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Abstract. Instanton gases of two-dimensional CP"™!
and four-dimensional SU(n) Yang-Mills theories
are considered. The presumable denseness of instan-
ton gases in these models and the corresponding
statistics of instantons lead to a theormodynamic
limit in which the coupling constant dependence of
non-perturbative quantities is modified by a factor

proportional to — compared to the case of a dilute gas.
n

As a consequence the large n limit and the infinite
volume limit do not appear to commute. We present
anaive droplet model for dense instanton gases which
exhibits these features. Possible consequences for
the large order behaviour of perturbation series are
discussed.

1. Introduction

In this article we consider the instanton gases of two-
dimensional CP""! and four-dimensional SU (n)
Yang—Mills theories. Instantons are solutions of the
ciassical equations of motions in Euclidean space-
time [1,2]. As stationary points of the Euclidean
action they give contributions to the saddle point
approximation of Euclidean path integrals [3,4].
‘Both models possess multi-instanton and multi-
anti-instanton solutions, labelled by a topological
charge KeZ, with action S, = K-S,.4 K-instanton
solution depends on several parameters. The contribu-
tion to the saddle point approximation involves the
determinant of the fluctuation operator around the
saddle point and integrations over the parameters.

To evaluate these contributions is an extremely
difficult task [5-7]. Therefore one tries to estimate
the multi-instanton contributions in some approxima-
tion scheme. In particular it has been proposed to
consider a dilute gas of instantons and anti-instantons
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[8] The basic idea of the dilute gas approximation is
the following. The one-instanton solution looks like a
localized object and can be parametrized by the
location vector a, of its center and a scale size 4. The
multi-instanton solutions are then approximated
by a superposition of single instantons with co-
ordinates a and scale sizes ;. Also quasi saddle
points consisting of both instantons and anti-instan-
tons are included. If this ensemble is treated as a dilute
gas the contribution to the partition function Z is
just the exponentiated one-instanton contribution.
The pressure of this grand-canonical ensemble is
then given by

1 S
p=Lim— InZ=D(g)exp| — - (1.1)
Voo V g
where D(g) is the integral of the fluctuation deter-
minant over the zero modes (without translations)
for the one-instanton solution and ¢ is a renormalized
coupling constant. Now it turns out that the integra-
tion over the instanton scale size A is infrared divergent
like

[diib, bz —1. (1.2)
0

But this means that the dilute gas does not have a
thermodynamic limit. According to (1.2) large in-
stantons contribute much more to the partition
function than small ones, which suggests that the
instanton gas is rather dense [5, 6, 9]. For the C P!
case this can be shown to be the case [5, 6].

It is well known in statistical mechanics that a
dense gas behaves quantitatively differently from a
dilute one. It would therefore be interesting to study
the consequences of the presumable denseness of
the instanton gas. In order to do this it is necessary
to take the correct thermodynamic limit. This means
that the infinite volume limit has to be taken only
after summing the instanton gas in a finite volume.
In Sect. 2 we shall discuss the consequences of this
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limit on the basis of renormalization group consider-
ations. The main result will be a correction factor x !

. 1 . i .
proportional to — which multiplies the instanton
n

action S, in non-perturbative contributions to the
pressure such that

S
exp<~K—g12>=exp<A2ﬁig2> (1.3)

where B, is the first coefficient in the Callan—
Symanzik f-function.

In Sect. 3 we present a naive droplet model for a
dense instanton gas in order to give an explicit
example for the mechanism that leads to the
behaviour (1.3) in the correct thermodynamic limit.
Section 4 contains critical remarks and a discussion
of possible consequences for the large n limit and
the large-order behaviour of perturbation series. In
particular the large n limit and the infinite volume
limit appear not to commute.

