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Abstract. We consider Higgs models on a lattice
in 3 or 4 dimensions. Higgs scalars are assumed to
transform trivially under a finite subgroup I' of
the compact gauge group G. We adopt 't Hooft’s
definition of the Higgs phase, it is characterized by
a nonvanishing free energy per unit length (area)
of a vortex in 3 (4) dimensions. By using a Peierls
argument we show that the models are in the Higgs
phase in this sense for suitable coupling constants.

1. Introduction and Summary of Resuilts

Since the invention of lattice gauge theories [1,2]
many attempts have been made to determine their
phase structure (see for example [3-5]). The question,
how to characterize the different phases, is more
difficult to answer for lattice gauge models than for
spin models and was investigated by several people.
Recent work of Mack and Petkova [6] and of
't Hooft [7] suggests to classify the phases of pure
lattice gauge theories by the dependence of the
free energy of a system in a box or vortex container
on certain boundary conditions. This is reviewed in
Sect. 3 of this paper, including fundamental scalar
fields (Higgs fields) coupled to the gauge field in a
gauge invariant way. We consider gauge fields on
a lattice in 3 or 4 dimensions. The gauge group G
is a compact group with nontrivial center. If a Higgs
field is included, it is assumed to transform trivially
under a nontrivial finite subgroup I of the center of G.
The theory then possesses ['-vortices. The system
is considered on a finite lattice A with some boundary
conditions. A may either be a vortex container of
[6] with fixed boundary conditions on 4, or a
torus as in [7], where the boundary conditions for
the gauge field specify transition functions of a fibre
bundle. Then a change of the boundary conditions
is defined by certain singular gauge transformations
with elements of I'. It has the effect to change the
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vortex content (the vorticity) of the system by a
definite amount. Now one asks how the free energy
of the system changes under the singular gauge
transformations. This change gives a quantitative
measure for the free energy of a vortex, which is
used to characterize different phases. According to
’t Hooft’s definition the system is in the Higgs phase
if the free energy of a vortex per unit length resp.
area does not tend to zero in the limit of infinite
width.

In sect. 4 we investigate models with Higgs fields.
We show that the Higgs phase exists at low tempera-
tures by using a Peierls argument. On the other hand
it can be shown [8] that the high temperature phase
is not a Higgs phase. These results support the idea
that above is a useful definition of a Higgs phase.

In Sect. 5 we discuss the relationship between the
Higgs phase of v-dimensional lattice gauge theory
and spontaneous breakdown of a global I'-symmetry
in v — I-dimensional Heisenberg models with fluc-
tuating couplings.

The reader should be warned not to confuse the
Higgs phase in 't Hooft’s sense with the Higgs mechan-
ism. What is popularly called Higgs mechanism does
not imply that the system is in a Higgs phase. In
particular, one speaks of a Higgs mechanism even
for models where the stability group I' of the scalar
fields is trivial —such as for instance a SU(2) gauge
theory with a Higgs doublet. On the other hand, if I’
is trivial the model with the scalars has no Higgs
phase in 't Hooft’s sense by definition. In Higgs models
of this type the high temperature region is linked
continously to a region of coupling parameters,
where the Higgs mechanism takes place according
to conventional wisdom. See the discussion in [9].
Nevertheless in such a model there can be different
phases. Their existence has been established for the
Z,-Higgs model [10]. The second phase is obtained
from the Higgs phase of the pure Z, gauge theory
without the scalars by convergent perturbation
theory in the effect of the scalar field.

We would like to add a remark on possible criteria
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for confinement. As is well known the Wilson
criterion [1] can be used in the absence of coloured
matter fields, but not for the complete quantum
chromodynamics with fermions nor for Higgs models
with scalar fields which transform faithfully under
the gauge group. In this paper we are studying Yang-
Mills—Higgs vortices. One can also consider pure
Yang—Mills vortices, which are defined in terms of
the gauge field alone [8]. It is believed that conden-
sation of these vortices is sufficient for confinement
[13,6-8]. This question can be investigated through
the free energy of Yang-Mills vortices on a torus
by considering free boundary conditions for the
matter fields and cyclic resp. anti-cyclic (twisted)
boundary conditions for the gauge field (see Sect. 3).
This might be an interesting criterion for confine-
ment, if dynamical quarks exist in the theory.

2. 2-Dimensional Ising Model and 3-Dimensional
Z,. Lattice Gauge Theories as Introductory Examples

a) The 2-Dimensional Ising Model

Consider a 2-dimensional square lattice A with spin
variables o(x)= + 1 at the lattice points xeA.
The Hamiltonian is

H=-J)Y o(x)a(y), J>0 Ay
{xpd

{xy):pair of nearest neighbour lattice points
and describes ferromagnetic coupling. In the statis-
tical mechanics of this model the probability

measure on the space of configurations is given by

the Boltzmann factor

1
fe"”’ (2.2)

1 .
where Z =Y e M, f= o the inverse temperature.

