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Abstract
A systematic investigation of the effect of the history force on particle advection
is carried out for both heavy and light particles. General relations are given to
identify parameter regions where the history force is expected to be comparable
with the Stokes drag. As an illustrative example, a paradigmatic two-dimen-
sional flow, the von Kármán flow is taken. For small (but not extremely small)
particles all investigated dynamical properties turn out to heavily depend on the
presence of memory when compared to the memoryless case: the history force
generates a rather non-trivial dynamics that appears to weaken (but not to
suppress) inertial effects, it enhances the overall contribution of viscosity. We
explore the parameter space spanned by the particle size and the density ratio,
and find a weaker tendency for accumulation in attractors and for caustics for-
mation. The Lyapunov exponent of transients becomes larger with memory.
Periodic attractors are found to have a very slow, −t 1/2 type convergence towards
the asymptotic form. We find that the concept of snapshot attractors is useful to
understand this slow convergence: an ensemble of particles converges expo-
nentially fast towards a snapshot attractor, which undergoes a slow shift for long
times.
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1. Introduction

The advection of small, rigid, finite-size particles has been studied recently in several setups
because it plays an important role in many environment-related phenomena ranging from
atmospheric science and oceanography to astrophysics (for reviews see [1–3]). For example,
inertial particles are important in cloud microphysics [4, 5], planet formation [6], and
aggregation and fragmentation processes in fluid flows [7–9]. A particularly interesting aspect is
the advection of such particles in chaotic flows where experimental results [10, 11] are now
available. Applications can be, for example, the forecasting of pollutant transport for homeland
defense [7, 12] and the localization of a toxin or biological pathogen spill (e.g., anthrax) from
outbreaks in a street canyon [13].

Due to the drag acting on the particles, the Hamiltonian passive advection problem is
converted into a dissipative problem, which can have attractors. Correspondingly, inertial
particles can have the tendency to accumulate in certain regions of the flow [14] (a phenomenon
termed preferential concentration). A characteristic feature in comparison with the dynamics of
ideal tracers is the appearance of caustics [4, 15], i.e., the intersection of different branches of
the chaotic sets in the configuration space. This is a consequence of the fact that what we see is
a projection of the full pattern of the high-dimensional phase space to the configuration space of
the fluid. The main relevance of the existence of caustics is that the probability of collisions of
particles becomes enhanced in such regions of the flow.

The basic equation of motion for small spherical particles in a viscous fluid describable in
the Stokes regime is given by the Maxey–Riley equation [16, 17]3. Its precise form contains an
integral, also called the history force, which describes the diffusion of vorticity around the
particle during its full time history. The kernel of this integral is therefore proportional to the
power −1/2 of the elapsed time.

The origin of such a kernel can perhaps best be seen in the problem of an infinitely large
plate moving in a rather viscous fluid. If the plate starts at time zero with a sudden change in the
velocity which is then kept constant, in Stokes approximation, one solves the diffusion equation
for the velocity field. The solution contains a prefactor t1/ . For the case of a general motion of
the plate, one imagines breaking up the problem into a set of jumps in the plateʼs velocity at
different times τ. Each such jump contributes a factor to the flow velocity at time t proportional
to τ−t1/ multiplied by the velocity jump. In a continuous time picture, the result for the
shear stress on the plate is proportional to an integral from zero to t of the plateʼs acceleration at
time τ multiplied by the kernel τ−t1/ (see Landau–Lifschitz [19], paragraph 24). For the
motion of a spherical particle in a viscous flow it was Boussinesq and Basset (at the end of the
19th century) who pointed out the appearance of such a history force (for historical details see
[20]). This force is therefore sometimes called the Boussinesq–Basset or the Basset force (we
use the term history force). The equation of motion of a moving sphere in a fluid at rest was
already given in Landau–Lifschitz ([19], problem 7 to paragraph 24). The precise form of the
equation in a moving fluid [16–18], i.e., equation (1) or (6), was, however, established only a
century after the first works of Boussinesq and Basset.

3 It is interesting to note that Gatignol derived the same equation as Maxey and Riley in the same year. Currently,
it is this equation augmented with the corrections introduced by Auton and coworkers [18] (see equation (1)) that is
commonly called the ‘Maxey–Riley equation’
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The history force renders the advection equation of inertial particles to be an integro-
differential equation. Because of this difficulty, the memory represented by this integral term
was neglected in the majority of papers on chaotic advection of inertial particles.

In non-chaotic flows, the history force was shown to have important effects [21–25]. A
particularly interesting example is an experiment [26, 27] that points out the determining
importance of memory in the motion of microbubbles propelled by ultrasound. In this setting
the trajectories, and a surprising destabilization of these (in spite of rather strong dissipation),
can be understood only when the history force is taken into account. A very recent experiment
with suspended particles indicates the importance of the history force also in the phenomenon
of Brownian motion [28]. Within a perturbative treatment restricted to the limit of very weak
inertia, it has been found that the history force can suppress chaotic advection [29]. In contrast
to this, memory has recently been found to be able to enhance chaos in particle advection in the
presence of gravity when settling or rising takes place [30]. In turbulent flows, the effects of the
history force have been studied in [31–37], showing that this force can have significant
influence. For neutrally buoyant particles it has been suggested in [11] that there are dynamical
effects beyond the history force, Faxén corrections and the lift force.

Our aim is to carry out a comprehensive investigation of long term memory effects due to
strong inertia in smooth flows with chaotic advection, made possible by recent progress in the
numerical treatment of the problem [38]. Concerning the physical aspects, we are extending
here the results of a short paper [39] before which, to our knowledge, no such investigations
have been carried out.

The paper is organized as follows. First, we review the basic equation (section 2), and
provide estimates for parameters where memory effects are expected to be relevant (section 3).
Next we sketch the applied numerical scheme (section 4). In section 5, a paradigmatic two-
dimensional chaotic model flow is introduced, that of the von Kármán vortex street, which shall
be used as an illustrative example throughout the paper. The choice of the particle parameters is
discussed in section 6. In chaotic flows, the basic question is not so much about the deviation
between trajectories with and without memory (treated briefly in section 7), rather the deviation
in statistical properties. We shall point out in section 8 that properties like the escape rate or the
lifetime statistics of particle ensembles significantly differ due to the history force both for
bubbles and aerosols (particles lighter and heavier than the fluid). The residence time
distribution and the value of the power-law exponent of non-hyperbolic decay is also different
in the two cases, as shown in section 9. Other types of statistics, like e.g., that of the different
forces acting on particles while being in the wake is investigated in section 10. One important
effect of memory is that the tendency for accumulation is much weaker than with Stokes drag
only and, as a consequence, attractors occur only at rather special parameters in this open flow.
When attractors nevertheless exist, the temporal convergence of individual trajectories towards
them is converted from an exponential approach to a power-law approach (section 11). It is
worth, however, replacing the traditional individual trajectory picture by a global one, and
monitoring the evolution of a particle ensemble. In this picture an exponential convergence is
found to a so-called snapshot attractor, which then slowly moves towards the traditional
attractor (section 12). After briefly discussing also cases with chaotic attractors (section 13), we
show in section 14 that the average Lyapunov exponents of transient chaos with memory are
larger than without. The details of how to define and determine Lyapunov exponents in an
integro-differential equation, like the Maxey–Riley equation, are relegated to appendix A. The
paper is concluded with a summary of several dynamical features illustrating our main finding:
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memory effects change the inertial dynamics so that it moves towards that of the passive
dynamics, but in a highly non-trivial way. We also return to the discussion of the relevance of
the history force and argue that the size parameter is most naturally defined in terms of the
shortest characteristic time scale. A refined estimate is found, valid for any flow, enabling us to
also briefly discuss the relevance of memory effects in turbulent flows.

