
WESTFÄLISCHE

WILHELMS-UNIVERSITÄT

MÜNSTER

> Foliations inmoduli spaces
ofboundedglobalG-shtukas

Anna KatharinaWeiß
2017

wissen leben
WWU Münster

FACHBEREICH 10
MATHEMATIK UND

INFORMATIK





Mathematik

Foliations in moduli spaces of

bounded global G-shtukas

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Naturwissenschaften im Fachbereich

Mathematik und Informatik

der Mathematisch-Naturwissenschaftlichen Fakultät

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Anna Katharina Weiß

aus Münster

- 2017 -



Dekan: Prof. Dr. Xiaoyi Jiang

Erster Gutachter: Prof. Dr. Urs Hartl

Zweiter Gutachter: Prof. Dr. Eugen Hellmann

Tag der mündlichen Prüfung: 13.06.2017

Tag der Promotion: 13.06.2017



Abstract

We establish a foliation structure for Newton strata in moduli spaces of bounded

global G-shtukas. We describe these strata as a product of “truncated” affine

Deligne-Lusztig varieties with so-called Igusa varieties up to a finite surjective mor-

phism. This is a function field analogue to Oort’s and Mantovan’s foliation for

moduli spaces of abelian varieties and generalizes the foliation structure for defor-

mation spaces of local shtukas to parahoric group schemes and to global G-shtukas.

Zusammenfassung

Wir führen eine Blätterungsstruktur für Newton-Strata in Modulräumen von be-

schränkten globalen G-Shtukas ein. Wir beschreiben diese Strata als ein Produkt

von "abgeschnittenen" affinen Deligne-Lusztig-Varietäten mit so genannten Igusa-

Varietäten bis auf einen endlichen surjektiven Morphismus. Dies ist ein Funktionen-

körper-Analogon zu Oort’s und Mantovan’s Blätterung für Modulräume abelscher

Varietäten und verallgemeinert die Blätterungsstruktur für Deformationsräume von

lokalen Shtukas auf den Fall parahorischer Gruppenschemata und auf globale G-

Shtukas.





Introduction

As a function field analogue to abelian varieties (with additional structures) Arasteh

Rad and Hartl introduced global G-shtukas in [AH14a] and [AH14b]. We recall

their definition. Let Fq be a finite field with q elements, C a smooth projective

geometrically irreducible curve over Fq and let Q = Fq(C) be the function field of

C. For a closed point c ∈ C we denote by Fc the residue field at c, Ac ≅ Fc�zc� the

completion of the local ring OC,c and by Qc the fraction field of Ac. We let N ilp Ac

be the category of Ac-schemes on which the image ζc of zc is locally nilpotent.

Let G be a parahoric Bruhat-Tits group scheme over C as defined by Bruhat and

Tits [BT72, Définition 5.2.6] and denote by Gc ∶= G ×C Spec Ac the base change

of G to Spec Ac, which is a parahoric group scheme over Ac. A global G-shtuka

over an Fq-scheme S is a tuple G = (G, s1, . . . , sn, τ) consisting of a G-torsor G

over C ×Fq
S =∶ CS, a tuple of characteristic sections (s1, . . . , sn) ∈ Cn(S), and a

Frobenius connection τ , which is an isomorphism τ ∶ σ∗G ∣CS∖∪iΓsi
�̃→G ∣CS∖∪iΓsi

outside the graph of the si’s with σ∗ ∶= (idC × Frobq)
∗. An isomorphism between

G and another global G-shtuka G
′

= (G
′

, s
′

1, . . . , s
′

n, τ
′

) is an isomorphism f ∶ G→̃G
′

of G-torsors with τ
′

○ σ∗f = f ○ τ , and si = s
′

i for all i = 1, . . . , n. The category

of global G-shtukas with isomorphisms as morphisms is fibered over the category

of Fq-schemes and is an ind-algebraic stack, that is an inductive limit of Deligne-

Mumford stacks (together with closed immersions), which are separated and locally

of finite type over C (see [AH14b, Theorem 3.14]). If global G-shtukas are provided

with H-level structures (see Definition 2.52) and with boundedness conditions (see

Definition 2.29 and Definition 2.32) the moduli stack of bounded global G-shtukas is

a separated Deligne-Mumford stack and locally of finite type over Cn (see [AH14b,

Theorem 3.14]). These stacks are the function field analogues of Shimura varieties

over number fields. Therefore, one can expect that the Langlands correspondence

for function fields can be realized in the cohomology of those moduli spaces. Moduli

stacks of global G-shtukas, constructed by Arasteh Rad and Hartl in [AH14b] are

generalizations of moduli spaces of Drinfeld shtukas, which were investigated and

studied by Drinfeld [Dri74] and Lafforgue [Laf02] for G = GL2 (resp. G = GLr).

Moduli spaces of global G-shtukas also generalize the moduli stacks FBun studied

by Varshavsky [Var04], which treat the case of a constant split reductive group G,

and also the stacks E��C,D,I of Laumon, Rapoport and Stuhler [LRS93] who used
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Introduction

them to prove the Local Langlands Correspondence for GLr in the function field

case.

Analogously to p-divisible groups (also called Barsotti-Tate groups), which are an

important tool in the theory of Shimura varieties and abelian varieties, global G-

shtukas give rise to so-called local Gc-shtukas. For an explicit definition of local Gc-

shtukas see Definition 2.8. As a function field analogue to the functor that assigns

a p-divisible group to an abelian variety, Arasteh Rad and Hartl established the

so-called global-local functor which associates a tupel of local Gc-shtukas to a global

G-shtuka. In [HV11] and [HV12] Hartl and Viehmann studied deformation spaces

of local Gc-shtukas for constant split connected reductive groups Gc. Morphisms

between local shtukas are called quasi-isogenies. An important invariant of a local

Gc-shtuka (over an algebraically closed field) is its isogeny class. This gives rise

to a so-called Newton stratification of those deformation spaces by quasi-isogeny

classes. By [HV12], each Newton stratum in the deformation space of local Gc-

shtukas for constant split Gc possesses a foliation structure in the following sense:

Onto each Newton stratum there is a finite morphism from the product of a central

leaf with (the completion at a point of) the corresponding affine Deligne-Lusztig

variety (which is the underlying topological space of a Rapoport-Zink space, that is

the moduli space for local Gc-shtukas). By Arasteh Rad’s analogue of the Serre-Tate

theorem (see Section 2.3) the deformation spaces of global G-shtukas are isomorphic

to products of deformation spaces of the local Gci
-shtukas, and hence also have a

foliation structure.

The matter of this thesis is to obtain such a foliation structure for Newton strata

moduli spaces of bounded global G-shtukas with H-level structure for an arbitrary

parahoric Bruhat-Tits group G. Therefore, we define and study Newton strata of

these moduli spaces. We describe such a stratum up to a finite surjective morphism

as a product of the reduced fibres of the corresponding (truncated) Rapoport-Zink

spaces with some algebraic stacks, which we call Igusa varieties. This foliation

is a function field analogue to Oort’s foliations for p-divisible groups and abelian

varieties ([Oor04]) and to Mantovan’s product structure for Newton polygon strata

in Shimura varieties of (PEL) type and generalizes Hartl’s and Viehmann’s foliation

structure for deformation spaces of local shtukas to parahoric group schemes and to

global G-shtukas. We proceed as follows:

In Chapter 1 we present definitions and notations that are used throughout this

paper and recall some general facts about reductive groups.

Chapter 2 treats global G-shtukas and their relations to local Gc-shtukas. The

results there are already shown in [AH14a] and [AH14b]. We recall the definitions

of global and local G-shtukas in Section 2.1. We describe the global-local functor

which associates a tupel of local Gc-shtukas to a global G-shtuka Γ̂ ∶= ∏i=1,...,n Γ̂ci

ii



for a closed point c = (c1, . . . , cn) ∈ Cn with ci ≠ cj for i ≠ j (see Definition 2.18) in

Section 2.2. Section 2.3 presents the Serre-Tate theorem. In Section 2.4 we intro-

duce Rapoport-Zink spaces for (bounded) local Gc-shtukas and define the truncated

Rapoport-Zink spaces as follows: Let L0 be a fixed local Gc-shtuka over a field k̃, and

L a local Gc-shtuka over a scheme S. Denote by RZ
Ẑ
L

0
the (bounded) Rapoport-Zink

space associated to L0. We fix a representation � ∶ Gc �→ SLr,SpecFc�z� and denote by

2�̌ the sum of all positive coroots of SLr with respect to the Borel-subgroup of upper

triangular matrices in SLr. For a non-negative integer di the truncated Rapoport-

Zink space is the closed ind-subscheme RZ
di

Ẑ
of RZ

Ẑ
L

0
defined by the functor

RZ
di

Ẑ
∶ (N ilpk̃�ξ�)

○ �→ (Sets)

S ↦ { Isomorphism classes of (L, δ) ∶= (L+, τ̂ , δ) ∈ RZ
Ẑ
L

0
(S),

s.t. �∗(δ) is bounded by 2di�̌}

where δ ∶ LS̄ → L0,S̄ is a quasi-isogeny; see Definition 2.41. Arasteh Rad and Hartl

used the Rapoport-Zink spaces of local Gc-shtukas to uniformize the moduli spaces

of global G-shtukas. We will recall this uniformization morphism (established by

Arasteh Rad and Hartl in [AH14b]) in Section 2.5.

In Chapter 3 we introduce our generalization of Newton strata inside the special

fibre of the moduli space of global G-shtukas. We denote by ∇H1

F
alg
q

the base change

of the special fibre ∇H1 over c of the moduli space of bounded global G-shtukas (with

H-level structure) to F
alg
q . The stratification is given via the quasi-isogeny classes of

local Gc-shtukas. We show that Newton strata exist as locally closed substacks in

the special fibre of the moduli space of global G-shtukas. We give a short description

of Newton strata here: Denote by B(Gci
) the set of quasi-isogeny classes of local

Gci
-shtukas Ĝ

i
. Choose a tuple of quasi-isogeny classes b = (b1, . . . , bn) ∈ ∏i B(Gci

).

Then the reduced scheme

N⪯b ∶= {s ∈ S ∶ [Ĝ
i,s
] ⪯ bi for all i}

is a closed subscheme of S, and

Nb ∶= {s ∈ s ∶ [Ĝ
i,s
] = bi for all i}

is a locally closed subscheme; see Corollary 3.6.

In analogy to Mantovan’s foliation for moduli spaces of abelian varieties we want

to give a foliation structure on the Newton Strata but not only in deformation

spaces but also for the whole Newton strata in the moduli space of (bounded)

global G-shtukas (with H-level structure) and for relatively general groups. This

foliation structure is decribed as a product of a covering of central leaves by Igusa
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varieties with truncated Rapoport-Zink spaces. Therefore, in Chapter 4 we start

by considering leaves.

In the classical case Oort introduced the notion of a central leaf. In our case a

central leaf inside a Newton stratum is defined to be the locus where the associated

local Gc-shtukas (to a global G-shtuka) are isomorphic to a chosen fixed local Gc-

shtuka. For our purposes we choose this isomorphism class to be given by a so-called

fundamental element; see Definition 4.3. Let K be a field extension of Fci
and let

Ĝi be a local Gci
-shtuka over K. For a K-scheme S and a local Gci

-shtuka Ĝ
i

over

S the central leaf is defined as the subset

CĜi,S
∶= { s ∈ S ∶ Ĝi,L ≅ Ĝ

i,L
over an algebraically closed field extension L/κ(s) }.

If G is a global G-shtuka over a K-scheme S, the central leaves are defined as the

subsets

CĜi,S
∶= { s ∈ S ∶ Ĝi,L ≅ Γ̂ci

(G)L over an algebraically closed field extension L/κ(s) }

and

C
(Ĝi)i,S

∶= ⋂
i

CĜi,S
;

see Definition 4.19.

The results in [Oor04] and [Man04] (resp. in [HV12]) concerning the existence of

a foliation structure with the desired properties are based on the statement that a

family of p-divisible groups (resp. local Gc-shtukas) with constant Newton polygon

is quasi-isogenous to a completely slope divisble family ([HV12], [OZ02]). To get a

similar result in our case we choose a fundamental element x which is defined over

a field Fx (for more details see Section 4.1). In Section 4.2 we introduce the notion

of a complete slope division of a local Gc-shtuka G over S (see Definition 4.16)

and clarify the existence of complete slope divisions (see Theorem 4.17). In the

following, we describe this briefly: Denote by I an Iwahori group as defined in

[HR08, Definition 1]. Let P = MN be a parabolic of GQ with Levifactor M and

unipotent radical N . Let P̄ = MN̄ be its opposite. Furthermore, we use the notation

IP̄ ∶= IM ⋅ IN̄ for the intersection with I. We do not assume that I, M or N is fixed

by the Fc-Frobenius σ̂. Roughly speaking, a complete slope division (P , η) with

respect to x of a local Gc-shtuka G = (G, τ̂G) over an F
alg
q -scheme is described by the

existence of a “trivializtion” of the Frobenius τ̂G to an element in x ⋅L+IP̄ (S′) (here,

L+I denotes the groop of positive loops, see Definition 1.5). If G is a local Gc-shtuka

over an F
alg
q -scheme S with constant isogeny class [x], then there is scheme Yx which

is finite over S and represents isomorphism classes of complete slope divisions of G.

We show that for a tuple x = (x1, . . . , xn) of fundamental elements the central leaf

Cxi,S ∶= C(L+Gci
,xi),S is closed in the Newton stratum Nxi

⊂ S and that it exists as a

iv



locally closed substack of the special fibre ∇H1

F
alg
q

, and hence is a Deligne-Mumford

stack locally of finite type.

We prove that a local Gc-shtuka over an F
alg
q - scheme S with constant isogeny class

[x] is completely slope divisible over a finite surjective morphism Y ∶= Yx → Cx,S.

If Gc = I is an Iwahori group, then we can take Y = Cx,S; see Corollary 4.22. The

schemes Yxi
from above define Deligne-Mumford stacks Yxi

for all i = 1, . . . , n which

are finite over Nxi
⊂ ∇H1

F
alg
q

. We set Yx ∶= Yx1
×∇H1

F
alg
q

. . . ×∇H1

F
alg
q

Yxn
. We will see

in Theorem 4.29 that Yx → SpecFalg
q is a smooth stack, and we will compute its

dimension. Furthermore, all central leaves C
(Ĝi)i

in the Newton stratum Nx ⊂ ∇H1

are closed substacks and smooth; see Proposition 6.20. This property is the anologue

of [Oor04, Theorem 3.13] resp. [Man04, Proposition 2.7].

We introduce in Chapter 5 the Igusa varieties Igei
of level ei (for an integer

ei > 0) as coverings of the central leaves ; see Definition 5.4. Our definition is

inspired by Mantovan’s definition of Igusa varieties in [Man04] and by the one of

Harris and Taylor in [HT01]. Mantovan describes ([Man04, §3]) Igusa varieties in the

setting of abelian varieties as a sheaf of isomorphisms between truncated Barsotti-

Tate groups. We modify this definition by using a trivialization of the Levi part

of a complete slope division. More precisely, we choose a presentation f ∶ S → Yxi

such that the universal complete slope division (P i, ηi) of Γ̂ci
(f∗Guniv

) = (Gi, τ̂Gi
)

over Yxi
possesses a trivialization such that, loosely speaking, τ̂Gi

can be written as

an element ximin̄i ∈ xi ⋅ L+IP̄i
(S). For an integer ei ≥ 0 we define the Igusa variety

of level ei as the functor Igei
on the category of S-schemes T given by

Igei
(T ) ∶= { jei

∈ (L+σ̂−1
i IMi

/L+σ̂−1
i Iei,Mi

)(T ) ∶ σ̂∗i (j
−1
ei

)x−1
i jei

ximi ∈ L+Iei,Mi
(T ) } .

For a tuple of non-negative integers e = (ei)i we define the Igusa variety Ige of level

e as the functor on the category of S-schemes T

Ige(T ) ∶= { (jei
)i ∶ jei

∈ Igei
(T ) } ;

see Definition 5.4. We show that there exist algebraic stacks

Igei
→ Yxi

→ Cxi
⊂ ∇H1

F
alg
q

with Igei
×Yxi

S = Igei
and Ige×Yx

S = Ige; see Proposition 5.6. The morphisms Igei
→

Yxi
and Ige → Yx are finite étale Galois coverings. In particular, the morphisms

Igei
→ Cxi

⊂ ∇H1

F
alg
q

and Ige → Cx ⊂ ∇H1

F
alg
q

are finite, but in general not étale; see

Proposition 5.7.

The main result of this thesis, which is proven in Chapter 6, is the following:
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Main Theorem 0.1. Let d = (d1, . . . , dn) and denote by e = (ei)i the level of the

Igusa variety Ige, such that ei +2di(1− ri) ≥ 1 for all i = 1, . . . , n. Let l be a multiple

of all deg ci ∶= [Fci
∶ Fq] for the number li(ei) from Definition 4.3 (vi). There is a

morphism of stacks

πd,e,l ∶ Ige ×F
alg
q

X
d

Z(x) → σl∗Nx ×Fc
Falg

q ⊂ σl∗∇H1

F
alg
q

,

which is finite. If we consider the compositum of πd,e,l with the projection σl∗Nx → Nx

then for every point of Nx with values in an algebraically closed field there is a tuple

(d, e, l) and a point in the preimage under πd,e,l.

Here, XZi
(xi) denotes the affine Deligne-Lusztig variety from Definition 2.38. Fur-

thermore, we denote by Xdi

Zi
(xi) the reduced subscheme of RZ

di

Ẑi
and set

X
d

Z ∶= (Xd1

Z1
(x1) ×

F
alg
q

. . . ×
F

alg
q

Xdn

Zn
(xn)).

The proof of Main Theorem 0.1 is devided into several steps and the construction

is very technical as we need suitable “trivializations”, and several quasi-isogenies.

But once we have chosen those we construct the product morphism πd,e,l by using

Arasteh Rad’s uniformization morphism. Then we can show that πd,e,l is quasi-finite

and satisfies the valuation criterion for properness and hence is finite and “surjective”

in the sense of the statement of the Main Theorem. The tuple of trivializations α is

chosen in Section 6.1, the tuple of quasi-isogenies h(l) is constructed in Section 6.2.

In Section 6.3 we show that the tuple (α, h(l)) descends to the Igusa variety. These

techniques are needed to construct the product morphism πd,e,l and prove its desired

properties in Section 6.4.

Finally, we conclude this thesis with an application of the Main Theorem. Namely

in Proposition 6.20 we deduce, that each leaf inside one Newton stratum has the

same dimension and we compute this dimension.

vi
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1 Preliminaries

1.1 Notations

Following [AH14a] and [AH14b], we denote by

Fq a finite field with q elements and characteristic p,

C a smooth projective geometrically irreducible curve over

Fq,

Q ∶= Fq(C) the function field of C,

c a closed point of C, also called a place of C,

Fc the residue field at the place c on C,

Ac the completion of the stalk OC,c at c,

Qc ∶= Frac(Ac) its fraction field,

Dc,R ∶= Spec R�z� the spectrum of the ring of formal power series in z

with coefficients in an Fc-algebra R,

D̂c,R ∶= Spf R�z� the formal spectrum of R�z� with respect to the z-adic

topology.

We let z be a uniformizer of Ac. Therfore, there are canonical isomorphisms

Ac = Fc�z� and Qc = Fc((z)). When R = Fc we drop the subscript R from the

notation of Dc,R and D̂c,R.

For a formal scheme T̂ we denote by N ilpT̂ the category of schemes over T̂ on

which an ideal of definition of T̂ is locally nilpotent. We equip N ilpT̂ with the

∗-topology where ∗ ∈ {étale, fppf, fpqc}.

Let n ∈ N>0 be a positive integer, and denote by c ∶= (ci)i=1...n an n-tuple of closed

points of C with ci ≠ cj for i ≠ j, and by

1



1 Preliminaries

Ac the completion of the local ring OCn,c of Cn

at the closed point c = (ci),

Oc ∶= ∏c∉c Ac the ring of integral adeles of C outside c,

Ac ∶= Oc ⊗OC
Q the ring of adeles of C outside c,

N ilpAc
∶= N ilpSpf Ac

the category of schemes over Cn on which the ideal

defining the closed point c ∈ Cn is locally nilpotent,

N ilpFc�ζ� ∶= N ilpD̂c
the category of Dc-schemes S for which the image of z

in OS is locally nilpotent.

We denote the image of z by ζ since we need to

distinguish it from z ∈ ODc
.

We further denote by

G a flat affine group scheme of finite type over C,

which is parahoric in the sense of Definition 1.1,

Gc ∶= G ×C Spec Ac the base change of G to Spec Ac,

GQc
∶= G ×C Spec Qc the generic fibre of Gc over Spec Qc.

Independently of G, we also consider more generally

Gc a flat affine group scheme of finite type over Dc,

GQc
∶= Gc ×Dc

SpecFc((z)) the generic fibre of Gc over SpecFc((z)).

For any Fq-scheme S we denote by σS ∶ S → S its Fq-Frobenius endomorphism,

which acts as the identity on the points of S and as the q-power map on the structure

sheaf.

We denote likewise by σ̂S ∶ S → S the Fc-Frobenius endomorphism of an Fc-scheme

S with σ̂S ∶= σ
deg c
S for deg c ∶= [Fc ∶ Fq].

We set

CS ∶= C ×SpecFq
S,

σ ∶= idC × σS.

1.2 Further Definitions

Let Fq be a finite field with q elements, C a smooth projective geometrically irre-

ducible curve over Fq and Q ∶= Fq(C) the function field of C. For any closed point

c denote by Fc the residue field at the place c on C.

Let Ac ≅ Fc�zc� be the completion of the local ring OC,c and Qc ∶= Frac(Ac) its

fraction field.

By N ilpAc
we denote the category of Ac-schemes on which (the image) ζc (of zc) is

locally nilpotent.

Let G be a parahoric Bruhat-Tits group scheme over C as defined in the following:

2



1.2 Further Definitions

Definition 1.1. A parahoric (Bruhat-Tits) group scheme over C is a smooth affine

group scheme G over C such that

(i) all geometric fibres of G are connected and the generic fibre of G is reductive

over Fq(C),

(ii) for any ramification point c of G (that is, those points c of C for which the

fibre above c is not reductive) the group scheme Gc ∶= G ×C Spec Ac is a para-

horic group scheme over Ac as defined by Bruhat and Tits in [BT72, Defini-

tion 5.2.6], (or see also [HR08]).

For more details on parahoric group schemes, see e.g. [HR08].

Remark 1.2. One can define and show the extistence of the moduli space of global

G-shtukas without assuming that G is parahoric, but we need in this thesis that the

affine flag variety at each c is proper and this is the case if the group is parahoric.

Proposition 1.3. (i) The parahoric group scheme G has a faithful presentation

� ∶ G ↪ GL(V )

for a vector bundle V on C such that the quotient GL(V )/G is quasi affine.

(ii) If all fibres of G over C are reductive then the quotient GL(V )/G as above is

affine.

Proof. (i) [Hei10, Example (1), page 504],

(ii) [AH14b, Proposition 2.2.(c)].

Definition 1.4. For a sheaf of groups H (for the ∗-topology) on a scheme X we

define a (right) H-torsor (or an H-bundle) on X to be a sheaf F for the ∗ ∈

{étale, fppf, fpqc}-topology on X together with a (right) action of the sheaf H such

that F is isomorphic to H on a ∗-covering of X.

H is viewed as an H-torsor by right multiplication.

Definition 1.5. (cf. [AH14a, Definition 2.1])

The group of positive loops associated with Gc is the infinite dimensional affine

group scheme L+Gc over Fc whose R-valued points for an Fc-algebra R are

L+Gc(R) ∶= Gc(R�z�) ∶= HomDc
(Dc,R, Gc).

The group of loops associated with Gc is the fpqc-sheaf of groups LGc over Fc

whose R-valued points for an Fc-algebra R are

LGc(R) ∶= Gc(R((z))),

with R((z)) ∶= R�z� [1
z
].
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1 Preliminaries

Definition 1.6. (i) The affine flag variety F�Gc
is the fpqc-sheaf associated with

the presheaf

R ↦ LGc(R)/L+Gc(R) = Gc(R((z)))/Gc(R�z�)

on the category of Fc-algebras.

(ii) When Gc is hyperspecial, that is, when the special fibre of Gc is reductive, we

call F�Gc
the affine Grassmannian.

In the case of L+Gc-torsors (which is defined in Definition 1.5, see also [Fal03,

Definition 1]) we have that the L+Gc-torsors for the étale-, fppf- and fpqc-topology

are equivalent:

Lemma 1.7. (cf. [AH14a, Proposition 2.4])

Ȟ1(Sét, L
+Gc) = Ȟ1(Sfppf , L

+Gc) = Ȟ1(Sfpqc, L
+Gc).

Definition 1.8. Let S be a scheme and denote by (Sch /S)fppf the big fppf site. An

algebraic stack over S (also called Artin-stack) is a category

X → (Sch /S)fppf

over (Sch /S)fppf with the following properties:

(i) The category X is a stack in groupoids over (Sch /S)fppf .

(ii) The diagonal Δ ∶ X → X ×X is representable by algebraic spaces.

(iii) There exists a scheme X in (Sch /S)fppf and a 1-morphism (Sch /X)fppf → X

which is smooth and surjective.

Definition 1.9. Let S be a scheme contained in Schfppf and let X be an algebraic

stack over S. X is called a Deligne-Mumford stack if there exists a scheme X and

a surjective étale morphism (Sch /X)fppf → X .

Following [AH14b, Definition 2.3] we denote by H1(C, G) the category fibered in

groupoids over the category of Fq-schemes with objects

H1(C, G)(S) ∶= {G-torsors over CS} (1.1)

and isomorphisms of G-torsors as its morphisms.

By [AH14b, Theorem 2.4] it is a smooth Artin-stack locally of finite type over Fq:

Proposition 1.10. (i) Let G be a parahoric group scheme over the curve C.

Then the stack H1(C, G) is a smooth Artin-stack locally of finite type over Fq.

It admits a covering by connected open substacks of finite type over Fq.
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1.2 Further Definitions

(ii) Let X be a projective scheme over a field k. Let V be a vector bundle over

X and let � ∶ G ↪ GL(V ) be a closed subgroup with quasi-affine quotient

GL(V )/G. Then the natural morphism of k-stacks

�∗ ∶ H
1(X, G) �→ H1(X, GL(V ))

is representable, quasi-affine and of finite presentation.

Proof. (i) [AH14b, Theorem 2.4],

(ii) [AH14b, Theorem 2.5].

By [Ser94, III, 2.3, Théorème 1′ and Remarque 1] the analogue of the Theorem of

Steinberg holds. That is, by loc. cit. follows that any connected reductive algebraic

group GQc
over Falg

c ((z)) is quasi-split, i.e. it contains a Borel subgroup defined over

F
alg
c ((z)), or eqivalently, the centralizer of a maximal Falg

c ((z))-split torus in GQc
is

a torus. Hence, the following definition makes sense:

Definition 1.11. (cf. [AH16a, Definition 1.1])

Assume that Gc is parahoric. Then the generic fibre GQc
of Gc over SpecFc((z)) is

connected reductive. Consider the base change GL of GQc
to L = F

alg
c ((z)). Let S be

a maximal split torus in GL and let T be its centralizer. Since F
alg
c is algebraically

closed, GL is quasi-split, and so T is a maximal torus in GL. Let N = N(T ) be the

normalizer of T and let T 0 be the identity component of the Néron model of T over

OL = F
alg
c �z�.

The Iwahori-Weyl group associated with S is the quotient group W̃ = N(L)/T 0(OL).

It is an extension of the finite Weyl group W0 = N(L)/T (L) by the coinvariants

X∗(T )I under I = Gal(Lsep∣L):

0 → X∗(T )I → W̃ → W0 → 1.

By [HR08, Proposition 8], there is a bijection

L+Gc(F
alg
c )/LGQc

(Falg
c )/L+Gc(F

alg
c )�̃→W̃ Gc/W̃ /W̃ Gc

where W̃ Gc ∶= (N(L) ∩ Gc(OL))/T
0(OL). Here, LGQc

(R) = LGc(R) = Gc(R((z)))

and L+Gc(R) = Gc(R�z�) are the loop group, resp. the group of positive loops of Gc;

see [PR08, § 1.a], or [BD91, §4 .5], [NP01] and [Fal03] when Gc is constant.

Let ω ∈ W̃ Gc/W̃ /W̃ Gc and let Fω be the fixed field in F
alg
c of

{γ ∈ Gal(Falg
c ∣Fc) ∶ γ(ω) = ω} .

There is a representative gω ∈ LGc(Fω) of ω; see [AH14a, Example 4.12]. The

Schubert variety S(ω) associated with ω is the ind-scheme theoretic closure of the

L+Gc-orbit of gω in F�Gc
×̂Fc

Fω. It is a reduced projective variety over Fω. For

further details see [PR08] and [Ric13b].
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1 Preliminaries

1.3 Some facts about reductive groups

Definition 1.12. A smooth connected algebraic group is reductive if its geometric

unipotent radical is trivial.

Definition 1.13. A parabolic subgroup P of an algebraic group G is a subgroup

such that G/P is projective.

Proposition 1.14. (cf. [Con11, Chevalley,Theorem 1.1.9])

The parabolic subgroups of any connected linear algebraic group G are connected.

Definition 1.15. A Levi subgroup of a parabolic P is a subgroup M such that P

is the semidirect product P = N ⋊ M , where N is the unipotent radical (that is

the maximal connected, unipotent, normal linear algebraic subgroup of the linear

algebaric group P ).

By [Mil15, 22.148 and Definition 22.161] (resp. [Bor91, Corollary 14.19], [CGP10]),

such Levi subgroups exist. They are reductive and smooth by [Con11, Defini-

tion 5.4.2].

Definition 1.16. Two parabolic subgroups P1 and P2 are called opposite if P1 ∩P2

is a Levi subgroup of P1 and P2.
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2 Global G-shtukas and local

Gc-shtukas

Throughout this chapter we use the following notations:

Definition 2.1. For a closed point c ∈ C we write

Dc ∶= Spec Ac and

D̂c ∶= Spf Ac.

Set deg c ∶= [Fc ∶ Fq] and choose an inclusion Fc ⊂ Ac which induces the identity on

Fc (the inclusion is uniquely defined by Hensels Lemma). We assume that there is

a section s ∶ S → C factoring through Spf Ac (thus, the image of a uniformizer of Ac

in OS is locally nilpotent). Set

ac,l ∶= ⟨a ⊗ 1 − 1 ⊗ s∗(a)ql

∶ a ∈ Fc⟩ .

There are isomorphisms

D̂c×̂Fq
S ≅ ∐

l∈Z/(deg c)

V (ac,l).

2.1 Global G-shtukas and their relation to local

Gc-shtukas

Function field analogues of abelian varieties are global G-shtukas. They were in-

vestigated by Arasteh Rad and Hartl in [AH14a] and [AH14b]. They showed that

there is a Deligne-Mumford stack ∇
H,Ẑ
n H1(C, G) which parametrizes global bounded

G-shtukas with H-level structure. Moreover, this algebraic stack is separated and

of finite type over Cn ([AH14b, Theorem 3.14]). The moduli space generalizes the

space of F -sheaves FShD,r introduced by Drinfeld ([Dri87]) and Lafforgue ([Laf02])

for G = GL2 (rsp. G = GLr) and further studied and generalized by Varshavsky’s

moduli stacks FBun ([Var04]).

We recall some of the definitions and notations given in [AH14a] and [AH14b].

First we give the definition of a global G-shtuka (without level structure).
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2 Global G-shtukas and local Gc-shtukas

Definition 2.2. A global G-shtuka G over an Fq-scheme S is a tuple

G = (G, s1, . . . , sn, τ)

consisting of

(i) a G-torsor G ∈ H1(C, G)(S) over CS ∶= C ×Fq
S,

(ii) an n-tuple of characteristic sections (s1, . . . , sn) ∈ Cn(S), and

(iii) a Frobenius connection τ defined outside the graph Γsi
⊂ CS of the morphisms

si, that is an isomorphism

τ ∶ σ∗G ∣CS∖∪iΓsi
�̃→G ∣CS∖∪iΓsi

,

where σ∗ = (idC × Frobq,S)
∗.

Definition 2.3. We denote by ∇nH
1(C, G) the moduli stack of global G-shtukas

(without level structure). It parametrizes global G-shtukas as defined in 2.2, where

two global G-shtukas G = (G, τ) and G
′

= (G
′

, τ
′

) are said to be isomorphic, if there

is an isomporphism

f ∶ G�̃→G
′

of G-torsors with

f ○ τ = τ
′

○ σ∗f.

There are relations to local Gc-shtukas, where Gc is a parahoric group scheme.

Global G-shtukas induce local Gc-shtukas by “completing” at the closed point c ∈ C.

We prefer to work with the associated loop groups torsors. It is very useful to study

those local Gc-shtukas because the global G-shtukas are controlled by their local

behaviour at their characteristic places. We explain this relation in more detail: For

a finite field Fc containing Fq we denote by Fc�z� the power series ring over Fc in

the variable z. We consider a smooth affine group scheme over SpecFc�z� which we

denote by Gc with connected fibres (this holds in particular if Gc is parahoric), and

we let GQc
∶= Gc ×SpecFc�z� SpecFc((z)) the generic fibre of Gc over SpecFc((z)).

We are especially interested in the local Gc-shtukas associated to a global G-shtuka.

