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Abstract

We establish a foliation structure for Newton strata in moduli spaces of bounded
global G-shtukas. We describe these strata as a product of “truncated” affine
Deligne-Lusztig varieties with so-called Igusa varieties up to a finite surjective mor-
phism. This is a function field analogue to Oort’s and Mantovan’s foliation for
moduli spaces of abelian varieties and generalizes the foliation structure for defor-

mation spaces of local shtukas to parahoric group schemes and to global G-shtukas.

Zusammenfassung

Wir fiihren eine Blatterungsstruktur fiir Newton-Strata in Modulrdumen von be-
schriankten globalen G-Shtukas ein. Wir beschreiben diese Strata als ein Produkt
von "abgeschnittenen" affinen Deligne-Lusztig-Varietaten mit so genannten Igusa-
Varietdten bis auf einen endlichen surjektiven Morphismus. Dies ist ein Funktionen-
korper-Analogon zu Oort’s und Mantovan’s Blétterung fiir Modulrdume abelscher
Varietdten und verallgemeinert die Blatterungsstruktur fiir Deformationsraume von
lokalen Shtukas auf den Fall parahorischer Gruppenschemata und auf globale G-
Shtukas.






Introduction

As a function field analogue to abelian varieties (with additional structures) Arasteh
Rad and Hartl introduced global G-shtukas in [AH14a] and [AH14b]. We recall
their definition. Let F, be a finite field with ¢ elements, C' a smooth projective
geometrically irreducible curve over I, and let @ = F,(C) be the function field of
C'. For a closed point ¢ € C' we denote by F, the residue field at ¢, A. 2 F.[z.] the
completion of the local ring O¢ . and by Q. the fraction field of A.. We let Nilp A,
be the category of A.-schemes on which the image (. of z. is locally nilpotent.
Let G be a parahoric Bruhat-Tits group scheme over C' as defined by Bruhat and
Tits [BT72, Définition 5.2.6] and denote by G. := G x¢ Spec A. the base change
of G to Spec A., which is a parahoric group scheme over A.. A global G-shtuka
over an [ -scheme S is a tuple § = (G,s1,...,5,,7) consisting of a G-torsor G
over C' xg, S = Cg, a tuple of characteristic sections (sy,...,s,) € C"(S5), and a
Frobenius connection 7, which is an isomorphism 7 : 0*G |cgw,r., =G loswur,,
outside the graph of the s;’s with o* := (id¢ x Frob,)*. An isomorphism between
G and another global G-shtuka G = (G',s},...,s,,7 ) is an isomorphism f : GG’
of G-torsors with 7 oo*f = for, and s; = s; for all 2+ = 1,...,n. The category
of global G-shtukas with isomorphisms as morphisms is fibered over the category
of F,-schemes and is an ind-algebraic stack, that is an inductive limit of Deligne-
Mumford stacks (together with closed immersions), which are separated and locally
of finite type over C' (see [AH14b, Theorem 3.14]). If global G-shtukas are provided
with H-level structures (see Definition 2.52) and with boundedness conditions (see
Definition 2.29 and Definition 2.32) the moduli stack of bounded global G-shtukas is
a separated Deligne-Mumford stack and locally of finite type over C™ (see [AH14Db,
Theorem 3.14]). These stacks are the function field analogues of Shimura varieties
over number fields. Therefore, one can expect that the Langlands correspondence
for function fields can be realized in the cohomology of those moduli spaces. Moduli
stacks of global G-shtukas, constructed by Arasteh Rad and Hartl in [AH14b] are
generalizations of moduli spaces of Drinfeld shtukas, which were investigated and
studied by Drinfeld [Dri74] and Lafforgue [Laf02] for G = GLy (resp. G = GL,).
Moduli spaces of global G-shtukas also generalize the moduli stacks FBun studied
by Varshavsky [Var04], which treat the case of a constant split reductive group G,
and also the stacks £0¢cp ; of Laumon, Rapoport and Stuhler [LRS93] who used
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them to prove the Local Langlands Correspondence for GL, in the function field
case.

Analogously to p-divisible groups (also called Barsotti-Tate groups), which are an
important tool in the theory of Shimura varieties and abelian varieties, global G-
shtukas give rise to so-called local G .-shtukas. For an explicit definition of local G-
shtukas see Definition 2.8. As a function field analogue to the functor that assigns
a p-divisible group to an abelian variety, Arasteh Rad and Hartl established the
so-called global-local functor which associates a tupel of local G.-shtukas to a global
G-shtuka. In [HV11] and [HV12] Hartl and Viehmann studied deformation spaces
of local G -shtukas for constant split connected reductive groups G.. Morphisms
between local shtukas are called quasi-isogenies. An important invariant of a local
G.-shtuka (over an algebraically closed field) is its isogeny class. This gives rise
to a so-called Newton stratification of those deformation spaces by quasi-isogeny
classes. By [HV12], each Newton stratum in the deformation space of local G.-
shtukas for constant split GG, possesses a foliation structure in the following sense:
Onto each Newton stratum there is a finite morphism from the product of a central
leaf with (the completion at a point of) the corresponding affine Deligne-Lusztig
variety (which is the underlying topological space of a Rapoport-Zink space, that is
the moduli space for local G\.-shtukas). By Arasteh Rad’s analogue of the Serre-Tate
theorem (see Section 2.3) the deformation spaces of global G-shtukas are isomorphic
to products of deformation spaces of the local G.,-shtukas, and hence also have a
foliation structure.

The matter of this thesis is to obtain such a foliation structure for Newton strata
moduli spaces of bounded global G-shtukas with H-level structure for an arbitrary
parahoric Bruhat-Tits group GG. Therefore, we define and study Newton strata of
these moduli spaces. We describe such a stratum up to a finite surjective morphism
as a product of the reduced fibres of the corresponding (truncated) Rapoport-Zink
spaces with some algebraic stacks, which we call Igusa varieties. This foliation
is a function field analogue to Oort’s foliations for p-divisible groups and abelian
varieties ([Oor04]) and to Mantovan’s product structure for Newton polygon strata
in Shimura varieties of (PEL) type and generalizes Hartl’s and Viehmann’s foliation
structure for deformation spaces of local shtukas to parahoric group schemes and to

global G-shtukas. We proceed as follows:

In Chapter 1 we present definitions and notations that are used throughout this

paper and recall some general facts about reductive groups.

Chapter 2 treats global G-shtukas and their relations to local G .-shtukas. The
results there are already shown in [AH14a] and [AH14b]. We recall the definitions
of global and local G-shtukas in Section 2.1. We describe the global-local functor
which associates a tupel of local G,-shtukas to a global G-shtuka I := [T, nlA“ci

[ERRE
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for a closed point ¢ = (cy,...,¢,) € C" with ¢; # ¢; for i # j (see Definition 2.18) in
Section 2.2. Section 2.3 presents the Serre-Tate theorem. In Section 2.4 we intro-
duce Rapoport-Zink spaces for (bounded) local G .-shtukas and define the truncated
Rapoport-Zink spaces as follows: Let L, be a fixed local G.-shtuka over a field k, and
L alocal G.-shtuka over a scheme S. Denote by RZLZO the (bounded) Rapoport-Zink
space associated to L. We fix a representation ¢ : G. — SL; specF.[2] and denote by
20 the sum of all positive coroots of SL, with respect to the Borel-subgroup of upper
triangular matrices in SL,. For a non-negative integer d; the truncated Rapoport-
Zink space is the closed ind-subscheme RZ? of RZLZO defined by the functor

RZdZi  (Wilpge)® — (Sets)
S - {Isomorphism classes of (£,0):=(L,,7,0) € RZﬁO(S),
s.t. 0.(8) is bounded by 2d,5 }

where § : L5 — L 5 is a quasi-isogeny; see Definition 2.41. Arasteh Rad and Hartl
used the Rapoport-Zink spaces of local G .-shtukas to uniformize the moduli spaces
of global G-shtukas. We will recall this uniformization morphism (established by
Arasteh Rad and Hartl in [AH14b]) in Section 2.5.

In Chapter 3 we introduce our generalization of Newton strata inside the special
fibre of the moduli space of global G-shtukas. We denote by V’H];a]g
of the special fibre VH! over ¢ of the moduli space of bounded global G-shtukas (with

H-level structure) to F Zlg . The stratification is given via the quasi-isogeny classes of

the base change

local GG.-shtukas. We show that Newton strata exist as locally closed substacks in
the special fibre of the moduli space of global G-shtukas. We give a short description
of Newton strata here: Denote by B(G,,) the set of quasi-isogeny classes of local
G.,-shtukas Qz Choose a tuple of quasi-isogeny classes b = (by,...,b,) € 1, B(Ge,).
Then the reduced scheme

Nayi={se$ : [, ] =<0 for all i}

=2 7,8

is a closed subscheme of S, and
N, = {s €s: [st] = b, for alli}

is a locally closed subscheme; see Corollary 3.6.

In analogy to Mantovan’s foliation for moduli spaces of abelian varieties we want
to give a foliation structure on the Newton Strata but not only in deformation
spaces but also for the whole Newton strata in the moduli space of (bounded)
global G-shtukas (with H-level structure) and for relatively general groups. This

foliation structure is decribed as a product of a covering of central leaves by Igusa

1ii
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varieties with truncated Rapoport-Zink spaces. Therefore, in Chapter 4 we start
by considering leaves.
In the classical case Oort introduced the notion of a central leaf. In our case a
central leaf inside a Newton stratum is defined to be the locus where the associated
local G.-shtukas (to a global G-shtuka) are isomorphic to a chosen fixed local G-
shtuka. For our purposes we choose this isomorphism class to be given by a so-called
fundamental element; see Definition 4.3. Let K be a field extension of F., and let
G, be a local G, -shtuka over K. For a K-scheme S and a local G, -shtuka QAZ over
S the central leaf is defined as the subset

C@i,s = {seS:@LL ;Q

., over an algebraically closed field extension L/k(s) }

If G is a global G-shtuka over a K-scheme S, the central leaves are defined as the
subsets

Co gi= {s €S: @i,L ~T, (G) 1 over an algebraically closed field extension L/k(s) }

i

and
C(@i)ivs = mC@wS’

see Definition 4.19.

The results in [Oor04] and [Man04] (resp. in [HV12]) concerning the existence of
a foliation structure with the desired properties are based on the statement that a
family of p-divisible groups (resp. local G.-shtukas) with constant Newton polygon
is quasi-isogenous to a completely slope divisble family ([HV12], [0Z02]). To get a
similar result in our case we choose a fundamental element x which is defined over
a field F,, (for more details see Section 4.1). In Section 4.2 we introduce the notion
of a complete slope division of a local G.-shtuka G over S (see Definition 4.16)
and clarify the existence of complete slope divisions (see Theorem 4.17). In the
following, we describe this briefly: Denote by I an [wahori group as defined in
[HRO8, Definition 1]. Let P = M N be a parabolic of G with Levifactor M and
unipotent radical N. Let P = M N be its opposite. Furthermore, we use the notation
Ip =1 - Iy for the intersection with /. We do not assume that I, M or N is fixed
by the F.-Frobenius é. Roughly speaking, a complete slope division (P,n) with
respect to = of a local G-shtuka G = (G, 7g) over an F®-scheme is described by the
existence of a “trivializtion” of the Frobenius 7g to an element in z- L*I5(S") (here,
L+ denotes the groop of positive loops, see Definition 1.5). If G is a local G.-shtuka
over an leg—scheme S with constant isogeny class [z], then there is scheme Y, which
is finite over S and represents isomorphism classes of complete slope divisions of G.
We show that for a tuple z = (z1,...,z,) of fundamental elements the central leaf

Cuis = C(L+G,, a1),s 18 closed in the Newton stratum N, c S and that it exists as a

v



locally closed substack of the special fibre V'Hé
stack locally of finite type.

> and hence is a Deligne-Mumford

q

We prove that a local G.-shtuka over an Fglg- scheme S with constant isogeny class
[x] is completely slope divisible over a finite surjective morphism Y =Y, - C, 5.
It G. =1 is an Iwahori group, then we can take Y = C, g; see Corollary 4.22. The
schemes Y, from above define Deligne-Mumford stacks ), for all i = 1,...,n which

are finite over N, c V?—[];alg. We set Yy := Yy Xypr o Xypr Ve, We will see
q - Fo 8 Fo 8
q q

in Theorem 4.29 that ), - SpecF3'® is a smooth stack, and we will compute its
dimension. Furthermore, all central leaves Cg ). in the Newton stratum N, c VH!
are closed substacks and smooth; see Proposition 6.20. This property is the anologue

of [Oor04, Theorem 3.13] resp. [Man04, Proposition 2.7].

We introduce in Chapter 5 the Igusa varieties g, of level e; (for an integer
e; > 0) as coverings of the central leaves ; see Definition 5.4. Our definition is
inspired by Mantovan’s definition of Igusa varieties in [Man04] and by the one of
Harris and Taylor in [HTO01]. Mantovan describes ([Man04, §3]) Igusa varieties in the
setting of abelian varieties as a sheaf of isomorphisms between truncated Barsotti-
Tate groups. We modify this definition by using a trivialization of the Levi part
of a complete slope division. More precisely, we choose a presentation f: S — YV,
such that the universal complete slope division (P;,7;) of T, (f Gy = (G, 7g,)
over ), possesses a trivialization such that, loosely speaking, 7g, can be written as
an element x;m;n; € x; - L*],si(S). For an integer e; > 0 we define the Iqusa variety

of level e; as the functor Ig, on the category of S-schemes T' given by
Igel(T) = {jei € (L+6;1IM1/L+61_1]61,M1)(T) : a-:(]e_zl)xz_ljezxzml € L+Iei7Mi(T) } :

For a tuple of non-negative integers e = (e;); we define the Igusa variety Ig, of level

e as the functor on the category of S-schemes T'
Tg (T) ={ (e )i * Je, €18, (T) };
see Definition 5.4. We show that there exist algebraic stacks
Jge, > Vo, > Cy, C VH];ZIg

with Jg,, xy, S =Ig,, and Jg,xy, S = Ig,; see Proposition 5.6. The morphisms Jg,, -

Ve, and Jg, - Y, are finite étale Galois coverings. In particular, the morphisms

Jg., = Cy, C V’H;Fa]g and Jg, - C, V’H;Falg are finite, but in general not étale; see
q - q

Proposition 5.7.

The main result of this thesis, which is proven in Chapter 6, is the following:
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Main Theorem 0.1. Let d = (dy,...,d,) and denote by e = (e;); the level of the
Igqusa variety Jg,, such that e;+2d;(1-r;) > 1 for alli=1,...,n. Letl be a multiple
of all degc; := [F,., : F,] for the number l;(e;) from Definition 4.3 (vi). There is a
morphism of stacks

del . d ! 1 ! 1
et Jg, X pale Xy(z) »o Ny xp, Fo® c o *VHFZlg ,

which is finite. If we consider the compositum of 74! with the projection o N — N
then for every point of N with values in an algebraically closed field there is a tuple

(d,e,l) and a point in the preimage under et

Here, X7 (z;) denotes the affine Deligne-Lusztig variety from Definition 2.38. Fur-

thermore, we denote by Xg(ajz) the reduced subscheme of RZ?_ and set
Xé = (Xgi(xl) X]leg N XFglg Xg: (ZL‘n))

The proof of Main Theorem 0.1 is devided into several steps and the construction
is very technical as we need suitable “trivializations”, and several quasi-isogenies.
But once we have chosen those we construct the product morphism 7¢¢! by using
Arasteh Rad’s uniformization morphism. Then we can show that 7! is quasi-finite
and satisfies the valuation criterion for properness and hence is finite and “surjective”
in the sense of the statement of the Main Theorem. The tuple of trivializations « is
chosen in Section 6.1, the tuple of quasi-isogenies h([) is constructed in Section 6.2.
In Section 6.3 we show that the tuple (o, h(l)) descends to the Igusa variety. These
techniques are needed to construct the product morphism 7%¢! and prove its desired
properties in Section 6.4.

Finally, we conclude this thesis with an application of the Main Theorem. Namely
in Proposition 6.20 we deduce, that each leaf inside one Newton stratum has the

same dimension and we compute this dimension.

vi
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1 Preliminaries

1.1 Notations

Following [AH14a] and [AH14b], we denote by

F, a finite field with ¢ elements and characteristic p,

C a smooth projective geometrically irreducible curve over
F,,

Q:=F,(C) the function field of C,

c a closed point of C', also called a place of C,

F. the residue field at the place c on C,

A, the completion of the stalk O¢. at c,

Q. := Frac(A,) its fraction field,

D, g := Spec R[z] the spectrum of the ring of formal power series in z
with coefficients in an F.-algebra R,

D= Spf R[2]  the formal spectrum of R[z] with respect to the z-adic
topology.

We let z be a uniformizer of A.. Therfore, there are canonical isomorphisms
A, = F.Jz] and Q. = F.((2)). When R = F. we drop the subscript R from the
notation of D, r and I[A))Q R.

For a formal scheme 7' we denote by Nilp; the category of schemes over T on
which an ideal of definition of 7' is locally nilpotent. We equip Nilp; with the
+-topology where * € {étale, fppf, fpqc}.

Let n € Ny be a positive integer, and denote by ¢ := (¢;)=1.., an n-tuple of closed

points of C' with ¢; # ¢; for 7 # j, and by
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A, the completion of the local ring O¢n . of C™
at the closed point ¢ = (¢;),

0% 1= [T Ae the ring of integral adeles of C outside c,

Ac:=0¢®p, @ the ring of adeles of C' outside ¢,

Nilp,, = Nilpg,¢a, the category of schemes over C™ on which the ideal
i i defining the closed point ¢ € C™ is locally nilpotent,
N ilpp, ¢ = Nilpy_ the category of D.-schemes S for which the image of 2
in Og is locally nilpotent.
We denote the image of z by ( since we need to

distinguish it from z € Op,.
We further denote by

G a flat affine group scheme of finite type over C,
which is parahoric in the sense of Definition 1.1,

G.:=G xcSpec A, the base change of G to Spec A,

Gg, = G xcSpecQ). the generic fibre of G, over Spec(@)..

Independently of GG, we also consider more generally

G, a flat affine group scheme of finite type over D,
Gg. = G. xp, SpecF.((z)) the generic fibre of G, over SpecF.((2)).

For any FF,-scheme S we denote by og : S — § its Fs-Frobenius endomorphism,
which acts as the identity on the points of S and as the g-power map on the structure
sheaf.

We denote likewise by g : S — S the F.-Frobenius endomorphism of an F.-scheme
S with g := 052 for degc = [F,: F,].
We set

CS =C XSpecFy Su

o:=id¢ x 0g.

1.2 Further Definitions

Let IF, be a finite field with ¢ elements, C' a smooth projective geometrically irre-
ducible curve over F, and @) :=F,(C) the function field of C. For any closed point
¢ denote by F, the residue field at the place ¢ on C.

Let A. 2 F.[z.] be the completion of the local ring O¢,. and Q. := Frac(A.) its
fraction field.

By Nilp,_ we denote the category of A.-schemes on which (the image) (. (of z) is
locally nilpotent.

Let G be a parahoric Bruhat-Tits group scheme over C as defined in the following:



1.2 Further Definitions

Definition 1.1. A parahoric (Bruhat-Tits) group scheme over C' is a smooth affine

group scheme G over C' such that
(i) all geometric fibres of G are connected and the generic fibre of G is reductive

over F,(C),

(ii) for any ramification point ¢ of G (that is, those points ¢ of C' for which the
fibre above c is not reductive) the group scheme G.:= G x¢ Spec A, is a para-
horic group scheme over A. as defined by Bruhat and Tits in [BT72, Defini-
tion 5.2.6/, (or see also [HR08]).

For more details on parahoric group schemes, see e.g. [HROS].

Remark 1.2. One can define and show the extistence of the moduli space of global
G-shtukas without assuming that G is parahoric, but we need in this thesis that the

affine flag variety at each c is proper and this is the case if the group is parahoric.
Proposition 1.3. (i) The parahoric group scheme G has a faithful presentation
0:G = GL(V)
for a vector bundle V- on C such that the quotient GL(V)/G is quasi affine.

(i7) If all fibres of G over C' are reductive then the quotient GL(V)/G as above is
affine.

Proof. (i) [HeilO, Example (1), page 504],

(ii) [AH14b, Proposition 2.2.(c)]. O

Definition 1.4. For a sheaf of groups H (for the x-topology) on a scheme X we
define a (right) H-torsor (or an H-bundle) on X to be a sheaf F for the * e
{étale, fppf, fpqc}-topology on X together with a (right) action of the sheaf H such
that F is isomorphic to H on a *-covering of X.

H is viewed as an H-torsor by right multiplication.

Definition 1.5. (c¢f. [AH14a, Definition 2.1])
The group of positive loops associated with G, is the infinite dimensional affine

group scheme L*G,. over F. whose R-valued points for an F.-algebra R are

L*G.(R) := G.(R[z]) := Homp, (D, g, G.).

The group of loops associated with G. is the fpqc-sheaf of groups LG, over F.
whose R-valued points for an F.-algebra R are

LG(R) = G:(R((2))),
with R((2)) := R[z] [%]
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Definition 1.6. (i) The affine flag variety Flq, is the fpqc-sheaf associated with
the presheaf

R LG(R)/L*Ge(R) = Ge(R((2)))/Ge(R[z])
on the category of F.-algebras.

(ii) When G. is hyperspecial, that is, when the special fibre of G. is reductive, we

call Flg, the affine Grassmannian.

In the case of L*G.-torsors (which is defined in Definition 1.5, see also [Fal03,
Definition 1]) we have that the L*G-torsors for the étale-, fppf- and fpge-topology

are equivalent:

Lemma 1.7. (¢f. [AH14a, Proposition 2.4])
H' (S, L*G.) = H' (Spps, LYG) = H' (Spqe, L Ge).

Definition 1.8. Let S be a scheme and denote by (Sch /S)pe the big fppf site. An

algebraic stack over S (also called Artin-stack) is a category
X — (Sch /S)gppt
over (Sch /S)gps with the following properties:
(i) The category X is a stack in groupoids over (Sch /S )pe-
(i) The diagonal A: X — X x X is representable by algebraic spaces.

(iii) There exists a scheme X in (Sch/S)gpps and a 1-morphism (Sch /X )gpps = X

which is smooth and surjective.

Definition 1.9. Let S be a scheme contained in Schype and let X be an algebraic
stack over S. X is called a Deligne-Mumford stack if there exists a scheme X and

a surjective étale morphism (Sch /X )gpps = X.

Following [AH14b, Definition 2.3] we denote by H!(C,G) the category fibered in

groupoids over the category of F,-schemes with objects
HY(C,G)(S) = {G-torsors over Cg} (1.1)

and isomorphisms of G-torsors as its morphisms.
By [AH14b, Theorem 2.4] it is a smooth Artin-stack locally of finite type over F:

Proposition 1.10. (i) Let G be a parahoric group scheme over the curve C.
Then the stack H1(C,G) is a smooth Artin-stack locally of finite type over F,,.

It admits a covering by connected open substacks of finite type over F,.



1.2 Further Definitions

(ii) Let X be a projective scheme over a field k. Let V' be a vector bundle over
X and let o : G - GL(V) be a closed subgroup with quasi-affine quotient
GL(V)/G. Then the natural morphism of k-stacks

0. : HY(X,G) — HY(X,GL(V))
is representable, quasi-affine and of finite presentation.
Proof. (i) [AH14b, Theorem 2.4],
(ii) [AH14b, Theorem 2.5]. O

By [Ser94, 111, 2.3, Théoréme 1" and Remarque 1] the analogue of the Theorem of
Steinberg holds. That is, by loc. cit. follows that any connected reductive algebraic
group G, over F#2((2)) is quasi-split, i.e. it contains a Borel subgroup defined over
F2'((2)), or eqivalently, the centralizer of a maximal F2#((2))-split torus in G, is

a torus. Hence, the following definition makes sense:

Definition 1.11. (¢f. [AH16a, Definition 1.1])

Assume that G. is parahoric. Then the generic fibre G, of G. over SpecF.((2)) is
connected reductive. Consider the base change Gy, of G, to L =TF2%((z)). Let S be
a mazimal split torus in G and let T be its centralizer. Since F2'8 s algebraically
closed, G is quasi-split, and so T is a maximal torus in Gp. Let N = N(T') be the
normalizer of T and let TO be the identity component of the Néron model of T over
O, = F2[2].

The Twahori-Weyl group associated with S is the quotient group W = N(L)/T°(Op).
It is an extension of the finite Weyl group Wy = N(L)/T(L) by the coinvariants
X (T); under I = Gal(LsP|L):

0> X (T) W =Wy 1.
By [HR0S, Proposition 8], there is a bijection
L*Go(F¥)\LG o, (F®) | 1" G (F'®) =W o\W [V

where W := (N(L) n G.(O1))/T°(OL). Here, LG, (R) = LG.(R) = G.(R((2)))
and L*G.(R) = G.(R[z])) are the loop group, resp. the group of positive loops of G.;
see [PROS, § 1.af, or [BDI1, §4 .5/, [NPO1] and [Fal03] when G. is constant.

Let w e WG\W [WGCe and let F,, be the fixed field in F2'® of

{~ € Gal(F24|F,) : v(w) = w}.