The correlation function is
1 _
<6(X)6(y)>:§}:6(X)6(y)e H (2.3)

It is well known that the Ising model has a critical
point f,. At small temperatures f~' we have an
ordered phase with spontaneous magnetization

lim {o(x)o(y)>=m?>>0 (2.4)
jx=yl- o0
whereas at high temperatures there is a disordered
phase without spontaneous magnetization.

Peierls [11] was the first to give an argument for
long range order at low temperatures and we will
use his idea of contours in the following discussion.
A Peierls contour is defined to be a set of links
b=<{xy) such that o(b):=0(x)o(y)=—1. On
the dual lattice a Peierls contour is closed (Fig. 1),
because of

[[o®)=1, P aplaquette of four links (2.5)

beoP
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Fig. 1. Peierls contours (dotted lines) in 2-dimensional Ising model.
Lattice points x and y are linked by a path @

Peierls contours can be chosen nonintersecting.
For two distant points x and y, linked by a path €,
we have

a(x)a(y)=[lab)=(— 1 (2.6)
be¥

where N is the number of Peierls contours inter-

secting € an odd number of times, and therefore

(o(x)a(y)y =2 (= 1)'p, 2.7)

py is the probability that N contours wind around
x or y (not around both). Obviously contours which
do not wind around x or y are of no interest (Fig. 1).
Formula (2.7) expresses the correlation function
through the probability distribution of contours.
If there were no contours, {ag(x)a(y)> would be 1
identically. A suppression of long contours would
lead to the result that the correlation function tends
to a non-zero constant for large |x —y|. On the
other hand, if contours of arbitrary length are
abundant, the correlation function goes to zero
exponentially.

Peierls showed that long contours are suppressed
at low temperatures and that there is spontaneous
magnetization. A quantitative measure of this suppres-
sion is the free energy of a contour per unit length.
It is defined in the following way. Consider a finite
lattice of length [ and width t:x = (x,, x,),0 < x, 1,
0<x, <t Impose periodic boundary conditions
in the x,-direction, whereas in the x,-direction the
boundary conditions are

O'(Xl,O):O'(Xl,[)')), Y= +1 (28)

The system now lives on a torus T2 and the boundary
conditions fix transition functions for a fiber bundle
over T?2, which is nontrivial if y = — 1. In this case
every closed curve which winds around the torus
in the x,-direction contains an odd number of links
with ¢(b) = — 1. From this follows the existence of
an odd number of Peierls contours winding around
the torus in the x,-direction. In the case y= +1
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the number has to be even. The corresponding
partition functions are denoted by Z, and the free
energy F_ is given by

pF,=—-InZ, (2.9)

Then the free energy of a Peierls contour per unit
length is defined by :

! 1. Z_
'f([):zlinljﬂ(F_ —F,)= —llimw_llnz (2.10)
and we consider
f=limf(), (2.11)
so that the effects of the finite lattice width are
ignored.

Iff> 0, the probability of finding a contour of length
| decreases exponentially with [. This happens at low
temperatures, as can be shown by the Peierls
argument.

The purpose of this section is to illustrate a concept
which will be used for the study of lattice gauge
fields. The important points are

i) objects which disorder the system,

ii) the study of these objects by consid;ring non-
trivial boundary conditions for some containers,

iii) the characterization of the phases by the change
of the free energy for different boundary conditions.

b) The Z, Lattice Gauge Theory in 3 Dimensions

This is a gauge theory analogue of the Ising model
[12]. The gauge field variables o(b)= £ 1€Z, sit
on the links b of a 3-dimensional cubic lattice. For
each plaquette P define

a(P)= []ab) (2.12)
beoP
The action is L = Y .6(P) (2.13)

It appears in the measure of path integrals
1
du:fze’“ﬂda(b), Z=[e"[]da(d) (2.14)
b b

do the discrete Haar measure on Z,,.
A gauge invariant correlation function is the Wilson
loop integral [12, 1]
W (€)= []ob)) =<a(¥)) (2.15)
be€

for closed paths ¥ = 82 on the lattice. We have the
“second Maxwell equation” for cubes c

[ToP)=1 (2.16)

Peéc

and o(%) = []o(P) (2.17)
PeE

Now a vortex is defined to be a set of plaquettes P

000000

P

N

Fig. 2 Vortex in 3-dimensional Z, lattice gauge theory, winding
aroundapath® =dZ.

with ¢(P)= — 1. Because of (2.16) they form closed
paths on the dual lattice (Fig. 2) and we consider
separate paths as different vortices.

