluid-filled fractures in the subsurface becomes an important prediction tool.
Despite having the further advantage to enable long-term simulations, numerieal studies face some
challenges. First, vory different length-scales are involved. While sometimes the complete discrete
fracture network has to be considered, many processes happen on the significantly smaller scale of
single cracks. The objective of the present thesis is to concentrate on the latter, the behavior of
individual fractures, especially under the injection of a pressurized Hud.

However, even under restriction to one length-scale, the simulation of the propagation process
gives rise to a second substantial numerical challenge. The behavior of cracks can be deseribed
by partial differential equations (PDEs). The standard approach to numerically solve these would
include mesh based techniques like the finite element method (FEM). In any such method it is



1. Introduction

not reasonable to assume that the evolving fracture will stick to element boundaries. We rather
expect it to cut right through mesh cells. Any classical FEM would thus need a remeshing step
whenever the crack propagates to regain an exact representation of the fracture by the mesh. As the
fractures might not only change geometrically, but even topologically (for example if two cracks
join) this process is rather demanding. Furthermore, it is not only the remeshing itself that is

computationally expensive, the new mesh also leads to an increased amount of degrees of freedom.
To overcome this problem, new methods avoiding the remeshing step have been developed.

In order to take the crack into account, one alternative approach is using unfitted methods that
enrich the function space locally. In [MDB99] Moes et al. introduced the “extended finite element
method” (X-FEM), the best-known strategy in this context. A similar approach is given by the
“partition of unity method” [BM97]. Using X-FEM the crack is modeled by introducing new basis
functions along the propagating fracture. Classically the basis is enriched by the sign function or
the Heaviside function, thus reflecting the expected discontinuity at the crack. For an overview
of successful applications of X-FEM we refer the interested reader to [FB10, Fril4]. One major
problem in X-FEMz: is the choice of enrichment functions at crack tips. At these points the induced
strosses are singular. In particular it is rather challenging to determine the correct erack speed and
direction [BCXZ03|. In addition, special treatment is needed for topological changes in the crack,
such as the joining of two cracks or the branching of a single crack [BZMBO4].

Alongside with remeshing techniques and the unfitted methods there exists a third approach over-
coming these difficulties. In [FM98] Francfort and Marigo introduce a method that describes the
crack implicitly. This means it automatically deals with topological changes and avoids the prob-
lems occurring at crack tips in unfitted methods. Based on Griffith's criterion [Gri2l] an energy
minimization problem characterizes the process of crack propagation. The resulting energy explic-
itly includes the shape of the crack and is therefore difficult to handle numerically. A solution to this
problem i= found noting the resemblance with the Mumford-Shah functional from image segmen-
tation [MS89). Ambrosio and Tortorelli [Amb89] proposed a regularization of the latter exploiting
the concept of I'-convergence. Transferring their ideas to the context of fracture propagation, a
so-called phase field 0 < ¢ < 1 is introduced to regularize the crack. As some regularization
parameter £ goes to zero, ¢ becomes equal to one almost everywhere and approaches zero along
the crack. The regularized energy thus converges to the discrete one in the sense of I-limits as
£ — 0. This implicit representation of the crack does not only avoid remeshing but is also capable
of determining the propagation velocity and direction of fractures. Furthermore it automatically
handles events such as the branching and joining of cracks. It was successfully applied in numerical
studies [BFMO00, BFMO08, KM10, MHW10, MWW15b|. While the former studies only deal with
the elastic behavior of the matrix surrounding the fracture, the latter introduce a pressure inside
the fracture into the framework.

In recent years there were also developments combining the advantages of unfitted methods with
phase-field approaches. For example an X-FEM approach can be combined with a phase-field
model around the tip [GSF17]. Thus the phase field predicts propagation direction and velocity.
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A reconstruction of the crack based on its regularization is then used to employ an X-FEM and
thereby reduce computational complexity. Approaches coupling damage models, which implicitly
describe the crack, with methods including explicit discontinuities for the surrounding bulk can be
found in [RLS15] and [TMRF15].

The present thesis follows the path of combining a phase-field representation of the crack with an
unfitted method. The novelty in the method lies in applying an unfitted discontinuous Galerkin
(UDG) discretization [BE09] rather then the standard continuous Galerkin method as in X-FEM.
As our goal is to simulate actual discontinuities along the crack this scoms a rather natural ap-
proach. Furthermore the advantages of DG such as easy generalization to higher order, natural
integration of conservation properties and simplification of parallelization could prove beneficial in
the future. Starting with a discretization that combines a phase field with a DG discretization for
the displacement, we reconstruct the crack and omit the weak enforeement of continuity along this
crack. Allowing the fractures to cut through elements we end up with an UDG discretization for
the displacement in the rock surrounding the fracture. In doing this, we do not only consider linear
elastic behavior of the material but also include the pressure in the underlying energy formulation

describing the fracture propagation process.

While it 1= not new to include pressure terms in the numerical treatment of fracture propagation,
the regularization in analogy to the Mumford-Shah functional was not studied in detail to this day.
[-convergence in the presence of pressure with respect to convergence in the strong L!-topology
1s investigated in the present thesis. Further the circumstances under which the results obtained
imply convergence of minimizers, and thereby justify the usage of the regularized energy functionals
for numerical treatment, are discussed.

The present thesis consists roughly of three parts. First, Chapter 2 introduces some preliminaries.
The energy used to describe the fracture propagation process is developed. Next a short intro-
duction to I-comvergence and the strongly related spaces of functions of bounded variation and
bounded deformation is given. Finally the finite element method and its discontinuous variants DG
and UDG are shortly recalled. Second, Chapter 3 proves ['-convergence of the regularized energy
functionals to the discrete energy functional. The special case of a one-dimensional situation is an-
alyzed first, followed by the proof for higher dimensions. Finally convergence of minimizers based
on criteria for the equi-coercivity of the underlying functionals is discussed. The third part of this
thesis comprises the numerical treatment of the problem. In Chapter 4 the discretization scheme
1s derived. Starting from a DG scheme an unfitted version allowing for actual discontinuitios along
the crack is developed. Further the process of reconstructing the crack from the phase field is
described in more detail. Chapter 5 deals with some implementational details. In particular it
discusses how to implement the reconstruction of the crack and how to include it into the grid in
a way suitable for the application of the UDG method. Chapter 6 closes the numerical part of
this thesis with some validation studies. Finally, Chapter 7 summarizes our findings and discusses
possible future research.






2 Preliminaries

2.1 Basic notation

In this section we fix some basic notation applied throughout the present thesis. Given a matrix
A € R™*" we write AT for its transposed and tr A for its trace. If A = AT the matrix A is called
symmetric and we write A € RIG0. Further we denote by I € R™™" the n-dimensional identity
matrix. For two matrices A = {ﬂ;jj:j=1 e R"*" and B = {bﬂ‘}:j=1 € R™™ the inner product is
written as 4 : B = E;‘J=1 by,

Forz € R, v € R" and A € RV we denote by |z|, |v| and |A| = \mthc absolute value,
the Euclidean norm of a vector and the Frobenius norm of a matrix, respectively. For a set §
we denote by # (5) its cardinality. Moreover, the distance of a point = € B® from a set § C B®
is given as dist (z,5) = infycs (|z —y|). By Byiz) = {y € R" : |z — y| < p} C B™ we denote the
n-dimensional ball of radius p and by 8"~! = 8B, (0) C R™ the (n — 1)-dimensional unit sphere.

Throughout this thesis ! will be an open and bounded subset of B®™ with Lipschitz boundary &00.
Moreover we define 4(0}) = {A CQ: A isopen} and B () = {B C 0 : B is Borel}. For any set
B £ B () we denote the characteristic function of B by Xp. For two sets A and As we write
Ay € Aa of Ay is compactly embedded in As.

As usual £ stands for the n-dimensional Lebesgue measure. Furthermore we adopt the standard
notation for Lebesgue spaces. Namely for 1 < p < 400 and any positive integer m we denote the
LP spaces and their localized versions by

L (L R™) = {u: €8 — R™ : u is measurable and ||ul| - (q.rm) < +-:x|} and

LY (;R™) = {u: 1 -+ R™ : u is measurable and ||ulgrgg=) < +oo forall K C 0 mmpact} .

where we recall the pnorm for 4 € Q2

1

P

el caemy = ( [ 1P ) for 1< p < +20

A

||“||L==~{A-,nm} = esssup |u (z)|.
reA

Here esssup denotes the essential supremum. In particular we consider LP-functions with values
in B, B" and BV *" and omit the R in the first case. To emphasize vector-valued functions we
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use the notation 1 in the case B™ in contrast to u for functions with values in B. Finally let us
summarize the standard notation for Sobolev spaces. For K € M and 1 < p < 400 and m € M,
m > [} we recall

WEP (;R™) = {u € LP (;R™) : D®u € LP (; B™) for all |a| < k},

where D%u denotes the weak partial derivative corresponding to the multi-index «. We equip these
spaces with the Sobolev norm

LT

|l weemm) = (Z f|Da“|pdx) fl<p<+oo

|| <k gy
el e 2y = Z esssup | D%u ()]
lal<k €
For a given function up € WP (R™; R™) we define the space with Dirichlet boundary conditions

as
WEP (O R™) = {u € W*P (R R™) : trulyg = truplsg}

where tr u denotes the trace of u. For p = 2 we write H* ({; R™) = W52 (: R™), HE ((: R™) =
W% (£; R™) and as before for m = 1 we omit the R.

2.2 Pressurized fractures

The main aim of this thesis is to simulate the propagation of pressurized fractures in the subsur-
face. In this section we derive the governing equations deseribing the arising phenomena, following
the approach of Griffith [Gri21]. His ideas inspired Francfort and Marigo [FM98] to study the
phenomena of brittle fracture as an energy minimizing problem. Their work was the basis for a
wide range of papers interested in the numerical simulation of fracture propagation in a poroe-
lastic medium, see for example [BFMO00, BFM08, KM10, MHW10, MWW15h|. We follow their
modeling approach, resulting in a total potential energy which needs to be minimized. We start
by decomposing the energy into bulk and surface parts. Subsequently we describe each of them in
more detail.

2.2.1 Energy formulation

A well known principle in mechanics is the principle of minimal total potential energy, see [Red17).
It states that the equilibrium state of an elastic solid is at a state of minimal total energy. Grif-
fith [Gri21] extends this principle to claim that a material will break, provided this final broken
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equilibrium state can be reached by only decreasing the total potential energy of the system. Thus
he provides us with a criterion for crack propagation. To derive the total potential energy of the
system, we divide it into two components. The first part 1= given by the energy stored in the bulk.
This bulk energy is defined on the domain Q4 C © RB™ and denoted by Ep(u,C). Here u is the
vector of displacement and C describes the crack. Following [MWW15a| we think of C € R™ as
an n-dimensional domain with sufficiently smooth boundary 8C. The second part of the energy
describes the surface energy E; (1, C) at the outer boundary 80 and at the crack C. Thus the total
potential energy of the system is given by

E(u,C) = Ey (u,C) + E, (u,C).

The problem of fracture propagation is then solved by minimizing E (u,C) with respect to C and u.
Furthermore we need to avoid healing of existing cracks. Therefore the minimization takes place
under the constraint that the crack C can only grow, never shrink. This is called the irreversibility
condition. In the remainder of this section we will the two parts of E (1, C) more closely.

2.2.2 Bulk energy

To derive an equation for the bulk energy we have to make some assumptions on the medinm in
which we want to describe the propagation of fractures. A classical assumption is to consider a
linear porous medium in which the energy i1s described by linear elasticity. This approach can
be found for example in the papers [MHW10, KM10|. There are two underlying equations which
describe the phenomenon of linear elasticity. At first we need a description of the relation between
the stress tonsor o and the strain tensor e (1), where the latter denotes the symmetric gradient
of u. Second we need an equation of motion, derived from Newton’s second law. With g and A
denoting the material dependent Lamé parameters and C the fourth-order linear elasticity tensor
for an isotropic material given by

CA=2%uA+AtrA VAeRLD (2.1)

the stress-strain relation reads o = Ce (u) in 2\ C. We recall that C satisfies for all A € RZ5
AP < A:CA<(2u+nd) A7, (2.2)

a property that will prove beneficial in Chapter 3 and Section 4.1.1.

Lot us start with Newton's second law, F' = ma, stating that the total forces of the system equal
mass times acceleration. We consider the quasi-static situation @ = 0. In a first step we apply
no external body forces, henece F is only given by internal body forces, boundary forces are then
added in equation (2.4). According to Cauchy's first law of motion, see [Truf92|, the equation of
motion then becomes V-0 =010 04 C.
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As in the work of Mikelic et al. [MWW15b, MWW15a| we want to work in a poroelastic setting,
considering some pressurized fluid in the porous medium. Therefore the pressure in the bulk and
the fuid-filled fracture are called pg and pp, respectively. Denoting by o the Biot coefficient, the
governing equations in the domain 4 C in a poroelastic medium, taking pressure into account,
are given by the quasi-static Biot equations [Bio55]

o =Ce(u)—apgl nQ\C
V.o=0 in Q\C.

(2.3)

For a detailed introduction to poroelasticity and an interpretation of a see for example [Mer16].

To include the crack in our situation we need to describe boundary conditions at its surface. We
assume continuity of the contact force along the crack, that is o = —ppr on 8C, where v denotes
the normal vector to 8C. Further we assume continuity of the pressure on 8C, setting p = pg = pp.
The exterior boundary 81 is divided into a Dirichlet boundary I'p and a Neumann boundary Ty,
On T'p we describe a fixed displacement up and on Ty a surface force T 1s applied. Thus the
strong equations for our problem are

-V (Ce(u) —apl)=10 mm Q4 C
(Ce(u) —apl)v =17 on [y (2.4)
u=1up on FD

(Ce(u) —apl)v=—pr on 8C.
We now derive a weak formulation of these equations in terms of an energy minimization problem.
According to Washizu [Was74| the bulk energy is Ep (u,C) = [ dAdx, where we can calculate

o
the strain energy density dA as

3
dA =Y oYd(e(u)),,

1,7=1

Using equation (2.3) we can derive the strain energy density in the case of Biot’s equation as

dA = Z a1d (e (),

—Z u) — apl)? d (e (w),,
%) (EFC (e (W) + A (e (W), (e (w),;) Z ap (e (u)),, (2.5)
L1

= %(E (u): (2pe(u)) +e(u): (Atr(e {u}”) — aptr (e (u))

=%{e{u}:ﬂe{uj}—apv-u.
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Using the strain energy density as in equation (2.5) the bulk energy reads

1
Ey(u,C) = f 5 (€ (u) : Ce (w)) - apV - udx. (2.6)
oo

2.2.3 Surface energy

There are two main contributions to the surface energy. The first part translates the boundary
conditions in equation (2.4) to energies due to external surface forces. These yield the energy

contribution

—f1'~11ds+fpy-uds. (2.7)
I'n ac

The description of the second part of the surface energy goes back to Griffith [Gri2l]. It describes
the work that must be applied against the material for a erack to propagate. It is proportional to
the length of the crack, that is H* ! (C). Here H" ! is the (n — 1)-dimensional Hausdorff measure
defined in Definition 2.4.3. Griffith now states that crack propagation occurs whenever some eritical
energy release rate G, is reached. Hence he describes this crucial part of the surface energy as
GH™ 1 (C). Summing up equation (2.7) and the crack energy we get the total description of the
surface energy as

Es{u?C}=—fT~uds+fpu-uds+ GH™(C). (2.8)
Oy
Together, equations (2.6) and (2.8) lead to the following total energy of the system.
E(uwC)= f % (e(u): Ce(u)) — apV -u— f‘r . uds+fpu-uds+ G:H" 1 (C) (2.9)
me Ty 8

Finally we want to reduce the dependency of equation (2.9) on C, which is a-priori unknown. An
application of Gauss' theorem leads to our final energy formulation.

Definition 2.2.1 (Energy minimization problem):
Given oo, p, A, G as before as well as p € Wi (Q), up € HL ({4 R") and 7 € L>(Q) find u,
C such that

E(u,C) =minE (v, K)
v K

1
= min f—e{v]:'ﬂel:v} +(1—a)pV-v+Vp-v
v K 2

otk (2.10)

—fl:'r + pv) 'Vds—fW'llﬂdS-FGcHﬂ_l {K:')'
I'o

I'w



2. Preliminaries

The next section deals with the remaining dependencies on the crack C.

2.2.4 Phase-field formulation

As our goal is the numerical simulation of crack propagation, we need to minimize equation (2.10)
numerically. The unknown crack surface C 1s a tremendous challenge for this, since it may have a
very complex geometry. During the propagation it might even change topologically, for example
a crack could branch or two cracks could join. To overcome this problem, Bourdin, Francfort
and Marigo [BFM00, Chapter 8] approximate the total energy derived in [FM98] by an elliptic
functional. The corresponding underlying 1dea originates from the theory of I'-convergence and
goes back to an approximation of the Mumford-Shah functional by Ambrosio and Tortorelli. The
Mumford-Shah functional [MS589] is used in the theory of image segmentation and reads

MS (u, K) = f IV ul? + B(u—g) dx+aH" ' (K), (2.11)
m K

where u € H' (@Y K) and K C @ closed. In [AT90] Ambrosio and Tortorelli approximate it in

the sense of I'-convergence by

1
AT (u, z) =f(|v uf? + |V 2[?) {1—32}2"+Eaﬂh232dx+,ﬂf|u—g|“dx. (2.12)
i

0

Further the functionals are extended by 400 outside of suitable function spaces in a way that does
not interfere with the solution of the minimization problem. Following their idea we approximate
equation (2.10) by elliptic functionals in the sense of I'-convergence. We discuss the basies of
I'-convergence in detail in Section 2.3 and the convergence of our formulation to equation (2.10)
in Chapter 3. At this point we only state the approximated energy functional E: used for the
simulations throughout this thesis, without further notes on the analysis. Following the work of
Mikeli¢, Wheeler and Wick [MWW15b| E. generalizes the functionals in [BFMO0] by taking the
pressure into account. To approximate the crack € we introduce a variable ¢ called the phase
field. It takes values between (0 and 1, where ¢ = 0 symbolizes the crack and ¢ = 1 stands for
completely unbroken material. Thus the irreversibility condition can be assured by the requirement
gigc:l < 0. In a quasi-static setting this translates to » < @previous. Furthermore we introduce a small
regularization parameter £ and a small parameter k: < £ to ensure coercivity. The minimization
problem then reads as follows.

Definition 2.2.2 | Approximative energy minimization problem):
Given o, pu, A, G¢ as before as well as p € W= (Q), up € HS (:R™) and T € L™ (), find

10



2.3 T'-convergence

UEH}J{Q;R"} and g € H' () with0 < p <1 uﬂd%gﬂﬂﬂsuﬁs_ﬁr&ng

Ee (u, ) = min Ee (v, ¢)

= min l 2 € : — ¥ . .
= min (‘!2{:;: +k)e(v):Ce(v)+(1—a)¥pV v+ Vp-vdx .13
1
—f{'r+pu}~vds—fpy-ugds+G'ﬂfE{1—i,b]lz+%|vi,b|2dx).
I'p LT3

I'n

2.3 I'-convergence

In [DGFT75, DG75, DGT7] Ennio De Giorgl introduced a new notion of variational convergence
called I'-convergence. It became a frequently applied tool to study convergence of minimizers for
various energy minimizing problems. In this section we recall its definition and state the main
properties and results that will prove beneficial in the remainder of this thesis. For an exhaustive
introduction to ['-convergence we refer to the books of Dal Maso [DM12] and Braides [Bra02] on
which the definitions and results in this sections are based.

We define I'-convergence and I'-limits in the setting of a metric space (X, d). Thus in the remaining
part of this subsection continuity and comvergence is always understood with respect to the metric d.
Note that it is possible to define I'-convergence for the more general category of topological spaces,
as introduced in [DM12, Chapter 4], see also [Bra02, Section 1.4]. If one wants to emphasize the
case of a metric space, the definition given here is sometimes called sequential I'-convergence.

Definition 2.3.1 ([-limit):

Let (X,d) be a metric space and let Fy: X — [—o0o,+o0c| be a sequence of functions on X. A
function F' : X — [—oo, +oc| is called the T-limit of F; and we write F = I'-lim;_ ;o F; if and
only if for all x € X we have

# (liminf inequality) for all sequences (z;) C X with ©; — = for j = 400 holds

Fizr) < ljliu_i]_JéEFj (xy) and (2.14)
# (limsup inequality) for every = € X one can find a sequence (x;) C X with z; — = for
j —+ +oo such that
F(z) = imsup Fy (). (2.15)
J—+eo

The function I is uniquely defermined by equations (2.14) and (2.15).

11



2. Preliminaries

Note that the definition above depends on the metric d, that is on the sense of convergence of
zy —+ =. Further note that often the space X is a function space, hence sometimes F; and F are
called functionals and not functions.

Remark: Condition (2.15) is often referred to as the existence of a recovery sequence, as hy
equation (2.14) it is equivalent to the existence of a sequence ; —+ r in X such that

F(z) =j_1>hfij ENE

I'-convergence can also be seen as the equality of lower and upper limits in the sense of the following
definition.

Definition 2.3.2 (T'-lower and [-upper limit):
For a sequence of functions Fy: X — [—oo, +oc| we define the I-lower limit at a point £ € X as

rlimint F; () = inf (Wmint 7 ()

where the infimum is taken over all sequences ©; with ©; — =. The I-upper limit at © € X s
defined as

I'-limsup F; (x) = inf (]imsup Fy {Ij}) .
I+ J—=+oa

where the infimum is again taken over all sequences =; with =; — . If for some X € [—o0, 400 it
holds

I'-liminf F; () = A = I'-limsup F; (x)

J—too J— 40

we call A the I'-limit of F; at = and write A =I-lm, , _ F; ().

Let us recall some important properties of I'-limits.
Lemma 2.3.3 (Properties of [-limits):

# (Equality of Definitions 2.3.1 and 2.3.2) A function F is the I'-limit of the sequence F
at a point = € X if and only if A = I'-limy o Fy (z) exists and A = F(x). Further
F =T-limy o Fy if and only if F' is pointwise the ['-limit of Fy for allz € X

# (Lower semicontinuity) For a sequence Fy the I'-lower and I'-upper limit I'-hminf; . F}

and I'-limsup, ., F; are lower semicontinuous functions.

» (Stability under continuous perturbations) Let G: X — [—oo, +oc| be a continuous function
and let F = I'-lim; y o Fy. Then

F+G=T-lm(F;+G).
J—+en

12



2.3 T'-convergence

¢ (lim sup inequality by density) Let T C X be a dense subset such that for all n = 0 and every
r € X we can find an £ € D with d(z" — =) < 5 and |F (z") — F ()| < n. Further let
equation (2.15) hold for all r € . Then equation (2.15) holds for every r € X.

# (Urysohn property of I'-convergence) F = I'-limy_ { o Fy if and only if for every subsequence
F;, there erists a further subsequence Fy, such that F =T-lim;, . Fj, .

In the context of the present thesis a broader definition of I'-convergence, including uncountable
families of functions, 1= often applied.

Definition 2.3.4 (I'-limit of a family of functions):

A family F.: X — |—oo,+0c| of functions depending on £ > 0 is said to converge for = — 0
to some F: X — [—o0,+0c| in the sense of I'-convergyence if and only if F = I'-limy_, o F;;
for every sequence £y > 0 with limy_syonsy = 0. Then we call F the I'-limit of F: and write
F =T-lim._.q F:.

Remark: In view of Definition 2.3.4, throughout the remainder of this thesis £ > 0 15 a positive
parameter varying in a strictly decreasing sequence converging to zero.

As stated before, I'-convergence is a useful tool for studying the convergence of minimizers of
variational problems. To this end the functions must satisfy an additional coercivity condition.
Therefore we recall the definitions of different notions of coercivity before stating the main result

about convergence of minimizers under I'-convergence.

Definition 2.3.5 (Equi-coercivity):

We call the function F: X — [—oo, +0c| coercive if the set {F < t} is precompact for allt e R. It
is called mildly coercive if one can find a set K C X, with K non-empty and compact, satisfying
infx F' = infg F. A sequence Fy is called equi-mildly coercive or egui-coercive if there exists a
compact non-empty set K C X such that for all j € M holds inf x F; = infx F;.

Theorem 2.3.6 (Convergence of minimizers):
Let X be a metric space and F' = I'-limy_ 1o Fy for a sequence of equi-coercive functions Fy. Then
there erists a solution of the minimization problem miny F that satisfies

;‘Ié]an{I} = jlufm:]g;c Fy(x).