There is a representative g, € LG.(F,) of w; see [AH14a, Example 4.12]. The
Schubert variety S(w) associated with w is the ind-scheme theoretic closure of the
L*G.-orbit of g, in Flg, xg F,. It is a reduced projective variety over F,. For
further details see [PROS] and [Ric13b].



1 Preliminaries

1.3 Some facts about reductive groups

Definition 1.12. A smooth connected algebraic group is reductive if its geometric

unipotent radical is trivial.

Definition 1.13. A parabolic subgroup P of an algebraic group G is a subgroup
such that G| P is projective.

Proposition 1.14. (¢f. [Conl1l1, Chevalley, Theorem 1.1.9])

The parabolic subgroups of any connected linear algebraic group G are connected.

Definition 1.15. A Levi subgroup of a parabolic P is a subgroup M such that P
is the semidirect product P = N x M, where N is the unipotent radical (that is
the maximal connected, unipotent, normal linear algebraic subgroup of the linear

algebaric group P).

By [Mill5, 22.148 and Definition 22.161] (resp. [Bor91, Corollary 14.19], [CGP10]),
such Levi subgroups exist. They are reductive and smooth by [Conll, Defini-
tion 5.4.2].

Definition 1.16. Two parabolic subgroups P, and Py are called opposite if Pyn Py
is a Levi subgroup of P, and Ps.



2 Global (G-shtukas and local
G ~shtukas

Throughout this chapter we use the following notations:

Definition 2.1. For a closed point c € C' we write

D, :=SpecA. and
D, := Spf A...

Set deg c:=[F.:F,] and choose an inclusion F. c A. which induces the identity on
F. (the inclusion is uniquely defined by Hensels Lemma). We assume that there is
a section s: S — C factoring through Spf A. (thus, the image of a uniformizer of A,
in Og is locally nilpotent). Set

Oy = (a@l—l@s*(a)ql : aeIF‘C>.

There are isomorphisms

A

DC;(FqSE U V(ac,l).
leZ/(deg c)

2.1 Global G-shtukas and their relation to local
G .~shtukas

Function field analogues of abelian varieties are global G-shtukas. They were in-
vestigated by Arasteh Rad and Hartl in [AH14a] and [AH14b]. They showed that
there is a Deligne-Mumford stack VnH’Zﬂl(C, () which parametrizes global bounded
G-shtukas with H-level structure. Moreover, this algebraic stack is separated and
of finite type over C™ ([AH14b, Theorem 3.14]). The moduli space generalizes the
space of F-sheaves FShp , introduced by Drinfeld ([Dri87]) and Lafforgue ([Laf02])
for G = GLg (rsp. G = GL,) and further studied and generalized by Varshavsky’s
moduli stacks FBun ([Var04]).

We recall some of the definitions and notations given in [AH14a| and [AH14b].
First we give the definition of a global G-shtuka (without level structure).



2 Global G-shtukas and local G.-shtukas

Definition 2.2. A global G-shtuka G over an F,-scheme S is a tuple
G=(G,51,...,5u,T)
consisting of
(i) a G-torsor G e H'(C,G)(S) over Cg:=C xg, S,
(7i) an n-tuple of characteristic sections (sy,...,s,) € C"(S), and

(7ii) a Frobenius connection T defined outside the graph I's, c Cs of the morphisms

Si, that is an isomorphism
A ~
710G logawr., =0 loswuirs,
where 0* = (idc x Frob, g)*.

Definition 2.3. We denote by V,,H'(C,G) the moduli stack of global G-shtukas
(without level structure). It parametrizes global G-shtukas as defined in 2.2, where
two global G-shtukas G = (G,7) and Ql = (G',7") are said to be isomorphic, if there
s an isomporphism

f:G—=G
of G-torsors with

for=1 oo*f.

There are relations to local G.-shtukas, where G, is a parahoric group scheme.
Global G-shtukas induce local G .-shtukas by “completing” at the closed point c € C.
We prefer to work with the associated loop groups torsors. It is very useful to study
those local G.-shtukas because the global G-shtukas are controlled by their local
behaviour at their characteristic places. We explain this relation in more detail: For
a finite field F. containing F, we denote by F.[z] the power series ring over F,. in
the variable z. We consider a smooth affine group scheme over SpecF.[z] which we
denote by G. with connected fibres (this holds in particular if G, is parahoric), and
we let G, = G Xgpecr.[:] SPecF((2)) the generic fibre of G, over SpecF.((2)).

We are especially interested in the local G .-shtukas associated to a global GG-shtuka.
Therefore, in the situation where there is an isomorphism SpecF.[z] = Spec A. for
a place c of C and G, := G x¢ Spec A., Gg, = G x¢ Spec Q..

We assume now that G, is a parahoric group scheme over SpecF.[z] in the sense
of Bruhat and Tits ([BT72]) and Gy, is reductive over F.((z)). If one wants to
consider the theory of local G-shtukas independent (or without the notion) of global
G-shtukas this is possible by writing D, := Spec k[z] for a finite field k& instead of
Spec A.. We will define local G.-shtukas in Definition 2.8.



2.1 Global G-shtukas and their relation to local G.-shtukas

2.1.1 Loop groups and local G .-shtukas

Let LG, resp. L*G.. be the group of loops resp. of positive loops of GG, that is the
sheaves of groups defined on affine schemes S = Spec R by

L*G.(S) :=G.(R[z]) and

LG.(S) = G(RIA | ]) = Gu(R(@).
In order to introduce local G .-shtukas we investigate some definitions and construc-
tions (already given e.g. in [AH14a] or [HV11]).
LG, (resp. L*G..) is representable by an ind-scheme of ind-finite type (resp. affine
group scheme) over F.; see also [PROS8, § 1.a], or [BD91, § 4.5], [NP01], [Fal03].
The stack

H'(SpecF., L*G.) := [SpecF./L*G.],

resp.

H'(SpecF., LG,) := [SpecF./LG.],

classifying L*G -torsors, resp. LG -torsors, is a stack fibered in groupoids over the

category of F.-schemes S.

Induced by the natural inclusion L*G,. c LG, there is a morphism

L:H'(SpecF,, L*G.) — H'(SpecF,, LG.)
L.~ L.

Definition 2.4. (c¢f. [AH14a, Definition 2.2))

Let G, be the formal group scheme over D, := SpfF.[z] obtained by the formal
completion of G, along V(z). A formal G ~torsor over an F-scheme S is a z-adic
formal scheme P over HA))QS = ]IA)CQ]FCS together with an action éci]ﬁ;cﬁ P of éc on
P such that there is a covering ]ﬁ)c,s’ — ]13)075 where S" — S is an fpqc-covering and
such that there is a Gc-equz’variant isomorphism

ﬁgﬁcysﬁc,sléécglﬁ)c@c,sl‘
Here G.. acts on itself by right multiplication. We denote by 7—[1(]]5)0, é’c) the category
fibered in groupoids that assigns to an F.-scheme S the groupoid consisting of all

formal G.-torsors over D, g.

Proposition 2.5. (¢f. [AH1ja, Proposition 2.4] or [HV11, Proposition 2.2(a)] for
a split reductive group G.)

There is an isomorphism

H1 (@C, C:’c);le(Spec F., L*G.)
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of groupoids. If moreover G. is smooth over D., then each L*G.-torsor for the

fpqc-topology on S is étale locally trivial on S.

Definition 2.6. Assume that there are two morphisms f,qg: X =Y of schemes or
stacks. We denote by equi(f,g : X = Y) the pull back of the diagonal under the
morphsim (f,g): X =Y xz Y, that is, we let

equi(f,9: X 2Y) =X x(gvxvaY
where A=Ay 7Y - Y xz Y is the diagonal morphism.
Definition 2.7. Let X' be the fibre product
H'(SpecF,, L*G.) X341(SpecFo,LG.) H'(SpecF,, L*G..)

of groupoids.
Denote by pr; the projection onto the i-th factor. We define the groupoid of local
G-shtukas Sht]gcc to be

Sht]gi := equi(6 o pry, pra: X 3 H(SpecF., L*G.)Xspecr. SPIF.[C]),

where G := Gy (speck, L+G,) 5 the absolute F.-Frobenius of H'(SpecF., L*G.).

Sht]gcc is the category fibered in groupoids over Nilpg o (the category of F.[(]-
schemes on which C is locally nilpotent). We call the objects in ShtHGD‘;(S) the local
G .-shtukas over S.

More precisely we define a local G.-shtuka as in [AH14a, Definition 2.6]:

Definition 2.8. A local G.-shtuka over a scheme S € Nilp,_ is a pair L = (L,,T)

consisting of an L*G.-torsor L, on S and an isomorphism of LG.-torsors
T:0°L—L,

where L denotes the LG .-torsor associated with L, and 6*L the pullback of L under

the absolute F.-Frobenius endomorphism & = Frobur,yg: S = S.

Definition 2.9. A local G.-shtuka (L., 7) is called étale if 7 comes from an iso-
morphism of L*G.-torsors 6*L,—L,.
We denote by Et Sht(S) the category of étale local G.-shtukas over S.

The second part of the above Proposition 2.5 and [AH14a, Lemma 2.8] imply the
following:

Remark 2.10. If G, is smooth over D, with connected special fibre, we can trivialize
each étale local Go-shtuka to ((L*G.)r,1-6*) over a separably closed field k.

10



2.1 Global G-shtukas and their relation to local G.-shtukas

2.1.2 Quasi-isogenies

Now we consider the morphisms in the category of global G-shtukas (resp. local G-
shtukas), the quasi-isogenies and recall some important properties, especially the
rigidity of quasi-isogenies.

Definition 2.11. (i) A quasi-isogeny

fiL—L
between two local Go-shtukas £ = (L.,7) and L = (L.,7") over a scheme
S € Nilpg ) is an isomorphism

fiL—=r

of the associated LG .-torsors such that f-7=7%"-6*f, that is that the diagram

6L T

s commutative.

(i) We write Qlsogg(L, él) for the set of quasi-isogenies between L, and £ and
let QIsogg(L) = Qlsogg(L, L) be the set of quasi-selfisogenies, which is in fact
a group, called the quasi-isogeny group of L.

One important property of quasi-isogenies is their rigidity, a lifting property:

Proposition 2.12. (Rigidity of quasi-isogenies for local G.-shtukas) (cf. [AH14a,
Proposition 2.11])

Let S be a scheme in Nﬂpm[{g]} and let i: S - S be a closed immersion defined by a
sheaf of ideals T which is locally nilpotent. For any two local G.-shtukas L and L

over S there is a bijection of sets:

Qlsogg (L, L) — Qlsogg(i*L,i* L),
feitf

(with Og — Og).

There is also a definition of quasi-isogenies for global G-shtukas:

11



2 Global G-shtukas and local G.-shtukas

Definition 2.13. (i) A quasi-isogeny

[:g-6

between two global G-shtukas G = (G,7) and gl = (G',7") over a scheme S

with the same characteristics s; : S — C, foriv=1,...,n, is an isomorphism

- ’
[+ Glessps—G lcs s,
such that 7" o o*f = f o1, where D is an effective divisor on C.

(i1) Likewise as for local G.-shtukas we denote by Qlsogg (G, Q’) the set of quasi-
isogenies between G and Q, and by Qlsogg(G) the group of quasi-isogenies of
g to itself.

Proposition 2.14. (Rigidity of quasi-isogenies for global G-shtukas) (¢f. [AH14a,
Proposition 5.9])

Let G = (G,7) and G = (G',7') be two global G-shtukas over a scheme S with
S e Nilp,, and let i : S — S be a closed immersion defined by a sheaf of ideals T

which is locally nilpotent.

(i) There is a bijection of sets

Qlsogs(G,G") — Qlsogs(i*G,i*G),
fritf

(ii) f is an isomorphism at a place c ¢ ¢ if and only if i* f is an isomorphism at c.

For more details on local G.-shtukas and their relation to global G-shtukas, see
[AH14a, § 2] .

2.2 Global-local functor

As a function field analogue to the functor that assigns a p-divisible group to an
abelian variety Arasteh Rad and Hartl established the so-called global-local functor
which associates a tupel of local G .-shtukas to a global G-shtuka. In the following,
we want to recall this construction which we will use in the sequel for many times.
In order to formulate the functor we need some further notations and preperations:
For an arbitrary closed point ¢ € C set C" = C\{c}, C’:q =" Xspecr, S and let
HL(C', G) be the category fibered in groupoids over F,-schemes (see [AH14a, § 5.1])
such that the objects are given by:

HI(C',G)(S) = {G—torsors over Cg that can be extended to a G-torsor over C’S} :

12



2.2 Global-local functor

There is a restriction morphism
res: H'(C,G) — HL(C',G)
G 1es(G) = G g, C.
The group scheme G, defined by the Weil restrictions
G, = Resp,r, G

is a flat affine group scheme of finite type over SpecF,[z]. Consider the c-adic

completion

A

Gc = GCQSpech[[z]]Spf IE‘q [[Z]] = ReSIFcHF'q éca
so we have loop groups:
L*Go(R) = G(R[Z]) and
LG (R) = Go(R((2)))

for an IF -algebra R.

If G € H1(C,G)(S), then, its completion G, := Gy (Spf Acxp,S) is a formal G,
torsor over Spf ACQFqS . The Weil restriction Resp,r, Qc is a formal éc—torsor over
SpfFy[2]%r,S.

Definition 2.15. We define L*(G) to be the L*G-torsor over S corresponding by

Proposition 2.5 to Resg,r, G.. So there are morphisms
L HY(C,G) — H'(SpecF,, L*G.,)
G~ L:(9)
and
L.:HL(C',G)(S) — H'(SpecF,, LG.)(S)
res(G) = Le(res(9)) := L(LZ(9)).
For more details see [AH14a, §5.1].

Remark 2.16. We have a cartesian diagram (of groupoids) (see [AHI14a, Lem-
ma 5.1]):

HY(C, Q) HIU(C',G) (2.1)

H!(SpecF,, L*G.) L H!(SpecF,, LG.)

By [AH14a, Lemma 5.1], we know that the loop group version of the Beauville-Laszlo
gluing lemma holds.

13



2 Global G-shtukas and local G.-shtukas

Definition 2.17. (¢f. [AH1}a, Definition 5.4])
Let ¢ == (¢;)iz1,..n, Ci # ¢; for i+ j, be a fived tuple of places on C. We write A,
for the completion of the local ring Ocn . of C™ at the closed point ¢ and F. for

.....

the residue field of c. So we can consider F. as the compositum of the fields F,,
(i =1,...,n) inside FX* and have A, = F[(1,...,Ca], where ¢ denotes the image

(under the characteristic morphism) of a uniformizing parameter z; of C' at c;.

(i) We define the stack
Vo, HY (C,G)¢ =V, H' (C,G)%cnSpf(A.)

to be the formal completion of the stack V,H'(C,G) at ce C™.
By [AH14b, Theorem 3.14] it is an ind-algebraic stack, ind-separated and lo-
cally of ind-finite type over SpfA..

(i) Let (G,s1,...,80,7) € V,HYNC,G)e(S) (i.e. s;: S — C factors through Spf A, ).
Set G., :== G x¢ Spec A., and éei = G xo SptA.,. Consider the decomposition
(induced by Definition 2.1)

gQCS(SpfAciQJFqS) = H ggC’sV(aCi,l%

leZ/(deg i)
where Gz, V(ae ;) e HY(D., G.,).
(iii) We set 6 := g9 ¢ and define the local G,-shtuka as the pair
Lo (@) = (Lf 7).
where L} is the L*G,,-torsor associated to Gxcy,V (ac,0) by Proposition 2.5

with

Tds i 55 L; = (08 ) L L5,
the F.,-Frobenius on the loop group torsor associated to GxcgV (ae, o).

Now we can give the construction of the global-local functor:

Definition 2.18. Fiz a closed point ¢ = (¢1,...,¢,) € C™ with ¢; # ¢; fori+j. We
only consider global G-shtukas G whose characteristic sections factor through Spt A, .

Then there is a global-local-functor I which associates with G an n-tuple of local
G, -shtukas T(G) = (15(G)); defined by:

fi = fci : Vn%I(C, G)Q(S) — ShtSpe.CAcz‘ (S)

G,
(G.7) = [ (9),
= [T Do 0 H(C.G)(S) — [T Shigr ™™ (s)

i=1,..., 1,...,n

(G.7) = (Le(9)s

14



2.2 Global-local functor

Remark 2.19. Note that by [AH14a, Lemma 5.1] both U; and T transform quasi-

1sogenies 1nto quasi-isogenies.

Definition 2.20. Recall the L*G.-torsor L*(G) from Definition 2.15. For a global
G-shtuka G = (G, 1) € V, HY(C,G)<(S) over S and a closed point c € C' we define the
local G, := Resp, |, Ge-shtuka associated with G at ¢ in the following way:

(i) Let c=c;ec=(c1,...,cn). In the sense of [AH14a, Remark 5.5] we call the
local G.,-shtuka (L} (G),7%id) over S the local G.,-shtuka associated with G
at ¢;. Note that this is well defined as

Res, |r, Qci = Resy, v, (GXcs (SPf Ag, %p,5))
corresponds to an L*G. -torsor denoted by L (G) and
xid : 0" (GxogV(ag, 1) = (07°G) eV (ag, 1) —GxosV(ac 1)
s an isomorphism for [ + 0.

(ii) Let c¢c. AsT is an isomorphism at c, we call the associated G-shtuka L (G)
the étale local G-shtuka associated with G at the place c ¢ ¢ (for more details
see Definition 2.47 or [AH14a, Remark 5.6]).

The next proposition is very important for some of our constructions we do in
the following chapters. It tells how one can construct a “new” global G-shtuka
from quasi-isogenies between local G.-shtukas, resp. that one can pull back global

G-shtukas along quasi-isogenies between their associated local G.-shtukas.

Proposition 2.21. (¢f. [AH14a, Proposition 5.7])
Let G e V,H(C,G)(S) be a global G-shtuka over S and let c € C be a closed point.
Consider the local G-shtuka Lt (G) associated with G at c. Let

fiL — LX(G)

be a quasi-isogeny of local G.-shtukas over S. If ¢ € ¢, we assume that the Frobenius of
é is an isomorphism outside V (a.q). If ¢ ¢ ¢, we assume that E is étale. Then there

exists a unique global G-shtuka g €V, H' (C,G)<(S) and a unique quasi-isogeny
9:g —¢

which is an isomorphism outside ¢ such that the local G.-shtuka associated with Q,

is él and the quasi-isogeny of local G.-shtukas induced by g is f.

Definition 2.22. We denote the constructed global G-shtuka Q’ from the above
Proposition 2.21 by f*G.
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2 Global G-shtukas and local G.-shtukas

2.3 Serre-Tate for global GG-shtukas

By [AH14a, Theorem 5.10], we know that the Serre-Tate theorem holds, i.e. the
infinitesimal deformation space of G is isomorphic to the product of the infinitesimal
deformation spaces of the I';(G).

Definition 2.23. Let S be a scheme in /\/’ilpA2 and j: S - S a closed subscheme
defined by a locally nilpotent sheaf of ideals.

(i) We denote by Defos(G) the category of lifts of a global G-shtuka
G eV, HY(C,G)(S) to S, that is of pairs (G, : j*G—>G) with
G € V,HYC,G)(S) and a an isomorphism of global G-shtukas over S as
objects and isomorphisms of global G-shtukas that are compatible with the a’s

as morphisms.

(i) We denote by Defog(L) the category of lifts of local G.-shtuka L € Sht]gcc(S) to
S.

Proposition 2.24. (Serre-Tate) (¢f. [AH14a, Theorem 5.10])

There is an equivalence of categories
Defog(G) — [ | Defos(L;)
(G,a) =~ (L(9),[(a)),

where G € V,H'(C,G)(S) and (L,); = (7).

2.4 Rapoport-Zink-spaces

In this section we consider moduli spaces of (bounded) local G -shtuks. They are
affine Deligne-Lusztig varieties and function field analogues of Rapoport-Zink spaces

of p-divisible groups.

2.4.1 Rapoport-Zink spaces for local G .-shtukas

We recall the construction of Rapoport-Zink spaces for local G.-shtukas where G,
is a smooth affine group scheme over D.. They were first constructed by Hartl and
Viehmann in [HV11] for the case where G. is a constant split reductive group, that is
G. = Gy xD, for a split reductive group Gy over F., and then generalized in [AH14a]
for parahoric groups. The Rapoport-Zink spaces can be used to (partly) uniformize
the moduli stacks v, H!1(C,G) for global G-shtukas.

We will recall certain results and definitions with respect to those moduli spaces.

The right analogue of p-divisible groups are bounded local G.-shtukas. Arasteh Rad
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2.4 Rapoport-Zink-spaces

and Hartl showed in [AH14a] that their Rapoport-Zink spaces are formal schemes
locally formally of finite type (over SpfF.[(]). To summarize the results in a spe-
cial case we can say: Fix a local G.-shtuka L, = ((L*G.), 7 = b6*) over a field k
that contains F. with b € LG.(k) and & := o9€¢. The Rapoport-Zink space classi-
fies bounded local G.-shtukas together with a quasi-isogeny to L. It is a formal
scheme locally formally of finite type whose underlying reduced subscheme is an
affine Deligne-Lusztig variety. We present this result more precisely:

Let again be G a smooth affine group scheme over D.. Following the notation of
[AH14a, §4.1], we set

T = TXspecr. Spf F[(], (2.2)

where T is a scheme over F...
Let S € Milpg, (¢ and S = Vs(¢) € S. We denote by Nilp; the category of T-schemes
on which ( is locally nilpotent.

Proposition 2.25. (¢f. [AH14a, Theorem 4.4])
We fiz a local G.-shtuka L, over an F.-scheme T.

Consider the functor

RZ., + (Nilps)° — Sets
S { Isomorphism classes of pairs (L, 5)}

with £ a local G.-shtuka over S and

a quasi-isogeny over S =V (C). Here, two tuples £ = (£,0) and £ = (£,8 ) are said
to be isomorphic if Y lifts via rigidity to an isomorphism, L —=>L. Then the
functor is representable by an ind-scheme, ind-quasi-projective, ind-separated and of

ind-finite type over T

It T = Speck for a field k and if one assume that the Hodge polygon of the
G -shtukas satisfies a boundedness condition then RZ is represented by a formal
scheme locally formally of finite type over Spf k[(], that is, it is locally noetherian

and adic and its reduced subscheme is locally of finite type over k.

Proposition 2.26. (c¢f. [AH1/a, Theorem 4./])
Using the notations from Proposition 2.25 above and assuming that the fibres of
G. are connected over D, we get that RZ.  is ind-projective if and only if G. is

parahoric.
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2 Global G-shtukas and local G.-shtukas

Proposition 2.27. (c¢f. [AH1}a, Theorem /.4])

Using the notations in Proposition 2.25 and assuming that there is a trivialization
Ly—((L"Ge)7,b6™)

over T with b e LG.(T) we get that Méo is represented by the ind-scheme

A

Flg, +=Flg, xp.T),
where Flg, denotes the affine flag variety as defined in Definition 1.6.

By rigidity of quasi-isogenies, the functor RZ, is naturally isomorphic to the
functor that assigns to a scheme S tuples (£,d) (up to isomorphism) where £ is a
local G-shtuka over S and § : L — L, ¢ a quasi-isogeny over S. Therefore, there
are no other automorphisms of (£, 0) than the identity, and RZ ., does not have to

be viewed as a stack.

2.4.2 Rapoport-Zink spaces for bounded local G .shtukas

As moduli spaces for local resp. global G-shtukas are in general “only” ind-schemes
we “add” a boundedness-condition to get moduli spaces locally of finite type.
In this section we introduce those “bounds” as defined in [AH14a, § 4], but first we
need some further notations:

Fix an algebraic closure F.((¢))*® of F.((¢)). Note that its ring of integers is not
complete, so we consider a finite extension of discrete valuation rings R over F.[(]
(write R|F.[¢]) with R c F.((¢))*e. Denote by kg its residue field, by Nilpy the

category of R-schemes on which ( is locally nilpotent and let
Fl, r=Fla, %5,Spf R (2.3)

and

./,:A[GC = ﬁch>Fc[[CI|' (24)

Definition 2.28. (i) For a finite extension of discrete valuation rings F.[C] ¢ R c
F.((¢))™8 let Zp ¢ Flg. r be a closed ind-subscheme. Two such subschemes
Zpc fEGQR and Z;g' c ]—QEGC’R, are said to be equivalent if there exists a finite
extension of discrete valuation rings F.[C] ¢ R c F.(({))*® containing R and
R’ such that

fay

ZR;(SprSpr = ZR' X

A~

Spf R’ Spr

as closed ind-subschemes of ]—aéacﬁ.
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(i)

2.4 Rapoport-Zink-spaces

For an equivalence class 7 = [ZR] of closed ind-subschemes ZR c fEGC,R and
for

Gy = {7 € Autp (g (F((O)™) : v(2) = Z}
we define the ring of definition R, of Z to be the intersection of the fized field
of G, in F.((¢))¥& with all finite extensions R c F.((())*& of F.[(] over which

a representative Zg of Z exists.

Now we are able to define bounds. For more details with respect to the above
definitions see [AH14a, Remark 4.6 and Remark 4.7].