2. Basic equations

The equation of motion of a rigid spherical particle of radius a and mass mp in a fluid of

kinematic viscosity ν, density ρ
f
and velocity field u r t( , ) reads (including gravity) as [16–18]

∫

π ρ ν
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τ τ τ
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Here ≡v r td /d is the particle velocity, mf is the mass of the fluid excluded by the particle, g the

gravitational acceleration, and
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(3)

denote the full derivative along the trajectory of the particle and of the corresponding fluid
element, respectively. The terms on the right-hand side of (1) are: the force exerted by the fluid
on a fluid element at the location of the particle, the added mass term4 describing the impulsive
pressure response of the fluid, the Stokes drag, the buoyancy-reduced weight and the history
force. The history force, an integral term, accounts for the viscous diffusion of vorticity from the
surface of the particle along its trajectory [16].

Equation (1) is valid if the initial particle velocity v t( )0 at time t0 matches the fluid velocity.
Otherwise, an initial-velocity-dependent term [40, 42],

ρ πν−
−
−

v u
a

t t

t t
6

( ) ( )
, (4)

f

2 0 0

0

should be added to the right-hand side of (1). By means of the identity (that can be derived by
partial integration)

∫ ∫π τ
τ
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= −
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t

t t

t t t t

1 ( )
d
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t

t

t

td

d 0 0

00 0

4 We note that in the original derivation by Maxey and Riley, and by Gatignol, the added mass term contained the
derivative u td /d . Later it was found that u tD /D is a better choice as it is correct in a wider range of conditions (see
[18, 40, 41]).
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we arrive at the most general form of the history force (the right-hand side of (5)) valid for any

initial condition. Note that this is formally nothing but −( ) v u( )
t

d

d

1/2
, the fractional derivative of

order 1/2 of the slip velocity −v u (more precisely it is a fractional derivative of the
Riemann–Liouville type [43]). A new feature of the right-hand side of (5) is that the nominator
of the integrand no longer contains a derivative. It is just the velocity difference that appears
there, a feature that makes the numerical evaluation of the integral easier. The advantage of
using identity (5) was pointed out in [38].

Using relation (5) and measuring time and velocity in units of T and U, the dimensionless
Maxey–Riley equation valid for any initial condition becomes

∫π τ
τ= − − − − −

−
v u

v u n
v u

R t t S
W

S t t

1 d
d

3
2

D
D

1
( )

9
2

1 d
d

d , (6)
t

t

0

where n is a unit vector pointing upwards (against gravity). Here three dimensionless
parameters appear, the density parameter
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where ρ
p
denotes the particle density, the size parameter

ν=S
a
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2
9

, (8)
2

the ratio of the particleʼs viscous relaxation time and the characteristic time T of the flow, and
the dimensionless settling velocity

= −⎜ ⎟⎛
⎝

⎞
⎠W S

R

gT

U

3
2

1
. (9)

This is negative (positive) for heavy (light) particles, called aerosols (bubbles). We shall see that
the size parameter S is a more appropriate number to characterize memory effects than the
traditional Stokes number, which is St = S/R in our notation.

An important condition for the validity of equation (6) is that the particle Reynolds number

ν
= −v u

Re
a

, (10)p

remains small during the entire dynamics [16]. In addition, S must be small (i.e., the particleʼs
characteristic time scale is much smaller than that of the flow) and the particle radius must be
much smaller than the characteristic linear scale L of the flow: ≪a L. The last condition
assures that the so-called Faxén corrections are negligible [16].

In a recent manuscript Farazmand and Haller [44] prove the local existence of the solutions
to (6). With initial particle velocity v t( )0 matching the fluid velocity, the solution is twice
continuously differentiable in time, but otherwise it might be only differentiable for >t t0.

Several attempts have been made to extend the Maxey–Riley equation to finite particle
Reynolds numbers (up to a few hundreds) by modifying the particular form of the forces
[45–47]. Part of all of these approaches is a different form of the history force and in some cases
also an empirical nonlinear expression for the drag (see [48] for a review). Concerning the range
of applicability of the Maxey–Riley equation, it is interesting to note that Maxey and Wang [49]
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found that up to ≈Re 17p even equation (1) ‘may be quite adequate in practice even though not

justified by theory’. In an experimental study [23] considering particle Reynolds numbers up to
0.5, the standard form of the history force has been found to remain valid. In our simulations the
average particle Reynolds number is on the order of unity (see section 10). Therefore, we expect
the standard Maxey–Riley equation to be adequate for the advection of inertial particles in our
case and decide not to consider any finite Reynolds number corrections to the Maxey–Riley
equation. In this study we focus on the changes induced by the history force in the motion of
inertial particles. Therefore we do not consider effects like, e.g., the lift-force.

Equation (6) is a second-order integro-differential equation for the trajectory r t( ) of an
inertial particle. To any initial condition r v( , )0 0 at time t0 there is a unique trajectory, but the
transition between infinitesimally close neighboring time instants t and +t td not only depends
on the state ≡q r vt t t( ) ( ( ), ( ) ), but also on all the previous instants, since the kernel of the
integral decays rather slowly. Considering a stroboscopic map taken at integer multiples of
some time unit, we obtain a map whose value at time +n 1 depends on its value at all previous
integers back to the initial time instant:

=+ −( )q M q q q q, ,..., . (11)
n n n n1 1 1, 0

From a dynamical systems point of view, the dynamics is thus that of a non-autonomous map
with memory whose range is increasing as time goes on. This is a non-standard problem in
which novel features can show up. It is of particular interest what kind of chaos and attractors
can be present in such systems.

3. Estimating the relevance of the history force

To estimate when the history force is important, we compare its magnitude to the Stokes drag
(both are viscous effects). From the dimensionless Maxey–Riley equation (6), the ratio of these

two forces is seen to scale with S . Denoting the typical magnitude of the history force and the
drag by Fh and Fd respectively, we can write

α=
F

F
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9
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, (12)h

d

where α represents the ratio

∫
α

τ
=

−

−
=

−

−
π τ−( ) v u

v u

v u

v u

( ) ( ) d
. (13)

t t t
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d

1 2 1 d

d
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0

The value of α might depend on the process in question and is expected to be about unity (see
also the discussion in section 15). Equation (12) provides an estimate for the magnitude of the
history force relative to the Stokes drag.

For practical purposes we might consider the history force to be negligible if its magnitude
is smaller then 1% of the Stokes drag, i.e., if α< −S 10 (2/9)/4 2. It might appear that 1% is
already quite small. However, note that we are making order of magnitude estimates here and
could easily be off by a factor of 10. In terms of the particle radius a in (8) this 1%-condition
means
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α
ν<a T

1
100

. (14)

In order to relate this condition to the Reynolds number ν=Re UL / of the flow, we define the
Strouhal number Sl as the ratio of L U/ and the characteristic time T of the flow

=Sl
L

UT
, (15)

and find

α
<a

L Sl Re

1

100
, (16)

as a condition under which memory effects can be neglected. Note that the above argument
assumes a smooth flow. For multi-scale flows (turbulence) the length scale L and the parameters
Re and Sl in (16) should be characteristic of the small scales (see also the discussion in section
15).