Furthermore for every precompact sequence x; with im0 Fy(z;) = hmy e infrex Fy (x)

every limit of a subsequence of x; is a minimizer of the limit function F.

A proof of this result can be found in [Bra02, Section 1.5|. For more details on the convergence
of minimizers in the context of I-convergence see also Chapter 7, especially Corollary 7.20, of
[DM12].

13



2. Preliminaries

2.4 Functions of bounded variation and bounded deformation

In the proof of I'-convergence results for functionals of the form (2.10) and (2.11) the spaces of
functions of bounded variation and bounded deformation play an important role. They turn out to
be the natural choice of domain in which to state the energy minimization problem. In this section
we first recall some measure-theoretic preliminaries. Second we introduce the space of functions
of bounded variation, its generalizations and specializations, followed by its main properties. We
close the section with an introduction to the space of functions of bounded deformation and its
properties.

2.4.1 Measure theory

In this short summary we recall some properties of measures that will prove beneficial in the
remainder of this thesis. We mainly follow Braides [Bra98]. For an advanced introduction to
measure theory we refer the interested reader to [EG92], [AFP00] and [Fed14].

Definition 2.4.1 (Measures):

e We denote the set of Radon measures on 1 with values in B™, m € M, m > 0 by M ({; B™).
For bounded Radon measures, positive Radon measures and positive, bounded Radon mea-
sures we write My (; B™), M (Q; [0, +oc]) and M, (£;[0, +00]) respectively. Usually we
consider RESH, RY or R, where in the last case we omit the R and write M () ete.

e For a measure p € M {ﬂ; IRN:I the total variation of p on a Borel set B is defined as

lu|(B)= sup (Z |p|:3a|) .
B 1N

B,

icN i

It holds |u| € M* ().

In the proof of I'-convergence in higher dimensions a technique called “shicing” is often applied.
One key component therein is the following property of measures, see [Bra8, Proposition 1.16].

Proposition 2.4.2 (Supremum of measures):

Let p: A(2) — [0,4+00) be an open set function. Further for A,B € A(Q) with AnB = and
AUB €Q let p satisfy u(AUB) > u(A) + p(B). Let A € M* (Q) and for a countable family of
positive Borel functions iy we sef b = sup, ¢y. Then

p{A}Eftjudl forall Ac A(QY) and for all i
A

=>,u{A}2f:;:dJk for all A€ A(Q).
A

14



2.4 Functions of bounded variation and bounded deformation

As we will frequently use the Hausdorff measure, we recall its definition here.

Definition 2.4.3 (Hausdorff measure):
Let s € [0, +00), 8 € [0, +0c) and A C R™ . The Hausdorff pre-measure of A is defined as

242 (4) — %mf (Z {diamcj]a) ,

JeN
where the infimum is taken over all families Cy such that A C UjEH C; and diam C; < & for all
+oo
j € M. The scalar factor o (s) is given by o (s) = 1:?1'}""‘2 (C(L+2/2)), where T'(t) = [ e~ Tt~ ldx.
o
As Hj is decreasing for § —+ 0 we can define the s-dimensional Housdorff measure as

H*(A) = i:g?{ﬁ (4) = }iﬂ]?{g (A4). (2.16)

Remark: The factor = (5] 2= is chosen to guarantee equality of the n-dimensional Hansdorff measure

and the n-dimensional Lebesgue measure in B". Some authors (e.g. Halmos [Hall3]) define the
Hausdorff measure without this factor.

2.4.2 Bounded variation

In the following we introduce the space of functions of bounded variation. As before we mainly
follow Braides [Bra98], more details can be found in [AFP00] and [EG92].

Definition 2.4.4 (The space BV {ﬂ;IRN:I ):

A function u € L! {ﬂ; IRN} is called a function of bounded variation if its distributional derivative
Du is a measure on Q with values in RV *™ and has finite total variation |Du| (). In other words
denoting u = {ul.l,. ..,uN:I and denoting the entries of Du by Du®, for every ¢ € C! {ﬂ; IRN}
holds

N N n
qua?-gp“dx=—zz-[g:?dﬂiuﬁ.
a=1g !

a=1i=1

For such u we write u € BY I[ﬂ;RN). If N =1 we omit the R and write u € BV (12).

Characteristic functions are of special interest in the theory of BV functions. We call a set A C B®
a set of finite perimeter if Xy € BV (1) and call |[DA 4| (22) its perimeter in £, denoted by Per (A).
Note that while in this introduction we distinguish between the dimension n of the domain and
the dimension N of the image space, throughout the remainder of this thesis we typically consider
the case N = n.

The following Lemma summarizes some properties of BY functions.

15



2. Preliminaries

Lemma 2.4.5 (Properties of BV functions):

Equipped with the norm
lull gy i~y = lallgr gy + | Dul (€2},

BV {ﬂ; IRN} is a Banach space.

Every Sobolev function u € W1 {ﬂ; IRN} with weak derivative V1 is a function of bounded
variation with |Du| () = [ |V u|dx.
0

The space C= {ﬂ;IRN:I is dense in BV {ﬂ;IRN:I with respect to ||-|| gy ina~)-

e For every sequence (1;) C BV {ﬂ; IRN} with sup;en||ul gy nry) < +oo there exists a subse-
quence that converges in L] {ﬂ; IRN} to some u € BV {ﬂ; RN}.

loe

The subsequent generalization of the coarea formula to the case of BV functions goes back to
[FR60], a proof can be found in [Bra98, Theorem 1.51].

Proposition 2.4.6 (Fleming-Rishel coarca formula):
For u € L' (Q) it holds

+a
1Dul @) = [ |DXusg| @ dt.
Further u € BV () if and only if |Du (1) is finite.

For examining the structure of BV functions in more detail, the notion of approximate limits plays
an important role. An overview in the N-dimensional setting can be found in [DM13, Section 2|.

Definition 2.4.7 (Approximate limit):
Let u: A - BV be an L™ -measurable function, let A C BR™ and z € A. We call a € BY U {40}
the approrimate limit of u for y — = and write a = aplim,_, u(y) if for all § = 0 it holds

i LUy €AN B, (2) : uy) — a| >4})
p—30 [

=0

Ifa=aplmy, . u(y) € RN erists we write U(z) = a and say that U is approrimately continuous

at ©. We define the approrimate discontinuity sef of U as
Sy =1z € A :u is not approrimately continuous af x}.

Further we define the approrimate jump set of 1 as

Ju=tzcA:Ja,bcBY  a£bre8 ! st aplm u(y)=a and aplm u(y)=5b}.
L oy
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2.4 Functions of bounded variation and bounded deformation

Up to change of sign of v and permutation of a and b, the triplet (a, b,v) is uniquely determined
and denoted by (ut (z),u™ () .vy () for = € Jy. With this notation we can define the jump of

u at z € Jy as [[u] (r) =ut () —u (z) and write

Jl ={z € Jy:|[u] (z)| = 1}.

Note that by Lebesgue’s differentiation theorem n = 1 holds £™-almost everywhere in A and
L™(Sy) = 0. Further J! C Jy C Sy.

Definition 2.4.8 {Approximate gradient):

We say that an £™-measurable function u: A = RV is approzimately differentiable at = € A if a
matric M € RV*™ erists such that

=1

ol [0~ 0@ M~ 2)
YT ly —=|

We call M the approrimate gradient of u at © and write Vu(z) = M. For N = n suppose that
for £ € A there erists a matriz L € R{ZT such that

aplim B =@ —L-y—x) - y=x) _ (2.17)
e ly — =l

Then we say that 1 has an approrimate symmetric gradient at © and denofe it by e (u) (z) = L.

According to the Radon-Nikodym theorem we can decompose the measure P as Du = D%u+ D*a
where D®u is the absolute continuous part of Du with respect to £ and D®u is the singular
part of Du with respect to £". We further decompose D*u as D*u = DMu + Du, where the
restrictions D7u = D*ul 5, and Dfu = D*ul_ (1Y Sy) are called the jump part and the cantor
part respectively.

Theorem 2.4.9 (Properties of D®u, D7u and D®u):

Let u e BV {ﬂ;IRN:I and let Du = D"u+ [Fu + Du be its distributional derivative, decomposed
as above. Then

e U is approrimately differentiable for CM-a.e. © € ) and Vu is the density of D" with
respect to L™,

e f A€ B(Q) and H" ! (A) < 4oc then |Du| vanishes on A.

o H™ 1 (Sy\ Ju) = 0, the discontinuity set Sy is countably H™ '-rectifiable and for every
A e B (1) it holds

Dlu(A) = f (ut —u”) @vudH L
Andy

The decomposition of Du motivates the definition below.
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Definition 2.4.10 (SBV ({;RV)):

Let u € BV {ﬂ; RN). If D"u = 0 we call u a special function of bounded variation and write
uc SBV {ﬂ; IRN}. If in addition V u € LF {ﬂ; IRNX“) for some p € (1,400) and H* ! (Jy) < +o0
we say U € SBVP {ﬂ;IRN:I.

In Section 2.4.3 it will prove beneficial to have localized versions of BV and SBV defined.

Definition 2.4.11 {BV,, {ﬂ;IRN} and SBVi,. {ﬂ;IRN:I}:
fuelLl, {ﬂ; RN} and u € BV I[A;IRN:I for every open, compactly embedded subset A € (1, we
call 1 a function of locally bounded variation and write 1 € BV, {ﬂ;IRN:I.

Ifu € BV, {ﬂ; IRN} and D*u = 0 we call u a special function of locally bounded variation and
write 1 € SBVjge {ﬂ; RN}.

For the sake of completeness lot us also define the space of generalized special functions of bounded
variation.

Definition 2.4.12 (GSBV (0;RV)):

Let u: @ — RY be a Borel function. We say that u is a generalized special function of bounded
variation if g (u) € SBV () holds for every g € C! {RN) with V g having compact support. The
set of these functions is denofed by GSBV {ﬂ;IRN:I. In analogy with SBV?P {ﬂ;IRN:I we define for
pe(l,+oc)

GSBV? (L BRY) = fue GSBV (;RY) : Vu e LP (G RV*™), H™ ! (Jy) < +oo}.

Remark: Note that GSBV inherits most of the properties of SBV. For example 5, 1=
countably H™ ! rectifiable, H™" !(S,\J,) = 0 and the approximate gradient Vu exists
L™ almost everywhere, see [Amhb90, Proposition 1.3 and Proposition 1.4].

As mentioned previously a common technique to prove the liminf inequality of I'-convergence in
higher dimensions is known as “slicing” | which connects the directional derivatives of BV functions
with their one-dimensional sections. It goes back to Ambrosio [Amb89)|, see also [Bra98, Theorem
4.1). In order to understand this technique let us introduce some notation. For given ¢ € §"!
we denote by IT1€ = {y € R™ : £ - y = 0} the hyperplane orthogonal to £ passing through the origin.
For every y € I1I€ and A © B™ we define Ag ={teR:y+t£ € A} and finally for u: 0 = B we set
ug: ﬂfr—bIRasug (£) = uly+t&).

Theorem 2.4.13 (Slicing theorem in GSBV ({1)):
Letu € GSBV (). For all ¢ € 8™ ! and for H™ !-almost every y € [I* we have ufr  GSBY {ﬂg}

and
. (ug}i{t} = Vul(y+t€)- & for L'-almost every t € ﬂg,

. Suﬁ={tEIE:y+tEE.5’u},

18
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. {ug}-i- (t) = ut (y + &) and (ug}_ (t) =u" (y + &) up to the sign of vy, - £.
In addition, for any Borel function g it holds

f Y gt dH™ (3) = f 9 () lvu- € dH 1 (),

e eS¢ s

which we often apply in the special case g = Xg, where B € B (11).

On the other hand, let u € L' (). Let (&),_y _, be a basis of 8", Assume that for every

direction £, and H™ '-almost every y € II* holds ug e SBV {ﬂ'ﬁ.) and

[ 1D] (95) 4! @) < 4.
I

Then u € SBV ().

Lot us finish this introduction to functions of bounded variation with a density result obtained by
Cortesani [Cor97]. It turns out to be beneficial in the proof of an upper bound for the I'-limit.
Note that there exists a generalization of the following result to anisotropic energies by Cortesani
and Toader [CT99].

Definition 2.4.14 {Piecewise smooth SBV functions):
Let u € SBV ((RY). We call u piecewise smooth and write u € W (;RV) if

e ue WE= (Q\ 5;RY) for all k €N,

o« H™! {-STu\ Su) =0, that is 8§ is essentially closed,

simplices.

Theorem 2.4.15 (Density of W {ﬂ; IRN} m GSBVF {ﬂ;IRN:I nLr {ﬂ; IRN}}:

Let @ — B™ be open and bounded with locally Lipschitz boundary 80, Further let u €
GSBVF {ﬂ; RN} m LFP I[ﬂ;RN). Then for every § > 0 we can find a function v € W(H;IRN} such
that

[lu—v|lgrnmny <4,
IVu—Vv|penrwxny <6,
[H™ 1 (Su) = H" 1 (Sw)] = [H" ! (Ju) —H" 1 (W)] < 6.
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2.4.3 Bounded deformation

In the case of brittle fracture we no longer have any direct control over the approximate gradient
V1. The energy (2.10) only depends on the symmetric gradient e (1). Therefore the natural spaces
in which to state the energy minimizing problem (2.13) do not control ¥ u but only e (1). These are
called spaces of functions of bounded deformation and are the subject of the current section. They
were introduced in [MSCT79] and [Suq78| in the context of plasticity problems and further studied
in [T580] and [Koh79|. For additional literature on the subject we refer the interested reader to the
bibliography of [DM13|. The present chapter follows [ACDM97| for the introduction of functions
of bounded deformation and special functions of bounded deformation and for the statement of
their main properties. For further properties see for example [BCDMO98]. The generalization of
these function spaces follows [DM13| and [CC19].

Definition 2.4.16 (BD (Q; R™)):
Let u € L' (§;; R™) and let Du be its distributional derivative. We define the symmetric part of its
distributional derivative by

Fu— % (Du+Dw").

We say that 1 is a function of bounded deformation and write u € BD ({; R™) if Eu is a Radon
measure on ! with values in RZH and finite total variation |Eu| (£2).

Note that the definition of the symmetrized distributional derivative does only make sense in the
case N = n, hence from now on we only consider functions u: R™ o 2 — RE®. Lot us summarize

some properties of BD functions.

Theorem 2.4.17 (Properties of BD functions):

e BD(Q;R"™) is a Banach space if equipped with the norm

Il eoiaee) = [[llL1arn) + [Eul (£2).
o It can easily be seen that BV (; R™)  BD (O R™).

In analogy to BV functions we decompose the measure Eu and write Fu = E®u + Efu + Eu.
E"u is again the absolute continuous part of Eu with respect to £™ while E*u = E'u + E*u
is the singular part of Eu with respect to L™ according to the Radon-Nikodym decomposition.
Furthermore, the jump part E7u = E*ul_J, is the restriction of the singular part to the jump set
and the Cantor part E®u = E®ul (2% Jy) is the restriction to its complement.

Theorem 2.4.18 (Properties of E%u, E7u and Efu):
Let u € BD ({4 B™) and let Eu = E®u + E'u + E®u be its symmetrized distributional derivative,
decomposed as above. Then the following holds.
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2.4 Functions of bounded variation and bounded deformation

e For LM a. e = € 0, the function u has an approrimate symmetric gradient e (1) at T and
e(u) is the density of E®u with respect to L.

If A€ B(Q) and H" ! (A) < 4oc then |E°u| vanishes on A.

o The jump set Jy is countably H™ ' -rectifiable and for every A € B (Q) it holds

E'u(A) = f (ut —u) @redH™
Andy

H 1+ (Sy \ Ju) = 0 for every £ > 0 (see [Koh79]), but for = = 0 this is still an open
question.

Motivated by the decomposition of Eu we define specialized functions of bounded deformation.
Definition 2.4.19 (SBD ({; R")):

Letu € BD{;R™). If E°u = 0 we call u a special function of bounded deformation and write
u £ SBD (S R™). If in addition e (u) € LP (; R™*") for some p € (1, +00) and H™* ! (Jy) < 400
we write 1 £ SBDP ({1 R"™).

In analogy to BV functions, see Theorem 2.4.13, the functions of bounded deformation can be
characterized by their one-dimensional sections. The two subsequent theorems are taken from
[ACDMO97, Proposition 3.2 and Theorem 4.5]. Before stating the results of Ambrosio et al. we need
to introduce some additional notation. For given £ € 8! lot ﬁ'ﬁ = u’fr E=u(y+t£)-£ and J§ =
{zx € Jy: (ut(z) —u ())& # 0}. Note that H™! (Ju Y, JE} = 0. Further denote the pointwise
variatinn of an integrable fanction u on an interval I © B by Vs (T) = mp (Ef;ll u (Ber1) — u {m|)
where the supremum is taken over all decompositions ¢y < ta < --- < £ of 1.

Theorem 2.4.20 (Slicing theorem in BD ({}; R™)):

Foru e BD (S R™), £ € 5™ ! and H™ '-almost every y € Q¢ the following holds.

. (ﬁ)j = flg holds £'-almost everywhere in ﬂ%,
=y 3
e 0§ € BV (05) and |D§| =V ((ﬁ)y) on €05,
e Eug.¢ =r{: Di§d H™ ! (y) and |Eué - £| =n{ |D0g|dH 1 (y).

On the other hand, let u € L} ($;R"). Let (E1)i—1, . n be a basis of "1, Assume that every
direction £ = & + &; and H™ '-almost every y € [I* satisfy ﬁi < BV I[ﬂg} and

f |Da| (9€) dH™1 (y) < +oo.

juis

Then u € BD (11, R"™).
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Theorem 2.4.21 (Structure theorem in BD (£2; BR™)):
Let u € BD(;R™) and £ € 8!, Recall the decomposition Eu = E*u+ EF'u+ E°u. Then

e E¥ug-¢ =ﬁ£ D*05dH™ (y) and |E*ug - ¢| =HJ; |D*a§[dH™ (y) for x € {a, j c},

o ENT
o e(u) (y+ )€€ = Vit (t) = ((u)y) (t) for £!-almost every t € €.

o Let the normal vectors to Jﬁ% and Jy be such that Vs = 1 and vy - £ = 0. Then for every
te {Jﬁ)i and H™ ' almost every y € 1* we have

oy £ - ~y £
+ cE=(af) ) = 1 - £ = (0 — &
ut (y+28) £ = (05) (1) = Jim (&)’ (5) andu (y+2)-& = (05) () = lim (&) (s).
Note that by Theorem 2.4.21 a function u € BD ({}; ") 18 also in SBD(; R"™) if and only if for
some basis (£),_; _, of 8"~! we have fls £ SBV I[ﬂg} for every £ = & + & and for H™ 1-almost
every y € (2¢ (see [ACDMY7, Proposition 4.7]).

As Dal Maso discusses in the introduction of [DM13], it is not reasonable to define the generalized
space of special functions of bounded deformation, GSED ((}; B™), in analogy to GSBV (1; R™),
as the result would not contain SBID (); ™). Instead he incorporates the characterization via
one-dimensional sections for the definition and we follow his approach in the upcoming section on
GSBD (©;R"). For any function v € L}, () we denote its corresponding directional derivative
by Dev = D - £,

Definition 2.4.22 (GBD ({; RE™)):

Letu: () — B® be L™ -measurable. We say that u is a generalized function of bounded deformation
and write u € GBD ((; R") if we can find A € M; () such that for every £ € 8" ! the following
equivalent conditions hold.

o For every T € C' (R) with —%grgécmdl}g-r’gl and for every B € B (1) it holds

D¢ (r(u-£)) € Mp(2) and | D¢ (7 (u-£))| (B) = A(B).

o For H" !-almost every y € II* and for every B € B () it holds

s € BVy, (0F) and f|ﬂug| (B§\ 7k ) +H° (B§ Tk ) M1 () < A(B).
jiis
Definition 2.4.23 (GSED ({}; R™)):
Letu e GBD ({4 R™). We say that 1 is a generalized special function of bounded deformation and
write 1 € GSBD ({L;R™) if ﬂ% £ SBVie {ﬂ'ﬁ.) holds for every € € 8! and H™ !-almost every
y € II¢.

Note that Theorem 2.4.21 and the subsequent remark yield BD({(;R™) ¢ GBD({;R") and
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SBD(R™) C GSBD({;R™). In the theorem below we collect some important properties of
GBD and GSBD functions. The corresponding proofs can be found in [DM13].

Theorem 2.4.24 (Properties of GBI and GSBD functions):

e For every u € GBD(Q:R™) and for H™ '-almost every = € 80 the truce tru(z) =
ap ]Jm;gﬁll{y} erists.

e Foru € GBD (S R™) the jump set Jy is countably H™ ! -rectifiable.

e For every u € GBD ({4 R™) and £™-almost every = € (0 there erists a matriz e(u) €
Lt {ﬂ;ﬂf‘wﬁ‘) satisfying equation (2.17). We call e (u) the approrimate symmetric gradient

of .
o For H™ '-almost every y € II* and for every £ € 8"~ it holds
(e(w)z€-¢ = Vg

L' almost everywhere on ﬂg.

£
{Jg}y - Jnf,'

Note that the existence of an approximate symmetric gradient justifies the use of the divergence
operator by setting V -1 = tr (e (u)). This definition is consistent with the usual notation of the
gradient for (weakly) differentiable functions, see also [ACDM97, Theorem 7.4, Remark 7.5]. Note
further that Jensen's inequality implies [V - u|ﬂ < nle |:u:||2T an estimate that we apply several
times throughout this thesis. Moreover the space GSBD (€2; R™) is compact in the sense of [DM13,
Theorem 11.3]. We give a simplified version here, tailored to our needs.

Theorem 2.4.25 (Compactness in GSBD () R™)):
Given a sequence W € GSBD(Q; R™) suppose that we can find C > 0 such that

f ) dx + f le ()2 dx +H" (Ju,) < C
L} o

for all k € M. Then there erists u € GSBD ({; R") and a subsequence uy; such that

Ui, —+ U poinfwise LMa e on 0,
= {“ﬁj} — e(u) weakly in L! {ﬂ; Rm} \
n—1 L n—1
1 (J,) < liminf H (J.,*J_) :

We close this section with a density theorem for functions in GSBD ({}; B"). It 1= a version of
[CC19, Theorem 1.1] for functions in L, (©2; R") adapted to our needs and can be combined with
Theorem 2.4.15.
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Theorem 2.4.26 (Density in GSBD ({; R™)):

Let @ © B™ be an open, bounded set with locally Lipschitz boundary 80). For p € (1, +0c) let
u € GSBD? ((;R™) N LY (Q; R™). Then we can find a sequence ux € SBVP (; R™) N L™= (Q; R™)
such that Jy, C @ is closed and contained in a finite union of closed C' curves and up €
Wl QY Jy, ;R™). Further u; satisfies

e(ug) —+ e(u) in LF (4 REAT)

H (Ju, ATy) — 0,
lim f|uk —u|dx = 0.
k— oo
1
Moreover, if u € GSBD? (S; R™) n L2 ((; R™) the sequence Ug can be chosen such that

I 1 — 1 . =
i#_}Iftmll & — W|lLzinmm)

2.5 Discretization methods

In the previous sections we focused on the preliminaries for the analytical derivation of a weak
formulation of the problem of fracture propagation. Now we concentrate on the numerical treatment
of such an equation.

Given a partial differential equation (PDE) that cannot be solved exactly, there exdst multiple pos-
sibilities to discretize it and solve it numerically. An extensive overview of discretization methods
can be found in [SdBH04]. The most common ones are finite difference methods (FDM), finite
volume methods (FVM) and finite element methods (FEM). While FDM are comparably easy
to implement, they are also the least fledble of the aforementioned methods. They rely on the
approximation of derivatives by finite differences and thus are most efficient on structured grids.
For an introduction we refer the interested reader to [GR07| and [SdBH04, Chapter 2.

The FVM has the substantial advantage that it directly poses conservation laws on the discrete
level. Thus it is a very common discretization approach for example when simulating equations from
fluid mechanics, meteorology, electromagnetics and other research areas that deal with conservation
laws. It relies on the discretization of the domain into small volumes called cells. On each cell the
solution is approximated by its average. This cell average is then modified through the numerical
flux across its boundary. An introduction to FVM methods can be found in [LeV02] and [SdBHO04,
Chapter 15).

