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On the Bateman-Horn Conjecture

about polynomial rings

Lior Bary-Soroker and Moshe Jarden

(Communicated by Linus Kramer)

Abstract. Given a power q of a prime number p and “nice” polynomials f1, . . . , fr ∈

Fq[T,X] with r = 1 if p = 2, we establish an asymptotic formula for the number of pairs
(a1, a2) ∈ F2

q
such that f1(T, a1T + a2), . . . , fr(T, a1T + a2) are irreducible in Fq[T ]. In

particular that number tends to infinity with q.

Introduction

Let f1, . . . , fr ∈ Z[X ] be nonassociate irreducible polynomials with positive
leading coefficients. A conjecture of Bateman and Horn [3, (1)] predicts for
x > 1 that the number N(f1, . . . , fr;x) of positive integers 1 ≤ n ≤ x such
that f1(n), . . . , fr(n) are prime numbers satisfies

N(f1, . . . , fr;x) ∼
s(f1, . . . , fr)
∏r

i=1 deg(fi)
·

x

logr x
,

where

s(f1, . . . , fr) =
∏

p

1− ω(p)
p

(

1− 1
p

)r

and

ω(p) = #{0 ≤ n ≤ p− 1 | f1(n) · · · fr(n) ≡ 0 mod p}.

If ω(p) = p for some p, then s(f1, . . . , fr) = 0. Also, for each n ∈ Z there exists
1 ≤ i ≤ r such that p|fi(n), thus N(f1, . . . , fr;x) is bounded. If ω(p) < p
for all p, then s(f1, . . . , fr) converges to a positive real number [3, p. 364],
hence the conjecture predicts the existence of infinitely many n’s such that
f1(n), . . . , fr(n) are all prime numbers. This is a conjecture of Schinzel. The
special case where r = 1, f1(X) = X , and s(f1) = 1 reduces to the prime
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number theorem. When r = 1 and f1(X) = aX + b with gcd(a, b) = 1, and
s(f1) =

a
ϕ(a) , we get Dirichlet’s theorem. Likewise, in the case where f1(X) =

X and f2(X) = X + 2, the Bateman-Horn Conjecture generalizes the Hardy-
Littlewood conjecture about the density of the twin primes. Calculations made
by Littlewood show that in this case s(f1, f2) ≈ 1.32 [2, p. 335].

It is customary in number theory to replace Z by the ring Fq[T ], where q is
a power of a prime number p. In our case we would like to consider irreducible
nonassociate polynomials f1, . . . , fr ∈ Fq[T,X ] and ask for the number of g ∈
Fq[T ] such that f1(T, g(T )), . . . , fr(T, g(T )) are irreducible in Fq[T ].

It turns out that the naive analog of Schinzel’s conjecture may fail when
one of the fi’s is a polynomial in Xp. For example, Swan proves in [19] that
g(T )8 + T 3 is reducible for each g ∈ F2[T ]. Thus, more restrictions are needed
to restore Schinzel’s and the Bateman-Horn conjectures [5].

In a conference in the American Institute of Mathematics [10], S. Gao posed
the following question:

Problem A. Let f ∈ Fq[T,X ] be an irreducible polynomial. Count (or
estimate) the number of pairs (a1, a2) ∈ Fq × Fq such that the polynomial
f(T, a1T + a2) is irreducible in Fq[T ].

Bender and Wittenberg [4, Thm. 1.1 and Prop. 4.1] prove the first result in
this direction:

Proposition B. Let q be a power of a prime number and f1, . . . , fr ∈ Fq[T,X ]
polynomials of degrees d1, . . . , dr, respectively. Suppose each 1 ≤ i ≤ r satisfies

(1a) p ∤ di(di − 1) and
(1b) the Zariski closure Ci in P2

Fq
of the affine plane curve defined by fi(T,X)

= 0 is smooth.

Then for each large k there exists (a1, a2) ∈ F2
qk such that each of the polyno-

mials f1(T, a1T + a2), . . . , fr(T, a1T + a2) is irreducible in Fqk [T ].

Moreover, for r = 1 and q > 9(d(d−1)d+2)2 the number of pairs (a1, a2) ∈
F2
q such that f1(T, a1T + a2) is irreducible in Fq[T ] is at least 1

d!q
2 + c1q

3/2 +

c2q + c3q
1/2 + c4, where c1, c2, c3, c4 are explicitly given constants depending

only on d.

Note that Condition (1a) implies that p 6= 2. Our main result improves
Proposition B in three ways. First, it includes the case p = 2, albeit with
the restriction that r = 1 in this case. Second, we replace the condition that
the Ci’s be smooth by a less restrictive condition of being “characteristic-0-
like” (see Section 1 for the definition) and nodal (i.e. having only nodes as
singularities). Finally, our result is quantitative for arbitrary r, that is, we
give an asymptotic formula for the number of pairs (a1, a2) for which the
polynomials fi(T, a1T + a2) are irreducible, when q → ∞. Thus, our result
solves Problem A for “nice” polynomials.

Theorem C. Let f1, . . . , fr ∈ Fq[T,X ] be nonassociate absolutely irreducible
characteristic-0-like nodal polynomials, where q is a power of a prime p such
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that r = 1 if p = 2. For each 1 ≤ i ≤ r let di be the degree of fi and set
d =

∏r
i=1 di. Then,

#{(a1, a2) ∈ F2
q | fi(T, a1T + a2) is irreducible in Fq[T ], i = 1, . . . , r}

=
q2

d
+O(q3/2),

where the constant of the O is a computable function in
∑r

i=1 di.

Note that the leading term in our approximation formula is q2

d . For large q
and for d > 2, this improves the lower bound given in Proposition B for r = 1

that has the leading term q2

d! .
Apart from standard combinatorial arguments, the proof of Theorem C is

based on three ingredients: geometrical arguments used in the proof of the
theorem about the stability of fields [9, Sec. 18.9], the field crossing argument
[9, Sec. 24.1], and the Lang-Weil estimates.

Proposition 4.1 proves that Proposition B is a special case of Theorem C.
Finally we mention that Pollack [17] and the first author [1] treat the case of

the analog of the Bateman-Horn Conjecture when T does not occur in the fi’s.

