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ABSTRACT

The topic of tracking in terms of estimating motion is a major issue for a wide range
of applications. In this thesis we study techniques for solving this task given different
external requirements depending on the type of data. The thesis can roughly be divided
into two theoretical and two applied parts.

In the first theoretical part we study models for direct tracking where no previous
reconstruction is necessary. We extend established optical flow models in order to
improve their performance in connection with complex motion, like large-scale move-
ment or the combination of smooth regions and sharp edges in a single flow field. We
analyze these models and check their performance based on different synthetic data
sets. For the second theoretical part we consider types of data where tracking is not
possible based on the raw data, but it requires reconstruction beforehand. We present
a model for simultaneous reconstruction and motion estimation, which allows for a
time-dependent reconstruction operator. Again, we analyze this model and discuss its
numerical realization.

The applied parts consist of specific examples for both of the previously mentioned types
of tracking. For the direct tracking model we study microscopy data of migrating cells.
We illustrate the relevance of motion estimation for this data and explicate the required
mathematical tasks. The application for indirect tracking comprises an approach for
dynamic X-ray tomography. With the model for indirect tracking we show results for
tomography of continuously moving objects while using only one or two X-ray sources.



Keywords: Image Processing, Inverse Problems, Variational Methods, Total Variation,
Optical Flow, Joint Motion Estimation and Image Reconstruction, Microscopy Imaging,
Time-Dependent Reconstruction, Dynamic X-Ray Tomography
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1
INTRODUCTION

In this thesis we propose and investigate mathematical models for tracking, which are
based on the estimation of flow fields. Furthermore, we present a model for indirect
motion estimation via image reconstruction. The latter allows to indirectly track objects
by using necessary reconstruction results. Before discussing these issues in detail, we
start by giving the motivation for this work. This also includes a short introduction to
the topic of inverse problems. After stating our contribution, we give an overview of
organization of this work.

1.1 Motivation

Motion estimation is of great importance for many different areas. Biologists are e.g.
interested in following single cells or analyzing their behavior over a couple of time
steps. Physicians need motion estimation e.g. to analyze the blood flow. Meteorologists
depend on motion estimation to predict the velocity and the direction of clouds and
other weather situations. Also in the automotive sector, motion estimation gains more
and more attention in recent years. With its help it is possible to automatically recognize
people crossing the path of a car and to stop the car without any interaction of the
driver. The whole issue of self-driving cars, which is already pretty far in development
and will very likely be all around in the nearer future, is heavily depending on motion
estimation.

Usually, motion estimation is based on two successive images taken e.g. out of a video
sequence. It aims at answering the question of what happens between these images.
The result is a transformation that, applied to a specific image, yields the subsequent
image. The transformation consists of a vector field that assigns a direction and a
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distance to every single pixel. Incorporating the time that passes between the recording
of the two images, the distance of a vector is equivalent to a certain velocity.

1.2 Inverse Problems in Imaging

The issue of estimating motion belongs to the broad field of inverse problems. Generally,
this means that we are confronted with a certain situation or effect, and are interested in
the source or the cause of this situation. In the case of motion estimation, the situation
is given by data in terms of the images at distinct time steps. The cause of the situation
is the vector field, which transforms the first image into the second image. A generic
inverse problem can often be written as

Av = g̃,

where g̃ is the given measurement, A : X → Y is a linear and compact operator, and
v is the cause that we are looking for. However, in image processing the effect, i.e.
the data we are dealing with, is usually disturbed e.g by noise or other artifacts. This
means that the data g̃ is composed of the actual data g and the mentioned artifacts σ.
Therefore, the problem we need to solve is

Av = g + σ. (1.1)

Solving the above problem with respect to u is usually an ill-posed problem. The
differentiation between a well-posed and an ill-posed problem was already invented
in 1902 by the french mathematician Jacques Hadamard. In Hadamard (1902) he
proposed the following definition:

Definition 1.1. (Well-Posed Problem)
A problem is called well-posed, if

• there exists a solution of the problem,

• the solution is unique,

• the solution depends continuously on the input data.

If one of the conditions is not fulfilled, the problem is called ill-posed.

In the case of (1.1), the compactness of the operator A usually prohibits its continuous
inversion (cf. Engl et al. (1996)). Consequently, the third condition is violated and
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therefore the problem is ill-posed. Even if we would be able to find an inverse A−1
of A, it would still not be possible to calculate the exact solution due to the random
appearance of the noise σ.

As a consequence of this ill-posedness, it is not possible to find an exact solution v of
the problem. Thus, the goal is usually to find an approximate solution v̂, which is close
to the exact solution. A convenient way to find such an approximation is a variational
approach. Here, the aim is to solve the following minimization problem:

v̂ = argmin
v∈domA

{D(Av, g) + αR(v)}.

The first term D(Av, g) is the so-called data fidelity. It is usually a distance term
between Av and g accomplished with a norm, i.e.

D(Av, g) = ‖Av − g‖,

where ‖ · ‖ is typically the L1 norm or the squared L2 norm. The minimization of this
term ensures that the approximate solution v̂ is close to the exact solution v. R(v)

is referred to as the regularizer. It allows to incorporate a priori knowledge, which
enhances specific properties of the solution. Common choices are e.g. certain derivatives
of u again fitted with a norm. The parameter α is the regularization parameter. It
serves as a weighting between the data fidelity and the regularizer.

1.3 Contributions

The idea to use the optical flow constraint in a variational framework first came up
more than 30 years ago in Horn and Schunck (1981). Here, for both the data fidelity
and the regularizer, the squared L2 norm was used. In Aubert et al. (1999) the L1

norm instead of the L2 norm was introduced for the optical flow constraint. The basis
of a nonlinear optical flow constraint was given in Papenberg et al. (2006). In this
thesis we further discuss this topic and prove convergence of an iterative approach that
approximates a nonlinear version of the optical flow constraint.

The usage of the total variation seminorm as a regularizer for optical flow was also
discovered in Papenberg et al. (2006). The purpose of allowing smooth transitions and
sharp edges was already discussed in Charbonnier et al. (1997) by the application of
the Huber loss function as a regularizer. The idea was massively pushed forward with
the invention of the total generalized variation in Bredies et al. (2010). In this thesis
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we derive a general formulation of a regularizer, which can amongst others be reduced
to the total generalized variation, as well as the Huber loss function. Additionally, we
present a generalization of Bregman iterations, which can be applied to the nonlinear
optical flow approach. Originally, the Bregman iterations were suggested in Osher

et al. (2005) and so far mainly used for reconstruction purposes.

Combining motion estimation with image reconstruction in a variational setting was first
introduced with gating approaches for cardiac imaging, like in Gilland et al. (2002).
A more general type of motion was considered in Brune (2010), where the motion
estimation takes place in terms of optimal transport. In recent years joint models were
further studied in Suhr (2015) and Dirks (2015). These works are already rather
general regarding the type of motion that is considered. In this thesis we generalize
them even further by allowing a time-dependent reconstruction operator. With this
step we enable the usage of the joint model in order to reconstruct data of dynamic
tomography.

Tomography itself is a topic that is studied for already 100 years, since the reconstruction
based on line integrals was facilitated by Radon (1917). The analysis of the Radon
transform was extensively studied e.g. in Natterer (1986). However, the consideration
of dynamics was so far restricted due to the massive radiation dose, which is necessary
to enable proper reconstructions for every time step, cf. e.g. Niemi et al. (2013). With
this work we provide an opportunity to reconstruct dynamic tomography data with a
very limited amount of necessary angles.

1.4 Organization

Previously, we generally introduced and motivated the topic of this work. In this section
we point out the organization of the remaining chapters. Roughly, this thesis can be
divided into a theoretical part, where we derive and discuss mathematical models for
tracking, and an applied part, where we use the models to solve concrete biomedical
tasks. The more detailed structure of this work is described below:

We start by providing an overview of the basic principles used in this thesis. This
includes a section on calculus of variations, whereas one of the most important parts
states the conditions for the existence of a global minimum. Furthermore, the section
treats the compactness of dual sets and presents different types of derivatives, which
appear in this thesis. Continuing with a section on convex analysis, we summarize the
most important details about Legendre-Fenchel Duality as well as subdifferentials. In
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Section 2.3 we introduce the different function spaces, which occur in this thesis, namely
Lebesgue spaces, Sobolev spaces, the space of functions with Bounded Variation, as well
as Bochner spaces. In the end of the Chapter 2 we present a strategy for the numerical
minimization of inverse problems.

In Chapter 3 we discuss the topic of direct tracking. In this context the expression
direct means that we are able to directly apply a motion estimation algorithm to given
data without previously needing to reconstruct the images. After introducing the topic
of direct tracking, we explain the derivation of an optical flow constraint, which will be
used as a data fidelity for minimization models later on. We differentiate between the
standard linearized optical flow constraint and a nonlinear version, which enables to
estimate motion that covers large distances. For the latter we also provide an existence
and convergence analysis. We focus on different regularization strategies. On the one
hand we recap the most commonly used regularizers and highlight their pros and cons.
Additionally, we deduce extended regularizers, which combine positive characteristics of
different standard regularizers. We also review the advantages of Bregman iterations,
which are able to overcome the loss of contrast arising while using a total variation-based
regularization. Afterwards, we reformulate the minimization models with respect to
a primal-dual formulation, which requires the calculation of adjoint operators, convex
conjugates, and resolvent operators. After a section discussing the discretization of the
single terms of the models, we concentrate on the numerical realization. Therefore, we
indicate the initialization and the stopping criterion that we use, as well as methods to
measure the error of a calculated motion estimation result. For the concrete numerical
approaches, we compare the previous data fidelities as well as the different regularizers
with each other. As a last example we show some results that point out the effect of
Bregman iterations.

The subsequent chapter is about indirect tracking. In contrast to Chapter 3, this
chapter deals with data where the images are not directly given, but first have to be
reconstructed in order to be able to apply algorithms for estimating motion. With
this chapter we provide a possibility to solve both image processing tasks in a joint
model. After an introduction to the topic of indirect tracking, we analyze the charac-
teristics of a general reconstruction operator. We especially focus on the allowance of
time-dependency for the operator. To get an idea for possible applications, we also
give some short examples for different kinds of time-dependencies. Subsequently, we
introduce a general model for indirect tracking and propose two variants for specified
models. The latter include the previously studied time-dependent reconstruction as
well as the optical flow constraint. For these models we also comment on the existence
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of minimal solutions. Finally, we discuss the numerical realization of these models. We
present an alternating minimization scheme, which realizes the reconstruction and the
motion estimation tasks separately. For each of these subproblems, we provide details
concerning the exact minimization algorithm.

Chapter 5 discusses the first one of two overall applications for tracking. This chap-
ter provides a concrete task, which is supposed to be satisfied by estimating motion.
This task is the analysis of intracellular motion of a certain kind of white blood cells.
We introduce the biological background of this topic and point out the mathematical
challenges that arise. Since the data we are dealing with requires some preprocessing
before we are able to apply the motion estimation algorithms reasonably, we shortly
illuminate a necessary registration step and the location of regions of interest. Finally,
we apply two of the direct motion estimation models, which we derived in Chapter 3,
to the real data.

The second application is the subject of Chapter 6. Here, the task requires the utiliza-
tion of the indirect model discussed in Chapter 4. The application is dynamic X-ray
tomography, which is introduced in the beginning of the chapter. We point out the
differences between stationary and dynamic tomography, whereas we especially focus on
the changes concerning the Radon transform. In general, the indirect model necessitates
further a priori knowledge or initialization in order to be able to reconstruct dynamic
data. For this reason, we suggest three different strategies for how to incorporate more
information in a realistic manner. Those strategies contain an improved initialization
for certain time steps, the usage of multiple measurements per time step, as well as the
randomization of the measured directions. All of these strategies are finally applied to
two different data sets. The first one is a synthetic data set, which therefore allows us
to evaluate the performance of the mathematical model in terms of error measures. The
second data set is a real measured data set. It serves to test the model in a realistic
setting.

In Chapter 7 we summarize the content of this thesis. The chapter is divided into two
parts. In the first part we concentrate on direct tracking including the results of the
first application dealing with cell tracking. The second part treats the indirect tracking
with the results of the second application on dynamic tomography. In each part we
recap the particular analysis and draw conclusions.

The final chapter of this thesis gives a motivation for incorporating further knowledge
about motion into motion estimation models. We introduce the basic principles of
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mathematical modeling of motion and derive concrete examples of how to describe
bidirectional movements of multiple species. The examples contain one Mean-Field
model, two discrete models, and three different macroscopic models. We reformulate
all of these models in a unified gradient flow formulation in order to facilitate the
subsequent analysis regarding the existence of stationary solutions and the properties
in regions with small densities.
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2
BASICS OF IMAGE PROCESSING

In this chapter we provide the fundamental mathematical principles that serve as
the background for this thesis. We start by summing up the most important results
concerning the existence of minimizers and the compactness in the context of dual
spaces. After defining different kinds of derivatives, we turn towards convex analysis,
where we treat Legendre-Fenchel duality and subdifferential calculus. We continue by
introducing several function spaces like Lebesgue spaces, Sobolev spaces, the BV space,
which is of special interest in connection with image processing, and Bochner spaces.
The latter are of importance when dealing with combined image reconstruction and
motion estimation, which will be covered in Chapter 4.

2.1 Calculus of Variations

In this section we establish some basic definitions and results of variational calculus.
After introducing operators and functionals, we summarize some fundamental results
on the existence of minimizers. We continue with essential statements concerning
compactness in the context of dual spaces, and end up by defining different kinds of
derivatives.

The following definitions are based on Elstrodt (2006) and Rockafellar (1970).

Definition 2.1. (Measurable Space and Measure Space)
Let A be a σ-Algebra on a non-empty set Ω. The pair (Ω,A) is called measurable space.
Furthermore, let μ : A → R̄ be a measure. The triple (Ω,A, μ) is called measure space.

Definition 2.2. (Operator and Functional)
Let X and Y be two Banach spaces with topology τ1, τ2 respectively. A mapping
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J : [X , τ1) → (Y , τ2) between these spaces is called operator. If Y is a scalar field, J is
called functional.

Definition 2.3. (Proper Functional)
Let X be a Banach space. A functional J : X → R̄ is called proper, if J(u) �= −∞ for
all u ∈ X and if there exists at least one u ∈ X with J(u) �= ∞.

The effective domain of the functional J is defined as

domJ :=
{
u ∈ X ∣∣J(u) < ∞} .

2.1.1 Existence of a Global Minimum

One of the major goals in variational calculus is to show the existence of a global mini-
mum, which can be achieved with the help of the fundamental theorem of optimization.
Before stating this theorem, we shortly define the necessary conditions, namely lower
semi-continuity and coercivity. The definitions in this section are based on Ekeland

and Témam (1999) and Evans (1997).

Definition 2.4. (Lower Semi-Continuity)
Let (X , τ) be a measurable space and J : (X , τ) → R̄ be a functional on X . J is called
lower semi-continuous in u ∈ X , if

J(u) ≤ lim inf
k

J(uk)

for every sequence uk → u in the topology τ .

Definition 2.5. (Coercivity)
Let (X , τ) be a measurable space and J : (X , τ) → R̄ be a functional on X . J is called
coercive, if it has compact sublevel sets, i.e. there exists an α ∈ R such that

S(α) :=
{
u ∈ X ∣∣J(u) < α

}
is not empty and compact in the topology τ .

The previously described definitions of lower semi-continuity and compactness of sublevel
sets lead us to the fundamental theorem of optimization. See e.g. Aubert and

Kornprobst (2006) for further details of the theorem.

Theorem 2.1. (Fundamental Theorem of Optimization)
Let (X , τ) be a metric space and J : (X , τ) → R̄ be a functional on X . Furthermore let
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J be lower semi-continuous (Definition 2.4) and coercive (Definition 2.5).
Then there exists a global minimum ū ∈ X , i.e.

J(ū) = inf
u∈X

(u).

Proof. Let (uk)k∈N be a minimizing sequence, i.e. J(uk) → infu∈X J(u). Let k0 ∈ N be
sufficiently large such that uk0 ∈ S(α) (Definition 2.5). Then (uk)k≥k0 is contained in a
compact set and has a convergent subsequence (ûk)k∈N with J(ûk) → infu∈X J(û). Due
to the lower semi-continuity we achieve

inf
u∈X

J(u) ≤ J(û) ≤︸︷︷︸
(Definition 2.4)

lim
k→∞

= J(ûk) = inf
u∈X

J(u).

Consequently, û is a global minimum of J .

2.1.2 Compactness of Dual Sets

Compact sets are of great importance for many areas of functional analysis. However,
since they are not always given it is often useful to switch over to the weak*-topology,
for which the compactness can be achieved with the Theorem of Banach-Alaoglu. In
order to declare this theorem, we previously state some required definitions, which are
based on Ekeland and Témam (1999) and Dacorogna (2004).

Definition 2.6. (Dual Space)
The dual space X ∗ of a metric linear space X is defined as the space of all continuous
linear functionals J : X → R.

X ∗ is a normed space. The norm in X ∗ is given by

‖J‖X ∗ = sup
u∈X\{0}

|J(u)|
‖u‖X .

Definition 2.7. (Reflexive Space)
Let X be a metric linear space with dual space X ∗. The bidual space X ∗∗ of X is
defined as the dual space of X ∗. The space X is called reflexive, if the evaluation map
J : X → X ∗∗ is an isometric isomorphism.

Definition 2.8. (Weak and Weak*-Topology)
Let X be a Banach space with dual space X ∗. The weak topology on X is defined by

uk ⇀ u :⇔ 〈v, uk〉 → 〈v, u〉 ∀v ∈ X ∗.



28 2 Basics of Image Processing

The weak∗ topology on X ∗ is defined by

vk ⇀
∗ v :⇔ 〈vk, u〉 → 〈v, u〉 ∀u ∈ X .

Remark 2.1. The weak and the weak∗ topology coincide in reflexive Banach spaces,
i.e. if X ∗∗ = X .

Lemma 2.1. (Weak* Lower Semi-Continuity in Banach Spaces)
Let X be a Banach space with dual space X ∗. Then the norm ‖ · ‖X of the Banach
space X is weak* lower semi-continuous.

Proof. Let vk ∈ X ∗ be a sequence that converges towards v ∈ X in the weak* topology,
i.e.

〈vk, u〉 → 〈v, u〉 ∀u ∈ X .

For the first scalar product it holds

|〈vk, u〉| ≤ ‖vk‖X ∗‖u‖X .

Taking the limit k → ∞ we obtain

|〈v, u〉| ≤ lim inf
k→∞

‖vk‖X ∗‖u‖X .

Since this inequality holds for every u ∈ X , it follows

‖v‖X = sup
‖u‖≤1

〈v, u〉 ≤ lim inf
k→∞

‖vk‖X ∗ .

Theorem 2.2. (Theorem of Banach-Alaoglu)
Let X be a Banach space with dual space X ∗. For C > 0 the set

{
v ∈ X ∗∣∣‖v‖X ∗ ≤ C

}
is compact in the weak∗ topology.

A proof can e.g. be found in Rudin (1973), p. 66-68, Chapter 3, Theorem 3.15.
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2.1.3 Derivatives

In the course of this thesis we will require different types of derivatives for functionals.
In the following we specify the directional derivative, the Gâteaux derivative, as well as
the Fréchet derivative. These definitions are mainly based on Evans (1997).

Definition 2.9. (Directional Derivative)
Let X and Y be two Banach spaces and J : X → Y be a proper functional. If the limit
exists, the directional derivative at the point u ∈ X in the direction v is defined as

dvJ(u) := lim
t↘0

J(u+ tv)− J(u)

t
.

If the directional derivative exists for all u ∈ X , J is called directionally differentiable.

Definition 2.10. (Gâteaux Derivative)
Let X and Y be two Banach spaces and J : X → Y be a proper functional. The
Gâteaux derivative in u ∈ X is defined as the set of directional derivatives, i.e.

dJ(u) := {dvJ(u)
∣∣dvJ(u) < ∞ for v ∈ X}.

If dJ(u) �= {∅}, J is called Gâteaux differentiable in u.

Definition 2.11. (Fréchet Derivative)
Let X and Y be two Banach spaces and J : X → Y be a proper and Gâteaux
differentiable functional in u ∈ X . The Fréchet derivative in u is defined as a continuous
linear functional F : X → Y with

Fv = dvJ(u) ∀v ∈ X ,

and

lim
‖v‖X→0

|J(u+ v)− J(u)− Fv|
‖v‖X = 0 ∀v ∈ X .

If such an F exists, J is called Fréchet differentiable at u.

2.2 Convex Analysis

In this section we illustrate some crucial results concerning convex analysis. After
defining convex sets and convex functionals, we treat Legendre-Fenchel duality as well
as the extended definition of differentiability. For a detailed study on this topic we
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refer the interested reader to Rockafellar (1970), which is also the basis for the
definitions in this section.

Definition 2.12. (Convex Subset)
Let X be a Banach space. A subset X ⊂ X is called convex, if

λu+ (1− λ)v ∈ X

for all u, v ∈ X and all λ ∈ [0, 1].

Definition 2.13. (Convex Functional)
Let X be a Banach space with convex subset X ⊂ X . A functional J : X → R̄ is called
convex, if

J (λu+ (1− λu)v) ≤ λJ(u) + (1− λ)J(v)

for all u, v ∈ X and all λ ∈ [0, 1].
J is called strictly convex, if the above inequality is strict for all λ ∈ (0, 1) and u �= v.

2.2.1 Legendre-Fenchel Duality

The minimization of functionals based on their primal formulations can be quite complex
in some cases. Often, it is more efficient to study the dual formulation instead. For this
reason, we give a short overview about some essential results concerning duality.

Definition 2.14. (Convex Conjugate)
Let X be a Banach space with dual space X ∗. The convex conjugate J∗ : X ∗ → R̄ of a
functional J : X → R̄ is defined by

J∗(p) := sup
u∈X

{〈p, u〉X − J(u)}

for p ∈ X ∗.
The biconjugate J∗∗ : X → R̄ of J is defined by

J∗∗(u) := sup
p∈X ∗

{〈u, p〉X ∗ − J∗(p)}

for u ∈ X .

The convex conjugate is also known as Legendre-Fenchel transform, which was named
after Adrien-Marie Legendre and Werner Fenchel.
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Lemma 2.2. (Properties of the Convex Conjugate)
Let X be a Banach space with dual space X ∗ and J : X → R be a proper, convex and
lower semi-continuous functional. For p ∈ X ∗ the following properties hold:

1. (J(p+ a))∗ = J∗(p)− 〈a, p〉, a ∈ R.

2. (J(p) + a)∗ = J∗(p)− a, a ∈ R,

3. (αJ(p))∗ = αJ∗
(
p
α

)
, α > 0.

Proof. 1. Inserting the requested functional into the definition of the convex conjugate
and additionally using the equivalent dual formulation of the occurring scalar
product of a and u yields

(J(p+ a))∗ = sup
u∈X

{〈p+ a, u〉 − J(u)}

= sup
u∈X

{〈p, u〉 − J(u) + 〈a, u〉}

= sup
u∈X

{〈p, u〉 − J(u)− 〈a, p〉}

= J∗(p)− 〈a, p〉.

2. We simply insert (J(p) + a)∗ into the definition of the convex conjugate directly
and obtain

(J(p) + a)∗ = sup
u∈X

{〈p, u〉 − (J(u) + α)}

= sup
u∈X

{〈p, u〉 − J(u)− α}

= J∗(p)− a.

3. Again, we simply insert (αJ(p))∗ into the definition of the convex conjugate to
achieve

(αJ(p))∗ = sup
u∈X

{〈p, u〉 − αJ(u)}

= α sup
u∈X

{〈 p
α
, u
〉
− J(u)

}
= αJ∗

( p
α

)
.

The following theorem gives a necessary and sufficient criterion for the functional J to
be equal to its biconjugate J∗∗. This condition can be used to show that the solution of
a primal problem is equal to the solution of its dual formulation.
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Theorem 2.3. (Fenchel-Moreau-Rockafellar Theorem)
Let X be a Banach space. For J : X → R̄ it holds

1. J∗∗ ≤ J ,

2. J∗∗ = J iff J is convex and lower semi-continuous.

A proof can e.g. be found in Rockafellar (1970).

The biconjugate is thus the closed convex hull, i.e. the largest lower semi-continuous
convex functional smaller than J .

The following theorem is one of the fundamental results in convex analysis. It allows to
reformulate a primal variational problem into an equivalent dual problem. In numerous
cases, the minimization of the dual problem is easier to handle. This leads to a great
importance of the theorem for many numerical methods for variational problems.

Theorem 2.4. (Fenchel’s Duality Theorem)
Let X and Y and J1 : X → R̄ and J2 : Y → R̄ be proper, lower semi-continuous and
convex functionals with domJ1∩domJ2 �= ∅. Furthermore, let K : X → Y be a bounded
linear operator. Then it holds

inf
u∈X

{J1(Ku) + J2(u)} = sup
p∈X ∗

{J∗1 (p) + J∗2 (Kp)} .

A proof ca e.g. be found in Ekeland and Témam (1999), Chapter 3, Sections 1-4.
Duality will be of great importance in the following parts of this thesis. To obtain a
more detailed understanding of this issue, the reader can find some descriptive examples
in the context of image processing in Dirks (2015).

2.2.2 Subdifferentials

For the subsequent analysis of variational problems we want to be able to consider
more general functions, which are not necessarily Fréchet differentiable in every point.
For this sake, we extend the definition of the Fréchet derivative and introduce the
subdifferential of a convex function.

Definition 2.15. (Subdifferential)
Let X be a Banach space with dual space X ∗ and J : X → R̄ be a proper and convex
functional. J is called subdifferentiable in u ∈ X , if there exists a p ∈ X ∗ such that

J(v)− J(u)− {p, v − u} ≥ 0 ∀v ∈ X .
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p is called the subgradient of J in u. The subdifferential of J in u is defined as the set
of all subgradients in u, i.e.

∂J(u) :=
{
p ∈ X ∗∣∣J(u)− J(v)− {p, v − u} ≥ 0 ∀v ∈ X} .

2.3 Function Spaces

In this section we introduce the function spaces that will be most important for the
subsequent analysis in this thesis. We start this section with Lebesgue and Sobolev
spaces. Since total variation will be a fundamental part of this thesis, we proceed with
the space of functions with bounded variations. Finally, we specify Bochner spaces,
which will be used in the context of indirect tracking in Chapter 4.

2.3.1 Lebesgue Spaces

In the following, we shortly summarize the definition of the Lebesgue spaces as well as
of their norms and some basic properties. Further details about this topic can e.g. be
found in Rudin (1987). The following definition is based on Dacorogna (2004).

Definition 2.16. (Lebesgue Space)
The Lebesgue space Lp(Ω) for 1 ≤ p < ∞ is defined as the set of all measurable functions
u : Ω → C on the domain Ω for which holds∫

Ω

|u(x)|pdx < ∞.

For p = ∞ the Lebesgue space L∞(Ω) is defined as the set of all measurable functions
u : Ω → C on the domain Ω for which holds

ess sup |u| < ∞,

where the essential supremum ess sup of u is the supremum except for a set N of
measure zero.

For 1 ≤ p < ∞ the norm in Lp(Ω) is given by

‖u‖Lp(Ω) :=

(∫
Ω

|u|p
) 1

p

.

For p = ∞ the norm in L∞Ω is given by

‖u‖L∞(Ω) := ess sup |u| = inf
N

sup
x∈Ω\N

|u(x)|.
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In the remainder of the thesis we will shorten the notation of the above norms by writing
‖u‖p instead of ‖u‖Lp(Ω) for p ≥ 1.

Remark 2.2. For p ≥ 1 the Lebesgue space Lp(Ω) is a Banach space with norm ‖u‖p.

Remark 2.3. In the special case of p = 2 the Lebesgue space L2(Ω) is a Hilbert space
with the scalar product

〈u, v〉L2(Ω)
:=

∫
Ω

〈u(x), v(x)〉 dx.

Remark 2.4. For 1 < p < ∞ the dual space of Lp(Ω) is again a Lebesgue space, i.e.
(Lp(Ω))∗ = Lq(Ω), where 1

p
+ 1

q
= 1. Consequently, these spaces are reflexive. For p = 2

the dual space of L2(Ω) is again L2(Ω). If the metric space (Ω,A, μ) is σ-finite, the dual
space of L1(Ω) is given by L∞(Ω). Nevertheless, L1(Ω) and L∞(Ω) are not reflexive.

2.3.2 Sobolev Spaces

The previously introduced Lebesgue spaces include a wide range of function types,
amongst others functions with high oscillations. The latter usually indicate noise and
are thus not desirable. To avoid such noisy functions, it is possible to only study those
functions whose derivatives are Lebesgue integrable. A space that only contains such
functions is the Sobolev space. The definition of the Sobolev space is based on Evans

(1997).

Definition 2.17. (Sobolev Space)
Let u be a measurable function on a domain Ω and 1 ≤ k, p < ∞. The Sobolev space
W k,p(Ω) is defined as

W k,p(Ω) =
{
u ∈ Lp(Ω)

∣∣Dαu ∈ Lp(Ω)∀|α| ≤ k
}
.

The norm in W k,p(Ω)is given by

‖u‖Wk,p(Ω) :=

⎛⎝∑
|α|≤k

‖Dαu‖pLp(Ω)

⎞⎠ 1
p

.

Again, to shorten the notation of the norm we write ‖u‖k,p instead of ‖u‖Wk,p(Ω) in the
remainder of the thesis.

Remark 2.5. The Sobolev space W k,p(Ω) is a Banach space with norm ‖u‖k,p.
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Remark 2.6. For p = 2, W k,2(Ω) is a Hilbert space with the scalar product

〈u, v〉Wk,p(Ω)
:=
∑
|α|≤k

〈Dαu,Dαv〉L2(Ω) .

For k ∈ N, the Hilbert space W k,2(Ω) is usually denoted by

Hk(Ω) := W k,2(Ω).

2.3.3 Space of Functions with Bounded Variation

In this section we introduce the space of functions with bounded variations. Thanks to
some characteristics being exceedingly useful in the context of image processing, this
space will be of special interest in the remaining parts of this thesis. Often, images have
typical characteristics that should be considered while choosing a proper function space
for the analysis. One of the typical requirements for the image space is that it contains
discontinuities. This is important, since discontinuities depict sharp edges, which on
the other hand define e.g. an object in an image. A second typical requirement to
the space is that it avoids noise, which is usually undesirable. A function space that
satisfies the latter is e.g. the Sobolev space W 1,1(Ω). This space includes smooth images
and therefore excludes the appearance of noise. Unfortunately, it does not fulfill the
first requirement to contain discontinuities. This can be satisfied by using the larger
Lebesgue space L1(Ω). This however includes noise. Consequently, a desirable function
space is between the Sobolev and the Lebesgue spaces and this is exactly where the
space of function with bounded variations is located. For further details about this
space we refer to Ambrosio et al. (2000) and Burger and Osher (2013).

In the remainder of this section we assume Ω ⊂ RN to be open and sufficiently regular.
To clarify the idea of the space, we start with the definition of the total variation.

Definition 2.18. (Total Variation)
Let u ∈ L1(Ω) be a function on a domain Ω. The total variation (TV ) of u is defined as

TV (u) := sup
φ∈C∞

0 ,

‖φ‖∞≤1

∫
Ω

u∇ · φ dx.

Definition 2.19. (BV Space)
Let Ω be a domain. The space of functions with bounded total variation (BV ) is defined
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as

BV (Ω) :=
{
u ∈ L1(Ω)

∣∣TV (u) < ∞} .
Remark 2.7. The total variation TV (u) = |u|BV is a semi-norm on BV (Ω).

Remark 2.8. The BV space is a Banach space with the norm

‖u‖BV := TV (u) + ‖u‖L1(Ω).

Remark 2.9. If the function u is sufficiently smooth, i.e. u ∈ W 1,1(Ω), a primal
formulation of TV (u) is given by

TV (u) =

∫
Ω

|∇u| dx.