Ifthereare N vortices winding around % and thereby
going through Z, we find

o(®)=(—1)" (2.18)
and
o)y =Y(—1)"py (2.19)

where p, is the probability that N vortices wind
around %. If vortices were totally absent, (o (%))
would be 1 identically. We see that vortices are the
analogues of Peierls contours. At high temperatures
B! long vortices are abundant and # (%) falls
of exponentially with the area of Z, which means
confinement of static quarks. On the other hand they
are suppressed at low temperatures and #(%)
falls off only exponentially with the perimeter of Z.
The importance of vortices for the confinement pro-
blem has been emphasized by ’t Hooft, Glimm and
Jaffe, Yoneya, Forster, Mack and Petkova [13-
17, 6] and others. Yoneya pointed out that in the Z,
gauge theory vortices are the relevant objects for
confinement.

The suppression of long vortices at low tempera-
tures can be described quantitatively by their free
energy per unit length. Consider a finite lattice A
as a vortex container (Fig. 3). Fix boundary condi-
tions o(h) on 84 and denote the partition function
Z,. Now change the boundary conditions by a
singular gauge transformation

c(b), bgT 290
G(b)_){—o(b), beT ,bed A (2.20)
and call the partition function Z, . It 1s easy to
see that this change of the boundary conditions
changes the number of vortices which wind once
through the container by one (mod 2). The free
energy of a vortex is defined by

fley= — lim% In gZ; (2.21)
f= 1imf(t)
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Fig. 3. Vortex container A in 3 dimensions, which winds around
the path €. On the boundary of A the set T is marked

where [ is the length and ¢ the width of the container.
By a Peierls argument one can show that f>0
at low temperatures [ 18].

As in the case of the Ising model one might also
use cyclic and anticyclic boundary conditions, if
one wants to preserve translation invariance. Then
one has a trivial respectively nontrivial Z, fiber
bundle over the torus T3. We will come back to this
point later.

3. Definition of the Higgs Phase

In this section we consider lattice gauge theories
with or without charged Higgs fields. Let the gauge
group G be a compact group with nontrivial center
Z(G). The gauge field U(b)eG sits on the links b
of a hypercubical lattice 4 in v =3 or 4 dimensions.
For plaquettes P one defines

U(P)= []U(b) (path-ordered product). (3.1

beoP
The action of the gauge field is

Lo =Bp) (Rex(U(P)) = 8) =0, f,>0,6= (1),
P (3.2)

where y is the character of a faithful representation
of G. The Higgs field, if it is included, lives on the
lattice points x and takes values ¢(x) in a linear
space @. Gauge transformations by functions V{(x)e G
are defined by

U, y) = VUV )"
¢ (x) = D(V (x)) 9 (x) (3.3)

where D is a representation of G on @ with kernel I
We assume that I' is a discrete subgroup of G and
therefore also of Z(G). D may be looked at as a
faithful representation of G/I'. Physically this means
that the Higgs field does not bear the fundamental
charge in the theory if I' is nontrivial. In the case of
a pure gauge field theory we set I' = Z(G). Let (,)
be an inner product on @, unitary with respect to D,
and define the gauge invariant link variables

Wix,y) = (@(x),D(U(x, )¢ (y))- (3.4)

beT
1

1,Tm’///l'//// s
=

0

t

X3
2 |
X

Fig. 4. Vortex container in 3 dimensions, equivalent to that of
fig. 3. The righthand face and the lefthand face (hatched) are to be
identified. £, is a cross-section of the container. If one identified
the other faces pairwise, one gets a torus 73

The Higgs potential is a gauge invariant continuous
function

VPR (3.5)

with zero as its minimum value. The usual action
of the Higgs field is

Ly=p, X {2Re W(x,y) = [¢(0)]* ~[¢()[*}

(xy

P YV (P(x) <0
B.p.20 (3.6)

The total action L = L. + L, appears in the measure
of path integrals

1 . .
du:EeLdﬁ, Z=|edp,

dfi=[]dU(b)resp.[JdU (B [d ¢ (x) (3.7)

dU is the Haar measure on G and d¢ the usual
invariant Lebesgue measure on &.

From the work of ’t Hooft and others [13-16]
we know that also in the case of a continuous gauge
group G there are topological nontrivial objects,
called vortices, which are important for the phase
structure of the theory. They are (v — 2)-dimensional
objects and are characterized by elements of the
finite subgroup I'. Mack and Petkova [17] showed
that thin vortices produce confinement of static
quarks in a high temperature SU(2) model and a
confining Coulomb potential in the 3-dimensional
U (1) model at all temperatures [6].

In general vortices cannot be localized as in the
case of Z gauge theories. Due to the continuity of G
they spread out and are to be defined through the
boundary values of the gauge field on some vortex
containers. We shall consider two approaches to
study the free energy of vortices. First we follow [6]
and take for the lattice A a vortex container as
defined there. They are constructed in such a way
that the homotopy group 7, (A°) of their complement
A° is that of a circle. See Figs. 3, 4 for the case v = 3.
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If one takes a loop in A with winding number one
and shrinks it without touching the interior of A,
one finally gets a closed curve 4 in 0 A. ,

Fix boundary conditions U ={U(b)}, ¢ = {¢p(x)}
on 0/ and denote the partition function Z ,(U,¢).
Now a change of vorticity is defined to be a singular
gauge transformation U — U, of the boundary condi-
tions by an element yerI.