Therefore, in the situation where there is an isomorphism SpecFc�z� ≅ Spec Ac for

a place c of C and Gc ∶= G ×C Spec Ac, GQc
∶= G ×C Spec Qc.

We assume now that Gc is a parahoric group scheme over SpecFc�z� in the sense

of Bruhat and Tits ([BT72]) and GQc
is reductive over Fc((z)). If one wants to

consider the theory of local G-shtukas independent (or without the notion) of global

G-shtukas this is possible by writing Dc ∶= Spec k�z� for a finite field k instead of

Spec Ac. We will define local Gc-shtukas in Definition 2.8.
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2.1 Global G-shtukas and their relation to local Gc-shtukas

2.1.1 Loop groups and local Gc-shtukas

Let LGc resp. L+Gc be the group of loops resp. of positive loops of Gc, that is the

sheaves of groups defined on affine schemes S = Spec R by

L+Gc(S) ∶= Gc(R�z�) and

LGc(S) ∶= Gc(R�z� [
1
z
]) = Gc(R((z))).

In order to introduce local Gc-shtukas we investigate some definitions and construc-

tions (already given e.g. in [AH14a] or [HV11]).

LGc (resp. L+Gc) is representable by an ind-scheme of ind-finite type (resp. affine

group scheme) over Fc; see also [PR08, § 1.a], or [BD91, § 4.5], [NP01], [Fal03].

The stack

H1(SpecFc, L
+Gc) ∶= [SpecFc/L

+Gc],

resp.

H1(SpecFc, LGc) ∶= [SpecFc/LGc],

classifying L+Gc-torsors, resp. LGc-torsors, is a stack fibered in groupoids over the

category of Fc-schemes S.

Induced by the natural inclusion L+Gc ⊂ LGc there is a morphism

L ∶ H1(SpecFc, L
+Gc) �→ H1(SpecFc, LGc)

L+ ↦ L.

Definition 2.4. (cf. [AH14a, Definition 2.2])

Let Ĝc be the formal group scheme over D̂c ∶= SpfFc�z� obtained by the formal

completion of Gc along V (z). A formal Ĝc-torsor over an Fc-scheme S is a z-adic

formal scheme P̂ over D̂c,S ∶= D̂c×̂Fc
S together with an action Ĝc×̂D̂c

P̂ → P̂ of Ĝc on

P̂ such that there is a covering D̂c,S
′ → D̂c,S where S

′

→ S is an fpqc-covering and

such that there is a Ĝc-equivariant isomorphism

P̂×̂D̂c,S
D̂c,S

′ �̃→Ĝc×̂D̂c
D̂c,S

′ .

Here Ĝc acts on itself by right multiplication. We denote by H1(D̂c, Ĝc) the category

fibered in groupoids that assigns to an Fc-scheme S the groupoid consisting of all

formal Ĝc-torsors over D̂c,S.

Proposition 2.5. (cf. [AH14a, Proposition 2.4] or [HV11, Proposition 2.2(a)] for

a split reductive group Gc)

There is an isomorphism

H1(D̂c, Ĝc)�̃→H1(SpecFc, L
+Gc)
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2 Global G-shtukas and local Gc-shtukas

of groupoids. If moreover Gc is smooth over Dc, then each L+Gc-torsor for the

fpqc-topology on S is étale locally trivial on S.

Definition 2.6. Assume that there are two morphisms f, g ∶ X → Y of schemes or

stacks. We denote by equi(f, g ∶ X ⇉ Y ) the pull back of the diagonal under the

morphsim (f, g) ∶ X → Y ×Z Y , that is, we let

equi(f, g ∶ X ⇉ Y ) ∶= X ×(f,g),Y ×Y,Δ Y

where Δ ∶= ΔY /Z ∶ Y → Y ×Z Y is the diagonal morphism.

Definition 2.7. Let X be the fibre product

H1(SpecFc, L
+Gc) ×H1(SpecFc,LGc)

H1(SpecFc, L
+Gc)

of groupoids.

Denote by pri the projection onto the i-th factor. We define the groupoid of local

Gc-shtukas ShtDc

Gc
to be

ShtDc

Gc
∶= equi(σ̂ ○ pr1, pr2 ∶ X ⇉ H1(SpecFc, L

+Gc)×̂SpecFc
SpfFc�ζ�),

where σ̂ ∶= σ̂H1(SpecFc,L+Gc)
is the absolute Fc-Frobenius of H1(SpecFc, L+Gc).

ShtDc

Gc
is the category fibered in groupoids over N ilpFc�ζ� (the category of Fc�ζ�-

schemes on which ζ is locally nilpotent). We call the objects in ShtDc

Gc
(S) the local

Gc-shtukas over S.

More precisely we define a local Gc-shtuka as in [AH14a, Definition 2.6]:

Definition 2.8. A local Gc-shtuka over a scheme S ∈ N ilpAc
is a pair L = (L+, τ̂)

consisting of an L+Gc-torsor L+ on S and an isomorphism of LGc-torsors

τ̂ ∶ σ̂∗L�̃→L,

where L denotes the LGc-torsor associated with L+ and σ̂∗L the pullback of L under

the absolute Fc-Frobenius endomorphism σ̂ ∶= Frob(#Fc),S ∶ S → S.

Definition 2.9. A local Gc-shtuka (L+, τ̂) is called étale if τ̂ comes from an iso-

morphism of L+Gc-torsors σ̂∗L+�̃→L+.

We denote by Ét Sht(S) the category of étale local Gc-shtukas over S.

The second part of the above Proposition 2.5 and [AH14a, Lemma 2.8] imply the

following:

Remark 2.10. If Gc is smooth over Dc with connected special fibre, we can trivialize

each étale local Gc-shtuka to ((L+Gc)k, 1 ⋅ σ̂∗) over a separably closed field k.
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2.1 Global G-shtukas and their relation to local Gc-shtukas

2.1.2 Quasi-isogenies

Now we consider the morphisms in the category of global G-shtukas (resp. local Gc-

shtukas), the quasi-isogenies and recall some important properties, especially the

rigidity of quasi-isogenies.

Definition 2.11. (i) A quasi-isogeny

f ∶ L → L
′

between two local Gc-shtukas L ∶= (L+, τ̂) and L
′

∶= (L
′

+, τ̂
′

) over a scheme

S ∈ N ilpFc�ζ� is an isomorphism

f ∶ L�̃→L
′

of the associated LGc-torsors such that f ⋅ τ̂ = τ̂
′

⋅ σ̂∗f , that is that the diagram

σ̂∗L
τ̂ ��

σ̂∗f

��

L

f

��
σ̂∗L

′

τ̂
′

�� L
′

is commutative.

(ii) We write QIsogS(L,L
′

) for the set of quasi-isogenies between L, and L
′

and

let QIsogS(L) ∶= QIsogS(L,L) be the set of quasi-selfisogenies, which is in fact

a group, called the quasi-isogeny group of L.

One important property of quasi-isogenies is their rigidity, a lifting property:

Proposition 2.12. (Rigidity of quasi-isogenies for local Gc-shtukas) (cf. [AH14a,

Proposition 2.11])

Let S be a scheme in N ilpFc�ζ� and let i ∶ S → S be a closed immersion defined by a

sheaf of ideals I which is locally nilpotent. For any two local Gc-shtukas L and L
′

over S there is a bijection of sets:

QIsogS(L,L
′

) �→ QIsogS(i
∗L, i∗L

′

),

f ↦ i∗f

(with OS
i∗

�→ OS).

There is also a definition of quasi-isogenies for global G-shtukas:
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2 Global G-shtukas and local Gc-shtukas

Definition 2.13. (i) A quasi-isogeny

f ∶ G → G
′

between two global G-shtukas G ∶= (G, τ) and G
′

∶= (G
′

, τ
′

) over a scheme S

with the same characteristics si ∶ S → C, for i = 1, . . . , n, is an isomorphism

f ∶ G∣CS∖DS
�̃→G

′

∣CS∖DS
,

such that τ
′

○ σ∗f = f ○ τ , where D is an effective divisor on C.

(ii) Likewise as for local Gc-shtukas we denote by QIsogS(G,G
′

) the set of quasi-

isogenies between G and G
′

and by QIsogS(G) the group of quasi-isogenies of

G to itself.

Proposition 2.14. (Rigidity of quasi-isogenies for global G-shtukas) (cf. [AH14a,

Proposition 5.9])

Let G ∶= (G, τ) and G
′

∶= (G
′

, τ
′

) be two global G-shtukas over a scheme S with

S ∈ N ilpAc
and let i ∶ S̄ → S be a closed immersion defined by a sheaf of ideals I

which is locally nilpotent.

(i) There is a bijection of sets

QIsogS(G,G
′

) �→ QIsogS̄(i
∗G, i∗G

′

),

f ↦ i∗f

(ii) f is an isomorphism at a place c ∉ c if and only if i∗f is an isomorphism at c.

For more details on local Gc-shtukas and their relation to global G-shtukas, see

[AH14a, § 2] .

2.2 Global-local functor

As a function field analogue to the functor that assigns a p-divisible group to an

abelian variety Arasteh Rad and Hartl established the so-called global-local functor

which associates a tupel of local Gc-shtukas to a global G-shtuka. In the following,

we want to recall this construction which we will use in the sequel for many times.

In order to formulate the functor we need some further notations and preperations:

For an arbitrary closed point c ∈ C set C
′

∶= C/ {c}, C
′

S ∶= C
′

×SpecFq
S and let

H1
e(C

′

, G) be the category fibered in groupoids over Fq-schemes (see [AH14a, § 5.1])

such that the objects are given by:

H1
e(C

′

, G)(S) = {G-torsors over C
′

S that can be extended to a G-torsor over CS} .
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2.2 Global-local functor

There is a restriction morphism

res ∶ H1(C, G) �→ H1
e(C

′

, G)

G ↦ res(G) ∶= G ×CS
C
′

S.

The group scheme G̃c defined by the Weil restrictions

G̃c ∶= ResFc∣Fq
Gc

is a flat affine group scheme of finite type over SpecFq�z�. Consider the c-adic

completion
ˆ̃Gc ∶= G̃c×̂SpecFq�z�Spf Fq�z� = ResFc∣Fq

Ĝc,

so we have loop groups:

L+ ˆ̃Gc(R) = G̃c(R�z�) and

L ˆ̃Gc(R) = G̃c(R((z)))

for an Fq-algebra R.

If G ∈ H1(C, G)(S), then, its completion Ĝc ∶= G×̂CS
(Spf Ac×̂Fq

S) is a formal Ĝc-

torsor over Spf Ac×̂Fq
S. The Weil restriction ResFc∣Fq

Ĝc is a formal ˆ̃Gc-torsor over

Spf Fq�z�×̂Fq
S.

Definition 2.15. We define L+c (G) to be the L+G̃c-torsor over S corresponding by

Proposition 2.5 to ResFc∣Fq
Ĝc. So there are morphisms

L+c ∶ H1(C, G) �→ H1(SpecFq, L
+G̃c)

G ↦ L+c (G)

and

Lc ∶ H1
e(C

′

, G)(S) �→ H1(SpecFq, LG̃c)(S)

res(G) ↦ Lc(res(G)) ∶= L(L+c (G)).

For more details see [AH14a, §5.1].

Remark 2.16. We have a cartesian diagram (of groupoids) (see [AH14a, Lem-

ma 5.1]):

H1(C, G)
res ��

��

H1
e(C

′

, G)

��

H1(SpecFq, L+G̃c)
L �� H1(SpecFq, LG̃c)

(2.1)

By [AH14a, Lemma 5.1], we know that the loop group version of the Beauville-Laszlo

gluing lemma holds.
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2 Global G-shtukas and local Gc-shtukas

Definition 2.17. (cf. [AH14a, Definition 5.4])

Let c ∶= (ci)i=1,...,n, ci ≠ cj for i ≠ j, be a fixed tuple of places on C. We write Ac

for the completion of the local ring OCn,c of Cn at the closed point c and Fc for

the residue field of c. So we can consider Fc as the compositum of the fields Fci

(i = 1, . . . , n) inside F
alg
q and have Ac ≅ Fc�ζ1, . . . , ζn�, where ζi denotes the image

(under the characteristic morphism) of a uniformizing parameter zi of C at ci.

(i) We define the stack

∇nH
1(C, G)c ∶= ∇nH

1(C, G)×̂CnSpf(Ac)

to be the formal completion of the stack ∇nH
1(C, G) at c ∈ Cn.

By [AH14b, Theorem 3.14] it is an ind-algebraic stack, ind-separated and lo-

cally of ind-finite type over Spf Ac.

(ii) Let (G, s1, . . . , sn, τ) ∈ ∇nH
1(C, G)c(S) (i.e. si ∶ S → C factors through Spf Aci

).

Set Gci
∶= G ×C Spec Aci

and Ĝci
∶= G ×C Spf Aci

. Consider the decomposition

(induced by Definition 2.1)

G×̂CS
(Spf Aci

×̂Fq
S) ≅ ∐

l∈Z/(deg ci)

G×̂CS
V (aci,l),

where G×̂CS
V (aci,l) ∈ H1(D̂ci

, Ĝci
).

(iii) We set σ̂ ∶= σdeg ci and define the local Gci
-shtuka as the pair

Γ̂ci
(G) ∶= (L+i , τdeg ci),

where L+i is the L+Gci
-torsor associated to G×̂CS

V (aci,0) by Proposition 2.5

with

τdeg ci ∶ σ̂∗Li ∶= (σdeg ci)∗Li�̃→Li,

the Fci
-Frobenius on the loop group torsor associated to G×̂CS

V (aci,0).

Now we can give the construction of the global-local functor :

Definition 2.18. Fix a closed point c = (c1, . . . , cn) ∈ Cn with ci ≠ cj for i ≠ j. We

only consider global G-shtukas G whose characteristic sections factor through Spf Aci
.

Then there is a global-local-functor Γ̂ which associates with G an n-tuple of local

Gci
-shtukas Γ̂(G) = (Γ̂i(G))i defined by:

Γ̂i ∶= Γ̂ci
∶ ∇nH

1(C, G)c(S) �→ Sht
Spec Aci

Gci
(S)

(G, τ) ↦ Γ̂ci
(G),

Γ̂ ∶= ∏
i=1,...,n

Γ̂ci
∶ ∇nH

1(C, G)c(S) �→ ∏
i=1,...,n

Sht
Spec Aci

Gci
(S)

(G, τ) ↦ (Γ̂ci
(G)i.
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2.2 Global-local functor

Remark 2.19. Note that by [AH14a, Lemma 5.1] both Γ̂i and Γ̂ transform quasi-

isogenies into quasi-isogenies.

Definition 2.20. Recall the L+G̃c-torsor L+c (G) from Definition 2.15. For a global

G-shtuka G = (G, τ) ∈ ∇nH
1(C, G)c(S) over S and a closed point c ∈ C we define the

local G̃c ∶= ResFc∣Fq
Gc-shtuka associated with G at c in the following way:

(i) Let c = ci ∈ c = (c1, . . . , cn). In the sense of [AH14a, Remark 5.5] we call the

local G̃ci
-shtuka (L+ci

(G), τ ×̂id) over S the local G̃ci
-shtuka associated with G

at ci. Note that this is well defined as

ResFci
∣Fq

Ĝci
∶= ResFci

∣Fq
(G×̂CS

(Spf Aci
×̂Fq

S))

corresponds to an L+G̃ci
-torsor denoted by L+ci

(G) and

τ ×̂id ∶ σ∗(G×̂CS
V (aci,l−1) = (σ∗G)×̂CS

V (aci,l)�̃→G×̂CS
V (aci,l)

is an isomorphism for l ≠ 0.

(ii) Let c ∉ c. As τ is an isomorphism at c, we call the associated G̃c-shtuka L+c (G)

the étale local G̃c-shtuka associated with G at the place c ∉ c (for more details

see Definition 2.47 or [AH14a, Remark 5.6]).

The next proposition is very important for some of our constructions we do in

the following chapters. It tells how one can construct a “new” global G-shtuka

from quasi-isogenies between local Gc-shtukas, resp. that one can pull back global

G-shtukas along quasi-isogenies between their associated local Gc-shtukas.

Proposition 2.21. (cf. [AH14a, Proposition 5.7])

Let G ∈ ∇nH
1(C, G)c(S) be a global G-shtuka over S and let c ∈ C be a closed point.

Consider the local G̃c-shtuka L+c (G) associated with G at c. Let

f ∶ L̃
′

�→ L+c (G)

be a quasi-isogeny of local G̃c-shtukas over S. If c ∈ c, we assume that the Frobenius of

L̃
′

is an isomorphism outside V (ac,0). If c ∉ c, we assume that L̃
′

is étale. Then there

exists a unique global G-shtuka G
′

∈ ∇nH
1(C, G)c(S) and a unique quasi-isogeny

g ∶ G
′

�→ G

which is an isomorphism outside c such that the local G̃c-shtuka associated with G
′

is L̃
′

and the quasi-isogeny of local G̃c-shtukas induced by g is f .

Definition 2.22. We denote the constructed global G-shtuka G
′

from the above

Proposition 2.21 by f∗G.
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2 Global G-shtukas and local Gc-shtukas

2.3 Serre-Tate for global G-shtukas

By [AH14a, Theorem 5.10], we know that the Serre-Tate theorem holds, i.e. the

infinitesimal deformation space of G is isomorphic to the product of the infinitesimal

deformation spaces of the Γ̂i(G).

Definition 2.23. Let S be a scheme in N ilpAc
and j ∶ S → S a closed subscheme

defined by a locally nilpotent sheaf of ideals.

(i) We denote by DefoS(G) the category of lifts of a global G-shtuka

G ∈ ∇nH
1(C, G)c(S) to S, that is of pairs (G, α ∶ j∗G�̃→G) with

G ∈ ∇nH
1(C, G)c(S) and α an isomorphism of global G-shtukas over S as

objects and isomorphisms of global G-shtukas that are compatible with the α’s

as morphisms.

(ii) We denote by DefoS(L) the category of lifts of local Gc-shtuka L ∈ ShtDc

Gc
(S) to

S.

Proposition 2.24. (Serre-Tate) (cf. [AH14a, Theorem 5.10])

There is an equivalence of categories

DefoS(G) �→ ∏
i

DefoS(Li)

(G, α) ↦ (Γ̂(G), Γ̂(α)),

where G ∈ ∇nH
1(C, G)c(S) and (Li)i ∶= Γ̂(G).

2.4 Rapoport-Zink-spaces

In this section we consider moduli spaces of (bounded) local Gc-shtuks. They are

affine Deligne-Lusztig varieties and function field analogues of Rapoport-Zink spaces

of p-divisible groups.

2.4.1 Rapoport-Zink spaces for local Gc-shtukas

We recall the construction of Rapoport-Zink spaces for local Gc-shtukas where Gc

is a smooth affine group scheme over Dc. They were first constructed by Hartl and

Viehmann in [HV11] for the case where Gc is a constant split reductive group, that is

Gc = G0 ×Dc for a split reductive group G0 over Fc, and then generalized in [AH14a]

for parahoric groups. The Rapoport-Zink spaces can be used to (partly) uniformize

the moduli stacks ∇nH
1(C, G) for global G-shtukas.

We will recall certain results and definitions with respect to those moduli spaces.

The right analogue of p-divisible groups are bounded local Gc-shtukas. Arasteh Rad
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2.4 Rapoport-Zink-spaces

and Hartl showed in [AH14a] that their Rapoport-Zink spaces are formal schemes

locally formally of finite type (over Spf Fc�ζ�). To summarize the results in a spe-

cial case we can say: Fix a local Gc-shtuka L0 = ((L+Gc)k, τ̂ = bσ̂∗) over a field k

that contains Fc with b ∈ LGc(k) and σ̂ ∶= σdeg c. The Rapoport-Zink space classi-

fies bounded local Gc-shtukas together with a quasi-isogeny to L0. It is a formal

scheme locally formally of finite type whose underlying reduced subscheme is an

affine Deligne-Lusztig variety. We present this result more precisely:

Let again be Gc a smooth affine group scheme over Dc. Following the notation of

[AH14a, §4.1], we set

T̂ ∶= T ×̂SpecFc
Spf Fc�ζ�, (2.2)

where T is a scheme over Fc.

Let S ∈ N ilpFc�ζ� and S ∶= VS(ζ) ⊆ S. We denote by N ilpT̂ the category of T̂ -schemes

on which ζ is locally nilpotent.

Proposition 2.25. (cf. [AH14a, Theorem 4.4])

We fix a local Gc-shtuka L0 over an Fc-scheme T .

Consider the functor

RZL
0
∶ (N ilpT̂ )

○ �→ Sets

S ↦ { Isomorphism classes of pairs (L, δ)}

with L a local Gc-shtuka over S and

δ ∶ LS → L0,S

a quasi-isogeny over S ∶= V (ζ). Here, two tuples L = (L, δ) and L
′

= (L, δ
′

) are said

to be isomorphic if δ
−1

○ δ
′

lifts via rigidity to an isomorphism L
′

�̃→L. Then the

functor is representable by an ind-scheme, ind-quasi-projective, ind-separated and of

ind-finite type over T̂ .

If T = Spec k for a field k and if one assume that the Hodge polygon of the

Gc-shtukas satisfies a boundedness condition then RZL
0

is represented by a formal

scheme locally formally of finite type over Spf k�ζ�, that is, it is locally noetherian

and adic and its reduced subscheme is locally of finite type over k.

Proposition 2.26. (cf. [AH14a, Theorem 4.4])

Using the notations from Proposition 2.25 above and assuming that the fibres of

Gc are connected over Dc we get that RZL
0

is ind-projective if and only if Gc is

parahoric.
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2 Global G-shtukas and local Gc-shtukas

Proposition 2.27. (cf. [AH14a, Theorem 4.4])

Using the notations in Proposition 2.25 and assuming that there is a trivialization

L0�̃→((L+Gc)T , bσ̂∗)

over T with b ∈ LGc(T ) we get that M
L

0

is represented by the ind-scheme

F�Gc,T̂ ∶= F�Gc
×̂Fc

T̂ ,

where F�Gc
denotes the affine flag variety as defined in Definition 1.6.

By rigidity of quasi-isogenies, the functor RZL
0

is naturally isomorphic to the

functor that assigns to a scheme S tuples (L, δ) (up to isomorphism) where L is a

local Gc-shtuka over S and δ ∶ LS → L0,S a quasi-isogeny over S. Therefore, there

are no other automorphisms of (L, δ) than the identity, and RZL0
does not have to

be viewed as a stack.

2.4.2 Rapoport-Zink spaces for bounded local Gc-shtukas

As moduli spaces for local resp. global G-shtukas are in general “only” ind-schemes

we “add” a boundedness-condition to get moduli spaces locally of finite type.

In this section we introduce those “bounds” as defined in [AH14a, § 4], but first we

need some further notations:

Fix an algebraic closure Fc((ζ))alg of Fc((ζ)). Note that its ring of integers is not

complete, so we consider a finite extension of discrete valuation rings R over Fc�ζ�

(write R ∣Fc�ζ�) with R ⊂ Fc((ζ))alg. Denote by κR its residue field, by N ilpR the

category of R-schemes on which ζ is locally nilpotent and let

F̂�Gc,R ∶= F�Gc
×̂Fc

Spf R (2.3)

and

F̂�Gc
∶= F̂�Gc,Fc�ζ�. (2.4)

Definition 2.28. (i) For a finite extension of discrete valuation rings Fc�ζ� ⊂ R ⊂

Fc((ζ))alg let ẐR ⊂ F̂�Gc,R be a closed ind-subscheme. Two such subschemes

ẐR ⊂ F̂�Gc,R and Ẑ
′

R
′ ⊂ F̂�Gc,R

′ are said to be equivalent if there exists a finite

extension of discrete valuation rings Fc�ζ� ⊂ R̃ ⊂ Fc((ζ))alg containing R and

R
′ such that

ẐR×̂Spf RSpf R̃ = Ẑ
′

R
′ ×̂Spf R

′Spf R̃

as closed ind-subschemes of F̂�Gc,R̃.
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2.4 Rapoport-Zink-spaces

(ii) For an equivalence class Ẑ = [ẐR] of closed ind-subschemes ẐR ⊂ F̂�Gc,R and

for

GẐ ∶= {γ ∈ AutFc�ζ�(Fc((ζ))
alg) ∶ γ(Ẑ) = Ẑ}

we define the ring of definition RẐ of Ẑ to be the intersection of the fixed field

of GẐ in Fc((ζ))alg with all finite extensions R ⊂ Fc((ζ))alg of Fc�ζ� over which

a representative ẐR of Ẑ exists.

Now we are able to define bounds. For more details with respect to the above

definitions see [AH14a, Remark 4.6 and Remark 4.7].

Definition 2.29. (i) A bound Ẑ is defined to be an equivalence class [ẐR] of

closed subschemes ẐR ⊂ F̂�Gc,R such that for all R each ind-subscheme ẐR

is stable under the left L+Gc-action on F�Gc
and the special fibres ZR ∶=

ẐR×̂SpfRSpec κR are quasi-compact subschemes of F�Gc
×̂Fc

Spec κR.

(ii) The ring of definition RẐ of Ẑ is called the reflex ring associated to the bound

Ẑ.

(iii) Let Ẑ be a bound with reflex ring RẐ. Let L+ and L
′

+ be L+Gc-torsors over a

scheme S in N ilpR
Ẑ

and let δ ∶ L�̃→L
′ be an isomorphism of the associated

LGc-torsors. Let S
′

→ S be an étale covering over which trivializations

α ∶ L+�̃→(L+Gc)S
′ and α

′

∶ L
′

+�̃→(L+Gc)S
′

exist. Then the automorphism α
′

○δ○α−1 of (LGc)S
′ corresponds to a morphism

S
′

→ LGc×̂Fc
Spf RẐ .

We say that δ is bounded by Ẑ if for any such trivialization and for all finite

extensions R of Fc�ζ� over which a representative ẐR of Ẑ exists the induced

morphism

S
′

×̂R
Ẑ
Spf R → LGc×̂Fc

Spf R → F̂�Gc,R

factors through ẐR.

A local Gc-shtuka (L+, τ̂) over a scheme S ∈ N ilpR
Ẑ

is said to be bounded by

Ẑ if the isomorphism τ̂ is bounded by Ẑ.

Remark 2.30. (i) The ZR are given by a base change from a unique closed sub-

scheme Z ⊂ F�Gc
×̂Fc

κR
Ẑ

which is a projective scheme over κR
Ẑ

(see [AH14a,

Definition 4.8]). It is called the special fibre of Ẑ.

(ii) The definition of the bound is independent of the chosen trivialization in Defi-

nition 2.29(iii). Moreover, the condition in Definition 2.29(iii) is satisfied for

all trivializations and for all such finite extensions R of Fc�ζ� if and only if it

is satisfied for one trivialization and for one such finite extension (see [AH14a,

Remark 4.9]).
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2 Global G-shtukas and local Gc-shtukas

Remark 2.31. Observe that this definition of bounds generalizes the defintion of

bounds given in [HV11] (see [AH14a, Example 4.13 and Example 4.12]).

Definition 2.32. Consider a global G-shtuka G in ∇nH
1(C, G)c and an n-tuple of

bounds Ẑc ∶= (Ẑci
)i. We say that G is bounded by Ẑc if for every i ∈ {1, . . . , n} the

associated local Gci
-shtuka Γ̂i(G) is bounded by Ẑci

.

We denote the substack of ∇nH
1(C, G)c consisting of bounded global G-shtukas by

∇
Ẑc

n H1(C, G)c.

We recall some results with respect to the representability of the Rapoport-Zink

spaces of bounded local Gc-shtukas.

For this purpose assume Gc to be a smooth affine group scheme over Dc with con-

nected reductive generic fibre GQc
.

Definition 2.33. Fix some b ∈ LGQc
(k) = LGc(k), k ∈ N ilpFc�ζ� a field. Kottwitz

defines a slope homomorphism associated to b which we denote due to Kottwitz by

νb ∶ Dk((z)) �→ (GQc
)k((z)),

called the Newton polygon of b (see [Kot85, 4.2]), where D is the diagonalizable

pro-algebraic group over k((z)) with character group Q.

Definition 2.34. We call an element b ∈ LGc(k) decent if it satisfies a decency

equation for a positive integer s:

(bσ̂)s = sνb(z)σ̂
s in LGc(k) ⋊ ⟨σ̂s⟩

with (bσ̂)s ∶= b ⋅ σ̂(b) ⋅ . . . ⋅ (σ̂s−1)(b) ⋅ (σ̂s).

Remark 2.35. Let b ∈ LGc(k) be decent with integer s, k̃ ⊂ kalg a finite field exten-

sion of Fc with degree s. Denote by νb the Newton polygon of b.

(i) Since b has values in k̃ which is the fixed field of σ̂s we have b ∈ LGc(k̃).

(ii) By [Kot85, 4.3] and [Ser94, III, 2.3, Théorème 1′ and Remarque 1] we know

that each σ̂-conjugacy class, that is each quasi-isogeny class, in LGc(k) con-

tains a decent element if k is algebraically closed.

(iii) Denote by Fs ∶= k̃((z)) the fixed field of σ̂s in F
alg
c ((z)) and consider the con-

nected linear algebraic group Jb over Fc((z)), defined by

Jb(R) ∶= {g ∈ Gc(R ⊗Fc((z)) Fs) ∶ g−1bσ̂(g) = b} (2.5)
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2.4 Rapoport-Zink-spaces

for an Fc((z))-algebra R.

Then νb is defined over Fs and Jb×Fc((z))Fs is the centralizer of the 1-parameter

group sνb of Gc and hence a Levi subgroup of (Gc)Fs
. In particular,

Jb(Fc((z))) ⊂ Gc(Fs) ⊂ LGc(k̃)

(see [RZ96, Corollary 1.14]).

In the following we recall the results of [AH14a, § 4.3] about the representability

of the Rapoport-Zink space for bounded local Gc-stukas in some special case which

we use in the sequel many times.

Let Ẑ be a bound with reflex ring RẐ = κ�ξ� and special fibre Z ⊂ F�Gc
×̂Fc

Spec κ.

Furthermore, let L0 = (L+Gc, bσ̂∗) be a trivialized local Gc-shtuka over k ∈ N ilpFc�ζ�

and decent b (with integer s). We denote by k̃ ⊂ kalg the compositum of the residue

field κ of RẐ and the finite field extension of Fc of degree s, so that we can assume

b ∈ LGc(k̃). Note that k̃�ξ� is the unramified extension of RẐ with residue field k̃.

With these notations and assumptions we define:

Definition 2.36. Consider the base change RZL
0
×̂k̃�ζ�Spf k̃�ξ� of RZL

0
. It is rep-

resented by the ind-scheme F̂�Gc,k̃�ξ� ∶= F�Gc
×̂Fc

Spf k̃�ξ�. We define the subfunctor

RZ
Ẑ
L

0
of ML

0

×̂k̃�ζ�Spf k̃�ξ� by:

RZ
Ẑ
L

0
∶ (N ilpk̃�ξ�)

○ �→ (Sets)

S ↦ {(L, δ̄) ∈ RZL
0
(S) ∶ L is bounded by Ẑ}/ ≅ .

Proposition 2.37. (cf. [AH14a, Theorem 4.18] resp. [HV11, Theorem 6.3] for

split, constant Gc)

Let Gc be a smooth affine group scheme over Dc with connected reductive generic

fibre then RZ
Ẑ
L

0
as defined in Definition 2.36 above is ind-represented by a formal

scheme, which is locally formally of finite type over Spf k̃�ξ� and separated.

Definition 2.38. (i) We call the formal scheme that represents the functor RZ
Ẑ
L

0

a bounded Rapoport-Zink space for local Gc-shtukas.

(ii) Its underlying reduced subscheme is the affine Deligne-Lusztig variety (ADLV)

XZ(b) ⊂ F�Gc
×̂Fc

Spec k̃ which is defined by

XZ(b)(E) ∶= {g ∈ F�Gc
(E) ∶ g−1bσ̂∗(g) ∈ Z(E)}

for any field extension E of k̃. Thus, XZ(b) is a scheme locally of finite type

and separated over k̃.
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2 Global G-shtukas and local Gc-shtukas

Remark 2.39. By applying the uniformization theorem (see Proposition 2.53) we

can relate the rational points of the Newton stratum of the moduli stack of global

G-shtukas to the rational points of (certain) ADLV’s.

Remark 2.40. Observe that the quasi-isogeny group QIsogk̃(L0) equals the group

Jb(Fc((z))) and acts on RZ
Ẑ
L

0
via

(L, δ) ↦ (L, g ○ δ̄) (2.6)

for g ∈ QIsogk̃(L0).

Now we introduce truncated Rapoport-Zink spaces, a construction that we need in

the following chapters.

In order to do this we fix a representation

� ∶ Gc �→ SLr,Dc
(2.7)

such that the quotient SLr,Dc
/Gc is quasi-affine (this can be done by 1.3).

Consider the induced morphism

�∗ ∶ H
1(SpecFc, L

+Gc)(S) �→ H1(SpecFc, L
+ SLr,Dc

)(S). (2.8)

Let OS�z� be the sheaf of OS-algebras on S for the fpqc-topology whose rings of

sections on an S-scheme Y is the ring of power series OS�z�(Y ) ∶= Γ(Y,OY �z�). Since

it is a countable direct product of OS it is a sheaf. By OS((z)) we denote the fpqc-

sheaf of OS-algebras on S associated with the presheaf Y ↦ Γ(Y,OY )�z� [1
z
]. Let

L+ be any L+Gc-torsor over S and V(�∗L+) the sheaf of OS�z�-modules associated

to �∗L+ in H1(SpecFc, L+GLr)(S). In the special case L+ = L+Gc we get

V(�∗(L
+Gc)S) = OS�z�⊕r.