Since W 1,1(Ω) is a subspace of BV (Ω), in informal settings this formulation is often
used for the general function space BV (Ω). In fact, the inclusion is strict and the
formulation is not proper for every function in BV (Ω). An easy example for a misfit is
the Heaviside

H(u) =

⎧⎨⎩1, if u ≥ 0

0, else
,

which is contained in BV (Ω), but not in W 1,1(Ω).

Lemma 2.3. (Embedding of BV (Ω))
For Ω ⊂ RN and p

p−1 ≥ N it holds

BV (Ω) ↪→ Lp(Ω).

For p
p−1 > N the embedding is compact.

A proof can e.g. be found in Giusti (1984).

Lemma 2.4. (Convexity of TV )
The total variation TV (u) for u ∈ L1(Ω) is convex.
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Proof. Choose arbitrary u, v ∈ L1(Ω) and λ ∈ [0, 1]. Then it holds

TV (λu+ (1− λ)v) = sup
φ∈C∞

0 ,

‖φ‖∞≤1

∫
Ω

(λu+ (1− λ)v)∇ · φ dx

≤ λ sup
φ∈C∞

0 ,

‖φ‖∞≤1

∫
Ω

u∇ · φ dx+ (1− λ) sup
φ∈C∞

0 ,

‖φ‖∞≤1

∫
Ω

v∇ · φ dx

= λTV (u) + (1− λ)TV (v).

Remark 2.10. | · |BV is lower semi-continuous with respect to the weak topology of
L1(Ω). Furthermore, all uniformly bounded sequences in BV (Ω) are relatively compact
in L1(Ω). Both arguments can be seen e.g. in Acar and Vogel (1994).

2.3.4 Bochner Spaces

The usual Lebesgue spaces are only defined for functions with values in C. The Bochner
spaces represent a generalization for functions with values in an arbitrary Banach space,
which not necessarily needs to be the Banach space C. The following definitions are
based on Showalter (2013).

Definition 2.20. (Weak Measurability)
Let X be a Banach space. A function J : [0, T ] → X is called weakly measurable, if the
map t �→ (J(u), u)X is measurable on [0, T ] for every u ∈ X .

Definition 2.21. (Strong Measurability)
Let X be a Banach space. A function J : [0, T ] → X is called strongly measurable, if it
holds

J(t) = lim
n→∞

Jn(t) for almost every t,

where the functions (Jn)n∈N each have a countable range and the inverse J−1{u} of J
is measurable for each u ∈ X .

Strong measurable functions are also called Bochner measurable.

Remark 2.11. Strong measurability implies weak measurability. Due to the Or-
licz–Pettis Theorem (Orlicz (1929), Pettis (1938)), both definitions are equivalent in
case that the Banach space X is separable.
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Definition 2.22. (Bochner Space)
Let X be a Banach space with norm ‖ · ‖X and 1 ≤ p < ∞. The Bochner space
Lp([0, T ];X ) consists of equivalence classes of strongly measurable functions u : [0, T ] →
X with norm

‖u‖Lp([0,T ];X ) :=

(∫ T

0

‖u(t)‖X p dt

) 1
p

< ∞

and

‖u‖L∞([0,T ];X ) := ess sup
0≤t≤T

‖u(t)‖ < ∞.

2.4 Numerical Optimization

In this section we introduce a framework for variational minimization of convex problems.
Within a short period of time, similar frameworks were proposed independently by
several authors like Esser et al. (2010), Chambolle and Pock (2011) and Zhang

et al. (2011). They all combine the idea to take advantage of the fact that often parts
of an energy functional are easier so solve by using an equivalent dual formulation. This
is why the frameworks are usually known as primal-dual methods. The most popular
framework in this category is the one proposed by Chambolle and Pock. This is also the
one that we will introduce in this section. The algorithm is written in a general manner
and can be adapted to a wide range of variational problems. All of the algorithms that
will be processed in this thesis are based on this framework.

As a requirement for the framework we assume to have two finite-dimensional real
vector spaces X and Y equipped with an inner product 〈·, ·〉 and norm ‖ · ‖ = 〈·, ·〉 1

2 .
Moreover, we consider a continuous linear operator K : X → Y with induced norm

‖K‖ = max
{‖Ku‖∣∣u ∈ X with ‖u‖ ≤ 1

}
.

In general, the problems we want to analyze in this thesis can be written as

min
u∈X

F (Ku) +G(u), (2.1)

where F,G : X → R̄ are proper, convex, lower semi-continuous functions. This is a
primal formulation of a general energy functional. This problem is equivalent to the
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corresponding dual formulation

max
p∈Y

− (G∗(−K∗p) + F ∗(p)) ,

where F ∗ is the convex conjugate of F , as well as to the saddle point problem

min
u∈X

max
p∈Y

G(u) + 〈u,K∗p〉 − F ∗(p). (2.2)

The latter is the primal-dual problem and also the basis of the framework that we
introduce. We assume that the above problems have at least one solution (û, p̂) ∈ X ×Y
that satisfies

Kû ∈ ∂F ∗(p̂) and −(K∗p̂) ∈ ∂G(û),

where ∂F ∗ and ∂G are the subgradients of the convex functions F ∗ and G. We define
the resolvent operators for such functions as follows:

Definition 2.23. (Resolvent Operator)
Let X be a Banach space and F : X → R̄ be a proper functional. For τ > 0 the
resolvent operator is defined as

u = (I + τ∂F )−1(ũ) := argmin
u

{‖u− ũ‖2
2τ

+ F (u)

}
.

To calculate the resolvent operator for a dual functional, we need the following theorem:

Theorem 2.5. (Moreau’s Identity)
Let X be a Banach space and F : X → R̄ be a proper functional with corresponding
dual functional F ∗. The resolvent operators for the primal and the dual functional are
linked in the following way:

u = (I + τ∂F )−1(u) + τ

(
I +

1

τ
∂F ∗

)−1 (u
τ

)
.

A proof can e.g. be found in Showalter (2013). Thus, the resolvent operator for the
dual functional F ∗ can be written as(

I +
1

τ
∂F ∗

)−1
(u) := u− 1

τ
(I + τ∂F )−1(τu).

With the above assumptions, the primal-dual problem (2.2) can be solved by alternating
fixed-point iterations for u and p. With an additional relaxation step for u, we obtain
the following minimizing algorithm:



40 2 Basics of Image Processing

Definition 2.24. (Chambolle-Pock Algorithm)
Choose τ, σ > 0, θ ∈ [0, 1], (u0, p0) ∈ X × Y and set ū0 = u0. For n ≥ 0 the updates of
un, pn and ūn are defined as follows:

pn+1 = (I + σ∂F ∗)−1(pn + σKūn),

un+1 = (I + τ∂G)−1(un − τK∗pn+1),

ūn+1 = un+1 + θ(un+1 − un).

Remark 2.12. For τσ‖K‖2 < 1 and (un, ūn, pn) as in Definition 2.24 there exists
a saddle point (u∗, p∗) such that un → u∗ and pn → p∗. A proof can be found in
Chambolle and Pock (2011).

Remark 2.13. For K = I the Chambolle-Pock Algorithm is amongst others equivalent
to the Douglas-Rachford Splitting Algorithm (Douglas and Rachford (1956)), as
well as to the alternating direction method of multipliers (ADMM) (see e.g. Boyd

et al. (2011)). For general K Definition 2.24 is equivalent to a preconditioned version
of the ADMM. A nice overview of several splitting methods and their connections can
be found in Brune (2010).



3 Direct Tracking 41

3
DIRECT TRACKING

In this chapter we introduce methods to track objects over multiple time steps. The
focus is on estimating motion based on optical flow. An application for the methods
introduced in this section can be found in Chapter 5.

We start by specifying the idea behind computational motion, at which we also explain
some typical problems that arise during the estimation. In Section 3.2 we present a
variational approach for motion estimation that contains the optical flow constraint
as a data fidelity. Afterwards, we complete the model by adding different kinds of
regularizers in Section 3.3. In Section 3.3.1 we use standard regularization terms like TV
or the L2 norm. Since it turns out that those standard regularizers only fit to specific
motion estimation tasks, we generalize the regularizers by adding an extra term in
Section 3.3.2. This leads to an extended version of the TV regularizer. Subsequently, in
Section 3.4 we also introduce Bregman iterations as a possibility to solve the problem of
loss of contrast that occurs in models that contain TV -based regularizers. In Section 3.5
we reformulate the introduced models as saddle point problems, since these are required
for the numerical implementation that we describe in Section 3.7. Here, we describe
the numerical algorithm, the type of discretization, as well as the choice of parameters.
Finally, we evaluate the different models based on synthetic examples.

3.1 Introduction

The tracking of objects or certain structures is dependent on apparent motion. The
human brain is able to calculate motion based on a global view of a scene. In this
chapter we estimate the apparent motion between images taken at consecutive time
steps. The problem with motion estimation in image processing is the so-called aperture
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Figure 3.1: Difference between projected and real motion, from Sutton et al. (2008).

problem, i.e. the missing feasibility of getting a global view of a scene. The main reason
for this problem is that an image is usually two-dimensional. The movement on the
other hand takes place in three dimensions. In images it is not possible to uniquely
identify motion that takes place in the same direction as the angle of view of the image.
E.g., it is not possible to decide whether an object grows but stays at the exact same
position, or if it approaches but keeps its size. Figure 3.1 visualizes the difference of
the real three-dimensional motion and the two-dimensional projection onto a camera
lens. The human eyes are partly able to overcome this problem through binocular
vision, i.e. by seeing each scene through both eyes separately. The brain combines both
perspectives to obtain a three-dimensional perception. However, if the view is limited in
x- and y-direction, the aperture problem occurs even if the motion is restricted to two
dimensions. It is possible that different kinds of movement with different orientations
result in the exact same images. See Figure 3.2 for an illustration of this issue. A
similar effect occurs if a person is looking out of a window of a stationary train and
everything this person sees is an oncoming train. From his perspective it is not possible
to say whether his train is moving backwards, or if the other train is moving forwards.
Thus, the apparent movement is not necessarily identical to the real motion. This
non-uniqueness is a reason why motion estimation is an ill-posed problem, which makes
it challenging to solve.

Image processing is always performed on digital images that consist of pixels with
different intensities. These intensities are also the only basis for estimating motion. The
goal is to connect pixels in consecutive time steps based on their intensities. Typical
image processing problems like noise, low contrast etc. impede this task. They usually
occur independently in every image, which makes it even more difficult to connect the
correct pixels in different images. However, estimating motion additionally contains
some specific challenges. One problem is that the illumination of the displayed scene can
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Figure 3.2: Aperture problem: the motion within the circle is not distinguishable.

change over time. Two pixels in consecutive images can have totally different intensities,
even if they depict the exact same point, since there is e.g. a shadow over the scene
at one of the time steps. Another special difficulty is the temporal resolution. In the
majority of cases it is useful to prefer a connection of pixels that are close together, since
everything else would destroy the structure of the image. However, this only makes sense
if the movement is relatively small. The distance of movement is directly connected to
the time that passes between the images and the speed of motion. Thus, it is always
desirable to have a high temporal resolution to receive motion as small as possible.
However, especially in a medical context it can take several minutes to get a single image.

For the remaining thesis we denote the domain of an image by Ω. Since an image has
typically two or three dimensions, we assume Ω ∈ Rd for d = 2, 3. The time interval we
consider is referred to as [0, T ]. The variable u(x, t) describes the intensity of an image
at the spatial position x ∈ Ω at time t ∈ [0, T ], i.e. u : Ω× [0, T ] → R+. We denote the
flow field that we aim to calculate by v. This variable separately assigns the velocity
to every pixel in every spatial dimension. Thus, it is a vector with d components, i.e.
v : Rd → Rd.

3.2 The Optical Flow Constraint

There are different strategies to estimate motion between consecutive images. Every
single method has its own pros and cons, which depend on the kind of motion that
we aim to detect. In this thesis we focus on one of the most popular strategies for
motion estimation, which is called optical flow. The basic idea of optical flow is the
brightness constancy assumption. This means that the pixels of every object have the
same intensity independent of the particular time step. Thus, the time derivative of the
image intensity equals zero. By connecting identical pixels this way, it is possible to
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find movement between two images. Certainly, this brightness constancy assumption
does not hold for every kind of data. E.g., if the illumination changes over time, the
approach does not permit an accurate calculation of the motion. However, we stick
to the proposed optical flow approach throughout this thesis, since it works well for a
wide range of applications. See e.g. Bergen et al. (1992) for an overview of different
motion estimation models and their particular characteristics.

In the subsequent section we describe different strategies of how to calculate optical
flow. We start with the most commonly used linear approach. This however has
heavy restrictions concerning the distance of the movement. We continue by describing
strategies of how to avoid this problem but still use the linear approximation. Afterwards,
we also introduce a nonlinear approach, which is also able to estimate movement with
larger distances in Section 3.2.2.

3.2.1 Linearized Approach

The brightness constancy assumption can be explained as a constant intensity of the
single images along the trajectory x(t), i.e. the total derivative of u(x, t) with respect
to t shall be zero:

0 =
du

dt
.

Using the chain rule we obtain:

du

dt
=

∂u

∂t
+

d∑
i=1

∂u

∂xi

dxi

dt
.

The temporal derivative dxi

dt
of the trajectory x(t) is identical to the velocity field v(x)

that we are looking for. Additionally, the spatial derivatives
∑d

i=1
∂u(xi)
∂xi

are equivalent
to the gradient operator ∇u(xi). Furthermore, replacing ∂u

∂t
by the shorter notation

ut and considering that the velocity field v is given by the temporal derivative of the
trajectory, i.e. v(x) = dx

dt
, we receive the following linearized optical flow constraint :

0 = ut(x, t) +∇u(x, t) · v(x). (3.1)

The linearized optical flow constraint can also be regarded as an inverse problem Av = g

with A : Lp(Ω)2 → Lp(Ω) for p ≥ 1, by defining

Av = ∇u · v and g = −ut.
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See Aubert and Kornprobst (2006) or Becker et al. (2015) to find a more detailed
derivation of the optical flow constraint.

In (3.1) it is shown that for every pixel or voxel x we need to find solutions for every
single component of v. In one dimension this can work quite well, since we have just as
many equations as unknowns. However, a regular image usually has two or even three
dimensions, which results in a highly under-determined system of equations. This is a
consequence of the previously described aperture problem. It prevents us from finding
a unique solution by only regarding the optical flow constraint. Thus, it is necessary to
incorporate a priori information, which we realize by using a variational approach of
the form

min
v

D(u,v) + αR(v). (3.2)

The first term D(u,v) is a data fidelity, which serves to connect the unknown variable
v to the data u. The second term R(v) is a regularizer that enables to incorporate a
priori information about the desired solution. We will illustrate possible choices for the
regularizer in the subsequent section. The parameter α ∈ R+ regulates the weighting
between the data fidelity and the regularizer.

To estimate motion, we incorporate the optical flow constraint into the data fidelity
and complete it with a norm. In general, there are many possibilities for norms of a
data fidelity. In Nikolova (2002) the characteristics of several choices are discussed.
However, not all of them are useful in the context of optical flow. The norm has to be
in a proper function space of the operator used in the data fidelity. Suitable choices for
the estimation of optical flow are the L1 norm or the the squared L2 norm, which yield

DLin1(u,v) := ‖v · ∇u+ ut‖1

for the L1 norm or

DLin2(u,v) :=
1

2
‖v · ∇u+ ut‖22

for the squared L2 norm.

Both norms have different properties. The decision about which one suits better strongly
depends on the data and on the kind of noise corrupting the data. The squared L2 norm
yields a least-squares solution and is thus usually a good choice if the data contains
Gaussian noise. However, if there are existing strong outliers in the data, the solution
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gets much worse, since the influence of those outliers is extremely high in the squared
L2 norm. In contrast to that, the L1 norm is more robust and is therefore usually
the better choice for data that contains outliers. In Black (1992) the robustness of
different norms for the optical flow constraint is further analyzed.

As mentioned before, the previous approximation of the optical flow constraint is
only possible if the motion between two time steps is very small. However, in real
applications like microscopy images the time steps between two recordings are relatively
large. Therefore, the displacement in between is often too large compared to the spatial
resolution of the images. In many experimental studies this problem is solved by using
a coarse-to-fine warping strategy, i.e. starting the calculations on a coarse grid such
that the movement is smaller than the grid size. Then the resulting velocity field is
used as an initial guess for a calculation on a finer grid. This procedures has to be
continued until the original grid size is reached. However, the linearized optical flow
constraint is simply not fulfilled for large displacements, which is why it is also not
theoretically justified to use it in combination with a warping approach. Otherwise, the
solution might get stuck in a local minimum. To overcome this problem, we introduce a
nonlinear approximation in the subsequent section.

3.2.2 Nonlinear Approach

An alternative approach to deal with the brightness constancy assumption is to interpret
it in a nonlinear way. The brightness constancy assumption is fulfilled if an image
applied to the corresponding velocity field v is equal to the subsequent image. For two
consecutive images u0 and u1 this means:

u0(v) = u1,

which is equivalent to

0 = u1 − u0(v). (3.3)

To embed this constraint in a variational setting as in (3.2), it remains to equip it with
a norm. Similar to Section 3.2.1, the usual choices are again the L1 norm and the
squared L2 norm. With the L1 norm we obtain the following data fidelity:

DNL1(u0, u1,v) := ‖u1 − u0(v)‖1 .
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In combination with the squared L2 norm, we obtain

DNL2(u0, u1,v) :=
1

2
‖u1 − u0(v)‖22 .

In the case of a squared L2 norm, the derived nonlinear optical flow constraints can be
solved by using the well-known Gauß-Newton method. This method solves a nonlinear
problem F (v) = y while linearizing it in every step. Let F ′(v) be the partial derivative
of F with respect to v. The Gauß-Newton method is defined by first calculating

F ′(vn)∗F ′(vn)rn = −F ′(vn)∗ (F ′(vn)− y)

and then updating the iterate function via

vn+1 = vn + rn.

This method is known to converge in combination with a proper regularizer, see
Blaschke et al. (1997) (cf. Bertsekas (1999) for further analysis of the Gauß-
Newton method). For the minimization problem in (3.3) combined with a regularizer
R(v), this results in minimizing

1

2
‖u0(v̂)− u1 + (v − v̂)∇u0(v̂)‖22 + αR(v) (3.4)

and updating v̂ as an approximation of v.

We also want to use an analog approach to the Gauß-Newton method for the L1 data
fidelity DNL1(u0, u1,v). However, before putting the expression

u0(v̂)− u1 + (v − v̂)∇u0(v̂)

into an L1 norm, we need to ensure that the term (v − v̂)∇u0(v̂) is well-defined in L1.

Lemma 3.1. (Well-definedness of ∇u(v)w in L1([0, T ]× Ω))
Let Ω ∈ Rd for d ∈ 2, 3, u ∈ C1(Ω), and v, w ∈ BV (Ω)d. Then the expression ∇u(v)w

is well-defined in L1([0, T ]× Ω).

Proof. With the Hölder inequality we obtain

‖∇u(v)w‖1 ≤ ‖∇u(v)‖∞ · ‖w‖1.
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‖w‖1 is bounded due to the compact embedding BV (Ω) ↪→ L1(Ω). From the con-
dition u ∈ C1(Ω) it follows that ∇u(v) is continuous and thus bounded in L∞(Ω).
Consequently, ‖∇u(v)w‖1 is bounded and therefore well-defined in L1([0, T ]× Ω).

In comparison to the L2 problem we need an additional damping term to ensure
convergence in L1. This term reads c

2
‖v − v̂‖2, where c is a constant such that

c > supx ‖H(u0(x))‖2 holds, with H being the Hessian matrix. In the following, we will
show that minimizing the functional

Jn(v) := ‖u0(v
n)− u1 + (v − vn)∇u0(v

n)‖1 +
c

2
‖v − vn‖22 + αR(v), (3.5)

with v : Ω → Ω, c as described above and R being a convex regularization functional,
ends up in finding a minimum of the nonlinear optical flow functional

J(v) := ‖u0(v)− u1‖1 + αR(v). (3.6)

We start by pointing out the existence of a minimizer of J(v):

Theorem 3.1. (Existence of a Minimum of J)
Let Ω ∈ Rd for d ∈ 2, 3, u0 ∈ Cα for α > 0 with u0(v) = 0 for v /∈ Ω, u1 ∈ L1(Ω). Then
there exists a minimum of J defined by (3.6) in BV (Ω)d.

Proof. To show the existence of a minimum we use the fundamental theorem of op-
timization (Theorem 2.1), which requires coercivity and lower semi-continuity of the
given functional. For the latter, we need strong convergence in L1(Ω) of u0(vn) for
vn → v. To prove this, we make the following calculations:∫

Ω

|u0(vn)− u0(v)| dx ≤
∫
Ω

c|vn − v|α dx

≤ c̃|vn − v|1

for c and c̃ being positive constants. Hence, we achieve u0(vn) → u0(v) in L1(Ω).
Together with the convexity of R(v) on the Banach space BV (Ω), we obtain lower
semi-continuity. Moreover, we know that the regularizer is coercive in BV (Ω). Together
with the boundedness of the entire functional J , this leads to a boundedness of the
term ‖u0(v̂)− u1‖1. With the triangle inequality we achieve

c ≥ ‖u0(v̂)− u1‖1
≥ ‖u0(v̂)‖1 − ‖u1‖1.

Since u1 is a fixed image intensity, it is naturally bounded in L1(Ω), hence we achieve



3.2 The Optical Flow Constraint 49

‖u1‖1 ≤ cu, where cu is a constant. Solving the inequality with respect to ‖u0(v̂)‖1
yields

‖u0(v̂)‖1 ≤ c+ cu.

From the continuity of the operator u0, we obtain the boundedness of v̂ in L1(Ω) and
consequently the coercivity of the functional J . Consequently, the conditions for the
fundamental theorem of optimization are fulfilled and we obtain the existence of a
minimal solution.

We continue by showing the existence of a minimum of the iterative functional Jn:

Lemma 3.2. (Existence of a Minimum of Jn)
Let Ω ∈ Rd for d ∈ 2, 3, u0 ∈ Cα for α > 0, u1 ∈ L1(Ω), and vn ∈ BV (Ω)d ∩ L2(Ω)d.
Then there exists a minimum of the functional Jn in BV (Ω), where Jn is defined in
(3.5).

Proof. From the definition of the functional Jn(v) it directly follows

Jn(v
n) = J(vn).

Since Jn gets minimized with respect to v, we know that Jn(v) ≤ Jn(v
n) holds, for

possible minimizers v. Consequently, we obtain

Jn(v) ≤ J(vn).

Since J is finite, this gives us the coercivity of the functional Jn. The lower semi-
continuity follows directly from the weak* lower-semi-continuity of norms on Banach
spaces. Thus, there exists a minimum of the functional Jn.

It remains to show that the minimum of the iterative functional (3.5) converges towards
a minimum of the nonlinear functional (3.6):

Theorem 3.2. (Weak* Convergence of Jn)
Let Ω ∈ Rd for d = 2, u0 ∈ C2(Ω), u1 ∈ L1(Ω), and v ∈ BV (Ω)d. Furthermore, let the
mapping y �→ ∇u0(y) · y be Lipschitz continuous. Then the sequence of minimizers
vn+1 of the functional

Jn(v) := ‖u0(v
n)− u1 + (v − vn)∇u0(v

n)‖1 + c

2
‖v − vn‖22 + αR(v),
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with c > supx ‖H(u0(x))‖2 and H being the Hessian matrix, weakly* converges along
subsequences towards a stationary point of J in BV (Ω)d, which is given by

min
v

J(v) := ‖u1 − u0(v)‖1 + αR(v).

Proof. To prove the statement, we need to show that every sequence vn+1, which fulfills
the optimality condition for Jn, converges towards the minimum v of J . The optimality
condition for Jn at vn+1 is given by

∇u0(v
n)sn+1 + αpn+1 + c(vn+1 − vn) = 0, (3.7)

where

sn+1 ∈ sgn
(
u0(v

n)− u1 + (vn+1 − vn)∇u0(v
n)
)
, and pn+1 ∈ ∂R(vn+1).

The optimality condition for J at v is given by

∇u0(v)s+ αp = 0,

where

s ∈ sgn (u0(v)− u1) , and p ∈ ∂R(v).

We start by showing the boundedness of vn in L2(Ω). For this purpose, we use the
Taylor expansion of u0(v

n+1) at vn:

u0(v
n+1) = u0(v

n) + (vn+1 − vn)∇u0(v
n) +

1

2
(vn+1 − vn)H (u0(ṽ

n)) (vn+1 − vn).

Rearranging the above equation with respect to u0(v
n) and inserting the result into

Jn(v
n+1) =

∥∥u0(v
n)− u1 + (vn+1 − vn)∇u0(v

n)
∥∥
1
+

c

2

∥∥vn+1 − vn
∥∥2
2
+ αR (vn+1

)
yields

Jn(v
n+1) =

∥∥∥∥u0(v
n+1)− u1 − 1

2
(vn+1 − vn)H (u0(ṽ

n)) (vn+1 − vn)

∥∥∥∥
1

+
c

2

∥∥vn+1 − vn
∥∥2
2
+ αR(vn+1).

Thanks to the intermediate value theorem
(
cf. Forster (2006)

)
, we know that is holds
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ṽn(x) ∈ [vn(x),vn+1(x)]. Together with the Hölder inequality, this gives us

Jn(v
n+1) ≥ ∥∥u0(v

n+1)− u1

∥∥
1
− 1

2
sup
x

‖H(u0 (v
n))‖2

d∑
i=1

∥∥(vn+1 − vn)
∥∥2
2

+
c

2

∥∥vn+1 − vn
∥∥2
2
+ αR(vn+1).

Due to c > supx ‖H (u0(x))‖2, it follows

Jn(v
n) ≥ Jn(v

n+1)

≥ ∥∥u0(v
n+1)− u1

∥∥
1
+ αR(vn+1) +

(
c− sup

x
‖H (u0(v

n))‖2
) d∑

i=1

∥∥vn+1 − vn
∥∥2
2

= J(vn+1) +

(
c− sup

x
‖H(u0(v

n))‖2
) d∑

i=1

∥∥vn+1 − vn
∥∥2
2
.

Since it holds Jn(vn) < ∞ and J(vn+1) < ∞, we achieve

(
c− sup

x
‖H (u0(v

n))‖2
) d∑

i=1

∥∥vn+1 − vn
∥∥2
2
< ∞

and therefore

‖vn+1 − vn‖22 → 0 for n → ∞. (3.8)

Thanks to the compact embedding of BV (Ω) in Lp(Ω) for p < 2, vn has a weakly
convergent subsequence vnk with vnk → v for k → ∞ in L1(Ω)d. Together with (3.8),
we obtain vnk−1 → v for k → ∞ in L1(Ω)d. For the subsequence vnk the optimality
condition of Jnk−1 reads

∇u0(v
nk−1)snk + αpnk + c(vnk − vnk−1) = 0.

With (3.8), for the last term it holds

c(vnk − vnk−1) → 0 for n → ∞ in L2(Ω)d.

The strong convergence of vnk−1 in L1(Ω)d leads to the strong convergence

∇u0(v
nk−1) → ∇u0(v

n) for k → ∞ in L1(Ω).

Since it holds −1 ≤ snk ≤ 1, we obtain that snk is uniformly bounded in L∞(Ω). This
gives us the weak* convergence snk ⇀∗ s for k, n → ∞ in L∞(Ω). It remains to show
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the weak convergence of pnk , i.e. pnk ⇀ p for k → ∞, to pass to the limit in (3.7). For
the argument in p we start by solving the optimality condition (3.7) with respect to
pn+1:

pn+1 = − 1

α

(
c(vn+1 − vn) +∇u0(v

n)sn+1
)
. (3.9)

Again, we use (3.8) to obtain

c(vn+1 − vn) → 0 for n → ∞ in L2(Ω)d.

Moreover, as a consequence of u0 ∈ C2(Ω), the expression ∇u0(v
n) is Lipschitz continu-

ous with a Lipschitz constant that we denote by L∇u0 , i.e.∫
|∇u0(v)−∇u0(v

n)| ≤ L∇u0

∫
|v − vn|.

Consequently, for the subsequence ∇u0(v
n−1) it holds

∇u0(v
n−1) → ∇u0(v) for n → ∞ in L1(Ω).

Due to −1 ≤ sn+1 ≤ 1, we additionally achieve that sn+1 is uniformly bounded in
L∞(Ω). This gives us the weak* convergence sn+1 ⇀∗ s for n → ∞ in L∞(Ω) and thus

∇u0(v
n)sn+1 ⇀ ∇u0(v)s for n → ∞ in L1(Ω).

Hence, pn+1 is bounded and weakly convergent in L2(Ω). Since it holds pnk ∈ ∂R(vnk),
it follows

〈pnk ,vnk〉 ≥ R(vnk)

for every subsequence vnk of vn. Now we need to show that the limit of 〈pnk+1,vnk+1〉
for k → ∞ exists. Inserting (3.9) into the scalar product yields

〈pnk+1,vnk+1〉 =
〈
− 1

α

(
c(vnk+1 − vnk) +∇u0(v

nk)snk+1
)
,vnk+1

〉
=− 1

α

〈(
c(vnk+1 − vnk)

)
,vnk+1

〉
(3.10)

− 1

α

∫
Ω

∇u0(v
nk)(vnk+1 − vnk)snk+1 dx

− 1

α

∫
Ω

∇u0(v
nk)vnksnk+1 dx.
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Due to (3.8) and the boundedness of ∇u0(v
nk) and snk+1, the first and the second term

strongly converge towards zero in L2(Ω). In the third term, the expression ∇u0(v
nk)vnk

is Lipschitz continuous. Together with snk+1 ⇀∗ s for k, n → ∞ in L∞(Ω), we obtain

− 1

α

∫
Ω

∇u0(v
nk)vnksnk+1 dx → − 1

α

∫
Ω

∇u0(v)vs for k → ∞.

Since vnk strongly converges towards v in L2(Ω)d, the limit

lim
k→∞

〈pnk+1,vnk+1〉 = 〈p,v〉

exists and it holds

〈p,v〉 ≥ lim inf
v

R(vnk+1) ≥ R(v).

From vnk+1 ⇀ v in BV (Ω)d, it follows vnk+1 → v in L1(Ω)d. Therefore, we obtain
pnk ⇀ p in L2(Ω), with p ∈ ∂R(v). Hence, the optimality condition is fulfilled and v is
a stationary point of J .

Consequently, we are able to minimize the iterative functional Jn(v) in order to find a
minimum of the nonlinear functional J(v).

Remark 3.1. The embedding BV (Ω) ↪→ Lp(Ω) is only valid if p
p−1 ≥ d, where d is

the dimension of Ω, cf. Lemma 2.3. For d = 3 the space BV (Ω) is not embedded in
L2(Ω). Hence, we do not obtain boundedness of vnk+1 in L2(Ω). Consequently, the
scalar product in (3.10) is not necessarily converging in L2(Ω) and thus the previously
shown proof is not valid for d = 3.

3.3 Regularization

In this section we discuss different regularizers to complete the variational approach. In
the first part of this section we present the most common regularizers that are typically
used in combination with the optical flow constraint. Since those are however not
perfectly fitting to many real data applications, we introduce extended regularizers in
the second part. These extensions are supposed to combine wanted characteristics of
the previously shown standard regularizers.

3.3.1 Standard Regularization

One of the first well-known models to estimate optical flow is the Horn-Schunck method,
which was already established in 1981 in Horn and Schunck (1981). Using the
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optical flow constraint in the squared L2 norm, Horn and Schunck completed the model
by adding the squared L2 norm of the gradient of the velocity field v, i.e.

RL2(v) :=
1

2
‖∇v‖22 . (3.11)

The penalization of this term prevents the general appearance of discontinuities in
the result. The estimated velocity field is smooth and the transition between different
velocities or directions of movement appears without edges. A crucial quality of the
squared L2 norm is that this avoidance of discontinuities naturally circumvents the
existence of noise in the velocity field. However, in many cases some edges are expected
to be visible in the results, e.g. due to rigid moving objects in front of a background.
These edges do not appear with this regularizer.