1. Direct Product of Symmetric Groups

Let Γ be a projective plane curve defined over a field K by an absolutely
irreducible homogeneous equation f(X0, X1, X2) = 0 with a generic point x =
(x0 : x1 : x2). Then the point

(1) x∗ = (x∗
0 : x∗

1 : x∗
2) =

( ∂f

∂X0
(x) :

∂f

∂X1
(x) :

∂f

∂X2
(x)

)

is a generic point of an absolutely irreducible projective plane K-curve Γ∗,
known as the dual curve of Γ. The points of Γ∗ parametrize the tangents of Γ
at simple points. The map x 7→ x∗ extends to a rational map Γ → Γ∗.

Lemma 1.1. Let K be an algebraically closed field with char(K) 6= 2. Let
Γ and ∆ be distinct absolutely irreducible projective plane K-curves. Suppose
both Γ and ∆ have only finitely many inflection points. Then Γ and ∆ have
only finitely many common tangents.

Proof. Assume Γ and ∆ have infinitely many common tangents. Then Γ∗(K)∩
∆∗(K) is infinite, hence Γ∗ = ∆∗, so Γ∗∗ = ∆∗∗. Since both Γ and ∆ have
only finitely many inflection points, Γ∗∗ = Γ and ∆∗∗ = ∆ [11, Prop. 4.5].
Therefore, Γ = ∆, in contrast to our assumption. �

Given an absolutely irreducible projective plane K-curve Γ, we write ΓK̃ for

the K̃-curve obtained by base change from K to its algebraic closure K̃. It is
well known, that if Γ is not a line and char(K) = 0, then

(2a) ΓK̃ has only finitely many inflection points,
(2b) ΓK̃ has only finitely many double tangents, and
(2c) ΓK̃ is not strange,

Münster Journal of Mathematics Vol. 5 (2012), 41–58



44 Lior Bary-Soroker and Moshe Jarden

[8, Lemma 3.2]. In general we say that Γ is a characteristic-0-like curve if it
satisfies Condition (2).

We say that Γ is a nodal curve, if all of the singular points of ΓK̃ are nodes
[12, p. 66].

We say that an absolutely irreducible polynomial f ∈ K[T,X ] is charac-
teristic-0-like nodal if the Zariski closure Γ in P2

K of the affine plane curve
defined by the equation f(T,X) = 0 is a characteristic-0-like nodal curve.

Finally we say that polynomials f, g ∈ K[T,X ] are nonassociate if f 6= λg
for all λ ∈ K×.

Lemma 1.2. Let K be an infinite field and f1, . . . , fr ∈ K[T,X ] absolutely ir-
reducible nonassociate characteristic-0-like nodal polynomials of degrees d1, . . . ,
dr, respectively. Then:

(a) There exist α, β ∈ K such that for each 1 ≤ i ≤ r we have

Gal
(

fi
(

T,
α+ T + βU

U

)

, K̃(U)
)

∼= Sdi
.

(b) If, in addition, char(K) 6= 2 and we set f = f1 · · · fr, then α, β can be
chosen such that

Gal
(

f
(

T,
α+ T + βU

U

)

, K̃(U)
)

∼=

r
∏

i=1

Sdi
.

Proof of (a). For each 1 ≤ i ≤ r let Γi be the Zariski closure in P2
K of the

absolutely irreducible affine plane K-curve defined over K by the equation
fi(T,X) = 0. By our assumption on the fi’s, the absolutely irreducible pro-
jective plane K-curves Γ1, . . . ,Γr are distinct. Since the Γi’s are characteristic-
0-like curves, there are finitely many lines L1, . . . , Lm in PK̃ such that if

(3) o ∈ P2(K̃)r
r
⋃

i=1

Γi(K̃) ∪

m
⋃

j=1

Lj(K̃),

then for each 1 ≤ i ≤ r we have [FrJ76, proof of Lemma 3.2]:

(4a) o lies on no tangent to Γi at an inflection point;
(4b) no double tangent to Γi goes through o;
(4c) o lies on no line that goes through two singular points of Γi;
(4d) o lies on no tangent to Γi that goes through a singular point of Γi; and
(4e) only finitely many lines through o are tangents to Γi.

Since K is infinite, we may choose a point o = (1 : −α : β) ∈ P2(K) that
satisfies (3), hence also (4). Then o is the intersection of the lines Λα and
Λβ respectively defined by the homogeneous equations −αX0 − X1 = 0 and
βX0 −X2 = 0 with coefficients in K.

We consider 1 ≤ i ≤ r. Then deg(Γi) = deg(fi) = di. We choose a

transcendental element t over K and a root xi of the equation fi(t,X) in K̃(t),
and set Fi = K(t, xi). The projection λ : P2

K̃
r {o} → P1

K from o is defined
over K by

λ(X0 : X1 : X2) = (−αX0 −X1 : βX0 −X2).
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In particular, λ(1 : t : xi) = (−α− t : β − xi) is a generic point of P1
K and

(5) ui =
−α− t

β − xi

is transcendental over K (because deg(fi) ≥ 2).
A central argument in the proof of [8, Lemma 3.3] states that every line in

P2
K̃

that passes through o cuts Γi,K̃ in at least di − 1 points and almost every

such line cuts Γi,K̃ in di points. Then, by [8, Lemma 2.1], ui is a separating

transcendental element for Fi/K and the Galois closure F̂i of Fi/K(ui) satisfies

Gal(F̂i/K(ui)) ∼= Gal(F̂iK̃/K̃(ui)) ∼= Sdi
.

By (5), xi =
α+t+βui

ui
, so Fi = K(t, ui). Since fi(t, xi) = 0, we have

fi

(

t,
α+ t+ βui

ui

)

= 0.

Hence, the rational function fi
(

T, α+T+βU
U

)

in the variables T, U is absolutely

irreducible, separable in T , and with Galois group over K̃(U) isomorphic to
Sdi

, as claimed. �

Proof of (b). Now we assume that char(K) 6= 2. Then, by Lemma 1.1 only
finitely many lines in P2

K̃
are tangents to two of the curves Γ1, . . . ,Γr. Using

the notation of the proof of (a), we may assume that these lines belong to
the set {L1, . . . , Lm}. Then the point o satisfies, in addition to (4), also the
following condition:

Each line through o is a tangent to at most one(6)

of the curves Γ1, . . . ,Γr.