In the present work we choose FEM as discretization method for our problem. It is more Hexable

than the other two and has better approxmation properties. Nevertheless the fleability comes
with more complexity, analytically as well as concerning the implementation. Indeed FVM are
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described as a special case of FEM sometimes, see for example [GRO7, Chapter 4.5.4]. We describe
the basic ideas of FEM and introduce some important notation in Section 2.5.1, followed by the
introduction of a special FEM, the so-called discontinuous Galerkin method in Section 2.5.2. This
method can be scen as a generalization of an FVM, it 1= conservative and well suited to handle
discontinuities [DPE12]. Finally in Section 2.5.3 we recall a method called unfitted discontinuous
Galerkin method (UDG) that was first established in [BE0].

2.5.1 Finite element methods

Lot us shortly recall the main ideas of finite element methods and fix some definitions and notation.
For a more detailed introduction to FEM we refer the reader to [Cia02] and [SdBH04, Chapter
4], see also [BS08, Bra07]. For illustration we use the example of the Poisson equation with
homogeneous Dirichlet boundary conditions, given in its strong form as follows.

Find u € C? () such that

—Au=finQ2
u=10 on 8.

(2.18)

Here {2 is some given open domain, typically with Lipschitz boundary 8 and f € L? (1)) is some
given function called the right-hand side (RHS).

For the dertvation of the FEM formulation we assume that we have a partial differential equation
given in its variational (weak) form. For the Poisson problem we can derive the weak form in
the weak solution space V = H} () if we test equation (2.18) with a function v € C>°(Q) and
integrate by parts.

Let a: V xV — R be given by a(u,v) = [VuVvdx and F: V = R by F(v) = [ fuvdx. Find
0o 0
u €V such that

alu,v) = F(v) (2.19)

forallipeV.

Note that a (-, -) 1= a continuous, symmetric, positive definite bilinear form and F (-} is a continnous
linear form, thus by the Lax-Milgram theorem there exists a unique solution of equation (2.19).

Theorem 2.5.1 (Lax-Milgram):
Let V' be a Hilbert-space and a: V x V — R a continuous and coercive bilinear form. Let further
F:V — R be a bounded linear form. Then there erists a unique function uw € V' such that

alu,v)=Fv) Yevel
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For a proof of Theorem 2.5.1 see [Eval0), section 6.2.1].

While a solution of equation (2.18) always solves equation (2.19), the reverse is obviously false, but
a solution of equation (2.19) satisfies equation (2.18) almost everywhere.

Following [Cial2|, the discretization of equation (2.19) now consists of three main parts. First,
a discretization of the domain ). Second a finite-dimensional solution space Vy, and the discrete
analogues of a(-,-) and F (-}, ap (-,-) and F}j (-) respectively. Third, the choice of an appropriate
basis for V.

For the discretization of {! we demand that it is a regular triangulation in the sense of [Cia02].

Definition 2.5.2 (Regular triangulation):
We say that a set of elements T = {T'} is a regular triangulation of Q0 if

¢ 0=Urs T,

o foralTET holds T =T and T # 0,

e for all T € T holds 8T is Lipschitz continuous,

o for all Ty, To € T with Ty # Ty holds Ty nTs = @,

o for all T1,To € T with Ty # Ts holds Ty N Ts is either empty, a single point or a common
face F.

Note that it is not mandatory to choose triangles as the elements T to construct a regular trian-
gulation. It is also quite common to choose quadrangles and further generalizations for example
to elements bounded by NURBS (non-Uniform Rational B-Splines) are possible [HCBO5S).

Definition 2.5.3 (Mesh parameter h):

Let T be a regular triangulation. For every element T € T we set hy = diam T, the diameter of the
element. Then the mesh parameter h is defined as h = maxyper hy. For every face F = 81y n8T5
with Ty, Ty € T we set hp = E%‘fﬁ%, where |-|, and |-|;_, denote the volume and surface
measure, Tespectively.

The discrete solution space Vi, is often chosen as a subset of the weak solution space V| the method
is then called a conforming FEM. Typical examples are continuous functions that are plecewise
polynomial. Denoting the space of polynomials of degree < k on a domain T by Pp (T} and
setting

Pe(T) = {ue L} () :VT € T holds uly, € Pe(T)},

we define Vy, = P (T)NC (). Defining ay and Fj; as the restrictions of a and F to this subspace,
the discrete problem becomes the following.
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Let ap: Vi % Vi — R be given by ap (u,v) = [Vu-Vodx and Fr: Vi = R by Fp (v) = [ fodx
1 1
Find u € V, such that

ap (u,v) = Fy (v) (2.20)

for all v € V.

To finally solve equation (2.20) we choose a finite basis {t’{}f‘;_ﬂl for the N-dimensional space V.
Setting uy = Ef‘r:_ul uyvy and testing equation (2.20) with all basis functions v; we obtain a system

of N linear equations to solve for the coefficient vector {u;:l:i_ul.

2.5.2 Discontinuous Galerkin methods

In the case of fracture propagation we have to deal with a displacement vector, that becomes
discontinuous at the crack. Therefore it seems natural to already include this discontinuity in the
discrete function space V. Thus given a triangulation T of @ as above we choose Vi, = Py (T) as
discrete function space, no longer requiring continuity. Nevertheless in the rest of the domain, away
from the crack, continuity is desired. To achieve it, discontinuous Galerkin (DG) methods punish
discontinuity at element boundaries with a penalty term. In the literature different possibilities
exist to accommodate this. In the ongoing chapter we present the symmetric interior penalty
Galerkin (SIPG) method followed by a short overview of well-known analytical results. In doing
this, we mainly follow [DPE12]. For a more detailed treatise on the subject we refer the reader
to the aforementioned book, where one can also find a brief overview of the development of DG
methods. An analytic overview defining a common framework for different DG methods can be
found in [ABCMO02].

For the definition of DG methods we need two important quantities, the jump and the average of
a function over a face. In order to define them we fix some additional notation.

Definition 2.5.4 (Skeleton, jump and average):
Let T be a regular triangulation of some domain (2 C B™. We define its inner skeleton Fip, as

Fine = {F : F = 8Ty N 8T where T}, Ta € T and 0 < H* ' (F) < 4o0}.
Its outer skeleton is defined as
Fert = {F:F=ﬁ‘TI"|ﬁﬂ where T € T and 0 < H* 1 (F) < +|x:-}

and the union F = Fine U Foze 15 called the skeleton.

We now consider a scalar-valued function p: @ — R and a vector-valued function v: 0 — R™.
Assume that ¢ and v are sufficiently smooth such that their restrictions |y and vlp are well
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defined up to the boundary 8T for every T € T. Then their jump across a face F is defined by

[[P]]={5"|T1—5‘?'|n F € Fine, F = 011 N 075,
‘PlT FE-FEIE7F=BRHET,
[[v]]={vIT1_V|T, FE-FI-ﬂtgF=ET1r—|ﬁTg?

?Ir F e Fope, F =8000T.

Note that this definition depends on the ordering of T and Ta. In what follows we always fir the
orientation such that the unit normal to the face F' = 8T N 875 is the outer unit normal to Ty,
hence we write v = vp = vy = —wva, where 1y and va denote the outer normals to Ty and Ts

respectively. The average of o and v is defined as

o} - {% (elr, + lry) F € Fo, F = 6Ty N 6T,
#lr F € Fepe, F = 000 0T,
‘EVB={%{VIT1+vlT2} FEF{RE1F=H1I'"I?3‘T2,
vlT FE-FEIE:.F=aﬂf—IﬁT.

Note that depending on the author the definitions of the jump might slightly differ. Sometimes
it is defined as | vq + @|g, v, see for example [ABCMO02]. While this definition is independent
of an ordering of T} and T it makes the jump of a vector-valued function become a scalar-valued
function. In addition the definition at the boundary might be shghtly different from source to
source. Note further that for any scalar function ¢ and any vector-valued functions v and w as

above it holds [[ov] = {3 [v] + {v} [[¢] and [w-v] = fw} - [v] + £v} - [w].

Having discontinuous basis functions, the partial integration we used in Section 2.5.1 can only be
carried out on each element T' € T. Thus we get contributions along the boundaries 87" of elements.
Consequently the discontinuous Galerkin discretization of equation (2.19) includes additional terms
along Fin: In comparison to equation (2.20). Moreover Nitsche's method [Nit71] is used to weakly
enforce continuity of the discrete solution along Fip; and homogeneous boundary conditions. The
SIPG method applied here goes back to [Arn82].

Definition 2.5.5 (SIPG discretization of the Poisson model problem (2.18), see [DPE12]):
Letuf‘g:thVh—bIRundeG:Vh—bIRbegéumby

aP® (u,v) = VuVodx— fVul-vv] + Vel vlu]ds+ l[['1.|:]][['.*.r]]1:|5,,
-2, Zl T
FPG (v) = fodx.
oz

Here the gradient V has to be taken elementwise. This is sometimes written as broken gradient
Vinu defined by (Vpu)|lp =V ulp. The discrete problem can then be formulated as follows. Find
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u € Vp such that
ay © (u,v) = FY% (v) (2.21)

for all v € V.

Remark: The term — % 57 [ {V u}-v [[v] is called consistency term as it ensures that any solu-
tion u of equation (2.18) with u € H? (2) satisfies equation (2.21). The term — Yorer [p IV v} -
v [[u] ds is not necessary for consistency, since for any function u € H{(f2) n H2(Q) it holds
[u]] = [V u]] - » = 0 along any edge F € Fin: [DPE12, Lemma 4.3]. It is called the symmetry term
as it ensures symmetry of the bilinear form al’®. Finally the term Y oFeF -ﬂ— [[]) [v] ds i= called the
penalty term and weakly forces the solution to become contimuous along faces. It does not interfere
with consistency and symmetry. The penalty parameter 7 > 0 1= a numerical parameter that must
be adjusted according to the problem. If 5 is chosen sufficiently large it ensures discrete coerciv-
ity of aP’®. For the proofs of consistency and discrete coercivity we refer the interested reader
to [DPE12, Lemma 4.8 and Lemma 4.12|. Additionally in [DPE12, Lemma 4.16] a boundedness
result for a’ can be found. According to Theorem 2.5.1 these guarantee the unique existence of
a discrete solution of equation (2.21).

2.5.3 Unfitted discontinuous Galerkin methods

As described previously, a common technique to simulate fracture propagation is to implement
unfitted finite element methods. Our choice of method 1= the unfitted discontinuous Galerkin
(UDMG) method that we present subsequently. This introduction goes along the lines of the original
publications [BE09, Engl)9] that first presented the UDG method. Let us assume that the domain
{1 1= partitioned into a set G of N sub-domains as follows.

Definition 2.5.6 (Sub-domains):

Let @ © B™ be a domain as before. Let G((1) = {ﬂu,...,ﬂN_l} be such that ' C Q for all
0<i<N and Q*NY =0 for all 0 < i < j < N. Further we require T = | JY ' 7. Then we call
G a disjoint partition of Q! into sub-domains. We call T' = 80 N & the interface between 1!
and €.

Next we need to define the restriction of the mesh to these sub-domains.

Definition 2.5.7:
Let T and G be given as above. Then the sub-domain mesh is defined as

T‘=‘T{ﬂi} ={T=:T‘=ﬂ=ﬂTforsamETETandTi%ﬂ}.

We further define the internal and erternal skeleton corresponding to a sub-domain. In the internal
skeleton we distinguish between edges comnecting elements in the same domain, Fl,,, and edges
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connecting different domains, F,2 for i # j.

Fote ={F12: P10 = 0T N 8T} where T{, T4 € T* and 0 < H* ' (F12) < +o0},
F {Fl,g Fia=0TiNOT] where T € T, T € T, i £ j and 0 < H™ ' (Fy0) < +-:x|} ,

Floo={F1:F; =0T N 00 where T' € T* and 0 < H" ! (F}) < +c}.

To shorten notation we define Fl, = Uj{1 _F':,ﬁ U-F::s and F* = Fl. U Fi..

Having a notion for the mesh of a sub-domain we can define the basiz functions for the UDG
method and the resulting finite clement space for the discretization in a sub-domain £1'. As
before we consider the space of piecewise polynomials, this time for each sub-domain, defining
V! = Pi (T"). For the construction of the basis functions of these spaces we start with the basis
functions v, of Vi, = Py (T) and restrict their support to the so-called cut-cells T® € T?. That is,
for any T € T we sot

. v; inside of T},
Vin =
" 0 outside of T:

Thus the UDG discretization of the Poisson model problem using SIPG as underlying DG method
locks similar to Definition 2.5.5, using cut-cells instead of the elements of T and taking into account
the additional inter-domain interfaces T''J.

Definition 2.5.8 (UDG discretization of the Poisson model problem, see [DPE12]):
Let af P@: Vy % Vi, =+ R and FYPE: Vy, - R be given by

N-1
a}:ﬂg{u,u}=z Z f?u?vdx
Jr

i=0 TeT

+r§gp (—Lﬂ?u]}~v[[v]] +W”B'Vﬂﬂﬂﬁ+ﬁﬁ[[uﬂﬂu]]ds),I,

-1
P =% Z_ffudx.

i=0 TeTi 7T

Once again the gradient V has to be taken elementwise. The discrete problem can then be formulated
as follows. Find u € Vi, such that

af P (u,v) = FY'PC (v) (2.22)

for all v e V.

Integrations on an element T? € T are carried out using a local triangulation. As the local
triangulation is only used for finding decent quadrature points, its quality has no influence on
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the condition number of the resulting system. Thus for example arbitrarily small angles are not
problematic. What does influence the condition number of the system i1s the size of the cut-cells
T* € T*. To counter the effect of small cut-cells we follow [Eng(9], wherein the authors propose a
scaling of the corresponding local basis functions to the bounding box. Another approach would
be to use ghost penalty terms as done by [GM)].
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3 I'-convergence of the energy functional

The present chapter deals with the I'-convergence of the energy functional derived in Section 2.2,
Namely we investigate the I'-convergence of functionals of the type (2.13) to functionals of the type
(2.10). We start by an examination of the one-dimensional case in Section 3.1 and consider the
higher dimensional case in Section 3.2. We end our treatise of ['-convergence with some notes on

the conditions under which we obtain convergence of minimizers in Section 3.3.

3.1 One-dimensional case

We first consider one-dimensional versions of the energy functionals in the case of a one-dimensional
open bounded domain @2 C R. In the following we consider a domain 2 = (a, b). The general case
can be treated by repeating the arguments on each connected component. Note that the results
presented in this section were previously published in [ES17]. Let us start by the definition of some
functionals. The corresponding higher-dimensional functionals are defined in Definition 3.2.1.

Definition 3.1.1:
Considering only the surface part of the energy we define G.: L1 ((a,b)) — [0,+o0] by

b
G el +L(1-¢)’dt ifpeH ((ah), 0<p<], -
a .

+oo otherwise.

As mentioned before, eristing literature on brittle fracture often deals with an energy similar to ours,
but without pressure terms. We define these in the following. Let F: L' ((a,b)) x L ((a,b)) —
[0, +co] and EL: L' ((a, b)) x L' ((a, b)) — [0, +cc] be given by

b
- ¥ |'H.'r|2 dt +G.H (Jy) ifuec SBV?((a,b)), w=1 a.e. in (a,b),
Flup) =14 (32)
+o0 otherwise,
b b
ke +¢) [wlde+ G Jele'l® + 2 (1- ) dt
F: (u,p) = ifuec H (a,b), g€ H (a,b), 0<p<1, (33

+o0 otherwise,
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where 7y is some material constant. For fited o > 0 and p € W' ((a, b)) we define D: L' ((a, b)) x
L' ((a,b)) — [0, +0c] and D.: L! ((a,B)) x L' ((a,b)) = (—oo, +00| including pressure terms by

]

D (uy ) = F (uy0) + f (1—a)pu’ + pudt, (3.4)
: ]

D (u, ) = Fi (u, ) + f (1 - a) gepul, + gepluc dt. (3.5)

By adding the boundary terms, we finally end up with the total energy functional E: LY ((a, b)) x
L' ((a,b)) = (—oo, +oo| and its approrimation E.: L' ((a,b)) x LY ((a,b)) — (—oo, +oc], given by

ﬁcu,w}={D{u’w_{”“’}“nib}—p(niuntan Tu@ =@, 2O =G,
+oo otherwise,
D - u —pla)up (a if u Liia
Escu,w}={ﬂf(“*‘f"’ (p(®)up (b) — p(a) up (a)) fﬂlEP_ID{{ ), o
+oo otherurisze.

Here up € H'(R) denotes some given boundary function and the equalities u(a) = up (a) and
u(b) = up (b) are to be understood in the sense of traces. Moreover we need the localized versions
of the preceding functionals. Thus whenever we consider an open interval I © B as infegration
domain instead of (a,b), we substifute f‘{u? w) and E. (e, ) with

ﬁ{“:*ﬁ'; I = {II"I"|H’|3dt +GHO(J,) ifue SBVE(I), p=1ae inl,
+oo otherwise,
o ) P G el 5 H = g

FelweD = FfucHU(I), pe H'(I), 0<p <1,
+oo otherwise,

The localized functionals Gz (g;I), D (u,0; 1), D: (u,i; 1), E (u,;I) and E: (u, ;1) are defined
analogously.

Remark: In the literature the term H™ ! (S,) often appears instead of H™ ! (J,), see for example
[Foc01]. As H™ ! (Sy\ Ju) = 0 for BV functions, this makes no difference in the setting above.
Nevertheless we decided to use H™ ! (Jy) to be consistent with the higher-dimensional setting in
Section 3.2. Therein we consider functions in GSBD (Q; R™), for which it is necessary to use the
term H™~! (Jy), since it is not clear whether Jy, and S, coincide ™ !-almost everywhere.

In the following we prove [-convergence in the one-dimensional setting, following the proof
of Braides [Bra98, Theorem 3.15]. The main difficulties In our case are the pressure terms
(1 — o) ppeul and wep'u: in the bulk energy. These might become negative due to negative dis-
placement gradients and displacements. While the main work is in Theorem 3.1.2, Corollary 3.1.8
adds Dirichlet boundary conditions.

34



3.1 One-dimensional case

Theorem 3.1.2:
Let Go =0, pe Wi ((a,h)), 0 < a <1, k: € 0(c) and ¢ > 0 be some material parameter. Then
D. I-converges for £ — 0% to D with respect to the strong convergence in L' ((a,b)) x L ((a,b)).

Before we start with the proof of Theorem 3.1.2 let us recall an awaliary lemma proven in the
course of the proof of [Bra98, Theorem 3.10].

Lemma 3.1.3:
Let w. € H' ((a,b)), z',2* € R and let (1,2 € (a,b) for all £ > 0 be such that

lim ¢ {{:&!:I = z! and !E% 7. {{E:I =22

E—+

Then it holds

&2 z2
- 1 a2 £ ,..9
— (1= = = — .
timint | [ 5 (1= e ()" + Sl O at| > | [ (1 - 5)as
1

1
13

Using Young’s inequality we can show that a bound on D; (u, ) is sufficient to bound Fi (u, ¢) as

well.

Lemma 3.1.4:
We can find constants ¢1, ca, e3 > 0 such that for all (u,) € L' ((a,b)) x L' ((a,b)) it holds

D (u,¢) = erFe (u, ) — callullp1gia,eyy — c3- (3.8)
In particular sup.~q (.ﬁs (uz, 022) + ||Hs||L1{[n,h)j) < +oo implies sup.~gq E. (e, e) < +o0.
Proof of Lemma 3.1.4. Without loss of generality we can restrict ourselves to the case (u,g) €

H!((a,b)) x {'u ceH ((a,b)):0<=v < 1}. Then for arbitrary 4 > 0 Young's inequality in combi-
nation with |p| <1 yields

b [} b
fc{k5+¢2} |u’|ﬂdt+f{1—a}p<pu’dt+f¢p’udt
i a a
b b 1 P b
> [elbe+ ) witat— [ 210 - a)p + Flowat— [ lopulat
i i i
_&}2

() 2 1
> [ (o= 3) (he + ) WP 2t~ S5 210l )~ i o 3o
i

Hence choosing § such that ¢ —1‘; =0, = m.i.n{l,c—g-}T ca = [|[Pllp=qgapy and ez =

1—a)? . . . . =
{ﬁzg}_”pniz{[nm) implies equation (3.8). Obviously for sup..q (.DE (uz, 022) + ||‘Hs||L1[(n,h)j) < o0



3. T-convergence of the energy functional

it holds
- 1 -
sup Fr (ug, @) = —sup (DE (e, 0e) + EE”“E”Ll{{u,b}) + EE) < +oa,
=0 C1 g0
which completes the proof. O

The proof of Theorem 3.1.2 follows the proof of [Bra98, Theorem 3.15]. For the reader’s convenience
we give an outline of the proof and point out the adjustments dealing with the pressure terms. The
proof i1s split into three parts. Starting with a lim inf inequality for the surface part in Lemma 3.1.5,
we deduce the total lim inf inequality in Theorem 3.1.6. Finally in Theorem 3.1.7 we construct a
recovery sequence to obtain the hm sup inequality.

Lemma 3.1.5:
Let I < (a,b) be open and bounded. Consider a sequence (ug, @:) converging to (u, ) with respect
to the L' ((a,b)) topology and satisfying

lim inf F: (ue, o3 I) < +oo. (3.9)
e—0
Then it holds H° (I N Jy) < +oo and

lim inf G (¢31) > GeH” (IN.1). (3.10)
E—%

Proof of Lemma 3.1.5. Note that this statement is independent of the pressure terms in our energy
formulation. Thus the proof goes exactly as in [Bra98, Theorem 3.15|. It goes back to the ideas
of Ambrosio and Tortorelli in [AT90], see also [Foc0l, Lemma 3.2]. For the reader’s convenience
we recall the main steps here. Let . — i in L! (). Passing to a subsequence we can assume
the convergence . — ¢ to hold almost everywhere and that lim._,g E} (u., @: 1) < +oo exists. In

particular

supg—c I:l—gasjlzdt < 400,
£»0 £E
I
hence ¢ = 1 holds L£™-almost everywhere in I. Even more so, |z — 1||g2gy —+ 0 for £ — 0 and
uniqueness of the limit implies ¢ = 1 almost everywhere. Consider an arbitrary jump point t € J,,

of u. Then there exist sequences of real numbers {t&!} ,(s:) and {tﬁ} such that t! < s, < 2 and

limt! =lims. = limt: =t (3.11)
e—0 =0 e—0
- 1 ; 2

and &]_.1:}111]4,95 {tE) = !ﬂ% P {tE:l = 1. (3.12)

Moreover we can assure that ime g (s:) = 0. Indeed, if no such sequence s would exist, we
would find a neighborhood of ¢ in which »' is bounded, which contradicts ¢ £ J,;. The application
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3.1 One-dimensional case

of Lemma 3.1.3 yields

2
I’:

1 E
liminf [ = (1o +3 L] dt

e—0
tl
: 2
R T 1 @ E. a
— liminf f—u—:ps} +3leilarl +| [ 51— e0+ Sl at
£ =

1

9 f{l—s}ds

1]

=1.