For example, in a smooth flow with Re = 100 and ≈Sl 1 the particle size has to be about
α1000 times smaller then the characteristic length scale of the flow to be able to neglect the

history force with some confidence. For μ100 m particles in a case with α ≈ 1 this is not
fulfilled in small-scale flows with <L 10 cm.

Another approach is to consider the weakly inertial limit, where S is assumed to be a small
expansion parameter. Following Druzhinin and Ostrovsky [21] we obtain the following
expression for the velocity of a nearly ideal particle:

∫π
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= + + − −
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t
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2

0

This is a first-order equation for the trajectory and we see that there are two correction terms to
the passive tracer dynamics: the fluid acceleration and the history force based on the fluid
acceleration. Both corrections are proportional to S R/ . This ratio determines thus the importance
of inertial corrections. Provided that u tD /D and the derivative of the integral within the

parenthesis are of the same order, the importance of memory is determined by S , as also found
in the previous consideration (when weak inertia was not assumed). Therefore, estimates (14),
(16) also hold in the weakly inertial limit (when, of course, the definition of α should be
adjusted according to (17)).

Note that the above considerations do not depend on the density of the particle. Thus, the
weight of the history force is set by the size parameter S, independent of the particleʼs density.
The density parameter R, however, does influence the importance of inertial effects, as S R/ is
the prefactor of the correction in (17). The natural parameter to estimate the importance of
inertial effects is thus the Stokes number ≡S R St/ , and the size parameter S is the natural
quantity to estimate the importance of the history force.

We would like to say a few words about the case of very heavy particles, e.g., water
droplets in air, ≈ −R 10 3. All our previous considerations apply to this case as well. A new
feature of heavy aerosols is, however, that inertial effects might be important in spite of the

smallness of S since R is also small. In such cases the pressure term uR tD /D3

2
in (6) can always

be neglected, but not the others. The relative weight of the history force remains given by

α S 9/2 and since S is small, memory effects are not expected to be very important. For
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∼ ≈ −S R 10 3, α ≈ 1, for example, the effect is estimated to be 7% of the Stokes drag. When
< −S 10 4,

= − − −v
v u n

t

R

S
W

d
d

( ), (18)

is an (at least) 2%-accurate advection equation for heavy aerosols, often used in the literature,
see e.g., [14, 50, 51]. For even smaller heavy particles: ≪S R, the equation simplifies to the
passive advection equation with settling: = +v u nW .

Finally, we mention that the requirement of small particle Reynolds number (10) provides
another inequality for the particle size. For memory effects to be relevant, inequality (16) should
hold with a reversed sign and this sets a lower bound to a L/ . The condition that Rep should not

become too large provides an upper bound on the dimensionless particle size.

4. Numerical scheme

The history force poses the main difficulty for a numerical integration of (6). The first major
problem is the singularity of the kernel τ−t1/ at the upper end of the integration, at τ = t .
Although the singularity is integrable and the history force is well defined, the numerical
evaluation of the kernel near it leads to large errors when standard quadrature schemes are used.
Recently, a custom quadrature scheme has been developed [38] where the kernel is treated
analytically. It is expressed as a weighted sum

∫ ∑
τ

τ μ τ τ−
−

≈ −( )v u
v u

t
d ( ) ( ) , (19)

t

t

i
i i i

0

where coefficients μ
i
contain the effect of the kernel. The derivation and specification of the

coefficients for higher orders is quite involved [38]. This quadrature scheme is then
incorporated in a linear multistep method of the Adams–Bashforth type, where relation (5) is
used to evaluate an integral of the history force. The quadrature scheme for the history integral,
as well as the whole integration scheme for the Maxey–Riley equation, has been tested in cases
where analytical solutions are available, see [38], and the order of convergence has been
measured and verified in these cases. The numerical results shown here are obtained with a
third-order scheme, i.e., the one-step error is proportional to Δt( )4 where Δt is the time step.

The second major problem is the high computational costs for a numerical integration,
stemming from the necessity to recompute the history force—an integral over all previous times
steps—for every new time step. Therefore the computational costs grow with the square of the
number of time steps and can become quite substantial for long integration periods. For the
integration of particle ensembles we have addressed this difficulty by parallel computation (on
about 100 CPUs).

5. Model flow

An accurate evaluation of the history term is computationally rather intensive, and we would
like to use particle ensembles of about106 particles in order to have reliable statistics. Therefore,
we choose an analytically given model flow to limit the numerical efforts. As a paradigmatic
example, we take the kinematic model of a rather typical fluid phenomenon, the time-periodic
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shedding of von Kármán vortices in the wake of a cylinder as described in [52] (sometimes
called the JTZ flow). This analytical two-dimensional flow was shown to faithfully represent the
Navier–Stokes dynamics at a (radius-based) Reynolds number ≈Re 125 and has since then
been used in several studies of passive [53–58] and inertial [12, 59–61] chaotic advection in
environmental flows. In the JTZ model two vortices are present in the wake at any time (a
generalization to more than two vortices has been given recently in [62]). The flow is from left
to right.

The period T of vortex shedding is traditionally chosen as the time unit, and the radius of
the cylinder as the length unit L. The velocity of the vortex cores is on the order of L T/ ,
whereas the inflow velocity is a factor 14 times larger and is taken as the velocity unit U. Thus
the Strouhal number (15) is =Sl 1/14.5 One important further parameter is the dimensionless
strength of the vortices π=w 192/ (for comparison with [59] we shall also use the value
w = 24). The stream-function of the model is taken from the literature [59]. Since the flow is
two-dimensional, we do not consider here the effect of gravity and hence W = 0 in (6). For a
recent investigation of the effect of the history force on sedimentation of aerosols and on rising
of bubbles we refer to [30].

Throughout the simulations presented in this paper the initial velocity difference between
particle and fluid is zero, i.e., − =v u r 0t t( ) ( , )0 0 0 . Furthermore, most simulations are
performed with the starting time =t 0.20 (time zero corresponds to the instant when a vortex is
born along the upper right edge of the cylinder). This value has been chosen to minimize the
collisions between particles and the cylinder. As the fraction of colliding particles is reasonably
small, we have avoided the inclusion of an extra collision rule on the surface and decided to
stop integration in such cases and considered the particle to be escaped.

When studying the dynamics of inertial particles without memory, a stroboscopic map can
be defined, taken at time instants that are integer multiples of the period T of the flow. This is an
autonomous map, in which periodic orbits and invariant sets are defined as usual. In the
presence of the memory term, the stroboscopic map becomes of the form of (11), in which
periodicity after a finite amount of time is hardly possible, since the state of any time instant is
influenced by the entire history. It is therefore a kind of surprise that periodic attractors might
exist, as will be seen later.

6. Choice of particle parameters

The density parameter (7) ranges from 0 to 2. Throughout the paper we shall use two illustrative
values R = 0.4 and R = 2 typical for aerosols and bubbles, respectively. The former corresponds
to a density ratio ρ ρ =/ 2

p f
and can be considered to represent sand grains in water. Since air is

about thousand times lighter than water, the value of R = 2 can be seen to correspond to the case
of spherical air bubbles in water.

For completeness, we mention that water droplets in air are described by a density
parameter = × −R 1.2 10 3. This is an example of the case of heavy aerosols discussed briefly in

5 The Strouhal number in the von Kármán problem is often used in its diameter-based form, which then
corresponds to 1/7.
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section 3. For oil droplets (bubbles) in water we obtain with the density ρ = −0.9 g cm
p

3 of oil

R = 0.7. This is close to =R 2/3 of neutrally buoyant particles.
Next we point out that the instantaneous particle Reynolds number (10) can be determined

from the data of our model flow. Replacing a and ν in (10) by using (8) and ν = LU Re/ we
obtain

= −v uRe S
Re

Sl

9
2

, (20)p

where −v u is the dimensionless slip velocity (measured in units of U). This will be used to
check the validity of the basic equation (6).