Let 1 ≤ i ≤ r and consider a prime divisor p of K̃(ui)/K̃ that ramifies in F̂iK̃.
Then p may be identified with the intersection point of P1

K̃
with a tangent L

to Γi at a point P that goes through o. Indeed, in this case, the intersection
multiplicity of L with Γi at P is 2 and is 1 at all other intersection points
(by (4)). Thus, by Bézout’s theorem, L has di − 1 intersection points with

Γi, so p decomposes in FiK̃ as p = 2p1 + p2 + · · · + pd−1 with distinct prime
divisors p1, · · · , pd−1. We also identify ui with the variable U . It follows from

(6) that for all i 6= j, the set of the prime divisors of K̃(U)/K̃ that ramify

in F̂iK̃ is disjoint from the set of prime divisors of K̃(U)/K̃ that ramify in

F̂jK̃. Therefore, by Riemann-Hurwitz, we have for each 1 ≤ j ≤ r that

(F̂jK̃) ∩ (
∏

i6=j F̂jK̃) = K̃(U) [9, Rem. 16.2(b)]. Consequently, by (a),

Gal
(

f
(

T,
α+ T + βU

U

)

, K̃(U)
)

∼=

r
∏

i=1

Gal(F̂i/K̃(U)) ∼=

r
∏

i=1

Sdi
,

as claimed. �

The following corollary does not assume K to be infinite.
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Corollary 1.3. 1 Let K be a field and let f1, . . . , fr ∈ K[T,X ] be nonas-
sociate characteristic-0-like nodal absolutely irreducible polynomials of degrees
d1, . . . , dr, respectively. Let A and B be variables. We set f = f1 · · · fr and
assume that r = 1 if char(K) = 2. Then, Gal(f(T,AT + B),K(A,B)) ∼=
∏r

i=1 Sdi
. Moreover, the splitting field F of f(T,AT + B) over K(A,B) is a

regular extension of K.

Proof. First we prove the corollary for K̃ rather than forK. To this end we use
the fact that K̃ is infinite to choose α, β ∈ K̃ such that (a) of Lemma 1.2 holds,
and also (b) of that Lemma holds if char(K) 6= 2. Then we extend the special-

ization (A,B) →
(

1
U , α+βU

U

)

to a K̃-place ϕ of the splitting field of f(T,AT+B)

over K(A,B). Then Gal
(

f
(

T, α+T+βU
U

)

, K̃(U)
)

is a quotient of a subgroup of

Gal(f(T,AT +B), K̃(A,B)), namely the quotient of the decomposition group

by the inertia group of ϕ. Since, Gal(f(T,AT + B), K̃(A,B)) ≤
∏r

i=1 Sdi

and Gal
(

f(T, α+T+βU
U ), K̃(U)

)

∼=
∏r

i=1 Sdi
, we conclude that Gal(f(T,AT +

B), K̃(A,B)) ∼=
∏r

i=1 Sdi
.

The truth of the corollary for K now follows from its truth for K̃ and from
the following inclusion of groups:

∏

Sdi
∼= Gal(f(T,AT + B), K̃(A,B)) ≤

Gal(f(T,AT +B),K(A,B)) ≤
∏r

i=1 Sdi
. �

2. The Field Crossing Argument

The field crossing argument has already been used in the original proofs of
the Chebotarev density theorem for number fields. It has been used again in
the proof of the Chebotarev density theorem for function fields of one variable
over finite fields, in the arithmetic proof of the Hilbert irreducibility theorem,
in the theory of Frobenius fields, and on many more occasions. See also [6,
Prop. 22.2]. Here we use it to replace the counting of points with a given Artin
class by the counting of rational points of an absolutely irreducible variety
over a finite field (Theorem 3.1). The argument itself appears in the proof of
Lemma 2.8.

Definition 2.1. (Ring-cover) Let S/R be an extension of integral domains
whose corresponding extension of quotient fields F/E is finite and separable.
We say that S/R is a ring-cover if R is integrally closed, S = R[z], z is integral
over R, and the discriminant of irr(z, E) is a unit of R. In this case S is
the integral closure of R in F [9, Def. 1.6.3] and S/R is an étale extension of
rings [18, p. 19]. Thus, the corresponding map Spec(S) → Spec(R) of affine
K-schemes is finite and étale. If F/E is in addition Galois, we say that S/R
is a Galois ring-cover.

For the rest of this section we fix a field K, variables A1, . . . , An, T , let
A = (A1, . . . , An), and set E = K(A).

1See the corrections at the end.
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Definition 2.2. We define the total degree of a polynomial h =
∑m

i=1 ciT
i ∈

E[T ] to be

total. deg(h) = max
1≤i≤m

(

max(deg(fi), deg(gi)) + i
)

,

where ci = fi(A)
gi(A) is a reduced presentation of ci with fi, gi ∈ K[A] and

deg(fi), deg(gi) are the degrees of fi, gi, respectively. Under this definition, the
total degree of h coincides with the degree of h as a polynomial in A1, . . . , An, T
if h ∈ K[A, T ].

Definition 2.3. (Bound) In the following results we apply several algorithms
to polynomials f1, . . . , fk ∈ E[T ] whose output are polynomials h1, . . . , hk′ ∈
E[T ]. We say that the total degrees of h1, . . . , hk′ are bounded if we can
compute a function p : Z → R that depends only on the algorithms (but

not on K neither on f1, . . . , fk) such that
∑k′

i=1 total. deg(hi) ≤ p(m), where

m =
∑k

i=1 total. deg(fi). Note that iteration of algorithms with output of
bounded total degree have again an output of bounded total degrees.

Notation 2.4. (Left conjugation) Given a map θ from a set G to a group
S and an element τ ∈ S, we write τθ for the map from G to S defined for all
σ ∈ G by the rule τθ(σ) = τθ(σ)τ−1 . Note that ττ ′

θ = τ(τ
′

θ) for τ, τ ′ ∈ S and
1θ = θ for the unit element 1 of S.