A variant that became more and more popular in recent years is the L1 data fidelity
combined with TV of v, see e.g. Zach et al. (2007). The formal definition of TV is
given by

TV (v) = sup

{∫
Ω

v divϕ
∣∣ϕ ∈ C1

C(Ω, Sym
1(Rd)), ‖ϕ‖∞ ≤ 1

}
.

Using this norm it follows:

RTV (v) := TV (v). (3.12)

In contrast to (3.11), the regularization of this model penalizes the gradient of v with
the L1 norm instead of the squared L2 norm. This leads to sparse discontinuities
in the velocity field. The result typically has some strong edges, whereas the spaces
between are constant. The whole velocity field thus has a cartoon-like character. Due
to the strong edges, a rigid moving object is clearly distinguishable from a stationary
background. This way, TV regularization allows to track moving objects like cells in
microscopy data. Similar to the previous model, the preference of constant parts also
avoids to obtain noise in the result. Nevertheless, this regularizer is not suited for every
kind of data. TV regularization does not allow to estimate smooth transitions between
velocities or directions, which appear e.g. in fluids or other elastic materials.

Both of the above mentioned regularizers can be combined with the L1 norm as well as
with the squared L2 norm for the data fidelity, even though the previously mentioned
combinations are the most popular ones. The choice of the data fidelity is mainly
dependent on the noise of the images, whereas the choice of the regularizer is mainly
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dependent on the type of movement that is expected. Both characteristics are not
necessarily connected. However, it is not always possible to decide whether a movement
between two images is either smooth, or piecewise constant. Especially in real data we
often expect to find both edges and smooth parts. None of the introduced regularizers
is able to estimate this combination. For this reason, we extend the regularization term
in the following section.

3.3.2 Extended Regularization

In general, it is possible to use different approaches in order to achieve smooth parts in
an image, e.g. higher order regularization or, as we have seen before, the application of
the squared L2 norm. In contrast to that, sharp edges are mainly achieved by using a
TV -based regularizer. For this reason, we use TV as a first regularizer and introduce a
second regularization term R2(w) that enables smoothness. The variable w : Rd → Rd,
where d is the spatial dimension of the images, serves to link the regularization terms.
To realize the linkage, we also incorporate w in the first TV regularizer and penalize
the distance between the gradient of v and w and minimizing this term with respect to
v and w, i.e.

R1(v, w) =
d∑

i=1

‖∇vi − wi‖1 .

The general variational model with extended regularization has the following structure:

min
v,w

D(u,v) + α1R1(v, w) + α2R2(w).

The parameters α1, α2 ∈ R+ regulate both the weighting between data fidelity and
regularization, as well as between the single regularization terms R1(v, w) and R2(w).
In our case the latter serves to adjust the proportion between smooth parts and edges.
If the ratio α2

α1
is small, the number of edges is relatively large in the results. If α2

α1
is

large, the number of edges is relatively small and the smooth parts predominate. The
model with extended regularization that we will focus on in the remaining section reads

Model 3.1. (Extended Optical Flow Model)

min
v,w

D(u,v) + α1

d∑
i=1

‖∇vi − wi‖1 + α2R2(w)

with D ∈ (DLin1,DLin2,DNL1,DNL2).
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Using this model, the velocity field v is regularized by a functional

R̃(v) = inf
w

{
R1(v, w) +

α2

α1

R2(w)

}
.

On the one hand, minimizingR(v) with respect to v achieves a simple TV regularization
shifted by a constant depending on w. On the other hand, minimizing R1(v, w) with
respect to w, forces w to be close to the TV solution of v. Consequently, the second reg-
ularization term R2(w) is applied to a solution that already approximates a TV solution.

The first approach to achieve both characteristics, sharp edges and smooth parts, is to
combine those regularizers that we already introduced in Section 3.3.1. We previously
discussed that the desired characteristics are accessible with one of them at a time.
TV is already incorporated in Model 3.1. Thus, we use the squared L2 norm in the
remaining term R2(w). Since w already approximates the gradient of v, we do not need
another gradient for w in R2(w) in order to enable smoothness. Consequently, using

RTV/L2(v, w) =
d∑

i=1

‖∇vi − wi‖1 +
α2

2α1

d∑
i=1

‖wi‖22 , (3.13)

we obtain the following model:

Model 3.2. (TV/L2 Optical Flow Model)

min
v,w

D(u,v) + α1

d∑
i=1

‖∇vi − wi‖1 +
α2

2

d∑
i=1

‖wi‖22

We are able to show that RTV/L2(v, w) is Lipschitz equivalent to TV (v):

Lemma 3.3. (Lipschitz Equivalence of RTV/L2(v, w) and TV (v))
Let v ∈ L1(Ω). Then there exist constants 0 < c < C < ∞ such that it holds

cTV (v) ≤ RTV/L2(v, w) ≤ CTV (v).

Proof. Let v ∈ BV (Ω). For every w ∈ L2(Ω) we obtain

RTV/L2(v, w) ≤
d∑

i=1

‖∇vi − wi‖1 +
α2

2α1

d∑
i=1

‖wi‖22 .
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Figure 3.3: Blue: Huber loss function for δ = 0.5, green: f(x) = x2

2
.

Regarding wi = 0 for i = 1, ..., d gives us

RTV/L2(v, w) ≤
d∑

i=1

‖∇vi‖1 ,

and thus for C = α1 it holds RTV/L2(v, w) ≤ CTV (v).
For the other direction, let w ∈ L2. The triangle inequality gives us

d∑
i=1

‖∇vi‖1 ≤
d∑

i=1

‖∇vi − wi‖1 +
d∑

i=1

‖wi‖1 .

Due to L2(Ω) ⊂ L1(Ω), we obtain

d∑
i=1

‖∇vi − wi‖1 +
d∑

i=1

‖wi‖1 ≤
d∑

i=1

‖∇vi − wi‖1 + |Ω| 12
d∑

i=1

‖wi‖2 .

Let c0 = d ·maxi(‖wi‖2) for i = 1, ..., d. With c1 = max(1, |Ω| 12/( α2

2α1
c0)) we achieve

d∑
i=1

‖∇vi − wi‖1 + |Ω| 12
d∑

i=1

‖wi‖2 ≤ c1

(
d∑

i=1

‖∇vi − wi‖1 +
α2

2α1

d∑
i=1

‖wi‖22
)
,

and consequently for c = 1
c1
it holds cTV (v) ≤ RTV/L2(v, w).

With the above lemma we are able to adopt existence and uniqueness results for solutions
from known results for BV (Ω).

For |∇v| = x and α2

α1
= δ, the minimum of RTV/L2(v, w) with respect to w is equivalent

to the well-known Huber loss function, see Huber et al. (1964) and Huber (1973),
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which is defined as follows:

Hδ(x) :=

⎧⎨⎩x2

2
|x| ≤ δ

δ|x| − δ2

2
|x| > δ

. (3.14)

Figure 3.3 shows the Huber loss function compared to a fully quadratic function. We
prove this statement with the following theorem:

Theorem 3.3. (Equivalence of TV/L2 Regularizer and Huber norm)
The functional F : BV (Ω) → R with

F (v) = min
w

α1

d∑
i=1

‖∇vi − wi‖1 + α2

2

d∑
i=1

‖wi‖22 (3.15)

and α1, α2 > 0, is equivalent to

F (v) = α1

d∑
i=1

∫
Ω

Hα2
α1

(∇vi) dx,

where H : Rd → R is defined in (3.14).

Proof. Using the definition of the L1 and L2 norms, we write F (v) as

F (v) = α1

(
min
w

d∑
i=1

∫
Ω

|∇vi − wi|+ α2

2α1

|wi|2 dx
)
.

For i = {1, ..., d} we calculate the optimality condition for the subproblem

min
wi

|∇vi − wi|+ α2

2α1

|wi|2. (3.16)

Since the L1 norm is not Fréchet differentiable in ∇vi − wi = 0, we need to distinguish
between the cases wi < ∇vi, wi > ∇vi, and wi = ∇vi.
First case: wi < ∇vi

Since the inside of the L1 norm is positive in this case, the optimality condition of (3.16)
reads

−1 +
α2

α1

wi
!
= 0,

which is equivalent to wi =
α1

α2
. Inserting this condition into wi < ∇vi shows that this

first case occurs for ∇vi >
α1

α2
.

Second case: wi > ∇vi

Equivalent calculations to the first case result in wi = −α1

α2
, for ∇vi <

α1

α2
.
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Third case: wi = ∇vi

Per definition we know wi = ∇vi. Concerning the condition on wi, this case covers the
remaining part, i.e. |∇vi| ≤ α1

α2
.

Combining these three cases we obtain

argmin
wi

{
|∇vi − wi|+ α2

2α1

|wi|2
}

=

⎧⎨⎩α1

α2

∇vi
|∇vi| if |∇vi| > α1

α2

∇vi if |∇vi| ≤ α1

α2

.

We insert this obtained minimum into (3.16) and yield

min
wi

|∇vi − wi|+ α2

2α1

|wi|2 =
⎧⎨⎩|∇vi| − α1

2α2
if |∇vi| > α1

α2

α2

2α1
|∇vi|2 if |∇vi| ≤ α1

α2

,

which is exactly the definition of Hα2
α1

(∇vi). Embedding this result for the subproblem
into the functional (3.15), we end up with

F (v) = α1

d∑
i=1

∫
Ω

Hα2
α1

(∇vi) dx.

In Burger et al. (2016b) a more general version of this regularizer with arbitrary
Lp norm for the second term is studied. A variational model for optical flow with an
anisotropic Huber regularization was e.g. analyzed in Werlberger et al. (2009).

A method to obtain smoothness without using the squared L2 norm is the application
of higher order derivatives. We achieve this by using the L1 norm of the gradient of w
for the second regularization term, which yields

RTV/TV (v, w) =
d∑

i=1

‖∇vi − wi‖1 +
α2

2α1

d∑
i=1

‖∇wi‖1. (3.17)

Altogether, we achieve

Model 3.3. (TV /TV Optical Flow Model)

min
v,w

D(u,v) + α1

d∑
i=1

‖∇vi − wi‖1 +
α2

2

d∑
i=1

‖∇wi‖1.

Even though there is only a simple gradient in the second term, we receive a second order
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derivative due to the fact that w already approximates the gradient of v. The gradient
of w consequently approximates the second order derivative of v. While the first order
derivative, which builds the standard TV regularizer, is zero only for constant parts, the
second order derivative is zero for all kinds of linear functionals. Therefore, the combi-
nation of first and second order derivatives allows to reconstruct affine linear functionals.

The regularizer (3.17) is equivalent to a primal realization of a total generalized variation
(TGV ) regularizer, which was established in Bredies et al. (2010). The general
definition of TGV is

TGV k
α (eq : tvtv) = sup

{∫
Ω

eq : tvtv divkϕdx
∣∣ϕ ∈ Ck

C(Ω, Sym
k(Rd)),

‖divlϕ‖∞ ≤ αl, l = 0, ..., k − 1
}
.

While TGV was mainly used for denoising studies in the beginning, recently it got
more popular for motion estimation problems as well, see e.g. Ranftl et al. (2012)
and Ranftl et al. (2014). For k = 2 this regularizer is equivalent to (3.17). This fact
allows us to use known results about the TGV regularizer:

Lemma 3.4. (Properties of RTV/TV (v, w))
RTV/TV (v, w) is proper, convex and lower semi-continuous on Lp(Ω), for 1 ≤ p ≤ ∞.

Proof. A proof for the equivalent TGV regularizer can be found in Bredies et al.
(2010).

Similar to RTV/TV (v, w), it is also possible to show Lipschitz equivalence between TV (v)

and RTV/TV (v, w) in combination with ‖v‖1:

Lemma 3.5. (Lipschitz Equivalence of ‖v‖1 +RTV/TV (v, w) and TV (v))
Let v ∈ L1(Ω). Then there exist constants 0 < c < C < ∞ such that it holds

cTV (v) ≤ ‖v‖1 +RTV/TV (v, w) ≤ CTV (v).

Proof. A proof for the equivalent TGV regularizer can be found in Bredies and

Valkonen (2011).

3.4 Bregman Iterations

TV regularization is known to have a typical failure, which is the loss of contrast. This
loss happens for all kinds of data fidelities. In reconstruction approaches, the intensities
in the results are lower than in ground truth images. In motion estimation approaches,
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the velocities in the results are lower than the actual ones. Unfortunately, this loss of
contrast does not only appear with the standard TV regularizer, but also with other
regularizers that contain TV , like those we introduced in Section 3.3.2.

For squared L2 data fidelities, a possibility to overcome this problem is the use of
Bregman iterations, as they were proposed for linear problems in Osher et al. (2005).
A generalization to L1 data fidelities will be mentioned at the end of this section. An
analysis of Bregman iterations for TV -based regularizers can be found e.g. in Burger

and Osher (2013), Osher et al. (2005) and Burger et al. (2007b). The idea of
this method is to use a Bregman distance instead of the usual regularization term. For
F : Ω → R and a, b ∈ Ω, the generalized Bregman distance is defined as

Db
F (p, q) = F (p)− F (q)− 〈b, p− q〉, with b ∈ ∂F (q),

where b is the Bregman variable. For the Bregman iterations, the specific distance term
Dbn

R (v,vn) depends on the choice of the regularizer. For the standard TV regularizer
(3.12), the distance term has the following appearance:

Dbn

R (v,vn) = R(v)−R(vn)− 〈bn,v − vn〉, with bn ∈ ∂R(vn).

For the extended regularizers (3.13) and (3.17), it appears as

Dbn

R (v,v∗) = R(v, w)−R(vn, w)− 〈bn,v − vn〉, with bn ∈ ∂R(vn, w).

Basically, Bregman iterations consist of two major steps, which are calculating the
main variable of the particular minimization problem, and calculating the variable
of the associated Bregman distance. These results are achieved by using an iterative
approximation. For the illustration of the Bregman iterations, we consider a general
inverse problem

Av = g, (3.18)

where A : L2(Ω) → H is a bounded, linear operator whose kernel does not include
the space of continuous functions, and H is a Hilbert space. Instead of solving the
regularized minimization problem

min
v

1

2
‖Av − g‖2 + αR(v), (3.19)
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the Bregman iterations are defined as follows:

Definition 3.1. (Bregman Iterations for Linear Problems)
Let A be as in (3.18). For v0 = b0 = 0 and for n = 1, 2, · · · compute

vn+1 = argmin
v

1

2
‖Av − g‖2 + αDbn

R (v,vn), (3.20)

bn+1 = bn + A∗(g − Avn+1). (3.21)

The first step (3.20) of a Bregman iteration is the update of the main variable. For this
purpose, the regularizer R(v) in the general minimization problem (3.19) is replaced by
the Bregman distance regarding R between the minimizer v and the previous iterate
vn. The second step (3.21) is the update of the Bregman variable. It has the effect of
adding back the contrast error that occurred after a couple of iterations of the main
algorithm. The fact that b is always in the subgradient of the regularizer ensures that
all edges that occur in the results remain at their correct position. Nevertheless, we
need to mention that it is not useful to calculate too many Bregman iterations. After a
couple of iterations the frequent addition of the calculated error leads to a vanishing
effect of the original minimization functional. As a consequence, e.g. in a denoising
approach the noise returns after a distinct amount of Bregman iterations. Without
stopping at a certain point the iterates would converge towards the original noisy image.
In Osher et al. (2005) it is proposed to stop the iterations as soon as the new iterate
vn+1 is more noisy than the previous vn. The amount of necessary Bregman iterations
is coupled to the choice of the regularization parameter α, which serves as a step length
for the Bregman iterations.

The term 〈bn,vn〉, which is part of

〈bn,v − vn〉 = 〈bn,v〉 − 〈bn,vn〉,

as well as the term R(vn) are not dependent on v. Considering this, we shorten (3.20)
by writing

vn+1 = argmin
v

1

2
‖Av − g‖2 + αR(v)− 〈bn,v〉. (3.22)

With this formulation we see that the Bregman iterations are in fact equivalent to
the well known augmented Lagrangian method (see (Rockafellar 1976)), which is
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defined as follows:

vn+1 = argmin
v

1

2
‖Av − g‖2 + αR(v) + 〈bnALM , g − Av〉, (3.23)

bn+1
ALM = bnALM + g − Avn+1. (3.24)

To show the equivalence, we note that it holds

bn = A∗bn.

Inserting this into (3.22) yields

vn+1 = argmin
v

1

2
‖Av − g‖2 + αR(v)− 〈A∗bnALM ,v〉

= argmin
v

1

2
‖Av − g‖2 + αR(v)− 〈bnALM , Av〉,

which is equivalent to (3.23). It is also possible to avoid the scalar product 〈bn,v〉 in
(3.22). Due to the squaring of the data fidelity, the scalar product can be included in
this fidelity. The problem in v then looks as follows:

vn+1 = argmin
v

1

2
‖Av − (g + bn)‖2 + αR(v). (3.25)

In Osher et al. (2005), there are also shown convergence results for the above system
(3.20) – (3.21), where R is the TV norm:

Theorem 3.4. (Weak* Convergence of Bregman Iterations for Linear Problems)
Assume there exists v̄ ∈ BV (Ω) with Av̄ = f . Then

‖Avk − g‖2H ≤ k−1R(v̄),

vk has a weak* convergent subsequence in BV (Ω), and the limit of each weak* convergent
subsequence is a solution of Av = g. If v̄ is the unique solution, vk∗ ⇀∗ v̄ in BV (Ω).

The proof can be found in Osher et al. (2005). To apply Bregman iterations to
the linearized optical flow models, we need to use the formulation of the optical flow
constraint as inverse problems. In Section 3.2.1 we showed that the linearized constraint
can be written in the form Av = g, if it holds

Av = (∇u)T · v and g = −ut.
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Inserting this into (3.20) and (3.21) yields

vn+1 = argmin
v

1

2
‖ut +∇u · v‖2 + αDbn

R (v,vn),

bn+1 = bn − (ut +∇u · vn)∇u.

Since the operator A = (∇u)T fulfills the conditions of Theorem 3.4, the convergence
result is also true for the linearized optical flow model with L2 data fidelity and TV

regularization.

In the original formulation, Bregman iterations are only defined for linear inverse
problems. As already mentioned, in the case of the L2 data fidelity, the nonlinear
constraint can be regarded as the Gauß-Newton method for nonlinear minimization
problems. Therefore, we introduce a generalization of Definition 3.1 for nonlinear
problems, which is also based on the Gauß-Newton method. This can also be considered
as a generalization of the Levenberg-Marquardt method. See Moré (1978) for further
details of this algorithm. In the original formulation, the Levenberg Marquardt method
consists of the Gauß-Newton method in combination with a Tikhonov regularization,
which in the following generalization is replaced by the Bregman distance.

Definition 3.2. (Generalized Levenberg-Marquardt Iteration)
Let F be a nonlinear, bounded and Fréchet differentiable operator with F (v) = y. For
v0 = b0 = 0 and for n = 1, 2, · · · compute

vn+1 = argmin
v

1

2
‖y − F (vn) + (v − vn)∇F (vn)‖2 + αnDbn

R (v,vn), (3.26)

bn+1 = bn − 1

αn
(y − F (vn) + (v − vn)∇F (vn))∇F (vn+1). (3.27)

A similar approach can also be found in Bachmayr (2007) and Bachmayr and

Burger (2009). In contrast to the linear case in Definition 3.1, the regularization
parameter αn in Definition 3.2 is dependent on the current iteration step n. This
property is necessary to achieve suitable convergence results.

For F (v) = u1(v) and y = u0, (3.26) gives the nonlinear optical flow constraint combined
with the Bregman distance, whereas vn can be regarded as v̂. Altogether, the Bregman
iteration scheme for the nonlinear optical flow models with L2 data fidelity reads:

vn+1 = argmin
v

1

2
‖u0 − u1(v̂) + (v − v̂)∇u1(v̂)‖2 + αnDbn

R (v, v̂),

bn+1 = bn − 1

αn
(u0 − u1(v̂) + (v − v̂)∇u1(v̂))∇u1(v̂).
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Up to this point we only discussed possibilities for iterative algorithms including Bregman
distances for squared L2 data fidelities. Even though the iterations themselves would
also be solvable for L1 data fidelities, the well-definedness and convergence results are
not transferable to non-quadratic norms. One reason for that is the fact that it is not
possible to include the scalar product of the Bregman distance into an L1 norm, as we
did in (3.25). In He et al. (2006) a generalization of (3.20), which is also applicable to
L1 data fidelities, is introduced. The main idea behind this is to divide the regularization
parameter by two after each iteration step. Thus, the iteration step looks as follows:

vn+1 = argmin
v

‖Av − g‖+ α

2n
Dbn

R (v,vn). (3.28)

With this modification it is possible to obtain well-definedness and achieve convergence
results.

3.5 Primal-Dual Formulation

To solve the previously proposed motion estimation models, we use the Chambolle-Pock
algorithm introduced in Definition 2.24. To use the iteration scheme we need to assign
the single terms of our models to the terms F and G in the notation of (2.1). Since we
are solving the models with respect to the vector field v, we assign the terms based on
the presence of an arbitrary operator, which is applied to v. The optical flow constraint
v · ∇u+ ut contains the gradient operator ∇ and a temporal derivative, but both of
them are only applied to the image intensity u and not to v. Thus, we always assign
the data fidelity to G. The standard regularizers from Section 3.3.1 both consist of a
single term containing the gradient operator applied to v complemented with a norm.
Consequently, we assign them to F . For the extended regularizers from Section 3.3.2 we
need to consider the fact that these models are not only solved with regard to v. The
models get also minimized with respect to the auxiliary variable w. For this reason, we
additionally assign those terms to F , which contain an operator applied to w. Since
the extended regularizers consist of more than a single term, we regard every term
independently. The TV/L2 regularizer in Model 3.2 contains the gradient operator
applied to v in the first term, but no operator at all in the second term. Therefore,
we assign the first term to F and the second term to G. The TV/TV regularizer in
Model 3.3 contains the gradient operator applied to v in the first term and the same
operator applied to w in the second term. Hence, we assign both of them to F . Table 3.1
gives an overview of the previously described assignments. The data fidelity D is chosen
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Regularizer G F K

L2 D(u,v)
α

2
‖∇v‖22 ∇

TV D(u,v) α ‖∇v‖1 ∇

TV/L2 D(u,v) +
α1

2
‖w‖22 α0 ‖∇v − w‖1

(∇ −I
)

TV/TV D(u,v) α0 ‖∇v − w‖1 + α1 ‖∇w‖1
(∇ −I
0 ∇

)
Table 3.1: Assignment of the single terms to G and F .

out of (DLin1,DLin2,DNL1,DNL2). The operator K in the right column of the table
is a matrix that combines all occurring operators in the particular regularizer. For

the extended regularizers K needs to be applied to the vector
(
v w

)T
to achieve the

desired model.

In the case of Bregman iterations the problem for v can also be written in the notation
of (2.1). In comparison to the previously described models without Bregman iterations,
we only need to consider the additional bn in the data fidelity. This is at least true
for squared L2 data fidelities as we already showed with (3.25). Since bn serves as a
constant in this step, this term does not change the assignment to G. In combination
with an L1 norm, the modified iterations (3.28) contain an additional term in form of
the scalar product 〈bn,v〉, which cannot be included in the data fidelity in this case.
Since there is still no operator in this term, it is also assigned to G. The calculations in
the remaining parts of this section will not explicitly handle this additional term in G.
However, the proceeding for the calculations of the resolvent operators is equivalent to
Section 3.5.3.

Since we want to use the Chambolle-Pock framework (Definition 2.24) for solving the
different problems, we need to rewrite the models using their equivalent saddle point
formulations. For the models with standard regularization, the saddle point formulation
is given by

min
v∈X

max
p∈Y

G(v) + 〈v,K∗p〉 − F ∗(p), (3.29)

where p is the dual variable of v. For the L1-TV/L2 model, the additional variable w,
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has to be included in the saddle point formulation, i.e.

min
v,w∈X

max
p∈Y

G(v, w) +

〈(
v

w

)
, K∗p

〉
− F ∗(p). (3.30)

Due to the additional term in the remaining L1-TV/TV model, we also need to consider
an additional dual variable q for the saddle point formulation:

min
v,w∈X

max
p,q∈Y

G(v) +

〈(
v

w

)
, K∗

(
p

q

)〉
− F ∗

(
p

q

)
. (3.31)

To use these formulations, we need to calculate the adjoint operators K∗ for the given
operators K, as well as the convex conjugates F ∗(p) of F (Kv) respectively F ∗(p, q)

of F (K(v, w)). For the Chambolle-Pock algorithm itself, we also need the resolvent
operators for all possible terms G and F ∗. We start by calculating the adjoint operators
and subsequently derive the convex conjugates.

3.5.1 Adjoint Operators

As it is shown in Table 3.1, there are three different operators occurring in the presented
models. The first one is K = ∇. The adjoint operator of ∇ is given by −∇·, and thus
K∗ = −∇·. Therefore, the scalar product in (3.29) has the following structure:

〈v,K∗p〉 = −〈v,∇ · p〉 .

The operator K =
(
∇ −I

)
additionally contains the identity, of which the adjoint

operator is again the identity. This leads to K∗ = −
(
∇· I

)T
. Hence, the scalar

product in (3.30) becomes〈(
v

w

)
, K∗p

〉
= −

〈(
v

w

)
,

(
∇·
I

)
p

〉
.

The remaining operator and its adjoint operator are given by

K =

(
∇ −I

0 ∇

)
and K∗ = −

(
∇· 0

I ∇·

)
.

For the scalar product in (3.31) we need to consider the additional dual variable q in
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order to achieve 〈(
v

w

)
, K∗

(
p

q

)〉
= −

〈(
v

w

)
,

(
∇· 0

I ∇·

)(
p

q

)〉
.

3.5.2 Convex Conjugates

Lemma 3.6. (Convex Conjugate for Squared L2 Norm)
For F (w) = α

2
‖w‖22 the convex conjugate is given by

F ∗(p) =
1

2α
‖p‖22.

Proof. We start by defining an auxiliary functional F̃ (w) = 1
2
‖w‖22. With the definition

of the convex conjugate, we obtain:

F̃ ∗(p) = sup
w

{
〈p, w〉 − 1

2
‖w‖22

}
.

Since the functional F̃ ∗(p) is Fréchet differentiable, we are able to find an optimal point
x̂ that satisfies x̂ = p. For this point we calculate the convex conjugate F̃ ∗(p) of the
auxiliary functional F̃ (w):

F̃ ∗(p) = 〈p, p〉 − 1

2
‖p‖22 =

1

2
‖p‖22.

For F (w) = αF̃ (w) we use Lemma 2.2 to identify F ∗(p):

F ∗(p) =
(
αF̃ (p)

)∗
= αF̃ ∗

( p
α

)
=

α

2

∥∥∥ p
α

∥∥∥2
2
=

1

2α
‖p‖22.

Lemma 3.7. (Convex Conjugate for L1 Norm)
For F (w) = α ‖w‖1 the convex conjugate is given by F ∗(p) = αδB(L∞)

(
p
α

)
, where

δB(L∞)(p) :=

⎧⎨⎩0, p ∈ B(L∞)

∞, else
.

Proof. Again, we start by defining an auxiliary functional F̃ (w) = ‖w‖1. We distinguish
between the two cases p ∈ B(L∞) and p /∈ B(L∞).

1. p ∈ B(L∞) ⇔ ‖p‖∞ ≤ 1

With the help of the Cauchy-Schwartz inequality, for the scalar product 〈p, w〉 we
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obtain:

〈p, w〉 ≤ ‖p‖∞‖w‖1.

Consequently, it also holds

〈p, w〉 ≤ ‖w‖1,

which is equivalent to

〈p, w〉 − ‖w‖1 ≤ 0. (3.32)

Due to the definition of the convex conjugate, we achieve

F̃ ∗(p) ≥ 〈p, w〉 − ‖w‖1, ∀w ∈ L1.

For w = 0 it holds 〈p, 0〉 − ‖0‖1 = 0 and consequently F̃ ∗(p) ≥ 0. Combining this
with (3.32) yields F̃ ∗(p) = 0.

2. p /∈ B(L∞) ⇔ ‖p‖∞ > 1

The definition of the norm in a dual space gives us

‖p‖∞ = sup
w∈L1\{0}

〈p, w〉
‖w‖1 .

Due to ‖p‖∞ > 1, there exists an element w0 ∈ L1\{0} such that

〈p, w0〉
‖w0‖1 > 1,

which is equivalent to 〈p, w0〉 > ‖w0‖1 and hence

〈p, w0〉 − ‖w0‖1 > 0. (3.33)

For every element w0 ∈ L1\{0} and every constant c > 0, the product cw0 is also
an element of L1\{0}. Together with the definition of the convex conjugate, this
leads to

F̃ ∗(p) ≥ 〈p, cw0〉 − ‖cw0‖1 = c (〈p, w0〉 − ‖w0‖1) .

Due to (3.33), for c → ∞ we obtain F̃ ∗(p) = ∞.

Consequently, the convex conjugate of F̃ (w) is given by F̃ ∗(p) = δB(L∞)(p). For
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F (w) = αF̃ (w) we use Lemma 2.2 to see

F ∗(p) = αδB(L∞)

( p
α

)
.

Lemma 3.8. (Convex Conjugate for L1 Distance)
For F (K(w1, w2)) = α0 ‖w1 − w2‖1 the convex conjugate is given by

F ∗(p) = α0δB(L∞)

(
p

α0

)
.

Proof. Equivalent calculations as in Lemma 3.7 yield the asserted result.

Lemma 3.9. (Convex Conjugate for Two L1 Norms)
For F (K(w1, 12)) = α0 ‖w1 − w2‖1 + α1‖w2‖1 the convex conjugate is given by

F ∗

(
p

q

)
=

⎛⎝α0δB(L∞)

(
p
α0

)
α1δB(L∞)

(
q
α1

)⎞⎠ .

Proof. Separately performing equivalent calculations as in Lemma 3.7 yields the re-
quested result.

3.5.3 Resolvent Operators

This section serves to calculate the explicit resolvent operators (Definition 2.23) for the
different terms collected in Table 3.1. We describe the resolvent operators for G being
an L2 norm, an L1 norm, and a combination of both. Additionally, we point out the
resolvent operators for F being an L2 norm, an L1 norm, an affine linear L1 norm, and
an affine linear L1 norm combined with an additional L1 norm.

Lemma 3.10. (Resolvent Operator for Linearized L2 Data Fidelity)
For G(v) = 1

2
‖v · ∇u+ ut‖22 and v : R2 → R2 the resolvent operator is given by

v1 =
a3b1 − a2b2
a1a3 − a22

, v2 =
a1b2 − a2b1
a1a3 − a22

,

with

a1 = 1 + τuxux, a2 = τuxuy, a3 = 1 + τuyuy,

b1 = ṽ1 − τuxut, b2 = ṽ2 − τuyut.



3.5 Primal-Dual Formulation 71

Proof. Inserting G(v) to the definition of the resolvent operator yields

v = argmin
v

{‖v − ṽ‖2
2τ

+
1

2
‖v · ∇u+ ut‖22

}
.

Since this is a pure quadratic L2 problem, we are able to simply calculate the optimality
conditions for v = (v1, v2)

T as follows:

v1 − ṽ1
τ

+ (v1ux + v2uy + ut)ux
!
= 0,

v2 − ṽ2
τ

+ (v1ux + v2uy + ut)uy
!
= 0.

Rewriting this system yields

(1 + τuxux)v1 + τuxuyv2 = ṽ1 − τuxut,

τuxuyv1 + (1 + τuyuy)v2 = ṽ2 − τuyut.

Since all variables except for v1 and v2 are known in this scheme, we have a system of
two equations and two unknowns. Directly solving this system with respect to v1 and
v2 achieves the required solution.