2. Renormalization Group and Thermodynamic Limit
of an Instanton Gas

We write the dependence of the action on the bare
coupling g, in the form

action: [d"x ¥= i,S (2.1)
9o
where S does not contain g}. Let us first consider the
one-instanton solution in the infinite volume space-
time. It depends on several parameters amongst
which are a position vector a, and a scale size 4.
Let o, denote the rcmalnmg dimensionless collective
coordinates which give rise to zero modes in the
fluctuation operator 4 around the classical solution.
In the saddle point approximation the contribution
of the instanton to the partition function normalized
to the vacuum contribution is given by (see eg. [3])

det’ 4\~ 12
2ng0) '"ida —d o, J (o )(d i ) :

.e~(51/yo) (22)

Here m is the number of collective coordinates, J is a
collective coordinate Jacobian and the determinants
include only non-zero modes of the fluctuation
operators 4 and 4 (vacuum fluctuationsp™>. For
details see e.g. [10]. The determinants are ultra-
violet divergent as in ordinary perturbation theory
and require renormalization. With an ultraviolet
cutoff M one finds in one loop order [3-5]

d t' A —-1/2
J(oci)< d:mo)M —exp (x In M) f(@,, 1) (2.3)

* For the CP"~! models f=ng? is the coupling constant used in
[2.7]

** For complex variables in the path integral det 4 actually stands
for the square of the fluctuation determinant
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with some constant x and a finite function f. Thjg
leads to an integrand

1
exp { —s, (g_ - Si In M)} £(@) (2.4)

On the other hand one knows from the renormaliza-
tion group that the coupling constant gets renormaliz-
ed according to

1 1 21 M o

, n— 5
Fw g )
in one loop order, where a renormalization mass
scale y has been introduced. That renormalization
around instantons is the same as for the perturbative
saddle point has been shown in [11]. Therefore in
order for a renormalized determinant to exist we
must have

k=28,8, (2.6)

which actually is found by explicit calculation. From
that we get a factor

1 K
o= (5, )}
1 K
= —_ :AK .
{’“’Xp( 26092(;0)} ol

in the integrand. A is the renormalization group

invariant mass scale, which is given by (2.7) in one loop
order. Different renormalization schemes of course
lead to different scales A, but this ambiguity is not
important for the present discussion. When above is
inserted in (2.2) the 2-dependence of the integrand is
fixed on dimensional grounds (the o, are dimension-
less)
W, =(/2ng) " [da,d)2"*" (3 A) [do, f ()
= CA“jda,LdiiK“’"lg‘m (2.8
(v space-time dimensions)
In one loop order the power of ¢ is not renormalized
but it is expected that higher orders lead to a proper
renormalization. So it might be replaced by a g(1™")
inside the integral, but we are interested in the domi-
nant A-dependence, which is given by the power
k —v—1.In SU(n) Yang—Mills theory we have

11 n 11

81:87'52, ﬁoz?ﬁ’ K:?il (29)

and in the CP" ! model

n
S, =m, /30:%, K=n (2.10)
In both cases

= (2.11)

leads to the well known infrared divergence.
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Let us now consider the case of a finite space-time
volume V. For appropriate boundary conditions,
e periodic for gauge invariant quantities it 1s
gunnosed that instanton solutions exist which tend
io the usual ones in the limit V — co. In the C P!
case for example the self-duality equations are
identical to Cauchy-Riemann equations in certain
coordinates [2]. In a finite volume with periodic
poundary conditions these are solved (at least. for
even topological charge) by Jacobian elliptic functions.

In general we should expect that the former inst-
antons turn into quasi saddle points whose action
depend on AV ™. The dilatational zero mode is
then changed into a quasi zero mode with a very
small eigenvalue, which goes to zero for AV~ 1" -0
and has to be treated as a collective coordinate. We
get from (2.8)

W, = Ah(V) ‘ (2.12)
and on dimensional grounds this must be
W, = C (4" V) (2.13)

Now consider the K-instanton contribution W,.