Definition 2.5. (Points and homomorphisms) Let A be an integrally
closed integral domain which is finitely generated over a field K and such
that E = Quot(A) is regular over K. Let F be a finite Galois extension
of E and write B for the integral closure of A in F . Suppose B/A is a
ring cover. Let X = Spec(A) and Y = Spec(B), and let λ : Y → X
be the finite étale morphism associated with the inclusion A ⊆ B. The
points a ∈ X(K) bijectively corresponds to K-homomorphisms ϕa : A → K.
The points b ∈ Y (Ks) with λ(b) = a bijectively correspond to epimor-
phisms ϕb : B → K(b) that extend ϕa. Since B/A is étale and Galois,
for each b as above the extension K(b)/K is Galois that depends only on
a, and ϕb defines an embedding ϕ∗ : Gal(K(b)/K) → Gal(F/E) such that
ϕb(ϕ

∗(σ)x) = σ(ϕb(x)) for all σ ∈ Gal(K(b)/K) and x ∈ B [9, Lemma 6.1.4].
Let Gal(K) = Gal(Ks/K) be the absolute Galois group of K. Composing ϕ∗

with res : Gal(K) → Gal(K(b)/K), we get a homomorphism ϕ∗
b
: Gal(K) →

Gal(F/E) with Ker(ϕ∗
b
) = Gal(K(b)) such that ϕb(ϕ

∗
b
(σ)x) = σ(ϕb(x)) for

all σ ∈ Gal(K) and x ∈ B. The image ϕ∗
b
(Gal(K)) of ϕ∗

b
is the decomposition

group Db/a of b over a. In particular, if F ′ is the fixed field of Db/a in F
and x ∈ B ∩ F ′, then ϕb(x) ∈ K. Finally we note that for each a ∈ X(K),
the action of Gal(F/E) on the set of prime ideals of B lying over Ker(ϕa)
defines an action of Gal(F/E) on λ−1(a)∩ Y (Ks) such that for all b ∈ Y (Ks)
with λ(b) = a and each τ ∈ Gal(F/E) we have K(τb) = K(b), λ(τb) = a,
ϕτb = ϕb ◦ τ−1, and ϕ∗

τb = τ(ϕ∗
b
).
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In order to prove the latter equality we consider σ ∈ Gal(K) and x ∈ B.
By definition,

ϕb(τ
−1(ϕ∗

τb(σ)x)) = ϕτb(ϕ
∗
τb(σ)x) = σ(ϕτb(x))

= σ(ϕb(τ
−1x)) = ϕb(ϕ

∗
b(σ)(τ

−1x)).

If x is a primitive element of the cover B/A, then ϕb maps the set of K-
conjugates of x injectively into Ks (because the discriminant of irr(x,E) is a
unit of B). It follows in this case that τ−1(ϕ∗

τb(σ)x) = ϕ∗
b
(σ)(τ−1x). Thus,

ϕτb(σ)x = (τ ◦ ϕ∗
b
(σ) ◦ τ−1)x. Therefore, ϕτb(σ)x = τ ◦ ϕ∗

b
(σ) ◦ τ−1 for all

σ ∈ Gal(K). This means that ϕτb(σ) =
τ(ϕ∗

b
), as claimed.

The star operation is functorial in B: Let F ′ be a finite Galois extension of E
that contains F , letB′ be the integral closure of A in F ′, and let Y ′ = Spec(B′).
Suppose B′/A is a ring-cover and let b′ ∈ Y ′(Ks) lie over b ∈ Y (Ks). Then
ϕ∗
b′ |F = ϕ∗

b
.

Lemma 2.6. Let t1, . . . , tr be elements of Es and let f1, . . . , fr ∈ E[T ] be
separable polynomials that satisfy fi(A, ti) = 0, i = 1, . . . , r. Then there
exist polynomials h ∈ K[A, T ] and 0 6= g ∈ K[A] of bounded total degrees
and an element t ∈ Es such that h(A, t) = 0, E(t) = E(t1, . . . , tr), and
K[A, g(A)−1, t]/K[A, g(A)−1] is a cover of rings. Moreover, the discriminant
of fi(A, T ) as a polynomial in A is invertible in K[A, g(A)−1], i = 1, . . . , r.

Proof. The proof of the primitive element theorem [15, Thm. V.4.6] assures
that if C is a subset of K[A] of a large bounded cardinality, then there exist
c1, . . . , cr ∈ C such that t = c1t1 + · · · + crtr satisfies K(t) = K(t1, . . . , tr).
In particular, there exist such c1, . . . , cr ∈ K[A] with bounded degrees. Di-
viding each fi by its leading coefficient, we may assume that fi is monic (as a
polynomial in T ). Let

h(A, T ) =
∏

(t′
1
,...,t′r)

(T −
r

∑

i=1

cit
′
i),

where for each 1 ≤ i ≤ r the index t′i ranges over all roots of fi in Es. Then
h(A, T ) ∈ E[T ] and the coefficients of h are polynomials in the coefficients of
fi with bounded degrees. Moreover, h(A, t) = 0.

Let g(A) be the product of the numerators and the denominators of the
discriminants of f1, . . . , fr, h. Then g ∈ K[A] and has a bounded degree. By
Definition 2.1, h and g satisfy all of the requirements of the lemma. �

Lemma 2.7. Let G be a group of order d, let θ be the regular embedding of G
in Sd, and let H = {τ ∈ Sd |τ θ = θ}. Then |H | = d.

Proof. We identify Sd with the group SG of all permutations of G. Then
θ(σ)(x) = σx for all σ, x ∈ G. It follows that τ−1 ∈ H if and only if σ · τ(x) =
τ(σx) (where the left hand side is the product of the elements σ and τ(x) of
G) for all σ, x ∈ G. In particular, for σ = x−1 we get x−1 · τ(x) = τ(1), so
τ(x) = x · τ(1). Conversely, if τ(x) = x · τ(1), then the former condition holds,
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so τ ∈ H . Since τ(1) can take d values, i.e. the elements of G, there are exactly
d possibilities for τ . �

The following central result is built on [1, Lemma 2.2].

Lemma 2.8. 2 Let K be a field and A1, . . . , An, T variables. For each 1 ≤ i ≤ r
let fi ∈ K[A, T ] be an absolutely irreducible polynomial which is separable and
of degree di in T . Let Li be a Galois extension of K of degree di.

We denote the splitting field of f = f1 · · · fr, considered as a polynomial in
T , over E = K(A) by F and assume that Gal(F/E) ∼=

∏r
i=1 Sdi

and that F
is a regular extension of K.

Then there exist a proper algebraic subset V of An
K , an absolutely irreducible

normal affine K-variety W ′, and a finite étale map ρ′ : W ′ → U with U =
An

K r V such that the following conditions hold:

(a) V and W ′ are defined in An
K and An+3

K , respectively, by polynomials with
coefficients in K of bounded total degrees.

(b) deg(fi(a, T )) = di for each a ∈ U(K) and for i = 1, . . . , r.
(c) ρ′(W ′(K)) is the set of all a ∈ U(K) such that Li is generated by a root

of fi(a, T ), i = 1, . . . , r. In particular, fi(a, T ) is irreducible of degree di
for all a ∈ ρ′(W ′(K)) and 1 ≤ i ≤ r.