Lemma 3.11. (Resolvent Operator for Nonlinear L2 Data Fidelity)
For G(v) = ‖u0(x+ v̂)− u1(x) + (v − v̂) · ∇u(x+ v̂)‖22 and v : R2 → R2, the resolvent
operator is given by

v1 =
a3b1 − a2b2
a1a3 − a22

, v2 =
a1b2 − a2b1
a1a3 − a22

,

with

a1 = 1 + τux(x+ v̂)ux(x+ v̂),

a2 = τux(x+ v̂)uy(x+ v̂),

a3 = 1 + τuy(x+ v̂)uy(x+ v̂),

b1 = ṽ1 − τ (−v̂ux(x+ v̂)− v̂uy(x+ v̂) + u0(x+ v̂)− u1(x)) ux(x+ v̂),

b2 = ṽ2 − τ (−v̂ux(x+ v̂)− v̂uy(x+ v̂) + u0(x+ v̂)− u1(x)) ux(x+ v̂).

Proof. The calculations are equivalent to Lemma 3.10.
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Lemma 3.12. (Resolvent Operator for Linearized L1 Data Fidelity)
For G(v) = ‖v · ∇u+ ut‖1 the resolvent operator is given by

v = ṽ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u)2

τ∇u if ρ(ṽ) < τ(∇u)2

−ρ(ṽ)
∇u

if |ρ(ṽ)| ≤ τ(∇u)2

,

with ρ(v) := v · ∇u+ ut.

Proof. Inserting G(v) to the definition of the resolvent operator yields

v = argmin
v

{‖v − ṽ‖2
2τ

+ ‖v · ∇u+ ut‖1
}
.

Since the L1 norm is not Fréchet differentiable in v ·∇u+ut = 0, we have to distinguish
between the cases v < − ut

∇u
, v > − ut

∇u
and v = − ut

∇u
.

First case: v < − ut

∇u

Since the inside of the L1 norm is completely negative in this case, we are able to
calculate the optimality condition as follows:

v − ṽ

τ
−∇u

!
= 0.

Thus, the solution for v can be written as

v = ṽ + τ∇u.

To generalize the distinction of cases with respect to the optical flow constraint, we use
this solution and insert it into the condition v < − ut

∇u
:

ṽ + τ∇u < − ut

∇u
⇔ ṽ · ∇u+ ut < −τ(∇u)2.

Consequently, for ρ(v) = v · ∇u+ ut this first case is equivalent to

ρ(ṽ) < −τ(∇u)2.

Second case: v > − ut

∇u

This case can be treated analogously to the first case.
Third case: v = − ut

∇u

Since there is no Fréchet derivative in this case, we need an element d of the subdifferential
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of ‖v · ∇u+ ut‖1 to calculate the optimality condition. Due to the multiplication of v
with ∇u, the subdifferential is given by {p ∈ [−∇u,∇u]}. With such p, the optimality
condition is

v − ṽ

τ
+ p

!
= 0 ⇔ v = ṽ − τp.

To compute the exact p, we use the condition v = − ut

∇u
and insert it into the optimality

condition:

− ut

∇u
− ṽ

τ
+ p = 0 ⇔ p =

ut

τ∇u
+

ṽ

τ
.

With this p the solution for v reads

v = ṽ − τ

(
ut

τ∇u
+

ṽ

τ

)
= ṽ −

( ut

∇u
+ ṽ
)
= ṽ − ρ(ṽ)

∇u
.

Again, to formulate a condition for ρ(ṽ) as defined in the first case, we use the fact that
|p| ≤ ∇u to identify∣∣∣∣ ut

τ∇u
+

ṽ

τ

∣∣∣∣ ≤ ∇u ⇔ |ṽ · ∇u+ ut| ≤ τ(∇u)2 ⇔ |ρ(ṽ)| ≤ τ(∇u)2.

Combining all cases, we achieve the requested solution for v.

Lemma 3.13. (Resolvent Operator for Nonlinear L2 Data Fidelity)
For G(v) = ‖u0(x+ v̂)− u1(x) + (v − v̂) · ∇u(x+ v̂)‖1, the resolvent operator is given
by

v = ṽ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u (x+ v̂))2

τ∇u if ρ(ṽ) < τ(∇u (x+ v̂))2

− ρ(ṽ)
∇u(x+ṽ)

if |ρ(ṽ )| ≤ τ(∇u(x+ v̂))2

,

with ρ(v) := u0(x+ v̂)− u1(x) + (v − ṽ) · ∇u(x+ ṽ).

Proof. The calculations are equivalent to those in Lemma 3.12.

For the resolvent operators that contain v and w we split the input ṽ into those parts
that are used for v and those that are used for w, and continue denoting these variables
with ṽ and w̃.

Lemma 3.14. (Resolvent Operator for Linearized L2 Data Fidelity with Extention)
For G(v, w) = 1

2
‖v · ∇u+ ut‖22 + α1

2
‖w‖22 and v : R2 → R2 the resolvent operators are
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given by

v1 =
(ṽ1 − τuxut)(1 + τuyuy)− (v̄2 − τuyut)(τuxuy)

(1 + τuxux)(1 + τuyuy)− (τuxuy)2
,

v2 =
(ṽ2 − τuyut)(1 + τuxux)− (v̄1 − τuxut)(τuxuy)

(1 + τuxux)(1 + τuyuy)− (τuxuy)2
,

and

w =
w̃

1 + τα1

.

Proof. Inserting G(v, w) to the definition of the resolvent operator yields

v = argmin
v

{‖v − ṽ‖2
2τ

+
1

2
‖v · ∇u+ ut‖22 +

α1

2
‖w‖22

}
= argmin

v

{‖v − ṽ‖2
2τ

+
1

2
‖v · ∇u+ ut‖22

}
,

and

w = argmin
w

{‖w − w̃‖2
2τ

+
1

2
‖v · ∇u+ ut‖22 +

α1

2
‖w‖22

}
= argmin

w

{‖w − w̃‖2
2τ

+
α1

2
‖w‖22

}
.

The equation for v is equivalent to the result in Lemma 3.10 and thus we end up in

v1 =
(ṽ1 − τuxut)(1 + τuyuy)− (ṽ2 − τuyut)(τuxuy)

(1 + τuxux)(1 + τuyuy)− (τuxuy)2
,

v2 =
(ṽ2 − τuyut)(1 + τuxux)− (ṽ1 − τuxut)(τuxuy)

(1 + τuxux)(1 + τuyuy)− (τuxuy)2
.

Calculating the optimality condition for the equation for w yields

w − w̃

τ
+ α1w

!
= 0 ⇔ w =

w̃

1 + τα1

.

Lemma 3.15. (Resolvent Operator for Nonlinear L2 Data Fidelity with Extention)
For G(v) = ‖u0(x+ v̂)− u1(x) + (v − v̂) · ∇u(x+ v̂)‖22 + α1

2
‖w‖22 and v : R2 → R2 the

resolvent operators are given by

v1 =
a3b1 − a2b2
a1a3 − a22

, v2 =
a1b2 − a2b1
a1a3 − a22

,
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with

a1 = 1 + τux(x+ v̂)ux(x+ v̂),

a2 = τux(x+ v̂)uy(x+ v̂),

a3 = 1 + τuy(x+ v̂)uy(x+ v̂),

b1 = ṽ1 − τ (−v̂ux(x+ v̂)− v̂uy(x+ v̂) + u0(x+ v̂)− u1(x)) ux(x+ v̂),

b2 = ṽ2 − τ (−v̂ux(x+ v̂)− v̂uy(x+ v̂) + u0(x+ v̂)− u1(x)) ux(x+ v̂),

and

w =
w̃

1 + τα1

.

Proof. The justification is equivalent to Lemma 3.14.

Lemma 3.16. (Resolvent Operator for Linearized L1 Data Fidelity with Extention)
For G(v, w) = ‖v · ∇u+ ut‖1 + α1

2
‖w‖22 the resolvent operators are given by

v = ṽ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u)2

τ∇u if ρ(ṽ) < τ(∇u)2

−ρ(ṽ)
∇u

if |ρ(ṽ)| ≤ τ(∇u)2

,

with ρ(v) := v · ∇u+ ut, and

w =
w̃

1 + τα1

.

Proof. Inserting G(v, w) to the definition of the resolvent operator yields

v = argmin
v

{‖v − ṽ‖2
2τ

+ ‖v · ∇u+ ut‖1 + α1

2
‖w‖22

}
= argmin

v

{‖v − ṽ‖2
2τ

+ ‖v · ∇u+ ut‖1
}
,

and

w = argmin
w

{‖w − w̃‖2
2τ

+ ‖v · ∇u+ ut‖1 + α1

2
‖w‖22

}
= argmin

w

{‖w − w̃‖2
2τ

+
α1

2
‖w‖22

}
.
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The equation for v is equivalent to the result in Lemma 3.12 and thus we end up in

v = ṽ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u)2

τ∇u if ρ(ṽ) < τ(∇u)2

−ρ(ṽ)
∇u

if |ρ(ṽ)| ≤ τ(∇u)2

,

with ρ(v) = v · ∇u+ ut. The equation for w is equivalent to the subproblem in w in
Lemma 3.14. Thus, we obtain

w =
w̃

1 + τα1

.

Lemma 3.17. (Resolvent Operator for Nonlinear L1 Data Fidelity with Extention)
For G(v, w) = ‖u0(x+ v̂)− u1(x) + (v − v̂) · ∇u(x+ v̂)‖1 + α1

2
‖w‖22 the resolvent oper-

ators are given by

v = ṽ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u (x+ v̂))2

τ∇u if ρ(ṽ) < τ(∇u (x+ v̂))2

− ρ(ṽ)
∇u(x+ṽ)

if |ρ(ṽ )| ≤ τ(∇u(x+ v̂))2

,

with ρ(v) := u0(x+ v̂)− u1(x) + (v − ṽ) · ∇u(x+ ṽ), and

w =
ŵ

1 + τα1

.

Proof. The justification is equivalent to Lemma 3.16.

Table 3.2 summarizes the results for the resolvent operators of the single terms that
occur in G(v) and G(v, w).

Lemma 3.18. (Resolvent Operator for Squared L2 Norm)
For F (Kv) = α

2
‖∇v‖22 the adjoint resolvent operator is given by

p =
α

α + σ
p̃,

where p is the dual variable of v.

Proof. From Lemma 3.6 we know the convex conjugate of the given functional:

F ∗(p) =
1

2α
‖p‖22.
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G v/w

DLin2(u,v)

⎛⎜⎜⎝
a3b1 − a2b2
a1a3 − a22

a1b2 − a2b1
a1a3 − a22

⎞⎟⎟⎠
a1 = 1 + τuxux

a2 = τuxuy

a3 = 1 + τuyuy

b1 = ṽ1 − τuxut

b2 = ṽ2 − τuyut

DNL2(u,v)

⎛⎜⎜⎝
a3b1 − a2b2
a1a3 − a22

a1b2 − a2b1
a1a3 − a22

⎞⎟⎟⎠

a1 =1 + τux(x+ v̂)ux(x+ v̂)

a2 =τux(x+ v̂)uy(x+ v̂)

a3 =1 + τuy(x+ v̂)uy(x+ v̂)

b1 =ṽ1 − τ (−v̂ux(x+ v̂)− v̂uy(x+ v̂)

+u0(x+ v̂)− u1(x)) ux(x+ v̂)

b2 =ṽ2 − τ (−v̂ux(x+ v̂)− v̂uy(x+ v̂)

+u0(x+ v̂)− u1(x)) ux(x+ v̂)

DLin1(u,v)
ṽ +

⎧⎪⎨⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u)2

τ∇u if ρ(ṽ) < τ(∇u)2

−ρ(ṽ)
∇u

if |ρ(ṽ)| ≤ τ(∇u)2

ρ(v) = v · ∇u+ ut

DNL1(u,v)
ṽ +

⎧⎪⎨⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u (x+ v̂))2

τ∇u if ρ(ṽ) < τ(∇u (x+ v̂))2

− ρ(ṽ)
∇u(x+ṽ)

if |ρ(ṽ )| ≤ τ(∇u(x+ v̂))2

ρ(v) = u0(x+ v̂)− u1(x) + (v − ṽ) · ∇u(x+ ṽ)

α1

2
‖w‖22

w̃

1 + τα1

α1

2
‖w‖22

w̃

1 + τα1

Table 3.2: Resolvent operators for the single terms of G.
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Inserting this into the definition of the resolvent operator yields

p = argmin
p

{‖p− p̃‖2
2σ

+
1

2α
‖p‖22

}
.

Equivalent to the subproblem in w in Lemma 3.14, we calculate the optimality condition
and obtain

p =
α

α + σ
p̃.

Lemma 3.19. (Resolvent Operator for L1 Norm)
For F (Kv) = α ‖∇v‖1 the adjoint resolvent operator is given by

p = πα(p̃) := min
p̃

(
α,max

p̃
(−α, p̃)

)
.

where p is the dual variable of v.

Proof. We obtain the convex conjugate of the given functional from Lemma 3.7:

F ∗(p) = αδB(L∞)

( p
α

)
.

Inserting this into the definition of the resolvent operator yields

p = argmin
p

{‖p− p̃‖2
2σ

+ αδB(L∞)

( p
α

)}
. (3.34)

To define the solution to this optimality problem, we need to identify those elements(
p
α

)
, which are in the L∞ unit ball, i.e.∥∥∥ p

α

∥∥∥
∞

≤ 1 ⇔ ‖p‖∞ ≤ α.

With the definition of the norm in L∞ it follows

α ≥ ‖p‖∞ = max
i,j

|pi,j|.

If this condition is fulfilled, the second term in (3.34) is equal to zero. The first term
is zero if p = p̃. Due to the positivity of the single terms we find a minimum of the
problem if p is chosen as close to p̃ as possible, but still within [−α, α]. With

πα(p̃) := min
p̃

(
α,max

p̃
(−α, p̃)

)
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F p q K∗

α

2
‖∇v‖22

α

α + σ
p̃ −∇·

α ‖∇v‖1 πα(p̃) −∇·

α0 ‖∇v − w‖1 πα0(p̃) −
(∇·

I

)
α0 ‖∇v − w‖1 + α1‖∇w‖1 πα0(p̃) πα1(q̃) −

(∇· 0
I ∇·

)
Table 3.3: Resolvent and adjoint operators for F .

we define a point-wise projection of p̃ onto [−α, α], and see that the required minimum
is given by p = πα(p̃).

Lemma 3.20. (Resolvent Operator for Affine Linear L1 Norm)
For F (K(v, w)) = α0 ‖∇v − w‖1 the adjoint resolvent operator is given by

p = πα0(p̃) := min
p̃

(
α0,max

p̃
(−α0, p̃)

)
,

where p is the dual variable of (v, w)T .

Proof. Using the convex conjugate from Lemma 3.8 and performing equivalent calcula-
tions as in Lemma 3.19 leads to the requested result.

Lemma 3.21. (Resolvent Operator for Affine Linear L1 Norm with Extension)
For F (K(v, w)) = α0 ‖∇v − w‖1 + α1‖w‖1 the adjoint resolvent operators are given by

p = πα0(p̃) := min
p̃

(
α0,max

p̃
(−α0, p̃)

)
,

q = πα1(q̃) := min
q̃

(
α1,max

q̃
(−α1, q̃)

)
where p is the dual variable of v and q is the dual variable of w.

Proof. Using the convex conjugate from Lemma 3.9 and performing equivalent calcula-
tions as in Lemma 3.19 leads to the requested result.

Table 3.3 summarizes the results for the resolvent operators for the different choices of
F and the particular adjoint operators of K.
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3.6 Discretization

For the sake of simplicity, we only show the discretization for two-dimensional images
in this chapter. However, the discretization for three dimensions is straight forward and
can be calculated equivalently. For the temporal discretization we denote the time steps
by 0, · · · , T with step length δt. For the spatial discretization we define equidistant grids
with grid points 0, · · · , nx with step length δx in x-direction, and grid points 0, · · · , ny

with step length δy in y-direction. The displacement of a certain pixel (i, j) at a distinct
time step, is described by (Δi,Δj). Since we need a temporal derivative for u in the
data fidelity, the discrete Version U of u is given given at

{
(i, j, t)

∣∣i = 0, · · · , nx, j = 0, · · · , ny, t = 0, · · · , T} .
The remaining discrete variables V of v, W of w, P of p, and Q of q do not require a
temporal grid and are thus given at

{
(i, j)

∣∣i = 0, · · · , nx, j = 0, · · · , ny

}
.

Nevertheless, these points also need to be evaluated at every time step.

For the spatial and temporal derivatives of U , V , W , P and Q, we stick to the
discretizations proposed in Dirks (2015). This particular combination of discretizations
for the different variables turns out to be stable for variables that have equivalent
characteristics as those used in this chapter. For the temporal derivative Ut, we use
forward differences with Dirichlet boundary conditions, i.e.

Ut(i, j, t) =
U(i, j, t+ 1)− U(i, j, t)

δt
.

For the Operator ∇ we distinguish between an application to the image U , and an
application to the velocity field V orW . The reason for this is the different characteristic
of the equation depending on the viewpoint of the variables, see Dirks (2015). For ∇U

we use central differences, i.e.

Ux(i, j, t) =

⎧⎨⎩
U(i+1,j,t)−U(i−1,j,t)

2δx
if i > 0 and i < nx

0 if i = 0 or i = nx

,

Uy(i, j, t) =

⎧⎨⎩
U(i,j+1,t)−U(i,j−1,t)

2δy
if j > 0 and j < ny

0 if j = 0 or j = ny

.
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For ∇V and ∇W we use forward differences with Dirichlet boundary conditions:

Vx(i, j) =

⎧⎨⎩
V (i+1,j)−V (i,j)

δx
if i < nx

0 if i = nx

,

Vy(i, j) =

⎧⎨⎩
V (i,j+1)−V (i,j)

δy
if j < ny

0 if j = ny

,

Wx(i, j) =

⎧⎨⎩
W (i+1,j)−W (i,j)

δx
if i < nx

0 if i = nx

,

Wy(i, j) =

⎧⎨⎩
W (i,j+1)−W (i,j)

δy
if j < ny

0 if j = ny

.

Consequently, for the adjoint operators ∇ · P and ∇ ·Q we use backwards differences
with Neumann boundary conditions:

Px(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (i,j)−P (i−1,j)

δx
if i > 0 and i < nx

P (i, j) if i = 0

−P (i− 1, j) if i = nx

,

Py(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
P (i,j)−P (i,j−1)

δy
if j > 0 and j < ny

P (i, j) if j = 0

−P (i, j − 1) if j = ny

,

Qx(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q(i,j)−Q(i−1,j)

δx
if i > 0 and i < nx

Q(i, j) if i = 0

−Q(i− 1, j) if i = nx

,

Qy(i, j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q(i,j)−Q(i,j−1)

δy
if j > 0 and j < ny

Q(i, j) if j = 0

−Q(i, j − 1) if j = ny

.

With the previously described definitions, the discretized version of the brightness
constancy assumption reads as follows:

U(i+Δi, j +Δj, t) = U(i, j, t+ δt). (3.35)
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In the discrete setting the linearized optical flow constraint can be derived by an
approximation of U(i+Δi, j +Δj, t) via Taylor expansion at (x, y, t+ δt):

U(i+Δi, j +Δj, t) =U(i, j, t+ δt) + Ux(i, j, t+ δt)Δi+ Uy(i, j, t+ δt)Δj

+ Ut(i, j, t+ δt)(−δt) + h.o.t. .

In case that the displacements Δi and Δj are small enough, i.e. smaller than the grid
size, the higher order terms are small enough such that they can be neglected. We
insert the remaining terms of the above equation into (3.35) and obtain

U(i, j, t+ δt) =U(i, j, t+ δt) + Ux(i, j, t+ δt)Δi + Uy(i, j, t+ δt)Δj

+ Ut(i, j, t+ δt)(−δt),

which is equivalent to

0 = Ux(i, j, t+ δt)Δi + Uy(i, j, t+ δt)Δj + Ut(i, j, t+ δt)(−δt).

The velocity field V (i, j) at t+ δt is given by V (i, j) = − (Δi,Δj)

δt
. Hence, associating Ux

and Uy with ∇U , the discrete version of the linearized optical flow constraint is given by

0 = Ut(i, j, t+ δt) +∇U(i, j, t+ δt) · V (i, j).

The nonlinear version of the brightness constancy assumption can be identified in the
discrete setting by

U(V (i, j), t) = U(i, j, t+ δt).

The Gauß-Newton method (3.4), which we introduced in Section 3.2.2 for solving the
nonlinear optical flow constraint, can also be derived in the discrete setting. Therefore,
we start with the linearized brightness constancy assumption (3.35). We introduce an
approximation

(
Δ̂i, Δ̂j

)
of the displacement (Δi,Δj), i.e.∣∣∣(Δ̂i, Δ̂j

)− (Δi,Δj)
∣∣∣ < (δx, δy). (3.36)

The idea for this adapted optical flow constraint is based on Zach et al. (2007).
The approximation of the displacement can be achieved iteratively by performing a
multiscale approach. Similar to the linearized optical flow constraint, we approximate
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U(i+Δi, j+Δj, t) with a Taylor expansion. However, to avoid large higher order terms,
which appear in case that the covered distances (Δi,Δj) are larger than the grid size
(δi, δj), we evaluate the expansion at

(
i+ Δ̂i, j + Δ̂j, t

)
instead of (i, j, t+ δt):

U(i+Δi, j +Δj, t) =U
(
i+ Δ̂i, j + Δ̂j, t

)
+ Ux

(
i+ Δ̂i, j + Δ̂j, t

) · ((i+Δi)−
(
i+ Δ̂i

))
+ Uy

(
i+ Δ̂i, j + Δ̂j, t

) · ((j +Δj)−
(
j + Δ̂j

))
+ Ut

(
i+ Δ̂i, j + Δ̂j, t

) · (t− t) + h.o.t.

=U
(
i+ Δ̂i, j + Δ̂j, t+ δt

)
+ Ux

(
i+ Δ̂i, j + Δ̂j, t+ δt

) · (Δi − Δ̂i

)
+ Uy

(
i+ Δ̂i, j + Δ̂j, t+ δt

) · (Δj − Δ̂j

)
+ h.o.t. .

Due to (3.36), the higher order terms are small and can be ignored even if the actual
distances (Δi,Δj) can be large. We insert the remaining terms into (3.35) and obtain:

U(i, j, t+ δt) =U
(
i+ Δ̂i, j + Δ̂j, t

)
+ Ux

(
i+ Δ̂i, j + Δ̂j, t

) · (Δi − Δ̂i

)
+ Uy

(
i+ Δ̂i, j + Δ̂j, t

) · (Δj − Δ̂j

)
.

Again, associating Ux and Uy with ∇U gives us:

0 = U
(
i+ Δ̂i, j + Δ̂j, t

)− U(i, j, t+ δt) +
(
(Δi,Δj)−

(
Δ̂i, Δ̂j

))∇U
(
i+ Δ̂i, j + Δ̂j, t

)
.

Identifying the actual velocity field by V (i, j) := (Δi,Δj), and the approximated velocity
field by V̂ (i, j) :=

(
Δ̂i, Δ̂j

)
, we obtain the discrete Gauß-Newton method:

0 =U
(
(i, j) + V̂ (i, j), t

)
− U ((i, j), t+ δt)

+
(
V (i, j)− V̂ (i, j)

)
∇U

(
(i, j) + V̂ (i, j), t

)
.

3.7 Numerical Realization

The code we use for the implementation of the optical flow models is based the Mo-
tion Estimation GUI by Hendrik Dirks, which can be downloaded at Dirks (2016a).
However, we adapted the code with respect to our requirements, e.g. for including the
nonlinear data fidelities and the Bregman iterations.

The performance of the models including a nonlinear optical flow constraint is depen-
dent on several additional parameters compared to the linearized models. This is a
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consequence of the warping step, which serves to approximate the velocity field at the
current grid size. To nevertheless enable an equal comparison between the different
fidelities, we forgo a parameter optimization for these additional possibilities. We rather
stick to a fixed adjustment for all of the following approaches. The specific choices for all
parameters are equal to those in Dirks (2016b). Naturally, the occurring regularization
parameters are excluded from this fixation.

3.7.1 Iteration Scheme

For the numerical implementation, we use the Chambolle-Pock algorithm introduced in
Definition 2.24. The original algorithm only considers a single primal and a single dual
variable. Therefore, we need to adapt it in order to include the additional variables that
we introduced for the extended regularizers in Section 3.3.2.

Definition 3.3. (Adapted Chambolle-Pock Algorithm)
Choose τ, σ > 0, θ ∈ [0, 1], (u0, w0, p0, q0) ∈ X × Y and set ū0 = u0 and w̄0 = w0. For
n ≥ 0 the updates of un, wn, pn, qn, ūn and w̄n are defined as follows:(

pn+1

qn+1

)
= (I + σ∂F ∗)−1

((
pn

qn

)
+ σK

(
ūn

w̄n

))
,(

un+1

wn+1

)
= (I + τ∂G)−1

((
un

wn

)
− τK∗

(
pn+1

qn+1

))
,(

ūn+1

w̄n+1

)
=

(
un+1

wn+1

)
+ θ

((
un+1

wn+1

)
−
(
un

wn

))
.

In order to be able to apply the resolvent operators (I + σ∂F ∗)−1 and (I + τ∂G)−1 to
the particular input, we calculate them in each iteration separately. Thus, for n > 1 we
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obtain the following scheme:(
p̃n+1

q̃n+1

)
=

(
pn

qn

)
+ σK

(
ūn

w̄n

)
, (3.37)

pn+1 = argmin
p

{‖p− p̃n+1‖2
2σ

+ F ∗(p)

}
, (3.38)

qn+1 = argmin
q

{‖q − q̃n+1‖2
2σ

+ F ∗(q)

}
, (3.39)(

ũn+1

w̃n+1

)
=

(
un

wn

)
− τK∗

(
pn+1

qn+1

)
, (3.40)

un+1 = argmin
u

{‖u− ũn+1‖2
2τ

+G(u)

}
, (3.41)

wn+1 = argmin
w

{‖w − w̃n+1‖2
2τ

+G(w)

}
, (3.42)(

ūn+1

w̄n+1

)
=

(
un+1

wn+1

)
+ θ

((
un+1

wn+1

)
−
(
un

wn

))
. (3.43)

We use this scheme for all of the analyzed models. For those models that do not contain
the variables w or q, we simply ignore (3.39) or (3.42) and the respective parts of the
vectors in (3.37), (3.40), and (3.43). The operator K in (3.37) is defined in Table 3.1
for the single models. The corresponding adjoint operator K∗ in (3.40) is given in
Section 3.5.1. For the resolvent operators in (3.38), (3.39), (3.41), and (3.42), we replace
the equations by the particular results of Section 3.5.3.

3.7.2 Initialization and Stopping Criterion

For the initialization we set

v = v̄ = w = w̄ = p = q = 0.

Additionally, we set Θ = 1 and τ = σ = 1√
8
. In Chambolle (2004) it was shown that

this choice for τ and σ fulfills the condition for convergence, which we mentioned in
Remark 2.12.

For the stopping criterion we use the primal-dual residual proposed in Goldstein et al.
(2013). For models with standard regularizers the primal residual P̃ and dual residual
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D̃ are given by

P̃n+1(v, p) :=
1

τn
(vk − vn+1)−K∗(pn − pn+1),

D̃n+1(v, p) :=
1

σn

(pk − pn+1)−K∗(vn − vn+1).

In Goldstein et al. (2013) it is shown that the algorithm converges, if

lim
n→∞

‖Pn‖2 + ‖Dn‖2 = 0.

Since we want to use the same stopping criterion for both standard and extended
regularizers, we need to extend the residuals and obtain:

Pn+1(v, w, p, q) =:=
1

τn

(
vn − vn+1

wn − wn+1

)
−K∗

(
pn − pn+1

qn − qn+1

)
,

Dn+1(v, w, p, q) =:=
1

σn

(
pn − pn+1

qn − qn+1

)
−K∗

(
vn − vn+1

wn − wn+1

)
.

We stop the iterations if the error

εn :=
|Pn|+ |Dn|

|Ω| (3.44)

is below a threshold, which we denote by ζ. The expression | · | indicates the sum of
absolute values. The normalization with the division by |Ω| yields that the stopping
criterion is independent of the size of the image domain Ω.

3.7.3 Error Measures

In order to be able to compare the performances of the different models in terms of
numbers, we introduce two of the most common used error measures for optical flow, the
absolute endpoint error (AEE) and the angular error (AE). These errors are amongst
others the basis for the evaluation in the Middlebury database (Middlebury (2016)),
which is one of the most popular databases for motion estimation models, cf. Baker

et al. (2011). The AEE was first introduced in Otte and Nagel (1994). As the
name implies, it measures the absolute difference between two flow fields, which are
usually the calculated flow field (v1, v2) and the ground truth flow (v1GT , v

2
GT ). For nPx



3.8 Synthetic Results 87

identifying the number of pixels in a single image frame, the AEE is defined as

AEE :=
1

nPx

nPx∑
i=1

√
(v1(i)− v1GT (i))

2 + (v2(i)− v2GT (i))
2.

The AE was originally introduced in Fleet and Jepson (1990) and became popular
through the survey in Barron et al. (1994). The idea is to measure the angles between
two normalized velocity fields (v̂1, v̂2) and (v̂1GT , v̂

2
GT ). Since in case of zero motion the

normalization would include a division by zero, the velocity fields are projected into the
three-dimensional space, i.e.

v̂ :=
(v1, v2, 1)√‖v‖2 + 1

, v̂GT :=
(v1GT , v

2
GT , 1)√‖vGT‖2 + 1

.

The angles between these normalized velocity fields are measured as

AE :=
1

nPx

nPx∑
i=1

arccos(v̂(i) · v̂GT (i)).

3.8 Synthetic Results

The intention of the previously described optical flow models is to enable a real data
application. Nevertheless, we need synthetic data sets to be able to test the models
and to analyze their behavior based on error measures. We use the realistic data sets
from the Middlebury database (Middlebury (2016)) as test data, since they combine
a huge range of different characteristics. The names of the data sets we use are Rubber
Whale, Hydrangea, and Dimetredon. All of them show different objects that are rotated
and shifted between the frame. A rotation usually results in a smooth transition in the
velocity field, whereas a shifting results in a piece wise constant movement. Thus, these
data sets combine two of the most challenging characteristics. Noise is not included in
any of the data sets.

3.8.1 Comparison of Data Fidelities

We start the evaluation of the different data fidelities by comparing only the linearized
data fidelities DLin1 and DLin2, which we introduced in Section 3.2.1. We combine both
of them with the standard regularizers RL2 and RTV (see Section 3.3.1). The original
data sets from the Middlebury data base contain movement, which is larger than a
single pixel. However, we already discussed that the linearized optical flow constraints
are not reliable for large scale movement. This is why we downscaled the movement of
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Figure 3.4: Comparison between the different data fidelities for the downscaled data
sets Rubber Whale (left), Hydrangea (middle), and Dimetredon (right). Top to bottom:
ground-truth, L1-TV linear, L1-L2 linear, L2-TV linear, L2-L2 linear.
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Rubber Whale Hydrangea Dimetredon
AEE AE AEE AE AEE AE

L1-TV 0.0295 0.0272 0.0342 0.0532 0.0392 0.0523
L1-L2 0.0368 0.0319 0.0345 0.0537 0.0369 0.0504
L2-TV 0.0188 0.0201 0.0299 0.0509 0.0402 0.0530
L2-L2 0.0262 0.0248 0.0333 0.0530 0.0404 0.0528

Table 3.4: Absolute endpoint error (AEE) and angular error (AE) for results from
Figure 3.4.

linear nonlinear
AEE AE AEE AE

L1-TV 0.2219 0.0791 0.0715 0.0346
L1-L2 0.2313 0.0857 0.0921 0.0430
L2-TV 0.2263 0.0817 0.0637 0.0319
L2-L2 0.2303 0.0860 0.0836 0.0400

Table 3.5: Absolute endpoint error (AEE) and angular error (AE) for results from
Figure 3.5.

the used data sets to a maximum of one single for this approach. Hence, the direction
of movement is still the same as in the original data sets. Figure 3.4 shows the results
of this comparison, as well as the ground truth velocity fields. Table 3.4 contains the
particular error measures AEE and AE. The results show that the choice of the data
fidelity is strongly dependent on the specific data set. Since the images do not contain
any noise, the only criterion for the performance of the models is the movement itself. In
the results it can be seen that the L1 data fidelities have more problems with recognizing
motion of a constant object, as it occurs with the red box in the lower right corner
of the Rubber Whale data sets. Here, the L1 data fidelity detects movement only at
the outer edges of the object, whereas the L2 data fidelity recognizes a movement of
the whole object. Regarding the measured errors in Table 3.4 it becomes obvious that
the performance of the models is also strongly dependent on the combination with the
regularization. With some data sets a combination with a specific regularizer works
better than with another one. We will further evaluate the influence of the regularizers
in Section 3.8.2. Altogether, it is not possible to point out a single data fidelity that
works best for all data sets.