Definition 2.29. (i) A bound Z is defined to be an equivalence class [Zr] of

(i)

(iii)

closed subschemes ZR c ﬁch,R such that for all R each ind-subscheme ZR
is stable under the left L*G.-action on Flg, and the special fibres Zpr =

ZrXsptrODEC KR are quasi-compact subschemes of Flg, Xp, Spec kg.

The ring of definition R, of Z is called the reflex ring associated to the bound
Z.

Let Z be a bound with reflex ring R,. Let L, and L. be L*G.-torsors over a
scheme S in NilpRZ and let 6 : L—>L" be an isomorphism of the associated

LG, -torsors. Let S — S be an étale covering over which trivializations
a:L,—(L"G)g and o :L,~>(L*G.)g
exist. Then the automorphism o’ odoa~ of (LG.)g corresponds to a morphism
S — LG x5 SpfRy.

We say that 6 is bounded by Z if for any such trivialization and for all finite
extensions R of F.[(] over which a representative Zn of 7 exists the induced
morphism

S'%p,Spf R — LG %, Spt R~ Fle, g

factors through Zn.
A local G.-shtuka (Ly,7) over a scheme S eNilpRZ is said to be bounded by
Z if the isomorphism T is bounded by Z.

Remark 2.30. (i) The Zg are given by a base change from a unique closed sub-

(i)

scheme Z c Flg, >A<]FC/<JRZ which is a projective scheme over KR, (see [AH14a,
Definition 4.8]). It is called the special fibre of Z.

The definition of the bound is independent of the chosen trivialization in Defi-
nition 2.29(iii). Moreover, the condition in Definition 2.29(iii) is satisfied for
all trivializations and for all such finite extensions R of F.[C] if and only if it
is satisfied for one trivialization and for one such finite extension (see [AH14a,
Remark 4.9]).
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2 Global G-shtukas and local G.-shtukas

Remark 2.31. Observe that this definition of bounds generalizes the defintion of
bounds given in [HV11] (see [AH14a, Example 4.13 and Example 4.12]).

Definition 2.32. Consider a global G-shtuka G in V,H'(C,G)¢ and an n-tuple of
bounds Z, := (Zs,);. We say that G is bounded by Z, if for every i € {1,...,n} the
associated local G.,-shtuka fz(g) is bounded by ZCZ..

We denote the substack of V,H'(C,G)< consisting of bounded global G-shtukas by
VEHI(C,G)e.

We recall some results with respect to the representability of the Rapoport-Zink
spaces of bounded local GG .-shtukas.
For this purpose assume G, to be a smooth affine group scheme over D, with con-

nected reductive generic fibre Gg, .

Definition 2.33. Fiz some b e LGq (k) = LG.(k), k € Nilpg ¢ a field. Kottwitz

defines a slope homomorphism associated to b which we denote due to Kottwitz by

Uyt D)) — (GQ. k(=)

called the Newton polygon of b (see [Kot85, 4.2]), where D is the diagonalizable
pro-algebraic group over k((2)) with character group Q.

Definition 2.34. We call an element b € LG.(k) decent if it satisfies a decency

equation for a positive integer s:
(b6)® = svp(2)6°  in LG.(k) x (5°)
with (b6)* = b-5(b) -...- (6 1)(b) - (6%).

Remark 2.35. Let be LG (k) be decent with integer s, k c k™8 q finite field exten-
sion of F. with degree s. Denote by v, the Newton polygon of b.

(i) Since b has values in k which is the fized field of % we have b e LG.(k).

(ii) By [Kot85, 4.3] and [Ser94, III, 2.3, Théoréme 1" and Remarque 1] we know
that each &-conjugacy class, that is each quasi-isogeny class, in LG.(k) con-

tains a decent element if k is algebraically closed.

(iii) Denote by F, := k((2)) the fized field of 65 in F2%((2)) and consider the con-
nected linear algebraic group J, over F.((2)), defined by

Jb(R) = {g € GC(R ®Fc((z)) Fs) : g_lba-(g) = b} (25)
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2.4 Rapoport-Zink-spaces

for an F.((2))-algebra R.
Then vy is defined over Fs and Jyxg, .y Fs is the centralizer of the 1-parameter

group svy, of G. and hence a Levi subgroup of (G.)r,. In particular,
Jo(Fe((2)) € Go(Fy) © LGC(]%)
(see [RZ96, Corollary 1.14]).

In the following we recall the results of [AH14a, § 4.3] about the representability

of the Rapoport-Zink space for bounded local G -stukas in some special case which
we use in the sequel many times.
Let Z be a bound with reflex ring R, = k[€] and special fibre Z ¢ Flq, Xp.Speck.
Furthermore, let L, = (L*G.,b6*) be a trivialized local Gi.-shtuka over k € Nilpg
and decent b (with integer s). We denote by k c k*& the compositum of the residue
field k of R, and the finite field extension of I, of degree s, so that we can assume
be LG.(k). Note that k[¢] is the unramified extension of R, with residue field k.

With these notations and assumptions we define:

Definition 2.36. Consider the base change RZy, Q,;HCHSpf/%[[g]] of RZy,. It is rep-
resented by the ind-scheme fﬁGC,l}[[g}] i= Flg, %g,SpFE[E]. We define the subfunctor

REL of M, % raSPER[E] by:
REL : (Nilpgge)® — (Sets)
S {(L,0) e RZy,(S): Lis bounded by Z} [ = .
Proposition 2.37. (¢f. [AH14a, Theorem 4.18] resp. [HV11, Theorem 6.3] for
split, constant G..)
Let G. be a smooth affine group scheme over D. with connected reductive generic

fibre then RZLZO as defined in Definition 2.36 above is ind-represented by a formal
scheme, which is locally formally of finite type over Spf/;:[[é*]] and separated.

Definition 2.38. (i) We call the formal scheme that represents the functor RZLZO
a bounded Rapoport-Zink space for local G -shtukas.

(ii) Its underlying reduced subscheme is the affine Deligne-Lusztig variety (ADLV)
X,(b) ¢ Flg, %p,Speck which is defined by

Xz(b)(E) = {g e Fle.(E): 9706 (9) € Z(E)}

for any field extension E of k. Thus, Xz(b) is a scheme locally of finite type

and separated over k.
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2 Global G-shtukas and local G.-shtukas

Remark 2.39. By applying the uniformization theorem (see Proposition 2.53) we
can relate the rational points of the Newton stratum of the moduli stack of global
G-shtukas to the rational points of (certain) ADLV’s.

Remark 2.40. Observe that the quasi-isogeny group Qlsogi(LL,) equals the group
Jy(F.((2))) and acts on RZﬁO via

(L,0) = (L, go0) (2.6)
for g € Qlsog; (Ly,).

Now we introduce truncated Rapoport-Zink spaces, a construction that we need in
the following chapters.

In order to do this we fix a representation

o: Gc — SL,«DC (27)

such that the quotient SL, p, / G, is quasi-affine (this can be done by 1.3).

Consider the induced morphism
0. : H'(SpecF., L*G,.)(S) — H'(SpecF., L* SL,p,)(S). (2.8)

Let Og[z] be the sheaf of Og-algebras on S for the fpqe-topology whose rings of
sections on an S-scheme Y is the ring of power series Og[z](Y) := I'(Y, Oy [z]). Since
it is a countable direct product of Oy it is a sheaf. By Og((z)) we denote the fpqc-
sheaf of Og-algebras on S associated with the presheaf Y — I'(Y, Oy)[7] [%] Let
L, be any L*G-torsor over S and V(p.L,) the sheaf of Og[z]-modules associated
to 0.L, in H'(SpecF., L*GL,)(S). In the special case L, = L*G. we get

V(0.(L7Ge)s) = Osz]*".

By 20 = (r-1,...,1-r) we denote the sum of all positive coroots of SL, with

respect to the Borel-subgroup of upper triangular matrices in SL,..

Definition 2.41. We define the closed ind-subscheme RZ% ofRZLZO by the functor:

RZ% : (Nilp,;ﬂg]])o - (Sets)
S - {[somorphism classes of (L,6) = (Ly,7,0) € RZ£0(5)7
s.t. 0.(0) is bounded by 2d§}

for d € Ny where 0,(9) is bounded by 2dg if for all j=1,...,7:
J

/j\ 0:(O)(V(0:L,)) c 2207 - A V(0. (L*G)s). (2.9)
05[] 05l
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2.5 The uniformization morphism for bounded global G-shtukas

Proposition 2.42. (c¢f. [AH1ja, Lemma 4.20])
RZdZ is a &-adic noetherian formal scheme over l;:[[f]] Its underlying topological
space (RZ‘%)md is a quasi-projective scheme over Spec k.

Moreover, if G, is parahoric, then (RZdZA)md is projective.

Proposition 2.43. (c¢f. [AH1ja, Corollary 4.26])
The irreducible components of RZio (as a topological space) are quasi-projective

schemes over k, and thus, quasi-compact. If G, is parahoric, they are even projective.

2.5 The uniformization morphism for bounded
global G-shtukas

Fix an n-tuple ¢ = (¢;)z1,.» of closed points of C' with ¢; # ¢; for i # ] Let C' :=
C~{c1,...¢,} and let S be a scheme in NVilp, . Recall the substack ViEHN(C,G)e
of bounded global G-shtukas (see Definition 5.32) of Vv, H}(C,G)c. For a finite
subscheme D of C' we set Dg := D xg, S and denote by G|p, = G xcy Dg the pullback
of G to Ds.

Now we want to equip a global G-shtuka G with a (rational) H-level structure.
In order to define this we need some further notations and definitions which we
introduce in the following.

We denote by Repg.G the category of O¢-morphisms
p: G xc Spec Q¢ — GLge(V),

where Q¢ := [].. A, is the ring of integral adeles of C' outside ¢ and V' a finite free
module over Q<. We assume S to be connected and let s be a geometric base point
on S. By Funct®(Repg.G, Modoe(r, (s,5]) We denote the category of tensor functors
from RepgeG' to the category Modgefr, (s,5)] of Q[ (S, 5)]-modules.

Remember the definition of the (étale) local G.-shtuka associated with a global
G-shtuka from Definition 2.20.

Definition 2.44. (i) A local shtuka over S € Nilpg 1 of rank r is a pair (M, )
wehre M is a sheaf of Og[z]-modules on S which Zariski-locally is free of
rank r, together with an isomorphism of Og((2))-modules ¢ : 0*M ®pg[.]

Os((2))=M @042 Os((2))-

(ii) A quasi-isogeny between local shtukas (M, @) — (M',¢") is an isomorphism of
Os((2))-modules f : M 80,11 Os((2))>M @0, Os((2)) with ©'o* (f) = feo.

Remark 2.45. By [HV12, Lemma 4.2], there is an equivalence of categories between
the category of local GL,.-shtukas over S an the category of (rank r) local shtukas
over S.
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2 Global G-shtukas and local G.-shtukas

Definition 2.46. Assume that S is connected. Let s be a geometric point of S and
let m1(S,8) denote the algebraic fundamental group of S at 5. We define the Tate
functor from the category of local GL,.-shtukas Shtqr, (S) over S to the category of
Fql2] [71(S, 5)]-modules Modg, [21(x, (s.5)] as follows

T ShtGLT(S) id mOd]Fq[[z]][m(Sﬁ)]
M :=(M,7) = Ty = (M ®04, k(5)[2])"

where the superscript T represents the T-invariants.

Definition 2.47. Let ¢ be a place with ¢ # ¢; for all i. For every representation

p:G.— GL, 4, in Rep, G. we consider the representation
p € Repy, (.G
wich is the composition of
Resg,r, (p) : G.— Resy,jr, GLy 4,

followed by the natural inclusion Resg, r, GL; o, € GLy.[r F ] F,[2]-
Consider a global G-shtuka G. We define

Toi0)(p) = Traa) (D)
=~ lim p*(g xc Spec AC/(C”))T,

by [AH14a, Remark 5.6].

Definition 2.48. Following [AH14b, (6.1) and (6.2)], we define the (dual) Tate

functors

T : V. HY (C,G)(S) — Funct®(Rep@£G,‘Jﬁod@g[m(&g)])
Gr (Tg:pr lim (p.Glp.)").

DcC
V. V,HY(C, G)E(S) — Funct®(Reppe G, Modgepr, (5.5])
G (Vg:pr lim (p.Glp,)" ®ce A%).

DcC

Remark 2.49. (c¢f. [AH1}a, Remark 5.5 and Remark 5.6])

(i) For p=(p.) and Li(G) the étale local G-shtuka associated with G = (G, 7) at
ceC as defined in Definition 2.47 above in the sense of [AH1/a, Remark 5.6]

we have

Jim,(p*QDg)T) = ] ﬁg(g)(pc).

DcC ceC’
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(i)

2.5 The uniformization morphism for bounded global G-shtukas

V_ transforms quasi-isogenies into quasi-isogenies.

Definition 2.50. (i) We denote by

(i)

wae : RepgeG — Modge

resp. by
W = Woe ®pe A° : Repge G — IMod s
the forgetful functors with A<:= Q<®p,. Q.

We denote by Isom®(w6)£,7v‘g) resp. by Isom®(w°,l>g) the set of isomorphisms

of tensor functors.

Remark 2.51. By the generalized Tannakian formalism ([Wed04, Corollary 5.20]
or [AH14b, Definition 6.1]), we get

G(0%) 2 Aut®(we),

because Q< is a Priifer ring.

Definition 2.52. (i) Let H c G(A<) = Aut®(w°) be a compact open subgroup. We

(i)

(iii)

define a (rational) H-level structure on a global G-shtuka G over S € /\/ilpA£

as a (S, 8)-invariant H-orbit 7 = vH in Isom®(w°, )V/g)

By VHEHY(C,G)¢ we denote the category fibered in groupoids where the ob-
jects (G,7) of the category VEH(C,G)<(S) are given by G € V,H'C,G)<(S)
and v a H-level structure on G. The morphisms are quasi-isogenies of global
G-shtukas that are compatible with the H -level structures and that are isomor-
phisms at ¢ (see [AH14b, Definition 6.3(b)]).

By Vf’zg?ll(C,G)Q we denote the closed ind-substack of VEH(C,G)< para-

metrizing global G-shtukas that are bounded by Zg and equipped with a H-level
structure. It is an ind-algebraic stack over Spt A, which is ind-separated and

locally of ind-finite type (see [AH14b, Corollary 6.7]).

Now we can introduce the uniformization morphism:

Proposition 2.53. (c¢f. [AH14b, Theorem 7.4])

H,Z.

For a fized global G-shtuka G, € V," “H'(C, G)<(k) over an algebraically closed field
k with characteristic ¢ denote by ]QO(Q) = Qlsogy(G,) its quasi-isogeny group. Let

w®: RepycG — IModpe
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2 Global G-shtukas and local G.-shtukas

be the forgetful functor. Then there is a uniformization morphism

0=6(G,): IQO(Q)\(H RZij(QO) x Isom®(w®, ]}QO)/H) - vngQ’}[l(C, G)<xp, Spec(k)

of ind-algebraic stacks over Spfk‘[[g]] which is ind-proper and formally étale.

It is an isomorphism onto the formal completion of VHH’ZQHI(C, G)< along its image.
Furthermore, the morphism 0 is G(AS)-equivariant for the action through Hecke

correspondences on the source and the target.

Remark 2.54. (i) Note that the group Ig (Q) acts on [1; RZE? via the morphism
IQO(Q) - H JLZ(QCZ)
e (D (@))i(= (@)s)

-----

n-tuple of local G¢,-shtukas L, = ((L*G.,)x, b;6*) with b; € LG.,(k) over k.

(ii) The uniformization morphism is based on the “unbounded” uniformization

morphism which is defined by:
Vg, : [[RZ,,(S) — VaH'(C,G)(S)
((£):0:) = b7 0...001G, g
where (L), =1(G,) for G, € V., H(C.G)(T) and T a scheme over

Spec Ae/(Giy-- -, Ga) and S € Nilppg, . It s [.(0%o... 007G, ) =L

(iii) Let (G,,0:) be a k-valued point of HiRZ?(g N and denote by G = 6% o...0
ilHg

61*Q07k its image under Wg . By [AH14b, Remark 5.4] there is a unique quasi-
isogeny 0 : G — go,k which is an isomorphism outside the ¢; and satisfies
['(8) = (6);. This induces a functor Ty : 72 - 720 (see Definition 2.48). Let
Yo € Isom@’(w",lv/go) be a representative of the H-level structure yoH on G,,.

Then 0 is induced by the morphism
(L, 6:)i x hH = (G, Hh ™ 75).
Let nelg (Q) and consider
€:lg (Q) ~ Isom® (w®, ]}QO)
=00 Ve’

Then Ig (Q) acts on HZ»RZ?(Q % Isom@’(w",f/go)/H via
g (G, g

(L,6:)i x hH v (L, T, (7)8;); x e(n)hH.
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2.5 The uniformization morphism for bounded global G-shtukas

(iv) For more details, see [AH14b, § 5 and § 7].
We have the following lemma:

Lemma 2.55. (c¢f. [AH16b, Lemma 3.18])

Let G, and Qz) be two global G-shtukas in V,HY(C, G)(F3€) for an algebraic closure
F3' of F,. Then the following are equivalent:

(i) im(G,) nimb(G,) + @.
(ii) imf(G,) =imd(G, ).

1A
(iii) There is a quasi-isogeny G, — G, over Fg®.
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3 Newton strata

In [HV11, § 7], the Newton stratification on deformation spaces of local G .-shtukas
was given. In the following we give a definition of such a stratification of the mod-
uli space of global G-shtukas by quasi-isogeny classes of their associated local G-
shtukas.

The construction considered in [HV11] is related to o-conjugacy classes due to Kot-
twitz. We first recall the Newton stratification described in [HV11, § 7]. In this
situation let & be an algebraically closed field (over F,) and denote by G = (G,7) a
local G-shtuka over k. Then (e.g. by [HV11, Remark 3.2]) G is isomorphic to a local
Ge-shtuka (L*G.,b6*) for some element b € LG (k). There is a bijection between

the set of quasi-isogeny classes (of local G-shtukas over k) and
B(G.):={[b] : be LG.(k)},

the set of o-conjugacy classes of elements b in LG.(k) where [b] denotes the class
of b which contains all g='b6*(g) for g € LG.(k). Note that B(G.) is independent of
the choice of k as long as k is algebraically closed by [RR96, Lemma 1.3].

Now let S be a scheme in Nilpg, ], G =(G,7) alocal G.-shtuka over S and 5 € S(k)
a geometric point.

Then in [HV11, § 7] the quasi-isogeny class ofg in s is defined as the class [Q] (5):
[Qg] in B(G.) which corresponds to the specialization Qg. The Newton polygon of G

A

in s is defined as UGC([QE]) =g, (Qg) [Qg] is independent of the geometric point §

that is chosen above the point s € S. So there is a map
[G]: S — B(G.)
s~ [9](5).
For further details on B(G.), see [RR96] or [Kot97]. By [Kot85] we have an embed-
ding
B(Gc) o (X*(T)Q/WGC)Gal(Fc((Z»Sep'FC«Z») x Wl(Gc)Inertia (3‘1)
given by
[b] = (v6. (), ke, (b))

where Inertia ¢ Gal(F.((2))*P | F.((2))) is the inertia subgroup and W, denotes the
finite Weyl group of T" and X, (7)) = X, (1) ®z Q for X, (T") = Hom(G,,,,T"). Here,
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3 Newton strata

these homomorphisms are defined over an algebraic closure F.((2))*® of F.((2)) and
T is a maximal torus in G.(F.((2))*®). 71 (G.) denotes the fundamental group of
Ge. We call vg, (b)polyeon the Newton point of b and k¢, (b) the Kottwitz point.

Now, we will define the Newton stratum associated to a local G.-shtuka. Two local
G-shtukas are in the same Newton stratum if both their Newton polygon and their
Kottwitz point coincide. Therefore, two of each local G.-shtukas in the same Newton

stratum are quasi-isogenous, that is they belong to the same class in B(G..).

Definition 3.1. (¢f. [HV11, page 116])

Let G be a local G.-shtuka over S e Nilpg, (¢ and fiz a 6-conjugacy class [b] € B(G.).
Denote by vg,(G,) the Newton polygon (or Newton point) of G in s, and by ke, (G)
its Kottwitz point. Then,

Nyi=Npy={seS : v6.(G,) =ve.(b) and rg.(G,) = k. (b)}
={seS : [G](s) =[]}

is the Newton stratum associated to G and [b].

We give now an analogous description of Newton strata in the special fibre of the

moduli space of bounded global G-shtukas.

Notation 3.2. We denote by VH! the special fibre of the stack Vf’ZE'Hl(C’,G)E.

VH! is a Deligne-Mumford stack locally of finite type and separated over F. by
[AH14b, Corollary 6.7 and Remark 7.2]. For a field extension K of F. we write
VH} = VH! xp, Spec K.

We define the Newton stratum associated to a global G-shtuka G = (G, 1) € VH!
as a locally closed substack of VH! in the sense of [LMBO00, Lemma 4.10]. Therefore,

we need some preperations.

Proposition 3.3. (c¢f. [HV11, Theorem 7.3/, resp. [RRI6, Theorem 3.6])
Let S € Nilpg ¢ be a scheme and Ge ShtSGIzeCAC(S) a local G.-shtuka over S. Using
the notations from Definition 3.1, the reduced subschme Nz, of S with

N = {s €S : [Q] (s) < [b]}

is a closed subscheme of S.

Furthermore,

Nyi=Npy={seS : v6.(G,) =ve.(b) and rg.(G,) = k. (D)}
= {seS : [Q] (s) = [b]}

is a locally closed subscheme of S and N, is open in Ny.
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Proof. Hartl and Viehmann consider in loc. cit. the case where G, is split connected
reductive, but the proof of [RR96, Theorem 3.6] (in the equal characteristic case)

holds in our analogous situation for a connected reductive group G.. O]

Remark 3.4. (¢f. [RRI6, Theorem 3.6]
Note that for each by € B(G..), the subset

{S €S : I/GC(Qs) < VGC(bO)}
is Zariski-closed on S and locally on S the zero set is a finitely generated ideal.

Notation 3.5. From now on we denote by [Q] the quasi-isogeny class of a local
G.-shtuka g )

By Proposition 3.3, follows directly:

Corollary 3.6. Let ¢ = (c1,...,¢,) € C™ be a tuple of places and denote by G =

(G,81,.+-,8n,T) € vf’zﬁ”ﬂl(c, G)<(S) a global G-shtuka. Denote by B(G.,) the set of

quasi-isogeny classes of local G, -shtukas. Choose a tuple b= (b;,...,b,) € [1; B(G,).
Set IA“CZ. (g9) = Ql Then, the reduced scheme N, with

Na={seS : [G.](s) <b; for alli}
s a closed subscheme of S, and

Ny={ses : [G.](s) =0 for alli}
s a locally closed subscheme.

Consider now the complement of N, (resp. of No;) in S and denote it by (N)”
(resp. by (,/\/SQ)O). Then, (Ne)” (resp. (N )0) is an open subscheme of S.

Definition 3.7. (i) Let i € {1,...,n} and fix a quasi-isogeny class of local G.,-

shtukas given by b;. Consider the stack consisting of tuples
{(5.G) : Sascheme,G e VH'(S)s.t. (Na,)” =5}
This stack is an open stack of VH' and equals the stack
{(S,G) : Sa scheme,G e VH'(S)s.t. (3.2) holds}

with (3.2) is the following condition:
For all s :Speck — S for a field k the following condition holds:

[T ()] £ i (3.2)

Denote its reduced complement by N,,. Then, by [LMB00, Lemma 4.10], N,
is a closed substack of VH'. We call the reduced locally closed substack N,

the Newton stratum associated to ¢; and b;.
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3 Newton strata

(ii) Choose a tuple of quasi-isogeny classes b= (by,...,b,) € [1, B(G.,). Consider

the stack consisting of tuples

{(S.G) : Sa scheme,G e VH s.t. (/\/;b)o = S}.
This stack is open in VH' and equals the stack

{(S,Q) : S a scheme,G € VH' s.t. (3.3)) holds}

with (3.3) is the following condition:
For all s : Speck — S for a field k there exists an i € {1,...,n} such that the

following condition holds:
[(Fes9)] b (3.3)

Denote its reduced complement by No,. Then, by [LMBO00, Lemma 4.10], N, is
a (reduced) closed substack of VH'. We call the reduced locally closed substack

N, the Newton stratum associated to G and b.

Remark 3.8. More properties of the Newton strata are shown in [HV11, § 7] (in

the case where G. is a split connected reductive group).

32



4 Central Leaves

In this chapter we present our generalization of notion of the central leaves intro-
duced by Oort in [Oor04] and further studied by Mantovan in [Man04] for p-divisible
groups and by Hartl and Viehmann in [HV12] in the function field case for local G.-
shtukas if G, is a split connected reductive group over F..

We define the central leaf as the subset of a Newton stratum corresponding to a
global G-shtuka such that its associated local G.-shtukas have constant isomor-
phism class. It will turn out that the central leaf is a closed substack of the Newton
stratum and in particular, locally closed in the stack VH! (see Notation 3.2). Fur-
thermore, it is smooth and locally of finite tpe.