KS
21>.The
9o

renormalization of the fluctuation determinants con-
verts this into

From the action we get a factor exp ( —

1 1 _
—KS,|—— 28,1 = AKx .
exp{ K 1<g2(u) ﬁO nu)f (214)

"

Therefore we shall get as in (2.13) for dimensional
reasons

= Cp( A7 VYR (2.15)

In order to perform the thermodynamic limit we
first have to sum all contributions to W for finite V.
Then we have to consider

1
p= I}im V]n w (2.16)

Let us assume for the moment that p exists. Then
(2.15)implies

Vv

) (2.17)

2B,9% (W)
where y is some constant. Comparing this with the

coupling constant dependence of the one-instanton
contribution (2.8)

W, ~exp ( - Sl) (2.18)
g

one recognizes in (2.17) the appearance of a correction

p:vA”=vu“eXp(—

v . T
factor — proportional to —, which multiplies the
K n

instanton action S,.Consequences of this will be
discussed in Sect. 4.
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3. Simple Droplet Model for a Dense Instanton Gas

The question if the thermodynamic limit of the
instanton gas exists depends on the behaviour of the
coefficients ¢, in (2.15) for large K. The existence of
the pressure p in the infinite volume limit requires

. x/v K(k/v /a 1
C.=(K!)~ /q‘/) (1+(9<K>> (3.1)

v
q=-
K

for large K. One might wonder how such odd powers
of K'! could arise in the calculation of the K-instanton
contribution. In this section we shall see that a simple
model for a dense gas of instantons produces (3.1)
and therefore supports the possibility that the
thermodynamic limit of an exact instanton gas exists.

In general the contribution of a K-instanton
solution to the partition function normalized to
the vacuum contribution is (cp. 2.2) [S5-7, 10]

det’ A\~ 1
det 4,

= (/2mgy) e KD g, 1 (E) (

(3.2)

where ¢, are collective coordinates with Jacobian
J(&,) and 4, the K-instanton fluctuation determinant.
The renormalization of the determinants leads as
in the case of W, to the replacement

1 1
—2f,Inpu (3.3)
02 g
in one loop order. Thus
W, = A%*[dé e Ve (/2ng) ¥ (3.4)

and U(¢,) is come complicated potential.

Because the potential U (¢)) is in general intractable
we now introduce some simplifications that lead us
to a droplet model of instantons. First of all we
introduce locations a!/ and scale sizes 4,,j=1, ..., K
as in the dilute gas approximation and write

1 daVd A,
— AKx K
W A K[ H Av+1 ]j‘ I—[d U)-I_Ii
J
e VP ht ( Samg (37 1) (3.5)

where oY are the remaining collective coordinates.
For separated instantons we know that the scale
dependence is proportional to A¥™Y 14 4; (see (2. 8))
which grows with 4. In this case the potentlal U is
negligible. The largest contribution to W, will come
from configurations where the Volume is densely
filled with instantons and U becomes important. This
leads to the next simplification, in which the compli-
cated potential U in (3.5) is just replaced by a droplet
potential. This potential excludes all those configura-
tions in which some instantons overlap. In a box of
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volume V it is defined by
e U=0(?, 1)
_ ) 7 \am ‘
Lifi) |a®—a?| > (?) (A +4) Yij
1
i) [aQ| <3V V), u
0, otherwise (3.6)

where

3+

is the volume of a unit ball in v dimensions and the
parameter 7 determines the effective volume 74} of
a single instanton. If we denote the collective coordi-
nate integral of a single instanton by C, cp. (2.8), we get

v

3.7)

W= CxA*([[daPd 2 [ T2 g2 H)™
J J

o
. ) .
O™ 4 (3.8)

1 A j 1 —v- —1\—-m
= CKAKKﬁgdUHdaU)dﬂjni; 1g(ij/ l)
’ J i

-5(0—122}?)@ (3.9)
j
The total effective volume
K
v=1) A (3.10)
j=1

of course obeys

vV (3.11)
For fixed v the dependence of the integrand on the 4,
is dominated by [[457"7' because g(4; 1 varies

J
only logarithmically with 2. If K is large the function
[1457>~ " atfixed v has a sharp maximum at

J

1/v
ﬂ,j=<i) =4, j=1,..,K, fork—v—-1>0.
K (3.12)

When
/1].=20+5j, 25}:0 (3.13)

j
is a small deviation from the maximum for v fixed, we

get

v (K/v)(k—v—1)
ATVl —
1;[ J K~

-exp{—%(x—v—mozzaj} (3.14)
J
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and we approximate the A-integrals by the corres-
ponding Gaussian integral

