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Zusammenfassung

Nach den Arbeiten von Saavedra Rivano, Deligne, Lurie, Schäppi u.a. lassen
sich viele Schemata sowie algebraische Stacks mit ihren Tensorkategorien von
quasikohärenten Garben identifizieren. In dieser Arbeit studieren wir Kon-
struktionen mit kovollständigen Tensorkategorien (bzw. kostetigen Tensorfunk-
toren), die in der Regel im Falle von quasikohärenten Garben zu Konstruktio-
nen von Schemata (bzw. ihren Morphismen) korrespondieren. Das bedeutet,
die gewöhnliche lokal-globale algebraische Geometrie zu globalisieren und einen
ersten Schritt in Richtung einer 2-algebraischen Geometrie zu machen. Als
Beispiele behandeln wir affine Morphismen, projektive Morphismen, Immersio-
nen, klassische projektive Einbettungen (Segre, Plücker, Veronese), Aufblasun-
gen, Faserprodukte, klassifizierende Stacks und schließlich Tangentialbündel. Es
stellt sich heraus, dass sich die universellen Eigenschaften auf der geometrischen
Seite oftmals auch auf der Seite der Tensorkategorien finden lassen. Bei der The-
orie erweist es sich als nützlich, Grundzüge der kommutativen Algebra in einer
beliebigen kovollständigen Tensorkategorie zu entwickeln.

Abstract

Several results by Saavedra Rivano, Deligne, Lurie, Schäppi and others shown
that many schemes as well as algebraic stacks may be identified with their tensor
categories of quasi-coherent sheaves. In this thesis we study constructions of
cocomplete tensor categories (resp. cocontinuous tensor functors) which usually
correspond to constructions of schemes (resp. their morphisms) in the case of
quasi-coherent sheaves. This means to globalize the usual local-global algebraic
geometry and to make a first step towards 2-algebraic geometry. We discuss for
example affine morphisms, projective morphisms, immersions, classical projec-
tive embeddings (Segre, Plücker, Veronese), blow-ups, fiber products, classifying
stacks and finally tangent bundles. It turns out that often the universal prop-
erties on the geometric side also appear on the side of tensor categories. For
the theory it turns out to be useful to develop basic commutative algebra in an
arbitrary cocomplete tensor category.



“According to Peter Freyd: ’Perhaps the purpose of categorical al-

gebra is to show that which is trivial is trivially trivial.’ That was

written early on, in 1966. I prefer an update of that quote: “Perhaps

the purpose of categorical algebra is to show that which is formal is

formally formal”. It is by now abundantly clear that mathematics

can be formal without being trivial. Categorical algebra allows one to

articulate analogies and to perceive unexpected relationships between

concepts in different branches of mathematics.”

Peter May, [May01]
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Chapter 1

Introduction

1.1 Background

It is a common principle of mathematics to study geometric objects by consid-
ering categories of algebraic objects acting on them. For example in algebraic
geometry one tries to understand a scheme X via its category of quasi-coherent
sheaves Qcoh(X). Do we really understand X by looking at Qcoh(X)?

This has been answered in 1962 by Gabriel ([Gab62]) who proved his famous
Reconstruction Theorem: A noetherian scheme X can be reconstructed from
Qcoh(X). The idea is to associate to an abelian category A a ringed space
Spec(A), its spectrum, and then prove X ∼= Spec

(
Qcoh(X)

)
. Later this paved

the way for the vision of noncommutative algebraic geometry in which abelian
categories are regarded as noncommutative schemes ([Ros95], [AZ94]). In 1998
A. L. Rosenberg used a different spectrum construction to give a short proof
of the Reconstruction Theorem for arbitrary schemes ([Ros96], [Ros98]), then
in 2004 another proof for quasi-separated schemes ([Ros04]). The proof has
been corrected and simplified by Gabber ([Bra13]). In 2013 Antieau obtained a
generalization of the Reconstruction Theorem to twisted quasi-coherent sheaves
on quasi-compact quasi-separated schemes ([Ant13]). With a completely new
approach Calabrese and Groechenig have proven a Reconstruction Theorem for
quasi-compact separated algebraic spaces ([CG13]). Although a smooth variety
X cannot be reconstructed from its derived category of quasi-coherent sheaves
Db(Qcoh(X)), Bondal and Orlov have shown in 2001 that this works at least if
the canonical bundle of X is ample or anti-ample ([BO01]).

However, Qcoh(X) is actually a tensor category, so it is reasonable to use this
additional structure. In 2002 Balmer has reconstructed a noetherian scheme
from its tensor triangulated category of perfect complexes ([Bal02]). This lead
to the development of tensor triangular geometry ([Bal10]). Balmer’s result has
been generalized to quasi-compact quasi-separated schemes by Buan, Krause and
Solberg ([BKS07]).
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Chapter 1. Introduction

What about reconstruction for algebraic stacks? Classical Tannaka duality gives
an affirmative answer in the case of classifying stacks since it reconstructs an
affine group scheme from its tensor category of representations ([Del90]). More
generally, Lurie has reconstructed an arbitrary geometric stack from its tensor
category of quasi-coherent sheaves ([Lur04]).

In the case of algebraic stacks the tensor structure becomes essential, since for
example the discrete scheme with two points and the classifying stack of a group
of order 2 have the same category of quasi-coherent sheaves – but not the same
tensor category of quasi-coherent sheaves.

Obviously very much has been done in order to recover the object of interest
X from Qcoh(X). However, it seems that little has been done towards the
reconstruction of morphisms of schemes, which is certainly useful for recovering
properties of X (such as smoothness) from Qcoh(X). One might ask which
functors

Qcoh(X)→ Qcoh(Y )

are induced by morphisms Y → X via the pullback construction.

A minimal requirement is that these functors preserve colimits and tensor prod-
ucts (up to specified isomorphisms). Therefore, let us call a scheme (or stack) X
tensorial if colimit-preserving tensor functors Qcoh(X)→ Qcoh(Y ) are induced
by morphisms Y → X. Then for example affine and projective schemes are ten-
sorial ([Bra11]). More generally, in 2012 Chirvasitu and the author showed that
any quasi-compact quasi-separated scheme is tensorial ([BC14]). In the same
year, Schäppi proved that Adams stacks (i.e. geometric stacks with enough lo-
cally free sheaves) are tensorial ([Sch12a]). He even gave a classification of those
tensor categories which are equivalent to Qcoh(X) for some Adams stack X
([Sch12a],[Sch13]).

It seems to be an open problem if every algebraic stack is tensorial and to charac-
terize those tensor categories which are equivalent to Qcoh(X) for some algebraic
stack X.

This thesis aims to expand the relationship between algebraic geometry and
cocomplete tensor categories. We will find constructions with cocomplete ten-
sor categories which correspond to constructions with schemes or stacks un-
der Qcoh(−). This leads to a theory which might be called tensor categori-
cal algebraic geometry or 2-algebraic geometry which has been already intro-
duced by Chirvasitu and Johnson-Freyd ([CJF13]). In some sense this is like
Rosenberg’s noncommutative algebraic geometry with additional tensor products
(which makes it commutative) or Balmer’s tensor triangular geometry without
triangulations. The precise results will be explained in the next section.
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1.2. Results

1.2 Results

Tensoriality

A cocomplete tensor category is a symmetric monoidal category with all colimits
which commute with the tensor product in each variable (section 3.1). These
constitute a 2-category Catc⊗. The Hom-categories of cocontinuous tensor func-
tors are denoted by Homc⊗(−,−). We often restrict to linear categories over
some fixed commutative ring. We have the following adjunction (section 3.4) of
2-categories:

Stack

Qcoh

55
> Catop

c⊗

Spec
uu

Here, the 2-functor Qcoh : Stack→ Catop
c⊗ associates to a stack in the fpqc topol-

ogy its cocomplete tensor category of quasi-coherent modules and to a morphism
f its pullback functor f ∗. Its right adjoint Spec : Catop

c⊗ → Stack is defined by

Spec(C)(X) := Homc⊗
(
C,Qcoh(X)

)
.

We call the fixed points of this adjunction tensorial stacks resp. stacky tensor
categories. Hence, we get an equivalence of 2-categories

{tensorial stacks} ' {stacky tensor categories}op.

Specifically, a stack X is tensorial if

X ' Spec
(
Qcoh(X)

)
,

i.e. for every scheme Y the pullback functor

Hom(Y,X)→ Homc⊗
(
Qcoh(X),Qcoh(Y )

)
, f 7→ f ∗

is an equivalence of categories.

The following results have already appeared, but shorter proofs will be byprod-
ucts of our theory (section 5.7):

Theorem 1.1.

1. [Lur04] If X is geometric, then

Hom(Y,X)→ Homc⊗∼=
(
Qcoh(X),Qcoh(Y )

)
, f 7→ f ∗

is fully faithful. The image consists of those cocontinuous tensor functors
which preserve faithfully flatness.

3



Chapter 1. Introduction

2. [Sch12a] Every Adams stack is tensorial.

3. [BC14] Every quasi-compact quasi-separated scheme is tensorial.

The 2-category of tensorial stacks embeds fully faithfully into Catop
c⊗. If we imag-

ine cocomplete tensor categories as 2-semirings (not 2-rings) with addition ⊕ and
multiplication ⊗ (section 3.2), this says that tensorial stacks become 2-affine.
This leads to the following question, partially answered in chapter 5:

How is algebraic geometry reflected under this embedding?

We can even go further and imagine a given cocomplete tensor category as the
category of quasi-coherent modules on some “imaginary” scheme or stack. This
point of view is quite common for abelian categories in noncommutative algebraic
geometry. In particular, we will often writeOC for the unit object of a cocomplete
tensor category C. This can be combined with some kind of element notation in
section 3.3 in order to simplify calculations.

Commutative algebra

Many local notions and constructions for modules over some commutative ring,
or more generally quasi-coherent modules over some scheme, can actually be car-
ried out in an arbitrary (linear) cocomplete tensor category. In category theory
such a process is called internalization. Examples include algebras and modules
over them (section 4.1), ideals, prime ideals and affine schemes (section 4.2),
symmetric and exterior algebras (section 4.4), invertible objects (section 4.8),
locally free objects of some given rank (section 4.9), (faithfully) flat objects
(section 4.6), localizations (subsection 5.8.3), torsors (section 5.5), differentials
(section 4.5), descent theory (section 4.10) and even cohomology (section 4.11).
This is mainly the subject of chapter 4. For some of these notions this gen-
eralization is straightforward since the usual definitions only require the tensor
structure. But for example flat as well as locally free quasi-coherent modules
are usually defined locally – actually they have global replacements. Most of the
material of chapter 4 is probably known to the experts – but I do not know of
a complete treatment. Besides, chapter 4 develops the language which will be
needed throughout in chapter 5.

Here is a selection of topics we discuss in chapter 4.

1. In section 4.2 we define a ringed space SpecC(A) of prime ideals of a commu-
tative algebra object A of a presentable tensor category C (more concretely
than [Mar09],[TV09]) and prove for noetherian schemes X the reconstruc-
tion result X ∼= SpecQcoh(X)(OX).

4



1.2. Results

2. In Theorem 4.5.10 we construct a de Rham complex

B = Ω0
B/A → Ω1

B/A → Ω2
B/A → . . .

for a homomorphism A → B of commutative algebras in a cocomplete
R-linear tensor category with 2 ∈ R∗.

3. We generalize the classical Euler sequence of the tangent bundle of a pro-
jective space to arbitrary projective schemes (Theorem 4.5.13).

4. A line object L is an invertible object which is also symtrivial (section 4.3).
This seems to be the correct replacement of line bundles for tensor cate-
gories. It turns out that if s : E → L is a regular epimorphism (“global
sections generating L”), then it is automatically the coequalizer of the two
evident morphisms E⊗2 ⊗ L⊗−1 ⇒ E (Lemma 4.8.9). This will be needed
for the construction of projective tensor categories (section 5.10).

5. If V is a quasi-coherent module on a scheme such that ΛdV is invertible,
then V is locally free of rank d (Proposition 4.9.1) – this motivates a global
definition of locally free objects of rank d in a cocomplete linear tensor
category (Definition 4.9.2). A generalization of Cramer’s rule shows that
locally free objects are dualizable (Proposition 4.9.6).

Globalization

Many constructions for schemes or algebraic stacks can be translated to the realm
of cocomplete tensor categories. We call this process globalization, basically be-
cause the usual local constructions and proofs have to be replaced by global ones
(section 5.2). This will be the subject of chapter 5. The term “globalization” was
already used by Grothendieck for the generalization of commutative algebra and
algebraic geometry to topoi (which may be seen as cartesian tensor categories).

For example, let F : Sch → Sch be a functor, which thus constructs a scheme
from a given scheme. A globalization of F is a 2-functor F⊗ : Catc⊗ → Catc⊗
such that F⊗(Qcoh(X)) ' Qcoh(F (X)), as in the following diagram:

Sch

Qcoh

��

F // Sch

Qcoh

��

Catop
c⊗

F⊗ // Catop
c⊗

Besides, if F has some universal property which is definable in the language of
cocomplete tensor categories (consisting of objects, morphisms, colimits, tensor

5



Chapter 1. Introduction

products), we require that F⊗ satisfies the corresponding universal property, but
within all cocomplete tensor categories.

We can also look at globalizations for more general constructions by allowing
additional inputs such as

• quasi-coherent modules or algebras on the given scheme,

• more than one scheme,

• morphisms of schemes,

• algebraic stacks instead of schemes.

If we have no parameter at all, this means that given a scheme with a universal
property or a moduli stack X we want Qcoh(X) to become a corresponding
“moduli tensor category”. As a general rule, globalized constructions of schemes
preserve tensorial schemes. For the author this was the original motivation for
globalization, because it made possible to prove that projective schemes are
tensorial ([Bra11]).

Let us list a variety of examples.

Basic examples

Proposition 1.2 (Globalization of the terminal scheme, Remark 3.1.14). If
R is a commutative ring, then Spec(R) is a terminal object in the category
of R-schemes. Its globalization is the cocomplete tensor category of R-modules
Mod(R) ' Qcoh(Spec(R)) which is in fact a 2-initial object in Catc⊗/R.

Proposition 1.3 (Globalization of Spec, section 5.3). Let S be a scheme and A
be a quasi-coherent algebra on S. The spectrum SpecS(A) globalizes to Mod(A):

• There is an equivalence of cocomplete tensor categories

Qcoh(SpecS(A)) ' Mod(A).

• For schemes T there is a bijection

Hom(T, SpecS(A)))

||o

{(f, h) : f ∈ Hom(T, S), h ∈ HomCAlg(T )(f
∗(A),OT )}.

• If C is a cocomplete tensor category and A is a commutative algebra in C,

6



1.2. Results

then Mod(A) enjoys the universal property

Homc⊗(Mod(A),D)

|o

{(F, h) : F ∈ Homc⊗(C,D), h ∈ HomCAlg(D)(F (A),OD)}.

for cocomplete tensor categories D.

This leads to a globalization of affine schemes (Example 5.2.1) and of closed im-
mersions (Corollary 5.3.9). It also leads to the notion of an affine tensor functor
(Definition 5.3.5). Affine tensor functors these are closed under composition and
cobase changes (Corollary 5.3.7).

Proposition 1.4 (Globalization of open subschemes, Proposition 5.6.3). Let
i : U ↪→ X be a quasi-compact open immersion of schemes. Then a morphism
f : Y → X factors through i if and only if f ∗ → f ∗i∗i

∗ is an isomorphism. This
globalizes as follows: Let i∗ : C → D be a cocontinuous tensor functor with a
fully faithful right adjoint i∗ : D → C. Then there is an equivalence of categories
between cocontinuous tensor functors D → E and cocontinuous tensor functors
F : C → E with the property that F → Fi∗i

∗ is an isomorphism.

Proposition 1.5 (Globalization of Coproducts I, Example 5.1.20). If (Xi) is a
family of schemes, then their disjoint union

∐
iXi is a coproduct. If (Ci) is a

family of cocomplete tensor categories, we can construct their product
∏

i Ci in
the obvious way. If Ci = Qcoh(Xi) for schemes Xi, then there is an equivalence
of cocomplete tensor categories

∏
iQcoh(Xi) ' Qcoh(

∐
iXi).

Proposition 1.6 (Globalization of Coproducts II, Proposition 5.9.10). If (Xi)
is a family of schemes, their disjoint union tiXi satisfies the following universal
property: A morphism Y → tiXi corresponds to a decomposition Y = tiYi and
a family of morphisms fi : Yi → Xi. We globalize this: If (Ci) is a family of
cocomplete tensor categories, then their product

∏
i Ci has the universal property

that the category of cocontinuous tensor functors
∏

i Ci → D is equivalent to the
category of decompositions D '

∏
iDi (which may be classified via systems of

orthogonal idempotents) and a family of cocontinuous tensor functors Ci → Di.

This implies that tensorial stacks are closed under arbitrary coproducts (Corol-
lary 5.9.11).

Projective geometry

Let S be a scheme and A be some N-graded quasi-coherent algebra on S such
that A1 is of finite presentation over S and A is generated by A1. Then ProjS(A)

7



Chapter 1. Introduction

is a scheme with the universal property that Hom(T,ProjS(A)) identifies with
the set of triples (f,L, s) consisting of a morphism f : T → S, a line bundle L
on T and a surjective homomorphism of graded algebras s : f ∗(A) →

⊕
n L⊗n

(see [Sta13, Tag 01O4]).

Theorem 1.7 (Globalization of the Proj construction, Definition 5.10.2). Let C
be a cocomplete tensor category, A a commutative N-graded algebra in C which
is generated by A1. We define Proj⊗C (A) as a cocomplete tensor category with
the following universal property: If D is a cocomplete tensor category, then
Homc⊗(Proj⊗C (A),D) is naturally equivalent to the category of triples (F,L, s),
where F : C → D is a cocontinuous tensor functor, L ∈ D is a line object
and s : F (A) →

⊕
n L⊗n is a homomorphism of graded algebras in C such that

s1 : F (A1)→ L is a regular epimorphism in D.

1. If C is presentable, then Proj⊗C (A) exists (Theorem 5.10.6).

2. If C = Qcoh(S) for some scheme S, then (Theorem 5.10.11)

Proj⊗Qcoh(S)(A) ' Qcoh
(
Proj(A)

)
.

In the special case A = Sym(E) for some (locally free) E ∈ C one gets a globaliza-
tion of projective bundles P⊗C (E) relative to C (Definition 5.10.5), in particular a
projective n-space PnC := P⊗C (On+1

C ). Projective tensor functors are closed under
cobase change (Proposition 5.10.15).

Theorem 1.8 (Globalization of blow-ups, Theorem 5.10.20). Let C be a pre-
sentable tensor category and let I ⊆ OC be an ideal. The blow-up of C at I is a
2-initial presentable tensor category BlI(C) equipped with a cocontinuous tensor
functor P : C → BlI(C) such that P (I) · OBlI(C) is a line object. It exists and is
given by

BlI(C) = Proj⊗C
(⊕
n≥0

In
)
.

If C = Qcoh(X) for some scheme X and I is of finite presentation, we have

Qcoh
(
BlI(X)

)
' BlI

(
Qcoh(X)

)
.

Theorem 1.9 (Globalization of the Segre embedding, Corollary 5.10.25). Let C
be a cocomplete tensor category and E1, E2 ∈ C. Then there is an equivalence of
cocomplete tensor categories (using element notation)

P⊗C (E1)tCP⊗C (E2) ' P⊗C (E1⊗E2)/((a⊗ b) · (c⊗d) = (a⊗d) · (c⊗ b))a,c∈E1, b,d∈E2 .

Theorem 1.10 (Corollary 5.10.28, Globalization of the Veronese embedding).
Let C be a cocomplete tensor category, E ∈ C and d ∈ N+. Then there is an
equivalence cocomplete tensor categories (using element notation)

P⊗C (E) ' P⊗C (Symd(E))/((a1a2 . . . ad) · (b1b2 . . . bd) = (b1a2 . . . ad)(a1b2 . . . bd)).

8

http://stacks.math.columbia.edu/tag/01O4


1.2. Results

Theorem 1.11 (Globalization of Grassmannians and their Plücker embedding,
Theorem 5.10.32). Let R be a Q-algebra, C be an R-linear cocomplete tensor
category and E ∈ C. Then Grass⊗d (E) is a cocomplete tensor category with the
following universal property: If D is an R-linear cocomplete tensor category, then
Homc⊗/R(Grass⊗d (E),D) is equivalent to the category of triples (F, V, t), where
F : C → D is a cocontinuous tensor functor, V ∈ D is locally free of rank d and
t : F (E)→ V is a regular epimorphism.

1. When C is presentable, then Grass⊗d (E) exists and is given by

P⊗C (Λd(E))/(0 =
d∑

k=0

(−1)k(a1 ∧ . . . ∧ ad−1 ∧ bk) · (b0 ∧ . . . ∧ b̂k ∧ . . . ∧ bd)).

2. If C = Qcoh(X) for some scheme X and if E is of finite presentation, then

Grass⊗d (E) ' Qcoh
(
Grassd(E)

)
.

Further examples

Theorem 1.12 (Globalization of fiber products I, Theorem 5.11.8). Let S be
a quasi-compact quasi-separated base scheme. Let X → S be a quasi-projective
morphism and Y → S be any quasi-compact quasi-separated morphism. Then

Qcoh(S) //

��

Qcoh(Y )

��

Qcoh(X) // Qcoh(X ×S Y )

is a 2-pushout in Catc⊗.

The proof is a combination of the globalization of projective morphisms and
immersions. The following result is an attempt to get rid of the quasi-projective
assumption.

Theorem 1.13 (Globalization of fiber products II, Theorem 5.11.16). Let X, Y
be schemes of finite type over a field K. If C is a cocomplete K-linear tensor
category, then the canonical functor

Homc⊗/K(Qcoh(X ×K Y ), C)→ Homc⊗/K(Qcoh(X), C)× Homc⊗/K(Qcoh(Y ), C)

is fully faithful. The essential image consists of those pairs (F,G) with the fol-
lowing property: Given an exact sequence of external tensor products

A′ �B′ → A�B → C �D → 0

9



Chapter 1. Introduction

of coherent sheaves, then the induced sequence

F (A′)⊗G(B′)→ F (A)⊗G(B)→ F (C)⊗G(D)→ 0

is also exact in C.

Proposition 1.14 (Globalization of BGm, Corollary 5.4.5). The classifying
stack BGm over some base S has the following universal property: A mor-
phism T → BGm corresponds to a morphism T → S together with a line
bundle on T . This globalizes as follows: If C is a cocomplete tensor category,
then the category of Z-graded objects grZ(C) is a cocomplete tensor category
with the following universal property: The category of cocontinuous tensor func-
tors grZ(C) → D is equivalent to the category of cocontinuous tensor functors
F : C → D equipped with a line object L ∈ D. If C = Qcoh(S) for some scheme
S, then grZ(Qcoh(S)) ' Qcoh(BGm).

Theorem 1.15 (Globalization of classifying stacks, Corollary 5.5.11). If G is a
finite group, then the classifying stack BG has the universal property

Hom(X,BG) = Tors(G,X) ' Tors(G,Qcoh(X)).

This globalizes to Qcoh(BG) ' Rep(G) (representations of G), in fact we have

Homc⊗(Rep(G), C) ' Tors(G, C).

for cocomplete tensor categories C.

The following is probably the most non-trivial result in this thesis.

Theorem 1.16 (Globalization of tangent bundles, Theorem 5.12.13). If S is a
base scheme, the tangent bundle functor T : Sch /S → Sch /S is right adjoint
to the thickening functor Sch /S → Sch /S, X 7→ X[ε]/ε2. We globalize this by
defining T⊗ : Catc⊗/C → Catc⊗/C for a linear cocomplete tensor category C by the
adjunction

Homc⊗/C(T
⊗(D/C), E) ' Homc⊗/C(D, E [ε]/ε2).

If D is projective over C, say D = P⊗C (E), then T⊗(D/C) exists and is given by
Mod(Sym Ω1), where Ω1 ∈ D is defined via the Euler sequence

Λ3(E)⊗O(−3)→ Λ2(E)⊗O(−2)→ Ω1 → 0.

Hence, if f : X → S is a projective morphism, we have

T⊗
(
Qcoh(X)/Qcoh(S)

)
' Qcoh

(
T (X/S)

)
.

As an application, we define formally unramified cocontinuous tensor functors
and prove that a projective morphism f : X → S is formally unramified if and
only if f ∗ : Qcoh(S)→ Qcoh(X) is formally unramified (Corollary 5.12.19).

10
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More on cocomplete tensor categories

We may even abstract from algebraic geometry and study cocomplete tensor
categories in their own right.

In section 5.1 we discuss basic free constructions of (cocomplete) tensor cat-
egories. For example, if I is a tensor category and C is a cocomplete tensor
category, we may endow the category of functors Iop → C with the Day convo-
lution

F ⊗G :=

∫ p∈I
F (p)⊗G(q)⊗ Hom(−, p⊗ q)

and get a cocomplete tensor category ÎC satisfying the universal property (Propo-
sition 5.1.8)

Homc⊗(ÎC,D) ' Homc⊗(C,D)× Hom⊗(I,D).

This includes the free cocompletion of a tensor category (Corollary 5.1.10), but
also gradings (section 5.4). For I = N we see that grN(Mod(R)) is the free
cocomplete R-linear tensor category containing a symtrivial object – this surely
has no pendant in algebraic geometry in contrast to grZ(Mod(R)).

According to James Dolan every well-behaved cocomplete tensor category should
be made up from the initial one (Set) by (transfinite) iterations of a) free co-
complete tensor categories, b) directed colimits and c) module categories over
“coherent” symmetric monoidal monads. We study the latter in chapter 6 on
a fixed cocomplete tensor category C (this has some overlap with [Sea13] which
appeared at the same time). The special case C = Set has already been consid-
ered by Durov in his thesis [Dur07] who defined generalized commutative rings
as finitary symmetric monoidal monads on Set. Therefore we might think of
coherent symmetric monoidal monads on C as generalized commutative algebras
in C. They produce module categories:

Theorem 1.17 (Theorem 6.5.3). If T is a coherent symmetric monoidal monad
on a cocomplete tensor category C, then Mod(T ) carries the structure of a co-
complete tensor category and the free functor F : C → Mod(T ) becomes a cocon-
tinuous tensor functor.

The coherence condition simplifies in the closed case (Corollary 6.5.4). It is even
automatic when T preserves reflexive coequalizers (Proposition 6.4.14). In that
case the following universal property holds:

Theorem 1.18 (Theorem 6.5.7). Let T be a symmetric monoidal monad on a co-
complete tensor category C, which preserves reflexive coequalizers. Then Mod(T )
is a cocomplete tensor category and F : C → Mod(T ) is a cocontinuous tensor
functor equipped with a lax symmetric monoidal right action FT → F , induc-
ing for every cocomplete tensor category D an equivalence of categories between

11
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Homc⊗(Mod(T ),D) and the category of pairs (G, ρ), where G ∈ Homc⊗(C,D)
and ρ : GT → G is a lax symmetric monoidal right action.

This universal property offers a simplification if we work with left adjoint tensor
functors throughout (Theorem 6.5.8).

The cocomplete tensor categories of commutative monoids, abelian groups, R-
modules, pointed sets or spaces, and even complete partial orders, as well as their
universal properties, are some examples of how these theorems can be applied.

The case of idempotent monads is connected to localization theory which we
develop in section 5.8. It is mainly motivated by the construction of projective
tensor categories. A typical example is the construction of the tensor category
of sheaves from the tensor category of presheaves: One sheafifies the underlying
tensor product. In general the sheafification is replaced by a reflector which is
constructed as a transfinite composition of a suitable endofunctor.

Theorem 1.19 (Localization, Theorem 5.8.11). Let S = (si : Mi → Ni)i∈I be a
family of morphisms in a presentable tensor category C. Then

C[S−1] := {A ∈ C : Hom(Ni, A)
s∗i−→ Hom(Mi, A) is an isomorphism for all i}

is reflective in C, say with reflector R : C → C[S−1]. Then C[S−1] becomes a
presentable tensor category with unit R(OC) and tensor product

M ⊗C[S−1] N := R(M ⊗N).

Besides, R : C → C[S−1] is a universal cocontinuous tensor functor with the
property that R(si) is an isomorphism for all i ∈ I.

Localization allows us to solve many other universal problems for cocomplete
tensor categories (Theorem 5.8.12), for example making two given morphisms
equal, making a morphism an epimorphism, making a diagram right exact, mak-
ing an object zero or making it invertible (Corollary 5.8.19). We discuss many
examples in subsection 5.8.2. It also shows that every ideal of C (a full subcat-
egory closed under certain operations) is actually the kernel of a cocontinuous
tensor functor (Theorem 5.8.34).

12



1.3. Acknowledgements

1.3 Acknowledgements

First of all I would like to thank my advisor Christopher Deninger for his cordial
support during my graduate studies. He gave me as much freedom as I needed
in order to complete this project.

For various fruitful discussions connected to the topics of this thesis I would like to
express my thanks to Leo Alonso, David Ben-Zvi, Alexandru Chirvasitu, Anton
Deitmar, Christopher Deninger, James Dolan, Torsten Ekedahl, Ofer Gabber,
Theo Johnson-Freyd, Anders Kock, Zhen Lin Low, Jacob Lurie, Laurent Moret-
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Chapter 2

Preliminaries

2.1 Category theory

1. We assume that the reader is familiar with some basics of category theory
(see [ML98], [Bor94a]). The Yoneda Lemma will be used all the time. As for
the notation, we will denote categories by C,D, E , . . . , objects by A,B,C, . . . (or
M,N, . . . in case of module-like categories) and functors by F,G,H, . . . . We will
often abbreviate idA by A.

2. Let us recall some well-known notions which are important for us: A category
is cocomplete if it admits all small colimits. Usually we omit the word “small”.
Two types of colimits are especially important, since they generate all other
ones, namely coproducts, which we will call direct sums and denote by ⊕, and
coequalizers. A diagram of morphisms of the type

A⇒ B → C

is called exact, or a coequalizer diagram, if it exhibits B → C as a coequalizer of
the two morphisms A ⇒ B. In other words, for every T ∈ C, which we call a
test object, the diagram of sets

Hom(C, T )→ Hom(B, T ) ⇒ Hom(A, T )

is exact i.e. an equalizer diagram of sets.

3. If A is an object of a cocomplete category and I is a set, we will often write
I ⊗ A for the direct sum

⊕
i∈I A.

4. A functor F : C → D is called cocontinuous if it preserves all colimits, i.e. for
every diagram {Ai}i∈I in C the canonical morphism

colimi∈I F (Ai)→ F (colimi∈I Ai)

is an isomorphism. If F preserves at least finite colimits, we say that F is
finitely cocontinuous or right exact. Observe that a right exact functor preserves

14



2.1. Category theory

epimorphisms, since A→ B is an epimorphism if and only if

A //

��

B

��

B // B

is a pushout square. By duality we obtain the notion of lext exact functors. A
functor is called exact if it is left exact and right exact. A functor is finitary
when it preserves directed colimits.

5. We will denote any initial object of a category by 0. Of course a cocontinuous
functor preserves initial objects.

6. For cocomplete categories C,D the category of cocontinuous functors C → D
with morphisms of functors is denoted by Homc(C,D).

7. In an equivalence of categories, we do not speak of quasi-inverse functors,
but just of inverse functors, since it is understood that interesting functors are
almost never inverse to each other on the nose.

8. We will also need some bits of 2-category theory (see [Str96, Section 9]). We
will change the terminology a bit and call bicategories 2-categories (not assumed
to be strict) and pseudo-functors 2-functors. By adjoints between 2-functors we
mean of course 2-adjoints. Bilimits (resp. bicolimits) are called 2-limits (resp.
2-colimits).

9. A category is called discrete if it only contains identity morphisms. A category
equivalent to a discrete category is called essentially discrete. This means that
every morphism is an isomorphism and that every two parallel morphisms agree.

10. Let us recall the tensor product of functors (see [CJF13, 2.4] or [ML98,
IX.6]). Given functors ⊗ : C × D → E , F : Iop → C and G : I → D, we may
define the tensor product F ⊗I G ∈ E as an object which represents the functor
E → Set which maps T ∈ E to the set of all families of maps (F (i)⊗G(i)→ T )i∈I
which are dinatural : For every morphism i→ j in I the diagram

F (j)⊗G(i) //

��

F (j)⊗G(j)

��

F (i)⊗G(i) // T

commutes. We have an equivalent expression as a coend

F ⊗I G :=

∫ i∈I
F (i)⊗G(i).

15
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If I is small and E is cocomplete, we may construct F ⊗I G by taking the
coequalizer of the obvious morphisms⊕

i→j

F (j)⊗G(i) ⇒
⊕
i

F (i)⊗G(i).

Todd Trimble and Anton Fetisov have given very enlightening introductions to
coends at http://mathoverflow.net/questions/114703.

11. Although we do not need general enriched category theory ([Kel05]), we
will consider the following special case: Let R be a commutative ring. An R-
linear category is an Mod(R)-enriched category, i.e. a category whose hom-sets
are actually R-modules and for which the composition is R-bilinear. An R-
linear functor between R-linear categories F : C → D is a functor between the
underlying categories such that the map Hom(A,B) → Hom(F (A), F (B)) is
R-linear for all objects A,B ∈ C. We obtain the category of R-linear functors
Hom/R(C,D). Its subcategory of cocontinuous R-linear functors is denoted by
Homc/R(C,D).

12. In an R-linear category, an object A is initial if and only if idA = 0. Since
the latter property is invariant under dualization, it follows that A is initial if
and only if A is terminal. In particular, every cocomplete R-linear category has
a zero object 0.

13. If A,B are objects of an R-linear category, then their direct sum A⊕ B (if
it exists) is actually a biproduct and biproducts are preserved by any Z-linear
functor. Conversely, since the sum of two morphisms f, g : A→ B is given by

A
∆−→ A× A ∼= A⊕ A (f,g)−−→ B,

we see that each functor between Z-linear categories with direct sums which
preserves direct sums is Z-linear.

14. Even if no zero object exists, a sequence of morphisms in a linear category

A
i−→ B

p−→ C → 0

is called exact if p is a cokernel of i. Dually,

0→ A
i−→ B

p−→ C

is called exact if i is a kernel of p. Finally, we call a sequence of the form

0→ A
i−→ B

p−→ C → 0

exact if i is a kernel of p and p is a cokernel of i. Remark that these definitions
make sense in any linear category – we do not have to restrict to abelian categories
([BB04, Definition 4.1.5]).
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2.2. Algebraic geometry

15. Every cocomplete R-linear category C is tensored over Mod(R), i.e. for every
M ∈ Mod(R) and A ∈ C there is some M ⊗R A ∈ C satisfying the adjunction

HomC(M ⊗R A,B) ∼= HomMod(R)(M,HomC(A,B)).

Since left adjoints may be defined objectwise ([ML98, IV.1, Corollary 2]) and
are cocontinuous, and every R-module is a cokernel of a map between free R-
modules, it suffices to take R⊕X ⊗R A = A⊕X for every set X. See also [SR72,
II.1.5.1].

16. Finally let us mention that the tensor product C ⊗R D of two R-linear
categories C,D has objects (A,B) with A ∈ C and B ∈ C and hom modules

HomC⊗RD((A,B), (C,D)) := HomC(A,C)⊗R HomD(B,D).

Composition and identity are defined in an evident manner. Notice that R-
linear functors C ⊗R D → E correspond to R-bilinear functors C × D → E , i.e.
to functors which are R-linear in each variable.

2.2 Algebraic geometry

1. Since this thesis is aimed at translating some foundational aspects of algebraic
geometry to cocomplete tensor categories, we will not need much algebraic ge-
ometry which goes beyond the basics as developed in the first chapters of EGA
([GD71],[GD61a]) and descent theory for fpqc morphisms and quasi-coherent
modules, for which we refer to [Vis05]. Note that the definition of fqpc coverings
there is slightly weaker than faithfully flat and quasi-compact, thereby including
arbitrary Zariski coverings. We refer to [Vis05] for the theory of stacks in general
and to [LMB00] for algebraic stacks (also known as Artin stacks).

2. Many results for quasi-coherent modules on schemes directly translate to
algebraic stacks, because quasi-coherent modules satisfy fpqc descent and an
algebraic stack is really just a stack which is (in particular) fpqc-locally a scheme.
In fact, one may generalize the notion of an algebraic stack and only require a flat
instead of a smooth cover from an affine scheme ([Nau07, Section 2]). Therefore,
we sometimes also include algebraic stacks into our statements. Those readers
not interested in algebraic stacks might just read over this.

3. We will use the following abbreviations.

qc quasi-compact
qs quasi-separated
ss semi-separated ([TT90, B.7])

17



Chapter 2. Preliminaries

Note that the class of qc qs schemes is the smallest class of schemes which
contains the affine schemes and is closed under finite gluings – this explains why
this finiteness condition works so well for the general theory. For example if
f : X → Y is qc qs, then the induced direct image functor f∗ preserves quasi-
coherent modules and commutes with directed colimits – the same is even true
for all higher direct images, in particular for cohomology ([GD71, Proposition
6.7.1], [TT90, B.6]).

4. Following Lurie we also say geometric instead of qc ss ([Lur04]). Thus, an
algebraic stack X is geometric if there is a smooth (or just flat) surjective affine
morphism π : P → X such that P is an affine scheme. We refer to [Nau07,
Section 3] for an equivalent description via flat groupoids in affine schemes, or
equivalently flat Hopf algebroids in commutative rings, in which quasi-coherent
sheaves correspond to comodules. See also [AJPV13] for the corresponding for-
malism of pushforward and pullback functors.

5. The category of quasi-coherent modules (we will not say sheaves in order to
emphasize the global point of view) on X will be denoted by Qcoh(X), its full
subcategory of quasi-coherent sheaves of finite presentation ([GD71, Chapitre 0,
5.2.5]) by Qcohfp(X). Thus for noetherian X this is the category of coherent
sheaves.

The following observations are probably well-known.

Lemma 2.2.1 (Quasi-coherence of Hom sheaves). Let X be a scheme and M,N
be two OX-modules. If M is of finite presentation and N is quasi-coherent, then
the OX-module Hom(M,N) (“sheaf hom”) is quasi-coherent.

See also [GD60, Proposition 9.1.1] and [GD71, Corollaire 5.3.7] for a special case.

Proof. We may work locally on X and therefore assume that there is an exact
sequence

OpX → O
q
X →M → 0.

Applying Hom(−, N) gives an exact sequence

0→ Hom(M,N)→ N q → Np.

The claim follows since Qcoh(X) ⊆ Mod(X) is closed under kernels and direct
sums.

The following Lemma generalizes [GD71, 5.3.10].

Lemma 2.2.2 (Pairings). Let M,N,P be three quasi-coherent modules on a
scheme X and ψ : M ⊗N → P a pairing. Assume we are given a quasi-coherent
submodule Q ⊆ P . Define a submodule M ′ ⊆M by

Γ(U,M ′) =
{
m ∈ Γ(U,M) : ∀V ⊆ U, ∀n ∈ Γ(V,N), ψ(m|V ⊗ n) ∈ Γ(V,Q)

}
.
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In other words, M ′ is the largest submodule of M whose pairing with N by means
of ψ lands inside Q ⊆ P . If N is of finite type, then M ′ is quasi-coherent.

Proof. We may work locally on X and therefore assume that N is a quotient
of OnX for some n ∈ N. But then we may clearly replace ψ by the pairing
M ⊗OnX →M ⊗N → P and therefore assume N = OnX . Then ψ corresponds to
a homomorphism M → P n and M ′ is the kernel of M → P n → P n/Qn. Hence,
M ′ is quasi-coherent.

Lemma 2.2.3 (Pullbacks of closed subschemes). Let f : X → Y be a morphism
of schemes and let I ⊆ OY be a quasi-coherent ideal. Consider the induced ideal
J = f ∗I · OX ⊆ OX , the image of f ∗I → f ∗OY ∼= OX . Then f ∗(OY /I) ∼= OX/J
and we have an equality of sets f−1(V (I)) = V (J).

Proof. The exact sequence f ∗I → f ∗OY → f ∗(OY /I)→ 0 yields the first state-
ment. Using [GD71, Chap. 0, 5.2.4.1], it follows

f−1(V (I)) = f−1(supp(OY /I)) = supp(f ∗(OY /I)) = supp(OX/J) = V (J).

Lemma 2.2.4 (Universal property of immersions). Let i : Y → X be an im-
mersion of schemes. Then a morphism f : Z → X factors (uniquely) through i
if and only if f ∗ : Qcoh(X)→ Qcoh(Z) maps every homomorphism, which is an
isomorphism on Y , to an isomorphism.

Proof. If f = ig for some g : Z → Y and α is a homomorphism on X such
that i∗α is an isomorphism, then g∗i∗α ∼= f ∗α also is an isomorphism. For the
converse, it suffices to treat two cases:

1. Assume that i is a closed immersion, say Y = V (I) for some quasi-coherent
ideal I ⊆ OX . ThenOX → OX/I is an isomorphism on V (I), hence f ∗ maps it to
an isomorphism. This implies that f ∗I → f ∗OX = OZ vanishes, or equivalently
that the adjoint

I → OX
f#−→ f∗OZ

vanishes, i.e. I ⊆ ker(f#). But this means that f factors uniquely through i.

2. Assume that i is an open immersion. Let I be the vanishing ideal of the
closed complement X \Y ⊆ X. Then OX/I vanishes on Y . Hence f ∗(OX/I) = 0
vanishes. It follows

∅ = supp f ∗(OX/I) = f−1(supp(OX/I)) = f−1(X \ Y ),

so that f factors through Y as a set map. Since i is an open immersion, this
means that f factors through i.

19



Chapter 2. Preliminaries

Morphisms of schemes are determined by their pullback functors:

Lemma 2.2.5. Let f, g : X → Y be two morphisms of schemes such that there is
an isomorphism of functors f ∗ ∼= g∗ : Qcoh(Y )→ Qcoh(X). Then the underlying
maps of f and g coincide. If Y is quasi-separated, we even have f = g.

Proof. For a closed subset Z ⊆ Y with vanishing ideal I ⊆ OY we observe
f−1(Z) = supp(f ∗(OY /I)) = supp(g∗(OY /I)) = g−1(Z). Since Y is a T0-
space, every singleton {y} is an intersection of subsets which are open or closed.
Therefore, f−1({y}) = g−1({y}). This proves f = g.

Now assume that X, Y are affine. Then f, g correspond to ring homomorphisms
f#, g# : R → S such that the induced functors Mod(R) → Mod(S) are isomor-
phic. Evaluation at the R-module R yields an isomorphism of (R, S)-bimodules

f#SidS
∼= g#SidS . This implies f# = g#.

Let Y be quasi-separated. Let x ∈ X and y := f(x) = g(x). We want to prove
that f#

x , g
#
x : OY,y → OX,x are equal. By the affine case, it suffices to prove this

for the pullback functors. Consider the morphism iy : Spec(OY,y) → Y . Since
Y is quasi-separated, (iy)∗ preserves quasi-coherence. Thus, if M ∈ Mod(OY,y),
then we may construct N := (iy)∗M ∈ Qcoh(Y ) with Ny = M . It follows

(f#
x )∗M ∼= (f#

x )∗Ny
∼= (f ∗N)x ∼= (g∗N)x ∼= (g#

x )∗Ny
∼= (f#

x )∗M.

Corollary 2.2.6. Let f : X → Y be a morphism of quasi-separated schemes. If
f ∗ is an equivalence of categories, then f is an isomorphism.

Proof. By [Bra11, Theorem 5.4] there is an isomorphism g : X → Y such that
f ∗ ∼= g∗. But then f = g by Lemma 2.2.5.

Probably one can prove Corollary 2.2.6 more directly without using Rosenberg’s
Reconstruction Theorem. The following is Definition 6.1.1 in [Sch12a].

Definition 2.2.7 (Strong resolution property). A scheme X (or more generally,
an algebraic stack) is said to have the strong resolution property if the locally
free OX-modules constitute a generator of Qcoh(X).

Many schemes have the strong resolution property, for example divisorial schemes
([Bor63]) – including projective schemes and any separated noetherian locally
factorial scheme ([GI71, Exp. II, Proposition 2.2.7]), as well as any separated
algebraic surface ([Gro12]). For further results we refer to [Tot04] and [Gro10].
If X is geometric, then X has the strong resolution property if and only if X is
an Adams stack, see section 2.4.
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2.3 Presentability

Let λ be a regular cardinal. We refer to [AR94] for the theory of locally λ-
presentable categories. Following Lurie ([Lur09],[Lur11]) we drop the word “lo-
cally” here (although we do not mean presentable objects in the category of
categories). Thus, a λ-presentable category is a cocomplete category which has a
set of λ-presentable objects such that every object is a λ-directed colimit of these
λ-presentable objects. Here, an object A is called λ-presentable if Hom(A,−)
preserves λ-directed colimits. For λ = ℵ0 one also speaks of finitely presentable
objects and finitely presentable categories. In the category of modules over some
ring, an object is λ-presentable if and only if it can be written in terms of < λ
many generators and < λ many relations ([AR94, Theorem 3.12]). In particular,
a module is finitely presentable if and only if it is of finite presentation in the
usual sense. More generally, we have the following result:

Proposition 2.3.1 (Quasi-coherent modules of finite presentation). Let X be a
qc qs scheme and M be a quasi-coherent module on X. If M is of finite presen-
tation in the usual sense of algebraic geometry, then M is a finitely presentable
object. The converse also holds.

Proof. If M is of finite presentation and {Ni} is a directed diagram of quasi-
coherent modules on X, then we have to show that

colimi Hom(M,Ni)→ Hom(M, colimiNi)

is an isomorphism. Since this is the map of global sections associated to the
homomorphism of sheaves

colimi Hom(M,Ni)→ Hom(M, colimiNi),

we may work locally on X. But we have already discussed the affine case above.
Conversely, let M be a finitely presentable object in Qcoh(X). Since X is qc
qs, we have M = colimiMi for a directed system of quasi-coherent modules of
finite presentation ([GD71, Corollaire 6.9.12]). It follows that the identity of M
factors through some Mi, i.e. that M is a direct summand of Mi. Clearly then
M is also of finite presentation.

Remark 2.3.2. If X is an arbitrary scheme, then Qcoh(X) is λ-presentable for
some suitable large regular cardinal λ. This follows from a result by Gabber
[Sta13, Tag 077K] and [AR94, Theorem 1.70]. If X is a geometric stack, then
Qcoh(X) is presentable (which can be seen from the equivalence to comodules).
It is a delicate question when Qcoh(X) is actually finitely presentable:

Proposition 2.3.3. Let X be a geometric stack. Each of the following con-
ditions implies that every quasi-coherent module on X is a directed colimit of
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quasi-coherent modules of finite presentation. Also, then Qcoh(X) is finitely
presentable and the finitely presentable objects coincide with the quasi-coherent
modules of finite presentation.

1. X is Deligne-Mumford.

2. X has the strong resolution property.

3. X is noetherian.

4. X is a scheme.

Proof. 1. follows from [Ryd13, Theorem A, Proposition 2.9], 2. is a consequence
of Corollary 2.4.3 below, 3. is easy since coherent modules are stable under
submodules ([Lur04, Lemma 3.9]) and 4. follows from Proposition 2.3.1. The
equivalence between finitely presentable and of finite presentation follows as in
Proposition 2.3.1.

Proposition 2.3.4 (Properties of presentable categories). A λ-presentable cat-
egory C enjoys the following properties:

1. C is complete and cocomplete.

2. C is wellpowered and co-wellpowered.

3. C has (regular epi,mono)-factorizations.

4. λ-directed colimits are exact.

5. Any cocontinuous functor C → D is a left adjoint.

Proof. For 1. and 2. see [AR94, Remark 1.56, Theorem 1.58]. For 3. see [AR94,
Proposition 1.61]. For 4. see [AR94, Proposition 1.59]. 5. Since C is presentable,
C has a generating set and is co-wellpowered, so that we may invoke Freyd’s
Special Adjoint Functor Theorem ([ML98, V.8]).

2.4 Density and Adams stacks

We refer to [ML98, Chapter X] for the notions of Kan extensions and density
for usual categories. Let C,D be cocomplete R-linear categories, S ⊆ C be a full
subcategory, which we assume to be small. Actually it suffices to demand that
S is essentially small, i.e. equivalent to a small category. Let F : S → D be
an R-linear functor. Then its left Kan extension as an R-linear functor ([Kel05,
Chapter 4]) is the R-linear functor F̃ : C → D given as

F̃ (M) =

∫ A∈S
Hom(A,M)⊗R F (A).
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It satisfies F̃ |S ∼= F . In general, it may differ from the left Kan extension of the
underlying functor of F (which forgets about the R-linear structure), which is
given by

M 7→ colimA→M,A∈S F (A).

In fact, the latter functor has no reason to be R-linear at all! But in some cases
these two left Kan extensions agree, as is shown in the following Lemma.

Lemma 2.4.1. Let C,D be cocomplete R-linear categories and S ⊆ C be a full
essentially small subcategory with the following property:

1. For all M ∈ C and all A,B ∈ S/M , there is some C ∈ S/M with mor-
phisms A → C and B → C in S/M , as in the following commutative
diagram:

A
~~ !!

C //M

B

`` ==

For example, this holds when S is closed under direct sums in C. Then, for every
R-linear functor F : S → D the underlying functor of the left Kan extension
to C of F as an R-linear functor coincides with the left Kan extension of the
underlying functor of F .

In other words, we have an isomorphism

colimA→M,A∈S F (A) ∼=
∫ A∈S

hom(A,M)⊗R F (A).

In particular: S is dense in C as an R-linear subcategory if and only if S is dense
in C as a subcategory.

Proof. A morphism from the colimit on the left to some test object T corresponds
to a family of morphisms σ : F (A) → T induced by σ : A → M , A ∈ S, with
the compatibility condition σ ◦ F (α) = σ ◦ α for morphisms α : A′ → A in
S. A morphism from the coend to T corresponds to such a family with the
additional property that σ 7→ σ is R-linear. But this is automatic: If r ∈ R,
the compatibility condition for the corresponding morphism r : A → A shows
that r · σ = r · σ. For additivity, choose σ, σ′ : A → B. By 1. there is some
τ : C → M with C ∈ S and morphisms α, β : A → C such that τ ◦ α = σ and
τ ◦ β = σ′. It follows

σ + σ′ = τ ◦ F (α) + τ ◦ F (β) = τ ◦ F (α + β) = τ ◦ (α + β) = σ + σ′.
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Lemma 2.4.2. Let X be a scheme (or more generally an algebraic stack). Let
S ⊆ Qcoh(X) be a full subcategory. Assume that the following holds:

1. The condition of the previous Lemma.

2. S generates Qcoh(X): For all M ∈ Qcoh(X) there is a family of objects
Ai ∈ S and an epimorphism

⊕
iAi →M .

Then S is dense in Qcoh(X), both in the usual and the R-linear sense.

Proof. We have to prove for M ∈ Qcoh(X) that the canonical homomorphism

θ : colimA→M,A∈S A→M

is an isomorphism on X. By 2. it is an epimorphism. Choose an fpqc covering
{Xi → X} with affine schemes Xi. It suffices to prove that each θ|Xi is a
monomorphism in Qcoh(Xi), or equivalently that it is injective on sections on
Xi. We need two observations first:

A. If σ : A → M is some homomorphism with A ∈ S and a ∈ Γ(Xi, A), we will
denote the corresponding section in the colimit by [σ, a]. Clearly they generate
the colimit. But actually, every section of the colimit already has this form. To
prove this, it suffices to check that they are closed under sums. So assume that
[σ′, a′] is another section, with σ′ : B → M and a′ ∈ Γ(Xi, A). Because of 1.
there is some τ : C →M and homomorphisms α : A→ C, β : B → C such that
τα = σ and τβ = σ′. Then, we have

[σ, a] + [σ′, a′] = [τ, α(a)] + [τ, β(a′)] = [τ, α(a) + β(a′)].

B. If s ∈ Γ(Xi,M), then there is some A → M with A ∈ S, such that s has a
preimage in Γ(Xi, A). In fact, since there is an epimorphism

⊕
j Aj → M with

Aj ∈ S, we see that s has a preimage in Γ(Xi,
⊕

j Aj) =
⊕

j Γ(Xi, Aj). Here,
already finitely many j suffice, so let us restrict to these. By applying 1. and
induction, there is some A→ M with A ∈ S such that each Aj → M factors as
Aj → A→M . It follows that s has a preimage in Γ(Xi, A).

Now we can show injectivity of θ: If two sections of the colimit, say [σ, a] and
[σ′, a′] by A., have the same image, i.e. σ(a) = σ′(a′) in Γ(Xi,M), then (a, a′)
is a section of the pullback A ×M A′ on Xi. By B. there is some C ∈ S and a
homomorphism C → A ×M A′, such that (a, a′) has a preimage c. If we denote
the induced homomorpism C →M by τ , then we get

[σ, a] = [τ, c] = [σ′, a′].
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Corollary 2.4.3. If X is a scheme (or more generally an algebraic stack), which
has the strong resolution property, then locally free OX-modules constitute a dense
subcategory of Qcoh(X): For every M ∈ Qcoh(X) we have

M ∼= colimV→M,V locally free V.

�

Recall that the Theorem of Lazard-Govorov ([Lam99, Theorem 4.34]) states that
a flat module over a ring is a directed colimit of finitely generated free modules.
The following result is a variant of this Theorem for quasi-coherent modules.
The proof is inspired by the proof of [Sch12a, Theorem 1.3.1]. See [EAO13] for
another variant.

Proposition 2.4.4 (Variant of Lazard-Govorov). Let X be a scheme (or more
generally an algebraic stack), which has the strong resolution property and let
M ∈ Qcoh(X) be flat. Assume that Spec(Sym(M)) (or just Spec(M) if M
is already a quasi-coherent OX-algebra) is an affine scheme over Z. Then the
category of morphisms V → M with V locally free, is directed. Hence, M is a
directed colimit of locally free modules.

Proof. We have to check three conditions. 1. The category is non-empty, because
it contains 0 → M . 2. Given two objects V → M and W → M , these induce
an object V ⊕ W → M and the inclusions induce morphisms from V → M
resp. W → M to V ⊕W → M . 3. Since the category is anti-equivalent to the
category of homomorphisms OX → M ⊗ V , where V is locally free, it suffices
to prove: Given two homomorphisms σ : OX → M ⊗ V and τ : OX → M ⊗W
(with V,W locally free) and two homomorphisms α, β : V → W such that
(M ⊗α)σ = τ = (M ⊗β)σ, then there is some homomorphism ρ : OX →M ⊗U
(with U locally free) and a homomorphism γ : U → V such that (M ⊗ γ)ρ = σ
and αγ = βγ.

Let i : E → V be an equalizer of α, β. Since M is flat, M ⊗ i : M ⊗E →M ⊗V
is an equalizer of M ⊗ α,M ⊗ β. Since σ equalizes these morphisms, there is a
unique morphism δ : OX →M ⊗ E such that (M ⊗ i)δ = σ.

Consider the affine morphism p : P := Spec(Sym(M))→ X. If M is already an
algebra, just take p : Spec(M)→ X. Then the composition

OX
δ−→M ⊗ E ↪→ Sym(M)⊗ E ∼= p∗p

∗E

corresponds to a homomorphism OP → p∗E. By what we have seen in the proof
of part B. in Lemma 2.4.2 and by using that P is affine, there is some morphism
ε : U → E with U locally free, such that OP → p∗E factors as OP → p∗U → p∗E.
This corresponds to a factorization of the morphism OX → Sym(M) ⊗ E as
OX → Sym(M) ⊗ U → Sym(M) ⊗ E. Composing with Sym(M) � M gives a
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factorization OX
ρ−→ M ⊗ U M⊗ε−−−→ M ⊗ E of δ. Then γ := iε : U → V and ρ

satisfy the requirements. The conclusion thus follows from Corollary 2.4.3.

The following result is due to Schäppi ([Sch12a, Theorem 1.3.1]).

Proposition 2.4.5 (Characterization of the strong resolution property). Let X
be a geometric stack. Choose some smooth surjective affine morphism π : P → X
for some affine scheme P . The following are equivalent:

1. π∗OP is a directed colimit of locally free modules.

2. X has the strong resolution property.

3. If M ∈ Qcoh(X) and s : OP → π∗M is a homomorphism, then there is
some locally free module V and some homomorphism V →M , such that s
factors as OP → π∗V → π∗M .

Proof. 1. ⇒ 2. Let π∗OP = colimi Vi with a directed system of locally free
modules Vi. Then their duals V ∗i generate Qcoh(X): Assume that M → N
is a homomorphism such that all V ∗i → M → N vanish. This means that
all Vi ⊗ M → Vi ⊗ N vanish on global sections. In the colimit, we see that
π∗OP ⊗M → π∗OP ⊗ N vanishes on global sections. But this is isomorphic to
π∗π

∗M → π∗π
∗N (since π is affine), so that π∗M → π∗N vanishes on all global

sections. Since P is affine, it then vanishes. Since π is a descent morphism, this
means that M → N vanishes.

We have seen 2.⇒ 3. in the proof of part B. in Lemma 2.4.2.

3. ⇒ 2. Let f : M → N be a homomorphism which vanishes when composed
with every V →M , where V is locally free. In order to show f = 0, it suffices to
prove π∗(f) = 0 by descent. Since P is affine, we only have to prove π∗(f)s = 0
for every s : OP → π∗M . By 3. there is some locally free module V and some
homomorphism α : V →M such that s factors as through π∗α. But then π∗(f)s
factors through π∗(fα) = 0.

2.⇒ 1. follows from Proposition 2.4.4 since Specπ∗OP = P is affine.

Remark 2.4.6. The condition 1. means that X is an Adams stack ([Goe08,
Definition 6.5]). Hence, Adams stacks coincide with geometric stacks with the
strong resolution property. By 2. this does not depend on the chosen presen-
tation. This affirmatively answers a question initially posed by Hovey in the
language of Hopf algebroids ([Hov03, Question 1.4.12]). Our proof is similar
to Schäppi’s. The main difference is that we do not use the language of Hopf
algebroids. One advantage of the geometric language is that π∗ is not treated
as a forgetful functor and not omitted from the notation, as is often done for
the corresponding forgetful functor from Γ-modules to A-modules for a flat Hopf
algebroid (A,Γ, . . . ).
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2.5. Extension result

2.5 Extension result

The following general extension result will be needed in section 5.11 and might
also be of independent interest. We do not know if this is really new but do not
have a reference for it.

Proposition 2.5.1 (Extension of functors). Let C be an abelian R-linear cat-
egory and D any finitely cocomplete R-linear category. Let C ′ be a full replete
subcategory of C with the following properties:

1. 0 ∈ C ′.

2. For every M ∈ C there is some A ∈ C ′ and an epimorphism A�M .

3. The condition of Lemma 2.4.1: For all objects M ∈ C and all morphisms
A → M ← B with A,B ∈ C ′ there is some C ∈ C ′ which fits into a
commutative diagram

A
~~ !!

C //M.

B

`` ==

Let F : C ′ → D be an R-linear functor with the property (?) that for any every
exact sequence

A→ B → C → 0

in C with objects A,B,C ∈ C ′, the induced sequence

F (A)→ F (B)→ F (C)→ 0

is also exact in D.

Then F extends to a right exact R-linear functor F : C → D. In fact, this
construction implements an equivalence of categories between R-linear functors
C ′ → D satisfying (?) and right exact R-linear functors C → D.

Proof. Let F : C ′ → D satisfy (?). Every object M ∈ C fits into a right exact
sequence

A′
α−→ A→M −→ 0

with A′, A ∈ C ′. We call this a presentation of M . We fix one for each M . We
have no choice but to define F (M) to be the cokernel of F (α), so that

F (A′)
F (α)−−→ F (A)→ F (M)→ 0

is exact in D. With this ad hoc definition the proof that F actually becomes
a functor and is therefore independent of the choices of the presentations will
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require some effort. On the other hand, abstract definitions of F (for example as
the left Kan extension of F , see Lemma 2.4.1) would have the drawback of less
computability. We divide the proof into 9 Steps.

1. Step: Weak pullbacks. We call a commutative diagram in C

A′ //

��

A

��

B′ // B

a weak pullback if the induced morphism A′ → A ×B B′ is an epimorphism. If
B′ → B is an epimorphism, it follows that A′ → A is also an epimorphism.
Besides, the sequence

A′ → A⊕B′ → B → 0

is exact, which means that the given square is actually a pushout square.

2. Step: F preserves epis and pushouts. Given any epimorphism B → C
in C with B,C ∈ C ′, we denote by A the kernel and obtain an exact sequence
A → B → C → 0 in C. Hence, F (A) → F (B) → F (C) → 0 is also exact. In
particular, F (B)→ F (C) is an epimorphism.

Given a pushout square in C with objects in C ′

A′ //

��

A

��

B′ // B

in which A′ → B′ (and hence A → B) is an epimorphism in C, then we claim
that

F (A′) //

��

F (A)

��

F (B′) // F (B)

is also a pushout in D. Notice that for B′ = 0 this is precisely the property (?).

The pushout property means that A′ → A ⊕ B′ → B → 0 is exact. Here,
A′ → A⊕B′ ∼= A×B′ is induced by A′ → A and A′ → B′. Besides, A⊕B′ → B
is induced by A → B and the additive inverse of B′ → B. Find a commutative
diagram

A
~~ %%

C // A⊕B′

B′

`` 99
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with C ∈ C ′. Then C → A ⊕ B′ is an epimorphism. Consider the pullback
C ×A⊕B′ A′ and choose an epimorphism from some D ∈ C ′, so that

D //

��

C

��

A′ // A⊕B′

is a weak pullback, hence a pushout by Step 1. Then D → C → B → 0 is also
exact in C. By assumption, it follows that F (D) → F (C) → F (B) → 0 is also
exact in D.

Now, a commutative diagram

F (A′) //

��

F (A)

��

F (B′) // T

in D yields a morphism

F (C)→ F (A)× F (B′) ∼= F (A)⊕ F (B′)→ T

which vanishes when composed with F (D) → F (C), hence extends uniquely to
a morphism F (B)→ T . It extends F (B′)→ T and F (A)→ T .

3. Step: Action of F on morphisms. Let M → N be a morphism in C. We
choose presentations

A′ // A //M //

��

0

B′ // B // N // 0.

We would like to fill this diagram. It is a bit too optimistic to find a commutative
diagram

A′ //

��

A //

��

M //

��

0

B′ // B // N // 0

which would make the definition of F (M) → F (N) easy. It is a bit more com-
plicated than that: Let P be a pullback of A → M → N with B → N . Since
B � N is an epimorphism, the same is true for P � A. Choose some epimor-
phism C � P with C ∈ C ′. Then C → A is an epimorphism and the following
diagram commutes:

A′ // A //M //

��

0

C

��

OOOO

B′ // B // N // 0
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The rectangle is a weak pullback diagram by construction. Let’s do the same
trick again: Let Q = A′ ×A C ×B B′ and choose an epimorphism C ′ → Q with
C ′ ∈ C ′. Then a diagram chase shows that C ′ → A′ ×A C is an epimorphism, so
that

A′ // A

C ′

OO

// C

OO

is a weak pullback. Since C → A is an epimorphism, the same is true for
C ′ → A′ and the square is actually a pushout by Step 1. We arrive at the
following commutative diagram in which the two rows are exact and the square
on the upper left is a pushout:

A′ // A //M //

��

0

C ′ //

OOOO

��

C

��

OOOO

B′ // B // N // 0.

Using that C ′ → A′ ×A C is an epimorphism, another diagram chase shows that

C ′ → C →M → 0

is exact. Notice that this is another presentation of M (not the given one) which
actually has a morphism to the given presentation of N .

Now let us apply F to the diagram above:

F (A′) // F (A) // F (M) // 0

F (C ′) //

OOOO

��

F (C)

��

//

OOOO

��

P //

OO

��

0

F (B′) // F (B) // F (N) // 0

Here F (C) → P is any cokernel of F (C ′) → F (C). Besides, the morphisms
P → F (M) and P → F (N) are defined via the universal property of the cokernel.
It follows by Step 2 that the square on the upper left is a pushout. The rows are
exact by definition. Using these properties, we observe that P → F (M) is an
isomorphism. Now we can define F (M)→ F (N) via the commutative diagram

P

""

∼=
||

F (M) // F (N).
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Finally, here is a more concise description of this morphism: Given any commu-
tative diagram

A //M //

��

0

C

%%

99 99

B // N // 0

with the property that C ∈ C ′ and the pentagon is a weak pullback, i.e. the
induced morphism C → A×N B is an epimorphism, there is a unique morphism
F (M)→ F (N) which renders the diagram

F (A) // F (M) //

��

0

F (C)

''

77 77

F (B) // F (N) // 0

commutative. We have showed that it exists.

Notice that if M → N is an epimorphism, then the same is true for C → B
and it follows easily that F (M) → F (N) is also an epimorphism. Observe that
F (M) does not depend on the presentation of M : If A′ → A → M → 0 and
B′ → B →M → 0 are two presentations, we find a commutative diagram

A′ // A //M // 0

C ′ //

OOOO

����

C

����

OOOO

B′ // B //M // 0.

It follows as above that the cokernels of F (A′) → F (A) and of F (B′) → F (B)
are isomorphic to the cokernel of F (C ′)→ F (C).

4. Step: Action on morphisms is well-defined. We have to check that the
definition above does not depend on the chosen commutative diagram (containing
C). So let us choose two diagrams

A //M //

��

0

C

%%

99

D

ee

yy
B // N // 0

such that the induced morphisms from C and D to A×N B are epimorphisms. It
follows that C ×A×NB D → C is an epimorphism, too. Choose an epimorphism
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E → C ×A×NB D with E ∈ C ′. Then we obtain a commutative diagram

A //M //

��

0

C

$$

::

Eoooo // D

dd

zz
B // N // 0.

Since F (E) → F (C) is an epimorphism, it follows readily that the morphisms
F (M)→ F (N) defined either via F (C) or via F (D) are the same.

5. Step: F is a functor. Given morphisms M
f−→ N

g−→ K, we claim that
F (g ◦ f) = F (g) ◦ F (f). Choose a commutative diagram of weak pullbacks

A //M //

��

0

C

%%

99 99

G

%%

99 99

B // N //

��

0

D

99 99

%%
E // K // 0

with A,B,C,D,E,G ∈ C ′. Then we may use the commutative diagram

A //M //

��

0

G

%%

99

E // K // 0

for the composition; in fact G → A ×K E is epi by a diagram chase which we
leave to the reader. The commutative diagram

F (A) // F (M) //

��

0

F (C)

''

77

F (G)

''

77

F (B) // F (N) //

��

0

F (D)

77

''

F (E) // F (K) // 0

now finishes the proof of the claim.

The identity of an object M ∈ C is mapped by the result above to an idempotent
endomorphism of F (M). On the other hand, it is an epimorphism (see Step 3),
so that it must be the identity.
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6. Step: F extends F . For M ∈ C ′ we have F (M) = F (M) by (?). For a
morphism f : M → N in C ′ and C � A×NB as in the 3. Step, the commutative
diagram

F (A) // F (M) //

��

0

F (C)

''

77

F (B) // F (N) // 0

shows that F (f) = F (f). This proves F |C′ = F . To be more precise, in the
definition of F we have made (canonical) choices of cokernels and on C ′ we may
choose them in such a way that the equation becomes true. In any case, F |C′ is
canonically isomorphic to F .

7. Step: F is R-linear. Since 0 ∈ C ′ we have F (0) = 0. Hence F preserves
zero morphisms. Now let f, g : M → N be two morphisms. In order to show
that F (f) + F (g) = F (f + g), we may precompose with F (A) � F (M) for any
A � M with A ∈ C ′. Thus, we may assume that M = A. Given f, g : A → N ,
we may find a commutative diagram

A
i
��

f
!!