We continue by comparing the linearized with the nonlinear optical flow constraints. For
this purpose, we use the Rubber Whale data set, which we also used for the previous
approach. However, in contrast to the downscaled movements in the previous setting,
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Figure 3.5: Comparison between the linearized and the nonlinear optical flow constraint
for the Rubber Whale data set. Left: linearized data fidelities, right: nonlinear data
fidelities. From top to bottom: L1-TV , L1-L2, L2-TV , L2-L2.
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we use the original large scale movements for this comparison. For the evaluation we
use the L1-TV model, the L1-L2 model, the L2-TV model and the L2-L2 model each in
the linearized and in the nonlinear version. The resulting velocity fields can be found
in Figure 3.5. A comparison of the visual results already reveals the main drawback
of the linearized model. In areas with fast movement, like in the violet part in the
center of the images, all of the linearized models show linear fragments, where there
should actually be smooth or even constant movement. The nonlinear models solve this
clearly better. None of them shows such characteristic fragments in the center area.
However, smaller fragments are visible in the results of nonlinear models e.g. in the area
of the rotating disk, especially for those models with an L2 data fidelity. The particular
error measures AEE and AE are summarized in Table 3.5. Here the difference between
the linearized and the nonlinear models become even more obvious. Comparing both
versions of each model shows that both measured errors are more than double the size
for the linearized models than for the nonlinear models. Also the order in terms of best
performance is different for both types of models, even though all approaches are based
on the same data set. Regarding only the linearized models, the L2-TV model works
clearly better than the other ones. Concerning the nonlinear models, the L2-TV model
yields the best results. Altogether, the idea of not linearizing the optical flow constraint
seems to work out well at least for the chosen data set.

3.8.2 Comparison of Regularizers

To test the performance of the different regularizers, we only use the nonlinear optical
flow constraints DNL that we derived in Section 3.2.2, to be able to produce reliable
results for large scale motion. We use the original large scale variant of the Rubber
Whale and the Hydrangea data set that we already used in the previous section. The
results are shown in Figure 3.6 and the corresponding error measures are stated in
Table 3.6. For these data sets both the visual appearance as well as the resulting errors
are by far the worst for the squared L2 norm used as regularization. Especially for
the actually constant background of the Hydrangea data set, this regularizer is not
able to produce suitable results. The TV and the TV/L2 regularization for this data
set are considerably superior to the squared L2 norm, and nearly identical to each
other. Regarding the errors, the TV model performs slightly better. The result for
the TV/TV model for this data set appears similar to the other TV -based regularizers.
Nevertheless, the errors are a little worse. The reason for this is that the Hydrangea
data set does not really have smooth parts. It consists of lots of very fine structures,
which can be recognized as smooth parts by the extended regularizers. The pure TV

model also produces edges in regions where the structures are so fine that the other
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Figure 3.6: Comparison between the different regularizers for the Rubber Whale data
set (left) and the Hydrangea data set (right). From top to bottom: L1-L2, L1-TV ,
L1-TV/L2, L1-TV/TV .
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Rubber Whale Hydrangea
AEE AE AEE AE

L1-L2 0.0921 0.0430 0.1228 0.0473
L1-TV 0.0715 0.0346 0.0878 0.0443
L1-TV /L2 0.0660 0.0322 0.0881 0.0444
L1-TV /TV 0.0664 0.0327 0.0955 0.0453

Table 3.6: Absolute endpoint error (AEE) and angular error (AE) for results from
Figure 3.6.

models calculate them as smooth areas. This is a specific advantage in connection with
the Hydrangea data set. For the Rubber Whale data set, the TV/L2 and the TV/TV
model yields almost identical results, which are clearly better than the L2 and the
TV results. Both nicely produce the smooth transitions without any staircasing effect.
This becomes obvious especially in the area of the rotating disk, where the flow field
is very smooth. Nevertheless, they also depict perfectly sharp edges. The only part,
which both of them are not able to recover reasonably, is the inner part of the letter
e. Analyzing the error measures it turns out that the result of the TV/L2 regularizer
is even slightly better than of the TV/TV regularizer. However, the differences are
insignificant. In general, the results reveal that the extended regularizers outperform
the standard regularizers if they are applied to data sets that actually feature both
smooth parts and sharp edges.

3.8.3 Influence of Bregman Iterations

In this section we show the influence of the Bregman iterations for the L2-TV optical
flow models. We analyze the linear, as well as the nonlinear variant. One of the
advantages of Bregman iterations is that the result is not as strongly dependent on the
regularization parameter as for models without Bregman iterations. The parameter
has more the effect of a step size. The larger the regularization parameter is, the more
Bregman iterations are required to achieve the best result. Hence, it is adequate to
simply choose a fixed parameter and calculate as many Bregman iterations as necessary.
Since during the Bregman iterations the contrast and thus also the structures are
enhanced, the regularization parameter has to be chosen considerably smaller than for
calculations without Bregman iterations. This means that the result is calculated too
smooth in the beginning, which is however balanced during the iterations.

Figure 3.7 shows the results for 1, ..., 10 Bregman iterations of the linearized L2-TV
optical flow model for the Rubber Whale data set. We previously verified that the
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Figure 3.7: Results of the linearized L2-TV model with Bregman iterations. From top
left to bottom right: result after 1, ..., 10 Bregman iterations.
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Figure 3.8: Results of the nonlinear L2-TV model with Bregman iterations. From top
left to bottom right: result after 1, ..., 10 Bregman iterations.
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linear nonlinear
#Breg. AEE AE AEE AE

1 0.0257 0.0246 0.0807 0.0367
2 0.0219 0.0220 0.0625 0.0313
3 0.0215 0.0217 0.0617 0.0309
4 0.0215 0.0217 0.0682 0.0313
5 0.0216 0.0217 9.1888 0.0326
6 0.0219 0.0219 20.9818 0.0342
7 0.0225 0.0222 171.2795 0.0366
8 0.0233 0.0227 442.8644 0.0427
9 0.0240 0.0232 506.1272 0.0452
10 0.0247 0.0236 512.7571 0.0904

Table 3.7: Absolute endpoint error (AEE) and angular error (AE) for results from
Figure 3.7 and Figure 3.8.

linearized data fidelities are not able to produce accurate results for large scale motion.
For this reason, we choose the downscaled data set with the small motion for this
approach. The first iteration of the results is very smooth due to the choice of the
regularization parameter. With every iteration step, the smaller structures become
more and more visible. However, after about 6 iterations, there are also false structures
visible, which are not existent in the ground truth flow field. These structures are even
more enhanced with the following iterations. They are especially visible in the areas
where there should actually be smooth transitions. The particular errors, which are
stated in Table 3.7 document this effect. The best results are achieved for three and
four Bregman iterations. With more iterations the errors become larger. This shows
that it is necessary to stop the calculations after a distinct amount of iterations in order
to achieve accurate results. For synthetic data sets with ground truth flow field, the
most convenient way is to simply stop after the errors start to increase.

The results for the nonlinear L2-TV model are presented in Figure 3.8. Again, we show
the flow fields after 1, ..., 10 Bregman iterations for the Rubber Whale data set. Though,
in this case we use the original large scale variant of the data set, in order to deal with
a more realistic setting for the nonlinear model. Similar to the linearized variant, the
result after the first Bregman iteration is very smooth as a consequence of the chosen
regularization parameter. In the subsequent iterations the structures of the flow field
become more obvious. After five or more Bregman iterations, the flow exhibits false
artifacts. These occur as strong movements that point in completely false directions.
The relation of these areas is slowly growing with the number of Bregman iterations.
After nine iterations, the general scenery is still well recognizable. However, after ten
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iterations the intensity of the false artifacts is extremely large, so that the scenery
vanishes due to the scaling. Regarding the errors in Table 3.7, the best result is achieved
after 3 Bregman iterations. After four iterations the errors are still relatively small.
From the fifth iteration on, where also the first artifacts appear, the errors start to grow
very fast. Consequently, for the nonlinear optical flow model with Bregman iterations
it is even more important than for the linearized variant to stop the calculations at a
certain point. Cf. Burger et al. (2007b) for a detailed analysis of the convergence of
Bregman iterations.
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4
INDIRECT TRACKING

This chapter combines the previously introduced optical flow model with reconstruction
tasks. We develop a model that reconstructs images at different time steps and simulta-
neously estimates the flow in between. An application for the derived model can be
found in Chapter 6.

In the beginning of this chapter we give a short introduction to the general topic
of indirect tracking and review possibilities for its numerical solution. Section 4.2 is
devoted to reconstruction, which is necessary for the tracking. We especially focus on
time-dependent reconstruction tasks. After introducing a time-dependent reconstruction
operator, we list some examples for different types of time dependency. Subsequently,
we present a very general model for indirect tracking, as well as four specific models. We
also prove the existence of solutions for two of the specific models. In the final section
we propose a computational approach for these models. We suggest an alternating
minimization approach and explain the detailed implementation of the two subproblems,
which handle the reconstruction and the motion estimation part. Since the model

4.1 Introduction

The motion estimation models we introduced in the previous chapter are all based on
the assumption that the images at all time steps are directly available. The images
and their corresponding intensities are the foundation for the derived optical flow
constraints. However, in many image processing applications the available data are not
yet perfect images. Hence, before being able to estimate motion, the images have to be
reconstructed. In medical applications this the case for e.g. X-ray tomography, magnetic
resonance imaging (MRI), positron emission tomography (PET) and many more. In
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some cases the images are basically available, but they are either noisy, which is actually
the case in most real data applications, or certain parts are missing completely. All
those examples have in common that motion estimation based on the raw data does
not lead to proper results, or is not possible at all.

Probably the most intuitive way to overcome this problem is to first reconstruct the
images at every time step by applying e.g. Radon transform inversion, denoising, or
inpainting algorithms, and afterwards estimating the motion based on the results. This
way the reconstruction is used to obtain a proper velocity field. However, this procedure
completely neglects the aspect that the velocity field might also help to improve the
reconstruction, which is of great importance for the motion estimation. A more ad-
vanced method to obtain proper data for estimating motion is to use a single model for
reconstruction and motion estimation. Recent results show that an indirect model can
clearly enhance both the reconstruction and the estimated motion, see Dirks (2015)
and Suhr (2015). The idea behind this kind of models is to alternately reconstruct
the images and estimate the motion. In each of these steps, the information of the
result of the previous step is included. This way the velocity field helps to improve the
reconstruction, and the reconstruction helps to improve the velocity field. For such
cases where the velocity field only serves as a supporting factor for the reconstruction,
these models show great success (see Burger et al. (2016a)).

However, all of these models are based on the assumption that it is possible to re-
construct single images at every time step without relying on the data that belongs
to the remaining time steps. This is e.g. the case for denoising of microscopy data.
Here, every time step can be reconstructed separately. Even though the velocity field is
considered as a priori information, the reconstruction itself remains independent of the
time. Nevertheless, there are some reconstruction tasks where we have to deal with the
problem that the temporal aspect is not only supporting, but absolutely mandatory.
Considering e.g. continuous movement during a PET or single-photon emission com-
puted tomography (SPECT) scan, a separate reconstruction will not result in adequate
images for single time steps. Usually, the previously mentioned scanning methods rely
on a certain amount of data, which is necessary for a proper reconstruction. This can
only be collected over a distinct period of time. Regarding only the information that
exists for a single time step is simply not sufficient. As soon as movement comes into
play, the linkage between the information gained at different time steps becomes a
challenging task.

The main goal of this chapter is to introduce and to analyze an indirect model for
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motion estimation and time-dependent image reconstruction. For this purpose, we build
on the models of Dirks (2015) and Suhr (2015) and adapt them to a time-dependent
reconstruction setting. The combination with flow estimation is supposed to serve as
the missing link between the different time steps and thus allows a reconstruction that
would not have been possible on its own.

4.2 Time-Dependent Reconstruction

In this section we focus on the reconstruction, which serves as a basis for indirect
tracking. We concentrate on time-dependent types of reconstructions, since in these
cases the interaction between tracking and reconstruction is of particular importance.

4.2.1 Time-Dependent Reconstruction Operator

Concerning the mathematical model, the main difference between the cases where a
reconstruction relies only on a single time step and those where it relies on multiple
time steps is in the reconstruction operator, which we denote by H. The exact form
of H depends on the type of reconstruction, i.e. whether it is supposed to denoise
an image, to inpaint it, or to reconstruct it from e.g. tomography data. In order to
reconstruct the unknown image u, with u : Ω× [0, T ] → R+, it is necessary to solve the
inverse problem

Hu = f, (4.1)

where f is the given measured data. If the reconstruction is only dependent on a single
time step, the operator H is time-independent. If on the other hand information of
several time steps is required, H is dependent on time, i.e. we have to deal with a
nonlinear operator of the type H(t) with t ∈ [0, T ]. Consequently, instead of (4.1) the
inverse problem we have to solve is

H(t)u(·, t) = f(·, t). (4.2)

Only as long as there is no motion in the measured data, the time-dependency can
obviously be neglected. This is the reason why reconstruction based on static measure-
ments is considerably less challenging compared to reconstruction based on dynamic
measurements. Without further a priori knowledge, it is typically not possible to connect
the information measured at different time steps in a useful way. It is however necessary
if the reconstruction of an image at a certain time step requires the information of the
remaining measurements.
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In general, the reconstruction operator can be modeled to map onto arbitrary Hilbert
spaces Y (t) for each time step, i.e.

H(t) : Lp(Ω) → Y (t),

with p ∈ {1, 2}. Only in case that all measurements are available at each time step, this
mapping can be linear. The general data fidelity, which approximates the solution of
the inverse problem (4.2), is given by

D(u, f) =

∫ T

0

‖H(t)u(·, t)− f(t)‖pY (t) dt,

with u ∈ Lp([0, T ];L2).

4.2.2 Examples for Time-Dependency

This section gives different examples for applications with required time-dependent
reconstruction.

• A first example for time-dependency is a given measurement, where some of the
time steps are missing. In this case the reconstruction operator is of the form

H(t) =

⎧⎨⎩I, for measured time steps

0, for missing time steps
,

where I is an operator, which is only applied to the data of the actually measured
time steps, e.g. the identity. Thus, H defines an operator on the complete set of
time-steps even though some of them are not available.

• Similar to the missing time steps in the first example, time-dependent reconstruc-
tion can also be used for super-resolution in time. In the same way as above,
several time steps can be added to the ones that are already given. For the
reconstruction operator, this means

H(t) =

⎧⎨⎩S, for given time steps

0, for additional time steps
,

where S denotes a reconstruction operator, which is applied to the given measure-
ments. This proceeding acts like a reduction of the intervals between the time
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steps. Usually, this goes along with a reduced velocity of the measured object and
can therefore improve the motion estimation result.

• A third example is given by measurements, where the values of some pixels are
false or missing in certain time steps. Then for a single time step the image
domain is only a subset of the complete domain Ω, i.e. Ω(t) ⊂ Ω. Consequently,
the Hilbert space is given by

Y (t) = L2(Ω(t)).

The reconstruction can therefore be identified with an inpainting operator that
fills in values at the missing pixels.

• A stronger variant of the idea of the previous example is given in compressed
sensing. In this application the goal is to reconstruct data based on only a sparse
series of sample measurements. During this process the amount of pixels is being
drastically reduced in a random manner in every step. Again, for the given Hilbert
space it holds

Y (t) = L2(Ω(t)),

where Ω(t) ⊂⊂ Ω is a random subset.

4.3 Models for Indirect Tracking

Since we intend to combine two different imaging tasks, the indirect model contains
two data fidelities Drec(u, f) and Dmot(u,v). The first one handles the reconstruction,
and the second one handles the motion estimation. We already discussed in Chapter 3
that motion estimation is an ill-posed problem, which is why we add a regularizer
Rv(v) for the velocity field. The same is true for a wide range of reconstruction tasks.
Consequently, we complement the model with a regularizer Ru(u) for the image intensity.
Altogether, we want to solve the following variational model:

Model 4.1. (General Model for Indirect Tracking)

min
u,v

Drec(u, f) + αRu(u) + βRv(v) + γDmot(u,v).

The parameters α, β and γ serve as weighting parameters between the different terms.
Since there are different options for every single term of this model, there is consequently
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a wide range of possible combinations. For the sake of simplicity we restrict ourselves
to a more specific model for the following discussion.

4.3.1 Specific Models

The first data fidelity Drec(u, f) of Model 4.1 is supposed to solve the reconstruction
problem (4.2), which is why we want to minimize Hu−f , equipped with an appropriate
norm. There are various possibilities for the choice of the norm. The suitability strongly
depends on the type of noise in the data (see Section 3.2.1). For the sake of simplicity
we restrict ourselves to two different cases, which are the L1 norm and the squared L2

norm. For the first case we set

DL1

rec(u, f) =

∫ T

0

‖H(t)u(·, t)− f(·, t)‖1 dt,

and for the second case

DL2

rec(u, f) =

∫ T

0

1

2
‖H(t)u(·, t)− f(·, t)‖22 dt.

The additional data fidelity Dmot(u,v) calculates the velocity field. Therefore, we use
an optical flow constraint for this term. In principle, each of the data fidelities that we
derived in Section 3.2 would be a suitable choice. However, for the norm of this data
fidelity we restrict ourselves to L1, since in many cases it produces better results than
the squared L2 norm. Concerning the linearity, we consider both the linearized and the
nonlinear variants. In the notation of Section 3.2.2 we are dealing with two consecutive
image frames u0 and u1. In this case the frame u0 is equivalent to the frame u in this
section. For this reason, we proceed writing u instead of u0. Thus, our suggestions for
Dmot(u,v) are

DLin
mot(u,v) = ‖v · ∇u+ ∂tu‖1,

and

DNL
mot(u,v) = ‖u1 − u(v)‖1.

Concerning the regularizer Rv(v) for the velocity field, again all of the alternatives that
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we introduced in Section 3.3 can be used for the indirect model. For the specific models
that we want to analyze in this chapter, we use the TV norm, since it is appropriate
for many different applications:

Rv(v) = ‖∇v‖1.

Concerning the choice of the regularizer Ru(u), there is also a wide range of possibilities.
Most issues that we discussed for the regularizer for a velocity field v are easily
transferable to the regularization of the image intensity u. For the same reason as above,
we focus on the TV norm and set

Ru(u) = ‖∇u‖1.

Inserting DL1

rec for the reconstruction as well as DLin
mot for the motion estimation into

(3.3), we end up with the first specified model:

Model 4.2. (Linear L1-TV -TV -L1 Model)

argmin
u,v

∫ T

0

‖H(t)u(·, t)− f(·, t)‖1 + α‖∇u(·, t)‖1 + β‖∇v(·, t)‖1

+ γ‖v(·, t) · ∇u(·, t) + ∂tu(·, t)‖1 dt

Using DL2

rec instead of DL1

rec, we obtain the second specified model:

Model 4.3. (Linear L2-TV -TV -L1 Model)

argmin
u,v

∫ T

0

1

2
‖H(t)u(·, t)− f(·, t)‖22 + α‖∇u(·, t)‖1 + β‖∇v(·, t)‖1

+ γ‖v(·, t) · ∇u(·, t) + ∂tu(·, t)‖1 dt

For DL1

rec in combination with with the nonlinear optical flow constraint DNL
mot we achieve

Model 4.4. (Nonlinear L1-TV -TV -L1 Model)

argmin
u,u1,v

∫ T

0

‖H(t)u(·, t)− f(·, t)‖1 + α‖∇u(·, t)‖1 + β‖∇v(·, t)‖1

+ γ‖u1 − u (v(·, t), t) ‖1 dt

For the last specified model we combine DL2

rec with DNL
mot:
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Model 4.5. (Nonlinear L2-TV -TV -L1 Model)

argmin
u,u1,v

∫ T

0

1

2
‖H(t)u(·, t)− f(·, t)‖22 + α‖∇u(·, t)‖1 + β‖∇v(·, t)‖1

+ γ‖u1 − u (v(·, t), t) ‖1 dt

In both of the nonlinear models the variable u1 is independent of t.

4.3.2 Existence of Minimizers

For the existence analysis we reformulate the previously defined models. We extract
the optical flow constraint and use it as a hard constraint for the remaining functional.
Unfortunately, we are not able to prove the existence of minimizers for the variants with
nonlinear optical flow constraint, at least for the L1 case. Therefore, we only regard the
linearized versions in this section. Hence, for Model 4.2 we obtain the main functional

J1(u,v) =

∫ T

0

‖H(t)u(·, t)− f(·, t)‖1 + α|u(·, t)|pBV + β|v(·, t)|qBV dt, (4.3)

with 1 < p, q ∈ R. Analogously, for Model 4.3 we achieve

J2(u,v) =

∫ T

0

1

2
‖H(t)u(·, t)− f(·, t)‖22 + α|u(·, t)|pBV + β|v(·, t)|qBV dt. (4.4)

We assume the functionals to be smaller or equal to a constant c. In both cases the
constraint is given by

‖r‖M(Ω×[0,T ]) ≤ R(c), with r(·, t) := v(·, t) · ∇u(·, t) + ∂tu(·, t)

and M being a Radon measure. For R(c) = 0, the constraint indicates v ·∇u+∂tu = 0.

To show the existence of solutions we use the fundamental theorem of optimization
(Theorem 2.1), i.e. we need to show

• coercivity of the functionals J1(u,v) and J2(u,v),

• lower semi-continuity of the functionals J1(u,v) and J2(u,v),

• closedness of the constraint vn · ∇un + ∂tun → v · ∇u + ∂tu for un → u and
vn → v in suitable spaces.

The constraint Dmot(un,vn) is independent of the main functionals J1(u,v) and J2(u,v),
and can therefore be treated for both functionals simultaneously. For the remainder
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of this section we assume that H : L1(Ω × [0, T ]) → L1(Ω × [0, T ]) is a continuous
operator.

In order to prove coercivity for the functional J1(u,v), we define the subspace BV0 as
follows:

BV0 =

{
u ∈ BV (Ω)

∣∣ ∫
Ω

u dx = 0

}
.

With this definition we are able to split every u ∈ BV (Ω) into its mean value and a
part in BV0(Ω), i.e.

u = ū+ u0, ∀u ∈ BV (Ω),

with ū being the mean value of u, and u0 ∈ BV0(Ω). Since we want to use the theorem
of Banach-Alaoglu (Theorem 2.2) to prove the coercivity, we need to define a space
whose dual is given by BV0(Ω). We stick to the proceeding in Burger and Osher

(2013) and define the normed space

Z0 =
{∇ · g∣∣g ∈ C∞0 (Ω;Rd)

}
,

with the norm

‖p‖Z = inf
g∈C∞

0 ,∇·g=p
‖g‖L∞ .

With this definition BV0(Ω) is the dual of

Z := Z̄0.

Furthermore, TV is an equivalent norm on BV0(Ω) (see Burger and Osher (2013),
Lemma 3.5).

We additionally define a space X that combines the required spaces for u and v:

X := {(u,v) ∈ Lp([0, T ], BV (Ω))× Lq([0, T ], BV (Ω))}

with 1 < p, q ∈ R. To state necessary conditions for u and v, we define a set on X as
follows:

D :=
{
(u,v) ∈ X ∣∣‖v‖∞ ≤ cv, ‖∇ · v‖r ≤ cg

}
,
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with r ≤ q. Finally, we are able to show the coervivity of J1(u,v):

Lemma 4.1. (Coercivity of J1(u,v))
Let 1 < p, q ∈ R, u ∈ Lp([0, T ];BV (Ω)) and v ∈ Lq([0, T ];BV (Ω)). For (u,v) in the
set

S(c) = {(u,v) ∈ D∣∣J1(u,v) ≤ c, v · ∇u+ ∂tu = 0
}
,

it holds

‖u‖Lp([0,T ];BV (Ω)) ≤ c, and ‖v‖Lq([0,T ];BV (Ω)) ≤ c.

Then, S(c) is non-empty and compact in the weak* topology.

Proof. With the definition of the subspace BV0, we split the functional J1(u,v) into

J1(u,v) =J1(ū+ u0,v)

≤
∫ T

0

‖H(ū+ u0)− f‖1 + α
(|ū(·, t)|pBV + |u0(·, t)|pBV0

)
+ β

(|v̄(·, t)|qBV + |v0(·, t)|qBV0

)
dt.

With the previous definition of the Banach space Z, we can directly achieve bounds
cu ≥ |u0(·, t)|pBV0

and cv ≥ |v0(·, t)|pBV0
. Additionally, it is clear that

|ū(·, t)|pBV = |v̄(·, t)|qBV = 0

and thus these terms are also bounded. We furthermore split the operator H into a
part H̄ : Lp([0, T ]) → Ω, which is applied to ū, and a part H0 : L

p([0, T ];BV0) → Ω,
which is applied to u0. With this formulation we obtain

‖H(ū+ u0)− f‖1 = ‖H̄ū+H0u0 − f‖1.

Due to the positivity of the single terms and the bound c on the functional J1(u,v), we
know that ‖H̄ū+H0u0 − f‖1 is also smaller or equal to c. With a triangle inequality
we achieve

c ≥ ‖H̄ū+H0u0 − f‖1
≥ ‖H̄ū‖1 − ‖H0u0‖1 − ‖f‖1.
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Solving the inequality with respect to ‖H̄ū‖1 yields

‖H̄ū‖1 ≤ c+ ‖H0u0‖1 + ‖f‖1.

This gives us a bound c̄ ≥ ‖ū‖1. For p ≥ 2 we would also achieve a bound for ‖H̄ū‖pp.
However, since H̄ : R → R, we do not obtain boundedness in L1(Ω). Hence, we have to
access characteristics of the constraint

‖r‖M(Ω×[0,T ]) ≤ R(c),

to obtain boundedness for ‖H̄ū‖1. With the triangle inequality it holds

‖∂tu‖M(Ω×[0,T ]) ≤
∫ T

0

∫
Ω

|v · ∇u|1 dx dt+
∫ T

0

∫
Ω

|r|1 dx dt.

Application of the splitting of u into u0 and ū yields∫ T

0

∫
Ω

|∂tu0| dx dt+
∫ T

0

∫
Ω

|∂tū| dx dt ≤
∫ T

0

∫
Ω

|v · ∇u0| dx dt

−
∫ T

0

∫
Ω

|v · ∇ū| dx dt+
∫ T

0

‖r‖1 dt.

With the definition of the space BV0, the first term on the left-hand side is equal to
zero. The same applies for the second term on the right-hand side due to the gradient
applied to a constant. Since |∂tū| is also constant in space, the integration for this term
can be neglected. Hence, it remains∫ T

0

|∂tū| dt ≤
∫ T

0

∫
Ω

|v · ∇u0| dx dt+
∫ T

0

‖r‖1 dt.

We use the Hölder inequality to obtain∫ T

0

|∂tū| dt ≤
∫ T

0

‖v‖∞‖∇u0‖1 dt+
∫ T

0

‖r‖1 dt.

Exploitation of the bound for ‖v‖∞ achieves∫ T

0

|∂tū| dt ≤ cTg ‖u0‖BV +

∫ T

0

‖r‖1 dt.

Consequently, |∂tū| is bounded due to the already investigated bound of ‖u0‖BV and
the constraint

∫ T

0
‖r‖1 dt ≤ R(c). We proceed by showing that this bound also induces
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a bound for ū. For every s ∈ Ω we write

ū(t) = ū(s) +

∫ t

0

∂tū(τ) dτ

=
1

T

∫ T

0

ū(s) ds+

∫ T

0

∫ t

0

∂tū(τ) dτ ds.

Using the absolute value we end up with the L1 norm on the right-hand side:

‖ū‖∞ ≤ 1

T
‖ū‖1 + ĉ‖∂tū‖M(Ω×[0,T ]),

where ĉ is a positive constant. With the bounds c̄ ≥ ‖ū‖1 and c̃ ≥ ‖∂tū‖1 we also obtain
a bound

C ≥ ‖ū‖∞, with C ≥ c̄

T
+ ĉ+ c̃.

Due to the continuity of the operator H̄, this gives us boundedness of ‖H̄ū‖1. Finally,
every single term is bounded in L1(Ω) and hence the set S(c) is compact.

Lemma 4.2. (Lower Semi-Continuity of J1(u,v))
The functional J1(u,v) as defined in (4.3) is weak* lower semi-continuous in D ⊂ X .

Proof. We already showed that norms on Banach spaces are weak* lower semi-continuous
(see Lemma 2.1). This statement also holds for affine norms as well as exponentials p > 1.
Furthermore, sums of lower semi-continuous functionals are again lower semi-continuous.
Consequently, since all summands of J1(u,v) are functionals on Banach spaces, we
obtain weak* lower semi-continuity for the complete functional.

It remains to show closedness of the constraint:

Lemma 4.3. (Closedness of the Constraint)
Let (u,v ∈ X ). Furthermore, let ‖v‖∞ ≤ c∞ and ∇·v ∈ Lp∗s([0, T ];L2k(Ω)) for k, s > 1

and p∗ denoting the Hölder conjugate of p. Then the constraint∫ T

0

‖r(·, t)‖M(Ω×[0,T ]) dt ≤ R(c),

with r(·, t) = v(·, t) · ∇u(·, t) + ∂tu(·, t), is closed.
Proof. For the case R(c) = 0 the convergence of the constraint in a distributional sense
is shown in Burger et al. (2016a), Lemma 3.4. Hence, for R(c) �= 0 we are able to
find weakly convergent subsequences un ∈ Lp([0, T ]; Ω) and vn ∈ Lq([0, T ]; Ω) with

vn · ∇un + ∂tu
n ⇀ v · ∇u+ ∂tu in D(Ω× [0, T ]).
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Furthermore, there exist subsequences unk ∈ Lp([0, T ]; Ω) and vnk ∈ Lq([0, T ]; Ω) with

vnk · ∇unk + ∂tu
nk ⇀∗ w in M(Ω× [0, T ])

for w ∈ M(Ω× [0, T ]). Due to the uniqueness of the limit, it holds w = v ·∇u+∂tu. The
same argument applies for every convergent subsequence inM(Ω×[0, T ]). Consequently,
we achieve the following weak* convergence in M(Ω× [0, T ]):

vn · ∇un + ∂tu
n ⇀∗ v · ∇u+ ∂tu

Since the norm in M(Ω× [0, T ]) is weak* lower semi-continuous, we end up with the
boundedness of the constraint, i.e. ‖r(·, t)‖M(Ω×[0,T ]) ≤ R(c).

Hence, we are able to show the existence of a minimal solution for the reformulated
variant of Model 4.2:

Theorem 4.1. (Existence of Minimizers for the L1-TV -TV -L1 Model)
Let 1 < p, q and

J1(u,v) =

∫ T

0

‖Hu− f‖1 + α|u(·, t)|pBV + β|v(·, t)|qBV dt.

Then, there exists a minimizer in the set

S(c) = {(u,v) ∈ D∣∣J1(u,v) ≤ c, v · ∇u+ ∂tu = 0
}
.

Proof. The functional J1(u,v) fulfills the requirements for the fundamental theorem
of optimization. We obtain coercivity for J1(u,v) from Lemma 4.1. The lower semi-
continuity results from Lemma 4.2. The closedness of the constraints Dmot(un,vn)

follows from Lemma 4.3. Consequently, there exists a minimizer for the reformulation
of Model 4.2.