Hartl and Viehmann studied the central leaf by using that the isogeny class of a local
G-shtuka is given by P-fundamental alcoves in the case where G, is a constant split
connected reductive group over F.. For more gerneral GG, it is not clear wether such
an element exists. Therefore, we introduce a similar "fundamental alcove” by the
axioms given in Definition 4.3. In order to define this we need some further notations
which we introduce first. In the second part of the chapter we introduce completely
slope divsible local G.-shtukas. Then we consider the central leaf associated to a

chosen fundamental element.

4.1 Choice of a fundamental element

Consider a complete discrete valuation ring F2'®[z] with field of fractions F2'%((z2)).
Let G, be a parahoric group scheme over F2' [z] with generic fibre G’Falg«z». Then

GFalg((z)) is reductive.

Definition 4.1. Let L*G,. =: L{G, be the infinite dimensional affine group scheme
over F. with L{G.(SpecR) = G.(R[z])) for any F.-algebra R (resp. L{G.(S) :=
L*G.(S) for a scheme S).

For m >0 we define the following subgroup scheme of L{G.:

L} G.(S)={g9ge L§G.(S): g=1 mod z™}.

We recall the definition of an Twahori subgroup given in [HR08, Definition 1]:
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4 Central Leaves

Definition 4.2. We denote by B(G.[F¥%((2))) the Bruhat-Tits building of G, over
F2'%((2)). Bruhat and Tits associate to a facet F in B(Ge,F¥%((2))) a smooth group
scheme & over Spec ]Filg[[z]] with generic fibre G.. Denote by &5 the open subgroup
of it with the same generic fibre and with connected special fibre and define the
parahoric subgroup associated to F as Py = &5.(F&%[z]). It is equal to the parahoric

subgroup associated to a facet I is
Pp = Fiz(F) nkerkg,

with kg, the functorial surjective homomorphism defined by Kottwitz in [Kot97] (see
formula (3.1)). If F' is an alcove, that is a facet of mazimal dimension, Py is called
an Twahori subgroup of G.(F¥%((2))). This definition is due to Haines and Rapoport
in [HROS, Definition 1] and coincides with the one given by Bruhat and Tits (see
[HROS, Proposition 3]).

Let P = MN be a parabolic of Gpax () with Levifactor M and unipotent radical
N. Let P = MN its opposite. From now on, we consider M, N, and N as smooth

group schemes over F2¢[z] (not only over F2'%((2))) with

M (FeE[2]) = Ge(F2#[=]) 0 M (F2E((2)) (4.1)
N(Fee[]) = Ge(F2e[=]) n N (Fe((2))) (4.2)
N(F2e[2]) = Ge(F2e[2]) n N(F2((2)) (4.3)

Definition 4.3. Consider tuples (I,S, P, M,x) such that
(i) S is a mazimal F¥8((2))-split torus of Glpais ()

(ii) I ¢ G]Falg[[zﬂ an lTwahori subgroup such that the simplices corresponding to the

parahoric group G. and I lie on an apartment which is given by S € M,
(7ii) for a Levisubgroup M of a parabolic P in Glpate(y) With

(iv) P =MN (with Levifactor M, N the unipotent radical) and opposite P = M N

and

(v) © € LG.(F%®) a decent element, such that x € LG.(F,) for a finite extension
F, of F. (which exists by Remark 2.35(i)) with

6*(x(L*I(R)n L*M(R))x™*) = L*I(R) n L*M(R) =: L*I);(R),
6*(x(L*I(R)n L*N(R))z™") c L'I(R)n L*N(R) =: L*In(R),
6*(x(L*I(R)n L*N(R))x™') o L*I(R)n L*N(R) =: L*I(R),
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4.1 Choice of a fundamental element

for every F.-algebra R,

5'*(ZEL+IMZE_1) = L+IM
5'*($L+IN$_1) c LTIy
" (

IL‘L+[N$71) D L+[]\7'

(vi) Under the assumption that the ITwahori I and G. lie on an apartment given by
S c M with M a Levisubgroup of Gchxlg((z)) follows by [MP96], that there exist
smooth T8 z]-group schemes Iy, I and Iy with

Ly (FE[2]) = I(F2e[2]) n M (Fe((2))
Iy(Fe®[]) = I(F2E]=]) n N(Fe((2))
Iy(Fe]=]) = I(F2e[=]) n N(F2((2))-

I(F&%[2]) n M is an Twahori subgroup of M(F¥%((2))) and I is the Iwa-
hori subgroup scheme corresponding to this Twahori subgroup of M(F2%((2))).

There is also a construction of the corresponding group schemes I and Iy by

[BTS4, 4.5].
We further assume (see [HV12, Remark 4.2.e)]) that for any d € N there is an
I(d) € N that for every > 1(d) we have
() (o (67 (2) T L I g6 (2)) - L) -6t () € Lie Iy,
z- (.6 ()L e Ine™ () ) - ) ()P e LIy

(vii) We assume that L*16(xL*1T) c [z] is closed in the quasi-isogeny class [x] of
x in LG,.

(viii) We require that for every m € N there exists a smooth Filg[[z]] -group scheme
L which are filtration subgroups as defined in [MP96, § 3.2/, and such
that L*1y, p ¢ LIy is a closed normal subgroup with L* 1,y ¢ LM and
LH 110 € L* Ly ar, such that the fppf-sheaf L*Ing/L* I, pr o F2¢_schemes is
representable by a scheme of finite type over F2' and

X - L+Im7M : .’]3_1 = L+(/J\'_ljm7M R

(iz) and that for every algebraically closed field k the étale map

(L6 it L6 Ly ) (k) — (L 0 Ly ar L 0™ L1 a0) (K)
hw hx&*(h™)z™!

18 surjective.
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4 Central Leaves

Notation 4.4. We denote by F, the finite extension field of F. over which x is
defined.

Remark 4.5. (i) We do not require that 6* P = P nor that 6*M = M.
(ii) We do not require that 6*1 = 1.

(7ii) Note that in Definition 4.3(vii) we could also require that (L*6~*1)xL*1 c [x]

is closed because [x] =[6*(x)] (because x=*xd(z) = 6(x)).

Proposition 4.6. Let ' c L*G. be a closed subgroup scheme containing L;G. for
some d > 0. Then the fppf-quotient sheaf L*G.[F is representable by a smooth
scheme over F. and the morphism L*G./L}G. - L*G.[F is faithfully flat and of
finite presentation. If F c L*G. is normal, then L*G.[F is an affine group scheme.

Proof. This is explained in [CGP10, p. 470 after Definition A.1.11] in view of the
fact that F//L;G.c L*G.[/L;G. = Resy, jmar, (Ge a,ma) is a closed subgroup scheme,

for more details see Lemma 5.2. ]

Let L be the completion of the maximal unramified field extension of (). and
recall from Definition 2.33 the Newton cocharacter v, : Dy - G.; where Dy, is
the diagonalizable pro-algebraic group over L with character group Q. Over an
algebraic closure L8 of L we can choose a maximal torus T and a Borel subgroup
B of G.. With respect to this Borel subgroup we let v, gom : Dpaie = Traie be the
unique dominant homomorphism, which is conjugate to v, in G, and we let 2p be

the sum of all positive roots of T'. Then

(Vz.dom » 20) € Ng (4.4)

is well defined. The axioms in Definition 4.3 imply that x is “&-straight” in the

following sense; compare [Hel4, §2.4].

Proposition 4.7. For alll>1 abbreviate x® := 61-*(x)-...-x. Then () =z and

the quotient
Hy = L Ig [ ((aO) ™ Lo Iy - 2®)

is representable by a smooth scheme over Filg of relative dimension |- (Vs aom » 20)-

Proof. The smoothness of H, — Spec F*#¢ follows from Proposition 4.6. Let d; be its
relative dimension. Fix an integer d such that LN c ((x®)~1- L*6 I 2®). We

consider the isomorphism of fppf-sheaves
L*Ig[LiN xg, Hiy — L' Ig[LiN xgae 67 Hy
(h, hier) = (b, 2O h - (O))

(hy h- (@) hy-2®) o (b h).
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4.1 Choice of a fundamental element

Since 67" H; — SpecF¥® is obtained from H; — SpecF®# by base change, it is
smooth of relative dimension d;. Since L*Iy / L;N — H, is faithfully flat by Propo-
sition 4.6, [Gro67, IV, Corollaire 17.7.3] implies that H;,; - H; is smooth of relative
dimension d;. This implies that d; =1-d;.

We compute it by using that z is decent for some integer s, that is §¢6=1*(z(5)) =
(sv;)(2) where z € A, is a uniformizing parameter. Let g € G.(L*8) be such that
G- (svz)(2) 97! = (SVrdom)(2) € T(L¥8). Then for every root a of G.(L*2), the
conjugation with (s, 4om)(z) equals multiplication with z{s¥zdom:) on the root
subgroup U, of a. Now Definition 4.3 (v) and (vi) imply that

>0 g-N-g™,
($Vzdom, @) 4 =0 ¢ forall roots aof < g-M-g1',
<0 g-N-g!.

Therefore all roots of g- N - ¢! are positive and the remaining positive roots belong
to g-M-g~'. This implies that s-d; = dim Hs = 3, positive(5 Va,dom » @) = 5 (Ve dom » 20)
and the proposition is proved. O

Lemma 4.8. With the notations from Definition 4.3 there is an Twahori factoriza-

tion

I(Fe[2]) = In(FeB[2]) I (FeB[2]) Iy (Fe#[2])
= Iy (F2e[=]) I (FE® []) I (F2[2])

and

L' I(R) = L*In(R)L* I (R)L* Iy (R)
= L*Tg(R)L*I\(R) " Iy(R)

for every F.-algebra R.

Proof. This follows from [MP96, Theorem 4.2] under the assumption that / and G.
lic on an apartment given by a maximal F2¥((2))-split torus contained in a Levi
M. O

Lemma 4.9. Using the notations and under the assumptions in Definition 4.3, for
any r > 0 there is an Twahori decomposition for every filtration subgroup I, of I, that
18

L*I,(R)=L"I.n(R)- L', (R) - L71, y(R),

L*I(R) = LI, 5(R)- L™ I p(R) - L* I n(R).
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4 Central Leaves

Proof. This follows directly from [HV12, Lemma 4.6]. Note that in loc. cit. the
case that G is split, constant, connected, reductive is considered. But the proof

holds also in our more general case by our assumptions on the filtration subgroup
I, in Definition 4.3. O

Remark 4.10. In the case of a split constant reductive group G. we could set
1,(9) = {9 eL(S) : (g mod 2"") e B(I'(S, 05)[[2]]/(z””+1))}

and I := Iy for the Iwahori subgroup. Here B > T denote a Borelsubgroup and a

maximal split torus of G..

From now on we write x := (1,.S, P, M, z) for the tuple as defined in Definition 4.3.
If G, is split connected reductive every isogeny class contains a P-fundamental el-
ement as defined in [HV12]. We recall the definition of the “usual” P-fundamental
alcove given in [HV12, Definition 4.1] or [Viel4, Definition 6.1] which was first de-
fined and studied in [GHKR10]:

Definition 4.11. Let G. be a split connected reuctive group over F.. Let P be a
semistandard parabolic subgroup of G. containing a mazimal split torus T of G..
Denote by N its unipotent radical and M a Levi sbgroup. Let N be the unipotent
radical of the opposite to P. Let I = InIy Iy be the ITwahori decompostion. An
element € W of the extended affine Weyl group of Gy is called P-fundamental if

5‘($IMZIZ'_1) = ]M,
5’(.%’]]\[1‘_1) cly,

6(35’1[](,95) c [N'

Remark 4.12. (i) Note that for P-fundamental alcoves defined as in [HV12] or
[Vie14] the properties in 4.3 hold if G is constant split (see [HV12, Remark 4.2
and Lemma 4.5]).

(it) If x is a P-fundamental alcove in the sense of [HV12] by [Viel}, Remark 6.2
and Lemma 6.3] one can enlarge M, P and P, such that M is the centrailzer

of the M -dominant Newton point of x if x is decent.

(7ii) In the case of split groups G. each o-conjugacy class in LG.(k) contains a P-
fundamental alcove for an algebraically closed field k by [Viel[, Theorem 6.5]
(even for unramified groups) or [GHKR10, Corollary 13.2.4]. Further proper-
ties of P-fundamental alcoves are given for example in [HV12, Remark 4.2/,
[GHKR10, § 13] and [Viel], § 6].

Lemma 4.13. Let k be an algebraically closed field.
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4.1 Choice of a fundamental element

(i) For every element g € (L*67'I)(k) -z - (L*I)(k) there is an element h e
(L*eé711) (k) with htgo*(h) = .

(i) If g € ©- (L Lgpm)(k) - (L*15)(k), then we can find h € (L*67 140 )(K) -
(L6~ '5) (k).

Proof. (i) follows from (ii) by the argument of [HV12, Proposition 4.8]. Note that,
although loc. cit. assumes that the group G, is constant split, its argument works
in our more general situation with the following modifications (in the notation of

loc. cit.):
— ge (Lo Iy)xL* Iy,
b e L6y,
— rmed(x)-...-o(x) - (L6WIy) -6 (x7t)-...-6*(z7t) c L* Iy,
— Wt exe. 6 (x) - (Lot Iy) -6 (a7t) Lot e L6 .

(i) If g = amn with m e (L*1;)(k) and n € (L*Iy)(k), then Definition 4.3(ix)
yields an element hy € (L*6 110 ) (k) with hgz6*(h;t)z™! = xmat - Mg with

Mas1 € (L6 gi1 0r) (), that is hylam 6*(hg) = xmgs, with
Mgyl = 6*(hgl)x_1(md+1)_lx &*(hd) € (L+]d+1’M)(k)

by Definition 4.3(viii). We may now iterate this process to obtain h:=hg-hge-... €
(L*6 1 gar) (k) with h=tzm6*h = x. Note that the product converges, because
L+5—_1[d,M c L;&‘lM

This yields
h™tge*(h) = htamné*(h) =x- 6*(h™)né*(h).
We set ng := 6*(h")né*(h) € L*I5(k). Now hg = 6"1(ng) € (L*6~115) (k) satisfies
hoxiig 6*(551) =x- -2 hor .
When we set 71y := 2~ hoz = x~16 1 (ng)z then hy = o1 (ny)- ho satisfies
hixng6*(hiY) =z - 27167 (1y) .
Iterating this, we set 7, := 27161 (fy_1)x and by = 6-1(7; - ... - 71p) in order to obtain
hyzig 6*(?11‘1) = xnyyq for every [ > 0. By Definition 4.3(vi) the sequence n; € L*15(k)
converges to 1 and the sequence hy € (L*6-15)(k) converges to an element h €
(L*6-115) (k) with hangé*(h~) = x, that is hh~1gé*(hh™') = x as desired. O
Remark 4.14. The proof of Lemma /.13 also shows that one can find h in
(L6 Tp) (k) if g € 2 (L Tp)(R).
Remark 4.15. If G. is constant split reductive Lemma 4.13 holds by [HV12, Re-
mark 4.2.(b)] or by [GHKR10, Proposition 6.3.1] for a P-fundamental x.
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4.2 Completely slope divisible local G .~shtukas

In this section we define completely slope divisible local G.-shtukas. We follow the
definition given in [HV12, Definition 4.7]. We fix an element x with the data given

in Definition 4.3. Furthermore, we use the following notation:
_[IB = -[M . IN

We consider the natural morphism of group schemes ¢ : 6115 - G, and the induced

functor ¢, from L*6~11p-torsors to L*G-torsors.

Definition 4.16. A local G,-shtuka G = (G,7g) over an F2¥-scheme S is called

completely slope divisible with respect to x if there exists
— an L*6Yp-torsor P over S and
— an isomorphism of L*G.-torsors n: 1, P — G over S,

such that there exists an étale covering S" — S and a trivialization

a:Pg — (L*67p)g satisfying
teanig 6t (nua ) ex- LTI5(S).
The pair (P,n) is called a complete slope division of G over S.

The next results clarify the existence of complete slope divisions.

Theorem 4.17. Let G be a local G.-shtuka over an F?Ig—scheme S with constant

isogeny class [x]. Then the functor Y, on the category of S-schemes T

Y.(T) = {[wmorphism classes of pairs (P,n) where P is an L*6 1 Ip-torsor
over T and n: 1, P — G, is an isomorphism of L*G.-torsors
over T', such that there exists an étale covering T" - T (4.5)
and a trivialization o : Py — (L6 p)
satisfying Loan ' ig 6 (nua) ex- LY IH(T") }
is representable by a scheme which is finite over S. Here (P,n) and (P ,n')
are isomorphic, if there is an isomorphism 6 : P — P of L*6='p-torsors with

n=n"01,0.

Remark 4.18. Note that Y, is well defined, because the condition is independent
of the choice of T" and «. Indeed, if T' - T and & : Pz —> (L*6~1p)7 is
another étale covering, (resp. another trivialization,) then the element H := acoa™! €
L6 5(T" xp T') satisfies 1.an7g6*(ne.at) = H van g 6% (nieat)6*H €
Hx-Lt1p-6"H =ax(x*H'x)-L*Ip cx- L*1p, by Condition (v) of Definition 4.5.
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4.2 Completely slope divisible local G.-shtukas

Proof. of Theorem 4.17

1. Choose an étale covering S’ — S over which a trivialization
B:((L*Ge)s,96") — G

with g = f~17g6* € LG.(S") exists. Consider the functor Y, on the category of

S’-schemes T
Y (T) = {a :T —» L*G./L*6 15 such that a™'g, 6*aex- L*Ip } . (4.6)

The condition a~tg,6*a € x - L*Ip means that over an étale covering 7" — T the
morphism a is represented by an element a € L*G.(T") which satisfies a™'g,, 6*a € x-
L*I5(T"). Then the condition is independent of the covering 7" and the choice of the
element a, because Condition (v) of Definition 4.3 implies L*6~ 1 p-a- L p = x-L* .

We claim that (Y, xg S")(T) is isomorphic to Y/(7"). Namely, we may choose an
étale covering 77 — T over which a trivialization a as in (4.5), respectively an element
a € L*G(T") exists. Then the isomorphism is defined by sending (P,7),, to a :=
pAine.at € L*G.(T") and conversely sending a € L*G.(T") to ((L*67p)1, fa).

Both assignments descend to 7', are well defined and inverse to each other.

2. To prove that Y] is representable by a scheme which is projective over S’ we use
yet another description of Y. We consider the functor on the category of S’-schemes
T

Y/(T)={f:T~L*G./L*67'I such that fg,6"feL*67'[-x-L*T}. (4.7)

The condition f~tg,6*f € L*¢711-x - L*] means that over an étale covering 7" —
T the morphism f is represented by an element f € L*G.(T') which satisfies
[, 6*f e (L*67 ' I)(T")-x- L*I(T"). Then the condition is independent of the
covering T" and the choice of the element f.

The element f~1g_, 6* f lies in the Newton stratum N, (7") by our assumption on
the constancy of the isogeny class of G (notice Remark 4.5 (iii)). Therefore, Condi-
tion (vii) from Definition 4.3 implies that Y/ ¢ (L*G./L*6-11) xgaig S” is representable
by a closed subscheme. Since I and so also 6-!I are parahoric, L6=1I/L*6711 is ind-
projective by [Ricl13a, Corollary 1.3]. Therefore L*G./L*671 is a projective scheme
over F2'® by [HV11, Lemma 5.4], because L*G, c LG, = L6'1 is a quasi-compact
ind-closed subscheme. It follows that 37;’ - S’ is projective.

We claim that Y, and ?ﬁp’ are isomorphic over S’. First of all there is a canonical
morphism Y/ — Y/ comming from the inclusion L*6-115 ¢ L*6=*I. To prove that
this morphism is an isomorphism, we may choose an étale covering X - 3715 over
which the universal morphism f : 17;’ — L*G./L*67'1 is represented by an element
f e L*G.(X"). By faithfully flat descent [Gro67, IV, Proposition 2.7.1] it suffices
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to show that pry, : X' =Y/ X5/ X' > X' is an isomorphism. We now apply [HV12,
Proposition 4.8], which assumes that G, is constant split, but whose argument goes
through in our general case if one makes the following modifications (in the notation
of [HV12, Proposition 4.8)): g € (L*67'y) -x- L*Iy, and h € L*67'1, as well
as hy e L*67' Iy and r; € 6%x - ... -6V x - (L6 Iy) - 6x~1 - ... - 6%~ ¢ L*Iy and
hil-hyexe.. 00D g (L6 (D [y).6(-D =1 .p~! ¢ L*67'Iy. By this argument
we may multiply f € L*G.(X') on the right with an element of L*6-11(X"), called
h in [HV12, Proposition 4.8], to obtain a new element f ¢ L*G.(X’) satisfying
flg., 6 f=x-prex- L*I5(X"). Then f defines a morphism X’ — Y/, and hence
a section s: X’ - X’ of pry, that is pryos =idg,.

To show that s o pry = idxs we consider a T-valued point (a,z’) € X'(T) with
a € Y/(T) and # € X'(T) for a scheme T'. Since pryo (s0pry) o (a, &) = pryo (a, '),
it suffices to show that f,. = pry o (sopry) o (a, ") & pry o (a,z') = a in Y/(T).
Since f, and a map to the same element in Y/(T), we can write a"'f, = pn with
pe L6 Up(T) and n € L*6 1 N(T) by Lemma 4.8. We define p, € L*I5(T) by

alg.6*a=x-p, ex-L*I5(T) and consider the equation

x_ln_lx(:p_lﬁ_lxﬁaﬁ*ﬁ)6*n = m_lfglaxﬁaé*a_lﬁ*fT = x_lfT_lgTé*fT = pr

which yields
(z'ptap, 6*p)-6*n = a7 'nx-pp in LYI(T). (4.8)

Observe that z~1p=ta-p,-6*p € L*15(T) by Condition (v) of Definition 4.3. Applying
Lemma 4.8 to (4.8) we conclude that 2 'nx € L*I5(T), and hence n e x- L*Iy(T) -
xlc (L6~ N)(T) and 6*n e 6*(x- LY IN(T)-271) c L*In(T). Now we successively
apply Lemma 4.9 for the group

-1, !

Ine*(z-...-6%x-6"I-6"2 - a7 = 6%(w-...- 6" -6 Iy-6" a7t a7 I

to (4.8). For [ = 0 we derive that 2~ 'nx € 6*(x - L*Iy - 271)(T), and therefore we
obtain nex-...- 6D g (LD [ (T) - 6D =1 x=t c (L*6~ I y)(T) for
[ = 0 and successively for all [ > 0. By Condition (vi) of Definition 4.3, this implies
n =1, and so a 'f, =pe L*6'I5(T). This shows that a = f, in Y/(T) and so
X' > X’ and Y/ - Y are isomorphisms.

3. We next prove that the morphism ?x’ — S’ is quasi-finite, and hence finite,
and in particular affine. Let k£ be an algebraically closed field and let f € }796’ (k) c
L*G.(k)/(L*6711)(k). We denote by s € S’'(k) its image in S’. Then f~lg,6*f €
(L*6711)(k)-x- L*I(k). By Lemma 4.13 there exists an element h € (L*6711)(k)
such that (fh)-'g,6*(fh) = =. Note that fh e Y/(k) defines the same point as f.
Now if f e ?x’ (k) is any other point mapping to the same s € S’, we represent f by
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4.3 Definition and properties of central leaves

an element f € L*G (k) with f~1g,6*f = 2. This implies that (f~1f)"lzé*(f~1f) =
flg,6*f=x,andsoi:=f1f¢ Autk((L+Gc)k,3:6*) and f = fi. Since x is decent,
this automorphism group is contained in L*G.(F’) for a finite field extension F’ of
F. by Remark 2.35. Since L*G./L*67'1 is a projective scheme, (L*G./L*é-1T)(TF")
is finite, and so we have proved that there are only finitely many points f € Y/(k)

mapping to s.

4. Since faithfully flat descent for affine schemes is effective by [BLR90, § 6.1, Theo-
rem 6] we conclude that Y, is representable by an S-scheme which is finite by [Gro67,
IVy, Proposition 2.7.1]. [

4.3 Definition and properties of central leaves

Denote by VH! the special fibre of the stack V,iLZEHl(C', G)< (see Notation 3.2). It

is a separated Deligne-Mumford stack locally of finite type over F..

We will introduce the so-called central leaf as a reduced closed substack of VH!. In
order to do this we first give the definition of the central leaf in the sense of [HV12]
as a scheme. Our notion of central leaves in the moduli space of global G-shtukas
is closely related to the definition of central leaves for local G,-shtukas intruduced
in [HV12, Definition 6.1].

Denote by F, :=F,, a field such that = := z; as defined in Definition 4.3 exists over
F..

Definition 4.19. Let K be a field extension of F,, and let G, be a local G.,-shtuka

over K.

(i) For a K-scheme S and a local G,-shtuka QZ over S the central leaf is defined

as the subset

C@i,s = {‘9 €5:G; = Qz’,L

closed field extension L//f(s)}.

over an algebraically

(11) If G is a global G-shtuka over a K-scheme S, the central leaves are defined as

the subsets

Co 5= {ses :@i,L = 1. (G)L, over an algebraically
closed field extension L[rk(s)}

and

C(@i)ivs = OCQ“S :
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4 Central Leaves

(iii) If G, = ((L*Ge) i, 2:67) and z = (x;);, we also write
Cmi,S = C@NS

and

Cgs = mC%S.