By 2�̌ = (r − 1, . . . , 1 − r) we denote the sum of all positive coroots of SLr with

respect to the Borel-subgroup of upper triangular matrices in SLr.

Definition 2.41. We define the closed ind-subscheme RZ
d

Ẑ
of RZ

Ẑ
L

0
by the functor:

RZ
d

Ẑ
∶ (N ilpk̃�ξ�)

○ �→ (Sets)

S ↦ { Isomorphism classes of (L, δ) ∶= (L+, τ̂ , δ) ∈ RZ
Ẑ
L

0
(S),

s.t. �∗(δ) is bounded by 2d�̌}

for d ∈ N0 where �∗(δ) is bounded by 2d�̌ if for all j = 1, . . . , r:

j

⋀
OS�z�

�∗(δ)(V(�∗L+)) ⊂ zd(j2
−jr) ⋅

j

⋀
OS�z�

V(�∗(L
+Gc)S). (2.9)
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2.5 The uniformization morphism for bounded global G-shtukas

Proposition 2.42. (cf. [AH14a, Lemma 4.20])

RZ
d

Ẑ
is a ξ-adic noetherian formal scheme over k̃�ξ�. Its underlying topological

space (RZ
d

Ẑ
)red is a quasi-projective scheme over Spec k̃.

Moreover, if Gc is parahoric, then (RZ
d

Ẑ
)red is projective.

Proposition 2.43. (cf. [AH14a, Corollary 4.26])

The irreducible components of RZ
Ẑ
L

0
(as a topological space) are quasi-projective

schemes over k̃, and thus, quasi-compact. If Gc is parahoric, they are even projective.

2.5 The uniformization morphism for bounded

global G-shtukas

Fix an n-tuple c ∶= (ci)i=1,...,n of closed points of C with ci ≠ cj for i ≠ j. Let C ′ ∶=

C ∖ {c1, . . . cn} and let S be a scheme in N ilpAc
. Recall the substack ∇

Ẑc

n H1(C, G)c

of bounded global G-shtukas (see Definition 2.32) of ∇nH
1(C, G)c. For a finite

subscheme D of C we set DS ∶= D×Fq
S and denote by G∣DS

∶= G ×CS
DS the pullback

of G to DS.

Now we want to equip a global G-shtuka G with a (rational) H-level structure.

In order to define this we need some further notations and definitions which we

introduce in the following.

We denote by RepOcG the category of Oc-morphisms

ρ ∶ G ×C SpecOc �→ GLOc(V ),

where Oc ∶= ∏c∉c Ac is the ring of integral adeles of C outside c and V a finite free

module over Oc. We assume S to be connected and let s̄ be a geometric base point

on S. By Funct⊗(RepOcG,ModOc[π1(S,s̄)]) we denote the category of tensor functors

from RepOcG to the category ModOc[π1(S,s̄)] of Oc[π1(S, s̄)]-modules.

Remember the definition of the (étale) local G̃c-shtuka associated with a global

G-shtuka from Definition 2.20.

Definition 2.44. (i) A local shtuka over S ∈ N ilpFq�ζ� of rank r is a pair (M, ϕ)

wehre M is a sheaf of OS�z�-modules on S which Zariski-locally is free of

rank r, together with an isomorphism of OS((z))-modules ϕ ∶ σ∗M ⊗OS�z�

OS((z))→̃M ⊗OS�z� OS((z)).

(ii) A quasi-isogeny between local shtukas (M, ϕ) → (M
′

, ϕ
′

) is an isomorphism of

OS((z))-modules f ∶ M ⊗OS�z� OS((z))→̃M
′

⊗OS�z� OS((z)) with ϕ
′

σ∗(f) = fϕ.

Remark 2.45. By [HV12, Lemma 4.2], there is an equivalence of categories between

the category of local GLr-shtukas over S an the category of (rank r) local shtukas

over S.
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2 Global G-shtukas and local Gc-shtukas

Definition 2.46. Assume that S is connected. Let s̄ be a geometric point of S and

let π1(S, s̄) denote the algebraic fundamental group of S at s̄. We define the Tate

functor from the category of local GLr-shtukas ShtGLr
(S) over S to the category of

Fq�z� [π1(S, s̄)]-modules ModFq�z�[π1(S,s̄)] as follows

T− ∶ ShtGLr
(S) → ModFq�z�[π1(S,s̄)]

M ∶= (M, τ) ↦ TM ∶= (M ⊗OS�z�
κ(s̄)�z�)τ

where the superscript τ represents the τ -invariants.

Definition 2.47. Let c be a place with c ≠ ci for all i. For every representation

ρ ∶ Gc → GLr,Ac
in RepAc

Gc we consider the representation

ρ̃ ∈ RepFq�z�G̃c

wich is the composition of

ResFc∣Fq
(ρ) ∶ G̃c → ResFc∣Fq

GLr,Ac

followed by the natural inclusion ResFc∣Fq
GLr,Ac

⊂ GLr⋅[Fc∶Fq],Fq�z�.

Consider a global G-shtuka G. We define

ŤL+c (G)
(ρ) ∶= ŤL+c (G)

(ρ̃)

≅ lim
←n

ρ∗(G ×C Spec Ac/(c
n))

τ
,

by [AH14a, Remark 5.6].

Definition 2.48. Following [AH14b, (6.1) and (6.2)], we define the (dual) Tate

functors

Ť− ∶ ∇nH
1(C, G)c(S) �→ Funct⊗(RepOcG,ModOc[π1(S,s̄)])

G ↦ (ŤG ∶ ρ ↦ lim
←

D⊂C
′

(ρ∗G∣Ds̄
)τ),

V̌− ∶ ∇nH
1(C, G)c(S) �→ Funct⊗(RepOcG,ModAc[π1(S,s̄)])

G ↦ (V̌G ∶ ρ ↦ lim
←

D⊂C
′

(ρ∗G∣Ds̄
)τ ⊗Oc Ac).

Remark 2.49. (cf. [AH14a, Remark 5.5 and Remark 5.6])

(i) For ρ = (ρc) and L+c (G) the étale local G̃c-shtuka associated with G = (G, τ) at

c ∈ C as defined in Definition 2.47 above in the sense of [AH14a, Remark 5.6]

we have

lim
←

D⊂C
′

(ρ∗G∣Ds̄
)τ) ≅ ∏

c∈C
′

ŤL+c (G)
(ρc).
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2.5 The uniformization morphism for bounded global G-shtukas

(ii) V̌− transforms quasi-isogenies into quasi-isogenies.

Definition 2.50. (i) We denote by

ω○Oc ∶ RepOcG �→ ModOc

resp. by

ω○ ∶= ω○Oc ⊗Oc Ac ∶ RepOcG �→ ModAc

the forgetful functors with Ac ∶= Oc ⊗OC
Q.

(ii) We denote by Isom⊗(ω○
Oc , ŤG) resp. by Isom⊗(ω○, V̌G) the set of isomorphisms

of tensor functors.

Remark 2.51. By the generalized Tannakian formalism ([Wed04, Corollary 5.20]

or [AH14b, Definition 6.1]), we get

G(Oc) ≅ Aut⊗(ω○Oc),

because Oc is a Prüfer ring.

Definition 2.52. (i) Let H ⊂ G(Ac) ≅ Aut⊗(ω○) be a compact open subgroup. We

define a (rational) H-level structure on a global G-shtuka G over S ∈ N ilpAc

as a π1(S, s̄)-invariant H-orbit γ̄ = γH in Isom⊗(ω○, V̌G).

(ii) By ∇H
n H1(C, G)c we denote the category fibered in groupoids where the ob-

jects (G, γ̄) of the category ∇H
n H1(C, G)c(S) are given by G ∈ ∇nH

1C, G)c(S)

and γ̄ a H-level structure on G. The morphisms are quasi-isogenies of global

G-shtukas that are compatible with the H-level structures and that are isomor-

phisms at c (see [AH14b, Definition 6.3(b)]).

(iii) By ∇
H,Ẑc

n H1(C, G)c we denote the closed ind-substack of ∇H
n H1(C, G)c para-

metrizing global G-shtukas that are bounded by Ẑc and equipped with a H-level

structure. It is an ind-algebraic stack over Spf Ac which is ind-separated and

locally of ind-finite type (see [AH14b, Corollary 6.7]).

Now we can introduce the uniformization morphism:

Proposition 2.53. (cf. [AH14b, Theorem 7.4])

For a fixed global G-shtuka G
0
∈ ∇

H,Ẑc

n H1(C, G)c(k) over an algebraically closed field

k with characteristic c denote by IG
0
(Q) = QIsogk(G0

) its quasi-isogeny group. Let

ω○ ∶ RepAcG �→ ModAc
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2 Global G-shtukas and local Gc-shtukas

be the forgetful functor. Then there is a uniformization morphism

θ = θ(G
0
) ∶ IG

0
(Q)/(∏

i

RZ
Ẑi

Γ̂i(G0
)
× Isom⊗(ω○, V̌G

0
)/H) → ∇

H,Ẑc

n H1(C, G)c×̂Fc
Spec(k)

of ind-algebraic stacks over Spf k�ζ� which is ind-proper and formally étale.

It is an isomorphism onto the formal completion of ∇
H,Ẑc

n H1(C, G)c along its image.

Furthermore, the morphism θ is G(Ac)-equivariant for the action through Hecke

correspondences on the source and the target.

Remark 2.54. (i) Note that the group IG
0
(Q) acts on ∏i RZ

Ẑi

Li
via the morphism

IG
0
(Q) �→ ∏

i

JLi
(Qci

)

α ↦ (Γ̂ci
(α))i(=∶ (αi)i)

where JLi
(Qci

) = QIsogk(Li) and (Li)i=1,...,n ∶= Γ̂(G
0
) denotes the associated

n-tuple of local Gci
-shtukas Li = ((L+Gci

)k, biσ̂∗) with bi ∈ LGci
(k) over k.

(ii) The uniformization morphism is based on the “unbounded” uniformization

morphism which is defined by:

ΨG
0
∶ ∏

i

RZLi
(S) �→ ∇nH

1(C, G)c(S)

((L
′

i), δi) ↦ δ∗n ○ . . . ○ δ∗1G0,S

where (L)i ∶= Γ̂(G
0
) for G

0
∈ ∇nH

1(C, G)c(T ) and T a scheme over

Spec Ac/(ζ1, . . . , ζn) and S ∈ N ilpT ×̂Fci
Spf Aci

. It is Γ̂ci
(δ∗n ○ . . . ○ δ∗1G0,S

) = L
′

i.

(iii) Let (G
i
, δi) be a k-valued point of ∏i RZ

Ẑi

Γ̂i(G0
)

and denote by G ∶= δ∗n ○ . . . ○

δ∗1G0,k
its image under ΨG

0
. By [AH14b, Remark 5.4] there is a unique quasi-

isogeny δ ∶ G → G
0,k

which is an isomorphism outside the ci and satisfies

Γ̂(δ) = (δi)i. This induces a functor Ťδ ∶ ŤG → ŤG
0

(see Definition 2.48). Let

γ0 ∈ Isom⊗(ω○, V̌G
0
) be a representative of the H-level structure γ0H on G

0
.

Then θ is induced by the morphism

(Li, δi)i × hH ↦ (G, Hh−1γ0Ťδ).

Let η ∈ IG
0
(Q) and consider

ε ∶ IG
0
(Q) → Isom⊗(ω○, V̌G

0
)

η ↦ γ0 ○ V̌η ○ γ−1
0 .

Then IG
0
(Q) acts on ∏i RZ

Ẑi

Γ̂i(G0
)
× Isom⊗(ω○, V̌G

0
)/H via

(Li, δi)i × hH ↦ (Li, Γ̂ci
(η)δi)i × ε(η)hH.
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2.5 The uniformization morphism for bounded global G-shtukas

(iv) For more details, see [AH14b, § 5 and § 7].

We have the following lemma:

Lemma 2.55. (cf. [AH16b, Lemma 3.18])

Let G
0

and G
′

0
be two global G-shtukas in ∇nH

1(C, G)c(F
alg
q ) for an algebraic closure

F
alg
q of Fq. Then the following are equivalent:

(i) imθ(G
0
) ∩ imθ(G

′

0
) ≠ ∅.

(ii) imθ(G
0
) = imθ(G

′

0
).

(iii) There is a quasi-isogeny G
0
→ G

′

0
over F

alg
q .
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3 Newton strata

In [HV11, § 7], the Newton stratification on deformation spaces of local Gc-shtukas

was given. In the following we give a definition of such a stratification of the mod-

uli space of global G-shtukas by quasi-isogeny classes of their associated local Gc-

shtukas.

The construction considered in [HV11] is related to σ-conjugacy classes due to Kot-

twitz. We first recall the Newton stratification described in [HV11, § 7]. In this

situation let k be an algebraically closed field (over Fq) and denote by Ĝ = (Ĝ, τ̂) a

local Gc-shtuka over k. Then (e.g. by [HV11, Remark 3.2]) Ĝ is isomorphic to a local

Gc-shtuka (L+Gc, bσ̂∗) for some element b ∈ LGc(k). There is a bijection between

the set of quasi-isogeny classes (of local Gc-shtukas over k) and

B(Gc) ∶= {[b] ∶ b ∈ LGc(k)} ,

the set of σ-conjugacy classes of elements b in LGc(k) where [b] denotes the class

of b which contains all g−1bσ̂∗(g) for g ∈ LGc(k). Note that B(Gc) is independent of

the choice of k as long as k is algebraically closed by [RR96, Lemma 1.3].

Now let S be a scheme in N ilpFq�ζ�, Ĝ = (Ĝ, τ̂) a local Gc-shtuka over S and s̄ ∈ S(k)

a geometric point.

Then in [HV11, § 7] the quasi-isogeny class of Ĝ in s is defined as the class [Ĝ] (s̄) ∶=

[Ĝ
s̄
] in B(Gc) which corresponds to the specialization Ĝ

s̄
. The Newton polygon of Ĝ

in s is defined as νGc
([Ĝ

s̄
]) =∶ νGc

(Ĝ
s̄
). [Ĝ

s̄
] is independent of the geometric point s̄

that is chosen above the point s ∈ S. So there is a map

[Ĝ] ∶ S �→ B(Gc)

s ↦ [Ĝ] (s̄).

For further details on B(Gc), see [RR96] or [Kot97]. By [Kot85] we have an embed-

ding

B(Gc) ↪ (X∗(T )Q/WGc
)Gal(Fc((z))

sep
∣Fc((z))) × π1(Gc)Inertia (3.1)

given by

[b] ↦ (νGc
(b), κGc

(b))

where Inertia ⊂ Gal(Fc((z))sep ∣ Fc((z))) is the inertia subgroup and WGc
denotes the

finite Weyl group of T and X∗(T )Q ∶= X∗(T ) ⊗Z Q for X∗(T ) = Hom(Gm, T ). Here,
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3 Newton strata

these homomorphisms are defined over an algebraic closure Fc((z))alg of Fc((z)) and

T is a maximal torus in Gc(Fc((z))alg). π1(Gc) denotes the fundamental group of

Gc. We call νGc
(b)polygon the Newton point of b and κGc

(b) the Kottwitz point.

Now, we will define the Newton stratum associated to a local Gc-shtuka. Two local

Gc-shtukas are in the same Newton stratum if both their Newton polygon and their

Kottwitz point coincide. Therefore, two of each local Gc-shtukas in the same Newton

stratum are quasi-isogenous, that is they belong to the same class in B(Gc).

Definition 3.1. (cf. [HV11, page 116])

Let Ĝ be a local Gc-shtuka over S ∈ N ilpFc�ζ� and fix a σ̂-conjugacy class [b] ∈ B(Gc).

Denote by νGc
(Ĝ

s
) the Newton polygon (or Newton point) of Ĝ in s, and by κGc

(Ĝ)

its Kottwitz point. Then,

Nb ∶= N[b] = {s ∈ S ∶ νGc
(Ĝ

s
) = νGc

(b) and κGc
(Ĝ

s
) = κGc

(b)}

= {s ∈ S ∶ [Ĝ] (s) = [b]}

is the Newton stratum associated to Ĝ and [b].

We give now an analogous description of Newton strata in the special fibre of the

moduli space of bounded global G-shtukas.

Notation 3.2. We denote by ∇H1 the special fibre of the stack ∇
H,Ẑc

n H1(C, G)c.

∇H1 is a Deligne-Mumford stack locally of finite type and separated over Fc by

[AH14b, Corollary 6.7 and Remark 7.2]. For a field extension K of Fc we write

∇H1
K ∶= ∇H1 ×Fc

Spec K.

We define the Newton stratum associated to a global G-shtuka G = (G, τ) ∈ ∇H1

as a locally closed substack of ∇H1 in the sense of [LMB00, Lemma 4.10]. Therefore,

we need some preperations.

Proposition 3.3. (cf. [HV11, Theorem 7.3], resp. [RR96, Theorem 3.6])

Let S ∈ N ilpFc�ζ� be a scheme and Ĝ ∈ ShtSpec Ac

Gc
(S) a local Gc-shtuka over S. Using

the notations from Definition 3.1, the reduced subschme N⪯b of S with

N⪯b ∶= {s ∈ S ∶ [Ĝ] (s) ⪯ [b]}

is a closed subscheme of S.

Furthermore,

Nb ∶= N[b] = {s ∈ S ∶ νGc
(Ĝ

s
) = νGc

(b) and κGc
(Ĝ

s
) = κGc

(b)}

= {s ∈ S ∶ [Ĝ] (s) = [b]}

is a locally closed subscheme of S and Nb is open in N⪯b.
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Proof. Hartl and Viehmann consider in loc. cit. the case where Gc is split connected

reductive, but the proof of [RR96, Theorem 3.6] (in the equal characteristic case)

holds in our analogous situation for a connected reductive group Gc.

Remark 3.4. (cf. [RR96, Theorem 3.6]

Note that for each b0 ∈ B(Gc), the subset

{s ∈ S ∶ νGc
(Ĝ

s
) ⪯ νGc

(b0)}

is Zariski-closed on S and locally on S the zero set is a finitely generated ideal.

Notation 3.5. From now on we denote by [Ĝ] the quasi-isogeny class of a local

Gc-shtuka Ĝ.

By Proposition 3.3, follows directly:

Corollary 3.6. Let c = (c1, . . . , cn) ∈ Cn be a tuple of places and denote by G =

(G, s1, . . . , sn, τ) ∈ ∇
H,Ẑc

n H1(C, G)c(S) a global G-shtuka. Denote by B(Gci
) the set of

quasi-isogeny classes of local Gci
-shtukas. Choose a tuple b = (bi, . . . , bn) ∈ ∏i B(Gci

).

Set Γ̂ci
(G) =∶ Ĝ

i
. Then, the reduced scheme N⪯b with

N⪯b ∶= {s ∈ S ∶ [Ĝ
i
] (s) ⪯ bi for all i}

is a closed subscheme of S, and

Nb ∶= {s ∈ s ∶ [Ĝ
i
] (s) = bi for all i}

is a locally closed subscheme.

Consider now the complement of N⪯b (resp. of N⪯b) in S and denote it by (N⪯b)
o

(resp. by (N⪯b)
o
). Then, (N⪯b)

o (resp. (N⪯b)
o
) is an open subscheme of S.

Definition 3.7. (i) Let i ∈ {1, . . . , n} and fix a quasi-isogeny class of local Gci
-

shtukas given by bi. Consider the stack consisting of tuples

{(S,G) ∶ S a scheme,G ∈ ∇H1(S) s.t. (N⪯bi
)

o
= S} .

This stack is an open stack of ∇H1 and equals the stack

{(S,G) ∶ S a scheme,G ∈ ∇H1(S) s.t. (3.2) holds}

with (3.2) is the following condition:

For all s ∶ Spec k → S for a field k the following condition holds:

[(s∗Γ̂ci
(G))] ⪯̸ bi. (3.2)

Denote its reduced complement by N⪯bi
. Then, by [LMB00, Lemma 4.10], N⪯bi

is a closed substack of ∇H1. We call the reduced locally closed substack Nbi

the Newton stratum associated to ci and bi.
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3 Newton strata

(ii) Choose a tuple of quasi-isogeny classes b ∶= (b1, . . . , bn) ∈ ∏i B(Gci
). Consider

the stack consisting of tuples

{(S,G) ∶ S a scheme,G ∈ ∇H1 s.t. (N⪯b)
o
= S} .

This stack is open in ∇H1 and equals the stack

{(S,G) ∶ S a scheme,G ∈ ∇H1 s.t. (3.3))holds}

with (3.3) is the following condition:

For all s ∶ Spec k → S for a field k there exists an i ∈ {1, . . . , n} such that the

following condition holds:

[(Γ̂ci
(s∗G))] ⪯̸ bi. (3.3)

Denote its reduced complement by N⪯b. Then, by [LMB00, Lemma 4.10], N⪯b is

a (reduced) closed substack of ∇H1. We call the reduced locally closed substack

Nb the Newton stratum associated to G and b.

Remark 3.8. More properties of the Newton strata are shown in [HV11, § 7] (in

the case where Gc is a split connected reductive group).
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4 Central Leaves

In this chapter we present our generalization of notion of the central leaves intro-

duced by Oort in [Oor04] and further studied by Mantovan in [Man04] for p-divisible

groups and by Hartl and Viehmann in [HV12] in the function field case for local Gc-

shtukas if Gc is a split connected reductive group over Fc.

We define the central leaf as the subset of a Newton stratum corresponding to a

global G-shtuka such that its associated local Gci
-shtukas have constant isomor-

phism class. It will turn out that the central leaf is a closed substack of the Newton

stratum and in particular, locally closed in the stack ∇H1 (see Notation 3.2). Fur-

thermore, it is smooth and locally of finite tpe.

Hartl and Viehmann studied the central leaf by using that the isogeny class of a local

Gc-shtuka is given by P -fundamental alcoves in the case where Gc is a constant split

connected reductive group over Fc. For more gerneral Gc it is not clear wether such

an element exists. Therefore, we introduce a similar ”fundamental alcove” by the

axioms given in Definition 4.3. In order to define this we need some further notations

which we introduce first. In the second part of the chapter we introduce completely

slope divsible local Gc-shtukas. Then we consider the central leaf associated to a

chosen fundamental element.

4.1 Choice of a fundamental element

Consider a complete discrete valuation ring F
alg
c �z� with field of fractions F

alg
c ((z)).

Let Gc be a parahoric group scheme over F
alg
c �z� with generic fibre G

F
alg
c ((z))

. Then

G
F

alg
c ((z))

is reductive.

Definition 4.1. Let L+Gc =∶ L+0Gc be the infinite dimensional affine group scheme

over Fc with L+0Gc(Spec R) = Gc(R�z�) for any Fc-algebra R (resp. L+0Gc(S) ∶=

L+Gc(S) for a scheme S).

For m ≥ 0 we define the following subgroup scheme of L+0Gc:

L+mGc(S) = {g ∈ L+0Gc(S) ∶ g ≡ 1 mod zm} .

We recall the definition of an Iwahori subgroup given in [HR08, Definition 1]:
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4 Central Leaves

Definition 4.2. We denote by B(Gc∣F
alg
c ((z))) the Bruhat-Tits building of Gc over

F
alg
c ((z)). Bruhat and Tits associate to a facet F in B(Gc,F

alg
c ((z))) a smooth group

scheme GF over SpecFalg
c �z� with generic fibre Gc. Denote by G○F the open subgroup

of it with the same generic fibre and with connected special fibre and define the

parahoric subgroup associated to F as P ○F = G○F (F
alg
c �z�). It is equal to the parahoric

subgroup associated to a facet F is

P ○F = Fix(F ) ∩ ker κGc

with κGc
the functorial surjective homomorphism defined by Kottwitz in [Kot97] (see

formula (3.1)). If F is an alcove, that is a facet of maximal dimension, P ○F is called

an Iwahori subgroup of Gc(F
alg
c ((z))). This definition is due to Haines and Rapoport

in [HR08, Definition 1] and coincides with the one given by Bruhat and Tits (see

[HR08, Proposition 3]).

Let P = MN be a parabolic of G
F

alg
c ((z))

with Levifactor M and unipotent radical

N . Let P̄ = MN̄ its opposite. From now on, we consider M , N , and N̄ as smooth

group schemes over F
alg
c �z� (not only over F

alg
c ((z))) with

M(Falg
c �z�) = Gc(F

alg
c �z�) ∩ M(Falg

c ((z))) (4.1)

N(Falg
c �z�) = Gc(F

alg
c �z�) ∩ N(Falg

c ((z))) (4.2)

N̄(Falg
c �z�) = Gc(F

alg
c �z�) ∩ N̄(Falg

c ((z))) (4.3)

Definition 4.3. Consider tuples (I, S, P, M, x) such that

(i) S is a maximal Falg
c ((z))-split torus of G

F
alg
c ((z))

,

(ii) I ⊆ G
F

alg
c �z� an Iwahori subgroup such that the simplices corresponding to the

parahoric group Gc and I lie on an apartment which is given by S ⊆ M ,

(iii) for a Levisubgroup M of a parabolic P in G
F

alg
c ((z))

with

(iv) P = MN (with Levifactor M , N the unipotent radical) and opposite P̄ = MN̄

and

(v) x ∈ LGc(F
alg
c ) a decent element, such that x ∈ LGc(Fx) for a finite extension

Fx of Fc (which exists by Remark 2.35(i)) with

σ̂∗(x(L+I(R) ∩ L+M(R))x−1) = L+I(R) ∩ L+M(R) =∶ L+IM(R),

σ̂∗(x(L+I(R) ∩ L+N(R))x−1) ⊂ L+I(R) ∩ L+N(R) =∶ L+IN(R),

σ̂∗(x(L+I(R) ∩ L+N̄(R))x−1) ⊃ L+I(R) ∩ L+N̄(R) =∶ L+IN̄(R),

34



4.1 Choice of a fundamental element

for every Fc-algebra R,

σ̂∗(xL+IMx−1) = L+IM

σ̂∗(xL+INx−1) ⊂ L+IN

σ̂∗(xL+IN̄x−1) ⊃ L+IN̄ .

(vi) Under the assumption that the Iwahori I and Gc lie on an apartment given by

S ⊆ M with M a Levisubgroup of G
F

alg
c ((z))

follows by [MP96], that there exist

smooth F
alg
c �z�-group schemes IM , IN and IN̄ with

IM(Falg
c �z�) = I(Falg

c �z�) ∩ M(Falg
c ((z)))

IN(Falg
c �z�) = I(Falg

c �z�) ∩ N(Falg
c ((z)))

IN̄(Falg
c �z�) = I(Falg

c �z�) ∩ N̄(Falg
c ((z))).

I(F
alg
c �z�) ∩ M is an Iwahori subgroup of M(F

alg
c ((z))) and IM is the Iwa-

hori subgroup scheme corresponding to this Iwahori subgroup of M(F
alg
c ((z))).

There is also a construction of the corresponding group schemes IN and IN̄ by

[BT84, 4.3].

We further assume (see [HV12, Remark 4.2.e)]) that for any d ∈ N there is an

l(d) ∈ N that for every l ≥ l(d) we have

σ̂l∗(x)−1 ⋅ (. . . ⋅ (σ̂∗(x)−1L+IN̄ σ̂∗(x)) ⋅ . . .) ⋅ σ̂l∗(x) ⊆ L+d σ̂l∗IN̄ ,

x ⋅ (. . . ⋅ (σ̂l∗(x)L+σ̂l∗IN σ̂l∗(x)−1) ⋅ . . .) ⋅ (x)−1 ⊆ L+dIN .

(vii) We assume that L+Iσ̂(xL+I) ⊂ [x] is closed in the quasi-isogeny class [x] of

x in LGc.

(viii) We require that for every m ∈ N there exists a smooth F
alg
c �z�-group scheme

Im,M which are filtration subgroups as defined in [MP96, § 3.2], and such

that L+Im,M ⊂ L+IM is a closed normal subgroup with L+Im,M ⊂ L+mM and

L+Im+1,M ⊂ L+Im,M , such that the fppf-sheaf L+IM/L+Im,M on F
alg
c -schemes is

representable by a scheme of finite type over F
alg
c and

x ⋅ L+Im,M ⋅ x−1 = L+σ̂−1Im,M ,

(ix) and that for every algebraically closed field k the étale map

(L+σ̂−1Im,M/L+σ̂−1Im+1,M)(k) �→ (L+σ−1Im,M/L+σ−1Im+1,M)(k)

h ↦ hx σ̂∗(h−1)x−1

is surjective.
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Notation 4.4. We denote by Fx the finite extension field of Fc over which x is

defined.

Remark 4.5. (i) We do not require that σ̂∗P = P nor that σ̂∗M = M .

(ii) We do not require that σ̂∗I = I.

(iii) Note that in Definition 4.3(vii) we could also require that (L+σ̂−1I)xL+I ⊂ [x]

is closed because [x] = [σ̂∗(x)] (because x−1xσ̂(x) = σ̂(x)).

Proposition 4.6. Let F ⊂ L+Gc be a closed subgroup scheme containing L+dGc for

some d ≥ 0. Then the fppf-quotient sheaf L+Gc/F is representable by a smooth

scheme over Fc and the morphism L+Gc/L
+

dGc → L+Gc/F is faithfully flat and of

finite presentation. If F ⊂ L+Gc is normal, then L+Gc/F is an affine group scheme.

Proof. This is explained in [CGP10, p. 470 after Definition A.1.11] in view of the

fact that F /L+dGc ⊂ L+Gc/L
+

dGc ≅ ResAc/md
c ∣Fc

(Gc,Ac/md
c
) is a closed subgroup scheme,

for more details see Lemma 5.2.

Let L be the completion of the maximal unramified field extension of Qc and

recall from Definition 2.33 the Newton cocharacter νx ∶ DL → Gc,L where DL is

the diagonalizable pro-algebraic group over L with character group Q. Over an

algebraic closure Lalg of L we can choose a maximal torus T and a Borel subgroup

B of Gc. With respect to this Borel subgroup we let νx,dom ∶ DLalg → TLalg be the

unique dominant homomorphism, which is conjugate to νx in Gc and we let 2� be

the sum of all positive roots of T . Then

⟨νx,dom , 2�⟩ ∈ N0 (4.4)

is well defined. The axioms in Definition 4.3 imply that x is “σ̂-straight” in the

following sense; compare [He14, § 2.4].

Proposition 4.7. For all l ≥ 1 abbreviate x(l) ∶= σ̂1−l∗(x) ⋅ . . . ⋅ x. Then x(1) = x and

the quotient

Hl ∶= L+IN̄ / ((x(l))−1 ⋅ L+σ̂−l∗IN̄ ⋅ x(l))

is representable by a smooth scheme over F
alg
c of relative dimension l ⋅ ⟨νx,dom , 2�⟩.

Proof. The smoothness of Hl → SpecFalg
c follows from Proposition 4.6. Let dl be its

relative dimension. Fix an integer d such that L+dN̄ ⊂ ((x(l))−1 ⋅ L+σ̂−l∗IN̄ ⋅ x(l)). We

consider the isomorphism of fppf-sheaves

L+IN̄/L+dN̄ ×Hl
Hl+1

∼

�→ L+IN̄/L+dN̄ ×
F

alg
c

σ̂−l∗H1

(h , h̄l+1) ↦ (h , x(l) ⋅ h−1h̄l+1 ⋅ (x(l))−1)

(h , h ⋅ (x(l))−1 ⋅ h̄1 ⋅ x(l)) ↤ (h , h̄1) .
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Since σ̂−l∗H1 → SpecFalg
c is obtained from H1 → SpecFalg

c by base change, it is

smooth of relative dimension d1. Since L+IN̄/L+dN̄ → Hl is faithfully flat by Propo-

sition 4.6, [Gro67, IV4, Corollaire 17.7.3] implies that Hl+1 → Hl is smooth of relative

dimension d1. This implies that dl = l ⋅ d1.

We compute it by using that x is decent for some integer s, that is σ̂(s−1)∗(x(s)) =

(s νx)(z) where z ∈ Ac is a uniformizing parameter. Let g ∈ Gc(Lalg) be such that

g ⋅ (s νx)(z) ⋅ g−1 = (s νx,dom)(z) ∈ T (Lalg). Then for every root α of Gc(Lalg), the

conjugation with (s νx,dom)(z) equals multiplication with z⟨s νx,dom , α⟩ on the root

subgroup Uα of α. Now Definition 4.3 (v) and (vi) imply that

⟨s νx,dom , α⟩

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

> 0

= 0

< 0

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

for all roots α of

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

g ⋅ N̄ ⋅ g−1∶ ,

g ⋅ M ⋅ g−1 ,

g ⋅ N ⋅ g−1 .

Therefore all roots of g ⋅ N̄ ⋅ g−1 are positive and the remaining positive roots belong

to g ⋅M ⋅g−1. This implies that s ⋅d1 = dim Hs = ∑α positive⟨s νx,dom , α⟩ = s ⋅⟨νx,dom , 2�⟩

and the proposition is proved.

Lemma 4.8. With the notations from Definition 4.3 there is an Iwahori factoriza-

tion

I(Falg
c �z�) = IN(Falg

c �z�)IM(Falg
c �z�)IN̄(Falg

c �z�)

= IN̄(Falg
c �z�)IM(Falg

c �z�)IN(Falg
c �z�)

and

L+I(R) = L+IN(R)L+IM(R)L+IN̄(R)

= L+IN̄(R)L+IM(R)+IN(R)

for every Fc-algebra R.