C
h // N.

A
g

__

j

==

with C ∈ C ′. It follows:

F (f) + F (g) = F (h)F (i) + F (h)F (j) = F (h)(F (i) + F (j))

Since F : C ′ → D is linear, we have F (i) + F (j) = F (i+ j) and therefore

F (f) + F (g) = F (h)F (i+ j) = F (h(i+ j)) = F (f + g).

Now let λ ∈ R and M ∈ C with presentation A′
i−→ A

p−→ M → 0. We denote by
λ : M →M also the morphism which multiplies with λ. One checks that

A
p
//M //

λ

��

0

A⊕ A′

(λ,i) ''

prA
77

A
p
//M // 0

is a weak pullback. Although A ⊕ A′ has no reason to be contained in C ′, we
may choose an epimorphism from some object in C ′ and use the already proven
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additivity of F on morphisms and the R-linearity of F to conclude that

F (A)
F (p)
// F (M) //

F (λ)

��

0

F (A)⊕ F (A′)

(λ,F (i)) ))

prF (A)
55

F (A)
F (p)
// F (M) // 0

is commutative. Since this diagram commutes also with F (λ) replaced by λ, we
infer that F (λ) = λ.

8. Step: F is right exact. We already know that F preserves direct sums
from Step 7, so that it suffices to prove that F preserves cokernels. We choose
an exact sequence M → N → K → 0 in C. We will construct the following
commutative diagram with exact rows and columns and A,B,B′, C, C ′ ∈ C ′.

0 0 0

M //

OO

N //

OO

K //

OO

0

A //

OO

B //

OO

C

OO

// 0

B′ //

OO

C ′ //

OO

0

Choose a presentation C ′ → C → K → 0. Choose some B ∈ C ′ with an
epimorphism B � N ×K C. Choose some A ∈ C ′ with A� ker(B → C)×N M .
Then A → B → C → 0 is exact by a diagram chase. Another diagram chase
shows that ker(B → C) → ker(N → K) is an epimorphism, which in turn can
be used to see that A → M is an epimorphism. Finally, the remaining square
containing B′ is constructed via symmetry.

Now we apply F and obtain the following commutative diagram with exact
columns and rows – except perhaps for the first row.

0 0 0

F (M) //

OO

F (N) //

OO

F (K) //

OO

0

F (A) //

OO

F (B) //

OO

F (C)

OO

// 0

F (B′) //

OO

F (C ′) //

OO

0
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We show exactness of the first row as follows: Let F (N) → T be a morphism
which vanishes on F (M). This corresponds to a morphism F (B) → T which
vanishes on F (A) and F (B′), hence to a morphism F (C)→ T which vanishes on
F (B′). Since F (B′) → F (C ′) is an epimorphism, it already vanishes on F (C ′),
which means that it corresponds to a morphism F (K)→ T .

This finally finishes the construction of the right exact extension F : C → D.

9. Step: Equivalence of categories. As for the conclusion, we have an
obvious restriction functor and only have to construct an inverse. Given a functor
F : C ′ → D satisfying (?), we have constructed above an extension F : C → D.
Given a morphism τ : F → G of functors F,G : C ′ → D satisfying (?), we define
τ : F → G as follows: If M ∈ C with a presentation A′ → A → M → 0, then
τM : F (M)→ F (M) is the unique morphism which makes the diagram

F (A′)

τA′

��

// F (A)

τA

��

// F (M) //

τM
��

0

F (A′) // F (A) // F (M) // 0

commutative. Now the rest is easy to check.

Example 2.5.2. If X is a noetherian Adams stack, then C = Qcohfp(X) is an
abelian category and the full subcategory C ′ of locally free sheaves satisfies the
assumptions of Proposition 2.5.1. Hence, right exact functors on Qcohfp(X) only
have to be defined on locally free sheaves.
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Chapter 3

Introduction to cocomplete
tensor categories

3.1 Definitions and examples

In this section we define the main objects of our study, namely cocomplete tensor
categories, as well as cocontinuous tensor functors between them.

Definition 3.1.1 (Definition of cocomplete tensor categories).

1. For us a tensor category is a symmetric monoidal category. It consists of a
category C, a functor C×C → C, (A,B) 7→ A⊗B (tensor product), an object
1 ∈ C (unit) and natural isomorphisms αA,B,C : A⊗ (B⊗C) ∼= (A⊗B)⊗C
(associativity constraints), lA : 1⊗A ∼= A, rA : A⊗1 ∼= A (unit constraints)
and SA,B : A⊗B ∼= B⊗A (symmetries) for A,B,C ∈ C subject to certain
coherence conditions ([SR72, I.2.4]). Often we abuse notation and also
write C for the underlying category.

2. If C,D are tensor categories, a tensor functor F : C → D is a strong
symmetric monoidal functor, i.e. a functor of the underlying categories
together with natural isomorphisms F (A⊗B) ∼= F (A)⊗F (B) for A,B ∈ C
and an isomorphism F (1) ∼= 1 subject to certain compatibility conditions
([SR72, I.4.1.1, 4.2.4]).

3. If F,G : C → D are two tensor functors between tensor categories, a
morphism of tensor functors η : F → G is a morphism of the underly-
ing functors which is compatible with the unit constraints and the tensor
product ([SR72, I.4.4.1]).

4. A cocomplete tensor category is a tensor category whose underlying cate-
gory is cocomplete such that for every object A the endofunctor A⊗− (and
hence also −⊗A) is cocontinuous. A cocontinuous tensor functor between
cocomplete tensor categories is a tensor functor between the underlying
tensor categories whose underlying functor is cocontinuous. A morphism
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3.1. Definitions and examples

between cocontinuous tensor functors is just a morphism between the un-
derlying tensor functors.

5. Restricting to finite colimits, we obtain the notions of finitely cocomplete
tensor categories and right exact tensor functors. By an abelian tensor
category we mean a finitely cocomplete tensor category whose underlying
category is abelian.

6. If C,D are (cocomplete) tensor categories, we will denote the category of
(resp. cocontinuous, resp. finitely cocontinuous) tensor functors from C to
D by Hom⊗(C,D) (resp. Homc⊗(C,D), resp. Homfc⊗(C,D)).

7. We obtain the 2-category of tensor categories Cat⊗ and the 2-category of
cocomplete tensor categories Catc⊗.

Remark 3.1.2 (Categorification). Let C be a cocomplete tensor category. Since
A⊗− is cocontinuous for each A ∈ C, this functor preserves in particular direct
sums: The canonical morphism⊕

i

(A⊗Bi)→ A⊗
⊕
i

Bi

is an isomorphism. This is a categorified distributive law. For the empty direct
sum it becomes

A⊗ 0 = 0.

Whereas tensor categories categorify commutative monoids, cocomplete tensor
categories categorify commutative rings or more precisely commutative semirings
(also known as rigs), since for objects A 6= 0 there is no object B with A⊕B = 0.
In fact, Baez and Dolan suggest this definition of 2-rigs ([BD98b, 2.3]). Chirvasitu
and Johnson-Freyd use the terminology of 2-rings ([CJF13]) under the additional
assumption of presentability (Definition 3.1.16). See section 3.2 for more on
categorification. One should admit that rig categories as studied by Laplaza
([Lap72]) provide a more adequate categorification of rigs: Here ⊕ is not assumed
to be the direct sum, but rather part of another monoidal structure.

Remark 3.1.3 (Coherence). Let C be a tensor category. The Coherence Theo-
rem for symmetric monoidal categories ([ML98, XI.1. Theorem 1]) roughly says
that between any two words in C built up inductively out of objects using the
tensor structure there is at most one isomorphism which is built up out of the
associativity and unit constraints of C. In particular, there is no harm in iden-
tifying A ⊗ (B ⊗ C) with (A ⊗ B) ⊗ C or for example B ⊗ (C ⊗ A) and just
write A⊗B ⊗C for this object, since there is a canonical isomorphism between
these objects. The Coherence Theorem implies that “all reasonable diagrams”
commute. This saves us diagram chases and justifies that we treat (compositions
of) the associativity and unit constraints as identities. Since colimits are defined
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Chapter 3. Introduction to cocomplete tensor categories

via universal properties, we obtain a similar Coherence Theorem for cocomplete
tensor categories.

Example 3.1.4 (Closed categories). Let C be a tensor category whose under-
lying category is cocomplete and which is closed, i.e. internal homs ([SR72,
I.5.1.1]) exist in C. Then − ⊗ A is left adjoint to Hom(A,−), hence cocontin-
uous. Therefore C is a cocomplete tensor category. Most examples “in nature”
arise this way. In particular, every (cocomplete) cartesian closed category is a
(cocomplete) tensor category with ⊗ = ×. This gives lots of examples.

Example 3.1.5 (Sets and spaces). The most basic example is the cartesian
closed category of (small) sets Set. Observe that for every cocomplete tensor
category C there is essentially a unique cocontinuous tensor functor Set → C,
mapping X to 1⊕X . In fact, Set is a 2-initial object in Catc⊗. Another example is
the cartesian closed category of simplicial sets sSet. The category of topological
spaces Top is not cartesian closed, however any convenient category of spaces
([Ste67]) such as the category of compactly generated (weak) Hausdorff spaces
is closed and therefore may be regarded as a cocomplete tensor category.

Example 3.1.6 (Quantales). A tensor category whose underlying category is a
(small) preorder, for short tensor preorder, is a preorder whose underlying set
also carries the structure of a commutative monoid in such a way that the prod-
uct is increasing in each variable. A tensor functor between tensor preorders is
a increasing monoid homomorphism. A morphism between such tensor functors
F,G : C → D is unique if it exists and it exists if and only if F (c) ≤ G(c) for all
c ∈ C.
A cocomplete tensor preorder is a tensor preorder such that the underlying pre-
order has all suprema and such that multiplication preserves suprema in each
variable. These structures are also known as quantales ([Mul02]), which we as-
sume here to be unital and commutative. A morphism of quantales is an increas-
ing monoid homomorphism which preserves all suprema. Although quantales do
not seem to play a role in algebraic geometry yet, they allow us to view some
constructions for cocomplete tensor categories more concretely. Three specific
examples of quantales are:

• The unit interval [0, 1] with the usual monoid and order structure.

• The quantale of ideals of a commutative ring R with the ideal product and
the inclusion relation.

• The quantale of open subsets of a topological space with the intersection
and the inclusion relation.

For objects a, b of a quantale the internal hom [b : a] := Hom(a, b) exists; it is
given by the largest element with the property that [b : a] · a ≤ b. It is also
known as Heyting implication and written (a −→ b). For the quantale of ideals
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of a commutative ring we get the usual ideal quotient, which also explains our
notation.

Definition 3.1.7 (Linear tensor categories). Let R be a commutative ring. An
R-linear tensor category C is a tensor category whose underlying category is R-
linear such that the tensor product functor ⊗ : C×C → C is R-linear in both vari-
ables. A tensor functor is called R-linear if its underlying functor is R-linear. The
category of R-linear tensor functors C → D is denoted by Hom⊗/R(C,D). We ob-
tain the 2-category of R-linear tensor categories Cat⊗/R. Similarly, we obtain the
2-category of cocomplete R-linear tensor categories Catc⊗/R and Homc⊗/R(C,D)
denotes the category of cocontinuous R-linear tensor functors C → D.

Remark 3.1.8. For a tensor category C the monoid EndC(1) is commutative by
the Eckmann-Hilton argument ([SR72, I.1.3.3.1]). In case of an R-linear tensor
category this is even a commutative R-algebra. This provides a 2-functor

Catc⊗/R → CAlg(R), C 7→ EndC(1)

which turns out to be right adjoint to Mod(−) (Proposition 5.2.2).

Our main example is the following:

Example 3.1.9 (Modules).

1. Let R be a commutative ring. Then the category of right R-modules
Mod(R) is a cocomplete R-linear tensor category with the usual tensor
product ⊗R and unit R.

2. More generally, let X be a ringed space. Then the category of (sheaves
of) OX-modules Mod(X) is a cocomplete tensor category with the usual
tensor product ⊗OX and unit OX . If f : X → Y is a morphism of ringed
spaces, then the associated pullback functor f ∗ : Mod(Y ) → Mod(X) is a
tensor functor. It is cocontinuous because it is left adjoint to f∗.

3. If X is a scheme, then its category of quasi-coherent (sheaves of) modules
Qcoh(X) ⊆ Mod(X) is closed under colimits, tensor products and pull-
backs. It follows that Qcoh(X) is a cocomplete tensor category and that
every morphism of schemes f : X → Y induces a cocontinuous tensor
functor f ∗ : Qcoh(Y )→ Qcoh(X).

4. If X is defined over some commutative ring R, then Qcoh(X) is a cocom-
plete R-linear tensor category. If f : X → Y is a morphism of R-schemes,
then f ∗ : Qcoh(Y )→ Qcoh(X) is an R-linear cocontinuous tensor functor.

5. The same statements apply to algebraic stacks, but also to monoid schemes
or schemes over F1 ([Dei05], [CC10], [CHWW11], [PL09]), even to gener-
alized schemes in the sense of Durov ([Dur07]). For example, the unique
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Chapter 3. Introduction to cocomplete tensor categories

morphism Spec(Z)→ Spec(F1) induces via pullback the cocontinuous ten-
sor functor Set∗ → Ab which is left adjoint to the forgetful functor, i.e. it
maps a pointed set (X, x0) to the abelian group {f ∈ Z⊕X : f(x0) = 0}.

Remark 3.1.10 (Structure sheaf). Since this is our main example and we will
“model” algebraic geometry on C, we often write OC or just O for the unit
object of C. We also treat morphisms O →M as global sections of M . It is well
understood that an object M is not determined by its global sections, but rather
by its Hom functor Hom(−,M).

Example 3.1.11 (Chain complexes). Let R be a commutative ring. The cat-
egory of chain complexes of R-modules Ch(R), endowed with the usual total
tensor product and the “twisted” symmetry defined by a ⊗ b 7→ (−1)|a||b|b ⊗ a,
becomes a cocomplete R-linear tensor category. The unit is R concentrated in
degree 0. Looking at those chain complexes with zero differentials, we get the
cocomplete R-linear tensor category of graded R-modules g̃rZ(R).

Remark 3.1.12 (Internalization). Apart from “atomic” examples of cocomplete
tensor categories such as the ones above, there are various constructions for
cocomplete tensor categories which produce new ones. This will be the subject
of chapter 5. For instance, in the previous example, Mod(R) may be replaced by
any cocomplete R-linear tensor category C. We can still construct a cocomplete
R-linear tensor category Ch(C) of chain complexes with values in C. This kind
of internalization is one of the central themes in this thesis. Here is another
example:

Example 3.1.13 (Representation categories). Let I be a small category and let
C be a (cocomplete) tensor category. Then the category of functors I → C carries
the structure of a (cocomplete) tensor category (the tensor product is simply
defined objectwise), denoted by IC = Hom(I, C). If G is a group, considered as
a category with one object, we obtain the tensor category GC = RepC(G) of left
actions or representations of G on C. Its objects are objects V ∈ C equipped with
a homomorphism of groups ρ : G→ Aut(V ). The tensor product (V, ρ)⊗ (V ′, ρ′)
is (V ⊗ V ′, ρ ⊗ ρ′). Similarly, we have the category of right actions CG = GopC.
The cases C = Set and C = Mod(R) are well-known, in the latter case one also
writes RepR(G). Notice that there is a difference between the tensor categories
RepR(G) and Mod(R[G]), only the underlying categories coincide.

Remark 3.1.14. If R is a commutative ring, then the module category Mod(R)
is a 2-initial object of Catc⊗/R. In fact, for every C ∈ Catc⊗/R the external tensor
product Mod(R)→ C, M 7→M ⊗ROC is a cocontinuous tensor functor which is
essentially unique. For details, see Example 5.2.1.

Definition 3.1.15. If C is a cocomplete tensor category, then we have the 2-
category Catc⊗/C of cocomplete tensor categories over C. Objects are cocontin-
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uous tensor functors C → D. If P : C → D and Q : C → E are two objects, we
define Homc⊗/C(D, E) to be the category whose objects are cocontinuous tensor
functors F : D → E equipped with an isomorphism FP ∼= Q. For example,
we have Catc⊗/Set = Catc⊗ and Catc⊗/Mod(R) = Catc⊗/R. We have chosen the
terminology “over C” instead of the more appropriate “under C” in order to in-
corporate the analogy to algebraic geometry. Namely, we think of Catc⊗/Qcoh(S)

as a “globalization” of Sch /S.

Definition 3.1.16 (Presentable tensor categories). A presentable tensor cate-
gory is a cocomplete tensor category C whose underlying category is presentable.
If there is a regular cardinal λ such that C is λ-presentable, 1 ∈ C is λ-presentable
and the tensor product of two λ-presentable objects is λ-presentable, then C is
called a λ-presentable tensor category. If there is such a λ, we call C a strongly
presentable tensor category.

Remark 3.1.17. We remark that any presentable tensor category is closed.
This is because the functors A ⊗ − : C → C are cocontinuous, hence have a
right adjoint (Proposition 2.3.4). We do not know if every presentable tensor
category is strongly presentable. In fact, we do not even know if Qcoh(X) is
strongly presentable for an arbitrary scheme X. If X is qc qs, then we know that
Qcoh(X) is ℵ0-presentable (Proposition 2.3.1).

Example 3.1.18. The following example of a cocomplete cartesian quantale
which is not closed is due to Todd Trimble. Let V be some Grothendieck universe.
Endow V with the partial order ⊆. Then V has all (small) colimits and all
non-empty limits, but there is no terminal object. So let us just adjoin one
and consider V := V ∪ {∞} such that A ⊆ ∞ for A ∈ V . Then the functor
(X ×−) = (X ∩ −) : V → V is cocontinuous for all X ∈ V , but it has no right
adjoint. Otherwise, for every Y ∈ V with X 6⊆ Y there would be a largest set
Z ∈ V such that Z ∩X ⊆ Y , which is absurd since we can simply adjoin random
elements of V \X to Z, contradicting maximality.

Example 3.1.19. If X is a scheme, then Qcohfp(X) ⊆ Qcoh(X) is a finitely
cocomplete tensor category. Let us mention at this point that large parts of
the theory of cocomplete tensor categories may be also carried out for finitely
cocomplete tensor categories. But often infinite colimits will be useful. Besides,
quasi-coherent sheaves of finite presentation usually are not stable under direct
images.

The following basic result will be used very often:

Lemma 3.1.20 (Tensor product of presentations). Let C be a finitely cocomplete
tensor category.

1. The tensor product of two epimorphisms in C is again an epimorphism.
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2. Assume that Ai ⇒ Bi → Pi for i = 1, 2 are two coequalizer diagrams. Then
we obtain a coequalizer diagram

(A1 ⊗B2)⊕ (B1 ⊗ A2) ⇒ B1 ⊗B2 → P1 ⊗ P2.

In particular, the tensor product of two regular epimorphisms is again a
regular epimorphism.

Proof. 1. Let f : A→ A′ and g : B → B′ be two epimorphisms. Since A⊗− is
cocontinuous, it preserves epimorphisms, hence A ⊗ g : A ⊗ B → A ⊗ B′ is an
epimorphism. By the same reason f ⊗B′ : A⊗B′ → A′⊗B′ is an epimorphism.
Hence, the composition f ⊗ g = (f ⊗B′)(A⊗ g) is an epimorphism.

2. Let fi, gi : Ai → Bi and pi : Bi → Pi, so that pi is a coequalizer of fi and
gi. Define f̃ : (A1 ⊗ B2) ⊕ (B1 ⊗ A2) → B1 ⊗ B2 by f̃ |A1⊗B2 = f1 ⊗ B2 and
f̃ |B1⊗A2 = B1 ⊗ f2. Similarly we define g̃. We claim that p1 ⊗ p2 is a coequalizer
of f̃ and g̃. Clearly it coequalizes these morphisms. Let h : B1 ⊗ B2 → T
be a test morphism such that hf̃ = hg̃, i.e. h(f1 ⊗ B2) = h(g1 ⊗ B2) and
h(B1 ⊗ f2) = h(B1 ⊗ g2). Since B1 ⊗ p2 is a coequalizer of B1 ⊗ f2 and B1 ⊗ g2,
it follows that h = h′(B1 ⊗ p2) for some h′ : B1 ⊗ P2 → T .

We claim h′(f1⊗P2) = h′(g1⊗P2). Since p2 and hence A1⊗p2 is an epimorphism,
it suffices to prove h′(f1 ⊗ p2) = h′(g1 ⊗ p2). But this follows from the equation
h(f1 ⊗ B2) = h(g1 ⊗ B2). Since p1 ⊗ P2 is a coequalizer of f1 ⊗ P2 and g1 ⊗ P2,
it follows that h′ = h′′(p1 ⊗ P2) for some h′′ : P1 ⊗ P2 → T . Hence, h factors
through p1⊗p2. The factorization is unique since p1⊗p2 is an epimorphism.

Proposition 3.1.21 (Tensorial extension). If C is an R-linear abelian tensor
category, D is any finitely cocomplete R-linear tensor category and C ′ is a full
replete tensor subcategory of C with the properties as in Proposition 2.5.1, then
there is an equivalence of categories between R-linear tensor functors C ′ → D
satisfying the exactness property (?) and right exact R-linear tensor functors
C → D.

Proof. Given an R-linear tensor functor F : C ′ → D, we endow the R-linear
right exact extension F : C → D (Proposition 2.5.1) with the structure of a
tensor functor as follows: We have F (1) ∼= F (1) ∼= 1. If M ∈ C ′, then we have
an isomorphism between the right exact functors F (M ⊗−) and F (M)⊗ F (−)
when restricted to C ′. By Proposition 2.5.1 this extends to an isomorphism on
C. Similarly, we may generalize to the case that M ∈ C. Now the rest follows
formally from Proposition 2.5.1.

Definition 3.1.22 (Lax and oplax). A lax tensor functor F : C → D between
tensor categories C,D is a functor between the underlying categories equipped
with natural morphisms 1D → F (1C) and F (A)⊗ F (B)→ F (A⊗B) subject to
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certain compatibility conditions ([ML98, XI.2]). Dually one defines oplax tensor
functors. There is an obvious notion of morphisms between lax/oplax tensor
functors.

Thus, a tensor functor is the same as a lax tensor functor whose structure mor-
phisms are isomorphisms. Some authors call “tensor functors” what we call lax
tensor functors and “strong tensor functors” what we just call tensor functors.

Example 3.1.23 (Adjunctions). If F : C → D is an oplax tensor functor, whose
underlying functor has a right adjoint G : D → C, then G becomes a lax tensor
functor as follows: The morphism

F (G(A)⊗G(B))→ F (G(A))⊗ F (G(B))→ A⊗B

corresponds by adjunction to a morphism

G(A)⊗G(B)→ G(A⊗B).

Similarly, the morphism F (1C) → 1D corresponds by adjunction to a morphism
1C → G(1D). One can check that F is, indeed, a lax tensor functor ([Kel74,
1.4]). If F is a tensor functor, then by construction both the unit idC → GF
and the counit FG → idD are morphisms of lax tensor functors. For example,
if f : X → Y is a morphism of ringed spaces, then we get a lax tensor functor
f∗ : Mod(X)→ Mod(Y ) from the tensor functor f ∗ : Mod(Y )→ Mod(X).

3.2 Categorification

We refer to the wonderful papers [BD98a] and [BD01] for the general principles
of categorification. We have already remarked that cocomplete tensor categories
may be seen as categorified semirings: The tensor product ⊗ replaces the mul-
tiplication, colimits replace sums and we have a distributive law between them.
The initial object 0 replaces the zero element, the unit object 1 replaces the unit
element.

So we may just write A ·B = AB and A+B for the tensor product resp. direct
sum of A and B. More generally, write

∑
iAi for the direct sum

⊕
iAi. For

n ∈ N let us abbreviate
⊕n

i=1 A by n · A and A⊗n = A ⊗ . . . ⊗ A (n factors)
by An (whereas the direct sum resp. product of n copies of A is denoted by
n · A = A⊕n resp. A×n).

With these operations we may calculate with objects of a cocomplete tensor cat-
egory as if we were in a semiring, except of course that equalities have to be
replaced by (coherent) isomorphisms. We get an honest semiring (which may
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be large) by considering isomorphism classes of objects. But this process of de-
categorification, which is common in K-theory, loses a lot of information. For
example, the cocomplete cartesian category Set decategorifies to the semiring
of cardinal numbers. Many combinatorial identities are actually “shadows” of
isomorphisms in Set. This is the idea of the so-called bijective-proof in combi-
natorics. Let us point out that some “identities” actually hold in an arbitrary
cocomplete tensor category. We use the Binomial Theorem as a sample.

Lemma 3.2.1 (Binomial Theorem). Let A,B be objects of a finitely cocomplete
tensor category and n ∈ N. Then there is a natural isomorphism

(A+B)n ∼=
n∑
p=0

(
n

p

)
· Ap ·Bn−p.

Proof. Because of the distributive law, we may expand (A+B)n inductively. It
is the sum of all possible products C1 · . . . · Cn with Ci ∈ {A,B}. Using the
symmetry isomorphisms, we may move the A’s to the front. If p is the number
of A’s, we arrive at Ap ·Bn−p. It appears

(
n
p

)
times.

For example, in the category of Z-graded R-modules g̃rZ(R) with twisted sym-
metry (Example 3.1.11), the isomorphism (A + B)2 ∼= A2 + 2AB + B2 is given
by (a+ b)(a′ + b′) 7→ (aa′, ab′, (−1)|a

′||b|a′b, bb′).

What we have said so far actually applies to tensor categories with finite direct
sums. But cocomplete tensor categories C also admit infinite direct sums. This
allows us to use categorified formal power series: If X is an object of C, then for
every sequence of objects A0, A1, . . . we may look at the power series

∞∑
n=0

An ·Xn.

Observe that the usual product formula

∞∑
n=0

An ·Xn ·
∞∑
n=0

Bn ·Xn ∼=
∞∑
n=0

(
n∑
p=0

Ap ·Bn−p

)
·Xn

holds. But colimits also include quotients by group actions. For example, the
symmetric group Σn acts on Xn := X⊗n (section 4.3) and the quotient may be
denoted by Xn/n!. We have the exponential power series

exp(X) :=
∞∑
n=0

Xn/n!

with the usual properties

exp(0) ∼= 1, exp(X + Y ) ∼= exp(X) · exp(Y ).
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Actually exp(X) is nothing else than the symmetric algebra over X (section 4.4).
For C = Mod(R) it is the usual symmetric algebra over some R-module X and
for C = Set it is the set of finite multisets whose elements come from X. Un-
fortunately, we cannot define logarithms in this context since their usual power
series expressions contain negative numbers.

If C is an R-linear cocomplete tensor category with 2 ∈ R∗, we will define exterior
powers in C (Definition 4.4.8). Motiviated by the fact that dim(Λn(V )) =

(
dim(V )

n

)
for finite-dimensional vector spaces V , we define binomial coefficients in C by(
X
n

)
:= Λn(X) for n ∈ N and X ∈ C. The Vandermonde identity for binomial

coefficients categorifies to the isomorphism (see Proposition 4.4.4)(
X + Y

n

)
∼=

n∑
p=0

(
X

p

)
·
(

Y

n− p

)
.

Motivated by the complex power series expansion (1 + z)r =
∑∞

p=0

(
r
p

)
· zp for

z ∈ C with |z| < 1 and r ∈ R, we define a new power operation on C by

(1 +X)Y :=
∞∑
p=0

(
Y

p

)
·Xp

for objects X, Y ∈ C. Of course we do not have to worry about convergence.
Clearly (1 + X)0 ∼= 1 and (1 + X)1 = 1 + X. The Vandermonde isomorphism
above yields

(1 +X)Y · (1 +X)Z ∼= (1 +X)Y+Z .

In particular, (1 + X)n·1 agrees with the usual power (1 + X)n for n ∈ N.
We do not know if this power operation has been already studied for modules.
Unfortunately, the isomorphism (1 + X)Y ·Y

′ ∼= ((1 + X)Y )Y
′

(the right hand
side is well-defined because of (1 +X)Y = 1 +

∑∞
p=1

(
Y
p

)
·Xp) does not hold for

modules. Note that

2X =
∞∑
p=0

(
X

p

)
= Λ(X)

is the usual exterior algebra over X. Observe that although Set is not linear,
we can still define

(
X
p

)
to be the set of subsets of X with p elements and the

isomorphisms above still hold. We do not know any conceptual explanation
which includes Set and Mod(R) simultaneously.

Although we have defined natural numbers inside C via n · 1C , we cannot define
rational numbers: For example, if 1 ∼= 2 ·X, then 0 =

(
1
2

)
=
(
X
2

)
+
(
X
1

)
·
(
X
1

)
+
(
X
2

)
,

hence X2 = 0 and then X ∼= X(X +X) ∼= 0, hence 1 ∼= 0 and C = 0.

We even have an analogue of integrals, namely coends or weighted colimits (sec-
tion 2.1). We have the following reformulation of the Yoneda Lemma:
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Chapter 3. Introduction to cocomplete tensor categories

Lemma 3.2.2. Let I be a small category and let C be a cocomplete category.
Then every functor F : Iop → C may be expressed as a coend:

F ∼=
∫ p∈I

Hom(−, p)⊗ F (p).

This may be seen as a categorification of the formula

µ(A) =

∫
p∈I

χA(p) · dµ(p)

for a measure µ on a measurable space I and measurable subsets A ⊆ I.

3.3 Element notation

In this work we will often encounter situations where it is too complicated or
even confusing to write down large commutative diagrams or equations of mor-
phisms in a tensor category. Instead, we will use some kind of element notation
which mimics the usual one from the case of sets or modules over a commutative
ring. Each equation of “elements” written down in element notation is actually
an equation of morphisms. A similar notation is already quite common for ho-
momorphisms of sheaves on a space, where “elements” are actually sections of
the involved sheaves (not just global ones). It also has been widely used in the
cartesian case (where it is justified by the Yoneda embedding).

Example 3.3.1 (Equality). Let f, g : A ⊗ B → C be two morphisms. When
we write f(a⊗ b) = g(a⊗ b) for all “elements” a ∈ A, b ∈ B, we actually mean
f = g.

Example 3.3.2 (Symmetrizers). We know how to turn a bilinear form into a
symmetric bilinear form. This can be generalized as follows: Let C be an R-linear
tensor category with 2 ∈ R∗. Let f : A ⊗ A → T be an arbitrary morphism in
C. Define s : A⊗ A→ T by

s(a⊗ b) =
f(a⊗ b) + f(b⊗ a)

2
.

in element notation. This just means s = 1
2
(f + f ◦ SA,A). In element notation

we immediately see that s is symmetric, i.e. s(a ⊗ b) = s(b ⊗ a). This actually
means f = f ◦ SA,A. We get a rigorous proof directly from S2

A,A = idA⊗A. If we
define t : A⊗ A→ T by

t(a⊗ b) =
f(a⊗ b)− f(b⊗ a)

2
,

then t is anti-symmetric in the sense that t(a ⊗ b) = −t(b ⊗ a). This actually
means t = 1

2
(f − f ◦ SA,A) and t = −t ◦ SA,A. Note that f = s+ t.
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Remark 3.3.3 (Caution). One has to be a bit careful when one wants to trans-
late element notation to the usual notation in specific examples: Consider the
tensor category of graded R-modules, equipped with the twisted symmetry (Ex-
ample 3.1.11). In the setting of the previous example, for homogeneous elements
a, b ∈ A – in the usual sense – of the graded module A we have

s(a⊗ b) =
f(a⊗ b) + (−1)|a||b|f(b⊗ a)

2
.

That s is symmetric means s(a ⊗ b) = (−1)|a||b|s(b ⊗ a). We would like to em-
phasize that this does not need any extra reasoning, since the previous example
already covered arbitrary tensor categories. This general point of view enables us
to treat graded modules and modules simultaneously; of course even a lot more
types of modules, for example quasi-coherent sheaves on a scheme. Nevertheless
we only need a single element notation which covers all cases.

Example 3.3.4 (Epimorphisms). Let f, g : A→ B be morphisms. Assume that
p : E → A is an epimorphism. If f(p(e)) = g(p(e)) for all “elements” e ∈ E,
then we have f(a) = g(a) for all “elements” a ∈ A, i.e. f = g. This is just a
reformulation of the definition of an epimorphism. We would like to point out
that – using element notation – we may forget about the abstract definition of
an epimorphism and pretend in our proofs that this means that every “element”
of A has the form p(e) for some “element” e of E.

Remark 3.3.5 (Soundness). In general, the translation of a calculation in ele-
ment notation to a rigorous proof can be done by rote. It works in each case:
Every equation is actually a commutative diagram. Either commutativity is a
special instance of the Coherence Theorem (Remark 3.1.3), or it follows from the
assumptions. A chain of equations pastes together commutative diagrams.

Let us illustrate this:

Example 3.3.6. Let f : A⊗ A⊗ A→ B be a morphism satisfying

f(a⊗ b⊗ c) = f(b⊗ a⊗ c) = f(a⊗ c⊗ b)

in element notation, i.e. we can interchange the first two and the last two vari-
ables. Then it is clear that we can also interchange the first with the last variable:

f(a⊗ b⊗ c) = f(b⊗ a⊗ c) = f(b⊗ c⊗ a) = f(c⊗ b⊗ a).

Formally this can be derived from an equation of symmetry automorphisms of
A⊗3 and the two assumptions

f = f ◦ (SA,A ⊗ idA) = f ◦ (idA⊗SA,A).

See also section 4.3.

47



Chapter 3. Introduction to cocomplete tensor categories

Here is a more complicated example (needed in section 5.6):

Lemma 3.3.7. Let C be a tensor category, s : A→ 1 be a split epimorphism in C.
Assume that A is a non-unital commutative algebra in C (Definition 4.1.1), say
with multiplication m : A⊗ A→ A, such that the following diagram commutes:

A⊗ A m //

A⊗s

��

A

A⊗ 1

∼=
rA

;;

Then s is an isomorphism.

Proof in element notation. We have a product A⊗ A → A, a⊗ b 7→ a · b and a
map s : A → 1 such that a · b = a s(b). Besides, there is some map i : 1 → A
such that s(i(r)) = r. Then e := i(1) is a right unit for the product, because
a · e = a s(i(1)) = a 1 = a. Since · is commutative, it follows that e is also a left
unit. This implies a = e · a = e s(a) = i(s(a)). Hence, i is inverse to s.

Rigorous proof. Choose some i : 1 → A with s ◦ i = id1. Then i is a right unit
for A, since

m ◦ (A⊗ i) = rA ◦ (A⊗ s) ◦ (A⊗ i) = rA ◦ (A⊗ si) = rA.

Since A is commutative, it is also a left unit:

m ◦ (i⊗ A) = m ◦ SA,A ◦ (i⊗ A) = m ◦ (A⊗ i) ◦ S1,A = rA ◦ S1,A = lA

Hence, in the following diagram, every part commutes:

A

s

��

1⊗ AlAoo

1⊗s

��

1⊗ A

i⊗s

��

1⊗ A
lA

""

i⊗A

��

1

i

��

1⊗ 1

i⊗1

��

l1=r1
oo A⊗ A m //

A⊗s

��

A

A A⊗ 1rA
oo A⊗ 1 A⊗ 1

rA

<<

The outer shape implies that is = idA.
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3.4 Adjunction between stacks and cocomplete

tensor categories

Every morphism f : Y → X of schemes (or algebraic stacks) induces a pullback
functor f ∗ : Qcoh(X)→ Qcoh(Y ), which is a cocontinuous tensor functor. Now
we may ask if f can be reconstructed from f ∗ and if any cocontinuous tensor
functor Qcoh(Y ) → Qcoh(X) is induced by a morphism. This motivates the
definition of tensorial schemes, or more generally tensorial stacks. We will give
a quite conceptual definition of them with the help of an adjunction between
stacks and cocomplete tensor categories.

In this section, we assume that all schemes and stacks are defined over some fixed
commutative ring R and we work with R-linear cocomplete tensor categories.
This assumption is not really necessary and in fact one should omit it when one
is interested in algebraic geometry over F1.

Definition 3.4.1 (Spec and Qcoh).

1. For us a stack is a pseudo-functor Schop → Cat which satisfies effective
descent with respect to the fpqc topology. Together with natural transfor-
mations and modifications, we obtain the 2-category of stacks, denoted by
Stack. We do not require that stacks factor through groupoids Gpd.

2. Let C be a cocomplete tensor category. Its spectrum Spec(C) is a stack
defined by

Spec(C)(X) = Homc⊗
(
C,Qcoh(X)

)
for schemes X. If X → Y is a morphism of schemes, its pullback functor
Qcoh(Y ) → Qcoh(X) induces a functor Spec(C)(Y ) → Spec(C)(X). Then
Spec(C) is a stack basically because Qcoh(−) is a stack by descent theory
for quasi-coherent modules ([Vis05, 4.23]). This construction provides us
with a 2-functor

Spec : Catop
c⊗ → Stack .

3. Let F be a stack. The cocomplete tensor category of quasi-coherent mod-
ules Qcoh(F ) is defined as HomStack(F,Qcoh(−)) with pointwise defined
tensor products and colimits. This means that a quasi-coherent module
M on F is given by functors MX : F (X) → Qcoh(X) for every scheme
X, which are compatible with base change, which means that there are
compatible isomorphisms f ∗ ◦MX

∼= MY ◦F (f) for morphisms f : Y → X.
These isomorphisms also belong to the data. We obtain a 2-functor

Qcoh : Stack→ Catop
c⊗ .
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Chapter 3. Introduction to cocomplete tensor categories

Remark 3.4.2.

1. If F is an algebraic stack, then our definition of quasi-coherent modules on
F coincides with the usual one ([Vis89, 7.18]).

2. The definition of Spec has also appeared in the independent work [LT12,
Section 2] (including a very detailed proof that Spec(C) is, indeed, a stack).
The current proof of [LT12, Theorem 3.4] has a serious gap.

I have learned the following adjunction from David Ben-Zvi. It is a categori-
fication of the well-known adjunction between commutative rings and schemes
[GD71, Proposition 1.6.3].

Proposition 3.4.3 (Adjunction between Spec and Qcoh). If F is a stack and
C is a cocomplete tensor category, then there is a natural equivalence

HomStack(F, Spec(C)) ' Homc⊗(C,Qcoh(F )).

Thus, Spec : Catop
c⊗ → Stack is right adjoint to Qcoh : Stack→ Catop

c⊗.

Proof. This is entirely formal. For a stack F and a scheme X, the component
functor

F (X)→ Homc⊗(Qcoh(F ),Qcoh(X))

of the unit ηF : F → Spec(Qcoh(F )) is defined to be the obvious evaluation
which comes from the definition of Qcoh(F ).

The counit εC : C → Qcoh(Spec(C)) is also given by evaluation, i.e.

εC(T )X : Homc⊗(C,Qcoh(X))→ Qcoh(X)

evaluates at T ∈ C.

Definition 3.4.4 (Tensorial stacks and stacky tensor categories). A stack F is
called tensorial if the unit

ηF : F → Spec(Qcoh(F ))

is an equivalence, i.e. for every scheme Y we have an equivalence

F (Y ) ' Homc⊗(Qcoh(F ),Qcoh(Y )).

A cocomplete tensor category C is called stacky if the counit

εC : C → Qcoh(Spec(C))

is an equivalence.
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For example, a scheme X is tensorial if for every scheme Y the functor

Hom(Y,X)→ Homc⊗
(
Qcoh(X),Qcoh(Y )

)
, f 7→ f ∗

is an equivalence of categories. This forces Homc⊗(Qcoh(X),Qcoh(Y )) to be
essentially discrete. We will say more about tensoriality in section 5.7.

Every adjunction restricts to an equivalence between its fixed points. Thus:

Proposition 3.4.5. The 2-functors Spec and Qcoh yield an anti-equivalence of
2-categories between tensorial stacks and stacky cocomplete tensor categories.

Remark 3.4.6 (Analogies). This can be seen as a categorification of the anti-
equivalence between affine schemes and commutative rings. It connects algebraic
geometry, which is commutative algebra locally, with categorified or global com-
mutative algebra. We will explain later what this means in detail. Notice that
there is a striking analogy to functional analysis: We have a functor C(−,C)
from topological spaces to the dual category of (involutive) C-algebras which
is left adjoint to the Gelfand spectrum Hom(−,C). The Theorem of Gelfand-
Naimark states that this adjunction restricts to an equivalence of categories be-
tween compact Hausdorff spaces and the dual category of unital commutative
C∗-algebras. Back to our setting, we may imagine stacks as 2-geometric objects
whose 2-regular functions are precisely quasi-coherent modules. Tensorial stacks
are those stacks which are determined by their 2-semiring of 2-regular functions.

Remark 3.4.7 (Size issues). The reader may notice that our definitions of
Qcoh(F ) for a general stack F and of Spec(C) for a general cocomplete ten-
sor category C might cause set-theoretic problems, since they are outside of some
Grothendieck universe fixed beforehand. However, the definitions of tensorial
stacks and stacky cocomplete tensor categories including their anti-equivalence
still make sense.

Remark 3.4.8 (Stacky tensor categories). There are lots of examples of co-
complete tensor categories which are not stacky, since there are quite a few
properties of quasi-coherent modules which do not hold in all tensor categories.
An example is that every epimorphism O → O is already an isomorphism (see
Example 4.8.12). Unfortunately we do not know any classification of stacky ten-
sor categories. At least Schäppi ([Sch12a]) has proven that the anti-equivalence
above restricts to an anti-equivalence between Adams stacks and so-called weakly
Tannakian categories. The latter have an intrinsic characterization in character-
istic zero ([Sch13]). This is a generalization of the classical Tannaka duality
([Del90]).

Remark 3.4.9 (Artin’s criteria). The spectrum Spec(C) of a cocomplete tensor
category C should only be considered to be a geometric object when it is an
algebraic stack. Artin has found criteria for a stack to be algebraic ([Art74,
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Chapter 3. Introduction to cocomplete tensor categories

Theorem 5.3]). Recently Hall and Rydh have found a refinement of these criteria
([HR13, Main Theorem]). Let us write down what they mean for our stack
X = Spec(C) defined by X(Y ) = Homc⊗/R(C,Qcoh(Y )). For brevity we will just
say algebras when we mean commutative algebras.

Let R be an excellent ring and let C be a cocomplete R-linear tensor category.
Then the stack Spec(C) is an algebraic stack, locally of finite presentation over
R, if and only if the following conditions are satisfied:

• For every R-algebra A the category Homc⊗/R(C,Mod(A)) is actually a
groupoid.

• For every directed diagram of R-algebras {Ai} the canonical functor

colimi Homc⊗/R(C,Mod(Ai))→ Homc⊗/R(C,Mod(colimiAi))

is an equivalence of groupoids.

• For homomorphisms A′ → A ← B of local artinian R-algebras of finite
type, where A′ → A is surjective and B → A is an isomorphism on residue
fields, the natural functor from Homc⊗(C,Mod(A′ ×A B)) to

Homc⊗(C,Mod(A′))×Homc⊗(C,Mod(A)) Homc⊗(C,Mod(B))

is an equivalence of groupoids.

• For every complete local noetherian R-algebra (A,m) the canonical functor

Homc⊗(C,Mod(A))→ lim
n

Homc⊗(C,Mod(A/mn))

is an equivalence of groupoids.

• Automorphisms, deformations and obstructions for Spec(C) are bounded,
constructible and Zariski-local.

It would take too long to elaborate here what the last condition means in terms
of C. Let us explain for example what boundedness of deformations and au-
tomorphisms means. Let A be a finitely generated R-algebra without zero di-
visors, let s : C → Mod(A) be an R-linear cocontinuous tensor functor. De-
fine a category DefC(s) whose objects are R-linear cocontinuous tensor functors
s : C → Mod(A[ε]/ε2) with an isomorphism s mod ε ∼= s. The set of isomorphism
classes of this category is actually an A-module. This is required to be coherent.
Besides, the A-module of automorphisms in DefC(s) of the trivial extension s[ε]
is required to be coherent.
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Chapter 4

Commutative algebra in a
cocomplete tensor category

4.1 Algebras and modules

We can develope commutative algebra internal to an arbitrary (cocomplete) ten-
sor category. Let us start with algebras and modules over them. The following
definitions are well-known ([SR72, I.6]):

Definition 4.1.1 (Algebras). Let C be a tensor category.

1. Recall that an algebra object in C is an object A ∈ C together with two
morphisms e : 1→ A (unit) and m : A⊗A→ A (multiplication) such that
m is associative (i.e. m◦(A⊗m) = m◦(m⊗A) as morphismsA⊗A⊗A→ A)
and e is a unit for m (i.e. m ◦ (A⊗ e) = m ◦ (e⊗A) = idA). Formally it is
a triple (A, e,m), but we will often abuse notation and just write A.

2. We call A commutative if m ◦ SA,A = m.

3. There is an obvious notion of homomorphisms of algebras. We obtain the
category of algebras Alg(C) and the full subcategory CAlg(C) of commuta-
tive algebras.

4. If we do not require the existence of a unit e, we speak of non-unital
(commutative) algebras.

Remark 4.1.2. Many texts use the terminology of monoid objects. We have not
adopted this usage since we turn our attention mainly to linear tensor categories,
where one is more used to the terminology of algebras.

Example 4.1.3. An algebra object in Set is a monoid in the usual sense. Al-
gebras in Mod(R) are R-algebras in the usual sense. More generally, if X is a
scheme, then commutative algebras in Qcoh(X) are quasi-coherent algebras on
X. Algebras in the tensor category of chain complexes (Example 3.1.11) are also
known as differential-graded algebras.
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Example 4.1.4 (Tensor algebra). Let C be a cocomplete tensor category. Then
the forgetful functor Alg(C)→ C has a left adjoint: It maps an object M ∈ C to
the tensor algebra T (M) over M ([ML98, VII.3. Theorem 2]). The underlying
object is

T (M) =
∞⊕
n=0

M⊗n.

The unit is the inclusion of M⊗0 = 1. The multiplication is induced by the
isomorphisms M⊗p ⊗M⊗q → M⊗p+q. For C = Mod(R) this is the usual tensor
algebra. For C = Set we recover the free monoid of words over an alphabet M .
In a quantale (see Example 3.1.6) we have T (M) = supn→∞M

n.

Remark 4.1.5 (Constructions with algebras).

• The initial algebra is given by 1 = T (0).

• If (A, e,m) is an algebra in C, then its opposite algebra is defined by
(A, e,m)op := (A, e,m ◦ SA,A).

• If (A, e,m), (B, e′,m′) are (commutative) algebras in C, then their tensor
product (A⊗B, e⊗ e′, (m⊗m′) ◦ (A⊗SB,A⊗B)) is also a (commutative)
algebra in C.

• This tensor product gives the coproduct in CAlg(C). In fact, CAlg(C) is
cocomplete ([Mar09, Proposition 1.2.14]).

Definition 4.1.6 (Center). Let (A, e,m) be an algebra in a closed tensor cat-
egory C with equalizers. Then we have two morphisms A → Hom(A,A), one
corresponding to the multiplication of A and one corresponding to the multipli-
cation of Aop. We define Z(A) to be the equalizer of these two morphisms. This
turns out to be a subalgebra of A, the center of A.

Definition 4.1.7 (Modules and bimodules). Let (A, e,m) be an algebra in a
tensor category C.

1. We define a right A-module to be an object M ∈ C equipped with a
morphism r : M ⊗ A → M such that r ◦ (M ⊗ e) = idM as well as
r ◦ (M ⊗m) = r ◦ (r⊗A) as morphisms M ⊗A⊗A→M . There is an ob-
vious notion of homomorphisms of right A-modules. The category of right
A-modules is denoted by Mod(A). For example, A is a right A-module
with r = m.

2. If C is closed, r may be identified with its dual ř : M → Hom(A,M) and
we may also define modules in terms of this datum.

3. It is clear how to define the category of left A-modules. If C is closed, a left
module action of A on M may be also described as a homomorphism of
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algebras A → Hom(M,M) in C. If A is commutative, then right modules
can be made into left modules and vice versa, so we just call them modules.

4. More generally, if (A,B) is a pair of algebras in C, we define an (A,B)-
bimodule in C as an object M with a morphism s : A⊗M ⊗B →M with
the property that M becomes both a left A-module via s ◦ (A⊗M ⊗ eB) :
A⊗M →M and a right B-module via s◦(eA⊗M⊗B) : M⊗B →M . We
obtain the category of (A,B)-bimodules. It is isomorphic to the category
of right Aop ⊗ B-modules. If A is commutative, we usually consider every
A-module also as an (A,A)-bimodule in a canonical way.

Example 4.1.8 (Free modules). The forgetful functor Mod(A) → C has a left
adjoint which maps X ∈ C to the right A-module (X ⊗ A,X ⊗ m), the free
A-module on X ([Mar09, Proposition 1.3.3]).

Definition 4.1.9 (Tensor product of bimodules). Let C be a cocomplete tensor
category and let A,B,C be algebras in C. If M is an (A,B)-bimodule and N is
a (B,C)-bimodule in C, we define M ⊗B N to be the following (A,C)-bimodule:
The underlying object of M⊗BN is the coequalizer of the two obvious morphisms
M ⊗ B ⊗ N ⇒ M ⊗ N . Roughly, M ⊗B N results from M ⊗ N by identifying
the two B-actions. The actions of A on M and of C on N induce a morphism
A⊗M⊗N⊗C →M⊗N �M⊗BN which coequalizes the two morphisms from
A⊗M⊗B⊗N⊗C, hence it lifts to a morphism A⊗ (M⊗BN)⊗C →M⊗BN .
This defines the (A,C)-bimodule structure on M ⊗B N . In particular, if A is
commutative and M,N are two right A-modules, we obtain a right A-module
M ⊗A N . In fact, we have the following well-known result:

Proposition 4.1.10 (The tensor category of modules). Let C be a cocomplete
tensor category and A be a commutative algebra in C, then Mod(A) becomes a
cocomplete tensor category with unit A and tensor product ⊗A. Colimits are
created by the forgetful functor Mod(A)→ C. Moreover, its left adjoint −⊗ A :
C → Mod(A) becomes a cocontinuous tensor functor.

Proof. The proof that Mod(A) becomes a tensor category is a straightforward
generalization of the known case C = Ab ([Mar09, Proposition 1.2.15]). For
example, in order to prove M ⊗A A ∼= M , one checks that the right module
action M ⊗A→M lifts to a morphism M ⊗A A→M , conversely that the unit
of A induces a morphism M → M ⊗ A � M ⊗A A and that these morphisms
are inverse homomorphisms of A-modules.

If (Mi)i is a diagram of A-modules, then the colimit of the underlying objects
colimiMi in C carries the structure of an A-module via

(colimiMi)⊗ A ∼= colimi(Mi ⊗ A)→ colimiMi.

It is the unique one which makes the colimit inclusions A-module homomor-
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phisms. It is easy to verify that colimiMi is then also the colimit in Mod(A)
([Mar09, Proposition 1.2.14]).

Let us show that the tensor product commutes with colimits in Mod(A). If M is
some A-module and (Ni)i is a diagram of A-modules, then their colimit colimiNi

is constructed as above. It follows that M ⊗A (colimiNi) is the coequalizer of
the two evident morphisms

M ⊗ A⊗ (colimiNi) ⇒M ⊗ colimiNi

which (since C is a cocomplete tensor category) identify with the colimit of the
evident morphisms

M ⊗ A⊗Ni ⇒M ⊗Ni.

Since colimits commute with colimits, we see that, in fact,

M ⊗A (colimiNi) ∼= colimi(M ⊗A Ni).

Thus, Mod(A) is a cocomplete tensor category. Finally, for S, T ∈ C there is a
canonical isomorphism

(S ⊗ A)⊗A (T ⊗ A) ∼= (S ⊗ T )⊗ A

of A-modules, basically because on the left hand side the two factors of A are
identified with each other. We can write down two inverse isomorphisms ex-
plicitly, given in element notation by (s ⊗ a) ⊗ (t ⊗ b) 7→ (s ⊗ t) ⊗ (a · b) resp.
(s⊗ a)⊗ (t⊗ 1) = (s⊗ 1)⊗ (t⊗ a)←[ (s⊗ t)⊗ a.

Remark 4.1.11 (Restriction and extension of scalars). Given a homomorphism
of algebras A→ B we obtain a forgetful functor Mod(B)→ Mod(A), M 7→M |A
(restriction of scalars). It is left adjoint to Mod(A) → Mod(B), N 7→ N ⊗A B
(extension of scalars).

Remark 4.1.12 (Amitsur complex). IfA is an algebra in a linear tensor category
C, then we have the Amitsur complex

0→ 1→ A→ A⊗2 → A⊗3 → . . .

where the differentials are alternating sums of insertions of the unit of A. That
is, A⊗n → A⊗n+1 maps a1 ⊗ . . .⊗ an in element notation to

n∑
k=0

(−1)ka1 ⊗ . . .⊗ ak ⊗ 1⊗ ak+1 ⊗ . . .⊗ an.

More generally, we may tensor the Amitsur complex with any object M ∈ C:

0→M →M ⊗ A→M ⊗ A⊗2 →M ⊗ A⊗3 → . . .
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Proposition 4.1.13 (Rank is unique). Let C be a cocomplete R-linear tensor
category. Let A be a commutative algebra in C with A 6= 0 such that A⊕n ∼= A⊕m

as A-modules for some n,m ∈ N. Then n = m. If C is finitely presentable, the
same holds for all cardinals n,m.

Proof. By considering Mod(A) instead of C we may assume that A = O, the unit
of C. We know that S := End(O) is a commutative R-algebra such that S 6= 0.
Applying Hom(O,−) : C → Mod(S) to the given isomorphism O⊕n ∼= O⊕m, we
obtain an isomorphism of S-modules S⊕n ∼= S⊕m. It is known that this implies
n = m.

Proposition 4.1.14 (Lagrange’s Theorem). Let C be a tensor category. Let
A → B be a homomorphism of algebras in C. Let M be a free right B-module.
Assume that B|A is a free right A-module. Then the right A-module M |A is also
free. Specifically, if M ∼= T ⊗ B in Mod(B) and B|A ∼= S ⊗ A in Mod(A), then
M |A ∼= (T ⊗ S)⊗ A.

Proof. We have M |A ∼= (T ⊗B)|A ∼= T ⊗B|A ∼= T ⊗ (S⊗A) ∼= (T ⊗S)⊗A.

Example 4.1.15. If we apply Proposition 4.1.14 to C = Set, we obtain (a gener-
alization of) Lagrange’s Theorem in group theory. If we apply Proposition 4.1.14
to C = Mod(R), we obtain (a generalization of) the multiplicativity formula for
degrees of field extensions. The language of tensor categories unifies both results.

Definition 4.1.16 (A-algebras). If C is a cocomplete tensor category and A is a
commutative algebra in C, then an A-algebra is an algebra in the cocomplete ten-
sor category Mod(A). Equivalently, an A-algebra is an algebra B in C equipped
with a morphism A→ Z(B) of algebras (if the center exists), i.e. a morphism of
algebras f : A→ B with the property that mB ◦ (f ⊗B) = mB ◦SB,B ◦ (f ⊗B).
Thus, a commutative A-algebra is equivalently a commutative algebra B in C
equipped with a homomorphism A→ B ([Mar09, Proposition 1.2.15]).

Remark 4.1.17 (Homomorphism modules). With the notations above, if C is
closed and has equalizers, then Mod(A) is also closed and has equalizers. Specif-
ically, for A-modules M,N we have that their internal hom HomA(M,N) is the
equalizer of the morphism

Hom(M,N)→ Hom(M,Hom(A,N))

which is induced by the (dualized) action of A on N and the morphism

Hom(M,N)→ Hom(M ⊗ A,N) ∼= Hom(M,Hom(A,N))

which is induced by the action of A on M . Again this is a straightforward
generalization of the known case C = Ab ([Mar09, Proposition 1.2.17]).
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Other types of algebras can also be defined internal to a tensor category:

Definition 4.1.18 (Hopf algebras). If C is a tensor category, we may define
coalgebras in C as algebras in Cop, bialgebras as coalgebras in the tensor category
of algebras in C ([Por08a]) and Hopf algebras as bialgebras A equipped with a
morphism S : A→ A in C such that the usual diagram commutes ([Por08b]):

A⊗ A S⊗A // A⊗ A

##
A

;;

//

##

1 // A

A⊗ A A⊗S // A⊗ A

;;

Example 4.1.19. Hopf algebras in Mod(R) are Hopf algebras over R in the
usual sense, whereas Hopf algebras in Set are just groups. Therefore, from the
tensor categorical point of view these two concepts are really the same. An easy
but useful observation is that Hopf algebras are preserved by tensor functors. If
we apply this to the unique cocontinuous tensor functor Set→ C and some group
G (in Set), we obtain a Hopf algebra OC[G] in C, a generalization of the usual
group algebra. The underlying object is a G-indexed direct sum of copies of OC.
The multiplication is induced by the one of G and likewise the comultiplication
extends the one of G itself, i.e. G→ G×G, g 7→ (g, g).

Remark 4.1.20 (Lie algebras). In a linear tensor category C, we may define
Lie algebras in C as objects L equipped with a morphism [−,−] : L ⊗ L → L
(Lie bracket) such that, in element notation, [a, b] = −[b, a] (antisymmetry) and
[a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0 (Jacobi identity). For more details we refer to
[GV13]. We can also define modules over (or representations of) L as objects
V together with a morphism ω : L ⊗ V → V such that, in element notation,
ω([x, y], v) = ω(x, ω(y, v)) − ω(y, ω(x, v)). More formally, it is required that
ω ◦ ([−,−]⊗ V ) = ω ◦ (L⊗ ω) ◦ (id−SL,L ⊗ V ) as morphisms L⊗ L⊗ V → V .

4.2 Ideals and affine schemes

In this section let C be a presentable tensor category. We develope some basic
ideal theory inside of C and then define (affine) schemes relative to C. See [Mar09]
and [TV09] for a similar but more abstract account. See [Dei05] for the case
C = Set, which leads to monoid schemes. For C = Ab we retrieve usual schemes
([GD71]). For technical reasons we assume that C is balanced, i.e. that every
epimorphism, which is a monomorphism, is already an isomorphism.
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Definition 4.2.1 (Ideals). Let A be a commutative algebra in C. An ideal is a
subobject of A in Mod(A). Equivalently, it is an object I in C equipped with a
monomorphism I ↪→ A such that I ⊗ A→ A⊗ A→ A factors through I ↪→ A.
We obtain the partial order of ideals of A. It has a least element 0 (zero ideal)
and a greatest element A (unit ideal).

This generalizes various specific notions of ideals.

Example 4.2.2. A commutative algebra in the cartesian tensor category Set is
just a commutative monoid A and an ideal I ⊆ A is a subset such that I ·A ⊆ A.
The zero ideal is here ∅. A commutative algebra in Ab is just a commutative
ring A and an ideal I ⊆ A is an additive subgroup such that I · A ⊆ A. More
generally, let X be a scheme. Then a commutative algebra in Qcoh(X) is just a
quasi-coherent algebra A on X and an ideal I ⊆ A is a quasi-coherent submodule
such that I · A ⊆ A, i.e. what is usually called a quasi-coherent ideal.

Definition 4.2.3 (Ideal sum). For a family of ideals (Ii) the induced morphism⊕
i Ii → A factors as

⊕
i Ii �

∑
i Ii ↪→ A, where the first arrow is a regular

epimorphism and the second is a monomorphism. We claim that
∑

i Ii is an
ideal of A, called the sum of the ideals Ii.

In fact, let us choose a pullback square

P //

��

(
∑

i Ii)⊗ A

��∑
i Ii

// A.

Since
∑

i Ii → A is a monomorphism, the same is true for P → (
∑

i Ii)⊗A. We
claim that it is an epimorphism, hence an isomorphism by our assumption, so
that (

∑
i Ii) ⊗ A → A factors through

∑
i Ii as desired. The claim follows from

the following commutative diagram:⊕
i(Ii ⊗ A)

∼= //

��

&&

(
⊕

i Ii)⊗ A

����

P //

��

(
∑

i Ii)⊗ A

��⊕
i Ii

// //
∑

i Ii
// A.

One checks that
∑

i Ii is indeed the smallest ideal of A which contains all Ii.

Definition 4.2.4 (Ideal product). If I, J are ideals of A, the induced morphism
I ⊗ J → A ⊗ A → A factors as I ⊗ J � I · J ↪→ A, where I ⊗ J � I · J is a
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Chapter 4. Commutative algebra in a cocomplete tensor category

regular epimorphism and I · J ↪→ A is a monomorphism. As above one checks
that I · J is an ideal of A, called the product of I and J , using the following
commutative diagram:

(I ⊗ J)⊗ A

�� ��
∼=

��

&&&&
P //

��

(I · J)⊗ A

��

I ⊗ (J ⊗ A) // I ⊗ J // A.

With the same trick one checks that I · J is the smallest ideal K ⊆ A with the
property that I ⊗ J → A⊗ A→ A factors through K.

Lemma 4.2.5. Let A be a commutative algebra in C.

1. The ideal product is associative and commutative. It has A as a neutral
element.

2. The ideal product distributes over arbitrary sums: For a family of ideals
Ii ⊆ A and another ideal J ⊆ A the canonical morphism

∑
i

(Ii · J)→

(∑
i

Ii

)
· J

is an isomorphism.

3. Hence, the ideals of A constitute a quantale.

Proof. 1. This follows easily from the isomorphisms I ⊗ (J ⊗K) ∼= (I ⊗ J)⊗K,
I ⊗ J ∼= J ⊗ I and I ⊗AA ∼= I for ideals I, J,K ⊆ A. 2. This follows easily from⊕

i(Ii ⊗ J) ∼= (
⊕

i Ii)⊗ J . 3. This follows from 1. and 2.

Definition 4.2.6 (Prime ideals). Let A be a commutative algebra in C. An
ideal p ⊆ A is called a prime ideal if p 6= A and if for all ideals I, J ⊆ A we have

I · J ⊆ p =⇒ I ⊆ p ∨ J ⊆ p.

We obtain the set Spec(A) of prime ideals of A.

Proposition 4.2.7 (Existence of prime ideals). If A 6= 0 and A is finitely pre-
sentable, then Spec(A) 6= ∅.

Proof. We first observe that A has a maximal proper ideal by Zorn’s Lemma: In
fact, if {Ii}i∈I is a non-empty chain of proper ideals of A, then

∑
i∈I Ii is also
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4.2. Ideals and affine schemes

a proper ideal of A. Otherwise, since A is finitely presentable, we would have∑
i∈E Ii = A for some finite subset E ⊆ I and then Ii = A for some i ∈ E, a

contradiction. Hence, there is a maximal proper ideal m ⊆ A. We claim that m
is a prime ideal. The usual calculation works: If I 6⊆ m and J 6⊆ m, but I ·J ⊆ m,
then I + m and J + m are larger than m, hence must be equal to the unit ideal
A. But then

A = A · A = (I + m) · (J + m) ⊆ I · J + I ·m + m · J + m ·m ⊆ m

is a contradiction.

Definition 4.2.8 (Zariski topology). For an ideal I ⊆ A we define

V (I) = {p ∈ Spec(A) : I ⊆ p}.

Because of the evident properties

• V (0) = Spec(A), V (A) = ∅

• V (I · J) = V (I) ∩ V (J)

• V (
∑

i Ii) = ∩iV (Ii)

these sets constitute the closed sets of a topology on Spec(A), which we call the
Zariski topology.

Next, we would like to define the structure sheaf. The functorial approach in
[TV09] is very abstract. Although [Mar09] is more concrete, there it is assumed
that 1 ∈ C is a projective object ([Mar09, Definition 1.4.18]), which excludes
global examples such as C = Qcoh(X) for non-affine X. But we would like to
include these into our theory and therefore choose the following alternative:

If X is a noetherian scheme, then we have Deligne’s formula [GD71, Proposition
6.9.17]: If M is a quasi-coherent module on X and U ⊆ X is an open subset,
then the canonical homomorphism

colimV (I)∩U=∅HomOX (I,M)→ Γ(U,M)

is an isomorphism. Here, I runs over all quasi-coherent ideals of OX such that
V (I) ∩ U = ∅, or equivalently I|U = OU . In particular, this gives an explicit

description of the sections of the sheaf M̃ associated to an A-module, where A
is a noetherian commutative ring. This motivates the following definition:

Definition 4.2.9 (Associated sheaves). If M ∈ Mod(A), we define the sheaf M̃
on Spec(A) to be the one associated to the presheaf

U 7→ colimV (I)∩U=∅HomA(I,M).

In particular, we have OSpec(A) := Ã. This is a sheaf of commutative monoids on
Spec(A) (in fact of commutative rings if C is linear).
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Chapter 4. Commutative algebra in a cocomplete tensor category

Definition 4.2.10 (Schemes). The space Spec(A) togethter with its structure
sheaf OSpec(A) is called the spectrum of A. It is called an affine scheme. A
scheme with respect to C is a space with a sheaf of commutative monoids (resp.
commutative rings if C is linear) which is locally isomorphic to an affine scheme.
We obtain the category Sch/C of schemes relative to C.

Example 4.2.11. For C = Ab we get the category of usual schemes, for C =
Mod(R) the category of R-schemes, for C = Set the category of monoid schemes
and for C = Set∗ the category of pointed monoid schemes.

As an application, we can prove the following reconstruction result. There we
consider OX as a commutative algebra in Qcoh(X).

Theorem 4.2.12 (Reconstruction). Let X be a noetherian scheme. Then there
is an isomorphism of ringed spaces

X ∼= Spec(OX).

Proof. We define a map i : X → Spec(OX) as follows: If x ∈ X, then px ⊆ OX
is the vanishing ideal of {x}. Explicitly, we have for U ⊆ X open

px(U) = {s ∈ OX(U) : sx ∈ mx if x ∈ U}.

If I ⊆ OX is a quasi-coherent ideal, we have I ⊆ px ⇔ Ix ⊆ mx. Since mx is
a prime ideal of OX,x, it follows easily that px is a prime ideal of OX . Hence, i

is well-defined. Since x is uniquely determined by {x} = supp(OX/px), we see
that i is injective.

For surjectivity, let I ⊆ OX be a prime ideal. By considering the closed sub-
scheme of X which is cut out by I, we may assume that I = 0 is a prime ideal
(in particular X 6= ∅) and we want to show that 0 = px for some x ∈ X, which
means that X is integral with generic point x. Since X is noetherian, there is
some n ∈ N such that rad(OX)n = 0. Since 0 is a prime ideal, this implies
rad(OX) = 0, i.e. that X is reduced. In order to show that X is irreducible, let
A,B ⊆ X be closed subsets with A ∪ B = X. If J1, J2 are the corresponding
vanishing ideals, it follows J1 ∩ J2 = 0 and hence also J1 · J2 = 0. Since 0 is
prime, this implies J1 = 0 or J2 = 0 and hence A = X or B = X. Thus, i is
bijective.

Finally, i is a homeomorphism, since for a quasi-coherent ideal I ⊆ OX we have

V (I) = {x ∈ X : Ix ⊆ mx} = {x ∈ X : I ⊆ px} = i−1(V (I)).

That i extends to an isomorphism of the structure sheaves comes out of our
construction and Deligne’s formula.
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In particular, we can reconstruct every noetherian scheme X from the tensor
category Qcoh(X). Besides, X is actually an affine scheme with respect to the
“base” Qcoh(X).