Suppose now that {#;,...,ty} C Jy for an arbitrary N € M. Repeating the above argument on
disjoint intervals I; with ¢; € I; we obtain

(t2),
Ge [ 1 2 ,a
G.N = ZG -::th - f S (1 —@o)” + ezl dt
i=1
(t11,

< Iim inf

E—

G: [1
5 [ 2= +elellat,

'-1‘-__‘-‘-‘

where I[té)1 € I; and {tg)i € I; are chosen as in equation (3.11) with ¢ replaced by ¢;. By the
arbitrariness of N € M we deduce the finiteness of H° (J, 1 I) as well as equation (3.10). |

Theorem 3.1.6 (liminf inequality in the one-dimensional case):
Consider a sequence (uz, ) € L' ((a, b)) x L' ((a, b)) converging to (u, @) in L' ((a,b)) x L ((a, b))
and satisfying

limnf D. (ue, ) < +oo. (3.13)

Then it holds u € SBV ((a, b)), ¢ =1 L™-almost everywhere in (a,b) and

D (u,p) < liminf D (ue, pc) - (3.14)

Proof of Theorem 3.1.6. As mentioned before we follow the proof of [Bra98, Theorem 3.15]. First
we note that by extracting subsequences we can assume without loss of generality that (ug, @) —
(1, ) holds £™-almost everywhere. Indeed, assume that equation (3.14) was proven for all point-
wise almost everywhere convergent sequences (u;, @z ) but

D (u, ) > liminf De (ue, pc) -
Then we have a subsequence such that

D (u,¢) > lim D: (ue, ¢e)

ar



3. T-convergence of the energy functional

This i1z a contradiction as this sequence has an £™-almost-everywhere comvergent subsequence that
satisfies equation (3.14) by assumption. Thus it remains to show equation (3.14) for all pointwise
almost-everywhere convergent sequences (u., ). Following the same argumentation it is sufficient
to prove equation (3.14) for sequences satisfying

lim D: (ue, @) = liminf D, (ue,@:) < +oc.
==+ =—

According to Lemma 3.1.4 and since u; is uniformly bounded in L!, this leads to a bound of
lim sup._,q Fr (us, :) and thus imsup._; G: (w:). Hence ¢ — 1 in L2 ((a,b)) and ¢ = 1 holds
L™ almost everywhere. Let now I C (a,b) be any open set. Then by Lemma 3.1.4 we have
F: (ue, 023 ) < Fe (ue, 02) < +00 and thus Lemma 3.1.5 implies

H'(InJy) < lim gf e(p; ). (3.15)

The next step is to prove weak convergence of u. in H!(I'), where I' C (a,b) \ J, is some
compactly embedded interval, away from the discontinuities of w. Further we want to prove the
lim inf inequality for the bulk part of the energy functional. While keeping in mind the bounds of
the occurring terms that we get from Lemma 3.1.4, this step goes through as in [Bra98, Theorem
3.15). Therefore we only give a short summary below. Let the interval I be such that I n.J, =@
and divide I into N disjoint subintervals I§ of length % When defining for every N € M and
overy () < z < 1 the set J3, = {k e{l,...,N}:lim. g infue!f;. we(t) < z}, Lemma 3.1.5 implies

1
HO(JZ) fl—s}ds-::—hmmfz Ge (0= 1)

kedz,
1. . =
< E]J]E'ILIEIIGE () < +oo.

Thus L = H"(J%) is finite and independent of the length of the intervals IF, i. e. the num-
ber N of these intervals. Hence we can write J§ = {kjl.“...?kj%} and define the finite set
5 = {h:i=1.',...,La.ndf1=].imN_>+mEr?—}. Note that for every 5 > 0, every k € J§; and
N sufficiently large we have IX, € § + [—n, 7). This yields

.. 2 .. 2

lim inf z2 f |uf|” dt < lim inf 3 fzﬂ lul|” dt

I\(S+[-n.n]) KETh Tk

.. a 2
<tmipf 3 [ o2 juif at
RETR i

.. ] 2
< liminf f @2 [ul % dt.
I

Thus, as u. is bounded in L' ((a,b)) and u! is bounded in L2 (I \ (S + -7, 7])) by the Poincaré-
Wirtinger inequality, u. is also bounded in H'(I'\ (S + [-n,7])). Consequently by the Urysohn
property u. weakly converges in H' (I'\ (S + [-m,7))) tou e HY (I\ (S +[-m,7]). As >0 was
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3.1 One-dimensional case

arbitrary and I N J, = @ we conclude u € H' (I), and by letting = — 1 we obtain

-[r;|u’|E dt < ﬁﬂigffc(soﬁ + k) ul] dt. (3.16)
I I

In particular, since H” (J,) < 400 we obtain u € SBV? ((a,b)). As (us,p:) = (u,1) in LY (1) and
lize| = 1, Lebesgue’s dominated convergence theorem implies w-u — w in L! (I). Thus

g—+

i [ 5 peue —uldt < lim [ 5 (el e — ul + lpeu - u dt
I I

. 3.17
< gJ_I}% I le=cry (llue — wllprn + llweu — ullpg) (317)

=10

Having ul — o’ in H'(I\ (S + [-m.7])) and . = 1 in L? (|a,b]) we obtain w.ul — u’ in
LY (I\ (S + [-n,n))). Thus p € W ([a, b]) yields

f (1 —a)pu'dt = lim (1 — @) ppeul dt. (3.18)
IN(S+[-n1)) =0 S+ [-na]

Finally we combine the results from equations (3.15) to (3.18) to get inequality (3.14). For 5 = 0
define I,.? = (a,b)\ (Ju + [-7,7]) and I,% = (a,b) N {Jy + (—n, 7). Then for all 5 = 0 it holds

jﬁ{“?@)
<G H (IpnJ,) +GH (I3 Jy)

+fc:|u’|2 +(1—a)pu’ +p’udt+fﬂ|u’|2 +(1—a) pu’ + pudt

3 I

< liminf | G (<) + f e (@2 + k) [ull® + (1 — @) ppeul + pocucdt

i

w

- fﬂlHFIE +(1 —a)pu’ +p'udt

i

< limipf | D (ue, ¢e) —ffl—ﬂ}wsu’s+p’¢psugdt+fc|u*|ﬂ+(1 o) pu’ + pudt
e

I,

It remains to show that the last two integrals vanish for p — 0. As
supllesug|l L2 ((a,5)) < supFe (ue,9:) < +oo
e=0 e=0

and sup|lpeue|l 2 a0 = suplluclzr(ap < +oo
e=0 e=0

the aforementioned vanishing follows from Hélder's inequality and the absolute continuity of the
Lebesgue integral together with the fact that £™(I}) — 0 for 7 — 0. Hence equation (3.14) is

proven. O

30



3. T-convergence of the energy functional

_’/"Z “ ‘F_‘F

Figure 3.1: Recovery sequences for the proof of the lim sup-inequality in one dimension.

Theorem 3.1.7 (lim sup inequality in the one-dimensional case):
For every (u,p) € SBV ((a,b)) x {fv:v=1 holds £L™-a.e. in (a,b)} we can find a sequence
(us, e) € L' ((a,b)) x L' ((a,b)) such that (ue, ) — (u,¢) in L' ((a,b)) x L' ((a,b)) and

D(u,p) = mﬂ}igff’s (ue, pe) - (3.19)

Proof of Theorem 3.1.7. We need to construct a recovery sequence (ug,:) € H'((a,b)) x
{ve H'((a,b)) : 0 < v <1} such that limsup,_,q D: (ue,¢:) < D (u,). Without loss of general-
ity we restrict ourselves to the case (a,b) = (—1,1), v’ € L?((—1,1)) and J, = {0}. The case of
an arbitrary interval (a,b) with one jump discontinuity can be dealt with by rescaling. The case
of finitely many jump discontinuities iz handled with a similar approximation for each jump point.

Note that the reconstruction sequence is exactly the same as in [Bra98, Theorem 3.15]. We recall
its definition here for convenience, see Figure 3.1 for the general idea. Let £ = k.2 and u. €
H'((-1,1)) such that for all £ € (—1,1) with || > & it holds uc (t) = u(t). For |t| < & we
interpolate linearly, setting

(u(Ee) —u(—€))t | ulse)+ u{—Es}’

2% 2

having obviously u; — wu in L'({—1,1)). For every fixed 7 > 0 we can find T = 0 and & £
H' ((0,T)) satisfying ¢(0) =0, $(T) =1 and 0 < $ <1 as well as

ug (t) =

T
f{cp—l @1%) dt <1+7. (3.20)
i
We define
0 if [f] <&,
pe ) =15 (L2%) ife <ltl <& +eT,
1 e+ eT <t

Notice that this definition satisfies 0 < . < 1 and . — ¢ in L' ((—1,1)). We only give the
proof of the limsup inequality for the pressure terms here. For the linear elasticity and the
surface energy term the reader is referred to [Bra%8). In a first step we show that . — 1 in
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3.1 One-dimensional case

L2 ((—¢ — €T, & + £T)). The substitution s = 19=%¢ and equation (3.20) yield

—£c a £c
e
lpe = U Zaq—ge—eTge+ey) = f (Sﬂ'( - E)—l) dt+f{ﬂ—1}ﬂdt
e

—£.—=T
Ec+eT . g
o[ G(=5) )
T: £
=2 [ =(F(s) - 1)ds+ [ 14t
/ /

<2(s+en+&),

which tends to 0 for £ — 0. By Lebesgue’s dominated convergence theorem @.u — uin L' ((—1,1)),
hence Holder's inequality leads to

foteT
lim f (1 —a) |ppeu’ — pu'| + |[p'ocu — p'ul dt
—g—eT
< lim (1 - a) Ipllee= -1l 22 -1, l0e — UlL2(—g—eT geter) (3.21)

P 2= (-1, lpeu — ullorg-1,1p)
= 0.

The definition of : and u; yields

(1 — a) po-ul + plocuc dt

L—

1

f (1 - a) pp.u’ +ppeudt
1
—fe—eT Ec+eT 1

f (1—a)pu’ + pudt+ f (1 — o) poen’ + plocudt + f (1— ) pu’ + p'udt.
1 —g—eT €cbeT

Together with equation (3.21) we finally have the desired lim sup inequality

1 1
]imsupf{l — a) ppeul + plpcuc dt < f{l_ﬂ}jm" + pudt. A
£—0
-1 -1

Proof of Theorem 3.1.2. The D-convergence result follows immediately from Theorems 3.1.6
and 3.1.7T. O

Corollary 3.1.8:
Let e, G, p, @ and k; be as in Theorem 3.1.2. Then the functionals E. including Dirichlet boundary
conditions ['-converge for £ — 0% to E with respect to convergence in L' ((a,b)) x L! ((a, ).
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3. T-convergence of the energy functional

Proof of Corollary 3.1.8. Observe that adding the term — (p(b)up (b) —pla)up(a)) s a con-
tinuous perturbation of the energy functional and that H} ((a,b)) < H!({(a,b)) as well as
{ue SBV ((a,b)) :uia) =up(a), u(b) =up (b)} C SBV ((a,b)). Hence the hm inf inequality is
a direct consequence of Theorem 3.1.6 and Lemma 2.3.3.

The important part in the proof of the imsup inequality is to show that for any given function
u € {ue SBV ((a,b))rula)=up(a), u(b) =up(b)} we can construct a recovery sequence
satisfying the same boundary conditions, namely u. € H} ((a,b)). This is obviously satisfied hy
the sequence constructed in the proof of Theorem 3.1.7, as therein u; = u away from J;;. O

3.2 Higher dimensions

In this section we give a proof of I'-convergence for n > 1. Originally we hoped to carry over the
results from the preceding section using the “slicing” method as described for example in [Bra02,
Chapter 15|. Unfortunately this is not possible, since in general slices of the pressure terms can
not be bound by their one-dimensional counterparts. Indeed, following the standard procedure, at
some point we would need the estimate e (1) £ - € < tr (e (u)) for all £ € 8*! or at least a dense
subset of 8°~!. However, this is not satisfied in general. Hence in this section we follow a different
approach. We prove the liminf inequality following the ideas of [Foc01), taking advantage of the
work of Dal Maso on the space GSBD (£; R™) [DM13]. The proof of the lim sup inequality relies on
standard techniques to construct a recovery sequence and takes advantage of the recently proven
density result for functions in GSBD (€); R") by Chambolle and Crismale [CC19]. The results in
this section are joint work with Annika Bach and were previously published in [BS19]. We start by
defining the functionals which play a role in this section. They are the n-dimensional equivalents
of the functionals in Definition 3.1.1.

Definition 3.2.1:
The first functional Ge: L' (Q) — [0, +0o] defined by

%gslvw%é(l—w*dx if o€ H' (),

Ge(p) = (3.22)

+oo otherwise,

considers only the surface part of the energy. In analogy to the one-dimensional case, we first
define the functionals only considering the elasticity part of the bulk energy and subsequently add the
pressure terms. Thus let V= {p:p =1 holds L™ a.e. in (1} and V, = {gaE HY():0 ':_14,951}.
Further let F: L' (©;R") x L' (2) — [0, +0o] and its approzimation F.: L' (; R") x L' (Q) —
[0, +oa] be given by

f% (e(u) : Ce(u))dx+G.H ! (Jy) ifue GSBD? (Q:;R™), €V,
Fup)=4{0 (3.23)

+oo otherwise,
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3.2 Higher dimensions

[1(ke+¢?)e):Ce(u)dx+ G [e[Vel*+1(1—p) dx
1 0
Fe (u,¢) = ifue H (LR™), v € V., (3.24)

+0o otherurise.

Moreover let D: L' (;R™) x L' (Q) — [—oco, +0o| and De: L' (;R™) x L' () — [—oo, +oc] be
defined as

D{u,tp}=F|:ll,<pjl+f|:1—a}pv-u+vpudx? (3.25)
"]

D; (u,¢) = F: (u,¢) +f(1—ﬂ}lsﬂpv-u+¢pvpudx- (3.26)
7]

Finally we obtain the total energy formulation by adding Dirichlet boundary conditions, see also
equation (2.9). Thus E: L' (Q;R™) x L' () — (—oco, +0o| and its approrimation E.: L' (; R™) x
LY(Q) — (—oo, +oo] are given by

E(u,¢) = D(u,¢) + GeH" ' (Tp N {tru # trup}), (3.27)

(3.28)

Do) iftru=trup onlp, troe=1 onTp,
E; (u,p) =
+o0 otherwise.

Here up € H!' (R™;R") denotes some given boundary function. As before, we consider localized
versions of the preceding functionals. Thus whenever we consider an open set A € A () instead
of {1} as integration domain, we replace G () and Ge (@) by

[L(e(u): Ce(u))dx+GH ' (Jy) ifue GSBD?(QLRY), peV,
A

Fu,p;A) = (3.29)
+oo otherwise,
JL(ke+¢?) e(u):Ce(u)dx+S= [Vl + 1 (1-¢)dx
A A

F; I:Il,x'p; A} = ‘E-_fll = ot (ﬂ; R"‘} , g E v&_, (33[]}

+oo otherwise.

The localized functionals G (93 A), D, A), Do (e A), E(u,0;A) and E; (u,; A) are de-
fined analogously.

Keeping these definitions in mind we can state the main result of this section. Note that we
first treat the situation without boundary conditions and subsequently deal with them in Theo-
rem 3.2.7.

Theorem 3.2.2:
Let G. =0, pe W= (1), 0 < a < 1 and k: € 0(g), as well as C be the linear elasticity tensor as

in (2.1) with u, A = 0. Then D ['-converges for £ — 0% to D with respect to the strong convergence
in L' (; R™) x L' ().



3. T-convergence of the energy functional

Before starting the proof of Theorem 3.2.2 we formulate the n-dimensional version of Lemma 3.1.4,
stating that F} (1, ) can be bounded by D (u, ).

Lemma 3.2.3:
We can find constants ¢1, 3, c3 > 0 such that for all (u,y) € L' (;R™) x L' (Q) it holds

D. (u, ) = e1Fe (0, ) — cal[uf|pring=) — c3- (3.31)

In particular if sup_.; {.DE (U, 0:) + ||“E||L1{n;n"):| < 400 for (g, @) € LY (;R™) x L () then
sup..o Fz (W,¢) < +o0o and sup__; G, (y) < +oo.

Proof of Lemma 3.2.3. The proof goes exactly as in the one-dimensional case. Without loss of

generality we can restrict ourselves to the case (u,¢) € H! ({;R™) x V.. Then choose § = 0
. -

such that p — % = 0 and define ¢y = min {1,;.1 - "TF}, c2 = |Vplle=(m and 3 = [1‘3:) ”P”E‘J[nj‘

Thus Young's inequality in combination with |@| < 1 and the positive definiteness of C yield

equation (3.31). Obviously for sup_., {DE (u:, ) + "l.lg_.-”L'l[ﬂ;an} < +oo it holds

1
sup G (ps) < sup F (us, pe) < — sup (De (us, 0e) + calluelln gy +c3) < 400, (3.32)
£=0 £=0 €1 x>0
which completes the proof of Lemma 3.2.3. O

As in the one-dimensional case we deal with the iminf and the limsup inequality separately and
immediately obtain Theorem 3.2.2 from Theorems 3.2.4 and 3.2.5.

Theorem 3.2.4:
For every sequence (Ug,p:) © LY (Q;R™) x L' (Q) that converges to (u, ) € GSBD? (S1;R™) x V
in L' (; R™) x L () it holds

D (u,¢) < liminf D. (uc, pc).

FProof. The proof follows the ideas of Focardi [Foc0l]. As usual we can assume that the sequence
(U, ip:) satisfies

;—‘I_IEI-DE (0, ) = H—F__:“_éﬁlfﬂsfusa*'ﬂsj < oo

Further we can extract a subsequence, still denoted by (ug, ), that converges £™-a.e. to (1, @).
Using equation (3.32) we get imsup__; [ -“—_f—‘)i dx < 400 and thus ¢ = 1 holds £™-a.e. in £ and
1

we —+ i in L? (02). The proof is now divided into two steps. First we consider the bulk part of the
energy in a similar fashion as Focardi. Second the surface part is proven using slicing arguments.
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3.2 Higher dimensions

Step 1: (Bulk energy ineguality) By extracting a further subsequence we may assume

timigt [ (92 + k) e () : Ce () dx = lmy, [ (62 + k) e(ue) : Ce(uc)dx.
i1 i

L

Define now &: [0,1] — [0,3] as ®(t) = [(1 —s)ds and note &(0) = 0 and (1) = 1. Note
o

further that & and ! are positive and increasing. Then the classical Modica-Mortola trick yields
(pe—1)* €
D2 (el = [V pelloe—idx < [ 4 Sv o,
0 0

Thus equation (3.32) yields sup.~g |D® (w:)| < +oo. Next, let us define the superlevel sets
Usp = {z €2 : ®(p:(x)) >t} and their perimeter pe (t) = Per(U:z;). By the Fleming-Rishel
coarea formula (Proposition 2.4.6) we have

+o0
f |pe (£)] (€2) dt = [D® (e)| (2) < +o0

and thus U ; has finite perimeter for all t € R. Choosing 0 < v < +" < % = & (1) arbitranly, by
the mean value theorem for integrals we find some t. € (-, +") such that

(1)
sup (7' — ) pe (t=) < sup f pe (1) dt < sup |De ()| < +oo.
=0 =0 2 =0

Fixing this choice of ¢ = #: and setting U: = U ;. we define the functions w: = u-Ay.. An easy
calculation shows Vw. = Vu.Xy_ and e(w:) = e(u:) Ay,. To show that u € GSBD? ({;R™)
we want to apply Theorem 2.4.25 to the sequence w.. As u. € H! (£1; ™), we obviously have
w: € GSBV?(;R™) c GSBD? ({;;R™). Asu. = uin L! (; R™), we have sup_. o |We |l o.mm) <
sup..pll: ||z (nmm) < +o0. Thus Lemma 3.2.3 yields

sup ( f we|dx + f e (we)/? dx 4R (Jw;})

0

1]
&1 (t))*
< sup (f [w=|dx+ M‘ |e {uE}|2dx+pE {tf})

>0 \J J (=1 (7))
(on)? . (3.33)
< ?:.:E (;_[ |Ws|dx+[}[w le (ue)|” dx +pe {tE})

2 [ - E
< csup (nflwsldx+[[{ﬁ+ks] (ue) : Ce (u:) dx +pe (fsll)

< 00,

Thus Theorem 2.4.25 yields a subsequence of (W), still denoted w;, that comverges £™-a.e. to
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some W € GSBD? (£1; R™). In addition we have

e(w:) = e(w)  weaklyin L' (Q;RE5)
and {1 (Jw) < limi:ﬂlf’:'i“‘1 (Jw,) -

From u; — u and Ay, < 1 and since Ay, — Ap holds £"-almost everywhere we may deduce
that w. — u holds £™-almost everywhere. Thus u = w € GSBD? (Q; R™) by the uniqueness
of the lmit. Furthermore, as equation (3.33) yields supE}QHE{WE:IHLg{n ) < +oo, the weak
convergence e (We) — e(u) is in L2 {Q;Rgﬁr’l‘). Henece

Borm

lim | e(w): Ce(w:)dx
g—+
0

=!i_1;%fe{ws—u5}:¢:£{w£ —uE}d:c+2fE|:wE}:CE(u}dx—fe{u}:lCE{u}dx
o o o

=042 [ e(u):Ce(u)dx— [ e(u): Ce{u)dx
/ /

=fe{u}:Ce{u}dx,

0
leading to

. 1,4
]]-EE}]-R-{ 5 ("F'E + ks) e (1) : Ce (ug) dx
0

S 2
> limipf 5 (37 (1) [ e(ue) s Ce (o) dx
Ue
S 2
~ limigf 5 (37 (1) [ e(we) s Ce(we) dx
Us
S 2
~ limigf 5 (37 (1) [ e(we) s Ce(we) dx
!
.. 1 -1 2
> liminf 5 (37 (7)) fe(uj : Ce (u) dx.
0
Letting v — @ (1) we obtain for the elasticity part of the bulk energy

1 1
lim inf §{¢E+k5}e{uf]l:Ce{ug}dxggfe{uj:ﬂs{ujdx. (3.34)
L] 0

Let us now consider the pressure-dependent terms. As e(w.) — e(u) in L2 {ﬂ; “;:::I and @ — 1
in L? (Q) we have w.e (w:) — e(u) n L! {ﬂ; IR%“} This convergence holds componentwise, thus
e, (W), — 82,1, in L (£2). Since (1 —a)p € L () it holds

!.1'_1;% {l—a}wgpv-wgdx=f{l—r:z}p?~ud:c.
] 1
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3.2 Higher dimensions

Using that sup_||w:€ (0:) "L‘(ﬂ;lit:_.,";“} < +oo as well as || <1 and hme 0 £7 (24 U:z) = 0 we can

conclude

g—+

lﬁﬂfﬂ—ﬂmWMAx
L}

— liminf f{l—cr:ltpsp?~wsdx+ f (1—a)epV - u_dx
Liz

e—+0
LTAN A (3.35}
L. 1
= ]J-}ETL%'-{ (f (1 — @) pepV - We dx —c||pl| L= () || 1o=€ {“E}”LE(Q;R;’;"} (L™ (Q\Ue))®
i

= (1l —a)pV - -udx.
/

As (ug,p:) — (0,1) in L' (;R™) = L' (Q) and @] < 1, Lobesgue’s dominated convergence
theorem yields w.u — u in L! (£:; R™) and thus

lhim

E—

f?ﬂ%m—mﬁ‘
o

< lm ||V pllp=(m (flv«‘sl lus — uldx+f|5r:'su —u dx)
2 0

< lm ||V pllr=m (lae — af| L1 mn) + lleen — 1l L1 (amn))

0.
This implies

]jmiélffvptpsllgdx = f?pud:c. (3.36)
E—%
1 0o

Combining equations (3.34) to (3.36) finally vields the lim inf inequality for the bulk part.

Step 2: (Surface energy inequality) The hminf inequality for the surface part of the energy s
standard nowadays and can be proven for example as in [Focll]. It uses the slicing technique as
introduced by Ambrosio [AFP00|, see also [Bra02, Chapter 15]. Let us give a short overview of the
proof for the reader’s convenience. We want to prove

liminf Gs (pe) = GeH 1 (Ja).
e—0

To this end, we use the notation from Theorem 2.4.13 and start from the one-dimensional result
Lemma 3.1.5. Considering the localized versions of the functionals we define for every 4 € 4 ()
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3. T-convergence of the energy functional

and every £ € 8" ! the integrals over the one-dimensional functionals as

FE (ueypes 4) = [ B (005 (005345) 41" )
e

and G (pei 4) = [ G ((po)fs45) aH™! @).

I

Fubini’s Theorem yields G£ (pe; A) < G:(pe;A) and FE((u:), 95 4) < Fr(ue, e A). Thus
Lemma 3.2.3 leads to Ff ((u:),p:;4) < Fe(ue,:) < +oo. Hence we obtain boundedness of
liminfo_o Pz ((i1)§ . (9)§ 5 45) and can apply Lemma 3.15 to get

lim inf G ({:;:E}:, : Ag) > HO (Ag N ) : (3.37)
Hence Fatou's lemma yields
liminf G; (pe;A) = h'miIlfGE (e A)
g0 e—+0

> [timigt G ((0)§ s 45) ™
e

> fcm” (4507 ) dH™ ).

= y ﬁy
11

Thus by Theorem 2.4.13 we get

lminf G (pe; A) 2 Ge f ou (y) - EldH" ' (y) VEe8™ L
A'-'Jn.i

Taking the supremum over a countable dense family (£;) C {..f cgn1.yn-1 {Ju\JE} = ﬂ},
Proposition 2.4.2 finally yields

limigf G (pe) > Ge [ suplva (v) - 6147 @)
=% i

Ju (3.38)
=GH " (Ju).
In combination with Step 1, equation (3.38) concludes the proof of Theorem 3.2 4. O

Let us now prove the following lim sup inequality.