The definition is independent of the level stucture of a global G-shtuka because the
property for a point of belonging to a central leaf depends only on the local behavior
of a global G-shtuka at its characteristic places.

For each ¢ we fix a tuple (I;,S;, P;, M;, z;) as defined in Definition 4.3. Denote by
F, € Nilp,_ a field such that each z; as defined in Definition 4.3 exists over F, and
is decent.

In the following, we will show that C, is closed in N,.. This is the analogue to [Oor(04,
Theorem 2.2]. Then we get that the central leaf C,, (and C,) exists as a locally closed
substack of V’}—[IlF
type.

By Theorem 4.17 follows:

> Which is in particular a Deligne-Mumford stack locally of finite

q

Corollary 4.20. Let G be a local G.-shtuka over an Fglg—scheme S with constant
isogeny class [x]. Then the central leaf Cy g is the (scheme theoretic) image of

Y, = S. In particular, it is closed in S.

Proof. The image of the morphism Y, — S from Theorem 4.17 is closed. By
construction, this image equals C,s. Indeed, if s € C, g, then there is an iso-
morphism 7 : ((L*Ge).(s)als, 26*) — Go(syus and then ((L*67 1 p)w(s)me,m) with
T’ = Spec k(s)8 and « =1id is a k(s)*&-valued point of Y, mapping to s.
Conversely, if s = (P,n) € Y, (k) is a point with values in an algebraically closed
field k, we obtain an isomorphism « over k with ¢ := t,an'igé*(ni.a™l) € x -
L*I5(k). By Lemma 4.13 there exists an element h € (L*67'1)(k) such that
htg6*h = x. Then ne.a™'h : ((L*Ge)p,x) — G, and hence the image of s in
S belongs to C, s. O

Remark 4.21. Asthe scheme theoretic image of Y, in S, the central leaf Cy g carries

a natural scheme structure. If S - N c V’H;Falg is an étale presentation of the
q

Newton stratum, we will see in Theorem 4.29 below that Y, is smooth over F3®

and in particular reduced. This shows that the natural scheme structure on C, g is

reduced.

Corollary 4.22. Let G be a local G.-shtuka over an ]Fglg— scheme S with constant
isogeny class [x]. Then there is a finite surjective morphism Y — C, g such that QY
is completely slope divisible in the sense of Definition 4.16. If G. =1 is an Iwahori
group, then we can take Y =C, g.
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Remark 4.23. If G, is not an lwahori group, it can happen that Y — C, ¢ does not
have a section, and also that Y — C, g is not étale. See Examples 4.24 and 4.25
below, in which S is the spectrum of a field.

Proof. of Corollary 4.22

The morphism Y =Y, - C,; ¢ from Theorem 4.17 is finite and surjective by the
proof of Corollary 4.20 and QY is completely slope divisible by definition. If G, = I,
then also L*G,. = L*67'G,. = L*671, because G, is defined over F.. Then Y’ —
S’ is a closed immersion in (4.7) and therefore Y — C, ¢ is an isomorphism by
Corollary 4.20. ]

Example 4.24. We show that it can happen, that a local G.-shtuka over a field K
becomes completely slope divisible over a field extension of K, but not over K itself.
Let K = F.(\) where X is transcendental over F.. Let G. = GLyg, . and let I be
the subgroup of G. whose elements are upper triangular modulo z. Let S = Spec K
and G = ((L*Ge) k., 96*) for g = (23). Then x = (}9) and M = G,. Indeed, by
Lang’s theorem [Lan56, Corollary on p. 557] there is a matriz f € GLy(K?8) with
go*f = f, that is with f~1g6*f = x. This matriz f defines a K*&-valued point of
Y! from (4.7). And so Cyp.s =S by the proof of Theorem 4.17.

On the other hand, we claim that there is no K-valued point f of Y,. Note that
here we may take S" =S and Y, = 171’ in the proof of Theorem 4.17. Writing f = (¢}
we want fTgo*f e L*1, that is a?™l — Madc + Aac? — A\ci*1 = 0. We must have ¢ # 0,
because if c = 0, then a = 0 and f is not invertible. By Fisenstein’s irreducibility
criterion, a/c does not lie in K, but generates a field extension of K of degree G+ 1.
So the point [a:c] € Py = L*G./L*I is not K-rational. This proves the claim.

Example 4.25. We show that Y, — C, s does not need to be smooth. Let G. =
GLo . [z and let I be the subgroup of G. whose elements are upper triangular modulo
z. Let © = (39) € LG(F.). Then Ip = {(29) : zlv}. In the fibre above g =
z € Cps(F.) the morphism Y, — C, s is neither (formally) smooth nor (formally)
unramified at the point corresponding to 1 € Y (F.). Indeed, let B =F.[e]/(£9*) and

B := B/(c%). Then the point a = 1€ Y,(B) has two different lifts a = (% ?) in Yy (B)

withy =0 orv = €4, because both satisfy 6*a =1 and " 'a*g6*a= (. 1) € L*Ip(B).
So Y, = C, s is not unramified at 1.

Also, the point a = (19) lies in Y (B), because 6*a =1 and v 'a'gé*a=(19)e

L*15(B). It has no lift a € Y/!(B), because any such lift would be of the form
a=(19)-(1+e9a) e Y(B) with a e F.[z]>2, but then 6*a=(%") and 2 'a ' g6*a =

el 1
et(1-eta)- (7)) = (Ll ) —e0(% 9)-a-(§9) f2- L*Ip(B). So Y, > Cuys is

9-—gz 1 -z 1

not smooth at 1.
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4 Central Leaves

Now we are going to give the notion of the central leaf in the Newton stratum of
VH!. Let x; be as defined in Definition 4.3. The schemes Y,, from Theorem 4.17
above define Deligne-Mumford stacks Y, foralli=1,... n:

Proposition 4.26. Theorem 4.17 gives rise to separated, algebraic

Deligne-Mumford stacks of finite type
yrz‘ - Cl"z c (Nxz XFci leg) c V%Ilgalg (49)
and

Vo i= (Vay xomr, - Xyt Vo,) — Co © (N xg, Fy®) VH];alg (4.10)
F;}g F2'8 q

q

which are defined with respect to T, (G™). The stacks Cy, ¢ Ny, and C, ¢ N, are
closed substacks and are the central leaves in the sense that for every Fglg—scheme S

and every morphism S — V?—[ﬂlr the fibre product S xgqa1 1 C. equals the central leaf
Foe T

alg
q

Cys in S. The morphisms YV, - Cy, and Y, - C, are ﬁn%te.
Proof. Let S; - N, xg, leg, be an étale presentation and let G™ be the universal
global G-shtuka over S;. We observe that Ny = (Ng, gz .. x g NG, ) + Therefore,

re:

the scheme S := (5 XYL, o KT S”)red is an étale presentation of Ny xp, Fale,

alg

Let Y,, = S; be the scherée from T}feorem 4.17 with respect to the local G,-shtuka
fci(guniv) over S; and let Yy = (Y, x5, S) x5 ... x5 (Y, xs, S). Let Cy, 5, € S,
respectively C, ¢ ¢ S, be the scheme theoretic images of Y,, — 5;, respectively of
Y, = S. Then Y,, and Y, and hence also C;, 5, and C, g, are defined as moduli
problems. Therefore they descend to stacks V; - C,, ¢ M, and Y, — C, ¢ N,. The
properties of these stacks follow from Theorem 4.17 and Corollary 4.20. O

We will see in Theorem 4.29 below that V, — SpecF2' is a smooth stack, and
we will compute its dimension. As a motivation for this result, we want to give
an interpretation of ),, and ), as the central leaves in a different moduli space
VHEHY(C,T) in Corollary 4.28 below. For this purpose we begin with the following

theorem.

Theorem 4.27. Let p: G - G’ be a morphism of parahoric group schemes over C,
which is an isomorphism over C' ~ c. Let H c G(A<) = G'(A<) be a compact open

subgroup. Then the induced morphism
ps vIHI(C,G)¢ — vAHI(C,G")e (4.11)
(gvslv"'78n77—g7H’7) — (p*gﬂsla"'asn)p*Tg’H’Y)

is relatively representable by a projective morphism. More precisely, it is relatively

representable by the morphism

((L*GL, [L*Gey) xg,, Be) %, . xw, ((L*GY, [L*Ge, ) xk,, F) — SpecPF,.
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4.3 Definition and properties of central leaves

Proof. Let S — VHIH(C,G")¢ be a morphism corresponding to a global G’-shtuka
with H-level structure (G',7g/, Hy') over S. Let T = Spec R be an affine scheme.
Then the category of T-valued points of the fibre product

S’ = VnHHI(C, G)g XyHHL(C,GN)e S

is the category of tuples ((G,7g, H7), f,a) where (G,7g, HY) € VEH(C,G)«(T),
where f : T — S is a morphism, and « : p,(G, 76, HY) — f*(G',7¢:, H7y') is an
isomorphism in VEH!(C,G")<(T), that is, a quasi-isogeny a: p.(G,7g) = f*(G',7¢')
which is an isomorphism at ¢ and compatible with the H-level structures.

The G-structure on p,G over T is equivalent to a Cp-morphism
Cr = pG/(G xc Cr);

see for example [AH14b, Proof of Proposition 3.9]. Since G = G’ over C ~ ¢, the
restriction of p.G/(G x¢ Cr) to (C' ~ ¢)r is canonically isomorphic to (C' ~ ¢)r.
Note that G(Cr) c G'(Cr) via p as one sees by restricting to C'\ ¢. Both contain
G (Cr):={geG'(Cr):g=1 mod D} as a normal subgroup for some divisor D =
d-[c] with d € Z, and (G’"/G’)(Cr) = G'(Dr). Therefore (G'/G)(Cr) = (G'/G)(Dr)
and (p.G/(G xc Cr))(Cr) = (p.G/(Gxc Cr))(Dr). Since a is an isomorphism over
a neighborhood of ¢ we conclude that the G-structure on p,G over T' corresponds
to a Dg-morphism a : Dy - (G’ ¢y Dg)/(G x¢ Dg). By [AHl4a, Remark 5.2 and
Lemma 5.3], the space Dy = [IiL, Spec (F.,[2.]/(2) ®r, R) decomposes into the
disjoint union of Spec (F, [z,]/(z2) ®g, R)/a; for a; = (A®@1-1® (s;A\)¥ : AeF,,)
and j € Z/[F., : F,]Z. The a; are cyclically permuted by o and the graph Iy, is
contained in the component for 7 = 0. The compatibility aop.7g = f*7g/00*a outside
I's, thus implies that the value of a on the component for j = 0 uniquely determines
a on all the components for 7 # 0. On the former component it corresponds to an
F..-morphism a: T — I (G')/L*G,,. After trivializing I',,(G') on an étale covering
of S, we see that the fibre product S’ has the form claimed in the theorem. Since
L*G., is parahoric, LG, /L*G,, is ind-projective by [Ricl3a, Corollary 1.3]. Since
L*G!. c LG.,, is a quasi-compact ind-closed subscheme, L*G /L*G,, is a projective

scheme over ., by [HV11, Lemma 5.4]. This proves the theorem. O

Corollary 4.28. If 6/ 1; = I; for one 1, let I be the parahoric group scheme over C
which coincides with G outside c¢; and with I; at ¢;. Then ),, equals the central leaf
Cra, in VEH(C,T)¢ x5, F®.

If 67 1; = I; for all i, let I be the parahoric group scheme over C' which coincides

with G outsice ¢ and with I; at every c¢;. Then Y, equals the central leaf Cr, in
VHHY(C,I)e x5, F3®.
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Proof. The group scheme I comes with a morphism p : I - G. The projective
morphism p, from (4.11) induces morphisms of Newton strata (N7),, = (Ng).,
and (N7); - (Ng), in the two moduli stacks. We choose an étale presentation
S = (Ng)a,, respectively S - (Ng), over which T, (G"™") can be trivialized. Then
S is reduced and (N7)a, x(wg),, S = (L*Ge,[L*1.,) xp,, S, because L*G,,[L*1,, is
smooth over [F.,; see Proposition 4.6. The description of Vg, in terms of YC’;IZ in
(4.7) shows that ?I’x = ?G’x, and hence Vg 2, = Vi, =Croa,- O

We will now prove the smoothness of ), and compute its dimension without using
Theorem 4.27 and Corollary 4.28. Our proof is an adaption of [HV11, Theorem 5.6],
which is inspired by Corollary 4.28. For every ¢, let L; be the completion of the
maximal unramified field extension of ()., and recall from Definition 2.33 the Newton
cocharacter v,, : Dr, - G, 1, where Dy, is the diagonalizable pro-algebraic group
over L; with character group Q. Over an algebraic closure L?lg of L; we can choose
a maximal torus 7" and a Borel subgroup B of G.,. With respect to this Borel
subgroup we let v, dom @ Djaie = T be the unique dominant homomorphism,
which is conjugate to v,, in Glci and er let 2p; be the sum of all positive roots of T'.
Then

<Vr¢,doma 2@2) € NO (412)

is well defined.

Theorem 4.29. The algebraic stack Y, obtained in Proposition 4.26 is smooth over

Spec IFZlg of relative dimension i1 (Va, dom » 20i)-
Note that the dimension formula is independent of the parahoric model of Gg,.

Proof of Theorem 4.29. Our proof proceeds by computing the complete local ring
0, = @\ygxwalg Ky of YV, at a point y € Y, (K) for an algebraically closed field K. Note
that if S — Y, is an étale presentation and s € S(K) maps to y, then this local

ring is canonically isomorphic to the completion @SXFalg ks of the local ring at s. By
q

Propositions 4.30 and 4.7, all the complete local rings @y are regular of dimension
o1 (Vay dom » 20i). Since IFZlg is perfect, regularity is the same as smoothness, and

the theorem follows. O

It remains to give the proof of the following proposition.

Proposition 4.30. The complete local ring @y (see the proof of Theorem 4.29) is
isomorphic to the complete tensor product D := D1®k ...®xD,, of the completions
D; of the local ring of

(L*1g [x;t Lro7 g, - @) xpaie I at the element 1.
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4.3 Definition and properties of central leaves

Proof. 1. We first define a K-homomorphism v : 6y — D. Let m ¢ D be the maximal
ideal. The point y maps to a point in VH!(K'), which corresponds to a global G-
shtuka with H-level structure (G, Hvo) over K. The point y € Y, (K') corresponds
to complete slope divisions (P;,7:0) of L. (G,) over K. Since K is algebraically
closed, there are trivializations f; : ((L*Gci)K,gi’(ﬁ;) — fci(go), and then y
defines an element a; € Y, (K) for all i. Let a;¢ € L*G,,(K) be a representative of
a;o. By Lemma 4.13 we may replace this representative without changing a; o such
that a;(l) “Gio- 07 (aip) = x;. We choose a lift a] € L*G,,(D) of a;. Since D is a K-
algebra, we may take for example a; = a;. Since D has no non-trivial étale coverings,
we may choose representatives nj € L*Iy (D) with nf =1 mod m of the structure
morphisms SpecD; — L* I, / ;b Lot ~, - Ti. We consider the local G,-shtukas
Gl = ((L*G.,)p,g67) over D where g := al-x;-7;"" - 67(al)™! € LG, (D). Since

)

al =

i = a;0 mod m, and hence g/ = g;p mod m, the local shtuka Q; is a deformation
of IA“CZ. (G,)- By the Serre-Tate theorem 2.24 these deformations induce a global G-
shtuka G’ over D, which is a deformation of G, with isomorphism 3 : g = I, (G").
With the H-level structure ' := 7y, the pair (G', Hy') lies in VH!(D). Moreover,
a} induces a point in Y, (D), because a; 'g; 6;(a}) = x;n;~'. This yields the point

(f;, nl) = ((L*&*lfpi ), {a;) € V., (D). Alltogether we obtain a morphism SpecD —

Ve Xgatis K such that the maximal ideal m maps to our initial point y. Since D is a
- q

complete local ring, this morphism factors through a K-homomorphism v : (Z - D.

In particular, the maximal ideal m, c O, equals v=!(m).

2. To prove that v : @y — D is an isomorphism, we consider local Artinian K-algebras
A with residue field K and points y4 in Y, (A) which are deformations of y € Y, (K).
The image of y4 in VH!(A) corresponds to a global G-shtuka with H-level structure
(G, Hv) over A which lifts (G, Hy). The point y4 € Y,(A) corresponds to complete
slope divisions (P;,n;) of fci (G) over A lifting (Pio, ni0) for every i. We make the

following

Claim. For every local Artinian K-algebra A with residue field K and for every de-
formation ya = (G, Hvy, Pi,m;) € Vu(A) of y € Y, (K), there is a uniquely determined
K-homomorphism u : D — A and an equality (G, Hvy, Pi,n;) = w*(G', HY', P}, 1)) in
V. (A).

3. The claim implies that v : @y — D is an isomorphism as follows. It suffices
to prove for all I that v, := v mod m? : @y/mgl — D/md" is an isomorphism. We
first take A = @y/mgl and the pull-back (G, Hv,P;,n;) under Spec A — ), of the
universal tupel over ). Then the claim provides a K-homomorphism u: D — @y /mgl
which automatically satisfies u=1(m,) = m. It induces the K-homomorphism w; := u
mod md' : D/md" - 5y/m§l. It suffices to show that wu; is inverse to v;. By definition
of the morphism v, we have v} (g, Hv,Pi,mi) = (G, Hy', P!, 0t in J@(D/mql), and so
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uvi (G, Hy, Pi,mi) = (G, Hy, Py, m;) in V:(A). By the universal property of V,, the
compositions of Spec A - ), with either Spec (ids) or Spec (v;u;) coincide. Since
@y — A is surjective, we conclude vju; =idy.

To prove that wv; = id,, . we take A’ = D/md" and the tupel (G',H~',Pl,n!) in

D/md
Y, (D/mi"). Then both K-homomorphisms wv; and id,, jma Satisfy the assertions of
the claim. By the uniqueness, we obtain wv; = id, il This shows that v is an

isomorphism.

4. It remains to prove the claim. We let m4 c¢ A be the maximal ideal and set A; :=
A/mi. By induction on [ we construct the uniquely determined K-homomorphism
w : D — A, Forl=0 we can take u; = idg : D - D/m = K - K = A;, because
(G, Hy,Pi,ni)k = (G, Ho, Pios o) = (G's HY, Pl k.

Let us assume as induction hypothesis that we have constructed a uniquely de-
termined K-homomorphism w; : D — A; with (G, HYy,Ps,1:) 4, = u;‘(Q',H’y’,f;,nD
in Y, (A;). The latter means that there is a quasi-isogeny ¢; : u;G' - G 4, of global
G-shtukas, which is compatible with H+y" and H~ and induces isomorphisms at
all ¢; of local G,,-shtukas T',,(¢;) : Uff‘cl (G) - I, (G)a,, and there is an isomor-
phism &;; : (L*67'p)a, = u;‘f; = ﬁ',Al of L*6~11p-torsors over A; satisfying
7; mod mi 01,0;) = f’ci(gol) ou;n;,

fci (901)

uile, () I (9)a, (4.13)
uyn; i
— L,(.(SM —
L;@U?Pé L*P’i,Al .

We choose a lift 0,11 ¢ (L*671p ) a,,, s Pi.a,., over Ay of the trivialization d;

and consider the isomorphism of local G,-shtukas
Al _ . ~ A
wz‘,zu :=1; mod mj o L*5u+1 : ((L+Gci)Al+1,$iPi,l+1U¢ ) - Fci (Q)AH1

with p; 1 € LT1p(A;r1). Here we use that A, has no non-trivial étale cover-
ings and so the isomorphism a from (4.5) for the complete slope division P; 4,
can be chosen over A;,;. Then .« ni‘lfci(Tg)@(m veat) € @ - L5 (Ary), and
Vit U (76) 670 pe1 € 23 LT (Apy), because a0 8441 € L6715 (Ar1). We write
Dige1 = Migs1 Ny with mipen € Ly, (A ) and 7100 € LMy, (Ajpr). Since 940 =
fci(cpl) ousn! mod mz, they satisfy m; ;.1 =1 mod mi‘l and 7,41 = w(n)) mod mi.
Observe that 67 (m; 1) = 1 implies (z;mie1270) ™ - 2 Diger - 67 (i mag a7t) =
x; ﬁ;llH. Using that @; m; 1 27t € L6711y, (A1) by Condition (v) from Defini-
tion 4.3, we replace ;.1 by the isomorphism 9; ;.1 0 2; M, 141 xi‘l, and hence ;1,1 by

the isomorphism

-1. =1 A "o T
wi,lﬂ OXiMyl41T; - ((L+GC¢)A1+1 y L nz’,l+1(7;) - Fci (Q)Ahl
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without changing ¢;; and ;. Consider the following diagram

n;
Spec Apyy ——— LIy, LIy [oit - L6 g, - s (4.14)

—

-~ ~
-~
—
-~ <

Spectijag T~ = -

—

Spec A; SpecD —=SpecD;

Specuy

in which the top row is defined by the element n;;,1 € L* Iy, (Aj1). The commutativ-
ity of the outer rectangle follows from 7,41 = w;(n}) mod m‘jAl. Since n) =1 mod m,
the morphism in the top row maps the closed point m4 to 1, and hence this mor-
phism factors through SpecD;, because A;,; is a complete local ring. This defines
morphisms ;41 : D; - Aj4q for all i. Together they yield a morphism u;.; : D - Ajq
with w1 (7)) = Ny ger-2;-hi-x; for some h; € L7675 (Araq) with h; = 1 mod mi. Ob-
serve that 67 (h;) = 1 implies h;-x; up (n)) -6 (hi) ™ = 2 ﬁ;llH. We now replace 6; 141
by 0;+10h;, and hence ;1,1 by 1;1410h; : ((L+GC¢)AH1axi Uz+1(ﬁ§)_16;) o fci (9) a,.,
without changing ¢,; and ;.

The quasi-isogeny ¢; : u/G' - G 4, lifts by rigidity (Proposition 2.14) uniquely to a
quasi-isogeny ;.1 : “fug s A of global G-shtukas over A;,;, which is compatible
with the H-level structures. Since I', (1) and 7; 0 1.60;541 0 uf,,(n))~ are quasi-
isogenies u;ﬂfci (G - f‘ci (9) a,,, which both lift I..(¢1), they coincide by rigidity
(Proposition 2.12). This shows that I, (¢p1) is an isomorphism of local G, -shtukas
and the lift to A;,; of diagram (4.13) commutes for all i. So (G, HY,Pi,ni)a,,, =

ur,, (G, H~',P, nt) in YV, (A1) and this proves the existence of ;. in our claim.

5. To prove the uniqueness of u;,; assume there is another K-homomorphism ;1 :
D — A which satisfies the assertions of the claim. Then there is a quasi-isogeny
Dis1 a;+1gl - QAZ ) of global G-shtukas and an isomorphism &-JH : ﬂ;‘+17_3§ — fiw‘hu

of L*6~11p-torsors over A;.; which make the following diagram commutative

3 Lo (@) - Le,(¢r) A
’ ci +1 i \Pl+1 ~ /
ul:lrcz‘ (g ) FCi (Q)AZH ul:lrcz‘ (Q )
wt o . aton
1417 T R 1417
— L*(Si,l+1 — L*5z;z+1 o, =
L*uly:rllpg L*,PivAH—l L*ul*JrI,P; :

The uniqueness assumption of our induction hypothesis implies w1 = w; = Uy

] A1 ~ ]
mod m%, and hence ¢4 = ¢ = @11 mod m% and 6,141 = 6y = ;51 mod m?. Thus

h:= 5;11+1 005141 € L*67 5 (Ary1) satisfies h =1 mod mi and
h i Ul+1 (ﬁ;)71 =T ﬂl+1(ﬁ;)71 . 6f(h) =T ﬂl+1(ﬁ;)7l.
So in fact

h = ZT; 'L~Ll+1(77lg)71ul+1 (T_L;) l‘;l € L&’lNi(AHl) n L+a'71[pi(Al+1) = L+6'71[Ni(Al+l)
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4 Central Leaves

by Definition 4.3(v). This shows that w1 (n}) = @41 (n}) - 7 hz;, and therefore the
compositions of both Spec u; 1,1 and Spec @; ;.1 with Spec D; — L*INZ,/:E;I-L+6;1[NZ,-:E¢
in diagram (4.14) are equal, because w; ;,1 and ;.1 are uniquely determined by their
value on 7). By the definition of D; this shows that w1 = @41 : D; - Ay and

Uper = Uper : D — Apq as desired. ]

Furthermore, the central leaves are smooth. This property is the anologue of
[Oor04, Theorem 3.13] resp. [Man04, Proposition 2.7]:

Proposition 4.31. Denote by F, a field in Nilp A. such that x is defined over F,.
The central leaf is smooth and locally of finite type over F.

Proof. We follow the idea of the proof of Oort (see [Oor04, Theorem 3.13]) resp. Man-
tovan (see [Man04, Proposition 2.7]).

We only have to show that C, is regular because over perfect fields this implies the
smoothness. Since C, is a locally closed substack of VHy , which is a stack locally
of finite type over IF,, we get C, is locally of finite type over F,.