4.3 Symtrivial objects

Let M be an object of a tensor category C and n ∈ N. Then the symmetric
group Σn acts as follows on M⊗n. For a transposition σi = (i i + 1) we take
the symmetry SM,M : M ⊗M → M ⊗M , tensored with M⊗i−1 on the left and
M⊗n−i−1 on the right. The group Σn is generated by σ1, . . . , σn−1 modulo the
relations σ2

i = 1, σiσj = σjσi (j 6= i ± 1) and σiσi+1σi = σi+1σiσi+1 ([CM80]).
The Coherence Theorem (Remark 3.1.3) implies that these relations are satisfied
by the corresponding symmetries, so that we get, in fact, a homomorphism

Σn → Aut(M⊗n).

In the case C = Mod(R) for some commutative ring R a permutation σ acts on
M⊗n by

mσ(1) ⊗ . . .⊗mσ(n) 7→ m1 ⊗ . . .⊗mn.

For general C we will use the same element notation.

The following terminology might be new.

Definition 4.3.1 (Symtrivial objects). Let C be a tensor category. An object
M ∈ C is called symtrivial if for all n ∈ N the action of Σn on M⊗n is trivial.
Equivalently, SM,M : M ⊗M → M ⊗M is required to be the identity, i.e. in
element notation a⊗ b = b⊗ a for a, b ∈M .

Remark 4.3.2 (Closure properties). Let us list some easy properties of symtriv-
ial objects:

1. The unit 1 and the initial object 0 are always symtrivial.

2. Any tensor functor preserves symtrivial objects.

3. In a finitely cocomplete tensor category, a direct sum M ⊕N is symtrivial
if and only if M ⊗N = 0 and M,N are symtrivial. In a cocomplete tensor
category, the same holds for infinite direct sums.

4. If M is a symtrivial object and N is any object, then we have in element
notation c⊗ a⊗ b = c⊗ b⊗ a for a, b ∈M and c ∈ N . After twisting with
the symmetry N ⊗M ∼= M ⊗N we also get a⊗ c⊗ b = b⊗ c⊗ a.

5. If M,N are symtrivial, then their tensor product M ⊗N is also symtrivial:
Using element notation we calculate in (M ⊗N)⊗ (M ⊗N) that

a⊗ b⊗ a′ ⊗ b′ = a′ ⊗ b⊗ a⊗ b′ = a′ ⊗ b′ ⊗ a⊗ b.
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Chapter 4. Commutative algebra in a cocomplete tensor category

The rigorous proof uses the commutative diagram

(M ⊗N)⊗ (M ⊗N)
SM⊗N //

h
��

(M ⊗N)⊗ (M ⊗N)

h
��

(M ⊗M)⊗ (N ⊗N)
SM⊗SN // (M ⊗M)⊗ (N ⊗N),

where h is the canonical isomorphism which is induced by the symmetry
SN,M : N ⊗M ∼= M ⊗N and the associativity isomorphisms.

6. The same diagram shows: If M ⊗ N ∼= 1 and M is symtrivial, then N is
also symtrivial.

7. Let s : M → M ′ be an epimorphism in a finitely cocomplete tensor cat-
egory. Then M ′ is symtrivial if and only if s(a) ⊗ s(b) = s(b) ⊗ s(a) for
a, b ∈M in element notation. If M is symtrivial, then M ′ is symtrivial.

8. In a cocomplete tensor category symtrivial objects are closed under directed
colimits.

Lemma 4.3.3. Let X be a locally ringed space and M an OX-module. If every
stalk Mx is a cyclic OX,x-module, then M is symtrivial. The converse holds when
M is of finite type. For example, invertible modules are symtrivial.

Proof. Clearly M is symtrivial if and only if each Mx is symtrivial. So it suffices
to consider the case that M is a module over a local ring R. If M is cyclic, then
M is a quotient of the symtrivial module R, hence symtrivial. If M is symtrivial
and of finite type, we claim that M is cyclic. This is clear when R is a field. In
the general case, let k be the residue field. Then M ⊗R k is symtrivial over k,
hence cyclic. By Nakayama’s Lemma M is cyclic.

The following result gives more examples of symtrivial modules.

Lemma 4.3.4. Let C be a tensor category and let A be a commutative algebra
in C. The following are equivalent:

1. A is a symtrivial object of C.

2. We have a ⊗ 1 = 1 ⊗ a in A ⊗ A for all a ∈ A, i.e. the two coproduct
inclusions from A to A⊗ A coincide.

3. The unit 1→ A is an epimorphism in CAlg(C).

Proof. 2. ⇒ 1. follows since a ⊗ b = (a ⊗ 1)b = (1 ⊗ a)b = 1 ⊗ ab is symmetric
in a, b. 1. ⇒ 2. is trivial and 2. ⇔ 3. is formal.

64



4.4. Symmetric and exterior powers

See [SMR+68] for examples and the theory of epimorphisms of commutative
rings. Will Sawin has classified all symtrivial R-modules when R is a Dedekind
domain. See http://mathoverflow.net/questions/119689.

4.4 Symmetric and exterior powers

We fix a finitely cocomplete tensor category C.

Definition 4.4.1 (Symmetric powers). Let f : M⊗n → N be a morphism in C.

1. We call f symmetric if f ◦ σ = f for all σ ∈ Σn, i.e. in element notation
f(a1 ⊗ . . .⊗ an) = f(aσ(1) ⊗ . . .⊗ aσ(n)) for all ai ∈M .

2. Assume that C is linear. We call f is antisymmetric if, instead, we have
f ◦ σ = sgn(σ)f for all σ ∈ Σn. In element notation we may write this as
f(a1 ⊗ . . .⊗ an) = sgn(σ)f(aσ(1) ⊗ . . .⊗ aσ(n)).

3. We obtain two functors C → Set of symmetric resp. antisymmetric mor-
phisms on M⊗n. A representing object is called an n-th symmetric power
resp. n-th antisymmetric power of M and is denoted by Symn(M) resp.
ASymn(M).

Remark 4.4.2. More generally we may start with a homomorphism of groups
χ : Σn → AutC(1), define χ-symmetric maps and a classifying object Symn

χ(M),
so that Symn

1 (M) = Sym(M) and Symn
sgn(M) = ASymn(M).

Example 4.4.3. There is an epimorphism M⊗n → Symn(M) which we may
write as

x1 ⊗ . . .⊗ xn 7→ x1 · . . . · xn
in element notation, which is symmetric and has the universal property that every
symmetric morphism M⊗n → T extends uniquely to a morphism Symn(M)→ T .
This generalizes the usual notion in the case C = Mod(A) for some commutative
ring A, or more generally C = Qcoh(X) for some scheme or algebraic stack X.
We may apply this definition also to the cartesian category of sets C = Set where
Symn(M) is the set of multisets of n elements in M .

Proposition 4.4.4 (Properties of symmetric powers).

1. The symmetric and antisymmetric powers exist and provide functors

Symn, ASymn : C → C.

2. There is a unique epimorphism

Symp(M)⊗ Symq(M)→ Symp+q(M)
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lying over M⊗p ⊗M⊗q ∼= M⊗p+q, i.e. given in element notation by

a1 · . . . · ap ⊗ b1 · . . . · bq 7→ a1 · . . . ap · b1 · . . . · bq.

3. The induced morphism⊕
p+q=n

Symp(M)⊗ Symq(N)→ Symn(M ⊕N)

is an isomorphism.

4. Let p : N → P be the coequalizer of two morphisms f, g : M → N . Let
n ≥ 1. There are two morphisms M ⊗ Symn−1(N) ⇒ Symn(N) defined as
the composition

M ⊗ Symn−1(N) ⇒ N ⊗ Symn−1(N) � Symn(N).

Then

M ⊗ Symn−1(N) ⇒ Symn(N)
Symn(p)−−−−−→ Symn(P )

is exact.

5. All these statements hold verbatin for ASym instead of Sym.

Proof. 1. Define Symn(M) resp. ASymn(M) to be the coequalizer of all the
endomorphisms σ resp. sgn(σ)σ of M⊗n, where σ ∈ Σn. The universal property
is easily verified.

2. This is because M⊗n⊗M⊗m ∼= M⊗n+m � Symn+m(M) is symmetric both on
M⊗n and on M⊗m, so that Lemma 3.1.20 may be applied.

3. Using 2. we get for all p+ q = n a morphism

Symp(M)⊗ Symq(N)→ Symp(M ⊕N)⊗ Symq(M ⊕N)→ Symn(M ⊕N).

These induce a morphism⊕
p+q=n

Symp(M)⊗ Symq(M)→ Symn(M ⊕N).

We claim that it is an isomorphism, i.e. that the morphisms to any test ob-
ject coincide. A morphism on Symn(M ⊕ N) corresponds to a symmetric mor-
phism on (M ⊕ N)⊗n. This tensor product decomposes by Lemma 3.2.1 as⊕

p+q=n

(
n
p

)
M⊗p ⊗ N⊗q. Thus the morphism corresponds to a family of mor-

phisms on copies of M⊗p ⊗ N⊗q. The symmetry condition means exactly that
these morphisms agree on the same copies and that they are symmetric on M⊗p

and N⊗q separately. Hence, by Lemma 3.1.20 they correspond to a morphism
on
⊕

p+q=n Symp(M)⊗ Symq(N). For ASym a similar argument works.
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4. A morphism on Symn(P ) corresponds to a symmetric morphism on P⊗n.
By Lemma 3.1.20 N⊗n → P⊗m is the coequalizer of the n pairs of morphisms
N⊗i ⊗ M ⊗ Nn−i−1 ⇒ N⊗n (i = 0, . . . , n − 1), hence a symmetric morphism
on P⊗n corresponds to a symmetric morphism on N⊗n which coequalizes all the
pairs on N⊗i⊗M⊗Nn−i−1. But the symmetry allows us to reduce this condition
to the case i = 0. Finally, we use that N⊗n−1 → Symn−1(N) is an epimorphism.
This proof also works for ASym.

Lemma 4.4.5 (Symmetric algebra). Let C be a cocomplete tensor category and
M ∈ C. Then Sym0(M) = 1 and the natural epimorphisms (Proposition 4.4.4)
Symp(M)⊗ Symq(M) � Symp+q(M) endow

Sym(M) :=
∞⊕
p=0

Symp(M)

with the structure of a commutative algebra in C, which we call the symmetric
algebra on M . In fact, Sym : C → CAlg(C) is left adjoint to the forgetful functor.

Proof. The first part is obvious. For the second part, let A be a commutative
algebra in C and f : M → A be a morphism in C. For every p ≥ 0, the
multiplication of A induces a morphism A⊗p → A in C (resp. for p = 0 it is the
unit). Since A is commutative, it lifts to a morphism Symp(A) → A. Hence,
f induces a morphism Symp(M) → Symp(A) → A for every p and hence a
morphism f̃ : Sym(M)→ A. One checks that f̃ is the unique homomorphism of
commutative algebras such that f̃ |M = f . See [Mar09, Proposition 1.3.1].

Example 4.4.6 (Polynomial algebras). Let A be a commutative algebra in C
and M some A-module. Then we define the A-algebra SymA(M) to be the sym-
metric algebra of M as an object in Mod(A). For example, we can construct the
polynomial algebra A[T1, . . . , Tn] := SymA(A⊕n). It satisfies the usual universal
property: If B is a commutative A-algebra and (ei : O → B)1≤i≤n is an n-tuple
of “global sections” of B, then there is a unique homomorphism of A-algebras
A[T1, . . . , Tn] → B which maps the global sections Ti : O → A[T1, . . . , Tn] to
ei. If C is assumed to be abelian, then Hilbert’s Basis Theorem holds: If A is
noetherian, then A[T1, . . . , Tn] is also noetherian ([Yet90]).

Remark 4.4.7 (Exterior powers?). Let A be a commutative ring and M,N be
two A-modules. Recall that a homomorphism f : M⊗n → N is called alternating
if f(m1 ⊗ . . . ⊗ mn) = 0 for all m ∈ Mn such that mi = mj for some i 6= j.
A representing object of the alternating homomorphisms on M⊗n is called the
nth exterior power of M and is denoted by ΛnM . The universal alternating
homomorphism M⊗n → Λn(M) is denoted by m1 ⊗ . . .⊗mn 7→ m1 ∧ . . . ∧mn.

This construction commutes with localization. Hence, by gluing, we also have
an exterior power ΛnM for quasi-coherent modules M on a scheme. Since any
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alternating homomorphism is antisymmetric, there is a canonical epimorphism
ASymn(M)→ Λn(M) over M⊗n.

Now, the exterior powers satisfy some properties which are fundamental for com-
mutative algebra and algebraic geometry, but which fail for antisymmetric pow-
ers: If M is locally free of rank n, then ΛdM is locally free of rank

(
n
d

)
. In

particular, ΛdM = 0 for d > n and det(M) := Λn(M) is invertible. However, we
have ASymn(O) = O/2O for n ≥ 2.

Therefore, it is tempting to define exterior powers in arbitrary cocomplete ten-
sor categories. Unfortunately, to the best knowledge of the author, this is not
possible in general. On the other hand, if 2 ∈ A∗, then alternating homo-
morphisms M⊗n → N coincide with antisymmetric homomorphisms, so that
ASymn(M) ∼= Λn(M). This motivates:

Definition 4.4.8 (Exterior powers). Let C be a finitely cocomplete R-linear ten-
sor category with 2 ∈ R∗. For M ∈ C and n ∈ N we define the nth exterior power
by Λn(M) := ASymn(M). We denote the universal antisymmetric morphism by
∧ : M⊗n → Λn(M) and write it in element notation as

x1 ⊗ . . .⊗ xn 7→ x1 ∧ . . . ∧ xn

For module categories, there seems to be some extra structure or language which
makes it possible to define alternating homomorphisms. The following Proposi-
tion gives an idea what that might be.

Proposition 4.4.9 (Extra structure). Let A be a commutative ring such that
a2 − a ∈ 2A for all a ∈ A (for example A = Z or A = F2). Let M ∈ Mod(A).
For every n ∈ N the map of sets

fn : Mn → ASymn+1(M), (m1, . . . ,mn) 7→ m1 ∧m1 ∧ . . . ∧mn

is multilinear, hence extends to a homomorphism f̃n : M⊗n → ASymn+1(M).
Besides, there is an exact sequence

M⊗n f̃n−→ ASymn+1(M) −→ Λn+1(M) −→ 0.

Proof. Clearly fn is linear in m2, . . . ,mn. For the linearity in m1, we first observe
that

m1 ∧m1 ∧ . . . ∧mn = −m1 ∧m1 ∧ . . . ∧mn

by interchanging the two copies of m1. It follows 2A(m1 ∧m1 ∧ . . . ∧mn) = 0,
hence for all a ∈ A:

am1 ∧ am1 ∧ . . . ∧mn = a2(m1 ∧m1 ∧ . . . ∧mn)

= a(m1 ∧m1 ∧ . . . ∧mn)

+(a2 − a)(m1 ∧m1 ∧ . . . ∧mn)

= a(m1 ∧m1 ∧ . . . ∧mn)
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We also have for another m′1 ∈M :

(m1 +m′1) ∧ (m1 +m′1) ∧ . . . = m1 ∧m′1 ∧ . . .+m′1 ∧m1 ∧ . . .
+m1 ∧m1 ∧ . . .+m′1 ∧m′1 ∧ . . .

= m1 ∧m1 ∧ . . .+m′1 ∧m′1 ∧ . . .

This shows that fn is multilinear. The exactness of the sequence means that
an antisymmetric map g : Mn+1 → N is alternating if and only if it satisfies
g(m1,m1,m2, . . . ,mn) = 0 for all (m1,m2, . . . ,mn) ∈Mn, which is obvious.

Lemma 4.4.10 (Exterior algebra). Let C be a cocomplete R-linear tensor cate-
gory with 2 ∈ R∗ and M ∈ C. Then Λ0(M) = 1 and the natural epimorphisms
∧ : Λp(M)⊗ Λq(M) � Λp+q(M) (Proposition 4.4.4) endow

Λ(M) :=
∞⊕
p=0

Λp(M)

with the structure of an algebra in C, which we call the exterior algebra of M . It
enjoys the following universal property: There exists a natural morphism

i : M ∼= Λ1(M) ↪→ Λ(M)

in C with the property that i(m) ∧ i(n) = −i(n) ∧ i(m) in element notation. If
conversely A is an algebra in C and f : M → A is a morphism in C satisfying
f(m)f(n) = −f(n)f(m), then there is a unique homomorphism f̃ : Λ(M) → A
of algebras such that f̃ ◦ i = f .

Proof. Again the first part is obvious. If A is an algebra in C and f : M → A
is a morphism in C with f(m)f(n) = −f(n)f(m), this precisely means that
the morphism M⊗p → A⊗p → A is antisymmetric for p = 2 and then also for
every p ≥ 0, i.e. it lifts to a morphism Λp(M) → A and then to a morphism
f̃ : Λ(M) → A. It is easy to check that it is a homomorphism of algebras, the
unique one extending f in degree 1.

Remark 4.4.11 (Clifford algebras). More generally, with the above notations,
if β : M ⊗M → 1 is a symmetric morphism, there is an algebra Cl(M,β) in C
equipped with a morphism i : M → Cl(M,β) in C such that

i(m) · i(n) + i(n) · i(m) = 2β(m⊗ n) · 1

in element notation, and satisfying the corresponding universal property. We call
Cl(M,β) the Clifford algebra of M with respect to β. It is a suitable quotient of
the tensor algebra T (M) (Example 4.1.4).
If C = Mod(R) for some commutative ring R, this coincides with the usual notion.
Observe that Cl(M, 0) = Λ(M).
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Lemma 4.4.12. Let C be a cocomplete R-linear tensor category and consider two
antisymmetric morphisms ω : V ⊗p → W1, η : V ⊗q → W2. Denote by Σp,q ⊆ Σp+q

be the set of (p, q)-shuffles. Then, the morphism

ω ∧ η : V ⊗p+q → W1 ⊗W2

defined by
(ω ∧ η)(v1 ⊗ . . .⊗ vp+q)

:=
∑
σ∈Σp,q

sgn(σ) · ω(vσ(1) ⊗ . . .⊗ vσ(p))⊗ η(vσ(p+1) ⊗ . . .⊗ vσ(p+q))

in element notation, is also antisymmetric.

Proof. Let 1 ≤ i < p + q. If we interchange vi and vi+1 in the expression
(ω ∧ η)(v1 ⊗ . . .⊗ vp+q), we get∑

σ∈Σp,q
i,i+1/∈{σ(1),...,σ(p)}

sgn(σ) · ω(vσ(1) ⊗ . . .⊗ vσ(p))⊗ η(vσ(p+1) ⊗ . . .⊗ vσ(p+q)︸ ︷︷ ︸
with vi,vi+1 interchanged

)

+
∑
σ∈Σp,q

i,i+1∈{σ(1),...,σ(p)}

sgn(σ) · ω( vσ(1) ⊗ . . .⊗ vσ(p)︸ ︷︷ ︸
with vi,vi+1 interchanged

)⊗ η(vσ(p+1) ⊗ . . .⊗ vσ(p+q))

+
∑
σ∈Σp,q

i∈{σ(1),...,σ(p)}63i+1

sgn(σ) · ω(vσ(1) ⊗ . . .⊗ vσ(p)︸ ︷︷ ︸
vi exchanged by vi+1

)⊗ η(vσ(p+1) ⊗ . . .⊗ vσ(p+q)︸ ︷︷ ︸
vi+1 exchanged by vi

)

+
∑
σ∈Σp,q

i+1∈{σ(1),...,σ(p)}63i

sgn(σ) · ω(vσ(1) ⊗ . . .⊗ vσ(p)︸ ︷︷ ︸
vi+1 exchanged by vi

)⊗ η(vσ(p+1) ⊗ . . .⊗ vσ(p+q)︸ ︷︷ ︸
vi exchanged by vi+1

)

By changing back vi and vi+1 in the first and the second sum and by interchanging
the third with the fourth sum and thereby composing σ with the transposition
(i i+1), we arrive at the corresponding decomposition of −(ω∧η)(v1⊗. . .⊗vp+q).

This shows that ω ∧ η is antisymmetric.

Corollary 4.4.13. Let C be a cocomplete R-linear tensor category such that
2 ∈ R∗, V ∈ C and d ∈ N. Then, there is a canonical morphism

ω : Λd+1(V )→ V ⊗ Λd(V )

which is given in element notation by

ω(v0 ∧ . . . ∧ vd) =
d∑

k=0

(−1)k vk ⊗ (v1 ∧ . . . ∧ v̂k ∧ . . . ∧ vd).
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Remark 4.4.14 (Hopf algebra structure). We can put a graded Hopf algebra
structure (Definition 4.1.18) on Λ(V ) as follows: Applying Lemma 4.4.12 to the
universal antisymmetric morphisms V ⊗p → Λp(V ) and V ⊗q → Λq(V ), we get a
morphism Λp+q(V )→ Λp(V )⊗ Λq(V ). This induces a morphism

∆ : Λ(V )→ Λ(V )⊗ Λ(V ),

the comultiplication, which is explicitly given by

∆(v1 ∧ . . . ∧ vn) =
∑
n=p+q
σ∈Σp,q

sgn(σ) · vσ(1) ∧ . . . ∧ vσ(p) ⊗ vσ(p+1) ∧ . . . ∧ vσ(n).

If we define the counit ε : Λ(V ) → 1 by ε|Λ0(V ) = id and ε|Λp(V ) = 0 for p > 0,
one easily checks that ∆ is coassociative and that ε is coneutral for ∆. It is clear
that ε is an algebra homomorphism. But ∆ is not an algebra homomorphism.
In fact, we have

∆(v1) ∧∆(v2) = (v1 ⊗ 1 + 1⊗ v1) ∧ (v2 ⊗ 1 + 1⊗ v2)

= v1 ∧ v2 ⊗ 1 + v1 ⊗ v2 + v2 ⊗ v1 + 1⊗ v1 ∧ v2

6= v1 ∧ v2 ⊗ 1 + v1 ⊗ v2 − v2 ⊗ v1 + 1⊗ v1 ∧ v2

= ∆(v1 ∧ v2).

We can remedy this as follows (which I have learned from Mariano Suárez-
Alvarez): Do not view Λ(V ) as an algebra in C, but rather as an N-graded-
commutative algebra (Definition 5.4.11) in C, i.e. a commutative algebra in
the cocomplete tensor category g̃rN(C) of N-graded objects of C equipped with
the twisted symmetry. It follows that the multiplication on the tensor prod-
uct Λ(V ) ⊗ Λ(V ) (Remark 4.1.5) is actually given – in element notation – by
(a⊗b)·(c⊗d) = (−1)|b|·|c|(a·c)⊗(b·d). Then a calculation shows that ∆ is a homo-
morphism of N-graded-commutative algebras; alternatively one can construct ∆
using the universal property of Λ(V ) as the universal graded-commutative alge-
bra equipped with a morphism from V in degree 1. Hence, Λ(V ) is an N-graded-
commutative bialgebra, i.e. a bialgebra in g̃rN(C). Actually it is an involutive
Hopf algebra with antipode given by S(x) = (−1)|x|x.

Lemma 4.4.15 (Symmetry Lemma). Let C be a finitely cocomplete R-linear
tensor category. Assume that p, d ∈ N such that d! ∈ R∗ and 1 ≤ p ≤ d. Let
V,W ∈ C be objects and let

f : Λp(V )⊗ Λd(V )→ W

be a morphism in C. We assume that the following relation holds (in element
notation):

d∑
k=0

(−1)kf(v1 ∧ . . . ∧ vp−1 ∧ wk ⊗ w0 ∧ . . . ∧ ŵk ∧ . . . ∧ wd) = 0
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In other words, we have (via w0 = vp)

(?) f(v1 ∧ . . . ∧ vp−1 ∧ vp ⊗ w1 ∧ . . . ∧ wd)

=
d∑

k=1

(−1)k+1f(v1 ∧ . . . ∧ vp−1 ∧ wk ⊗ vp ∧ w1 ∧ . . . ∧ ŵk ∧ . . . ∧ wd)

Then, we have

(?)p f(v1 ∧ . . . ∧ vp ⊗ w1 ∧ . . . ∧ wd)

=
∑

σ∈Σp,d−p

sgn(σ) · f(wσ1 ∧ . . . ∧ wσp ⊗ v1 ∧ . . . ∧ vp ∧ wσp+1 ∧ . . . ∧ wσd).

For p = d this means that f : Λd(V )⊗ Λd(V )→ W is symmetric, i.e.

f(v1 ∧ . . . ∧ vd ⊗ w1 ∧ . . . ∧ wd) = f(w1 ∧ . . . ∧ wd ⊗ v1 ∧ . . . ∧ vd).

Proof. We make an induction on p. The case p = 1 is trivial. Although given
a morphism f : Λp+1(V ) ⊗ Λd(V ) → W , we can only construct a morphism
f̃ : Λp(V ) ⊗ Λd(V ) → Hom(V,W ) and apply the induction hypothesis if C is
closed, in general we may simply strengthen the statement of the lemma by
adding an additional tensor factor on the left. In order to simplify the element
notation further, we abbreviate f(v1∧. . .∧vp⊗w1∧. . .∧wd) by v1 . . . vp|w1 . . . wd.
If in a calculation some of these entries are not involved on both sides, we just
omit them from the notation. Thus, (?) is just

vp|w1 . . . wd =
d∑

k=1

(−1)k+1wk|vpw1 . . . wk−1ŵkwk+1 . . . wd

Following a very helpful suggestion by Stefan Vogel, we can rewrite this without
any sign as

vp|w1 . . . wd =
d∑

k=1

wk|w1 . . . wk−1vpwk+1 . . . wd,

which we abbreviate further as

(?)1 vp|w1 . . . wd =
d∑

k=1

wk|w(wk = vp).

We may apply this not just for the last vp, but also for example to v1 because of
antisymmetry. Our goal is to prove the relation

(?)p v1 . . . vp|w1 . . . wd =
∑

1≤i1<...<ip≤d

wi1 . . . wip|w(wik = vk)1≤k≤p.
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Assuming this is true for some p < d, we prove (?)p+1 as follows:

v0v1 . . . vp|w
(?)p
=

∑
i1<...<ip

v0wi1 . . . wid|w(wik = vk)1≤k≤p

(?)1
=

∑
i1<...<ip

 ∑
j /∈{i1,...,ip}

wjwi1 . . . wip|w((wik = vk)1≤k≤p, wj = v0)

+

p∑
n=1

vnwi1 . . . wip|w((wik = vk)k 6=n, win = v0)

)
(†)

The expression (†) expands into two double sums. Using the convention i0 := 0,
ip+1 := d+ 1, the first one equals

p+1∑
m=1

∑
i1<...<ip

∑
im−1<j<im

wjwi1 . . . wip|w((wik = vk)1≤k≤p, wj = v0).

In order to align the indices left from the bar, we have to apply an m-cycle.
Also on the right we have apply the m-cycle v0 7→ vm−1 7→ . . . 7→ v1 7→ v0 on
v1, . . . , vm−1, v0, vm, . . . , vp in order to obtain v0, v1, . . . , vp. Therefore the signs
resulting from left and right cancel. After the renaming

{j0 < . . . < jp} = {i1 < . . . < im−1 < j < im < . . . < ip}

this yields the sum

p+1∑
m=1

∑
j0<...<jp

wj0 . . . wjp|w((wjk = vk)0≤k≤p)

= (p+ 1) ·
∑

j0<...<jp

wj0 . . . wjp|w((wjk = vk)0≤k≤p).

This is p + 1 times the right hand side of (?)p+1. Now let us look at the second
sum in (†):

p∑
n=1

∑
i1<...<ip

vnwi1 . . . wip|w((wik = vk)k 6=n, win = v0)

(?)p
=

p∑
n=1

vnv1 . . . vn−1v0vn+1 . . . vp|w

= −p · v0 . . . vp|w

Altogether we arrive at

(p+ 1) · v0 . . . vp|w = (p+ 1) ·
∑

j0<...<jp

wj0 . . . wjp|w((wjk = vk)0≤k≤p)

Since p+ 1 ∈ R∗, we may divide by it and obtain (?)p+1.
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4.5 Derivations

Let R be a commutative ring and let C be a finitely cocomplete R-linear tensor
category.

Definition 4.5.1 (Derivations and Ω1). Let A be a commutative algebra in C
and M some A-module. We define a derivation from A to M to be a morphism

d : A → M in C such that the morphism A⊗ A → A
d−→ M is equal to the sum

of the two morphisms A⊗ A A⊗d−−→ A⊗M → M and A⊗ A d⊗A−−→ M ⊗ A→ M .
In element notation, this is the usual Leibniz rule

d(a · b) = a · d(b) + d(a) · b.

We obtain a functor

Der(A,−) : Mod(A)→ Set

which maps M ∈ Mod(A) to the set of all derivations A→ M (actually it is an
abelian group). A representing object of this functor is denoted by Ω1

A and is
called the module of differentials of A.

Definition 4.5.2 (Relative module of differentials). If A → B is a homomor-
phism of commutative algebras in C (equivalently, B is a commutative A-algebra)
and M is some B-module, an A-derivation from B to M is a derivation from B
to M in Mod(A), i.e. a homomorphism of A-modules d : B → M satisfying the
Leibniz rule. We obtain a functor

DerA(B,−) : Mod(B)→ Set .

A representing object of this functor is denoted by Ω1
B/A and is called the module

of differentials of B over A.

Of course Ω1
B/A is just Ω1

B when B is considered as a commutative algebra in

Mod(A). Note that DerA(B,−) = {d ∈ Der(B,−) : d|A = 0}.

As always these definitions coincide with the usual ones when C = Mod(R) for
some commutative ring R ([Bou98, Chapter III, Paragraph 10]). But even in
this special case the following simple construction of Ω1 does not seem to be
well-known.

Proposition 4.5.3. If A → B is a homomorphism of commutative algebras in
C, then Ω1

B/A exists.

Proof. The A-linear map h : B ⊗A B → B ⊗A B defined by

h(x⊗ y) := xy ⊗ 1− y ⊗ x− x⊗ y
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in element notation extends to a B-linear map hB : (B ⊗A B)⊗A B → B ⊗A B,
when B acts on the right. Let Ω1

B/A be its cokernel and define the A-linear

map d : B → Ω1
B/A to be the composition of B → B ⊗A B, b 7→ b ⊗ 1 with

B ⊗A B � Ω1
B/A. Then d is an A-derivation by construction and it satisfies

the desired universal property: If M is some B-module and B → M is some
A-derivation, then it lifts to a B-linear map B ⊗A B →M which kills hB, hence
lifts to a B-linear map on the cokernel Ω1

B/A.

Remark 4.5.4. Actually we do not need that C is enriched in Mod(R) in order
to make sense of the notion of derivations and of modules of differentials. We
only need that C is enriched over the tensor category of commutative monoids
CMon. This leads to the notion of absolute derivations ([KOW03]).

Corollary 4.5.5. If H : C → D is a finitely cocontinuous tensor functor and
A → B is a homomorphism of commutative algebras in C, then there is an
isomorphism of H(B)-modules

H(Ω1
B/A) ∼= Ω1

H(B)/H(A).

In particular, if C is another commutative algebra in C, we have an isomorphism
of B ⊗ C-modules

Ω1
B/A ⊗ C ∼= Ω1

B⊗C/A⊗C .

Proof. This follows from the construction in Proposition 4.5.3. For the second
part, take H : C → Mod(C), M 7→M ⊗ C.

Proposition 4.5.6 (Properties of modules of differentials). Let A be a fixed
commutative algebra in C.

1. Let B1, B2 be two commutative A-algebras. Then there is an isomorphism
of B1 ⊗A B2-modules

Ω1
B1⊗AB2/A

∼= Ω1
B1/A
⊗A B2 ⊕ B1 ⊗A Ω1

B2/A
.

2. Let B → C be a homomorphism of commutative A-algebras. Then there is
an exact sequence of C-modules

Ω1
B/A ⊗B C → Ω1

C/A → Ω1
C/B → 0.

3. Let B → C be a homomorphism of commutative A-algebras. Assume that
it is a regular epimorphism of B-modules, choose an exact sequence of B-
modules I → B → C → 0. Then there is an exact sequence of C-modules

I ⊗B C → Ω1
B/A ⊗B C → Ω1

C/A → 0.
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Proof. 1. If T is some B1 ⊗A B2-module, we have natural bijections

HomB1⊗AB2(Ω
1
B1/A
⊗A B2 ⊕B1 ⊗A Ω1

B2/A
, T )

∼= HomB1(Ω
1
B1/A

, T |B1)× HomB2(Ω
1
B2/A

, T |B2)

∼= DerA(B1, T |B1)×DerA(B2, T |B2)

Therefore, it suffices to construct a natural bijection

DerA(B1, T |B1)×DerA(B2, T |B2)
∼= DerA(B1 ⊗A B2, T ).

If (d1, d2) is contained in the left hand side, then d : B1 ⊗A B2 → T defined by

d(b1 ⊗ b2) = b1 · d2(b2) + d1(b1) · b2

in element notation (as usual it is easy to write this down formally) is an A-
derivation by an easy calculation. If conversely, d : B1 ⊗A B2 → T is an A-
derivation, then d1(b1) := d(b1 ⊗ 1) is an A-derivation B1 → T |B1 . Similarly we
define d2. These constructions are easily seen to be inverse to each other.

2. By the definition of a right exact sequence and of Ω1 we have to show that
for every C-module T there is a natural exact sequence

0→ DerB(C, T )→ DerA(C, T )→ DerA(B, T |B).

The first map is the obvious inclusion and the second one is given by composition
with B → C. Exactness is obvious.

3. By a similar reasoning as above we have to prove that for every C-module T
there is a natural exact sequence

0→ DerA(C, T )→ DerA(B, T |B)→ HomB(I, T |B).

The first map is given by composition with B → C. The second map is given
by composition with I → B. It is well-defined: For an A-derivation d : A → T
the restriction d|I : I → T is B-linear because of the Leibniz rule. The map
DerA(C, T ) → DerA(B, T ) is injective because B → C is an epimorphism of
A-modules. To show exactness, let d : B → T be an A-derivation which vanishes
on I. Since I → B → C → 0 is also exact as a sequence of A-modules, it follows
that d lifts to an A-linear map d̃ : C → T . It is a derivation, as can be easily
deduced from our assumptions that B → C is an epimorphism of A-modules and
that d is a derivation.

Proposition 4.5.7. Let A be a commutative algebra in C and E some A-module.
There is an isomorphism of Sym(E)-modules

Ω1
Sym(E)/A

∼= E ⊗A Sym(E).
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The universal differential is given by Sym(E)→ E ⊗A Sym(E) mapping

e1 · . . . · en 7→
n∑
k=1

ek ⊗ (e1 · . . . · êk · . . . · en)

in element notation. In particular, Ω1
A[T1,...,Tn]/A is a free A[T1, . . . , Tn]-module

with basis {d(Ti) : 1 ≤ i ≤ n}.

Proof. If T is some Sym(E)-module, we have to find a natural bijection

DerA(Sym(E), T ) ∼= HomA(E, T ).

If d : Sym(E)→ T is an A-derivation, we may restrict it to Sym1(E) = E to get
an A-linear map A→ T . If conversely f : E → T is some A-linear map, then we
first define the A-linear map E⊗n → T by mapping

e1 ⊗ . . .⊗ en 7→
n∑
k=1

f(ek) · (e1 · . . . · êk · . . . · en)

in element notation. It is obviously symmetric, hence extends to an A-linear
map Symn(E) → T . All these induce an A-linear map Sym(E) → T . One
checks that this is an A-derivation, namely the unique one extending f in degree
1. See [Bou98, Chapter III, Paragraph 10.11, Example] for the special case of
modules.

Lemma 4.5.8. Let A → B be a homomorphism of commutative algebras in C
and C be some commutative B-algebra. Then there is a bijection between A-
derivations B → C and homomorphisms of A-algebras B → C[ε]/ε2 such that

B → C[ε]/ε2 ε7→0−−→ C is the given map.

Proof. Since C[ε]/ε2 = C ⊕ C as A-modules, an A-linear map B → C[ε]/ε2

corresponds to a pair of A-linear maps B → C. We specify the first one to be
the given one and then the second one is an A-linear map d : B → C such that
B → C[ε]/ε2 defined by b 7→ b + d(b)ε in element notation is multiplicative,
which comes down to the Leibniz rule of d.

Remark 4.5.9. Lemma 4.5.8 offers an alternative proof of Proposition 4.5.7
which simply uses the universal property of the symmetric algebra.

Theorem 4.5.10 (De Rham complex). Assume that C is an R-linear cocomplete
tensor category with 2 ∈ R∗. Let A → B be a homomorphism of commutative
algebras in C. For n ∈ N we define the B-module of differentials of order n by

Ωn
B/A := Λn

B(Ω1
B/A).
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Chapter 4. Commutative algebra in a cocomplete tensor category

There is a unique sequence of homomorphisms of A-modules

dn : Ωn
B/A → Ωn+1

B/A

with the following properties:

1. d0 = d : B → Ω1
B/A is the universal differential.

2. We have dn+1 ◦ dn = 0.

3. If n = p+q, then we have dn(f ∧g) = dp(f)∧g+(−1)pf ∧dq(g) in element
notation for f ∈ Ωp

B/A and g ∈ Ωq
B/A.

We call (Ω∗B/A, d
∗) the (algebraic) de Rham complex associated to B/A.

Proof. Uniqueness follows by induction from 1. and 3. In order to construct
the differentials, we cannot only rely on the defining universal property of Ω1

B/A,

because that only deals with homomorphisms of B-modules on Ω1
B/A. Instead,

we use the construction given in the proof of (Proposition 4.5.3), namely that
Ω1
B/A is the quotient of B ⊗A B by the relation

ab⊗ c− b⊗ ac− a⊗ bc = 0

in element notation – as a module over B as well as over A. Here, a⊗b represents
d(a) · b = b · d(a). This approach is similar to [GD67, 16.6].

We define d0 := d. In order to construct d1, look at the homomorphism of
A-modules defined by

B ⊗A B → Ω2
B/A, a⊗ b 7→ d(b) ∧ d(a).

It maps ab⊗ c− b⊗ ac− a⊗ bc to

d(c) ∧ d(a · b)− d(a · c) ∧ d(b)− d(b · c) ∧ d(a)

= a · d(c) ∧ d(b) + b · d(c) ∧ d(a)

−a · d(c) ∧ d(b)− c · d(a) ∧ d(b)

−b · d(c) ∧ d(a)− c · d(b) ∧ d(a)

= 0.

Hence, it lifts to a homomorphism of A-modules d1 : Ω1
B/A → Ω2

B/A which is

characterized by d1(b · d(a)) = d(b)∧ d(a) for “elements” a, b ∈ B. In particular,
d1 ◦ d0 = 0.

More generally, consider Ωn
B/A as a quotient of B⊗2n and consider the homomor-

phism of A-modules B⊗2n → Ωn+1
B/A defined by

a1 ⊗ b1 ⊗ . . .⊗ an ⊗ bn 7→ d(b1 · . . . · bn) ∧ d(a1) ∧ . . . ∧ d(an).
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A similar calculation as above, using Lemma 3.1.20 and Proposition 4.4.4, shows
that this extends to a homomorphism of A-modules dn : Ωn

B/A → Ωn+1
B/A charac-

terized by

dn(b · d(a1) ∧ . . . ∧ d(an)) = d(b) ∧ d(a1) ∧ . . . ∧ d(an).

In particular, dn(d(a1) ∧ . . . ∧ d(an)) = 0, from which we easily deduce 2.. In
order to prove the graded Leibniz rule 3., we write

f = b · d(a1) ∧ . . . ∧ d(ap), g = c · d(ap+1) ∧ . . . ∧ d(an)

and compute

dp(f) ∧ g + (−1)pf ∧ dq(g)

= d(b) ∧ d(a1) ∧ . . . ∧ d(ap) ∧ c · d(ap+1) ∧ . . . ∧ d(an)

+(−1)p b · d(a1) ∧ . . . ∧ d(ap) ∧ d(c) ∧ d(ap+1) ∧ . . . ∧ d(an)

= (d(b) · c+ b · d(c)) ∧ d(a1) ∧ . . . ∧ d(an)

= d(b · c) ∧ d(a1) ∧ . . . ∧ d(an) = d(f ∧ g).

Remark 4.5.11. If C is even abelian, we can define the (algebraic) de Rham
cohomology by Hn

dR(B/A) := Hn(Ω∗B/A, d
∗).

Remark 4.5.12 (Quasi-coherent module of differentials). If X → S is a mor-
phism of schemes, we have the associated quasi-coherent module of differen-
tials Ω1

X/S. It is an object of Qcoh(X) defined to satisfy the universal property

Hom(Ω1
X/S,M) ∼= DerOS(OX ,M), where derivations on the right hand side are

certain homomorphisms of abelian sheaves on the underlying space of X. Thus
we leave our tensor category Qcoh(X)! There does not seem to be any general
definition or characterization of Ω1

X/S which stays inside Qcoh(X) or uses just

the pullback functor Qcoh(S)→ Qcoh(X). At least if X is affine over S, we have
found a description above. The Euler sequence below gives a description when
X is projective over S. See section 5.12 for related questions.

Theorem 4.5.13 (Euler sequence). Let E be a quasi-coherent module on a
scheme S. Let p : P(E)→ S be the associated projective scheme. Then there is
an exact sequence of quasi-coherent modules on P(S)

0→ Ω1
P(E)/S → p∗(E)(−1)→ O → 0.

The epimorphism is dual to the canonical one p∗(E)→ OP(E)(1).

We do not know if this general form of the Euler sequence has already appeared
in the literature. Usually E is assumed to be (locally) free of finite rank ([Vak13,
21.4.9]), but this is not necessary to make the proof work. Later we will even
replace Qcoh(S) by an arbitrary presentable tensor category (Theorem 5.12.13).
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Chapter 4. Commutative algebra in a cocomplete tensor category

Proof. First, let us assume that E is generated by global sections. Then the
scheme P(E) = Proj(Sym(E)) is covered by the open subsets

D+(λ) = Spec(Sym(E)(λ)),

where λ runs through the global sections of E. There is an isomorphism between
the homogeneous localization Sym(E)(λ) and the algebra Sym(E)/(λ− 1) given
by a

λ
7→ a. Using Proposition 4.5.7 and Proposition 4.5.6, we obtain

Ω1
Sym(E)(λ)/OS

∼= E/λ⊗ Sym(E)(λ).

The universal differential dλ maps a
λ

to a⊗ 1.

The dual of the Serre twist OP(E)(−1) is free on D+(λ) with some generator
e∗λ. On the overlaps D+(λ) ∩ D+(µ) they satisfy e∗λ = µ

λ
e∗µ. The desired exact

sequence when restricted to D+(λ) is

0 // E/(λ)⊗ Sym(E)(λ)
ι // E ⊗ Sym(E)(λ) · e∗λ

p
// Sym(E)(λ)

// 0,

where p(a⊗e∗λ) = a
λ

and ι(a⊗1) := a⊗e∗λ−λ⊗ a
λ
e∗λ. Observe that ι is well-defined

and satisfies p ◦ ι = 0. We claim that the sequence is exact, in fact contractible,
i.e. that there are homomorphisms of Sym(E)(λ)-modules

Sym(E)(λ)
t // E ⊗ Sym(E)(λ) · e∗λ

s // E/(λ)⊗ Sym(E)(λ)

such that s ◦ ι = id, p ◦ t = id and t ◦ p + ι ◦ s = id. Define t(1) = λ ⊗ e∗λ and
s(a⊗ e∗λ) = a⊗ 1. Then p ◦ t = id is obvious, s ◦ ι = id follows from λ = 0 and
for the third equation we calculate

(t ◦ p+ ι ◦ s)(a⊗ e∗λ) = t( a
λ
) + ι(a⊗ 1) = a

λ
· λ⊗ e∗λ + a⊗ e∗λ − λ⊗ a

λ
e∗λ = a⊗ e∗λ.

Let us check that these homomorphisms ιλ : Ω1
D+(λ)/S → p∗(E)(−1)|D+(λ) are

compatible on the overlaps D+(λ) ∩D+(µ). The canonical isomorphism

Ω1
D+(λ)|D+(λ)∩D+(µ)

∼= Ω1
D+(µ)|D+(µ)∩D+(λ)

corresponding to

(E/(λ)⊗ Sym(E)(λ))µ
λ

∼= (E/(µ)⊗ Sym(E)(λ))λ
µ

maps a⊗ 1 = dλ(
a
λ
) to

dµ( a
λ
) =

dµ( a
µ
) · λ

µ
− dµ(λ

µ
) · a

µ

(λ
µ
)2

= dµ( a
µ
) · µ

λ
− d(λ

µ
) · aµ

λ2

= a⊗ µ
λ
− λ⊗ aµ

λ2
.
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4.6. Flat objects

The diagram

(E/(λ)⊗ Sym(E)(λ))µ
λ

ιλ //

∼=
��

E ⊗ (Sym(E)(λ))µ
λ
· e∗λ

∼=
��

(E/(µ)⊗ Sym(E)(λ))λ
µ

ιµ
// E ⊗ (Sym(E)(µ))λ

µ
· e∗µ

commutes: The image of a⊗ 1 under ιλ is a⊗ e∗λ − λ⊗ a
λ
e∗λ, which gets mapped

to a⊗ µ
λ
e∗µ − λ⊗ a

λ
· µ
λ
e∗µ =: x by the isomorphism. The other way round we first

get a⊗ µ
λ
− λ⊗ aµ

λ2
, which gets mapped by ιµ to

µ

λ
·
(
a⊗ e∗µ − µ⊗

a

µ
e∗µ

)
− aµ

λ2
·
(
λ⊗ e∗µ − µ⊗

λ

µ
e∗µ

)
,

in which the second and the fourth summand cancel, whereas the rest simplifies
to x.

Thus, the ιλ glue to a homomorphism ι : Ω1
P(E)/S → p∗(E)(−1). The sequence

0→ Ω1
P(E)/S

ι−→ p∗(E)(−1)
p−→ O → 0

is exact, because this holds on each D+(λ). Note that the definition of ι does not
depend on a system of global generators of E, since we have just used all global
sections of E. In particular, ι restricts to the same ι when we preform a base
change to some open subscheme of S. This makes it possible to finish the proof
when E is not necessarily generated by global sections, because E|T is generated
by global sections for every open affine T ⊆ S.

4.6 Flat objects

Definition 4.6.1 (Flat objects). Let C be a tensor category. An object M ∈ C
is called flat if M ⊗ − : C → C is left exact, i.e. preserves finite limits. If C is
an abelian tensor category, this functor is right exact anyway, therefore flatness
means that M ⊗− preserves monomorphisms.

Of course this coincides with the usual definition when C = Mod(R) for some
commutative ring R. However, if X is a scheme, one usually calls a quasi-
coherent module M ∈ Qcoh(X) flat if for every x ∈ X the OX,x-module Mx is
flat. Equivalently, for every morphism from an affine scheme Spec(A)→ X, the
pullback of M is associated to a flat A-module. The latter definition also works
for algebraic stacks X. Following Lurie ([Lur04, Example 5.8]), we call M locally
flat if this is satisfied.
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Chapter 4. Commutative algebra in a cocomplete tensor category

Lemma 4.6.2. Every locally flat quasi-coherent module is also flat. The con-
verse holds over quasi-separated schemes as well as over geometric stacks.

Proof. The first part is clear. Now let X be a quasi-separated scheme and let
M ∈ Qcoh(X) be flat. It suffices to prove that M |U ∈ Qcoh(U) is flat for
every open affine subscheme j : U ↪→ X. Let N → N ′ be a monomorphism in
Qcoh(U). Then j∗N → j∗N

′ is a monomorphism in Qcoh(X). By assumption
M ⊗ j∗N →M ⊗ j∗N ′ is a monomorphism in Qcoh(X). Applying j∗, we see that
M |U ⊗ N → M |U ⊗ N ′ is a monomorphism, as desired. The case of geometric
stacks is similar and has been proven by Lurie ([Lur04, Example 5.8]).

Lemma 4.6.3 (Closure properties of flat objects). Let C be a cocomplete linear
tensor category.

1. The zero object 0 and the unit OC are flat in C.

2. Flat objects are closed under finite direct sums. In particular, for every
d ∈ N, the free OC-module O⊕dC is flat.

3. Assume that in C directed colimits are exact. If {Mi} is a directed system
of flat objects in C, then lim−→i

Mi is also a flat object in C.

Proof. 1. is trivial. For 2., assume that M1,M2 are flat. Then the functor
(M1 ⊕ M2) ⊗ − identifies with (M1 ⊗ −) × (M2 ⊗ −), which is a product of
two left exact functors, hence it is also left exact. For 3. we observe that the
functor lim−→i

Mi⊗− ∼= lim−→i
(Mi⊗−) is exact, since it is a directed colimit of exact

functors.

These closure properties actually capture all flat modules when C = Mod(R) for
some ring R – by the Theorem of Lazard-Govorov ([Lam99, Theorem 4.34]).

Definition 4.6.4 (Faithfully flatness). An object M ∈ C is called faithfully flat
if M ⊗− preserves and reflects finite limits. In particular M is flat and a given
diagram A→ B ⇒ C is exact as soon as A⊗M → B⊗M ⇒ C⊗M is exact. If
C is abelian, this comes down to the property A⊗M = 0⇒ A = 0 for all A ∈ C.

Remark 4.6.5. If A is a faithfully flat algebra in a linear tensor category C and
M ∈ C is arbitrary, then the beginning of the Amitsur complex (Remark 4.1.12)

0→M →M ⊗ A→M ⊗ A⊗ A

is exact because it becomes split exact after tensoring with A. This implies that
A satisfies descent, as we will see in section 4.10. If C is abelian, even the whole
Amitsur complex (M ⊗ A⊗n)n≥0 is exact.
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4.7. Dualizable objects

4.7 Dualizable objects

Definition 4.7.1 (Dualizable objects). Let C be a tensor category with unit OC
and let M ∈ C be an object. Recall ([KS06, Definition 4.2.11]) that a dual of M
is an object M∗ together with morphisms

e : M∗ ⊗M → OC, c : OC →M ⊗M∗

such that the two diagrams

M ⊗OC

∼=

&&

c⊗idM //M ⊗M∗ ⊗M

idM ⊗e

��

M

M∗ ⊗OC

∼=

''

idM∗ ⊗c //M∗ ⊗M ⊗M∗

e⊗idM∗

��

M

commute (“triangle identities”). We call (M,M∗, c, e) a duality in C. If M has
a dual, we call M dualizable. We think of e as an evaluation and write it as
ω ⊗m 7→ ω(m) in element notation.

Remark 4.7.2 (Equivalent characterizations). By the Yoneda Lemma, the fol-
lowing are equivalent:

1. M is dualizable.

2. There is an object M∗ and a morphism e : M∗ ⊗M → OC such that for
every A,B ∈ C the induced map Hom(A,B ⊗M∗) → Hom(A ⊗M,B) is
an isomorphism.

3. There is an object M∗ and a morphism c : OC → M ⊗M∗ such that for
every A,B ∈ C the induced map Hom(A ⊗M,B) → Hom(A,B ⊗M∗) is
an isomorphism.

4. There is an object M∗ such that −⊗M is left adjoint to −⊗M∗.

Since M is dual to M∗ if and only if M∗ is dual to M , we can interchange the
roles of M and M∗ in each of these characterizations.

Remark 4.7.3 (Perfect pairings). We may call a morphism e : A ⊗ B → L a
perfect pairing if there is a morphism c : L → B ⊗ A such that

A⊗ L A⊗c //

SA,L ''

A⊗B ⊗ A
e⊗A
��

L ⊗ A

L ⊗B c⊗B //

SL,B ''

B ⊗ A⊗B
B⊗e
��

B ⊗ L

commute. If L is invertible (section 4.8), this means that we have a duality
between L⊗−1 ⊗ A and B. A typical example of a perfect pairing is Serre-
duality Hk(F ) ⊗ Hn−k(F ∗ ⊗ ω◦) → Hn(ω) for a coherent sheaf F on a smooth
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Chapter 4. Commutative algebra in a cocomplete tensor category

projective variety of dimension n. Another example is given by the exterior
power ∧ : Λk(V )⊗ Λn−k(V )→ Λn(V ) for an n-dimensional vector space V . See
Proposition 4.9.6 for a generalization. We do not know if perfect pairings have
already been studied for non-invertible L.

Lemma 4.7.4. Let M be a dualizable object in a cocomplete tensor category C.
Then M is flat. If OC is finitely presentable, then M is also finitely presentable.

Proof. Since M ⊗− is a right adjoint, it preserves all limits. In particular M is
flat. If OC is finitely presentable, then Hom(M,−) ∼= Hom(OC,−⊗M∗) preserves
directed colimits, i.e. M is finitely presentable.

Proposition 4.7.5 (The case of schemes). Let X be a scheme, or even algebraic
stack, and M ∈ Qcoh(X). Then the following are equivalent:

1. M is dualizable in the sense above.

2. M is locally free of finite rank.

3. M is flat and of finite presentation.

4. If U is an affine scheme which maps to X, then the pullback M |U is asso-
ciated to a finitely generated projective module.

Proof. If X is affine, then 2. ⇔ 3. ⇔ 4. are well-known ([Bou72, Chapter II,
§5.2]). By descent this suffices for the general case. 1. ⇒ 3. follows from
Lemma 4.7.4. For 2.⇒ 1., consider M∗ := Hom(M,OX) (this is quasi-coherent
by Lemma 2.2.1) with the evaluation homomorphism e : M∗ ⊗M → OX . For
A,B ∈ Qcoh(X) we claim that Hom(A,B⊗M∗)→ Hom(A⊗M,B) is bijective.
Descent allows us to reduce to the case M = O⊕dX for some d, where both sides
identify with Hom(A,B)d.

Corollary 4.7.6. Let X, Y be algebraic stacks. If F : Qcoh(X)→ Qcoh(Y ) is a
tensor functor and M ∈ Qcoh(X) is locally free of finite rank, then the same is
true for F (M) ∈ Qcoh(Y ).

Remark 4.7.7. This corollary will be useful for showing tensoriality of stacks.
If F = f ∗ is a pullback functor, then it is clear anyway that F preserves locally
free modules of finite rank. However, for general F this is not clear at all, since F
is only defined globally. For this, one replaces the local notion of locally freeness
by the global notion of dualizability which is clearly preserved by any tensor
functor. This kind of globalization is one of the main themes in this thesis.

Definition 4.7.8 (Dual morphisms). If V,W are dualizable objects, we have an
isomorphism Hom(V,W ) ∼= Hom(W ∗⊗V,OC) ∼= Hom(W ∗, V ∗). For a morphism
f : V → W the induced morphism f ∗ : W ∗ → V ∗ is usually called the mate or
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dual of f . It is characterized by the commutativity of each one of the following
diagrams.

W ∗ ⊗ V f∗⊗idV //

idW∗ ⊗f
��

V ∗ ⊗ V
e
��

W ∗ ⊗W e // OC

OC c //

c
��

W ⊗W ∗

idW ⊗f∗
��

V ⊗ V ∗ f⊗idV ∗ //W ⊗ V ∗

In element notation, the diagram on the left reads as f ∗(ω)(v) = ω(f(v)).

Lemma 4.7.9 (Duals invert). Let η : F → G be a morphism of tensor functors
F,G : C → D. If V ∈ C is dualizable, then η(V ) : F (V ) → G(V ) is an
isomorphism. In particular, if C is a cocomplete tensor category in which the
dualizable objects are colimit-dense, then Homc⊗(C,D) is a groupoid.

Proof. One checks that G(V ) ∼= G(V ∗)∗
η(V ∗)∗−−−−→ F (V ∗)∗ ∼= F (V ) is inverse to

η(V ). Details can be found in [LFSW11, Theorem 3.2].

Lemma 4.7.10 (Pure exactness). Let C be a linear cocomplete tensor category
and let

U → V → W → 0

be an exact sequence of dualizable objects in C. Assume that the dual sequence

W ∗ → V ∗ → U∗ → 0

is also exact. Then, the sequence

0→ U → V → W → 0

is pure exact, i.e. if M ∈ C is an arbitrary object, then the induced sequence

0→ U ⊗M → V ⊗M → W ⊗M → 0

is also exact.

Proof. It is clear that U ⊗M → V ⊗M → W ⊗M → 0 is exact. So we are left
to prove that 0→ U ⊗M → V ⊗M → W ⊗M is exact. Let T → V ⊗M be a
morphism which vanishes when composed with V ⊗M → W ⊗M . By duality
this corresponds to a morphism V ∗⊗T →M which vanishes when precomposed
with W ∗ ⊗ T →M . Since by assumption

W ∗ ⊗ T → V ∗ ⊗ T → U∗ ⊗ T → 0

is exact, the morphism corresponds to a morphism U∗ ⊗ T → M , which by
duality corresponds to a morphism T → U ⊗M .
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4.8 Invertible objects

We recall some general facts about invertible objects ([SR72, Chapitre I, 2.5]),
introduce line objects (following James Dolan) and as usual see what happens
for schemes.

Definition 4.8.1 (Invertible objects). Let C be a tensor category. Recall that an
object L ∈ C is called invertible if there is an object K ∈ C such that L⊗K ∼= OC.

Note that OC is invertible and that invertible objects are closed under tensor
products, thus we get a tensor category Pic(C) of invertible objects in C. Usually
Pic(C) denotes the monoid (in fact, group) of isomorphism classes of invertible
objects ([May01]), but we would like to retain the morphisms and write Pic(C)/∼=
for the monoid of isomorphism classes.

If L ⊗ K ∼= OC, then K is unique up to isomorphism, called the inverse of L
and denoted by L⊗−1. We can then extend the definition of tensor powers to
negative powers. Observe that L ⊗ − : C → C is an equivalence of categories
(with inverse L⊗−1 ⊗ −). For every isomorphism c : OC → L ⊗ L⊗−1 there is
a unique isomorphism e : L⊗−1 ⊗ L → OC such that the triangle identities are
satisfied, i.e. (L,L⊗−1, c, e) is a duality in C. We refer to [Dug13] for coherence
results about invertible objects.

Example 4.8.2 (The case of schemes). Let X be a locally ringed space and
M ∈ Mod(X). Then M is invertible (as defined above) if and only if M is locally
free of rank 1. In this case, M⊗−1 = Hom(M,OX). This is proven in [GD71,
Chapitre 0, Proposition 5.5.9] under the assumption that M is of finite type.
But this is automatic (I learned this from Tom Goodwillie):

If M ⊗ N ∼= OX , then X is covered by open subsets U such that 1 ∈ Γ(U,OX)
has a preimage in Γ(U,M)⊗ Γ(U,N). Only finitely many sections of M appear.
Let T ⊆ M |U be the submodule generated by these sections. By construction
T ⊗ N |U → M |U ⊗ N |U ∼= OU is an epimorphism. Since N |U is invertible, it
follows that T → M |U is an epimorphism, i.e. M |U = T . Hence, M is of finite
type.

The same equivalence follows for quasi-coherent modules on schemes. Using
descent it is easy to generalize this to the case of algebraic stacks.

Definition 4.8.3 (Signature). If L ∈ C is invertible, then the canonical mor-
phism End(OC) → End(L) is an isomorphism (since L ⊗ − is an equivalence).
This makes it possible to define the signature of an invertible object L ([SR72,
Chapitre I, 2.5.3.1]), which is the endomorphism ε(L) : OC → OC correspond-
ing to the symmetry SL,L : L ⊗ L ∼= L ⊗ L under the canonical isomorphism
End(OC) ∼= End(L ⊗ L). Since the symmetry is an involution, the same is true
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for ε(L). It is easy to check that ε(L1 ⊗ L2) ∼= ε(L1) ◦ ε(L2). If (L,L⊗−1, c, e) is
a duality as above, then the signature equals the composition

OC
c−→ L⊗ L⊗−1

SL,L⊗−1

−−−−−→ L⊗−1 ⊗ L e−→ OC.

The typical examples deserve a special name:

Definition 4.8.4 (Line objects). A line object in C is an invertible object with
signature id, i.e. an invertible object which is symtrivial. If C is linear, then an
anti-line object in C is an invertible object with signature − id. It follows from
the multiplicativity of the signature above that line (resp. anti-line) objects are
closed under tensor products and inverses (which can also be checked directly, see
Remark 4.3.2), thus they constitute a tensor category Pic+(C) (resp. Pic−(C)).

Example 4.8.5. For example, if X is a scheme (or algebraic stack), then we
have seen above that in fact every invertible object in Qcoh(X) is a line object.
Outside of algebraic geometry there are natural examples of anti-line objects. In
fact, we will see in Proposition 5.4.8 that the universal example over R is R itself
considered as a Z-graded R-module concentrated in degree +1, where Z-graded
modules are endowed with a twisted symmetry.

Remark 4.8.6. Let C be a cocomplete R-linear tensor category. Assume 2 ∈ R∗.
If L ∈ C is invertible, then there is a decomposition C ∼= C1 × C2 under which L
gets mapped to (L+,L−), where L+ is a line object and L− is an anti-line object.
We will not prove this here and only indicate that it follows from Proposition 5.9.9
applied to the idempotent 1+ε(L)

2
.

The rest of this section is devoted to “presentations” of line objects. This will
be needed later for projective tensor categories.

Lemma 4.8.7 (Epis cancel). Let s : E → L be an epimorphism, where L is
invertibe. If h, h′ : A→ B are two morphisms with h⊗ s = h′ ⊗ s, then h = h′.

Proof. By construction the epimorphism

s⊗ L⊗−1 ⊗ A : E ⊗ L⊗−1 ⊗ A→ A

equalizes h and h′. This implies h = h′.

Remark 4.8.8. In the following, this Lemma will be often used with element
notation: If h(a) ⊗ s(e) = h′(a) ⊗ s(e) for all e ∈ E, then we already have
h(a) = h′(a). Intuitively, equality of morphisms may be checked after tensoring
with generators of an invertible object. This replaces some of the usual local
calculations for invertible sheaves.

Now let L ∈ C be a line object. Assume that s : E → L is an epimorphism.
Since L is symtrivial, we have s(a) ⊗ s(b) = s(b) ⊗ s(a) for a, b ∈ E in element
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notation. We may see this as a “relation between the generators” s of L. More
precisely, consider the two morphisms

E ⊗ s, (E ⊗ s) ◦ SE,E : E⊗2 → E ⊗ L.

Since L is invertible, they correspond to two morphisms

E⊗2 ⊗ L⊗−1 ⇒ E.

That L is symtrivial means exactly that s coequalizes these morphisms. Notice
that if C is R-linear with 2 ∈ R∗, then the difference of the two morphisms
E⊗2 → E ⊗ L mapping a ⊗ b 7→ a ⊗ s(b) − b ⊗ s(a) in element notation is
alternating, hence gives rise to a morphism on the exterior power Λ2E.

Lemma 4.8.9 (Good epimorphisms). With the above notations, the following
are equivalent:

1. The sequence E⊗2 ⊗ L⊗−1 ⇒ E
s−→ L from above is exact.

2. The epimorphism s is regular, i.e. the coequalizer of some pair of mor-
phisms.

If C is R-linear with 2 ∈ R∗, then 1. is also equivalent to the exactness of
Λ2E ⊗ L⊗−1 → E

s−→ L → 0.

Intuitively, in that case, s(a)⊗ s(b) = s(b)⊗ s(a) is the “only relation” between
the generators s of L.

Proof. Let α, β : K → E be two morphisms such that s is the coequalizer of α
and β. Let h : E → T be a morphism which coequalizes E⊗2 ⊗ L⊗−1 ⇒ E, i.e.
h⊗ L coequalizes E ⊗ s and (E ⊗ s) ◦ SE,E : E⊗2 → E ⊗ L. It follows

hα⊗ s = (h⊗ L) ◦ (E ⊗ s) ◦ (α⊗ E) = (h⊗ L) ◦ (E ⊗ s) ◦ SE,E ◦ (α⊗ E)

= (h⊗ L) ◦ (E ⊗ s) ◦ (E ⊗ α) ◦ SK,E = (h⊗ sα) ◦ SK,E = (h⊗ sβ) ◦ SK,E.

By the same calulcation backwards this equals hβ ⊗ s. By Lemma 4.8.7 we
get hα = hβ. Since s is the coequalizer of α and β, this means that h factors
uniquely through s, as desired.

In element notation, the calculation above simplifies as follows: For a, b ∈ E we
have h(a)⊗ s(b) = h(b)⊗ s(a), hence

h(α(c))⊗ s(b) = h(b)⊗ s(α(c)) = h(b)⊗ s(β(c)) = h(β(c))⊗ s(b).
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Corollary 4.8.10. Let C be an abelian tensor category. If L ∈ C is a line object
and s : E → L is an epimorphism, then the sequence

E⊗2 ⊗ L⊗−1 → E
s−→ L → 0

is exact.

Corollary 4.8.11. If L is a line object in a tensor category, then every regular
epimorphism O → L is an isomorphism.

This property does not hold for all epimorphisms, I have learned this from James
Dolan:

Example 4.8.12. Let A be a commutative ring and a ∈ A. Consider the
category C of A-modules M on which a is regular, i.e. a : M → M is injective.
It is a full reflective subcategory of Mod(A) with reflector R : Mod(A) → C
given by R(M) = M/ ∪n∈N ker(an : M → M). One can show that C becomes a
(cocomplete) A-linear tensor category with unit O := R(A) and tensor product
(M,N) 7→ R(M ⊗A N), see Example 5.8.15. Besides, multiplication with a
defines an epimorphism a : O → O. When a is regular on A, we have O = A
and a : O → O is an isomorphism if and only if a is a unit. In particular, C is
not stacky when a is not a unit.

Lemma 4.8.13 (Discreteness). Let C be a tensor category, let L,L′ ∈ C be two
line objects objects and assume that s : E → L and s′ : E → L′ are regular
epimorphisms. If there is a morphism φ : L → L′ with φ ◦ s = s′, this is unique
and φ is an isomorphism. In other words, the category of regular invertible
quotients of E is essentially discrete.

Proof. Uniqueness of φ is clear (s is an epi). According to Lemma 4.8.9, φ exists

if and only if E⊗2 ⊗ L⊗−1 ⇒ E
s′−→ L′ commutes, which in turn means that

s ⊗ s′ = (s ⊗ s′) ◦ SE,E as morphisms E ⊗ E → L ⊗ L′. Composing with the
symmetry SL,L′ , we get (s′ ⊗ s) ⊗ SE,E = (s′ ⊗ s), which is the same equation
with s, s′ interchanged. Thus, there is a morphism L → L′ over E if and only if
there is a morphism L′ → L over E. By uniqueness, they have to be inverse to
each other.

Actually we can improve Corollary 4.8.10 for schemes as follows:

Lemma 4.8.14 (Koszul resolution). Let X be a scheme, L be an invertible sheaf
on X and let s : E → L be an epimorphism in Qcoh(X). Then there is a long
exact sequence

. . . // Λ3E ⊗ L⊗−3 // Λ2E ⊗ L⊗−2 // E ⊗ L⊗−1 // OX // 0.
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The differential dn : ΛnE ⊗ L⊗−n → Λn−1E ⊗ L⊗−n+1 is dual to the morphism
ΛnE → Λn−1E ⊗ L defined by

e1 ∧ . . . ∧ en 7→
n∑
k=1

(−1)k(e1 ∧ . . . ∧ êk ∧ . . . ∧ en)⊗ s(ek).

Remark that if E is locally free of finite rank, this is locally just a Koszul reso-
lution of a regular sequence ([Wei94, 4.5.5]).