/l’g“‘“'“fﬁd5j5<”’131251>
; J

-exp{— %(K —v— 1)}%‘)‘225?}
i

o Keeevety—we [ 2TAG \ETD2 (3.15)
:(TV) 1/{{)(( 1) +1<K_V0~1)

27.[ (K—1)/2 v Kx/v)—K-1
G s
k—v—1 Kt

We are left with

2t (K—-1)/2
_ K g4xK -1
W, = CK A (zv) (_K—v—1>

1 14 . v (Kx/v)—K—1 )
“erl duﬂda‘”(ﬁ) g5 Y " O)
'y i
(3.16)
where
@(a(j))

. . o \am
Lif i) |a? —a®| > 2(75)1) , Vi
= i) |a®| <1VaM, Vi u
0, otherwise (3.17)

The integral has been reduced to an ensemble of
equally large balls in V. Since g(4, 1y varies slowly
compared to the other function in the integrand we
shall replace it by g (1~ !) where 4 is the mean value of
J, to be determined later. If we keep v fixed the a¥
integrations produce the effective free volume of hard
spheres in a volume V. A good approximation is

[Tlda® @ @)= (V — v)X (3.18)'

J

as used by Ornstein in his treatment of the van der
Waals gas [12] (This is exact in 1 dimension.)
The remaining integral is

LTdu(Vﬂ)x( v )“"‘"”‘K'l

K!; K1
5 )
— YURRN) (K 7) (Ke+ K+ 1 v (3.19)
Kx )
r(Key 1)
v
Using Stirlings formula we obtain for large K
(3.19) = const. (4 VKEM (K )7+ K¥/2Y
1 _ X 1-(v/x) .
P V) | (3.20)
et K
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The resulting expression for W, is
W, = const. (q V A*YS (K 1)~ WM K2 (3.21)

where

27'[ 1/2 - VK .
— A[C(K:V_I) g(/yﬁl),m:I (322)

In (3.21) we recognize the desired power of K! which
is appropriate for the existence of the thermodynamic
limit.

To simplify the discussion let us consider only a
pure instanton gas, i.e. we take

W= W, (3.23)
k=0

The problem of including anti-instantons and mixed
instantion-anti-instantons configurations is non-tri-
vial and we comment on this in Sect. 4.

From (3.21) we find the pressure

1 K
= lim —-ln W="gA* =y A" 3.24
r Ver; % n 4 yA (3.24)
as in (2.17).
The instanton density is
) o K v 0
p=lm W='Y —“W =-y—p
Vom KZ::() voE oy
v .
= p=qA (3.25)

K

and the mean instanton scale A can be calculated to be

T *y -1,-1 AL
.,.--lr 0 1—;
‘ - v 1/v .
- {r q <1~;>} A (3.26)

For SU(3) Yang—Mills theory in v = 4 dimensions
k=11, m=12, C=3.6x10°[10]

-7/11
A=0277"711 =01 <T> (327)
Uy
-7/11
= 130g(1 1)~ 48/11 T
! A (U]>
and with T~ v, we obtain
: 27
i—oia-t, S _gos (3.28)
4n

4. Critical Remarks and Discussion of Possible
Implications

Let us start with a critical discussion of the dense
gas approximation in Sect. 3. The dominant contribu-
tion to the pressure comes from those configurations
where the volume is densely filled with instantons of
asize A~0,147 1. On this length scale one would
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expect that other field configurations distinct from
multi-instanton solutions also start to play an
important role in the path integral. Furthermore the
description of multi-instantons by a superposition of
several single instantons should break down when
they start to come close to each other. Therefore the
dense gas picture of the previous section is not believed
to describe properly the physics of non-perturbative
contributions to the path integral.

Instead we consider it more to be an illustration of
the general features which are implied by the dense-
ness of instantons. In particular the appearance of the

. Vo,
correction factor — is supposed to be;a general
K

consequence of the statistics of a dense medium
independent of the detailed dynamics.