For the coercivity of J2(u,v), we use Dirks (2015), Lemma 5.3.3.:

Lemma 4.4. (Coercivity of J2(u,v))
For 1 < p, q ∈ R, let u ∈ Lp([0, T ];BV (Ω)), v ∈ Lq([0, T ];BV (Ω)). For (u,v) in the set

S(c) = {(u,v) ∈ D∣∣J2(u,v) ≤ c, v · ∇u+ ∂tu = 0
}
,

it holds

‖u‖Lp̂([0,T ];BV (Ω)) ≤ c, and ‖v‖Lq([0,T ];BV (Ω)) ≤ c,
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whereas p̂ = min{p, 2}. Consequently, S(c) is not empty and compact in the weak*
topology.

A proof can be found in Dirks (2015).

Lemma 4.5. (Lower Semi-Continuity of J2(u,v))
The functional J2(u,v) as defined in (4.4) is weak* lower semi-continuous in D ⊂ X .

Proof. We use the same argumentation as in Lemma 4.2. Since again all summands
of the functional J2(u,v) are functionals on Banach spaces, we obtain weak* lower
semi-continuity for the complete functional.

Finally, we achieve the existence of a minimal solution for the reformulated variant of
Model 4.3:

Theorem 4.2. (Existence of Minimizers for the L2-TV -TV -L1 Model)
Let 1 < p, q, p̂ = min{p, 2} and

J2(u,v) =

∫ T

0

1

2
‖Hu− f‖22 + α|u(·, t)|pBV + β|v(·, t)|qBV dt.

Furthermore, let

‖v‖∞ ≤ cv < ∞ in Ω× [0, T ] and H1t �= 0 ∀t ∈ [0, T ].

Then, there exists a minimizer in the set

S(c) = {(u,v) ∈ D∣∣J2(u,v) ≤ c, v · ∇u+ ∂tu = 0
}
.

Proof. The functional J2(u,v) fulfills the requirements for the fundamental theorem
of optimization. We obtain coercivity for J2(u,v) from Lemma 4.4 and lower semi-
continuity from Lemma 4.5. The lower semi-continuity of the constraint is shown in
Lemma 4.3. Consequently, there exists a minimizer for the reformulation of Model 4.3.

4.4 Numerical Realization

In the course of this section we formulate a minimization algorithm for the previously
described indirect tracking models. This algorithm in mainly based on Dirks (2015).
The discretization of the occurring terms can be handled analog to Section 3.6. We refer
to Dirks (2016b) for further details about the implementation including the choice of
parameters for the models with nonlinear optical flow constraint. In both references an
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indirect model with L2 data fidelity for the reconstruction part is described. However,
the respective implementation of the remaining terms besides the data fidelity for the
reconstruction can be realized equivalently.

To solve the nonlinear optical flow constraint, we use the approximation, which we
already introduced in Section 3.2.2, i.e.

‖u(vn)− u1 + (v − vn)∇u(vn)‖1.

4.4.1 Alternating Minimization

In order to facilitate the numerical implementation of the models for indirect tracking,
we use an alternating approach for the minimization, i.e. we alternately minimize an
equation for the image u and an equation for the velocity field v. For the models with
linearized optical flow constraint the approach reads

un+1 = argmin
u

∫ T

0

1

2
‖Hu− f‖pp + α‖∇u‖1 + γ‖v · ∇u+ ∂tu‖1 dt,

vn+1 = argmin
v=(v1,v2)

∫ T

0

‖v · ∇u+ ∂tu‖1 + β

γ
‖∇v‖1 dt

with p = 1 for Model 4.2 and p = 2 for Model 4.3. For the nonlinear variants we obtain

un+1 = argmin
u,u1

∫ T

0

1

2
‖Hu− f‖pp + α‖∇u‖1

+ γ‖u(vn−1)− u1 + (vn − vn−1)∇u(vn−1)‖1 dt,

vn+1 = argmin
v=(v1,v2)

∫ T

0

‖un+1(vn)− un+1
1 + (v − vn)∇un+1(vn)‖1 + β

γ
‖∇v‖1 dt

with p = 1 for Model 4.4 and p = 2 for Model 4.5.

The equations for u and v can be solved separately with the Chambolle-Pock algorithm
(Definition 2.24). For that purpose, we reformulate the single problems and use the
notation

un+1 = argmin
u

Fu(Kuu) +Gu(u) (4.5)
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for the problem in u, respectively

vn+1 = argmin
v

Fv(Kvv) +Gv(v) (4.6)

for the problem in v. Each problem is separately minimized with the following iteration
scheme:

ỹk+1 = yk + σKx̄k,

yk+1 = argmin
y

{‖y − ỹk+1‖2
2σ

+ F ∗(y)

}
,

x̃k+1 = xk − τK∗yk+1,

xk+1 = argmin
x

{‖x− x̃k+1‖2
2τ

+G(x)

}
,

x̄k+1 = xk+1 + θ
(
xk+1 − xk

)
,

(4.7)

where x corresponds to the particular primal variable u respectively v, and y to the
dual variable.

The algorithms for solving the subproblems for u and v are explained in the proximate
sections. We alternately solve those problems until the difference ε between two
subsequent iterations is smaller than a certain threshold. We calculate ε by

ε =
|un − un+1|+ |vn − vn+1|

2|Ω| ,

where | · | denotes the sum of absolute values.

4.4.2 Subproblem Reconstruction

All terms of the minimization problem with respect to u contain an operator. The
data fidelity contains the reconstruction operator H. The TV regularizer as well as
the optical flow constraint contain the gradient operator ∇. In the linearized case the
optical flow constraint additionally contains a temporal derivative. Consequently, we
assign all of them to Fu and it holds

Gu(u) = 0
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for this subproblem. The operator Ku is a composition of the previously described
operators. For the linearized models this results in

Kuu =

⎛⎜⎝ H

∇
(∂t,∇)

⎞⎟⎠u.

The adjoint operator of Ku applied to the dual variable p is given by

K∗
up = H∗p1 −∇ · p2 − (∂tp3,1 +∇p3,2).

For the nonlinear models, Ku applied to u is defined by

Kuu =

⎛⎜⎝ H

∇
(1,∇)

⎞⎟⎠u.

For the adjoint operator of Ku applied to p this leads to

K∗
up = H∗p1 −∇ · p2 − (p3,1 +∇p3,2).

For both variants the iteration scheme (4.7) reads

p̃k+1 = pk + σuKuū
k, (4.8)

pk+1
1 = argmin

p

{‖p1 − p̃k+1
1 ‖2

2σu

+ F ∗u1(p1)

}
, (4.9)

pk+1
2 = argmin

p

{‖p2 − p̃k+1
2 ‖2

2σu

+ F ∗u2(p2)

}
, (4.10)

pk+1
3 = argmin

p

{‖p3 − p̃k+1
3 ‖2

2σu

+ F ∗u3(p3)

}
, (4.11)

ũk+1 = uk − τuK
∗
up

k+1, (4.12)

uk+1 = argmin
u

{‖u− ũk+1‖2
2τu

}
, (4.13)

ūk+1 = uk+1 + θu
(
uk+1 − uk

)
. (4.14)

The exact form of the resolvent operator in (4.9) depends on the chosen norm for the
data fidelity. For Model 4.2 and Model 4.4 similar calculations as for Lemma 3.18 yield

pk+1
1 =

p̃k+1
1

1 + σu

− σu

1 + σu

f. (4.15)
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For Model 4.3 and Model 4.5 we use Lemma 3.20 to achieve

pk+1
1 = π1(p̃

k+1
1 ) := min

p̃k+1
1

(
1,max

p̃k+1
1

(−1, p̃k+1
1 )

)
. (4.16)

The problem in (4.10) contains the adjoint of a TV norm. We apply Lemma 3.19 and
obtain

pk+1
2 = πα(p̃

k+1
2 ) := min

p̃k+1
2

(
α,max

p̃k+1
2

(−α, p̃k+1
2 )

)
.

For the linearized models the resolvent operator in (4.11) can directly be obtained from
Lemma 3.12, i.e.

pk+1
3 =

p̃3
k+1

σu

+

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− γ

σu
∇u if ρ

(
p̃k+1
3

σu

)
< − γ

σu
(∇u)2

γ
σu
∇u if ρ

(
p̃k+1
3

σu

)
< γ

σu
(∇u)2

−
ρ

(
p̃k+1
3
σu

)

∇u
if |ρ

(
p̃k+1
3

σu

)
| ≤ γ

σu
(∇u)2

,

with ρ(p3) := p3 · ∇u+ ut. For the nonlinear models we define ξ as

ξ = (1,vn − vn−1).

Hence, it is

‖ξ‖2 =
√
1 + (vn − vn−1)2.

Additionally, we define

ρ(p3) = ∇u · p3 − u1.

With this notation the resolvent operator in (4.11) is given by

pk+1
3 =

p̃3
k+1

σu

+

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− γ

σu
ξ if ρ

(
p̃3

k+1

σu

)
< γ

σu
‖ξ‖2

γ
σu
ξ if ρ

(
p̃3

k+1

σu

)
< − γ

σu
‖ξ‖2

−
f

(
p̃3

k+1

σu

)

ξ
if
∣∣∣ρ( p̃3

k+1

σu

)∣∣∣ ≤ γ
σu
‖ξ‖2

.

Due to the missing primal part G, (4.12) and (4.13) can simply be combined as

uk+1 = uk − τuK
∗
up

k+1.
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As a stopping criterion we use the primal-dual error (3.44), which we already introduced
to minimize the models for direct tracking.

4.4.3 Subproblem Motion Estimation

The problem in u is equivalent to the problems studied in Chapter 3. Therefore, we
assign the complete data fidelity to Gv. According to Lemma 3.12, for the linearized
models the resolvent operator for Gv is given by

v = ṽ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u)2

τ∇u if ρ(ṽ) < τ(∇u)2

−ρ(ṽ)
∇u

if |ρ(ṽ)| ≤ τ(∇u)2

, (4.17)

with ρ(v) := v · ∇u+ ut. For the nonlinear models we useLemma 3.13 to achieve

v = ṽ +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−τ∇u if ρ(ṽ) < −τ(∇u (x+ v̂))2

τ∇u if ρ(ṽ) < τ(∇u (x+ v̂))2

− ρ(ṽ)
∇u(x+ṽ)

if |ρ(ṽ )| ≤ τ(∇u(x+ v̂))2

, (4.18)

with ρ(v) := u0(x+ v̂)− u1(x) + (v − ṽ) · ∇u(x+ ṽ).

The TV regularizer is assigned to Fv. According to Lemma 3.19 the adjoint resolvent
operator of Fv is given by

q = πβ
γ
(q̃) := min

q̃

(
β

γ
,max

q̃
(−β

γ
, q̃)

)
.

The operator Kv is given by the gradient ∇. The adjoint operator is hence the negative
divergence −∇·. Consequently, the iteration scheme for solving (4.6) reads

q̃k+1 = qk + σvKvv̄
k,

qk+1 = πβ
γ
(q̃k+1),

ṽk+1 = vk − τvK
∗
vq

k+1,

vk+1 = argmin
v

{‖v − ṽk+1‖2
2τ

+G(x)

}
,

v̄k+1 = vk+1 + θv
(
vk+1 − vk

)
,

where the equation for v is either given by (4.17) or (4.18). Again, we follow the above
described scheme until the primal-dual error (3.44) is below a threshold.
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Altogether, an alternating application of the scheme derived in Section 4.4.2 and the
scheme derived in this section solves the minimization of the indirect tracking model. A
concrete application of this model including numerical results is shown in Chapter 6.
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5
APPLICATION 1: CELL TRACKING

We already analyzed the theoretical details of motion estimation in Chapter 3. In
this chapter we discuss a real biological application for direct tracking, which is the
transmigration of leukocytes. Leukocytes are a special kind of white blood cells. In this
context, transmigration describes the process of cells actively leaving a blood vessel. In
the following, we analyze the motion of the leukocytes during this process. As most
real applications, the analysis of transmigrating leukocytes is attended by some specific
challenges that require special attention. For this exemplary application we describe the
relevance of motion estimation and explain the mathematical tasks that are necessary
in order to obtain reasonable results.

The structure of the chapter is as follows: First, we explain the transmigration process in
detail. Afterwards, we describe the data we use to investigate the transmigration process
and the involved mathematical tasks. In Section 5.2 we explain a registration step,
which we perform to balance global background motion in the data. The procedure of
automatically finding the interesting regions is discussed in Section 5.3. In Section 5.4 we
describe the motion estimation of single leukocytes, which contains shape transformations
as well as intracellular density changes. Finally, we discuss our numerical results of
motion estimation for transmigration of leukocytes.

5.1 Introduction

The process of leukocyte transmigration is highly involved in many autoimmune diseases.
Leukocytes are part of the immune system of the body. Usually, their task is to defeat
infectious diseases. However, if they start to act without control, at some point they
also start to attack healthy cells. Two of the most common illnesses for which this
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Figure 5.1: Different transmigration pathways. The blue cells represent endothelial
cells; the red cells represent leukocytes during a transmigration process. Courtesy of
Vestweber lab, MPI Münster.

occurs are multiple sclerosis and Crohn’s disease. In therapy, it is possible to use
immunosuppressive drugs, which reduce immune system activity. The consequence
is that also real external intruders like viruses or parasites are not, or at least less,
attacked. To develop more selective or more effective methods to help people who suffer
from autoimmune diseases, it is necessary to understand the details about leukocyte
transmigration. However, even if the underlying processes are known, there are still
some aspects that raise questions.

In this chapter we discuss the fact that there are two different pathways taken by the
leukocytes during the transmigration process. Up to now, it is not known why there
are two possibilities, or whether it makes any difference for the leukocytes which one
they use. Our aim is to get closer to answering these questions and thus learn more
about the transmigration process.

5.1.1 Leukocyte Transmigration

Leukocytes are white blood cells that are usually located inside of blood vessels. During
an injury in the body, a different amount of leukocytes moves out of the blood vessel
and towards the damaged tissue and thus cause an inflammation (cf. Ley et al. (2007)).
This process of leaving the blood vessel is called transmigration. The blood vessel itself
is composed of different cell layers. The most inner one is called the endothelium. It
consists of a single layer of endothelial cells that are connected at their cell boundaries.
To leave the blood vessel during the transmigration process, the leukocytes have to cross
the endothelium, which means that they have to find a way through the endothelial cells.

In general, there are two ways of crossing the endothelium. The first one is the
transcellular pathway in which a leukocyte moves directly through an endothelial cell.
For this purpose, it forms a hole into the endothelial cell, which gets closed again after
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the leukocytes has passed. The second one is the paracellular pathway, which means
that the leukocyte moves through the contacts between endothelial cells. It is either
possible that it touches only two endothelial cells during this process, or it can as well
move through a cross connection of three or more endothelial cells. Figure 5.1 shows a
sketch of the two different transmigration pathways. On the left-hand side of the figure,
a leukocyte (red) moves through an endothelial cell (blue) and thus moves transcellular.
On the right-hand side, a leukocyte moves through the contact between endothelial
cells, i.e. paracellular. Up to now there is only little known about the reasons for the
occurrence of the different pathways. It seems that in certain regions of the body the
leukocytes prefer one of them, which however does not mean, that they completely
avoid the other one. It it even possible to block one of the ways, but the leukocytes do
not transmigrate less in these cases. They just use the other transmigration pathway.
For an analysis of the biological details of this topic cf. Vestweber (2007).

5.1.2 Data

The kind of data we want to analyze in this chapter is in vivo data of mice taken with
a fluorescence microscope. It consists of three different channels: A PECAM-1 staining
(red), which shows the endothelial cells, a VE-cadherin-eGFP staining (green), which
shows the contacts between endothelial cells, and a Gr-1 staining (purple), which shows
the leukocytes. The absence of PECAM-1 can be interpreted as possible transmigration
pathway of leukocytes. Such openings occur if a leukocyte crosses the cell layer and
meanwhile pushes the endothelial cells aside. However, in this staining it is not possible
to decide whether the opening is inside a single endothelial cell, which would indicate a
transcellular transmigration, or if it is located between two or more endothelial cells,
which would indicate a paracellular transmigration. For this issue it is helpful to observe
the channel that shows the contacts between the endothelial cells. If a leukocyte is
migrating in a paracellular way, the contact between endothelial cells is interrupted at
a certain point. Figure 5.2 shows close ups of a paracellular and a transcellular event,
which are clearly identifiable by the combination of the PECAM-1 staining showing
the endothelial cells and the VE-cadherin-eGFP staining showing the endothelial cell
contacts. In the left images the gap in the PECAM-1 staining is obviously apart from
every endothelial cell contact, which clearly indicates a transcellular transmigration.
In the right images an endothelial cell contact is clearly interrupted by a gap, which
reveals a paracellular transmigration.

Unfortunately, the staining of the contacts is not necessarily homogeneous even if there
is no migration process at that time. Additionally, a gap in the staining caused by a
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Figure 5.2: Crops of channels visualizing endothelial cells and endothelial cell contacts
with transmigration events. Left: transcellular; right: paracellular, top: without Gr-
1 staining, bottom: including Gr-1 staining. Data courtesy of Vestweber lab, MPI
Münster.

leukocyte can be relatively small. Hence, it is not necessarily clear whether there is in-
deed a gap in the cell contact. In many cases a leukocyte is transmigrating very close to a
cell boundary and pushes the boundary and its staining aside, but nevertheless it moves
through the endothelial cell and not through the contact. Altogether, just considering
the channel that shows the endothelial cell contacts is no sufficient criterion to auto-
matically distinguish the different pathways. A possible solution to gain insight about
the chosen pathway nevertheless, is to focus on the leukocytes themselves. Analyzing
the transformation of their overall shape as well as their intracellular density, can po-
tentially reveal significant differences, which allow to differentiate between the pathways.

While estimating the motion we have to face the fact that the leukocytes are moving
quite fast compared to the temporal resolution of the data. A reason for this is that
the recordings in z-direction are taken one after another. Every single layer takes a
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certain time to be recorded, which depends on the resolution in x-y direction. To record
a full three-dimensional stack, which combines to a single time step, it can take several
minutes. Only if such a stack is complete, the recording for the subsequent time step
can be started. During this time interval, the leukocytes naturally continue moving.
It is possible that they cover distances of around 30 voxels in the x-y plane between
consecutive time steps. There is also a small time difference between the recordings of
the layers of a single time step. This is however usually small enough that it can be
ignored for the later analysis.

The acquired data is three-dimensional with a resolution of 1024 × 350 × 39 voxels
in x-y-z-direction respectively. To be able to analyze the behavior of the leukocytes,
the data is recorded during 75 consecutive time steps. Altogether, including the three
channels, we are dealing with data of the size 1024× 350× 39× 75× 3, which leads to
approximately 3.1× 109 voxels. Figure 5.3 shows a rendering of a three-dimensional
microscopy data set of leukocytes in and around a blood vessel at a certain time step.
A maximum intensity projection (MIP) of this data set can be seen in Figure 5.4.

5.1.3 Mathematical Tasks

Working with the previously described data, we have to deal with various mathematical
challenges. The first difficulty is the fact that the data is taken in vivo. This means
there is not only the local movement of the leukocytes, but also a global movement of
the blood vessel and the whole background. This is e.g. caused by the cardiac activity
or the respiration of the mouse. In order to be able to perform flow analysis, it is
necessary to compensate for this global movement. Another challenge is the fact that it
is not sufficient to analyze the different channels separately. To learn more about the
leukocyte behavior, it is necessary to combine the information of the different channels.
At least until there is more insight into the intracellular behavior, it is not possible to
make assumptions about the pathway of a leukocyte by only regarding the Gr-1 staining.
We need to incorporate its exact position related to the endothelial cell boundaries.
On the other hand, only regarding the endothelial cells would also not be sufficient,
since it is not always possible to decide if a hole in the cell interrupts a cell-cell contact,
or if it is only very close to the boundary. Additionally, we usually have to deal with
several transmigration processes at a time, which are located at different positions. In
some cases there are around 15 events in the regarded part of the blood vessel at the
same time. To better understand the whole process, we need to identify and analyze
all events. Another obvious issue is the size of the data. We need to analyze data sets
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Figure 5.3: Three-dimensional microscopy data of leukocytes in and around a blood
vessel. PECAM-1 staining (red): endothelial cells, VE-cadherin-eGFP staining (green):
contacts between endothelial cells, Gr-1 staining (purple): leukocytes. Data courtesy of
Vestweber lab, MPI Münster.

Figure 5.4: Maximum intensity projection of leukocyte data. PECAM-1 staining (red):
endothelial cells, VE-cadherin-eGFP staining (green): contacts between endothelial
cells, Gr-1 staining (purple): leukocytes. Data courtesy of Vestweber lab, MPI Münster.
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with a size of more than three gigabyte. In order to be able to finish the analysis in a
reasonable time, we have to reduce the amount of data and improve the efficiency of
the used algorithms.

To handle all of the described difficulties, we start the data processing with an initial
registration step. This serves to eliminate the global background motion and the blood
vessel motion. Here, we have to pay attention to the fact that we will later need to
combine the information of the different channels. Hence, we have to apply the exact
same transformation to all of the different channels. Otherwise, the position of the
leukocytes or the gap in the endothelial cell staining cannot be compared to the position
of the cell-cell contacts anymore.

The next step is to find the regions of interest (ROIs) indicating a transmigration event.
A transmigration process can only be located at positions at which there is a gap in the
endothelial cell staining. We segment these gaps, which appear as black regions in the
PECAM-1 staining. Later on, for every time step we will only have to analyze the ROIs
and not the whole data set anymore. During this step we are also able to collect some
useful information about the gaps like size, opening time and eccentricity. Similar to the
gaps, we also segment the leukocytes in the Gr-1 staining. This way it is possible to con-
nect both of the channels and check whether there is actually a leukocyte in the observed
region. If this is not the case, there cannot be an ongoing transmigration event. Other-
wise, observing such a gap with a leukocyte we also check the amount of consecutive time
steps that the leukocyte remains in the gap. The segmentation of the leukocytes is also
useful for a further aspect. With its help we are able to follow the paths of the leukocytes
over a period of time. All of this information can give us hints for the different pathways.

However, there will usually be ROIs for which this kind of information is not sufficient.
This is why we also focus on the leukocytes themselves to check whether we are able
to find any specific differences for the two pathways in the intracellular behavior. We
use the fact that we already know where the interesting regions are. We pick a single
leukocyte that is indeed transmigrating and perform flow estimation. This means we
analyze its respective density transformation. The idea is that we look for characteristic
developments inside of the cell, e.g. a certain density due to a restricted gap size for one
of the pathways. As mentioned before, the leukocytes move relatively fast compared
to the temporal resolution of the data. That means we have to consider algorithms
that handle large scale motion, in order to be able to analyze the local transformations.
Figure 5.5 provides an overview of the workflow in this project.
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Figure 5.5: Workflow of the mathematical tasks.

5.2 Registration

Dealing with in vivo data is generally more challenging than dealing with in vitro, or
even synthetic data. There are some additional aspects that have to be considered in
the data analysis for in vivo data. One of them is that the studied animal is in general
not absolutely immobile. There is at least some movement caused by cardiac and
respiratory motion, also if the animal is narcotized. In contrast to the local movement
of single cells, this kind of motion appears as a global movement of the whole crop in
microscopic images. This is also the case in the blood vessel data sets we use. It can be
observed that the blood vessel is shifted during the regarded time steps. Additionally,
the blood vessel slightly changes its shape due to the blood circulation.

To compensate for this global movement, we register the data before starting to analyze
smaller regions in detail. While doing that, we have to consider that we are dealing with
three different channels. We are especially interested in the position of the leukocytes
and of the gaps in the endothelial cells, both related to the contacts of the endothelial
cells. Simply registering every channel independently of the other ones would most
likely not end up with the exact same transformation for all channels. As a consequence,
the location of a leukocyte could be slightly shifted regarding the position relative to the
endothelial cell boundaries. This would make the whole analysis meaningless. To avoid
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Figure 5.6: MIP of VE-cadherin-eGFP staining that visualizes the contacts between
endothelial cells. Data courtesy of Vestweber lab, MPI Münster.

that we register a single channel, we save the transformation we used for this registration
and also apply it to the other channels. The choice of the first channel to register is
quite important, since not every channel is suited to estimate a proper transformation.
In the channel with Gr-1 staining all of the single cells are moving independently, which
makes it difficult to recover a global movement. The channel with PECAM-1 staining
enables to find a global shifting, however a shape transformation of the endothelial cell
is still difficult to detect, since the single cells are not easily distinguishable from each
other. In contrast to that, the remaining channel with VE-cadherin-eGFP staining,
which visualizes the contacts between the endothelial cells, has all of the missing features
mentioned above. The motion in this channel is mainly caused by the global background
motion. The independent motion of the endothelial cell contacts is very small. Addi-
tionally, the sharp edges in the staining allow for a simple recognition of exact positions
in different time steps. Hence, it is possible to recover the global shifting, as well as
the shape transformation of the endothelial cell. Thus, we use this one to correct all
acquired data for the inherent background motion. Figure 5.6 shows the selected channel.

5.3 ROI Detection

Before starting a more detailed analysis, we have to reduce the amount of data. Other-
wise, every used algorithm would need unnecessarily much time, and additionally most
of the information we collect would be useless for us. Most of the leukocytes in the
data set are not transmigrating at all, so it would not be helpful for us to analyze the
behavior of each cell. We are only interested in analyzing the ROIs. If a transmigration
event occurs, a leukocyte pushes parts of at least one endothelial cell aside. While that
happens it is possible to see a gap in the PECAM-1 staining at this location. To find the
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actual transmigration events, we only need to focus on regions around such gaps in the
staining. However, the opposite argument does not work. Not every gap is necessarily
the result of a transmigrating leukocyte. Nevertheless, the amount of data is drastically
reduced by only focusing on the regions that contain a gap in the PECAM-1 staining.

In order to find the gaps we use simple thresholding to segment the dark areas in the
PECAM-1 staining. If we denote the intensity in an image frame Ω ∈ R3 at a certain
time step by u(x), with x ∈ Ω, we use the functional

S(u) =

⎧⎨⎩0, if u ≤ τ

1, if u ≥ τ

to distinguish between those parts that have higher intensity values than the threshold
τ , and those that are smaller or equal to τ . This threshold is chosen manually. Since the
background is dark as well, we only consider the segments that have a certain maximal
size. This way we avoid to recognize the background as ROI. We identify the size of the
areas with the help of the MATLAB-routine regionprops and then disregard those that
are too large. However, since the staining of the endothelial cells is not continuous, there
are many very small dark areas all over the blood vessel. To only consider those gaps
with a reasonable size, we also neglect segments smaller than a certain minimal size. The
maximal and minimal sizes are also chosen manually, since they are strongly dependent
on the specific data set. However, to be sure not miss any transmigration events, we
choose the maximal size rather large and the minimal size rather small. Gaps with a
marginal size can be excluded manually at any time. The remaining areas are our ROIs.
Figure 5.8 shows an overlay of the PECAM-1 staining and the result of the segmentation
approach. Regionprops also enables us to easily collect information about the center po-
sition and the eccentricity of the gaps. Using the center position we are able to compare
the gaps over a period of time. We start by giving a unique identification number (ID)
to every segmented gap in the first time step. Then we regard the gaps in the second
time step and check whether their center is close to the center of a gap in first time step.
If that is the case we assume that the gap in the endothelial cell is the same and assign
the same ID. If not we assume that the gap is not related to a previous one and assign
a new ID. In an analog way, we proceed comparing gaps in consecutive time steps. Ana-
lyzing the appearances of the IDs, we obtain information about their opening time (OT).

We use the same thresholding algorithm as for the gaps in the endothelial cells to
segment the leukocytes. Again, we only consider those segments that have a reasonable
size. Afterwards, we combine the information about the leukocytes of the channel
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Figure 5.7: Overlay of MIP of a grayscale version of the PECAM-1 staining and the
segmentation result highlighted in white. Data courtesy of Vestweber lab, MPI Münster.

Figure 5.8: Top: MIP of PECAM-1 staining that visualizes the endothelial cells,
bottom: MIP of Gr-1 staining that visualizes the leukocytes. Green marks highlight
gaps that are currently occupied by a leukocyte; orange marks highlight gaps that are
currently not occupied. Data courtesy of by Vestweber lab, MPI Münster.
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ID Position Diameter Eccentricity OT Occupancy

1 (103, 97) 8.21 0.95 1
2 (120, 110) 6.38 0.77 6 2
3 (214, 216) 4.22 0.91 1
4 (293, 200) 5.17 0.94 4
5 (329, 280) 4.92 0.94 1 1
6 (420, 219) 7.40 0.77 3
7 (494, 86) 7.31 0.98 2
8 (534, 116) 9.03 0.64 3 3
9 (574, 157) 5.41 0.80 1 2
10 (650, 280) 5.53 0.77 2 2
11 (658, 106) 3.39 0.54 2 2
12 (797, 148) 7.98 0.83 4 3
13 (814, 281) 5.86 0.91 1
14 (861, 275) 6.38 0.96 6 2
15 (953, 47) 1.95 0.04 1

Table 5.1: Exemplary information about segmented gaps PECAM-1 staining and their
occupancy by leukocytes.

with Gr-1 staining with the information about the endothelial cells of the channel with
PECAM-1 staining and compare the particular positions of leukocytes and gaps. If
their positions coincide at some time point, there is a good chance that a transmigration
is happening at that position. Again, we regard this characteristic for all of the time
steps to see how often a gap is occupied by leukocytes. Figure 5.8 shows the endothelial
cells with highlighted gaps and the respective leukocyte occupancy at a single time
step. Section 5.3 provides an overview of exemplary information collected during the
segmentation step. Gaps without matching leukocytes at a certain time step might also
be of interest, since it usually takes some time until the gap closes after a transmigration
event. However, gaps that can never be matched with a leukocyte do not need to be
analyzed any further.

5.4 Motion Estimation

To actually analyze the behavior of single leukocytes, we perform flow estimation as
introduced in Chapter 3. In this application we are not only interested in tracking the
path of the leukocytes, but also in analyzing their shape changes and the intracellular
behavior. Regarding these characteristics we aim at identifying differences between
the two transmigration pathways. In this section we describe the application of a
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Figure 5.9: Transmigrating leukocyte in ROI with six consecutive time steps. Data
courtesy of Vestweber lab, MPI Münster.

motion estimation model that enables a reasonable data analysis. The analysis itself is
however more a biological than a mathematical task and is thus neglected in this context.

The motion estimation is based on the assumption that the intensity of the channel,
which visualizes the leukocytes, is correlated to the density of the leukocytes. The
brighter the image at a certain position is, the more staining is absorbed at that spot.
Figure 5.9 shows a transmigrating leukocyte for which we want to perform motion
analysis. Due to noise and possible spots caused by staining artifacts, fluorescence
microscopy data typically tends to contain strong outliers concerning the intensity. For
this reason we use an L1 data fidelity, since it is known to be more robust than its L2

equivalent. The leukocytes partially move about 30 pixels or more between two time
steps. Therefore, we require a model that is able to handle such large scale motion. This
specification excludes the linearized optical flow constraints. Hence, the data fidelity of
our choice is the nonlinear optical flow constraint

DNL1(u0, u1,v) = ‖u1 − u0(v)‖1.

For the minimization process, we approximate this data fidelity with the iterative
functional, which we derived in Section 3.2.2, i.e.