Proof. This follows from [MP96, Theorem 4.2] under the assumption that I and Gc

lie on an apartment given by a maximal Falg
c ((z))-split torus contained in a Levi

M .

Lemma 4.9. Using the notations and under the assumptions in Definition 4.3, for

any r > 0 there is an Iwahori decomposition for every filtration subgroup Ir of I, that

is

L+Ir(R) = L+Ir,N(R) ⋅ L+Ir,M(R) ⋅ L+Ir,N̄(R),

L+Ir(R) = L+Ir,N̄(R) ⋅ L+Ir,M(R) ⋅ L+Ir,N(R).
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Proof. This follows directly from [HV12, Lemma 4.6]. Note that in loc. cit. the

case that Gc is split, constant, connected, reductive is considered. But the proof

holds also in our more general case by our assumptions on the filtration subgroup

Ir in Definition 4.3.

Remark 4.10. In the case of a split constant reductive group Gc we could set

Ir(S) ∶= {g ∈ L+r (S) ∶ (g mod zr+1) ∈ B(Γ(S,OS)�z�/(zr+1))}

and I ∶= I0 for the Iwahori subgroup. Here B ⊃ T denote a Borelsubgroup and a

maximal split torus of Gc.

From now on we write x ∶= (I, S, P, M, x) for the tuple as defined in Definition 4.3.

If Gc is split connected reductive every isogeny class contains a P -fundamental el-

ement as defined in [HV12]. We recall the definition of the “usual” P -fundamental

alcove given in [HV12, Definition 4.1] or [Vie14, Definition 6.1] which was first de-

fined and studied in [GHKR10]:

Definition 4.11. Let Gc be a split connected reuctive group over Fc. Let P be a

semistandard parabolic subgroup of Gc containing a maximal split torus T of Gc.

Denote by N its unipotent radical and M a Levi sbgroup. Let N̄ be the unipotent

radical of the opposite to P . Let I = INIMIN̄ be the Iwahori decompostion. An

element x ∈ W̃ of the extended affine Weyl group of Gc is called P -fundamental if

σ̂(xIMx−1) = IM ,

σ̂(xINx−1) ⊂ IN ,

σ̂(x−1IN̄x) ⊂ IN̄ .

Remark 4.12. (i) Note that for P -fundamental alcoves defined as in [HV12] or

[Vie14] the properties in 4.3 hold if Gc is constant split (see [HV12, Remark 4.2

and Lemma 4.5]).

(ii) If x is a P -fundamental alcove in the sense of [HV12] by [Vie14, Remark 6.2

and Lemma 6.3] one can enlarge M , P and P̄ , such that M is the centrailzer

of the M-dominant Newton point of x if x is decent.

(iii) In the case of split groups Gc each σ-conjugacy class in LGc(k) contains a P -

fundamental alcove for an algebraically closed field k by [Vie14, Theorem 6.5]

(even for unramified groups) or [GHKR10, Corollary 13.2.4]. Further proper-

ties of P -fundamental alcoves are given for example in [HV12, Remark 4.2],

[GHKR10, § 13] and [Vie14, § 6].

Lemma 4.13. Let k be an algebraically closed field.
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(i) For every element g ∈ (L+σ̂−1I)(k) ⋅ x ⋅ (L+I)(k) there is an element h ∈

(L+σ̂−1I)(k) with h−1g σ̂∗(h) = x.

(ii) If g ∈ x ⋅ (L+Id,M)(k) ⋅ (L+IN̄)(k), then we can find h ∈ (L+σ̂−1Id,M)(k) ⋅

(L+σ̂−1IN̄)(k).

Proof. (i) follows from (ii) by the argument of [HV12, Proposition 4.8]. Note that,

although loc. cit. assumes that the group Gc is constant split, its argument works

in our more general situation with the following modifications (in the notation of

loc. cit.):

— g ∈ (L+σ̂−1∗IN)xL+IN ,

— h, hl ∈ L+σ̂−1∗IN ,

— rl ∈ σ̂∗(x) ⋅ . . . ⋅ σ̂l∗(x) ⋅ (L+σ̂l∗IN) ⋅ σ̂l∗(x−1) ⋅ . . . ⋅ σ̂∗(x−1) ⊂ L+IN ,

— h−1
l ⋅ hl+1 ∈ x ⋅ . . . ⋅ σ̂l∗(x) ⋅ (L+σ̂l∗IN) ⋅ σ̂l∗(x−1) ⋅ . . . ⋅ x−1 ⊂ L+σ̂−1∗IN .

(ii) If g = xmn̄ with m ∈ (L+Id,M)(k) and n̄ ∈ (L+IN̄)(k), then Definition 4.3(ix)

yields an element hd ∈ (L+σ̂−1Id,M)(k) with hdx σ̂∗(h−1
d )x−1 = xmx−1 ⋅ m̃d+1 with

m̃d+1 ∈ (L+σ̂−1Id+1,M)(k), that is h−1
d xm σ̂∗(hd) = xmd+1 with

md+1 ∶= σ̂∗(h−1
d )x−1(m̃d+1)

−1x σ̂∗(hd) ∈ (L+Id+1,M)(k)

by Definition 4.3(viii). We may now iterate this process to obtain h ∶= hd ⋅hd+1 ⋅ . . . ∈

(L+σ̂−1Id,M)(k) with h−1xm σ̂∗h = x. Note that the product converges, because

L+σ̂−1Id,M ⊂ L+d σ̂−1M .

This yields

h−1g σ̂∗(h) = h−1xmn̄ σ̂∗(h) = x ⋅ σ̂∗(h−1)n̄ σ̂∗(h).

We set n̄0 ∶= σ̂∗(h−1)n̄ σ̂∗(h) ∈ L+IN̄(k). Now h̃0 ∶= σ̂−1(n̄0) ∈ (L+σ̂−1IN̄)(k) satisfies

h̃0xn̄0 σ̂∗(h̃−1
0 ) = x ⋅ x−1h̃0x .

When we set n̄1 ∶= x−1h̃0x = x−1σ̂−1(n̄0)x then h̃1 ∶= σ̂−1(n̄1) ⋅ h̃0 satisfies

h̃1xn̄0 σ̂∗(h̃−1
1 ) = x ⋅ x−1σ̂−1(n̄1)x .

Iterating this, we set n̄l ∶= x−1σ̂−1(n̄l−1)x and h̃l = σ̂−1(n̄l ⋅ . . . ⋅ n̄0) in order to obtain

h̃lxn̄0 σ̂∗(h̃−1
l ) = xn̄l+1 for every l ≥ 0. By Definition 4.3(vi) the sequence n̄l ∈ L+IN̄(k)

converges to 1 and the sequence h̃l ∈ (L+σ̂−1IN̄)(k) converges to an element h̃ ∈

(L+σ̂−1IN̄)(k) with h̃xn̄0 σ̂∗(h̃−1) = x, that is h̃h−1g σ̂∗(hh̃−1) = x as desired.

Remark 4.14. The proof of Lemma 4.13 also shows that one can find h in

(L+σ̂−1
i IP̄ )(k) if g ∈ x ⋅ (L+IP̄ )(k).

Remark 4.15. If Gc is constant split reductive Lemma 4.13 holds by [HV12, Re-

mark 4.2.(b)] or by [GHKR10, Proposition 6.3.1] for a P -fundamental x.
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4.2 Completely slope divisible local Gc-shtukas

In this section we define completely slope divisible local Gc-shtukas. We follow the

definition given in [HV12, Definition 4.7]. We fix an element x with the data given

in Definition 4.3. Furthermore, we use the following notation:

IP̄ ∶= IM ⋅ IN̄ .

We consider the natural morphism of group schemes ι ∶ σ̂−1IP̄ → Gc and the induced

functor ι∗ from L+σ̂−1IP̄ -torsors to L+Gc-torsors.

Definition 4.16. A local Gc-shtuka G = (G, τ̂G) over an F
alg
c -scheme S is called

completely slope divisible with respect to x if there exists

— an L+σ̂−1IP̄ -torsor P over S and

— an isomorphism of L+Gc-torsors η ∶ ι∗P
∼

�→ G over S,

such that there exists an étale covering S′ → S and a trivialization

α ∶ PS′
∼

�→ (L+σ̂−1IP̄ )S′ satisfying

ι∗α η−1τ̂G σ̂∗(η ι∗α
−1) ∈ x ⋅ L+IP̄ (S′) .

The pair (P , η) is called a complete slope division of G over S.

The next results clarify the existence of complete slope divisions.

Theorem 4.17. Let G be a local Gc-shtuka over an F
alg
c -scheme S with constant

isogeny class [x]. Then the functor Yx on the category of S-schemes T

Yx(T ) = { Isomorphism classes of pairs (P , η) where P is an L+σ̂−1IP̄ -torsor

over T and η ∶ ι∗P
∼

�→ G
T

is an isomorphism of L+Gc-torsors

over T , such that there exists an étale covering T ′ → T (4.5)

and a trivialization α ∶ PT ′
∼

�→ (L+σ̂−1IP̄ )T ′

satisfying ι∗α η−1τ̂G σ̂∗(η ι∗α
−1) ∈ x ⋅ L+IP̄ (T ′) }

is representable by a scheme which is finite over S. Here (P , η) and (P
′

, η′)

are isomorphic, if there is an isomorphism δ ∶ P
∼

�→ P
′

of L+σ̂−1IP̄ -torsors with

η = η′ ○ ι∗δ.

Remark 4.18. Note that Yx is well defined, because the condition is independent

of the choice of T ′ and α. Indeed, if T̃ ′ → T and α̃ ∶ P T̃ ′
∼

�→ (L+σ̂−1IP̄ )T̃ ′ is

another étale covering, (resp. another trivialization,) then the element H ∶= α○ α̃−1 ∈

L+σ̂−1IP̄ (T ′ ×T T̃ ′) satisfies ι∗α̃ η−1τ̂G σ̂∗(η ι∗α̃−1) = H−1ι∗α η−1τ̂G σ̂∗(η ι∗α−1)σ̂∗H ∈

H−1x ⋅L+IP̄ ⋅ σ̂∗H = x(x−1H−1x) ⋅L+IP̄ ⊂ x ⋅L+IP̄ , by Condition (v) of Definition 4.3.

40



4.2 Completely slope divisible local Gc-shtukas

Proof. of Theorem 4.17

1. Choose an étale covering S′ → S over which a trivialization

β ∶ ((L+Gc)S′ , gσ̂∗)
∼

�→ G
S′

with g = β−1τ̂G σ̂∗β ∈ LGc(S′) exists. Consider the functor Y ′x on the category of

S′-schemes T

Y ′x(T ) = {a ∶ T → L+Gc/L
+σ̂−1IP̄ such that a−1g

T
σ̂∗a ∈ x ⋅ L+IP̄ } . (4.6)

The condition a−1g
T

σ̂∗a ∈ x ⋅ L+IP̄ means that over an étale covering T ′ → T the

morphism a is represented by an element a ∈ L+Gc(T ′) which satisfies a−1g
T ′

σ̂∗a ∈ x ⋅

L+IP̄ (T ′). Then the condition is independent of the covering T ′ and the choice of the

element a, because Condition (v) of Definition 4.3 implies L+σ̂−1IP̄ ⋅x⋅L+IP̄ = x⋅L+IP̄ .

We claim that (Yx ×S S′)(T ) is isomorphic to Y ′x(T ). Namely, we may choose an

étale covering T ′ → T over which a trivialization α as in (4.5), respectively an element

a ∈ L+Gc(T ′) exists. Then the isomorphism is defined by sending (P , η)
T ′

to a ∶=

β−1 η ι∗α−1 ∈ L+Gc(T ′) and conversely sending a ∈ L+Gc(T ′) to ((L+σ̂−1IP̄ )T ′ , βa).

Both assignments descend to T , are well defined and inverse to each other.

2. To prove that Y ′x is representable by a scheme which is projective over S′ we use

yet another description of Y ′x. We consider the functor on the category of S′-schemes

T :

Ỹ ′x(T ) = {f ∶ T → L+Gc/L
+σ̂−1I such that f−1g

T
σ̂∗f ∈ L+σ̂−1I ⋅ x ⋅ L+I}. (4.7)

The condition f−1g
T

σ̂∗f ∈ L+σ̂−1I ⋅ x ⋅ L+I means that over an étale covering T ′ →

T the morphism f is represented by an element f ∈ L+Gc(T ′) which satisfies

f−1g
T ′

σ̂∗f ∈ (L+σ̂−1I)(T ′) ⋅ x ⋅ L+I(T ′). Then the condition is independent of the

covering T ′ and the choice of the element f .

The element f−1g
T ′

σ̂∗f lies in the Newton stratum Nx(T ′) by our assumption on

the constancy of the isogeny class of G (notice Remark 4.5 (iii)). Therefore, Condi-

tion (vii) from Definition 4.3 implies that Ỹ ′x ⊂ (L+Gc/L+σ̂−1I)×
F

alg
c

S′ is representable

by a closed subscheme. Since I and so also σ̂−1I are parahoric, Lσ̂−1I/L+σ̂−1I is ind-

projective by [Ric13a, Corollary 1.3]. Therefore L+Gc/L+σ̂−1I is a projective scheme

over F
alg
c by [HV11, Lemma 5.4], because L+Gc ⊂ LGc = Lσ̂−1I is a quasi-compact

ind-closed subscheme. It follows that Ỹ ′x → S′ is projective.

We claim that Y ′x and Ỹ ′x are isomorphic over S′. First of all there is a canonical

morphism Y ′x → Ỹ ′x comming from the inclusion L+σ̂−1IP̄ ⊂ L+σ̂−1I. To prove that

this morphism is an isomorphism, we may choose an étale covering X̃ ′ → Ỹ ′x over

which the universal morphism f ∶ Ỹ ′x → L+Gc/L+σ̂−1I is represented by an element

f ∈ L+Gc(X̃ ′). By faithfully flat descent [Gro67, IV2, Proposition 2.7.1] it suffices
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to show that pr2 ∶ X ′ ∶= Y ′x ×Ỹ ′x
X̃ ′ → X̃ ′ is an isomorphism. We now apply [HV12,

Proposition 4.8], which assumes that Gc is constant split, but whose argument goes

through in our general case if one makes the following modifications (in the notation

of [HV12, Proposition 4.8]): g ∈ (L+σ̂−1IN) ⋅ x ⋅ L+IN , and h ∈ L+σ̂−1I, as well

as hl ∈ L+σ̂−1IN and rl ∈ σ̂∗x ⋅ . . . ⋅ σ̂l∗x ⋅ (L+σ̂l∗IN) ⋅ σ̂l∗x−1 ⋅ . . . ⋅ σ̂∗x−1 ⊂ L+IN and

h−1
l−1 ⋅hl ∈ x⋅. . .⋅σ̂(l−1)∗x⋅(L+σ̂(l−1)∗IN)⋅σ̂(l−1)∗x−1 ⋅. . .⋅x−1 ⊂ L+σ̂−1IN . By this argument

we may multiply f ∈ L+Gc(X̃ ′) on the right with an element of L+σ̂−1I(X̃ ′), called

h in [HV12, Proposition 4.8], to obtain a new element f ∈ L+Gc(X̃ ′) satisfying

f−1g
X̃′

σ̂∗f =∶ x ⋅ p̄f ∈ x ⋅ L+IP̄ (X̃ ′). Then f defines a morphism X̃ ′ → Y ′x, and hence

a section s ∶ X̃ ′ → X ′ of pr2, that is pr2 ○ s = idX̃′ .

To show that s ○ pr2 = idX′ we consider a T -valued point (a, x̃′) ∈ X ′(T ) with

a ∈ Y ′x(T ) and x̃′ ∈ X̃ ′(T ) for a scheme T . Since pr2 ○ (s ○pr2) ○ (a, x̃′) = pr2 ○ (a, x̃′),

it suffices to show that f
T

= pr1 ○ (s ○ pr2) ○ (a, x̃′)
!
= pr1 ○ (a, x̃′) = a in Y ′x(T ).

Since f
T

and a map to the same element in Ỹ ′x(T ), we can write a−1f
T

= p̄n with

p̄ ∈ L+σ̂−1IP̄ (T ) and n ∈ L+σ̂−1IN(T ) by Lemma 4.8. We define p̄a ∈ L+IP̄ (T ) by

a−1g
T
σ̂∗a = x ⋅ p̄a ∈ x ⋅ L+IP̄ (T ) and consider the equation

x−1n−1x(x−1p̄−1xp̄a σ̂∗p̄)σ̂∗n = x−1f−1
T

a xp̄a σ̂∗a−1σ̂∗f
T

= x−1f−1
T

g
T
σ̂∗f

T
= pf

which yields

(x−1p̄−1xp̄a σ̂∗p̄) ⋅ σ̂∗n = x−1nx ⋅ pf in L+I(T ) . (4.8)

Observe that x−1p̄−1x⋅p̄a ⋅σ̂∗p̄ ∈ L+IP̄ (T ) by Condition (v) of Definition 4.3. Applying

Lemma 4.8 to (4.8) we conclude that x−1nx ∈ L+IN(T ), and hence n ∈ x ⋅ L+IN(T ) ⋅

x−1 ⊂ (L+σ̂−1IN)(T ) and σ̂∗n ∈ σ̂∗(x ⋅L+IN(T )⋅x−1) ⊂ L+IN(T ). Now we successively

apply Lemma 4.9 for the group

I ∩ σ̂∗(x ⋅ . . . ⋅ σ̂l∗x ⋅ σ̂l∗I ⋅ σ̂l∗x−1 ⋅ . . . ⋅x−1) = σ̂∗(x ⋅ . . . ⋅ σ̂l∗x ⋅ σ̂l∗IN ⋅ σ̂l∗x−1 ⋅ . . . ⋅x−1) ⋅ IP̄

to (4.8). For l = 0 we derive that x−1nx ∈ σ̂∗(x ⋅ L+IN ⋅ x−1)(T ), and therefore we

obtain n ∈ x ⋅ . . . ⋅ σ̂(l+1)∗x ⋅ (L+σ̂(l+1)∗IN)(T ) ⋅ σ̂(l+1)∗x−1 ⋅ . . . ⋅ x−1 ⊂ (L+σ̂−1IN)(T ) for

l = 0 and successively for all l ≥ 0. By Condition (vi) of Definition 4.3, this implies

n = 1, and so a−1f
T

= p̄ ∈ L+σ̂−1IP̄ (T ). This shows that a = f
T

in Y ′x(T ) and so

X ′ → X̃ ′ and Y ′x → Ỹ ′x are isomorphisms.

3. We next prove that the morphism Ỹ ′x → S′ is quasi-finite, and hence finite,

and in particular affine. Let k be an algebraically closed field and let f ∈ Ỹ ′x(k) ⊂

L+Gc(k)/(L+σ̂−1I)(k). We denote by s ∈ S′(k) its image in S′. Then f−1gs σ̂∗f ∈

(L+σ̂−1I)(k) ⋅ x ⋅ L+I(k). By Lemma 4.13 there exists an element h ∈ (L+σ̂−1I)(k)

such that (fh)−1gs σ̂∗(fh) = x. Note that fh ∈ Ỹ ′x(k) defines the same point as f .

Now if f̃ ∈ Ỹ ′x(k) is any other point mapping to the same s ∈ S′, we represent f̃ by
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4.3 Definition and properties of central leaves

an element f̃ ∈ L+Gc(k) with f̃−1gs σ̂∗f̃ = x. This implies that (f−1f̃)−1x σ̂∗(f−1f̃) =

f̃−1gs σ̂∗f̃ = x, and so i ∶= f−1f̃ ∈ Autk((L+Gc)k, xσ̂∗) and f̃ = fi. Since x is decent,

this automorphism group is contained in L+Gc(F
′) for a finite field extension F′ of

Fc by Remark 2.35. Since L+Gc/L+σ̂−1I is a projective scheme, (L+Gc/L+σ̂−1I)(F′)

is finite, and so we have proved that there are only finitely many points f̃ ∈ Ỹ ′x(k)

mapping to s.

4. Since faithfully flat descent for affine schemes is effective by [BLR90, § 6.1, Theo-

rem 6] we conclude that Yx is representable by an S-scheme which is finite by [Gro67,

IV2, Proposition 2.7.1].

4.3 Definition and properties of central leaves

Denote by ∇H1 the special fibre of the stack ∇
H,Ẑc

n H1(C, G)c (see Notation 3.2). It

is a separated Deligne-Mumford stack locally of finite type over Fc.

We will introduce the so-called central leaf as a reduced closed substack of ∇H1. In

order to do this we first give the definition of the central leaf in the sense of [HV12]

as a scheme. Our notion of central leaves in the moduli space of global G-shtukas

is closely related to the definition of central leaves for local Gci
-shtukas intruduced

in [HV12, Definition 6.1].

Denote by Fx ∶= Fxi
a field such that x ∶= xi as defined in Definition 4.3 exists over

Fx.

Definition 4.19. Let K be a field extension of Fci
and let Ĝi be a local Gci

-shtuka

over K.

(i) For a K-scheme S and a local Gci
-shtuka Ĝ

i
over S the central leaf is defined

as the subset

CĜi,S
∶= {s ∈ S ∶ Ĝi,L ≅ Ĝ

i,L
over an algebraically

closed field extension L/κ(s)}.

(ii) If G is a global G-shtuka over a K-scheme S, the central leaves are defined as

the subsets

CĜi,S
∶= {s ∈ S ∶ Ĝi,L ≅ Γ̂ci

(G)L over an algebraically

closed field extension L/κ(s)}

and

C
(Ĝi)i,S

∶= ⋂
i

CĜi,S
.

43



4 Central Leaves

(iii) If Ĝi = ((L+Gci
)K , xiσ̂

∗

i ) and x = (xi)i, we also write

Cxi,S ∶= CĜi,S

and

Cx,S ∶= ⋂
i

Cxi,S .

The definition is independent of the level stucture of a global G-shtuka because the

property for a point of belonging to a central leaf depends only on the local behavior

of a global G-shtuka at its characteristic places.

For each i we fix a tuple (Ii, Si, Pi, Mi, xi) as defined in Definition 4.3. Denote by

Fx ∈ N ilpAc
a field such that each xi as defined in Definition 4.3 exists over Fx and

is decent.

In the following, we will show that Cx is closed in Nx. This is the analogue to [Oor04,

Theorem 2.2]. Then we get that the central leaf Cxi
(and Cx) exists as a locally closed

substack of ∇H1

F
alg
q

, which is in particular a Deligne-Mumford stack locally of finite

type.

By Theorem 4.17 follows:

Corollary 4.20. Let G be a local Gc-shtuka over an F
alg
q -scheme S with constant

isogeny class [x]. Then the central leaf Cx,S is the (scheme theoretic) image of

Yx → S. In particular, it is closed in S.

Proof. The image of the morphism Yx → S from Theorem 4.17 is closed. By

construction, this image equals Cx,S. Indeed, if s ∈ Cx,S, then there is an iso-

morphism η ∶ ((L+Gc)κ(s)alg , xσ̂∗)
∼

�→ G
κ(s)alg and then ((L+σ̂−1IP̄ )κ(s)alg , η) with

T ′ = Spec κ(s)alg and α = id is a κ(s)alg-valued point of Yx mapping to s.

Conversely, if s = (P , η) ∈ Yx(k) is a point with values in an algebraically closed

field k, we obtain an isomorphism α over k with g ∶= ι∗α η−1τ̂G σ̂∗(η ι∗α−1) ∈ x ⋅

L+IP̄ (k). By Lemma 4.13 there exists an element h ∈ (L+σ̂−1I)(k) such that

h−1g σ̂∗h = x. Then η ι∗α−1h ∶ ((L+Gc)k, x)
∼

�→ G
s
, and hence the image of s in

S belongs to Cx,S.

Remark 4.21. As the scheme theoretic image of Yx in S, the central leaf Cx,S carries

a natural scheme structure. If S → Nx ⊂ ∇H1

F
alg
q

is an étale presentation of the

Newton stratum, we will see in Theorem 4.29 below that Yx is smooth over F
alg
q

and in particular reduced. This shows that the natural scheme structure on Cx,S is

reduced.

Corollary 4.22. Let G be a local Gc-shtuka over an F
alg
q - scheme S with constant

isogeny class [x]. Then there is a finite surjective morphism Y → Cx,S such that G
Y

is completely slope divisible in the sense of Definition 4.16. If Gc = I is an Iwahori

group, then we can take Y = Cx,S.
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4.3 Definition and properties of central leaves

Remark 4.23. If Gc is not an Iwahori group, it can happen that Y → Cx,S does not

have a section, and also that Y → Cx,S is not étale. See Examples 4.24 and 4.25

below, in which S is the spectrum of a field.

Proof. of Corollary 4.22

The morphism Y ∶= Yx → Cx,S from Theorem 4.17 is finite and surjective by the

proof of Corollary 4.20 and G
Y

is completely slope divisible by definition. If Gc = I,

then also L+Gc = L+σ̂−1Gc = L+σ̂−1I, because Gc is defined over Fc. Then Ỹ ′ →

S′ is a closed immersion in (4.7) and therefore Y → Cx,S is an isomorphism by

Corollary 4.20.

Example 4.24. We show that it can happen, that a local Gc-shtuka over a field K

becomes completely slope divisible over a field extension of K, but not over K itself.

Let K = Fc(λ) where λ is transcendental over Fc. Let Gc = GL2,Fc�z� and let I be

the subgroup of Gc whose elements are upper triangular modulo z. Let S = Spec K

and G = ((L+Gc)K , gσ̂∗) for g = ( λ λ
1 λ ). Then x = ( 1 0

0 1 ) and M = Gc. Indeed, by

Lang’s theorem [Lan56, Corollary on p. 557] there is a matrix f ∈ GL2(Kalg) with

g σ̂∗f = f , that is with f−1g σ̂∗f = x. This matrix f defines a Kalg-valued point of

Ỹ ′x from (4.7). And so Cx,S = S by the proof of Theorem 4.17.

On the other hand, we claim that there is no K-valued point f of Yx. Note that

here we may take S′ = S and Yx = Ỹ ′x in the proof of Theorem 4.17. Writing f = ( a b
c d )

we want f−1g σ̂∗f ∈ L+I, that is aq̂+1 − λaq̂c + λacq̂ − λcq̂+1 = 0. We must have c ≠ 0,

because if c = 0, then a = 0 and f is not invertible. By Eisenstein’s irreducibility

criterion, a/c does not lie in K, but generates a field extension of K of degree q̂ + 1.

So the point [a ∶ c] ∈ P1
Fc

= L+Gc/L+I is not K-rational. This proves the claim.

Example 4.25. We show that Yx → Cx,S does not need to be smooth. Let Gc =

GL2,Fc�z� and let I be the subgroup of Gc whose elements are upper triangular modulo

z. Let x = ( z 0
0 1 ) ∈ LGc(Fc). Then IP̄ = {( α 0

γ δ ) ∶ z∣γ}. In the fibre above g =

x ∈ Cx,S(Fc) the morphism Yx → Cx,S is neither (formally) smooth nor (formally)

unramified at the point corresponding to 1 ∈ Y ′x(Fc). Indeed, let B = Fc[ε]/(εq̂+1) and

B ∶= B/(εq̂). Then the point ā = 1 ∈ Yx(B) has two different lifts a = ( 1 0
γ 1 ) in Yx(B)

with γ = 0 or γ = εq̂, because both satisfy σ̂∗a = 1 and x−1a−1g σ̂∗a = ( 1 0
γz 1 ) ∈ L+IP̄ (B).

So Yx → Cx,S is not unramified at 1.

Also, the point ā = ( 1 0
ε 1 ) lies in Y ′x(B), because σ̂∗ā = 1 and x−1ā−1g σ̂∗ā = ( 1 0

εz 1 ) ∈

L+IP̄ (B). It has no lift a ∈ Y ′x(B), because any such lift would be of the form

a = ( 1 0
ε 1 )⋅(1+εq̂ã) ∈ Y ′x(B) with ã ∈ Fc�z�2×2, but then σ̂∗a = ( 1 0

εq̂ 1
) and x−1a−1g σ̂∗a =

x−1(1 − εq̂ã) ⋅ ( z 0
εq̂
−εz 1

) = ( 1 0
εq̂
−εz 1

) − εq̂ ( z−1 0
0 1

) ⋅ ã ⋅ ( z 0
0 1 ) /∈ x ⋅ L+IP̄ (B). So Yx → Cx,S is

not smooth at 1.
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4 Central Leaves

Now we are going to give the notion of the central leaf in the Newton stratum of

∇H1. Let xi be as defined in Definition 4.3. The schemes Yxi
from Theorem 4.17

above define Deligne-Mumford stacks Yxi
for all i = 1, . . . , n:

Proposition 4.26. Theorem 4.17 gives rise to separated, algebraic

Deligne-Mumford stacks of finite type

Yxi
�→ Cxi

⊂ (Nxi
×Fci

Falg
q ) ⊂ ∇H1

F
alg
q

(4.9)

and

Yx ∶= (Yx1
×∇H1

F
alg
q

. . . ×∇H1

F
alg
q

Yxn
) �→ Cx ⊂ (Nx ×Fc

Falg
q ) ⊂ ∇H1

F
alg
q

(4.10)

which are defined with respect to Γ̂ci
(G

univ
). The stacks Cxi

⊂ Nxi
and Cx ⊂ Nx are

closed substacks and are the central leaves in the sense that for every F
alg
q -scheme S

and every morphism S → ∇H1

F
alg
q

the fibre product S ×∇H1

F
alg
q

Cx equals the central leaf

Cx,S in S. The morphisms Yxi
→ Cxi

and Yx → Cx are finite.

Proof. Let Si → Nxi
×Fc

F
alg
q , be an étale presentation and let G

univ be the universal

global G-shtuka over Si. We observe that Nx = (Nx1
×∇H1 . . .×∇H1Nxn

)
red

. Therefore,

the scheme S ∶= (S1 ×∇H1

F
alg
q

. . . ×∇H1

F
alg
q

Sn)red
is an étale presentation of Nx ×Fc

F
alg
q .

Let Yxi
→ Si be the scheme from Theorem 4.17 with respect to the local Gci

-shtuka

Γ̂ci
(G

univ
) over Si and let Yx ∶= (Yx1

×S1
S) ×S . . . ×S (Yxn

×Sn
S). Let Cxi,Si

⊂ Si,

respectively Cx,S ⊂ S, be the scheme theoretic images of Yxi
→ Si, respectively of

Yx → S. Then Yxi
and Yx, and hence also Cxi,Si

and Cx,S, are defined as moduli

problems. Therefore they descend to stacks Yi → Cxi
⊂ Nxi

and Yx → Cx ⊂ Nx. The

properties of these stacks follow from Theorem 4.17 and Corollary 4.20.

We will see in Theorem 4.29 below that Yx → SpecFalg
q is a smooth stack, and

we will compute its dimension. As a motivation for this result, we want to give

an interpretation of Yxi
and Yx as the central leaves in a different moduli space

∇H
n H1(C, I) in Corollary 4.28 below. For this purpose we begin with the following

theorem.

Theorem 4.27. Let ρ ∶ G → G′ be a morphism of parahoric group schemes over C,

which is an isomorphism over C ∖ c. Let H ⊂ G(Ac) = G′(Ac) be a compact open

subgroup. Then the induced morphism

ρ∗ ∶ ∇H
n H1(C, G)c �→ ∇H

n H1(C, G′)c (4.11)

(G, s1, . . . , sn, τG, Hγ) W→ (ρ∗G, s1, . . . , sn, ρ∗τG, Hγ)

is relatively representable by a projective morphism. More precisely, it is relatively

representable by the morphism

((L+G′c1
/L+Gc1

) ×Fc1
Fc) ×Fc

. . . ×Fc
((L+G′cn

/L+Gcn
) ×Fcn

Fc) �→ SpecFc .
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4.3 Definition and properties of central leaves

Proof. Let S → ∇H
n H1(C, G′)c be a morphism corresponding to a global G′-shtuka

with H-level structure (G′, τG′ , Hγ′) over S. Let T = Spec R be an affine scheme.

Then the category of T -valued points of the fibre product

S′ ∶= ∇H
n H1(C, G)c ×∇H

n H
1(C,G′)c S

is the category of tuples ((G, τG, Hγ), f, α) where (G, τG, Hγ) ∈ ∇H
n H1(C, G)c(T ),

where f ∶ T → S is a morphism, and α ∶ ρ∗(G, τG, Hγ)
∼

�→ f∗(G′, τG′ , Hγ′) is an

isomorphism in ∇H
n H1(C, G′)c(T ), that is, a quasi-isogeny α ∶ ρ∗(G, τG) → f∗(G′, τG′)

which is an isomorphism at c and compatible with the H-level structures.

The G-structure on ρ∗G over T is equivalent to a CT -morphism

CT → ρ∗G/(G ×C CT ) ;

see for example [AH14b, Proof of Proposition 3.9]. Since G = G′ over C ∖ c, the

restriction of ρ∗G/(G ×C CT ) to (C ∖ c)T is canonically isomorphic to (C ∖ c)T .