Proof. We omit the calculation that dn ◦ dn+1 = 0, because it is quite standard:
It only consists of rearranging two double sums and uses that L is symtrivial. In
order to show exactness, we may look at the stalks and thereby assume that X is
the spectrum of a local ring A. Then E is just an A-module and we may assume
L = A. There is some e ∈ E such that s(e) ∈ A∗. By replacing s with s(e)−1s,
we may even assume s(e) = 1. Now define the linear map tn : ΛnE → Λn+1E by
a1 ∧ . . . ∧ an 7→ e ∧ a1 ∧ . . . ∧ an and compute:

dn+1(tn(a1 ∧ . . . ∧ an))

= (a1 ∧ . . . ∧ an)s(e) +
n∑
k=1

(−1)k(e ∧ a1 ∧ . . . ∧ âk ∧ . . . ∧ an)s(ek)

= id(a1 ∧ . . . ∧ an) + tn−1(dn(a1 ∧ . . . ∧ an))

Thus, the tn provide a contraction of the complex. In particular, it is exact.

4.9 Locally free objects

In order to globalize locally free sheaves of a given rank, we first have to find an
alternative global description:

Proposition 4.9.1 (Locally free modules). Let X be a scheme (or more gener-
ally an algebraic stack) and V ∈ Qcoh(X). Let d ≥ 1. Then the following are
equivalent:

1. V is locally free of rank d.

2. ΛdV is invertible and the morphism ω : Λd+1(V )→ V ⊗Λd(V ) constructed
in Corollary 4.4.13 vanishes.

3. ΛdV is invertible.

In that case, V is dualizable with V ∗ ∼= Λd−1(V )⊗ (Λd(V ))⊗−1.
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Proof. 1.⇒ 2. This is well-known. We may assume that V is free of rank d. But
then ΛdV is free of rank 1 and Λd+1(V ) = 0. 2.⇒ 3. is trivial. So we only have
to prove 3.⇒ 1. I have learnt the following argument from Neil Strickland.

We may work locally on X and thereby assume that ΛdV is free of rank 1. Let∑
iwi be a generator, where wi are pure wedges. After localizing at the images

of wi in ΛdV ∼= OX , we may as well assume that ΛdV is generated by a pure
wedge v1 ∧ . . . ∧ vd. Consider the linear map

φ : V → (ΛdV )d, v 7→ (v1 ∧ . . . ∧ vi−1 ∧ v ∧ vi+1 ∧ . . . ∧ vd)i=1,...,d.

It satisfies φ(vi) = ei(v1 ∧ . . . ∧ vd). It follows that v1, . . . , vd generate a free
submodule U := 〈v1, . . . , vd〉 of V with V = U ⊕ker(φ). By construction U ↪→ V
induces an isomorphism ΛdU ∼= ΛdV . Using Proposition 4.4.4 it follows that
Λd−1(U)⊗ ker(φ) = 0. Since Λd−1(U) is free of rank

(
d
d−1

)
= d > 0 and therefore

faithfully flat, this shows ker(φ) = 0, i.e. V = U is free.

Now let V be locally free of rank d. By Proposition 4.7.5, V is dualizable with
V ∗ = Hom(V,OX). The homomorphism from Corollary 4.4.13 (for schemes we
do not need that 2 is invertible here)

ΛdV → V ⊗ Λd−1V

dualizes to the homomorphism

δ : V ∗ ⊗ ΛdV → Λd−1V

which maps φ⊗ (v1 ∧ . . . ∧ vd) to
∑

k±φ(vk) · (v1 ∧ . . . ∧ v̂k ∧ . . . ∧ vd).

In order to show that it is an isomorphism, we may work locally on X. So let
us assume that V is free with basis e1, . . . , ed. Let e∗1, . . . , e

∗
d be the dual basis of

V ∗. Then δ maps the basis element e∗i ⊗ (e1 ∧ . . .∧ ed) to ±e1 ∧ . . .∧ êi ∧ . . .∧ ed.
But the latter elements form a basis of Λd−1V .

This motivates the following definition:

Definition 4.9.2 (Locally free objects). Let R be a commutative ring with
2 ∈ R∗. Let C be a finitely cocomplete R-linear tensor category, V ∈ C and
d ≥ 1. We call V locally free of rank d if Λd(V ) is invertible and the morphism
ω : Λd+1(V )→ V ⊗ Λd(V ) vanishes.

Remark 4.9.3. In element notation, the vanishing of ω means that for all
v0, . . . , vd ∈ V we have

(?)
d∑

k=0

(−1)kvk ⊗ (v1 ∧ . . . ∧ v̂k ∧ . . . ∧ vd) = 0.
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Chapter 4. Commutative algebra in a cocomplete tensor category

For d = 1 this means v0 ⊗ v1 = v1 ⊗ v0, i.e. that V is symtrivial. It follows that
locally free objects of rank 1 are precisely the line objects.

Notice that for C = Mod(R) and V = R⊕d, by Laplace expansion of the first row
the relation (?) becomes the vanishing of the determinant

0 = det


vi0 . . . vid
v10 . . . v1d
...

...
vd0 · · · vdd


for all 1 ≤ i ≤ d. Thus, in some sense, our abstract definition of locally free
objects includes that this determinant equation still holds.

Example 4.9.4. From Proposition 4.4.4 we conclude Λd(Od) ∼= O. The isomor-
phism maps a1 ∧ . . . ∧ ad to the determinant

∑
σ∈Σd

sgn(σ)
∏d

i=1 ai,σ(i). Hence,

Od is (locally) free of rank d.

In the following, let us fix C and d ≥ 1 as above such that d! ∈ R∗ (for example
when R is a Q-algebra).

Proposition 4.9.5. Let V ∈ C be locally free of rank d. Then Λd(V ) is a line
object. We call it the determinant of V .

Proof. We only have to prove that Λd(V ) is symtrivial. This follows from
Lemma 4.4.15 with p = d. The assumption of this Lemma is precisely (?).

Proposition 4.9.6 (Locally free ⇒ dualizable). Let V ∈ C be locally free of
rank d. If 1 ≤ p ≤ d, then Λp(V ) is dualizable with

Λp(V )∗ ∼= Λd−p(V )⊗ Λd(V )⊗−1.

In particular, V itself is dualizable with V ∗ ∼= Λd−1(V )⊗ Λd(V )⊗−1.

Proof. Since Λd(V ) is invertible, we only have to construct morphisms

e : Λd−p(V )⊗ Λp(V )→ Λd(V )

c : Λd(V )→ Λp(V )⊗ Λd−p(V )

such that the two diagrams

(†) Λd(V )⊗ Λp(V )
c⊗V //

∼=

((

Λp(V )⊗ Λd−p(V )⊗ Λp(V )

Λp(V )⊗e

��

Λp(V )⊗ Λd(V )
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(‡) Λd−p(V )⊗ Λd(V )
Λd−p(V )⊗c

//

∼=

((

Λd−p(V )⊗ Λp(V )⊗ Λd−p(V )

e⊗Λd−p(V )

��

Λd(V )⊗ Λd−p(V )

commute (see Remark 4.7.3). We choose e to be the multiplication from the
exterior algebra (Lemma 4.4.10). The morphism c comes from the comultipli-
cation, see Lemma 4.4.12. Then it is readily checked that (†) is precisely the
statement of Lemma 4.4.15 and (‡) is simply (†) with p replaced by d− p.

Proposition 4.9.7 (Cramer’s rule). Let f : V → W be a morphism between
locally free objects of rank d. If Λdf : ΛdV → ΛdW is an isomorphism, then f is
an isomorphism.

Sketch of proof. We may invert and then dualize Λdf to obtain an isomorphism
(ΛdV )∗ ∼= (ΛdW )∗. The composition

V ∗ ∼= Λd−1V ⊗ (ΛdV )∗ ∼= Λd−1V ⊗ (ΛdW )∗
Λd−1f−−−→ Λd−1W ⊗ (ΛdW )∗ ∼= W ∗

is inverse to f ∗. Hence, f ∗ is an isomorphism, but then also f = f ∗∗.

Next, we give a more “geometric” characterization of locally free objects, which
is motivated by the fact that a quasi-coherent module is locally free of rank d if
and only if it becomes free of rank d after tensoring with a faithfully flat algebra.
This has been a collaboration with Daniel Schäppi. We begin with the case
d = 1.

Definition 4.9.8. Let L ∈ C be a line object. Define SymZ(L) to be the Z-
graded commutative algebra

⊕
n∈Z L⊗n whose unit is the inclusion from L⊗0 ∼= O

and whose multiplication is induced by the isomorphisms L⊗n ⊗ L⊗m ∼= L⊗n+m

for n,m ∈ Z. Then clearly SymZ(L)⊗L ∼= SymZ(L) as modules over SymZ(L).
In fact, this algebra is universal with this property:

Proposition 4.9.9. Let L ∈ C be a line object. If A is a commutative algebra in
C, then homomorphisms of algebras SymZ(L) → A correspond to isomorphisms
of A-modules L ⊗ A ∼= A.

Sketch of proof. A homomorphism of algebras SymZ(L) → A is determined by
two morphisms L → A and L⊗−1 → A in C such that tensoring them (in both
orders) results in the unit of A⊗A. These correspond to morphisms of A-modules
L ⊗ A→ A and A→ L⊗ A which are inverse to each other.
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Definition 4.9.10. Let V ∈ C be locally free of rank d with determinant L.
Define δ : L → Symd(V d) (“determinant”) by

δ(v1 ∧ . . . ∧ vd) =
∑
σ∈Σd

sgn(σ)
d∏
i=1

ιi(vσ(i))

in element notation. Here, ιi : V ↪→ V d denotes the inclusion of the ith summand.
Then δ induces a homomorphism Sym(L)→ Sym(V d) of commutative algebras.
We define the commutative algebra

H(V ) := Sym(V d)⊗Sym(L) SymZ(L).

Proposition 4.9.11 (Universal trivializing algebra). Let V ∈ C be locally free
of rank d and let A be a commutative algebra in C. Then, homomorphisms of
commutative algebras H(V ∗) → A correspond to isomorphisms of A-modules
V ⊗A ∼= Ad. Thus, H(V ∗) is the universal commutative algebra which makes V
free of rank d.

Sketch of proof. A homomorphism H(V ∗) → A of algebras corresponds to ho-
momorphisms of algebras Sym((V ∗)d)→ A and SymZ(L∗)→ A which agree on
Sym(L∗). Using the universal property of symmetric algebras (Lemma 4.4.5) as
well as the case of line objects (Proposition 4.9.9), this corresponds to a mor-
phism (V ∗)d → A and an isomorphism A ⊗ L ∼= A of A-modules such that a
certain diagram commutes. This corresponds to a homomorphism of A-modules
Ad → V ⊗A which induces an isomorphism on Λd

A, i.e. which is an isomorphism
by Proposition 4.9.7.

Remark 4.9.12 (Open questions). We do not know if H(V ) is faithfully flat.
At least for d = 1 this is easy to check as soon as countable direct sums are exact
in C. It would be interesting to investigate if further well-known properties of
locally free sheaves generalize to locally free objects of tensor categories. A very
basic question is if they are closed under finite direct sums and tensor products.
It would be also interesting to find a connection to Deligne’s notion of rank in
Tannakian categories ([Del90]). Finally, it would be desirable to get rid of the
assumption d! ∈ R∗.

4.10 Descent theory

Let C be a cocomplete tensor category (not assumed to be linear). We develope
descent theory internal to C, generalizing the well-known case of R-modules for
a commutative ring R ([Vis05]). This will be needed in section 5.7, in particular
the notion of a (special) descent algebra.
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Definition 4.10.1 (Descent data). Let A be a commutative algebra in C.

1. The category of descent-data Desc(A) has as objects pairs (N, φ), where
N ∈ Mod(A) and φ : A⊗N ∼= N ⊗A is an isomorphism of A⊗A-modules,
such that the cocycle condition is satisfied: Define the three isomorphisms

φ1 := A⊗N ⊗ A φ⊗A−−→ N ⊗ A⊗ A,

φ2 := A⊗ A⊗N N ⊗ A⊗ A,
A⊗SA,N ↓ ↑ N⊗SA,A
A⊗N ⊗ A φ⊗A−−→ N ⊗ A⊗ A

φ3 := A⊗ A⊗N A⊗φ−−→ A⊗N ⊗ A.

Then it is required that the diagram

A⊗ A⊗N φ3 //

φ2
$$

A⊗N ⊗ A

φ1
zz

N ⊗ A⊗ A

commutes. A morphism (M,φ) → (N,ψ) of descent-data is defined to be
a morphism f : M → N in Mod(A) such that the diagram

A⊗M φ
//

A⊗f
��

M ⊗ A
f⊗A
��

A⊗N ψ
// N ⊗ A

commutes.

2. There is a functor F : C → Desc(A) mapping M 7→ (M ⊗ A,ψ), where ψ
is the composition

A⊗ (M ⊗ A) ∼= (A⊗M)⊗ A ∼= (M ⊗ A)⊗ A,

given by ψ(a⊗m⊗b) = m⊗a⊗b in element notation. We call A a descent
algebra if this functor is an equivalence of categories

C ' Desc(A).

In element notation one easily checks that ψ : A ⊗M ⊗ A ∼= M ⊗ A ⊗ A in 2.
above satisfies the cocycle condition. In fact we have

ψ1(a⊗m⊗ b⊗ c) = m⊗ a⊗ b⊗ c,
ψ2(a⊗ b⊗m⊗ c) = m⊗ a⊗ b⊗ c,
ψ3(a⊗ b⊗m⊗ c) = a⊗m⊗ b⊗ c.

95



Chapter 4. Commutative algebra in a cocomplete tensor category

Remark 4.10.2. In general, the forgetful functor Desc(A)→ Mod(A) is faithful
and conservative (i.e. reflects isomorphisms). Hence, if A is a descent algebra,
then C → Mod(A), M 7→M ⊗ A is faithful and conservative.

Proposition 4.10.3 (Descent of properties). Let A be a descent algebra in C.
If M ∈ C is an object such that M ⊗ A ∈ Mod(A) is either

1. symtrivial,

2. dualizable,

3. invertible,

4. a line object,

5. or locally free of rank d (if C is R-linear with 2 ∈ R∗)

then the same is true for M ∈ C.

Proof. 1. The symmetry SM⊗A,M⊗A of the A-module M⊗A equals the symmetry
SM,M tensored with A. Since it is the identity, it follows that SM,M is also the
identity by Remark 4.10.2.

2. Assume that M ⊗ A is dualizable with dual N ∈ Mod(A). We define an
isomorphism of A ⊗ A-modules N ⊗ A ∼= A ⊗ N to be dual to the canonical
isomorphism of A⊗A-modules M ⊗A⊗A ∼= A⊗M ⊗A. The cocycle condition
is satisfied, so that there is some M∗ ∈ C with an isomorphism of A-modules
M∗ ⊗ A ∼= N = (M ⊗ A)∗ which is compatible with the descent data. The
evaluation (M∗ ⊗M) ⊗ A ∼= (M∗ ⊗ A) ⊗A (M ⊗ A) → A is compatible with
the descent data, so that it is induced by a morphism M∗ ⊗M → O. Likewise
one constructs a morphism O → M ⊗ M∗. The triangle identities hold: By
Remark 4.10.2 it suffices to check this after tensoring with A, but then the
identities hold by construction.

3. If M ⊗ A is an invertible object of Mod(A), this means that it is dualizable
such that the evaluation (M ⊗ A)∗ ⊗A (M ⊗ A) → A is an isomorphism. By
2. and Remark 4.10.2 this means that M is dualizable such that the evaluation
M∗ ⊗M → O is an isomorphism, i.e. that M is invertible.

4. This follows from 1. and 3.

5. Keeping in mind Definition 4.9.2, this follows from 3. and Remark 4.10.2.

Proposition 4.10.4 (Adjunction). Assume that C has equalizers. Let A be a
commutative algebra in C with unit u : O → A. Then the canonical functor
F : C → Desc(A) has a right adjoint G which maps (N, φ) to the equalizer of the
two morphisms

N
u⊗N−−−→ A⊗N φ−→ N ⊗ A, N u⊗N−−−→ A⊗N

SA,N−−−→ N ⊗ A.
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4.10. Descent theory

Proof. Clearly G : Desc(A)→ C defines a functor. In element notation, we may
write G(N, φ) = {n ∈ N : φ(1⊗ n) = n⊗ 1}.

If M ∈ C, then G(F (M)) = G(M ⊗ A, φ) is the equalizer of the two canonical
morphisms M ⊗ u⊗A, M ⊗A⊗ u : M ⊗A⇒M ⊗A⊗A given by (in element
notation) m ⊗ a 7→ m ⊗ 1 ⊗ a resp. m ⊗ a ⊗ 1. Since M ⊗ u : M → M ⊗ A
equalizes both morphisms (the composite being M⊗u⊗u in each case), it induces
a canonical morphism M → G(F (M)).

Now let (N, φ) ∈ Desc(A) and M = G(N, φ). This equalizer comes equipped
with a monomorphism i : M → N in C. It induces a morphism of A-modules
f : M ⊗A→ N described by f(m⊗ a) = i(m) · a in element notation. We claim
that F (G(N, φ)) = (M ⊗ A,ψ)→ (N, φ) is a morphism in Desc(A), i.e. that

A⊗M ⊗ A A⊗f
//

SA,M⊗A
��

A⊗N
φ
��

M ⊗ A⊗ A f⊗A
// N ⊗ A

commutes. Let us use element notation. Then a⊗m⊗ b ∈ A⊗M ⊗ A goes to
a⊗ (i(m) · b) ∈ A⊗N and then to φ(a⊗ (i(m) · b)) ∈ N ⊗ A and on the other
way it goes to m⊗ a⊗ b ∈M ⊗A⊗A and then to (i(m) · a)⊗ b ∈ N ⊗A. But
these agree since

φ(a⊗ (i(m) · b)) = a · φ(1⊗ i(m)) · b = a · (i(m)⊗ 1) · b = (i(m) · a)⊗ b.

As always this element calculation may be also replaced by a suitable large
commutative diagram. It is straightforward to check the triangular identities,
so that in fact F is left adjoint to G with unit M → G(F (M)) and counit
F (G(N, φ))→ (N,ψ) constructed as above.

Proposition 4.10.5 (Faithfully flat descent). Assume that C has equalizers. Let
A be a commutative algebra in C such that

1. A is a flat object of C.

2. For every M ∈ C the canonical sequence

M →M ⊗ A⇒M ⊗ A⊗ A

is exact.

Then A is a descent algebra.

In particular, every faithfully flat commutative algebra is a descent algebra.

We recall that the morphisms in the canonical sequence are defined by m 7→ m⊗1
and m⊗ a 7→ m⊗ 1⊗ a resp. m⊗ a⊗ 1 in element notation. The result follows
from Beck’s monadicity Theorem ([ML98, VI.7]), but we will give a more direct
proof below.
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Chapter 4. Commutative algebra in a cocomplete tensor category

Proof. We use the proof of Proposition 4.10.4 as well as its notation. The second
condition says exactly that the unit M → G(F (M)) is an isomorphism for every
M ∈ C. We claim that the counit f : F (M)→ (N, φ) is also an isomorphism for
all (N, φ) ∈ Desc(A), where M := G(N,ψ). Consider the following diagram (?):

M ⊗ A i⊗A //

f

��

N ⊗ A
(SA,N◦(u⊗N))⊗A

33

(φ◦(u⊗N))⊗A
++

φ−1

��

N ⊗ A⊗ A

φ−1
2

��

N
u⊗N // A⊗N

A⊗u⊗N
33

u⊗A⊗N
++

A⊗ A⊗N

Assume for the moment that it is commutative. The row below is exact by
assumption, the row above is exact by definition of the equalizer i : M → N
and since A is flat by assumption. The two vertical morphisms φ−1 and φ−1

2 are
isomorphisms. Thus, f is an isomorphism and we are done.

Now let us check the commutativity of the three squares involved in (?). For
m⊗ a ∈M ⊗ A in element notation have

φ−1(i(m)⊗a) = φ−1((i(m)⊗1)) ·a = (1⊗m) ·a = 1⊗m ·a = (u⊗N)(f(m⊗a)).

This proves that the square on the left commutes. The square on the right in
the front commutes because its inverse can be decomposed as

A⊗N A⊗M⊗u //

φ
��

A⊗N ⊗ A
φ⊗A
��

A⊗ A⊗N
A⊗SA,N
oo

φ2
��

N ⊗ A M⊗A⊗u // N ⊗ A⊗ A
N⊗SA,A

// N ⊗ A⊗ A.

The inverse of the square on the right in the back of (?) can be decomposed as
follows:

A⊗N u⊗A⊗N //

φ

��

A⊗ A⊗N

φ2

��

A⊗φ

ww

N ⊗ A u⊗N⊗A // A⊗N ⊗ A φ⊗A
// N ⊗ A⊗ A

The commutativity of the region on the right is precisely the cocycle condition,
whereas the region on the left commutes because for trivial reasons.
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One drawback of descent algebras and faithfully flat algebras is that it remains
unclear if they are universal – in the sense that they are preserved by arbitrary
cocontinuous tensor functors. The following notion of a special descent algebra
is universal by construction and is motivated by the proof of [Sch12a, Theorem
1.3.2].

Definition 4.10.6 (Special descent algebras). Let C be a cocomplete linear
tensor category. A commutative algebra A in C is called a special descent algebra
if the underlying object of A may be written as a directed colimit of dualizable
objects Ai such that for all i

• the unit O → A factors naturally as O → Ai → A,

• the object Ai/O := coker(O → Ai) is dualizable

• and the sequence (Ai/O)∗ → A∗i → O∗ → 0 dual to the exact sequence
O → Ai → Ai/O → 0 is also exact.

Remark 4.10.7. Notice that if F : C → D is any cocontinuous linear tensor
functor and A is a special descent algebra in C, then F (A) is also a special descent
algebra in D.

Proposition 4.10.8. Assume that C is a cocomplete linear tensor category with
equalizers such that directed colimits are exact in C (for example, if C is a finitely
presentable tensor category). Then every special descent algebra in C is a descent
algebra in C.

Proof. Let A be a special descent algebra in C. We use Proposition 4.10.5 to
show that A is a descent algebra. By Lemma 4.7.4 and Lemma 4.6.3, A is a flat
object of C. Let M ∈ C, we want to prove that

0→M →M ⊗ A→M ⊗ A⊗ A

is exact. By Lemma 4.7.10 we know that for every i the sequence

0→M →M ⊗ Ai →M ⊗ Ai/O → 0

is exact (in particular O → Ai is a monomorphism, which justifies the notation
Ai/O). In the colimit we get an exact sequence

0→M →M ⊗ A→M ⊗ A/O → 0.

In particular, we see that f ⊗ A = 0⇒ f = 0 for every morphism f in C.

Clearly 0 → M → M ⊗ A → M ⊗ A ⊗ A is exact after tensoring with A (in
fact, it even becomes split exact). Thus, it suffices to prove the following more
general claim: If 0 → M1 → M2 → M3 is a complex in C, which becomes exact
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Chapter 4. Commutative algebra in a cocomplete tensor category

after tensoring with A and such that M1 →M2 is a regular monomorphism, then
0→M1 →M2 →M3 is also exact. For the proof, take a morphism T →M2 such
that T →M2 →M3 vanishes. Choose an exact sequence 0→M1 →M2 →M4.
We want to prove that T → M2 → M4 vanishes. It suffices to prove that
T ⊗A→M2 ⊗A→M4 ⊗A vanishes. In fact T ⊗A→M2 ⊗A factors through
M1 ⊗ A→ M2 ⊗ A. This is because T ⊗ A→ M2 ⊗ A→ M3 ⊗ A vanishes and
0→M1 ⊗ A→M2 ⊗ A→M3 ⊗ A is exact.

The following example may be extracted from the proof of [Sch12a, Theorem
1.3.2].

Proposition 4.10.9. Let X be an Adams stack (see section 2.4). Choose a
presentation π : P → X such that π and P are affine. Then A = π∗OP is a
special descent algebra in Qcoh(X).

Proof. By Proposition 2.4.5 we may choose some directed system of locally free
quasi-coherent modules Ai ∈ Qcoh(X) with colimit A. By Proposition 4.7.5
each Ai is dualizable. Since OX is finitely presentable, the unit OX → A factors
through some Aj. For i ≥ j it factors as OX → Aj → Ai → A. In the following
we may restrict to the cofinal subset of all i ≥ j. Notice that π∗OX → π∗A is a
split monomorphism (with splitting given by π∗A = π∗π∗OP → OP ), the same is
true for π∗OX → π∗Ai. It follows by descent that OX → Ai is a monomorphism.
The cokernel Ai/OX is locally free, because π∗(Ai/OX) is a direct summand of
π∗Ai and therefore locally free. We have seen that 0→ OX → Ai → Ai/OX → 0
is an exact sequence of locally free modules which splits locally, so that its dual
sequence 0→ (Ai/OX)∗ → A∗i → O∗X → 0 is also exact. This shows that A is a
special descent algebra.

4.11 Cohomology

Definition 4.11.1 (Cohomology). Let C be a cocomplete R-linear tensor cate-
gory with unit OC. Then we have the global section functor

Γ : C → Mod(R), A 7→ Γ(A) := Hom(OC, A).

It is left exact. Assume that the underlying category of C is abelian and has
enough injectives (for example, when C is a Grothendieck category). Then we
may consider the derived functors

Hp := RpΓ : C → Mod(R).

The abelian group Hp(M) is the p-th cohomology of M (with respect to C).

100



4.11. Cohomology

Example 4.11.2. When C = Mod(X) for some ringed space X, this is the
usual definition of sheaf cohomology. If C = Qcoh(X) for some scheme which
is either noetherian or quasi-compact and semi-separated, then the cohomology
with respect to Qcoh(X) agrees with the one with respect to Mod(X) ([TT90,
Proposition B.8]).

Definition 4.11.3 (Higher direct images). Let F : D → C be a cocontinuous
R-linear tensor functor between abelian cocomplete R-linear tensor categories
with enough injectives. If F has a right adjoint F∗ : C → D, then we may define
the higher direct image of F as the derived functor RpF∗ : C → D.

Example 4.11.4. If D = Mod(R), then by (Remark 3.1.14) F is essentially
unique and F∗ = Γ, so that RpF∗ = Hp. If f : X → Y is a morphism of ringed
spaces and F := f ∗ : Mod(Y )→ Mod(X), then F∗ = f∗ and we obtain the usual
higher direct image functor Rpf∗.

Remark 4.11.5. One can define cup products in the general setting of abelian
tensor categories ([Loe09, Section 2]).

Remark 4.11.6. In [Sch13] F : D → C is called cohomological affine if F∗ is
faithful and right exact, i.e. RpF∗ = 0 for p > 0. Every affine F (Definition 5.3.5)
is cohomological affine and the converse is true if C is presentable and is generated
by dualizable objects ([Sch13, Proposition 3.8]). This can be seen as a tensor
categorical version of Serre’s criterion for affineness.

Remark 4.11.7. Artin and Zhang ([AZ94, Theorem 4.5]) have found a coho-
mological characterization of those abelian categories which arise from projective
schemes (subject to a certain technical condition called χ1). It would be inter-
esting to find an analogous characterization for abelian tensor categories. The
special object A should be the tensor unit O so that H0 becomes Γ and the shift
operator s should be tensoring with an ample line object.
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Chapter 5

Constructions with cocomplete
tensor categories

5.1 Basic free constructions

5.1.1 Free tensor categories

Remark 5.1.1 (Free monoidal categories). We construct a left adjoint of the
forgetful 2-functor from monoidal categories (with strong monoidal functors) to
categories as follows. Given a category C, we construct the free monoidal category
M(C) on C as follows: Objects are tuples (X1, . . . , Xn) of objects in C. We allow
n = 0 which yields the unit object. The tensor product is simply

(X1, . . . , Xn)⊗ (Y1, . . . , Ym) = (X1, . . . , Xn, Y1, . . . , Ym).

Morphisms only exist between tuples of the same length and then they are just
“diagonal”, i.e.

Hom((X1, . . . , Xn), (Y1, . . . , Yn)) := Hom(X1, Y1)× . . .× Hom(Xn, Yn).

Given a functor F : C → D into (the underlying category of) a monoidal cat-
egory D, we may extend it to a strong monoidal functor F : M(C) → D via
(X1, . . . , Xn) 7→ F (X1) ⊗ . . . ⊗ F (Xn) on objects (and it is clear what happens
on morphisms). The monoidal structure of F is induced by the canonical iso-
morphisms

(F (X1)⊗ . . .⊗ F (Xn))⊗ (F (Y1)⊗ . . .⊗ F (Ym)) ∼= F (X1)⊗ . . .⊗ F (Ym).

This establishes an equivalence of categories between strong monoidal functors
M(C) → D and all functors C → D. This is just another version of Mac Lane’s
Coherence Theorem for monoidal categories.

Remark 5.1.2 (Free symmetric monoidal categories). The forgetful 2-functor
from symmetric monoidal categories (i.e. tensor categories) to categories has
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a left adjoint, constructed as follows: Given a category C, the free symmetric
monoidal category S(C) on C has objects tuples (X1, . . . , Xn) as above, but mor-
phisms (X1, . . . , Xn)→ (Y1, . . . , Yn) are now given by pairs (σ, f), where σ ∈ Σn

is a permutation and f = (fi : Xi → Yσ(i))1≤i≤n is a tuple of morphisms in
C. These morphisms may be visualized via string diagrams. For example, the
following depicts a typical morphism with σ = (1 2 3).

X1

f1

X2

f2

X3

f3

Y1 Y2 Y3

The tensor product does not change on objects and the action on morphisms
is defined using the canonical embeddings Σn × Σm ↪→ Σn+m. If D is a sym-
metric monoidal category and F : C → D is a functor into the underlying
category, we extend it to a symmetric monoidal functor F : S(C) → D by
F (X1, . . . , Xn) := F (X1)⊗ . . .⊗ F (Xn) on objects and on morphisms using the
Coxeter presentation of the symmetric group ([CM80]). This works out because
of Mac Lane’s Coherence Theorem for symmetric monoidal categories.

Remark 5.1.3. The forgetful 2-functor from symmetric monoidal categories to
monoidal categories also has a left adjoint.

Example 5.1.4 (Free tensor category on one object). The free category on one
object X is of course the one with exactly one object, also denoted by X, and
End(X) = {id}. It follows that the free monoidal category on X is discrete
with objects {X⊗n : n ∈ N}. The free symmetric monoidal category on X has
the same objects, but it is not discrete. Instead, we have Hom(X⊗n, X⊗m) = ∅
for n 6= m and Hom(X⊗n, X⊗n) = Σn otherwise. This tensor category is also
known as the permutation groupoid P, because it simplifies to

∐
n≥0 Σn with

tensor product induced by Σn × Σm ↪→ Σn+m.

Notice that, however, the free tensor category on a symtrivial object is discrete
and may be realized as N ∼= {X⊗n : n ∈ N}.

Similarly, the free tensor category on a line object L is discrete and may be
realized as Z ∼= {L⊗z : z ∈ Z}.

5.1.2 Cocompletions

Let us discuss free cocompletions of tensor categories “relative” to a given co-
complete tensor category – we refer to [IK86] for the corresponding enriched
version. We will frequently use the coend interpretation of the Yoneda Lemma
(Lemma 3.2.2).

103



Chapter 5. Constructions with cocomplete tensor categories

Definition 5.1.5 (Day convolution). Let I be a small tensor category and let
C be a cocomplete tensor category. For functors F,G : Iop → C between the
underlying categories we define a functor F ⊗G : Iop → C by

(F ⊗G)(n) :=

∫ p,q∈I
F (p)⊗G(q)⊗ Hom(n, p⊗ q)

= colimn→p⊗q F (p)⊗G(q).

on objects. It is clear how to define the action on morphisms.

Proposition 5.1.6. The category of functors Iop → C endowed with the Day
convolution becomes a cocomplete tensor category ÎC. Besides, there is a tensor
functor

Y : I → ÎC, n 7→ Hom(−, n)⊗ 1C

and a cocontinuous tensor functor

ι : C → ÎC, M 7→ Hom(−, 1I)⊗M.

Proof. It is clear that Day convolution provides a functor which is cocontinuous
in each variable. To construct the associator, we compute for F,G,H : Iop → C:

F ⊗ (G⊗H)

∼=
∫ p,q,r,s

F (p)⊗G(r)⊗H(s)⊗ Hom(−, p⊗ q)⊗ Hom(q, r ⊗ s)

∼=
∫ p,r,s

F (p)⊗G(r)⊗H(s)⊗ Hom(−, p⊗ r ⊗ s).

Now it is clear that this is also isomorphic to (F ⊗ G) ⊗ H. The symmetry
F ⊗G ∼= G⊗ F is obvious.

We define the unit by 1 := Hom(−, 1I)⊗ 1C. We have

F ⊗ 1 =

∫ p,q

F (p)⊗ Hom(q, 1I)⊗ Hom(−, p⊗ q) ∼=
∫ p

F (p)⊗ Hom(−, p) ∼= F.

The axioms of a tensor category are straightforward to check.

Both Y and ι preserve the unit by definition. For n,m ∈ I we compute

Y (n)⊗ Y (m) ∼=
∫ p,q

Hom(p, n)⊗ Hom(q,m)⊗ Hom(−, p⊗ q)⊗ 1C

∼= Hom(−, n⊗m)⊗ 1C = Y (n⊗m).

For M,N ∈ C we compute

ι(M)⊗ ι(N)

∼=
∫ p,q

Hom(p, 1I)⊗ Hom(q, 1I)⊗ Hom(−, p⊗ q)⊗ (M ⊗N)

∼= Hom(−, 1I)⊗ (M ⊗N) = ι(M ⊗N).
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It is straightforward to check that Y and ι become tensor functors that way.
Finally, it is clear that ι is cocontinuous.

Example 5.1.7 (Tensor category of sequences). We consider the partially or-

dered monoid (N,≥,+) as a tensor category I. Then ÎC consists of sequences

M0 →M1 →M2 → . . .

in C. The unit object is 0→ 1→ 1→ . . . . The tensor product is given by

(M ⊗N)n = colimp+q≤nMp ⊗Nq.

Proposition 5.1.8 (Universal property of ÎC). Let I be a small tensor category
and let C be a cocomplete tensor category. Then Y and ι induce, for every
cocomplete tensor category D, an equivalence of categories

Homc⊗(ÎC,D) ' Homc⊗(C,D)× Hom⊗(I,D)

which maps L : ÎC → D to (L ◦ ι, L ◦ Y ). The inverse functor maps G : C → D
and H : I → D to L : ÎC → D defined by

L(F ) :=

∫ p∈I
G(F (p))⊗H(p).

Proof. It is clear that L defines a cocontinuous functor. We endow it with the
structure of a tensor functor as follows:

L(1) =

∫ p∈I
G(Hom(p, 1I)⊗ 1C)⊗H(p)

∼=
∫ p∈I

Hom(p, 1I)⊗G(1C)⊗H(p)

∼= G(1C)⊗H(1I) ∼= 1D.

For F, F ′ ∈ ÎC we have

L(F ⊗ F ′) =

∫ p,q,n∈I
G(F (p)⊗ F ′(q))⊗H(n)⊗ Hom(n, p⊗ q)

∼=
∫ p,q∈I

G(F (p))⊗G(F ′(q))⊗H(p)⊗H(q)

∼= L(F )⊗ L(F ′).

For M ∈ C, n ∈ I we have

(Lι)(M) =

∫ p∈I
Hom(p, 1I)⊗G(M)⊗H(p) ∼= G(M)⊗H(1I) ∼= G(M).
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(LY )(n) =

∫ p∈I
Hom(p, n)⊗G(1C)⊗H(p) ∼= G(1C)⊗H(n) ∼= H(n).

These are isomorphisms of tensor functors Lι ∼= G, LY ∼= H. It is straightforward
to check that (G,H) 7→ L is inverse to L 7→ (Lι, LY ).

Remark 5.1.9. The same holds in the R-linear case: If I is a small R-linear
tensor category and C is a cocomplete tensor category, then we may endow the
category of R-linear functors Iop → C between the underlying R-linear categories
with the Day convolution (notice that in the R-linear case coends cannot be re-

duced to colimits) and obtain a cocomplete R-linear tensor category ÎC satisfying
the universal property

Homc⊗/R(ÎC,D) ' Homc⊗/R(C,D)× Hom⊗/R(I,D)

for cocomplete R-linear tensor categories D.

Corollary 5.1.10 (Free cocompletion). Given a small tensor category I, the

category Î of presheaves on I equipped with Day convolution is a cocomplete
tensor category. The Yoneda embedding Y : I → Î becomes a cocontinuous
tensor functor, inducing for every cocomplete tensor category C an equivalence
of categories

Homc⊗(Î , C) ∼= Hom⊗(I, C).

A corresponding construction works for R-linear tensor categories.

Proof. Apply Proposition 5.1.8 to C = Set (resp. C = Mod(R)).

Remark 5.1.11. If I is a tensor category which is not small, we define Î as
the tensor category of small presheaves on I, i.e. of those sheaves which can be
written as a small colimit of representable presheaves on I. Then the universal
property still holds. Therefore, we have found a left adjoint to the forgetful
2-functor Catc⊗ → Cat⊗.

Example 5.1.12 (Simplicial sets and joins). Consider the augmented simplex
category ∆ (objects are [n] := {0, 1, . . . , n}, n ∈ N – morphisms are monotonic
maps). It becomes a monoidal category with respect to the addition of natural
numbers (but it is not symmetric monoidal!). It is well-known ([ML98, VII.5])
that ∆ is the universal monoidal category equipped with a monoid object. The
free cocompletion ∆̂ identifies with the category of simplicial sets sSet, whose
monoidal structure is given by the join operation (not the cartesian product).
It follows by Corollary 5.1.10 that this is the universal cocomplete monoidal
category equipped with a monoid object. For a symmetric analogue, we consider
instead of ∆ the cocartesian monoidal category (i.e. ⊗ :=

∐
) of finite sets FinSet.

This is the universal tensor category equipped with a commutative monoid object

([Gra01]) and hence its free cocompletion F̂inSet is the universal cocomplete
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tensor category equipped with a commutative monoid object. It identifies with
the category of so-called symmetric simplicial sets.

Remark 5.1.13 (Free cocomplete tensor categories). By Corollary 5.1.10 and
Remark 5.1.2 we see that the forgetful 2-functor Catc⊗ → Cat has a left adjoint,
i.e. every category C has a free cocomplete tensor category on C. In general it is
quite hard to describe concretely. However:

Remark 5.1.14 (Free cocomplete tensor category on one object). Let C be a
cocomplete tensor category. We already know the free tensor category P on one
object X (Example 5.1.4). It follows by Proposition 5.1.8 that C[X] := P̂C is the
free cocomplete tensor category equipped with an object X and a cocontinuous
tensor functor C → C[X] (“over C”). Its objects are families M = (Mn)n∈N
of objects Mn ∈ C with a right Σn-action. The universal object X is here 1C
concentrated in degree 1. Observe that

M =
⊕
n∈N

Mn ⊗Σn X
⊗n.

The tensor product is given by the following formula:

M ⊗N =
⊕
n∈N

( ⊕
p+q=n

(Mp ×Mq)⊗Σp×Σq Σn

)
⊗Σn X

⊗n.

We have also the free cocomplete tensor category over C containing a symtrivial
object N̂C, whose objects are just N-graded objects of C, as well as the free
cocomplete tensor category over C containing a line object ẐC, whose objects are
Z-graded objects of C. See section 5.4 for more on gradings.

Remark 5.1.15 (Free cocomplete tensor category on a morphism). Let C be
a cocomplete tensor category and A,B ∈ C be two objects. We would like to
construct C[A→ B], the free cocomplete tensor category over C on a morphism
A→ B. We will encounter some special cases later, for example Proposition 5.3.1
implies C[A → 1] = Mod(SymA). However, the general case seems to be quite
complicated. Let us assume that C is presentable. In private communication
James Dolan has suggested to realize C[A→ B] as the category of pairs (X,α),
where X ∈ C and α : Hom(B,X) → Hom(A,X) is a morphism in C such that
the diagram

Hom(B ⊗B,X) //

��

Hom(B ⊗ A,X)

��

Hom(A⊗B,X) // Hom(A⊗ A,X)

commutes. The morphisms in that diagram are defined as follows: The vertical
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morphism above is defined by

Hom(B ⊗B,X)

∼=
��

Hom(B ⊗ A,X).

Hom(B,Hom(B,X))
Hom(B,α)

// Hom(B,Hom(A,X))

∼=

OO

The definition of the vertical morphism below is analoguous. The horizontal
morphisms are defined similarly but they are also twisted with the symmetry.

The idea behind this definition is that “X believes that α pulls back a morphism
A→ B”. However, it is not clear a priori how to define colimits and tensor prod-
ucts in this category. One probably has to construct a free coherent monoidal
monad T on C (chapter 6) on a Kleisli morphism A → B (via transfinite com-
positions and alike) and define C[A → B] := Mod(T ). The universal property
should follow from Theorem 6.5.8. This has not been worked out yet.

5.1.3 Indization

We refer to [KS06, Chapter 6] for the general theory of indization of categories.
Given a category C its indization Ind(C) is the full subcategory of the free cocom-

pletion Ĉ which consists of directed colimits of representable presheaves. Then
Ind(C) has directed colimits, created by the inclusion to Ĉ. In fact for every cat-
egory D with directed colimits we have an equivalence between the category of
functors C → D and the category of finitary functors Ind(C) → D. This means
that Ind(−) is left adjoint to the forgetful 2-functor from categories with directed
colimits and finitary functors to the “category” of all categories and functors.

If C is finitely cocomplete, then Ind(C) is actually cocomplete (however, colimits

are not preserved by the inclusion to Ĉ) in such a way that the Yoneda embedding
Y : C → Ind(C) becomes finitely cocontinuous. Moreover, using [KS06, Theorem
6.4.3] one can show that if D is a cocomplete category, then Y induces an equiv-
alence of categories Homc(Ind(C),D) ∼= Homfc(C,D). Hence, Ind(−) also serves
as a left adjoint of the forgetful 2-functor from cocomplete categories (and co-
continuous functors) to finitely cocomplete categories (and finitely cocontinuous
functors). We have the same result for tensor categories:

Proposition 5.1.16 (Indization of tensor categories). Let C be a finitely co-
complete tensor category. Then Ind(C) is actually a cocomplete tensor category,
Y : C → Ind(C) is a finitely cocontinuous tensor functor. If D is a cocomplete
tensor category, then Y induces an equivalence of categories

Homc⊗(Ind(C),D) ' Homfc⊗(C,D).

Hence, Ind(−) is left adjoint to the forgetful 2-functor Catc⊗ → Catfc⊗.
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5.1. Basic free constructions

Sketch of proof. This is very similar to the proof of Corollary 5.1.10. The tensor
product is defined by Ind(C) × Ind(C) ' Ind(C × C) → Ind(C), which is just the

restriction of the tensor product of Ĉ. For M ∈ C we have a cocontinuous functor
Y (M)⊗− : Ind(C)→ Ind(C), namely the unique cocontinuous functor extending
the finitely cocontinuous functor M ⊗− : C → C. The tensor product is finitary
in each variable (since directed colimits are preserved by the inclusion to Ĉ), so
that we easily deduce that N ⊗ − : Ind(C) → Ind(C) is cocontinuous for every
N ∈ Ind(C). Finally, if F : C → D is a finitely cocontinuous tensor functor, we
may extend it to a cocontinuous functor F : Ind(C)→ D and only have to show
that it carries a canonical structure of a tensor functor, for which we may use
the same trick as above.

Proposition 5.1.17. Let C be a finitely presentable (tensor) category and let Cfp

be the full (tensor) subcategory of finitely presentable objects. Then there is an
equivalence of (tensor) categories Ind(Cfp) ' C.

Proof. For the case of categories we refer to [KS06, Corollary 6.3.5]. The case of
tensor categories now follows easily.

Corollary 5.1.18. Let X be a scheme resp. algebraic stack as in Proposi-
tion 2.3.3. Then for every cocomplete tensor category C we have an equivalence
of categories

Homc⊗(Qcoh(X), C) ∼= Homfc⊗(Qcohfp(X), C).

5.1.4 Limits and colimits

Remark 5.1.19 (Limits). The 2-category Catc⊗ of cocomplete tensor categories
is 2-complete; limits are simply created by the forgetful 2-functor to Cat. For
example, the product

∏
i∈I Ci of a family (Ci)i∈I of cocomplete tensor categories

has tuples (Xi)i∈I with Xi ∈ Ci as objects and

Hom((Xi), (Yi)) =
∏
i

HomCi(Xi, Yi)

as morphisms. The tensor product is (Xi)i⊗(Yi)i := (Xi⊗Yi)i. Likewise, colimits
are computed in each entry. Then

∏
i∈I Ci is a cocomplete tensor category with

the universal property

Homc⊗(D,
∏
i∈I

Ci) '
∏
i∈I

Homc⊗(D, Ci).

Another example are 2-pullbacks. Given cocontinuous tensor functors

C1
F1 // E C2,

F2oo
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Chapter 5. Constructions with cocomplete tensor categories

the 2-pullback C1 ×E C2 (or more precisely C1 ×F1,F2 C2) has triples (X1, X2, σ)
as objects, where Xi ∈ Ci and σ : F1(X1) → F2(X2) is an isomorphism in E .
Morphisms are defined in an evident manner and tensor products are given by
(X1, X2, σ) ⊗ (Y1, Y2, τ) = (X1 ⊗ Y1, X2 ⊗ Y2, σ ⊗ τ). Colimits are created by
the forgetful functor to the product C1 × C2. It follows easily that C1 ×D C2 is a
cocomplete tensor category. It satisfies the universal property

Homc⊗(D, C1 ×E C2) ' Homc⊗(D, C1)×Homc⊗(D,E) Homc⊗(D, C2).

Example 5.1.20. Let us compare these constructions to corresponding con-
structions from algebraic geometry. If (Xi)i∈I is a family of schemes (or even
algebraic stacks), then we have an equivalence of cocomplete tensor categories

Qcoh
(∐
i∈I

Xi

)
'
∏
i∈I

Qcoh(Xi).

This can either be checked directly or deduced from the adjunction in Propo-
sition 3.4.3, which implies that, in fact, Qcoh : Stack → Catop

c⊗ preserves all
colimits. In particular, if X = X1 ∪ X2 with two open subschemes X1, X2 and
intersection U , we have

Qcoh(X) ' Qcoh(X1)×Qcoh(U) Qcoh(X2).

Gluing of schemes corresponds to pullbacks of tensor categories – a fact which
was already heavily used in Gabriel’s thesis [Gab62].

Remark 5.1.21 (Colimits). We already know that Set (resp. Mod(R)) is the
2-initial cocomplete (R-linear) tensor category. It is not clear to the author if
Catc⊗ is 2-cocomplete. Colimits of cocomplete tensor categories, or just coprod-
ucts, seem to be quite hard to “write down” explicitly (in terms of objects, mor-
phisms and tensor products). By categorification of the well-known construction
of coproducts of commutative rings using tensor products of abelian groups, we
expect that Catc is a symmetric monoidal 2-category, which allows us to construct
the coproduct of two cocomplete tensor categories by endowing the tensor prod-
uct of the underlying cocomplete categories with a tensor structure. At least,
such a procedure is possible in the context of presentable categories ([CJF13,
Corollary 2.2.5, Remark 2.3.8]). It is also possible for categories with κ-small
colimits for a fixed cardinal number κ – this is a consequence of 2-dimensional
monad theory ([BKP89]). In any case, an explicit description seems to be out
of reach. Still, it is a natural question how colimits of tensor categories compare
to limits of schemes and stacks. We will attack this question without using any
explicit constructions in section 5.11. Besides, we will see some natural exam-
ples of 2-pushouts of cocomplete tensor categories which globalize pullbacks in
algebraic geometry (e.g. Corollary 5.3.7 and Proposition 5.10.15). Notice that

for example ÎC is a 2-coproduct of Î and C by Proposition 5.1.8.
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5.2. Global schemes and stacks

5.2 Global schemes and stacks

Before we give the definition of global schemes, let us motivate it by some specific
detailed example. Some of the following remarks are paradigms for other global
schemes which will be studied later.

Example 5.2.1 (Globalization of affine schemes). Let R be a fixed commu-
tative base ring. Let A be a commutative R-algebra. Then Spec(A) is an
R-scheme with the following universal property: If X is an R-scheme, then
R-morphisms X → Spec(R) correspond naturally to homomorphisms of R-
algebras R → Γ(X,OX). The bijection is given by f 7→ Γ(f). Actually
Γ(X,OX) may be reconstructed from the cocomplete R-linear tensor category
Qcoh(X): It is isomorphic to End(OX), where OX is the unit of Qcoh(X).
Also, the morphism X → Spec(R) may be identified with its pullback func-
tor F : Mod(R)→ Qcoh(X). The action End(R)→ End(F (R)) induced by F is
precisely the homomorphism R→ Γ(X,OX).

This leads to the following more general observation: If C is an arbitrary cocom-
plete R-linear tensor category (with unit OC), then we have a functor

α : Homc⊗/R(Mod(A), C)→ HomAlg(R)(A,EndC(OC)).

It maps F : Mod(A)→ C to A ∼= EndMod(A)(A)→ EndC(OC). If F → G is a mor-
phism of tensor functors, then the two resulting homomorphisms A→ EndC(OC)
are equal. Since HomAlg(R)(A,EndC(OC)) is a set, regarded as a discrete category,
this describes the action on morphisms.

If C = Qcoh(X) for some R-scheme X, then we can write down a functor β in
the other direction: It maps a homomorphism of R-algebras σ : A→ Γ(X) first
to the correponding morphism f : X → Spec(A) and then takes its associated
pullback functor f ∗ : Mod(A) → Qcoh(X). Again we can write this down in
terms of tensor categories: We have f ∗(M) = M ⊗A OX , which is the sheaf of
modules associated to the presheaf U 7→ M ⊗A Γ(U,OX). But it may also be
seen globally as an external tensor product, defined by the adjunction

Hom(M ⊗A OX , N) ∼= HomMod(A)(M,Hom(OX , N)) ∼= HomMod(A)(M,Γ(N)).

Now we are able to write down β for arbitrary C. Given a homomorphism of
R-algebras σ : A → EndC(OC), we can endow Γ(N) := Hom(OC, N), for every
N ∈ C, with the structure of a right A-module. Then Γ : C → Mod(A) is a
continuous functor, which in fact has a left adjoint, which will be denoted by
M 7→ M ⊗A OC. One can construct it explicitly as follows: If M is free, say
M = A⊕I , then M ⊗A OC = O⊕IC . In general, write M as the cokernel of some
map A⊕I → A⊕J . Regard this as a matrix over A and transport it via σ to a
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Chapter 5. Constructions with cocomplete tensor categories

matrix over EndC(OC). We optain a morphism O⊕IC → O
⊕J
C , whose cokernel is

precisely M⊗AOC. Since the functor ?⊗AOC is a left adjoint, it is cocontinuous.

Since Γ is a lax tensor functor, i.e. there are canonical homomorphisms

σ : A→ Γ(OC), Γ(M)⊗ Γ(N)→ Γ(M ⊗N),

where M,N ∈ C, the adjunction tells us that ?⊗AOC is an oplax tensor functor,
i.e. there are canonical morphisms

A⊗A OC → OC, (M ⊗A N)⊗A OC → (M ⊗A OC)⊗C (N ⊗A OC),

where M,N are A-modules. The first map is an isomorphism by construction
and the second one is so in the special case M = N = A. The general case then
follows from a colimit argument. Thus, ?⊗AOC is a cocontinuous R-linear tensor
functor. This defines a functor

β : HomAlg(R)(A,EndC(OC))→ Homc⊗/R(Mod(A), C).

It follows easily from the constructions that αβ = id. In the other direction, we
first spot a natural transformation η : βα→ id defined as follows:

Let F : Mod(A) → C be a cocontinuous R-linear tensor functor. We define
σ = α(F ) : A → EndC(OC). Then ηF (M) : M ⊗A OC → F (M) corresponds
to a homomorphism of A-modules M → Γ(F (M)), defined as follows: For ev-
ery m ∈ M the homomorphism A → M mapping 1 7→ m induces a morphism
OC = F (A) → F (M), i.e. an element of Γ(F (M)). It is easy to check that
ηF is, indeed, a morphism of tensor functors Mod(A) → C, i.e. a morphism in
Homc⊗/R(Mod(A), C) and that η : βα → id is, indeed, a morphism of endofunc-
tors of Homc⊗/R(Mod(A), C).

Clearly ηF (M) is an isomorphism if M = A. By a colimit argument, this fol-
lows for arbitrary M . Thus, ηF is an isomorphism for every F , i.e. η is an
isomorphism. We have shown that α and β are quasi-inverse to each other, thus
implementing an equivalence of categories (where the right hand side is discrete)

Homc⊗/R(Mod(A), C)

α

''

HomAlg(R)(A,EndC(OC)).

β

gg

This means that the tensor category Mod(A) = Qcoh(Spec(A)) has the same
universal property as the affine scheme Spec(A). Besides, this universal property
of Qcoh(Spec(A)) is induced via pullback functors from the universal property
of Spec(A) if we apply it to C = Qcoh(X) for some scheme X. In other words,
the well-known universal property of affine schemes is not restricted to schemes,
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5.2. Global schemes and stacks

where one typically uses local arguments and constructions, but may be extended
to all cocomplete tensor categories, where we only have global arguments and
constructions. This example, as well as many others which we will study later,
motivates the notion of a global scheme. We have just seen that affine schemes
are global. Let us summarize:

Proposition 5.2.2. If C is a cocomplete R-linear tensor category and A is a
commutative R-algebra, then there is an equivalence of categories

Homc⊗/R(Mod(A), C) ' HomAlg(R)(A,EndC(OC)).

Hence, affine schemes are global.

In particular we see that Mod(R) is a 2-initial object of Catc⊗/R, which is a
globalization of the fact that Spec(R) is a terminal object of Sch /R.

Corollary 5.2.3. Affine schemes are tensorial: If X is an affine scheme and Y
is an arbitrary scheme, then f 7→ f ∗ implements an equivalence of categories

Hom(Y,X) ' Homc⊗
(
Qcoh(X),Qcoh(Y )

)
.

Proof. We apply Proposition 5.2.2 to R = Z and C = Qcoh(Y ) and A with
X = Spec(A).

Let us sketch the general notion of global schemes and stacks.

Many constructions for schemes (or algebraic stacks) can be translated to the
realm of cocomplete tensor categories. We call this process globalization, basically
because local constructions and proofs have to be replaced by global ones (see
also chapter 4, in particular section 4.9).

Definition 5.2.4 (Globalization). Let F : Sch → Sch be a functor, which thus
constructs a scheme from a given scheme. A globalization of F is a functor
F⊗ : Catc⊗ → Catc⊗ with natural equivalences

F⊗(Qcoh(X)) ' Qcoh(F (X)),

as in the following diagram:

Sch

Qcoh

��

F // Sch

Qcoh

��

Catop
c⊗

F⊗ // Catop
c⊗

Besides, if F has some universal property which is definable in the language of
cocomplete tensor categories (consisting of objects, morphisms, colimits, tensor
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Chapter 5. Constructions with cocomplete tensor categories

products), we require that F⊗ satisfies the corresponding universal property, but
within all cocomplete tensor categories. This translation should be compatible
with F⊗(Qcoh(X)) ' Qcoh(F (X)).

We can also look at globalizations for more general constructions by allowing
additional inputs such as

• quasi-coherent modules or algebras on the given scheme,

• more than one scheme (i.e. functors Schd → Sch for some d ∈ N),

• morphisms of schemes,

• algebraic stacks instead of schemes.

The above definition is a bit vague, but we will make the meaning of global-
ization very precise in each specific example. In Example 5.2.1 we have seen
that an affine scheme Spec(A) (seen as a functor without any input scheme, but
with a parameter A) globalizes to Mod(A) = Qcoh(Spec(A)) since the universal
property

HomR(X, Spec(A)) ∼= HomAlg(R)(A,End(OX))

generalizes to the universal property

Homc⊗/R(Mod(A), C) ' HomAlg(R)(A,End(OC)).

We may therefore write Spec⊗(A) = Mod(A).

Remark 5.2.5. As a general rule, globalized constructions of schemes preserve
tensorial schemes (likewise for stacks). For the author this was the original
motivation for globalization, because it made possible to prove that projective
schemes are tensorial ([Bra11]).

5.3 Module categories over algebras

Let S be a scheme (or even an algebraic stack) and A be a quasi-coherent al-
gebra on S. Consider the relative spectrum SpecS(A), it is an S-scheme with
the following universal property ([GD71, Definition 9.1.8]): If f : T → S is
another S-scheme, then there is a bijection (equivalence of categories) between
HomS(T, SpecS(A)) and the set of homomorphisms of quasi-coherent algebras
f ∗(A)→ OT . In other words, SpecS(A) is the universal S-scheme equipped with
a section of (the pullback of) A.

We can also drop the base S from the structure and obtain the following universal
property of SpecS(A) as an absolute scheme: If T is an arbitrary scheme, then
Hom(T, SpecS(A)) can be identified with the set (or discrete category) of pairs

114



5.3. Module categories over algebras

(f, h), where f : T → S is a morphism and h is as above. We will globalize this
to cocomplete tensor categories as follows (see Corollary 5.3.4 for the original
motivation):

Proposition 5.3.1 (Universal property of module categories). Let C be a cocom-
plete tensor category and A be a commutative algebra in C. Then the cocomplete
tensor category Mod(A) enjoys the following universal property: For every co-
complete tensor category D there is a natural equivalence of categories

Homc⊗(Mod(A),D) ' {(F, h) : F ∈ Homc⊗(C,D), h ∈ HomCAlg(D)(F (A),OD)}.

Here, a morphism (F, h)→ (F ′, h′) is a morphism α : F → F ′ with the property
h′ ◦ α(A) = h.

Proof. The functor maps G : Mod(A) → D to F : C → D which is defined by
F (N) = G(N ⊗ A) and h = G(m), where m : A⊗ A→ A is the multiplication.
The inverse functor maps (F, h) to G : Mod(A)→ D defined by

G(M) = F (M)⊗F (A) OD.

It is a routine verification to check that these functors are well-defined.

That they are inverse to each other follows from the following observation: For
M ∈ Mod(A) we have an isomorphism of A-modules

M ∼= (M ⊗ A)⊗A⊗A A.

Remark 5.3.2. In other words, Mod(A) is the universal cocomplete tensor cat-
egory over C equipped with a section of (the image of) the algebra A, and we
may write

Mod(A) = C[A→ O algebra homomorphism].

I would like to thank Jacob Lurie for suggesting the definition of the inverse
functor in Proposition 5.3.1.

Corollary 5.3.3 (Globalization of affine morphisms). Let S be a scheme (or
even algebraic stack) and A be a quasi-coherent algebra on S, i.e. a commutative
algebra in Qcoh(S). Then there is an equivalence of tensor categories

Qcoh(SpecS(A)) ' Mod(A).

Hence, if C is a cocomplete tensor category, there is an equivalence of categories

Homc⊗(Qcoh(SpecS(A)), C)

|o

{(F, h) : F ∈ Homc⊗(Qcoh(S), C), h ∈ HomCAlg(C)(F (A),OC)}.
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Proof. The first part is essentially [GD71, 9.2], which is just a straightforward
generalization of the classification of quasi-coherent modules on affine schemes to
relative affine schemes. Then, the second part follows from Proposition 5.3.1.

Corollary 5.3.4. If S is a tensorial scheme (or even algebraic stack) and if X
is affine over S, then X is also tensorial.

Proof. Write X = SpecS(A) for some quasi-coherent algebra A on S. If Y is
another scheme, by Corollary 5.3.3 Homc⊗(Qcoh(X),Qcoh(Y )) identifies with
the category of pairs (F, h), where F : Qcoh(S) → Qcoh(Y ) is a cocontinuous
tensor functor and h : F (A)→ OY is a homomorphism of quasi-coherent algebras
on Y . Since S is tensorial, F corresponds to a morphism f : Y → S and h
corresponds to a homomorphism f ∗(A) → OY . Then (f, h) corresponds to a
morphism Y → SpecS(A) = X.

The following results have some overlap with the independent work [Sch13, Sec-
tion 3].

Definition 5.3.5 (Affine tensor functors). Cocontinuous tensor functors C → D
which are isomorphic to C → Mod(A) =: Spec⊗C (A) for some commutative algebra
A in C are called affine. With this notation, Corollary 5.3.3 becomes

Qcoh(SpecS(A)) ' Spec⊗Qcoh(S)(A).

Corollary 5.3.6. If C is a cocomplete tensor category and A,B are commutative
algebras in C, then there is an equivalence of categories

Homc⊗/C(Spec⊗C (A), Spec⊗C (B)) ' HomCAlg(C)(A,B).

Proof. We apply Proposition 5.3.1 to D = Spec⊗C (B). It follows that the left hand
side is equivalent to the (discrete) category of homomorphism of commutative
B-algebras A ⊗ B → B, which reduces to a homomorphism of commutative
algebras A→ B.

Corollary 5.3.7 (Base change for affine tensor functors). Let F : C → D be
a cocontinuous tensor functor. Let A be a commutative algebra in C. Then
B := F (A) is a commutative algebra in D and F induces a cocontinuous tensor
functor F ′ : Mod(A) → Mod(B). In fact, the following is a 2-pushout diagram
in Catc⊗:

C F //

��

D

��

Mod(A) F ′ //Mod(B)
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Proof. Let E be a cocomplete tensor category. Using Proposition 5.3.1 twice, we
have equivalences of categories

Homc⊗(Mod(A), E)×Homc⊗(C,E) Homc⊗(D, E)

' {G ∈ Homc⊗(C, E), h ∈ HomAlg(E)(G(A),OE),
H ∈ Homc⊗(D, E), σ : HF ∼= G}

' {H ∈ Homc⊗(D, E), h ∈ HomAlg(E)(H(B),OE)}
' Homc⊗(Mod(B), E).

This establishes Mod(B) as a 2-pushout of C → Mod(A) and F : C → D. It
also shows the existence of F ′. Explicitly, if M ∈ C is equipped with a module
action M ⊗ A → M , then F ′(M) := F (M) is equipped with the module action
F (M)⊗B ∼= F (M ⊗ A)→ F (M).

Example 5.3.8 (Affine spaces). Let us define the n-dimensional tensorial affine
space over C by An

C := Spec⊗C (OC[T1, . . . , Tn]). The objects of An
C are objects of C

equipped with n commuting endomorphisms. By Proposition 5.3.1 we have the
universal property

Homc⊗/C(A
n
C ,D) ' Γ(OD)n

for all C → D. Therefore, like in algebraic geometry, it classifies n global sections.
The universal property (or Corollary 5.3.7) implies

An
D = An

C tC D.

for every C → D.

Next, we globalize closed immersions. If S is a scheme, I ⊆ OS is a quasi-coherent
ideal, then the corresponding closed subscheme V (I) of S has the following uni-
versal property: A morphism T → V (I) corresponds to a morphism f : T → S
such that the “sheaf part” f# : OS → f∗OT vanishes on I, equivalently that
f ∗I → f ∗OS = OT is the trivial homomorphism. This can be globalized as
follows:

Corollary 5.3.9 (Closed immersions). Let C be a cocomplete R-linear tensor
category and I ⊆ OC be an ideal (or more generally any morphism I → OC).
Then the cocomplete R-linear tensor category

V ⊗(I) := Mod(OC/I) ' {M ∈ C : (I ⊗M →M) = 0}

enjoys the following universal property: If D is a cocomplete R-linear tensor cat-
egory, then there is an equivalence between Homc⊗/R(V ⊗(I),D) and the category
of those F ∈ Homc⊗/R(C,D) such that F (I)→ F (OC) vanishes.

Proof. This follows easily from Proposition 5.3.1 (which holds also in the R-linear
case) applied to A = OC/I.
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Definition 5.3.10. Let C be a cocomplete R-linear tensor category. If A is
a commutative R-algebra, then A ⊗R OC is a commutative algebra in C. The
corresponding module category is denoted by CA or C ⊗R A and is isomorphic
to the category of A-modules in C ([SR72, II.1.5.2]), i.e. pairs (M,α), where
M ∈ C and α : A→ EndC(M) is a homomorphism of R-algebras. This category
is actually A-linear and enjoys the following universal property:

Corollary 5.3.11 (Change of rings). If A is a commutative R-algebra, then the
construction C 7→ CA is a 2-functor Catc⊗/R → Catc⊗/A which is left adjoint to
the forgetful 2-functor.

Proof. If D is an R-linear cocomplete tensor category, then Proposition 5.3.1
tells us that Homc⊗/R(CA,D) is equivalent to the category of pairs (F, h), where
F : C → D is an R-linear cocontinuous tensor functor and h is a homomorphism
of algebras F (A ⊗R OC) → OD. Since F (A ⊗R OC) = A ⊗R OD, we see that
h corresponds to a homomorphism of R-algebras A → End(OD), i.e. to an
enrichment of D to an A-linear cocomplete tensor category. If D is A-linear, it
is clear that Homc⊗/A(CS,D) ⊆ Homc⊗/R(CS,D) corresponds to the subcategory
of those (F, h) for which h is the given A-enrichment of D, i.e. we end up with
the claim

Homc⊗/A(CS,D) ' Homc⊗/R(C,D).

Remark 5.3.12. The connection to algebraic geometry is given as follows: If
C = Qcoh(S) for some R-scheme S and A is a commutative R-algebra, then
CA ' Qcoh(S ⊗R A), where S ⊗R A := S ×Spec(R) Spec(A) is the scalar extension
of S. The functor S 7→ S ⊗R A from R-schemes to A-schemes is right adjoint to
the forgetful functor.

5.4 Gradings

Definition 5.4.1. Let C be a cocomplete tensor category and Γ be a commu-
tative monoid (written additively). Then we can form the cocomplete tensor
category of Γ-graded objects grΓ(C) of C. As a category, this is just

∏
n∈Γ C. The

tensor product is given by

(M ⊗N)n =
⊕
p+q=n

Mp ⊗Nq.

We define the symmetry using the symmetries of C. Notice that grΓ(C) is noth-

ing else than Γ̂C (see subsection 5.1.2) when we consider Γ as a discrete tensor
category.

We say that M ∈ grΓ(C) is concentrated in degree d ∈ Γ if Mn = 0 (the initial
object) for all n 6= d. There is a canonical embedding ι : C → grΓ(C) which
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regards an object as a graded object concentrated in degree 0. Notice that ι is
left adjoint to M 7→M0.

Observe that if Xn denotes the Γ-graded object which is concentrated in degree
n and is given by OC there, we can write every M ∈ grΓ(C) as a kind of power
series

M ∼=
⊕
n∈Γ

ι(Mn)⊗Xn.

The tensor product then looks like the usual multiplication of power series. In
particular, we have Xn⊗Xm ∼= Xn+m. This suggests to think of grΓ(C) as a sort
of categorified group semiring and maybe even write

grΓ(C) = C[Γ].

This is made precise by the following universal property:

Proposition 5.4.2 (Universal property of grΓ(C)). Let Γ be a commutative
monoid and let C,D be cocomplete tensor categories. Then there is an equiv-
alence of categories

Homc⊗(grΓ(C),D) ' {(F,L) : F ∈ Homc⊗(C,D), L ∈ Hom⊗(Γ,D)}

Explicitly, L associates to each object n ∈ Γ a symtrivial object Ln ∈ D and
comes equipped with compatible isomorphisms L0

∼= OD and Lp+q ∼= Lp ⊗ Lq. If
Γ is an abelian group, then all these Li are line objects.

Proof. This is a special case of from Proposition 5.1.8. Explicitly, to (F,L) one
associates

G : grΓ(C)→ D, M 7→
⊕
n∈Γ

F (Mn)⊗ Ln.

The special case Γ = Z will be important for us. Here grZ(C) has a line object
X (concentrated in degree 1) and every object M ∈ grZ(C) may be written as a
“Laurent series”

M ∼=
⊕
n∈Z

ι(Mn)⊗X⊗n.