The value of the size parameter S will be changed in the range [0.005, 0.09], whereas Re
and Sl are set by the flow (to 125 and 1/14, respectively).

7. Sample trajectories

First, we consider trajectories starting with the same initial condition, and compare different
dynamics. Figure 1 shows the inertial trajectory of an aerosol with and without memory along
with the trajectory of an ideal tracer (which follows the fluid velocity exactly). One immediately
observes that the trajectories differ and that (at the beginning) the trajectory with memory is in-
between the other two.

The acceleration of the particle can be decomposed into the three contributions on the
right-hand side of (6). These terms, called the pressure term, the Stokes drag and the history
force, are plotted at subsequent time instants in figure 1. As the caption indicates, one third of
the pressure term is given, for better visibility. We thus clearly see that the pressure term always
dominates the other two, but the history force is of the same order as the Stokes drag. A
comparison of the full trajectory with that obtained without the memory term (red and blue lines

Figure 1. Trajectory of a single heavy particle (R = 0.4—sand in water, S = 0.01) with
respect to different dynamics: with memory (red), without memory (blue) and as an
ideal tracer (green); initiated at =t 0.20 , = − −r ( 1, 1.2)0 with vanishing slip velocity.
The forces acting on the particle in the presence of memory are shown as arrows of
different colors (red being the history force). The pressure term is presented with only a
third of its magnitude.
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in figure 1, respectively) shows that the direction of separation (or approach) of these
trajectories coincides with the direction of the history force. For bubbles, similar findings have
been reported in [39].

We also carried out simulations with equation of motion (17) valid in the weakly inertial
limit. The results (not shown in figure 1) indicate a strong deviation from the true trajectory (red
line), as strong as the deviation between this curve and any other curves in figure 1. This shows
that a value as small as S = 0.01 of the size parameter is not yet small enough to ensure the
weakly inertial limit. At the same time, this is a sign indicating that dynamics (17) does not
define a slow manifold [60, 61] for this S (although it is expected to do so for sufficiently small
S values).

8. Ensemble and escape dynamics

Next, we turn to the dynamics of particle ensembles. A large number ≈ ×N 1.8 100
6 of particles

is distributed uniformly in the domain − × −[ 1, 4] [ 2, 2] around the cylinder at =t 0.20 . All
particles are followed up to a certain time when we plot their position. The results for aerosols
are shown in figure 2. The two distributions differ both in large- and small-scale structures. A
characteristic feature of the case without the history force is caustics [4, 15], i.e., the intersection

Figure 2. Dynamics of an ensemble of ≈ ×N 1.8 100
6 aerosols (R= 0.4—sand in water,

S = 0.01) with (a) and without (b) memory starting in the domain − × −[ 1, 4] [ 2, 2]
around the cylinder at =t 0.20 . The distribution of the particles is shown at time
t = 0.94.
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of different branches in the configuration space. This is due to the fact that what we see is a

projection of the full pattern in the four-dimensional ( )x y v v, , x y, phase space to a plane. Figure 2

shows that the frequency of occurrence of caustics seems to be lower with memory. We have
found similar results for other values of R: 0.3, 0.5, 1.0, 1.2, 1.5, 1.7, 2.0. This effect of the
history force is even stronger for bubbles [39]. A quantity closely related to caustics is the
collision rate. In accordance with the suppression of caustics, the history force has been found
in [39] to lead to a reduction of the collision rate. A recent simulation [37] indicates a related
phenomenon in turbulence: the history force is found to reduce preferential concentration (an
effect that enhances collision rates).

In figure 2 a filamentary pattern can be seen both with and without the history force. This is
in itself an indication of the chaoticity of the advection dynamics in both cases. Since the
problem is dissipative, chaotic attractors might be present. Irrespective of their existence, chaos
is always present in the form of transient chaos with an underlying chaotic set, a chaotic saddle
[63, 64].

In the transient case all particles eventually escape downstream and the decay dynamics is
best followed by monitoring the total number N(t) of particles not yet escaped a given region up
to time t. We distribute ≈ ×N 1.5 100

6 particles uniformly in the domain × −[0.6, 4] [ 2, 2]
outside the cylinder at initial time =t 0.20 . A particle is considered to have escaped if it crosses
the line x = 5 or it enters a circle of radius r = 1.014 around the cylinder. The use of a circle
larger in radius than the cylinder is motivated by excluding very slow (non-hyperbolic) decay
characterizing the boundary layer, as done in [12, 59]. This definition of ‘escape’ will be used
throughout the paper, unless stated otherwise (as, e.g., in section 9). The number N(t) of
survivals is then determined as a function of time t. We find monotonic exponential decays with
different characteristics for different cases.

When the particles are heavier than the fluid (aerosols) typically all of them eventually
escape; an example is shown in figure 3(a). We see that the emptying process is slower with
memory for aerosols. For bubbles, attractors can appear for certain parameter values. An

Figure 3. The number N(t) of non-escaped particles for (a) R = 0.4—sand in water (b)
R = 2.0—air bubble in water, with two different size parameters.
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attractor presents itself as a plateau in N(t), i.e., a fraction of all the particles never leaves the
wake of the cylinder. See for example the case S = 0.04 without memory in figure 3(b); with
memory the plateau, and thus the attractor, disappears. Here we see a profound change in the
dynamics of inertial particles induced by the history force: the disappearance of attractors.
When there are no attractors in the bubble case, the history force leads to a faster emptying of
the wake. In the case of S = 0.02 of figure 3(b), the time for a complete emptying roughly halves
when memory is included. Note that the influence of the history force on the speed of the
emptying process is opposite for aerosols and bubbles: memory slows down the emptying for
aerosols and speeds it up for bubbles.

A quantitative measure characterizing the escape dynamics from the wake is the escape
rate [63, 64]. It is the rate κ of the exponential decay

κ∼ −N t t( ) exp ( ), (21)

which sets in after an initial transient time, see figure 3. In the case of a plateau in N(t) (due to
the presence of an attractor) we set the escape rate formally to zero. Figure 4 shows the escape
rate with and without memory as a function of the parameters R and S. The red line marks the
case of neutrally buoyant particles ( =R 2/3), where the escape rate does not depend on S;
indeed it is equal to that of ideal tracers (κ = 0.364ideal ). We did not find any influence of
memory on the behavior of neutrally buoyant particles. They behave as ideal tracers in this flow
when the initial slip velocity is zero.

Attractors are quite ubiquitous without memory, see black dots in figure 4(b). One even
finds attractors in the aerosol range <R 2/3. Since heavy particles are pushed outside closed
orbits due to the centrifugal force, and intend therefore to escape, attractors are expected to be
atypical for aerosols. In special cases they were pointed out to exist [65, 66] and our results
provide further examples of such cases. A striking effect of the history force is that it kills
attractors at the parameters where they exist without memory. Only very few attractors (none
for aerosols) are found with memory.