U®b), b¢T
U(b)—»{U(b)y’ ALY (3.8)

T is a set of links in 0 A as defined in ref. [ 6] (see Fig. 3).
The Higgs field remains unaffected. Call the partition
function Z (U ,¢). If you take a closed curve %
in 0 A as described above and compute

U(®)=]]U(b) (path-ordered product), (3.9)
be¥
the transformation (3.8) just changes it to U(%)y.
Here it is crucial that y is in the center of G. This
explains the notion of a change of vorticity. The
Higgs field, transforming trivially under I', is not
able to compensate the effect of this change. Now the
free energy of a vortex per unit length (v = 3) respect-
ively unit area (v = 4) is naturally defined as
1. Z (U,,¢)
] — —_p=4Ar Ty

fA!y(L,fj)) i In Z,U0.0)° (3.10)
where [ is the length resp. area of the vortex container.

In 't Hooft’s [ 7] approach A is taken to be a torus
TV in order to have translation invariance. With
periodic boundary conditions in all directions one
gets a partition function Z,. Then singular gauge
transformations characterized by elements y of I
are performed, which preserve the periodicity for
gauge invariant variables. These transformations
introduce magnetic vortex flux in A in different
directions. Choose a specific direction and call the
partition function Z ,  for this case. Define the free
energy of a vortex per unit length resp. area

1, Z
fd)=1limf, = — limjln é"*, (3.11)

I-w 1= w A

where d, are the widths of the torus and [ the length
resp. area as in (3.10).

As in the examples of Sect. 2 the phases of the
model can now be characterized by these quantities.
In [6] the following criterion for confinement is
proven. Let f, ~be the maximum of the f, (V)

for all boundary conditions U. If 7,(d,)= limf,
-

goes to zero exponentially with d,, static quarks are
confined by an approximately linearly rising potential.

On the other hand the Higgs phase is defined
according to 't Hooft [ 7] by

1= lim f,(d)#0 (3.12)

di= o

Physically this means that long vortices are sup-
pressed. Their thermodynamic probability decreases
exponentially with their extension.

The two approaches are related by the fact that the
partition functions on the torus can be obtained by
integrating the partition functions Z,(U,¢) of the
vortex container over a certain class of boundary
conditions U, ¢ in'v = 3 dimensions. (In v = 4 dimen-
sions the topologies are different.) If the confinement
condition of Mack and Petkova is fulfilled, the system
is surely not in the Higgs phase.

It should be noted that the socalled Higgs mecha-
nism in the old terminology does not imply that
one is in the Higgs phase in the above sense. Consider
the case where the Higgs field carries the fundamental
charge and I' is trivial. There cannot be a Higgs
phase in the sense of (3.12). But nevertheless one
speaks of a Higgs mechanism, which is really a kind
of screening mechanism. See the discussion in [9].

4. The Peierls Argument for the Higgs Model

In this section we shall give some results which
support the idea that the above definition of the
Higgs phase makes physical sense. The pure Z,
lattice gauge theory can be shown to be in the Higgs
phase at low temperatures by using a Peierls argu-
ment, as we mentioned in Sect. 2 [18]. This is in
agreement with the conventional wisdom about the
phase diagram of this theory.

In the following we shall prove rigorously the
existence of the Higgs phase in the low temperature
Higgs model by a Peierls argument. For the sake
of intuition we shall deal first with the 3-dimensional
case and turn to 4 dimensions later. The general
definition of the model has been given in Sect. 3.
We specify the Higgs field further by the following
requirement. Consider the set of non-generic vectors
in @, namely

®,={¢ped|H, + T} 4.1)

where H, = {geG|D(g)¢ = ¢} is the stability group
of ¢. We demand that @, forms a subset of measure
zero. Generic vectors have I as their stability group.
The orbits

B(¢)={D(g)¢p|g <G} 4.2)

consist either solely of generic or solely of non-
generic vectors. The Higgs potential ¥~ is required
to be such that

miny =¢>0 (4.3)

Po

so that ¥~ does not assume its minimum for non-
generic vectors. For simplicity we demand further
that ¥~ assumes its minimum value on one orbit
only, and we rescale ¢ to be of length 1 there. For
|¢| = oo ¥ should grow like | ¢ |*.
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Example 1. Abelian Higgs model

G=U(1),® = C,D(e") = €",q is the Higgs charge,
geN

r={%" k=01,.,9-1}=Z

®, = {0}

W) =) U)o, 7 (@)=(¢>~1)
Example 2. Non-Abelian Higgs model
G=SUQR).Z(G)={+1,-1} =2,
P=ROR, b =($,,$,), }cR’

This is a pair of Higgs fields which transform accord-
ing to the 3-dimensional adjoint representation DV
of SU (2).