Note that G(CT ) ⊂ G′(CT ) via ρ as one sees by restricting to C ∖ c. Both contain

G′d(CT ) ∶= {g ∈ G′(CT ) ∶ g ≡ 1 mod D} as a normal subgroup for some divisor D =

d ⋅ [c] with d ∈ Z, and (G′/G′d)(CT ) = G′(DT ). Therefore (G′/G)(CT ) = (G′/G)(DT )

and (ρ∗G/(G×C CT ))(CT ) = (ρ∗G/(G×C CT ))(DT ). Since α is an isomorphism over

a neighborhood of c we conclude that the G-structure on ρ∗G over T corresponds

to a DS-morphism a ∶ DT → (G′ ×CS
DS)/(G ×C DS). By [AH14a, Remark 5.2 and

Lemma 5.3], the space DT = ∐
n
i=1 Spec (Fci

�zci
�/(zd

ci
) ⊗Fq

R) decomposes into the

disjoint union of Spec (Fci
�zci

�/(zd
ci
) ⊗Fq

R)/aj for aj = (λ ⊗ 1 − 1 ⊗ (s∗i λ)qj
∶ λ ∈ Fci

)

and j ∈ Z/[Fci
∶ Fq]Z. The aj are cyclically permuted by σ and the graph Γsi

is

contained in the component for j = 0. The compatibility α○ρ∗τG = f∗τG′○σ∗α outside

Γsi
thus implies that the value of a on the component for j = 0 uniquely determines

a on all the components for j ≠ 0. On the former component it corresponds to an

Fci
-morphism a ∶ T → Γ̂ci

(G′)/L+Gci
. After trivializing Γ̂ci

(G′) on an étale covering

of S, we see that the fibre product S′ has the form claimed in the theorem. Since

L+Gci
is parahoric, LGci

/L+Gci
is ind-projective by [Ric13a, Corollary 1.3]. Since

L+G′ci
⊂ LGci

is a quasi-compact ind-closed subscheme, L+G′ci
/L+Gci

is a projective

scheme over Fci
by [HV11, Lemma 5.4]. This proves the theorem.

Corollary 4.28. If σ̂∗i Ii = Ii for one i, let I be the parahoric group scheme over C

which coincides with G outside ci and with Ii at ci. Then Yxi
equals the central leaf

CI,xi
in ∇H

n H1(C, I)c ×Fci
F

alg
q .

If σ̂∗i Ii = Ii for all i, let I be the parahoric group scheme over C which coincides

with G outsice c and with Ii at every ci. Then Yx equals the central leaf CI,x in

∇H
n H1(C, I)c ×Fc

F
alg
q .
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Proof. The group scheme I comes with a morphism ρ ∶ I → G. The projective

morphism ρ∗ from (4.11) induces morphisms of Newton strata (NI)xi
→ (NG)xi

and (NI)x → (NG)x in the two moduli stacks. We choose an étale presentation

S → (NG)xi
, respectively S → (NG)x over which Γ̂ci

(G
univ

) can be trivialized. Then

S is reduced and (NI)xi
×(NG)xi

S = (L+Gci
/L+Ici

) ×Fci
S, because L+Gci

/L+Ici
is

smooth over Fci
; see Proposition 4.6. The description of YG,xi

in terms of Ỹ ′G,xi
in

(4.7) shows that Ỹ ′I,xi
= Ỹ ′G,xi

, and hence YG,xi
= YI,xi

= CI,xi
.

We will now prove the smoothness of Yx and compute its dimension without using

Theorem 4.27 and Corollary 4.28. Our proof is an adaption of [HV11, Theorem 5.6],

which is inspired by Corollary 4.28. For every i, let Li be the completion of the

maximal unramified field extension of Qci
and recall from Definition 2.33 the Newton

cocharacter νxi
∶ DLi

→ Gci,Li
where DLi

is the diagonalizable pro-algebraic group

over Li with character group Q. Over an algebraic closure L
alg
i of Li we can choose

a maximal torus T and a Borel subgroup B of Gci
. With respect to this Borel

subgroup we let νxi,dom ∶ D
L

alg

i
→ T

L
alg

i
be the unique dominant homomorphism,

which is conjugate to νxi
in Gci

and we let 2�i be the sum of all positive roots of T .

Then

⟨νxi,dom , 2�i⟩ ∈ N0 (4.12)

is well defined.

Theorem 4.29. The algebraic stack Yx obtained in Proposition 4.26 is smooth over

SpecFalg
q of relative dimension ∑

n
i=1⟨νxi,dom , 2�i⟩.

Note that the dimension formula is independent of the parahoric model of GQ.

Proof of Theorem 4.29. Our proof proceeds by computing the complete local ring

Ôy ∶= ÔYx×
F

alg
q

K,y of Yx at a point y ∈ Yx(K) for an algebraically closed field K. Note

that if S → Yx is an étale presentation and s ∈ S(K) maps to y, then this local

ring is canonically isomorphic to the completion ÔS×
F

alg
q

K,s of the local ring at s. By

Propositions 4.30 and 4.7, all the complete local rings Ôy are regular of dimension

∑
n
i=1⟨νxi,dom , 2�i⟩. Since F

alg
q is perfect, regularity is the same as smoothness, and

the theorem follows.

It remains to give the proof of the following proposition.

Proposition 4.30. The complete local ring Ôy (see the proof of Theorem 4.29) is

isomorphic to the complete tensor product D ∶= D1⊗̂K . . . ⊗̂KDn of the completions

Di of the local ring of

(L+IN̄i
/x−1

i ⋅ L+σ̂−1
i IN̄i

⋅ xi) ×
F

alg
q

K at the element 1.
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Proof. 1. We first define a K-homomorphism v ∶ Ôy → D. Let m ⊂ D be the maximal

ideal. The point y maps to a point in ∇H1(K), which corresponds to a global G-

shtuka with H-level structure (G
0
, Hγ0) over K. The point y ∈ Yx(K) corresponds

to complete slope divisions (P i,0, ηi,0) of Γ̂ci
(G

0
) over K. Since K is algebraically

closed, there are trivializations βi,0 ∶ ((L+Gci
)K , gi,0σ̂

∗

i )
∼

�→ Γ̂ci
(G

0
), and then y

defines an element āi,0 ∈ Y ′xi
(K) for all i. Let ai,0 ∈ L+Gci

(K) be a representative of

āi,0. By Lemma 4.13 we may replace this representative without changing āi,0 such

that a−1
i,0 ⋅ gi,0 ⋅ σ̂∗i (ai,0) = xi. We choose a lift a′i ∈ L+Gci

(D) of ai,0. Since D is a K-

algebra, we may take for example a′i = ai,0. Since D has no non-trivial étale coverings,

we may choose representatives n̄′i ∈ L+IN̄i
(D) with n̄′i ≡ 1 mod m of the structure

morphisms SpecDi → L+IN̄i
/x−1

i ⋅ L+σ̂−1
i IN̄i

⋅ xi. We consider the local Gci
-shtukas

Ĝ′i ∶= ((L+Gci
)D, g′iσ̂

∗

i ) over D where g′i ∶= a′i ⋅ xi ⋅ n̄′i
−1 ⋅ σ̂∗i (a

′

i)
−1 ∈ LGci

(D). Since

a′i ≡ ai,0 mod m, and hence g′i ≡ gi,0 mod m, the local shtuka Ĝ′i is a deformation

of Γ̂ci
(G

0
). By the Serre-Tate theorem 2.24 these deformations induce a global G-

shtuka G
′ over D, which is a deformation of G

0
with isomorphism β′i ∶ Ĝ

′

i

∼

�→ Γ̂ci
(G
′
).

With the H-level structure γ′ ∶= γ0, the pair (G
′, Hγ′) lies in ∇H1(D). Moreover,

a′i induces a point in Y ′xi
(D), because a′i

−1g′i σ̂∗i (a
′

i) = xi n̄′i
−1. This yields the point

(P ′i, η
′

i) ∶= ((L+σ̂−1IP̄i
)D, β′ia

′

i) ∈ Yxi
(D). Alltogether we obtain a morphism SpecD →

Yx ×
F

alg
q

K such that the maximal ideal m maps to our initial point y. Since D is a

complete local ring, this morphism factors through a K-homomorphism v ∶ Ôy → D.

In particular, the maximal ideal my ⊂ Ôy equals v−1(m).

2. To prove that v ∶ Ôy → D is an isomorphism, we consider local Artinian K-algebras

A with residue field K and points yA in Yx(A) which are deformations of y ∈ Yx(K).

The image of yA in ∇H1(A) corresponds to a global G-shtuka with H-level structure

(G, Hγ) over A which lifts (G
0
, Hγ0). The point yA ∈ Yx(A) corresponds to complete

slope divisions (P i, ηi) of Γ̂ci
(G) over A lifting (P i,0, ηi,0) for every i. We make the

following

Claim. For every local Artinian K-algebra A with residue field K and for every de-

formation yA = (G, Hγ,P i, ηi) ∈ Yx(A) of y ∈ Yx(K), there is a uniquely determined

K-homomorphism u ∶ D → A and an equality (G, Hγ,P i, ηi) = u∗(G′, Hγ′,P ′i, η
′

i) in

Yx(A).

3. The claim implies that v ∶ Ôy → D is an isomorphism as follows. It suffices

to prove for all l that vl ∶= v mod mq̂l
∶ Ôy/m

q̂l

y → D/mq̂l is an isomorphism. We

first take A = Ôy/m
q̂l

y and the pull-back (G, Hγ,P i, ηi) under Spec A → Yx of the

universal tupel over Yx. Then the claim provides a K-homomorphism u ∶ D → Ôy/m
q̂l

y

which automatically satisfies u−1(my) = m. It induces the K-homomorphism ul ∶= u

mod mq̂l
∶ D/mq̂l

→ Ôy/m
q̂l

y . It suffices to show that ul is inverse to vl. By definition

of the morphism v, we have v∗l (G, Hγ,P i, ηi) = (G
′, Hγ′,P ′i, η

′

i) in Yx(D/mq̂l
), and so
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4 Central Leaves

u∗l v∗l (G, Hγ,P i, ηi) = (G, Hγ,P i, ηi) in Yx(A). By the universal property of Yx, the

compositions of Spec A → Yx with either Spec (idA) or Spec (vlul) coincide. Since

Ôy → A is surjective, we conclude vlul = idA.

To prove that ulvl = id
D/mq̂l we take A′ = D/mq̂l and the tupel (G

′, Hγ′,P ′i, η
′

i) in

Yx(D/mq̂l
). Then both K-homomorphisms ulvl and id

D/mq̂l satisfy the assertions of

the claim. By the uniqueness, we obtain ulvl = id
D/mq̂l . This shows that v is an

isomorphism.

4. It remains to prove the claim. We let mA ⊂ A be the maximal ideal and set Al ∶=

A/m
q̂l

A . By induction on l we construct the uniquely determined K-homomorphism

ul ∶ D → Al. For l = 0 we can take ul = idK ∶ D → D/m = K → K = A1, because

(G, Hγ,P i, ηi)K = (G
0
, Hγ0,P i,0, ηi,0) = (G

′, Hγ′,P ′i, η
′

i)K .

Let us assume as induction hypothesis that we have constructed a uniquely de-

termined K-homomorphism ul ∶ D → Al with (G, Hγ,P i, ηi)Al
= u∗l (G

′, Hγ′,P
′

i, η
′

i)

in Yx(Al). The latter means that there is a quasi-isogeny ϕl ∶ u∗l G
′
→ G

Al
of global

G-shtukas, which is compatible with Hγ′ and Hγ and induces isomorphisms at

all ci of local Gci
-shtukas Γ̂ci

(ϕl) ∶ u∗l Γ̂ci
(G
′
) → Γ̂ci

(G)Al
, and there is an isomor-

phism δi,l ∶ (L+σ̂−1IP̄i
)Al

= u∗l P
′

i

∼

�→ P i,Al
of L+σ̂−1IP̄i

-torsors over Al satisfying

ηi mod m
q̂l

A ○ ι∗δi,l = Γ̂ci
(ϕl) ○ u∗l η′i,

u∗l Γ̂ci
(G
′
)

Γ̂ci
(ϕl) �� Γ̂ci

(G)Al

ι∗u
∗

l P
′

i

ι∗δi,l ��

u∗l η′i

��

ι∗P i,Al
.

ηi

��
(4.13)

We choose a lift δi,l+1 ∶ (L+σ̂−1IP̄i
)Al+1

∼

�→ P i,Al+1
over Al+1 of the trivialization δi,l

and consider the isomorphism of local Gci
-shtukas

ψi,l+1 ∶= ηi mod m
q̂l

A ○ ι∗δi,l+1 ∶ ((L+Gci
)Al+1

, xi p̄i,l+1σ̂
∗

i )
∼

�→ Γ̂ci
(G)Al+1

with p̄i,l+1 ∈ L+IP̄ (Al+1). Here we use that Al+1 has no non-trivial étale cover-

ings and so the isomorphism α from (4.5) for the complete slope division P i,Al+1

can be chosen over Al+1. Then ι∗α η−1
i Γ̂ci

(τG) σ̂∗i (ηi ι∗α−1) ∈ xi ⋅ L+IP̄i
(Al+1), and

ψ−1
i,l+1 Γ̂ci

(τG) σ̂∗i ψi,l+1 ∈ xi ⋅ L+IP̄i
(Al+1), because α ○ δi,l+1 ∈ L+σ̂−1

i IP̄i
(Al+1). We write

p̄i,l+1 = mi,l+1 n̄−1
i,l+1 with mi,l+1 ∈ L+IMi

(Al+1) and n̄i,l+1 ∈ L+IN̄i
(Al+1). Since ψi,l+1 ≡

Γ̂ci
(ϕl)○u∗l η′i mod m

q̂l

A , they satisfy mi,l+1 ≡ 1 mod m
q̂l

A and n̄i,l+1 ≡ ul(n̄
′

i) mod m
q̂l

A .

Observe that σ̂∗i (mi,l+1) = 1 implies (xi mi,l+1 x−1
i )−1 ⋅ xi p̄i,l+1 ⋅ σ̂∗i (xi mi,l+1 x−1

i ) =

xi n̄−1
i,l+1. Using that xi mi,l+1 x−1

i ∈ L+σ̂−1IMi
(Al+1) by Condition (v) from Defini-

tion 4.3, we replace δi,l+1 by the isomorphism δi,l+1 ○xi mi,l+1 x−1
i , and hence ψi,l+1 by

the isomorphism

ψi,l+1 ○ xi mi,l+1 x−1
i ∶ ((L+Gci

)Al+1
, xi n̄−1

i,l+1σ̂
∗

i )
∼

�→ Γ̂ci
(G)Al+1
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4.3 Definition and properties of central leaves

without changing δi,l and ψi,l. Consider the following diagram

Spec Al+1

��

n̄i,l+1 �� L+IN̄i

�� L+IN̄i
/x−1

i ⋅ L+σ̂−1
i IN̄i

⋅ xi

Spec ui,l+1

Spec Al

��

Spec ul

�� SpecD �� SpecDi

��
(4.14)

in which the top row is defined by the element n̄i,l+1 ∈ L+IN̄i
(Al+1). The commutativ-

ity of the outer rectangle follows from n̄i,l+1 ≡ ul(n̄
′

i) mod m
q̂l

A . Since n̄′i ≡ 1 mod m,

the morphism in the top row maps the closed point mA to 1, and hence this mor-

phism factors through SpecDi, because Al+1 is a complete local ring. This defines

morphisms ui,l+1 ∶ Di → Al+1 for all i. Together they yield a morphism ul+1 ∶ D → Al+1

with ul+1(n̄
′

i) = n̄i,l+1⋅x
−1
i ⋅hi⋅xi for some hi ∈ L+σ̂−1

i IN̄i
(Al+1) with hi ≡ 1 mod m

q̂l

A . Ob-

serve that σ̂∗i (hi) = 1 implies hi⋅xi ul+1(n̄
′

i)
−1⋅σ̂∗i (hi)

−1 = xi n̄−1
i,l+1. We now replace δi,l+1

by δi,l+1○hi, and hence ψi,l+1 by ψi,l+1○hi ∶ ((L+Gci
)Al+1

, xi ul+1(n̄
′

i)
−1σ̂∗i )

∼

�→ Γ̂ci
(G)Al+1

without changing δi,l and ψi,l.

The quasi-isogeny ϕl ∶ u∗l G
′
→ G

Al
lifts by rigidity (Proposition 2.14) uniquely to a

quasi-isogeny ϕl+1 ∶ u∗l+1G
′
→ G

Al+1

of global G-shtukas over Al+1, which is compatible

with the H-level structures. Since Γ̂ci
(ϕl+1) and ηi ○ ι∗δi,l+1 ○ u∗l+1(η

′

i)
−1 are quasi-

isogenies u∗l+1Γ̂ci
(G
′
) → Γ̂ci

(G)Al+1
which both lift Γ̂ci

(ϕl), they coincide by rigidity

(Proposition 2.12). This shows that Γ̂ci
(ϕl+1) is an isomorphism of local Gci

-shtukas

and the lift to Al+1 of diagram (4.13) commutes for all i. So (G, Hγ,P i, ηi)Al+1
=

u∗l+1(G
′, Hγ′,P

′

i, η
′

i) in Yx(Al+1) and this proves the existence of ul+1 in our claim.

5. To prove the uniqueness of ul+1 assume there is another K-homomorphism ũl+1 ∶

D → Al+1 which satisfies the assertions of the claim. Then there is a quasi-isogeny

ϕ̃l+1 ∶ ũ∗l+1G
′
→ G

Al+1

of global G-shtukas and an isomorphism δ̃i,l+1 ∶ ũ∗l+1P
′

i

∼

�→ P i,Al+1

of L+σ̂−1IP̄i
-torsors over Al+1 which make the following diagram commutative

u∗l+1Γ̂ci
(G
′
)

Γ̂ci
(ϕl+1) �� Γ̂ci

(G)Al+1
ũ∗l+1Γ̂ci

(G
′
)

Γ̂ci
(ϕ̃l+1)��

ι∗u
∗

l+1P
′

i

ι∗δi,l+1 ��

u∗l+1η
′

i

��

ι∗P i,Al+1

ηi

��

ι∗ũ
∗

l+1P
′

i .
ι∗δ̃i,l+1��

ũ∗l+1η
′

i

��

The uniqueness assumption of our induction hypothesis implies ul+1 ≡ ul ≡ ũl+1

mod m
q̂l

A , and hence ϕl+1 ≡ ϕl ≡ ϕ̃l+1 mod m
q̂l

A and δi,l+1 ≡ δi,l ≡ δ̃i,l+1 mod m
q̂l

A . Thus

h ∶= δ̃−1
i,l+1 ○ δi,l+1 ∈ L+σ̂−1IP̄i

(Al+1) satisfies h ≡ 1 mod m
q̂l

A and

h ⋅ xi ul+1(n̄
′

i)
−1 = xi ũl+1(n̄

′

i)
−1 ⋅ σ̂∗i (h) = xi ũl+1(n̄

′

i)
−1.

So in fact

h = xi ũl+1(n̄
′

i)
−1ul+1(n̄

′

i)x−1
i ∈ Lσ̂−1N̄i(Al+1) ∩ L+σ̂−1IP̄i

(Al+1) = L+σ̂−1IN̄i
(Al+1)
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4 Central Leaves

by Definition 4.3(v). This shows that ul+1(n̄
′

i) = ũl+1(n̄
′

i) ⋅ x−1
i h xi, and therefore the

compositions of both Spec ui,l+1 and Spec ũi,l+1 with SpecDi → L+IN̄i
/x−1

i ⋅L+σ̂−1
i IN̄i

⋅xi

in diagram (4.14) are equal, because ui,l+1 and ũi,l+1 are uniquely determined by their

value on n̄′i. By the definition of Di this shows that ui,l+1 = ũi,l+1 ∶ Di → Al+1 and

ul+1 = ũl+1 ∶ D → Al+1 as desired.

Furthermore, the central leaves are smooth. This property is the anologue of

[Oor04, Theorem 3.13] resp. [Man04, Proposition 2.7]:

Proposition 4.31. Denote by Fx a field in N ilp Ac such that x is defined over Fx.

The central leaf is smooth and locally of finite type over Fx.

Proof. We follow the idea of the proof of Oort (see [Oor04, Theorem 3.13]) resp. Man-

tovan (see [Man04, Proposition 2.7]).

We only have to show that Cx is regular because over perfect fields this implies the

smoothness. Since Cx is a locally closed substack of ∇H1
Fx

, which is a stack locally

of finite type over Fx, we get Cx is locally of finite type over Fx.

Consider an étale presentation X → Cx, where X is a scheme (which is reduced by the

construction of the central leaf). Furthermore, we choose a presentation Y → ∇H1,

where Y is a scheme. Now we have to show that X is a smooth scheme. We show

that X is regular at each closed point.

First, we proof that X is regular in each point if it is regular in one point:

Fix an algebraic closure F
alg
x of Fx and let

y = (G, τ) ∈ X(Falg
x )

and

y
′

= (G
′

, τ
′

) ∈ X(Falg
x )

be closed points.

Consider the completion ÔX,y of the local ring of X at y, resp. ÔX,y
′ at y

′ and

likewise ÔY,y and ÔY,y
′ .

Remember the deformation functor Defo investigated in [AH14a, § 5.3] (see Defini-

tion 2.23) and use Serre-Tate (Theorem 2.24) to get:

Defo(G, τ) ≅ ∏
i

Defo(Γ̂ci
(G, τ))

and

Defo(G
′

, τ
′

) ≅ ∏
i

Defo(Γ̂ci
(G

′

, τ
′

)).

The definition of the central leaf implies:

Defo(G, τ) ≅ ∏
i

Defo(L+Gci
, xiσ̂

∗) ≅ Defo(G
′

, τ
′

).
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4.3 Definition and properties of central leaves

Since

Defo(G, τ) ≅ ÔY,y and Defo(G
′

, τ ′) ≅ ÔY,y
′ ,

we get

ÔY,y ≅ ÔY,y
′ .

Via the latter isomorphism, the definition that defines ÔX,y as a quotient is the

same as the one that defines ÔX,y
′ . In fact, this condition is defined on the universal

deformation of the central leaf. Therefore, we get an isomorphism

ÔX,y ≅ ÔX,y
′ .

By [Gro67, IV2, Corollaire 6.12.5] the regular locus is open. Since the F
alg
x -valued

points are dense, it is sufficient to consider them. It remains to show that there is

at least one regular point:

This follows from the fact that Cx is reduced locally of finite type over SpecFx as

it is locally closed in ∇H1
Fx

and ∇H1
Fx

is locally of finite type over Fx. So Cx is

generically regular and contains a smooth point (and even an open dense subset of

smooth points).
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5 Igusa varieties

We want to decompose Newton strata in the special fibre of moduli spaces of global

G-shtukas into a product of so-called Igusa varieties and truncated Rapoport-Zink

spaces.

Following an idea of Mantovan in [Man04] and of Harris and Taylor in [HT01],

we introduce the Igusa varieties as coverings of the central leaves. Therefore, our

decomposition is an analogue of the covering of the moduli space of abelian varieties

considered by Oort in [Oor04] and which was generalized by Mantovan as a product

of the central leaf and the “isogeny leaf”. In the case of a constant, split, reductive

group Gc this was done by Hartl and Viehmann ([HV12]) for the deformation space

of local Gc-shtukas.

Mantovan considers in [Man04] abelian varieties and their associated p-divisible

groups. Their pm-torsion define the so-called truncated Barsotti-Tate groups, which

are finite flat group schemes. Mantovan described in [Man04, §3] (see also [Man05,

§4]) Igusa varieties as schemes representing isomorphisms between (two of) those

BT-groups. For global G-shtukas, the idea analogous to Harris and Taylor [HT01]

is to parametrize partial trivializations of the local Gci
-shtukas at the characteristic

places.

We define in Definition 5.4 the Igusa variety by using a trivialization of the Levi part

of a complete division of the local Gci
-shtuka G

i
∶= (Gi, τ̂Gi

) ∶= Γ̂ci
(f∗Guniv

) associated

to the universal global G-shtuka G
univ. Here f denotes a presentation f ∶ S → Yxi

with Yxi
as in Proposition 4.26.

We fix an element x = xi where the index i means that we fix xi associated to

Gci
for a characteristic place ci with the conditions given in Definition 4.3. We

write A = F
alg
ci

�z�. We remember that the Levi Mi is defined over F
alg
c ((z)). By our

notation, Mi is a smooth group scheme over Fci
�z�. Under this convention we have:

L+mMi(R) = L+mGci
(R) ∩ LMi(R)

L+mNi(R) = L+mGci
(R) ∩ LNi(R)

L+mN̄i(R) = L+mGci
(R) ∩ LN̄i(R)

L+mP̄i(R) = L+mGci
(R) ∩ LP̄i(R)

with P̄i = MiN̄i for every F
alg
ci

-algebra R.

Lemma 5.1. (i) For all gi ∈ L+IMi
we have g−1

i ⋅ L+mIN̄i
⋅ gi = L+mIN̄i

.
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5 Igusa varieties

(ii) For all gi ∈ L+Mi we have g−1
i ⋅ L+mN̄i ⋅ gi = L+mN̄i.

(iii) For all gi ∈ L+Mi we have g−1
i ⋅ L+mGci

⋅ gi = L+mGci
.

Proof. Calculate in L+Gci
/L+mGci

(R) = Gci
(R�z�/(zm)) for an F

alg
ci

-algebra R: Let

n̄ ∈ L+mN̄i. Then g−1n̄g = g−1g = 1 there.

We define

(L+Mi)(T ) ∶= Mi(Γ(T,OT )�z�)

and

(L+mMi/L
+Mi)(T ) ∶= Mi(Γ(T,OT )�z�/(zm)).

The second definition makes sense because we have the following isomorphism:

Lemma 5.2.

φ ∶ {g ∈ L+Mi(T ) ∶ g ≡ 1 mod zm} /Mi(Γ(T,OT )�z�) → Mi(Γ(T,OT )�z�/(zm)

is an isomorphism.

Proof. We show the above equality

{g ∈ L+Mi(T ) ∶ g ≡ 1 mod zm} /Mi(Γ(T,OT )�z�) = Mi(Γ(T,OT )�z�/(zm)

and the equality to the corresponding quotient of sheaves.

In fact, φ is injective because we can consider Mi ⊆ GLr,F�z� closed for some integer

r ∶= ri, that is as V (F1, . . . , Fs). We can write the elements in GLr,F�z� as ∑
∞

j=0 bijzj

with bj ∈ Γ(T,OT )
r×r, where b0 is invertible. So Fν(∑ bjzj) = 0. So

φ injective ⇔ φ−1(1) = 1 ⇔ g ≡ 1 mod zm.

φ is also surjective:

Since Mi → SpecFq�z� is smooth, there is a lift.

In fact we have

Mi(Γ(T,OT )�z�/(zm)) = HomFq�z�(Spec Γ(T,OT )�z�/(zm), Mi).

Note that we have the general fact

Mor(Y, X) = Mor(A, Γ(Y,OY )) = Mor(Spec Γ(Y,OY ), X)

for X = Spec A affine.

Since Mi is smooth over Fq�z� we get that for all g ∈ Mi(Γ(T,OT )�z�/(zm)) there

is a g
′

∈ Mi(Γ(T,OT )�z�/(zm+1)).
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Proposition 5.3. Let Mi be an L+Mi-torsor on S.

The functor

m/ Isom ∶ (Schemes on S) → (Sets)

with

m/ Isom(T ) ∶= {j ∶ Mi,T →̃(L+Mi)T is an isomorphism mod L+mMi(T )}

for an S-scheme T is represented by an affine scheme of finite type over S.

Proof. We choose an étale covering S
′

→ S together with an isomorphism

α ∶ Mi,S
′ →̃ (L+Mi)S

′ .

For T → S
′ let αT ∶ Mi,T → (L+Mi)T be the induced isomorphism. We consider the

following isomorphism

β ∶ m/ Isom×SS
′

�̃→(L+mMi/L
+Mi)S

′

given by

T → m/ Isom×SS
′

∶ (j ∶ Mi,T �̃→(L+Mi)T ) ↦ j ○ α−1
T

and define the inverse map by

j̃ ↦ j̃ ○ αT .

This is well-defined as it is independent of the choice of the representative j̃: Let j̃
′

be in the same equivalence class of j̃, that is j̃
′

= g ⋅ j̃ for an element g ∈ L+mMi. Then

g ⋅ j̃ ↦ g ⋅ j̃ ⋅ αT ≡ j̃ ⋅ αT

Now we show that the scheme on the right hand side is a scheme of finite type and

then we can deduce that also the one on the left hand side is a scheme of finite type

over S
′ .

By the above Lemma 5.2,

φ ∶ {g ∈ L+Mi(T ) ∶ g ≡ 1 mod zm} /Mi(Γ(T,OT )�z�) → Mi(Γ(T,OT )�z�/(zm)

is an isomorphism. Now consider the Weil-restriction ResF�z�/(zm)∣F GLr,F�z�/(zm).

Since it is equal to GLr × Mm−1
r it is affine and of finite type over Fq. Because

of the definition of m/ Isom(T ) we have

m/ Isom ≅ L+mMi/L
+Mi ⊆ ResF�z�/(zm)∣F GLr,F�z�/(zm)

is closed as it is described by the above vanishing-ideal. Since it is a closed subset

m/ Isom is affine of finite type over F.

Now we want to show that m/ Isom is affine of finite type over S. We do this with
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5 Igusa varieties

a descent argument:

We have to show that there is a scheme X over S with X
′

∶= m/ Isom×FS
′

= X ×S S
′ .

So consider the fibre product S
′′

∶= S
′

×S S
′ and the associated projections pri ∶

S
′

×S S
′

→ S resp. prij ∶ S
′′′

∶= S
′

×S S
′

×S S
′

→ S
′

×S S
′ the projection on the (i, j)-th

factor and let d ∶ S
′

→ S
′

×S S
′ be the diagonal.

Set h ∶= pr∗1α○pr∗2α−1 ∶ (L+Mi)S
′′ →̃(L+Mi)S

′′ , so h defines an element in (L+Mi)(S
′′

).

Then pr∗13h = pr∗1α○pr∗3α−1 = pr∗1α○pr∗2α−1○pr∗2α○pr∗3α−1 = pr∗12h○pr∗23h and d∗(h) = id.

Therefore, we have the desired cocycle condition.

Over S
′′ we consider the following diagram:

pr∗1X
′ f ��

g̃1

��

pr∗2X
′

g̃2

��
pr∗1(m/ Isom)

g1

��

pr∗2(m/ Isom)

g2

��

where g̃1 is given by j̃ ↦ j̃ ○ pr∗1α resepectively g1 by j ↦ j ○ pr∗1α−1 and analogously

g̃2 resp. g2. So f is given by j̃ ↦ j̃ ○ pr∗1α ○ pr∗2α−1 = j̃ ○ h mod zm where h is given

by the above equation. As before the cocycle condition holds over S
′′′ and we have

X
′

= X ×S S
′ for a scheme X over S. It is affine of finite type (because this property

descends by [Gro67, IV §2, 2.7.1].

In the following we fix for every i the data (Ii, Pi, Mi, xi) for the group Gci
as in

Definition 4.3. We consider the natural morphism of group schemes ι ∶ σ̂−1
i IP̄i

→ Gci

and the induced functor ι∗ from L+σ̂−1
i IP̄i

-torsors to L+Gci
-torsors. We recall the

stacks

Yxi
�→ Cxi

⊂ ∇H1

F
alg
q

and

Yx ∶= (Yx1
×∇H1

F
alg
q

. . . ×∇H1

F
alg
q

Yxn
) → Cx ⊂ ∇H1

F
alg
q

from Proposition 4.26.

Definition 5.4. (i) We choose a presentation f ∶ S → Yxi
such that the univer-

sal complete slope division (P i, ηi) of Γ̂ci
(f∗Guniv

) =∶ G
i
= (Gi, τ̂Gi

) over Yxi

possesses a trivialization αi ∶ P i,S
∼

�→ (L+σ̂−1
i IP̄i

)S satisfying

ι∗αi η−1
i τ̂Gi

σ̂∗i (ηi ι∗α
−1
i ) = ximin̄i ∈ xi ⋅ L

+IP̄i
(S) . (5.1)

For an integer ei ≥ 0 we define the Igusa variety of level ei as the functor Igei

on the category of S-schemes T by

Igei
(T ) ∶=

{ jei
∈ (L+σ̂−1

i IMi
/L+σ̂−1

i Iei,Mi
)(T ) ∶ σ̂∗i (j

−1
ei

)x−1
i jei

ximi ∈ L+Iei,Mi
(T ) } .
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Here we choose a representative jei
∈ (L+σ̂−1

i IMi
)(T ′) over an fppf-covering

T ′ → T . Note that then σ̂∗i (jei
), x−1

i jei
xi, mi ∈ L+IMi

(T ′) by Condition (vi) from

Definition 4.3. Also the condition is well defined, because if jei
is multiplied by

h ∈ L+σ̂−1
i Iei,Mi

(T ′) on the right, then σ̂∗i (j
−1
ei

)x−1
i jei

ximi is multiplied on the

left with σ̂∗i (h
−1) and on the right with m−1

i x−1
i hximi, which lies in L+Iei,Mi

(T ′)

by Condition (viii) from Definition 4.3.

(ii) Likewise, we choose a presentation f ∶ S → Y, such that Condition (5.1) holds

for all i. For a tuple of non-negative integers e = (ei)i we define the Igusa

variety Ige of level e as the functor on the category of S-schemes T

Ige(T ) ∶= { (jei
)i ∈ ∏

i

Igei
(T ) } .

Proposition 5.5. Igei
is representable by a closed subscheme of

(L+σ̂−1
i IMi

/L+σ̂−1
i Iei,Mi

) ×
F

alg
q

S, and is hence of finite presentation over S.

Proof. This follows from Condition (viii) from Definition 4.3.