(d) |(ρ′)−1(a) ∩W ′(K)| =
∏r

i=1 di for all a ∈ ρ′(W ′(K)).

Proof. For each 1 ≤ i ≤ r let Fi be the splitting field of fi over E. Then
F =

∏r
i=1 Fi and since Gal(F/E) ∼=

∏r
i=1 Sdi

, we have Gal(Fi/E) ∼= Sdi
for

i = 1, . . . , r. For each 1 ≤ i ≤ r we define a homomorphism θi : Gal(K) → Sdi

in the following way: First we identify the symmetric group Sdi
with the

group of all permutations of Gal(Li/K) (which we consider as a set of di
elements). Then, for each σ ∈ Gal(K) we define θi(σ) as a permutation of
Gal(Li/K) by the rule θi(σ)(λ) = σ|Li

· λ for all λ ∈ Gal(Li/K). Identifying
Gal(Fi/E) with Sdi

, this defines a homomorphism θi : Gal(K) → Gal(Fi/E)
with Ker(θi) = Gal(Li). Since Gal(F/E) ∼=

∏r
i=1 Gal(Fi/E), the map θ :

Gal(K) → Gal(F/E) defined by θ(σ)|Fi
= θi(σ) for all σ ∈ Gal(K) and

1 ≤ i ≤ r is a well defined homomorphism with Ker(θ) = Gal(L), where
L = L1 · · ·Lr. It induces an embedding θ̄ : Gal(L/K) → Gal(F/E) satisfying
θ̄(σ|L) = θ(σ) for each σ ∈ Gal(K). We denote the fixed field of θ(Gal(K)) in
F by E′. Now we break up the rest of the proof into several parts.

Part A: Field crossing argument. We consider the Galois extension F̂ = FL
of E and note that since F/K is a regular extension,

(7) Gal(F̂ /E′) = Gal(F̂ /F )×Gal(F̂ /E′L) ∼= Gal(L/K)×Gal(F/E′),

where the latter isomorphism is induced by the corresponding restriction maps.
Next we consider the subgroup

∆ = {δ ∈ Gal(F̂ /E) | θ̄(δ|L) = δ|F }

2See the corrections at the end.
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of Gal(F̂ /E′). Using (7) and the injectivity of θ̄, one sees that ∆∩Gal(F̂ /F ) =

1 and ∆ ∩ Gal(F̂ /E′L) = 1. Moreover, ∆ · Gal(F̂ /F ) = Gal(F̂ /E) and ∆ ·

Gal(F̂ /E′L) = Gal(F̂ /E′).

Indeed, by (7), for each ǫ ∈ Gal(F̂ /E′) there exists δ ∈ Gal(F̂ /E′) such that
δ|F = ǫ|F and δ|L = (θ̄)−1(ǫ|F ). Then, ǫ = δ·δ−1ǫ, δ ∈ ∆, and (δ−1ǫ)|F = 1, so

δ−1ǫ ∈ Gal(F̂ /F ). Similarly, there exists δ′ ∈ Gal(F̂ /E′) such that δ′|L = ǫ|L
and δ′|F = θ̄(ǫ|L). Thus, ǫ = δ′ · (δ′)−1ǫ, δ′ ∈ ∆, and ((δ′)−1ǫ)|L = 1, so

(δ′)−1ǫ ∈ Gal(F̂ /E′L). It follows that the fixed field F ′ of ∆ in F̂ satisfies

(8) FF ′ = F ′L = F̂ and F ∩ F ′ = F ′ ∩E′L = E′

and fits into the following diagram of fields:

F F̂

F ′

∆ q
q
q
q
q
q
q

E′

r
r
r
r
r
r

E′L

E EL

K L

Part B: Integral étale extensions of rings. By Lemma 2.6, applied to the roots
of f , there exist a polynomial h ∈ K[A, T ], separable in T , and a nonzero
polynomial g ∈ K[A] of bounded total degrees, and there exists an element
t ∈ F such that h(A, t) = 0, F = E(t), and K[A, g(A)−1, t]/K[A, g(A)−1]
is a ring-cover. Moreover, the discriminant of each fi(A, T ) considered as a
polynomial in T is invertible in K[A, g(A)−1].

Applying Lemma 2.6 to t and to a primitive element of L/K, we find a

polynomial ĥ ∈ K[A, T ], separable in T , a nonzero polynomial ĝ ∈ K[A], and

an element t̂ ∈ F̂ such that ĥ, ĝ have bounded degrees, ĥ(A, t̂) = 0, F̂ = E(t̂),
and K[A, ĝ(A)−1, t̂]/K[A, ĝ(A)−1] is a ring-cover. Moreover, ĝ may be taken
as a multiple of g.

Let t̂1, . . . , t̂k be a ∆-orbit starting with t̂1 = t̂ and write
∏k

j=1(T − t̂j) =

T k + t′1T
k−1 + · · · + t′k. Then F ′ = E(t′1, . . . , t

′
k) by the end of the proof

of [9, Lemma 19.3.2]. Moreover, each of the coefficients of irr(t′j , E), j =

1, . . . , k, is a symmetric polynomial in the E-conjugates of t̂ of a bounded

total degree. Hence, those coefficients are polynomials in the coefficients of ĥ
of bounded degrees having integral coefficients. Applying Lemma 2.6 now to
irr(t′1, E), . . . , irr(t′k, E), we can compute polynomials h′ ∈ K[A, T ] and g′ ∈
K[A] of bounded total degrees and an element t′ ∈ F ′ such that h′(A, t′) = 0,
g′(A) 6= 0, S′ = K[A, g′(A)−1, t′] is a ring cover of R = K[A, g′(A)−1], and
F ′ = E(t′). Moreover, g′ may be taken as a multiple of ĝ, hence of g. Also,

(9) the discriminant of fi(A, T ) is invertible in R, i = 1, . . . , r.
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Let S = R[t] and Ŝ = R[t̂]. Then S is the integral closure of R in F , S′ is the

integral closure of R in F ′, and Ŝ is the integral closure of R, S, and S′ in F̂ .

It follows from (8) that SL = Ŝ and S′L = Ŝ. Moreover, S/R, S′/R, Ŝ/S,

Ŝ/S′, and Ŝ/R are ring covers in the sense of Definition 2.1.