D=DV@DV,I =7,

= {(d,.$,)|d, and ¢, are linearly dependent}
(&.8)= @10 as + (9,0

the inner product on ¢.

V@) =([¢,17 =37 + (| D,]* = 1* + (¢, .0, )gs

In the limit of an infinite sharp potential, B — o,
we get the Higgs model with fixed length of ¢.

Next we introduce variables which will /be useful
in the later discussion. Let ¢ be generic, so that G/I
acts freely on the orbit B(¢). Choose a standard
representative ¢, of the orbit. To each ¢'e B(¢) there
exists exactly one UeG/TI", which fulfills

D(U)¢'=¢,, UeG arepresentative of U (4.4)

We use this fact to associate with each ¢(x) two
variables

x)e{orbits}, V(x)eG/T . (4.5)

p(x) denotes the orbit of ¢(x). Let ¢,(p(x)) be a
standard representative vector in this orblt Then
V (x)is chosen such that

DV (x))p(x) = by (p(x))for V(x) =V (x)I. (4.6)
If ¢(x) is generic, V' (x) is defined uniquely by (4.6).

$,(p) can be chosen continuous almost everywhere.

For the volume elements we have
d(x)=dV(x)dv(p(x)) 4.7)

where dv is a certain measure on the orbit space.

Now choose a sheet G' = G of the covering G —» G/I’
with 1 in its interior. To every V (x)eG/I" we find an
unique group element V (x)e G’ with

V(x)=Vx)I, V(xeG 4.8)
Define R(x, y)=Vx)U(x, )V (y)~ . (4.9)

[t transforms nontrivially under gauge transforma-
tionsin I". We have

dU(b)=dR(b) (4.10)

W (x,y) = (@ (p (X)), D(R(x, 1), (0 (). (4.11)

We introduce variables H(b)eG',y(b)el". They are
uniquely determined by : :

R(b)=H(b)y(b), H(b)eG 4.12)

'(b) is gauge invariant, while y(b) transforms non-
trivially under I'. For the measure we write

dR(b)y=dH(b)dy(b) (4.13)

dH is the restriction of the Haar measure dR onto

G’ and

dy=30(g 'y)dg (4.14)
vell

the discrete measure on I'. For gauge invariant inte-
grable functions f({ U (b),¢(x)}) one has

[fdi={[]dH®) Hd b)ﬂdvp (x)) f ({H(b)y(b),
“Do(p(x))}). (4.15)

Therefore the model is well described by the variables

p(x), H(b) and y(b). Because p(x) and H(b) are gauge *

invariant and y(b)eI” we recognize I as the effective
gauge group.

Example 1. (see above)
P(x)=p(x)e®, p(x)20, —n<O(K)<n
V(x) — e—i(@(X)/’q)F,

G = {enp' _T o< E}, V(x)= e~ i€/
q q

H(x,y) = (e~ U%(x,y)e®») 4 the ¢'* root is defin-
edtobein G

The action is easily expressed in the new variables.

L= ZLp (4.16)
p

with the plaquette action

L —ﬁ[ﬁp{Rex (P)7(P)) - 6}

B>+ (ol

xeoP

LY {2ReW(x,y) — | by (p(x)]?

<xy>efiP
— (e )?} ] @.17)
where H(P)= [[ H(b), y(P)= [] y(b) (4.18)
Wix,y)= (d’o(ﬂ (x)).D(H(x,y))¢,(p(3))) (4.19)
Y (p(x)): =7, (p(x))) (4.20)

. ﬁi
We introduced an overall temperature =% by
renormalizing min Bi =1.
We shall now investigate the vortices in the Higgs

G. Miinster: Characterization of the Higgs Phase in Lattice Gauge Theories 181

ﬁlﬁ;ﬂﬂﬂﬂﬂﬂ
000000009

=4
=4

Fig. 5. Partofa I"-vortex (for example I' = Z, ), which splits

model. If y(P) =y #1 on a plaquette P, the variable
U (P) is near y. Because of

[T2P)=1 4.21)
Pedc

the plaquettes with y(P) # 1 form closed lines on the
dual lattice. These lines may split or join according
to the multiplication law of I' (Fig. 5). A vortex is
defined to be a set of plaquettes with y(P)# 1 which
is connected on the dual lattice. We define the vortex
flux through a surface = by

yE) = []7(P) (4.22)
Pe&

Now the action L of a plaquette P in a vortex will

be studied, where y(P) = y # 1. y has the property

Rey(g)<oforallg+1 (4.23)

Suppose H(P)e G, so that H(P)y(P)¢ G'. G’ contains
an open neighbourhood @ of 1 and we conclude by
compactness of G\¢