Proposition 5.6. There exist algebraic stacks Igei
→ Yxi

→ Cxi
⊂ ∇H1

F
alg
q

and Ige →

Yx → Cx ⊂ ∇H1

F
alg
q

with Igei
×Yxi

S = Igei
and Ige ×Y S = Ige for the presentations

S → Yxi
, respectively S → Y from Definition 5.4. They satisfy

Ige = (Ige1
×∇H1

F
alg
q

. . . ×∇H1

F
alg
q

Igen
).

Proof. Let S′′ ∶= S ×Yxi
S and consider the two projections prj ∶ S′′ → S. Let

pr∗j Igei
= Igei

×S, prj
S′′. Then the image h of h̃ ∶= pr∗2αi ○ pr∗1α−1

i ∈ L+σ̂−1
i IP̄i

(S′′)

in L+σ̂−1
i IMi

(S′′) satisfies the cocycle condition pr23(h) ○ p12(h) = pr13(h) where plk

denotes the projection on the (l, k)-th factor of S′′ ∶= S×Yxi
S×Yxi

S for l, k ∈ {1, 2, 3}.

Moreover, it satisfies

xi ⋅ pr∗1(min̄i) = ι∗pr∗1αi η−1
i τ̂Gi

σ̂∗i (ηi ι∗pr∗1α−1
i )

= h̃−1ι∗pr∗2αi η−1
i τ̂Gi

σ̂∗i (ηi ι∗pr∗2α−1
i )σ̂∗i h̃

= h̃−1xi ⋅ pr∗2(min̄i)σ̂
∗

i h̃

We obtain an isomorphism pr∗1 Igei
→ pr∗2 Igei

, jei
↦ jei

h which satisfies the cocycle

condition as h satisfies it, and so this gives a descend datum on Igei
. The groupoid

(pr∗1 Igei
, Igei

) is an algebraic stack Igei
over Yxi

as desired.

The proof for Ige proceeds analogously and the last equation for Ige follows

directly from Y = (Yx1
×∇H1

F
alg
q

. . . ×∇H1

F
alg
q

Yxn
) → Cx ⊂ ∇H1

F
alg
q

.

In the next chapter we will prove in Lemma 6.12 that Aut((L+Ii)Falg
xi

, xiσ̂
∗

i ) ⊂

L+σ̂−1
i IMi

(F
alg
xi

), but we already use this result here.
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5 Igusa varieties

Proposition 5.7. Let Γi be the image of Aut((L+Ii)Falg
xi

, xiσ̂
∗

i ) in

(L+σ̂−1
i IMi

/L+σ̂−1
i Iei,Mi

)(F
alg
xi

). Then the morphisms Igei
→ Yxi

and Ige → Y are

finite étale Galois coverings with Galois groups Γi, respectively Γ ∶= ∏i Γi. In par-

ticular, the morphisms Igei
→ Cxi

⊂ ∇H1

F
alg
q

and Ige → Cx ⊂ ∇H1

F
alg
q

are finite, but in

general not étale.

Proof. We use the presentations S → Yxi
, respectively S → Y from Definition 5.4.

Then we have to show that Igei
→ S, respectively Ige → S are finite étale Galois cov-

erings. The surjectivity follows from Lemma 4.13, which shows that for every point

s ∈ S(k) over an algebraically closed field k there is an element h ∈ (L+σ̂−1
i IP̄i

)(k)

with h−1ximi(s)n̄i(s)σ̂∗h = xi (see Remark 4.14). Then the image jei
of h−1 in

(L+σ̂−1
i IMi

/L+σ̂−1
i Iei,Mi

)(k) lies in Igei
and maps to s.

To compute the fiber above s, we take the representative of jei
from the previous

paragraph with σ̂∗i (j
−1
ei

)x−1
i jei

ximi(s) = 1. For every gi ∈ Aut((L+Ii)Falg
xi

, xiσ̂
∗

i ), the

element j̃ei
∶= gijei

∈ (L+σ̂−1
i IMi

)(k) satisfies σ̂∗i (j̃
−1
ei

)x−1
i j̃ei

ximi(s) = 1, and hence

gives a point in Igei
(k) above s. For two such gi the points in Igei

(k) coincide if

and only if the images of the two gi in Γi coincide. Conversely, let j̃ei
∈ Igei

(k)

be any point mapping to s and choose a representative j̃ei
∈ (L+σ̂−1

i IMi
)(k). Then

m̃′i ∶= σ̂∗i (j̃
−1
ei

)x−1
i j̃ei

ximi(s) ∈ L+Iei,Mi
(k). By Condition (viii) of Definition 4.3 we

have σ̂∗i (j̃ei
)m̃′i σ̂∗i (j̃

−1
ei

) ∈ L+Iei,Mi
(k), and by Lemma 4.13 there is an element h̃ ∈

(L+σ̂−1
i Iei,Mi

)(k) with h̃−1(xi σ̂∗i (j̃ei
)m̃′i σ̂∗i (j̃

−1
ei

))σ̂∗i (h̃) = xi, whence

σ̂∗i (j̃
−1
ei

h̃)x−1
i h̃−1j̃ei

ximi(s) = σ̂∗i (j̃
−1
ei

) σ̂∗i (j̃ei
)(m̃′i)

−1 σ̂∗i (j̃
−1
ei

)x−1
i j̃ei

ximi(s) = 1 .

Replacing the representative j̃ei
by h̃−1j̃ei

yields σ̂∗i (j̃
−1
ei

)x−1
i j̃ei

ximi(s) = 1 with-

out changing the point j̃ei
∈ Igei

(k). We now take the representative of jei
from

the previous paragraph with σ̂∗i (j
−1
ei

)x−1
i jei

ximi(s) = 1 and set gi ∶= j̃ei
j−1

ei
. Then

gixi σ̂∗i (g
−1
i ) = xi and gi ∈ Aut((L+Ii)Falg

xi

, xiσ̂
∗

i ). This shows that Γi acts simply tran-

sitively on the fiber of Igei
above s.

To show that the maps are étale, we use the infinitesimal lifting criterion [BLR90,

§ 2.2, Proposition 6]. Let B be a ring and B = B/I for an ideal I ⊂ B with I2 = (0).

In particular σ̂∗i I = (0) and the q̂i ∶= #Fci
-Frobenius σ̂∗i on B factors

B ��→ B
f∗

��→ B

b ↦ b mod I ↦ bq̂i .

Consider a commutative diagram

Spec B
j̄ei ��

��

Igei

��
Spec B ��

?
��

S
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in which we claim the existence of a uniquely determined dashed arrow. By the

uniqueness we may replace B by an étale covering. After replacing B by an étale

covering and B by the unique induced étale covering [Gro71, Théorème I.8.3], j̄ei

is represented by an element j̄ei
∈ L+σ̂−1

i IMi
(B) with σ̂∗i (j̄

−1
ei

)x−1
i j̄ei

ximi =∶ m′i ∈

L+Iei,Mi
(B). Since Iei,Mi

is smooth over Aci
by Condition (viii) from Definition 4.3,

there is a lift m′i ∈ L+Iei,Mi
(B) of m′i. Then jei

∶= xif∗(j̄ei
)m′i m−1

i x−1
i lies in

L+σ̂−1IMi
(B) by Condition (viii) from Definition 4.3 and lifts j̄ei

. It satisfies jei
∈

Igei
(B) and makes the above diagram commutative, because σ̂∗i (jei

) = f∗(j̄ei
) and so

σ̂∗i (j
−1
ei

)x−1
i jei

ximi = m′i ∈ L+Iei,Mi
(B). Moreover, this lift jei

∈ Igei
(B) of j̄ei

∈ Igei
(B)

is uniquely determined, because any other lift j̃ei
∈ Igei

(B) with σ̂∗i (j̃
−1
ei

)x−1
i j̃ei

ximi =

m̃′i ∈ L+Iei,Mi
(B) satisfies σ̂∗i (jei

) = f∗(j̄ei
) = σ̂∗i (j̃ei

), and hence

j−1
ei

j̃ei
= ximi(m

′

i)
−1m̃′im

−1
i x−1

i ∈ L+σ̂−1
i Iei,Mi

(B)

by Condition (viii) from Definition 4.3. So jei
= j̃ei

in Igei
(B). This shows that

Igei
→ Yxi

is étale.

Using the argument given by Harris and Taylor in [HT01, Proposition II.1.7.,

p.69], resp. [Man04, Proposition 3.3] the above is sufficient to show the claim of the

Proposition.

Proposition 5.8. For every pair of integers e′i > ei the projection

(L+σ̂−1
i IMi

/L+σ̂−1
i Ie′

i
,Mi

) → (L+σ̂−1
i IMi

/L+σ̂−1
i Iei,Mi

)

induces finite, étale, surjective morphisms Ige′
i
→ Igei

and Ige′ → Ige.

Proof. That these morphisms are finite étale follows from Proposition 5.7. To prove

surjectivity, let jei
∈ Igei

(k) be a point with values in an algebraically closed field k.

By Condition (ix) from Definition 4.3 there exists an element h ∈ (L+σ̂−1
i Iei,Mi

)(k)

with h−1xi σ̂∗i h x−1
i ≡ jei

ximi σ̂∗i (j
−1
ei

)x−1
i mod L+Iei+1,Mi

(k). Then jei+1 ∶= hjei
lies in

Igei+1(k) and is mapped to jei
, because

σ̂∗i (hjei
)−1x−1

i hjei
ximi = σ̂∗i (jei

)−1(σ̂∗i (h)
−1x−1

i hjei
ximiσ̂

∗

i h−1)σ̂∗i (jei
)

∈ L+Iei+1,Mi
(k) .

.

Remark 5.9. We use a definition of Igusa varieties different to the one given by

Mantovan in [Man04], because in loc. cit. it is not clear wether the analogue to

Proposition 5.7 holds there as it is not clear (and not proven in loc. cit.) that the

morphisms Igei+1 → Igei
between the Igusa varieties are surjective. Furthermore,

we do not want to use the intersection of the scheme theorestic images of some

morphisms similar to [Man04, 3.1.2] to define the Igusa variety as this implies some

problems to show the finiteness in Proposition 5.7.
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5 Igusa varieties

Remark 5.10. Note that in our definition of the Igusa variety we do not require

that over the complete local ring ÔC,s of the central leaf the local Gci
-shtuka Ĝ

i
is

isomorphic to the fixed Gi = (L+Gci
, xiσ̂

∗

i ). If we would have such an isomorphism

then we would get that the central leaf is zero-dimensional. This would be a contra-

diction to [HV12, Corollary 6.8] and the proof of loc.cit.

In fact, fix c ∶ SpecFc → Cn and denote by S a presentation of

∇H1 ∶= ∇
H,Ẑc

n H1(C, G) ×Cn SpecFc

the special fibre of the moduli space of global G-shtuks. Write

Cx,S = {s ∈ S ∶ Ĝ
i,κ(s)alg ≅ Gi,κ(s)alg for all i}

for the presentation of the central leaf associated to Gi which is locally closed in

∇H1.

Let s ∈ S be a point. Consider the complete local ring Ô∇H1,s. By Serre-Tate it is

isomorphic to the product of the universal deformation rings:

Ô∇H1,s ≅ ∏Defo(Ĝi,s).

Consider the projection onto the i-th factor. Without loss of generality assume i = 1:

∏Defo(Ĝi,s) ↠ Defo(Ĝ1,s)

and consider

Ô∇H1,s ↠ ÔC,s = Ô∇H1,s/a ↠ R

with R ∶= Ô∇H1,s/a + (0) × (1) × . . . × (1). Now, if there was an isomorphism

Ĝ1,R ≅ G1,R

this would correspond to the equation:

(Defo(Ĝ1,s) ↠ R) = (Defo(Ĝ1,s) ↠ κ(s) ⊆ R).

This would imply R is equal to the residue field κ(s) which is a contradiction.
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6 Product structure

Now we want to construct a morphism from the product of our Igusa variety (that

covers the central leaf) and “truncated” Rapoport-Zink-spaces to the (Frobenius-

pullback of the) moduli space of global G-shtukas.

We show that the morphism from Main Theorem 0.1 is finite as it is quasi-finite and

satisfies the valuative criterion for properness.

The construction of the morphism is based on the one given by Mantovan [Man04].

We give a concrete construction of the morphism which is based on the uniformiza-

tion morphism established by Arasteh Rad and Hartl in [AH14a] and [AH14b] and

especially using [AH14a, Proposition 5.7] to get a “new” global G-shtuka (in the

same Newton-Stratum).

Throughout this chapter we let c = (c1, . . . , cn) be a tupel of characteristic places.

We denote by Fci
the residue field at ci and by Fc the compositum of the fields Fci

inside F
alg
q . We denote by ∇H1 the special fibre of ∇

H,Ẑc

n H1(C, G) above c.

We fix a tuple of quasi-isogeny classes (bi)i and assume that to each of those

bi ∈ B(Gci
) there exists an element xi with the properties as defined in 4.3. Re-

member that we do not assume that σ̂∗i xi = xi. We write again x ∶= (x1, . . . , xn)

and consider the associated central leaf Cx ⊂ Nx in the Newton Stratum of [x]. Set

Gi = (L+Gci
, xiσ̂

∗

i ), defined over a field Fxi
in N ilpFci

�ζ�. Let G
univ be the univer-

sal global G-shtuka over Cx and denote by G
univ

i
∶= (Guniv

i , τ̂i)i=1,...,n the tupel of the

associated local Gci
-shtukas (via the “global-local functor”). Let Igei

be the Igusa

variety of level ei associated to the characteristic place ci and denote by

Ige = (Ige1
×∇H1

F
alg
q

. . . ×∇H1

F
alg
q

Igen
)

the Igusa variety defined in 5.6. Consider the functor RZ
Ẑi

Ĝ
. It is pro-representable

by a formal scheme over Spf Fxi
((ξi)) (where κi((ξ)) is the reflex ring RẐi

) which is

locally formally of finite type and its underlying reduced subscheme equals XZi
(xi).

We consider RZ
Ẑi

Ĝ
and the ADLV XZi

(xi) as (formal) schemes over F
alg
q . For

each i we choose a faithful representation � ∶ Gci
→ GLri

. Remember the trun-

cated Rapoport-Zink space RZ
di

Ẑi
for a fixed di ≥ 0 from Defintion 2.41 consisting

of isomorphism classes of tuples (G
i
, gi) = (Gi, τ̂i, gi), such that τ̂i = g−1

i xiσ̂
∗

i gi is

bounded by Ẑci
, and such that �∗(gi) is bounded by 2di�̌, especially �∗(gi), �∗(g

−1
i ) ∈

zdi(1−ri)OS�z�ri×ri . We choose the level e of the Igusa variety such that e = (ei)i with
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6 Product structure

ei > 2di(ri − 1). This will play a role in Proposition 6.9.

To make it more readable we split the preperations of the construction of the desired

product morphism into different sections:

First, we choose a trivialization αi of each local Gci
-shtuka associated to the uni-

versal global G-shtuka over the Igusa-variety in the first part of this chapter. In the

second section we construct a quasi-isogeny hi and show in the third section that

hi is independent of the choice of αi and descends to the Igusa-variety. In the last

part of the chapter we construct the “product morphism” from Main Theorem 0.1

and prove its properties.

6.1 Definition of the trivialization αi

Definition 6.1. We choose a presentation f ∶ S → Yi such that the universal com-

plete slope division (P i, ηi) of Γ̂ci
(f∗Guniv

) =∶ G
i

over Yi possesses a trivialization

αi ∶ P i,S
∼

�→ (L+σ̂−1
i IP̄i

)S satisfying

ι∗αi η−1
i τ̂Gi

σ̂∗i (ηi ι∗α
−1
i ) = ximin̄i ∈ xi ⋅ L

+IP̄i
(S)

as in Definition 5.4. We have Igei
×Yi

S = Igei
. Over Igei

there exists the universal jei
.

Let S′ → Igei
be an étale covering over which a representative jei

∈ (L+σ̂−1
i IMi

)(S′) of

the universal jei
on Igei

exists. Since S′ → S is an étale covering by Proposition 5.7,

we may replace the original presentation S → Yxi
by S′ → Yxi

. It is then also a

presentation of Igei
. Now, we write jei

○ αi instead of αi, where we consider jei
as

an element in L+σ̂−1
i IM(S) ⊂ L+σ̂−1

i IP̄ (S). Then, the new tuple (mnew
i , n̄new

i ) is given

by:

jei
ι∗αiη

−1
i τ̂Gi

σ̂∗i (ηi ι∗α
−1
i j−1

ei
)

= xix
−1
i jei

ximiσ̂
∗

i (j
−1
ei

)σ̂∗i (jei
)n̄iσ̂

∗

i (j
−1
ei

),

so by

mnew
i = x−1

i jei
ximiσ̂

∗

i (j
−1
ei

) ∈ L+Iei,Mi
(S) (6.1)

and

n̄new
i = σ̂∗i (jei

)n̄iσ̂
∗

i (j
−1
ei

), (6.2)

which is an element in L+IN̄(S) by Lemma 5.1.

Notation 6.2. We will from now on shorten the notation: instead of ι∗αiη
−1
i we

simply write αi.
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6.2 Construction of the quasi-isogeny hi(li)

6.2 Construction of the quasi-isogeny hi(li)

Now we construct hi(li) such that we also get a (almost) trivialization of the N̄i-part

and show that it (together with the trivialization αi) descends to the Igusa-variety

and that we have some independences.

Lemma 6.3. In the situation introduced in Definition 6.1 let ei ∈ N and let li(ei)

be the number from Condition (vi) from Definition 4.3. Then for every li ≥ li(ei)

there exists a quasi-isogeny hi(li) ∈ L+σ̂
(li−1)∗

i IN̄i
(S) of local Gci

-shtukas

hi(li) ∶ ((L+Gci
)S, σ̂li∗

i (ximi)n̄
′

i(li)) → ((L+Gci
)S, σ̂li∗

i (ximin̄i)),

with n̄
′

i(li) ∈ L+ei
σ̂li∗

i IN̄i
(S), that is

σ̂li∗
i (ximin̄i)σ̂

∗hi(li) = hi(li)σ̂
li∗
i (ximi)n̄

′

i(li).

Proof. We give an explicit construction of hi(li). For simplicity we write everything

without the Index i in this proof.

Start with h(0) ∶= 1,

n̄
′

(0) ∶= n̄ ∈ L+IN̄(S).

Then:

σ̂∗(xmn̄)σ̂∗h(1) = h(1)σ̂∗(xm)n̄
′

(1),

so set h(1) ∶= n̄−1,

n̄
′

(1) = σ̂∗(xm)−1n̄σ̂∗(xmn̄)σ̂∗n̄−1

= σ̂∗(xm)−1n̄σ̂∗(xm)

= σ̂∗(m)−1σ̂∗(x)−1n̄σ̂∗(x)σ̂∗(m),

with n̄
′

(1) ∈ L+e σ̂∗IN̄(S). Using Condition (vi) from Definition 4.3 Lemma 5.1 this

pushes n̄
′ into the right direction.

Inductively we set:

h(l) ∶= σ̂l∗(xm) ∏
i=l−1→0

(σ̂(i+1)∗(xm)−1σ̂i∗(n̄)−1) ⋅ ∏
i=1→l−1

(σ̂i∗(xm))

= σ̂(l−1)∗(n̄)−1 ⋅ σ̂(l−2)∗(n̄
′

(1)−1) ⋅ . . . ⋅ σ̂0∗n̄
′

(l − 1)−1

∈ L+σ̂(l−1)∗IN̄ ,
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6 Product structure

where n̄ = n̄
′

(0). The second equation follows by the definition of n̄(l) beyond.

n̄
′

(l) ∶= σ̂l∗(xm)−1
∏

i=l−1→1

(σ̂i∗(xm)−1) ∏
i=0→l−1

(σ̂i∗(n̄)σ̂(i+1)∗(xm))⋅

⋅ σ̂l∗(xm)−1 ⋅ σ̂l∗(xmn̄)σ̂(l+1)∗(xm)⋅

⋅ ∏
i=l→1

(σ̂(i+1)∗(xm)−1σ̂i∗(n̄)−1) ∏
i=2→l

σ̂i∗(xm)

= (σ̂l∗(xm)−1 ⋅ . . . ⋅ σ̂∗(xm)−1)n̄(σ̂∗(xm) ⋅ . . . ⋅ σ̂l∗(xm))

= (σ̂l∗(m)−1 ⋅ . . . ⋅ (σ̂l∗(x)−1 ⋅ . . . ⋅ σ̂2∗(x)−1σ̂∗(m)−1σ̂2∗(x) ⋅ . . . σ̂l∗(x)))⋅

⋅ (σ̂l∗(x)−1 ⋅ . . . ⋅ σ̂∗(x)−1 ⋅ n̄ ⋅ σ̂∗(x) ⋅ . . . ⋅ σ̂l∗(x))⋅

⋅ ((σ̂l∗(x)−1 ⋅ . . . ⋅ σ̂2∗(x)−1σ̂∗(m)σ̂2∗(x) ⋅ . . . σ̂l∗(x)) ⋅ . . . ⋅ σ̂l∗(m))

∈ L+e σ̂l∗IN̄(S).

“∈” holds for l ≥ l(e) from Condition (vi) from Definition 4.3 and using Lemma 5.1.

(Note in the case where Gc is split connected reductive and x chosen to be P -

fundamental this would follow by [HV12, Remark 4.2,e)].

It follows

h(l) = σ̂∗h(l − 1) ⋅ n̄
′

(l − 1)−1.

We have:

h(l) = σ̂(l−1)∗(n̄−1)⋅

⋅ (σ̂(l−1)∗(xm)−1σ̂(l−2)∗(n̄)−1σ̂(l−1)∗(xm))⋅

⋅ . . . ⋅ (σ̂(l−1)∗(xm)−1) ⋅ . . . ⋅ (σ̂∗(xm)−1)n̄−1(σ̂∗(xm)) ⋅ . . . ⋅ σ̂(l−1)∗(xm).)

and

Lemma 6.4. In the situation introduced in Definition 6.1 let di ∈ N with di ≤ ei and

let li ≥ li(di) and n̄
′

(li) be the data from Lemma 6.3. Then over an algebraically

closed field K there exists a

θi ∶ ((L
+Gci

)K , σ̂
(li)∗

i xi) = σ̂
(li)∗

i Gi�̃→((L+Gci
)K , σ̂

(li)∗

i (xi)wi)

with wi ∶= σ̂
(li)∗

i (mi)n̄
′

i(li) such that θi ∈ L+di
σ̂
(li−1)∗

i IP̄i
(K) for li ≥ li(di) from

Lemma 6.3.

Proof. For simplicity we write everything without the index i in this proof.

Consider:

w0 ∶= σ̂(1)∗(x) ⋅ . . . ⋅ σ̂(l)∗(x)σ̂(l)∗(m) ⋅ n̄
′

(l) ⋅ σ̂(l)∗(x)−1 ⋅ . . . ⋅ σ̂(1)∗(x)−1,

then

w0 ∶= σ̂(1)∗(x) ⋅ . . . ⋅ σ̂(l)∗(x)σ̂(l)∗(m) ⋅ σ̂(l)∗(m)−1⋅

⋅ σ̂(l)∗(x)−1 ⋅ . . . ⋅ σ̂∗(m)−1σ̂∗(x)−1 ⋅ n̄⋅

⋅ σ̂∗(x)σ̂∗(m) ⋅ . . . ⋅ σ̂(l)∗(x)σ̂(l)∗(m)⋅

⋅ σ̂(l)∗(x)−1 ⋅ . . . ⋅ σ̂(1)∗(x)−1.
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w0 = σ̂(1)∗(x) ⋅ . . . ⋅ σ̂(l−1)∗(x) ⋅ σ̂(l−1)∗(m−1) ⋅ σ̂(l−1)∗(x−1) ⋅ . . . ⋅ σ̂(1)∗(x−1) ⋅

σ̂(1)∗(x) ⋅ . . . ⋅ σ̂(l−2)∗(x) ⋅ σ̂(l−2)∗(m−1) ⋅ σ̂(l−2)∗(x−1) ⋅ . . . ⋅ σ̂(1)∗(x−1) ⋅

⋅ . . . ⋅ σ̂(1∗)(xm−1x−1) ⋅ n̄′ ⋅ σ̂(1∗)(xmx−1) ⋅ . . . ⋅

σ̂(1)∗(x) ⋅ . . . ⋅ σ̂(l−2)∗(x) ⋅ σ̂(l−2)∗(m) ⋅ σ̂(l−2)∗(x−1) ⋅ . . . ⋅ σ̂(1)∗(x−1) ⋅

σ̂(1)∗(x) ⋅ . . . ⋅ σ̂(l−1)∗(x) ⋅ σ̂(l−1)∗(m) ⋅ σ̂(l−1)∗(x−1) ⋅ . . . ⋅ σ̂(1)∗(x−1) ⋅

σ̂(1)∗(x) ⋅ . . . ⋅ σ̂(l)∗(x) ⋅ σ̂(l)∗(m) ⋅ σ̂(l)∗(x−1) ⋅ . . . ⋅ σ̂(1)∗(x−1)

∈ L+IN̄(K) ⋅ L+Id,M(K).

So we can write

w = σ̂(l)∗(m)n̄
′

(l)

= σ̂(l)∗(x)−1 ⋅ . . . ⋅ σ̂(2)∗(x)−1σ̂(1)∗(x)−1 ⋅ w0 ⋅ σ̂(1)∗(x)σ̂(2)∗(x) ⋅ . . . ⋅ σ̂(l)∗(x).

By Lemma 4.13 there is a θ0 ∈ L+σ̂−1IN̄(K) ⋅ L+σ̂−1Id,M(K), such that θ0x =

xw0σ̂∗θ0.

Now we can set

θ ∶= σ̂(l−1)∗(x)−1 ⋅ . . . ⋅ σ̂0∗(x)−1 ⋅ θ0 ⋅ σ̂0∗(x) ⋅ . . . ⋅ σ̂(l−1)∗(x),

with θ ∈ L+d σ̂(l−1)∗IN̄(K) ⋅ L+σ̂(l−1)∗Id,M(K) because of Conditions (vi) and (viii)

from Definition 4.3. then

θ ⋅ σ̂(l)∗(x) = σ̂(l−1)∗(x)−1 ⋅ . . . ⋅ σ̂(0)∗(x)−1 ⋅ θ0 ⋅ σ̂(0)∗(x) ⋅ . . . ⋅ σ̂(l−1)∗(x) ⋅ σ̂(l)∗(x)

= σ̂(l−1)∗(x)−1 ⋅ . . . ⋅ σ̂(0)∗(x)−1 ⋅ σ̂(0)∗(x)w0σ̂
∗θ0 ⋅ σ̂(1)∗(x) ⋅ . . . ⋅ σ̂(l)∗(x)

= σ̂(l)∗(x) ⋅ σ̂(l)∗(m) ⋅ n̄
′

(l) ⋅ σ̂∗θ

= σ̂(l)∗(x)wσ̂∗θ

with θ ∈ L+d σ̂(l−1)∗IP̄ (K).

6.3 Independence of hi(li) of the choice of αi and

descend to Igei

Lemma 6.5. The quasi-isogeny hi(li) in Lemma 6.3 is independent of the choice

of the trivialization αi for li ≥ l(ei).

Remark 6.6. We show also that hi(li) together with the trivialization αi descend

to the Igusa variety Igei
. Since there αi is determined by the isomorphism jei

we get

that on the Igusa variety hi(li) is uniquely defined.
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Proof. of Lemma 6.5.

For our fixed presentation S → Igei
we let S

′′

∶= S ×Igei
S and denote by pr1 and

pr2 the projection onto the first and second factor. For simplicity we write ev-

erything without the index i in this proof. Let pr∗1ατ̂ σ̂∗(pr∗1α)−1 = xm
′

n̄
′ and

pr∗2ατ̂ σ̂∗(pr∗2α)−1 = xm
′′

n̄
′′ with n̄

′

, n̄
′′

∈ L+IN̄ . Since l ≥ l(e) there are quasi-

isogenies h
′

(l), resp. h(l), of local Gc-shtukas and an element n̄
′′

(l) ∈ L+e σ̂l∗IN̄(S
′′

),

resp. n̄
′

(l) ∈ L+e σ̂l∗IN̄(S
′′

), with

h
′

(l)−1σ̂(l)∗(pr∗2ατ̂ σ̂∗(pr∗2α)−1)σ̂∗h
′

(l) = σ̂(l)∗(x)σ̂(l)∗(m
′′

)n̄
′′

(l),

resp.

h(l)−1σ̂(l)∗(pr∗1ατ̂ σ̂∗(pr∗1α)−1)σ̂∗h(l) = σ̂(l)∗(x)σ̂(l)∗(m
′

)n̄
′

(l).

Set

H
′′

∶= h
′

(l)−1σ̂(l)∗(pr∗2α)σ̂(l)∗(pr∗1α)−1h(l)

= h
′

(l)−1σ̂(l)∗(pr∗2αpr∗1α−1)h(l).

We have pr∗2α ⋅ pr∗1α−1 ∈ L+σ̂−1IP̄ and the image of h̃ ∶= pr∗2α ⋅ pr∗1α−1 in

L+σ̂−1IM/L+σ̂−1Ie,M is 1. Hence, H
′′

∈ L+e σ̂l−1∗IM ⋅ Lσ̂(l−1)∗IN̄ .

We have:

H
′′

σ̂(l)∗(x)σ̂(l)∗(m
′

)n̄′(l) = h
′

(l)−1σ̂(l)∗pr∗2α(σ̂(l)∗pr∗1α−1h(l)σ̂(l)∗(x)σ̂(l)∗(m
′

)n̄
′

(l))

= h
′

(l)−1σ̂(l)∗pr∗2ασl∗τ̂ σ̂(l+1)∗(pr∗1α)−1σ̂∗h(l)

= (σ̂(l)∗(x)σ̂(l)∗(m
′′

)n̄
′′

(l)σ̂∗h
′

(l)−1σ̂(l+1)∗pr∗2α)⋅

⋅ σ̂(l+1)∗pr∗1α−1σ̂∗h(l)

= σ̂(l)∗(x)σ̂(l)∗(m′′)n̄
′′

(l)σ̂∗H
′′

.

So

σ̂(l)∗(x)−1H
′′

σ̂(l)∗(x) σ̂(l)∗(m
′

)
cddddddddddddddddeddddddddddddddddf
∈L+e σ̂l∗IM

n̄
′

(l)
g
∈L+e σ̂l∗IN̄

= σ̂(l)∗(m
′′

)
cdddddddddddddddddeddddddddddddddddddf
∈L+e σ̂l∗IM

n̄
′′

(l)
h
∈L+e σ̂l∗IN̄

σ̂∗H
′′

.

Hence

σ̂∗H
′′

= n̄
′′

(l)−1σ̂(l)∗(m
′′

)−1σ̂(l)∗(x)−1H
′′

σ̂(l)∗(x)σ̂(l)∗(m
′

) ⋅ n̄
′

(l).

This implies

σ̂2∗H
′′

= σ̂∗n̄
′′

(l)−1σ̂(l+1)∗(m
′′

)−1σ̂(l+1)∗(x)−1σ̂∗H
′′

σ̂(l+1)∗(x)σ̂(l+1)∗(m
′

)σ̂∗n̄
′

(l).

That is:

σ̂2∗H
′′

=

= σ̂∗n̄
′′

(l)−1σ̂(l+1)∗(m
′′

)−1σ̂(l+1)∗(x)−1⋅

⋅ n̄
′′

(l)−1σ̂(l)∗(m
′′

)−1σ̂(l)∗(x)−1H
′′

σ̂(l)∗(x)σ̂(l)∗(m
′

)n̄
′

(l)⋅

⋅ σ̂(l+1)∗(x)σ̂(l+1)∗(m
′

)σ̂∗n̄
′

(l).
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Thus we get:

σ̂2∗H
′′

=

= σ̂∗n̄
′′

(l)−1σ̂(l+1)∗(m
′′

)−1σ̂(l+1)∗(x)−1n̄
′′

(l)−1σ̂(l+1)∗(x)⋅

⋅ σ̂(l+1)∗(x)−1σ̂(l)∗(m
′′

)−1σ̂(l)∗(x)−1H
′′

σ̂(l)∗(x)σ̂(l)∗(m
′

)σ̂(l+1)∗(x)⋅

⋅ σ̂(l+1)∗(x)−1n̄
′

(l)σ̂(l+1)(x)σ̂(l+1)∗(m
′

)σ̂∗n̄
′

(l).