Part C: Fiber products. Let V be the Zariski closed subset of An
K defined by

the equation g′(A) = 0. Then U = An
KrV is a non-empty Zariski open subset

of An
K . We set W = Spec(S), W ′ = Spec(S′), and Ŵ = Spec(Ŝ). By Part

B, V , W , and W ′ are closed subsets of An
K , An+3

K , and An+3
K , respectively,

defined by polynomials with coefficients in K of bounded degrees. Moreover,
the ring-covers in the left diagram of inclusions of rings in (10) define finite
étale morphisms as in the right diagram of (10):

(10) S Ŝ

S′

⑤
⑤
⑤
⑤
⑤
⑤
⑤
⑤

R

⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

RL

W

ρ

��

Ŵ
ωoo

ω′

}}⑤⑤
⑤
⑤
⑤
⑤
⑤
⑤

ρL

��

W ′

ρ′

}}⑤⑤
⑤
⑤
⑤
⑤
⑤
⑤

U UL
oo

Here UL = U ×Spec(K) Spec(L) = Spec(RL) and each of the three rectangles

in the right diagram of (10) is cartesian, i.e. Ŵ = W ×U W ′, Ŵ = W ×U UL,

and Ŵ = W ′ ×U UL. This concludes the proof of (a).

Part D: Geometric points. For each a ∈ U(K) and each b ∈ W (Ks) with
ρ(b) = a we consider the homomorphisms ϕb : S → Ks and ϕ∗

b
: Gal(K) →

Gal(F/E) introduced in Definition 2.5. By Diagram (10), ϕb : S → Ks

uniquely extends to an L-homomorphism ϕ̂ : Ŝ → Ks. Let b̂ be the unique

point of Ŵ (Ks) with ω(b̂) = b and ϕb̂ = ϕ̂. Then let b′ be the unique point of

W ′(Ks) with ω′(b̂) = b′ and ϕb′ = ϕ
b̂
|S′ . Again, the map b̂ 7→ b′ is bijective.

Claim: b′ ∈ W ′(K) if and only if ϕ∗
b
= θ.

First we note that by (8), there exists for each σ ∈ Gal(K) a unique element

θ̂(σ) ∈ ∆ = Gal(F̂ /F ′) such that

(11) θ̂(σ)|F = θ(σ) and θ̂(σ)|L = σ|L.

Since θ(Gal(K)) = Gal(F/F ′), this implies that θ̂ : Gal(K) → Gal(F̂ /F ′) is

an epimorphism with Ker(θ̂) = Gal(L).

Suppose b′ ∈ W ′(K). Then b̂ ∈ Ŵ (L), so ϕ
b̂
fixes the elements of L. Hence,

for each σ ∈ Gal(K) and x ∈ L we have ϕ∗
b̂
(σ)x = ϕ

b̂
(ϕ∗

b̂
(σ)x) = ϕ

b̂
(σx) = σx.

Therefore, ϕ∗
b̂
(σ)|L = σ|L = θ̂(σ)|L. Also, ϕ∗

b̂
(Gal(K)) ≤ Gal(F/F ′), so that

ϕ∗
b̂
(σ)x = x = θ̂(σ)x for each x ∈ F ′. It follows from (7) that ϕ∗

b̂
= θ̂. Applying

resF̂ /F to the latter equality, we get ϕ∗
b
= θ.
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Conversely, suppose ϕ∗
b
= θ. Then Ker(ϕ∗

b
) = Ker(θ) = Gal(L), so b ∈

W (L), hence b̂ ∈ Ŵ (L). It follows that for each σ ∈ Gal(K) we have ϕ∗
b̂
(σ)|F =

ϕ∗
b
(σ) = θ(σ) = θ̂(σ)|F and ϕ∗

b̂
(σ)|L = σ|L = θ̂(σ)|L. By Part A, ϕ∗

b̂
(σ) =

θ̂(σ) ∈ Gal(F̂ /F ′). Therefore, ϕb̂(S
′) = K. Consequently, b′ = ω′(b̂) satisfies

b′ ∈ W ′(K). This concludes the proof of the Claim.

Part E: The orbit of θ. Following Notation 2.4, the group Gal(F/E) acts on
the set of all homomorphisms from Gal(K) into Gal(F/E) by left conjugation.
Let Θ = {τθ | τ ∈ Gal(F/E)} be the Gal(F/E)-orbit of θ.

For each a ∈ U(K) we consider the conjugacy class of homomorphisms
Φ∗

a = {ϕ∗
b
| b ∈ W (Ks) and ρ(b) = a}. By Part D,

(12) ρ′(W ′(K)) = {a ∈ U(K) | Φ∗
a
= Θ}.

Claim: A point a ∈ U(K) satisfies Φ∗
a = Θ if and only if each root of fi(a, T )

generates Li over K, i = 1, . . . , r
First suppose Φ∗

a
= Θ. Then there exists b ∈ W (Ks) such that ρ(b) = a

and ϕ∗
b
= θ. Since the discriminant of fi(A, T ) is a unit of R, ϕb maps the

set of roots of fi(A, T ) in F bijectively on the set of roots of fi(a, T ) in Ks.
Let x be a root of fi(A, T ) in F and let σ ∈ Gal(K). If σ(ϕb(x)) = ϕb(x),
then ϕb(ϕ

∗
b
(σ)x) = ϕb(x), hence, by the injectivity of ϕb, we have ϕ∗

b
(σ)x =

x, so θ(σ)x = x. By the definition of θ, there exists λ ∈ Gal(Li/K) such
that σ|Li

λ = λ. Therefore, σ ∈ Gal(Li). Conversely, if σ ∈ Gal(Li), then
σ(ϕb(x)) = ϕb(ϕ

∗
b
(σ)x) = ϕb(θ(σ)x) = ϕb(θi(σ)x) = ϕb(x). Consequently,

Li = K(ϕb(x)).
Conversely, suppose for each 1 ≤ i ≤ r there exists a root x̄i of fi(a, T )

with Li = K(x̄i). Then, by (b) and by the assumption on Li, deg(fi(a, T ) =
di = [Li : K] = [K(x̄i) : K]. Hence, Gal(Li/K) acts freely on the roots of
fi(a, T ). Choosing b ∈ W (Ks) with ρ(b) = a, this implies that the group
ϕ∗
b
(Gal(K))|Fi

acts freely on the roots of fi(A, T ). By definition, this is also
the case for the group θ(Gal(K))|Fi

. Since Gal(fi(A, T ),K(A)) = Sdi
, there

exists τi ∈ Gal(Fi) such that τi(resF/Fi
◦θ) = resFi/F ◦ϕ∗

b
. Since Gal(F/E) =

∏r
i=1 Gal(Fi/E), there exists τ ∈ Gal(F/E) such that τ |Fi

= τi for i = 1, . . . , r.
Hence, τθ = ϕ∗

b
. Therefore, Θ = Φ∗

a, as claimed.
The first statement of (c) of our Lemma follows now from (12) and from the

Claim. The second one follows from the first and from (b).