Theorem 3.2.5:

For all (u,p) € GSBD? (Q;R™) x V there ezists a sequence (Uz,p:) € L (;R™) x L1 () that
converges to (1,4) in L' (§;R™) x L' () and satisfies

D, ) = HJHSSPDE (s, e - (3.39)
£
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3.2 Higher dimensions

Proof. For the proof of the limsup inequality we use the standard technique of proof by density
(Lemma 2.3.3) as described in [Bra98, Section 4.2| and as applied for example by [lurl4, CC19].
It remains to find a suitable dense set D ¢ GSBD? ((; R™) and to construct a recovery sequence
for all (n,) € D x V.

Step 1: (Construction of the dense set TV)
In this step we combine the density results of Theorems 2.4.15 and 2.4.26. For every u £
GSBD? (Q; B™) n L! (€; R") Theorem 2.4.26 yiclds a sequence uy; € SBV? (;R™) N L™= ({; R™)
such that Jy,, C £ is closed and included in a finite union of closed connected pieces of ct)
curves and uy; € Whee {ﬂ N\ Jus R“}. In addition it holds

Jim [y —uflz@mm) =0,
lim_ e (8) — e (@)la(amgzr) =

and lim H™ ' (JyAdy) =0.
J—+eo
Since every u; as given above is in GSBV?(2), Theorem 2.4.15 yields a further sequence uy, €
SBV? ({; R") for every j € M, which satisfies u;, € W(; R") as well as
pim Jlug, — w22z =0,

k_]];.'!'.[rlmllvu?k — vuIllLﬂ{n;nnxn} = []1,

tim [He (T, ) —H (d,)| =0,

k— 4o

Combining the two results we can choose TP = W ({; ™). By a diagonalization argument we obtain
a sequence Wy € W (£2; R™) such that

j_lﬂlm"“j —uflpigngny =0, (3.40)
Jim e (1) — e (W) (g ey = O, (3.41)
lim }?{“‘1 {J,,J.} —H! (J,,}| =0 (3.42)

Jtae

Here we used ||| ogn) = Cll-lz3@me) and [le ()]l 2(amgxr) < IV ()llz2@gexm). It remains to
show limys ;oo D (1, 1) = D(u,1). By equation (3.42) it suffices to show convergence for the bulk
energy. For its linear elasticity part we have convergence since

lim
[ Avuras

1
[ 5 (et - ) Ceu) - e(w)ax

<c tim_ [ lfe,) - e ) dx
1 0

=c bk uy) — e (u)||22,0.qm
CJ_}T&‘"E': 5) —el :'”L‘J.[n,u)

=10
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3. T-convergence of the energy functional

For the pressure terms Holder's inequality yields

lim

Jtae

<ec ki _ - _ .
_Cjklj_lml:l a) [|pll o= lle (uy) — e (W)l L1 ommy

f|1—a|p(v.u,—v.u}dx
1]

=c lm |1—allple=cmle(uy) - ez

J—=+oa
=10
and
Ii Vp-(uy—u)dx| < lm |V - u; —u gny = 0.
j_}ﬂfm'[ p-( - ) _j_>+m|| Pl [ﬂj” i "Ll(ﬂ,R)
v}

Hence the total energy satisfies limy_, 4 [0 {0y, 1) — D (1) =10
Step 2: (Construction of a recovery sequence)

The construction of a recovery sequence in the case (1, ) € W ({5 B®) % V 1s standard nowadays.
We follow the approach of [Focll], see also [Turl4, Chal4, Cha05|, and prove the lim sup inequality
for the additional, pressure dependent, terms in our energy functional.

As u € W(;R"™), without loss of generality we assume that J, = K N  for some polyhedral set
K contained in the (n — 1)-dimensional hyperplane II. Let v be the normal to 11, lot «: B® — 11
be the orthogonal projection onto IT and let d(x) = dist (x, 1) be the distance from I1. Set
K% = {y € 11 : dist (y, K) < 8}. For &, & > 0 with & = /K- < ¢ consider the sets illustrated by
Figure 3.2 and defined via

A ={reQ:=(x) e K, d(z) <&},
EE={IEH:‘NI:I:|EKEE? dl:I:IEEE+ET}.I,
C. — {z €Q:n(x) €KY, d(z) < o}

Defining pe as cut-off function between C; and A, that 153 p. e CF(A:), 0 < p: <land p. =1
on Cg, we set u; = u (1 — p) and have u; =0 on C: and hence u; € H! ({1; R™).

Fara.llf]::-ﬂwecanﬁndT}ﬂand_anHll:{[]?T}}withﬂ'ﬂ_:_f,?':_:IT_f,].{ﬂ}=[]a.ndf,?{T}=1
such that

T
f{fq -1+ (f,’,}zdt <1+n. (3.43)
0

Further let v € C2° (K2*) be a cut-off function between K= and K satisfying 0 < 7, <1, 7: = 1
on K* and |V ve||p=m = /¢ for some constant ¢. Finally we construct the recovery sequence -

a0



3.2 Higher dimensions

&+ely

&
II
p

¢ —£T'}

Figure 3.2: Construction of the recovery sequences: Sets A; and B..

for the phase field ¢ by setting

0 i [f <&,
he()) = { fr (M55) i & < <& +eT,
1 if &+ T < It

and ¢ (z) = e (7 (2)) he (d(z)) + 1 — 1= (p () -

It remains to show that this choice of (u.,y,) satisfies u, — u and @, — 1 in L' (; R™) x L' (Q)
as well as D, ) = hmsup,_,q D: (0z, ). Lot us first show the convergence of the sequences
(e, 0:). As L™ (AL) < c&: for e small, u: <uin & and u; =1 in 2% 4. we obviously have

lim [ [u, — u|dx — lim f |uf—u|dx+f|uf—u|dx < lim f I]d.x+f2|u|dx —0.
=0 e—0 £—0
(1 Ag A A A

Further o — 1 = e i(w(z)) (he (d(z)) —1) < 1 and d(z) = 1 in 2% B: and thus ¢ — 1 =0 1in
1\ B.. Hence the convergence ; — 1 in L' () follows from £™ (B,) < e(&: + =T).
Consider now the different parts of the energy. Having - =01in A; and u; = uin 0% A; yields

1
Hmsupf§{¢p5+;;s}‘3 el(u:) : Ce(u:) dx

g—+0
0

= ]imsalp f % (e + kE]ze(uE] : Ce{uf}dx+f%{ws+ks}? el(u:) : Ce(u:)dx
E—» \ata. i
(3.44)

1 1
< limsup f §(1+ks]ze{u]:Ce(u}dx+f§kge{uf]:lﬂe(uf}dx

\ A A,

EI%EWMCHMH&

1
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3. T-convergence of the energy functional

using £™ (A:) — 0 for £ — 0 in the last inequality. It holds £ (B;) — 0 for £ — 0, u € L' ((; ™)
and e (u) € L? (Q; R™*"), hence by the ahsolute continuity of the Lebesgue integral

lim f(l —a)pV - udx| < v/n lim (L™ (B))? (1 - a) |pllz= (a2 llle (W]l z2(g, dx = 0

g—+

and lim f?p-udx

E—+

< lim |V plimcsy [ fuldx=0.

125

Furthermore, since o, =0m A_, p., < land u, =uin 04 4_,

. 1
< v/ lim (L% (B2))* (1 — @) [|pllz=(a.) lle (W)l 54, dx =0

E—0

lim fl:l—azlwv-uedx
125

&x < By pllimny [ fuldx=0.
BzhAc

and lim fﬁ?p-uf

E—0

Ee

Recalling that @ = 1 in 2% B; we finally obtain the following results for the pressure terms,

;E“Df{l_ﬂ}?EPv'“de=P_ﬂ, f{l—a}gﬁspv-ugdx+fI:l—a}pv-udx
o o B,

bm, (Efil—ﬂfip{%? u V. u}dx+f{1—a}pv ud_x)

fu—aqumx

and hmfgagvp u: dx = ].IJII fgagvp~ugd:c+ f Vp-udx
o, Be

- lim (Efvp (pene — uzldx+_[vp udx)

For the surface term we can estimate in a first step

1 1
fE 1)+ SV eltde=C. fEc “1)?+ SV
0 B,
1
+G. [ -1+ S Vel dx
BoAz <€

1
+G.:f25+: 1245 Ve
Az

— I, + I + I
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3.2 Higher dimensions

In 0% B; it holds p: =1 and Vi = 0, hence
1
cfEE 1}+|ﬂ|de'fﬂdx=[].
B Y B

In A; it holds ¢ = V ¢ = 0 and thus £; € o(g) implies

hmI;;—hmG' ;dx Iim G

=+ =—
Az

LM (Ad) _
P
5e = Im

cE—E=[].
—0 £

To estimate Is, the set B Y\ A is further divided into three parts, see also Figure 3.3,

De={zeQ:m(z) € K5,& <d(z) & +T},
={re:w(z) e K*\K*,d(z) <&},
El={zreQ:n(x) e K*\K* & <d(x) <& +£T}.

In D. we have 7. (r (z)) = 1, hence @ (z) = f; (Jﬂ%li) By aquation (2.43) and the relation
Vd(z) = +v it holds

Lm [ 52 (e 1)+ I?wsl dx
.

_Eﬂgffk(fﬂ(ltl es)_)z ﬁ?(lﬂ );

— lim > ff (a () =D+ |f () ) edsd W™ (3)

dtdH ! (y)

(3.45)

g—0 &
K= 0

< lim H™1(K¥) (1 + 1)
=W (K)(1+7)
=H"1 (Tu) (1 +1n).

Now let Dy denote the Jacobian of w. It satishies || Dy || pos (r;gn=ny = 1 with respect to the matrix
norm ||-||ee. As g () =1 — 3 (7 (z)) in E! we can estimate

tim [ o (e~ 1+ 51V e dx
£}
i [ QO 9 ) e o
E’l
(3.46)
< lim f Q@ £ 19, (P asa ™ )
KR\ KT —kc

c
< lim — m—1 2= E
< lim —&H™! (K \ K°)

—0,
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Figure 3.3: Construction of the recovery sequences: Decomposition of Be \ A: into the sets D., E!

where we used 0 < 4 <1 and 0 < ||V 7|y = 9/ in the last inequality. These properties of
together with he (d (z)) = fy (%) in E2 yield the following for every > 0 for the remaining

term.

E—}Ufﬂg Ivtpsl dx
2
=!i_r>%f£|:’rs(w(ﬂﬂﬂ(n(ld( <2l EE)—I) dx
2
+lim £ flv"’“:“ ) Dy (= }(f (ld{z}l ss)_l)%f;(ng_&)
E+ET1 ; 5
< im f f E(n( _EEE)—I) dtd H" ! (y)
+&T e e
(n(%) 1) +4(=5)

< lim f f( (fa(s) — 1) |'[.fn{s ~1)+ fn(s)| )Edsd?f"_liy}

KzywKe 0

dx

(3.47)
dtd H™ ! (y)

<ime [ a+maww
K?E'IILKE

< lime(1 +n)H" (K 0\ K¥)

= 0.

Finally equations (3.45) to (3.47) yield im._,p [ = G.H™ ! {J_u} {1+ 7). Since > 0 was arbitrary,
equation (3.39) is proven. O
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3.2 Higher dimensions

As in the one-dimensional situation, from a numerieal point of view we are interested in the
situation including boundary conditions. Following the approach of [CC18, Theorem 5.5] we prove
a ['-convergence result in the case of the prescription of Dirichlet boundary conditions on a subset
I'p of 5, where the Dirichlet part I'p of 81 satisfies the same geometric condition as in [CC19,
Theorem 5.5|. More precisely, we assume that ! C R" is open, bounded, connected and with
Lipschitzboundary & Furthermore, I'p and 'y are such that

A =TpuUulyUN

with I'p, [y relatively open, Tp NTy =0, H* ' (N) =0, p # 0 and £ = 8lp = Oy has
finite H™ 2-measure. Moreover, we assume that there exists § > 0 and zp € R™ such that for all
0 <d<4dit holds

f5,2, (Tp) C 11, (3.48)

where f5.r,(x) = zo+(1 — 4) (x — zp). The main difficulty in proving I'-convergence in the presence
of Dirichlet boundary conditions consists in proving the lim sup inequality. Following the strategy
in [CC19, Theorem 5.5|, for a given u € GSBD?((;R") and for every 7 > 0 we find u" €
SBV? ((;R™) N L™ (Q; R™) such that u” = up in the intersection of @ with an n-dimensional
neighborhood of I'p and such that

Eu"1) < E(ul)+7.

To obtain the required function u", according to [CC19, Theorem 5.5 the first step consists in
suitably extending u outside of 1. Indeed, the main idea is to extend u by up in the intersection
of B™\ 1 with an n-dimensional neighborhood of I'p, while across the Neumann part Ty of the
boundary & a suitable reflection argument is used. The key ingredient to control the energy of

the reflection is [CC19, Lemma 2.8], that we recall here for the reader’s convenience.

Lemma 3.2.6:

For any open rectangle B < R"™ let R’ be its reflection with respect to one face F of R and
let R = RUFUR'". Suppose that v € GSBD? (R;R"™). Then we can ertend v to a function
¥ € GSBD? (E; 111“) snch that

H1 (Jg N F) =0, (3.49)

H " (Je) <cH" V(L) and (3.50)

f e (@) dx < e f e (v)2 dx, (3.51)
B R

where ¢ > 0 is a suitable constant independent of R and v.

Remark: Suppose that in Lemma 3.2.6 the function v belongs to GSED? (R;R™) n L' (R; R™).
Then, recalling the construction of ¥ in the proof of [CC19, Lemma 2.8] it can easily be shown



3. T-convergence of the energy functional

that ¥V € GSBD? (ﬁ; 111“) nL! (ﬁ; 111“) and that in addition to equation (3.49) it holds

[¥]dx < e [ |v]dx. (3.52)
7P R

We are now in the position to prove the following result.

Theorem 3.2.T:
Let E; and E be as in equations (3.27) and (3.28). Then the functionals E; T'-converge with respect
to convergence in L1 (§; R™) x L' (Q) to the functional E.

FProof. The proof follows the lines of [CC19, Theorem 5.5|. The main work in proving Theorem 3.2.7
lies in the restriction of the energy functionals to spaces satisfying the boundary conditions.

The first step consists in proving the lim inf inequality. To this end, let (u.,¢:) C L' (R™) x
L' (£2) be a sequence converging in L' (€; R™) x L' () to a pair (u, ) such that

sup E; (g, ) < +oo. (3.53)
ex0

Thanks to Lemma 3.2.3, equation (3.53) immediately implies that ¢ = 1 holds £™-a.e. in ) and as
in the proof of Theorem 3.2.4 we deduce u £ GSED? ({}; B™). Moreover, equation (3.53) implies
that tru. = trup and trg. = 1 on I'pp. Let us now choose £ ¢ R™ open, bounded and with
Lipschitz-boundary such that @ € © and €1 8Q = I'p. Then, thanks to the boundary conditions
satisfied by u: and ., the functions 1, @; defined as

i = u: infl, and e O i.nl‘.:.t,
up in 240 1 mQ\a,

belong to H! (ﬁ1 R“‘) and H' (ﬁ), respectively. Moreover, as £ — 0 the sequence (U, ;) con-
vergee in L1 (ﬁ; R“) x L1 (ﬁ) to the pair (i, 1), where

_ u infl,
= _
up in 140

Since u € GSBD? (O R"™) and up € H! (R";R"), wo have i € GSBD? (ﬁ;mﬂ). Thus, from
Theorem 3.2.4 we deduce that

minf D. (., 55 0) > D (%,1;0).
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3.2 Higher dimensions

Recalling lim. g k: = 0 we can prove the lim inf inequality as follows,

lim inf E; (1., )
E—0

= ]]{-E}Ef D (0, e)

. o = 1
=1mmw£(u£,;p£;n)— f—E{I.ID}:CE{HD}+I:1—11}F?-IID+vp~ugd.‘:c

=—0 2

i
- 1
Eﬂ(u,lgﬂ)—fEE{HD}:Ce{ug}+{1—a}pv-uD+vp-uﬂdx
¥4y,

=D{u,1)+GH" Y (Tpn{tru+# trup})
—E(u,1).

It remains to prove the I'-lim sup inequality. To this end, let u € GSBD? (;R™)n L (; R™) and
let 17 = 0 he arhitrary. Suppose we can construct a function u” € SBV? (£; B™) n L™ ({); R™) such
that u”7 = up in the intersection of ¢ with an n-dimensional neighborhood of T'p and it holds

Jim 0" — w1 (e = O (3.54)

and E(u,1) 4+ > E (u",1). (3.55)

Then for every fixed i > 0 we could apply the construction in the proof of Theorem 3.2.5 to u"
and obtain sequences (u?, ") € L' (€; R™) x L' () such that

ﬁmsalpEs (u?, ) < E(u",1) < E(u,1) +7.
E—¥

Thus by a diagonal argument and the arbitrariness of 5 we could find an applicable recovery

Bouence.,

What remains is to find a suitable function u". To this end we employ the construction described
in the proof of [CC19, Theorem 5.5|. We describe the main ideas how u" is constructed and
prove that it satisfies equation (3.55). For more details and the explicit construction we refer the
interested reader to the original paper.

As mentioned before we want to extend u to the outside of £}, more precisely to Q0 = 2 + B, (0)
with £ > 0 small. Recall the notation ¥ = 8Ty = 6T'p. As H™ 2(E) < +oo for any £ > 0 we
can find a naighborhood T of 32, such that H™—1 (E n an) < £ and £7(T) < £. Subsequently we
cover Iy \,E with finitely many cubes {Qhﬁ:=1 with side length gy, conter o and pairwise disjoint
closure. For arbitrary £ = 0 the cubes }y can be constructed such that the following estimates
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3. T-convergence of the energy functional

hold.

! ((rw VE) LhJ Qh) <e,
h=1
HL (T \E) nG,) > (1 —2) 2on)™ ", (3.56)

n—1
(Fnr \E) NQyC {Ih + > wibns+ Ynvh 1 % € (—propn), Yn € ':—EPmEPh}} .
i=1

Here, vy, denotes the generalized outer normal to £ at zp and (b ) denotes an orthonormal basis
of {yh}l. For details and the proofs of equation (3.56) we refer to the construction carried out in
the proof of [CC19, Theroem 1.1]. As in the construction realized by Chambolle and Crismale we
continue by defining the rectangles

n—1
Ry = {Ih + 3 ybng+ynvn % € (—phypn) s Yn € (—3pn —t, —EPhII} ;
i=1

n—1
R, = {Ih + ) wibng+ ynvh 3 € (—pr.pn) s Yn € (—Epn,pn + t}}
i=1

n—1
and Rp = {Ih + ) yibng+ Ynvh 3 € (—propn) s Yn € (—32pn —t,2pn + t}} .
i=1

Note that R, R}, and B satisfy the requirements of Lemma 3.2.6. Hence we obtain a function
Uy, satisfying

f e (@in) P dx < ¢ f e (w)? dx, 357)
R, Ry,
H** (o N Ra) < cH™ (Ju N R) (3.58)
and [ [Gn|dx < e [ [u]dx. (3.59)
Jmiese]

This procedure yields an extension of 1 across the Neumann boundary. We extend u by up across
the Dirichlet boundary, thus defining

u in Q4| By
=41, inRs

up elsewhere in Q.

Collecting the preceding estimates for i, Chambolle and Crismale [CC19] prove

F(i,1;9) < F (u,1) + GoH" ' (Tp N {tru # trup}) + 7. (3.60)
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3.2 Higher dimensions

Thus, for our purpose it suffices to notice that the same function 1 also satisfies

fp?-ﬁdx{fp?-udx+fj and f?p-i‘idx{f?p~udx+ﬂ. (3.61)
0, 0 £, )

Indeed, it can easily be seen that the first inequality in (3.61) follows as in [CC19] from equa-
tion (3.57) together with Holder's inequality, namely for ¢ sufficiently small

1
f PV - up dx < Va|lpllL= a0 (£ (2 \ D) ? lle (Up)ll L2008
00

<7
and

1
T

f PV T < Vallplle g,y (€7 ()™ lle (@)l 2, e
Ex

1
= cﬁllplle(m} (L™ (Bp))? lle (u)|| 2y ymmemy
< 1.
The second nequality in (3.61) follows from equation (3.59) together with the absolute continuity of
the Lebesgue integral, keeping in mind that in our case u € L' ({; B™) and hence 1 € L! (£; R™).
Thus 1 fulfills

E(1i,1;) < E(u,1) +n. (3.62)

Moreover, we observe that || — u||p1yn.g~) < 7 for  sufficiently small.

As in [CC19] we shift the constructed i slightly, thus ensuring that it satisfies the Dirichlet bound-
ary condition. Namely we define

- — -1 -1
i =1ie I:_fﬁlgn} +Uup—upe {fﬁ,:u} ¥

which for § sufficiently small coincides with up in a neighborhood of I'p thanks to assumption
(3.48). Note that for § sufficiently small we have

[i—@|dx < [ [i—To(fsm) '|dx —up o (fz) | dx
ﬂ‘/’uu ﬂf'uu i ' +nf|1lﬂ Up & |
=f|ﬁ|{z}—ﬁ (Il__é?)dx+f up(z) —up (I_‘EI”)
] i

1-4
In fact, since U,up € L' (0;; R™) and {_fg,zu}_l (1) < O for § sufficiently small, we obtain equa-
tion (3.63) by approximating 1 and up by C, ({;; B™)-functions, exploiting their continuity. Anal-

(3.63)

dx < 7.
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3. T-convergence of the energy functional

ogously, we get

fle{ﬁ} — e (W) dx

0

-:_:znf
=gnf

= 7

e(up) — e (up o (fizg) )| e

- . T — b1y 2
e{u{z}]—e(u( — ))‘ dx +2
1-4 ﬂf

e(ii) —e (ﬁ o (fa,z.,}‘l) |2dx+‘2f
4 (3.64)

 —dx 2
e (up(x)) —e(uﬂ( 1_5”))| dx

for & sufficiently small (see also [CC19, Theorem 5.5|). As i [CC19], from equation (3.64) we
deduce that

F(u%,1) < F(Ti,1;) + 7.

Then, thanks to equation (3.63) we also obtain E {i‘ié, 1} < E(i1,1;) + n, which together with
equation (3.62) yiclds

E (1) < E(u,1) +n. (3.65)

Finally, the required function 17 is obtained by suitably regularizing 1° using the construction of
the proof of [CC19, Theorem 1.1]. As i° = up in a neighborhood U of I'p, its approximating
functions 1] constructed as in [CC19, Theorem 1.1] satisfy G = up * px in U. Thus we define
the final approximating functions as u” = @i} + up — up * pg, where k depends on 7. These
functions obviously fulfill the Dirichlet boundary condition in 7. Further, as limg_, 4 . |up —up =
Pk g1 mm) = 0 we can ensure that |[u"—u|| 1 g.gn~) and E (u",1) < E {ﬁ‘s, 1} +1n by exploiting the
approximation properties of [CC19, Theorem 1.1] and proceeding as in the proof of Theorem 3.2.5.
Thus, together with equation (3.65), we obtain equation (3.55). O

3.3 Convergence of minimizers

As mentioned in the preliminaries, the main application of I'-convergence is the study of the
asymptotic behavior of minimizers for energy minimizing problems. In fact, assume we can show
that a sequence of minimizers (., ) for E; converges in L' (;R™) x L' () to (u,1), with
u € GSBD? (;R™) a minimizer of E. This would imply that by solving the numerically well-
posed problem min E; for a small £ > 0, we obtain a good approximation of the desired minimizer
for E. According to Theorem 2.3.6 we need to prove equi-coercivity of E; with respect to the strong
LY (€ R™) x L' (£2) topology, in addition to Theorem 3.2.7, to obtain convergence of minimizers.
Recalling Definition 2.3.5, to this end it suffices to show compactness of sequences (g, ;) C
LY (Q;BR™) x L' () satisfying sup.q E: (Us,¢:) < +oo. Unfortunately, to our knowledge the
equi-coercivity in the strong L! (£; R™) x L' (Q) topology for the functionals that we considered in
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3.3 Convergence of minimizers

this paper cannot be proven without additional assumptions. See for example the introduction of
[CC19] for a discussion of the simpler case of F. without pressure terms. The aim of the present

section is to discuss under which assumptions one gains compactness.