Rex(H(P)y(P))— 6 <c¢, <0 (4.24)
so that
P < —c B (4.25)

where ¢, is a numerical constant.
The other possibility is H(P)= [| H(b)¢G'. There

bedP
exists an open neighbourhood G” < G of 1, with the

property

4
g.€G", i=1,2,3,4 =[]g,€G (4.26)

i=1
and we conclude that there is at least one link b €d P
with H(b,)¢G". Let b, = (xy ) and consider

lejil{z Re (o, (0 (), D (H (x, 1)), (o))

— b0 ()2 = | (o))

L o 2L, @)

u_\,—_/

The maximum of f'is at H(b,) =1 and some orbit
p(x)=p(y) = p,, where f=0. By a continuity argu-

ment, one obtains a bound
f£-K<0 ifH(b,)¢G" (4.28)

For the example 1 (Abelian Higgs model) K is of
the form min (c, ﬁl, [ ﬁx)

So we have the result

—Bx ifypP)#£1, x>0 (4.29)
x depends on the f,.

We proceed with the Peierls argument by specifying
the boundary conditions. The lattice A is chosen to
be a torus T of extension [ x d x t and cyclic bound-
ary conditions are required for all gauge invariant
variables. Consider a closed cross-section of A,
for example the surface Z,: x, =const (Fig. 4).
In order to have nonvanishing vortex flux through
Z, we have to impose anticyclic boundary conditions
on the variables y (b), for instance

7{(b) cyclicin x,x,
7(b)=7(b+tes) a(b),

1, be¢T
= 4.30
o®) {aef, beT (4.30)
See fig. 4 for T. In this case we find [] y(P)=o.

pegy
The translation invariance for gauge invariant quanti-
ties is not violated by (4.30). Instead of the variables
y(b) it will be advantageous to use the plaquette
variables y(P), which are cyclic in all directions.
They obey the restriction (4.21), and therefore it is

[]7(P)=1for £ a closed surface of the form
PeE

[1]
5]

Q (4.31)

But on T3 we have three homology classes of closed
surfaces, = = 0, which are not boundaries of any
volumes €. Representatives are Z,:x,= const,i=
1,2, 3. For any surface Z in the homology class of =,

ie. B —E,=0%Q,onehas

[T7®@)=[]yP)=:0el (4.32)
PeZ PeEi

So the variables y(P) obey three further constraints

(4.32) in addition to (4.21). Summarizing we can
write down the following partition functions

01.02,05 fﬂdv (p(x)) HdH(b Hdv

H5< H V(P)>H 5(')’(51')61'_1)

Pedc
3
= djie" [[0((E)o ) (4.33)
i=1

The product over ¢ goes over all cubes. With the
definitions

1
‘uzf‘}dﬂ, Z= jeLd:&:ZZrn,az,aa (4.34)

agi
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we write bound
3
Z 000 =Z< I1 5(V(Ei)oi1)> @35)  N@)=diB, B=5(|I|-1) (442)
o i=1

Expectation values are performed with the measure
du. Making use of translation invariance we can
find an upper bound for Z,1.1,/Z 1, Our argument

uses the chessboard estimates of [17]." They can be
proven for our model in the form

1/|P2n
(1 reen)|s 11 11 eoe)

PePsy p’ePay \PePyy
(4.36)

P,, is a set of even parallel plaquettes (see [17])
and Fj, some observables. First we estimate

Zo‘,l,l é Z Zu‘,o'z,o-3::ZU=Z<5())(51)0-71)>'
’ | (4.37)

Every configuration with y(= ) =0#1 has a vortex
running through A in the x -direction. Let ¥ be
the set of all these vortices.

GEEDe Y <n6(y(P>oP1>>

€e¥ \ Pe¥ (438)
0, # 1 is the value of y(P) in the vortex 4. If s = |%|
is the total length of %, there exists a set P,, containing
at least ¢ plaquettes of €. The chessboard estimates
give us

<]_[5(y(P)0;1)>§< I1 5(V(P)0;1)>

Pe% PeEnPsyy,

s/3]4]
§< I1 5(v(P)5‘1)> .| A= lae (4.39)

PePsy,

¢ is the value of ¢ # 1 for which < 11 5(y(P)6‘1)>

PePyy,
is maximal. Every configuration which contributes
to the expectation value on the r.h.s. of (4.39) carries
an action L, < — fix at all plaquettes on P,,. This
allows one to estimate the expectation value. We
give only the result and put the calculational details
in an appendix.