Dapprox(u0, u1,v) := ‖u0(v
n)− u1 + (v − vn)∇u0(v

n)‖1 + c

2
‖v − vn‖22,

with c > supx ‖H(u0(x))‖ and H being the Hessian matrix.
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Since we have no information about the ground truth flow, we need to use a priori
information from biological knowledge about the behavior of the leukocytes in order
to choose a proper regularizer. An important feature in this context is the fact that,
at least after the registration step, the background contains no, or only very small
movements. In contrast to that, the movement of the entire leukocyte is very fast.
For the velocity field this means that we assume to have strong edges at the locations
of the cell boundaries, since this is where the fast movement hits the slow or zero
movement. For this reason a TV -based regularizer is assumed to be a good choice.
However, a leukocyte is no constant object. Its intracellular texture is viscous and thus
changes during the microscopic recording. Due to the viscosity, the density changes
inside the leukocyte are supposed to be relatively smooth and do not usually contain
strong transitions. Therefore, the regularizer should also be able to detect such smooth
transitions. In Section 3.3.2 we developed regularizers, which combine both capabilities.
We specified two variants for the extended regularizer, which we both want to use for
estimating the motion of the leukocytes. The first variant is the TV/L2 regularizer

RTV/L2(v, w) = ‖∇v − w‖1 +
α2

2α1

‖w‖22 .

With this choice the minimization functional reads

JTV/L2(u0, u1,v) =min
v

{
‖u0(v

n)− u1 + (v − vn)∇u0(v
n)‖1

+min
w

{
α1 ‖∇v − w‖1 +

α2

2
‖w‖22

}}
.

The second variant is the TV/TV regularizer

RTV/TV (v, w) = ‖∇v − w‖1 +
α2

2α1

‖∇w‖1,

with the corresponding minimization functional

JTV/TV (u0, u1,v) =min
v

{
‖u0(v

n)− u1 + (v − vn)∇u0(v
n)‖1 + c

2
‖v − vn‖22

+min
w

{
α1 ‖∇v − w‖1 +

α2

2
‖∇w‖1

}}
.

In contrast to the synthetic data sets in Section 3.7, for this real data set it is not possible
to choose the best regularization parameters α1 and α2 based on the minimal errors AEE
and AE. The only possibility to choose them properly is a visual evaluation of the results.

Figure 5.10 shows the motion estimation results for the model with TV/L2 regulariza-
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Figure 5.10: Result of TV/L2 model for transmigrating leukocyte at 6 consecutive
time steps.

Figure 5.11: Result of TV/TV model for transmigrating leukocyte at 6 consecutive
time steps.
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tion. The depicted ROI corresponds to Figure 5.9. In these results the boundaries of
the leukocyte are clearly visible as edges in the velocity fields. However, there is also
motion detected in the background. This is a consequence of an almost constant area.
Without any structure in the data, the optical flow constraint can also be fulfilled for
incorrect movement due to the aperture problem. Nevertheless, the actual movement
of the leukocyte is well identifiable. In contrast to the clearly visible edges at the
cell boundaries, the flow of the intracellular texture of the leukocyte appears smooth
without any sharp edges. Even though there are changing directions in this area, there
is no occurring staircasing effect as we know it from standard TV regularization. The
intracellular flow indeed shows a realistic behavior. Consequently, the model performs
as intended and therefore allows an interpretation from a biological point of view.

Figure 5.11 illustrates the results for the same scenery calculated with the TV/TV

regularization. A noticeable characteristic of these results is the active background of
the ROI. The flow fields from the TV/L2 results do only contain consistent motion
in the background, at least in space. In contrast to that, in the TV/TV results the
background motion is changing in time and in space. Even though the estimated motion
of the cell itself is very similar for both models, the edges at the boundaries appear to
be sharper for the TV/L2 model due to the clearer contrast to the background.
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6
APPLICATION 2:

DYNAMIC X-RAY TOMOGRAPHY

In this chapter we show a concrete application for the indirect tracking model, which
we derived in Chapter 4. The idea for this application is based on data from an X-ray
lab owned by the University of Helsinki. The X-ray scanner of this lab consists of only
a single pair of source and detector. To reconstruct dynamic X-ray data it is usually
necessary to be able to reconstruct every single time step independently. This requires
an amount of about 15 pairs of source and detector that scan each time step (cf. Bian

et al. (2010)). The aim of this chapter is to enable dynamic X-ray tomography for
scanners with the more limited amount of only one or two X-ray sources by using the
indirect tracking model. The results in this section originate from a cooperation with
Samuli Siltanen, Tapio Helin and Andreas Hauptmann from the University of Helsinki,
as well as Martin Burger and Hendrik Dirks from the University of Münster.

We start with a short introduction to the general topic of dynamic X-ray tomography
in Section 6.1. We continue by illustrating the mathematical details in Section 6.2.
Since the reconstruction of X-ray tomography requires the usage of a Radon transform,
we especially focus on this issue. We describe the details for the standard and for a
time-dependent version and use the latter as reconstruction operator for the indirect
tracking models from Chapter 4. Subsequently, we explain the experimental settings for
the following numerical approaches. The settings include an initialization for the first
and the last time step, the usage of multiple angles per time step, and a randomized
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distribution of subsequent angles to increase the spatial area that is used for subsequent
time steps. Finally, we evaluate the different strategies by showing numerical results for
two different data sets. These contain a synthetic data set to test the performance of
the mathematical model, as well as a real measured data set.

6.1 Introduction

The research on tomographic imaging was initiated in the seminal work of Johann Radon
on the determination of functions from their integrals along certain manifolds, which
he published already about 100 years ago (Radon (1917)). These findings about the
meaning of the line integrals are of great importance for a wide range of applications, cf.
Cormack (1963) and Cormack (1964). The most popular application is computerized
tomography. The basic principle behind this is to measure the line-integrals of the
density of an object from a distinct amount of angles and combine the information
gained from all angles in a sinogram. With the help of a Radon transform, which we
describe more precisely in Section 6.2.2, this sinogram is used to reconstruct the given
object. Even though the mathematics behind computerized tomography have already
been extensively studied, e.g. in Natterer (1986), there are still some meaningful
open problems concerning this issue.

A topic that received more and more attention in the past few years is dynamic tomog-
raphy. This indicates the time-dependent measurement of moving objects. In a medical
context, a goal is e.g. to analyze organs that are non-stationary throughout the scan.
Whereas the reconstruction of dynamic data is already possible in case of full-angle
measurements at each time step, a limited-angle reconstruction is still an open problem.
The limitation of angles is however a common topic especially in medical applications.
Besides the fact that it is quite costly to place sources and detectors all around a body in
order to be able to scan every angle at every time step, the main drawback of full-angle
measurements is the ionizing effect of the X-rays. In living organisms this can cause
severe damages by e.g. drastically increasing the cancer risk. Scanning an object from
every angle at every considered time step induces an extremely high radiation dose.
Reducing the amount of necessary angles to be measured per time step also reduces
the radiation dose and is therefore of special interest. However, this also reduces the
amount of information obtained by a single scan and hence has a trade-off.

In this chapter we use a setting in which the number of measured angles is being limited
drastically, i.e. we allow for only one or two measurements per time step. While doing
this, a problem arises due to the missing information at the single time steps. As
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already mentioned previously, the reconstruction of X-ray tomography data relies on
the combined information from the measurements of all given angles. In our setting
there is only information gained by the measurements of one or two angles for the single
time steps. Hence, reconstructing them independently from each other cannot produce
reasonable results. The principle of our approach is to fill this lack of information with
the help of the motion field. Thus, we are able to connect the different time steps with
each other and use the information of all measured angles.

The indirect model we derived in Chapter 4 is able to fulfill the just described task.
It uses the motion field to improve the reconstruction of the given data. The motion
field, which is not initially given in our setting, is estimated based on the previously
calculated reconstruction. For the following study we use Model 4.4 and Model 4.5,
which we specified in Section 4.3.1. The first data fidelity Drec(u, f), which solves the
reconstruction problem, contains a time-dependent Radon transform. We will further
discuss this issue in the following section. The remaining terms as well as the notation
can simply be adopted from Section 4.3.1.

6.2 X-Ray Tomography

In this section we explain the mathematical details of X-ray tomography. To get an
idea of the basic principle, we start with a short introduction to stationary X-ray
tomography. In Section 6.2.2 we focus on the specialties of dynamic X-ray tomography,
which requires a time-dependent formulation of the Radon transform. Subsequently, we
incorporate the time-dependent variant as reconstruction operator in the models for
indirect tracking from Section 4.3.1 and prove the requirements for the existence of a
minimal solution.

6.2.1 Stationary Radon transform

The goal of common non-dynamic X-ray tomography is to reconstruct a two dimensional
image slice u based on several projections of the volume of a given object from different
angles. The projections occur from X-rays that are sent out from an X-ray source. A
detector, which is located at the opposite side of the source, receives measurements
that are given as integrals along lines through the object. The Radon transform is the
functional that describes the connection between the given object and the measured data.
The sinogram, i.e. the collection of the measurements from all given angles, serves as
a basis for the reconstruction of the image slice by applying the inverse Radon transform.



138
6 Application 2:

Dynamic X-ray Tomography

x1

x2

s

θ

x · θ = s

S1

Figure 6.1: Illustration of the Radon transform in R2 taken from Hauptmann (2012).

The problem we aim to solve for the reconstruction is

Ru = m,

where R is the Radon transform, u is the desired image slice, and m is the sinogram.
The image slice u depicts the non-negative absorption of photons an a domain Ω ⊂ R2.
Hence, it is u : Ω → R+. The lines through the object are dependent on an angle
θ ∈ [0, π) and a signed distance from the origin, which we denote by s ∈ R. They are
thus given by

L(θ, s) =
{
(x1, x2) ∈ R2

∣∣ x1 cos(θ) + x2 sin(θ) = s
}
.

The Radon transform, which describes the line integrals, is defined by

(RIu)(θ, s) :=

(∫
L(θ,s)

u(x) dx

)
(θ,s)∈I

,

where I indicates the set of given measurements. Consequently, the Radon transform is
a mapping onto a parametrization of the infinite unit cylinder in R3, i.e.

Z2 =
{
(θ, s)

∣∣ θ ∈ S1, s ∈ R
}
,

where S1 is the unit circle in R2. An illustration of the Radon transform is shown in
Figure 6.1.

The Radon transform is a bounded and linear operator. For the static case it is possible
to uniquely determine the attenuation coefficient for every point x ∈ Ω and therefore the
requested image slice u, see Radon (1917). This however requires the incorporation of
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the full sinogram, which includes every possible angle. For further details and properties
of the Radon transform, cf. Natterer and Wübbeling (2001).

6.2.2 Time-dependent Radon Transform

In contrast to stationary X-ray tomography, in the dynamic case the image slice u is
not only dependent on the spatial position x ∈ Ω ⊂ R2, but also on the current time
step t ∈ [0, T ], with T > 0. For the following analysis we assume that the chosen time
interval [0, T ] is fixed and bounded. For the single time steps we are not able to access
a full sinogram. Due to our assumptions, there is only a limited amount of angles
available at every step. The exact selection of angles is different for every time step.
Together with the fact that the measurements differ in case of a moving scenery, this
also leads to a time dependency of the sinogram, i.e. m(θ, s, t). Consequently, we are
dealing with a time-dependent Radon transform

A : L2(Ω× [0, T ]) → L2(∪t∈[0,T ]I(t)× {t}),

in order to solve the inverse problem

Au(x, t) = m(θ, s, t). (6.1)

We define the adapted Radon transform A by

(Au)(θ, s, t) := (RI(t)u(x, t))(θ, s) =

∫
L(θ,s)

u(x, t) dx, (6.2)

where RI(t) is the stationary Radon transform introduced in the previous section.

The time-dependent Radon transform is well-defined:

Proposition 6.1. (Well-Definedness of the Time-Dependent Radon Transform)
Let [0, T ] be a fixed and bounded time interval. Then for p ≥ 1 the time-dependent
Radon transform A : Lp(Ω × [0, T ]) → Lp(∪t∈[0,T ]I(t) × {t}), as defined in (6.2), is
well-defined.

Proof. We start with the case p = 1. For the measuring angle θ the signed distance s
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from the origin and the width p of the measurement, the line integral RI(t) is given by

RI(t)u(θ, s, p, t) =

∫ T

0

∫
R

∣∣∣∣∫
R

u(sθ(t) + pθ⊥(t)) dp

∣∣∣∣ ds dt
≤
∫ T

0

∫
R

∫
R

∣∣u(sθ(t) + pθ⊥(t))
∣∣ dp ds dt. (6.3)

For a fixed t ∈ [0, T ] we perform a change of variables by writing

x := sθ(t) + pθ⊥(t).

Consequently, it holds

dx = dsθ(t) + dpθ⊥(t).

Inserting this into (6.3) yields

RI(t)u(x, t) ≤
∫ T

0

∫
Ω(t)

|u(x) | dx dt

≤
∫ T

0

∫
Ω

|u(x) | dx dt

= Au(x, t),

where Ω(t) ⊂ Ω denotes the domain of the single measurement at time step t. Therefore,
the time-dependent Radon transform is a well-defined operator

A : L1(Ω× [0, T ]) → L1(∪t∈[0,T ]I(t)× {t}).

For p > 1 the calculations can be performed equivalently.

Moreover, we are able to show that the time-dependent Radon transform is continuous:

Proposition 6.2. (Continuity of the Time-Dependent Radon Transform)
Let [0, T ] be a fixed and bounded time interval. Then the time-dependent Radon
transform A : L2(Ω× [0, T ]) → L2(∪t∈[0,T ]I(t)× {t}) as defined in (6.2) is continuous.

Proof. The time-dependent Radon transform consists of consecutive applications of the
stationary Radon transform at several time steps. Since the interval [0, T ] is bounded
and hence finite, the continuity of the time-dependent Radon transform is a direct
consequence, of the continuity of the stationary Radon transform.

For the following numerical realization, we aim at minimizing the specific models
including the time-dependent Radon transform with the primal-dual algorithm, which
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we presented in Section 4.4.1. For this purpose, we calculate the adjoint A∗ of A:

Proposition 6.3. (Adjoint of the Time-Dependent Radon Transform)
Let [0, T ] be a fixed and bounded time interval, A : L2(Ω×[0, T ]) → L2(∪t∈[0,T ]I(t)×{t})
the time-dependent Radon transform, and m ∈ L2(Ω× [0, T ]). Then the L2 adjoint of
A is given by

(A∗m)(x, t) = (R∗
I(t)mt)(x) =

∫
I(t)

m(θ, x · θ)dθ,

where R∗
I(t) is the L2 adjoint of the stationary Radon transform.

Proof. The proof follows directly from the properties of the stationary Radon transform
and the following calculations:

(Au,m)L2(Z2×T ) =

∫ T

0

∫
I(t)

∫
R

(Rut)(θ, s)mt(θ, s) dsdθdt

=

∫ T

0

(RI(t)ut,mt

)
L2(Z2)

dt

=

∫ T

0

(
ut, R

∗
I(t)mt

)
L2(Ω)

dt = (u,A∗m)L2(Ω×T )

6.2.3 Joint Tracking and Reconstruction

We aim to use the time-dependent Radon transform in combination with a motion
estimation task. Therefore, we incorporate the operator into the data fidelity of the
specified models for indirect tracking from Section 4.3.1. Since in realistic applications
we usually have to deal with large scale motion, we only consider the models with the
nonlinear optical flow constraint in this chapter. For Model 4.4 we obtain

argmin
u,v

∫ T

0

‖Au−m‖1 dt+ α‖∇u‖1 + β‖∇v‖1 + γ‖u1 − u(v)‖1 dt.

Equivalently, for Model 4.5 we achieve

argmin
u,v

∫ T

0

1

2
‖Au−m‖22 dt+ α‖∇u‖1 + β‖∇v‖1 + γ‖u1 − u(v)‖1 dt.



142
6 Application 2:

Dynamic X-ray Tomography

6.3 Experimental Settings

We aim at minimizing the amount of necessary measurements per time step for the
dynamic X-ray tomography as far as possible. In an ideal case we only need a single
measurement from a distinct angle for every step. This way the X-ray dose is as small
as possible. However, a pure application of the indirect model to data including only a
single angle per time step cannot lead to sufficiently reasonable results, since the lack
of information is still too large. For this reason, we experiment with different scenarios
that incorporate varying kinds of additional information. In this section we introduce
different settings, which we will later use to analyze the numerical performance of the
indirect tracking model applied to dynamic X-ray tomography.

6.3.1 First and Last Angle Initialization

In the first setting we assume to have extensive information about the scanned object
during the first and during the last time step. From a medical point of view, this
assumption makes sense in case of motion, which only starts at a specific time and
ends at some later point. An example for this is the inflow of a contrast agent into
the vessel system. Before adding the contrast agent, the visible scenery is nearly static
besides some smaller movements caused by e.g. respiration, which can be subtracted
in a post processing step. During the inflow of the contrast agent, there is a clearly
visible motion, which is supposed to be analyzed. After some time, the contrast agent is
available in every area of the vessel system, such that the scenery is again widely static.
In this setting, it is possible to perform a full scan from all possible angles for the static
situations, and nevertheless minimize the amount of necessary measurements during the
remaining time steps. Since the different time steps are connected via the calculated
flow field, the full scans act as a kind of initialization for all time steps. This way they
can possibly equal the necessary information that enables a proper reconstruction for
every single time step. For the numerical approaches, we consider measurements from
60 equally distributed angles from zero to 179 degree for the first and for the last time
step. Between those scans we expect to have 28 further time steps at which we measure
one consecutive angle per step. The different angles are again equally distributed in a
range from zero to 179 degree. Hence, the available measurements I(t) are given by

I(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

((
0 1

60
π 2

60
π · · · 60

60
π
)T

, s

)
, for t = 1(

t−1
30

π, s
)
, for t ∈ {2, · · · , 29}((

0 1
60
π 2

60
π · · · 60

60
π
)T

, s

)
, for t = 30

.
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6.3.2 Multiple Angles

As a second possibility to overcome the lack of information is to consider more than
only a single angle for every time step. For real measurements, this naturally requires
multiple X-ray sources and detectors. To keep the amount of necessary sources and
detectors as small as possible, we only consider two simultaneous measurements per
time step. The problems caused by a single consecutive angle per time step arise due
to the lack of information about the scanned object in the direction orthogonal to
the projection. Also measurements of the surrounding angles, which usually show a
very similar scenery if the movement is assumed to be small enough, cannot give more
clarification of the orthogonal direction. Consequently, it takes multiple time steps until
there is sufficient information available about the situation in the orthogonal direction
to a particular projection. In case that there is motion taking place in the orthogonal
direction during the previous time steps, this cannot be tracked properly. The most
efficient way to place two X-ray sources and detectors is thus an orthogonal arrangement.
This way the directions with the biggest lack of information with respect to one of
the pairs of source and detector are scanned by the additional pair. For the concrete
experiments we again consider 30 time steps. The first source-detector pair measures
one consecutive angle at every time step, whereas the angles θ are equally distributed
between zero and 179 degree. The other source-detector pair measures the angles at
θ + 90 degree. Consequently, we obtain

I(t) =

((
t−1
30

π t+14
30

π
)T

, s

)
.

6.3.3 Random Angles

A different attempt to overcome the lack of information, especially in approximately
orthogonal directions to the current projection, is to depart from the idea of measuring
adjacent angles during consecutive time steps. For this approach, we only measure a
single angle per time step, but in a random arrangement. Thus, for this setting the
measurements I(t) are given by

I(t) =

(
r(t)− 1

60
π, s

)
,

with r(t) ∈ {0, · · · , 60}. We are aware that the specific choice of the angles is essential
for the quality of the results. The closer two angles measured at consecutive time
steps are, the less information about movements in the orthogonal direction is available.
Nevertheless, we simply use the MATLAB function rand, to pick the respective angles.
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Time Step 30 Ang. Pinball 30 Ang. Stones 15 Ang. Stones 8 Ang. Stones

1 109 72 126 129
2 48 9
3 146 129 3
4 44 153
5 133 51 48 177
6 105 84
7 171 30 6
8 37 102
9 79 126 15 75
10 37 39
11 135 87 147
12 38 24
13 111 3 123 39
14 152 129
15 143 108 57
16 43 174
17 93 33 171 129
18 59 144
19 18 81 6
20 172 27
21 120 144 78 159
22 89 45
23 35 141 66
24 28 144
25 91 0 135 114
26 156 51
27 3 153 141
28 73 177
29 21 96 33 84
30 164 51

Table 6.1: List of randomly measured angles for given time steps.
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Figure 6.2: Pinball data set. Top: ground truth reconstruction, bottom: ground truth
flow field. From left to right: time steps 1, 10, 20, 30 (flow field: 29 instead of 30).

The resulting choices for θ can be found in Table 6.1. We start the numerical approach
for this setting by using 30 time steps. In the final part of this section we even reduce
the number of time steps to 15 respectively eight.

6.4 Numerical Results

We use two different experimental settings throughout this chapter. The first one is
a synthetic data set, which we denote by Pinball. We use it in order to be able to
measure the capability of the mathematical model by measuring the errors compared
to the ground truth data. The second data set, which we refer to as Rolling Stones, is a
real data set measured in the X-ray lab of the University of Helsinki. With this setting,
we test the performance of the model while not having the possibility to fall back on a
priori information gained by ground truth data. The framework for the implementation
we used throughout this section is based on the code published in Dirks (2015).

6.4.1 Pinball Data Set

The synthetic Pinball data set consists of a two dimensional image of 42× 42 pixels.
The image is recorded at 30 different time steps. Throughout this period of time, a
uniform and rigid ball is slowly moving from the left side of the image frame to the
right side. During the whole time, the ball resides in a stationary ellipse of medium
intensity. Figure 6.2 shows the ground truth image as well as the ground truth flow
field for a selection of time steps. Producing the sinogram based on these images
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by simply applying the Radon transform would result in an inverse crime, since we
are later using the inverse Radon transform for the reconstruction. To avoid this,
we compose the data in a higher resolution, i.e. 84 × 84. By applying the Radon
transform to these images we obtain a preliminary sinogram. To this sinogram we
add some positive Gaussian noise and finally downscale it to a size of 63 × 30, such
that it fits to the size of the data that we want to use for the final experiments. The
exact appearance of the sinogram depends on the measured angles that are considered.
Since this data set is synthetic, we are able to pick every possible combination of angles
and try out the most convenient setting. The precise choices are discussed in Section 6.3.

Due to the known ground truth images of this synthetic data set, it is possible to
evaluate the performance of the chosen mathematical model by calculating proper
errors. Two of the most common error measures are the l1 distance and the l2 distance
between the reconstructed images and the ground truth images. Thus, we also use both
measures to compare the results. However, a disadvantage of their utilization is that
they are not neutral with respect to the chosen norms of the model. Naturally, the
error in l1 is smaller for images reconstructed with an L1 data fidelity, and the error in
l2 is smaller for images reconstructed with an L2 data fidelity. Since one of the goals of
this chapter is to compare the results of both data fidelities, it is necessary to to use an
uncommitted technique. For this purpose, the method of our choice is the Structural
Similarity (SSIM) Index (cf Brunet et al. (2012)). The SSIM index evaluates an image
by comparing the structures of two images with a perception-based model. It includes
illumination as well as different contrasts in an image. For two images u1 and u2 the
SSIM index is given by

ŜSIM(u1, u2) =
(2μ1μ2 + c1)(2σ12 + c2)

(μ2
1 + μ2

2 + c1)(σ2
1 + σ2

2 + c2)
,

where μ1 and μ2 are the averages of u1 and u2, σ1 and σ1 are the variances of u1 and
u2, σ12 is the covariance of u1 and u2, and c1 as well as c2 are constants to prevent a
division by zero. To compare the structures of two entire image sequences, we add up
the SSIM index for every time step and calculate the average, i.e.

SSIM(u1, u2) =
1

T + 1

T∑
t=0

ŜSIM (u1(x, t), u2(x, t)) . (6.4)

In contrast to the errors in l1 and in l2, the SSIM index is large for images that are
similar to the reference image.
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Figure 6.3: Sinogram of Pinball data set for one measured angle per time step.

Figure 6.4: Reconstruction result for Pinball data set calculated from one consecutive
angle per time step. Top: L1 data fidelity, bottom: L2 data fidelity. From left to right:
time steps 1, 10, 20, 30.
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Figure 6.5: Reconstruction result for Pinball data set calculated from one consecutive
angle per time step starting at 90◦. Top: L1 data fidelity, bottom: L2 data fidelity.
From left to right: time steps 1, 10, 20, 30.

Figure 6.3 displays a sinogram created with the procedure we described in the beginning
of this section. The sinogram contains the measurements from 30 time steps with a
single consecutive angle per time step. Hence, this sinogram does not yet consider any of
the additional information we introduced in Section 6.3. Figure 6.4 shows a selection of
resulting images for the L1 and for the L2 data fidelity, which we obtain by applying the
indirect model to the sinogram of Figure 6.3. For both data fidelities the ball cannot be
reconstructed properly for any of the time steps. Especially in the first and in the last
time step the position of the ball is clearly false. It is not located in the ellipse, where it
is supposed to be due to the ground truth data. Also the shape of the ball is not correct.
The ball follows a wave-like shape, which is a direct consequence of the direction of
the actual measured projection. For the L1 data fidelity the wave is even more visible
than for the L2 data fidelity. In contrast to that, the ellipse in the background is nicely
reconstructed with the L1 data fidelity. The edges are sharp and the ellipse has the
correct shape and position for every single time step. The L2 data fidelity on the other
hand reconstructs differing ellipses for the different time steps. In the beginning and
in the end, the ellipse is rarely visible. For the middle steps there is an ellipse visible,
but it is rather blurry in some areas. Altogether, the results reveal that there is indeed
some further a priori information necessary. The calculated reconstructions are the
consequence of a local minimum. Calculations with another initialization result in
different reconstructions. If the measuring angles are e.g. shifted by 90 degree, the
position of the balls seems to follow two smaller waves instead of a single larger one.
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Figure 6.6: Reconstruction result for Pinball data set calculated from one angle per
time step with full angle initialization for first and last time step. Top: L1 data fidelity,
bottom: L2 data fidelity. From left to right: time steps 1, 10, 20, 30.

This effect can be seen in Figure 6.5. The results in this figure are calculated based on
the same setting as those in Figure 6.4, except for the starting point of the measurements.

The results for the approach we suggested in Section 6.3.1 are represented in Figure 6.6,
again for the L1 and for the L2 data fidelity. For the first and the last time step,
the ball is well reconstructed for both data fidelities. This is naturally caused by the
incorporation of the full 60-angle measurements at these steps. Also the shape of the
ellipse is correct. However, the inside of the ellipse has noise-like artifacts for the L2 data
fidelity. For the middle time steps the ball and its position are again not reconstructed
correctly. Though, especially the results of the L1 data fidelity are considerably more
accurate than in the approach without further a priori information. The ellipse is again
largely properly reconstructed for the L1 data fidelity, whereas it is still blurry for the
L2 data fidelity. Consequently, this approach, which includes more information for the
first and the last time step, does indeed enhance the results, but in particular for the
middle steps we need further improvements. The influence of the outer time steps does
not reach far enough.

Figure 6.7 depicts the results for the setting, where we measure two orthogonal angles
per time step, see Section 6.3.2. In this case, the shape and the position of the ball
are already significantly better reconstructed than in the previous results. However,
for both data fidelities, but in particular for the L1 data fidelity, there are two tail-like
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Figure 6.7: Reconstruction result for Pinball data set calculated from two angles per
time step with a gap of 90◦. Top: L1 data fidelity, bottom: L2 data fidelity. From left
to right: time steps 1, 10, 20, 29.

artifacts attached to the balls that point in the opposite direction of the actual measured
projections. Between those tails, i.e. in the upper part of the results, the ellipses are not
properly identified. The results from L2 data fidelity do only show very few intensity in
this area. For the L1 data fidelity, the model does not reconstruct any intensity at all.
The remaining areas of the ellipse have a similar quality as the previous approaches
for the L1 data fidelity. The ellipse reconstructed with the L2 data fidelity is improved
with this setting, but it still suffers from blurry edges.

The results for the approach that includes single randomly distributed angles are rep-
resented in Figure 6.8. In this case, the reconstructions as well as the estimated flow
fields are shown for each the L1 and the L2 data fidelity. The specific angles that are
used for this experiment can be found in Table 6.1. In all reconstructions the position
of the ball is correctly located. For the L1 data fidelity the shape of the ball is not
completely roundish, but there are no tails visible anymore. Also the edges are rather
sharp. For the L2 data fidelity the general shape of the ball is perfectly reconstructed.
However, its edges are still slightly blurry. The ellipse is again well reconstructed for
the L1 data fidelity. The quality of the ellipse of the L2 data fidelity is clearly better
than for all of the previous settings. However, the ellipse of the L1 data fidelity again
looks more accurate due to its sharp boundaries. The pictured flow fields for both data
fidelities generally show motion taking place in the correct direction. Nevertheless, there
are obvious differences between the flow fields estimated with the L1 and the L2 data
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Figure 6.8: Reconstruction and motion estimation result for Pinball data set calculated
from one angle per time in a random arrangement. From top to bottom: reconstruction
with L1 data fidelity, reconstruction with L2 data fidelity, flow field with L1 data fidelity,
flow field with L2 data fidelity. From left to right: time steps 1, 10, 20, 30 (flow field:
29 instead of 30).
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L1 data fidelity L2 data fidelity
�1 error �2 error SSIM �1 error �2 error SSIM

1 angle 0.4744 0.6485 0.7498 0.8897 0.6962 0.4310
1 angle shifted 0.5220 0.7221 0.7163 0.7129 0.6889 0.4855
1 angle + init. 0.3131 0.5177 0.8240 0.4789 0.5042 0.6321
2 angles 0.3828 0.4166 0.7275 0.3329 0.2954 0.7208
1 random angle 0.1978 0.3310 0.8502 0.2223 0.2586 0.8006

Table 6.2: Calculated relative �1, �2 errors, and SSIM index for Pinball reconstructions.

fidelity. For the L2 data fidelity the entire movement of the ball is visible in the flow
field. In contrast to that, with the L1 data fidelity the model only recognizes motion at
the outer edges of the ball area. For both data fidelities the flow fields for the first time
steps are not correctly estimated. The reason for this is the missing possibility to use a
priori information for the calculations from previous time steps, which could be used
for initialization.

For all of the previously discussed results, the relative errors in �1 and in �2, as well as
the SSIM index (see (6.4)) are specified in Table 6.2. Comparing the performances of
the L1 and the L2 data fidelities for each experimental setting reveals that as expected
the error in �1 is always smaller for the results calculated with the L1 data fidelity,
whereas the �2 error is smaller for the results of the L2 data fidelity. However, the
SSIM index, which we expect to be more neutral with respect to the chosen norm,
indicates that the L1 norm outperforms the L2 norm for every single approach. This
is a consequence of the distinctly better reconstruction of the ellipses. Concerning
the different experimental settings, the approach considering the randomized angles
achieves the best results by far. For both data fidelities all error measures indicate that
this approach has the best outcome. The order of quality for the remaining settings is
however not consistent. For the L1 data fidelity the second best result is achieved by
the approach containing 60-angle measurements for the first and for the last time step.
The setting considering only a single measurement at a time is better than the one
with two measurements. For the latter the problem is obviously caused by the deficient
reconstruction of the ellipse. Regarding the results of the L2 data fidelity, the setting
including two simultaneous measurements produces the second best reconstructions.
The approach without any further a priori information results in the largest errors and
smallest SSIM index.
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6.4.2 Rolling Stones Data Set

The Rolling Stones data set consists of resulting images of the size 42× 42, which are
each measured at 30 consecutive time steps. Even though we aim at being able to
recover continuous movements measured with an extremely limited amount of angles,
the measurements were actually recorded from 60 equally distributed angles for every
time step. This has the advantage that we are able to use the exact same data set
for different arrangements of angles. The following numerical approaches will however
not use all of the measured angles. A convenient side effect of this extra measurement
is that we are able to use the full 60 angles for reconstructions at every time step
to compare them with the later following numerical results. Figure 6.9 shows the
reconstruction based on all of the 60 angles for every time step. Even though these
are also just approximations of the real objects, we use them similar to a ground truth
data set. The reason for this is that results that are based on 60 equally distributed
angles are usually quite close to the true object. However, since we will not directly
compare these images with the reconstruction results of the indirect model in terms of
error measures or the SSIM index, we chose a rather simple method for the 60 angle
reconstruction, which includes a smoothed and therefore differentiable TV variant. A
detailed description for the used procedure can be found in Hämäläinen et al. (2014).
The scenery that is represented in the Rolling Stones data set consists of three quadratic
stones, which are initially located approximately in the center of the image frame. With
every passing time step, the stones move a little bit further apart from each other
and closer to different outer boundaries of the frame. Since the stones were moved
manually during the measurements, the velocity and direction of movement differs for
every stone and every time step. The evaluation of the synthetic data set in the previous
section indicates that the L1 data fidelity works best for the reconstruction of such kind
of data. For this reason, we restrict ourselves to this data fidelity for the following results.