Figure 4. Escape rates on the parameter plane of size parameter and density ratio: (S, R)
with (a) and without (b) memory. The black dots mark parameters where an attractor is
present. The R-values used as a grid of the plot are 0.1, 0.3, 0.4, 0.5, 0.6, 2/3, 0.8, 1.0,
1.3, 1.5, 1.7, 2.0. The red line highlights the case of =R 2/3, i.e., neutrally buoyant
particles.
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The escape rates are typically closer to that of the passive (neurally buoyant) case with
memory than without. In other words, the speed of the emptying process becomes less R-
dependent. Figure 5 illustrates this tendency along two cuts (at R = 0.4 and R = 2). It is clear that
the escape rates of aerosols (bubbles) become smaller (larger) due to memory, and that they are
typically above (below) that of the passive case. There might be, however, exceptions as the
bubble case with ⩽S 0.01 illustrates where the escape rates slightly exceeds κideal. Note that the
S-dependence is also weaker with memory. The escape process depends, thus, less on both
parameters R and S when memory is taken into account.

For completeness, we also present the escape rates on the plane of the Stokes number
St = S/R and the density ratio R, figure 6. Since in this representation the density plays a role
along both axes, the graph of the escape rate is different but the general content remains the
same.

An important effect of the history force can be observed when studying particles moving
along general curved trajectories: the history force is found to counteract the centrifugal force.

Figure 5. Escape rate as a function of S with and without memory for R = 0.4 and R = 2.

Figure 6. The same as figure 4 on the parameter plane =St S R R( / , ).
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Heavy particles are pushed outwards of vortex centers by the centrifugal force. Memory is seen
to generate a dissipative effect, which provides a force pointing towards the center of a vortex,
as illustrated by figure 7(a). For bubbles the effect is opposite, i.e., the history force points
outwards from the center of a vortex; it counteracts the (anti)centrifugal force which pushes
bubbles inside vortices. This behavior has been also found in [67] for the analytically treatable
case of a single vortex with the flow field = φu r r e( ) . The effect visualized in figure 7 provides

a qualitative explanation for the decrease (increase) of the escape rate for heavy (light) inertial
particles in the presence of memory.

We can summarize that, in general, the history force tends to weaken the difference
between particle and fluid and ‘pushes’ the dynamics towards that of the ideal case.

9. Residence time and non-hyperbolic behavior

A further characterization of the escape dynamics is via the residence time distribution. For any
initial position in the flow, we determine the time the particle takes to escape and indicate this
time via color-coding. The trajectories are integrated up to a maximum of 100 time units, thus
the largest residence time found is 100. In this section we do not cut out the circle of radius
1.014 along the cylinder surface (unlike in the previous sections), and the escape condition is
simply >x 5, in order to also see the effect of the stickiness of the wall. Figure 8 shows the
result with and without memory for bubbles. Very long lifetimes, longer than 100 time units,
would indicate basins of attraction of an attractor. In this case no attractors exist and lifetimes on
the order of 100 mark slowly moving trajectories, which will spend a long time in the boundary
layer close to the cylinder surface. We see clearly that the area of initial conditions with long
lifetimes (reddish colors) is much lower with memory than without. Thus the surface of the
cylinder seems to be less sticky when memory is included. Furthermore, the structure of the

Figure 7. A comparison of the history force (red arrows) acting on an aerosol (a) and a
bubble (b) along a spiraling trajectory in the wake. The parameters are S = 0.01 and

=t 00 in both cases and R = 0.4, = −r ( 0.5, 1.2)0 for the aerosol and R = 2,
= − −r ( 0.5, 1.14)0 for the bubble. The scale of the arrows for the bubble case is 10

times larger, i.e., in this case the history force is much stronger (this is also true for the
other forces). Note that the history force counteracts the centrifugal force in both cases.
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residence time distribution shows a clear dependence on the presence of memory also away
from the cylinder surface, e.g., in the region × −[1.5, 3.5] [ 1.5, 0] where a vortical pattern is
present with memory.

In dynamical system terms, the sticky surface of the cylinder leads to non-hyperbolic
behavior marked by long-term power law decay of the number of survivors. For trajectory
ensembles containing initial points close to the surface one finds that the number N(t) of non-
escaped particles up to time t behaves for ≫t 1 as

∼ σ−N t t( ) , (22)

where σ is the exponent of the non-hyperbolic decay [68]. The number of survivors in the range
of 100 and 1000 time units exhibits clear straight lines on a log–log plot in both cases, as can be
seen in figure 9. The slopes are, however, different. We have found a change from σ = 0.55 to
σ = 1.21 when memory is included. (For ideal tracers σ = 2 [52].) For bubbles, memory effects
lead thus to faster decay (to an increased decay exponent), weaken non-hyperbolicity, but do
not destroy the power-law behavior. For aerosols, the effect of the cylinder wall appears to be
much weaker both with and without memory, and we do not find any change of the non-
hyperbolic decay exponent.

10. Statistics of forces, slip velocity and acceleration

In section 7 we briefly discussed the forces acting along a sample trajectory. To be able to make
more general statements we now turn to the statistics of these forces. The statistics presented in
this section are obtained by averaging over an ensemble of ≈ ×N 1.8 100

6 aerosols
= =R S( 0.4, 0.01), started in the domain − × −[ 1, 4] [ 2, 2] at =t 0.20 ; we sampled over all

time instants at which a particle has not yet escaped the wake of the cylinder.
Figure 10(a) shows the probability density function (PDF) of the magnitude of the three

forces appearing on the right-hand side of (6). Let us first compare the averages of the different
forces, shown as vertical lines in figure 10(a). We see that our observations from section 7

Figure 8. Residence times with (a) and without (b) memory for R = 2.0, S = 0.02,
=t 00 . The escape condition is >x 5 ( <r 1.014 is not counted here as an escape). The

logarithm (log )
10

of the residence time is color-coded.
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based on a single example trajectory also hold true for the averages: the pressure term is the
dominant one and the history force (red curve in figure 10(a)) is of similar magnitude as the
Stokes drag. Looking at the tails of the PDFs we observe that the pressure term has a
particularly large number of extreme events and the history force has a slightly longer tail (more
extreme events) then the Stokes drag.

The ratio of the averages of the history force and of the Stokes drag in figure 10(a) is

=F F/ 1.21h d . In view of this finding, (12) and the fact that =S 0.1, we conclude that

parameter α is × =2/9 12.1 5.7 in this setting. The observation that the α value is not close

to 1 shows that the importance of the history force cannot be estimated solely by S ; parameter

Figure 9. Long time, non-hyperbolic regime of the escape dynamics for bubbles.
Parameters are the same as in figure 8.

Figure 10. (a) PDF of the magnitude of the forces on the rhs of (6), with memory. (b)
PDF of the magnitude of the dimensionless slip velocity −v u with and without
memory. The x-axis on the top shows the particle Reynolds number Rep, which is
proportional to the slip velocity (see (20)). Vertical lines indicate the position of the
corresponding averages. The parameters are R = 0.4, S = 0.01. The ensemble consists of

≈ ×N 1.8 100
6 particles initiated in the domain − × −[ 1, 4] [ 2, 2] around the cylinder at

=t 0.20 ; a particle is part of the ensemble only until it escapes.
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α is also relevant. If we neglected α, we would underestimate the history force by a considerable
amount.

In order to be a useful parameter for estimating the importance of the history force, α
should be independent of S. Indeed, for R = 0.4 we find α ∈ [4.7, 6.0] and for R = 2.0
α ∈ [7.2, 7.7] when S is varied between 0.05 and 0.005. For the purpose of rough estimates we
can thus consider α constant, with a value around 5 (in this flow).