Consider an étale presentation X — C,, where X is a scheme (which is reduced by the
construction of the central leaf). Furthermore, we choose a presentation Y - VH!,
where Y is a scheme. Now we have to show that X is a smooth scheme. We show
that X is regular at each closed point.

First, we proof that X is regular in each point if it is regular in one point:

Fix an algebraic closure leg of F, and let
y=(G.7) e X(F}*)
and
y =(G,7) e X(F;*)
be closed points.

Consider the completion @Xﬂ of the local ring of X at y, resp. @X +at y and

7y
likewise Oy, and Oy

Remember the deformation functor Defo investigated in [AH14a, § 5.3] (see Defini-
tion 2.23) and use Serre-Tate (Theorem 2.24) to get:

Defo(G, ) HDefo(fcz-(g,T))

and

Defo(G',7') = [] Defo(T',(G', 7).
The definition of the central leaf implies:

Defo(G,7) = [] Defo(L*G.,,2:6) = Defo(G', 7).
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4.3 Definition and properties of central leaves

Since

Defo(G,7) = (’A)Yy and  Defo(G',7') = @Yyyn

we get

Oy’y = Oy’y’ .

Via the latter isomorphism, the definition that defines @X,y as a quotient is the
same as the one that defines O x,/- In fact, this condition is defined on the universal

deformation of the central leaf. Therefore, we get an isomorphism

Ox Y

IR

OX,y’ .

By [Gro67, IV3, Corollaire 6.12.5] the regular locus is open. Since the Fglg-valued
points are dense, it is sufficient to consider them. It remains to show that there is
at least one regular point:

This follows from the fact that C, is reduced locally of finite type over SpecF, as
it is locally closed in VH and VHj is locally of finite type over F,. So C, is
generically regular and contains a smooth point (and even an open dense subset of

smooth points). O
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5 Igusa varieties

We want to decompose Newton strata in the special fibre of moduli spaces of global
G-shtukas into a product of so-called Igusa varieties and truncated Rapoport-Zink
spaces.

Following an idea of Mantovan in [Man04] and of Harris and Taylor in [HTO01],
we introduce the Igusa varieties as coverings of the central leaves. Therefore, our
decomposition is an analogue of the covering of the moduli space of abelian varieties
considered by Oort in [Oor04] and which was generalized by Mantovan as a product
of the central leaf and the “isogeny leaf”. In the case of a constant, split, reductive
group G. this was done by Hartl and Viehmann ([HV12]) for the deformation space
of local GG.-shtukas.

Mantovan considers in [Man04] abelian varieties and their associated p-divisible
groups. Their p™-torsion define the so-called truncated Barsotti-Tate groups, which
are finite flat group schemes. Mantovan described in [Man04, §3] (see also [Man05,
§4]) Igusa varieties as schemes representing isomorphisms between (two of) those
BT-groups. For global G-shtukas, the idea analogous to Harris and Taylor [HT01]
is to parametrize partial trivializations of the local G -shtukas at the characteristic
places.

We define in Definition 5.4 the Igusa variety by using a trivialization of the Levi part
of a complete division of the local G -shtuka G, := (G;, 7g,) = ., (f*G"™") associated
to the universal global G-shtuka G"™. Here f denotes a presentation f: S — ).
with V,. as in Proposition 4.26.

We fix an element x = z; where the index ¢ means that we fix z; associated to
G., for a characteristic place ¢; with the conditions given in Definition 4.3. We
write A = F2£[2]. We remember that the Levi M, is defined over F2¥((z)). By our

notation, M; is a smooth group scheme over F., [z]. Under this convention we have:
L M(R) = LG (R) 0 LM(R)
LiNi(R) = Li,Ge (R) 0 LNi(R)
L Ni(R) = L}, G..(R) n LN;(R)
P,(R) = L},G.,(R)n LP,(R)

L+
with P, = M;N; for every F2&-algebra R.

Lemma 5.1. (i) For all g; € L*I);, we have g;'- L} Iy -g; = L} Iy, .
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5 Igusa varieties

i) For all g; € L*M; we have g-*- L+ N; - g; = L+ N,.
(it) g 9; - Ly Ni-gi = Ly,
(iii) For all g; € L*M; we have g;*- L},G,, - 9; = L3, G, .

Proof. Calculate in L*G,, /L#,G.,(R) = G,,(R[2]/(z™)) for an F2-algebra R: Let
ne L N;. Then g-'ng = g7'g = 1 there. O

We define
(L*M;)(T) = M;(L(T', Or)[2])

and
(L MA\L™M;)(T) = My(L(T, Or)[2]/(z™)).

The second definition makes sense because we have the following isomorphism:
Lemma 5.2.

¢:{ge L'M(T) : g=1 mod z"\M(I'(T,Or)[z]) > M;(I(T, Or)[=]/(=")
is an isomorphism.

Proof. We show the above equality
{ge L"M;(T) : g=1 mod 2"} \M;(I'(T,Or)[z]) = Mi(T(T,O07)[2]/(z™)

and the equality to the corresponding quotient of sheaves.

In fact, ¢ is injective because we can consider M; € GL, r[] closed for some integer
=1y, that is as V(Fy, ..., Fy). We can write the elements in GL,pp.j as 372 bij2/
with b; € I'(T, Op)™", where by is invertible. So F, (. b;27) =0. So

¢ injective < ¢ (1) =1<g=1 mod 2"

¢ is also surjective:
Since M; - SpecF,[z] is smooth, there is a lift.

In fact we have
M,(T(T, Op)[£]/(=")) = Homg, i (Spee (T, Op) [ /(="). M,).
Note that we have the general fact
Mor(Y, X') = Mor(A,T'(Y,0y)) = Mor(SpecI'(Y, Oy), X)

for X = Spec A affine.
Since M; is smooth over F,[z] we get that for all g € M;(I'(T,Or)[z]/(z™)) there
isa g € M;(D(T,Or)[2]/(z*1)). O
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Proposition 5.3. Let M; be an L*M;-torsor on S.
The functor
m\ Isom : (Schemes on S) — (Sets)

with
m\ Isom(T") := {j : M; r>(L*M;)r is an isomorphism mod L} M;(T)}
for an S-scheme T is represented by an affine scheme of finite type over S.

Proof. We choose an étale covering S* — S together with an isomorphism
a:M; > (L7 M;)g .

For T'— S" let ag : M1 — (L*M;), be the induced isomorphism. We consider the

following isomorphism
B :m\Tsom xgS > (L, Mi\L* M)
given by
T - m\Tsom x5S : (j : Myp—">(L*M;)r) v j oz
and define the inverse map by
} = j o Q.
This is well-defined as it is independent of the choice of the representative j: Let ;'
be in the same equivalence class of j, that is j' = g-; for an element g € L M;. Then
g.} I—)gajaaTE‘}.aT

Now we show that the scheme on the right hand side is a scheme of finite type and
then we can deduce that also the one on the left hand side is a scheme of finite type
over S’

By the above Lemma 5.2,
¢:{ge L"M(T):g=1 mod z"}\M;(I'(T,Or)[2]) - Mi(I'(T, Or)[=]/ (=)

is an isomorphism. Now consider the Weil-restriction Resg.j/(.m)r GLy F[21/(2m)-
Since it is equal to GL, x M™! it is affine and of finite type over F,. Because
of the definition of m\Isom(T") we have

m\ Isom L;rn]WZ\LJr]\fZ c ReSF[[z]]/(zm)UF GLT,]F[[Z]}/(zm)

is closed as it is described by the above vanishing-ideal. Since it is a closed subset
m\ Isom is affine of finite type over F.

Now we want to show that m)\ Isom is affine of finite type over S. We do this with
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5 Igusa varieties

a descent argument:

We have to show that there is a scheme X over S with X' := m\ Isom xpS" = X xgS".
So consider the fibre product S” = S" x5 S" and the associated projections pr; :
S'xg 8" > Sresp. pr;;: 8" =5 x5S x5 - 5 xgS" the projection on the (i, j)-th
factor and let d: S — S" x5 S" be the diagonal.

Set h:= pricopriat : (L*M;)g»>(L*M;) g, so h defines an element in (L*M;)(S").
Then prj;h = prjaopria~t = priaoprjatopriaopria~t = pri,hopri;h and d*(h) = id.
Therefore, we have the desired cocycle condition.

Over S” we consider the following diagram:

pr; X’ pry X’
g1 H§1 g2 Néz
pri(m\ Isom) prs (m)\ Isom)

where §; is given by j = jo pria resepectively g; by j = jopria~! and analogously
Ga Tesp. go. So fis given by j = jo priaopryat = joh mod z™ where h is given
by the above equation. As before the cocycle condition holds over S” and we have
X' = X xgS for a scheme X over S. It is affine of finite type (because this property
descends by [Gro67, IV §2, 2.7.1]. O

In the following we fix for every i the data (I;, P;, M;, x;) for the group G,, as in
Definition 4.3. We consider the natural morphism of group schemes ¢:6;'15 - G,
and the induced functor ¢, from L*&;'Ip-torsors to L*G.,-torsors. We recall the
stacks

Vo, — Cy, C V’H];Zlg and

Vo = (Vay Xga1 e SVHL, Vo,) > CaC V/H%alg
Fgg Fgg q
from Proposition 4.26.

Definition 5.4. (i) We choose a presentation f:S — Y., such that the univer-
sal complete slope division (P;,n;) of fci(f*g‘miv) = G, = (Gi,g,) over Vs,
possesses a trivialization a; : P; g —> (L*6;11p)s satisfying

Leay M 7g, 67 (i Leat) = xymyng € ;- L*I5(S). (5.1)

For an integer e; > 0 we define the Igusa variety of level e; as the functor Ig,,

on the category of S-schemes T by

Igel(T) =
{jei € (L+&;1IM1/L+6;1]617ML)(T) : 6;(];L1)xz_1]61xlml € L+]617M1(T) } :
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Here we choose a representative jo, € (L*6; Iy, )(T") over an fppf-covering
T" - T. Note that then 67 (je,), €7 e, xi, i € LTIy, (T7) by Condition (vi) from
Definition 4.5. Also the condition is well defined, because if j., is multiplied by
he L*6; ., v, (T") on the right, then &7 (jz1)x;! je,xim; is multiplied on the
left with 67 (h=) and on the right with m; xz; ha;m;, which lies in L* 1., p, (T")
by Condition (viii) from Definition 4.3.

(11) Likewise, we choose a presentation f:S — Y, such that Condition (5.1) holds
for all i. For a tuple of non-negative integers e = (e;); we define the Igusa

variety Ig, of level e as the functor on the category of S-schemes T
I,(7) = { (o)) € [T e, (7))

Proposition 5.5. Ig,. is representable by a closed subscheme of

(L+6{1[Mi/L+5QIIei,M¢) gz S, and is hence of finite presentation over S.

Proof. This follows from Condition (viii) from Definition 4.3. O

Proposition 5.6. There exist algebraic stacks Ig,, = YV, = Cy, ¢ VH!

Fa's
Ve = Cy C V?—[ﬂlralg with 3g., xy,. S =1g,, and Ig, xy S = 1g, for the presentations

S = Vi, respect%vely S — Y from Definition 5.4. They satisfy

and Jg, —~

Jg. = (Jg., XUHL, - X! Jg.,)-
q

alg
]Fll

Proof. Let 5" := S xy, S and consider the two projections pr; : 5" - 5. Let
prilg., = Ig,, xspr,S”. Then the image h of h = prio; o pria;t € L6715 (S")
in L*67' 1, (S") satisfies the cocycle condition proz(h) o p12(h) = priz(h) where py
denotes the projection on the (/, k)-th factor of S := Sxy, Sxy, Sforl ke {1,2,3}.
Moreover, it satisfies
v pri(ming) = wpriogn; g, &7 (niepria;t)
= hlupriain; g, &7 (s vpria;)o7h

= hly, 'prg(miﬁi)@*ﬁ

We obtain an isomorphism priIg,. — prjlg,., je, = je,h which satisfies the cocycle
condition as h satisfies it, and so this gives a descend datum on Ig, . The groupoid
(prilg,,,lg. ) is an algebraic stack Jg,. over ), as desired.
The proof for Jg, proceeds analogously and the last equation for Jg, follows
directly from Y = (Y, XOHl,, XTI, Vi) = Cp © V’H%Zlg. O
a a

In the next chapter we will prove in Lemma 6.12 that Aut((L*Ii)]Falg,:cﬁ;) c

L6711, (F32), but we already use this result here.
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5 Igusa varieties

Proposition 5.7. Let I'; be the image of Aut((L*Ii)]Filg,xﬁ;) in
(L*&i‘lIMi/LJf&;lIeZ.Mi)(Filig). Then the morphisms jée,- — Ve, and Jg, — Y are
finite étale Galois coverings with Galois groups I';, respectively I' := [], ;. In par-
ticular, the morphisms Jg,, - Cy, C V’Héglg and Jg, - Cy C V?—léglg are finite, but in
general not étale.

Proof. We use the presentations S — V,,, respectively S — Y from Definition 5.4.
Then we have to show that Ig, — S, respectively Ig, - S are finite étale Galois cov-
erings. The surjectivity follows from Lemma 4.13, which shows that for every point
s € S(k) over an algebraically closed field k there is an element h e (L*6; 15 ) (k)
with h=tz;m;(s)n;(s)6*h = x; (see Remark 4.14). Then the image j., of A7 in
(L*67 ay, [L¥67 e, ar,) (K) lies in Ig, and maps to s.

To compute the fiber above s, we take the representative of j., from the previous
paragraph with 67 (j;1)x; je,zim;(s) = 1. For every g; € Aut((L*Ii)Fg;g,zi&;), the
element jo, := g;je, € (L*67 1ay,) (k) satisfies 67 (j )7 e, zimi(s) = f, and hence
gives a point in Ig, (k) above s. For two such g; the points in Ig, (k) coincide if
and only if the images of the two g; in I'; coincide. Conversely, let j’ei e Ig,. (k)
be any point mapping to s and choose a representative j,, € (L*6; 1y, )(k). Then
mf = 67 (jo) a7 je,wimi(s) € L1, v, (k). By Condition (viii) of Definition 4.3 we

have 67 (je, ), 67 (jo1) € L* L., ar,(k), and by Lemma 4.13 there is an element h e

(L*67' L, 00, ) (k) with B (67 (Ge, )t 67(521)) 67 (B) = 25, whence

67 (o W)ai b Jeeimi(s) = 67 (32)) 67 (e ) ()™ 67 (G )a Jeywimi(s) = 1.

Replacing the representative j,, by h-'j,, yields &7 (351-1)1‘{13%%”%‘(5) = 1 with-
out changing the point jei € Ig,. (k). We now take the representative of j., from
the previous paragraph with &7 (j;1)x; je,zim;(s) = 1 and set g; := Jei jo!. Then
giz; 67 (g;') =x; and g; € Aut((L+Ii)]Fg;g,x1-6i*). This shows that I'; acts simply tran-
sitively on the fiber of Ig,. above s. Z

To show that the maps are étale, we use the infinitesimal lifting criterion [BLRIO,
§2.2, Proposition 6]. Let B be a ring and B = B/I for an ideal I ¢ B with I2 = (0).

In particular 61 = (0) and the §; := #F,,-Frobenius 67 on B factors
B— B LB

b ~» bmodl ~ %,

Consider a commutative diagram

Spec B Je: Ig,
|
Spec B/ S
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in which we claim the existence of a uniquely determined dashed arrow. By the
uniqueness we may replace B by an étale covering. After replacing B by an étale
covering and B by the unique induced étale covering [Gro71, Théoréme 1.8.3], je,
is represented by an element j., € L6711y, (B) with o (};ﬁ_l)x;l}eiximi = M, €
L*I,, a.(B). Since I, , is smooth over A, by Condition (viii) from Definition 4.3,
there is a lift m] € L*I. p;(B) of m. Then j., = z;f*(jo,) m,m; a;! lies in
L*67'1),(B) by Condition (viii) from Definition 4.3 and lifts j.,. It satisfies j,, €
Ig. (B) and makes the above diagram commutative, because 67 (je,) = f*(Je,) and so
67 ()7 e, mm; = m) € L*1,, v, (B). Moreover, this lift j., € Ig, (B) of j., € Ig,. (B)
is uniquely determined, because any other lift j,, € Ig, (B) with 6} (3;1.1)95{13@%77% =
! e L*1,, u,(B) satisfies 67 (je,) = f*(Je,) = 67 (Je,), and hence

17 N-1~r -1, -1 +a-1
Je; Je = xym;(my)~ mim; w; € LT6; Iei,Mi(B)

by Condition (viii) from Definition 4.3. So je, = je, in Ig, (B). This shows that
Jg., = Ve, is étale.

Using the argument given by Harris and Taylor in [HTO01, Proposition II1.1.7.,
p.69], resp. [Man04, Proposition 3.3] the above is sufficient to show the claim of the
Proposition. O

Proposition 5.8. For every pair of integers e, > e; the projection
(L+0A'i_1[Mi/L+a-i_1[6§,Mi) - (L+6’;1[M¢/L+a-i_1[€i,M¢)
induces finite, étale, surjective morphisms Jg,, - Jg,, and Jg, — Jg,.

Proof. That these morphisms are finite étale follows from Proposition 5.7. To prove
surjectivity, let j., € Jg..(k) be a point with values in an algebraically closed field .
By Condition (ix) from Definition 4.3 there exists an element h € (L*6711,, as,) (k)
with h=taz; 67 ha;t = je,xim; 67 (5.1 )a;t mod L* e, (k). Then jeiq = hje, lies in

Jg.,,1(k) and is mapped to j.,, because
67 (hje,) " Wjeswimy = 67 (je,) (67 () a7 hje e h1) 67 (Je,)
€ L+Iei+1,Mi(k) .
O

Remark 5.9. We use a definition of Igusa varieties different to the one given by
Mantovan in [Man04], because in loc. cit. it is not clear wether the analogue to
Proposition 5.7 holds there as it is not clear (and not proven in loc. cit.) that the
morphisms 1g, ., — g, between the Igusa varieties are surjective. Furthermore,
we do not want to use the intersection of the scheme theorestic images of some
morphisms similar to [Man04, 3.1.2] to define the Igusa variety as this implies some

problems to show the finiteness in Proposition 5.7.
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5 Igusa varieties

Remark 5.10. Note that in our definition of the Igusa variety we do not require
that over the complete local ring @c,s of the central leaf the local G,-shtuka QZ is
isomorphic to the fized G; = (L*G,,,x;6}). If we would have such an isomorphism
then we would get that the central leaf is zero-dimensional. This would be a contra-
diction to [HV12, Corollary 6.8] and the proof of loc.cit.

In fact, fix c: SpecF. - C™ and denote by S a presentation of

H,Z.

VH =V, “H'(C,G) xcn SpecF,

the special fibre of the moduli space of global G-shtuks. Write

=1

C£7S = {S €S gA-’H(S)alg = @Z’7K(S)alg fOT alll}

for the presentation of the central leaf associated to G, which is locally closed in
VHL.
Let s € S be a point. Consider the complete local ring @vw,s- By Serre-Tate it is

isomorphic to the product of the universal deformation rings:
@V’Hl,s ~[] Defo(Gi.).
Consider the projection onto the i-th factor. Without loss of generality assume i = 1:
[ Defo(Gis) - Defo(G )

and consider
Oviurs > Ocs = Oy sJa > R

with R = Ogyp ofa+(0) x (1) x ... x (1). Now, if there was an isomorphism
gAl,R > Gig
this would correspond to the equation:
(Defo(Gy,) - R) = (Defo(Gy,) - k(s) € R).

This would imply R is equal to the residue field k(s) which is a contradiction.
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6 Product structure

Now we want to construct a morphism from the product of our Igusa variety (that
covers the central leaf) and “truncated” Rapoport-Zink-spaces to the (Frobenius-
pullback of the) moduli space of global G-shtukas.

We show that the morphism from Main Theorem 0.1 is finite as it is quasi-finite and
satisfies the valuative criterion for properness.

The construction of the morphism is based on the one given by Mantovan [Man04].
We give a concrete construction of the morphism which is based on the uniformiza-
tion morphism established by Arasteh Rad and Hartl in [AH14a] and [AH14b] and
especially using [AH14a, Proposition 5.7] to get a “new” global G-shtuka (in the
same Newton-Stratum).

Throughout this chapter we let ¢ = (¢1,...,¢,) be a tupel of characteristic places.
We denote by F,., the residue field at ¢; and by F. the compositum of the fields I,
inside F3'¢. We denote by V! the special fibre of Vf’@?—ll(C, G) above c.

We fix a tuple of quasi-isogeny classes (b;); and assume that to each of those
b; € B(G,,) there exists an element x; with the properties as defined in 4.3. Re-
member that we do not assume that 67z, = ;. We write again z := (21,...,2,)
and consider the associated central leaf C, c NV, in the Newton Stratum of [z]. Set
G, = (L*G,,,x;67), defined over a field F,, in N ﬂchi - Let Q‘miv be the univer-
associated local G, -shtukas (via the “global-local functor”). Let Jg,. be the Igusa

variety of level e; associated to the characteristic place ¢; and denote by

jgg = (jgel XV’H;alg s XV’HI jgen)
q

alg
]Fq

the Igusa variety defined in 5.6. Consider the functor RZ; It is pro-representable
by a formal scheme over SpfF, ((&;)) (where r;((§)) is the reflex ring R ) which is
locally formally of finite type and its underlying reduced subscheme equals Xz, (x;).
We consider RZ? and the ADLV Xy (z;) as (formal) schemes over F4'%. For
each i« we choose a faithful representation o : G., - GL,,. Remember the trun-
cated Rapoport-Zink space RZ%Z for a fixed d; > 0 from Defintion 2.41 consisting
of isomorphism classes of tuples (G,,9:) = (Gi,7,9:), such that 7; = g- Ye,67g; is
bounded by Zci, and such that o, (g;) is bounded by 2d;g, especially 0.(gi), 0.(g;") €
z4i(1=r) O[] ">, We choose the level e of the Igusa variety such that e = (e;); with
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6 Product structure

e; > 2d;(r; = 1). This will play a role in Proposition 6.9.

To make it more readable we split the preperations of the construction of the desired
product morphism into different sections:

First, we choose a trivialization «; of each local G, -shtuka associated to the uni-
versal global GG-shtuka over the Igusa-variety in the first part of this chapter. In the
second section we construct a quasi-isogeny h; and show in the third section that
h; is independent of the choice of a; and descends to the Igusa-variety. In the last
part of the chapter we construct the “product morphism” from Main Theorem 0.1

and prove its properties.

6.1 Definition of the trivialization q;

Definition 6.1. We choose a presentation f: S — ); such that the universal com-
plete slope division (P;,n;) of fci(f*guniv) =: G, over }; possesses a trivialization

;i Pis — (L*67p)s satisfying
Le QY n{lfgi o7 (it t) = xymyn; € ;- L™I5(S)

as in Definition 5.4. We have Jg,, xy,S =1Ig,.. Overlg,. there exists the universal je,.
Let S" —1g,, be an étale covering over which a representative je, € (L*6; 1n,)(S") of
the universal j, on g, exists. Since 8" — S is an étale covering by Proposition 5.7,
we may replace the original presentation S — Y, by S — V,.. It is then also a
presentation of Jg,.. Now, we write je, o o; instead of oy, where we consider je, as
an element in L*6; 13 (S) c L*6;1 15(S). Then, the new tuple (mI™,niev) is given

by:
Jestwevity V76,67 (i a2
= ‘rlxz_ljez‘rlmla-z* (.]e_zl)a-:(jez)ﬁl&z* (je_il)v

so by

mieV = xz_ljezxzmza-:(]e_ll) € L+Iei7Mi(S) (61)

7

and
np = 67 (je, )6, (32,1, (6.2)

which is an element in L*15(S) by Lemma 5.1.

Notation 6.2. We will from now on shorten the notation: instead of t.a;m;* we

simply write «;.
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6.2 Construction of the quasi-isogeny h;(l;)

6.2 Construction of the quasi-isogeny h;(l;)

Now we construct h;(l;) such that we also get a (almost) trivialization of the N;-part
and show that it (together with the trivialization «;) descends to the Igusa-variety

and that we have some independences.

Lemma 6.3. In the situation introduced in Definition 6.1 let e; € N and let 1;(e;)
be the number from Condition (vi) from Definition 4.3. Then for every l; > l;(e;)
there exists a quasi-isogeny h;(l;) € L*&Z.(li_l)*[m(S) of local G.,-shtukas

hi(l) = ((L*Ge,)s, 67 (mima)ng (1)) = (L Ge,)s, 67 (wimin;)),
with 7;(1;) € Lt.67* 1y.(S), that is
5l 2 (wiming )6 hi (L) = hi(1; )Al *(xlml)ﬁ;(ll)

Proof. We give an explicit construction of h;(l;). For simplicity we write everything
without the Index ¢ in this proof.
Start with h(0) :=1,
7 (0):=ne L I5(S).
Then:
6*(xmn)6*h(1) = h(1)6* (xm)n (1),
so set h(1):=n"!

n (1) = 6*(xm) 'no* (xmn)é*n
=6*(zm)'ne* (zm)

=" (m) 16" () 76" ()6 ().

with 7'(1) € L;6*I5(S). Using Condition (vi) from Definition 4.3 Lemma 5.1 this
pushes 7’ into the right direction.