S(y(P)6 !
< Lo )>§D(ﬁ)3“ (4.40)

where D(ff) goes to zero exponentially, when p
goes to infinity. From this we get

2,27 i N(s)D(py (4.41)

s=1

N(s) is the number of vortices in ¥ of length s. The

1 Chessboard estimates require translation invariance, which we
achieved by going onto a torus. Furthermore they demand the three
o-functions for y(Z,) to be treated as observables and not as part of
the measure

is easily derived. Therefore

Z,.0 241 Y, (BD()Y @43

This bound goes to zero exponentially for f— oo,
For the other partition functions Z, 000, €XEPL

Z, . we get similar bounds in the same way and
find

; Z
Zl,l,l = Z - Z 61,062,613 g By (444)
(61,02,03)%#(1,1,1) 2
for large enough §S.
If we choose f3 so large that BD(f) < 1, then
Zoid <441(BD(B)) (445
Z .= )

1,1,1

and —f, = lim limllngwg In (BD(B)) <O.

dit—>wl-ox 1,1,1
; (4.46)
The result is: there exists a value B, with

—f, <0 for g>B (4.47)

Thus the model is in the Higgs phase at low
temperatures. In the case of the fixed length Higgs
field (5, — ) the calculation can be made along the
same line. Large § means that Bp as well as B, is
large. This is just the region where one expects the
Higgs phase from other arguments [9].

In four dimensions the calculations are similar.
We take a torus T* as the lattice and the relevant
homology group H,(T*) is generated by six elements
£ 1 =i <j<4. The partition functions are Z (o and
we get a bound for large f.

) . 4 5
—f.= lim lim In —eLLLLL < In (BD(f))
~ di,d4— o dl:dZ_'mdl 2 1,1,1,1,1,1
Dpy—»0aspow, a1 (4.48)

d, are the lattice widths.

For the Z, gauge theory a Peierls argument can
be carried through along the same line without the
need of chessboard estimates. This case might be
regarded as the limit f,— oo of the fixed length
Higgs model for I' = Z .

We already noted the importance of the group I’
for the characterization of the Higgs phase. If I' is
trivial, there are obviously no vortices of the kind
we discussed and a Higgs phase is not defined. This,
for example, is the case in the Abelian Higgs model
if g=1. For this model analyticity has been shown
in a large region of the coupling parameters [9].
There one has a kind of screening phase. In contrast,
if ¢+ 1 one finds two well separated phases in this
region, a high temperature phase (confinement) and
a Higgs phase in the sense of 't Hooft.
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5. Symmetry Breaking Aspects

We ask ourselves wether the Higgs phase can be
characterized by a broken symmetry. The Higgs
phase is sometimes brought into connection with
the breaking of a gauge symmetry. But a local gauge
symmetry, i.e. a symmetry under gauge transforma-
tions which are unity outside a compact set, cannot
be broken spontaneously. This is a trivial consequence
of the local structure of the theory, as described by
the Dobrushin-Lanford—Ruelle equations [5]. One
may consider the behaviour under more general
gauge transformations. However there is also a
simpler possibility: in this section we shall argue that
the Higgs phase in v-dimensional lattice gauge
theory is accompanied by the spontaneous breaking
of a global discrete symmetry in a v — 1-dimensional
spin model.

We consider lattice gauge theory as defined in
sect. 3. For definiteness we take G =SU(2) as our
gauge group and v =3. The lattice A" is a box of
size | xd x t. It contains a sublattice A~ ': x, =0
(see Fig. 6), which is chosen in such a way that the
endpoints of the links be T touch A4*"!. With A4*~!
we shall associate a spin model a la Frohlich and
Durhuus [19]. Define

Ux):=U([b)eSU(2) forxeA* ! (5.1)

where b = {(x,0)(x,1)) is the link pointing from x
in the positive x,-direction. The total action L
contains a part

L'=>"TrU(P)+ B, Y 2Re W(x,y) (5.2)
P (xvy

which includes only those plaquettes resp. links

which involve an element U (x),xeA* "1 If x,ye A* !

are nearest neighbours, the corresponding variables

U (x), U (y) are coupled through the term

Tr (U(P)) =Tr (U(b,)U(b,)U(b,)U(b,))
=Tr(Ux)Ub,)U ' (y)Ub,)) (5.3)

See Fig. 7. Now we associate 4-dimensional unit
spin vectors with the variables U (x) by the formula

U(x):S“(x)O'u, (Uu):(i()',l), u=1,2734 (5.4)
Y (s*(x))* =1, o the Pauli matrices

With the help of
Tr(U,U, ) =2)s'st =2s;s,, U,=s{0, (5.5)
i

we find

Tr (U(P)) = 25(x)J (x.)s() (5.6)
The matrix J(x,y)e SO (4) = SU (2) x SU(2)/Z,

is given by

U™l (b )U()U ™ (by) = [J(x,y)s() ], (5.7a)

VAV DD DD

AYA

|

Fig. 6. Vortex container 4> with sublattice 4% The container
isasin Fig. 4

X2 bL
T by P |by
X b2 Yy

Fig. 7. lllustration to equation (5.3)

or
Jﬂv(x,y)=%Tr(O'u+ U~'(b,)o, U (b,)) (5.7b)

The Higgs field is chosen as in Example 2 of Sect. 3
and we get for U(h) = U (x),xe 4”1