Figure 10(b) shows the PDF of the magnitude of the slip velocity −v u . It is important to
see that the average is much below 1 in both cases, indicating that the deviation between the
particle and the flow velocity is typically much smaller than the flow velocity itself.
Furthermore, the average dimensionless slip velocity 0.153 of the memoryless case is reduced
to 0.085 (to about 55%) when the history force is included. Thus, particles with memory follow
the fluid more closely. In harmony with this, the tail of the slip velocity PDF becomes shorter
with memory, i.e., there are less strong ‘detachments’ from the fluid flow. We find the same
tendency for bubbles albeit somewhat weaker, e.g., for R = 2, S = 0.01 the slip velocity is
reduced to 85% by memory. All this illustrates that the history force provides an important
viscous contribution so that the resultant of it and the drag ensures faster relaxation towards the
flow velocity than with the drag alone.

Equation (20) shows that the slip-velocity is proportional to the instantaneous Rep.

Accordingly, the top axis of figure 10(b) displays Rep. Its average for particles with (without)

memory is found to be 0.76 (1.36). The assumption that the particle Reynolds number remains
of order unity or smaller is thus found to be fulfilled on average, with a somewhat sharper
bound with memory.

The statistics of the acceleration of particles (not shown) is also consistent with the picture
above. Ideal tracers have the highest average acceleration and the most extreme events (the
longest tail in the PDF). The case without memory exhibits the lowest accelerations, and the
inclusion of memory increases the average acceleration, as well as the probability of extreme
events. Thus we see again that the statistics come closer to that of the ideal case when memory
is included.

11. Periodic attractors

Let us now turn to a parameter set where attractors are present both with and without memory:
w = 24 (instead of π192/ ), where w describes the strength of the vortices behind the cylinder,
and R = 1.5, S = 0.03. The residence times are depicted in figure 11. Their structure changes
significantly when memory is taken into account, as we have already seen in section 9. Here we
included again the circle of radius 1.014 as an escape condition to exclude the non-hyperbolic
decay. Thus residence times of 100 (the maximum integration time) show initial conditions
leading to an attractor. In the presence of memory, the basin of attraction (marked by red)
becomes significantly smaller; its area is reduced by a factor of about 2.5. Thus, we can say that
memory makes the attractor less attractive in this case. We note that for this choice of w there
are also trajectories of ideal tracers that never leave the wake. Tiny integrable regions exist,
which appear as red dots in figure 11(c). Comparing the residence time plots we see again that
the case with memory comes closer to that of ideal tracers.

It is worth comparing the attractors with and without memory. Both attracting objects
appear to be periodic orbits of period-1 (i.e., with the same period as the vortex shedding
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period), and are of similar form, as figure 12(a) shows. Note that the history force does not
vanish on the attractor with memory. A basic difference between the two cases is that the
attractor of the memoryless case is stationary by the time the plot is made, but the cycle-looking
object seen in the presence of memory keeps changing very slowly in time. It is thus a ‘quasi-
attractor’ only. A real attractor is expected to be reached (even in a numerical sense) after a very
long time only.

We examine the convergence of the trajectory to the attractor through the quantity
| − |*x n x( ) , where x(n) and *x is the x-coordinate of an approaching trajectory after n time units
and of the asymptotic attractor ( =*

→∞x x nlim ( )n ), respectively. This corresponds to taking
snapshots at integer multiples n of the period, i.e., a stroboscopic map. The time dependence of
this quantity is shown in figure 12(b) for the case with memory. The convergence follows a −t 1/2

law, where the exponent is obviously related to the power law behavior of the kernel of the
history force (5). The algebraic convergence is in strong contrast to normal dynamical systems
where the convergence is exponential. This means that with memory the convergence is very
slow and that there is no characteristic time scale characterizing this convergence.

The fact that a periodic attractor is possible with memory can be explained by the
observation that after a very long time the memory of the approach to the attractor decays away,
and the dynamics remembers only what has been in the close vicinity of the attractor, on a loop
like the continuous line in figure 12(a), and a convergence thus becomes possible.

12. Interpretation in terms of snapshot attractors

Using this classical single trajectory picture, one concludes that the attractor can be reached
after a very long period of time only. There is, however, an alternative view, that of particle
ensembles, also available. In autonomous systems the two views are equivalent, which is not so
obvious in non-autonomous problems, like ours (see (11)). In this class, one can then define a

Figure 11. Residence times for bubbles with (a) and without memory (b), and for ideal
tracers (c). The parameters are R = 1.5, S = 0.03, =t 0.30 , w = 24. The logarithm (log )

10

of the residence time is color-coded.
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snapshot attractor as an object that attracts all the trajectories initialized in the infinitely remote
past within a basin of attraction [69, 70]. It can be obtained by monitoring an ensemble of
particle trajectories all subject to the same non-autonomous equation of motion. After a
characteristic dissipative time, the ensemble traces out a snapshot attractor. This attractor might,
however, move continuously in time.

In the dynamical systems community, the concept has been known for many years [69].
The idea proved to be particularly well suited for understanding the advection of passive
particles in random flows [71–73], and explains experimental findings [74]. More recently,
snapshot attractors have turned out to be promising tools to describe the variability of climate
dynamics in a novel way [70, 75–78]. In these settings the non-autonomous driving is typically
a random noise or a sustained chaotic process. The snapshot attractor is then ever changing, and
appears to be a fractal object whose shape is evolving in time. In cases with an eventually
vanishing driving, the snapshot attractor might have a time-dependence that ceases
asymptotically.

For our problem of chaotic advection with memory, where a slow convergence towards a
traditional periodic attractor takes place, one can assume that close to this attractor the effect of
the history force for neighboring members of the particle ensemble can locally be considered as
a non-autonomous perturbation superimposed on the usual inertial particle dynamics. An
ensemble of particles might then converge to a snapshot attractor, a fixed point on the
stroboscopic map, after some time. This snapshot fixed point attractor is then slowly shifted
towards the asymptotic traditional attractor. Here a separation of time scales is expected to
occur since the convergence to the snapshot attractor is a usual dissipative effect, and hence this

Figure 12. (a) Attractors with and without memory (solid and dashed lines,
respectively) traced out by approaching trajectories after 104 time units (the parameters
are R = 1.5, S = 0.03, =t 0.30 , w = 24.). The arrows represent the history force. (b)
Distance between an approaching trajectory with memory and the corresponding
asymptotic attractor at integer times.
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decay should be exponential, whereas the slow shift is due mainly to the diffusive kernel, and
thus follows a power law.

To verify this we choose an ensemble of 100 particles approaching the periodic attractor,
and compute the center of mass r n( ) (i.e., the average of the spatial location vector over the
ensemble) and the radius of the ensemble −r rn n( ) ( ) at integer times n. The center of mass
represents the time-dependent position of the snapshot attractor whereas the radius is a measure
of convergence to the snapshot attractor. The center of mass is found to exhibit the same power-
law behavior, of power −1/2, as x(n). However, we observe that the radius of the ensemble has
an initial roughly exponential decay, see figure 13(a), which crosses over to algebraic decay of
power −3/2. Thus we conclude that the point-like object formed after about 70 time units is a
snapshot fixed point attractor emerging as an effect of memory.

To deepen this picture, we plot in figure 14 the center of mass and the radius of the
ensemble in the plane of the fluid at integer times. Figure 14(a) shows time instants between
n = 200 and 300, whereas figure 14(b) covers the range [200, 1000]. The scale is strongly
magnified but the plot clearly indicates that the fixpoint snapshot attractor slowly moves. Even
after 1000 time units it is still away from the limiting location. The latter is determined from a
self-consistent fit to the algebraic decay process of the center of mass.