Inductively we set:

(1) =6"(@m) [[ ("D @@m)6™(m)™") [ (6" (am))

i=l-1-0 i=1-1-1
- &(l—l)*(ﬁ)—l X 5_([—2)*(ﬁ’(1)—1) . Ao*, (l 1)—1
e L'6(-D T g,
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6 Product structure

where 7. =7'(0). The second equation follows by the definition of n(1) beyond.

A1) a@m)t [T @ (em)™) T (6™ @a¢D (@m))

i=l-1-1 i=0—[-1

'Al*([Em) 1 &l*(xmﬁ)ﬁ(lﬂ)*(xm)'

. H (U(Hl)*(xm)—la_i*(ﬁ)—l) H 5“(mm)

= (6" (@m)™ .. 6" (am) (6" (am) - ... - 67 (wm))

= (m) . (61*(37)_1 0 (2) e (m)_lﬁz*(x) 6 (2)-
(6 ()t et () et (x) L. 6 ()
(" () e () e (m)eF () - 6 (x) -6 (m)

e L6 I4(S).
“e” holds for [ > I(e) from Condition (vi) from Definition 4.3 and using Lemma 5.1.

(Note in the case where G, is split connected reductive and x chosen to be P-
fundamental this would follow by [HV12, Remark 4.2,¢e)].

It follows
h(l)=6*h(1-1)-n'(1-1)"
We have:
h(l) = 6D (Y.
(6D (2m) 160D (7) 16D (am))-
(D (am) ™) (6 (em) DR (6 (am)) -6 (am).)

and

Lemma 6.4. In the situation introduced in Definition 6.1 let d; € N with d; < e; and

let I; > 1;(d;) and ' (I;) be the data from Lemma 6.3. Then over an algebraically
closed field K there exists a

9 ((L+GCZ)K7 A(l )+ ) A(l )*G —)((L+GCZ)K7 A(l )*(xi)wi)

with w; := A(l )*(ml)n (li) such that 0; € L} & A(l D (K) for l; > 1;(d;) from
Lemma 6.3’.

Proof. For simplicity we write everything without the index ¢ in this proof.

Counsider:

wy = 6V (z) .. 6O (2)6O*(m) -7 (1) - 6O (2) ... 6W*(2) 7,

then
Wy i= &(1)*(x) o 5(l)*(I)6U)*(m) ‘5(1)*(7”)_1'
. &(l)*(x)fl . a,*(m)fla,*(w)fl ‘N
5 (@) () .60 ()60 (m)

O ()W ()7
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6.3 Independence of h;(l;) of the choice of «; and descend to Jg.,

wy = 6D (). 6EDH(2) 6D (m) ED () e W (e
() D () 60D () 60D (@) D ()
W) (em ety e (emat) -
GO ()60 (@) 60D (m) - 50D (1) 6O (o)
g (@) e (@) 6D (m) 6D (@) W () -
s (z) ... 60 (2)-6W*(m) - 6O (). 6W*(z7h)

e L'I5(K) - L™ I m(K).
So we can write

w =60 (m)n' (1)
=W () 6@ (2) e MW (1) wg - W (1) D () .. 6D ().

By Lemma 4.13 there is a 6y € L*6 1y (K) - LT6 1 (K), such that Oyx =
TWoo*0y.

Now we can set
0 =600 (z) 5 () 0y - 6% () - (),

with 0 € L6U=D*I5(K) - L*6(=D*1, 5, (K) because of Conditions (vi) and (viii)
from Definition 4.3. then

0-6W(2) =D (2) O () 6y - 6O (2) - 5D () 60 ()

=D () 5O (1) O () wes 0y - 5D (z) -6 W* ()
=W (z)-6W (m)-n'(1)-6*0
= 60 (2)wé*0

with 0 € L1600+ [5(K). O

6.3 Independence of h;(l;) of the choice of «; and
descend to Jg,.

Lemma 6.5. The quasi-isogeny h;(l;) in Lemma 6.3 is independent of the choice

of the trivialization oy for l; > 1(e;).

Remark 6.6. We show also that h;(l;) together with the trivialization o; descend
to the Iqusa variety Ig,.. Since there a; is determined by the isomorphism j., we get
that on the Igusa variety h;(l;) is uniquely defined.
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Proof. of Lemma 6.5.

For our fixed presentation S — Jg.. we let S" =9 X3, S and denote by pr; and
pry, the projection onto the first and second factor. For simplicity we write ev-
erything without the index i in this proof. Let pria#é*(pria)~! = xm'n’ and
pryafé*(pria)~t = xm"n” with a',7n" € L*Iy. Since | > I(e) there are quasi-
isogenies h'(1), resp. h(l), of local G.-shtukas and an element 1" (1) € L6 I5(S"),
resp. ' (1) € L6 15(S"), with

W ()76 O (prsate (prza)™)e h (1) = 6@ (2)6 @ (m")a" (1),
resp.
h(1)'6 O (priate” (pria)™)s h(l) = 6@ ()6 (m )i (1).
Set
H" :=h' ()76 D" (prya)6 @ (pria) " h(l)
=1’ (D)6 (prsapria)A(l).
We have pria-prjat e L*67115 and the image of h = prya-pria~!t in
L*6- /L 6711,y is 1. Hence, H € L6111y, - LoD+ I .
We have:
H' 60" ()60 (m ' (1) = K () 160" prsa (60" pria A6 (2)6 0" ()i (1)
=R (D) 6 W priact 76D (pria) 6 h(l)
= (&(l)*(x)ﬁ(l)*(m")fz"(l)ﬁ*h,(l)_lﬁ(“l)*pr;oz}
. 6(l+1)*prfof16*h(l)
= 6O (2)6O*(m"a" ()6 H'.

So
6O (@) H 6O () 6O (m') A1) =6V (m") n"(1) &7 H
——— Y— ~ )
EL;&Z*[ZW EL;&Z*IN EL;&“IM EL;&Z*IN
Hence

G H = ﬁ"(l)*lff(l)*(m")*lc}(”*(:z:)’lH"cAf(l)*(x)&(l)*(m/) .ﬁ/(l)'
This implies
52 H =67 (l) 1o(l+1)*(m )" 15(l+1)*(gg)—l&*H"&(l“)*(x)(%(“l)*(m )A** ().
That is:
5-2*H” -
A*— (l) 1A (l+1)*(m”) 1a (l+1)*(x) 1,
Y50 (Y60 () H 50w T (1
(l+1) (I)U(HI)*(TTL )A*, ( )
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6.3 Independence of h;(l;) of the choice of «; and descend to Jg.,

Thus we get:
5—2*H” _
_ &*ﬁ"(l)‘%“*”*(m")‘16(l+1)*(x)‘lﬁ"(l)‘16(“1)*(;z;)-
. a,(l+1)*(x)—loc(l)*(m”)—IOA,(Z)*(:C)—IH”(AT(I)*($)6_(l)*(m’)&(l+l)*(x)_
. 5_(l+1)>+ (x)—lﬁ’(l)a.(lﬂ) (LE)(AT(Hl)*(m’)(AT*ﬁ,(l).
We can iterate this to (for k > 2):
a'k*H” _
— 6'(k_1)*ﬁ//(l)_1 6(l+k—1)>«(m”)—1 X
eL} eL}
‘6(l+k—1)>e(x)—1 _6(k—2)>eﬁ”(l)—1 . 6,(l+k—1)*(x) .
eL}
-6(l+k_1)*(x_1) 6(l+k—2)*(m”)—1 6(l+k_l)*(x) .
—
L} eLe
_a_(l+k—1)>e(l,)—16(l+k—2)*(x)—l . &(l)*(f)_lHna'(l)*({B) S
a.(l+k—1)>+(x) ce -6(l+k_1)*(x)‘1 . 6_(l+k—2)>e(m’) '6'(l+k_1)*($)'

~ | —
el? €Lt

. 6(l+k—1)>e(x)—lﬁ(k—2)*,ﬁ’(l)@-(l”f—l)*(q;) &(l+k‘1)*(m') &(k_l)*ﬁ,(l) .

+ + +
eL} el} eL}

Write H" = H;\}HE and consider the term
U () TG UR-2x ()1 LW () T 5O (). L gERDx ()
Then:
[T 6@ @) -m" [] 60 (x)-=

i=k-1,...,0 i=0,...,k—1

— H a_(l+z‘)>(-(x)—1 X H”M . H 6_(l+i)>e(x) .

i=k—-1,....0 i=0,...,k—1

eLt&l-14 I,

H 5.(l+i)>e(x)—1 . HIIN . H a_(l+i)*(x)

i=k-1,...,0 i=0,...,.k—1

eLiol-1Ig for k>>0
because of the assumptions on x in Definition 4.3. Then we get 6%* H" € L*6(-1*],.
L:oU-D*Ig and so H = H,, - H% € L 6D+ [, - Lr6D* Iy, By Lemma 5.1 we get

H" € L*¢U-D*], 5, - Li60-D*T g and also Hy, = 6O*(pria-priact) e L*6-D*], 5.0

Now we show that h;(l;) descends (together with ;) to the Igusa variety. The
proof is very similar to the one of the previous lemma. In order to do this we choose
l; > l;(e;), such that n'(l;) € L 6% Iy with the data from Lemma 6.3.
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Lemma 6.7. Let f:S — ); be a presentation such that the universal complete slope
division (Pi,n;) of fci(f*g‘miv) =: G, over Y; possesses a triviliaziation o; as defined
in Definition 6.1. The quasi-isogeny h;(1;) from Lemma 6.3 with [; = 1;(e;) descends
to Jg...

Proof. Fix a trivialization a; (note that we already know the independence of the
choice of such a trivialization) and for simplicity fix one characteristic ¢;, that is
fix an index ¢ and write everything without that index. By Lemma 6.3 there is a

quasi-isogeny h(l):
h(l) : ((L*Ge)s, 60" (zm)i (1)) - ((L*Ge)s, 6D (amn)),

that is
(D)6 O* (ars*aM)e*h(l) = 6O* (zm)n (1)

with [ > I(e) such that n'(1) € L;6"*15(S). Now we want to show the descend of
h(1)"16W*a to the Igusa variety Jg,. Set

H = pry (h(1)'6*)pri (6@ (a) " a(D)),
where S” = S x3q, S and pr; denotes the projection onto the i-th factor. Then
H -prj (6" (m))pri(a (1) = pr3 (6" (wm))prs(n' (1)) - 6" H

and so

pr3 (60" ()™ H - pri (6@ (2)) - pri (6" (m)) -pri (7 (1))

+ +
eL} el}

= pr3 (o™ (m")) - pr3 (A’ (1)) 0" H.

+ +
eL} el}

A similar calculation as in the Lemma 6.5 before (with H" instead of H) shows that
He L6101, - L+60-D I . O
6.4 The product morphism 7w

In this section we show that there is a finite product morphism 7 := 7¢¢! as in
Main Theorem 0.1. Recall the formal scheme RZ; and the ADLV Xz, (x;) from

Definition 2.38 which we consider as (formal) schemes over F2'%,

Notation 6.8. We denote by X?L(a:z) the reduced subscheme of RZdev and set

Xg = (4>(gl1 (:I;]_) X]F;lg e XF(eIng ng (.:En))
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6.4 The product morphism 7

Note that we have fixed e;,d; such that e; > 2d;(r; - 1).

Proposition 6.9. Let S — Jg,. (resp. S — Jg,) and let o; be the presentation and
isomorphism from Definition 6.1. Let h;(l;) be as in Lemma 6.3 with I; = l;(e;). Let

S > S Xpgag Xg?(xi) be an étale covering over which a trivialization
q 1
Al A~ +
Bi -0, gz_>(L Gci)s'

for the universal local G, -shtuka (gAi,gi) over X%(Iz) exists. Then the isomorphism
of LG.,-torsors

51 ()t ha(l)6 () Bt LG, ~ 617 LT, (G™™)

descends to a quasi-isogeny of local G, -shtukas over Jg,, X pals ng(xz) (resp. jgngglg

Xg (%))
57; . gl _ a.fz*fwcz (Quniv)

for a suitable local G.,-shtuka gz which is bounded by Z,,.

Proof. Let S" =8 X3, S and denote by pr; the projction onto the i-th factor. Set
[ :=1; = l;(e;) in this proof. Note that 651)*(%)‘1]1@-([)61.(1)*91- is independent of the
choice of a; up to an automorphism of L*G..,.

Take G, := (L*G.,)s. We have ; : &Z.(”*Q — (L*G.,, Bi6Y (97 w67 g:)67 B;1). Set

= pry (668" (9 ha(1) 716" () -pri ((8:67 (9:) " ha (D) 760" (i) ™)

and then it sufficies to show that I" € L*G,,(S"), where pr; and S” are defined as

above. Consider
T =pr3 (56" (9:) " ha ()6 ) - pri (6" i ha (18P (9:) 57
=pr3 (567 (9:) ™) pra(ha(D) 76" ar) - pr (61" 0 (1) pri (6" (9:) 57

~(1-1 ~(1-1
L 60 Ly 12,60 Iy,

e L"G,,.

The element H lies in L*&i(lfl)*lei,Mi -L;&i(lfl)*INi by the proof of Lemma 6.7 and I €
L*@G,, holds by our choice e; > 2d;(r;—1). In fact, by the definition of RZdZZ (see Def-
inition 2.41) Q*(pr§(Bﬁfl)*(gi)*l)pr{(&fl)*(gi)ﬁi‘l)) lies in 22d:(1=-r) Og[2]"*. And
since o.(H) lies in 1+ z¢Og[[z]"" we get that p.(I') € 1+ zOg[z]"*". Hence,
I'e L*G,,.

We use I' to define an L*G., -torsor G; over Jg., X s Xgl(xz) together with a triv-

ialization ~; : (C;i)51>(L+GCi)S, such that pryv; - priy;! = I'. This corresponds to a
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change of the trivialization f; to v;, between &i(l)*@ and g} We make Qz into a local

G.,-shtuka by equipping it with the following Frobenius:
71 (G)s> (L7 Ge)s, 56" (9) " ha(D) 61 (it o )a7 (ha(D6 (" (9:)57)-
Consider the quasi-isogeny over S

lﬁlA(l)* —1h (l) 1A (l)* Afl)*fCi(guniv) _)Q

Set
0= 61" () ha (D)6 B i,
SO
5t Lgi;)L6l(l)*f\Ci(guniv)’
then

pr3vi - pry(0;1) - pry(d;) - priv;it =T
It follows that pri(d;) = pri(d;). Moreover, ¢; is compatible with the Frobenii.
Therefore, 0; descends to a quasi-isogeny 9; : gz A(Z)*Fcl(g“m") as desired.
It remains to show that QZ is bounded by Z.,. We compute

R O R O CO RS L QLA G
=6 g (1) 160" (wimana ) ha(D)et (67 g,)
:6fl)*ggla§l)*xiagl)*(mi)ni(l)ér;hi(l)‘lﬁfhi(l)& (6% ;)
=6 (g7 w) 6 (ma) (1) 67 (6" g,)

~—
ngl €L+
A (l)* A% DE 1) * A % 1) *
=6/ (g7 wi679:) (67 (67 g6 (mo)my (D67 (67" 91))
GZci eL*Ge,  (because ej+2d;(1-1;)21, 12l(e;))

€L,

Remember that the inequality e; + 2d;(1 —r;) > 1 holds by our choice of e; at the
beginning of this chapter. O

Corollary 6.10. If y € (Jgei X pale Xg(xl))(L) is a point with values in an alge-
bmz’ca}ly closed field L, whose sec?nd component is (gi,y7givy) € X%(xz)(L) then the
fibre Qiy at y of the local shtuka G, from Proposition 6.9 is isomorphic to 65”% )

Proof. By Lemma 6.4 there exists an isomorphism 6; € Lgﬁfli‘”*lﬁi(L) in the fol-

lowing chain of isomorphisms

L%
;" (a;t hi(li) T univ
(L*Ge)r 6% a) 2 (L1 G, 647 (i )wy) = 17T, (GM0),,
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6.4 The product morphism 7

that is 67 i (g )hi(li), 0; G (25) = 61 (7)) 067 (61 “(aiy)hi(li)y 0:), where & (Fiy)
is the Frobenius of 65T, (G™Y),. As in the computatlon at the end of the proof of
Proposition 6.9, the Frobenius of QZ y is computed as

(G i) 07 (i Ty 67 ()67 hill)y 67 (87 91y)
=6,"(g;5) 067" () - 6*(0;1) - 67(6," 91
(O- (gz 31/)6 Al *(gi,y)) : 0-2' (g@yxio-@' gz’,y) : 0- (O- (gz y)e 1 l *(gz,y))
Since 0; € L}, A(lrl)*I* .(L) and g; ,, is bounded by 2d; é the inequality e;+2d;(1-r;) > 1
implies that & “(9;,)0:6 55 (giy) € L*G.,(L). Since 61" (g;1 470 giy) is the Frobenius

of &l *Qi the element & Al 7 (9:0)0i 6 (giy) € L*G.,(L) provides an isomorphism of
local G,-shtukas from al *g to Ql O

Now we will prove Main Theorem 0.1, the main result of this thesis.
We let e = (e;); be such that e; + 2d;(1 - r;) > 1 and denote by [ a multiple of all
degc; such that [ > [;(e;) - deg ¢; for the number [;(e;) from Definition 4.3 (vi).

Remark 6.11. The tuple (d,e,l) is chosen large enough with respect to the partial

order on Z"™, that is

(diyei, 1) < (dy e, 1) e di < dy, 1<, e; <€, Vi

77 ’L?

In the remaining part of this chapter we will show that there is a finite, surjective

morphism of stacks as in Main Theorem 0.1
mi= el Jg, x ol Xg(g) — 0" Ny xp, F228 c UZ*V’HIIanlg
(G, (Je)i): (9i)i) = 6" G
with §*0™*G"™" := 6% o... 0 §30™*G"™" where
51’ gl g 6li*fw6i (guniv) _ O_l*wai (guniv)
was obtained in Proposition 6.9 for I; = [/[F,, : F,] and §*c*G™" is based on the
construction from Proposition 2.21. Here X é denotes again the product
d d
X7 = Xy(z)
. d n
= (X7, (21) Xpals - - - Xp2le Xén(l’n))'
The proof of Main Theorem 0.1 is given in several steps and lemmas to make it more
readable and comprehensible.

The next Lemma says that the quasi-isogeny group J,, is contained in the Levi.

This result is useful to consider the fibres of the morphism 7.
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Lemma 6.12. (i) J,,(F.((2))) € L6,  M;(Fy,).
(i) AWS((L* 1) gato, 2,67 ) © L767 ag, (F
Proof. (i) Ju,(F.((2))) is defined as
Je,(Fe,((2))) = {a € LG, (F2%) : ax; = x,67a}

(and acts on RZ?, T, =g7lw67g viaa: g ag).
Write a = nmn (decomposition in LG, (F2®) with n € L&;'N;, m € Lé; M,
n e L6;'N;). Then nmii = 2,67 (a)z;" for an arbitrary a € J,, (F.,((2))), so

1 1 1

S = T . rTitm .
0,Q=T; NT;T; MT;T; NT;.

This implies
a)
67" (a) = 67" (nmn)
=67 (2:)7'6; (a)6; (2;)
= &7 (v:) " o awi67 ()
=67 () oy inmaa 6 ()
=67 () oy na 67 ()67 (2) ray a6 ()67 () Loy Y na o) ().

So for [ > 2 we get:

6 (a) = (6fl_1)*(xi)_1 Y Pl (F TR -6?—1)*(@)).
S @) a8 (1)
. (a.i(lfl)*(l‘i)—l e xz_l,ﬁajz . a_i(lfl)*(xi))‘

By assumption (see Definition 4.3) on the properties of x; we have

()t e (NG () - 68 () € 6N
for all [.
By Condition (vi) from Definition 4.3 we get

&El_l)*(:vi)’l R IR -6i(l_1)*(a:i) -1 forl - co.

Thus n = 1.
b) And on the other side

a=nmii=(z;-... 6 ()6 ()6 ()L ah):
g (@)e (m)e T () )
(i 6T (@)el ()G () ).
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As we have

for all I, we get by Condition (vi) from Definition 4.3

26 (@)e (n)e T (@)L

1, forl— .

Thus n =1.
From (a) and (b) follows that n=1, n =1, a =m € Lo; ' M;(F,,) as claimed.

(ii) This follows by the first part of the proof. O

Definition 6.13. For an IF,-scheme X over an F,-scheme I’ we denote by pr := pry

the projection as defined in the following diagram.:

FrOthX

Te.X|T
—_—

o X 2X o x

T

id Frobg 1

where the left diagram is commutative and the right one is cartesian and where Fr

(resp. Frob) denotes the relative (resp. absolute) Frobenius.

Now we give the construction of the “product morphism”:

Proposition 6.14. We let e = (e;); be such that e; + 2d;(1 —r;) > 1 and denote
by 1 a multiple of all degec; such that 1 > l;(e;) - dege; for the number 1;(e;) from
Definition 4.3 (vi) and let d:= (d;); fori=1,...,n. There exists an F3%-morphism

d
rdel: Jg X s Xy(z) - Jl*V%];alg.
- - q

Proof. Let I;:=1/degc; = I/[F., : F,] and o' = . Note that this /; depends on the

charactersitic ¢;. We use the abbreviation X % =X % (z). Consider

Frob ;
q

T

~ d * (™~ d ~ ~ d
Jgg XFglg Xzé U(l) (Jgg XFglg XZ) — Jgg XF;;lg XZ

| | |

alg alg ~ alg
- —_—
Spec I, = SpecFy Frob Spec Fy
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6 Product structure

where the composed map in the first line is Frob, and the left square is commutative,
the right one is cartesian.
We start with a point f € (Jg, X X%)(R), that is a morphism

e “pils Az

J :Spec R - Jg, X pals Xg,

which is given by a tuple (G™,%, (je, )i, (9i)i), where G"™" is the universal global
G-shtuka over the central leaf C,, 7 the associated H-level-structure and (je,); € Jg,
and (g;); € X%.

Now consider the ring R in a new way as an F;lg—algebra, namely as

R:= (R,Froby o (F2 > R))
= (R, (F2¢ » R) o Frob,)
(=R).

Remember that our aim is to construct a point in al*V’H];alg(R).
q

After passing to R our tupel becomes accesible for the uniformization morphism,
that is we construct a new tupel pulled back under the Frobenius and after pulling
back we have the existence of h;(l;), which (almost) trivializes the N-part.

Therefore, consider the following diagram:

Frob ;
q

Spec R Spec R

§ foFrObql
y=H~eH\Isom® (Vguniv,w®) f

d dy ~ ~ d
jgg XFglg XE —— Ul*(jgg XFglg XE) —— Jgg XIFZlg XE

where the morphism f corresponds to the tuple (G"™",7, (je. )i, (¢:):) and f o Frob

corresponds to a* (G, 7, (Je, )i, (9:):)-
The reason why we passed to R is the following advantage:

Over R we can consider o/* and then exists h;(l;) and we can define J; as
5, = 6i(l¢)*ai—1 o hz(lz) o 5_1'(11)*% o 6;1 ot gz . O_Z*wai(guniv)

which is the quasi-isogeny from Proposition 6.9.
We have a point, that is a global G-shtuka f € V?—[llF

Spec R — V"H,];

where

(R), hence a morphism f :

alg
q

given by the tuple (G, Hol*y o Vs) with G =6 0., 005(G™),

alg
q

(5 . g Cﬂ)s O_Z*guniv

is the quasi-isogeny of global G-shtukas with f‘ci(é ) = d; by Proposition 2.21.

So 8t +...-0%(a*G™Y) is the “new” global G-shtuka and the level structure is given
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6.4 The product morphism 7

H\ Isom®(w®, )V/g) — H\Isom®(w°, pa.l*guniv)
oy 0 Vs = oy
induced by the tensor-isomorphism V; : f/g - f}o.l*guniv. By the definition of the Tate-

module (by 7-invariants) this is well-defined.