Part F: Let a ∈ U(K). We prove that |(ρ′)−1(a) ∩W ′(K)| = [F :E]
|Θ| .

The stabilizer H = {τ ∈ Gal(F/E) |τ θ = θ} of θ satisfies

(13) |H | =
[F : E]

|Θ|
.

Let B = {b ∈ ρ−1(a) | ϕ∗
b

= θ}. We prove that H acts regularly on B.
Indeed, if τ ∈ H and b ∈ B, then by Definition 2.5, ϕ∗

τb = τ(ϕ∗
b
) = τθ = θ, so

τb ∈ B. Thus, H acts on B. Next we prove that the action is transitive. To
this end let b,b′ ∈ B. Then there exists τ ∈ Gal(F/E) with b′ = τb. Hence,
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θ = ϕ∗
b′ = ϕ∗

τb = τ(ϕ∗
b
) = τθ, so τ ∈ H , as desired. Finally the action of H is

free. Indeed, if b ∈ B and τb = b, then by Definition 2.5, ϕb◦τ
−1 = ϕτb = ϕb.

Since ϕb is injective on the roots of h(A, T ), this implies that τ = 1, which
proves our assertion.

It follows that |B| = |H |. As in Part D let B′ be the set of all points
b′ ∈ W ′(Ks) corresponding to the points b ∈ B. Since the map b 7→ b′

is injective, we have |B′| = |B| = |H |. Moreover, by the Claim of Part D,

B′ = ρ−1(a) ∩W ′(K). Hence, by (13), |ρ−1(a) ∩W ′(K)| = [F :E]
|Θ| , as claimed.

Part G: We prove that |Θ| =
∏r

i=1(di − 1)!

By (13), |Θ| = |Gal(F/E)|
|H| . Since |Gal(F/E)| = |

∏r
i=1 Sdi

| =
∏r

i=1 di!, it

suffices to prove that |H | =
∏r

i=1 di. Since Gal(F/E) ∼=
∏r

i=1 Gal(Fi/E) and
θ =

∏r
i=1 θi, we have τθ = θ if and only if τiθi = θi, where τi = τ |Fi

for
i = 1, . . . , r. Hence, it suffices to prove that #{τ ∈ Gal(Fi/E) |τ θi = θi} = di.
But this follows from Lemma 2.7.

The combination of Part F and Part G implies Statement (d) of our lemma.
�

3. Finite Fields and PAC Fields

We combine Corollary 1.3 with Lemma 2.8 in the case when K = Fq and
establish an asymptotic formula for the number of pairs (a1, a2) ∈ F2

q such
that fi(T, a1T + a2) is irreducible in Fq[T ] for i = 1, . . . , r, when f1, . . . , fr ∈
Fq[T,X ] are characteristic-0-like nodal nonassociate polynomials.

Theorem 3.1. Let f1, . . . , fr ∈ Fq[T,X ] be characteristic-0-like nodal nonas-
sociate polynomials, where q is a power of a prime p such that r = 1 if p = 2.
For each 1 ≤ i ≤ r let di = deg(fi(T,X)) and set d =

∏r
i=1 di. Then,

#{(a1, a2) ∈ F2
q | fi(T, a1T + a2) is irreducible in Fq[T ], i = 1, . . . , r}

=
q2

d
+O(q3/2),

where the constant of the O is a computable function in
∑r

i=1 deg(fi(T,X)).

Proof. 3 Let K = Fq and let A1, A2 be additional variables. For each 1 ≤
i ≤ r let f ′

i(A1, A2, T ) = fi(T,A1T + A2), let Fi be the the splitting field of
f ′
i(A1, A2, T ) over E = K(A1, A2), and let F = F1 · · ·Fr. By Corollary 1.3,
Gal(F/E) =

∏r
i=1 Sdi

and F is a regular extension of K. For each 1 ≤ i ≤ r
let Li = Fqdi be the unique Galois extension of Fq of degree di and note that
di = degT (f

′
i(A1, A2, T )).

Let m =
∑r

i=1 deg(f
′
i(A1, A2, T )) =

∑r
i=1 deg(fi(T,X)) and consider the

objects V , U = A2
K rV , and ρ′ : W ′ → U supplied by Lemma 2.8 with respect

to K = Fq, to f ′
1, . . . , f

′
r, and to L1, . . . , Lr. In particular, V is a Zariski closed

3See the corrections at the end.
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subset of A2
K defined by a nonzero polynomial of an m-bounded degree. Thus,

there exists an m-bounded constant c1 such that

(14) #V (K) ≤ c1q.

Moreover, W ′ is an absolutely irreducible affine K-subvariety of A5
K defined

by polynomials of m-bounded degrees. In addition, dim(W ′) = 2, because
ρ′ : W ′ → U is a finite morphism. The Lang-Weil estimates give an explicit
m-bounded constant c2 such that

(15) |#W ′(K)− q2| ≤ c2q
3/2.

(See [16, Thm. 1], [7, (1) and (2) of Sec. 3], or [20, Thm. 2.1]). Note that the
estimates given in [20] are exponential in the degrees of the polynomials that
define W ′.)

Let I be the set of all (a1, a2) ∈ F2
q such that fi(T, a1T +a2) is irreducible in

Fq[T ] for i = 1, . . . , r. By Lemma 2.8(c), ρ′(W ′(K)) is the set of all (a1, a2) ∈
U(K) such that for each 1 ≤ i ≤ r the field Li is generated over K by a root
of fi(T, a1T + a2). Moreover, by Lemma 2.8(b), deg(fi(T, a1T + a2)) = di for
i = 1, . . . , r. Since Li is the unique extension of K of degree di, this implies
that ρ′(W ′(K)) = I ∩ U(K), so |ρ(W ′(K))| = d · |(I ∩ U(K))|.