The evolution can thus be split into a short-time and a long-time regime. In the first one, up
to about 70 time units, convergence to a snapshot attractor takes place. In the second one (for

>n 70) a snapshot attractor is reached but it is shifted slowly towards an asymptotic fixed
point, the traditional attractor.

Figure 13. Convergence of an ensemble of 100 particles towards a fixed point attractor
on the stroboscopic map with memory and without memory. The ensemble consists of
100 randomly chosen initial conditions from the basin of attraction in the region

× −[0.5, 1.5] [ 1, 1]. The green curve represents the distance of the center of mass from
the true, asymptotic attractor *r (an analogue of figure 12(b)). The other curves
represent the average radius of the ensemble (the red one with, the blue one without
memory). Panels (a) and (b) are log–lin and log–log representations and focus on the
short and long time approach, respectively. The parameters are R = 1.5, S = 0.03,

=t 0.30 , w = 24.
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13. Chaotic attractors

Chaotic attractors with memory are very rare in the parameter range investigated and we had to
perform an extended parameter-scan to find one. In figure 15(a) we see an ensemble of 100
trajectories (in continuous time) tracing out this chaotic attractor with memory. A magnification,
figure 15(b), indicates clear fractal properties. The Lyapunov exponent of this attractor is
λ = ±0.18 0.01. It is positive, which shows that the attractor is chaotic indeed. Details of how
the largest Lyapunov exponent can be determined in such a system with long memory is given
in appendix A. We note that at this parameter values (given in the caption to figure 15) the
attractor without memory is not chaotic.

Figure 15(c) exhibits the stroboscopic picture of the chaotic attractor with memory. It
shows magnification in two different time intervals: ∈t [600, 800] and ∈t [800, 1000]. A shift
on the order of −10 4 units can be observed, a clear manifestation of the fact that this chaotic
attractor is slowly drifting, similar to the fixed point snapshot attractor discussed in the previous
section.

14. Chaotic saddles

In contrast to permanent chaos, transient chaos is ubiquitous in the problem as the typical form
of chaos in this open flow. Chaotic transients are found at any parameter, irrespective of the
existence of attractors. The degree of chaos can thus best be compared by comparing the
underlying chaotic saddles that exist both for ideal tracers and inertial particles with or without
memory.

Figure 14. Positions of an ensemble of 100 particles (the same as in figure 13)
approaching a fixed point attractor on the stroboscopic map. Black dots and red circles
around them represent the center of mass and the radius, respectively, of the ensemble.
The parameters are the same as in figure 13. (a) The positions of the ensemble at time
instants 200, 210, ..., 300. (b) The positions of the ensemble at time instants 200, 220,
..., 1000. The circles indicating the radius are hardly visible at this scale. The asymptotic
fixed point attractor is marked by a square. Note the largely magnified scales in both
panels.
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To construct the saddle, we consider particles with long residence times, longer than 15
time units. The idea is that these particles come close to the saddle and then leave the wake. The
longer the particle stays in the wake, the closer it comes to the saddle. One might suppose that at
half of their residence time (t = 7) the particles are closest to the saddle and thus their positions
at this time trace out the saddle. This is supported by the observation that this set of points at
t = 7 is only marginally different from those at t = 6 and t = 8, i.e., the set is (approximately)
invariant. Figure 16(a) shows the saddle constructed by this method for three different advective
dynamics. The initial positions of particles that stay long in the flow and thus come close to the
saddle trace out the stable manifold of the chaotic saddle, and are plotted in figure 16(b).

We see that the saddle and its stable manifold change considerably when the history force
is taken into account. It is interesting to note that the saddle and its stable manifold differ much
more from those of ideal tracers than from the memoryless case. This illustrates that the general
rule according to which the presence of memory makes the dynamics similar to that of ideal
tracers is not true in all possible aspects.

To further characterize the saddle and the corresponding dynamics we calculated the
Lyapunov exponent, as described in appendix A. The Lyapunov exponent with the history force
is found to be λ = ±0.91 0.02. This is larger than without memory, when λ = ±0.79 0.02,
and is close to that of ideal tracers for which λ = ±0.92 0.02. Thus particles with memory are
dynamically more unstable, and their measure of instability is closer to that of ideal tracers.

Figure 15. Chaotic attractor with memory. (a) Positions of an ensemble of 100
trajectories (marked by different colors) traced out in the time interval ∈t [990, 1000];
(b) A magnification. The ensemble consists of 100 randomly chosen initial conditions
from the basin of attraction in the region × −[0.5, 1.5] [ 1, 1]. The parameters are
R = 1.47, S = 0.049, =t 0.30 , w = 31.2. (c) Positions on a stroboscopic map (on a
magnified scale). The red dots correspond to the attractor points at ∈n [600, 800] and
the black dots to those at ∈n [800, 1000]. We observe a slow motion of the attractor
obtained in the ensemble picture.
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15. Summary and discussion

In summary, memory effects can have a very significant influence on inertial particles. In the
presence of the history force, compared to the memoryless inertial case, we find:

• rare appearance of attractors, especially of chaotic ones,

• less frequent appearance of caustics,

• decrease of the centrifugal effect,

• slower (faster) escape for aerosols (bubbles),

• weaker effect of the cylinder wall,

• stronger dynamical instability on chaotic sets,

• very slow, algebraic convergence to attractors (when defined in the usual single trajectory
picture),

• tendency of the particles to follow the flow more closely.

As a trend, the dynamics becomes more similar to that of ideal tracers when the history
force is included (although exceptions can also be found, see, e.g., figure 16).

In one principal aspect the dynamics basically differs, however, from both the usual
inertial and the passive tracer dynamics. Due to memory, the problem is strictly speaking high-
dimensional, and methods known from low-dimensional dynamical systems are not necessarily
applicable. For understanding the slow convergence towards periodic attractors, the concept of
snapshot attractors appears to be useful. More generally, we assume that the snapshot
interpretation, i.e., considering the instantaneous position of an ensemble of trajectories started

Figure 16. (a) The chaotic saddle for inertial particles with memory (red), without
memory (blue) and for ideal tracers (green). The saddle without memory and the one for
ideal tracers are shifted horizontally by 0.1 and 0.2, respectively, for better visibility. (b)
The stable manifolds of the corresponding saddles. The parameters are R = 2.0,
S = 0.02, =t 00 , the same as in figure 8.
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in the remote past, is applicable for any kind of asymptotic set (chaotic attractors, chaotic
saddles) in advection with memory effects. In this new picture, an exponential convergence to a
snapshot-like attractor is expected to show up, which is then slowly changing afterwards.

Let us come back to estimation (12) of the importance of the history force. A question of
relevance is whether one can determine a typical value for α in general. For the following
argument we assume the time to be dimensional again. Imagine a signal f(t) that varies on the
time scale τ. Then we can estimate the magnitude of the derivative f td /d by τ| |f / . Extrapolating

this reasoning to fractional derivatives, we expect the magnitude of ( )t fd/d
1/2

to be roughly

τ | |f1/ . Thus, setting = −v uf in (13) we obtain6

α
τ

≡
−

−
≈

⎜ ⎟⎛
⎝

⎞
⎠ v u

v u

T
t T

d
d

( )
. (23)

1 2

In our flow the time unit T is chosen, traditionally, as the shedding period of the vortices. As
particles ‘live’ on the small scales, τ should be the smallest time scale of the flow7. In the von
Kármán problem there are two characteristic times: the shedding period T and the convective
time scale L U/ . The latter is the smaller one and can be considered to be the time a particle
needs for going around a vortex. We thus take τ = L U/ in (23) and find, in view of (15), that

α ≈ = −TU

L
Sl . (24)1 2

Using the value =Sl 1/14 we obtain α ≈ 3.7, which is quite close to the measured range
α⩽ ⩽4.7 7.7.