In the case without pressure terms a frequently chosen approach is described for example in the
aforementioned paper and also in [Turl4]. It consists of perturbing the functionals F. by adding
what 1s known as a fidelity term, namely fﬂ|u—g|2d:c with g € L? (f2; R"). This term is also
present in the Mumford-Shah functional and its approximation according to Ambrosio and Tor-
torelli, see equations (2.11) and (2.12). In the context of image segmentation, the fidelity term
forces the reconstruction u of an input image g to take values close to g. At the same time it
guarantees the equi-coercivity of AT;. Also the functionals FE defined as

FE(wp) = F: (w) + [lu-gPdx,
0o
with g € L? (£2; R™) are equi-coercive in the strong L! (; R™) x L' (Q?) topology, for a proof of this

fact see [Iurl4, Proposition 1]. This leads us to consider the perturbed functionals DE defined as

DE (1, ) = D (u,¢) +f|u — g dx,
[}

with I-limit DB (u,¢) = D(u,¢)+ [ [u— g|2 dt. Note that while this approach iz customary, the
fidelity term and the function g have no physical meaning in the context of fracture propagation,
thus rendering it somewhat artificial. The main result of this section is the following theorem.

Theorem 3.3.1:
Let g € L? (5 R™) and let D& and D® be given as above. Further for any given £ = 0 let (uz, ¢:)

be a solution of the minimization problem
me = min { DE (u,¢) : (u,¢) € L' (5R™) x L' (@)}

Then, up to subsequences, the sequence (U, p:) converges in L' (;R™) x L' (Q) to a pair (4, 7)
with il € GSBD? (0 R™) n L? (; B™) being a solution to the problem

m = min { D& (u,1) : u € GSBD* (O, R™)}.

Finally, m; -+ m as e — 0.

In order to prove Theorem 3.3.1 we show some intermediate results in Propositions 3.3.2 to 3.3.4.
In a first step we prove ['-convergence of the functionals D to DE,

Proposition 3.3.2:

Let Ge =0, pe Wb (), 0 <a <1 and k: € o(g). Further let C be the linear elasticity tensor
as in (2.1) with g, A = 0 and let g € L? (; R™). Then D& T-converges for £ — 0% to DB with
respect to strong convergence in L' ((; R™) x L' (02).
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3. T-convergence of the energy functional

Proof. We begin by proving the [-liminf inequality. Let (u:,¢:) € L' (R™) x L1 () be a
soquence converging to (1,¢) € GSBD? (;R™) x V. Then Theorem 3.2.2 and Fatou's lemma
imply

lim inf D& (ue, @:) = liminf E: (e, @) + ].imin_ff [u; — Elzd_x
=—0 =—0 e—0
7]
.. 2
> E(u)+ [lmipflu. - g dx
L]
> DE (u,p).

For the I'limsup inequality suppose without loss of generality that (u, ) satisfies DE(u, ) <
+00. Recalling Lemma 3.2.3 we obtain the bounds D (u,¢) < +oo and [|u— g|2dx < +oo.
1
In particular the domain of the I'-limit reduces to the space u € GSBD? (; R™) n L? (S; R™).
Applying the density results 2.4.26 and 2.4.15 hence yields a sequence u; € W({2; R") satisfying
limy s 4 oo D (1y, ) = D (1, ) as in Step 1 of the proof of Theorem 3.2.5. In addition hmy_s o [y —
u||p2(pgn) = 0 is guaranteed. The obtained convergence with respect to L2 (€; B™) finally implies
convergence of the fidelity term and thus
lim D% (uy,) = D (u, ).

Jotea

Hence it suffices to construct a recovery sequence for any given (14, ) € W (£; ") x V. Taking the

sequence U as in Step 2 of the proof of Theorem 3.2.5 we notice that im0 —uy||p2n.p-y = 0.

This implies im__5 [ [u. — g|*dx = [ |u, — g|* dx and thus the I'"limsup inequality is proven. [
0o 0o

Next, we show equi-coercivity of the functionals DE.

Proposition 3.3.3:

Let g € L? (S1; R™). Further suppose that (u.,p.) € L' (; R™) x L' (1) is a sequence satisfying
sup.~g DB (Ue,pc) < +0o. Then there erists u € GSBD? (; R™) N L2 (; R™) such that p. — 1
in L' () and, up to subsequences, u: — u in L! ({1 R™).

Proof. Suppose (ue,p:) € L'(Q;R™) x L'(1) satisfies sup,.g D8 (ue,:) < +oo. Then
Lemma 3.2.3 and an additional application of Young's inequality imply

DE (U, ) = 1 FE (0, 0:) — "'-'”3"“5”1.‘[9-,2“} —c3+ fluE - glﬂdx
3]
Fg é 1 2 2
= e FE (ue, :) — 5 - §||“E — gllzagnmmy —c+ [ [ue —g| dx (3.66)
0

1
> 1 FE (us,00) + §f|us _glfdx -
1]

Thus sup,~g FE (1., p:) < +oo and the result follows directly from [Iurl4, Proposition 1]. O
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3.3 Convergence of minimizers

Finally, let us show the existence of minimizers for the approximative energy DE for fixed £ = 0.

Proposition 3.3.4:
Let £ = 0 be fired and g € L2 (Q; R™). Then the minimizing problem

me = min { D& (1, ) : (u,¢) € L' (4R") x L1 (2)} (3.67)

admits a solution (1, o).

Proof. We prove the theorem applying the direct method of the caleulus of variations. Let
(uy,5) € L1(;R") x L' (Q) be a minimizing sequence for equation (3.67). Proceeding as in
estimate (3.66) we obtain

1— 2
sup (f(gaﬁksj%(uj}:ce{uj}dﬁf% +E|v¢pj|2dx+f|uj—g|ﬂd:{) < +oo0.
i
i 7] 7]

Thus ||e (uy)] LA (AR and ||uy||p2(n.g~) are bounded uniformly. Hence by Korn's inequality uy
is bounded in H! ({}; R™) and there exists a subsequence, not relabeled for convenience, weakly
converging to some u: € H!({;R"). Moreover the subsequence can be chosen such that the
convergence holds pointwise £"-a.e. in 2. Further we obtain boundedness of ; in H! (2). Taking
another subsequence, not relabeled, provides us with some . € H! (1) such that ¢; — . weakly
in H' (Q) and ¢; —+ - strongly in L? (2). It remains to show

DE (ue, ) < ];Eilgﬂg{“jﬂﬂj}- (3.68)
Ioffe’s theorem [AFP00, Theorem 5.8] implies

[ e+ ke s Ceuo ax < minf [ (¢ + ke (w) : Ce(wdx. (360
Y] Y]

Since the weak convergence of V 1, in L? (£2; R"*") holds componentwise, we obtain V-u; — V-u.
in L2 (Q) and thus ¢;u; — peu. strongly in L' (Q). Additionally it holds ¢;u; — @-u. strongly
in L? (; B™). Thus we obtain convergence of the pressure terms, namely

f{l @) pV U + .V pu, dx = jEinmf{l — )V, + o, Vpude.  (3.70)
0 1Y

Further the convergence of ¢; implies

J—tea

(1-g)® R ¢ 2
IT+E|?¢;:E| dxghmmffT+E|?gaj| d. (3.71)



3. T-convergence of the energy functional

Finally an application of Fatou's lemma for the fidelity term yields
f|u5 —glfdx < ].imirl.ffhlj —g[*dx. (3.72)
3 +oe
0o 0

Collecting equations (3.69) to (3.72) we obtain equation (3.68). O

Proof of Theorem 3.5.1. Thanks to Theorem 2.3.6, the result follows immediately from Proposi-
tions 3.3.2 to 3.3.4. O

Remark: Assuming that the pressure p is constant in space, in other words Vp = 0 holds
L™ almost everywhere in €2, it should be possible to prove the I'-convergence results Theorems 3.2.2
and 3.2.7 with respect to the metric induced by the convergence in measure. As a consequence,
it would be sufficient to prove compactness of a sequence of minimizers for E, with respect to
this metric. In this case we could benefit from some recent development concerning the existence
of minimizers in the context of the Dirichlet problem. Namely, in dimension 2 we could use the
general compactness result of Friedrich and Solombrino [FS18, Theorem 6.1] and follow their strat-
egy in [F518, Theorem 6.2 to prove the existence of minimizers. Moreover there exists a very
recent compactness result in arbitrary dimensions by Chambolle and Crismale [CC18, Theorem
1.1], based on which the authors also prove that minimizers of the Dirichlet problem related to F.
converge in measure to a minimizer of the Dirichlet problem related to F. Following their argument
it should then be possible to prove an analogous result for E, in the case where Vp = 0 holds
L™ almost everywhere in £
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4 Numerical methods

4.1 Discretization

In this section we discuss how to discretize equation (2.13). Parts of it were already published
in [ES17]. We start by including the constraints for the phase field into the equation. As we
are interested in the quasi-static simulation, we can assume that we have the phase field and
the solution given at a previous time step, namely @previous and Uprevious. Assuming further that
0 < @pevious = 1 the constraints 0 < ¢ < 1 and %tp < 0 for the phase field translate to
0 < ¢ < wprevious. Thus by defining the obstacle function

B (p) -

0 0 < ¢ < previous
+oo  otherwise,

equation (2.13) transforms to

Definition 4.1.1 {Approximative energy minimization problem):
Findu € H}, (;R™) and ¢ € H' (Q) such that

E; (u,p) = rn.in E; (v,¥)

f (¥ +k)e(v): Ce(v)+ (1 —a)¥pV-v+ 9V p-vdx )
J X

f{’r+w} Vds—fpy upds+G. f {1—1;.'3} + = |‘G'r,b| dax +& (1) .

'p

We solve the minimization problem using a fixed-point iteration scheme, similar to [MWW15h|.
Therefore we first fix ¢ and mimmize (4.1) with respect to 1 and then fix u and minimize (4.1)
with respect to . This alternation is repeated until convergence is achieved. More precisely we
stop the iteration if |[|¢ — wprevious|| = p, where p is some threshold and |||-||| denotes the energy
norm with respect to ¢. In what follows we derive the discretizations for the two subproblems.



4. Numerical methods

4.1.1 DG discretization of the displacement equation

Assume now that the phase field is fixed and we want to determine the minimum of equation (4.1)
only with respect to the displacement. Taking free variations yields the following Euler-Lagrange
equation.

Find u € HL (; R") such that

ﬂ=fl[go2+ks}e{u}:Ce{?]+{1—a}w?-v+gﬂ?p~vdx—f{T+pV]~Vds (4.2)
i I'n

for all v € V = H} (O; R™).

An existence and regularity result for an equation of this type is stated in [MWW15h|. The only
difference lies in the slightly modified factor ((1 — k) ¢? + k) instead of (¢ + k:). From the well-
known regularity results in the absence of pressure, see [Cia88), they conclude W2 _regularity for
some v > 3 away from the contact regions of I'p and Ty, provided the data p, v, and ¢ are
sufficiently smooth.

To solve equation (4.2) we use the unfitted discontinuous Galerkin method presented in Sec-
tion 2.5.3. As the major terms in equation (4.2) stem from linear clasticity, the present section
relies heavily on the SIPG discretization for the linear elasticity equation as given in [Riv08], see
also [LNSO04]. The novelty lies in the treatment of the additional pressure terms. We first derive
the fitted SIPG discretization here and then discuss the modifications to include unfitted elements
in Section 4.1.3.

Separating the bilinear terms in equation (4.2) from the linear terms, equation (4.2) becomes

fl[go2+ks)ﬂi:ll}ICE(V:l'iK=—f'[l—ﬂ}wv"r"‘?vp'v‘h +f{'r+w}.vds.
1 1] Tn

With the definitions and notation from Section 2.5, taking Vi, = P (T) as in Section 2.5.2, the
SIPG discretization of the bilinear form is given for all (ug, vi) € Vi x Vi, by

ap® (up, Vi) = Z U I[gr:'i + k:) e (ug) : Ce (Vi) d_x)
TeT

FeF\I'n

- 2 ( f (wh + ke) ([un] §Ce (va) - v} + {Ce (un) - v} [[Vh]]}ds) (4.3)

+ Y i [ (AR Qv (vl - vy ds.

FeF\I'n F
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4.1 Discretization

The SIPG discretization of the hinear form is given for all vy € Vy by
FP% (vi) ==Y f{l_ﬂ}Pth'Vh+<Fth'Vhdx
TeT

. fl:'r+w}-vhds

FEFenTn
- Y[R ungCev) - vpds (14)
FeF_ ,MTp F
i k ) C ) ds
" Fefgnl"p h ;'-[ (h + k) (up -v) : C([va] -v)

+ 3 [a-ayemlvi-vas.
FeEFin:
Note that, as we discuss in Section 4.1.2, ¢y, 1s continuous, hence @y, 1s well defined on any F € F.
As in Definition 2.5.4 the normal v is defined for the face, thus continuous as well. Hence the
discrete elasticity problem can then be formulated as follows. Find uy € Vy, such that

a,® (un, Vi) = F'C (va) ¥ vy € Vi (4.5)

Note in particular the occurrence of the factor (‘F‘i - ks) in the stabilization term. Including this
dependency on @ results in less penalty for discontinuous solutions along the crack. Thereby the

connectivity assumptions are weakened.

In the remainder of this chapter we prove comvergence of the discrete solution up of equation (4.5)
to the corresponding weak solution 1, namely the solution of equation (4.2). For the analysis
of the approximation error we assume additional regularity of the weak solution. Writing V, =
HEL (RN H? (4 R™) and Vi, = V; + Vi, we demand u € V,, which is guaranteed for sufficiently
nicely given data and boundary as for example in the setting of [MWW15b, Proposition 3. Before
stating the main result in Theorem 4.1.3 let us define some norms.

Definition 4.1.2 {(Jump semi-norm, energy norms):
Let vy € Vi and v € Vi ., we define

1
valy =Y~ = llvallZage),
FeF ' F

vl =lle (Va)lZzry + IVal} and
VI =1V + 3 hrlle (Vir) - nrlifaor).-
TeT

Remark: Obviously the energy norm |||-||| satisfies the triangle inequality and absolute homo-
geneity. It also is positive definite:

livall = O implies ||e(vh)l2y = 0, hence using Korn's second inequality [Nit81] we get
¥ ¥&llz2¢7y = 0 and thus vy is plecewise constant. In addition we have [[vg]] = 0 on all faces
including the boundaries and thus vy = 0 on £). This induces that |||-[||, is a norm as well.
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4. Numerical methods

Theorem 4.1.3 (Approximation error for the displacement):

Let u € V, be the solution of equation (4.2) and let uy € Vi be the solution of equation (4.5).
Furthermore, let i be sufficiently large. Then we can find a constant ¢ > ) independent of the mesh
size h such that

u—ugll <e inf |lu—w .
llu—uall <c_inf fju—vall,

In order to prove Theorem 4.1.3 we follow the usual path showing discrete coercivity, boundedness
and consistency of the bilinear form aP’® in the subsequent lemmata.

Lemma 4.1.4 (Discrete coercivity of al’®):
Let aP be as in equation (4.3) and let the Lamé coefficients satisfy p > 0 and 2u + nA > 0.
Further let 5 = 0 be sufficiently large. Then there erists a constant ¢ > 0 such that

12
an® (Va,vi) = (@2 + k) 7 clllvall (4.6)

for all vy € V.

Proof. As the bilinear form al’® is independent of the pressure p, it only differs from the classical
SIPG formulation for linear elasticity as in [Riv08] by the factor {4,92 - k}. Thus, carrying out the
standard proof in [Riv08, Lemma 5.2] for ¥4 = (2 + k) * v4 we obtain

DG =
ap - (Ve Vi) = c||[Vall

for some ¢ > 0 and sufficiently large penalty parameter 1. Linearity of the norm yields equa-
tion (4.6). |

Lemma 4.1.5 (Boundedness of af’©):
Let al’® be as in equation (4.3). Then there erists a constant ¢ > 0, independent of h, such that
for all (v, wg) € Vi e % Vg it holds

lag'® (v,wa)| < ell (¥ + k) llo=cam IV, NIWalll .

Proof. Boundedness of the bilinear form can be shown similarly to the proof in the case of the
Poisson model equation [DPE12, Lemma 4.16]. We first note that analogous to [DPE12, Lemma
4.11) the consistency term satisfies the following bound:

> f {Ce (V) - vr} [Wn] ds| < (Z > hrlCe (wr)-wuizm) [Wal,
FeF

TeT FeaT (4.7)

W(v,wn) £ Vh,: x Vh,v
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4.1 Discretization

Next, let (v, Wg) € Vie % Vi be arbitrary and consider the following four terms separately

}ﬂfa (v, wh:'} =

3 f (¢ +K)e(v): Ce{wh}dx‘
TETT

+ Y f (¢ + &) [v] {Ce (W) - v} ds

FeF\I'm

2 f{wﬂﬂ}ﬂfem-vﬂﬂwhﬂds

FeF\I'n F

+ X 2 [ D) @) C(wal ) ds

FeF\I'n F
=1+ IT+ 11T+ IV
Viv,wp) € Vi x Vy.

The Cauchy-Schwarz inequality immediately implies
I+ IV = (2p +nA) 1 + 1) 1+ E) [[Ivil, Nwall,

where we used ¢ < 1 and equation (2.2). For the third term we apply equation (4.7) to obtain

12
HI-:_:(1+H(Z > hFIICE{Vrr}'VFHi:rF’) s

TeT FedT
(1 +K) (2p +nA) [I[vIll, Wl -

To obtain a bound on the second term we apply equation (4.7) once agaimn. Further we make
use of the discrete trace inequality [DPE12, Lemma 1.46] which yields hyl|le(Wn)|li2r, <

C||E{Wh}||L=[T}- Thus
IT<e(1+k)(2u +nd) [le (Wa)|l 2o V],
and summation of all the terms finally yields
£C (v, Wr)| (2 +n+ ) (1+K) (2u +nd) V], [Wal] - H

o

Lot us now discuss consistency of the bilinear form. Usually consistency is considered with respect
to the strong solution, showing that

af® (u,vs) = F% (vn)

holds for all v, € ¥y, and for the strong solution u solving equation (2.4). Unfortunately due to
the I'-convergence we cannot hope to find such a conclusion. After all we are no longer solving
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4. Numerical methods

the same problem but merely an approximation of it. What we can hope for is consistency with
a weak solution, namely the solution of equation (4.2). This turns out to be true and guarantees
the following Galerkin orthogonality.

Lemma 4.1.6 (Galerkin orthogonality for al’®):
Let u be the solution of equation (4.2) and assume u € V. Then it holds

ap® (w,vy) = Fy'% (va)

for all vy, € V. In other words ahﬂg (n—up, vy) =0 for all vy € V.

Proof. The main idea for proving consistency of the discrete formulation with the weak equation
is integration by parts. More precisely we integrate the weak formulation by parts on the domain
{ and then reverse this integration, but this time on the individual elements T' € T. Therefore let
us consider the bilinear term.

f{apﬁ +ke) e(u) : e (vy) dx

i1

=f(5ﬂ'2+’=s) {CE{“}'V}'Vth—Iv'({¢F2+RE}Ce{u}}~vhdx
o 0

= f (¢ + k<) (Ce(u) - v) - vpds

o101

+y° f{qez+k5]e{u}:c.e{vhjd_x

TETT

_ Z f{5a2+ks) (Ce(u) ) - vpds

TeT 4

Reordering the second sum to run over faces we get

f{:,aﬂ +ke) e (u) : Ce(vy) dx
7]

=Zf{ga“+ks)e(u}:e(vhjdx— 3 f{gﬁﬂ+k5}ﬂCe{u}-y-vh]]ds,

TETT FeFim F

where we consider the face normal v = vp as in Section 2.5.2. As u € H? (f; R™) by assumption
and thus Ce (1) € H! (2; B"), their jumps across interfaces vanish. In other words for any interface
F £ Fint one has

[u] =0 and [[Ce(u)-v]] =0, (4.8)

see [DPE12, Lemmata 1.23, 1.24]. Recalling that for inner faces the product rule

[(Ce (w) -v) - V] = {Ce (u) - v} - [va] + Eva} - [Ce () -]
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4.1 Discretization

holds and that by definition [[(Ce (u) - ) - vi]] = (Ce(u) - v) - v4 on the boundary we thus get

[+ k) e cemmax
1Y

— Zf{go2+kg}e{uj:ﬂs(vh}dx

TETT

- > f (0% + k<) (fCe () - v} - [va] + fva} - [Ce (u) -»]) ds

FeFin

— Zf{go2+kg}e{uj:ﬂs(vh}dx

TETT

-y f(c,a“ + k2) ({Ce (u) - v} - [va] + §Ce (V) - v} - [u])) ds.

FeFin

As [Jul] =0 on any F € Fin, comparison with equation (4.3) shows
af (wv) = [ (¢f + he) e () : Ce (va) dx
1

= Y[Rk (I (G (vm) - vh+ (Ce ) - B [vaD) ds

FEF_,MTp

Y g [k @l Cwl-vds

FeFezeMln

for all v € Vi, A similar calculation shows

[a-aewvviax= Y [a-aewvvi- ¥ [a-aowlvl-w

o TeT ¢ FeFin
Thus inserting the Dirichlet boundary condition we have

'ﬂ'fa {“1‘ Vh:' - F.FPGVF;

=f{<pﬁ+k5}e{u}:¢:e {vhjdx—f[:pﬁ+kg} {Ce(u) - v} [[va] ds

i I'p

+f|:1—cr}gc:lhp‘f-"~Vh+¢ph?p-vhdx+f{f+puj~vhds.
Cpy

(4.9)

Note that adding the term — [ (7 + k) {Ce(u)- v} [v]/ds to equation (4.1) would not alter
'p

the weak solution. Indeed we test with v € H} () and hence the terms would be zero. Thus
equation (4.1) in combination with equation (4.9) yields the required Galerkin orthogonality. O

Proof of Theorem 4.1.5. Having collected Lemmata 4.1.4 to 4.1.6, the error estimate follows in the
usual way, see for example [DPE12, Theorem 1.35]. Note that consistency of the discrete bilinear
form 1= requested in the reference mentioned. Nevertheless in the proof only Galerkin orthogonality
15 used. O
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4. Numerical methods

4.1.2 TNNMG discretization of the phase-field equation

Let us now discretize the equation with respect to the phase field, assuming Up = Uprevious given.
Remember that uy is the solution to equation (4.5), hence uy € Vi = Pi (T). Thus we have
lan]lL=(amm) < 400 as well as [|e (Ua)]| L= (@@nxn) = [V Ua||L=(Rnxn) < +00. The main chal-
lenge 1= now the nonlinearity in form of the function @ (-). To deal with this issue we apply the
truncated non-smooth Newton multigrid (TNNMG) solver as described in [GS509], see also [GK09).
This method is specialized in solving discrete problems of the general form

Find ¢ € R™ such that Jj, (¢) < Jy () for all ¢ € R™. (4.10)

The functional J; : R* —+ R U {4+o0c} is composed of the smooth part Jp p and the non-smooth
@h,'l- as

Jn () = Jno () + Zﬁ’n:{ﬁ#‘f (4.11)
i=1
If Jy is strictly convex, proper, lower semicontinuous and coercive, there exists a unique solution
of equation (4.10) [ET76, Proposition I1.1.2]. In the remainder of this chapter we thus define
a discretization of our problem that fits into the framework of equation (4.10) and prove the
aforementioned propertics.

Let us begin with the discretization. Starting with equation (4.1) we approximate the space

ll: ] I:Q,r the N-dimensional finite element space Wy, = Py (T) N C(2) ¢ H'(Q) with basis
{@ . A function @y = Ei:ﬂ @h @y € Wy is represented by the coefficient vector (g N
The dlﬂ'erentlablc part of the functional Jy as in equation (4.11) is then given by

1-—0 .

Jn0 (i2n) =%Eﬁ (¥n,n) + bf (wn) , where
af (o, n) = f oh - bne (Un) : Ce (un) dx
LT3

1
+ Ge Evsﬂh'vﬁlh+;ﬁn-¢hdx

7ol

2
-

f (Onsde) - (Yns5) € (Un) : Ce (14) dx
L

i

Il
=)

o 1

7

+

Ge [[€(oneV 60 (s V5) + = (onadh) - (9n.s) dx and

ﬁﬁ(‘.{’hj= {l:l_&jpv'uh+vp'“h}?bhdx—f%gbhdx
0

2-":"‘--...__‘

._.