By Lemma 2.8(d), |(ρ′)−1(a) ∩W ′(K)| = d for each a ∈ ρ(W ′(K)). Hence,

by (15), |#(I ∩ U(K)) − q2

d | ≤ c2
d q

3/2. It follows from (14) that |#I − q2

d | ≤
c2
d q

3/2 + c1q, as desired. �

Almost the same proof can be applied to PAC fields.

Theorem 3.2. 4 Let K be a PAC field and let f1, . . . , fr ∈ K[T,X ] be charac-
teristic-0-like nodal polynomials. Suppose for each i the field K has a Galois
extension Li of degree deg(fi(T,X)). Then A2

K has a Zariski-dense subset B
such that fi(T, a1T + a2) is irreducible for i = 1, . . . , r.

Proof. If one of two associated polynomial is irreducible, so is the other. Thus,
after possible dropping some of the fi’s, we may assume that f1, . . . , fr are
nonassociate. Let A1, A2 be additional variables and set E = K(A1, A2). For
each 1 ≤ i ≤ r let f ′

i(A1, A2, T ) = fi(T,A1T +A2), let Fi be the splitting field
of f ′

i(A1, A2, T ) over E = K(A1, A2) and set F = F1 · · ·Fr. By Corollary 1.3,
Gal(F/E) =

∏r
i=1 Sdi

and F is a regular extension of K. Note that di =
degT (f

′
i(A1, A2, T )).

Consider the objects U and ρ′ : W ′ → U supplied by Lemma 2.8 with
respect to f ′

i , . . . , f
′
r. Since K is PAC and W ′ is an absolutely irreducible

K-variety, the set W ′(K) is non-empty, so there exists a ∈ ρ′(W ′(K)). By
Lemma 2.8, fi(T, a1T + a2) is irreducible for each 1 ≤ i ≤ r. �

4See the corrections at the end.
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4. Concluding Remarks

The following proposition proves that Theorem 1.1 of [4] is a special case of
our main result.

Proposition 4.1. Let K be a field of characteristic p and f ∈ K[T,X ] an
irreducible polynomial of degree d such that

(a) p ∤ d(d− 1), and
(b) the Zariski closure ΓK̃ in P2

K̃
of the affine plane curve defined by f(T,X) =

0 is smooth.

Then Γ is characteristic-0-like and nodal.

Proof. By assumption, Γ is irreducible and by (b), Γ is absolutely irreducible.
In the proof of [4, Prop. 3.1], Bender and Wittenberg show for K = Fq that
assumption (a) and (b) implies that the map of ΓK̃ into its dual curve is
separable. The proof is however valid for every field K. It follows from [14,
Cor. 3.5.0 and Cor. 3.2.1] that the intersection multiplicities of all but finitely
many lines L in P2

K̃
with Γ are at most 2. In particular, for only finitely many

points p ∈ ΓK̃ , the intersection number of the tangent to Γ at p is greater
than 2. This means that Γ has only finitely many inflection points.

By (a), p 6= 2. Hence, by [11, Prop. 4.5], ΓK̃ has only finitely many double
tangents. Again, by (a), ΓK̄ is not a line and not a conic in characteristic 2.
Hence, by Samuel [13, Thm. IV.3.9], ΓK̃ is not strange. Finally, ΓK̃ is nodal
because it is smooth. Consequently, Γ is characteristic-0-like and nodal. �

One of the ingredients of the proof of Lemma 1.1 (on which eventually our
proof of Theorem 3.1 in case r ≥ 2 relies) is that the dual curves of distinct
absolutely irreducible projective plane K-curves are distinct, if char(K) 6= 2.
The following example shows that this is not the case if char(K) = 2. Thus,
our proof of Theorem 3.1 fails if char(K) = 2 and r ≥ 2. We do not know if
the theorem itself holds in that case.

Example 4.2 (Bjorn Poonen). Let K be an algebraically closed field of char-
acteristic 2. We consider the homogeneous polynomial

f(X0, X1, X2) = X5
1 +X2

1X
3
0 +X4

0X2

and the projective plane curve Γ defined by the equation f(X0, X1, X2) = 0.
The finite part of Γ is defined by the equation X5 + X2 = Y . This may be
used to prove that Γ is absolutely irreducible. Moreover, Γ has only finitely
many inflection points (e.g. (0, 0) is a simple non-inflection point, now use [11,
Cor. 3.2], only finitely many double tangents (see next paragraph), and Γ is
not strange (the latter assertion is also a special case of a theorem of Samuel
[13, Thm. IV.3.9].

Let (x0 : x1 : x2) be a generic homogeneous point of Γ. Applying (1), we
find that (x∗

0 : x∗
1 : x∗

2) = (x2
0x

2
1 : x4

1 : x4
0) is a generic point of Γ∗. In particular

the map Γ → Γ∗ is purely inseparable, so Γ has only finitely many double
tangents [11, Lemma 4.2]. The point (x∗

0 : x∗
1 : x∗

2) lies on the irreducible
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homogeneous plane curve defined by the equation X1X2 = X2
0 . Hence, the

latter equation defines Γ∗.
Next we define an additional projective plane curve ∆ by exchanging the

variables X1 and X2. In other words, the equation that defines ∆ is X5
2 +

X2
2X

3
0+X4

0X1 = 0. The equation that defines ∆∗ will therefore beX2X1 = X2
0 .

It follows that Γ∗ = ∆∗ although Γ 6= ∆.

Corrections, added on May 25, 2012

Add at the end of Corollary 1.3 the following sentence.

Moreover, the splitting field F of f(T,AT+B) over K(A,B) is a regular
extension of K.

The second paragraph of Lemma 2.8 should end with

and assume that Gal(F/E) ∼=
∏r

i=1 Sdi
and that F is a regular extension

of K.

instead of

and assume that Gal(F/E) ∼=
∏r

i=1 Sdi
.

In the third line of the proof of Theorem 3.1 replace

By Corollary 1.3, Gal(F/E) =
∏r

i=1 Sdi

with

By Corollary 1.3, Gal(F/E) =
∏r

i=1 Sdi
and F is a regular extension of

K.

Change the last sentence of the first paragraph of the proof of Theorem 3.2
starting with

By Corollary 1.3,. . .

to

By Corollary 1.3, Gal(F/E) =
∏r

i=1 Sdi
and F is a regular extension of

K. Note that di = degT (f
′
i(A1, A2, T )).

In addition, reference [20] was added.
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