The reason α turns out to depend on Sl is that we have used the shedding period T to non-
dimensionalize the equation of motion, rather than the smaller time scale τ = L U/ . Thus we
conclude, a posteriori, that a more natural choice is to use the convective time scale from the
very beginning. Denoting the corresponding quantities in this time unit with a prime, we obtain
α′ ≈ 1 and

≈ ′
F

F
S

9
2

, (25)h

d

with a modified size parameter

ν
τ

′ =S
a2

9
. (26)

2

We thus see that for the size parameter (and the Stokes number)—a Lagrangian quantity—the
use of the smallest time scale, the convective time scale L U/ , is natural. It leads to simpler

6 The factor T appears because time is dimensional here in contrast to (13).
7 In principle the typical time scale of −v u depends on the particle parameters. Nevertheless, it should be close to
the small time scale of the flow. We choose this time scale for our order of magnitude estimates. This choice is
further supported by the following finding: using (17) one can obtain a Taylor-expansion of α (13) in S, where the

zeroth order approximation α ≈ | |t u t u t(D/D ) D /D /D /D1/2 is solely a property of the flow (here t(D/D )1/2 is defined

in the same way as t(d/d )1/2 but with the derivative taken along a fluid element trajectory).
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expressions, in contrast to using the shedding period T, which is the usual choice in the Eulerian
characterization of this flow.

Let us come to a more general statement about other flows. From (25) and (26) we obtain
the rather simple formula

τν
≈

F

F

a
, (27)h

d

for the estimation of the history force relative to the Stokes drag. We expect this to be a good
estimation also in other flows as long as the time scale τ is chosen to be the smallest time scale
of the flow. This choice becomes particularly important in multi-scale flows. Note also that the
convective time scale need not necessarily be the smallest time scale in other flows. However,
when this is fulfilled and when the flow is smooth with only one characteristic length scale L
(like the flow examined in this paper) we get

≈
F

F

a

L
Re . (28)h

d

Let us finally remark on the possible role of memory effects in turbulent flows. In
turbulence, the time scale τ should be the Kolmogorov time scale τK [79]. Using ντ η=K

2 in
(27), where η is the Kolmogorov length, we obtain

η
≈

F

F

a
, (29)h

d

as an estimate for the importance of the history force. We thus expect memory effects to be
negligible for η< −a 10 2 . For a around η0.1 the history force should be around 10% of the
Stokes drag and is thus expected to be clearly observable. However, when a is close to η, the
history force can be as important as the Stokes drag indicating strong memory effects even in
turbulent flows8. (Note that in the latter case Faxén corrections might also be important.)
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Appendix A. Lyapunov exponents in the presence of the history force

Lyapunov exponents characterize the evolution of infinitesimal perturbations in time. For the
full Maxey–Riley equation (6) the equations governing this evolution are

8 For air turbulence in clouds η is around 0.8 mm [5] and for wind-driven oceanic turbulence it is in the range
0.3 mm–2 mm [80].
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. (A.1)

t

t

0

Here δ δ δ≡q r vt t t( ) ( ( ), ( ) ) is an infinitesimal perturbation along a given trajectory
≡q r vt t t( ) ( ( ), ( ) ). Equation (A.1) is an evolution equation with memory. The (largest)

Lyapunov exponent is then defined as

λ δ
δ

=
−

| |
| |→∞

q
qt t

t

t
lim

1
ln

( )

( )
. (A.2)

t
0 0

We assume that this quantity is the same for (almost) all trajectories of a chaotic set, as in
standard dynamical systems theory [63].

One way to compute λ is to numerically integrate (A.1). However, often it is more
convenient to obtain the evolution of perturbations directly from pairs of particles starting close
to each other. For a given trajectory q t( ) one computes a perturbed trajectory ′q t( ) starting from
a perturbed initial condition

Δ′ = +q q qt t( ) ( ) , (A.3)0 0 0

where Δq
0
is a small but finite perturbation, and obtains the Lyapunov exponent from

λ Δ
Δ

=
−

| |
| |→∞

q
qt t

t
lim

1
ln

( )
, (A.4)

t
0 0

with

Δ = ′ −q q qt t t( ) ( ) ( ). (A.5)

For this to be close to the original definition of λ (A.2) one has to make sure that Δq t( ) is small
for all t, i.e., Δq t( ) evolves according to a linear evolution equation. A naive method would be
to choose Δq

0
so small that for a given integration time tend one can be sure that Δq t( ) remains

small. However, Δq
0
cannot be too small due to finite numerical precision, because then ′q

would be numerically indistinguishable from q.
The approach we use is to start with a small but not too small perturbation Δ Δ| | =q q( )

0 min

and adjust ′q by rescaling Δq when Δq t( ) becomes larger than a given threshold Δq
max

. This

way we make sure that Δq remains small. The procedure is as follows:

(i) integrate ′q up to a time t̃ when Δ Δ=q q
max

,

(ii) set Δ′ = + Δ
Δq q qt t t( ) : ( ) ( )

q

q
min

max
for ⩽ ⩽ ˜t t t0 , and proceed with the integration for ˜ <t t,

(iii) repeat steps 1 and 2 until the desired integration time tend is reached.

This rescaling makes sense because ′q and q are rather close and thus Δq evolves
according to the linear equation (A.1). Therefore, at any iteration of the above procedure,
Δ Δ Δq t q q( ) /

min max
is an (approximate) solution of (A.1) and Δ Δ Δ′ = +q q qt t t q q( ) : ( ) ( ) /

min max

is a valid perturbed trajectory.
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The key idea is that when the upper bound Δq
max

is reached, we just choose another

solution ′q that starts at a smaller initial perturbation Δq
0
; the new perturbation is smaller but

proportional to the previous one. As Δq evolves according to a linear equation, we can
efficiently obtain the new solution by simple rescaling. Because we rescale the previous
solution and continue with the integration only for ˜ <t t, we avoid computations with too small
Δq.

With the history force it is important to adjust ′q for the whole past ⩽ ⩽ ˜t t t0 because the

evolution depends on the whole past. Without memory one would only need to adjust ˜( )q t ,
which leads to a standard method of computing the Lyapunov exponent [63, 81].

When a perturbation trajectory Δq has been computed up to =t tend, we obtain the
Lyapunov exponent from

λ
Δ

Δ
≈

−
| |

| |
q

qt t

t1
ln

( )
, (A.6)

end 0

end

0

where tend is a large integration time.
In section 14 we are dealing with transient chaos. Therefore the length of the trajectories is

limited and it is difficult to accurately compute the Lyapunov exponent from a single trajectory.
Therefore we use a preselected ensemble of trajectories that stay close to the saddle for a
sufficiently long time, as in other cases of transient chaos [68]. Equation (A.6) defines the
Lyapunov exponent as the slope of the function Δq tln ( ) , computed using its values at =t t0

and =t tend. We extend this idea to an ensemble by computing the average

Δ
Δ

=
| |
q

q
d t

t
( ) ln

( )
(A.7)

0

and making a linear fit to d(t) to obtain the slope, which is the Lyapunov exponent λ. In section
14 we choose trajectories that stay in the wake for at least 15 time units and make a linear fit in
the range ∈t [5, 15].
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