Thus, we have:
(3, xgue X5)(R) = (Jg, xgme XZ)(R) — V. (R)
f J o Frob, - f

but what we need is an R-valued point. We get that in the following way:
Briefly speaking:

v%%zlg(f%) — al*vHIlelg(R)

freprtof,

that means:

Consider the following diagram:

Frob ;
q

Spec R Spec R

]EEV’H;alg (R)
q

VH g —= 0" VH 1y —5r= VH]

alg alg alg
Fq Fq ]Fq

|

alg  id alg ~ alg
SpecF;® —— SpecF, Trob Spec Fy
q

That is we can define:

el

/—\

(39, g X7)(R) — (39, xos X5)(R) — VHa, (R) — " VAL, (R)

alg
]Fq

f~ [ oFrob, [ priof
So, there exists an F&#-morphism

del . d l 1
’ﬂ'*g . (/:igg X]Fglg XZ)_)O-*V%IFZlg
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6 Product structure

Now we show the properties of the morphism 7.
Proposition 6.15. With the previous constructions the following holds:

(i) Forl >1 undl large enough suitable to d,e (that is such that 7%<l exists) the
Jollowing holds on Jg, xgaie Xé(g) :

!
d,e,l

del _ o 7

Fr

1 o7
ql —l,ol*vfulal
F2'8
q

! !
where b = wdel s a morphism

w1 7Jg, X g Xg(g) —s 0! *V?—[;Zlg.
(ii) For d > d let incl®® : Xg(g) > Xg (z) be the inclusion (and the identity on
Jg.) and for el suitable to d (that is, such that md € exists):

! !
oincl®? = gdel = rd
as a morphism

d !
i Jg, xgae X5 (2) — o *V/Héalg.
e *pale Az ;

(iii) For € >e, I large enough (that is, such that w%&l exists) and for Qe e Jgs >
Jg. the projection (and the identity on Xg(g))

qdel o Q. = gl —. e ’

as a morphism
!
~ d
7T§ . Jge’ XFalg XE(&) e O-l*v,}-ll
e TFye 2

alg *
IF‘I

> Where G is the “associated”

Proof. (i) The idea is to show o' DG = G in VH,

global G-shtuka to (d,e,[) that is the image of 7¢¢! and g/ the image under
rdel’

In terms of the notations given in the construction of w4&! it is sufficient to

show:
fo FrOqu’fz’R = fla
where f is defined with h;({;) and this is sufficient to show because f OFrobqlgl "

corresponds to a(l,—l)*g and f’ corresponds to Ql and is defined with h; ().
In order to show this consider

J: g N O.Z*guniv7
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6.4 The product morphism 7

with
L, (0) =0i= 6" a7 o hy(li) 0 6{") g; 0 B0 o
and
5/ :g/ N 0_([ )*QuniV’
with

7

P (0) = 8, = 60" a7 o () 0 617" gy (8) 1 o
By Lemma 6.3 we have
ha(l)) =687 h(l) - A

with ,
A=V @Y 0 (- 1) e Lot Ty,

So
(1) 200" = 61 (1) 405,
=6 Ry (1) 0 5 g0 A
for an isomorphism
A = 00 (g) 0T (195 9)) - (68 () 168 - 1060 (00)
e L6
because of e; > 2d;(r; — 1) and using Lemma 5.1. So we have:

U(l'—l)*g U(l/)*guniv

ok

!

g/ 4 S O.(l,)*guniv

where al,*guniv in the lower line is given by fci((s') and the one in the upper

line is given by:
A (l=1y)* AUk, o1 A(lil)* NUEDE A (=1)% e
61 (8) = 6 () e T (1)) 0 61 (g0) 0 67 (5710).
Therefore, &i(li)*g — Q’ is given by:

I RN (A P
(7)) o Bio Ao s (5.

This is an isomorphism at ¢; and also outside of ¢;.
Therefore,

DG =G in V’H};Zlg.
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6 Product structure

We illustrate this in the following diagram:

Spec R’ —~ Spec R—"~SpecR

\

Frob l' Frob 4 Frob Vo

Spec R

Fr (@ 1
o) yH e
~ | pr ]27
l
. o *VH]Falg
\ ~ | pr
VHFalg
So:
~y l’
J =propromw
_ l
=propro Frq(z’—z)’al*vﬁ1 1 o7
Fo'8
q
_ l
=pro FrObq(z’fz)7Jz*VH1 o
Fa'8
q
_ l _ F
= Fmbq(l"’),vwalg oproT =fo Frobq(lf_l)ﬁ.
F

q

That is [ = fOFrob /

AR and this corresponds to the desired isomorphism
G =o' -Dg,

(i) Since d > d we can choose g, := g; and thus &; = 4, and so (5*(01,*Q‘miv) =
((Y)*(O’l *Quniv)‘

(iii) Since our construction is independent of the choice of a; we can choose «; as
a trivialization also suitable to the level e; and this menas that again as in (ii)
the global GG-shtukas are the same. O]

In the following, we prove that 7 is proper as a morphism to the Newton stratum
o*N;. Note that N is not closed in VH!

alg

Proposition 6.16. 74<! is proper as a morphism to the Newton stratum o' Ny xg,
Fa'8 ¢ gl v

]Falg

Proof. By [LMBO00, Théoréme 7.10] we can prove the claim with the valuative cri-
terion for properness.

Let R be a complete discrete valuation ring with algebraically closed residue field.
Denote its fraction field by K.
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6.4 The product morphism 7

We have to show that for a K-valued point y € (Jg, Xgal X%)(K) that maps to a
e s Az
point 7¢¢!(y) € o!*N,(R) there is a unique lift of y to y € (Jg, Xgai X2)(R) that
z e Xpre Az

makes the following diagram commutative:

Spec K ! (g, X s Xg)
7 g ﬂ-éaé l
Spec R - o N

Let y = (Je,» 9i)i i € (Tg, % e Z)(K) The idea now is to use the fact that RZd
is proper by Proposition 2.42. Now let G be the image of y in o"*N,, that is the
global G-shtuka associated to m4¢!(j..g;). By definition, that means the following:

T ey gi)ic = (07 .- 6:)0" (GR™) = G

and

g 1% univ
Gy 2o o™ (GE).

As before let
E . (R, (]leg — R) o FI'ObqlJFZlg)

and denote by K its fraction field. Especially, one has:
O'l*(g;(niv) — (O_l*guniv)f{.

So, by the assumption of the valuative criterion, there is a G € o™*(N,)(R), that is
in the Newton stratum, given. This induces as before (that is, corresponds by the
isomorphism pr to) G € Ni.(R). Then

T % puniv.  ¢— d; >
2= D@ 67 eRZE (K)

and by Proposition 2.42 and using that G, is parahoric we know that RZd @~

Spec R is proper, so there exists a unique lift z of z with Z € RZ{? ‘(g)(R) and by
Proposition 2.21 this implies that there exists a unique global G-shtuka

O_l*g;(nlv QK
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6 Product structure

The following holds: G € N, (R) and G € V?—[ﬂlralg(f%) is quasi-isogenous to G, this
implies ’

G e No(R).
In the remaining part we construct our “new” point, that is the suitable tuple
(Je,r 9i)-
First, we construct (and this shows the existence of) (j,); € Jg.() which is a lift
of (Je;)i € Jg.(K) with q.(je,) = G which is defined in the next diagram where g, is
the projection Jg, - C,.
In order to do this consider the following diagrams:

(i)

Spec K Spec R
N
N
N
univ 1 ~ ~
gu eV’Hleg(K) g N
g >
N
1 Myl ! 1 ~ S
-_ *
VHIF';;“g finite O VH]F’;“%' pr VHIF;“%‘
1 1 ~ 1
SpecFy® SpecF;® ————— SpecF;*®

id Frob
q

The global G-shtuka G € o™*VH!
the following:

. (R) is induced via pr7!, more explicit by
q

Spec K Spec R

[

a.l*(gl}l(niv):(o_l*guni

I* 1 ~ 1
o VHnglg or V’H]leg
Since V'H];Zlg is locally of finite type
Fr,: VHL, - oc"VHL,
q FZ g FZ g
is finite and so there exists a unique G € V’Héalg(R) with
q

Qf{ = (O—I*Q,)Ra
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(i)

6.4 The product morphism 7

SO
Gy = (696G =60(G)),
and with

QIK _ gl}l{niv'
Q/K = G and GV € Cu(K) € Ny(R). Since C, is closed in A, this implies
G €Cu(R).

Note that Q, € Nz (R) because the Newton polygon at the algebraically closed
residue field kp of R can be calculated as follows: The quasi-isogeny 6 : [
induces a quasi-isogeny 7 : I, (QHR) - (L*G,,,x;) which in turn induces a

quasi-isogeny

&;li*n . f\cz(g;R) - fci(6;li*gﬁR) N (L+GC“ &;lﬁxl)

~A—1x%

The latter is quasi-isogenuous to (L*G.,, x;) via &7 (2;)--6;"* ().

One could also use the above to get G =: g (G' € C,(R)) by using the facts
that Frob and Fr are finite and that the Igusa variety is finite over the central
leaf C,:

finite

N

jei ~ Fr Ix~ ~
Spec K Jg. Tl J9. - Jg.

Qe | finite finite Qe | finite

Spec R

g e
Here Spec R = ¢*C, is induced by the morphism Spec R = C, from part (i).
It exists (je,); € Jg, (R) because of the finiteness of

Jg, —> Ul*jgg - UI*CQ,

then g.(j..), Q, ; VH%,ZIg(R)’ 0Gie) i = g;niv ~ Q'K and V?—[éalg is separated, so

qe(Je;) = Ql and 56 € Jg.,(R) is a lift of j., € Jg,, (K) with g.(je,) = Ql and we
can set gl :ggﬂv.
Fr

Here Jg, — 0'*Jg, is finite because of the following general fact:
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6 Product structure

Assume S is a scheme of positive characteristic and denote by Frob the ab-
solute Frobenius. Let X — S be étale, then the relative Frobenius Fr is an
isomorphism and since the question to be finite is local on both X and S we
may assume X is étale over Ay and both X and S affine. So we can write
S = Spec A, then X = Spec A[X1,...,X,] and the relative Frobenius is given
by the A-linear map

A[Yia"'am]_)A[Xla"-aXr]
Virs X,

so an explicit basis is {le ca=1,...,m5=1,...,¢" - 1} and we get a finitely

generated module.

Now we calculate the associated (g;); € X%(R). Since X% is proper over F3'%, the
point (g;); € X%(K ) lifts uniquely to a pointi(gi)i € X%(R).ilt remains to show that
el (Ge,, ;) = G in Ny(R). -

Remember that R is a complete discrete valuation ring with algebraically closed
residue field over which there exists a trivialization, that is there is an isomorphism
v : 16 (G) == (L*G,,) 5. Note that we do not have to be careful about the trivial-

ization [; because we can assume that ; is the identity. We have
(6" * ' * ~ouniv
Dr— Gp=0"Gp=0"Gy".
Set
0= T, ((07)) : T (G ) = (067G ).
So, this is our “old” ¢; we started with and generically both coincide, so in particular

g is generically the “old” one. The idea is to calculate g; via:
N Y = bl -1 Ali)* . 5 -1. L+G 5 L+G 5
6;77(g:) = hi(l;) 7 06, (i) 000+ ( )i~ ( ci) R

where 6fli)*ai is induced by 6511)*3'61. € ﬁgei(fi) which exists, and h;(l;) and &Z.(li)*ai
are uniquely determined on 6§li)*’3gei.
Set

(679 = (LG 6" (97067 90)).
We have % g; € Xgi (;) because of the following: Xgi_ (z;) is defined over k;, so there
is a lift of the K-valued point g; to an R-valued point g;. Now, the J; constructed

above is the same as the one constructed with this g;. This holds because

55-“91 = hi(li)ilﬁﬁi*(ai)(sf)’iil
Ali*—

=0, Gi

at the generic K-valued point in the flag variety which is separated. This shows
that 7¢<l(j..,g;) =G in Nz(R) and proves the proposition. ]
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6.4 The product morphism 7

Proposition 6.17. The morphism

qadel .

l
o= s 3g, xpa X5(2) > 0 VHL,,.

s quasi-finite.

Proof. We calculate the fibres of 7 and show that it is a finite set.
Let K = K28 be an algebraically closed field and fix a point

Y= (jez‘,hgi)i,K € (jgg X]Filg Xg(g))([()

We calculate 771 (7 (y)), so let ¥ = (4., 9;) € 7 (7 (y)) and y" = (j:,. 9; ) € 7 (7 (y))
arbitrary points. Since 7(y') = w(y) there is a quasi-isogeny ¢ : G, G, between
the global G-shtukas G ~and G , corresponding to the points 7(y) and 7(y') in

Falg(K ). This quasi-isogeny ¢’ is compatible with the H-level structure and an
1somorphlsm at all ¢;. We consider the following well-defind map:

7 (n(y)) — SET
y e ()7 () )i,

where (b;)~! and (a;)~! are defined beyond.

In order to show the finiteness of the fibres of 7 it is sufficient to show that the set

“SET” is finite and the above map is injective.
Let J, 5007, be the quasi-isogeny group of a(l G G, = (L*G.,, 6" (x;)). We obtain

Ci» ’L
T

(b)) and (a )~ in the following way:

(i) Consider the quasi-isogeny

A(l)* ) LL(L+ o /\(l) (x) 'LU)
which is defined by (see also Figure 6.1)

’ 'N—1 ~(L)* ~(L; _
bi = (Qz) 1U(l) gzﬁ ’Yz,y Cz((p )’71 yﬁly ( o 10i7

—
e Lt Ge,
i 7

where

o8 (i) - wy = ha(l) 6 (g 7670 )6 B (L),

LY 'y

Here we fixed a 6; ¢ L*&Z(l"_l)*I%Mi -L;&gli_l) I, as in Lemma 6.4 and for each

point y" with 7(y) = 7(y") such a 6, (in the same group). We write

= (670 66, 5 60,
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6 Product structure

Here we define b_; by
T, — LoL T M L6 1y,
()~ = (0071 = (b))~

Since g;,9; € Xgi the quasi-isogeny b; is bounded by 4d;3. If one chooses

another 9~; at ¥y and the associated l~); then

(é;)_19; € L+6z‘(lrl)*]6i,Mi ) L+ia-i(li71)*IN¢‘

e

Since b; and b; € L6"V* M, it is (6,)710; € L*6"" V"I, ;. by Lemma 6.12 (i).
Hence, the image of b; in L(Afi(li_l)*Mi/LJ“&Z.(li_l)*]%Mi is well defined (as it is
independent of the choice of ). Since it is in the image of J 1+ and bounded

by 4d;0, there are only finitely many b_;

For each i we fix isomorphisms (induced by the definition of the central leaf)
fi:G, - f‘ci (G™)atyand f, : G, — f’ci (G™") at y' such that a;, o f; and also
a0 f; € L*67 ., ay, - L*67 . which is possible by Lemma 4.13. Consider

the quasi-isogeny
a;= 61" (f) 100 (9516 (1) -
We write
a; = 6-i(li)*(Oéi,y'fi/)il&i(li)*(Oéi,y'fi/)a; : 61'(li)*@i o 62‘(”)*@1'
and define a’ by:
T, — (L MY (LT )

I\ — N_1 a(l)* N _ L7 N
(a;)7' (a;) 1‘71‘( ) (ai,y/fi) b= (a;)™h

Since g;, g, € Xg(mz) the quasi-isogeny a; is bounded by 4d;g.

If one chooses another fz' at v and the associated EL; then
N—1 ¢’ A(li-1)* ~(li-1)*
(fz) 1fi € L+0_z'( Y Iean‘ 'L+0-i( Y INi'

Since a; and also a, € L&V M; we obtain (f)'f € L*6" L, 4 by
Lemma 6.12 (i). Therefore, the image of a; in (L&Z.(li_l)*M,-)/(L*&Z.(li_l)*lei’Mi)
is independent of the choice of fz/, thus well defined. As it is in the image of
J&V”*xi and bounded by 4d;0 there are only finitely many W.

In order to finish the proof it remains to show the injectivity of the map
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6.4 The product morphism 7

So let ',y € 1L (n(y) (ie. 7(y) = 7(y") = 7(y")) with ()T, (@) 1) = map(y’) -
map(y”) = (b)), (a))~!). Therefore, we can write b, = B;b;, a; = A;a; with A;, B; €
L6

We have to show (j..¢,):i=y" = (j.,g; )i, thus to show j, =

jll and g; — gII

(= i

(i) We have (b))~! = (b)), so b = Bib, for a B; € L*6"" VI, 1. so we can

calculate:
3(9)1 5 )*925- /%y ()i Biy ! g7 0;
=b,
= (07)7' 6" g B Ly T (0 Wi Big61 ) 76
So

A(l )*g;lﬁ ”,yz y”FCz((p )
Uy (69 (a0 B0 L6 (o) - gL ()
=0; (gz) (Ui (gz) i Z( z) 0; (gz)) Bi,y’/yi,y/ Cz((p )
Wlth /6_1”72 y"f (80”) € L+GC¢7 /B_l’fYZy f (QOI) € L+Gcl
Since B; € L*6"" "I, 1y we have (617" (¢))710 Bi(6,)16* (¢))) € L* G, (by

a similar calculation that we have done several times before, for example see

the proof of Proposition 6.9) we get:

(li)*

A(li)* " _ A ’ o yd;
ov"g, =0, g; as elements in X'

Moreover, it follows that the quasi-isogeny

// "

( ) (5 ) Ul*gu}nv N UZ* u}}lv
Zy Zy
is an isomorphism at all ¢;, because

Lo (870" (0) 1)) = 67 (g b)) 6 Bi(6:) " h(li) ) 67 ()

is a compositum of isomorphisms. This shows that Q;}“V = _zmv in VH!

N "

(K)?

alg

and so y" and y map to the same point in C,.

(ii) We have (a/)~! = (a})1, so there exists a A; € L*6“"V* I, ;. such that a =

A;- a;. So we can calculate
A6 (f) 8T (a6 o= 61 (£ 10 T (07) 87 6
This implies

U (F 8T (0") = A8 (F) 6T ().
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6 Product structure

Thus, we get

(61" (f) A0 () 8L (0) = 5T (97),

and hence
67 (e L)L)y (07 B(9:) ™) = (67 (f ) Ay () )67 (e L )h(l)
The projection onto L* 61@'71)*] M, yields

51 (a7 ) (6 Bi(6) ) = (817 (S Aidt* ()16 (a7,

that is
Al _ oAl +A(li-1)*
ors (ai’y/) =5, (Ozi’yﬂ) mod L6, L., u,

and

- + -1
=, mod L7607 Le, u,

Since we already know that 3" and 3" map to the same point in C,, this implies

that 3 =" as points on Jg,(K) as desired. O
a §
Al(lz)*Gi ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, N (fi(lz) G,
OA_i(l )*f ~ a.l(l )*fl' ~
~ (L) * 1 univ - A (1;)* puniv ~ (L) * T univ
6 T (@)= T (617 G"™™) 5T (G
Sieg, |~ 5,
L*G,, L*G,,
~ e b . , ,
(L*Gepy 6y (w1) -wi) 5= 617G, > 61°G, —= (LG, Af’” (1) - w;)
0; 62»01)*91' qis " AZ,(I )*g; qis
5'2‘(”)*?3/ a.i(li)*gAy
ﬂi,y ﬁi,y/
LG, LG,
Vi Ty,
. , . I..(¢)
% ~(l;)* ~univ i % ~ (l;)* ~univ
L., (4 Uz'( ) g )y:W(y) ~ 01(5 ( ) g )y =m(y')=n(y)

Figure 6.1: An illustrating diagram

with
o= Jge mols X = o N, XF, Falg c U“V?‘llalg,

38
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Y= (ess 93)i € (g, xgais X5)(K), for K = K%, and y' = (i, ;)i € 7 (w(y)), and
SOI . 5x—guniv N 5’*Quniv

where ¢ is a quasi-isogeny and an isomorphism at ¢ that is comapatible with the
H-level structure of G. Here h;(l;), and h;(l;),, are isomorphisms, not only quasi-

isogenies and 6; and 6, are defined as in Lemma 6.4.

Proposition 6.18. Consider the composition of the morphism w&et with the pro-
jection pr : o N, — Ny.  Then for every point G, of Ny(K) with values in an
algebraically closed field K there is a tuple (d,e,l) and a point in the preimage of

G, under mdel,
Proof. We consider the morphism

del .~ d ! 1
moe: g, X X7 (2) = 0" VH e
- q

on K-valued points. Let G, be a global G-shtuka in N, (K) ¢ V’H];,

definition of the Newton stratum there is a quasi-isogeny

(K). Then by

alg
q

gi Fci(go) 9@1 :

We have to show that there is a tuple (d,e,l) such that (74&!)"1(G,) # @, that is
that there exist (j,); € Jg. and (g;); € X%(g) such that 7(je,,9:)i = G, Choose d;
large enough such that g; is bounded by 2&1@, that is such that g; defines an element
in ng(:cz) This choice is possible by the construction of Arasteh Rad and Hartl
in [AH14a, § 4]. We choose integers e; > 2d;(r; — 1) and a multiple [ of dege; for
all ¢ such that [ > [;(e;) - deg¢; for the numbers [;(e;) from Definition 4.3 (vi). By
Proposition 2.21 there is a global G-shtuka G := (g;')*o...0 (9,1)*G, over K with
.. (G) = G,. In particular, G € C,(K). Now we set jo. = id and o, = id, as well as
hi(l;) = id. Then y = (G, je, gi) € (jgg X pale X%(g))([() Since d; = 61" g;, we obtain
mdel(y) = oG, in o* N (K). So the point yOFrob;l{SpeCK : Spec K — g, Xaie Xg(g)
satisfies 74! (y o Frob g oo i) = G, in 0N (K) and promel(yoFrobyls . x) = G,
in NV, (K). O

Proposition 6.19. 7 is finite.

Proof. The claim folows directly from the general fact that a morphism is finite if

it is proper and quasi-finite. ]
Thus, there is a finite morphism of stacks

de,l . d ! 1 ! 1
T TG, Xpais X7(x) » 0" Ny x5, F# c 07 VH i,
- - - q
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6 Product structure

which is “surjective” in the sense of the statement of Main Theorem 0.1 and this
proves Main Theorem 0.1.
An application of the product structure is the possibility to calculate the dimension

of the leaves inside a Newton stratum.

Proposition 6.20. Let K be a perfect field extension of F,. For each v let @Z
be a local G.,-shtuka over K in the isogeny class of (L*G,,,x;67) with z; as in
Definition 4.5.

(i) Then for every global G-shtuka G over a K-scheme S the central leaf C(@.)i,s is
closed in the Newton stratum N c S, and hence locally closed in S. It carries

a natural scheme structure.

(7i) Like in Proposition 4.26 this defines a closed reduced substack C(@_)i of Ny k¢ =
N xg, Spec K c VHj.. The stack Cg . is smooth over K of relative dimension
dim3Jg, = Y1 (Va,.dom » 20i); see Theorem 4.29.

Proof. For each i, that is for each characteristic ¢;, we choose a quasi-isogeny of
local G,-shtukas
gi: @z - (LJchia 33’16':)

over K. These correspond to points g; in Xz (z;). We choose d; large enough such
that g; is bounded by 2d;9, that is such that g; € Xgl(xl) Now choose I; and ¢; large

enough such that 7¢e! exists. Consider the morphism
d,e,l
m:Jg, Xgal Spec K — Jg, X s {(9:)iy T— 0" Ny = a" N, xr, Spec K,

which is finite, because 7¢¢! is finite and {(g;);} is a closed K-valued point of
Xg(g) X pals Spec K, and hence Jg, X pals Spec K — Jg, X gl Xg(g) Xpale Spec K is a
closed immersion. Since K is perfect, we may base change 7 under the inverse of

the ¢!-Frobenius on K to obtain the finite morphism

om0 (Jg, xgue Spec K) —> Ny k¢ . (6.3)

(i) Let S”:= N, c S and consider the K-morphism 5" - N, ¢ VH}. corresponding
to the global G-shtuka G. Let

o g 107 (Ig, xgas Spec K) xp, o 8 — S’
be obtained by base change from (6.3). We claim that C(@)h o equals the image of
o~ "*mge, and hence is a closed subset of S’ with a natural scheme structure as the

scheme theoretic image.
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6.4 The product morphism 7

To prove the claim, let first s € C(@i)i, o be a point with values in an algebraically

closed field L. By definition of the central leaf there are isomorphisms
fi: T, Gg,)—= @z
for all 7. Consider now the composition
gi=giofi: 1Aﬂc(gs) — (L"Ge;y 3:67)

which also corresponds to the point ¢g; in the truncated Rapoport-Zink space RZ";
and hence in ng(xz) We consider the global G-shtuka G := (gy!)*o...0 (g;l)*g;
over L, which satisfies I, (G') = (L*G.,,x;67). Thus, G’ together with j,, = id for
all i defines an L-valued point of Jg,. By construction y = (G', je,, ¢s) is an L-valued
point of Jg, Xpale Xg(g) which factors through Jg, X gl Spec K and maps to o*G_
in A. So the point y o Frob;ll’spec 1 Spec L - Jg, X pals X%(g) is an L-valued point
of 07 (Jg, xpaix Spec K) with o~"*m(y o Frob_'s ..;) = G, in AV,. This implies that
(yoFrob;l{Spec 1, §)is an L-valued point of a‘l*(Jgng?g Spec K) xn7, . S” which maps
to s. So s lies in the image of o~ 7.

Conversely, let (y,s) € o7*(Jg, X pale Spec K) xx7, . S’ be a point with values in
an algebraically closed field L, that is o7 (y) = G, and 7%¢!(y, (g;);) = 0'*G, in
Nek(L). From the construction of m4¢! and Corollary 6.10 it follows that o™*G =
mdel(y (g;);) satisfies f‘ci(al*gs) = gl*G,. Therefore T, g,) = G, and we conclude
that s € C(@i)i’ o~ This proves the claim, shows that C(Q)i, o is a closed subset of S,

and proves (i).

(ii) Since K is perfect, the reduced closed substack C(@i)i of Ny x ¢ VH}, is geo-
metrically reduced and the argument of Proposition 4.31 applies and shows that
C(@i)i is smooth over K. Since its connected components are irreducible and re-
duced, their dimension equals the dimension of Jg,, which is ¥i (v, dom » 20i) by
Theorem 4.29. O
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