&
= (= @)pV o+ Vo) (nd dx— [ Gnat) dx
0

i 0

Vion, tn € W

Il
=)
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4.1 Discretization

In other words, defining the matrix 4 = ':EIJ}?_-;_:IQ and the vector b = {b‘j:i_ul with
1
oy = [ o dye(un): Ceun) dx+Ge [[£V 60V oy + Zu- éydx,
0o 1

-!n=f(l—ﬂ}Pv'uh¢1+vP-ﬂﬁfﬁ:dx—f%@dx
o 1]

1
Jro (en) = EAtpn ~ion + b - op.

The non-smooth part is given by

0 if Pha = Pprevious, k1

‘1’1';,: (sn) =X praviomnh i ('iF'h,J =
" +oo  otherwise

Lemma 4.1.7 (Properties of Jy):
Let Jy: Wy — R U {+0oc} be given as above. Then Jy is strictly conver, proper, lower semi-

continuwous and coercive.

Proof. Strict convexity. Let gn,1s € Wy be arbitrary, ¢ € (0,1) and write § = t&. Then

Young's inequality applied to the terms tyy (respectively £V p) and (1 —t) iy (respectively
(1 —£)V iy yields

2 a2
af, (ton, (1 —t)dn) < %ﬂf (wn,n) + %ﬂf (¥n, ¥n) -

Equality holds if and only if ¢y = 8 (1 — ) ¢y, Plugging in our choice of § we obtain equality if
and only if g = ¥, Further

af (twn + (1 — &) ¥, ton + (1 — t) ¥n)
= t2af (¢n, on) + 2af (ten, (1 — ) ¥n) + (1 —1)" af (¥n, ¥n)
< (2 +t(1— ) af (en,om) + (A= +£(1 - 1) af (¥n, ¥)

= tay, (wn, on) + (1 — ) aj, (Yn,vn).

As bY is obviously convex by linearity, we conclude that Jj, g is strictly convex.
To prove convexity of ®5 4 for all i we consider

0 i 0= (fﬁﬂh,i + '[1 — t} T,'-Ijhli:’ = Pprevious, h,1

+oo  otherwise .

Bps (tons + (1 — 1) Yne) = {

Now if 0 < ¢hs = @pravious,ng and 0 < ¢y < @previous e are guaranteed it obviously also holds
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4. Numerical methods

0 < (fgns + (1 —t) ¥p,4) < Pprevious i1, hence
Dplbons+ (1) hne) =0=2-0+(1 -2} -0 =tPn; (pna) + (1 — 1) P (PPny).

On the other hand if either p 5 € [0, previous,h,i] oF Yn s & [0, Pprevious| then we have $4 4 (@ni) =
+00 or Py (1fn 1) = +oo respectively, hence

Dp g (tons+ (1 — ) Pns) < +oo=1t8ny (ne) + (1 — ) Prs (Phy) -

As the case distinction is exhaustive, $p ; is convex for all i and thus we conclude that Jp is strictly
convex by recalling the strict convesxaty of Jy o.

Proper convexity. We obviously have Ji (¢n) > —oc for all ¢ € R®. Further there exists
¥h = Pprevious,h such that Jy (wn) < +oo. Thus Jy is also proper convex.

Lower semicontinuity. Note that by Holder's inequality

&
af (wh,¥n) < (':'2# +nA) |le (up)||p=inz=y + f) llenllz2 @ llvnllLz@

+ Geg|lV wnllp2m IV Ynllozim

< e (p, A, Ge, &, [anllwr==(mmy) llenlla o lvnll @ m).-
Further
by, (¥n) < ¢ (o, lIpllw .=y, [0l (mn), Ges ) I0nl 1o,

thus Jpp is continuous. Let us now show lower semicontinuity of $ at on € Wy arbitrary. If
By (o) = 0 we obviously have & (i) = &, () for all oy, € Wy, and thus lower semicontinuity.

On the other hand consider ®j (pa) = +oo. Noting that Wi\ {ts : 0 < ¥ < @previous,p a.e.} 1s
open, we have limy, ., $n (Pn) = +oo and lower semicontinuity is proven.

Coercivity. Applyving Young's inequality with arbitrary 41, 2 > 0 we can estimate

[ [
Jno (¢n) ET”v ';F'h”%ﬂ{nj + 2—:”5%”%'1{9)

1P Ilw =@ lnllf oy & o G} &,
- 29 - E”ff‘h“m{n) - %? - E”?h“;_ﬁ{n}'
Thus for §; = 8 = S= we get
. [ Ge Ges
Tno on) > min (52, 55 onlBinn = (412)

where ¢ depends on ||p?||lwi=q), |Unllg1 @z, Ge and £, Further for || g1io) — +oo at some
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4.1 Discretization

point in time ¢n < @previous,n £™-a. 2. will no longer hold and thus

im B (n) = +oo. (4.13)

[[Fr8 ||Hl[n}_:’+m

Combining equations (4.12) and (4.13) yields

Jh (wn) = +oo,

=" ||Hl.:n}_:’+m

and thus coercivity is shown. O

We can now conclude the main result of this section.

Theorem 4.1.8 (Existence of a solution for the phase-field step):
Let Jy be as in equation (4.11). Then equation (4.10) has a unigue solution.

Proof. The result follows immediately from Lemma 4.1.7 and the general existence result [ETT76,
Proposition I1.1.2]. O

Thus our functional Jj, is applicable for the TNNMG-Solver which according to [G5509, Theorem
2] then converges to the solution of the minimization problem (4.10).

4.1.3 Adjustments for UDG

The unfitted Discontinuous Galerkin method has the advantage that it can handle interior domain
boundaries without introducing as many degrees of freedom as a remeshing technique would require.
We want to exploit this property, treating the crack as such an interior domain boundary. As
described in Section 2.5.3, the main ingredient in the conversion from a DG to a UDG discretization
is the inclusion of N sub-domains 2 and the corresponding sub-domain meshes T as well as their
skeletons _F::hﬂﬂ andf:,ﬁ for 0 < i< N and 0 < j < i. For the moment let us assume that
these are given satisfying two properties:

s it exists a subset J, C UILEI Ujes _Ff,‘ft which represents the crack and

s whenever an edge Fy o = 877 N 8TY is part of F£, we have i # j, that is the two sides of
F1 5 belong to different domains.

We discuss the reconstruction of the crack and thus the creation of JFj; in Section 4.2 and Sec-
tion 5.2. The construction of the sub-domains with the corresponding meshes is deseribed in more
detail in Section 5.3.
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4. Numerical methods

A first adaptation of the SIPG discretization in the preceding chapter is then straightforward,
following the lines of Section 2.5.3. The only difference to the discrete elasticity problem defined in
equation (4.5) is that the summations in equation (4.3) and equation (4.4) are taken over all sub-
domain triangles and edges respectively. Nevertheless, having gained some additional information,
namely an approximation of the crack C in form of JFj,, we want to make use of it. For this
purpose we first omit weakly forcing continuity along the crack by simply not including skeleton
terms along edges F' € JF,. Second, recalling equation (2.9), we remember the formulation of
the weak problem actually including surface terms along the crack. Skipping the application of
Gauss’ theorem that was used to get rid of the term [, pv - uds we obtain the following energy

minimization problem.

Definition 4.1.9 (Energy minimization problem for UDG):
Find u, C such that

(4.14)

=1:|:|.1'I£l f %e{v]:ﬂe{v} —&pv~V—fT-Vds+fw~uds+Gcﬂﬂ_1{K:|.
V.
K Tw 8K

Similar to Section 2.2.4, we obtain an approxamative problem.
Definition 4.1.10 {Approximative energy minimization problem):
Findue HL (;R") and p € H' () with0 < p <1 and -%.:;:EI} satisfying

EFPE (u,¢) = min E/PC (v, )

. 1
~ min ( ﬂj 5 (¥ + k) e(v) : Ce(v) — aypV - vdx (4.15)

—f-r~vds+a{w~uds+Gcﬂj%{1—i,b}2+%|?tﬁ|2dx)-

I'w

Note that the term [,.pv -uds is a continuous perturbation of the functional, thus the T'-
convergence results from Chapter 3 hold for this approximation as well.

The adapted approximative energy minimization problem leads to the following final UDG dis-
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4.1 Discretization

cretization for ugy, vy € Vy

i=0

N-1
af P (un,va) = ) (Z (‘f{wim)e(uh}:cf (vh:ldx)
TeTH

- > (f (h + ke) ([un]] §Ce (va) - v} + {Ce (un) - v} [["’h]]]'ds)

FeF\(FE,UrN)

+ 3 ;’—Ff{ 2 4 k) ([un] - v) : C([va] -v)ds |,

FeFi\(Fr,urn)  F

N-1
F/PC (wp) =% (— 3 f —aupnpV - Vi dx
i=0

TeTip

+ Z f‘r-vhds

FeF  ,MCy

-y (5 + k) up {Ce(vn) -v}ds
FEF:, Mo f

b Y R [GeR) e el e
FeF: ,Mlp F

_ Z fmpnpﬂvh]] cvds+ Z fw'VhdS) )

FE,F:“!\,F‘F“! F FE.F..‘“! F

Note that the modification of the weak enecrgy leads to a slightly different linear form for the
TNNMG discretization of the phase-field equation as well. Namely, when solving the displacement
problem with UDG, we define for all oy € Wy

&
ﬁﬁ‘ungiﬁjh} =—fﬂpv'uh¢hdx_f?c¢hdx~
0 1

The bilinear form aj, remains unchanged.

Reenacting the proofs of Section 4.1.2 we note that J still has the properties stated in Lemma 4.1.7
and thus Theorem 4.1.8 still holds. Concerning the analysis of the UDG discretization we note
that going back to the term [, pv - uds does not alter the analysis. In fact, it has no influence on
the bilinear form and the linear form is altered in a way that guarantees Galerkin orthogonality
with respect to the corresponding weak problem. Nevertheless a rigorous analysis of the given
formulation is not possible. As the crack can cut elements in an arbitrarily bad way, we cannot
guarantee that standard assumptions on the grid are satisfied, such as shape regularity and quasi
uniformity. For more details we refer the interested reader to [BE09].
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4. Numerical methods

S0

Figure 4.1: Skeletons (in red) of a rectangle, an ellipse, a circle and its polygonal approxdmation.

4.2 Reconstruction of the crack

As discussed in Section 4.1.3, in order to apply the UDG method we need an explicit represen-
tation of the crack. In recent years a couple of papers appeared, dealing with the combination
of continuous methods for simulating crack propagation, as phase field models or damage models,
with discontinuous approaches, as for example the X-FEM method. Therein we can find numerous
strategies for the reconstruction of the crack. In [GSF17] at every loading step the new crack tip
is found and connected to the existing crack. Unfortunately to our knowledge this only works
reliably in the case of an a-priori known crack path. Further they can not deal with branching at
tip points. Other approaches introduce a discontinuity once a critical erack opening displacement
is reached (e.g. [JZ01] and [SWS03]). It remains to determine the direction of the crack, which is
done relying on the directions of maximum principal stress or maximum principal non-local strain.
Note that [JZ01] allows for discontinuities in the crack path. In [SWS03] the introduced fracture
segments always crack an entire element, their introduction of new crack tips relies on degrees of
freedom on the boundary of elements. Thus both methods are not applicable in our case. Instead
we follow a geometrical approach proposed in [TMRF15]. According to the theory, a crack would
occur wherever o 1s minimal. Unfortunately, the phase-field variable never reaches the value 0. We
can not determine a discrete (n — 1)-dimensional erack path but rather gain a path of elements,
where ¢ 1= minimal. Nevertheless, intuitively one would expect the crack to be along “the middle”
of the smeared region. Mathematically this can be described by the skeleton (or medial axis) of a
level sot ¢ = ¢* for some threshold value @*.

The notion of a skeleton was first introduced by Blum [Blu67]. He describes what is known as
the grass fire model. Starting a homogencously spreading fire simultancously at every boundary
point, the skeleton is composed of those points where different fire fronts meet and quench. There
exist many different ways to define a skeleton or similar structures. Blum additionally describes it
as the set of all points with at least two closest points on the boundary. Calabi characterizes the
skeleton or medial axis as being composed of the centers of maximal inscribed disks [Cal65, CH68).
See Figure 4.1 for some examples of skeletons of simple geometrical shapes.

There exists an enormous amount of Literature on skeleton generation, a fairly recent overview
is given by Saha et al. in [SBdB16|. The different approaches to skeletonization can be roughly
grouped into three categories. The main ideas derive from the different definitions of a skeleton or
medial axis. We distinguish
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4.2 Reconstruction of the crack

Figure 4.2: Example for the sensitivity of a skeleton to noisy boundary: the rectangle was slightly
modified at the boundary resulting in a completely new skeleton branch.

e thinning algorithms,
e algorithms trying to detect ridges in the discrete distance transform and
e algorithms based on Voronol diagrams.

Any such algorithm has one major challenge, the sensitivity of a skeleton to noisy boundary data,
see Figure 4.2, A further difficulty is working with discrete data. Given a smooth geometric shape
and its discrete approximation their skeletons might differ dramatically, as seen in the case of the
circle and its approximation in Figure 4.1. Additional properties of skeletons that are often desired
but difficult to achieve are

o connectivity i.e. the skeleton should be connected and have the same topological structure
as the underlying shape,

+ rotation invariance and

o reversibility i.e. by storing in addition the distance from the boundary at the centers of
maximal disks, the original shape should be reconstructible.

Obviously the most important property for us, besides insensitivity to noisy boundary data is
connectivity of the skeleton, which amounts to connectivity of the crack.

Lot us give a short overview of existing algorithms, their advantages and disadvantages. Thinning
algorithms are a common choice when working with pixel data, for example in the field of pattern
recognition. An extensive overview of the first two-dimensional algorithms can be found in [LLS92].
For the extension to three-dimensional cases see for example [TF81, GB90, MFV98|. Thinning
algorithms usually work iteratively. Starting from the boundary they remove “simple cells”, that
1s cells whose removal does not change the topology of the object. The process is repeated until no
further “simple cells” remain. Some further geometrical restrictions are usually necessary to keep
the endpoints of branches. The criterion for simple cells is usually a local one, depending only on
the neighborhood of a cell. Thus they have two major drawbacks for our application. First, they
produce a band of cells as the skeleton, not an (n — 1)-dimensional crack. Second, as they must
take into account the neighborhood of a eell, they mainly work on structured, hexahedral grids.
More recently a couple of papers extended the principle to cell complexes and thus simplicial grids
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[WMO8, LCLJ10, KP12, DS14]. While some of these algorithms still rely on structured grids or are
affected by the grid orientation, others only produce a band of elements as skeleton. Thus these
methods are not suitable for our application.

The second widely used approach to find the skeleton is the detection of ridges (local maxima)
in the distance map of the boundary. They first solve the Eikonal equation to compute the dis-
tance. Afterwards the ridges of the distance map are detected. The interested reader can find
examples for algorithms of these types in [LL92, AdB92, S5P95, GF96, SBTZ02, TvW02, RT02].
These algorithms suffer from similar disadvantages as the thinning methods, most of them rely on
structured, hexahedral grids. Some of them even rely on a thinning process to detect the ridges.
Further they need to detect regions of high curvature and treat them separately, thus they depend
on a smooth boundary. Finally they sometimes only approximate the Euclidean distance, which
leads to skeletons that are no longer rotation-invariant.

The third class of algorithms generating a skeleton relies on the concept of Voronol diagrams.
In our case they have the main advantage to directly work on a polygonal representation of the
boundary. Using this representation either the edges or the nodes or both are taken as so-called
sot of Voronoi sites &. The Voronoi region V; corresponding to a site s € & is then defined as all
points closer to s than to any other site s’ £ § with respect to a metric d. The Voronoi diagram
V' D consists of the boundaries of all these regions. In mathematical terms that reads

Vi={zeR":¥s' &, s #£s:d(x,5) <d(x,s"}

VD= ]av..
2ES

(4.16)

In most applications the skeleton is restricted to the inside of the shape. Obviously this results in a
branch of the Voronoi diagram for every pair of neighboring nodes in the polygonal representation
of the boundary. The main parts of the skeleton, corresponding to a skeleton of the continuous
boundary, are obtained by applying some pruning methods distinguishing between *“important”
skeleton branches and minor parts. This approach was first introduced in [O192]. It was expanded
to create a hierarchic structure of skeleton branches in [OK95]. Many other authors discussed the
usage of Voronol diagrams for skeletonization, see for example [LWH*12, MR96]. Their relation
to other methods computing the medial axes is studied in [FEC02]. See [ABE09] for an overview
of the stability of the generated medial axes. As mentioned before a main ingredient in skeleton
generation using Voronol diagrams is the pruning method. While several methods relying on the
distance of Voronol sites s and s’ along the boundary are proposed in [OI92], a method additionally
taking the angle between s and s’ into account is proposed in [BLyLO07].

In summary we see three big problems with most methods for our use case. The first problem
is that many approaches start with a continuous representation of the shape boundary, which is
not given in our case. Indeed, numerically we only obtain a piecewise linear approcimation of the
boundary. They use information such as curvature maxima. Second, most of the algorithms use a
pixel based representation of the shape, relying heavily on the structured grid setting. Finally many
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4.2 Reconstruction of the crack

algorithms represent the skeleton in form of pixels or elements and not in form of a one-dimensional
interface as we would like to do.

Analyzing the existing literature under these aspects, a skeletonization approach based on Voronoi
diagrams was implemented in the present thesis. The major advantage is that the algorithm works
directly with the polygonal approximation of the boundary. This is exactly what is represented by
our piecewise linear level set and thus the natural starting point for us. In addition using pruning
methods we can extract the important branches of the erack. More details on the algorithms
employed and their implementation can be found in Section 5.2.
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5 Implementation

5.1 Distributed and Unified Numerics Environment (DUNE)

All numerical tests in the present thesis were implemented using the software toolbox DUNE, short
for Distributed and Unified Numerics Environment. An archive of the complete source code and
instructions to reproduce the results shown in Chapter 6 are published in [Som19]. DUNE is a
free software aiming at the solution of partial differential equations with grid-based methods. Its
implementation follows three main principles: flexibility, efficiency and extensibility. Abstract
interfaces are used to separate algorithms and data structures. They also enable the flexible
integration of external libraries for example for grid integration. For more information on the basic
concepts of DUNE we refer to its website!.

The basis for the implementation of PDE solvers with DUNE are the so-called core modules,
namely dune-common, dune-geometry, dune—grid ([BDE*05, BED+08h, BED*08al), dune-istl
(|BB07, BB08]) and dune-localfunctions. They provide a stable foundation for any application
using DUNE. On top of these a wide range of other modules are available. There exist grid, discretiza-
tion, extension and user modules as well as tutorial modules. The present thesis highly relies on the
discretization module dune-pdelab [BHM10]. We employ the grid modules dune-uggrid, provid-
ing a grid implementation, and dune-grid-glue ([BBS09, EM16]) to cut one-dimensional slices into
a grid for the evaluation of line integrals. Further, our code takes advantage of some functionalities
implemented in the extension modules dune-functions ([EGMSb, EGMSa|) and dune-typetree.
For the UDG discretization and the TNNMG solver mentioned in Section 4.1.1 and Section 4.1.2,
we heavily rely on dune—udg [EH12| and dune-tnnmg, respectively. For the TNNMG module we
additionally need dune-solvers. The UDG discretization module itself makes use of dune—tpmc
[EN1T7] and is supplemented in the course of this thesis with a new way of constructing a sub-
triangulation described in Section 5.3. For profiling purposes we used some functionality from
dune-xt [MSL1T7).

Ihttpa: /f www.dune-project. org/
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5. Implementation

5.2 Construction of the skeleton

The reconstruction of the crack as the medial axis of some level set ¢ = * of the phase field
consists of five stops. First we extract the level set of ¢ and sort the points found along the
boundary. Afterwards the Voronoi diagram corresponding to the obtained points is computed. In
the post-processing all Voronoi edges are restricted to the nside of ¢ = * and a pruning algorithm
is applied to remove unimportant branches. In the following the individual steps are described in
more detail.

The level set extraction is done by a topology preserving marching cubes algorithm. We use an
implementation already integrated in the DUNE framework [EN17]. It can be used to generate a list
of points and the connecting interfaces of a multilinear approximation of the level set. Sorting the
points along the boundary according to the connecting interfaces, we obtain a list of point sites
suitable for the generation and pruning of the Voronoi diagram.

The algorithm of choice to compute the Voronol diagram of a given set of point sites is the sweep
line algorithm [For87]. For a good overview on the algorithm and some implementational details
see for example [dBvKOS00, Chapter 7| and [Sch13]. The algorithm has optimal complexity and
many reference implementations exist. Unfortunately none of these fit our needs perfectly, hence
we re-implemented it. Some of the implementations demand for integer coordinates of the sites
[Boo|. Furthermore, many implementations do not keep track of the generating sites of a Voronoi
edge, which we need for the subsequent pruning.

Having successfully created a Voronoi diagram as defined in equation (4.16), many of its edges
are half-infinite. To overcome this difficulty a bounding box is used and halfinfinite or infinite
Voronol edges are cut by the bounding box. Applying the algorithm for erack reconstruction, the
computational domain is naturally chosen as the bounding box. In our case we can restrict the
Voronol diagram to an even smaller region. As we are only interested in the crack inside of the
domain described by ¢ = *, we cut the Voronoi edges by this boundary as well.

Our final task is pruning the Voronoi diagram to remove unimportant branches. We implemented
pruning according to the potential residual as introduced in [OK95] as described below. The
alternative pruning based on discrete curve evolution as proposed in [BLyL07] has the property
that it does not prune the principal branch of the skeleton. While this might be a desired property
in many applications, it would result in the crack tip lying on the chosen level set ¢ = *. This
is obwviously not realistic and increases the dependence of the reconstructed crack on the chosen
value of ¢*, henece it is a major disadvantage for our application.

Let sy, 32 € & be the two Voronoi sites corresponding to an edge e of the Voronol diagram. In

other words d(z,s1) = d(z,s2) = mingesd(zr,s) for all points r € e. Following [OK95] we
then define the potential residual of e as the distance of sy and ss along the level set ¢ = ¥,
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5.3 Creation of sub-domains

writing 7 (e) = d™% (51, 52). If the level set consists of multiple connected components, we define
r(e) = +oo if 51 and s3 lie on different components. The skeleton i1s then pruned with a simple
thresholding. A branch is more significant, the more distant its two generating sites are. Thus we
erase any edge with a residual smaller than a given threshold r*. To render r* independent of the
scaling of an object we apply a relative criterion. That means we prune a branch if and only if its
potential residual r (&) is smaller than * times the total length of the component of the level set,
where its generating sites lie on. An example of skeleton generation is shown in Figure 6.3.

5.3 Creation of sub-domains

Let us suppose we have reconstructed the crack as described in the previous section. Thus we
assume that we have given a pruned Voronoi diagram and we wish to introduce the Voronoi edges
into our domain. As we want to apply the UDG method it is not necessary to remesh the grid.
It is sufficient to find a separation of the elements T € T cut by one or more Voronoi edges into
sub-domains T € T* with domain index i € M. We start this section by a short description of the
DUNE module dune—udg. Afterwards we describe the way we integrate the creation of sub-domains
generated from a Voronoi diagram. Finally the creation process and arising problems are deseribed
in more detail.

The module dune—udg is an extension of dune-pdelab providing the infrastructure to implement
cut-cell methods as for example the UDG method applied in this thesis. Its main ingredient is to
provide a sub-triangulation of a grid, such that integration over sub-domains and boundaries of
sub-domains becomes possible. In the classical approach the sub-domains are separated by the zero
level sot of a given function. A marching cubes algorithm is applied to find a multi-linear approx-
mation of the zero level set. Subsequently, a hash can be computed to identify the case of cutting
through an element. Afterwards the sub-clements for integration are constructed according to this
unambiguous case. For more details see [EH12| and [EN17]. The most important methods provided
to the user by the sub-triangulation are create_entity parts and create_intersection parts.
They take as mput an eclement T € T, called entity in DUNE, and provide the user with a set
of entity parts and intersection parts, respectively. These represent a subdivision of the entity
into simplices and hypercubes, on which it 15 easy to implement quadrature rules, as well as the
corresponding boundaries. In the following we describe how to construct this subdivision when
the sub-domain boundary is not given by a zero level set of a function but rather by a Voronoi
diagram. The construction must satisfy the following two main requirements,

o the crack must stay exactly connected and
o on different sides of the crack the entity parts must belong to different sub-domains.