Re W (b) =s(x) K (x)s(x) (5.8)

with some real matrix K (x) depending on the Higgs
field at the endpoints of b. So we have

L=2f, 3 s(x)Jxy)s()+ B s (x)K (x)s(x),

{xy>
x,yeA !
s(x)=8*(y)=1 (5.9)

which is the action of a SO(4) Heisenberg model
with variable coupling matrices J(x,y), K(x). These
are given by the external field F_, = {U(b),b¢ A" ';
¢ (x)}. With

Z i )={ I1 du(e” (5.10)
xeAv 1
we write
Zp=1 T1 dUB)[]d¢e" 2,0 1 (F,)
beAV\ AV~ 1 xeAY
(5.11)

We recognize this as the partition function ofa v — 1-
dimensional Heisenberg model with fluctuating coupl-
ing matrices, immersed in a v-dimensional heat bath.
The Heisenberg model on A¥"! has for generic
F_,only the global symmetry

s(x)—> —s(x) (5.12)
and the symmetry groupis ' = Z,.

Now we come to the boundary conditions. First
we choose periodic boundary conditions in all
directions. A" has to be considered as a torus T"
and A ' is a torus T~ ! with periodic boundary
conditions too. Next we perform the singular gauge
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transformation (3.8), so that we get anticyclic
boundary conditions in x,

Ub)=U(b +te,) o(b),

(4 1LbgT
7O)=y 1 per

and call the partition function Z,, _. The singular
gauge transformation affects only variables
U(x),xe A"~ ! and we write for the partition function
in AV ! Z -1 _(F ), so that

ZAV’_ = jﬂ n dU(b) l—[ dqﬁ(x)e"”ZA‘,,,’_ (chl)

beAvjAY 1 xeAY

(5.14)
One recognizes easily that the singular gauge trans-
formation introduced a Bloch wall in the SO(4)
Heisenberg spin field. It is characterized by a spin
flip between two distant lattice boundaries. In
contrast to the Ising model, where we had a thin
Bloch wall, namely the Peierls contour, the spins
here may vary slowly between the boundaries,
forming a thick Bloch wall. As it was explained in
Sect. 2 for the Ising model, the log of the ratio
Z -1 _|Z 1 is a qualitative measure for the free
energy of a Bloch wall. If the free energy of a Bloch
wall per unit length is not zero, long Bloch walls
are suppressed and we expect an ordered phase,
where the global Z,-symmetry is broken spont-
aneously. '

Now we see from (5.14) that this just happens,
when the gauge field is in the Higgs phase. Thus
the Higgs phase in v dimensions is accompanied by
a spontaneous breakdown of the global Z, symmetry
of an associated Heisenberg model in v — 1 dimensions
with fluctauating coupling matrices. This result can
be derived in the same way for v=45, ... and
for G=SU(n), where we find a SU(#n)x SU(n)
Heisenberg model with variable couplings and global
symmetry group I.

(5.13)

Appendix
Inequality (4.40)
To estimate the expectation value

E:< 1 5(v(P)<f*)> (A1)

PePap
we modify the measure dv.

Y0 () = o7 0 B0 1y () = BT 5 ),

(A2)

where

1/"(p)=w"1(p,/3x)+%f‘z(p), 8, <B. A3)
o, | (0)| <a

“/@(n)—{w)’ I6o(0)] > @ (A4)

The constant a> 1 can be chosen so large that the
modified action L, which contains ¥", instead of ¥~
has the property (4.29):

L <—px ifp(P)#1 (A.5)

Define the new measure d /i by

1 I I
;eLdu = 7eLHeﬁ°’/2“’("”dy = ZjeLd,u (A.6)
di=w" |4} neﬁo‘Vz(ﬂ(X))d/l (A.7)
with

oMl = jneﬂovz(p(x»dﬂ - (Ieﬂoy/z“”dv (p)) ! (A.8)

X

so that
fda=1 (A9)
Z={etdi=Zw (A.10)

The purpose of these manipulations is to get a normal- .

izable measure d 4 while maintaining property (4.29).
Now we have

1. - R R
E= éfeL [T 6((P)é l)dugge pxldir2 (A.11)
PePiy,

because in all contributing configurations the action
obeys

-

L — Bx 5 (A.12)
We estimate

7> j eLdﬂ > e*ﬁfM\J‘ dfi = Peldi g (g4l (A.13)

n° 2
where @, is an integration volume around the
.. = A €
minimum of L with L, > — 3 7(¢) can be seen to go
like a power of &. We obtain

E<(t(e) e P27 = p (B! for all & > 0.

(A.14)
With
D*(f)=minD, () (A.15)
we get the Eresult
E < DB’ (A.16)

D(ﬁ) decreases like e 7*/® for f— oo. The factor of
¢ 1s due to the fact that we catch only a sixth of a

vortex with our chessboard estimates (4.36).
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