Corollary 5.4.3 (Universal property of grZ(C)). If C,D are cocomplete tensor
categories, then there is an equivalence of categories

Homc⊗(grZ(C),D) ' {(F,L) : F ∈ Homc⊗(C,D), L ∈ D line object}.

Here, a morphism (F,L) → (F ′,L′) consists of a morphism F → F ′ and an
isomorphism L ∼= L′.
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Chapter 5. Constructions with cocomplete tensor categories

Note that L → L′ has to be an isomorphism because of Lemma 4.7.9.

Recall the construction of the commutative and cocommutative bialgebra OC[Γ]
(Definition 4.1.18), whose underlying object is written as

⊕
n∈ΓOC · n.

Proposition 5.4.4 (Alternative description). Let C be a cocomplete linear ten-
sor category satisfying the following two conditions:

• C has equalizers, which are preserved by coproducts.

• The canonical map Hom(T,
⊕

iMi) →
∏

i Hom(T,Mi) is injective for all
families of objects T,Mi ∈ C.

For example, this holds when C is finitely presentable. Then, for every commu-
tative monoid Γ, there is an equivalence of tensor categories

grΓ(C) ' CoMod(OC[Γ]).

Sketch of proof. If C = Mod(R) for some commutative ring R, this result is well-
known ([DG70, II, §2, 2.5]). We can use the same argument for those C satisfying
the mentioned conditions – as usual in categorical algebra we just have to avoid
elements. Given a Γ-graded object (Mn)n∈Γ, we endow M :=

⊕
n∈Γ Mn with a

comodule structure in such a way that on Mn the coaction is given by T n. This
means that we define δ : M → M [Γ] by δ|Mn : Mn

∼= Mn · n ↪→ M [Γ] for n ∈ Γ.
The comodule axioms are readily checked. This defines a functor

grΓ(C)→ CoMod(OC[Γ])

which is easily seen to be a cocontinuous tensor functor. It is fully faithful: For
two graded objects (Mn), (Np), let f :

⊕
nMn →

⊕
pNp be a morphism which

is compatible with the comodule actions. By the second condition on C, it is
determined by morphisms fnp : Mn → Np. The compatibility implies fnp = 0 for
n 6= p, so that f is “diagonal” and therefore is induced by a unique morphism in
grΓ(C).

It remains to check essential surjectivity. Let δ : M → M [Γ] be a coaction. For
n ∈ Γ we define a morphism Mn → M as the equalizer of δ and the morphism
M ∼= M · n ↪→ M [Γ]. We get a morphism

⊕
nMn → M . Using coassociativity

of δ, one checks that M →M [Γ]
prn−−→M factors through Mn →M . This readily

implies that M → M [Γ] =
⊕

nM factors through
⊕

nMn →
⊕

nM , using the
first condition on C. One can easily check now that the constructed morphisms
between M and

⊕
nMn are inverse to each other. We get the identity on

⊕
nMn

by construction of Mn and on M because of counitality of δ. Furthermore,
M ∼=

⊕
nMn is compatible with the comodule actions by construction.

If S is some base scheme and Gm := Gm,S is the multiplicative group over S,
we may consider its classifying stack BGm. For every S-scheme T the groupoid
HomS(T,BGm) is equivalent to the groupoid of invertible sheaves on T .
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Corollary 5.4.5 (Globalization of BGm). If S is some base scheme, then there
is an equivalence of tensor categories

Qcoh(BGm) ' grZ(Qcoh(S)).

Hence, If C is a cocomplete tensor category and F : Qcoh(S) → C is a cocon-
tinuous tensor functor, then Homc⊗/Qcoh(S)(Qcoh(BGm), C) is equivalent to the
groupoid of line objects of C.

Proof. Using the well-known equivalences of tensor categories

Qcoh(BGm) ' RepS(Gm) ' CoMod(OS[Z]),

the claim follows from Proposition 5.4.4 and Proposition 5.4.2.

As a general rule, global operations preserve tensorial stacks. In our case, we
obtain the following result:

Corollary 5.4.6. If S is a tensorial scheme and Gm is the multiplicative group
over S, then BGm is a tensorial stack.

Proof. If Y is a scheme, then Homc⊗(Qcoh(BGm),Qcoh(Y )) is equivalent to

{(F,L) : F ∈ Homc⊗(Qcoh(S),Qcoh(Y )),L ∈ Qcoh(Y ) invertible}.

Since S is tensorial, this simplifies to Hom(Y,BGm).

Definition 5.4.7. If C is R-linear, we can endow the category of Z-graded ob-
jects with another symmetry, induced by

Mp ⊗Nq
(−1)pq−−−−→Mp ⊗Nq

SMp,Mq−−−−→ Nq ⊗Mp.

This tensor category is called g̃rZ(C). If we define X as above, notice that X is
an anti-line object. In fact we have:

Proposition 5.4.8 (Universal property of g̃rZ(C)). Let C be a cocomplete R-
linear tensor category. Then g̃rZ(C) is a cocomplete R-linear tensor category with
the following universal property: If D is a cocomplete R-linear tensor category,
then there is an equivalence of categories

Homc⊗/R(g̃rZ(C),D) ' {(F,L) : F ∈ Homc⊗/R(C,D), L ∈ D anti-line object}.

Here, a morphism (F,L) → (F ′,L′) is a pair (α, f) consisting of a morphism
F → F ′ and an isomorphism f : L → L′.

Proof. Notice that the free R-linear tensor category on an anti-line object is
given by {X⊗p : p ∈ Z} with symmetry (−1)pq : Xp ⊗Xq ∼= Xq ⊗Xp. Now use
Proposition 5.1.8.
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Chapter 5. Constructions with cocomplete tensor categories

Remark 5.4.9. We may similarly define g̃rZ/2Z(C). If C is the tensor category
of vector spaces over a field, the objects of g̃rZ/2Z(C) are also known as super
vector spaces.

Definition 5.4.10. If M ∈ grZ(C) and d ∈ Z, the shift M [d] ∈ grZ(C) is defined
by M [d]n = Mn+d. Note that M [d] = M ⊗X⊗−d.

Definition 5.4.11 (Graded-commutative algebras and modules).

1. A (commutative) graded algebra in C is a (commutative) algebra in grZ(C).
Such an algebra A consists of a family of objects An as well as morphisms
OC → A0 and Ap⊗Aq → Ap+q in C subject to the usual conditions. Notice
that we get a morphism A⊗ ι(Aq)→ A[q] in grZ(C).

2. A graded-commutative algebra in C is a commutative algebra in g̃rZ(C).

3. If A is one of these types of algebras, then A-modules (in the general
sense defined in section 5.3 applied to grZ(C) resp. g̃rZ(C)) are also called
graded A-modules (in order to stress that we do not mean modules over the
underlying algebra in C). If A is commutative, we will also write grMod(A)
instead of Mod(A).

Remark 5.4.12.

1. This coincides with the usual notions when C = Mod(R) for some commu-
tative ring R. Using the theory of tensor categories, we see that actually
the two notions of commutative graded algebras and graded-commutative
algebras can be unified and both types of algebras are commutative in a
unified sense. Quite a few ad hoc sign conventions for basics concerning
graded-commutative algebras are actually part of natural generalizations
to commutative algebras in arbitrary cocomplete linear tensor categories.

2. Strictly speaking, these extra notations are not necessary. Unfortunately,
it is a quite common practice to apply forgetful functors secretly, so that
A-modules, where A is a graded algebra, usually refer to modules over
the underlying algebra. When we do not want to throw away the graded
structure, we say graded A-modules. In my opinion it would be much better
just to say which tensor category one works in and to explicitly state each
time which forgetful functors are applied.

Proposition 5.4.13 (Universal property of grMod(A)). Let C be a cocomplete
tensor category and let A be a commutative graded algebra in C. Then grMod(A)
enjoys the following universal property: For every cocomplete tensor category D,
we have an equivalence of categories

Homc⊗(grMod(A),D) ' {(F,L, τ) : F ∈ Homc⊗(C,D), L ∈ D line object,

τ : (F (An))n → (L⊗n)n graded algebra hom.}
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It maps G : grMod(A) → D to the triple (F,L, τ), where F := G(A ⊗ ι(−)),
L := G(A[1]) and τn := G(A⊗ ι(An)→ A[n]).

Proof. A combination of Proposition 5.3.1 and Corollary 5.4.3 yields that the
category Homc⊗(grMod(A),D) is equivalent to the category of triples (F,L, σ),
where F ∈ Homc⊗(C,D), L ∈ D is a line object and σ :

⊕
n F (An)⊗L⊗n → OD

is a morphism of algebras in OD. If K denotes the inverse of L, this corresponds
to a family of morphisms F (An) → K⊗n in C, inducing a morphism of graded
algebras. The analoguous statement for graded-commutative algebras follows
similarly from a combination of Proposition 5.3.1 and Proposition 5.4.8.

Remark 5.4.14.

1. If C is linear and A is a graded-commutative algebra, the analogous uni-
versal property for grMod(A) holds, where L becomes an anti-line object.

2. If C is presentable, then the same is true for grMod(A).

Corollary 5.4.15. Let C be a cocomplete tensor category and E ∈ C. Then
grMod(Sym(E)) enjoys the following universal property: For every cocomplete
tensor category D we have an equivalence of categories

Homc⊗(grMod(Sym(E)),D) ' {(F,L, τ) : F ∈ Homc⊗(C,D),

L ∈ D line object, τ ∈ HomD(F (E),L)}.

In particular, for d ∈ N, we have

Homc⊗(grMod(OC[T1, . . . , Td])),D) ' {(F,L, τ) : F ∈ Homc⊗(C,D),

L ∈ D line object, τ : O⊕dD → L}.

Thus, grMod(OC[T1, . . . , Td]) is the universal cocomplete tensor category over C
containing a line object L with d global sections of L.

Example 5.4.16. Let us look more closely at grMod(OC[T ]). Objects are se-
quences

. . .
T−→M−2

T−→M−1
T−→M0

T−→M1
T−→ . . .

in C. The unit is the sequence

. . .→ 0→ 0→ OC → OC → . . .

concentrated in degrees ≥ 0. The tensor product of two sequences M,N is the
sequence M ⊗ N with (M ⊗ N)n =

⊕
p+q=nMp ⊗ Nq/(Tm ⊗ n ∼ m ⊗ Tn) in

element notation. The universal invertible object L is given by the sequence

. . .→ 0→ OC → OC → OC → . . .
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Chapter 5. Constructions with cocomplete tensor categories

concentrated in degrees≥ −1, its inverse being the concentrated in degrees≥ +1.
The universal global section is given by

. . . // 0 //

��

0 //

��

OC //

��

OC //

��

. . .

. . . // 0 // OC // OC // OC // . . .

5.5 Representations

Let I be a small category and let C be a cocomplete tensor category. Recall the
cocomplete tensor category CI of functors Iop → C from Example 3.1.13 whose
tensor product and colimits are computed “pointwise” (as opposed to the Day
convolution which we used in case of a tensor category I in subsection 5.1.2).
Similarly, IC consists of functors I → C.

The following notion of a torsor generalizes [CJF13, Section 3.2].

Definition 5.5.1 (Torsors). An I-torsor in C is a cocommutative coalgebra ob-
ject (T,∆, ε) in IC such that

1. The counits (εi : T (i)→ 1C)i∈I form a colimit cocone, so that

colimi∈I T (i) ∼= 1C.

2. For all i, j ∈ I, the canonical morphism

colimk→i,k→j T (k)→ T (i)⊗ T (j),

induced by T (k)
∆k−→ T (k)⊗ T (k)

T (g)⊗T (h)−−−−−−→ T (i)⊗ T (j) for all morphisms
g : k → i and h : k → j, is an isomorphism.

We obtain a category Tors(I, C), even a 2-functor Tors(I,−) : Catc⊗ → Cat.

Remark 5.5.2. Actually we have defined a left I-torsor. Working with CI , we
arrive at the notion of a right I-torsor (which was also chosen in [CJF13]). Of
course it really makes no substantial difference since we may just replace I by
Iop. Notice that the two torsor axioms may be written as coend formulas:∫ i∈I

T (i) ∼= 1C

∫ k∈I
Hom(k, i)⊗ Hom(k, j)⊗ T (k) ∼= T (i)⊗ T (j).
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Example 5.5.3 (Torsors over groups). Let G be a group, considered as a cat-
egory with one object. Then a G-torsor in C is an object T ∈ C with a left
G-action G ⊗ T → T and a G-equivariant coalgebra structure ∆ : T → T ⊗ T ,
ε : T → 1 such that G\T ∼= 1 and G⊗ T → T ⊗ T defined by (g, t) 7→ (gt, t) in
element notation is an isomorphism. More precisely, we define G⊗ T → T ⊗ T
on the summand indexed by g ∈ G as the composite T

∆−→ T ⊗ T g⊗T−−→ T ⊗ T .
If C is cartesian, then coalgebra structures exist and are unique. We therefore
arrive at the usual generalized notion of a torsor which is common for example
in topos theory ([MLM92, VIII.2, Definition 6]). In particular, for C = Set we
get the usual notion of a non-empty, free and transitive left G-set. An example
is G with its left regular action. Every other G-torsor in Set is isomorphic to
G, but the isomorphism is not canonical. Notice G can be even considered as
a G-torsor in SetG, the category of right G-sets. This will turn out to be the
universal G-torsor.

Example 5.5.4 (Group algebras). Since Set is the initial cocomplete tensor
category, the G-torsor G itself in Set produces a G-torsor in any cocomplete
tensor category C, namely the group algebra OC[G] given by

⊕
g∈GOC with the

obvious G-action, counit ε◦ ιg = idOC and comultiplication ∆◦ ιg = ιg⊗ ιg, where
ιg is the inclusion of the summand indexed by g ∈ G.

Example 5.5.5 (The universal torsor). Let I be a small category. We define an
I-torsor in the cartesian tensor category C := SetI by

T (i) := Hom(−, i) ∈ SetI

i.e. for short T := Hom(−,−) ∈ I(SetI). The coalgebra structure exists and is
unique because we are in the cartesian case. The two torsor axioms state:

1. The unique morphism colimi∈I Hom(−, i)→ 1 is an isomorphism.

2. The canonical morphism

colimk→i,k→j Hom(−, k)→ Hom(−, i)× Hom(−, j)

is an isomorphism.

Both follow immediately from the Yoneda Lemma.

The following universal property is a slight generalization of [CJF13, Proposition
3.2.5, Lemma 2.3.12], since we do not need any presentability assumptions and
accordingly our proof is less abstract. See [MLM92, VIII.2, Theorem 7] for the
case of topoi.

Proposition 5.5.6 (Universal property of CI). Let I be a small category and let
C be a cocomplete tensor category. Then CI is a cocomplete tensor category with
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the following universal property: If D is a cocomplete tensor category, there is
an equivalence of categories

Homc⊗(CI ,D) ' Homc⊗(C,D)× Tors(I,D).

A corresponding statement holds in the R-linear case.

Proof. The diagonal ∆ : C → CI is a cocontinuous tensor functor. The unique
cocontinuous tensor functor Set→ C induces SetI → CI and therefore maps the
universal torsor Hom(−,−) of SetI (Example 5.5.5) to a torsor in CI , namely
Hom(−,−)⊗ 1C. Therefore, we get a functor

Homc⊗(CI ,D)→ Homc⊗(C,D)× Tors(I,D)

which maps H : CI → D to (H ◦∆,Hom(−,−)⊗ 1D). We construct an inverse
functor: Given a torsor T in D and a cocontinuous tensor functor A : C → D,
we define

H : CI → D, F 7→
∫ i∈I

A(F (i))⊗ T (i).

Then H is a cocontinuous functor. The cocommutative coalgebra structure on
T allows us to make H an oplax tensor functor and the torsor conditions imply
that it is actually a strong tensor functor – let us explain this in more details:
We have

H(1) ∼=
∫ i∈I

A(1)⊗ T (i) ∼=
∫ i∈I

T (i) ∼= 1D.

For F,G ∈ CI we have

H(F )⊗H(G)

∼=
∫ i,j∈I

A(F (i))⊗ A(G(j))⊗ T (i)⊗ T (j)

∼=
∫ i,j,k∈I

Hom(k, i)⊗ Hom(k, j)⊗ A(F (i))⊗ A(G(j))⊗ T (k)

Yoneda∼=
∫ k∈I

A(F (k))⊗ A(G(k))⊗ T (k)

∼= H(F ⊗G).

For M ∈ C we have

H(∆(M)) =

∫ i∈I
A(M)⊗ T (i) ∼= A(M)⊗

∫ i∈I
T (i) ∼= A(M).

This provides an isomorphism H ◦∆ ∼= A. Besides, we have (by Yoneda)

H(Hom(−,−)⊗ 1C) =

∫ i∈I
Hom(−, i)⊗ T (i) ∼= T
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If H : CI → D is any cocontinuous tensor functor with H ◦ ∆ ∼= A and
H(Hom(−,−)⊗ 1C) ∼= T , we have for every F ∈ CI

H(F ) ∼= H

(∫ i∈I
∆(F (i))⊗ Hom(−, i)

)
∼=

∫ i∈I
H(∆(F (i)))⊗H(Hom(−, i)⊗ 1C)

∼=
∫ i∈I

A(F (i))⊗ T (i).

This finishes the proof.

Corollary 5.5.7. With the notation above we have that CI is a 2-coproduct of
C and SetI in Catc⊗.

Remark 5.5.8. Proposition 5.5.6 implies

Homc⊗(SetI ,D) ' Tors(I,D),

so that Hom(−,−) ∈ SetI is in fact the universal I-torsor. If G is a group, the
universal G-torsor is therefore the right G-set G (together with its left G-action).
In the setting of R-linear cocomplete tensor categories, it follows that the group
algebra R[G] ∈ Mod(R)G ' RepR(G) is the universal G-torsor.

Corollary 5.5.9. Let C be R-linear. Let G be a finite group. Then any G-torsor
T in C is a dualizable object of C. In fact, we have T ∗ = T .

Proof. We use Proposition 5.5.6 (although it should be possible to give a direct
proof). It suffices to prove that R[G] ∈ Mod(R)G is self-dual. We define the
coevaluation by

c : R→ R[G]⊗R[G], 1 7→
∑
g∈G

g ⊗ g.

We define the evaluation by

e : R[G]⊗R[G]→ R, g ⊗ h 7→
{

1 g = h
0 else.

It is straightforward to check that both c and e are G-equivariant and satisfy the
two triangle identities.

Now let us connect all this to algebraic geometry.

Theorem 5.5.10 (Torsors in geometry). Let G be a finite group and X be a
scheme. Then there is an equivalence between the category Tors(G,Qcoh(X)) and
the category Tors(G,X) of G-torsors over X in the sense of algebraic geometry,
i.e. X-schemes Y with a right action of G, such that étale-locally on X we have
Y ∼= X ×G.
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Proof. I have learned the following argument from Alexandru Chirvasitu.
The category Tors(G,X) is anti-equivalent (via Spec) to the category of commu-
tative quasi-coherent algebras A on X equipped with a right action of G, such
that étale-locally onX we have A ∼= OGX (whereOGX carries the obviousG-action).
In particular, A is a locally free OX-module. Given such an algebra, we can as-
sociate a cocommutative coalgebra A∗ in Qcoh(X) given by HomQcoh(X)(A,OX)
(which is quasi-coherent by Lemma 2.2.1) with counit induced by the unit of A
and comultiplication induced by the multiplication of A. This works because we
have (A⊗A)∗ ∼= A∗⊗A∗ since A is of finite presentation. The right action of G
on A induces a left action on A∗.

Let us check that A∗ is a G-torsor in Qcoh(X). Denoting by FixG(A) the sub-
algebra of G-fixed points, we have G\A∗ = (FixG(A))∗ = O∗X = OX . The fact
that G ⊗ A∗ → A∗ ⊗ A∗ is an isomorphism may be reduced to the case that
A = OGX , where it identifies with the isomorphism OG×GX → OG×GX mapping
(g, h) 7→ (gh, h) for g, h ∈ G. Thus, A∗ is a G-torsor in Qcoh(X). This describes
a functor (covariant, since it is a composition of two contravariant ones) from
Tors(G,X) to Tors(G,Qcoh(X)). It is easily seen to be fully faithful by restricting
to the case of trivial torsors.

Conversely, given T ∈ Tors(G,Qcoh(X)), then T is dualizable as a quasi-coherent
module (Corollary 5.5.9), hence locally free of finite rank (Proposition 4.7.5), in
particular of finite presentation. This implies that Hom interchanges nicely with
tensor products as above, so that the cocommutative coalgebra structure on T
yields a commutative algebra structure on A := HomQcoh(X)(T,OX) and the left
action of G on T yields a right action on A. The torsor conditions translate to
OX = FixG(A) and A ⊗ A ∼= AG, a ⊗ b 7→ (a ⊗ bg)g∈G. Since the underlying
module of A is locally free of finite rank and OX is a subalgebra of A, we deduce
that A is a faithfully flat algebra. Since A ⊗ A ∼= AG is étale over A, it follows
that A is étale (over OX). Thus, Spec(A)→ X is an étale cover which trivializes
Spec(A) → X. Hence, Spec(A) → X is a G-torsor in the sense of algebraic
geometry. The corresponding G-torsor in Qcoh(X) is isomorphic to T , basically
because the underlying module of T is reflexive.

Corollary 5.5.11 (Globalization of classifying stacks). If G is a finite group,
then the classifying stack BG globalizes to (BG)⊗ := Rep(G). This means:

• Rep(G) ' Qcoh(BG) enjoys the universal property

Homc⊗(Rep(G), C) ' Tors(G, C).

• For schemes X we have the universal property

Hom(X,BG) = Tors(G,X) ' Tors(G,Qcoh(X)).

In particular, BG is tensorial.
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Remark 5.5.12 (Further research). It is probably possible to globalize BG also
for every (nice enough) algebraic group G, by finding a universal property of the
category of comodules CoMod(H) for (nice enough) Hopf algebra objects H. We
have already seen the case of the multiplicative group Gm (Corollary 5.4.5). If
R is a Q-algebra we hope that RepR(GLn) is the universal R-linear cocomplete
tensor category equipped with a locally free object of rank n (see section 4.9).

5.6 Local functors

Most of the results of this section have already been appeared in [BC14]. Our
treatment is a little bit more general.

Definition 5.6.1 (Local functors). Let C,D, E be tensor categories. Consider
a tensor functor i∗ : C → D. Assume that its underlying functor has a right
adjoint i∗ : D → C, so that i∗ becomes a lax tensor functor (Example 3.1.23) and
the unit η : idC → i∗i

∗ as well as the counit ε : i∗i∗ → idD are morphisms of lax
tensor functors. Assume that i∗ is fully faithful, i.e. the counit ε : i∗i∗ → idD is
an isomorphism. Then a functor F : C → E is called i-local if Fη : F → Fi∗i

∗ is
an isomorphism.

Example 5.6.2. If i : Y → X is a quasi-compact immersion of schemes, then
the pushforward i∗ : Qcoh(Y ) → Qcoh(X) is well-defined ([GD71, Proposition
6.7.1]), fully faithful and is right adjoint to i∗ : Qcoh(X)→ Qcoh(Y ), which is a
tensor functor. In that case we simply say Y -local instead of i-local.

Proposition 5.6.3. In the situation of Definition 5.6.1 we have:

1. F is i-local if and only if F maps every morphism φ, such that i∗φ is an
isomorphism, to an isomorphism.

2. For every given lax tensor functor G : D → E, the lax tensor functor
Gi∗ : C → E is i-local. Conversely, to every i-local lax tensor functor
F : C → E we may associate the lax tensor functor Fi∗ : D → E. This
establishes an equivalence of categories

Homlax(D, E) ' {F ∈ Homlax(C, E) i-local}.

3. This restricts to an equivalence of categories

Hom⊗(D, E) ' {F ∈ Hom⊗(C, E) i-local}.

4. If C,D, E are cocomplete tensor categories, then it even restricts to an equiv-
alence of categories

Homc⊗(D, E) ' {F ∈ Homc⊗(C, E) i-local}.
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Chapter 5. Constructions with cocomplete tensor categories

Proof. 1. First note that i∗η : i∗ → i∗i∗i
∗ is an isomorphism, since it is right

inverse to the isomorphism εi∗. This already shows one direction. Now assume
that F is i-local and consider a morphism φ : M → N in C such that i∗φ is
an isomorphism. The naturality of η with respect to φ yields the commutative
diagram

F (M)
F (φ)

//

F (ηM )

��

F (N)

F (ηN )

��

F (i∗i
∗M)

F (i∗i∗φ)
// F (i∗i

∗N).

Since F is i-local, the vertical arrows are isomorphisms. The bottom arrow is an
isomorphism since i∗φ is one. Thus also the top arrow F (φ) is an isomorphism.

2. Let G : D → E be a lax tensor functor. Since i∗η is an isomorphism, we see
that Gi∗ : C → E is i-local. Conversely, if F : C → E is an i-local lax tensor
functor, then Fi∗ : D → E is a lax tensor functor. Of course, the same works for
morphisms of lax tensor functors. We obtain functors

Homlax(D, E)
−◦i∗ //

{F ∈ Homlax(C, E) i-local}.
−◦i∗
oo

Let us show that they are inverse to each other. Given a lax tensor functor
G : D → E we have a natural isomorphism of functors Gε : Gi∗i∗ → G, which is
even a morphism of tensor functors by Example 3.1.23. Similarly, for an i-local
lax tensor functor F : C → E the natural isomorphism Fη : F → Fi∗i

∗ is actually
an isomorphism of tensor functors.

3. Since i∗ is a tensor functor, we see that Gi∗ is a tensor functor provided
that G is a tensor functor. Now assume that F is an i-local tensor functor.
We have to show that Fi∗ is a tensor functor. The morphism 1E → (Fi∗)(1D)
is defined as the composition 1E → F (1C) → F (i∗1D). In that composition
the first morphism is an isomorphism since F is a tensor functor. The second
one is F applied to η1C : 1C → i∗1D, hence also an isomorphism. Now let
M,N ∈ D. The morphism (Fi∗)(M)⊗ (Fi∗)(N)→ (Fi∗)(M ⊗N) is defined as
the composition F (i∗(M))⊗F (i∗(N))→ F (i∗M⊗ i∗N)→ F (i∗(M⊗N)), where
the first morphism is an isomorphism since F is a tensor functor and the second
one is c : i∗M ⊗ i∗N → i∗(M ⊗ N) mapped by F . But i∗c is an isomorphism.
By 1. above, F maps c to an isomorphism.

4. Since i∗ has a right adjoint, it is cocontinuous. We see that Gi∗ is a cocon-
tinuous tensor functor provided that G is a cocontinuous tensor functor. Now
assume that F is an i-local cocontinuous tensor functor. We have to show that
Fi∗ is cocontinuous. This works as before: For a diagram {Mj} in D, the
canonical morphism colimj(Fi∗)(Mj)→ (Fi∗)(colimjMj) factors as the isomor-
phism colimj F (i∗Mj) ∼= F (colimj i∗Mj) followed by F applied to the canonical
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5.6. Local functors

morphism colimi i∗Mj → i∗(colimiMj), which is clearly an isomorphism after
appyling i∗. Thus F maps it to an isomorphism.

Corollary 5.6.4 (Globalization of immersions). If i : Y → X is a quasi-compact
immersion of schemes and C is a cocomplete tensor category, then the functors
i∗ and i∗ induce an equivalence of categories

Homc⊗
(
Qcoh(Y ), C

)
' {F ∈ Homc⊗

(
Qcoh(X), C

)
Y -local}.

This is compatible with Lemma 2.2.4, so that tensorial schemes are closed under
quasi-compact subschemes. For closed immersions we gain back Corollary 5.3.9.

Proposition 5.6.5. Let F : Qcoh(X) → Qcoh(Y ) be a cocontinuous tensor
functor, where X, Y are schemes. Let i : U → X be a quasi-compact open
immersion. If F is U-local and U is tensorial, then F ∼= f ∗ for some morphism
f : Y → X (which factors through U).

Proof. Since F is U -local, we have F ∼= Gi∗ for some cocontinuous tensor functor
G : Qcoh(U)→ Qcoh(Y ) (Corollary 5.6.4). Since U is tensorial, we have G ∼= g∗

for some morphism g : Y → U . Then F ∼= (if)∗.

Motivated by this, we would like to characterize the condition of being U -local.

Notation 5.6.6. Let us fix a scheme X and a cocontinuous tensor functor

F : Qcoh(X)→ C

into a cocomplete tensor category C. We also fix a quasi-compact open immersion
i : U ↪→ X.

Lemma 5.6.7. The following are equivalent:

• F is U-local.

• For every submodule M ⊆ N in Qcoh(X) with M |U = N |U we have that F
maps M ↪→ N to an isomorphism.

Proof. “⇒” is trivial. “⇐”: Let φ : M → N be a homomorphism in Qcoh(X)
such that φ|U is an isomorphism. Since φ factors as an epimorphism followed by
a monomorphism, both of which are isomorphisms on U , it suffices to treat the
case that φ is an epimorphism. Let

K = M ×N M = {(m,m′) ∈M ×M ′ : φ(m) = φ(m′)}

be the difference kernel of φ. Since φ is an epimorphism, it is the coequalizer
of the two projections p1, p2 : K ⇒ M . Then, F (φ) is the coequalizer of F (p1)
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Chapter 5. Constructions with cocomplete tensor categories

and F (p2), so that it suffices to show F (p1) = F (p2). If i : M → K is the
diagonal homomorphism defined by m 7→ (m,m), we have p1i = p2i = idM .
Since φ is an isomorphism on U , the same must be true for i. Now, i is a split
monomorphism, so by assumption F (i) is an isomorphism. But then we have
F (p1) = F (i)−1 = F (p2).

Lemma 5.6.8. Let M ↪→ N be a submodule in Qcoh(X) and I ⊆ OX be a quasi-
coherent ideal such that IN ⊆M and F maps I ↪→ OX to an isomorphism. Then
F maps M ↪→ N to an isomorphism.

Proof. Consider the following commutative diagram

I ⊗M //

��

I ⊗N //

��

OX ⊗N
∼=
��

OX ⊗M
∼= //M // N

and apply F . The left part of the diagram shows that F maps I ⊗M → I ⊗N
to a split monomorphism. Then the same must be true for M → N . The right
part shows that F maps M → N to a split epimorphism. Hence, it gets mapped
to an isomorphism.

Definition 5.6.9. Let us call a quasi-coherent ideal I ⊆ OX nice if F maps
I ↪→ OX to an isomorphism.

Example 5.6.10. If f : Y → X is a morphism of schemes and we consider the
associated pullback functor F = f ∗ : Qcoh(X) → Qcoh(Y ), then I is nice for F
if and only if f factors through the open subscheme X \V (I). This follows easily
from Lemma 2.2.3.

Proposition 5.6.11. Let us assume that X is qc qs. Then F is U-local if and
only if every quasi-coherent ideal I ⊆ OX with I|U = OU is nice.

The proof reminds us of other proofs in homological algebra where some condition
is reduced to inclusion of ideals, for example injectivity or flatness of modules.

Proof. “⇒” is trivial. “⇐”: We apply Lemma 5.6.7. So let M ⊆ N be a
submodule with M |U = N |U . Write N as a directed colimit of quasi-coherent
submodules {Ni} of finite type ([GD71, Corollaire 6.9.9]). Applying Lemma 2.2.2
to the pairing OX ⊗M → N , we see that the ideal

Ii = {s ∈ OX : s ·Ni ⊆M}

is quasi-coherent. We may replace Ni by M +Ni without changing Ii and there-
fore assume that M ⊆ Ni. The ideal satisfies IiNi ⊆M and Ii|U = OU . But then
our assumption in conjunction with Lemma 5.6.8 implies that F maps Ni ↪→M
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5.7. Tensoriality

to an isomorphism. In the colimit, we see that F maps N ↪→ M to an isomor-
phism.

Lemma 5.6.12. If I ⊆ OX is a quasi-coherent ideal and the inclusion gets
mapped to a split epimorphism by F , then I is nice.

Proof. This follows from Lemma 3.3.7 applied to F (I) ∈ C.

Lemma 5.6.13. Nice ideals constitute a “filter”:

1. OX is nice.

2. If I, J are ideals such that I ⊆ J and I is nice, then J is nice.

3. If I1, I2 are nice, then the same is true for I1 · I2.

4. If X is noetherian and
√
I is nice, then I is nice.

Proof. 1. is trivial. 2. F maps I → J → OX to an isomorphism. Hence, F maps
J → OX to a split epimorphism. Now use Lemma 5.6.12. 3. Since I1 → O and
I2 → O are mapped to an isomorphism, the same is true for their tensor product
I1 ⊗ I2 → O. But this factors through I1I2 → O. Now use Lemma 5.6.12 again.

4. There is some d ∈ N such that
√
I
d ⊆ I. Now apply 2. and 3..

Corollary 5.6.14. Let us assume that X is noetherian. Then F is U-local if
and only if every radical ideal I ⊆ OX with I|U = OU is nice.

Proof. Combine Proposition 5.6.11 and Lemma 5.6.13.

5.7 Tensoriality

Recall (Definition 3.4.4) that an algebraic stack X is called tensorial if for every
scheme Y (and then in fact for every algebraic stack) the pullback construction
implements an equivalence of categories

X(Y ) ' Homc⊗
(
Qcoh(X),Qcoh(Y )

)
.

We already know that affine schemes are tensorial (Corollary 5.2.3), more gen-
erally that tensorial stacks are closed under affine morphisms (Corollary 5.3.4).
We will see later that they are closed under projective morphisms (section 5.10)
and coproducts (Corollary 5.9.11).

In this section we prove that qc qs schemes and Adams stacks are tensorial.
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Chapter 5. Constructions with cocomplete tensor categories

5.7.1 The case of qc qs schemes

After having developed the theory of local functors in section 5.6 it is easy to
prove that qc qs schemes are tensorial. This is the main result of a joint work
with Alexandru Chirvasitu ([BC14]).

Theorem 5.7.1 (Tensoriality of qc qs schemes). Let X be a qc qs scheme and
Y be an arbitrary locally ringed space. Then f 7→ f ∗ implements an equivalence
of categories

Hom(Y,X) ' Homc⊗
(
Qcoh(X),Mod(Y )

)
In particular, X is tensorial.

Remark 5.7.2. Surprisingly, it follows that any cocontinuous tensor functor
Qcoh(X) → Mod(Y ) automatically takes its values in Qcoh(Y ), and that the
category of cocontinuous tensor functors Qcoh(X)→ Qcoh(Y ) is actually equiv-
alent to a discrete category. For the case of affine X, see Corollary 5.2.3.

First, we treat fully faithfullness.

Proposition 5.7.3 (Fully faithfullness). Let Y be a locally ringed space, X a
quasi-separated scheme and let f, g : Y → X be two morphisms. Let α : f ∗ ⇒ g∗

be a morphism of tensor functors. Then, f = g and α = id.

Proof. Let y ∈ Y . We claim that f(y) is a specialization of g(y). Indeed, let
I ⊆ OX be the vanishing ideal sheaf of the closed subset Z := {g(y)} of X.
Since α induces a map of OY -algebras f ∗(OX/I) → g∗(OX/I), it follows that
supp g∗(OX/I) ⊆ supp f ∗(OX/I). By [GD71, Chapitre 0, 5.2.4.1] this means
that g−1(Z) ⊆ f−1(Z). Now y ∈ g−1(Z) implies f(y) ∈ Z = {g(y)}, which
proves our claim.

If i : U ↪→ X is an affine open neighborhood of f(y), then it must contain g(y),
too. Therefore we have y ∈ f−1(U) ∩ g−1(U). Since we may work locally on Y
in order to prove f = g and α = id, we may even assume that f and g both
factor through U , say f = if ′ and g = ig′ for morphisms f ′, g′ : Y → U . Then
f ∗ ∼= f ′∗i∗ is U -local, similarly g∗. Now Proposition 5.6.3 gives us a morphism
of tensor functors α′ : f ′∗ ⇒ g′∗ with i∗α′ = α. But now we are in the affine
case and Corollary 5.2.3 yields f ′ = g′ and α′ = id. This implies f = g and
α = id.

Remark 5.7.4. In order to prove that the functor

Hom(Y,X)→ Homc⊗
(
Qcoh(X),Mod(Y )

)
,

which we have just seen to be fully faithful, is an equivalence, we may work
locally on Y . Namely, if F : Qcoh(X) → Mod(Y ) is a cocontinuous tensor
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5.7. Tensoriality

functor and Y is covered by open subspaces Yi such that F |Yi is induced by
a morphism fi : Yi → X, then Proposition 5.7.3 guarantees the compatibility
fi|Yi∩Yj = fj|Yi∩Yj , and hence that the fi glue to a morphism f : Y → X which
induces F .

Proposition 5.7.5. Theorem 5.7.1 holds when Y is a local ring (considered as
a locally ringed space with one element).

Proof. Let F : Qcoh(X)→ Mod(A) be a cocontinuous tensor functor, where A is
a commutative local ring with maximal ideal m. Choose some affine open covering
X = U1∪· · ·∪Un. If F is not Uk-local for every k, then by Proposition 5.6.11 there
are quasi-coherent ideals Ik ⊆ OX with Ik|Uk = OUk such that F (Ik ↪→ OX) is
not a split epimorphism, even not an epimorphism by Lemma 5.6.12. thus factors
through m ⊆ A = F (OX). Then the same is true for F (

⊕
k Ik → OX) and hence

for F (
∑

k Ik ↪→ OX). This is a contradiction since
∑

k Ik = OX .

Proposition 5.7.6. Let X be a qc qs scheme and Y an arbitrary locally ringed
space. Let F : Qcoh(X) → Mod(Y ) be a cocontinuous tensor functor. Then,
for every y ∈ Y , there is a local homomorphism OX,x → OY,y for some x ∈ X,
together with an isomorphism

F (M)y ∼= Mx ⊗OX,x OY,y

of tensor functors Qcoh(X) → Mod(OY,y). Moreover, if we define f(y) := x,
then the map f : Y → X is continuous.

Proof. By Proposition 5.7.5 the composition

Fy : Qcoh(X)→ Mod(Y )→ Mod(OY,y)

is induced by a morphism Spec(OY,y) → X. By [GD71, Proposition 2.5.3] this
factors as Spec(OY,y) → Spec(OX,x) → X for some x ∈ X and some local
homomorphism OX,x → OY,y. This proves the first part of the statement.

For the second part, let Z ⊆ X be closed. Then there is a quasi-coherent ideal
I ⊆ OX with Z = V (I) as sets. Then OX � OX/I gets mapped by F to an
epimorphism, say OY � OY /J for some ideal J ⊆ OY . For y ∈ Y and x := f(y),
we have an isomorphism

(OY /J)y ∼= (OX/I)x ⊗OX,x OY,y.

Since OX,x → OY,y is local, this shows that OY /J vanishes at y if and only if
OX/I vanishes at x. We arrive at

f−1(Z) = f−1(supp(OX/I)) = supp(OY /J),

which is closed ([GD71, Proposition 5.2.2]). Hence, f is continuous.
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Chapter 5. Constructions with cocomplete tensor categories

Proof of Theorem 5.7.1. Let F : Qcoh(X) → Mod(Y ) be a cocontinuous tensor
functor. By Proposition 5.7.6 we may associate to it a continuous map f : Y → X
of the underlying spaces. Cover Y with open subsets which get mapped into
affine open subsets of X. Since we may work locally on Y (Remark 5.7.4), we
may therefore assume that f factors as Y → U → X for some affine open
subscheme i : U ↪→ X. We claim that F is U -local in the sense of section 5.6:
Since isomorphisms can be checked stalkwise, it is enough to prove the claim for
Fy : Qcoh(X) → Mod(OY,y), where y ∈ Y . By Proposition 5.7.5, Fy is induced
by some morphism g : Spec(OY,y)→ X. Using Proposition 5.7.3 we see that as a
continuous map g is just a restriction of f and therefore factors through U . Thus
Fy is U -local. Since F is U -local, we conclude that F is induced by a morphism
by Proposition 5.6.5.

Remark 5.7.7. The proof of Theorem 5.7.1 is quite constructive. Given a co-
continuous tensor functor F : Qcoh(X)→ Mod(Y ), the corresponding morphism
f : Y → X is constructed as follows: Let X = ∪iUi be a finite affine open cover-
ing. Let ui : Ui → X denote the open immersions. If y ∈ Y , then there is some
i such that F maps OX → (ui)∗OUi to an isomorphism (this is where the theory
of local functors comes into play). By considering the endomorphism rings, we
get a homomorphism of rings Γ(Ui,OX)→ OY,y. The maximal ideal my ⊆ OY,y
pulls back to a prime ideal of Γ(Ui,OX), i.e. to a point f(y) ∈ Ui, together
with a local homomorphism OX,f(y) → OY,y. Then Yi := {y ∈ Y : f(y) ∈ Ui}
is an open subset and F (OX → (ui)∗OUi)|Yi is an isomorphism. This induces a
homomorphism f# : Γ(Xi,OX)→ Γ(Yi,OY ).

Example 5.7.8. Every morphism of the underlying ringed spaces g : Y → X
induces a morphism of locally ringed spaces f : Y → X such that g∗ ∼= f ∗. We
just apply the above construction to F = g∗ : Qcoh(X) → Mod(Y ). Explicitly,
f(y) ∈ X corresponds to the pullback of the maximal ideal my of OY,y under
g#
y : OX,g(y) → OY,y, so that f(y) is a generization of g(y).

5.7.2 The case of algebraic stacks

In this section we unify and generalize results by Lurie ([Lur04]) and Schäppi
([Sch12a]).

If C,D are cocomplete tensor categories, we will denote by Homc⊗∼=(C,D) the
core of Homc⊗(C,D), i.e. the category of cocontinuous tensor functors but only
with isomorphisms of tensor functors.

Theorem 5.7.9. Let Y be a scheme and let X be a geometric stack. Then, the
pullback functor

X(Y )→ Homc⊗∼=
(
Qcoh(X),Qcoh(Y )

)
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is fully faithful.

Proof. Let π : P → X be a presentation with P and π affine. It follows that
P ×X P → P is affine, and therefore P ×X P is an affine scheme.

Let f, g : Y → X be two morphisms. Our goal is to prove that

Isom(f, g)→ Isom(f ∗, g∗)

is a bijection. Since by descent theory for morphisms and quasi-coherent modules
both sides are fpqc-sheaves on the category of Y -schemes evaluated at Y , and
h : Y ×(X×X) (P × P )→ Y is an fpqc-cover such that fh and gh factor through

π, we may assume that f, g factor both through π, say f = πf̃ and g = πg̃. Then
Isom(f, g) identifies with the set of all h : Y → P ×X P such that pr1 h = f̃
and pr2 h = g̃. Consider it as a discrete category. Then it is equivalent to the
category of all h : Y → P ×X P equipped with isomorphisms pr1 h

∼= f̃ and
pr2 h

∼= g̃. Since P and P ×X P are affine, by Corollary 5.2.3 this is equivalent
to the category of cocontinuous tensor functors F : Qcoh(P ×X P ) → Qcoh(Y )
together with isomorphisms of tensor functors F pr∗1

∼= f̃ ∗ and F pr∗2
∼= g̃∗, which

in turn (Corollary 5.3.7) is equivalent to the category of pairs of cocontinuous
tensor functors F1 : Qcoh(P )→ Qcoh(Y ) and F2 : Qcoh(P )→ Qcoh(Y ) together
with isomorphisms of tensor functors F1π

∗ ∼= F2π
∗ and F1

∼= f̃ ∗ and F2
∼= g̃∗.

This is equivalent to the discrete category of isomorphisms f̃ ∗π∗ ∼= g̃∗π∗, i.e.
f ∗ ∼= g∗. It is clear that the resulting bijection Isom(f, g) ∼= Isom(f ∗, g∗) is the
canonical one.

The following is our main result.

Theorem 5.7.10. Let X be an algebraic stack. Let π : P → X be an affine
morphism such that P is tensorial. Let Y be a scheme and consider a cocontin-
uous tensor functor F : Qcoh(X) → Qcoh(Y ) with the property that the algebra
F (π∗OP ) is a descent algebra. Then F ∼= f ∗ for some morphism f : Y → X.

Proof. Let A := π∗OP and let F : Qcoh(X)→ Qcoh(Y ) be a cocontinuous tensor
functor such that B := F (A) is a descent algebra. Then we have an affine descent
morphism σ : Q = Spec(B) → Y , and F induces a cocontinuous tensor functor
Mod(A)→ Mod(B), i.e. F ′ : Qcoh(P )→ Qcoh(Q), in such a way that

Qcoh(X) F //

π∗

��

Qcoh(Y )

σ∗

��

Qcoh(P )
F ′
// Qcoh(Q)

commutes up to isomorphism (in fact this is a pushout by Corollary 5.3.7). Since
P is tensorial by assumption, F ′ is induced by a morphism f ′ : Q → P . Now,
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the idea is to find a morphism f : Y → X such that

Y
f
// X

Q

σ

OO

f ′
// P

π

OO

commutes up to isomorphism (in fact it will be a pullback) and lifts the above
diagram. But this is possible by descent:

Consider the morphism h : Q
f ′−→ P

π−→ X. We claim that Q ×Y Q ⇒ Q
h−→ X

commutes (up to isomorphism). By Theorem 5.7.9 it suffices to do this for the
induced tensor functors

Qcoh(X)
h∗−→ Qcoh(Q) ⇒ Qcoh(Q×Y Q),

i.e. to show that F (π∗π
∗M)⊗B ∼= B ⊗ F (π∗π

∗M) as B ⊗B-modules. But this
is just F applied to the evident isomorphism M ⊗A⊗A ∼= A⊗M ⊗A of A⊗A-
modules. The cocycle condition is satisfied (again using Theorem 5.7.9), hence
there is a unique morphism f : Y → X such that the above diagram commutes.
We have an isomorphism of B-modules

f ∗(M)⊗B = σ∗(f ∗(M)) ∼= f ′∗(π∗(M)) = F (π∗π
∗M) = F (M)⊗B.

But B is a descent algebra and the cocycle condition is satisfied, hence the
isomorphism comes from an isomorphism f ∗(M) ∼= F (M). One checks that this
is, in fact, an isomorphism of tensor functors f ∗ ∼= F .

Corollary 5.7.11. Let Y be a scheme and let X be a geometric stack. Then,
the essential image of the fully faithful functor (see Theorem 5.7.9)

X(Y )→ Homc⊗∼=
(
Qcoh(X),Qcoh(Y )

)
consists of those cocontinuous tensor functors which preserve faithfully flatness.

Proof. If f : Y → X is a morphism, then clearly f ∗ : Qcoh(Y ) → Qcoh(X)
preserves faithfully flatness. Conversely, if F : Qcoh(X) → Qcoh(Y ) is a cocon-
tinuous tensor functor such that F (π∗OP ) is faithfully flat, where π : P → X is
a presentation such that π and P are affine, then F (π∗OP ) is a descent algebra
by Proposition 4.10.5, so that the claim follows from Theorem 5.7.10.

Corollary 5.7.12. Adams stacks are tensorial.

Proof. Let X be an Adams stack and π : P → X be a presentation such
that π and P are affine. The functor X(Y ) → Homc⊗∼=

(
Qcoh(X),Qcoh(Y )

)
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is fully faithful by Theorem 5.7.9. Since X has the strong resolution prop-
erty, Lemma 4.7.9 tells us that Homc⊗∼=

(
Qcoh(X),−

)
= Homc⊗

(
Qcoh(X),−

)
.

Now let F : Qcoh(X) → Qcoh(Y ) be a cocontinuous tensor functor. Then
π∗OP is a special descent algebra by Proposition 4.10.9. But then F (π∗OP )
is also a special descent algebra (Remark 4.10.7), in particular a descent al-
gebra by Proposition 4.10.8. Hence, we may apply Theorem 5.7.10 and ob-
tain a morphism f : Y → X with F ∼= f ∗. This concludes the proof of
X(Y ) ' Homc⊗

(
Qcoh(X),Qcoh(Y )

)
.

Corollary 5.7.13. If G is a linear algebraic group defined over Z, then the
classifying stack BG is tensorial.

Sketch of proof. This follows from the observation that the Hopf algebra O(G)
is a directed colimit of free Z-modules.

5.8 Localization

5.8.1 General theory

In order to motiviate the following constructions, let us look at two basic exam-
ples.

Example 5.8.1 (Torsion-free modules). Let R be an integral domain. Consider
the full subcategory of torsion-free R-modules tfMod(R) ↪→ Mod(R). We would
like to endow it with the structure of a cocomplete tensor category. If the usual
tensor product (i.e. that of Mod(R)) of two torsion-free R-modules is again
torsion-free, we can just take the tensor product of the underlying R-modules.
For example, this happens when R is a Dedekind domain, since then torsion-free
⇔ flat. But in general, we can just mod out the torsion submodule and enforce
the tensor product to be torsion-free:

M ⊗tfMod(R) N := (M ⊗R N)/Tor(M ⊗R N).

The usual direct sum of a family of torsion-free R-modules is again torsion-free.
However, this does not apply to cokernels. Again we can remedy this simply
by modding out the torsion submodule. It follows that, for every a ∈ R \ {0}
and every torsion-free R-module M , the map a : M → M is an epimorphism
in tfMod(R) (but of course not in Mod(R)). Now one can check that tfMod(R)
becomes a cocomplete R-linear tensor category C. In fact it is the universal one
with the property that a : OC → OC is an epimorphism for every a ∈ R \ {0}.
Note that the inclusion tfMod(R) ↪→ Mod(R) is far from being a cocontinuous
tensor functor. But the reflection Mod(R) → tfMod(R), M 7→ M/Tor(M) is a
cocontinuous tensor functor by construction.
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Chapter 5. Constructions with cocomplete tensor categories

Example 5.8.2 (Sheaves). Let X be a ringed space. Then it is easy to define a
cocomplete tensor category of presheaves of modules over X. Colimits and tensor
products are constructed sectionwise. But this does not work for sheaves. In-
stead, we construct the tensor product of sheaves of modules to be the associated
sheaf of the tensor product of the underlying presheaves of modules. Similarly,
colimits of sheaves are constructed by taking associated sheaves of underlying
colimits. Then we obtain a cocomplete tensor category Mod(X) of sheaves of
modules on X.

Definition 5.8.3 (Orthogonality classes). Let S = (Mi → Ni)i∈I be a family of
morphisms in a category C. We always assume that I is a set.

1. Then S
∼= is the full subcategory of C consisting of those objects A ∈ C

which believe that each Mi → Ni is a isomorphism. More precisely, it is
required that hom(Ni, A) → hom(Mi, A) is bijective for every i ∈ I. This
is also known as the orthogonality class associated to S.

2. Similarly, S� ⊆ C consists of those A ∈ C which believe that each Mi → Ni

is an epimorphism, which means that for every i ∈ I the induced map
hom(Ni, A)→ hom(Mi, A) is injective.

3. Finally, S↪→ ⊆ C consists of those A ∈ C such that each of the maps
hom(Ni, A)→ hom(Mi, A) is surjective.

Observe S
∼= = S↪→ ∩ S�. In particular, when each Mi → Ni is an epimorphism,

then S
∼= = S↪→. Each of S

∼=, S�, S↪→ is closed under limits taken in C. It is
an interesting question whether these subcategories are reflective, i.e. if the
inclusion functor has a left adjoint. It is well-known ([AR94, Section 1.C]) that
this is the case for presentable categories; see also [Kel80] for generalizations.
We will include the proofs here and rearrange them in a certain way in order to
get the corresponding results for presentable tensor categories. We also prove
universal properties which should be well-known but for which we could not find
a suitable reference.

Definition 5.8.4 (Transfinite composition). Let C be a cocomplete category,
R1 : C → C be an endofunctor and η : idC → R1 be a natural transformation.
Then we define endofunctors Rα of C for ordinal numbers α together with com-
patible natural transformations Rα → Rβ for α ≤ β by transfinite recursion as
follows:

• We let R0 = idC.

• If Rα is already constructed, then we define Rα+1 := R1 ◦Rα together with
η ◦Rα : Rα → Rα+1.

• If λ is a limit ordinal and Rα for α < λ have been constructed, then choose
a colimit (Rα → Rγ)α<λ in the category of endofunctors.
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5.8. Localization

We call the sequence (Rα) the transfinite composition of R1. For example, we
have Rn = R1 ◦ . . .◦R1 (n times) for n < ω and Rω is the colimit of the sequence
R0 → R1 → R2 → R3 → . . . .

An objectM ∈ C is called a fixed object if η(M) : M → R1(M) is an isomorphism.
Fixed objects constitute a full subcategory Fix(R1) ⊆ C.

If M → N is a morphism in C and N ∈ Fix(R1), then it extends uniquely
to compatible morphisms Rα(M) → N , by induction on α: The limit step
is clear. If Rα(M) → N is already constructed, then we may extend it via
Rα+1(M) = R1(Rα(M))→ R1(N) ∼= N . This observation implies:

Lemma 5.8.5 (Reflection). With the notations of Definition 5.8.4, assume that
for every M ∈ C there is some ordinal α such that Rα(M) is fixed. Then the
assignment M 7→ Rα(M) extends to a functor R∞ : C → Fix(R1) which is left
adjoint to the inclusion functor. Hence, Fix(R1) ⊆ C is reflective. In particular,
Fix(R1) is cocomplete, with colimits computed by applying R∞ to the underlying
colimit in C.

This allows us to localize cocomplete categories:

Proposition 5.8.6. Let S = (si : Mi → Ni)i∈I be a family of morphisms in
a cocomplete category C. Assume that the objects Mi and Ni are presentable
for every i ∈ I. Then S� ↪→ C is reflective, in particular cocomplete. If Rλ

is the reflector, then each Rλ(si) is an epimorphism in S�. In fact, we have
the following universal property: For every cocomplete category D we have an
equivalence of categories

Homc(S
�,D) ' {F ∈ Homc(C,D) : F (si) epimorphism for all i ∈ I}.

given by G 7→ G ◦Rλ and F |S� ←[ F .

Proof. 1. Choose some large enough regular cardinal λ such that Mi and Ni are
λ-presentable for every i ∈ I. For A ∈ C, let A → R1(A) be the coequalizer
of all morphisms u, v : Ni → A which are equalized by si. In other words,
Hom(R1(A), B) identifies with

{f ∈ Hom(A,B) : ∀i ∀u, v ∈ Hom(Ni, A) : u ◦ si = v ◦ si ⇒ f ◦ u = f ◦ v}.

Then R1 is an endofunctor of C with Fix(R1) = S�. We claim that Rλ(A) is
fixed and therefore provides the reflection by Lemma 5.8.5.

Let u, v : Ni → Rλ(A) be two morphisms which coequalize Mi → Ni. Since Ni

is λ-presentable, there is some α < λ (resp. β < λ) such that u (resp. v) factors
as Ni → Rα(A)→ Rλ(A). Let γ < λ be the maximum of α, β. Then u, v factor
both as Ni ⇒ Rγ(A)→ Rλ(A). Although the two morphisms Ni ⇒ Rγ(A) might
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Chapter 5. Constructions with cocomplete tensor categories

not agree on Mi, they do when we increase γ, since Mi is λ-presentable. Then
by construction Rγ(A) → R1(Rγ(A)) = Rγ+1(A) coequalizes both morphisms
Ni ⇒ Rγ(A). It follows that u = v.

2. If A ∈ S�, then the map hom(Ni, A) ↪→ hom(Mi, A) identifies with the map
hom(Rλ(Ni), A) ↪→ hom(Rλ(Mi), A), which shows that Rλ(si) is an epimorphism
in S�.

3. For a cocontinuous functor F : C → D such that each F (si) is an epimorphism,
it is clear that F → FR1 is an isomorphism. It follows by induction on ordinal
numbers α that F → FRα is an isomorphism, too. In particular, F → FRλ is an
isomorphism. This implies that the restriction F |S� : S� → D is cocontinuous,
since colimits in S� are computed via reflections of colimits in C. Thus, both
functors in the claim are well-defined and inverse to each other.

Remark 5.8.7. It follows from the construction above that C Rλ−→ S� ↪→ C pre-
serves λ-directed colimits. This implies that Rλ preserves λ-presentable objects.
In particular, Rλ(Mi) and Rλ(Ni) are λ-presentable in S�.

Proposition 5.8.8. Let S = (si : Mi → Ni)i∈I be a family of epimorphisms
in a cocomplete category C such that each Mi is presentable. Then S

∼= ↪→ C is
reflective, in particular cocomplete. If Rλ is the reflector, then each Rλ(si) is an
isomorphism in S

∼=. In fact, we have the following universal property: If D is a
cocomplete category, there is an equivalence of categories

Homc(S
∼=,D) ' {F ∈ Homc(C,D) : F (si) isomorphism for all i ∈ I}.

Proof. 1. Choose some large enough regular cardinal λ such that each Mi is
λ-presentable. For A ∈ C, let R1(A) be the colimit of the diagram

Mi
//

��

Ni

A,

where i ∈ I and Mi → A runs through all possible morphisms. In other words,
Hom(R1(A), B) identifies with

{(f, (gi)) : f ∈ Hom(A,B), gi : Hom(Mi, A)→ Hom(Ni, B)

such that ∀u ∈ Hom(Mi, A) : f ◦ u = gi(u) ◦ si}

which simplifies to

{f ∈ Hom(A,B) : ∀u ∈ Hom(Mi, A) : f ◦ u factors through si}
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5.8. Localization

because each si is an epimorphism. The definition of R1(A) ensures that we have
commutative diagrams

Mi
//

��

Ni

��

A // R1(A).

Then R1 is an endofunctor of C satisfying Fix(R1) = S↪→ = S
∼=. We claim that

Rλ(A) is fixed and therefore provides the desired reflection by Lemma 5.8.5. Let
i ∈ I and Mi → Rλ(A) be a morphism. Using that Mi is λ-presentable, the
morphism factors as Mi → Rα(A) → Rλ(A) for some α < λ. It extends to Ni

along si because by construction Mi → Rα(A)→ Rα+1(A) extends to Ni.

2. For A ∈ S∼=, the map Hom(Rλ(Ni), A)→ Hom(Rλ(Mi), A) identifies with the
map Hom(Ni, A) → Hom(Mi, A), which is therefore bijective. This proves that
Rλ(si) is an isomorphism.

3. If F : C → D is a cocontinuous functor such that each F (si) is an isomor-
phism, then F → FR1 is an isomorphism. The rest of the proof works as in
Proposition 5.8.6.

Now we combine the two constructions:

Proposition 5.8.9 (Localization). Let S = (si : Mi → Ni)i∈I be a family of
morphisms in a cocomplete category C. Assume that Mi and Ni are presentable
for every i ∈ I. Then S

∼= ↪→ C is reflective, in particular cocomplete. If R is
the reflector, then R(si) is an isomorphism in S

∼=. In fact, we have the following
universal property: If D is a cocomplete category, there is an equivalence of
categories

Homc(S
∼=,D) ' {F ∈ Homc(C,D) : F (si) isomorphism for all i ∈ I}.

Proof. By Proposition 5.8.6 S� is reflective in C, say with reflector Rλ. Because
of Remark 5.8.7 we may apply Proposition 5.8.8 to the epimorphisms Rλsi in
S�. It follows that (S�)

∼= = S
∼= is reflective in S�. Hence, S

∼= is reflective in
C, the reflector being the composition of the reflectors C → S� → S

∼=. If D is
a cocomplete category, then Homc(S

∼=,D) identifies with the category of those
functors G ∈ Homc(S

�,D) such that G(Rλsi) is an isomorphism for all i. But
Homc(S

�,D) identifies with the category of all F ∈ Homc(C,D) such that each
F (si) is an epimorphism, via F = GRλ. This proves the universal property.

Remark 5.8.10. We are going to extend these results to cocomplete tensor
categories. See [Day73] for a similar account. If si : Mi → Ni is an isomorphism
in a tensor category C, then si ⊗ T : Mi ⊗ T → Ni ⊗ T is an isomorphism for
every T ∈ C. By the Yoneda Lemma this is equivalent to the condition that
Hom(Ni, A) → Hom(Mi, A) is an isomorphism for all A ∈ C, provided that
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Chapter 5. Constructions with cocomplete tensor categories

these internal homs exist. This motivates the definition of the tensor closure of
S = (si)i∈I by

S⊗ = (si ⊗ T )i∈I, T∈C

and looking at the corresponding orthogonality class S
∼=
⊗ instead of S

∼=, which
consists of those objects A ∈ C such that Hom(Ni, A) → Hom(Mi, A) is an
isomorphism for all i. Our previous results can be applied if we replace T ∈ C
by T ∈ C ′ for a colimit-dense (essentially) small subcategory C ′ ⊆ C so that S⊗
is still a set of morphisms. This clearly does not change the orthogonality class.
If C is λ-presentable, we can take C ′ to be the category of λ-presentable objects.

Theorem 5.8.11 (Tensor localization). Let S = (si : Mi → Ni)i∈I be a family
of morphisms in a presentable tensor category C with unit OC. Then

S
∼=
⊗ = {A ∈ C : Hom(Ni, A)→ Hom(Mi, A) isomorphism for all i ∈ I}

is reflective in C, say with reflector R : C → S
∼=
⊗ . Then S

∼=
⊗ becomes a presentable

tensor category with unit R(OC) and tensor product

M ⊗S∼=⊗ N := R(M ⊗N).

Besides, R : C → S
∼=
⊗ becomes a cocontinuous tensor functor with the property

that R(si) is an isomorphism for all i ∈ I, in fact the universal one: If D is a
cocomplete tensor category, then R induces an equivalence of categories

Homc⊗(S
∼=
⊗ ,D) ' {F ∈ Homc⊗(C,D) : F (si) isomorphism for all i ∈ I}.

Therefore, we may write S
∼=
⊗ = C[S−1].

Proof. By Remark 5.8.10 and Proposition 5.8.9 there is a reflector

R : C → S
∼=
⊗ .

We claim first:

∀M ∈ C, ∀N ∈ S∼=⊗ : Hom(M,N) ∈ S∼=⊗ (?)

This follows from the commutative diagram

Hom(Ni,Hom(M,N)) //

∼=
��

Hom(Mi,Hom(M,N))

∼=
��

Hom(M,Hom(Ni, N)) ∼=
// Hom(M,Hom(Mi, N)).

Next, we claim the canonical morphism (induced by A→ R(A))

R(A⊗B)→ R(R(A)⊗B) (??)
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5.8. Localization

is an isomorphism for all A,B ∈ C. In fact, if T ∈ S∼=⊗ , then

Hom(R(R(A)⊗B), T ) ∼= Hom(R(A)⊗B, T ) ∼= Hom(R(A),Hom(B, T ))

(?)∼= Hom(A,Hom(B, T )) ∼= Hom(A⊗B, T ) ∼= Hom(R(A⊗B), T ).

This can be used to show that R(OC) is a unit and that the tensor product on
S
∼=
⊗ is associative:

For A,B,C ∈ S∼=⊗ we have

R(OC)⊗S∼=⊗ A = R(R(OC)⊗ A)
(??)∼= R(OC ⊗ A) ∼= R(A) ∼= A,

as well as

A⊗S∼=⊗ (B ⊗S∼=⊗ C) = R(A⊗R(B ⊗ C))
(??)∼= R(A⊗ (B ⊗ C))

and similarly (A ⊗S∼=⊗ B) ⊗S∼=⊗ C
∼= R((A ⊗ B) ⊗ C). Hence, there are unique

isomorphisms R(OC)⊗S∼=⊗ A
∼= A and A⊗S∼=⊗ (B⊗S∼=⊗ C) ∼= (A⊗S∼=⊗ B)⊗S∼=⊗ C such

that the diagrams

R(OC)⊗S∼=⊗ A
∼= // A

OC ⊗ A

OO

∼= // A

A⊗S∼=⊗ (B ⊗S∼=⊗ C)
∼= // (A⊗S∼=⊗ B)⊗S∼=⊗ C

A⊗ (B ⊗ C)
∼= //

OO

(A⊗B)⊗ C

OO

commute. It is clear that ⊗S∼=⊗ is commutative. The axioms of a tensor category

follow immediately from the ones for C. For A,B,C ∈ S∼=⊗ we have

Hom(A⊗S∼=⊗ B,C) = Hom(R(A⊗B), C)

∼= Hom(A⊗B,C) ∼= Hom(A,Hom(B,C))

with Hom(B,C) ∈ S
∼=
⊗ by (?). This proves that S

∼=
⊗ is closed and therefore a

cocomplete tensor category. It is presentable because it is a reflective subcategory
of C closed under λ-directed colimits (here λ is as in the previous Propositions).
By construction R : C → S

∼=
⊗ is a cocontinuous tensor functor which maps the

morphisms in S to isomorphisms.

If D is a cocomplete tensor category, then G 7→ G ◦R defines a functor

Homc⊗(S
∼=
⊗ ,D)→ {F ∈ Homc⊗(C,D) : F (si) isomorphism for all i ∈ I}.
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Chapter 5. Constructions with cocomplete tensor categories

We construct an inverse functor as follows: Given F : C → D, by Proposi-
tion 5.8.9 we find a corresponding cocontinuous functor G : S

∼=
⊗ → D with

GR ∼= F . The isomorphisms G(R(OC)) ∼= F (OC) ∼= OD and

G(A⊗S∼=⊗ B) = G(R(A⊗B)) ∼= F (A⊗B) ∼= F (A)⊗ F (B) ∼= G(A)⊗G(B)

for A,B ∈ S∼=⊗ endow G with the structure of a tensor functor. It is easy to check
that this provides a functor F 7→ G which is inverse to the given one.

Theorem 5.8.12 (Solution of universal problems). Let C be a presentable tensor
category.

1. If f : A→ B is a morphism in C, then there is a presentable tensor category
C/(f isom.) with the universal property

Homc⊗(C/(f isom.),D) ' {F ∈ Homc⊗(C,D) : F (f) isom.}

for all cocomplete tensor categories D.

2. If f, g : A → B are parallel morphisms in C, then there is a presentable
tensor category C/(f = g) with the universal property

Homc⊗(C/(f = g),D) ' {F ∈ Homc⊗(C,D) : F (f) = F (g)}

for all cocomplete tensor categories D.

3. If A⇒ B → P is a commutative diagram in C, then there is a presentable
tensor category C/(A⇒ B → P exact) with the universal property

Homc⊗(C/(A⇒ B → P exact),D)

' {F ∈ Homc⊗(C,D) : F (A) ⇒ F (B)→ F (P ) exact}

for all cocomplete tensor categories D.

4. If f : A→ B is a morphism in C, then there is a presentable tensor category
C/(f epi.) with the universal property

Homc⊗(C/(f epi.),D) ' {F ∈ Homc⊗(C,D) : F (f) epi.}

for all cocomplete tensor categories D.

5. If M0 ∈ C, then there is a presentable tensor category C/(M0 = 0) with the
universal property

Homc⊗(C/(M0 = 0),D) ' {F ∈ Homc⊗(C,D) : F (M0) = 0}

for all cocomplete tensor categories D.

146
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Proof. 1. is a special case of Theorem 5.8.11. The rest will follow from 1. using
the following reformulations: 2. We have f = g : A → B if and only if their
coequalizer B → coeq(f, g) is an isomorphism. 3. For morphisms f, g : A→ B a
commutative diagram A⇒ B → P is exact if and only if the induced morphism
coeq(f, g)→ P is an isomorphism. 4. A morphism f : A→ B is an epimorphism
if and only if the canonical morphism from the pushout B ∪A B → B is an
isomorphism. 5. We have M0 = 0 if and only if the unique morphism 0→M0 is
an isomorphism.