If one asks for example for the differential density
p(2) of instantons of size A at small values of 4 the
result turns out to be

|
p(}) ~ Z)V("/h)(k—\’) (41)

whereas in the dilute gas approximation
1
PoG (R~ =25 (4.2)

Even in the case of an operator which is sensitive
only to small instantons, the instanton contribution to
its expectation value will thus be modified.

A doubtful point already mentioned in the previous
section concerns the treatment of anti-instantons.
We only considered a pure instanton gas. The only
known real finite-action saddle points are pure
multi-instantons and pure multi-anti-instantons. As
is well known this leads to problems with the cluster
property if one likes to take into account both.
Usually these are avoided by including approximate
mixed configurations [8]. Another solution has been
proposed recently [13], namely to include complex
saddle points which are a substitute for mixed con-
figurations. As a different solution to the problem
spontaneous breakdown of the symmetry between
instantons and anti-instantons has been proposed
[14]. Because these questions are still open we restrict
the discussion here to a pure instanton gas and expect
that qualitative results are not changed through
some inclusion of anti-instantons.

Next we would like to discuss implications of the
statistics of dense instantons.

4.1. Implications for Large n

The large n limit of C P"~! models and SU(n) Yang-
Mills theory is believed to give considerable insight
into the non-perturbative physics of these models
also for moderate n. For reviews see [ 15]. The large n
limit is defined by

n—w, g*h=x fixed (4.3)
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Let us consider the K-instanton contribution in this
limit. In a fixed renormalization scheme it depends on
g = g(n) in the following way, cp. (2.14)

KS KS .
WK~exp(— g21>=exp<—in> (4.4)
X

where S, is independent of n. From this we conclude
that in the large n limit the instanton contributions W
vanish exponentially with n. This is essentially also
the basis of Witten’s argument against instantons in

1
the — expansion [16].
n

On the other hand we have seen that the statistics
of dense instantons produces a correction factor

1 T
Y proportional to — in the thermodynamic limit. The
K n

coulpling constant dependence of the pressure is, cp.
(2.17)

) S nst.
p~exp<—l;):exp<fco S > (4.5)
Kg X

and does not vanish in the large n limit. Thus the
infinite volume limit and the large n limit do not commute.
If the thermodynamic limit is taken first instantons
will survive the large n limit. ’

In the case of CP"~ ! models the fact that large n
and infinite volume limit are not interchangeable
can be shown explicitly. The topological susceptibility
7, [22] in a finite volume goes to zero like e™" for

1 .
large n [23] and is thus not present in the — expansion.
n
On the other hand if the infinite volume limit is
1 1 .
taken first y, is proportional to ~ in the — expansion
n n

[2]

4.2. Implications for Large Order Estimates in Pertur-
bation Theory

For the large order behaviour of coefficients in
perturbation series singularities in the Borel plane play
an important role [17—19]. Instantons are supposed
to produce singularities on the positive real axis
at multiples of S, on the level of bare theories. For
asymptotically free theories it is not clear if this is
altered through renormalization [17]. Arguments
have been given that the singularity at 2§, dominates
the large order behaviour im perturbation theory.
Under this assumption the coefficients of the Callan—
Symanzik f-function for SU(n) Yang-Mills theory
behave asymptotically like [ 20, 17]

Bx_. ~>K!K*2S,) % = KIK*(167?)~ ¥ (4.6)
K—
where a is some constant.
On the other hand singularities in the Borel plane
are also related to the coupling constant dependence
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of non-perturbative contributions to path integrals

[18]. This suggests that the factor Y which appears in
the coupling constant dependence of pis a signal for a
shift of the instanton singularities from multiples
of S, to multiplies of k'S, = (2B,)"" in the Borel
plane. If this is true (4.6) would be changed into

BK_IMK!Kﬁb"< L > 4.7)

2
Ko o 167

with b independent of n. Actual perturbative calcula-
K
n .
tions yield a factor (W) from K-loop diagrams

[21] and strongly support the correctness of (4.7).

In this case the first coefficient f, determines the
behaviour of 8, for K large. This resembles a similar
reciprocity law in semiclassical expansions for the
quartic oscillator [18].
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