We can iterate this to (for k ≥ 2):

σ̂k∗H
′′

=

= σ̂(k−1)∗n̄
′′

(l)−1

cddddddddddddddddddddddddddddddddddeddddddddddddddd ddddddddddddddddddddf
∈L+e

σ̂(l+k−1)∗(m
′′

)−1

cddddddddddddddddddddddddddddddddddddddddeddddddddd dddddddddddddddddddddddddddddddf
∈L+e

⋅

⋅ σ̂(l+k−1)∗(x)−1 ⋅ σ̂(k−2)∗n̄
′′

(l)−1 ⋅ σ̂(l+k−1)∗(x)
cdddddddddddddddddddddddddddddddddddddddddddddddddd dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddedddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddf

∈L+e

⋅

⋅ σ̂(l+k−1)∗(x−1) σ̂(l+k−2)∗(m
′′

)−1

cddddddddddddddddddddddddddddddddddddddddeddddddddd dddddddddddddddddddddddddddddddf
∈L+e

σ̂(l+k−1)∗(x) ⋅ . . . ⋅
g
∈L+e

⋅ σ̂(l+k−1)∗(x)−1σ̂(l+k−2)∗(x)−1 ⋅ . . . ⋅ σ̂(l)∗(x)−1H
′′

σ̂(l)∗(x) ⋅ . . . ⋅

σ̂(l+k−1)∗(x) ⋅ ⋅ . . . ⋅
g
∈L+e

⋅σ̂(l+k−1)∗(x)−1 ⋅ σ̂(l+k−2)∗(m
′

)
cddddddddddddddddddddddddddddddeddddddddddddddddddd ddddddddddddf

∈L+e

⋅σ̂(l+k−1)∗(x)⋅

⋅ σ̂(l+k−1)∗(x)−1σ̂(k−2)∗n̄
′

(l)σ̂(l+k−1)∗(x)
cdddddddddddddddddddddddddddddddddddddddddddddddddd ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddeddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddf

∈L+e

σ̂(l+k−1)∗(m
′

)
cddddddddddddddddddddddddddddddeddddddddddddddddddd ddddddddddddf

∈L+e

σ̂(k−1)∗n̄
′

(l)
cdddddddddddddddddddddddddedddddddddddddddddddddddd df

∈L+e

.

Write H
′′

= H
′′

MH
′′

N̄
and consider the term

σ̂(l+k−1)∗(x)−1σ̂(l+k−2)∗(x)−1 ⋅ . . . ⋅ σ̂(l)∗(x)−1H
′′

σ̂(l)∗(x) ⋅ . . . ⋅ σ̂(l+k−1)∗(x).

Then:

∏
i=k−1,...,0

σ̂(l+i)∗(x)−1 ⋅ H ′′ ⋅ ∏
i=0,...,k−1

σ̂(l+i)∗(x) =

= ∏
i=k−1,...,0

σ̂(l+i)∗(x)−1 ⋅ H ′′M ⋅ ∏
i=0,...,k−1

σ̂(l+i)∗(x)

cdddddddddddddddddddddddddddddddddddddddddddddddddd ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddeddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddf
∈L+σ̂l−1∗IM

⋅

⋅ ∏
i=k−1,...,0

σ̂(l+i)∗(x)−1 ⋅ H ′′N̄ ⋅ ∏
i=0,...,k−1

σ̂(l+i)∗(x)

cdddddddddddddddddddddddddddddddddddddddddddddddddd dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddedddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddf
∈L+e σ̂l−1∗IN̄ for k>>0

because of the assumptions on x in Definition 4.3. Then we get σ̂k∗H
′′

∈ L+σ̂(l−1)∗IM ⋅

L+e σ̂(l−1)∗IN̄ and so H
′′

= H
′′

M ⋅ H
′′

N̄
∈ L+σ̂(l−1)∗IM ⋅ L+e σ̂l−1)∗IN̄ . By Lemma 5.1 we get

H
′′

∈ L+σ̂(l−1)∗Ie,M ⋅L+e σ̂(l−1)∗IN̄ and also H
′′

M = σ̂(l)∗(pr∗2α ⋅ pr∗1α−1) ∈ L+σ̂(l−1)∗Ie,M .

Now we show that hi(li) descends (together with αi) to the Igusa variety. The

proof is very similar to the one of the previous lemma. In order to do this we choose

li ≥ li(ei), such that n̄
′

(li) ∈ L+ei
σ̂li∗IN̄i

with the data from Lemma 6.3.
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Lemma 6.7. Let f ∶ S → Yi be a presentation such that the universal complete slope

division (P i, ηi) of Γ̂ci
(f∗Guniv

) =∶ G
i

over Yi possesses a triviliaziation αi as defined

in Definition 6.1. The quasi-isogeny hi(li) from Lemma 6.3 with li = li(ei) descends

to Igei
.

Proof. Fix a trivialization αi (note that we already know the independence of the

choice of such a trivialization) and for simplicity fix one characteristic ci, that is

fix an index i and write everything without that index. By Lemma 6.3 there is a

quasi-isogeny h(l):

h(l) ∶ ((L+Gc)S, σ̂(l)∗(xm)n̄
′

(l)) → ((L+Gc)S, σ̂(l)∗(xmn̄)),

that is

h(l)−1σ̂(l)∗(ατ̂ σ̂∗α−1)σ̂∗h(l) = σ̂(l)∗(xm)n̄
′

(l)

with l ≥ l(e) such that n̄
′

(l) ∈ L+e σ̂l∗IN̄(S). Now we want to show the descend of

h(l)−1σ̂(l)∗α to the Igusa variety Ige. Set

H ∶= pr∗2(h(l)
−1σ̂(l)∗α)pr∗1(σ̂

(l)∗(α)−1h(l)),

where S
′′

∶= S ×Ige
S and pri denotes the projection onto the i-th factor. Then

H ⋅ pr∗1(σ̂
(l)∗(xm))pr∗1(n̄

′

(l)) = pr∗2(σ̂
l∗(xm))pr∗2(n̄

′

(l)) ⋅ σ̂∗H

and so

pr∗2(σ̂
(l)∗(x))−1 ⋅ H ⋅ pr∗1(σ̂

(l)∗(x)) ⋅ pr∗1(σ̂
l∗(m))

cddddddddddddddddddddddddddddeddddddddddddddddddddd dddddddf
∈L+e

⋅pr∗1(n̄
′

(l))
cdddddddddddddddddddeddddddddddddddddddddf

∈L+e

= pr∗2( ˆσl∗(m′))
cdddddddddddddddddddddddddddddddedddddddddddddddddd dddddddddddddf

∈L+e

⋅pr∗2(n̄
′

(l))
cdddddddddddddddddddeddddddddddddddddddddf

∈L+e

⋅σ̂∗H.

A similar calculation as in the Lemma 6.5 before (with H
′′ instead of H) shows that

H ∈ L+σ̂(l−1∗)Ie,M ⋅ L+e σ̂(l−1)∗IN̄ .

6.4 The product morphism π

In this section we show that there is a finite product morphism π ∶= πd,e,l as in

Main Theorem 0.1. Recall the formal scheme RZ Ẑi
and the ADLV XZi

(xi) from

Definition 2.38 which we consider as (formal) schemes over F
alg
q .

Notation 6.8. We denote by Xdi

Zi
(xi) the reduced subscheme of RZ

di

Ẑi
and set

X
d

Z ∶= (Xd1

Z1
(x1) ×

F
alg
q

. . . ×
F

alg
q

Xdn

Zn
(xn)).

70
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Note that we have fixed ei, di such that ei > 2di(ri − 1).

Proposition 6.9. Let S → Igei
(resp. S → Ige) and let αi be the presentation and

isomorphism from Definition 6.1. Let hi(li) be as in Lemma 6.3 with li = li(ei). Let

S
′

→ S ×
F

alg
q

Xdi

Zi
(xi) be an étale covering over which a trivialization

βi ∶ σ̂li∗
i Ĝi→̃(L+Gci

)S
′

for the universal local Gci
-shtuka (Ĝi, gi) over Xdi

Zi
(xi) exists. Then the isomorphism

of LGci
-torsors

σ̂li∗
i (αi)

−1hi(li)σ̂
li∗
i (gi)β

−1
i ∶ LGci

→ σ̂li∗
i LΓ̂ci

(G
univ

)

descends to a quasi-isogeny of local Gci
-shtukas over Igei

×
F

alg
q

Xdi

Zi
(xi) (resp. Ige×F

alg
q

Xdi

Zi
(xi))

δi ∶ G̃i
�→ σ̂li∗

i Γ̂ci
(G

univ
)

for a suitable local Gci
-shtuka G̃

i
which is bounded by Ẑci

.

Proof. Let S
′′

∶= S ×Igei
S and denote by pri the projction onto the i-th factor. Set

l ∶= li = li(ei) in this proof. Note that σ̂
(l)∗

i (αi)
−1hi(l)σ̂

(l)∗

i gi is independent of the

choice of αi up to an automorphism of L+Gci
.

Take G̃i ∶= (L+Gci
)S. We have βi ∶ σ̂

(l)∗

i Ĝ → (L+Gci
, βiσ̂

l∗
i (g−1

i xiσ̂
∗

i gi)σ̂
∗

i β−1
i ). Set

Γ ∶= pr∗2(βiσ̂
(l)∗

i (gi)
−1hi(l)

−1σ̂
(l)∗

i (αi)) ⋅ pr∗1((βiσ̂
(l)∗

i (gi)
−1hi(l)

−1σ̂
(l)∗

i (αi))
−1)

and then it sufficies to show that Γ ∈ L+Gci
(S

′′

), where pri and S
′′ are defined as

above. Consider

Γ = pr∗2(βiσ̂
(l)∗

i (gi)
−1hi(l)

−1σ̂
(l)∗

i αi) ⋅ pr∗1(σ̂
(l)∗

i α−1
i hi(l)σ̂

(l)∗

i (gi)β
−1
i )

= pr∗2(βiσ̂
(l)∗

i (gi)
−1)pr∗2(hi(l)

−1σ̂
(l)∗

i αi) ⋅ pr∗1(σ̂
(l)∗

i α−1
i hi(l))

cdddddddddddddddddddddddddddddddddddddddddddddddddd ddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddeddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddf
=H∈L+σ̂

(l−1)∗

i
Iei,Mi

⋅L+ei
σ̂
(l−1)∗

i
IN̄i

⋅pr∗1(σ̂
(l)∗

i (gi)β
−1
i )

∈ L+Gci
.

The element H lies in L+σ̂
(l−1)∗

i Iei,Mi
⋅L+ei

σ̂
(l−1)∗

i IN̄i
by the proof of Lemma 6.7 and Γ ∈

L+Gci
holds by our choice ei > 2di(ri−1). In fact, by the definition of RZ

di

Ẑi
(see Def-

inition 2.41) �∗(pr∗2(βiσ̂
(l)∗

i (gi)
−1)pr∗1(σ̂

(l)∗

i (gi)β
−1
i )) lies in z2di(1−ri)OS�z�ri×ri . And

since �∗(H) lies in 1 + zeiOS�z�ri×ri we get that �∗(Γ) ∈ 1 + zOS�z�ri×ri . Hence,

Γ ∈ L+Gci
.

We use Γ to define an L+Gci
-torsor G̃i over Igei

×
F

alg
q

Xdi

Zi
(xi) together with a triv-

ialization γi ∶ (G̃i)S→̃(L+Gci
)S, such that pr∗2γi ⋅ pr∗1γ−1

i = Γ. This corresponds to a
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change of the trivialization βi to γi, between σ̂
(l)∗

i Ĝi and G̃i. We make G̃i into a local

Gci
-shtuka by equipping it with the following Frobenius:

γi ∶ (G̃i
)S→̃((L+Gci

)S, βiσ̂
(l)∗

i (gi)
−1hi(l)

−1σ̂
(l)∗

i (αiτ̂iσ̂
∗

i α−1
i )σ̂∗i (hi(l)σ̂

(l)∗

i (gi)β
−1
i )).

Consider the quasi-isogeny over S

γ−1
i βiσ̂

(l)∗

i g−1
i hi(l)

−1σ̂
(l)∗

i αi ∶ σ̂
(l)∗

i Γ̂ci
(G

univ
) → G̃

i
.

Set

δi ∶= σ̂
(l)∗

i (αi)
−1hi(l)σ̂

(l)∗

i giβ
−1
i γi,

so

δi ∶ LG̃i→̃Lσ̂
(l)∗

i Γ̂ci
(Guniv),

then

pr∗2γi ⋅ pr∗2(δ
−1
i ) ⋅ pr∗1(δi) ⋅ pr∗1γ−1

i = Γ.

It follows that pr∗1(δi) = pr∗2(δi). Moreover, δi is compatible with the Frobenii.

Therefore, δi descends to a quasi-isogeny δi ∶ G̃i
→ σ̂

(l)∗

i Γ̂ci
(G

univ
) as desired.

It remains to show that G̃
i

is bounded by Ẑci
. We compute

σ̂
(l)∗

i g−1
i hi(l)

−1σ̂
(l)∗

i (αiτ̂iσ̂
∗

i (αi)
−1)σ̂∗i hi(l)σ̂

∗

i (σ̂
(l)∗

i gi)

= σ̂
(l)∗

i g−1
i hi(l)

−1σ̂
(l)∗

i (ximin̄i)σ̂
∗

i hi(l)σ̂
∗

i (σ̂
(l)∗

i gi)

= σ̂
(l)∗

i g−1
i σ̂

(l)∗

i xiσ̂
(l)∗

i (mi)n̄
′

i(l)σ̂
∗

i hi(l)
−1σ̂∗i hi(l)σ̂

∗

i (σ̂
(l)∗

i gi)

= σ̂
(l)∗

i (g−1
i xi) σ̂

(l)∗

i (mi)
cddddddddddddddddedddddddddddddddddf
∈L+ei

n̄
′

i(l)
g
∈L+ei

σ̂∗i (σ̂
(l)∗

i gi)

= σ̂
(l)∗

i (g−1
i xiσ̂

∗

i gi)
cddddddddddddddddddddddddddddddddddddddddddeddddddd dddddddddddddddddddddddddddddddddddf

∈Ẑci

(σ̂∗i (σ̂
(l)∗

i g−1
i )σ̂

(l)∗

i (mi)n̄
′

i(l)σ̂
∗

i (σ̂
(l)∗

i gi))
cdddddddddddddddddddddddddddddddddddddddddddddddddd dddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddedddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddddf

∈L+Gci
(because ei+2di(1−ri)≥1, l≥l(ei))

∈ Ẑci
.

Remember that the inequality ei + 2di(1 − ri) ≥ 1 holds by our choice of ei at the

beginning of this chapter.

Corollary 6.10. If y ∈ (Igei
×
F

alg
q

Xdi

Zi
(xi))(L) is a point with values in an alge-

braically closed field L, whose second component is (Ĝ
i,y

, gi,y) ∈ Xdi

Zi
(xi)(L) then the

fibre G̃
i,y

at y of the local shtuka G̃
i

from Proposition 6.9 is isomorphic to σ̂li∗
i Ĝ

i,y
.

Proof. By Lemma 6.4 there exists an isomorphism θi ∈ L+ei
σ̂
(li−1)∗

i IP̄i
(L) in the fol-

lowing chain of isomorphisms

((L+Gci
)L, σ̂li∗

i xi)
θi
�→
∼

((L+Gci
)L, σ̂li∗

i (xi)wi)
σ̂

li∗

i
(α−1

i,y)hi(li)y
��������→

∼

σ̂li∗
i Γ̂ci

(G
univ

)y ,
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6.4 The product morphism π

that is σ̂li∗
i (α−1

i,y)hi(li)y θi ⋅σ̂
li∗
i (xi) = σ̂li∗

i (τ̂i,y)○σ̂∗i (σ̂
li∗
i (α−1

i,y)hi(li)y θi), where σ̂li∗
i (τ̂i,y)

is the Frobenius of σ̂li∗
i Γ̂ci

(G
univ

)y. As in the computation at the end of the proof of

Proposition 6.9, the Frobenius of G̃
i,y

is computed as

σ̂li∗
i (g−1

i,y)hi(li)−1
y σ̂li∗

i (αi,y τ̂i,yσ̂∗i (α
−1
i,y))σ̂

∗

i hi(li)yσ̂∗i (σ̂
li∗
i gi,y)

= σ̂li∗
i (g−1

i,y) ⋅ θi ⋅ σ̂
li∗
i (xi) ⋅ σ̂∗(θ−1

i ) ⋅ σ̂∗i (σ̂
li∗
i gi,y)

= (σ̂li∗
i (g−1

i,y)θiσ̂
li∗
i (gi,y)) ⋅ σ̂li∗

i (g−1
i,yxiσ̂

∗

i gi,y) ⋅ σ̂∗i (σ̂
li∗
i (g−1

i,y)θ
−1
i σ̂li∗

i (gi,y)).

Since θi ∈ L+ei
σ̂
(li−1)∗

i IP̄i
(L) and gi,y is bounded by 2di�̌ the inequality ei+2di(1−ri) ≥ 1

implies that σ̂li∗
i (g−1

i,y)θiσ̂
li∗
i (gi,y) ∈ L+Gci

(L). Since σ̂li∗
i (g−1

i,yxiσ̂
∗

i gi,y) is the Frobenius

of σ̂li∗
i Ĝ

i,y
, the element σ̂li∗

i (g−1
i,y)θiσ̂

li∗
i (gi,y) ∈ L+Gci

(L) provides an isomorphism of

local Gci
-shtukas from σ̂li∗

i Ĝ
i,y

to G̃
i
.

Now we will prove Main Theorem 0.1, the main result of this thesis.

We let e = (ei)i be such that ei + 2di(1 − ri) ≥ 1 and denote by l a multiple of all

deg ci such that l ≥ li(ei) ⋅ deg ci for the number li(ei) from Definition 4.3 (vi).

Remark 6.11. The tuple (d, e, l) is chosen large enough with respect to the partial

order on Zn, that is

(di, ei, l) ≤ (d
′

i, e
′

i, l
′

) ∶⇔ di ≤ d
′

i, l ≤ l
′

, ei ≤ e
′

i ∀i.

In the remaining part of this chapter we will show that there is a finite, surjective

morphism of stacks as in Main Theorem 0.1

π ∶= πd,e,l ∶ Ige ×F
alg
q

X
d

Z(x) → σl∗Nx ×Fx
Falg

q ⊂ σl∗∇H1
Fqalg

((G
univ, (jei

)i), (gi)i) ↦ δ∗σl∗G
univ

with δ∗σl∗G
univ

∶= δ∗1 ○ . . . ○ δ∗nσl∗G
univ where

δi ∶ G̃i

qis
�→ σ̂li∗Γ̂ci

(G
univ

) = σl∗Γ̂ci
(G

univ
)

was obtained in Proposition 6.9 for li = l/[Fci
∶ Fq] and δ∗σl∗G

univ is based on the

construction from Proposition 2.21. Here X
d

Z denotes again the product

X
d

Z ∶= X
d

Z(x)

∶= (Xd1

Z1
(x1) ×

F
alg
q

. . . ×
F

alg
q

Xdn

Zn
(xn)).

The proof of Main Theorem 0.1 is given in several steps and lemmas to make it more

readable and comprehensible.

The next Lemma says that the quasi-isogeny group Jxi
is contained in the Levi.

This result is useful to consider the fibres of the morphism π.
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6 Product structure

Lemma 6.12. (i) Jxi
(Fci

((z))) ⊆ Lσ̂−1
i Mi(Fxi

).

(ii) Aut((L+Ii)Falg
xi

, xiσ̂
∗

i ) ⊂ L+σ̂−1
i IMi

(F
alg
xi

)

Proof. (i) Jxi
(Fci

((z))) is defined as

Jxi
(Fci

((z))) ∶= {a ∈ LGci
(Falg

q ) ∶ axi = xiσ̂
∗

i a}

(and acts on RZ
di

Ẑi
, τ̂i = g−1xiσ̂

∗

i g via a ∶ g ↦ ag).

Write a = nmn̄ (decomposition in LGci
(F

alg
q ) with n ∈ Lσ̂−1

i Ni, m ∈ Lσ̂−1
i Mi,

n̄ ∈ Lσ̂−1
i N̄i). Then nmn̄ = xiσ̂

∗

i (a)x
−1
i for an arbitrary a ∈ Jxi

(Fci
((z))), so

σ̂∗i a = x−1
i nxix

−1
i mxix

−1
i n̄xi.

This implies

a)

σ̂2∗
i (a) = σ̂2∗

i (nmn̄)

= σ̂∗i (xi)
−1σ̂∗i (a)σ̂

∗

i (xi)

= σ̂∗i (xi)
−1x−1

i axiσ̂
∗

i (xi)

= σ̂∗i (xi)
−1x−1

i nmn̄xiσ̂
∗

i (xi)

= σ̂∗i (xi)
−1x−1

i nxiσ̂
∗

i (xi)σ̂
∗

i (xi)
−1x−1

i mxiσ̂
∗

i (xi)σ̂
∗

i (xi)
−1x−1

i n̄xiσ̂
∗

i (xi).

So for l ≥ 2 we get:

σ̂l∗
i (a) = (σ̂

(l−1)∗

i (xi)
−1 ⋅ . . . ⋅ x−1

i nxi ⋅ . . . ⋅ σ̂
(l−1)∗

i (xi))⋅

⋅ (σ̂
(l−1)∗

i (xi)
−1 ⋅ . . . ⋅ x−1

i mxi ⋅ . . . ⋅ σ̂
(l−1)∗

i (xi))⋅

⋅ (σ̂
(l−1)∗

i (xi)
−1 ⋅ . . . ⋅ x−1

i n̄xi ⋅ . . . ⋅ σ̂
(l−1)∗

i (xi)).

By assumption (see Definition 4.3) on the properties of xi we have

σ̂l∗
i (xi)

−1 ⋅ . . . ⋅ σ̂∗i (x
−1
i )N̄iσ̂

∗

i (xi) ⋅ . . . ⋅ σ̂l∗
i (xi) ⊂ σ̂l∗

i N̄i,

for all l.

By Condition (vi) from Definition 4.3 we get

σ̂
(l−1)∗

i (xi)
−1 ⋅ . . . ⋅ x−1

i n̄xi ⋅ . . . ⋅ σ̂
(l−1)∗

i (xi) → 1 for l → ∞.

Thus n̄ = 1.

b) And on the other side

a = nmn̄ = (xi ⋅ . . . ⋅ σ̂
(l−1)∗

i (xi)σ̂
l∗
i (n)σ̂

(l−1)∗

i (xi)
−1 ⋅ . . . ⋅ x−1

i )⋅

⋅ (xi ⋅ . . . ⋅ σ̂
(l−1)∗

i (xi)σ̂
l∗
i (m)σ̂

(l−1)∗

i (xi)
−1 ⋅ . . . ⋅ x−1

i )⋅

⋅ (xi ⋅ . . . ⋅ σ̂
(l−1)∗

i (xi)σ̂
l∗
i (n̄)σ̂

(l−1)∗

i (xi)
−1 ⋅ . . . ⋅ x−1

i ).
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6.4 The product morphism π

As we have

σ̂∗i (xi) ⋅ . . . ⋅ σ̂l∗
i (xi)σ̂

l∗
i (Ni)σ̂

l∗
i (xi)

−1 ⋅ . . . ⋅ σ̂∗i x−1
i ⊂ Ni,

for all l, we get by Condition (vi) from Definition 4.3

xi ⋅ . . . ⋅ σ̂
(l−1)∗

i (xi)σ̂
l∗
i (n)σ̂

(l−1)∗

i (xi)
−1 ⋅ . . . ⋅ x−1

i → 1, for l → ∞.

Thus n = 1.

From (a) and (b) follows that n = 1, n̄ = 1, a = m ∈ Lσ̂−1
i Mi(Fxi

) as claimed.

(ii) This follows by the first part of the proof.

Definition 6.13. For an Fp-scheme X over an Fp-scheme T we denote by pr ∶= prX

the projection as defined in the following diagram:

X
Frq,X∣T��

��

Frobq,X

��
σ∗X

prX ��

��

X

��
T

id
�� T

Frobq,T

�� T

where the left diagram is commutative and the right one is cartesian and where Fr

(resp. Frob) denotes the relative (resp. absolute) Frobenius.

Now we give the construction of the “product morphism”:

Proposition 6.14. We let e = (ei)i be such that ei + 2di(1 − ri) ≥ 1 and denote

by l a multiple of all deg ci such that l ≥ li(ei) ⋅ deg ci for the number li(ei) from

Definition 4.3 (vi) and let d ∶= (di)i for i = 1, . . . , n. There exists an F
alg
q -morphism

πd,e,l ∶ Ige ×F
alg
q

X
d

Z(x) → σl∗∇H1

F
alg
q

.

Proof. Let li ∶= l/deg ci = l/[Fci
∶ Fq] and σl∗ = σ̂li∗

i . Note that this li depends on the

charactersitic ci. We use the abbreviation X
d

Z ∶= X
d

Z(x). Consider

Ige ×F
alg
q

X
d

Z

Frob
ql

		
��

��

σ(l)∗(Ige ×F
alg
q

X
d

Z)
∼ ��

��

Ige ×F
alg
q

X
d

Z

��

SpecFalg
q

id
�� SpecFalg

q
∼

Frob
ql

�� SpecFalg
q
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where the composed map in the first line is Frobql and the left square is commutative,

the right one is cartesian.

We start with a point f ∈ (Ige ×F
alg
q

X
d

Z)(R), that is a morphism

f ∶ Spec R → Ige ×F
alg
q

X
d

Z ,

which is given by a tuple (G
univ, γ̄, (jei

)i, (gi)i), where G
univ is the universal global

G-shtuka over the central leaf Cx, γ̄ the associated H-level-structure and (jei
)i ∈ Ige

and (gi)i ∈ X
d

Z .

Now consider the ring R in a new way as an F
alg
q -algebra, namely as

R̃ ∶= (R, Frobql ○ (Falg
q → R))

= (R, (Falg
q → R) ○ Frobql)

( = R).

Remember that our aim is to construct a point in σl∗∇H1

F
alg
q

(R).

After passing to R̃ our tupel becomes accesible for the uniformization morphism,

that is we construct a new tupel pulled back under the Frobenius and after pulling

back we have the existence of hi(li), which (almost) trivializes the N̄ -part.

Therefore, consider the following diagram:

Spec R̃
Frob

ql
��

γ̄=Hγ∈H/ Isom⊗(V̌
Guniv ,ω○)

��

f○Frob
ql

		

Spec R

f

��

Ige ×F
alg
q

X
d

Z
�� σl∗(Ige ×F

alg
q

X
d

Z)
∼ �� Ige ×F

alg
q

X
d

Z

where the morphism f corresponds to the tuple (G
univ, γ̄, (jei

)i, (gi)i) and f ○Frobql

corresponds to σl∗(G
univ, γ̄, (jei

)i, (gi)i).

The reason why we passed to R̃ is the following advantage:

Over R̃ we can consider σl∗ and then exists hi(li) and we can define δi as

δi ∶= σ̂
(li)∗

i α−1
i ○ hi(li) ○ σ̂

(li)∗

i gi ○ β−1
i ○ γi ∶ G̃i

�→ σl∗Γ̂ci
(G

univ
)

which is the quasi-isogeny from Proposition 6.9.

We have a point, that is a global G-shtuka f̃ ∈ ∇H1

F
alg
q

(R̃), hence a morphism f̃ ∶

Spec R̃ → ∇H1

F
alg
q

given by the tuple (G, Hσl∗γ ○ V̌δ) with G ∶= δ∗1 ○ . . . ○ δ∗n(G
univ

),

where

δ ∶ G
qis
→ σl∗G

univ

is the quasi-isogeny of global G-shtukas with Γ̂ci
(δ) = δi by Proposition 2.21.

So δ∗1 ⋅ . . . ⋅ δ∗n(σ
l∗G

univ
) is the “new” global G-shtuka and the level structure is given
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6.4 The product morphism π

by

H/ Isom⊗(ω○, V̌G) �→ H/ Isom⊗(ω○, V̌σl∗G
univ)

σl∗γ̄ ○ V̌δ ↦ σl∗γ̄

induced by the tensor-isomorphism V̌δ ∶ V̌G → V̌σl∗G
univ . By the definition of the Tate-

module (by τ -invariants) this is well-defined.

Thus, we have:

(Ige ×F
alg
q

X
d

Z)(R) → (Ige ×F
alg
q

X
d

Z)(R̃) → ∇H1

F
alg
q

(R̃)

f ↦ f ○ Frobql ↦ f̃

but what we need is an R-valued point. We get that in the following way:

Briefly speaking:

∇H1

F
alg
q

(R̃) �→ σl∗∇H1

F
alg
q

(R)

f̃ ↦ pr−1 ○ f̃ ,

that means:

Consider the following diagram:

Spec R̃
Frob

ql
��

f̃

��

Spec R

pr−1
○f̃





f̃∈∇H1

F
alg
q

(R̃)

��
∇H1

F
alg
q

��

Frob
ql

��

��

σl∗∇H1

F
alg
q

pr

∼ ��

��

∇H1

F
alg
q

��

SpecFalg
q

id �� SpecFalg
q

Frob
ql

∼ �� SpecFalg
q

That is we can define:

(Ige ×F
alg
q

X
d

Z)(R) ��

πd,e,l

��
(Ige ×F

alg
q

X
d

Z)(R̃) �� ∇H1

F
alg
q

(R̃) �� σl∗∇H1

F
alg
q

(R)

f ↦ f ○ Frobql ↦ f̃ ↦ pr−1 ○ f̃

So, there exists an F
alg
q -morphism

πd,e,l ∶ (Ige ×F
alg
q

X
d

Z) → σl∗∇H1

F
alg
q

.
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Now we show the properties of the morphism π.

Proposition 6.15. With the previous constructions the following holds:

(i) For l
′

≥ l und l large enough suitable to d, e (that is such that πd,e,l exists) the

following holds on Ige ×F
alg
q

X
d

Z(x):

Fr
ql
′
−l,σl∗∇H1

F
alg
q

○πd,e,l = πd,e,l
′

,

where πl
′

∶= πd,e,l
′

is a morphism

πl
′

∶ Ige ×F
alg
q

X
d

Z(x) �→ σl
′

∗∇H1

F
alg
q

.

(ii) For d
′

≥ d let incld,d
′

∶ X
d

Z(x) ↪ X
d
′

Z (x) be the inclusion (and the identity on

Ige) and for e
′

, l
′ suitable to d

′

(that is, such that πd
′

,e
′

,l
′

exists):

πd
′

,e
′

,l
′

○ incld,d
′

= πd,e
′

,l
′

=∶ πd

as a morphism

πd ∶ Ige
′ ×

F
alg
q

X
d

Z(x) �→ σl
′

∗∇H1

F
alg
q

.

(iii) For e
′

≥ e, l large enough (that is, such that πd,e,l exists) and for qe
′
,e ∶ Ige

′ ↠

Ige the projection (and the identity on X
d

Z(x)):

πd,e,l ○ qe
′
,e = πd,e

′

,l =∶ πe
′

,

as a morphism

πe
′

∶ Ige
′ ×

F
alg
q

X
d

Z(x) �→ σl∗∇H1

F
alg
q

.

Proof. (i) The idea is to show σ(l
′

−l)∗G ≅ G
′

in ∇H1

F
alg
q

, where G is the “associated”

global G-shtuka to (d, e, l) that is the image of πd,e,l, and G
′

the image under

πd,e,l
′

.

In terms of the notations given in the construction of πd,e,l it is sufficient to

show:

f̃ ○ Frob
ql
′
−l,R

= f̃
′

,

where f̃ is defined with hi(li) and this is sufficient to show because f̃○Frob
ql
′
−l,R

corresponds to σ(l
′

−l)∗G and f̃
′ corresponds to G

′

and is defined with hi(l
′

i).

In order to show this consider

δ ∶ G �→ σl∗G
univ,
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6.4 The product morphism π

with

Γ̂ci
(δ) = δi = σ̂

(li)∗

i α−1
i ○ hi(li) ○ σ̂

(li)∗

i gi ○ β−1
i ○ γi

and

δ
′

∶ G
′

�→ σ(l
′

)∗G
univ,

with

Γ̂ci
(δ
′

) = δ
′

i = σ̂
(l
′

i)∗

i α−1
i ○ hi(l

′

i) ○ σ̂
(l
′

i)∗

i gi ○ (β
′

i)
−1 ○ γ

′

i.

By Lemma 6.3 we have

hi(l
′

i) = σ̂
(l
′

i−li)∗

i hi(li) ⋅ A

with

A = σ̂
(l
′

i−li−1)∗

i n̄
′

(li) ⋅ . . . σ̂0∗
i n̄

′

(l
′

i − 1) ∈ L+ei
σ̂

l
′

i−1

i IN̄i
.

So

hi(l
′

i) ○ σ̂
(l
′

i)∗

i gi = σ̂
(l
′

i−li)∗

i hi(li) ⋅ A ○ σ̂
(l
′

i)∗

i gi

= σ̂
(l
′

i−li)∗

i hi(li) ○ σ̂
(l
′

i)∗

i gi ○ A
′

for an isomorphism

A
′

∶= (σ̂
(l
′

i)∗

i (gi)
−1σ̂

(l
′

i−li−1)∗

i n̄
′

(li)σ̂
(l
′

i)∗

i (gi)) ⋅ . . . ⋅ (σ̂
(l
′

i)∗

i (gi)
−1σ̂0∗

i n̄
′

(l
′

i − 1)σ̂(l
′

i)∗

i (gi))

∈ L+σ̂
(l
′

i−1)∗

i IN̄i

because of ei > 2di(ri − 1) and using Lemma 5.1. So we have:

σ(l
′

−l)∗G ��

��

σ(l
′

)∗G
univ

id
��

G
′ δ

′

�� σ(l
′

)∗G
univ

where σl
′

∗G
univ in the lower line is given by Γ̂ci

(δ
′

) and the one in the upper

line is given by:

σ̂
(l
′

i−li)∗

i Γ̂ci
(δ) = σ̂

(l
′

i)∗

i (αi)
−1 ○ σ̂

(l
′

i−li)∗

i (hi(li)) ○ σ̂
(l
′

i−li)∗

i (gi) ○ σ̂
(l
′

i−li)∗

i (β−1
i γi).

Therefore, σ̂
(l
′

i)∗

i G �→ G
′

is given by:

(γ
′

i)
−1 ○ β

′

i ○ A
′

○ σ̂
(l
′

i−li)∗

i (β−1
i γi).

This is an isomorphism at ci and also outside of ci.