Remark 5.8.13 (Explicit description). In each case of Theorem 5.8.12, the
underlying category of C/(. . . ) is a reflective subcategory of C:

C/(f isom.) = {M ∈ C : Hom(f,M) : Hom(B,M)→ Hom(A,M) isom.}
C/(f = g) = {M ∈ C : Hom(f,M) = Hom(g,M)}
C/(f epi.) = {M ∈ C : Hom(f,M) : Hom(B,M)→ Hom(A,M) mono.}
C/(A = 0) = {M ∈ C : Hom(A,M) = terminal object}

Besides, C/(A⇒ B → P exact) is given by

{M ∈ C : Hom(P,M)→ Hom(B,M) ⇒ Hom(A,M) exact}.

5.8.2 Examples

Example 5.8.14. We have already seen an example in Proposition 5.6.3: If
i∗ : C → D is a cocontinuous tensor functor with a fully faithful right adjoint
i∗ : D → C, then i∗ inverts the unit morphisms idC → i∗i

∗. In fact we have

D ' C/(M → i∗i
∗M isom.)M∈C.

Example 5.8.15 (Killing objects). Let us describe C/(M0 = 0). Assume for
simplicity that C is linear (or more generally that 0 is terminal). Then we have
an epimorphism M0 → 0 and M0 = 0 means that it is an isomorphism. Following
the construction in the proof of Proposition 5.8.8, we may define R1 : C → C as
follows: R1(M) is the cokernel of all morphisms T ⊗M0 → M , where T ∈ C.
We may assume T to be λ-presentable when C is λ-presentable, so that R1(M)
is well-defined. We have Fix(R1) = {M ∈ C : Hom(M0,M) = 0} = C/(M0 = 0).
The reflector is the transfinite composition of R1. In general, one cannot say
exactly when it stops.

Let us look at C = Mod(A) for some commutative ring A and M0 = A/(a) for
some a ∈ A, so that C/(M0 = 0) = {M ∈ Mod(A) : Hom(A/(a),M) = 0}
consists of those A-modules without a-torsion. We have

R1(M) = M/ ker(a : M →M).
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Chapter 5. Constructions with cocomplete tensor categories

By induction it follows that

Rn(M) = M/ ker(an : M →M)

for n < ω, hence

Rω(M) = M/
⋃
n<ω

ker(an : M →M).

This is already fixed, therefore Rω is the reflector. The category of A-modules
without a-torsion is the universal A-linear cocomplete tensor category for which
a : O → O is an epimorphism. Instead of {a} we can take any subset of A, for
example the set of regular elements, which leads to the category of torsion-free
A-modules. See also Example 5.8.1.

Now let us look at the case that C is a quantale. Then

C/(M0 = 0) = {M ∈ C : ∀T ∈ C (M0 · T ≤M)}.

The reflector starts with R1(M) = sup(M, supT∈CM0 · T ). If we have T ≤ 1
for every T ∈ C, this simplifies to C/(M0 = 0) = {M ∈ C : M0 ≤ M} and the
reflector is just R1(M) = sup(M,M0). For a specific example take

[0, 1]/(1
2

= 0) = [1
2
, 1].

Example 5.8.16. We explain how Example 5.8.2 embeds into our theory. Let X
be a ringed space and Mod′(X) be the cocomplete tensor category of presheaves
of modules over X – with colimits and tensor products simply computed section-
wise, e.g. (F ⊗OX G)(U) := F (U)⊗OX(U) G(U). For an open subset U ⊆ X let
us denote by OU ∈ Qcoh(X) the structure sheaf of U extended by zero on X.
Hence, we have Hom(OU , F ) ∼= F (U). Let S be the set of canonical diagrams⊕

i,j∈I

OUi∩Uj ⇒
⊕
i∈I

OUi → OU

where U runs through the open subsets of X and (Ui)i∈I is an open covering of
U (in order to get a set, we should assume that the Ui do not repeat). Then
F ∈ Mod′(X) believes that S consists of coequalizer diagrams if and only if F is
a sheaf i.e. F ∈ Mod(X). It follows that

Mod(X) ' Mod′(X)/(the diagrams in S are coequalizers).

The reflector starts with the 0th Čech cohomology presheaf Ȟ0(−) (“plus con-
struction”). It is well-known that this is separated and that it maps separated
presheaves to sheaves. Therefore, the transfinite composition already stops at
the second step Ȟ0(−) ◦ Ȟ0(−). Curiously, for n-stacks one needs n + 1 steps
and for ∞-stacks one needs ω steps ([Lur09, Section 6.5.3]),
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Example 5.8.17. Let s : E → L be a morphism in C, where L is an in-
vertible object. Then C/(s isom.) consists of those M ∈ C such that the mor-
phism Hom(L,M) → Hom(E,M) induced by s is an isomorphism. Because of
Hom(L,M) = M ⊗ L⊗−1, this is the case if and only if the corresponding mor-
phism M → Hom(E,M)⊗L is an isomorphism. Hence, if we define R1 : C → C
by M 7→ Hom(E,M)⊗ L, then Fix(R1) = C/(s isom.) and the transfinite com-
position R∞ provides a reflector, with which we can – at least theoretically –
describe colimits and tensor products in C/(s isom.).

After replacing s by s ⊗ L⊗−1, it suffices to treat the case that L = OC and
s : E → OC. In that case we simply have R1(M) = Hom(E,M) and then
R2(M) = Hom(E,Hom(E,M)) ∼= Hom(E⊗2,M) etc. Inductively we get

Rn(M) = Hom(E⊗n,M)

for n < ω. The transition morphisms are induced by E⊗n ⊗ s : E⊗n+1 → E⊗n.
We have

Rω(M) = lim−→
n

Hom(E⊗n,M).

If E is ω-presentable, then we see that Rω(M) is fixed by R1. Hence, Rω is the
reflector.

Example 5.8.18. Let s : E → L be as above and f, g : A→ E morphisms such
that sf = sg. Then C/(A⇒ E → L exact) = C/(coeq(f, g)→ L isom.) consists
of those M ∈ C such that M → Hom(E,M)⊗L⇒ Hom(A,M)⊗L is exact. If
we define R1(M) = eq(Hom(E,M)→ Hom(A,M))⊗L and E is ω-presentable,
then Rω is the desired reflection.

Corollary 5.8.19 (Making objects invertible). Let C be a presentable tensor
category and E ∈ C. Then there is a presentable tensor category C[E−1] with the
universal property

Homc⊗(C[E−1],D) ∼= {F ∈ Homc⊗(C,D) : F (E) is a line object}

for all cocomplete tensor categories D.

Proof. We start with grMod(Sym(E)), which according to Corollary 5.4.15 is the
universal cocomplete tensor category over C with a morphism from (the image
of) E to a line object. Using Theorem 5.8.12 we can make it an isomorphism.

Remark 5.8.20 (Explicit description). The category grMod(Sym(E)) consists
of sequences of objects (Mn)n∈Z in C together with morphisms

αn : E ⊗Mn →Mn+1
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Chapter 5. Constructions with cocomplete tensor categories

such that the diagram

E ⊗ E ⊗Mn
E⊗αn //

SE,E⊗Mn

��

E ⊗Mn+1

αn+1

''

Mn+2

E ⊗ E ⊗Mn E⊗αn
// E ⊗Mn+1

αn+1

77

commutes. Notice that this is automatic if E is symtrivial. We will call the
objects of grMod(Sym(E)) also E-modules.

The universal morphism s : F (E) → L, where F : C → grMod(Sym(E)) is
given by M 7→ (Symn(E) ⊗M)n and L is the twist (Symn+1(E))n, is just the
multiplication Symn(E)⊗E → Symn+1(E) in degree n. In order to invert it, we
apply Example 5.8.17. Thus, C[E−1] consists of those E-modules M such that
M → Hom(F (E),M)⊗L is an isomorphism, which means that each morphism
Mn → Hom(E,Mn+1) (corresponding to E ⊗Mn → Mn+1) is an isomorphism.
Thus, Mn may be reconstructed from Mn+1.

The reflector starts with R1 : grMod(Sym(E)) → grMod(Sym(E)) defined by
R1(M)n = Hom(E,Mn+1). It follows by induction that

Rp(M)n = Hom(E⊗p,Mn+p)

for p < ω, hence that

Rω(M)n = lim−→
p<ω

Hom(E⊗p,Mn+p),

which provides the reflection at least if E is ω-presentable.

Example 5.8.21 (Quantales). We can make this even more explicit when C is a
quantale. Here, E-modules consists of sequences of elements Mn in C satisfying
EMn ≤ Mn+1. Such a sequence lies in C[E−1] (which is the universal quantale
over C which makes E invertible) if and only if we have Mn = [Mn+1 : E], i.e. Mn

is actually the largest element of C such that EMn ≤ Mn+1. For the reflectors
we have Rp(M)n = [Mn+p : Ep] and Rω = suppRp is the reflection when E is
ω-presentable.

For example we can apply this to the quantale C of ideals of a commutative
ring A. Thus, we can universally make a given (finitely generated) ideal E of
A invertible. This construction might be of independent interest. One might
investigate if C[E−1] is again the quantale of ideals of another commutative ring
induced by A.
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For a completely different example, look at the quantale [0, 1]. No object in
]0, 1[ is ω-presentable, but we can still invert it. For example, a 1

2
-sequence is a

sequence of elements (tn)n∈Z in [0, 1] with tn ≤ 2tn+1 and it lies in the localization
if tn = min(2 · tn+1, 1). One can check that (tn) 7→ limn→∞ 2n · tn provides an
isomorphism of quantales [0, 1][(1

2
)−1] ∼= [0,∞]. One can also check directly that

[0,∞] is the localization of [0, 1] at 1
2

(or any other element in ]0, 1[), using that
[0, 2n] = (1

2
)−1 · [0, 1].

These examples are somehow unrelated to algebraic geometry, but indicate the
diverse applicability of the general theory.

5.8.3 Localization at sections

We have the following variant of Example 5.8.17. Let C be a cocomplete tensor
category (not assumed to be presentable) and L ∈ C be a symtrivial object (e.g.
a line object). Let s : OC → L be a morphism. We would like to construct the
localization C → C/(s isom.) =: Cs. For this we define R(M) = L ⊗M together
with s⊗M : M → R(M). The transfinite composition will provide a reflector of
Cs = Fix(R). We can make this more explicit as follows. The special case L = O
has already been studied by Florian Marty ([Mar09, Section 2.2]).

Definition 5.8.22. We denote by Os an initial commutative algebra A in C
with the property that s ⊗ A : A → L ⊗ A is an isomorphism. We call Os the
localization of O at s.

Proposition 5.8.23. The localization Os exists.

Proof. We construct Os as the colimit of the sequence

O s−→ L id⊗s−−−→ L⊗2 id⊗ id⊗s−−−−−→ L⊗3 −→ . . .

Since L is assumed to be symtrivial, we could also use s ⊗ id⊗ id or id⊗s ⊗ id
etc. as transition morphisms – this will be useful. We will denote them just by
s. For each n ∈ N we have a canonical “inclusion” in : L⊗n → Os such that
in+1 ◦ s = in. The morphisms

L⊗n ⊗ L⊗m ∼= L⊗n+m in+m−−−→ Os

are compatible in each variable, hence glue to a morphism m : Os ⊗ Os → Os.
One can check that Os is a commutative algebra with multiplication m and unit
i0 (the commutativity uses again that L is symtrivial).

The morphisms L ⊗ L⊗n ∼= L⊗n+1 in+1−−→ Os are compatible in n, hence glue
to a morphism t : L ⊗ Os → Os. We claim that, in fact, t is an inverse to
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Chapter 5. Constructions with cocomplete tensor categories

s⊗Os : Os → Os ⊗ L. Look at the following commutative diagram

L ⊗Os t // Os s // L ⊗Os

L ⊗ L⊗n
L⊗in

OO

∼= // L⊗n+1

in+1

OO

s // L ⊗ L⊗n+1

L⊗in+1

OO

and use in+1 ◦ s = in. This implies that st ◦ (L⊗ in) = L⊗ in for all n and hence
st = id. A similar argument shows ts = id. Hence, s⊗Oc is an isomorphism.

Now let A be a commutative algebra in C such that s ⊗ A : A → L ⊗ A is an
isomorphism. Then, for every n ∈ N, we have a commutative diagram

A

s⊗n⊗L ∼=
��

A

s⊗n+1⊗L∼=
��

L⊗n ⊗ A s // L⊗n+1 ⊗ A,

which in the colimit gives A ∼= Os ⊗ A. In particular, there is a morphism of
algebras Os → A. The case A = Os shows that Os ∼= Os ⊗ Os, which means
that O → Os is an epimorphism in the category of commutative algebras and
therefore Os → A is unique.

Remark 5.8.24. Notice that for every cocontinuous tensor functor F : C → D
we have an isomorphism F (Os) ∼= OF (s), this follows from the construction above.

Definition 5.8.25. We call Cs := Mod(Os) together with C → Cs, M 7→M⊗Os
the localization of C at s. It is equivalent to the full subcategory of C consisting
of those M ∈ C such that s ⊗M : M → L⊗M is an isomorphism. Under this
identification, C → Cs maps M ∈ C to Ms := colimn(L⊗n ⊗M) with transition
morphisms induced by s. The tensor product is the same as in C, however the
unit is Os.

Proposition 5.8.26. We have Cs = C/(s isom.), i.e. for every cocomplete ten-
sor category D we have an equivalence of categories

Homc⊗(Cs,D) ' {F ∈ Homc⊗(C,D) : F (s) : OD → F (L) is an isomorphism}

Proof. This follows easily from Proposition 5.3.1.

Remark 5.8.27. If we want to invert a family of sections s := (si : O → L)i∈I ,
we can consider the (possibly infinite) tensor product of algebras Os :=

⊗
i∈I Osi

and then define Cs := Mod(Os).

Example 5.8.28. In the special case C = Qcoh(X) for some scheme X and L is
invertible, then s : OX → L is literally a global section of L and the localization
C → Cs identifies with the restriction functor Qcoh(X) → Qcoh(Xs), where
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5.8. Localization

Xs ⊆ X is the usual maximal open subscheme on which s generates L. Thus,
we have globalized this basic construction from algebraic geometry.

Example 5.8.29. Let A be a commutative graded algebra in C and let M be
a graded A-module. Consider a global section f : O → Ad for some d ∈ Z. It
induces a homomorphism of graded A-modules f : A→ A[d]. Since A[d] is a line
object in grMod(A), we may localize M at f . The degree 0 part of the resulting
graded A-module Mf is an A0-module which might be called the homogeneous
localization M(f) of M at f since for C = Mod(R) this coincides with the usual
homogeneous localization.

Remark 5.8.30. Let L ∈ C be a line object and let s = (si) : On → L be an
epimorphism. Then for every M ∈ C we have the usual commutative diagram

M →
n⊕
i=1

Msi ⇒
n⊕

i,j=1

Msi,sj .

We claim that it is an equalizer when C is an abelian finitely presentable tensor
category – this is the main ingredient in the construction of the classical asso-
ciated sheaf M̃ . It suffices to prove that ⊕ni=1Osi is faithfully flat. Since Osi
is a directed colimit of flat objects, it is flat (Lemma 4.6.3). In order to show
faithfully flatness, assume Msi = 0 for all 1 ≤ i ≤ n. We may assume that M
is finitely presentable. Then it follows that M ⊗ ski : M → M ⊗ L⊗k is zero
for some k which can be chosen independently from i. But then Lemma 4.8.7
implies M = 0.

5.8.4 Ideals

If R is a commutative ring, then ideals of R have two equivalent descriptions,
namely

1. abstractly as kernels of ring homomorphisms R→ S, where S is a suitable
commutative ring,

2. concretely as subsets of R closed under addition, scalar multiplication and
containing 0.

Here we would like to categorify this, replacing R by a linear cocomplete tensor
category C. In this section all tensor categories and functors are understood to
be linear over a fixed commutative ring.

Definition 5.8.31 (Abstract ideals). We call a full subcategory I ⊆ C an ab-
stract ideal of C if there is some cocontinuous tensor functor F : C → D into
some cocomplete tensor category D such that

I = ker(F ) := {M ∈ C : F (M) = 0}.
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Chapter 5. Constructions with cocomplete tensor categories

Definition 5.8.32 (Concrete ideals). We call a full subcategory I ⊆ C a concrete
ideal of C if it enjoys the following closure properties:

1. I is closed under taking colimits in C. In particular, 0 ∈ I.

2. If M → N is an epimorphism in C and M ∈ I, then N ∈ I.

3. If M,N ∈ C and M ∈ I, then M ⊗N ∈ I.

4. If K0 →M0 →M1 → 0 is an exact sequence and K0,M1 ∈ I, then M0 ∈ I.

5. More generally, if λ is a regular cardinal and [0, λ] → C, α 7→ Mα is a
cocontinuous functor such that there are exact sequences

Kα →Mα →Mα+1 → 0

for α < λ such that Kα ∈ I and Mλ ∈ I, then M0 ∈ I.

Notice that for λ < ℵ0 the condition 5. follows by induction from 4., but for
λ = ℵ0 5. is independent from the other axioms.

Lemma 5.8.33. In a linear cocomplete tensor category C every abstract ideal is
a concrete ideal.

Proof. Let D be a cocomplete tensor category and let F : C → D be a cocontin-
uous tensor functor. We have to show that

I := {M ∈ C : F (M) = 0}

satisfies the closure properties listed in Definition 5.8.32. For 1., 2. and 3. this is
is clear. In 4. F (K0)→ F (M0)→ F (M1)→ 0 is exact in D. Since K0,M1 ∈ I,
this simplifies to 0 → F (M0) → 0 → 0, which means F (M0) = 0, i.e. M0 ∈ I.
In 5. we observe that F (Mα) → F (Mα+1) is an isomorphism for all α < λ. It
follows by induction on α < λ that F (M0) → F (Mα) is an isomorphism, the
limit case being a colimit argument. It follows that F (M0) → F (Mλ) = 0 is an
isomorphism, so that M0 ∈ I.

Theorem 5.8.34. Let C be a presentable linear tensor category. Then every
concrete ideal is an abstract ideal. More specifically, if I ⊆ C is a concrete ideal,
then there is a cocomplete tensor category C/I and a cocontinuous tensor functor
F : C → C/I such that ker(F ) = I. It satisfies the universal property

Homc⊗(C/I,D) ' {G ∈ Homc⊗(C,D) : G|I = 0}.

Proof. We consider the full subcategory

C/I := {M ∈ C : ∀N ∈ I : Hom(N,M) = 0}.
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5.9. Idempotents

Since I is closed under tensoring with objects from C, we may replace Hom by
Hom here. We would like to apply Theorem 5.8.11 and then Example 5.8.15,
but this only works when I is a set, or more generally, if I has a colimit-dense
subset. Instead, we construct a reflection for C/I explicitly as follows: If M ∈ C
and if f : N →M is a morphism in C with N ∈ I, we may factor f as

N
p−→ N ′

i−→M,

where p is an epimorphism, so that N ′ ∈ I and i is a monomorphism (Propo-
sition 2.3.4). It follows that M ∈ C belongs to C/I if and only if 0 is the only
subobject of M which belongs to I. But M has only a set of subobjects at all
(Proposition 2.3.4), so that we may define a functor

R1 : C → C,M 7→M/TI(M)

where TI(M) is the sum of all subobjects N ≤ M such that N ∈ I. Using that
I is a concrete ideal, we observe TI(M) ∈ I. Then

Fix(R1) = {M ∈ C : TI(M) = 0} = C/I,

so that the transfinite composition R∞ : C → C/I provides a reflection by
Lemma 5.8.5 and the proof of Theorem 5.8.11 goes through. Clearly, we have
I ⊆ ker(R∞). Conversely, assume that M ∈ C such that 0 = R∞(M). Choose
some regular cardinal λ such that 0 = Rλ(M). If α < λ, then there is an exact
sequence TI(Rα(M)) → Rα(M) → Rα+1(M) → 0 with TI(Rα) ∈ I. It follows
from the closure property 5. in Definition 5.8.32 that M = R0(M) ∈ I.

Remark 5.8.35. Several (still open) problems within this thesis would be solv-
able (in fact, reducible to the affine case) if every (reasonable) algebraic stack X
has a descent algebra A such that SpecX(A) is affine (over Z) and that A gener-
ates the unit ideal 〈OX〉 = Qcoh(X). The latter means (using Theorem 5.8.34):
If Hom(N ⊗ A,M) = 0 for all N , then M = 0.

5.9 Idempotents

We already know that products of cocomplete tensor categories exist and how
to describe cocontinuous tensor functors into them. But actually it is also possi-
ble to describe cocontinuous tensor functors on them. This is a categorification
of the following well-known universal property of the product of a finite family
of commutative rings (Ri)i∈I : Homomorphisms

∏
i∈I Ri → S correspond to de-

compositions 1 =
∑

i∈I ei in S into orthogonal idempotent elements ei ∈ S and
homomorphisms Ri → Sei , where Sei denotes the localization of S at the element
ei. Therefore, let us first categorify orthogonal idempotent decompositions.
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Chapter 5. Constructions with cocomplete tensor categories

In the following, we assume that C is a linear cocomplete tensor category. We
also fix an index set I.

Definition 5.9.1 (o.i.d.). An orthogonal idempotent decomposition, abbreviated
o.i.d., of C consists of a family of morphisms (σi : Ei → O)i∈I such that

1. Ei ⊗ Ej = 0 for i 6= j,

2. (σi : Ei → O)i∈I is a coproduct diagram, hence⊕
i∈I

Ei ∼= O.

Remark 5.9.2. Let (σi : Ei → O)i∈I be an o.i.d. of C.

1. Ei ⊗ σi : Ei ⊗ Ei → Ei is actually an isomorphism Ei ⊗ Ei ∼= Ei, since it
identifies with the isomorphism

⊕
i∈I Ei

∼= O tensored with Ei on the left.

2. Since Ei is symtrivial (as a quotient of O), we have an equality of isomor-
phisms Ei ⊗ σi = σi ⊗ Ei : Ei ⊗ Ei ∼= Ei. This implies that σi : Ei → O is
an open idempotent in the sense of Drinfeld-Boyarchenko ([DB]). It is also
a split monomorphism (as a coproduct inclusion).

3. If F : C → D is a cocontinuous tensor functor, then F induces an o.i.d.
(F (σi) : F (Ei)→ F (O) ∼= O)i∈I of D.

4. A morphism α : (σi : Ei → O) → (τi : Fi → O) between two o.i.d. is
by definition a family of morphisms αi : Ei → Fi such that τiαi = σi.
Since τi is a monomorphism, it is clear that αi is unique. Besides, it is an
isomorphism. In fact, the commutative diagram⊕

iEi
⊕iαi //

σ
""

⊕
i∈I Fi

τ
{{

O

shows that ⊕iαi is an isomorphism. Thus, o.i.d. constitute a category
which is essentially discrete.

Let us give alternative descriptions of o.i.d.

Remark 5.9.3. Recall that an idempotent morphism e : O → O has an image
factorization O p−→ im(e)

ι−→ O with e = ιp and pι = id. In fact, we can
take im(e) := coker(e⊥) with e⊥ := 1 − e together with the cokernel projection
p : O → im(e). Since ee⊥ = 0, there is some ι such that ιp = e. We have
pιp = pe = p and hence pι = id.

Definition 5.9.4. A discrete orthogonal idempotent decomposition of C consists
of a family of idempotent endomorphisms ei ∈ End(O) such that eiej = 0 for

156



5.9. Idempotents

i 6= j and the canonical morphism⊕
i∈I

im(ei)→ O

is an isomorphism. We consider the set of discrete o.i.d. as a discrete category.

Remark 5.9.5. If I is finite, the last condition in the definition means that∑
i∈I ei = 1.

Example 5.9.6. Let X be a scheme (or even an algebraic stack) and let (ei)i∈I
be a discrete o.i.d. of Qcoh(X). Then Xi := D(ei) = V (e⊥i ) is open and closed
in X and we have X =

∐
i∈I Xi. Conversely, if X =

∐
i∈I Xi then there is a

unique idempotent ei ∈ Γ(X,OX) ∼= End(OX) with ei|Xj = δij for all j ∈ I and
(ei)i∈I is a discrete o.i.d. of Qcoh(X). Hence, coproduct decompositions of X
correspond to the discrete o.i.d. of Qcoh(X).

Proposition 5.9.7. The category of o.i.d. of C is equivalent to the category of
discrete o.i.d. of C.

Proof. Let (σi : Ei → O) be an o.i.d. For each i ∈ I, we have an idempotent
endomorphism ei : O → O defined via the corresponding idempotent endomor-
phism of

⊕
j Ej which projects onto Ei. Thus, we have eiσi = σi and eiσj = 0 for

i 6= j. This defines ei. For i 6= j we have eiej = 0: It suffices to prove eiejσk = 0
for all k. For k 6= j this is clear and for k = j we have eiejσj = eiσj = 0. It is

clear that OC ∼=
⊕

j Ej � Ei
σi−→ O is the image factorization of ei. From this it

follows that (ei) is a discrete o.i.d.

Let α : (σi : Ei → O) → (τi : Fi → O) be a morphism between o.i.d. We
already know that it is a unique isomorphism. We claim that the corresponding
idempotents ei, fi are equal: We have eiτiαi = eiσi = σi = τiαi, hence eiτi = τi.
For i 6= j we have eiτjαj = eiσj = 0, hence eiτj = 0. This means that ei satisfies
the defining properties of fi, hence ei = fi.

This defines a functor from o.i.d. to discrete o.i.d., which is clearly faithful. It
is essentially surjective: Given a discrete o.i.d. (ei)i∈I we may consider the o.i.d.
(im(ei) ↪→ O)i∈I whose corresponding discrete o.i.d. is clearly the given one.

In order to show fullness, let (σi : Ei → O) and (τi : Fi → O) be two o.i.d. whose
discrete o.i.d. are equal, ei = fi. Then we have fiσi = σi. Define αi : Ei → Fi to
be the composition

Ei
σi−→ O

∼=−→
⊕
j

Fj � Fi.

We have to prove τiαi = σi. This is a consequence of the following commutative
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diagram:

Ei
σi //

σi
!!

σi

��

O
∼= //

fi
��

⊕
j Fj

��

OC

fi}}

OC Fi

τi

cc

τi
oo

In the following, we will not distinguish between o.i.d. and discrete o.i.d.

Example 5.9.8. Let C =
∏

i∈I Ci be a product. Then (Oi → O)i∈I is an o.i.d.
of C, where Oi is defined by (Oi)i = OCi and (Oi)j = 0 for j 6= i. Conversely:

Proposition 5.9.9. Let C be a cocomplete tensor category and let (ei)i∈I be an
o.i.d. of C. Then the localizations C → Cei induce an equivalence C '

∏
i∈I Cei.

In fact, the category of o.i.d. of C is equivalent to the category of product decom-
positions of C.

Proof. Recall from subsection 5.8.3 that the localization Cei consists of those
M ∈ C such that ei ⊗M : M → M or equivalently σi ⊗M : Ei ⊗M → M
is an isomorphism. This happens if and only if Ej ⊗ X = 0 for all j 6= i. The
localization functor C → Cei maps M to Ei ⊗M . The isomorphism

⊕
iEi
∼= O

gives an isomorphism
⊕

i(Ei ⊗M) ∼= M and we have Ei ⊗M ∈ Cei . Now the
Proposition easily follows.

Since o.i.d. are preserved by cocontinuous tensor functors, this implies:

Proposition 5.9.10. Let (Ci)i∈I be a family of cocomplete tensor categories and
C =

∏
i∈I Ci. For every cocomplete tensor category D there is an equivalence of

categories

Homc⊗(C,D) ' {(ei)i∈I o.i.d. of D, F ∈
∏
i∈I

Homc⊗(Ci,Dei)}

Corollary 5.9.11. Tensorial stacks are closed under arbitrary coproducts.

Proof. Let X =
∐

iXi be a coproduct of tensorial stacks and Y be any scheme.
Since Qcoh(X) '

∏
i∈I Qcoh(Xi), Homc⊗(Qcoh(X),Qcoh(Y )) identifies with the

category of o.i.d. (ei)i∈I of Qcoh(Y ), i.e. coproduct decompositions Y =
∐

i Yi,
together with objects of

Homc⊗(Qcoh(Xi),Qcoh(Y )ei) ' Homc⊗(Qcoh(Xi),Qcoh(Yi)) ' Hom(Yi, X).

This identifies with the set of morphisms Y → X.
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5.10 Projective tensor categories

5.10.1 Definition and comparison to schemes

Remark 5.10.1. Let S be a scheme and A be some N-graded quasi-coherent
algebra on S such that A is generated by A1. Then ProjS(A) is a scheme with
the following well-known universal property (see [Sta13, Tag 01O4]): The set
of morphisms T → ProjS(A) is equivalent to the (essentially discrete) category
of triples (f,L, s), where f : T → S is a morphism, L is a line bundle on T
and s : f ∗(A) →

⊕
n L⊗n is a homomorphism of N-graded algebras such that

s1 : f ∗(A1) → L is an epimorphism. Notice that it follows automatically that
sn : f ∗(An) → L⊗n is an epimorphism for all n ∈ N+, since A⊗n1 → An is an
epimorphism.

We globalize this as follows:

Definition 5.10.2 (Projective tensor categories). Let C be a cocomplete tensor
category, A a commutative N-graded algebra in C which is generated by A1.
Then we define Proj⊗C (A) to be a cocomplete tensor category with the follow-
ing universal property (if it exists): If D is a cocomplete tensor category, then
Homc⊗(Proj⊗C (A),D) is naturally equivalent to the category of triples (F,L, s),
where F : C → D is a cocontinuous tensor functor, L ∈ D is a line object
and s : F (A) →

⊕
n L⊗n is a homomorphism of graded algebras in C such that

s1 : F (A1)→ L is a regular epimorphism in D. We call Proj⊗C (A) the projective
tensor category over C associated to A.

Remark 5.10.3. It follows automatically that sn : F (An) → L⊗n is a regular
epimorphism for all n ∈ N+. In fact, if s1 : F (A1)→ L is a regular epimorphism,
by Lemma 3.1.20 the same is true for F (A1)⊗n → L⊗n. Since it factors as
F (A1)⊗n = F (A⊗n1 ) � F (An)

sn−→ L⊗n, we infer that sn is a regular epimorphism.

Remark 5.10.4 (Universal triple). The definition of Proj⊗C (A) includes a (uni-
versal) triple (P,O(1), x), where P : C → Proj⊗C (A) is a cocontinuous tensor
functor, O(1) is a line object in Proj⊗C (A) and x : P (A) →

⊕
nO(1)⊗n a homo-

morphism of graded algebras such that x1 : P (A1) → O(1) is a regular epimor-
phism. We may write O(n) := O(1)⊗n.

Definition 5.10.5 (Projective bundle tensor categories). If C is a cocomplete
tensor category and E ∈ C, we define P⊗C (E) := Proj⊗C (Sym(E)). Thus, by
definition Homc⊗(P⊗C (E),D) is equivalent to the category of triples (F,L, s),
where F : C → D is a cocontinuous tensor functor, L ∈ D is a line object and
s : F (E)→ L is a regular epimorphism. If n ∈ N, we define PnC := P⊗C (O⊕(n+1)

C ).
For example, we have P⊗C (O) = P0

C = C by Corollary 4.8.11.
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Theorem 5.10.6 (Existence of projective tensor categories). Let C be a pre-
sentable tensor category and A a commutative N-graded algebra in C which is
generated by A1. Then Proj⊗C (A) exists and it is again a presentable tensor cat-
egory.
Explicitly, the underlying category of Proj⊗C (A) is the full subcategory of grMod(A)
consisting of those graded A-modules M such that the canonical diagram of graded
A-modules

M → Hom(A1,M [1]) ⇒ Hom(A1 ⊗ A1,M [2])

is exact. It is reflective, the reflector being the transfinite composition of the
functor R1 : grMod(A)→ grMod(A) defined by

R1(M) = eq
(
Hom(A1,M [1]) ⇒ Hom(A1 ⊗ A1,M [2])

)
.

Proof. We know the universal property of grMod(A) by Proposition 5.4.13: It
classifies triples (F,L, s) where s : F (A) →

⊕
n L⊗n is any homomorphism of

graded algebras. According to Lemma 4.8.9, s1 : F (A1) → L is a regular epi-
morphism if and only if the sequence F (A1) ⊗ F (A1) ⊗ L⊗−1 ⇒ F (An) → L is
exact. Now we may apply Theorem 5.8.12 to construct

Proj⊗C (A) := grMod(A)/(A1 ⊗ A1 ⊗ A[−1] ⇒ A1 ⊗ A→ A[1] exact)

with the desired universal property.

Corollary 5.10.7. If C is a presentable tensor category and E ∈ C, then P⊗C (E)
exists. It is given by the full subcategory of grMod(Sym(E)) consisting of those
graded E-modules such that the canonical diagram

M → Hom(E,M [1]) ⇒ Hom(E⊗2,M [2])

of graded E-modules is exact.

Remark 5.10.8. If C is linear, we could also define “anti-projective” tensor cat-
egories for graded-commutative algebras in C which classify anti -line quotients.

Remark 5.10.9. If we omit “regular” from the definition of P⊗C (E), we obtain
another cocomplete tensor category P′⊗C (E) which can be realized as the category
of graded E-modules for which M → Hom(E,M [1]) is just a monomorphism.
For example, P′⊗C (1) consists of sequences

. . . ↪→Mn ↪→Mn+1 ↪→ . . .

of monomorphisms in C, whereas P⊗C (1) = C.

Example 5.10.10. Let C be a presentable tensor category. Then PnC is the uni-
versal example of a cocomplete tensor category “over C” with a line object L
and n + 1 global sections xi : O → L for 0 ≤ i ≤ n such that x : O⊕d+1 → L
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5.10. Projective tensor categories

is a regular epimorphism. Using Theorem 5.8.12 we can enforce further rela-
tions between these global sections. For example, we may construct the “Fer-
mat tensor category” P2

C/(x
⊗d
0 + x⊗d1 = x⊗d2 ) for d ∈ Z. It is equivalent to

Proj⊗C (OC[x0, x1, x2]/(xd0 + xd1 = xd2)). We may also consider the localization
(PnC)xi at the section xi (subsection 5.8.3), which is clearly isomorphic to the
affine space An

C (Example 5.3.8) with variables {x−1
i xj : j 6= i}.

Theorem 5.10.11 (Comparison to schemes). Let S be an arbitrary scheme and
A be an N-graded quasi-coherent algebra on S which is generated by A1 and such
that A1 is a quasi-coherent module of finite presentation over S. There is an
equivalence of cocomplete tensor categories

Proj⊗Qcoh(S)(A) ' Qcoh(ProjS(A)).

Proof. The universal property of ProjS(A) recalled in Remark 5.10.1 yields a
universal triple (p,O(1), s), where p : ProjS(A)→ S is the structure morphism,
inducing a cocontinuous tensor functor

p∗ : Qcoh(S)→ Qcoh(ProjS(A)),

O(1) is the Serre twist and s : p∗A →
⊕

nO(n) is a homomorphism of graded
algebras such that s1 is an epimorphism. Since the category of quasi-coherent
modules is abelian, s1 is automatically a regular epimorphism. By the defining
universal property of Proj⊗Qcoh(S)(A) we get a cocontinuous tensor functor

Proj⊗Qcoh(S)(A)→ Qcoh(ProjS(A)).

We have to show that it is an equivalence of categories. Recall ([GD61a, 3.4.4])
that there is a cocontinuous tensor functor

grMod(A)→ Qcoh(ProjS(A)), M 7→ M̃

with a fully faithful right adjoint

Γ∗ : Qcoh(ProjS(A))→ grMod(A).

Thus, Qcoh(ProjS(A)) identifies with the full subcategory of grMod(A) consisting
of those graded A-modules M such that the unit morphism

M → Γ∗(M̃)

is an isomorphism. We would like to compare this with the description of
Proj⊗Qcoh(S)(A) in Theorem 5.10.6. Notice that since A1 is of finite presenta-

tion, Hom(A1,−) is the usual homomorphism sheaf (Lemma 2.2.1). This shows
that we may work locally on S. Let’s assume that S = Spec(k) is affine. Then
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Chapter 5. Constructions with cocomplete tensor categories

A is just an N-graded k-algebra. Choose a finite generating set B of A1 as a
module over k. If M is a graded A-module, we compute

Γ∗(M̃) =
⊕
n∈Z

Γ(Proj(A), M̃ [n]) =
⊕
n∈Z

eq

(⊕
f∈B

M [n](f) ⇒
⊕
f,g∈B

M [n](fg)

)
.

Thus, M belongs to the full subcategory ' Qcoh(ProjS(A)) if and only if

(1) M →
⊕
f∈B

Mf ⇒
⊕
f,g∈B

Mfg

is an exact sequence of graded A-modules (“M believes to be a sheaf on Proj”).
We have to show that this is equivalent to the condition that

(2) M → Hom(A1,M [1]) � Hom(A1 ⊗ A1,M [2])

is an exact sequence of graded A-modules (“M believes the universal property
of Qcoh(Proj)”).

Proof of (1) ⇒ (2): Let φ : A1 → Mp+1 be a k-linear map with the property

f · φ(g) = g · φ(f) for all f, g ∈ A1. Then (φ(f)
f

)f∈B ∈
⊕

f∈BMf lies in the

equalizer of (1) in degree p. Hence, there is a unique m ∈Mp such that φ(f)
f

= m
1

in each Mf . Choose some k ∈ N with fkφ(f) = fk+1m in M . For an arbitrary
g ∈ B we have

fk+1φ(g) = fkfφ(g) = fkgφ(f) = gfk+1m

and hence φ(g) = gm in Mf . By injectivity in (1) it follows that this holds in
M . This shows that m ∈Mp is a preimage of φ.

Proof of (2) ⇒ (1): We first show injectivity of M →
⊕

f∈BMf . Let m ∈ Mp

be in the kernel. Since B is finite, there is some k ∈ N such that fk ·m = 0 for all
f ∈ B. Let n ≥ k ·#B. Then we have f1 · . . . · fn ·m = 0 for all f1, . . . , fn ∈ A1.
Applying injectivity of (2), we get f2 · . . . · fn ·m = 0. It follows by induction on
n that m = 0.

Now let (
mf
fk

)f∈B be contained in the equalizer of
⊕

f∈BMf ⇒
⊕

f,g∈BMfg and
of degree p. Since B is finite, we may choose k to be independent from f . Let
f, g ∈ B. Since

mf
fk

= mg
gk

in Mfg, we have (fg)lfkmg = (fg)lgkmf in M for some

l ∈ N. Then nf := f lmf satisfies
mf
fk

=
nf
fk+l

and fk+lng = gk+lnf . Thus, we may

assume that l = 0, i.e. gkmf = fkmg.

Let n ≥ k · #B. We claim that for all l ≤ n and for all a ∈ Ak there is
a unique element φ(a) ∈ Ml+p with the property that for all f ∈ B we have
fk · φ(a) = a ·mf in Ml+p+k. We have already seen uniqueness above. Note that
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5.10. Projective tensor categories

for l = 0 and a = 1 this is exactly what we want, because then φ(1) is the desired
preimage in Mp.

We proceed by descending induction on l. We start with l = n. Then we may
assume that a = f1 ·. . .·fn with f1, . . . , fn ∈ B. The choice of n implies that there
are k indices, say 1, . . . , k, with g := f1 = . . . = fk. Let φ(a) := fk+1 · . . . ·fn ·mg.
This is contained in An−kMp+k ⊆Mn+p. Then, for every f ∈ B, we have

fkφ(a) = f1 . . . fn−kf
kmg = f1 . . . fn−kg

kmf = amf .

Now let us assume that the claim is true for l + 1. We may assume again that
a = f1 · . . . · fl with fi ∈ B. By induction hypothesis we can consider the map
A1 → Ml+p+1, x 7→ φ(xf1 . . . fl). It is k-linear (this follows easily from the
uniqueness assumption). For f, g, h ∈ B we have

hkfφ(gf1 . . . fl) = fgf1 . . . flmh = hkgφ(ff1 . . . fl).

By the injectivity part, this implies fφ(gf1 . . . fl) = gφ(ff1 . . . fl). By the as-
sumption (2) there is a unique φ(a) ∈ Ml+p such that φ(gf1 . . . fl) = gφ(a) for
all g ∈ B. We claim that φ(a) has the desired property fkφ(a) = amf for f ∈ B.
This follows from the computation

gk+1fkφ(a) = gkfkgφ(a) = (fg)kφ(gf1 . . . fl) = gkgf1 . . . flmf = gk+1amf .

Remark 5.10.12. A similar proof shows directly that Qcoh(ProjS(A)) satisfies
the universal property of Proj⊗Qcoh(S)(A) without using the existence of the latter.

Example 5.10.13. We do not really have to restrict to tensor categories or
schemes over Z. We have constructed for example PnMod(F1) = Qcoh(PnF1

), where

F1 is the field with one element and Mod(F1) := Set∗ is the cocomplete tensor
category of pointed sets. We refer to [vBHS11] for the classification of dualizable
objects of Qcoh(PnF1

).

Lemma 5.10.14. Let C be a presentable tensor category and let A be a com-
mutative N-graded algebra in C which is generated by A1. If we denote by
R : grMod(A) → Proj⊗(A) the reflector in Theorem 5.10.6, then R maps the
inclusion A[1]≥0 ↪→ A[1] to an isomorphism.

Proof. Let (P,O(1), x) be the universal triple (Remark 5.10.4). Notice that A[1]
is concentrated in degrees ≥ −1, so that A[1]≥0 6= A[1] in grMod(A). The
diagram

A⊗2
1 ⊗ A[−1] ⇒ A1 ⊗ A→ A[1]≥0

commutes and A1⊗A→ A[1]≥0 is an epimorphism. By applying R, we get that

P (A1)⊗2 ⊗O(−1) ⇒ P (A1)→ R(A[1]≥0)
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Chapter 5. Constructions with cocomplete tensor categories

also commutes and P (A1)→ R(A[1]≥0) is an epimorphism. Since

P (A1)⊗2 ⊗O(−1) ⇒ P (A1)→ O(1)

is exact in Proj⊗(A), there is a morphism O(1) → R(A[1]≥0) lying over P (A1).
Conversely, we have a morphism R(A[1]≥0)→ R(A[1]) = O(1) lying over P (A1).
Since both sides are quotients of P (A1), the morphisms are inverse to each other.

Proposition 5.10.15 (Base change). Let C be a cocomplete tensor category
and A be a commutative N-graded algebra in C which is generated by A1. Let
H : C → D be a cocontinuous tensor functor. Then B := H(A) is a commutative
N-graded algebra in D which is generated by B1 and there is a 2-pushout square

C //

��

Proj⊗C (A)

��

D // Proj⊗D(B)

provided that the projective tensor categories exist.

Proof. Let E be a cocomplete tensor category. Then we have natural equivalences
of categories

Homc⊗(D, E)×Homc⊗(C,E) Homc⊗(Proj⊗C (A), E)

' {(F, (G,L, s), σ) : F ∈ Homc⊗(D, E), G ∈ Homc⊗(C, E), L ∈ E
line object, s : G(A) � ⊕nL⊗n, s1 regular, σ : FH ∼= G}

' {(F,L, s) : F ∈ Homc⊗(D, E), L ∈ E line object, s : F (B) � ⊕nL⊗n,
s1 regular}

' Homc⊗(Proj⊗D(B), E).

5.10.2 Blow-ups

Let X be a scheme and consider a closed subscheme V (I) ⊆ X. Recall that the
blow-up

BlI(X) = ProjX
(⊕
n≥0

In
)

of X at V (I) has a morphism p : BlI(X) → X which is universal with respect
to the property that p pulls back the closed subscheme V (I) ⊆ X to an effective
Cartier-Divisor on BlI(X) ([Sta13, Tag 0806]). The latter property means that
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the ideal p∗I · OBlI(X) becomes invertible. One has to be careful here as for the
meaning of the word “universal”: The blow-up does not represent the “functor”

Schop → Set, Y 7→ {f ∈ Hom(Y,X) : f ∗I · OY ⊆ OY invertible},

as one might expect, for the trivial reason that this is not a functor at all! If
f ∗I · OY is invertible and g : Z → Y is a morphism which is not flat, there is no
reason why g∗f ∗I · OZ is invertible. It is just an ideal of OZ which is a quotient
of the invertible quasi-coherent module g∗(f ∗I ·OY ).

However, p : BlI(X) → X is a terminal object in the category of X-schemes
f : Y → X such that f ∗I · OY is invertible (loc.cit.). The latter is by definition
a full subcategory of Sch /X.

Now we are ready to globalize blow-ups. In order to apply ideal theory (sec-
tion 4.2) we assume that all tensor categories here are presentable and balanced.

Definition 5.10.16 (Image of ideals). Let F : C → D be a cocontinuous ten-
sor functor between presentable tensor categories. Let I ⊆ OC be an ideal (i.e.
simply a subobject). The induced morphism F (I) → F (OC) ∼= OD has a fac-
torization F (I) → J → OD for some regular epimorphism F (I) → J and a
monomorphism J → OD. We write J = F (I) · OD.

Remark 5.10.17. One readily checks the compatibilities idC(I) · OC = I and
(GF )(I) · OE = G(F (I) · OD) · OE for another G : D → E . The construction also
commutes with ideal products: If I, J ⊆ OC are ideals, then

(F (I) · OD) · (F (J) · OD) = F (I · J) · OD.

In fact, we observe that each side is the smallest ideal K ⊆ OD with the property
that F (I ⊗ J) ∼= F (I)⊗ F (J)→ OD factors through K.

Example 5.10.18. Let f : Y → X be a morphism of schemes and I ⊆ OX be
a quasi-coherent ideal. Then f ∗(I) · OY = Im(f ∗I → f ∗OX ∼= OY ) is an ideal of
OY . If X = Spec(R) and Y = Spec(S) are affine, then I corresponds to an ideal
I ⊆ R and the induced ideal of S is usually denoted by I · S.

Definition 5.10.19 (Blow-ups of tensor categories). Let C be a presentable
tensor category and let I ⊆ OC be an ideal. The blow-up of C at I is an 2-initial
presentable tensor category BlI(C) equipped with a cocontinuous tensor functor
P : C → BlI(C) such that P (I) · OBlI(C) is a line object.

In other words, if F : C → D is a cocontinuous tensor functor to a presentable
tensor category D such that the ideal F (I) · OD is a line object, then there
is essentially a unique cocontinuous tensor functor H : BlI(C) → D with an
isomorphism HP ∼= F .
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Chapter 5. Constructions with cocomplete tensor categories

Actually it suffices to demand that F (I) ·OD is invertible (since OD is symtrivial
and this property descends to flat ideals of OD).

Theorem 5.10.20. Let C be a presentable tensor category and let I ⊆ OC be an
ideal. Then BlI(C) exists. It is given by Proj⊗C (A), where

A =
⊕
n≥0

In

and In is the ideal product of n copies of I and the multiplication of A is induced
by InIm = In+m.

Proof. We use Theorem 5.10.6. Let P : C → B := Proj⊗C (A), O(1) ∈ B and
x : P (A) →

⊕
n≥0 O(n) be the universal triple (Remark 5.10.4). We claim

P (I) · OB = O(1). In fact, we have

(I ⊗ A) · A =
⊕
n≥0

In+1 = A[1]≥0

in grMod(A) and by Lemma 5.10.14 the inclusion A[1]≥0 ↪→ A[1] becomes an
isomorphism in B. In particular, P (I) · OB is a line object. Now let F : C → D
be as above such that L := F (I) · OD is a line object. Since L is flat, for every
n ≥ 0 the ideal product Ln coincides with the tensor power L⊗n. It follows
F (In) · OD = L⊗n. In particular, there is a regular epimorphism F (In) → L⊗n.
These induce a homomorphism of graded algebras

s :
⊕
n≥0

F (In)→
⊕
n≥0

L⊗n.

Therefore, by Definition 5.10.2 the triple (F,L, s) corresponds to a cocontinuous
tensor functor B → D extending F . Conversely, assume that G : B → D is a
cocontinuous tensor functor with an isomorphism GP ∼= F . Then we have an
epimorphism

G(O(1)) � G(O(1)) · OD = G(P (I) · OB) · OD ∼= F (I) · OD = L

between line objects lying over F (I). By Lemma 4.8.13 it has to be an isomor-
phism. This shows that G is unique.

Proposition 5.10.21 (Base change). Let F : C → D be a cocontinuous tensor
functor between presentable tensor categories and let I ⊆ OC be an ideal. Assume
that F preserves monomorphisms. Then J := F (I) ⊆ OD is an ideal and we
have a 2-pushout of cocomplete tensor categories

C //

��

D

��

BlI(C) // BlJ(D).
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Proof. We use Theorem 5.10.20. By Proposition 5.10.15 the 2-pushout exists
and is given by Proj⊗D(B), where B =

⊕
n≥0 F (In). Since F preserves monomor-

phisms, we have F (In) = F (I)n = Jn as ideals of OD.

Theorem 5.10.22 (Comparison to schemes). Let X be a scheme and let I ⊆ OX
be a quasi-coherent ideal of finite presentation. Then there is an equivalence of
cocomplete tensor categories

Qcoh
(
BlI(X)

)
' BlI

(
Qcoh(X)

)
.

Proof. This follows from Theorem 5.10.20 and Theorem 5.10.11.

Example 5.10.23 (Blow-up of the affine plane). Let us look at the standard
example. Let X = A2

R = Spec(R[s, t]) and I = (s, t). Then A =
⊕

n≥0 I
n is

generated by the elements s, t in degree 1 subject to the single relation s ·t = t ·s,
where the factors on the left come from degree 0. In other words, there is an
isomorphism OX [U, V ]/(sV − tU) ∼= A with U 7→ s and V 7→ t. It follows that
BlI(X) is the closed subscheme of P1

X = ProjX(OX [U, V ]) which is cut out by
the equation sV = tU . Now Theorem 5.10.11 implies that Qcoh(BlI(X)) is the
initial R[s, t]-linear cocomplete tensor category equipped with a line object L
and two global sections U, V : O → L such that sV = tU and which generate
L in the sense that (U, V ) : O2 → L is a regular epimorphism. On the other
hand, by Theorem 5.10.22 this is also the initial R[s, t]-linear presentable tensor
category C with the property that the ideal (s, t) · OC ⊆ OC is invertible. The
correspondence is given by L = (s, t) · OC, U = s, V = t.

5.10.3 The Segre embedding

Let S be a scheme and E1, E2 quasi-coherent modules on S. The usual Segre
embedding ([GD71, 9.8.6]) is a closed immersion

φ : P(E1)×S P(E2) ↪→ P(E1 ⊗ E2),

which on T -valued points maps a pair of invertible quotients of E1|T and E2|T to
their tensor product, which is an invertible quotient of (E1 ⊗ E2)|T . The usual
proof that φ is a closed immersion works locally. But it is also possible to find
global equations in Sym(E1 ⊗ E2) which cut out the embedding, namely

(a⊗ b) · (c⊗ d) = (a⊗ d) · (c⊗ b)

for local sections a, c of E1 and b, d of E2. In other words, we have a correspon-
dence between invertible quotients s1 : E1 → L1, s2 : E2 → L2 and invertible
quotients s : E1 ⊗ E2 → L such that the Segre relations hold in L ⊗ L:

s(a⊗ b)⊗ s(c⊗ d) = s(a⊗ d)⊗ s(c⊗ b)
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We would like to prove this correspondence in arbitrary cocomplete tensor cat-
egories. It is clear how to get s from s1 and s2, namely via s = s1 ⊗ s2. But
for the converse one has to globalize the usual local constructions. Roughly, the
idea is as follows: If s = s1 ⊗ s2, then we have the relation

s1(a)⊗ s(c⊗ b) = s1(c)⊗ s(a⊗ b).

Conversely, given s, we define s1 to be the universal solution for these relations.
We will work this out in detail.

Theorem 5.10.24 (Segre relations). Let C be a cocomplete tensor category and
E1, E2 ∈ C. Then there is an equivalence between the category of line objects
L1,L2 with regular epimorphisms s1 : E1 → L1, s2 : E2 → L2 and the category
of line objects L with a regular epimorphism s : E1⊗E2 → L satisfying the Segre
relations: The diagram

E1 ⊗ E2 ⊗ E1 ⊗ E2 s⊗s
((

∼=

��

L ⊗ L

E1 ⊗ E2 ⊗ E1 ⊗ E2
s⊗s

66

commmutes, where the vertical isomorphism is induced by the symmetry SE2,E2.
In element notation, this relation can be written as

s(a⊗ b)⊗ s(c⊗ d) = s(a⊗ d)⊗ s(c⊗ b) ∈ L ⊗ L

for a, c ∈ E1 and b, d ∈ E2.

Proof. Let A be the category of all (L1, s1,L2, s2) and let B be the category of all
(L, s) satisfying the Segre relations. According to Lemma 4.8.13 both categories
are essentially discrete. There is an obvious functor A→ B given by L = L1⊗L2

and s = s1 ⊗ s2. Note that s : E1 ⊗ E2 → L1 ⊗ L2 is a regular epimorphism
(Lemma 3.1.20) satisfying the Segre relations: Since L2 is symtrivial, we have

s(a⊗ b)⊗ s(c⊗ d) = s1(a)⊗ s2(b)⊗ s1(c)⊗ s2(d)

= s1(a)⊗ s2(d)⊗ s1(c)⊗ s2(b) = s(a⊗ d)⊗ s(c⊗ b).

The action on morphisms is clear. The functor B → A is more complicated. Let
L be a line object and let s : E1 ⊗ E2 → L be a regular epimorphism satisfying
the Segre relations s(a⊗b)⊗s(c⊗d) = s(a⊗d)⊗s(c⊗b), i.e. we can interchange
the two “elements” of E2. But the same is true for E1 as well, using that L is
symtrivial:

s(a⊗ b)⊗ s(c⊗ d) = s(c⊗ d)⊗ s(a⊗ b) = s(c⊗ b)⊗ s(a⊗ d)
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Thus, actually there are two Segre relations, but they imply each other. Consider
the two morphisms

E⊗2
1 ⊗ E2 ⇒ E1 ⊗ L

defined by a ⊗ c ⊗ b 7→ a ⊗ s(c ⊗ b) (i.e. E1 ⊗ s) resp. c ⊗ s(a ⊗ b) (i.e.
(E1 ⊗ s) ◦ (SE1,E1 ⊗ E2)). These correspond to morphisms

E⊗2
1 ⊗ E2 ⊗ L⊗−1 ⇒ E1.

We define s1 : E1 → L1 to be an coequalizer of these morphisms. It follows that
s1 ⊗L : E1 ⊗L → L1 ⊗L is the coequalizer of the two morphisms defined first.
In particular, this means s1(a)⊗ s(c⊗ b) = s1(c)⊗ s(a⊗ b). Define s2 : E2 → L2

analogously. Hence, we have s2(b)⊗ s(a⊗ d) = s2(d)⊗ s(a⊗ b). We claim that
(L1, s1,L2, s2) is an object in A. For this we claim:

1. L1 and L2 are symtrivial.

2. There is an isomorphism L1 ⊗ L2
∼= L such that the diagram

E1 ⊗ E2

s

##

s1⊗s2

xx

L1 ⊗ L2 ∼=
// L

commutes.

3. L1 and L2 are line objects.

Proof of 1. For L1 it suffices to prove that s1(a) ⊗ s1(a′) = s1(a′) ⊗ s1(a) for
a, a′ ∈ E. Let us introduce additional parameters c ∈ E1, d ∈ E2 and compute

s1(a)⊗ s1(a′)⊗ s(c⊗ d) = s1(a)⊗ s1(c)⊗ s(a′ ⊗ d)

= s1(a′)⊗ s1(c)⊗ s(a⊗ d) = s1(a′)⊗ s1(a)⊗ s(c⊗ d).

Since s is an epimorphism, by Lemma 4.8.7 this implies the desired equation.
(This kind of tensoring with an epimorphism replaces the usual local calculations
in the case of schemes.)

Proof of 2. By Lemma 3.1.20 and Lemma 4.8.9 we have two coequalizer diagrams

(E1 ⊗ E2)⊗2 ⇒ E1 ⊗ E2 ⊗ L
s⊗L−−→ L⊗2

(
E⊗2

1 ⊗ E2

)
⊗ E2 ⊕ E1 ⊗

(
E⊗2

2 ⊗ E1

)
⇒ E1 ⊗ E2 ⊗ L

s1⊗s2⊗L−−−−−→ L1 ⊗ L2 ⊗ L.

Thus, in order to construct a morphism L1⊗L2⊗L → L⊗2 over the epimorphisms
from E1 ⊗ E2 ⊗ L, it suffices to prove that the two morphisms(

E⊗2
1 ⊗ E2

)
⊗ E2 ⊕ E1 ⊗

(
E⊗2

2 ⊗ E1

)
⇒ E1 ⊗ E2 ⊗ L

s⊗L−−→ L⊗2
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agree. On the first summand, this means that

s(a⊗ d)⊗ s(c⊗ b) = s(c⊗ d)⊗ s(a⊗ b).

On the second summand, this means that

s(a⊗ b)⊗ s(c⊗ d) = s(a⊗ d)⊗ s(c⊗ b).

But these are just the Segre relations. Next, in order to construct a morphism
L⊗2 → L1⊗L2⊗L over E1⊗E2⊗L, it suffices to prove that the two morphisms

(E1 ⊗ E2)⊗2 ⇒ E1 ⊗ E2 ⊗ L
s1⊗S2⊗L−−−−−→ L1 ⊗ L2 ⊗ L

agree, which means that

s1(c)⊗ s2(d)⊗ s(a⊗ b) = s1(a)⊗ s2(b)⊗ s(c⊗ d).

But this follows easily from the definitions of s1 and s2 above. First we inter-
change a and c, and then d and b.

We have constructed an isomorphism L⊗2 → L1 ⊗L2 ⊗L over E1 ⊗E2 ⊗L, i.e.
an isomorphism L ∼= L1 ⊗ L2 over E1 ⊗ E2.

Proof of 3. From 2. we know that L1 ⊗ L2
∼= L is invertible. It follows that L1

(and likewise L2) is invertible with L⊗−1
1 = L2 ⊗ L⊗−1. By 1., L1 and L2 are

symtrivial. Hence, L1 and L2 are line objects.

This finishes the proof that (L1, s1,L2, s2) is in A. The action on morphisms
is as follows: Given an isomorphism α : L → L′ from s : E1 ⊗ E2 → L to
s′ : E1 ⊗ E2 → L′, there is a unique isomorphism α1 : L1 → L′1 with α1s1 = s′1
and similarly α2 : L2 → L′2.

We have already seen in 2. that the composition B → A → B is isomorphic
to the identity. For the other composition, start with (L1, s1,L2, s2) in A and
construct (L, s) = (L1 ⊗ L2, s1 ⊗ s2). We have to prove that

E⊗2
1 ⊗ E2 ⊗ L⊗−1 ⇒ E1

s1−→ L1

is a coequalizer, where the two morphisms correspond to E⊗2
1 ⊗ E2 ⇒ E1 ⊗ L,

a ⊗ c ⊗ b 7→ a ⊗ s(c ⊗ b) = a ⊗ s1(c) ⊗ s2(b) resp. c ⊗ s1(a) ⊗ s2(b). So let
h : E1 → T be a morphism which coequalizes the two morphisms, i.e. we have
h(a)⊗ s1(c)⊗ s2(b) = h(c)⊗ s1(a)⊗ s2(b) for all a, c ∈ E1 and b ∈ E2. Since s2 is
an epimorphism, this means that h(a) ⊗ s1(c) = h(c) ⊗ s1(a). By Lemma 4.8.9
this means that h factors uniquely through s1. Of course the same argument
works for s2. This finishes the proof that A → B → A is isomorphic to the
identity.
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5.10. Projective tensor categories

Corollary 5.10.25 (Segre embedding). Let C be a cocomplete tensor category
and E1, E2 ∈ C. Then there is an equivalence of cocomplete tensor categories
(using element notation)

P⊗C (E1)tCP⊗C (E2) ' P⊗C (E1⊗E2)/((a⊗ b) · (c⊗d) = (a⊗d) · (c⊗ b))a,c∈E1, b,d∈E2 .

Example 5.10.26. The classical Segre embedding

P1
C × P1

C ↪→ P3
C, ([a : b], [c : d]) 7→ [ac : ad : bc : bd]

whose image is cut out by x0x3 = x1x2 globalizes as follows:

There is an equivalence of cocomplete tensor categories

P1
C tC P1

C ' P3
C/(x0x3 = x1x2).

5.10.4 The Veronese embedding

The usual d-uple Veronese embedding νd : Pn ↪→ PN (with N =
(
n+d
d

)
− 1) has a

coordinate-free description and generalization: If E is a quasi-coherent module
on a scheme S, then there is a closed immersion

νd : P(E) ↪→ P(SymdE)

which maps on T -valued points an invertible quotient of E|T to its dth symmetric
power, which is an invertible quotient of SymdE|T . A reference for a special case
of this is Harris’ book [Har92, p. 25]. There, the assumption on the characteristic
is caused by a dualization process which is already built into Grothendieck’s
functorial definition of P(E) ([GD71, 9.7.5]), therefore we will not need any such
assumption. We now proceed similarly to the Segre embedding and will therefore
keep it shorter.

Theorem 5.10.27 (Veronese relations). Let C be a cocomplete tensor category,
E ∈ C and d ∈ N+. Then there is an equivalence between the category of line
objects L with a regular epimorphism s : E � L and the category of line objects
K with a regular epimorphism t : SymdE � K such that the Veronese relations
hold: The diagram

E⊗d ⊗ E⊗d // //

∼=

��

SymdE ⊗ SymdE
t⊗t
))

K ⊗K

E⊗d ⊗ E⊗d // // SymdE ⊗ SymdE

t⊗t 66
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Chapter 5. Constructions with cocomplete tensor categories

commutes, where the vertical isomorphism is induced by the symmetry which
interchanges the first tensor factors in the two E⊗d. In element notation, this
means that

t(v1 · v2 · . . . · vd)⊗ t(w1 · w2 · . . . · wd) = t(w1 · v2 · . . . · vd)⊗ t(v1 · w2 · . . . · wd).

This is also equivalent to the condition that t⊗2 : SymdE ⊗ SymdE → K ⊗ K
extends to a morphism Sym2dE → K⊗K.

Proof. Let A be the category of all (L, s) and let B be the category of all (K, t)
satisfying the Veronese relations. Both are essentially discrete. There is an
obvious functor A → B given by K = Symd L = L⊗d and t = Symd s. Notice
that t is a regular epimorphism by Proposition 4.4.4. In order to construct
B → A, let (K, t) ∈ B. There are two morphisms E ⊗E⊗d ⇒ E ⊗K defined by
w1⊗ v1⊗ . . .⊗ vd 7→ w1⊗ t(v1 · . . . · vd) resp. v1⊗ t(w1 · . . . · vd). Let s : E → L be
the coequalizer of the corresponding morphisms E ⊗ E⊗d ⊗K⊗−1 ⇒ E, so that
we have

s(w1)⊗ t(v1 · . . . · vd) = s(v1)⊗ t(w1 · . . . · vd).

In order to show that L is symtrivial, we calculate

s(w1)⊗ s(w′1)⊗ t(v1 · . . . · vd) = s(w1)⊗ s(v1)⊗ t(w′1 · . . . · vd)

= s(w′1)⊗ s(v1)⊗ t(w1 · . . . · vd) = s(w′1)⊗ s(w1)⊗ t(v1 · . . . · vd).

Since t is an epimorphism, this means s(w1) ⊗ s(w′1) = s(w′1) ⊗ s(w1), i.e. L is
symtrivial. Next we claim that there is an isomorphism L⊗d ∼= K over SymdE;
in particular L will be invertible, hence a line object. Looking at the coequalizer
diagrams (Lemma 4.8.9 and Proposition 4.4.4)

(SymdE)⊗2 ⇒ SymdE ⊗K t⊗K−−→ K⊗K

E ⊗ E⊗d ⊗ Symd−1 E ⇒ SymdE ⊗K Symd(s)⊗K−−−−−−→ L⊗d ⊗K

it suffices to prove the relations

s(v1)⊗ . . .⊗ s(vd)⊗ t(w1 · . . . · wd) = s(w1)⊗ . . .⊗ s(wd)⊗ t(v1 · . . . · vd),

t(w1 · w2 · . . . · wd)⊗ t(v1 · v2 · . . . · vd) = t(v1 · w2 · . . . · wd)⊗ t(w1 · v2 · . . . · vd).

The first relation follows inductively from the definition of s. The second is the
Veronese relation. This defines the functor B → A and shows that B → A→ B
is isomorphic to the identity. Conversely, given (L, s) and defining (K, t) by
(L⊗d, Symd s), we have to prove that

E ⊗ E⊗d ⊗K⊗−1 ⇒ E
s−→ L
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5.10. Projective tensor categories

is a coequalizer. If h : E → T is a morphism, then it coequalizes the two
morphisms if and only if h(w1)⊗ s(v1)⊗ . . .⊗ s(vd) = h(v1)⊗ s(w1)⊗ . . .⊗ s(vd).
Since s⊗d−1 is an epimorphism, this condition reduces to

h(w1)⊗ s(v1) = h(v1)⊗ s(w1).

According to Lemma 4.8.9 this means that h factors uniquely through s. This
finishes the proof that A→ B → A is isomorphic to the identity.

Corollary 5.10.28 (Veronese embedding). Let C be a cocomplete tensor cate-
gory, E ∈ C and d ∈ N+. Then there is an equivalence

P⊗C (E) ' P⊗C (Symd(E))/((a1a2 . . . ad) · (b1b2 . . . bd) = (b1a2 . . . ad)(a1b2 . . . bd)).

Example 5.10.29. The classical 2-uple Veronese embedding

P1 ↪→ P5, [a : b : c] 7→ [a2 : b2 : c2 : bc : ac : ab]

becomes

P1
C ' P5

C/(t0t1 = t25, t0t
2
4, t0t3 = t4t5, t1t2 = t23, t1t4 = t3t5, t2t5 = t3t4).

5.10.5 The Plücker embedding

Recall from [GD71, 9.8] the classical Plücker embedding from Grassmannians
into projective spaces: If S is a scheme, d ≥ 1 and E is a quasi-coherent module
on S, then there is a closed immersion

ω : Grassd(E) ↪→ P(Λd(E))

which maps on T -valued points a locally free quotient of rank d of E to its d-th
exterior power (or determinant), which is an invertible quotient of Λd(E). It is cut
out by the Plücker relations ([KL72]). We would like to globalize this, because
this will enable us to prove the existence of Grassmannians over cocomplete
tensor categories. In the following we fix d ≥ 1 and R is a commutative Q-
algebra (or at least d! ∈ R∗).

Theorem 5.10.30 (Plücker relations). Let C be an R-linear cocomplete tensor
category and E ∈ C. Then the category of pairs (V, t), where V ∈ C is a locally
free object of rank d and t : E → V is a regular epimorphism, is equivalent to
the category of pairs (L, s), where L ∈ C is a line object and s : Λd(E) → L
is a regular epimorphism which satisfies the Plücker relations: The morphism
Λd−1E ⊗ Λd+1E → L⊗L which maps a1 ∧ . . . ∧ ad−1 ⊗ b0 ∧ . . . ∧ bd to

d∑
k=0

(−1)ks(a1 ∧ . . . ∧ ad−1 ∧ bk)⊗ s(b0 ∧ . . . ∧ b̂k ∧ . . . ∧ bd)

(in element notation) has to vanish.
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Chapter 5. Constructions with cocomplete tensor categories

Proof. Let A be the category of pairs (V, t) and B be the category of pairs
(L, s) as in the claim. There is a functor A → B defined by mapping (V, t)
to (Λd(V ),Λd(t)). Notice that Λd(t) satisfies the Plücker relations because of
Remark 4.9.3 and that Λd(V ) is a line object by Proposition 4.9.5. Conversely,
let L be a line object and s : Λd(E)→ L be a regular epimorphism satisfying the
Plücker relations. Consider the morphism (see Corollary 4.4.13 for the definition
of ω)

Λd+1(E)
ω−→ E ⊗ Λd(E)

E⊗s−−→ E ⊗ L
and the corresponding morphism Λd+1(E) ⊗ L⊗−1 → E. Let t : E → V be its
cokernel. Thus, we have in element notation

(?) 0 =
d∑

k=0

(−1)kt(ak)⊗ s(a0 ∧ . . . ∧ âk ∧ . . . ∧ ad)

for all a0 ∧ . . . ∧ ad ∈ Λd+1(E). We claim that there is a unique isomorphism
Λd(V ) ∼= L such that the diagram

Λd(E)

s

!!