The first approach that comes to mind is to adapt the ideas of a marching cubes algorithm. That
1s for a given pair (T, €) of an element T' € T and a Voronoi edge e one would calculate a hash that



5. Implementation

A A
A

Figure 5.1: Example configurations of a Voronoi edge cutting through a triangular grid element.

A
A

Figure 5.2: Example of a situation where numerical comparison of the cut point between a Voronoi
edge and the edges of triangles with the common corner of the triangles fails.
The triangles (black) are cut by the skeleton edge (green). Assuming that the numerical
£ 1s chosen such that the cut point C 1s closer to the center A than £, but the cut point
' 15 not, the topmost triangle reconstructs the skeleton as depicted in red, the others
see the blue reconstruction. Thus a very small, completely disconnected triangle (red)
15 generated.

symbolizes how e cuts through T'. Possible cases include going along an edge of T' and cutting (or
ending at) an edge of T or at a corner of T as well as ending inside of T' or not touching T' at all.
See Figure 5.1 for some exemplary confisurations. Unfortunately this gives rise to problems due
to numerical inexactness. If we compare cuts with corners of T exactly, we encounter problems
as the numerical calculation of a cut between two edges can never be computed exactly [She97].
Alternatively, if we merely compare the corner of T' with the cut point between an edge of T' and the
Voronol edge e numerically, the topology of the crack might change. An example of these special
casecs 1s shown in Figure 5.2, where due to the inexact comparison a small hole is introduced. Thus
finding the cut geometry for any pair (T, €) separately will not work. Instead we need to follow a
different approach to guarantee topological correctness of the resulting crack.

We apply an advancing front technique, inspired by [GJ09, GJ13|. The authors describe how non-
matching grids of dimension two or three are projected on each other using advancing fronts. We
adapt their approach to the situation where a grid consisting of one-dimensional elements, namely
the Voronoi diagram, 1= cut into a higher dimensional one. We start with an arbitrary Voronoi node
Py and find the grid element it lies in by a brute force search. Next, we consider all edges starting
at P; consecutively. Therefore we put them into an event queue of tuples of the form (element,
edge). Computing the cut configuration of a Voronoi edge & with the current element T' we either
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5.3 Creation of sub-domains

Figure 5.3: Advancing front algorithm to find the intersections between a grid (black) and a Voronoi
diagram (red). The currently treated triangle and the currently treated Voronoi edge
are colored in blue and green, respectively.

reach the end of e inside of T' or e cuts through one side or corner of T'. In the first case the ending
node Ps of e 1s reached and we are finished caleulating the cut of e with T'. We add all non-treated
edges starting (or ending) at Py with T' as start element to the event queue of (edge, element) pairs
and continue with the next pair from this queue. In the second case, when e leaves T through a
side s, we also obtain the cut configuration of & with T'. We continue with the algorithm by cutting
e into the neighbor element T" of T across s. This ensures that both triangles, T' and TV, see the
same cut point with the common edge s. If € leaves T through a corner €| there does not exist a
single neighbor. In this case we move around € as long as the neighboring triangle merely touches
e in the corner €. When we reach a new element T that intersects with e in more than the corner
' we continue with the pair (77, ). If we reach the boundary of the domain before finding such an
element we go all the way around the corner until we reach the other boundary element and start
over from there. If e ends exactly at C we simply add the two neighbors of T at C to the queue
with all non-treated edges starting at C. A small example of how a Voronoi diagram consisting of
three edges i1s introduced into a small grid consisting of seven triangles is given in Figure 5.3.

Having obtained a list of cut configurations for any pair (element, edge) where a cut exists in
a preprocessing step, the main work in create_entity_parts is to actually compute the entity
parts resulting from these cuts. This 15 especially difficult in the case of multiple, possibly not
directly connected edges cutting through an element as shown in Figure 5.4, To avold any mu-
merical difficulties we use the Triangle? library, “A Two-Dimensional Quality Mesh Generator and
Delaunay Triangulator” [She96, She(2]. For an element T we msert the corners of T' and any
cut points stored for the tuple (T, €) for any Voronoi edge e cutting through T' into Triangle and

*httpa:/f www.cs.con. edu/ ~quake/triangle.html
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A AN

Figure 5.4: Examples of multiple Voronol edges cutting through the same grid element. In the
right-hand case some of them are not directly connected.

gain a triangular mesh of sub entitics of T. Triangle 1= also capable of constructing constrained
Delaunay triangulations, thus we can force the edges e to be part of the resulting mesh. Moreover
it is possible to assign segment markers to the inserted edges, such that any segment in the out-
put of Triangle can be distinguished between crack and non-crack. The output of Triangle thus
provides us with the desired entity parts. At the same time it also yields the intersection parts
needed for create_intersection parts. The only remaining problem is to find the neighboring
entity part for intersection parts on the boundary of an element. This is done by constructing the
entity and intersection parts of the neighboring element followed by a geometrical matching. The
advancing front algorithm described earlier guarantees that the intersection parts in the neigh-
boring element will have the same coordinates and we can compare them exactly. Noticing that
create_entity_parts and create_intersection_parts are often called consecutively on the same
element, we can optimize a bit. To avold double computation, we always store the entity parts
and intersection parts for the lastly treated element in the cache. Storing all configurations for the
whole grid would be too memory intensive.

Finally the question of domain indices remains. In other words we have to sort the entity parts into
sub-domains satisfying our requirements. The easiest way of doing that is to assign a consecutive
domain index to every sub-domain. Obwviously this guarantees different indices on different sides
of the crack inside an element. While this approach works, it is awfully slow. It would result in
a new set of basis functions for every entity part in the construction of the UDG basis. Hence
we would loose the benefit that cut-cell methods have over remeshing techniques. To reduce the
computational costs of solving PDEs we would thus like to reduce the number of sub-domains. To
combine entity parts on the same side of the crack essentially is a graph coloring problem. We take
the entity parts as graph vertices V and the connecting intersections as graph edges £. Partitioning
£ = £ U & we can assume that exactly the edges in £ belong to the crack. We want to color
the resulting graph in a way that vertices connected by an edge in £ must obtain different colors.
Vertices connected by an edge in £ should obtain the same color if this is possible without viclating
the first rule. Note that there might occur situations where it is not possible due to crack tips, see
Figure 5.5 for such an example and the corresponding graph. If it is not important to guarantee
the optimal coloring (1.e. to use the smallest possible number of colors), the standard algorithm for
a graph coloring is a greedy algorithm as described for example in [MMIT2]. Assume a sufficient
number of colors equipped with some ordering given. We start with an arbitrary vertex and color
it with the first available color. Then we follow all edges in £ starting at this vertex and color
the neighboring vertices. If we reach a vertex V' € V that is not connected to any already colored
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Figure 5.5: Example coloring for a triangle containing a crack tip. Although entity part 5 is con-
nected to entity part 2 via 3 and 4, they lie on opposite sides of the crack. Thus they
must have different colors. On the right the corresponding graph is depicted.

vertex by an edge from £, we choose the first color not taken. If otherwise V' is connected to at
least one already treated vertex by an edge from £, we have to choose more carefully. In this case
we search all neighbors connected to V' through edges in £ for the first missing color. V' is then
assigned the maximum of this color and the first available color for this connected component. We
continue this procedure through all vertices connected by edges in £ until none are loft.

If the graph is not connected only considering edges in £, we start over with the next component.
The first available color for this subsequent component will be the first color not assigned to any
node so far. An example of a coloring gained this way is shown in Figure 6.4.

In contrast to former implementations of UDG the resulting partitioning in sub-domains has a
dynamically changing size. More precisely, the number of sub-domains is not only unknown a-
priori but can also change during crack propagation. Thus it was necessary to implement a new
representation of a finite element that can handle a basis of dynamic size.

80






6 Numerical experiments

Lot us now validate our model with some studies. Examining three different examples we show its
capability to numerically simulate the propagation of fluid-filled pressurized fractures.

6.1 Pure mode | loading

We first consider an example without pressure to validate our code in the pure elasticity setting.
Further we use this example to discuss the results of crack reconstruction. As in [KM10] crack
propagation is initiated by a pure mode [ loading. Considering a square of length b with an initial
crack of length a along the line [b—a,b] x {%}, we tear at top and bottom simultancously with
an increasing tension |o| = 6N/ {mmﬂs} -t. For the setup and the initial crack choosing b = lmm
and a = 0.25mm see Figure 6.1. We apply Neumann boundary conditions for the displacement
in y-direction. The displacement in r-direction is equipped with homogeneous Dirichlet boundary
conditions at {0} x [0, 1] and homogeneous Neumann boundary conditions on the other boundaries.
For the phase field we choose homogeneous Neumann boundary conditions at {0} x [0,1] and
{1} % [0,1]. On the upper and lower boundary we implement Dirichlet boundary conditions. The
material parameters are G = 1.ON/mm and g = A = 22kN/mm?. All computations in this section
are executed with k = 107'% and 5 = 10.

This model problem allows for an analytical solution for the critical load o.py at which the crack
starts to propagate. Having A = p and a and b as above, the formula given in [GS11] simplifies

to
3
B I3 P 1257+ 0.37(1 —sin (§))
am_”'—tan{%}cc.c with C = =D : (6.1)

The eritical time toy, at which crack propagation starts, is obtained from the ecritical load via
terit = Terat - {Em—[fng)_l. Figure 6.2 plots the time at which the crack starts propagating. It also
shows an example of the phase field at this time step. As can be seen the numerical solution is in
very good agreement with the analytical one given by equation (6.1). Numerically .y is taken
as the first time step, at which ¢ at the first node in front of the initial crack becomes lower than
0.003. Looking at Table 6.1 there is a very sharp decline of the values of ¢ at this time, indicating
that the threshold ¢ < 0.003 is sutficient.
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Figure 6.1: Symmetric load example: Setup on the left and mitial crack for h = 0.0078125 on the
right.
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Figure 6.2: Symmetric load example: Left: Example of ¢ at ¢.py; for h = 0.0078125. Right: Starting
time of crack propagation for £ = 0.05h"* and different values of G, compared to the
analytical solution.

t 0 7.5 15.5 23.5 31.5 39.5 47.5 55.5

i@ 1.0 0.9926  0.99063 0.98717 0.98202 0.97483 0.96497 0.95124
t | 635 67.5 1.5 7150001526  71.502 71.5117 71.5205 71.535
w | 0.9308 0.89231 O0.83801  7.8454e-4  T.B454e-d4 7845404 T.B454ed T.845ded

Table 6.1: Values of ¢ at the node in front of the initial erack for exemplary times ¢ and G, = 5.
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6.1 Pure mode I loading

Figure 6.3: Symmetric load example: Skeleton reconstruction as the medial axis (green) of the level
set ¢ = i* (red). First we show the Voronoi diagram for ¢* = 0.5 at ¢ = 0.5, then the
pruned Voronoi diagram for the pruning parameters 0.01, 0.1 and 0.3.

e

Figure 6.4: Symmetric load example: Construction of the sub-triangulation. On the left the mesh
1z shown, edges that are part of the skeleton are depicted in green. On the right the
partition in sub-domains is depicted. Note that on opposite sides of the crack we always
have different colors.

Lot us now study the reconstruction of the erack as the skeleton of the level set ¢ = * for some
threshold value *. In Figure 6.3 we show the process of reconstructing the skeleton in more detail.
First, the level set ¢ = * is constructed. Second, its Voronoi diagram is computed. Finally the
skeleton is pruned to delete unnecessary branches as described in Section 5.2, Note that the pruning
factor has to be chosen sufficiently large as to avoid false branches. On the other hand, the larger
the pruning factor, the more the tip is pruned as well. Onece the crack is reconstructed, it has to
be included in the grid as described in Section 5.3. An example of the resulting sub-triangulation
for one triangle is shown in Figure 6.4.

In Figure 6.5 we study the influence of the threshold value ¢*. As can be seen, there is almost no
visible difference between the different reconstructions. Hence the influence of the choice of ¢* on
the result is neglgible. This is confirmed again looking at the starting times of crack propagation
with respect to v* as shown in Table 6.2.
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Figure 6.5: Symmetric load example: Skeleton reconstruction as the medial axis of the lovel set
¢ = * for different thresholds * at initial time (left) and after crack propagation
started (right).

threshold »* | 0.1 0.2 0.3 0.5
Eerse 71.5 TL5 TL5001 TL1.5

Table 6.2: Values of .y for different thresholds ¢* and G, = 5.

6.2 Constant pressure

Let us now consider an example with a non-zero pressure in the crack. The configuration we choose
was also studied in [WWW14, MWW15b|. We choose £ = (0, 4) x (0,4) as computational domain
and prescribe homogencous Dirichlet boundary conditions for the displacement. The Dirichlet
boundary condition ¢ = 1 is set for the phase field and the initial configuration includes a crack
C=1(1.822) x {2.0}. We use a mesh adapted to the initial crack, see Figure 6.6.

The crack is forced to open by a constant pressure p = 107*N/m?. The material parameters are
A =0.277778N/m?, p = 0.416667N/m?* and G, = 1.0N/m. This example corresponds to Sneddon’s
benchmark example for which he gave an analytic solution for the crack opening displacement
(COD) in [Sned6]. The COD is defined by

+oo
cop =f u(r,y) - Vi (r,y)dy.

—a

In this setup Sneddon provides an analytical solution for the COD as

_ .2 2
COD = dip E“’ (1 - T—Q) (6.2)
o

where 2l is the initial crack length and E and v are Young's modulus and Poisson's ratio, respec-
tively.

04



6.2 Constant pressure

Figure 6.6: Constant pressure example: Mesh, solution 1y for the displacement in y-direction and
solution ¢ for the phase field for h = 0.00004882, £ = 0.003125 and k = 10~7.

Figure 6.6 shows a computed solution of the displacement in y-direction and of the phase field. In
Figure 6.7 we compare the solution obtained with a DG discretization with the one obtained for
UDG for fixed parameters. Namely we fixed h = 0.00004882, £ = 0.003125 and k = 10~7. Warping
the solution by the displacement vector it i1s obvious that the UDG solution allows for an actual
discontinuity at the crack. In addition we note that the weakly enforeed continuity in the DG case
leads to a slightly smaller peak displacement. Indeed the maximal uy is 3.1 - 10~ for DG and
4.2 .10~* for UDG. This observation is backed up by the smaller COD obtained with the fitted
discontinuous Galerkin discretization as shown in Figure 6.8.

In the following we study the influence of the parameters =, k, the DG penalty parameter f and
the mesh size h, comparing the numerically computed solution for the COD with the analytical
one given by equation (6.2). In Figure 6.8 we fix h = 0.00004882, £ = 0.003125 and k = 10~ 7.
Varying 1 we notice that as soon as 5 1s sufficiently large its influence is negligible. Therefore all
other simulations are carried out with fixed n = 10. Next, Figure 6.9 studies the influence of the
coercivity parameter k. To this end, we study two configurations, a coarse one with h = 0.00078125
and £ = 0.01397542 and a fine one with b = 0.00004882 and = = 0.003125. Obviously as soon as
we choose k smaller than 102 it has no further influence on the solution. Hence it seems justified
to run all further simulations with k = 107,
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Figure 6.7: Constant pressure example: Comparizon of the solution for the displacement warped
by 100u for DG (left) and UDG (right) for £ = 0.003125, h = 0.00004882 and k = 10~7.
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Figure 6.8: Constant pressure example: Comparison of the COD for DG and UDG on the left and
convergence with respect to 1 on the right, both for = = 0.003125, h = 0.00004882 and
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Figure 6.9: Constant pressure example: Convergence with respect to the coercivity parameter k
for h = 0.00078125, = = 0.01397542 (left) and for h = 0.00004882, = = 0.003125 (right).
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Figure 6.10: Constant pressure example: Convergence with respect to £ and h. First row = = 30k,
£ = 2h and £ = h, second row £ = h'?, £ = 0.5h"2 and £ = 0.1~h"2, third row
e =0.5h"* £ =0.25n"* and £ = 0.01h"",

Lot us finally analyze the relationship of = and kb in more detail and study the convergence with
respect to these parameters. We consider three regimes:

e = =ch,

ch'? and

L

. L= r:‘.ﬁ.l"'l"J

each for three different constants e, As can be seen in Figure 6.10 we achieve convergence in any
of them. Nevertheless we notice that not in all cases the convergence approaches the analytical
solution for the COD. In fact, the smaller ¢, the better we approximate Sneddon’s solution. For a
sufficiently small ¢, that is sufficiently small £, a rather large mesh size h suffices to get good results.
In Figure 6.11 we study the convergence in h and = separately. For h = 0.0004882 we obtain good
convergence for decreasing £. For a rather large £ = 0.03125 no convergence in h can be observed.
On the other hand, if we choose £ sufficiently small, a good agreement with equation (6.2) can be
reached even for large values of h.
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Figure 6.11: Constant pressure example: Comvergence with respect to £ for fixed h = 0.0004882
and with respect to h for fixed = = 0.03125, £ = 0.01 and = = 0.003125, respectively.
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6.3 Two cracks joining

6.3 Two cracks joining

In the final example we show the capability of the method combining UDG with a phase-field
approach to handle topological changes in the fractures as the joining of two cracks. Starting with
the same domain configuration and boundary conditions as in Section 6.2 we add an additional
initial crack along the line {2.6}x[1.0,3.0]. As before we set A = 0.277778N/m?, u = 0.416667N /m?
and &, = L.ON/m, but increase the applied pressure in every time-step. Namely we foree the cracks
open by applying p = 0.1t. This leads to crack propagation and joining as shown in Figure 6.12
where the phase field is depicted at different times. The reconstructed crack starts out with two
connected components that also join.

Figure 6.12: Joining cracks example: Solution for the phase field and the reconstructed crack
(white) at ¢t = 0.5, t = 0.875, ¢t = 0.882812 and ¢ = 0.883301. The residual threshold
i1s r* = (.15, the level set 15 v = 0.3 and = = 0.26.

We remark that in this case the choice of the level set ¢ = ¢* plays a more important role than
it did previously. Depending on ¢* the level sets will join earlier than the cracks and thus the
skeletons join before the cracks, too. The strong influence of * i1s also illustrated in Figure 6.13.
A similar effect can be observed for large values of £, see Figure 6.14. If = is chosen large, the
smearing zone 1s rather large as well. Thus the level set for a given threshold moves away from the
cracks and already joins at an earlier time, leading to a connected crack reconstruction.
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Figure 6.13: Joining cracks example: Solution for the phase field and the reconstructed crack
(white) at ¢ = 0.5 as medial axis of the level set (black) at ¢* = 0.2 and * = 0.4
The residual threshold is +* = 0.15 and £ = 0.26.

Figure 6.14: Joining cracks example: Solution for the phase field and the reconstructed crack
(white) at + = 0.5 for £ = 0.26 and £ = 0.3. The residual threshold is +* = 0.15
and the level set (black) is taken at * = 0.3.
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Figure 6.15: Joining cracks example: Solution for the phase field and the reconstructed crack
(white) at £ = 0.5 for r* = 0.15 and r* = 0.1. The level set 1= taken at * = 0.3
and £ = 0.26.

Finally let us show the influence of the residual threshold r*. In Figure 6.15 one notes that on
the right side, for smaller residual threshold, the vertical erack is less pruned. On the other hand,
unimportant, branching parts of the horizontal crack are not pruned. Thus the choice of v* has an

important influence on the resulting reconstruction.
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7 Summary and outlook

This thesis 1= concluded by summarizing the achievements and providing an outlock towards po-
tential further developments. In Section 3.1 we were able to prove '-convergence of the regularized
energy functionals in a one-dimensional setting with respect to convergence in L. The key ingre-
dient was Young's inequality that allowed us to reuse the corresponding properties from the case
without pressure terms. The result was generalized to a setting with Dirichlet boundary conditions.
Relying on recent work on the properties of the space GSBD (2; BR™) we were able to generalize our
findings to higher dimensions in Section 3.2. Under some goometrical constraints we were able to
include Dirichlet and homogeneous Neumann boundary conditions into the proof of I'-convergence.
The question how to include non-homogeneous Neumann boundary conditions still remains open
and could be the subject of future work. To answer it one would need to study the properties of
traces in the case of functions in GSBD (}; B") in more detail. There are already some results in
that direction, especially dealing with functions in BD ({2; B™) [Babl5|. One can also deduce some
properties of truncations of GSBD ({}; R™)-functions as in [lurl4]. However, to our knowledge no
general results are known for GSBD ({3;R™). The analytical part of this thesis was concluded
in Section 3.3 by showing convergence of minimizers of the regularized functionals to minimizers
of the I'limit functional in the presence of a fidelity term. Cruecial to this proof was the equi-
coercivity of the included functionals. Unfortunately, in the context of fracture propagation the
fidelity term guaranteeing equi-coercivity is rather artificial. Thus it would be interesting to study
other requirements under which convergence of minimizers can be shown. One possibility might
be to benefit from fixed Dirichlet boundary data. Some steps in that direction can be found in the
recent literature [FS18, CC18|. As they rely on a I'-convergence result with respect to convergence

in measure, at present they are not applicable to the situation with pressure terms.

In Section 4.1 we derived a discretization scheme to numerically solve the minimization problem for
the regularized energies. We followed a split approach, alternatingly solving for the displacement
and the phase field in a fixed-point iteration. The wrreversibility constraint for the phase field was
treated as a non-smooth obstacle, allowing us to apply the truncated non-smooth Newton multigrid
method to solve for the phase field. For the displacement we derived a DG discretization. Assuming
a given reconstruction of the crack we adapted it to construct an unfitted DG discretization that
allows for actual discontinuities of the displacement along fractures. Section 4.2 discussed how to
reconstruct the crack from a given regularization, that is from a given phase-field representation.
Based on geometric considerations we reconstructed the crack as skeleton of a level set of the phase
field. Numerically, the skeloton was computed as pruned Voronoi diagram of point sites.
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7. Summary and outlook

The numerical challenges of the construction of the skeleton and its integration into the grid were
solved in Chapter 5. In particular, an advancing front algorithm ensured that the connectivity
of the skeleton, and thus its topology, remains unchanged even if numerical inaceuracies occur.
A graph coloring algorithm reduced the number of sub-domains in cut grid cells and thereby
the number of newly introduced degrees of freedom along the crack. Finally, in Chapter 6 we
showed that our method 1= capable of simulating crack propagation. In a first example we showed
that in the presence of a single crack the reconstruction of the skeleton seems to be robust with
respect to the chosen level set of . A second example, including pressure terms, was used to
show convergence with respect to the mesh size h and the regularization parameter £. Finally, we
proved the capability of our method to handle topological changes in a third example, where two
initially disconnected fractures join due to an applied increasing pressure. In the case of multiple
fractures the chosen level set of ¢ and the residual threshold v* can have a strong influence on the
reconstructed crack.

Nevertheless there remains room for improvements. One major numerical challenge is that a proper
initialization of the phase field requires having element boundaries along initial cracks. As at the
moment the phase field and the displacement are defined on the same grid this leads to having many
Voronol edges very close to element edges. Thus we obtain very small sub-domains compromising
stability. A possible solution to this problem would be the decoupling of the grids for displacement
and phase field. This would need to be done very carefully. As the two subproblems are coupled
to each other, an interpolation of the solution for the displacement and the phase field onto the
respective other grid would be necessary in every iteration of the fixed-point scheme. To avoid
the computational costs getting out of hand, choosing hierarchical grids scems reasonable. Thus
the phase-field grid would be a refinement of the displacement grid. Preferably one would try to
construct grids where initial cracks are along edges of the refined grid, but not included in the
coarse grid. An additional advantage of separate grids would be the reduction of computational
costs due to the substantial reduction of degrees of freedom for the displacement, benefiting even
more from the advantages of an unfitted method.

A second possibility to improve the method is to limit the phase-field representation to areas
around the tip of fractures. Similar to [GSF17|, one could fix the already reconstructed crack and
only determine new parts of it as soon as propagation is indicated by the phase ficld. Besides
the reduction of computational costs due to far fewer degrees of freedom for the phase field, this
method also has the benefit of explicitly including the irreversibility condition for the crack in its
reconstruction. So far we only guarantee irreversibility for the phase field. On the other hand
the method has a major disadvantage. As described in [GSF17|, to present it is not capable of
tracking crack initiation, that is finding new crack tips. Thus also merging and branching of eracks
can not be handled to the present. Hence while this approach inherits the accurate prediction
of propagation path and wvelocity from phase-field methods, it looses the further advantage of
implicitly handling topological changes. Finally, we note that stability of the numerical scheme
might be improved using ghost penalties.
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