Therefore,

σ(l
′

−l)∗G ≅ G
′

in ∇H1

F
alg
q

.
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6 Product structure

We illustrate this in the following diagram:

Spec R̃
′

Frob
ql
′
−l
�� Spec R̃

Frob
ql

�� Spec R
Frob

ql
′
−l

��

πl

��

πl
′





G=̂f̃

��

G
′

=̂f̃
′

��

Spec R

f̃

��

∇H1

F
alg
q

��

Frob
ql

��

σl∗∇H1

F
alg
q

Fr ��

pr ∼

��
Frob

ql
′
−l 



σ(l
′

)∗∇H1

F
alg
q

∼ pr

��
∇H1

F
alg
q

Frob
ql
′
−l 



σl∗∇H1

F
alg
q

pr∼

��
∇H1

F
alg
q

So:

f̃
′

= pr ○ pr ○ πl
′

= pr ○ pr ○ Fr
q(l
′
−l),σl∗∇H1

F
alg
q

○πl

= pr ○ Frob
q(l
′
−l),σl∗∇H1

F
alg
q

○ πl

= Frob
q(l
′
−l),∇H1

F
alg
q

○ pr ○ πl = f̃ ○ Frob
q(l
′
−l),R

.

That is f̃
′

= f̃ ○ Frob
q̂l
′
−l,R

and this corresponds to the desired isomorphism

G
′

≅ σ(l
′

−l)∗G.

(ii) Since d
′

≥ d we can choose g
′

i ∶= gi and thus δi = δ
′

i and so δ∗(σl
′

∗G
univ

) =

(δ
′

)∗(σl
′

∗G
univ

).

(iii) Since our construction is independent of the choice of αi we can choose αi as

a trivialization also suitable to the level e
′

i and this menas that again as in (ii)

the global G-shtukas are the same.

In the following, we prove that π is proper as a morphism to the Newton stratum

σl∗Nx. Note that Nx is not closed in ∇H1

F
alg
q

.

Proposition 6.16. πd,e,l is proper as a morphism to the Newton stratum σl∗Nx ×Fc

F
alg
q ⊂ σl∗∇H1

F
alg
q

.

Proof. By [LMB00, Théoréme 7.10] we can prove the claim with the valuative cri-

terion for properness.

Let R be a complete discrete valuation ring with algebraically closed residue field.

Denote its fraction field by K.
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6.4 The product morphism π

We have to show that for a K-valued point y ∈ (Ige ×
F

alg
q

X
d

Z)(K) that maps to a

point πd,e,l(y) ∈ σl∗Nx(R) there is a unique lift of y to ȳ ∈ (Ige ×
F

alg
q

X
d

Z)(R) that

makes the following diagram commutative:

Spec K
y ��

i

��

(Ige ×F
alg
q

X
d

Z)

πd,e,l

��
Spec R s

��

ȳ

��

σl∗Nx

Let y = (jei
, gi)i,K ∈ (Ige ×F

alg
q

X
d

Z)(K). The idea now is to use the fact that RZ
di

Ẑi

is proper by Proposition 2.42. Now let G be the image of y in σl∗Nx, that is the

global G-shtuka associated to πd,e,l(jei
gi). By definition, that means the following:

πd,e,l(jei
, gi)K = (δ∗1 ⋅ . . . ⋅ δ∗n)σ

l∗(G
univ

K
) = G

K

and

G
K

δ
�→
qis

σl∗(G
univ

K
).

As before let

R̃ ∶= (R, (Falg
q → R) ○ Frob

ql,F
alg
q

)

and denote by K̃ its fraction field. Especially, one has:

σl∗(G
univ

K
) = (σl∗G

univ
)K̃ .

So, by the assumption of the valuative criterion, there is a G ∈ σl∗(Nx)(R), that is

in the Newton stratum, given. This induces as before (that is, corresponds by the

isomorphism pr to) G ∈ Nx(R̃). Then

z ∶= Γ̂ci
(σl∗G

univ, δ−1) ∈ RZ
di

Γ̂ci
(G)

(K̃)

and by Proposition 2.42 and using that Gci
is parahoric we know that RZ

di

Γ̂ci
(G)

→

Spec R̃ is proper, so there exists a unique lift z̄ of z with z̄ ∈ RZ
di

Γ̂ci
(G)

(R̃) and by

Proposition 2.21 this implies that there exists a unique global G-shtuka

G̃ ∈ ∇H1

F
alg
q

(R̃), δ̃−1 ∶ G̃
qis
→ G.

Over K̃ we have the following commutative diagram:

δ̃−1

K̃
∶ G̃

K̃

qis ��

≅

��

G
K̃

id

��
σl∗G

univ

K̃
�� G

K
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6 Product structure

The following holds: G ∈ Nx(R̃) and G̃ ∈ ∇H1

F
alg
q

(R̃) is quasi-isogenous to G, this

implies

G̃ ∈ Nx(R̃).

In the remaining part we construct our “new” point, that is the suitable tuple

(jei
, gi).

First, we construct (and this shows the existence of) (j̄ei
)i ∈ Ige(R) which is a lift

of (jei
)i ∈ Ige(K) with qe(jei

) = G
′

which is defined in the next diagram where qe is

the projection Ige → Cx.

In order to do this consider the following diagrams:

(i)

Spec K ��

G
univ

K
∈∇H

1

F
alg
q

(K)

��

Spec R

G
′

��

G̃

��
∇H1

F
alg
q

��

Fr
ql

finite
�� σl∗∇H1

F
alg
q

��

∼

pr
�� ∇H1

F
alg
q

��

SpecFalg
q

id
�� SpecFalg

q
∼

Frob
ql

�� SpecFalg
q

The global G-shtuka G̃ ∈ σl∗∇H1

F
alg
q

(R) is induced via pr−1, more explicit by

the following:

Spec K̃ ��

σl∗
(G

univ

K
)=(σl∗

G
univ
)K̃

��

Spec R̃

G̃

��
σl∗∇H1

F
alg
q

∼

pr
�� ∇H1

F
alg
q

Since ∇H1

F
alg
q

is locally of finite type

Frql ∶ ∇H1

F
alg
q

→ σl∗∇H1

F
alg
q

is finite and so there exists a unique G
′

∈ ∇H1

F
alg
q

(R) with

G̃
R̃
= (σl∗G

′

)R̃,
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6.4 The product morphism π

so

G̃
K

= (σ̂(l)∗G
′

)K̃ = σ̂(l)∗(G
′

K
),

and with

G
′

K
= G

univ

K
.

(ii) G
′

K̃
= G

univ

K̃
and G

univ

K̃
∈ Cx(K̃) ⊆ Nx(R̃). Since Cx is closed in Nx, this implies

G
′

∈ Cx(R̃).

Note that G
′

∈ Nx(R) because the Newton polygon at the algebraically closed

residue field κR of R can be calculated as follows: The quasi-isogeny δ̃−1 ∶ G → G

induces a quasi-isogeny η ∶ Γ̂ci
(G̃

κR
) → (L+Gci

, xi) which in turn induces a

quasi-isogeny

σ̂−li∗
i η ∶ Γ̂ci

(G
′

κR
) = Γ̂ci

(σ̂−li∗
i G̃

κR
) → (L+Gci

, σ̂−li∗
i xi).

The latter is quasi-isogenuous to (L+Gci
, xi) via σ̂−1∗

i (xi)⋯σ̂−li∗
i (xi).

One could also use the above to get G
′

=∶ G
univ

R
(G

′

∈ Cx(R)) by using the facts

that Frob and Fr are finite and that the Igusa variety is finite over the central

leaf Cx:

Spec K

��

jei ��

G
univ

K

��

Ige

finiteqe

��

finite

��
Fr

finite
�� σl∗Ige pr

��

finite

��

Ige

qe finite

��
Cx

Fr �� σl∗Cx
∼

pr
�� Cx

Spec R

j̄ei

��

G
′

��

G

��

Spec R̃

G̃

��

Here Spec R
G

→ σl∗Cx is induced by the morphism Spec R̃
G̃

→ Cx from part (i).

It exists (j̄ei
)i ∈ Ige(R) because of the finiteness of

Ige → σl∗Ige → σl∗Cx,

then qe(jei
), G

′

∈ ∇H1

F
alg
q

(R), qe(jei
)K = G

univ

K
≅ G

′

K
and ∇H1

F
alg
q

is separated, so

qe(jei
) = G

′

and j̄ei
∈ Igei

(R) is a lift of jei
∈ Igei

(K) with qe(jei
) = G

′

and we

can set G
′

=∶ G
univ

R
.

Here Ige

Fr
→ σl∗Ige is finite because of the following general fact:

83



6 Product structure

Assume S is a scheme of positive characteristic and denote by Frob the ab-

solute Frobenius. Let X → S be étale, then the relative Frobenius Fr is an

isomorphism and since the question to be finite is local on both X and S we

may assume X is étale over Ar
S and both X and S affine. So we can write

S = Spec A, then X = Spec A[X1, . . . , Xr] and the relative Frobenius is given

by the A-linear map

A[Y1, . . . , Yr] �→ A[X1, . . . , Xr]

Yi ↦ X
q
i ,

so an explicit basis is {X
j
i ∶ i = 1, . . . , r; j = 1, . . . , qr − 1} and we get a finitely

generated module.

Now we calculate the associated (ḡi)i ∈ X
d

Z(R). Since X
d

Z is proper over F
alg
q , the

point (gi)i ∈ X
d

Z(K) lifts uniquely to a point (ḡi)i ∈ X
d

Z(R). It remains to show that

πd,e,l(j̄ei
, ḡi) = G in Nx(R).

Remember that R is a complete discrete valuation ring with algebraically closed

residue field over which there exists a trivialization, that is there is an isomorphism

γi ∶ Γ̂ci
(G)R̃�̃→(L+Gci

)R̃. Note that we do not have to be careful about the trivial-

ization βi because we can assume that βi is the identity. We have

(G)R̃

(δ̃−1
)

��→
qis

G̃
R̃
= σl∗G

′

R
=∶ σl∗G

univ

R
.

Set

δi ∶= Γ̂ci
(( ˜δ−1)) ∶ Γ̂ci

(G
R̃
)

qis
�→ (σl∗G

′

)R̃.

So, this is our “old” δi we started with and generically both coincide, so in particular

g is generically the “old” one. The idea is to calculate gi via:

σ̂
(li)∗

i (gi) ∶= hi(li)
−1 ○ σ̂

(li)∗

i (αi) ○ δi ○ γ−1
i ∶ (L+Gci

)R̃ → (L+Gci
)R̃,

where σ̂
(li)∗

i αi is induced by σ̂
(li)∗

i jei
∈ Igei

(R̃) which exists, and hi(li) and σ̂
(li)∗

i αi

are uniquely determined on σ̂
(li)∗

i Igei
.

Set

(σ̂
(li)∗

i Ĝ)R̃ ∶= ((L+Gci
)R̃, σ̂

(li)∗

i (g−1
i xiσ̂

∗

i gi)).

We have σ̂li∗
i gi ∈ Xdi

Zi
(xi) because of the following: Xdi

Zi
(xi) is defined over κi, so there

is a lift of the K-valued point gi to an R-valued point ḡi. Now, the δi constructed

above is the same as the one constructed with this ḡi. This holds because

σ̂li∗
i gi = hi(li)

−1σ̂li∗
i (αi)δiγ

−1
i

= σ̂li∗
i ḡi

at the generic K-valued point in the flag variety which is separated. This shows

that πd,e,l(j̄ei
, ḡi) = G in Nx(R) and proves the proposition.
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6.4 The product morphism π

Proposition 6.17. The morphism

π ∶= πd,e,l ∶ Ige ×Fqalg X
d

Z(x) → σl∗∇H1

F
alg
q

.

is quasi-finite.

Proof. We calculate the fibres of π and show that it is a finite set.

Let K = Kalg be an algebraically closed field and fix a point

y = (jei,i, gi)i,K ∈ (Ige ×F
alg
q

X
d

Z(x))(K).

We calculate π−1(π(y)), so let y
′

= (j
′

ei
, g
′

i) ∈ π−1(π(y)) and y
′′

= (j
′′

ei
, g
′′

i ) ∈ π−1(π(y))

arbitrary points. Since π(y
′

) = π(y) there is a quasi-isogeny ϕ
′

∶ G
y
→ G

y
′ between

the global G-shtukas G
y

and G
y
′ corresponding to the points π(y) and π(y

′

) in

∇H1

F
alg
q

(K). This quasi-isogeny ϕ
′ is compatible with the H-level structure and an

isomorphism at all ci. We consider the following well-defind map:

π−1(π(y)) �→ SET

y
′

↦ ((b
′

i)
−1, (a

′

i)
−1)i,

where (b
′

i)
−1 and (a

′

i)
−1 are defined beyond.

In order to show the finiteness of the fibres of π it is sufficient to show that the set

“SET” is finite and the above map is injective.

Let J
σ̂
(li)∗

i
xi

be the quasi-isogeny group of σ̂
(li)∗

i Gi = (L+Gci
, σ̂li∗

i (xi)). We obtain

(b
′

i)
−1 and (a

′

i)
−1 in the following way:

(i) Consider the quasi-isogeny

σ̂
(li)∗

i Gi

θ
′

ib
′

i
�→ (L+Gci

, σ̂
(li)∗

i (x) ⋅ w
′

i)

which is defined by (see also Figure 6.1)

b
′

i ∶= (θ
′

i)
−1

h
∈ L+ei

Gci

σ̂(li)∗g
′

iβ
−1

i,y
′γi,y

′ Γ̂ci
(ϕ

′

)γ−1
i,yβi,yσ̂

(li)∗

i g−1
i θi,

where

σ̂
(li)∗

i (xi) ⋅ w
′

i = hi(li)
−1

y
′ σ̂
(li)∗

i (αi,y
′ τ̂y

′ σ̂∗i α−1

i,y
′)σ̂∗i hi(li)y

′ .

Here we fixed a θi ∈ L+σ̂
(li−1)∗

i Iei,Mi
⋅L+ei

σ̂
(li−1)∗

i IN̄i
as in Lemma 6.4 and for each

point y
′ with π(y) = π(y

′

) such a θ
′

i (in the same group). We write

b
′

i ∶= (θ
′

i)
−1 ⋅ θ

′

ib
′

i ∶ σ̂
(li)∗

i Gi

qis
�→ σ̂(li)∗Gi
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6 Product structure

Here we define b
′

i by

J
σ̂
(li)∗

i
xi

�→ Lσ̂
(li−1)∗

i Mi/L
+σ̂
(li−1)∗

i Iei,Mi

(b
′

i)
−1 ↦ (θ

′

ib
′

i)
−1 =∶ (b

′

i)
−1.

Since gi, g
′

i ∈ Xdi

Zi
the quasi-isogeny b

′

i is bounded by 4di�̌. If one chooses

another θ̃
′

i at y
′ and the associated b̃

′

i then

(θ̃
′

i)
−1θ

′

i ∈ L+σ̂
(li−1)∗

i Iei,Mi
⋅ L+ei

σ̂
(li−1)∗

i IN̄i
.

Since b
′

i and b̃
′

i ∈ Lσ̂
(li−1)∗

i Mi it is (θ̃
′

i)
−1θ

′

i ∈ L+σ̂
(li−1)∗

i Iei,Mi
by Lemma 6.12 (i).

Hence, the image of b
′

i in Lσ̂
(li−1)∗

i Mi/L+σ̂
(li−1)∗

i Iei,Mi
is well defined (as it is

independent of the choice of θ
′

i). Since it is in the image of J
σ̂

li∗

i
xi

and bounded

by 4di�̌, there are only finitely many b
′

i.

(ii) For each i we fix isomorphisms (induced by the definition of the central leaf)

fi ∶ Gi → Γ̂ci
(G

univ
) at y and f

′

i ∶ Gi → Γ̂ci
(G

univ
) at y

′ such that αi,y○fi and also

αi,y
′ ○ f

′

i ∈ L+σ̂−1
i Iei,Mi

⋅ L+σ̂−1
i IN̄i

which is possible by Lemma 4.13. Consider

the quasi-isogeny

a
′

i ∶= σ̂li∗
i (f

′

i)
−1δ

′

iΓ̂ci
(ϕ

′

)δ−1
i σ̂

(li)∗

i (fi) .

We write

a
′

i ∶= σ̂
(li)∗

i (αi,y
′f
′

i)
−1σ̂

(li)∗

i (αi,y
′f
′

i)a
′

i ∶ σ̂
(li)∗

i Gi

qis
�→ σ̂

(li)∗

i Gi

and define a
′ by:

J
σ̂
(li)∗

i
xi

�→ (Lσ̂
(li−1)∗

i Mi)/(L
+σ̂
(li−1)∗

i Iei,Mi
)

(a
′

i)
−1 ↦ (a

′

i)
−1σ̂

(li)∗

i (αi,y
′f
′

i)
−1 =∶ (a

′

i)
−1.

Since gi, g
′

i ∈ Xdi

Zi
(xi) the quasi-isogeny a

′

i is bounded by 4di�̌.

If one chooses another f̃
′

i at y
′ and the associated ã

′

i then

(f̃
′

i)
−1f

′

i ∈ L+σ̂
(li−1)∗

i Iei,Mi
⋅ L+σ̂

(li−1)∗

i IN̄i
.

Since a
′

i and also ã
′

i ∈ Lσ̂
(li−1)∗

i Mi we obtain (f̃
′

i)
−1f

′

i ∈ L+σ̂
(li−1)∗

i Iei,Mi
by

Lemma 6.12 (i). Therefore, the image of a
′

i in (Lσ̂
(li−1)∗

i Mi)/(L+σ̂
(li−1)∗

i Iei,Mi
)

is independent of the choice of f
′

i , thus well defined. As it is in the image of

J
σ̂
(li)∗

i
xi

and bounded by 4di�̌ there are only finitely many (a
′

)−1.

In order to finish the proof it remains to show the injectivity of the map

π−1(π(y))
map
�→ SET

y
′

↦ ((b
′

i)
−1, (a

′

i)
−1).
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6.4 The product morphism π

So let y
′

, y
′′

∈ π−1(π(y)) (i.e. π(y) = π(y
′

) = π(y
′′

)) with ((b
′

i)
−1, (a

′

i)
−1) = map(y′) =

map(y′′) = ((b
′′

i )
−1, (a

′′

i )
−1). Therefore, we can write b

′′

i = Bib
′

i, a
′′

i = Aia
′

i with Ai, Bi ∈

L+σ̂
(li−1)∗

i Iei,Mi
.

We have to show (j
′

ei
, g
′

i)i = y
′′

= (j
′′

ei
, g
′′

i )i, thus to show j
′

ei
= j

′′

ei
and g

′

i = g
′′

i .

(i) We have (b
′

i)
−1 = (b

′′

i )
−1, so b

′′

i = Bib
′

i for a Bi ∈ L+σ̂
(li−1)∗

i Iei,Mi
. so we can

calculate:

Bi(θ
′

i)
−1σ̂

(li)∗

i g
′

iβ
−1

i,y
′γi,y

′ Γ̂ci
(ϕ

′

)γ−1
i,yβi,yσ̂

(li)∗

i g−1
i θi

= Bib
′

i

= b
′′

i

= (θ
′′

i )
−1σ̂

(li)∗

i g
′′

i β−1

i,y
′′γi,y

′′ Γ̂ci
(ϕ

′′

)γ−1
i,yβi,yσ̂

(li)∗

i g−1
i θi.

So

σ̂
(li)∗

i g
′′

i β−1

i,y
′′γi,y

′′ Γ̂ci
(ϕ

′′

)

= σ̂
(li)∗

i (g
′

i) ⋅ (σ̂
(li)∗

i (g
′

i)
−1θ

′′

i Bi(θ
′

i)
−1σ̂

(li)∗

i (g
′

i)) ⋅ β−1

i,y
′γi,y

′ Γ̂ci
(ϕ

′

)

with β−1

i,y
′′γi,y

′′ Γ̂ci
(ϕ

′′

) ∈ L+Gci
, β−1

i,y
′γi,y

′ Γ̂ci
(ϕ

′

) ∈ L+Gci
.

Since Bi ∈ L+σ̂
(li−1)∗

i Iei,Mi
we have (σ̂

(li)∗

i (g
′

i)
−1θ

′′

i Bi(θ
′

i)
−1σ̂

(li)∗

i (g
′

i)) ∈ L+Gci
(by

a similar calculation that we have done several times before, for example see

the proof of Proposition 6.9) we get:

σ̂(li)∗g
′′

i = σ̂
(li)∗

i g
′

i as elements in Xdi

Zi
.

Moreover, it follows that the quasi-isogeny

δ
′′

ϕ
′′

(ϕ
′

)−1(δ
′

)−1 ∶ σl∗G
univ

y
′ → σl∗G

univ

y
′′

is an isomorphism at all ci, because

Γ̂ci
(δ
′′

ϕ
′′

(ϕ
′

)−1(δ
′

)−1) = σ̂li∗
i (α−1

i,y
′′)h(li)y

′′θ
′′

i Bi(θ
′

i)
−1h(li)

−1

y
′ σ̂

li∗
i (αi,y

′)

is a compositum of isomorphisms. This shows that G
univ

y
′ = G

univ

y
′′ in ∇H1

F
alg
q

(K),

and so y
′′ and y

′ map to the same point in Cx.

(ii) We have (a
′′

i )
−1 = (a

′

i)
−1, so there exists a Ai ∈ L+σ̂

(li−1)∗

i Iei,Mi
such that a

′′

i =

Ai ⋅ a
′

i. So we can calculate

Ai ⋅ σ̂
(li)∗

i (f
′

i)
−1δ

′

iΓ̂ci
(ϕ

′

)δ−1
i σ̂

(li)∗

i fi = σ̂
(li)∗

i (f
′′

i )
−1δ

′′

i Γ̂ci
(ϕ

′′

)δ−1
i σ̂

(li)∗

i fi.

This implies

σ̂
(li)

i (f
′′

i )
−1 ⋅ δ

′′

i Γ̂ci
(ϕ

′′

) = Ai ⋅ σ̂
(li)

i (f
′

i)
−1 ⋅ δ

′

iΓ̂ci
(ϕ

′

).
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6 Product structure

Thus, we get

(σ̂li∗
i (f

′′

i )Aiσ̂
li∗
i (f

′

i)
−1)δ

′

iΓ̂ci
(ϕ

′

) = δ
′′

i Γ̂ci
(ϕ

′′

),

and hence

σ̂li∗
i (α−1

i,y
′′)h(li)y

′′(θ
′′

i Bi(θ
′

i)
−1) = (σ̂li∗

i (f
′′

i )Aiσ̂
li∗
i (f

′

i)
−1)σ̂li∗

i (α−1

i,y
′)h(li)y

′ .

The projection onto L+σ̂
(li−1)∗

i IMi
yields

σ̂li∗
i (α−1

i,y
′′)(θ

′′

i Bi(θ
′

i)
−1) = (σ̂li∗

i (f
′′

i )Aiσ̂
li∗
i (f

′

i)
−1σ̂li∗

i (α−1

i,y
′),

that is

σ̂li∗
i (αi,y

′) ≡ σ̂li∗
i (αi,y

′′) mod L+σ̂
(li−1)∗

i Iei,Mi

and

αi,y
′ ≡ αi,y

′′ mod L+σ̂−1
i Iei,Mi

.

Since we already know that y
′ and y

′′ map to the same point in Cx, this implies

that y
′

= y
′′ as points on Ige(K) as desired.

σ̂
(li)∗

i Gi σ̂i
(li)∗Gi

σ̂
(li)∗

i Γ̂ci
(G

univ
)y= Γ̂ci

(σ̂
(li)∗

i G
univ

) σ̂
(li)∗

i Γ̂ci
(G

univ
)y
′

L+Gci
L+Gci

(L+Gci
, σ̂
(li)∗

i (xi) ⋅ wi) σ̂
(li)∗

i Gi σ̂
(li)∗

i Gi (L+Gci
, σ̂
(li)∗

i (xi) ⋅ w
′

i)

σ̂
(li)∗

i Ĝy σ̂
(li)∗

i Ĝy
′

L+Gci
L+Gci

Γ̂ci
(δ∗i σ̂

(li)∗

i G
univ

)y=π(y) Γ̂ci
(δ
′
∗

i σ̂
(li)∗

i G
univ

)y
′
=π(y

′
)=π(y)

∼σ̂i
(li)∗fi

a
′

i

∼σ̂
(li)∗

i f
′

i

∼σ̂
(li)∗

i αi,y σ̂
(li)∗

i αi,y
′

∼hi(li)y

∼

θi

b
′

i ∼

θ
′

i

∼hi(li)y
′

qisσ̂
(li)∗

i gi

βi,y

qisσ̂
(li)∗

i g
′

i

βi,y
′

γi,y

Γ̂ci
(ϕ

′

)

∼

δi

γy
′

i

δ
′

i

Figure 6.1: An illustrating diagram

with

π ∶= πd,e,l ∶ Ige ×F
alg
q

X
d

Z → σl∗Nx ×Fc
Falg

q ⊂ σl∗∇H1

F
alg
q

,
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y = (jei
, gi)i ∈ (Ige ×F

alg
q

X
d

Z)(K), for K = Kalg, and y
′

= (j
′

ei
, g
′

i)i ∈ π−1(π(y)), and

ϕ
′

∶ δ∗Guniv
�→ δ

′
∗G

univ

where ϕ is a quasi-isogeny and an isomorphism at c that is comapatible with the

H-level structure of G. Here hi(li)y and hi(li)y
′ are isomorphisms, not only quasi-

isogenies and θi and θ
′

i are defined as in Lemma 6.4.

Proposition 6.18. Consider the composition of the morphism πd,e,l with the pro-

jection pr ∶ σl∗Nx → Nx. Then for every point G
0

of Nx(K) with values in an

algebraically closed field K there is a tuple (d, e, l) and a point in the preimage of

G
0

under πd,e,l.

Proof. We consider the morphism

πd,e,l ∶ Ige ×F
alg
q

X
d

Z(x) → σl∗∇H1

F
alg
q

.

on K-valued points. Let G
0

be a global G-shtuka in Nx(K) ⊆ ∇H1

F
alg
q

(K). Then by

definition of the Newton stratum there is a quasi-isogeny

gi ∶ Γci
(G

0
) → Gi .

We have to show that there is a tuple (d, e, l) such that (πd,e,l)−1(G
0
) ≠ ∅, that is

that there exist (jei
)i ∈ Ige and (gi)i ∈ X

d

Z(x) such that π(jei
, gi)i = G

0
. Choose di

large enough such that gi is bounded by 2di�̌, that is such that gi defines an element

in Xdi

Zi
(xi). This choice is possible by the construction of Arasteh Rad and Hartl

in [AH14a, § 4]. We choose integers ei > 2di(ri − 1) and a multiple l of deg ci for

all i such that l ≥ li(ei) ⋅ deg ci for the numbers li(ei) from Definition 4.3 (vi). By

Proposition 2.21 there is a global G-shtuka G̃ ∶= (g−1
1 )∗ ○ . . . ○ (g−1

n )∗G
0

over K with

Γ̂ci
(G̃) = Gi. In particular, G̃ ∈ Cx(K). Now we set jei

= id and αi = id, as well as

hi(li) = id. Then y = (G̃, jei
, gi) ∈ (Ige ×

F
alg
q

X
d

Z(x))(K). Since δi = σ̂li∗
i gi, we obtain

πd,e,l(y) = σl∗G
0

in σl∗Nx(K). So the point y○Frob−1
ql,Spec K ∶ Spec K → Ige×F

alg
q

X
d

Z(x)

satisfies πd,e,l(y ○Frob−1
ql,Spec K) = G

0
in σl∗Nx(K) and pr ○ πd,e,l(y ○Frob−1

ql,Spec K) = G
0

in Nx(K).

Proposition 6.19. π is finite.

Proof. The claim folows directly from the general fact that a morphism is finite if

it is proper and quasi-finite.

Thus, there is a finite morphism of stacks

πd,e,l ∶ Ige ×F
alg
q

X
d

Z(x) → σl∗Nx ×Fc
Falg

q ⊂ σl∗∇H1

F
alg
q

.
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6 Product structure

which is “surjective” in the sense of the statement of Main Theorem 0.1 and this

proves Main Theorem 0.1.

An application of the product structure is the possibility to calculate the dimension

of the leaves inside a Newton stratum.

Proposition 6.20. Let K be a perfect field extension of Fx. For each i let Ĝi

be a local Gci
-shtuka over K in the isogeny class of (L+Gci

, xiσ̂
∗

i ) with xi as in

Definition 4.3.

(i) Then for every global G-shtuka G over a K-scheme S the central leaf C
(Ĝi)i,S

is

closed in the Newton stratum Nx ⊂ S, and hence locally closed in S. It carries

a natural scheme structure.

(ii) Like in Proposition 4.26 this defines a closed reduced substack C
(Ĝi)i

of Nx,K ∶=

Nx×Fx
Spec K ⊂ ∇H1

K. The stack C
(Ĝi)i

is smooth over K of relative dimension

dimIge = ∑
n
i=1⟨νxi,dom , 2�i⟩; see Theorem 4.29.

Proof. For each i, that is for each characteristic ci, we choose a quasi-isogeny of

local Gci
-shtukas

gi ∶ Ĝi �→ (L+Gci
, xiσ̂

∗

i )

over K. These correspond to points gi in XZi
(xi). We choose di large enough such

that gi is bounded by 2di�̌, that is such that gi ∈ Xdi

Zi
(xi). Now choose li and ei large

enough such that πd,e,l exists. Consider the morphism

π ∶ Ige ×F
alg
q

Spec K �→ Igx ×
F

alg
q

{(gi)i}
πd,e,l

��→ σl∗Nx,K = σl∗Nx ×Fx
Spec K ,

which is finite, because πd,e,l is finite and {(gi)i} is a closed K-valued point of

X
d

Z(x) ×
F

alg
q

Spec K, and hence Ige ×
F

alg
q

Spec K → Ige ×
F

alg
q

X
d

Z(x) ×
F

alg
q

Spec K is a

closed immersion. Since K is perfect, we may base change π under the inverse of

the ql-Frobenius on K to obtain the finite morphism

σ−l∗π ∶ σ−l∗(Ige ×F
alg
q

Spec K) �→ Nx,K . (6.3)

(i) Let S′ ∶= Nx ⊂ S and consider the K-morphism S′ → Nx,K ⊂ ∇H1
K corresponding

to the global G-shtuka G. Let

σ−l∗πS′ ∶ σ−l∗(Ige ×F
alg
q

Spec K) ×Nx,K
S′ �→ S′

be obtained by base change from (6.3). We claim that C
(Ĝi)i,S

′ equals the image of

σ−l∗πS′ , and hence is a closed subset of S′ with a natural scheme structure as the

scheme theoretic image.
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6.4 The product morphism π

To prove the claim, let first s ∈ C
(Ĝi)i,S

′ be a point with values in an algebraically

closed field L. By definition of the central leaf there are isomorphisms

fi ∶ Γ̂ci
(G

s
) ∼�→ Ĝi

for all i. Consider now the composition

g̃i ∶= gi ○ fi ∶ Γ̂ci
(G

s
) �→ (L+Gci

, xiσ̂
∗

i ) ,

which also corresponds to the point gi in the truncated Rapoport-Zink space RZ
di

Ẑi

and hence in Xdi

Zi
(xi). We consider the global G-shtuka G

′
∶= (g̃−1

1 )∗ ○ . . . ○ (g̃−1
n )∗G

s

over L, which satisfies Γ̂ci
(G
′
) = (L+Gci

, xiσ̂
∗

i ). Thus, G
′ together with jei

= id for

all i defines an L-valued point of Ige. By construction y = (G
′, jei

, gi) is an L-valued

point of Ige ×
F

alg
q

X
d

Z(x) which factors through Ige ×
F

alg
q

Spec K and maps to σl∗G
s

in Nx. So the point y ○ Frob−1
ql,Spec L ∶ Spec L → Ige ×

F
alg
q

X
d

Z(x) is an L-valued point

of σ−l∗(Ige ×
F

alg
q

Spec K) with σ−l∗π(y ○ Frob−1
ql,Spec L) = G

0
in Nx. This implies that

(y○Frob−1
ql,Spec L, s) is an L-valued point of σ−l∗(Ige×F

alg
q

Spec K)×Nx,K
S′ which maps

to s. So s lies in the image of σ−l∗πS′ .

Conversely, let (y, s) ∈ σ−l∗(Ige ×
F

alg
q

Spec K) ×Nx,K
S′ be a point with values in

an algebraically closed field L, that is σ−l∗π(y) = G
s

and πd,e,l(y, (gi)i) = σl∗G
s

in

Nx,K(L). From the construction of πd,e,l and Corollary 6.10 it follows that σl∗G
s
=

πd,e,l(y, (gi)i) satisfies Γ̂ci
(σl∗G

s
) ≅ σl∗Ĝi. Therefore Γ̂ci

(G
s
) ≅ Ĝi and we conclude

that s ∈ C
(Ĝi)i,S

′ . This proves the claim, shows that C
(Ĝi)i,S

′ is a closed subset of S′,

and proves (i).

(ii) Since K is perfect, the reduced closed substack C
(Ĝi)i

of Nx,K ⊂ ∇H1
K is geo-

metrically reduced and the argument of Proposition 4.31 applies and shows that

C
(Ĝi)i

is smooth over K. Since its connected components are irreducible and re-

duced, their dimension equals the dimension of Ige, which is ∑
n
i=1⟨νxi,dom , 2�i⟩ by

Theorem 4.29.
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