Λd(t)

zz

Λd(V ) ∼=
// L

commutes. By Lemma 4.8.9 and Proposition 4.4.4 we have two exact sequences

Λd(E)⊗ Λd(E) // Λd(E)⊗ L s⊗L // L ⊗ L // 0

Λd+1(E)⊗ Λd−1(E) // Λd(E)⊗ L Λd(t)⊗L
// // Λd(V )⊗ L // 0.

Therefore, the claim will follow once we show that the two compositions

1. Λd(E)⊗ Λd(E)→ Λd(E)⊗ L → Λd(V )⊗ L

2. Λd+1(E)⊗ Λd−1(E)→ Λd(E)⊗ L → L⊗ L

vanish. For 1. this means

t(a1) ∧ . . . ∧ t(ad)⊗ s(b1 ∧ . . . ∧ bd) = t(b1) ∧ . . . ∧ t(bd)⊗ s(a1 ∧ . . . ∧ ad),

which follows from (?) and Lemma 4.4.15. And 2. is precisely the content of the
Plücker relations for s.

In particular, Λd(V ) is invertible. In order to show that V is locally free of rank
d, we have to verify by Remark 4.9.3 that

0 =
d∑

k=0

(−1)kt(ak)⊗ t(a0) ∧ . . . ∧ t̂(ak) ∧ . . . ∧ t(ad).
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Since we have already proven Λdt ∼= s, this follows from (?). This finishes the
construction of the functor B → A and the proof that B → A→ B is isomorphic
to the identity. For the other direction, let (V, t) ∈ B and L := Λd(V ), s := Λd(t).
We have to prove that

Λd+1(E)⊗ L⊗−1 → E
t−→ V → 0

is exact. First of all, the composition Λd+1(E) ⊗ L⊗−1 → V resp. its dual
Λd+1(E)→ V ⊗ L maps a0 ∧ . . . ∧ ad to

d∑
k=0

(−1)kt(ak)⊗ t(a0) ∧ . . . ∧ t̂(ak) ∧ . . . ∧ t(ad),

which vanishes because V is locally free of rank d (Remark 4.9.3). Now let
h : E → T be a morphism such that Λd+1(E)⊗ L⊗−1 → E → T vanishes, i.e.

0 =
d∑

k=0

(−1)kh(ak)⊗ t(a0) ∧ . . . ∧ t̂(ak) ∧ . . . ∧ t(ad).

We have to prove that h factors uniquely through t. The argument is similar
to Lemma 4.8.9: Since t is a regular epimorphism, we find an exact sequence

K
r−→ E

t−→ V → 0. For c ∈ K we have t(r(c)) = 0 and therefore

h(r(c))⊗ t(a1)∧ . . .∧ t(ad) =
d∑

k=1

(−1)k+1h(ak)⊗ t(r(c))∧ t(a1)∧ . . .∧ t̂(ak)∧ . . .

vanishes. This shows hr ⊗ s = 0. By Lemma 4.8.7 this means hr = 0. Since t is
the cokernel of r, we see that h factors uniquely through t.

The following definition mimics Grothendieck’s functorial definition of Grass-
mannians ([GD71, 9.7]).

Definition 5.10.31 (Grassmannian tensor categories). Let C be an R-linear
cocomplete tensor category and E ∈ C. We define the Grassmannian tensor
category Grass⊗d (E) to be a cocomplete tensor category with the following uni-
versal property (if it exists): If D is another R-linear cocomplete tensor category,
then Homc⊗/R(Grass⊗d (E),D) is equivalent to the category of triples (F, V, t),
where F : C → D is a cocontinuous tensor functor, V ∈ D is locally free of
rank d and t : F (E) → V is a regular epimorphism. For example, we have
Grass⊗1 (E) = P⊗(E).

Theorem 5.10.32 (Existence via Plücker). If C is a presentable R-linear tensor
category and E ∈ C, then Grass⊗d (E) exists and is given by

P⊗C (Λd(E))/(0 =
d∑

k=0

(−1)k(a1 ∧ . . . ∧ ad−1 ∧ bk) · (b0 ∧ . . . ∧ b̂k ∧ . . . ∧ bd)).
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Proof. This follows immediately from Theorem 5.10.6 and Theorem 5.10.30.

Example 5.10.33. For d = 2 and E = O⊕4 we get the simplest non-trivial
example of a Grassmannian. If E has a basis indexed by 1, 2, 3, 4, then Λ2(E)
has a basis indexed by (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). Hence, we have
P⊗(Λ2(E)) = P5 with variables X1,2, X1,3, X1,4, X2,3, X2,4, X3,4. There is essen-
tially only one Plücker relation with a1 = 1 and b1 = 2, b2 = 3, b3 = 4. Thus,

Grass2(O4) ' P5/(0 = X1,2X3,4 −X1,3X2,4 +X1,4X2,3)

is the universal cocomplete linear tensor category with a locally free object of
rank 2 with 4 global generators.

Remark 5.10.34. It would be interesting to investigate if Grothendieck’s con-
struction of the Hilbert scheme as a subscheme of a Grassmannian globalizes to
the setting of tensor categories.

5.11 Products of schemes

It is a natural question if the 2-functor

Qcoh : Stack→ Catop
c⊗

preserves 2-limits. Notice that it preserves 2-colimits for trivial reasons (Propo-
sition 3.4.3), but preservation of 2-limits is a nontrivial problem.

Schäppi has given an affirmative answer for finite limits of Adams stacks ([Sch12b]
and [Sch13]). The proof is quite involved since it uses Schäppi’s characterization
of weakly Tannakian categories.

In this section, we draw our attention to schemes and to more direct proofs.

5.11.1 Tensorial base change

Definition 5.11.1 (Tensorial base change). We say that a morphism of schemes
f : X → S has tensorial base change if for all morphisms of schemes g : Y → S
the diagram

Qcoh(S)
g∗

//

f∗

��

Qcoh(Y )

pr∗Y
��

Qcoh(X)
pr∗X

// Qcoh(X ×S Y )

is a 2-pushout in the 2-category of cocomplete tensor categories.
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In other words, we require that for every cocomplete tensor category C the canon-
ical functor

Homc⊗(Qcoh(X ×S Y ), C)

↓

Homc⊗(Qcoh(X), C)×Homc⊗(Qcoh(S),C) Homc⊗(Qcoh(Y ), C)

given by mapping H : Qcoh(X)→ C to(
H pr∗X , H pr∗Y , H pr∗X f

∗ ∼= H(f prX)∗ = H(g prY )∗ ∼= H pr∗Y g
∗)

is an equivalence of categories. We say that f has qc qs tensorial base change,
this holds at least for all qc qs morphisms g : Y → S and S is qc qs.

Lemma 5.11.2 (Closure properties).

1. Isomorphisms have tensorial base change.

2. Morphisms with tensorial base change are closed under composition.

3. Morphisms with tensorial base change are closed under base change with
respect to morphisms with tensorial base change.

The same holds for the qc qs variant.

The proof is just formal, therefore we omit it.

Proposition 5.11.3 (Closure under coproducts). If {Xi → S} is a family of
morphisms with tensorial base change, then

∐
iXi → S also has tensorial base

change.

Proof. This follows readily from Proposition 5.9.10.

Theorem 5.11.4. Affine morphisms have tensorial base change.

Proof. This follows from Corollary 5.3.7 and Corollary 5.3.3.

Theorem 5.11.5. Quasi-compact immersions between qc qs schemes have qc qs
tensorial base change.

Proof. Closed immersions are affine and therefore have tensorial base change.
Thus it suffices to prove that every quasi-compact open immersion i : U ↪→ S
has qc qs tensorial base change, where S is a qc qs scheme. Let f : X → S be a qc
qs morphism. Then the pullback j : f−1(U) = U ×S X ↪→ X is a quasi-compact
open immersion, too.
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Using Corollary 5.6.4, we have equivalences of categories

Homc⊗(Qcoh(U), C)×Homc⊗(Qcoh(S),C) Homc⊗(Qcoh(X), C)
' {F ∈ Homc⊗(Qcoh(X), C) : Ff ∗ is i-local}
!

= {F ∈ Homc⊗(Qcoh(X), C) : F is j-local}
' Homc⊗(f−1(U), C) ' Homc⊗(Qcoh(U ×S X), C).

We are left to prove the following: If F : Qcoh(X)→ C is a cocontinuous tensor
functor, then Ff ∗ is i-local if and only if F is j-local.

The direction “⇐” is trivial. For “⇒”, assume that Ff ∗ is i-local. Let I ⊆ OX be
some quasi-coherent ideal such that I|f−1(U) = Of−1(U). It suffices to prove that F
maps I → OX to a split epimorphism (see Proposition 5.6.11 and Lemma 5.6.12).

Since f is qc qs, f∗OX and f∗I are quasi-coherent, hence the ideal

J := (f# : OS → f∗OX)−1(f∗I) ⊆ OS

is also quasi-coherent. Observe that 1 ∈ Γ(U, J) since 1 ∈ Γ(f−1(U), I). Hence,
by assumption, Ff ∗ maps J → OS to an isomorphism. The canonical homo-
morphism J → f∗I corresponds to a homomorphism f ∗J → I, which commutes
with the morphisms to f ∗OS ∼= OX . Hence, F maps I → OX to a split epimor-
phism.

Definition 5.11.6. Let us call a morphism of schemes X → S projective if it is
isomorphic to ProjS(A) → S for some N-graded quasi-coherent algebra A on S
such that A is generated by A1 and A1 ∈ Qcoh(S) is of finite presentation.

Notice that in [GD61a, Definition 5.5.2] it is only required that A1 is of finite
type, which is somewhat adapted to the special case that S is locally noetherian.
We suggest that quasi-coherent modules of finite presentation are better suited
for the general case.

Theorem 5.11.7. Projective morphisms have tensorial base change.

Proof. This follows from Proposition 5.10.15 and Theorem 5.10.11.

Theorem 5.11.8. Let S be a qc qs base scheme. Let f : X → S be a quasi-
projective morphism and g : Y → S be any qc qs morphism. Then

Qcoh(S)
g∗

//

f∗

��

Qcoh(Y )

pr∗Y
��

Qcoh(X)
pr∗X

// Qcoh(X ×S Y )

is a 2-pushout in Catc⊗.
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Proof. This follows from Theorem 5.11.5 and Theorem 5.11.7.

Notice that the proof of this result relies heavily on the universal properties of
projective tensor categories.

5.11.2 The case of qc qs schemes over a field

Fix a commutative ring R and two qc qs R-schemes X, Y . We would like to know
if X has tensorial base change with respect to Y , i.e. that for every cocomplete
R-linear tensor category C the canonical functor

Homc⊗/R(Qcoh(X ×R Y ), C)→ Homc⊗/R(Qcoh(X), C)× Homc⊗/R(Qcoh(Y ), C)

is an equivalence of categories. We then call (X, Y ) a product pair. Note that
although we have proven this when X is quasi-projective, our proof does not
give an explicit description of the inverse functor. The same remark applies to
Schäppi’s proof in the case of Adams stacks.

In order to remedy this, let us recall the definition of the external tensor product :
For A ∈ Qcoh(X) and B ∈ Qcoh(Y ) we let

A�B := pr∗X A⊗ pr∗Y B ∈ Qcoh(X ×R Y ).

Since (A,B) 7→ A�B isR-bilinear, it induces anR-linear functor (see section 2.1)

� : Qcoh(X)⊗R Qcoh(Y )→ Qcoh(X ×R Y ), (A,B) 7→ A�B.

Proposition 5.11.9. Assume that R is a field. Let A,A′ ∈ Qcoh(X) and
B,B′ ∈ Qcoh(Y ) and assume that A′ and B′ are of finite presentation. Then the
canonical homomorphism

HomOX (A′, A)⊗R HomOY (B′, B)→ HomOX×Y (A′ �B′, A�B)

is an isomorphism. In particular, the restriction of the external tensor product

� : Qcohfp(X)⊗R Qcohfp(Y )→ Qcoh(X ×R Y )

is fully faithful.

Actually we only need that R is absolutely flat, or just that all the involved
R-modules are flat. The proof is standard, but we include it due to the lack of a
reference. In a special case it appears as [GK11, Example 1.2.3] without proof.

Proof. First let X, Y be affine. Observe that the class of all A′ (similarly B′)
satisfying the claim is closed under finite direct sums, but also under cokernels,

179



Chapter 5. Constructions with cocomplete tensor categories

using that HomOX (−, A) and HomOX×Y (−, A�B) are left exact, ⊗R is exact and
that − � B′ is right exact. Besides the claim is clear for (A′, B′) = (OX ,OY ).
Thus, it also holds when A′ and B′ are of finite presentation.

Now let X be affine and Y be a quasi-compact separated scheme. Choose a finite
open affine cover {Yi → Y }. Then we have an exact sequence

0→ HomOY (B′, B)→
⊕
i

HomOYi (B
′|Yi , B|Yi)

→
⊕
i,j

HomOYi∩Yj (B
′|Yi∩Yj , B|Yi∩Yj).

Since R is a field, it stays exact after tensoring with HomOX (A′, A) over R. Since
X, the Yi as well as their intersections Yi ∩ Yj are affine and we have already
dealt with the affine case, the resulting sequence is isomorphic to

0→ HomOX (A′, A)⊗R HomOY (B′, B)→
⊕
i

HomOX×Yi (A
′ �B′|Yi , A�B|Yi)

→
⊕
i,j

HomOX×Yi∩Yj (A
′ �B′|Yi∩Yj , A�B|Yi∩Yj).

Since {X ×Yi → X ×Y } is an open cover, HomOX×Y (A′�B′, A�B) is also the
kernel of the last homomorphism, which establishes the isomorphism.

If X is affine and Y is quasi-compact and quasi-separated, we can choose a finite
open affine cover {Yi → Y } and use that the Yi∩Yj are separated and also quasi-
compact since Y is quasi-separated to deduce as above the isomorphism from the
case above. The same technique then works when we generalize to the case that
X is separated. Finally we get the case that X is an arbitrary quasi-compact
quasi-separated scheme.

Remark 5.11.10. Let A ∈ Qcoh(X), B ∈ Qcoh(Y ) and M ∈ Qcoh(X×Y ). By
the usual adjunctions a homomorphism A � B → M on X × Y corresponds to
a homomorphism

A→ (prX)∗HomOX×Y ((prY )∗B,M)

on X. In general the latter is only a sheaf of modules on X × Y . But it is
quasi-coherent when B is of finite presentation (using [GD71, Proposition 6.7.1]
and Lemma 2.2.1).

In the following, we assume that R is a field and that X, Y are qc qs R-schemes.
We have just seen that Qcohfp(X)⊗RQcohfp(Y ) can be seen as a full subcategory
of Qcoh(X ×R Y ). Clearly it is essentially small. Next, we will see that it is a
dense subcategory (section 2.4).
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Lemma 5.11.11. Let U ⊆ X and V ⊆ Y be quasi-compact open subschemes
and let A′ � B′ → M |U×V be a homomorphism such that A′ ∈ Qcohfp(U) and
B′ ∈ Qcohfp(V ). Then there are A ∈ Qcohfp(X) and B ∈ Qcohfp(Y ) which extend
A′ and B′ such that the homomorphism extends to a homomorphism A�B →M
on X × Y .

Proof. We may assume V = Y and therefore B′ = B, since by symmetry this
also gives the case U = X and then we just apply the two cases in succession.
By Remark 5.11.10 the given homomorphism corresponds to a homomorphism
A′ → (prU)∗HomOU×Y (pr∗Y B,M |U×Y ) on U . The latter is the restriction of the
quasi-coherent module (prX)∗HomOX×Y (pr∗Y B,M) from X to U . By [GD71,
Lemme 6.9.10.1] there is some A ∈ Qcohfp(X) extending A′ and an extension of
the homomorphism on U to a homomorphism A → (prX)∗HomOX×Y (pr∗Y B,M)
on X. But again this corresponds to a homomorphism A�B →M on X×Y .

Proposition 5.11.12. The external tensor product

� : Qcohfp(X)⊗R Qcohfp(Y )→ Qcoh(X ×R Y )

is dense, both in the R-linear and the usual sense. In other words, for every
quasi-coherent module M on X × Y , we have

M ∼= colimA�B→M(A�B)

∼=
∫ (A,B)∈Qcohfp(X)⊗RQcohfp(Y )

Hom(A�B,M)⊗R (A�B).

Proof. We apply Lemma 2.4.2 have to check two conditions. For the first condi-
tion, let σ : A�B →M and σ′ : A′ �B′ →M be two morphisms. Define

τ : (A⊕ A′) � (B ⊕B′) ∼= A�B ⊕ A�B′ ⊕ A′ �B ⊕ A′ �B′ −→M

by τ |A�B = σ, τ |A′�B′ = σ′, τ |A�B′ = 0 and τ |A′�B = 0. Then we have a
commutative diagram:

A�B

uu ##
(A⊕ A′) � (B ⊕B′) //M

A′ �B′

ii ;;

For the second condition, we choose open affine coverings X =
⋃
i Ui, Y =

⋃
j Vj.

Then X × Y =
⋃
i,j Ui × Vj is an open affine covering. Consider a local section

s ∈ Γ(Ui × Vj,M). It induces a homomorphism OUi � OVj → M |Ui×Vj via
1�1 7→ s. By Lemma 5.11.11 it extends to a homomorphism A�B →M . Since
s has a preimage, we are done.
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Corollary 5.11.13. The canonical functor

Homc⊗/R(Qcoh(X ×R Y ), C)→ Homc⊗/R(Qcoh(X), C)× Homc⊗/R(Qcoh(Y ), C)
is fully faithful.

It remains to prove essentially surjectivity, i.e. that for all F : Qcoh(X)→ C and
G : Qcoh(Y ) → C there is some H : Qcoh(X ×R Y ) → C such that H pr∗X

∼= F
and H pr∗Y

∼= G.

Construction of H

Given two R-linear cocontinuous tensor functors

F : Qcoh(X)→ C, G : Qcoh(Y )→ C,
Proposition 5.11.12 tells us how the corresponding functor

H : Qcoh(X ×R Y )→ C
has to look like: We first get an R-linear tensor functor (not cocontinuous)

F ⊗R G : Qcohfp(X)⊗R Qcohfp(Y )→ C, A�B 7→ F (A)⊗G(B)

and then define the R-linear functor H : Qcoh(X ×R Y )→ C to be the left Kan
extension of F ⊗R G along Qcoh(X) ⊗R Qcoh(Y ) ↪→ Qcoh(X ×R Y ). In other
words:

H(M) :=

∫ A∈Qcohfp(X),B∈Qcohfp(Y )

Hom(A�B,M)⊗R (F (A)⊗G(B)).

Actually, by Lemma 2.4.1, this simplifies to

H(M) = colimA�B→M(F (A)⊗G(B)).

But this description somehow hides the linearity of H. In any case, it is not clear
at all why H should be a cocontinuous tensor functor! Though, some properties
are easy to check: Since H is R-linear, H preserves finite direct sums. It is also
clear that H preserves directed colimits, essentially because A � B is of finite
presentation on X ×R Y when A resp. B are of finite presentation on X resp.
Y . Hence, H preserves arbitrary direct sums.

For A′ ∈ Qcohfp(X) and B′ ∈ Qcohfp(Y ) we have

H(A′ �B′)

=

A,B∫
(Hom(A,A′)⊗R Hom(B,B′))⊗R (F (A)⊗G(B))

∼=
A∫

Hom(A,A′)⊗R F (A) ⊗
B∫

Hom(B,B′)⊗R G(B)

Yoneda∼= F (A′)⊗G(B′).
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5.11. Products of schemes

Hence, H extends F ⊗R G. In particular, H pr∗X
∼= F and H pr∗Y

∼= G (just as
functors). Next, we can endow H with the structure of a lax monoidal functor:
From the isomorphisms above we get H(1) ∼= 1. If M, M ′ ∈ Qcoh(X ×R Y ),
then H(M)⊗H(M ′) is isomorphic to

A,A′,B,B′∫
(Hom(A�B,M)⊗R Hom(A′ �B′,M ′))⊗R (F (A⊗ A′)⊗G(B ⊗B′)).

Using A′′ = A⊗ A′ and B′′ = B ⊗B′, this admits a canonical morphism to

A′′,B′′∫
Hom(A′′ �B′′,M ⊗M ′)⊗R (F (A′′)⊗G(B′′)) = H(M ⊗M ′).

If we already knew that H preserved cokernels and therefore was cocontinu-
ous, this morphism would be an isomorphism, because then (using Proposition
5.11.12), it may be reduced to the case M = A � B and M ′ = A′ � B′ and we
already know

H((A�B)⊗ (A′ �B′)) ∼= H((A⊗ A′) � (B ⊗B′)) ∼= F (A⊗ A′)⊗G(B ⊗B′)

∼= (F (A)⊗G(B))⊗ (F (A′)⊗G(B′)) ∼= H(A�B)⊗H(A′ �B′).

Thus, if H preserved cokernels, then H would be a cocontinuous tensor functor
and (F,G) 7→ H would provide a functor which is inverse to the canonical one.

But showing that the functor H preserves cokernels seems to be intractable.
Therefore, we will use a more ad hoc definition below. It already seems to be
hard to prove that H preserves epimorphisms. In fact, already the special case of
epimorphisms between external tensor products A′�B′ � A�B remains unclear
to the author. Although we know how to write down all these morphisms, we
need a reformulation of the epi condition which treats Qcoh(X) and Qcoh(Y )
separately in order to be translated by F and G. At least the following special
case is easy to deal with: A diagonal homomorphism α � β : A′ � B′ → A� B
is an epimorphism if and only if A = 0 or B = 0 or A,B 6= 0 and α, β are
epimorphisms. It is then clear that F (A′) ⊗ G(B′) → F (A) ⊗ G(B) is also an
epimorphism.

Concrete construction of H

For a qc qs scheme Z we have

Homc⊗(Qcoh(Z), C) ' Homfc⊗(Qcohfp(Z), C).

by Corollary 5.1.18. Hence, it suffices to construct a right exact R-linear tensor
functor H : Qcohfp(X × Y )→ C.
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Chapter 5. Constructions with cocomplete tensor categories

Lemma 5.11.14. Let M ∈ Qcoh(X × Y ). Then there are A ∈ Qcoh(X) and
B ∈ Qcoh(Y ) with an epimorphism A�B �M . If M is of finite type, then we
can arrange A ∈ Qcohfp(X) and B ∈ Qcohfp(Y ). If M is of finite presentation,
there is an exact sequence

A′ �B′ → A�B →M → 0

with A,A′ ∈ Qcohfp(X) and B,B′ ∈ Qcohfp(Y ).

Proof. By Proposition 5.11.12 there is an epimorphism
⊕

i(Ai � Bi) � M for
certain Ai ∈ Qcohfp(X) and Bi ∈ Qcohfp(Y ). If M is of finite type, a finite direct
sum already suffices. Now take A =

⊕
iAi and B =

⊕
iBi. Their external

tensor product A � B =
⊕

i,j Ai � Bj projects onto
⊕

iAi � Bi. This proves
the first and the second claim. For the third, apply the second to the kernel of
A�B �M .

Such an exact sequence will be called a �-presentation of M . We will fix one for
every M .

Definition 5.11.15. Let F : Qcoh(X)→ C and G : Qcoh(Y )→ C be cocontinu-
ous tensor functors. Given an object M ∈ Qcohfp(X×Y ) with its �-presentation

A′ �B′
σ−→ A�B →M → 0,

we define H(M) ∈ C to be the cokernel of (F ⊗R G)(σ).

Therefore, if σ =
∑

i(αi � βi) with αi : A′ → A and βi : B′ → B, this induces
the morphism

(F ⊗R G)(σ) =
∑
i

F (αi)⊗G(βi) : F (A′)⊗G(B′)→ F (A)⊗G(B),

and there is an exact sequence in C

F (A′)⊗G(B′)→ F (A)⊗G(B)→ H(M)→ 0.

The advantage of this definition is that we can compute H(M) once we have a
�-presentation of M . Of course we have to prove that H(M) does not depend
on the �-presentation on M , that H(−) is a functor, which is linear, right exact
and besides carries the structure of a tensor functor. Unfortunately, this remains
unclear to the author. At least, we have the following result:

Theorem 5.11.16. Let X, Y be qc qs schemes over a field R such that X ×R Y
is noetherian. If C is a cocomplete R-linear tensor category, then

Homc⊗/R(Qcoh(X ×R Y ), C)→ Homc⊗/R(Qcoh(X), C)× Homc⊗/R(Qcoh(Y ), C)
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is fully faithful and the essential image consists of those pairs (F,G) with the
following property (?): Given an exact sequence

A′ �B′ → A�B → C �D → 0,

with A′, A, C ∈ Qcohfp(X) and B′, B,D ∈ Qcohfp(Y ), then

F (A′)⊗G(B′)→ F (A)⊗G(B)→ F (C)⊗G(D)→ 0

also is exact.

Proof. We may apply Proposition 3.1.21 to the full subcategory

� : Qcohfp(X)⊗R Qcohfp(Y ) ↪→ Qcohfp(X ×R Y ).

The assumptions are satisfied because of Lemma 5.11.14 and the proof of Propo-
sition 5.11.12.

Notice that we only need X ×R Y noetherian so that Qcohfp(X ×R Y ) is abelian
(which might be superfluous using Schäppi’s notion of ind-abelian categories, see
[Sch12b]). In the setting considered by Schäppi, we can prove (?) directly:

Theorem 5.11.17. With the above notations, assume that X, Y have the strong
resolution property. If C has the property that directed colimits are exact and
equalizers exists (for example when C is finitely presentable), then (?) is satisfied
for all F : Qcoh(X) → C and G : Qcoh(Y ) → C. Therefore, Qcoh(X ×R Y ) is
the coproduct of Qcoh(X) and Qcoh(Y ) in the 2-category of finitely presentable
R-linear tensor categories.

Proof. Choose presentations p : P → X and q : Q → Y (so that P,Q are
affine and p, q are faithfully flat and affine). Then p × q : P × Q → X × Y
is a presentation. Let A = p∗OP and B = q∗OQ. Then A′ := F (A) is a
descent algebra by Proposition 4.10.9 and Proposition 4.10.8. The same holds
for B′ := G(B) and then for A′ ⊗ B′, too. The rest is formal: F induces a
cocontinuous tensor functor

Qcoh(P ) ∼= Mod(A)→ Mod(A′)→ Mod(A′ ⊗B′).

Similarly, G induces Qcoh(Q) → Mod(A′ ⊗ B′). Since P,Q are affine, these
correspond to a cocontinuous tensor functor Qcoh(P × Q) → Mod(A′ ⊗ B′)
(Corollary 5.3.7). We claim that the composition

Qcoh(X × Y )→ Qcoh(P ×Q)→ Mod(A′ ⊗B′)

actually factors through the category of descent data. Since the external tensor
product Qcoh(X)⊗Qcoh(Y )→ Qcoh(X×Y ) is fully faithful and dense, it suffices
to do this for Qcoh(X)⊗ Qcoh(Y )→ Mod(A′ ⊗B′). But this even factors as

Qcoh(X)⊗ Qcoh(Y )
F⊗G−−−→ C → Mod(A′ ⊗B′).
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Chapter 5. Constructions with cocomplete tensor categories

We conclude that Qcoh(X × Y ) → Mod(A′ ⊗ B′) lifts to a cocontinuous tensor
functor H : Qcoh(X × Y ) → C. We claim that it extends F ⊗ G, i.e. that
there are natural isomorphisms H(C �D) ∼= F (C)⊗G(D). It suffices to prove
this after tensoring with A′ ⊗ B′ (and verifying a compatibility condition), but
then both sides factor through Qcoh(P × Q) and the isomorphism holds by
construction. In particular, H pr∗X

∼= F and H pr∗Y
∼= G, so that we are done by

Theorem 5.11.16.

5.12 Tangent tensor categories

Let S be a base scheme and let X be an S-scheme. We abbreviate

X[ε] := X ×Z Z[ε]/(ε2)

and consider it as an S-scheme (not as an S[ε]-scheme). There is a closed im-
mersion X ↪→ X[ε], whose corresponding ideal sheaf is nilpotent. Hence, X[ε]
has the same underlying topological space as X, only the structure sheaf differs
and is given by OX ⊕OX · ε. We obtain a thickening functor Sch /S → Sch /S,
X 7→ X[ε].

Recall ([GD67, 16.5.12]) that the tangent bundle of an S-scheme X is defined by

T (X/S) := Spec Sym Ω1
X/S.

This may not be locally trivial. Since Sym Ω1
X/S is a quasi-coherent OX-algebra,

T (X/S) is an affine X-scheme. But let us view it as an S-scheme. We obtain the
tangent bundle functor T : Sch /S → Sch /S, which enjoys the following concise
functorial characterization:

Lemma 5.12.1. The tangent bundle functor T : Sch /S → Sch /S is right ad-
joint to the thickening functor. Thus, for every two S-schemes X, Y there is a
canonical bijection

HomS(Y, T (X/S)) ∼= HomS(Y [ε], X).

Proof. By the universal property of the relative spectrum ([GD71, Definition
9.1.8]), an S-morphism Y → T (X/S) may be identified with an S-morphism
f : Y → X together with a homomorphism of algebras Sym Ω1

X/S → f∗OY . By
the universal properties of the symmetric algebra and the module of differentials,
the latter corresponds to a derivation d : OX → f∗OY lying over f#. This
corresponds to a homomorphism of algebras OX → f∗OY ⊕ f∗OY · ε, defined by
s 7→ f#(s) ⊕ d(s)ε, which in turn is a lift of f along Y ↪→ Y [ε] to a morphism
Y [ε]→ X.
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Using this adjunction, we will globalize tangent bundles. First, note that the
thickening functor globalizes: Fix a cocompleteR-linear tensor category C. Ap-
plying Definition 5.3.10 to the R-algebra R[ε] := R[ε]/ε2, we get an cocomplete
R-linear tensor category C[ε] whose objects are pairs (M, εM), where M ∈ C is
an object and εM : M → M is an endomorphism satisfying ε2

M = 0. Usually we
abbreviate ε := εM . A morphism (M, ε)→ (N, ε) is a morphism M → N which
commutes with ε; we will also say ε-linear for this property.

There is an R-linear cocontinuous tensor functor C → C[ε] which is given by
mapping M 7→M [ε] := M ⊕M · ε := (M ⊕M, ε), where ε acts by the following
matrix: (

0 0
1 0

)
It is left adjoint to the forgetful functor which we will occasionally denote by
T 7→ T |C, but often suppress from the notation. The section R[ε] → R, ε 7→ 0
induces an R-linear cocontinuous tensor functor C[ε] → C, which maps (M, ε)
to M/εM := coker(εM). It should not be confused with the forgetful functor,
which is not a tensor functor at all. There is still another functor C → C[ε] which
endows an object M of C with the trivial action εM := 0. In order to differentiate
the tensor product from C[ε] from the one in C, we denote it by −⊗ε−. We will
usually abbreviate (M, ε) ∈ C[ε] by M .

In the following, we will often omit R from the notation and every tensor category
and tensor functor is understood to be R-linear.

Definition 5.12.2 (Tangent tensor categories). Let F : C → D be a cocontinu-
ous linear tensor functor between cocomplete linear tensor categories. The tan-
gent tensor category of F is a cocomplete linear tensor category T (F ) = T (D/C)
over C i.e. together with a cocontinuous linear tensor functor C → T (F ) and a
natural equivalence of categories

Homc⊗/C(T (D/C), E) ' Homc⊗/C(D, E [ε])

for every cocontinuous linear tensor functor C → E . In other words, the tangent
tensor category of C → D is a representation of the 2-functor of thickenings or
deformations

Catc⊗/C → Cat, E 7→ Homc⊗/C(D, E [ε]).

Remark 5.12.3 (Ansatz). We do not know if the tangent tensor category exists
in general. Looking at the scheme case, it is tempting to define an object Ω1

F

of D associated to F and just define T (F ) := Mod(Sym Ω1
F ). Then by Proposi-

tion 5.3.1 we have an equivalence of categories

Homc⊗/C(T (F ), E) ' {G ∈ Homc⊗(D, E), GF ∼= H, G(Ω1
F )→ OE}
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for every H : C → E . But we do not know of any reasonable definition of Ω1
F

(see also Remark 4.5.12). At least this approach works in some special cases, as
we will see later.

Example 5.12.4. In the example D = grZ(C) (see Corollary 5.4.3) the specula-
tive object Ω1 ∈ D (Remark 5.12.3) would have to satisfy, for every line object L
in E , that HomE(GL(Ω1),OE) ' {line objects K ∈ E [ε] with K/εK ∼= L}. Here,
we have GL(M) =

⊕
n∈ZMn ⊗ L⊗n. Such an object Ω1 cannot exist (when

C 6= 0) since the category on the right is not essentially discrete. It would be
interesting if T (grZ(C)/C) nevertheless exists.

Remark 5.12.5 (Reformulation). Assume that T (D/C) exists. Then it comes
equipped with a cocontinuous linear tensor functor (everything over C)

U : D → T (D/C)[ε].

It has the universal property that for every D → E [ε] there is essentially a
unique T (D/C) → E such that the obvious diagram commutes up to unique
isomorphism.

We may mod out ε after U to obtain a cocontinuous linear tensor functor

P : D → T (D/C).

This should be imagined as the “tangent bundle projection”. The universal
property can therefore also be formulated in Catc⊗/D. Namely, require for every
G : D → E that U induces an equivalence of categories

Homc⊗/D(T (D/C), E) ' {F ∈ Homc⊗/C(D, E [ε]), F/ε ∼= G}.

Remark 5.12.6. The tangent tensor category is stable under base change in
the sense that T (D/C) tC C ′ ' T (D tC C ′/C ′) if these tangent tensor categories
and 2-pushouts exist.

Proposition 5.12.7 (Affine case). Let A be a commutative algebra in a co-
complete linear tensor category C. Then T (Mod(A)/C) exists. It is given by
Mod(SymA Ω1

A), where Ω1
A ∈ Mod(A) is defined as in Definition 4.5.1.

Proof. Let H : C → E be a cocontinuous linear tensor functor. Then two appli-
cations of Proposition 5.3.1 yield an equivalence of categories

Homc⊗/C(Mod(SymA Ω1
A), E) ' HomCAlg(E)(H(A),OE)× HomE(H(Ω1

A),OE).

Using Corollary 4.5.5, the right factor identifies with Der(H(A),OE). By Propo-
sition 5.3.1 we have an equivalence of categories

Homc⊗/C(Mod(A), E [ε]) ' HomCAlg(E)(H(A),OE [ε]).

Therefore, the claim is just Lemma 4.5.8.
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Example 5.12.8. For the n-dimensional tensorial affine space An
C with variables

T1, . . . , Tn (see Example 5.3.8) we have

T (An
C/C) ' A2n

C

with variables T1, . . . , Tn, d(T1), . . . , d(Tn). This follows from Proposition 5.12.7
and Proposition 4.5.7.

The tangent bundle in algebraic geometry commutes with coproducts. We glob-
alize this as follows:

Proposition 5.12.9. Let (C → Di)i∈I be a family of cocontinuous linear tensor
functors. If T (Di/C) exists for every i, then T (

∏
iDi/C) also exists and is given

by

T
(∏

i

Di/C
)
'
∏
i

T (Di/C)

Proof. Let C → E be a cocontinuous linear tensor functor. We will omit C from
the notation. The category Hom(

∏
i T (Di), E) is equivalent to the category of

o.i.d. (ei)i∈I in E together with a family of cocontinuous linear tensor functors
T (Di) → Eei (Proposition 5.9.10). By definition, each T (Di) → Eei corresponds
to some Di → Eei [ε]. The cocontinuous linear tensor functor E → E [ε] yields
the o.i.d. (ei[ε])i∈I of E [ε] and one easily checks Eei [ε] = E [ε]ei[ε]. Applying
Proposition 5.9.10 once again, we arrive at a cocontinuous linear tensor functor∏

iDi → E [ε]. Thus, we have only to show that E and E [ε] have the same o.i.d.

So assume that (fi)i∈I is an o.i.d. of E [ε]. Then each fi is an idempotent in the
ring End(OE[ε]) ∼= End(OE)[ε], say fi = ei + giε with ei, gi ∈ End(OE). Now,
f 2
i = fi means ei = e2

i and 2eigi = gi. It follows 2eigi = 2e2
i gi = eigi, thus

eigi = 0, which implies gi = 2eigi = 0. This means fi = ei[ε] as morphisms
OE [ε] → OE [ε]. Taking cokernels in

⊕
i coker(fi) ∼= OE [ε] with respect to ε, we

get
⊕

i coker(ei) ∼= OE . Thus, (ei) is an o.i.d., the unique one which lifts (fi).

The tangent bundle of a closed subscheme V (I) ⊆ X is given by a base change
of T (X) → X to V (I) and then one has to mod out the differentials of I –
this is the usual conormal exact sequence ([Vak13, Theorem 21.2.12] or part 3 in
Proposition 4.5.6). The next result is a globalization of this fact.

Proposition 5.12.10. Let C → D be a cocontinuous linear tensor functor and
let I → OD be a morphism. If T := T (D/C) exists, then the same is true for
T (V ⊗D (I)/C). Explicitly, we can construct two morphisms U(I)|T → OT and
P (I)→ OT and then realize

T (V ⊗D (I)/C) ' V ⊗T (U(I)|T , P (I)).

189



Chapter 5. Constructions with cocomplete tensor categories

Proof. We will omit C from the notation. Recall the notations U, P from Re-
mark 5.12.5 and V ⊗D (I) from Corollary 5.3.9. We have an ε-morphism

U(I)→ U(OD) = OT [ε] = OT ⊕OT · ε.

By modding out ε we get a morphism P (I) → OT and the second projection
gives a morphism U(I)|T → OT . We claim that V ⊗T (U(I), P (I)) satisfies the
desired universal property. In fact, for every E we have

Homc⊗(V ⊗D (I), E [ε])

' {F ∈ Homc⊗(D, E [ε]) : F (I)→ OE [ε] vanishes}
' {G ∈ Homc⊗(T, E) : G(P (I))→ OE [ε] vanishes}
' {G ∈ Homc⊗(T, E) : G(P (I))→ OE and G(U(I)|T )→ OE vanish}
' Homc⊗(V ⊗T (U(I)|T , P (I)), E).

Our next goal is to prove that projective tensor categories have a tangent tensor
category. For simplicity, we will restrict to projective bundles (for the general
case one may use Proposition 5.12.10). We need several preparations first.

Definition 5.12.11 (Cocycles). Let s : E → L be an epimorphism in a co-
complete linear tensor category C, such that L is a line object. We say that a
morphism λ : Λ2(E)→ L⊗2 is a cocycle (with respect to s) if we have

λ(a ∧ b)⊗ s(c)− λ(a ∧ c)⊗ s(b) + λ(b ∧ c)⊗ s(a) = 0

in element notation. Formally, this is of course an equality of two morphisms
Λ2(E)⊗ E ⇒ L⊗3.

Actually we mean ASym2(E) here instead of Λ2(E), which we have only defined
when 2 ∈ R∗ (Definition 4.4.8). But if we are in the case of modules, then the
cocycle condition implies that λ is alternating and therefore lifts to a morphism
on Λ2(E): Just set a = b and use Lemma 4.8.7. This justifies to write Λ2(E)
here also in the general case.

Note that we can define a morphism Λ3(E)→ Λ2(E)⊗ L by

a ∧ b ∧ c 7→ (a ∧ b)⊗ s(c)− (a ∧ c)⊗ s(b) + (b ∧ c)⊗ s(a).

It corresponds to a morphism

δ : Λ3(E)⊗ L⊗−3 → Λ2(E)⊗ L⊗−2.

Then a cocycle is nothing else than a morphism coker(δ)→ OC.
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5.12. Tangent tensor categories

The following Theorem classifies line objects K in C[ε] with prescribed “genera-
tors” in terms of line objects L in C with prescribed “generators” and a cocycle
which intuitively measures the obstruction that K is just the trivial extension
L[ε].

Theorem 5.12.12. Let C be a cocomplete linear tensor category and E ∈ C.
Then there is a natural equivalence of categories

{L ∈ C line object, s : E � L regular epimorphism, λ : Λ2E → L⊗2 cocycle}

|o

{(K, t) : K ∈ C[ε] line object, t : E[ε]→ K regular epimorphism}.

Before proving this Theorem, let us explain how it enables us to deduce:

Theorem 5.12.13 (Projective case). Let C be a cocomplete linear tensor cate-
gory and E ∈ C. Assume that the projective tensor category P⊗C (E) exists (for
example when C is presentable). Then its tangent tensor category T (P⊗C (E)/C)
exists.

It is constructed as follows: Consider the universal triple consisting of a cocon-
tinuous linear tensor functor P : C → P⊗C (E), a line object O(1) and a regular
epimorphism x : P (E)→ O(1). Define

δ : Λ3(P (E))⊗O(−3)→ Λ2(P (E))⊗O(−2)

as in Definition 5.12.11 and let Ω1 ∈ P⊗C (E) be the cokernel of δ. Then

T (P⊗C (E)/C) ' Mod(Sym Ω1).

Note that the definition of Ω1 is compatible with (and motivated by) the Euler
sequence (Theorem 4.5.13, Lemma 4.8.14).

Proof. Let H : C → E be a cocontinuous linear tensor functor. We have to prove

Homc⊗/C(Mod(Sym Ω1), E) ' Homc⊗/C(P
⊗
C (E), E [ε]).

By definition of P⊗(E) there is an equivalence between Homc⊗/C(P
⊗
C (E), E [ε])

and the category of pairs (K, t) consisting of a line object K ∈ E [ε] and a regular
epimorphism t : H(E)[ε]→ K. According to Theorem 5.12.12 this is equivalent
to the category of triples (L, s, λ), where L ∈ C is a line object, s : H(E)→ L is a
regular epimorphism and λ : Λ2H(E)→ L⊗2 is a cocycle. The rest follows from
Remark 5.12.3. A bit more detailed, the pair (L, s) corresponds to a cocontinuous
linear tensor functor G : P⊗C (E) → E lying over H. Then λ corresponds to a
morphism G(Ω1)→ OE , hence corresponds to a lift of G to a cocontinuous linear
tensor functor Mod(Sym Ω1)→ E (Proposition 5.3.1).
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Chapter 5. Constructions with cocomplete tensor categories

For Theorem 5.12.12 we need the following Lemma.

Lemma 5.12.14. Let C be a cocomplete linear tensor category and let K be a
line object in C[ε]. Then L := K/εK is a line object in C. If p : K � L is the
canonical epimorphism in C, then there is a unique morphism i : L → K such
that ip = ε : K → K. Besides, the sequence

0→ L i−→ K p−→ L → 0

is exact in C. It is even exact in C[ε] when we endow L with the trivial ε-action.

Proof. Reduction modulo ε is a tensor functor C[ε] → C, hence it preserves line
objects. In particular, L is a line object in C. The existence of i follows from
ε2 = 0.

We define ε = 0 on L. Then i is a morphism in C[ε] because εip = εε = 0, hence
εi = 0. Likewise, p : K → L is a morphism in C[ε] because pε = 0. It is clear
that

L i−→ K p−→ L → 0

is exact, since
K ε−→ K p−→ L → 0

is exact. In order to show that the sequence is exact in C[ε] and hence in C, it is
enough to prove that the sequence

0→ OC
i−→ OC[ε]

p−→ OC → 0

is exact in C[ε], because then tensoring with K gives the general sequence. The
sequence is clearly (split) exact in C. Let T ∈ C[ε] and h : T → OC be a morphism
in C such that ih is ε-linear, i.e. ihε = εih = 0. Then hε = 0, which means that
h is ε-linear.

Proof of Theorem 5.12.12. Let A denote the category of triples (L, s, λ) and B
be the category of pairs (K, t) as in the Theorem. Both are essentially discrete
by Lemma 4.8.13. We will construct functors A → B and B → A and show
that they are inverse to each other. We will make heavy use of element notation.
We will not explicitly mention the ubiquitous applications of Lemma 4.8.7. As
explained in Definition 5.12.11, we will write Λ2(E) instead of ASym2(E) (just
for aesthetic reasons). If t : E[ε] → K, we will sometimes also write t for the
restriction to a morphism E → K.

1. Step: Construction of B → A. We construct a functor B → A as follows:
Given (K, t), applying the cocontinuous tensor functor C[ε]→ C which mods out
ε, we get a pair (L, s), where L = K/εK is a line object and s : E → L is a
regular epimorphism induced by t. By Lemma 5.12.14 we have an exact sequence

0→ L i−→ K p−→ L → 0,
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5.12. Tangent tensor categories

both in C[ε] and in C. It follows that it stays exact after tensoring with L in C:

0→ L⊗2 L⊗i−−→ L⊗K L⊗p−−→ L⊗2 → 0

Consider the morphism

Λ2(E)→ L⊗K, a ∧ b 7→ s(a)⊗ t(b)− s(b)⊗ t(a).

Since L is symtrivial, the morphism vanishes when composed with L⊗p. Hence,
by exactness there is a unique morphism

λ : Λ2(E)→ L⊗2

which is characterized by the equation of morphisms Λ2(E)→ L⊗K

i · λ(a ∧ b) = s(a)⊗ t(b)− s(b)⊗ t(a) (5.1)

where we have abbreviated (L⊗ i) ◦− by i·. Let us check the cocycle condition:

i · λ(a ∧ b)⊗ s(c)− i · λ(a ∧ c)⊗ s(b) + i · λ(b ∧ c)⊗ s(a)

= s(a)⊗ t(b)⊗ s(c)− s(b)⊗ t(a)⊗ s(c)− s(a)⊗ t(c)⊗ s(b)

+s(c)⊗ t(a)⊗ s(b) + s(b)⊗ t(c)⊗ s(a)− s(c)⊗ t(b)⊗ s(a) = 0

Here, we have used that L is symtrivial. This suffices since i is a monomorphism.
This defines B → A on objects. The action on morphisms (which are unique
isomorphisms) is clear.

2. Step: Proof of εt = is. With the notations above, we claim that εt|E = is
as morphisms E → K. Let q : E[ε] → E be the projection modulo ε. By
construction, we have sq = pt. Besides, we have ε = iq. It follows

isq = ipt = εt = tε = tiq = εt|Eq.

Since q is an epimorphism, this means is = εt. Applying this to 5.1, we get
another characterization of the cocycle λ:

λ(b ∧ c)⊗ εt(a) = s(a)⊗ (s(b)⊗ t(c)− s(c)⊗ t(b)) (5.2)

Here, a, b, c run through E in element notation.

3. Step: Construction of A→ B. We construct a functor A→ B as follows:
Given (L, s, λ), we will define t : E[ε] → K exactly in such a way that 5.2
becomes true. For this, define the morphism E⊗3 → L⊗2 ⊗ E[ε] in C by

a⊗ b⊗ c 7→ s(a)⊗ (s(b)⊗ c− s(c)⊗ b)− λ(b ∧ c)⊗ εa.
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Chapter 5. Constructions with cocomplete tensor categories

It corresponds to a morphism

φ : (L⊗−2 ⊗ E⊗3)[ε]→ E[ε]

in C[ε]. Let t : E[ε]→ K be the cokernel of φ in C[ε]. Then 5.2 holds by definition.
Applying Lemma 4.8.9 to the pair (L, s), it is easy to see that K/ε ∼= L, with s
being induced by t on the quotient. We postpone the proof that K is a line object
to Steps 5 and 6. Note that the cocycle associated to (K, t) is λ by construction.
This defines on A→ B on objects. The action on morphisms is clear.

4. Step: The functors are inverse to each other. We have already argued
above that A → B → A is isomophic to the identity. In order to show this
for B → A → B, we have to show for every pair (K, s) with associated triple
(L, s, λ) as in Step 1 that t is the cokernel of φ as defined in the Step 3. By
construction we have tφ = 0 and t is an epimorphism. Now let T ∈ C[ε] and
E[ε]→ T be a morphism in C[ε], or equivalently h : E → T be a morphism in C
which vanishes when composed with φ. This comes down to

s(a)⊗ (s(b)⊗ h(c)− s(c)⊗ h(b)) = λ(b ∧ c)⊗ εh(a). (5.3)

We want to show that h factors through t. By Lemma 4.8.9 this means

t(a)⊗ε h(b) = t(b)⊗ε h(a). (5.4)

This is an equation of morphisms E⊗2 → K⊗ε T . We calculate

s(a)⊗ (s(b)⊗ t(c)− s(c)⊗ t(b))⊗ε h(d)
5.2
= λ(b ∧ c)⊗ εt(a)⊗ε h(d)

= λ(b ∧ c)⊗ t(a)⊗ε εh(d)
5.3
= s(d)⊗ (s(b)⊗ t(a)⊗ε h(c)− s(c)⊗ t(a)⊗ε h(b)).

It follows

s(d)⊗ s(c)⊗ t(a)⊗ε h(b) + s(a)⊗ s(b)⊗ t(c)⊗ε h(d)

= s(d)⊗ s(b)⊗ t(a)⊗ε h(c) + s(a)⊗ s(c)⊗ t(b)⊗ε h(d).

Let us simplify the notation via 〈a, b, c, d〉 := s(a)⊗ s(b)⊗ t(c)⊗ε h(d). Then the
equation becomes

〈d, c, a, b〉+ 〈a, b, c, d〉 = 〈d, b, a, c〉+ 〈a, c, b, d〉.

Since L is symtrivial, the order of a, b in 〈a, b, c, d〉 does not matter. Therefore
we may simplify the notation further by writing 〈c, d〉 := 〈a, b, c, d〉 – similarly
〈a, b〉 := 〈c, d, a, b〉 etc. and the equation becomes

〈a, b〉+ 〈c, d〉 = 〈a, c〉+ 〈b, d〉. (5.5)
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5.12. Tangent tensor categories

Thus, in a sum of two brackets, we may interchange the two inner variables. Our
claim 5.4 becomes

〈a, b〉 = 〈b, a〉. (5.6)

It is easy to establish 2〈a, b〉 = 2〈b, a〉: In 5.5 the right hand side does not
change when we interchange a↔ b and c↔ d, but then left hand side becomes
〈b, a〉+ 〈d, c〉. It follows

〈a, b〉 − 〈b, a〉 = 〈d, c〉 − 〈c, d〉.

The right hand side does not change when we interchange a↔ b, but the left hand
side changes its sign. It follows 〈a, b〉−〈b, a〉 = 〈b, a〉−〈a, b〉, i.e. 2〈a, b〉 = 2〈b, a〉.
In particular, we are done when 2 ∈ R∗. The general case is more complicated:
We (have to) introduce an additional parameter e from E and will abbreviate
s(a) ⊗ s(b) ⊗ s(c) ⊗ t(d) ⊗ε h(e) by 〈a, b, c, d, e〉, or just by 〈d, e〉 since we may
again permute the first three factors freely. We have to deduce 5.6 from 5.5.

The following linear combination has been found using the computer algebra
system Sage (see http://www.sagemath.org). Observe that those brackets
with the same color cancel each other out.

0
5.5
= (〈a, b〉+ 〈c, e〉)− (〈a, c〉+ 〈b, e〉)

+(〈b, c〉+ 〈a, e〉)− (〈b, a〉+ 〈c, e〉)
+(〈a, b〉+ 〈e, d〉)− (〈a, e〉+ 〈b, d〉)
+(〈a, d〉+ 〈b, e〉)− (〈a, b〉+ 〈d, e〉)
+(〈b, a〉+ 〈c, d〉)− (〈b, c〉+ 〈a, d〉)
+(〈a, c〉+ 〈b, d〉)− (〈a, b〉+ 〈c, d〉)

= 〈e, d〉 − 〈d, e〉

This finally proves 5.6.

5. Step: K is symtrivial. We still have to complete the proof of Step 3:
Given a triple (L, s, λ) ∈ A, we have defined t : E[ε] → K to be the cokernel of
φ : (L⊗−2⊗E⊗3)[ε]→ E[ε]. In particular, 5.2 holds. We have to prove that K is
a line object. Let us first prove that K is symtrivial. Since t is an epimorphism,
it suffices to prove that t(c) ⊗ε t(d) = t(d) ⊗ε t(c) in element notation. Using
additional aprameters a, b, we compute:

s(a)⊗ s(b)⊗ t(c)⊗ε t(d)
5.2
= s(a)⊗ s(c)⊗ t(b)⊗ε t(d) + λ(b ∧ c)⊗ εt(a)⊗ε t(d)

5.2
= s(a)⊗ s(d)⊗ t(b)⊗ε t(c) + λ(c ∧ d)⊗ t(b)⊗ε εt(a) + λ(b ∧ c)⊗ t(a)⊗ε εt(d)

5.2
= s(a)⊗ s(b)⊗ t(d)⊗ε t(c) + λ(d ∧ b)⊗ εt(a)⊗ε t(c) + λ(c ∧ d)⊗ t(b)⊗ε εt(a)

+λ(b ∧ c)⊗ t(a)⊗ε εt(d).
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Thus, we have to prove

0 = λ(c∧d)⊗t(b)⊗εεt(a)−λ(b∧d)⊗t(a)⊗εεt(c)+λ(b∧c)⊗t(a)⊗εεt(d). (5.7)

Let us start with the cocycle condition

0 = λ(c ∧ d)⊗ s(b)− λ(b ∧ d)⊗ s(c) + λ(b ∧ c)⊗ s(d).

We define i as before and have is = εt as in Step 2 (this did not use that K is a
line object). Thus, applying L⊗2 ⊗ i to the equation above, we get

0 = λ(c ∧ d)⊗ εt(b)− λ(b ∧ d)⊗ εt(c) + λ(b ∧ c)⊗ εt(d).

Tensoring with t in the middle, we get

0 = λ(c ∧ d)⊗ t(a)⊗ε εt(b)− λ(b ∧ d)⊗ t(a)⊗ε εt(c) + λ(b ∧ c)⊗ t(a)⊗ε εt(d).

Comparing this with 5.7, we are left to prove that

t(a)⊗ε εt(b) = t(b)⊗ε εt(a),

which is a special case of the claimed symtriviality of K. In order to prove this,
we make the same calculations as in the beginning of this Step:

s(a)⊗ s(b)⊗ t(c)⊗ε εt(d)
5.2
= s(a)⊗ s(c)⊗ t(b)⊗ε εt(d) + λ(b∧ c)⊗ εt(a)⊗ε εt(d)

= s(a)⊗s(c)⊗ t(b)⊗ε εt(d)
5.2
= s(a)⊗s(d)⊗ t(b)⊗ε εt(c)+λ(c∧d)⊗ t(b)⊗ε ε2t(a)

= s(a)⊗s(d)⊗ t(b)⊗ε εt(c)
5.2
= s(a)⊗s(b)⊗ t(d)⊗ε εt(c)+λ(d∧ b)⊗εt(a)⊗ε εt(c)

= s(a)⊗ s(b)⊗ t(d)⊗ε εt(c)

This proves t(c)⊗ε εt(d) = t(d)⊗ε εt(c), as desired.

6. Step: K is invertible. We have to construct an object and show that it is
⊗-inverse to K. Consider the morphism

ψ : (L⊗−4 ⊗ E⊗3)[ε]→ (L⊗−2 ⊗ E)[ε]

in C[ε] which is induced by the morphism E⊗3 → (L⊗2 ⊗ E)[ε] which maps
a⊗ b⊗ c to

s(c)⊗ (s(b)⊗ a− s(a)⊗ b)− λ(a ∧ b)⊗ εc.

Note that ψ is almost like φ, but we have twisted with L⊗−2 and have changed
the sign of the cocycle λ. Let K⊗−1 be the cokernel of ψ. Consider the morphism

s⊗ s+ ελ : E ⊗ E → L⊗2[ε]
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in C. It induces a morphism

β : (L⊗−2 ⊗ E)[ε]⊗ε E[ε] ∼= (L⊗−2 ⊗ E ⊗ E)[ε]→ OC[ε]

in C[ε]. We claim that β ◦ ((L⊗−2 ⊗ E)[ε]⊗ φ) = 0. This composition is dual to
the morphism E⊗4[ε]→ E⊗2⊗L⊗2[ε]→ L⊗4[ε] which maps u⊗ a⊗ b⊗ c in E⊗4

first to

u⊗ c⊗ s(a)⊗ s(b)− u⊗ b⊗ s(a)⊗ s(c)− u⊗ εa⊗ λ(b ∧ c)

in E⊗2 ⊗ L⊗2[ε] and then to

(s(u)⊗ s(c) + ελ(u ∧ c))⊗ s(a)⊗ s(b)− (s(u)⊗ s(b) + ελ(u ∧ b))⊗ s(a)⊗ s(c)

−εs(u)⊗ s(a)⊗ λ(b ∧ c)

in L⊗4[ε]. This is easily seen to be zero, using the cocycle condition and that L
is symtrivial. This proves the claim.

Since (L⊗−2 ⊗ E)[ε] ⊗ t is a cokernel of (L⊗−2 ⊗ E)[ε] ⊗ φ, there is a unique
morphism α : (L⊗−2⊗E)[ε]⊗εK → OC[ε] such that α ◦ ((L⊗−2⊗E)[ε]⊗ t) = β.
We claim that

(L⊗−4 ⊗ E⊗3)[ε]⊗ε K
ψ⊗K−−−→ (L⊗−2 ⊗ E)[ε]⊗ε K

α−→ OC [ε]→ 0

is exact – this will imply K⊗−1 ⊗ε K ∼= OC[ε]. It suffices to prove that

(L⊗−2 ⊗ E⊗3)[ε]⊗ε K → E[ε]⊗ε K → L⊗2[ε]→ 0

is exact. So let T ∈ C[ε] and E[ε]⊗εK → T be a morphism in C[ε] which vanishes
on (L⊗−2 ⊗ E⊗3)[ε]. Since E[ε] ⊗ t : (E ⊗ E)[ε] → E[ε] ⊗ε K is the cokernel of
E[ε] ⊗ φ, the morphism corresponds to a morphism h : E ⊗ E → T in C such
that

s(b)⊗ s(c)⊗ h(a⊗ d)− s(b)⊗ s(d)⊗ h(a⊗ c) = λ(c ∧ d)⊗ εh(a⊗ b) (5.8)

and

s(b)⊗ s(c)⊗ h(a⊗ d)− s(a)⊗ s(c)⊗ h(b⊗ d) = λ(a ∧ b)⊗ εh(c⊗ d). (5.9)

We have to prove that there is a unique morphism h̃ : L⊗2 → T in C such that
h̃(s⊗ s+ ελ) = h, i.e.

h̃(s(a)⊗ s(b)) + εh̃(λ(a ∧ b)) = h(a⊗ b). (5.10)

We check uniqueness first: Given 5.10, the cocycle condition implies

0 = s(a)⊗ εh̃(λ(b ∧ c))− s(b)⊗ εh̃(λ(a ∧ c)) + s(c)⊗ εh̃(λ(a ∧ b))
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= s(a)⊗ (h(b⊗ c)− h̃(s(b)⊗ s(c)))− s(b)⊗ (h(a⊗ c)− h̃(s(a)⊗ s(c))

+s(c)⊗ (h(a⊗ b)− h̃(s(a)⊗ s(b))).

Because of s(a)⊗ h̃(s(b)⊗ s(c)) = s(b)⊗ h̃(s(a)⊗ s(c)) (use that L is symtrivial)
this simplifies to

s(c)⊗ h̃(s(a)⊗ s(b)) = s(a)⊗ h(b⊗ c)− s(b)⊗ h(a⊗ c) + s(c)⊗ h(a⊗ b).

This shows that h̃ is unique, if it exists. But it also tells us how to construct h̃
from h: Consider the morphism

θ : E⊗3 → L⊗ T, c⊗ a⊗ b 7→ s(a)⊗ h(b⊗ c)− s(b)⊗ h(a⊗ c) + s(c)⊗ h(a⊗ b).

We would like to lift it to L⊗3. By Lemma 3.1.20 and Lemma 4.8.9 it suffices to
check the equations

s(d)⊗ θ(c⊗ a⊗ b) = s(c)⊗ θ(d⊗ a⊗ b)
= s(a)⊗ θ(c⊗ d⊗ b)
= s(b)⊗ θ(c⊗ a⊗ d).

Let us first verify
εh(a⊗ b) = εh(b⊗ a). (5.11)

Note that 5.8 and 5.9 imply:

s(c)⊗ εh(a⊗ d) = s(d)⊗ εh(a⊗ c) (5.12)

s(b)⊗ εh(a⊗ d) = s(a)⊗ εh(b⊗ d) (5.13)

As in the proof of the Segre embedding (5.10.3), we get 5.11 as follows:

s(c)⊗ s(d)⊗ εh(a⊗ b) 5.12
= s(c)⊗ s(b)⊗ εh(a⊗ d)

= s(b)⊗ s(c)⊗ εh(a⊗ d)
5.13
= s(b)⊗ s(a)⊗ εh(c⊗ d)

= s(a)⊗ s(b)⊗ εh(c⊗ d)
5.13
= s(a)⊗ s(c)⊗ εh(b⊗ d)

= s(c)⊗ s(a)⊗ εh(b⊗ d)
5.12
= s(c)⊗ s(d)⊗ εh(b⊗ a)

Now we can check the equations for θ:

s(d)⊗ θ(c⊗ a⊗ b)

= s(d)⊗ s(c)⊗ h(a⊗ b)− s(d)⊗ s(b)⊗ h(a⊗ c) + s(d)⊗ s(a)⊗ h(b⊗ c)
5.9
= s(d)⊗ s(c)⊗ h(a⊗ b) + λ(b ∧ a)⊗ εh(d⊗ c)
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stays invariant after interchanging d↔ c (because of 5.11). Likewise,

s(d)⊗ θ(c⊗ a⊗ b) 5.8
= λ(c ∧ b)⊗ εh(a⊗ d) + s(d)⊗ s(a)⊗ h(b⊗ c)

stays invariant after interchanging d↔ a. For the third variable, we calculate:

s(d)⊗ θ(c⊗ a⊗ b)− s(b)⊗ θ(c⊗ a⊗ d)

= s(d)⊗ s(c)⊗ h(a⊗ b)− s(b)⊗ s(c)⊗ h(a⊗ b)

+s(d)⊗ s(a)⊗ h(b⊗ c)− s(d)⊗ s(a)⊗ h(d⊗ c)
5.8, 5.9

= λ(d ∧ b)⊗ εh(a⊗ c) + λ(b ∧ d)⊗ εh(a⊗ c) = 0.

We have proven that θ lifts uniquely to a morphism L⊗3 → L⊗ T . Hence, there
is a unique morphism h̃ : L⊗2 → T such that

s(c)⊗ h̃(s(a)⊗ s(b)) = s(a)⊗ h(b⊗ c)− s(b)⊗ h(a⊗ c) + s(c)⊗ h(a⊗ b).

We want to prove 5.10. This comes down to

s(c)⊗ εh̃(λ(a ∧ b)) = s(b)⊗ h(a⊗ c)− s(a)⊗ h(b⊗ c).

Let us introduce additional parameters d, e from E. We compute:

s(e)⊗ s(d)⊗ s(c)⊗ εh̃(λ(a ∧ b)) = λ(a ∧ b)⊗ s(e)⊗ εh̃(s(d)⊗ s(c))

= λ(a ∧ b)⊗ ε(s(d)⊗ h(e⊗ c)− s(c)⊗ h(e⊗ d) + s(e)⊗ h(d⊗ e))

Observe that 5.8 implies ε(s(d) ⊗ h(e ⊗ c) − s(c) ⊗ h(e ⊗ d)) = 0. Thus, the
expression simplifies to

= λ(a ∧ b)⊗ s(e)⊗ εh(d⊗ e).

By 5.9 this expands to

= s(e)⊗ (s(b)⊗ s(d)⊗ h(a⊗ c)− s(a)⊗ s(d)⊗ h(a⊗ c))

= s(e)⊗ s(d)⊗ (s(b)⊗ h(a⊗ c)− s(a)⊗ h(a⊗ c)).

This finishes the proof.

For the sake of completeness, let us mention the following variant of Theo-
rem 5.12.12 which gets rid of the “generator object” E. It generalizes the well-
known classification of deformations of invertible sheaves ([Har10, Proposition
2.6]), which says: If X is a scheme, then there is an isomorphism of groups

Pic(X[ε]) ∼= Pic(X)⊕H1(X,OX).
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Theorem 5.12.15. Let C be a cocomplete linear tensor category. There is an
equivalence of categories between the category of line objects in C[ε] and the cat-
egory of extensions 0→ L → K → L → 0 in C, where L ∈ C is a line object.

Here, a morphism from an extension (L,K,L) to another (L′,K′,L′) is defined
to be a pair consisting of a morphism L → L′ and a morphism K → K′ in C such
that the obvious diagram commutes.

Proof. Let A be the category of line objects of C[ε] and B be the category of
extensions as above. Then Lemma 5.12.14 produces a functor A→ B. In order
to construct B → A, let

0→ L i−→ K p−→ L → 0

be an exact sequence in C, where L is a line object. Define ε ∈ End(K) by
ε = ip. Note that pε = 0 and εi = 0. In particular, ε2 = 0, thus K becomes an
object of C[ε]. Let K be the object of C[ε] with the same underlying object of C,
but ε changes its sign on K. We claim

K ⊗ε K ∼= L⊗2[ε].

This will prove that K is invertible in C[ε] with inverse L⊗−2 ⊗K. Consider the
morphism

K⊗2 → K⊗L, a⊗ b 7→ a⊗ p(b)− b⊗ p(a).

Since L is symtrivial, it vanishes when composed with p⊗ L. Since i⊗ L is the
kernel of p⊗ L, there is a unique morphism

λ : K⊗2 → L⊗2

such that
(i⊗ L)λ(a⊗ b) = a⊗ p(b)− b⊗ p(a).

Clearly we have λ(a⊗ b) = −λ(b⊗ a) and one checks

λ(εa⊗ b) = p(a)⊗ p(b) and λ(a⊗ εb) = −p(b)⊗ p(a) = −p(a)⊗ p(b). (5.14)

Now consider the morphism

α : K ⊗K → L⊗2[ε], a⊗ b 7→ p(a)⊗ p(b) + ελ(a⊗ b).

It satisfies
α(εa⊗ b) = ε(p(a)⊗ p(b)) = εα(a⊗ b),

α(a⊗ εb) = −ε(p(a)⊗ p(b)) = −εα(a⊗ b).

Hence, it lifts to a morphism β : K ⊗ε K → L⊗2[ε] in C[ε] such that

β(εa⊗ b) = ε(p(a)⊗ p(b)).
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We construct an inverse morphism as follows: The morphism K⊗2 → K ⊗ε K
mapping a⊗ b 7→ εa⊗ε b kills εa⊗ b and a⊗ εb. Since p : K → L is the cokernel
of ε, using Lemma 3.1.20 there is a unique morphism γ : L⊗2 → K ⊗ε K such
that

γ(p(a)⊗ p(b)) = εa⊗ε b.
Observe that εγ = 0. Next, we consider the morphism K⊗2 → K ⊗ε K defined
by

a⊗ b 7→ a⊗ε b− γ(λ(a⊗ b)).
By 5.14 it maps εa⊗ b to

εa⊗ε b− γ(p(a)⊗ p(b)) = 0

and a⊗ εb to

a⊗ε εb− γ(−p(a)⊗ p(b)) = −εa⊗ε b+ εa⊗ε b = 0.

By the same argument as above, it follows that there is a unique morphism
δ : L⊗2 → K⊗ε K such that

δ(p(a)⊗ p(b)) = a⊗ε b− γ(λ(a⊗ b)).

Since εγ = 0, we have εδ(p(a)⊗ p(b)) = εa⊗ε b = γ(p(a)⊗ p(b)). Since p⊗ p is
an epimorphism, this proves

εδ = γ : L⊗2 → K⊗ε K. (5.15)

Besides, we have
βγ = ε : L⊗2 → L⊗2[ε] (5.16)

because of β(γ(p(a)⊗ p(b))) = β(εa⊗ε b) = ε(p(a)⊗ p(b)). Let

π : L⊗2[ε]→ K⊗ε K

be the morphism in C[ε] induced by δ. We have π ◦ β = idK⊗εK because of

π(β(a⊗ε b)) = δ(p(a)⊗ p(b)) + εδ(λ(a⊗ b))

= a⊗ε b− γ(λ(a⊗ b)) + εδ(λ(a⊗ b)) 5.15
= a⊗ε b.

And we have β ◦ π = idL⊗2[ε] because of

β(π(p(a)⊗ p(b))) = β(a⊗ε b)− β(γ(λ(a⊗ b)))

5.16
= p(a)⊗ p(b) + ελ(a⊗ b)− ελ(a⊗ b) = p(a)⊗ p(b).

This finishes the proof that K ⊗ε K ∼= L⊗2[ε]. Therefore, K is invertible in C[ε].
If we knew that K is symtrivial, this would finish the construction of the functor
B → A. It is straightforward to check that it is inverse to the functor A→ B.
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In order to prove that K is symtrivial, let us check first the cocycle condition

p(a)⊗ λ(b⊗ c)− p(b)⊗ λ(a⊗ c) + p(c)⊗ λ(a⊗ b) = 0.

In fact, it suffices to check this after applying L ⊗ i⊗ L, but then this becomes

p(a)⊗ (b⊗ p(c)− c⊗ p(b))− p(b)⊗ (a⊗ p(c)− c⊗ p(a))

+p(c)⊗ (a⊗ p(b)− b⊗ p(a)) = 0,

which follows easily from L being symtrivial. Applying i⊗L⊗L to the cocycle
condition, we obtain

ε(a)⊗ λ(b⊗ c)− ε(b)⊗ λ(a⊗ c) + ε(c)⊗ λ(a⊗ b) = 0.

Since L is symtrivial, we have

ε(b)⊗ λ(a⊗ c) = (i⊗ L⊗ L)(p(b)⊗ λ(a⊗ c)) = (i⊗ L⊗ L)(λ(a⊗ c)⊗ p(b))

= (a⊗ p(c)− c⊗ p(a))⊗ p(b).
It follows that

c⊗ p(a)⊗ p(b) + ε(c)⊗ λ(a⊗ b) = a⊗ p(c)⊗ p(b) + ε(a)⊗ λ(c⊗ b).

But this precisely means that the morphism K ⊗ L⊗2 → K ⊗ L⊗2 which is
determined by the commutative diagram

K ⊗ε K ⊗ε K
SK,K⊗εK

//

∼=K⊗εβ
��

K ⊗ε K ⊗ε K
K⊗εβ∼=
��

K ⊗ L⊗2 // K ⊗ L⊗2

equals the identity. Since K is invertible, it follows that SK,K also equals the
identity.

Remark 5.12.16. If C = Qcoh(X) for some scheme X, then of course Theo-
rem 5.12.15 is easier to prove: That K is invertible may be checked locally; but
locally the exact sequence splits and everything is easy. But even in this case
our proof gives some additional information, namely how the inverse of K looks
like globally in terms of K and L:

K⊗−1 = L⊗−2 ⊗K

Theorem 5.12.17. If f : X → S is a morphism of schemes which is affine or
projective, then

T
(
Qcoh(X)/Qcoh(S)

)
' Qcoh

(
T (X/S)

)
.
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Proof. This is a consequence of Proposition 5.12.7, Proposition 5.12.10 and The-
orem 5.12.13 as well as the corresponding results in algebraic geometry, notably
the Euler sequence (Theorem 4.5.13).

We may use the classical lifting properties of smooth, unramified and étale mor-
phisms ([GD67, §17]) to get corresponding notions for tensor functors. Let us
illustrate this for the notion of being formally unramified.

Definition 5.12.18 (Formally unramified tensor functors). A cocontinuous lin-
ear tensor functor F : C → D is called formally unramified if T (D/C) = D, i.e.
for every cocontinuous linear tensor functor C → E the canonical functor

Homc⊗/C(D, E)→ Homc⊗/C(D, E [ε])

is an equivalence of categories.

Then formally unramified cocontinuous linear tensor functors are closed under
composition and cobase changes. We have the following comparison to algebraic
geometry:

Corollary 5.12.19. Let f : X → S be a morphism of schemes which is affine
or projective. If f : X → S is formally unramified, then its pullback functor
f ∗ : Qcoh(S)→ Qcoh(X) is formally unramified. The converse holds when X is
quasi-separated.

Proof. Let p : T (X/S) → X denote the tangent bundle projection. Then f
is formally unramified if and only if p is an isomorphism ([GD67, Proposition
17.2.1]) and f ∗ is formally unramified if and only if p∗ is an equivalence (by
Theorem 5.12.17). Therefore, the claim follows from Corollary 2.2.6.
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Chapter 6

Monoidal monads and their
modules

This chapter quite independent from the rest of this thesis. It is devoted to the
study of monoidal monads, their module categories as well as certain universal
properties of these module categories. This provides a machinery for constructing
cocomplete tensor categories.

6.1 Overview

Let C be a cocomplete tensor category. Given a commutative algebra A in C, we
already know that its category of modules Mod(A) becomes a cocomplete tensor
category (Proposition 4.1.10). The forgetful functor U : Mod(A) → C creates
colimits and has a left adjoint F : C → Mod(A), mapping X to X ⊗ A with the
obvious right A-action. In fact, U is monadic and F is a cocontinuous tensor
functor. Our goal is to generalize this construction to certain monads on C, the
above being the special case of the monad − ⊗ A associated to A. This will
include lots of other specific examples. See [ML98, VI] for an introduction to
monads.

This construction was already done by Lindner ([Lin75]), Guitart ([Gui80])
and recently by Seal ([Sea13]), all influenced by the pioneering work of Kock
([Koc71b]). However, we would like to extend this construction and specialize
to the realm of cocomplete tensor categories. Besides, our exposition is slightly
different. Many preparatory results of this chapter can be found almost verbatim
in [Sea13], which coincidentally appeared at the same time the author studied
monoidal monads.

Let us describe our goal more precisely, thereby motivate or sketch the following
definitions and constructions backwards. Let (T, µ, η) be a monad (usually abbre-
viated by T ) on the underlying category of a cocomplete (symmetric) monoidal
category C. We want to endow the category Mod(T ) of T -modules (often called
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6.1. Overview

T -algebras) with a tensor product ⊗T such that Mod(T ) becomes a cocomplete
(symmetric) monoidal category. This extra structure should be reflected in an
extra structure on T .

We want the free functor F : C → Mod(T ) also to carry the structure of a
symmetric monoidal functor, which means in particular that the free module
F (1) is a unit for ⊗T and that there are natural isomorphisms of free T -modules

F (X)⊗T F (Y ) ∼= F (X ⊗ Y )

since our monoidal functors are required to be strong. It also implies that the
forgetful functor U is lax monoidal (Example 3.1.23), so there are natural mor-
phisms U(F (X))⊗ U(F (Y ))→ U(F (X)⊗T F (Y )), i.e.

dX,Y : T (X)⊗ T (Y )→ T (X ⊗ Y ),

which should be compatible with the monad structure. This already enables
us to compute the tensor product in general: Given T -modules (A, a), (B, b),
tensoring the canonical presentations ([ML98, VI.7])

F (T (A)) ⇒ F (A)→ (A, a), F (T (B)) ⇒ F (B)→ (B, b)

yields a coequalizer

F (T (A)⊗ T (B)) ⇒ F (A⊗B)→ (A, a)⊗T (B, b).

In general, two coequalizers in a cocomplete monoidal category cannot be ten-
sored pointwise, but this works for reflexive coequalizers. The two homomor-
phisms of T -modules F (T (A)⊗ T (B)) ⇒ F (A⊗B) correspond to C-morphisms
T (A) ⊗ T (B) ⇒ T (A ⊗ B), the first one being dA,B and the other one being
ηA⊗B ◦ a⊗ b.

Conversely, given a monad T with a suitable natural transformation d as above,
we may construct (A, a) ⊗T (B, b) as the coequalizer above, provided it exists.
There is an alternative description using bihomomorphisms. This notion has
been studied by Kock ([Koc71a]) and Banaschewski-Nelson ([BN76]). Thus we
have to impose that Mod(T ) has reflexive coequalizers.

In order to get associativity of⊗T , we also have to impose the nontrivial condition
that ⊗T preserves reflexive coequalizers in each variable. Namely, tensoring the
canonical presentation F (T (A)) ⇒ F (A)→ (A, a) with the reflexive coequalizer
F (T (B)⊗ T (C)) ⇒ F (B ⊗ C)→ (B, b)⊗T (C, c) gives a coequalizer

F (T (A)⊗ (T (B)⊗ T (C))) ⇒ F (A⊗ (B ⊗ C))→ (A, a)⊗T ((B, b)⊗T (C, c))

and then we use the associator in C. These two conditions lead to the definition
of a coherent monoidal monad.
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6.2 Reflexive coequalizers

If a functor F : C × C ′ → D preserves coequalizers in each variable and D has
coproducts, then coequalizer diagrams

A
f
//

g
// B

p
// C , A′

f ′
//

g′
// B′

p′
// C ′

in C resp. C ′ induce a coequalizer diagram

F (A,B′)⊕ F (B,A′)
F (f,id),F (id,f ′)

//

F (g,id),F (id,g′)
// F (B,B′)

F (p,p′)
// F (C,C ′)

in D. This applies in particular to the tensor product of a cocomplete monoidal
category. Intuitively, this describes how we can tensor two presentations (of
C,C ′) with generators (B,B′) and relations (A,A′), which we have already ob-
served in Lemma 3.1.20. But for reflexive coequalizers this simplifies (we can
simply use F (A,A′) instead of the direct sum) – this is the main motivation for
their use in our context.

Definition 6.2.1. Recall that a pair of morphisms f, g : A → B in a category
is called reflexive if they have a common section, i.e. there is some morphism
s : B → A with fs = gs = 1B. A coequalizer of a reflexive pair is called a
reflexive coequalizer.

Lemma 6.2.2 ([Joh02, Lemma A.1.2.11]). Given a commutative diagram

A1
//
//

����

B1

����

// C1

����

A2
//
//

��

B2

��

// C2

��

A3
//
// B3

// C3

in a category such that each row and each column is a reflexive coequalizer dia-
gram, then the diagonal A1

//
// B2

// C3 is also a reflexive coequalizer.

Corollary 6.2.3 ([Joh02, Corollary A.1.2.12]). Suppose that F : C1×C2 → D is a
functor which preserves reflexive coequalizers in each variable. Then F preserves
reflexive coequalizers.

Remark 6.2.4. The coequalizer of a pair

A
f
//

g
// B
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is the same as the coequalizer of the reflexive pair

A tB
f,idB //

g,idB
// B.

Thus, in a category with coproducts, every coequalizer can be reduced to a
reflexive coequalizer. For example in the category of sets

N tN
id,id
//

id,S
// N // {0}

is a reflexive coequalizer, where S denotes the successor function.

Notation 6.2.5. A monad (T, µ, η) on a category C will be abbreviated by T .
The category of T -modules (often also called T -algebras) will be denoted by
Mod(T ). These are pairs (A, a) consisting of an object A ∈ C and a morphism
a : T (A)→ A such that the two evident diagrams commute, expressing compat-
ibility with µ and η. We have a forgetful functor U : Mod(T ) → C, (A, a) 7→ A
with left adjoint F : C → Mod(T ), X 7→ (T (X), µX) (the free T -module on X).
We have the fundamental relation T = UF . In order to avoid confusions we will
try not to ignore the forgetful functor U i.e. will not abbreviate (A, a) by A.

Remark 6.2.6 (Canonical presentations). Let T be a monad on a category C
and let (A, a) ∈ Mod(T ). Then T (a), µA : T 2(A) → T (A) are homomorphisms
of T -modules F (T (A)) → F (A), reflexive with common section T (ηA). Their
coequalizer is a : F (A) → (A, a) in Mod(T ). This is the canonical presentation
of the T -module (A, a) (cf. [ML98, VI.7]).

Lemma 6.2.7 ([Lin69, Corollary 2]). Let T be a monad on a category C with
coproducts. Then the following are equivalent:

1. Mod(T ) is cocomplete.

2. Mod(T ) has reflexive coequalizers.

Proof. Only one direction is non-trivial. Assume that Mod(T ) has reflexive co-
equalizers. Since F : C → Mod(T ) is left adjoint to the forgetful functor, it
preserves arbitrary coproducts. Therefore, coproducts of free T -modules ex-
ist. Let ((Ai, ai))i∈I be a family of T -modules. The coequalizer of the reflexive
pair F (T (Ai)) ⇒ F (Ai) is (Ai, ai). Hence, the coequalizer of the reflexive pair∐

i F (T (Ai)) ⇒
∐

i F (Ai) is a coproduct of the (Ai, ai). Hence, coproducts exist
in Mod(T ). Finally, every coequalizer can be reduced to a reflexive one.

The proof of the Lemma also shows:

Lemma 6.2.8. Let T be a monad on a category C with coproducts such that
Mod(T ) is cocomplete. For a functor H : Mod(T )→ D the following are equiva-
lent:
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1. H is cocontinuous.

2. HF : C → D preserves coproducts and H preserves reflexive coequalizers.

Proposition 6.2.9 ([Lin69, Proposition 4]). Let C be a complete and co-well-
powered category with an epi-mono factorization system (for example if C is
presentable). Let T be a monad on C which preserves the epi-mono factorizations
up to isomorphism. Then Mod(T ) has coequalizers. Thus, if C is cocomplete, then
Mod(T ) is cocomplete.

Example 6.2.10. For C = Set the assumptions in Proposition 6.2.9 are always
satisfied (see [Lin69, Example, pp. 89-90]). Thus, the category of modules over
any monad on Set is cocomplete (and of course also complete).

Proposition 6.2.11 (Crude Monadicity Theorem,[Joh02, Theorem 1.1.2]). Let
D be a category with reflexive coequalizers. Let U : D → C be a conservative
right adjoint functor which creates reflexive coequalizers. Then U is monadic.

Lemma 6.2.12. Let C be a category with reflexive coequalizers. Consider a
monadic functor U : D → C with associated monad T : C → C. The following
are equivalent:

1. U creates reflexive coequalizers.

2. U preserves reflexive coequalizers.

3. T preserves reflexive coequalizers.

Proof. 1. ⇒ 2. follows since U is conservative and C has reflexive coequalizers.
2. ⇒ 3. follows from T = UF . The remaining direction 3. ⇒ 1. follows from
[Lin69, Proposition 3].

I have learned the following result from Todd Trimble.

Proposition 6.2.13. Every finitary monad on Set preserves reflexive coequaliz-
ers.

Proof. Let T be a finitary monad on Set. Then we have the following coend
expression ([Dur07, Proposition 4.1.3]):

T =

∫ n∈N
T (n)× Hom(n,−)

Thus, it suffices to prove that Hom(n,−) preserves reflexive coequalizers. But

this functor is isomorphic to the composite of the diagonal functor Set
∆−→ Setn,

which is left adjoint to the product functor, and the n-fold product functor
Setn → Set, which preserves reflexive coequalizers according to Corollary 6.2.3.
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Example 6.2.14. Not every monad on Set preserves reflexive coequalizers. Con-
sider the example from Remark 6.2.4.

1. If I is an infinite set, then the coequalizer of

Hom(I,N+N) ⇒ Hom(I,N)

equals Hom(I,N)/∼, where f ∼ g if supi∈I |f(i) − g(i)| < ∞. This set is
infinite, but Hom(I, {0}) just has one element. Thus, Hom(I,−) does not
preserve coequalizers.

2. Consider the power set monad ℘. The coequalizer of ℘(N+N) ⇒ ℘(N) is
℘(N)/∼, where ∼ is the equivalence relation generated by

A ∪B ∼ A ∪ (B + 1).

Then the class of ∅ consists only of ∅ and the class of a finite subset consists
only of finite subsets. It follows that ℘(N)/∼ has at least three elements,
namely [∅], [{0}], [N], so that it cannot coincide with ℘({0}).

We have the following universal property of Mod(T ).

Proposition 6.2.15. Let C be a cocomplete category. Let T be a monad on
C preserving reflexive coequalizers. Then Mod(T ) is a cocomplete category and
F : C → Mod(T ) induces, for every cocomplete category D, an equivalence of cat-
egories between the category Homc(Mod(T ),D) and the category of pairs (G, ρ),
where G ∈ Homc(C,D) and ρ : GT → G is a right action.

Proof. The category Mod(T ) is cocomplete by Lemma 6.2.7 and Lemma 6.2.12.
The multiplication of the monad µ : T 2 → T induces a right action FT → F .
This induces, for every cocontinuous functor H : Mod(T ) → D, a right action
HFT → HF on the cocontinuous functor HT : C → D. Conversely, consider
a cocontinuous functor G : C → D with a right action ρ : GT → G. We want
to find a cocontinuous functor H : Mod(T ) → D with HF ∼= G (commuting
with the T -actions). According to Remark 6.2.6 we have no choice but to define
H(A, a) to be the coequalizer of G(T (A)) ⇒ G(A), the one morphism being G(a)
and the other one ρA. Then H : Mod(T ) → D is a functor. For A ∈ C we have
a coequalizer diagram

G(T 2(A))
ρT (A)
//

G(µA)
// G(T (A))

ρA // G(A).

In fact, it is a split coequalizer via the sections G(ηA) : G(A) → G(T (A))
and G(T (ηA)) : G(T (A)) → G(T 2(A)). This proves HF ∼= G. We still have
to prove that H is cocontinuous. By Lemma 6.2.8 it suffices to check that H
preserves reflexive coequalizers. Let (A2, a2) ⇒ (A1, a1)→ (A0, a0) be a reflexive
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coequalizer. Since T preserves reflexive coequalizers, so does U by Lemma 6.2.12.
Therefore, A2 ⇒ A1 → A0 is a reflexive coequalizer. This remains true after
applying G or GT . We get the following commutative diagram:

G(T (A2))
//

//

����

G(A2)

����

// H(A2, a2)

����

G(T (A1))
//

//

��

G(A1)

��

// H(A1, a1)

��

G(T (A0))
//

// G(A0) // H(A0, a0).

The first and the second column are coequalizers. The rows are coequalizers by
definition of H. Hence, the third column is also a coequalizer. This finishes the
proof.

Remark 6.2.16. We could not find this universal property in the literature.
According to Mike Shulman it is known when T is cocontinuous (which is a too
strong assumption for our purposes). If T preserves reflexive coequalizers, then
the corresponding universal property dealing with functors preserving reflexive
coequalizers is also known.

6.3 Monoidal monads

For the convenience of the reader, we review the notion of monoidal monads (see
for example [GLLN02]). In order to simplify the notation, we will often suppress
the associators of monoidal categories. Besides, the notation in complicated
diagrams will be quite sloppy: The morphisms are labelled only by their primary
constituents. For example we will often abbreviate something like T (f)⊗ id by
f . For a component σA of a natural transformation σ we will often just write σ.
The precise meaning will be clear from the context.

Definition 6.3.1 (Monoidal monads). Let C be a monoidal category (not as-
sumed to be symmetric). A monoidal monad on C is a monad object in the
2-category of lax monoidal endofunctors of C. That is, it consists of a monad
(T, µ, η) on the underlying category and the structure of a lax monoidal functor
on T , such that µ and η are lax monoidal transformations.

Let us write down what this means in concrete terms. The lax monoidal structure
is given by a morphism u : 1 → T (1) together with a natural transformation
dA,B : T (A)⊗ T (B)→ T (A⊗B), such that the diagrams
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T (A)⊗ T (B)⊗ T (C)
dA,B

//

dB,C
��

T (A⊗B)⊗ T (C)

dA⊗B,C
��

T (A)⊗ T (B ⊗ C)
dA,B⊗C

// T (A⊗B ⊗ C)

T (A)⊗ 1 u //

∼=
��

T (A)⊗ T (1)

dA,1
��

T (A)
∼= // T (A⊗ 1)

1⊗ T (A) u //

∼=
��

T (1)⊗ T (A)

d1,B
��

T (A)
∼= // T (1⊗ A)

commute. That η : idC → T is a lax monoidal transformation means that u = η1

and that

A⊗B

ηA⊗ηB
��

ηA⊗B

((

T (A)⊗ T (B)
dA,B

// T (A⊗B)

commutes. In particular u may be removed from the data and replaced by η1.
The following commutative diagrams express that µ : T 2 → T is a lax monoidal
transformation.

T 2(A)⊗ T 2(B)
µA⊗µB //

dT (A),T (B)

��

T (A)⊗ T (B)

dA,B
��

T (T (A)⊗ T (B))
T (dA,B)

// T 2(A⊗B) µA⊗B
// T (A⊗B)

1 u //

u

��

T (1)

T (1)
T (u)
// T 2(1)

µ1

OO

Actually the second diagram is superfluous, it already follows from u = η1 and
the monad axioms. In the following, we will use these diagrams without further
mentioning.

There is an obvious notion of a morphism between monoidal monads on C. Usu-
ally we will abbreviate (T, µ, η, d) by T .

Notice that if T is a monoidal monad on C, then (since T is lax monoidal) T lifts
to an endofunctor of the category of monoid objects (aka algebra objects) in C.
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Remark 6.3.2 (Decomposition). The natural transformation d can be divided
into two parts: Define σA,B : A⊗ T (B)→ T (A⊗B) to be the composition

A⊗ T (B)
ηA // T (A)⊗ T (B)

dA,B
// T (A⊗B).

In a similar way, one defines σ′A,B : T (A) ⊗ B → T (A ⊗ B). Then dA,B equals
the composition

T (A)⊗ T (B)
σT (A),B

// T (T (A)⊗B)
T (σ′A,B)

// T 2(A⊗B)
µA⊗B // T (A⊗B).

This follows from the following commutative diagram:

T (A)⊗ T (B)

ηT (A)

��

T (A)⊗ T (B)
dA,B

// T (A⊗B)

T 2(A)⊗ T (B)
ηB //

dT (A),B

��

T 2(A)⊗ T 2(B)

dT (A),T (B)

��

µA⊗µB

OO

T (T (A)⊗B)
ηB // T (T (A)⊗ T (B))

dA,B
// T 2(A⊗B)

µA⊗B

OO

In the same way one checks that dA,B equals the composition

T (A)⊗ T (B)
σ′
A,T (B)

// T (A⊗ T (B))
T (σA,B)

// T 2(A⊗B)
µA⊗B // T (A⊗B).

Thus, d can be recovered from σ and σ′. One can translate the defining diagrams
of a monoidal monad in terms of σ and σ′. This results in the following equivalent
description of monoidal monads.

Definition 6.3.3 (Strengths). Let T be a monad on the underlying category of
a monoidal category C. A strength is a natural transformation

σA,B : A⊗ T (B)→ T (A⊗B)

such that the following diagrams commute, expressing compatibility with the
monoidal structure of C as well as the monad structure of T :

1⊗ T (A)
σ1,A
//

∼= &&

T (1⊗ A)

∼=
��

T (A)

A⊗B ηB //

ηA⊗B
&&

A⊗ T (B)

σA,B

��

T (A⊗B)

A⊗B ⊗ T (C)
σA⊗B,C

//

σB,C
))

T (A⊗B ⊗ C)

A⊗ T (B ⊗ C)

σA,B⊗C

55
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A⊗ T 2(B)

µB
��

σA,T (B)
// T (A⊗ T (B))

σA,B
// T 2(A⊗B)

µA⊗B
��

A⊗ T (B) σA,B
// T (A⊗B)

There is an obvious notion of a costrength σ′A,B : T (A)⊗B → T (A⊗B), which is
a natural transformation satisfying the analoguous four diagrams. We say that
σ and σ′ are compatible if the following diagrams commute:

A⊗ T (B)⊗ C
σA,B

//

σ′B,C

��

T (A⊗B)⊗ C

σ′A⊗B,C

��

(♥)

A⊗ T (B ⊗ C) σA,B⊗C
// T (A⊗B ⊗ C)

T (T (A)⊗B)
σ′A,B

// T 2(A⊗B)
µA⊗B

((

T (A)⊗ T (B)

σT (A),B

66

σ′
A,T (B) ((

T (A⊗B) (♦)

T (A⊗ T (B)) σA,B
// T 2(A⊗B)

µA⊗B

66

Example 6.3.4. Let M be a monoid (i.e. algebra) object in C and consider
the functor T = − ⊗M : C → C with its usual monad structure, so that T -
modules are precisely the objects with a right M -action. Then the associator
A ⊗ (B ⊗M) ∼= (A ⊗ B) ⊗M is a strength for T . But in general there is no
costrength.

Proposition 6.3.5 ([GLLN02, A.1 and A.2]). Let T be a monad on the un-
derlying category of a monoidal category C. Then there is a 1:1 correspondence
between natural transformations d : T (−) ⊗ T (−) → T (− ⊗ −) making T a
monoidal monad and pairs consisting of a strength σ and a costrength σ′ such
that σ and σ′ are compatible with each other.

Proposition 6.3.6. Let C be a closed monoidal category. Let T be a monad
on the underlying category. Then there is a bijection between strengths of T
and natural transformations τA,B : Hom(A,B) → Hom(T (A), T (B)) of functors
Cop × C → C making T a C-enriched functor.

Proof. We only sketch the construction of the bijection. The details just in-
volve diagram chases and can be found in [Koc70a] and [Koc72] (at least for the
symmetric case). Let us denote by c the counit and by u the unit of the hom-
tensor adjunction. Given a strength σ, we define τ by the following commutative
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diagram:

Hom(A,B)

u

��

τ // Hom(T (A), T (B))

Hom(T (A),Hom(A,B)⊗ T (A)) σ
// Hom(T (A), T (Hom(A,B)⊗ A))

c

OO

Conversely, if T has an enrichment τ , define the strength σ by the following
commutative diagram:

A⊗ T (B)

u

��

σ // T (A⊗B)

Hom(B,A⊗B)⊗ T (B) τ
// Hom(T (B), T (A⊗B))⊗ T (B)

c

OO

Remark 6.3.7. In the setting of Proposition 6.3.6 one can also find a bijection
between costrengths and natural transformations

τ ′A,B : T (Hom(A,B))→ Hom(A, T (B))

satisfying the obvious compatibility diagrams (cf. [Koc71b, Section 1]). Given a
costrength σ′, one defines τ ′ by the following commutative diagram:

T (Hom(A,B))

u

��

τ ′ // Hom(A, T (B))

Hom(A, T (Hom(A,B))⊗ A)
σ′
// Hom(A, T (Hom(A,B)⊗ A))

c

OO

Given τ ′, one defines σ′ by the following commutative diagram:

T (A)⊗B σ′ //

u

��

T (A⊗B)

T (Hom(B,A⊗B))⊗B
τ ′
// Hom(B, T (A⊗B))⊗B

c

OO

Remark 6.3.8. Let T be a monoidal monad on a monoidal closed category. If
A ∈ C and (B, b) ∈ Mod(T ), then Hom(A,B) ∈ C carries the structure of a
T -module as follows:

T (Hom(A,B))
τ ′−→ Hom(A, T (B))

b−→ Hom(A,B).

By abuse of notation this T -module will be also denoted by Hom(A,B).
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Definition 6.3.9 (Symmetric monoidal monads). A symmetric monoidal monad
on a symmetric monoidal category C is a monad in the 2-category of symmetric
lax monoidal endofunctors of C. Specifically this means that T is a monoidal
monad on (the underlying monoidal category of) C as in Definition 6.3.1 such
that moreover the diagram

T (A)⊗ T (B)

ST (A),T (B)

��

dA,B
// T (A⊗B)

T (SA,B)

��

T (B)⊗ T (A)
dB,A

// T (B ⊗ A)

commutes.

Notice that T lifts to an endofunctor of the category of commutative monoid
objects of C (using the symmetric lax monoidal structure).

Proposition 6.3.10 ([GLLN02, A.3]). Let T be a monad on the underlying
category of a symmetric monoidal category C. Then there is a 1:1 correspondence
between natural transformations d : T (−) ⊗ T (−) → T (− ⊗ −) making T a
symmetric monoidal monad and strengths σ : −⊗ T (−)→ T (−⊗−) such that,
for the natural transformation σ′ : T (−)⊗− → T (−⊗−) defined by

T (A)⊗B
ST (A),B

// B ⊗ T (A)
σB,A

// T (B ⊗ A)
SB,A

// T (A⊗B) ,

the diagram (♦) as in Definition 6.3.3 commutes.

Note that the diagram (♥) in Definition 6.3.3 commutes automatically by natu-
rality of the symmetry and the properties of the strength σ.

Example 6.3.11 (The case of sets). Let T be a monad on Set. By Proposi-
tion 6.3.6 T has a unique strength. It may be described as follows: For a ∈ A
the map B → A × B, b 7→ (a, b) induces a map T (B) → T (A × B). By varying
a we get a map σA,B : A× T (B)→ T (A×B). The corresponding costrength σ′

can be described similarly. Then T is a symmetric monoidal monad if and only
if for all T -modules (A, a) and all sets X, Y and elements u ∈ T (X), v ∈ T (Y )
with associated maps ũ : AX → A, ṽ : AY → A (defined by ũ(f) = a(T (f)(u))),
the diagram

AX×Y
∼= //

∼=
��

(AX)Y ũ // AY

ṽ

��

(AY )X

ṽ
��

AX
ũ

// A
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commutes. This coincides with the usual notion of a commutative monad, used
for example in Durov’s thesis [Dur07, Chapter 5]. It is equivalent to the condition
that for all T -modules (A, a), (B, b) the set of homomorphisms HomT (A,B) is a
submodule of the T -module Hom(A,B).

For a specific class of examples, let R be ring. Then, the forgetful functor
Mod(R)→ Set is monadic (for example by Proposition 6.2.11). The correspond-
ing monad T on Set maps a set X to the set of formal finite linear combinations∑

x∈X x · λx with coefficients λx ∈ R. Then one checks that T is commutative
if and only if R is commutative. Moreover, this yields a fully faithful functor of
the category of commutative rings into the category of commutative monads on
Set. This is one of Durov’s motivations to define a generalized commutative ring
to be a finitary commutative monad on Set.

Example 6.3.12. Let C be a symmetric monoidal category and M ∈ C be a
monoid object (aka algebra object) of the underlying monoidal category. The
monad −⊗M has a strength (Example 6.3.4), with corresponding costrength

(A⊗M)⊗B ∼= B ⊗ (A⊗M) ∼= (B ⊗ A)⊗M ∼= (A⊗B)⊗M.

With these data −⊗M is a symmetric monoidal monad on C if and only if the di-
agram (♦) commutes, which simplifies (using A = B = 1C) to the commutativity
of the diagram

M ⊗M µ
//

SM,M &&

M

M ⊗M
µ

::

i.e. to the commutativity of M . This induces a functor from the category of
commutative monoids in C to the category of symmetric monoidal monads on
C, which is fully faithful and has a right adjoint, mapping T to the commuta-
tive monoid T (1). For example, every commutative monoid M in Set gives a
generalized commutative ring. Every commutative R-algebra yields a symmetric
monoidal monad on Mod(R).

6.4 Tensor product of modules

The idea of the tensor product of modules classifying bihomomorphisms over a
monoidal monad goes back to Linton ([Lin69, §1, Remark]) and has been studied
by Kock ([Koc71a], [Koc12]). For concrete categories the corresponding notions
were studied in detail by Banaschewski and Nelson ([BN76]). In the following the
reader may find it helpful to have in mind Example 6.3.11 and Example 6.3.12.
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Definition 6.4.1 (Bihomomorphisms). Let C be a monoidal category and let T
be a monoidal monad on C. Let (A, a), (B, b), (C, c) be T -modules. A morphism
f : A ⊗ B → C in C is called a bihomomorphism (with respect to the actions
a, b, c) if it is a homomorphism in each variable, i.e. the diagrams

T (A)⊗B σ //

a⊗B
��

T (A⊗B)
T (f)
// T (C)

c

��

A⊗B f
// C

A⊗ T (B) σ′ //

A⊗b
��

T (A⊗B)
T (f)
// T (C)

c

��

A⊗B f
// C

commute. Clearly, if f : A⊗B → C is a bihomomorphism, then the same is true
for h ◦ f : A⊗B → C ′ for every homomorphism h : (C, c)→ (C ′, c′). Hence, we
obtain a functor

BiHom((A, a), (B, b),−) : Mod(T )→ Set

which sends a T -module (C, c) to the set of bihomomorphisms A⊗B → C with
respect to a, b, c.

Definition 6.4.2 (Tensor product). If the functor BiHom((A, a), (B, b),−) is
representable, we call a representing object a tensor product of (A, a) and (B, b)
and denote it by (A, a) ⊗T (B, b). We will abbreviate the underlying object
U((A, a)⊗T (B, b)) by A⊗T B. It comes equipped with a universal bihomomor-
phism A⊗B → A⊗T B, also denoted by ⊗.

Proposition 6.4.3 ([Sea13, Proposition 2.1.2]). Let (A, a), (B, b), (C, c) be T -
modules. A morphism f : A ⊗ B → C is a bihomomorphism if and only if the
diagram

T (A)⊗ T (B)
dA,B

//

a⊗b
��

T (A⊗B)
T (f)
// T (C)

c

��

A⊗B f
// C

commutes.

Proof. If the diagram commutes, then precomposing with ηA⊗T (B) implies that
f is a homomorphism in B. Similarly, we see that f is a homomorphism in A
by precomposing with T (A) ⊗ ηB. Now assume that f is a bihomomorphism.
Then each part in the following diagram commutes (we will use sloppy notation
again).
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T (A)⊗ T (B) d //

σ′

((

b

��

T (A⊗B)
f

// T (C)

c

��

T (A⊗ T (B)) σ //

b
��

T 2(A⊗B)

µ

OO

f
// T 2(C)

µ
::

c

��

T (A)⊗B σ′ //

a

��

T (A⊗B)
f

// T (C)
c

$$
A⊗B f

// C

Hence, the outer rectangle also commutes, which is precisely the claim.

Corollary 6.4.4 (Existence of tensor products). If Mod(T ) has reflexive co-
equalizers, then the tensor product of two T -modules (A, a)⊗T (B, b) always ex-
ists, namely it is given by the coequalizer in Mod(T ) of the two homomorphisms
F (T (A) ⊗ T (B)) ⇒ F (A ⊗ B) defined as F (a ⊗ b) resp. as the extension of
dA,B : T (A)⊗ T (B)→ T (A⊗B).

In fact, these homomorphisms are reflexive with section T (ηA ⊗ ηB). Next, we
check that the tensor product satisfies the expected properties.

Proposition 6.4.5 ([Sea13, Theorem 2.5.5]). Let T be a monoidal monad on a
monoidal category C. Then for every T -module (A, a) there is a unique isomor-
phism (A, a)⊗T F (1) ∼= (A, a) such that

A⊗T T (1)
∼= // A

A⊗ T (1)

⊗

OO

A⊗ 1
A⊗η1
oo

∼=

OO

commutes. A similar statement holds for F (1)⊗T (A, a) ∼= (A, a).

Proof. Let (C, c) be some T -module. We have to show that there is a natural
bijection between bihomomorphisms A⊗T (1)→ C and homomorphisms A→ C.
Our notation will be quite sloppy, for example we will abbreviate the morphism
A⊗ η1 : A⊗ 1→ A⊗ T (1) by η.

Given a bihomomorphism f̃ : A⊗T (1)→ C, define f : A→ C as the composition

f : A
ρ−1

−−→ A⊗ 1
η−→ A⊗ T (1)

f̃−→ C.
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The following diagram commutes:

T (A)
ρ−1
//

ρ−1

%%

a

��

T (A⊗ 1)
η
// T (A⊗ T (1))

f̃
// T (C)

c

��

T (A)⊗ 1

a

��

η
//

σ′

OO

T (A)⊗ T (1)

σ′

OO

a

��

A
ρ−1

// A⊗ 1
η

// A⊗ T (1)
f̃

// C

The commutativity of the outer rectangle says that f is a homomorphism.

Conversely, let f : A→ C be a homomorphism. Define f̃ : A⊗ T (1)→ C as the
composition

f̃ : A⊗ T (1)
σ−→ T (A⊗ 1)

ρ−→ T (A)
f−→ T (C)

c−→ C,

or equivalently as the composition

f̃ : A⊗ T (1)
σ−→ T (A⊗ 1)

ρ−→ T (A)
a−→ A

f−→ C.

We claim that f̃ is a bihomomorphism. We show first that f̃ is a homomorphism
in A, i.e. that the diagram (D)

T (A)⊗ T (1) σ //

a

��

T (A⊗ T (1))
f̃
// T (C)

c

��

A⊗ T (1)
f̃

// C

commutes. Observe that the following two diagrams commute:

T (A)⊗ T (1) σ //

a

��

T (T (A)⊗ 1)
ρ
//

a

��

T 2(A)
µ
//

a

��

T (A)

a

��

A⊗ T (1) σ //

f

��

T (A⊗ 1)
ρ
//

f

��

T (A) a //

f

��

A

f

��

C ⊗ T (1) σ // T (C ⊗ 1)
ρ
// T (C) c // C
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T (A)⊗ T (1) σ′ //

σ

��

T (A⊗ T (1))

σ
��

f̃

��

T 2(A⊗ 1)
µ
//

ρ

��

T (A⊗ 1)

ρ

��

T 2(A⊗ 1)µ
oo

ρ

��

T (T (A)⊗ 1)
ρ
//

σ′
77

T 2(A)
µ

// T (A)

a

��

T 2(A)µ
oo

a

��

A

f

��

T (A)

f

��

a
oo

C T (C)c
oo

The first diagram implies (with sloppy notation) f̃a = cfρσa = faµρσ and the
second one implies faµρσ = cf̃σ′, thus (D) commutes. The following commuta-
tive diagram shows that f̃ is a homomorphism in T (1):

A⊗ T 2(1) σ //

µ

��

T (A⊗ T (1)) σ //

f̃

**
T 2(A⊗ 1)

ρ
//

µ

��

T 2(A)

µ

��

a // T (A)

a

��

f
// T (C)

c

��

A⊗ T (1) σ //

f̃

33T (A⊗ 1)
ρ
// T (A) a // A

f
// C

Thus, f̃ is a bihomomorphism. Let us show that these constructions are inverse to
each other: Given a homomorphism f : A→ C, the associated bihomomorphism
f̃ yields the homomorphism

A
ρ−1

−−→ A⊗ 1
η−→ A⊗ T (1)

f̃−→ C

and the following commutative diagram shows that it equals f :

A⊗ 1
η
//

η
%%

ρ

��

A⊗ T (1)

σ

��

f̃
// C

A

ρ−1
==

T (A⊗ 1)

ρ

��

A
η
// T (A)

a

��

f
// T (C)

c

OO

c

��

A
f

// C
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Conversely, let f̃ : A⊗ T (1)→ C be a bihomomorphism, with associated homo-
morphism f , which gives the bihomomorphism cfρσ. The following commutative
diagram shows that it equals f̃ .

T (A)
f

// T (C) c // C

T (A⊗ 1)

ρ

OO

η
// T (A⊗ T (1))

f̃

OO

A⊗ T (1)

σ

OO

η
// A⊗ T 2(1)

σ

OO

µ
// A⊗ T (1)

f̃

OO

Proposition 6.4.6 ([Sea13, Proposition 2.5.2]). Let X, Y ∈ C. Then there is a
unique isomorphism of T -modules F (X ⊗ Y ) ∼= F (X)⊗T F (Y ) such that

T (X ⊗ Y )
∼= // T (X)⊗T T (Y )

T (X)⊗ T (Y )

dX,Y

hh

⊗

66

commutes.

Proof. We prove that dX,Y : T (X) ⊗ T (Y ) → T (X ⊗ Y ) satisfies the universal
property of the tensor product. Notice that dX,Y is a bihomomorphism because
of Proposition 6.4.3 and the commutative diagram

T 2(X)⊗ T 2(Y ) d //

µ⊗µ
��

T (T (X)⊗ T (Y )) d // T 2(X ⊗ Y )

µ

��

T (X)⊗ T (Y ) d // T (X ⊗ Y )

which is part of the definition of a monoidal monad.

Now let (A, a) be some T -module and f : T (X) ⊗ T (Y ) → A be a bihomomor-
phism. We have to show that there is a unique homomorphism of T -modules
f̃ : F (X ⊗ Y )→ (A, a) such that f̃ ◦ dX,Y = f . From this equation it follows

f̃ ◦ ηX⊗Y = f̃ ◦ dX,Y ◦ (ηX ⊗ ηY ) = f ◦ (ηX ⊗ ηY )

which describes f̃ completely since F (X⊗Y ) is the free T -module on X⊗Y . This
establishes uniqueness and for existence we have to define f̃ to be the extension
of f ◦ (ηX ⊗ ηY ) : X ⊗ Y → A, i.e. as the homomorphism of T -modules

T (X ⊗ Y )
T (ηX⊗ηY )−−−−−−→ T (T (X)⊗ T (Y ))

T (f)−−→ T (A)
a−→ A.
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We are left to prove that f̃ ◦ d = f . Since f is a bihomomorphism, the diagram

T 2(X)⊗ T 2(Y )
dT (X),T (Y )

//

µ⊗µ
��

T (T (X)⊗ T (Y ))
T (f)

// T (A)

a

��

T (X)⊗ T (Y )
f

// A

commutes (Proposition 6.4.3). Precomposing with T (ηX) ⊗ T (ηY ) yields the
commutative diagram

T 2(X)⊗ T 2(Y )
dT (X),T (Y )

// T (T (X)⊗ T (Y ))
T (f)

// T (A)

a

��

T (X)⊗ T (Y )

T (ηX)⊗T (ηY )

OO

f
// A.

By naturality of d with respect to ηX and ηY , this simplifies to

T (X ⊗ Y )
T (ηX⊗ηY )

// T (T (X)⊗ T (Y ))
T (f)

// T (A)

a

��

T (X)⊗ T (Y )

dX,Y

OO

f
// A.

But this means exactly f̃ ◦ dX,Y = f , which finishes the proof.

Lemma 6.4.7. Let T be a symmetric monoidal monad on a symmetric monoidal
category C. Let (A, a), (B, b) be two T -modules. Assuming that (A, a) ⊗T (B, b)
exists, then (B, b) ⊗T (A, a) exists as well and there is a unique isomorphism
(A, a)⊗T (B, b) ∼= (B, b)⊗T (A, a) such that the following diagram commutes.

A⊗T B
∼= // B ⊗T A

A⊗B
⊗
OO

S // B ⊗ A
⊗
OO

Proof. We have to show that if f : A ⊗ B → C is a bihomomorphism, then
f ◦SB,A : B⊗A→ C is a bihomomorphism, too. This follows from the following
commutative diagram:

T (B ⊗ A)
S

))

T (B)⊗ T (A)

d
44

b⊗a

��

S

**

T (A⊗B)
f
// T (C)

c

��

T (A)⊗ T (B)

a⊗b
��

d
55

B ⊗ A S // A⊗B f
// C

222



6.4. Tensor product of modules

In order to get associativity of ⊗T , we need a coherence property of T .

Definition 6.4.8 (Coherent monoidal monads). A (symmetric) monoidal monad
T on a (symmetric) monoidal category C is called coherent if Mod(T ) has reflexive
coequalizers and −⊗T − preserves them in each variable.

Proposition 6.4.9 ([Sea13, Theorem 2.5.5]). Let T be a coherent monoidal
monad on a monoidal category C. Then for all T -modules (A, a), (B, b), (C, c)
there is a unique isomorphism of T -modules

(A, a)⊗T ((B, b)⊗T (C, c)) ∼= ((A, a)⊗T (B, b))⊗T (C, c)

such that the diagram

A⊗T (B ⊗T C)
∼= // (A⊗T B)⊗T C

T (A)⊗T T (B ⊗ C)

OO

T (A⊗B)⊗T T (C)

OO

T (A⊗ (B ⊗ C))

OO

∼= // T ((A⊗B)⊗ C)

OO

commutes.

Proof. By Corollary 6.4.4 and Remark 6.2.6 we have two coequalizer diagrams

F (T (B)⊗ T (C))
µTd

//

F (b⊗c)
// F (B ⊗ C) // (B, b)⊗T (C, c)

F (T (A))
µ
//

T (a)
// F (A) a // (A, a)

in Mod(T ). Using Corollary 6.2.3 (which is applicable since T is coherent) they
may be tensored to a coequalizer diagram

F (T (A))⊗T F (T (B)⊗ T (C))
µ⊗µTd

//

F (a)⊗TF (b⊗c)
// F (A)⊗T F (B ⊗ C)

��

(A, a)⊗T ((B, b)⊗T (C, c))

in Mod(T ). By Proposition 6.4.6 this identifies with

F (T (A)⊗ (T (B)⊗ T (C)))
x //

F (a⊗(b⊗c))
// F (A⊗ (B ⊗ C))

��

(A, a)⊗T ((B, b)⊗T (C, c)),
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where x corresponds to

T (A)⊗ (T (B)⊗ T (C))
T (A)⊗dB,C−−−−−−→ T (A)⊗ T (B ⊗ C)

dA,B⊗C−−−−→ T (A⊗ (B ⊗ C)).

Since T is a monoidal monad with respect to d, this identifies under the associator
isomorphisms in C with

(T (A)⊗ T (B))⊗ T (C)
dA,B⊗T (C)
−−−−−−→ T (A⊗B)⊗ T (C)

dA⊗B,C−−−−→ T ((A⊗B)⊗ C)).

Likewise, T (a ⊗ (b ⊗ c)) gets identified with T ((a ⊗ b) ⊗ c). We conclude that
(A, a)⊗T ((B, b)⊗T (C, c)) is the coequalizer of two morphisms whose coequalizer
is also, by the same reasoning as above, ((A, a)⊗T (B, b))⊗T (C, c).

Example 6.4.10 (Smash products). Consider the cartesian monoidal category
of topological spaces Top as well as the category of pointed spaces Top∗. The
forgetful functor Top∗ → Top is monadic, the corresponding monad is given by
the functor T : Top → Top, X 7→ X t ∗ with the obvious monad structure.
Also, T has a canonical monoidal structure. If (X, ∗), (Y, ∗), (Z, ∗) are pointed
spaces, a continuous map f : X × Y → Z is a bihomomorphism if and only if
f(x, ∗) = ∗ = f(∗, y) for all (x, y) ∈ X × Y . It follows that the tensor product
⊗T on Top∗ is exactly the smash product

(X, ∗) ∧ (Y, ∗) =
(
(X × Y )/(x, ∗) ' (∗, y), (∗, ∗)

)
.

However, the smash product of pointed spaces is not associative in general! For
example, N∧(Q∧Q) is not isomorphic to (N∧Q)∧Q. The canonical continuous
bijection is not an isomorphism ([MS06, Section 1.5]). In particular, T is not
coherent. This pathology disappears when working with a convenient category
of spaces ([Ste67]) such as the category of compactly generated (weak) Hausdorff
spaces. The latter is also a cocomplete tensor category in contrast to Top (for
example Q×− does not preserve quotient maps). See also Example 6.5.14 below.

The coherence condition of a monad might be hard to check in general, but in
the closed case it comes for free:

Remark 6.4.11 (Internal T -homs). Let C be a closed symmetric monoidal cat-
egory with equalizers and let T be a symmetric monoidal monad on T . For
T -modules (A, a), (B, b) we define HomT ((A, a), (B, b)) ∈ Mod(T ) as a submod-
ule of Hom(A,B) (Remark 6.3.8) as follows (see [Koc71b, Section 2] for details):
The underlying object is the equalizer of

Hom(A,B)
τ−→ Hom(T (A), T (B))

b∗−→ Hom(T (A), B)

and
Hom(A,B)

a∗−→ Hom(T (A), B).
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There is a unique morphism T (HomT (A,B)) → HomT (A,B) lying over the ac-
tion T (Hom(A,B))→ Hom(A,B). This endows HomT (A,B) with the structure
of a T -module. This construction provides an internal hom-object for ⊗T : For
another T -module (C, c) we have

HomT ((C, c)⊗T (A, a), (B, b)) ∼= BiHom((C, c), (A, a), (B, b))

⊆
Hom(C,Hom(A,B)) ∼= Hom(C ⊗ A,B).

The image of the set of morphisms C ⊗ A → B which are homomorphisms in
A is Hom(C,U HomT ((A, a), (B, b))). The image of the set of morphisms which
are homomorphisms in C is HomT ((C, c),Hom((A, a), (B, b))). This implies

HomT

(
(C, c)⊗T (A, a), (B, b)

) ∼= HomT

(
(C, c),HomT ((A, a), (B, b))

)
.

Hence, −⊗T (A, a) is left adjoint and therefore cocontinuous. This proves:

Corollary 6.4.12. Let C be a closed symmetric monoidal category with equal-
izers and let T be a symmetric monoidal monad on C. If Mod(T ) has reflexive
coequalizers, then T is coherent.

See Proposition 6.2.9 for a criterion that Mod(T ) has coequalizers. As a special
case, we get (using Example 6.2.10):

Corollary 6.4.13. Every symmetric monoidal monad on Set is coherent.

The following criterion is useful.

Proposition 6.4.14. Let C be a finitely cocomplete tensor category. Let T be a
monoidal monad on C which preserves reflexive coequalizers. Then T is coherent.

Proof. By Lemma 6.2.12 Mod(T ) has reflexive coequalizers, created and therefore
preserved by the forgetful functor to C. Now let (A, a) be some T -module and
(P, p) ⇒ (Q, q)→ (B, b) be a reflexive coequalizer in Mod(T ). Then P ⇒ Q→ P
is also a reflexive coequalizer. It stays a reflexive coequalizer after tensoring with
A in C, but also after applying T . Hence, in the following commutative diagram,
we have reflexive coequalizers in every column and in the first two rows:

F (T (A)⊗ T (P ))

����

//

// F (T (A)⊗ T (Q))

����

// F (T (A)⊗ T (B))

����

F (A⊗ P )

��

//

// F (A⊗Q)

��

// F (A⊗B)

��

(A, a)⊗T (P, p)
//

// (A, a)⊗T (Q, q) // (A, a)⊗T (B, b)

But then the bottom row also has to be a coequalizer.
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6.5 Module categories

Let us gather the results from section 6.4.

Theorem 6.5.1 ([Sea13, Corollary 2.5.6]). Let T be a coherent (symmetric)
monoidal monad on a (symmetric) monoidal category C. Then Mod(T ) becomes
a (symmetric) monoidal category with tensor product ⊗T and unit T (1), unit
constraint as in Proposition 6.4.5 and associator as in Proposition 6.4.9 (and
symmetry as in Lemma 6.4.7).

Proof. Because of the uniqueness statements in Proposition 6.4.5, Lemma 6.4.7
and Proposition 6.4.9 the coherence diagrams in the definition of a monoidal
category follow immediately from those for C.

For example, the pentagon identity for T -modules (A, a), (B, b), (C, c), (D, d) fol-
lows from the following commutative diagram:

((A
⊗
B)

⊗
C)

⊗
D

''

(A
⊗

(B
⊗
C))

⊗
Doo

ww
((A

⊗
T
B)

⊗
T
C)

⊗
T
D (A

⊗
T

(B
⊗
T
C))

⊗
T
Doo

(A
⊗
B)

⊗
(C

⊗
D) //

OO

(A
⊗
T
B)

⊗
T

(C
⊗
T
D)

OO

A
⊗
T

(B
⊗
T

(C
⊗
T
D))

OO

// A
⊗
T

((B
⊗
T
C)

⊗
T
D)

OO

A
⊗

(B
⊗

(C
⊗
D))

OO

77

// A
⊗

((B
⊗
C)

⊗
D)

gg

OO

Proposition 6.5.2. In the setting of Theorem 6.5.1, the free T -module functor
F : C → Mod(T ) carries the structure of a strong (symmetric) monoidal functor.

Proof. This follows from Proposition 6.4.5 and Proposition 6.4.6. The coherence
diagrams in the definition of a strong (symmetric) monoidal functor are read-
ily checked. For example, in order to show that the diagram which expresses
compatibility with the associator
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F (X)⊗T (F (Y )⊗T F (Z)) //

��

(F (X)⊗T F (Y ))⊗T F (Z)

��

F (X)⊗T F (Y ⊗ Z)

��

F (X ⊗ Y )⊗T F (Z)

��

F (X ⊗ (Y ⊗ Z)) // F ((X ⊗ Y )⊗ Z)

is commutative, we may precompose with

T (X)⊗ (T (Y )⊗T (Z))→ T (X)⊗ (T (Y )⊗T T (Z))→ T (X)⊗T (T (Y )⊗T T (Z))

and reduce the diagram to

T (X)⊗ (T (Y )⊗ T (Z)) //

��

(T (X)⊗ T (Y ))⊗ T (Z)

��

T (X)⊗ T (Y ⊗ Z)

��

T (X ⊗ Y )⊗ T (Z)

��

T (X ⊗ (Y ⊗ Z)) // T ((X ⊗ Y )⊗ Z)

which simply belongs to the definition of a monoidal monad.

The following result is not covered in [Sea13]. It is a really a machine which
produces lots of cocomplete tensor categories.

Theorem 6.5.3. Let T be a coherent (symmetric) monoidal monad on a co-
complete (symmetric) monoidal category C. Then Mod(T ) carries the struc-
ture of a cocomplete (symmetric) monoidal category. Moreover, the free functor
F : C → Mod(T ) carries the structure of a cocontinuous (symmetric) monoidal
functor.

Proof. Since T is coherent, Mod(T ) has reflexive coequalizers. Then Mod(T ) is
cocomplete by Lemma 6.2.7. Because of Theorem 6.5.1 and Proposition 6.5.2,
we are left to prove that

(A, a)⊗T − : Mod(T )→ Mod(T )

is cocontinuous for each T -module (A, a) (surely the same proof will work for
− ⊗T (A, a)). Using canonical presentations (Remark 6.2.6), the assumption
that −⊗T (B, b) preserves reflexive coequalizers for all T -modules (B, b), as well
as the fact that colimits commute with colimits, we may reduce to the case
that (A, a) is a free T -module, say (A, a) = F (X) for some X ∈ C. Then, by
Lemma 6.2.8 it suffices to prove that

F (X)⊗T − : Mod(T )→ Mod(T )
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preserves coproducts of free modules. But this follows easily from Proposi-
tion 6.4.6 and the fact that X ⊗− : C → C commutes with coproducts.

Corollary 6.5.4. Let T be a symmetric monoidal monad on a cocomplete closed
symmetric monoidal category C with equalizers. Assume that Mod(T ) has reflex-
ive coequalizers. Then Mod(T ) becomes a cocomplete closed symmetric monoidal
category with equalizers. Besides, the free T -module functor F : C → Mod(T )
becomes a cocontinuous symmetric monoidal functor.

Proof. This follows from Theorem 6.5.3 and Corollary 6.4.12.

Remark 6.5.5. By the discussion in section 6.1 we see that the converse of
Theorem 6.5.3 is also true: If T is a monad on the underlying category of a
cocomplete tensor category C, then the structure of a cocomplete tensor cate-
gory on Mod(T ) and a tensor functor on F : C → Mod(T ) induces a coherent
symmetric monoidal monad structure on T .

Proposition 6.5.6. Let T → T ′ be a morphism of coherent monoidal monads
on a monoidal category C. Then, the forgetful functor Mod(T ′) → Mod(T ) has
a left adjoint functor Mod(T ) → Mod(T ′), denoted by M 7→ M ⊗T T ′, which is
a cocontinuous monoidal functor. The same holds in the symmetric case.

Proof. The existence of the left adjoint follows from [Dur07, Proposition 3.3.19].
The idea is to extend F (X) 7→ F ′(X) using canonical presentations. The forget-
ful functor is lax monoidal. In fact, given T ′-modules M = (A, a), N = (B, b),
the universal T ′-bihomomorphism A⊗B → A⊗T ′B is also a T -bihomomorphism,
hence lifts to a homomorphism M ⊗T N → M ⊗T ′ N of T -modules. It follows
(Example 3.1.23) that the left adjoint is oplax monoidal. It is actually strong
because this may be reduced to free T -modules for which it is clear.

Next, we will provide (possibly new) universal properties of module categories.
We do not really need symmetric monoidal structures, monoidal structures would
work equally well.

Theorem 6.5.7. Let T be a symmetric monoidal monad on a cocomplete tensor
category C, which preserves reflexive coequalizers. Then Mod(T ) is a cocomplete
tensor category and F : C → Mod(T ) is a cocontinuous tensor functor with a
lax symmetric monoidal right action FT → F , inducing for every cocomplete
tensor category D an equivalence of categories between Homc⊗(Mod(T ),D) and
the category of pairs (G, ρ), where G ∈ Homc⊗(C,D) and ρ : GT → G is a lax
symmetric monoidal right action.

Proof. That Mod(T ) is a cocomplete tensor category follows from Theorem 6.5.3
and Proposition 6.4.14. For the universal property we use Proposition 6.2.15.
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The action FT → F is a morphism of lax tensor functors basically because by
definition µ : T 2 → T is one. Let G : C → D be a cocontinuous tensor functor
equipped with an action GT → G. We consider its cocontinuous extension
H : Mod(T )→ D and endow H with the structure of a tensor functor as follows:
For (A, a) ∈ Mod(T ) the coequalizer

G(T (A)) ⇒ G(A)→ H(A, a)

is reflexive with section G(ηA). It follows (Corollary 6.2.3) that for T -modules
(A, a), (B, b) we have a coequalizer

G(T (A))⊗G(T (B)) ⇒ G(A)⊗G(B)→ H(A, a)⊗H(B, b).

The morphisms on the left are isomorphic to G(T (A) ⊗ T (B)) ⇒ G(A ⊗ B),
whose coequalizer is H((A, a)⊗T (B, b)) by Corollary 6.4.4.

With the above notations, if G : C → D has a right adjoint G∗ : D → C, we get
a symmetric monoidal monad TG on C (with underlying functor G∗G) and a lax
symmetric monoidal right action GT → G may be identified with a morphism
T → TG of symmetric monoidal monads on C. Therefore, we get the following:

Theorem 6.5.8. Let T be a symmetric monoidal monad on a cocomplete tensor
category C which preserves reflexive coequalizers. If D is a cocomplete tensor
category, then the category of left adjoint tensor functors Mod(T )→ D is equiv-
alent to the category of left adjoint tensor functors G : C → D equipped with a
morphism of symmetric monoidal monads T → TG.

Remark 6.5.9. One can show this more directly without the use of Theo-
rem 6.5.7 and then does not need the assumption that T preserves reflexive
coequalizers. By Proposition 2.3.4 we may replace “left adjoint” by “cocontinu-
ous” if C and Mod(T ) are presentable.

Example 6.5.10. Let us look at the special case C = Set. Here G : C → D
is essentially unique and is given by X 7→ X ⊗ 1D = 1⊕XD with right adjoint
Hom(1D,−). The symmetric monoidal monad TD := TG on Set is given by

TD(X) = Hom(1D, 1
⊕X
D )

on objects. Then, by Proposition 6.2.13 and Theorem 6.5.8, we get the following
result, which already appeared as [BC14, Proposition 4.2.3].

Corollary 6.5.11. Let T be a finitary commutative monad on Set (i.e. a gen-
eralized commutative ring in the sense of Durov [Dur07]). Then Mod(T ) is a
presentable tensor category with the following universal property: If D is a co-
complete tensor category and TD is the associated symmetric monoidal monad
on Set, then there is a natural equivalence of categories

Homc⊗(Mod(T ),D) ' Hom(T, TD).
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Now let us discuss some examples.

Example 6.5.12 (Basic modules). Let R be a commutative ring. The ma-
chinery constructs, starting from the basic example Set, the presentable ten-
sor category Mod(R) of R-modules (in particular Ab for R = Z) as follows:
We have already observed in Example 6.3.11 that the monad T defined by
Mod(T ) = Mod(R) is commutative. Now we may apply Corollary 6.5.11 and
obtain a tensor product on Mod(R). If (A, a), (B, b), (C, c) are R-modules, then
a map f : A×B → C is a bihomomorphism with respect to T if and only if

T (A)× T (B)
dA,B

//

a×b
��

T (A×B)
T (f)
// T (C)

c

��

A×B f
// C

commutes, which means that for all
∑

x∈A x ·λx ∈ T (A),
∑

y∈B y ·µy ∈ T (B) we
have

f

(∑
x∈A

x · λx,
∑
y∈B

y · µy

)
=

∑
x∈A,y∈B

λxµy · f(x, y).

This means that f is R-bilinear in the usual sense. Therefore the tensor product
on Mod(R) is the usual one. Notice that Proposition 6.5.6 includes the statement
that every homomorphism R→ S of commutative rings induces a cocontinuous
tensor functor Mod(R)→ Mod(S). By the way, a similar construction works if R
is just a commutative semiring. Here an R-module is a commutative monoid with
an R-action. For R = N this gives CMon, the tensor category of commutative
monoids.

Example 6.5.13 (Modules over algebras). Let C be a cocomplete tensor cat-
egory and let A be a commutative algebra in C. Then − ⊗ A : C → C carries
the structure of a symmetric monoidal monad (see Example 6.3.12). It pre-
serves reflexive coequalizers (in fact all colimits), hence it is coherent by Propo-
sition 6.4.14. It follows by Theorem 6.5.3 that Mod(A) := Mod(−⊗A) becomes
a cocomplete tensor category. Of course we already understand this well (Propo-
sition 4.1.10). But we would like to emphasize that this is just a special case
of general results about monoidal monads. We have also proven a universal
property of Mod(A) (Proposition 5.3.1) which now follows directly from Theo-
rem 6.5.8 at least when C is presentable. In fact, if D is a cocomplete tensor
category and G : C → D is a cocontinuous tensor functor with right adjoint G∗,
then a morphism of symmetric monoidal monads − ⊗ A → G∗G corresponds
(Example 6.3.12) to a morphism of algebras A → (G∗G)(OC) = G∗(OD) in C,
i.e. to a morphism of algebras G(A)→ OD in D.

Example 6.5.14 (Pointed objects). Let C be a cocomplete tensor category. The
reader may think of Set or any (cartesian) convenient category of topological
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spaces. Let ∗ be a terminal object (if it exists). Let us denote by C∗ := ∗/C the
category of pointed objects of C, i.e. pairs (X, p) where X ∈ C and p : ∗ → X is
a morphism, imagined as a base point. The forgetful functor C∗ → C is monadic,
the monad T sends X to X+∗. It has a symmetric monoidal structure as follows:
Given pointed objects (X, ∗), (Y, ∗), we define

d : (X + ∗)⊗ (Y + ∗) = (X ⊗ Y ) + (X ⊗ ∗) + (∗ ⊗ Y ) + (∗ ⊗ ∗)→ (X ⊗ Y ) + ∗

by the canonical inclusion on X ⊗ Y and by the unique morphism to ∗ on the
rest. It is clear that T preserves all coequalizers, hence T is coherent (Proposi-
tion 6.4.14). We may apply Theorem 6.5.3 to endow C∗ with the structure of a
cocomplete tensor category together with a cocontinuous tensor functor C → C∗.

Let us describe the tensor structure. The unit is T (1) = 1 + ∗. Given pointed
objects (X, p), (Y, q), (Z, r), a morphism X ⊗ Y → Z is a bihomomorphism if
and only if it maps the points p⊗Y , X ⊗ q and p⊗ q to the point r, i.e. when it
is bipointed. It follows that (X, ∗)⊗ (Y, ∗) is given by a kind of smash product,
namely the quotient of (X ⊗ Y + ∗, ∗) which identifies the points p⊗ Y , X ⊗ q
with ∗. If C is cartesian, this simplifies to the corresponding quotient of X × Y
which already has the point (p, q).

If C is presentable, it follows from Theorem 6.5.8 that Homc⊗(C∗,D) is equivalent
to the category of pairs consisting of a cocontinuous tensor functor F : C → D
and a morphism F (∗)→ 0. The proof also works if C is arbitrary. In particular,
if we restrict on both sides to functors preserving the terminal object, it follows
that C∗ is the universal solution to making the initial object 0 ∈ C to a zero
object. Following Durov’s theory the symmetric monoidal monad T could be
seen as the “field with one element” relative to C.

Example 6.5.15 (Complete partial orders). Consider the power set monad ℘
on Set. Here µ : ℘2 → ℘ is the union operator and η : idSet → ℘ the singleton
operator. It is well-known ([Man67]) that Mod(℘) is isomorphic to the category
of complete partial orders, namely a complete partial order (A,≤) corresponds
to the ℘-module (A, sup). Although ℘ is neither finitary nor does it preserve
reflexive coequalizers (Example 6.2.14), it is coherent by Corollary 6.4.13, so
that Theorem 6.5.3 is applicable and we obtain a well-behaved tensor product
of complete partial orders. It classifies maps which preserve suprema in each
variable. This tensor product has been studied ([JT84]).

Example 6.5.16 (Commutative algebras). The category CMon = CAlg(Set) of
commutative monoids has a tensor product which looks like the tensor prod-
uct of abelian groups. We can generalize its construction as follows: Let C be
a cartesian cocomplete tensor category. By Lemma 4.4.5 the forgetful func-
tor U : CAlg(C) → C has a left adjoint Sym : C → CAlg(C) and U creates
reflexive coequalizers – the usual proof of this works ([ML98, VI.8, Theorem
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1]). Hence, U is monadic (Proposition 6.2.11) and the corresponding monad T
on C is coherent (Proposition 6.4.14). We have T (M) =

⊕
n∈N Symn(M) with

Symn(M) = Mn/Σn. We endow T with a symmetric monoidal structure, where
d : T (−)⊗ T (−)→ T (−⊗−) is induced by

Symp(M)× Symq(N)→ Symp∗q(M ×N),
(∏

i

mi,
∏
j

nj
)
7→
∏
i,j

(mi, nj).

By Theorem 6.5.3 CAlg(C) becomes a cocomplete tensor category in such a way
that Sym(M)⊗ Sym(N) = Sym(M ×N). The unit is N⊗ 1C. For example, if C
is a convenient category of topological spaces, this produces a cocomplete tensor
category of commutative topological monoids.

We mention without proof that a similar construction works for the category
of commutative Hopf algebras (i.e. abelian group objects) in C (when C has
equalizers) by generalizing the classical Grothendieck group.

Remark 6.5.17. Our goal is to construct and explicitly describe cocomplete ten-
sor categories generated by objects and morphisms subject to given relations (in
the language of cocomplete tensor categories). For categories of quasi-coherent
sheaves this should correspond to the construction of moduli spaces and stacks.
This has been done in a lot of special cases in chapter 5. By Theorem 6.5.8 the
general (monadic) case is reduced to find coherent symmetric monoidal monads
described by generators and relations. Over Set this theory has been developed
by Durov ([Dur07]). We do not know if such a theory exists in general, although
certainly [Kel80] and [HP00] go in that direction.
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pages 283–288. Cahiers de topologie et géométrie différentielle
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