Figure 6.10 shows the actual measured sinogram of the setting, which includes a 60-angle
initialization for the first and the last time step. The left area in the sinogram up to
the first interruption depicts the 60 measurements for the first time step. The middle
area illustrates one angle per each of the next 28 steps. The right area shows the 60
measurements for the last time step. The reconstruction results of the indirect model
can be seen in Figure 6.11. Similar to the synthetic data set, the first and the last time
step is perfectly reconstructed due to the expanded amount of measurements during
these steps. However, especially in the seventh time step the stones are not completely
separated, which they are actually supposed to be. Even in the 18th step, there is
still some blur that connects two of the stones. In general, the position of the stones
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Figure 6.9: Full angle reconstruction of the Rolling Stones data set. From top left to
bottom right: time steps 1 to 30.
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Figure 6.10: Sinogram of Rolling Stones data set for one measured angle per time
step and full-angle initialization for first and last time step.

Figure 6.11: Reconstruction result for Rolling Stones data set calculated with L1 data
fidelity from one angles per time step with with full-angle initialization for first and last
time step. From top left to bottom right: time steps 1, 7, 13, 18, 25, 30.
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is approximately correct, but the shape appears blurry and in some parts without
adequate intensity.

The sinogram of the experimental setting regarding two simultaneous angles per time
step is illustrated in Figure 6.12. The concurrent time steps are depicted next to each
other, such that two sections in the sinogram represent one time step. The results
using this sinogram are displayed in Figure 6.13. The first and the last time step are
naturally slightly worse than for the previous setting. Nevertheless, both the shape
and the position of the stones are very well reconstructed. Also for the middle time
steps the images show the stones at the right positions with a distinct separation of the
single stones. The only drawback of this approach are sallow artifacts in the seventh
time step and some remaining blur in some areas. The latter partly prevents the stones
from appearing in the accurate quadratic shape.

For the setting considering 30 randomized angles, the sinogram is demonstrated in
Figure 6.14. Again, the specific choice of the angles is given in Table 6.1. The recon-
struction results are visualized in Figure 6.15. They show a perfect separation of the
stones for all time steps. Also the blur between the single stones is clearly reduced in
contrast to the previous approach. The position of the stones is properly reconstructed
and in most cases the quadratic shape is well approximated. Even though this result
necessitates only 30 measurements in total, which is less than all the other approaches
need, it appears to be even more accurate. In this application we aim at reducing the
amount of necessary measurements for the dynamic data as far as possible. For this
reason, the real data results produced with this randomized approach are already a
great success. However, we try to lower the amount of used projections even more to see
whether the results are still acceptable. In Figure 6.16 the reconstructions from 15 and
from eight measured angles are presented. For the 15 projections, the separation as well
as the position of the stones are still appropriately reconstructed. Certainly, there is
more blur existent at the boundaries of the stones, which naturally reduces the quality
in contrast to the results produced with 30 angles. However, in real applications, where
a minimal radiation dose is of particular interest, such results from 15 measurements
are indeed reasonable. Regarding the results calculated from only eight measurements,
the amount of blur has strongly increased in contrast to the results produced from 15
measurements. The overall shape of the stones is not clear any more. Nevertheless, the
stones are still well separated and their position is approximately correct. However,
eight seems to be the minimal amount of measured projections in order to be able to
produce reasonably useful results.
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Figure 6.12: Sinogram of Rolling Stones data set for two measured angles per time
step.

Figure 6.13: Reconstruction result for Rolling Stones data set calculated with L1 data
fidelity from two angles per time step with a gap of 90◦. From top left to bottom right:
time steps 1, 7, 13, 18, 25, 30.
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Figure 6.14: Sinogram of Rolling Stones data set for one angle per time in a random
arrangement.

Figure 6.15: Reconstruction result for Rolling Stones data set calculated with L1 data
fidelity from one angle per time in a random arrangement. From top left to bottom
right: time steps 1, 7, 13, 18, 25, 30.
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Figure 6.16: Reconstruction result for Rolling Stones data set calculated with L1 data
fidelity from one angle per time in a random arrangement. Top: 15 angles in total,
bottom: 8 angles in total. From left to right: time steps 1, 13, 25.
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Altogether, the results show that the best performance of the indirect tracking model is
achieved by an L1 data fidelity in a random angle approach with at least 15 measurements.
Hence, with this model the reconstruction of dynamic data does not necessarily need
more measurements than a reconstruction of static data.
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7
CONCLUSION

Throughout this thesis we studied models for direct and indirect tracking. The latter
means that it requires additional reconstruction steps to enable the tracking process.
For each type we provided a theoretical as well as a numerical analysis. In order to
conclude the thesis, we divide this chapter according to those two types of tracking.

7.1 Direct Tracking

In Chapter 3 we studied various models for motion estimation, all of which are based
on an optical flow approach. We introduced data fidelities differing in the optical flow
constraint itself, as well as in the applied norm. Concerning the optical flow constraint,
we showed a linearized version, which is already well-studied nowadays. However,
this variant has the major drawback of only considering very small movements. To
overcome this problem, we presented an alternative nonlinear version of the optical flow
constraint. We also suggested a way to approximate this constraint and showed the
existence of minimizers for this approximation. We studied both the linearized and
the nonlinear version in connection with the L1 and the squared L2 norm. In addition
to the data fidelities, we focused on possibilities to improve the common regularizers.
After presenting standard regularizers consisting of only a single term, we proposed
an extended regularizer that enables to recover smooth transitions and sharp edges in
a single flow field. The general model can be regarded as a further generalization of
the TGV regularizer, which is a special case. We proceeded by introducing Bregman
iterations for the previously presented models. The remaining part of the chapter was
devoted to the numerical realization.

The evaluation of the synthetic results revealed that the performance of the nonlinear
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models is superior to the performance of the linearized models, independent of the
applied norm. However, we need to mention that this variant depends on significantly
more variables and parameters than the linearized variant. Nevertheless, we did not
perform any specific optimization for the single models besides of the regularization
parameter, which we optimized for both variants. Concerning the regularizers, the
results are more ambiguous. Depending on the chosen data set, the extended regularizer
are able to improve the results, but it is also possible that a standard regularizer yields
slightly better outcomes. Again, the results strongly depend on further parameters
linked to the nonlinear data fidelity, which we did not optimize for each single approach.
It is certainly possible that the utilized adjustments are simply more suitable for specific
combinations of data sets and regularizers. Hence, it is not easily possible to achieve a
fair comparison with the nonlinear model. Nevertheless, we chose two of the nonlinear
models for the real data application.

In order to estimate the motion of migrating cells based on in vivo microscopy data,
we decided to combine the nonlinear optical flow constraint with two variants of the
extended regularizer. The results are convincing and show realistic intracellular behavior.
However, the results also exhibit small movements in the background of the cells, where
there should actually be no visible motion. This characteristic is typical for optical
flow models. Since the background in the data is mainly constant, the optical flow
constraint is also fulfilled for false detected motion. An identification of pixels based on
their intensity is therefore not uniquely possible. A way out of this problem might be
to insert a sparsity constraint for the velocity fields. This would achieve a solution with
no movements in constant areas.

7.2 Indirect Tracking

In Chapter 4 we discussed the topic of indirect tracking. Since this issue requires a
reconstruction step, we introduced a time-dependent reconstruction operator. A combi-
nation of this reconstruction with the optical flow models that we derived in the previous
section led to a general model for indirect tracking. This model consists of a fidelity to
solve the reconstruction task, a regularizer for the reconstructed image, a regularizer for
the velocity field, and the optical flow constraint for the motion estimation. We specified
two variants for this model, which still have a general reconstruction operator and differ
only in the norm of the data fidelity. For these models we also showed the existence of
solutions. We additionally discussed the numerical realization, which roughly consists
of an alternating minimization that is based on Dirks (2015).
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We applied the specified models to a dynamic X-ray tomography approach. For this
sake, we shortly discussed the general Radon transform as well as a time-dependent
version of it. We used different experimental settings to test the performance of the
models. All settings have in common that they only allow for a very limited amount of
projections for every time step, whereas the scanned scenery is continuously moving.
The best results are achieved by an approach using a random arrangement of angles for
consecutive time steps. With this procedure we achieved valuable results with only 15
measurements overall. Hence, with our model the necessary amount of measurements
for dynamic data is comparably small as for static data.

Naturally, there are some aspects of the indirect tracking model that remain to be
discussed in further studies. The objects we used for scanning had a rather sim-
ple shape without any fine structures. Also the movements were relatively slow and
straight. The next step in this approach is thus to use more complex data sets and in-
vestigate whether fine structures can also be discovered with the indirect tracking model.

The last aspect we suggest for broader analysis is the distribution of the chosen angles.
Choosing random angles means that it is also possible to use 15 times the same or very
close angles. In this case, it would not be possible to achieve valuable results with any
model. Consequently, an open question is how to restrict the distribution of angles in
order to obtain the best results.
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8
OUTLOOK: MODELING OF MOTION

This chapter gives an outlook on flow modeling and analysis, which can potentially be
used as a priori information for motion estimation models. For this purpose, we depart
from imaging and instead have a closer look into mathematical modeling of moving
particles. This way we are able to gain important information about the behavior of
cells, particles or other individuals, which is known to be a meaningful application for
the previously studied motion estimation models. Up to this point, motion estimation
models are only based on the information, which is visible in the images. They ignore the
fact that behavior of particle systems can often be calculated with a certain probability.
Using this information can enhance motion estimation by predicting certain directions of
moving objects or characteristic structures in a flow field. This outlook can be regarded
as a motivation to close the gap between imaging and mathematical modeling.

With this outlook we provide a systematic study of macroscopic models for transport
and diffusion under crowded conditions. We focus on systems of convection-diffusion
equations for particle densities rather than hydrodynamic equations for velocities and
reaction terms. For the most frequently used approaches, we provide a structured
overview of the modeling assumptions and derivations from microscopic stochastic
models. Subsequently, we rewrite the models in a unified gradient flow formulation.
This allows to obtain macroscopic interpretations of the different model paradigms in
terms of mobilities and entropies, as well as a first way of comparing different approaches.
Due to this unified presentation, this study also serves as a survey of crowded motion
models in literature.

The remainder of this chapter is organized as follows: We start with a short intro-
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duction into mathematical modeling of motion. In Section 8.2 we derive five different
mathematical models to describe the bidirectional movement of two species. One
of them is a mean-field model, two are discrete models, and three are macroscopic
models. The discrete models differ in the possibility of two particles to exchange their
spatial position. The macroscopic models consist of a model that describes only the
pressure exerted by the two species, a second model that additionally considers the
influence of the empty spaces, and a third model that describes a nearest-neighbor
repulsion between the single particles. In the subsequent section, we develop gradient
flow formulations for the previously described models and analyze their behavior in
relation to entropy dissipation. This serves as a foundation for the subsequent analytic
aspects. In Section 8.4 we study the existence of stationary and transient solutions. We
continue with an analysis of the asymptotic regime of low densities, where consistency
with standard linear transport-diffusion systems is verified.

8.1 Introduction

Mathematical modeling of motion is a prominent and challenging subject, which is
motivated by a whole range of important applications. Meaningful examples are the
transport of ions through channels (cf. Gillespie et al. (2002)), intracellular transport
processes (cf. Bressloff and Newby (2013)), systems of migrating cells (cf. Burger

et al. (2007a) and Hillen and Painter (2009)), animal behavior (cf. Dorigo et al.
(1996)), and pedestrian motion (cf. Helbing and Molnar (1995)). Obviously, there
are several relevant aspects in such complex systems. An issue, which is typically
important for modeling of motion is crowding. However, the implications of specific
models for size exclusion effects are still not clear in most cases. For this reason, we give
a detailed study of different macroscopic size exclusion models and their mathematical
properties in this chapter, with the aim of analyzing which kind of effects can be covered.

In this chapter we develop and analyze different kinds of multicellular models. We make
use of the well-known models for a single species, and expand them to models for two
different species. Most of the presented models could easily be expanded to models for
more than two species. All the models developed in this chapter are one-dimensional, i.e.
the species can either move to the left or to the right. A special feature of the models
in this chapter is the fact that we allow the particles of each of the two species to move
both to the left and to the right. Thus, every single particle is able to move bidirectional.

The perspective of observing the movement of the particles is very different for the
presented models. Mainly, we have three kinds of models. These are mean-field models,
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discrete models, and macroscopic models. Each of them gives us information about
different characteristics. Thus, it depends on the specific research goal, whose framework
fits the best. The idea of a mean-field model is based on the movement of ions through
an electric field. The main characteristic of mean-field models is the fact that the
single particles are influenced by an external field, however not by other single particles
directly. The field constitutes an average influence, which replaces the influences of
the other particles. One of the advantages is that it is not necessary to take care of
the behavior of every single particle to make predictions about the density behavior.
In contrast to this, discrete models describe single steps of single particles from one
lattice site to another. Every particle is treated as an individual and it is possible to
make predictions for the movement of every single one. This is an advantage if the
number of cells is small enough. On the other hand, computations and simulations are
very expensive. A convenient way to describe the behavior of a whole population of
particles is the simulation with macroscopic models. Similar to mean-field models, they
do not consider the influence of every single cell, but they calculate densities for every
species, which influence each other. This is useful, since often a special behavior of small
particles is only noticeable on a macroscopic scale and thus can easier be incorporated
into this kind of model.

The main kinds of models treated in this section are macroscopic systems of transport-
diffusion equations for a vector c(x, t) = (c1(x, t), . . . , cM(x, t)) of densities, which are
of the form

∂ci
∂t

= ∇ ·
(

M∑
j=1

Dij(c)∇cj +Mij(c)∇Vj

)
. (8.1)

Here D = (Dij) are diffusion coefficients and M = (Mij) are mobilities. The transport is
driven by potential forces with external potentials Vi, which we assume to be stationary
for simplicity. Hence, we are able to discuss the effects of crowding and size exclusion
models in a generic way independent of other interactions. We observe that the canonical
version of the transport-diffusion equations in absence of size exclusion is given by the
Fokker-Planck equation

∂ci
∂t

= ∇ · (Dii(∇ci + ci∇Vi)) , (8.2)

with Dii independent of c. This means that D is a diagonal matrix with constant
entries and M is a diagonal matrix with entries Diici. Thus, we are able to distinguish
crowding models by nonlinearities in D and M and in the system case by off-diagonal
terms in D and M .
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8.2 Derivation

In this section we introduce different models for bidirectional transport of two species.
We start by developing a mean-field model in Section 8.2.1. In Section 8.2.2 we show two
discrete models, which differ in the possibility of two neighboring particles to exchange
their spaces. Afterwards, we present three different macroscopic models in Section 8.2.3.
Two of them are pressure models, one of which considers empty spaces, the other one
does not. The third model is a nearest-neighbor repulsion model that respects the
influence of both types of particles in the direct environment of a specific particle.

8.2.1 Mean-Field Model

The first model to derive is the mean-field model. It has a physical relationship and
describes the movement of charged ions through an electric field. We use Poisson-
Nernst-Planck (PNP) equations, which originally contain an equation for the electric
field, and a single equation for the density of each ion type. However, for the sake of
simplicity, we assume that the influence of the electrostatic field is zero. Hence, we
only consider the equations for the densities of the ion types. Here, and also for all
of the following models, we assume to have two different types of particles, which we
identify by red color referred to as r, and blue color referred to as b. The particles,
which are in this case ions, are influenced by diffusion, the electric field in correlation
with the charge of the particle, and interactions between the particles. Our model is
based on the model in Burger et al. (2007a). For other related mean-field models
cf. Arning (2009), Franek (2011), Horng et al. (2012), Lin and Eisenberg (2012).

Gr denotes a matrix that describes the influence of red particles on a red particle; Grb

describes the influence of blue particles on a red particle; Gb describes the influence of
blue particles on a blue particles; Gbr describes the influence of red particles on a blue
particle. With this notation, the mean-field equations have the following form:

∂r

∂t
= ∇ · (Dr∇r + r∇(r −Gr ∗ r) + r∇(b−Grb ∗ b)) ,

∂b

∂t
= ∇ · (Db∇b+ b∇(b−Gb ∗ b) + b∇(r −Gbr ∗ r)) . (8.3)

The first term on the right-hand side of the density equations characterizes the diffusion.
The second term considers the influence of external forces, i.e. of the electric field. The
remaining terms are interaction terms and describe the influence of particles of the
same type (third term), and of particles of the other type (fourth term).
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8.2.2 Discrete Jump Process

In this subsection we present two discrete models for the motion of the different particle
types r and b. In both cases we assume the particle to move along a lattice with equal
sites. It is possible for at most one single particle to be on a specific site at the same
time. A particle can either move to an empty neighboring site or stay on the same site.
In the first model the particles can additionally exchange the spaces with particles on
neighboring sites. This feature is excluded for the second model and thus constitutes
the only difference between the two of them. In both cases the movement is additionally
influenced by forces that act on the particles. Vr is a force that acts on the red particles,
and Vb is a force that acts on the blue particles.

Discrete Jumps with Space Exchange

To set up the master equation for the discrete model that includes space exchanges,
we need to define the probabilities for the particles to jump to a neighboring lattice
site. We denote by P 1± the probability that a particle of type r jumps to the next site
on the right or on the left and that this site is empty before. The probability that the
next site on the right or on the left of a red particle is occupied by a blue particle, with
which the red particle changes the space, is described by P 2±. Q1± and Q2± respectively
are the appropriate probabilities for the blue particles. For space x, time t and lattice
length h these probabilities have the following form:

P 1±(x, t) =

(
p1r ∓ hq1r∇Vr

(
x± h

2
, t

))
· (1− rx±h − bx±h),

P 2±(x, t) =

(
p2r ∓ hq2u∇Vr

(
x± h

2
, t

))
· bx±h,

Q1±(x, t) =

(
p1b ∓ hq1b∇Vb

(
x± h

2
, t

))
· (1− rux±h

− bx±h),

Q2±(x, t) =

(
p2b ∓ hq2b∇Vb

(
x± h

2
, t

))
· rx±h.

(8.4)

The positive constants p1r, p2r, p1q, and p2q characterize the probability to jump to a space
in the absence of external forces. Moreover, the constants q1r , q2r , q1q , and q2q specify
the influence of the external forces. The rear factor in these equations depicts the
probability that the neighboring site is empty or occupied by a suitable particle.

Since we do not distinguish between different particles of the same type, we do not need
to determine probabilities for space exchanges within a single type. We are now able to
formulate the master equations, which describe the current state of the distinct types
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of particles based on the previous state:

r(x, t+ dt) = r(x, t)
(
1− P 1−(x, t)− P 1+(x, t)

)
+ P 1−(x+ h)r(x+ h, t) + P 1−(x− h)r(x− h, t)

− r(x, t)
(
P 2−(x) + P 2+(x)

)
+ P 2−(x+ h)r(x+ h, t) + P 2−(x− h)r(x− h, t)

+ b(x, t)
(
Q2−(x) +Q2+(x)

)
−Q2−(x+ h)b(x+ h, t)−Q2−(x− h)b(x− h, t),

b(x, t+ dt) = b(x, t)
(
1−Q1−(x, t)−Q1+(x, t)

)
+Q1−(x+ h)b(x+ h, t) +Q1−(x− h)b(x− h, t)

− b(x, t)
(
Q2−(x) +Q2+(x)

)
+Q2−(x+ h)b(x+ h, t) +Q2−(x− h)b(x− h, t)

+ r(x, t)
(
P 2−(x) + P 2+(x)

)
− P 2−(x+ h)r(x+ h, t)− P 2−(x− h)r(x− h, t).

Taylor expansion up to the second order and subsequent insertion of the probabilities
(8.4) leads us to:

r(x, t+ dt)− r(x, t) = 2h2q1r∇ · (r(1− r − b)∇Vr)

+ h2p1r∇ · ((1− r − b)∇r + r(∇r +∇b))

+ 2h2q2r∇ · (rb∇Vr) + h2p2r∇ · (b∇r − r∇b)

− 2h2b2∇ · (rb∇Vb)− h2p2b∇ · (r∇b− b∇r),

b(x, t+ dt)− b(x, t) = 2h2q1b∇ · (b(1− r − b)∇Vb)

+ h2p1b∇ · ((1− r − b)∇b+ b(∇r +∇b))

+ 2h2q2b∇ · (rb∇Vb) + h2p2b∇ · (r∇b− b∇r)

− 2h2r2∇ · (rb∇Vr)− h2p2r∇ · (b∇r − r∇b).

We use the following scaling to simplify the equations:

p1r
2

= D1
r ,

p2r
2

= D2
r ,

p2b
2

= D2
b ,

2q1r
p1r

= μ1
r,

2q2r
p2r

= μ2
r,

2b2

p2b
= μ2

b , Δt = 2h2,



8.2 Derivation 171

which results in

∂r

∂t
=D1

r∇ · ((1− r − b)∇r + r(∇r +∇b) + μ1
rr(1− r − b)∇Vr

)
+D2

r∇ · ((b∇r − r∇b) + μ2
rrb∇Vr

)
+D2

b∇ · ((−r∇b+ b∇r) + μ2
brb∇Vb

)
,

(8.5)

∂b

∂t
=D1

b∇ · ((1− r − b)∇b+ b(∇b+∇r) + μ1
bb(1− r − b)∇Vb

)
+D2

b∇ · ((r∇b− b∇r) + μ2
brb∇Vb

)
+D2

r∇ · ((−b∇r + r∇b) + μ2
rrb∇Vr

)
.

(8.6)

A detailed derivation of a similar model including space exchange can be found in
Frerking (2010).

Discrete Jumps without Space Exchange

If we eliminate the possibility of two neighboring particles to exchange their spaces,
the previous model gets reduced to the model discussed in Schlake (2011). The
derivation of the model is analog to the previously described model, but the terms that
are responsible for the space exchange, i.e. the ones including probabilities with index
2, have to be neglected. Thus, the model has the following form:

∂r

∂t
=D1

r∇ · ((1− r − b)∇r + r(∇r +∇b) + μ1
rr(1− r − b)∇Vr

)
,

∂r

∂t
=D1

b∇ · ((1− r − b)∇b+ b(∇b+∇r) + μ1
bb(1− r − b)∇Vb

)
.

(8.7)

Further discrete jump models are amongst others derived in Dyson et al. (2012),
Landman and Fernando (2011), Penington et al. (2011).

8.2.3 Macroscopic Hydrodynamic Models

In this section we introduce three macroscopic models for bidirectional transport. The
first one is a model that calculates the pressure of two different species and considers
different associated velocities. The second model respects the influence of the empty
spaces in the area not occupied by one of the two types of particles. The third model is a
nearest-neighbor model including repulsive effects of particles in the direct environment.
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Pressure

To describe the derivation of the particle densities with their appropriate velocities, we
divide each particle type according to their direction of movement. Here rl are the red
particles that move to the left, rr are the red particles that move to the right, bl are the
blue particles that move to the left, br are the blue particles that move to the right. We
assume that all left-moving particles have the velocity vl and all right-moving particles
have the velocity vr independent of their particular color. The red particles move with
a diffusion constant D̃r and the blue ones with D̃b. We allow that the particles are
able to change their direction of movement. The notation for the probabilities of these
changes is as follows:

P r
l : probability for a change from rl to rr

P r
r : probability for a change from rr to rl

P b
l : probability for a change from bl to br

P b
r : probability for a change from br to bl

We suggest the following equations to describe the development of the particle densities:

∂rl
∂t

+∇ · (vlrl) = D̃rΔr − P r
l rl + P r

r rr,

∂rr
∂t

+∇ · (vrrr) = D̃rΔr − P r
r rr + P r

l rl,

∂bl
∂t

+∇ · (vlbl) = D̃bΔb− P b
l bl + P b

r br,

∂br
∂t

+∇ · (vrbr) = D̃bΔb− P b
r br + P b

l bl.

The first terms on the right-hand side characterize the diffusion of the particles. The
last two terms specify the changes of the direction of movement. To compare this model
to the other models presented in this chapter, we need to summarize both equations for
the red particles, and both equations for the blue particles by summing them up:

∂r

∂t
=

∂rl
∂t

+
∂rr
∂t

= DrΔr −∇ · (vlrl + vrrr),

∂b

∂t
=

∂bl
∂t

+
∂br
∂t

= DbΔb−∇ · (vlbl + vrbr),

with Dr = 2D̃r and Db = 2D̃b. The terms that specify the change of the direction of
movement eliminate each other during the last step.
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We also consider a model for the velocities of the different particles. These are influenced
by the density pressure, by the flux, by the friction, and by the signal gradient:

∂vl
∂t

+ vl∇ · vl = − k2

rl + bl
∇ · (r + b) +

1

rl + bl
∇ · (s∇ · vl)− λvl +∇Vr,

∂vr
∂t

+ vr∇ · vr = − k2

rr + br
∇ · (r + b) +

1

rr + br
∇ · (s∇ · vr)− λvr +∇Vb,

(8.8)

where k2 is the variance of the velocity distribution, s the viscosity, Vr the density
of a signal that affects the velocity of r-particles, and Vb the density of a signal that
affects the velocity of b-particles. The first terms on the right-hand side are the pressure
terms. They cause that the particles are not able to move very fast in case that the
pressure is high. The second terms are flux terms. If the surrounding particles that
move in the same direction are faster, a single particle will accelerate. If the surrounding
particles are slower, it will also slow down. The third terms involve the friction, and the
remaining terms include the influence of a signal gradient, which enforces the movement
of a distinct type of cell in one direction. The structure of the presented model is a
simplified version of the transport model derived in Frerking (2012).

Pressure Including Empty Spaces

In this section we present a model, which includes the influence of the free spaces on
the densities of the red and the blue particles. The model is based on Jackson and

Byrne (2002) and Jüngel and Stelzer (2012). For further literature cf. Jungel

and Stelzer (2013) and Richardson and King (2007). We assume that the empty
space behaves like particles with the density e. We will therefore continue referring to
them as empty particles. Since all of the space is filled up with red, blue, or empty
particles, we obtain r + b+ e = 1, which is equivalent to

e = 1− r − b.

We suggest that the red particles move with a velocity vr, the blue particles with vb,
and the empty particles with ve. Thus, we obtain the following equalities:

rt +∇(rvr) = 0, bt +∇(bvb) = 0, et +∇(eve) = 0. (8.9)

Since the empty particle only move as a consequence of the movements of the red and
blue particles, we achieve

eve = −rvr − bvb.
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We consider distinct stresses σr, σb and σe for each of the particles types. Additionally,
we assume p to be a common pressure acting on all of the particles. We also respect
the influence of the different particle types on each other. Let Frb be the force exerted
between red and blue particles, Fre the force between red and empty particles, and Fbe

the force between blue and empty particles. For all types we suppose that the force,
which a certain type exerts on another one, sums up to zero with the negative force
exerted by the second one on the first one. With these assumptions, we obtain the
following balance equations:

∇(rσr) + p∇r + Frb + Fre = 0,

∇(bσr) + p∇b− Frb + Fbe = 0,

∇(eσe) + p∇e− Fre − Fbe = 0.

(8.10)

Now we have a closer look on the stresses σ. For the red and the blue particles, the
stresses are composed of the common pressure p, and some isotropic pressure Pr or Pb.
For the empty particles, the stress only consists of the common pressure, since there is
no isotropic pressure for this type. Consequently, we achieve

σr = −(p+ Pr), σb = −(p+ Pb), σe = −p.

For the isotropic pressures, we suggest that it increases with the density of the particular
particle type, and also with the density of the other types. Thus, we use the following
dependencies:

Pr = srr(1 + θb), Pb = sbb(1 + θr),

where sr, sb and θ are positive constants. Regarding the forces, we assume that they
are proportional to the differences of the appropriate velocities in terms of drag force,
and to the particle densities. With these assumptions, we formulate

Frb = k(vb − vr)rb, Fre = k(ve − vr)re, Fbe = k(ve − vb)be,

where k is a positive constant. Inserting the force equations into (8.10), we obtain:

∇(rPr) +∇pr = Frb + Fre

= k (−r(b+ e)vr + rbvb + reve)

= −krvr.
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Solving the above equation with respect to rvr results in

rvr = −k−1 (∇(rPr) +∇pr)

= −k−1
(∇ (r2sr(1 + θb)

)−∇ (srr3(1 + θb) + sbrb
2(1 + θr)

))
= −k−1

(
(1− r)∇ (srr2(1 + θb)

)−∇r
(
sbb

2(1 + θr)
))

.

An analog procedure for the blue particles leads us to

bvb = −k−1
(
(1− b)∇ (sbb2(1 + θr)

)− b∇ (srr2(1 + θb)
))

.

Finally, we insert the above equations into (8.9) and achieve

rt = k−1∇ · ((1− r)∇ (srr2(1 + θb)
)− r∇ (sbb2(1 + θr)

))
,

bt = k−1∇ · ((1− b)∇ (sbb2(1 + θr)
)− b∇ (srr2(1 + θb)

))
.

(8.11)

Nearest-Neighbor Repulsion

The third macroscopic model is the nearest-neighbor repulsion model. We assume that
every particle is influenced by the red and blue particles in the immediate environment.
We define a function F that determines the influence of other particles on a distinct
particle and a function H that eliminates the influences of particles outside a radius
R(x, t) of the regarded particle. This radius is determined by the number of neighbors
in the environment. The development of the particle densities appears as follows:

0 =
∂r

∂t
+∇ ·

(
r(x)

(∫
Frr

(
x− y

ε

)
H

(
x− y

R(x)

)
r(y) dy

+

∫
Frb

(
x− y

ε

)
H

(
x− y

R(x)

)
b(y) dy

))
,

0 =
∂b

∂t
+∇ ·

(
b(x)

(∫
Fbb

(
x− y

ε

)
H

(
x− y

R(x)

)
b(y) dy

+

∫
Fbr

(
x− y

ε

)
H

(
x− y

R(x)

)
r(y) dy

))
.

The radius R can be identified by the following condition:∫
H

(
x− y

R(x)

)
(r(x) + b(x)) dy = C,
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where C is fixed by the number of particles of the interaction. We perform a change of
variables by locally approximating x via

y = x+ εỹ,

where ε > 0 is supposed to be small. This leads us to

0 =
∂r

∂t
+∇ ·

(
r(x)

(∫
Frr(ỹ)H

(
ỹ

R(x+εỹ)
ε

)
r(x+ εỹ) dỹ

+

∫
Frb(ỹ)H

(
ỹ

R(x+εỹ)
ε

)
dỹ

)
b(x+ εỹ)

)
,

0 =
∂b

∂t
+∇ ·

(
b(x)

(∫
Fbb(ỹ)H

(
ỹ

R(x+εỹ)
ε

)
b(x+ εỹ) dỹ

+

∫
Fbr(ỹ)H

(
ỹ

R(x+εỹ)
ε

)
r(x+ εỹ) dỹ

))
.

We continue with further scaling:

R = εR̃, z =
ỹ

R̃
, dỹ = R̃dz,

and obtain

0 =
∂r

∂t
+∇ ·

(
r(x)R̃d

(∫
Frr

(
R̃z
)
H (z) r

(
x+ εR̃z

)
dz

+

∫
Frb

(
R̃z
)
H (z) b

(
x+ εR̃z

)
dz

))
,

0 =
∂b

∂t
+∇ ·

(
b(x)R̃d

(∫
Fbb

(
R̃z
)
H (z) b(x+ εR̃z) dz

+

∫
Fbr

(
R̃z
)
H (z) r

(
x+ εR̃z

)
dz

))
,

where d is the dimension of movement. We also obtain a scaled version of the condition
for the radius R̃:

R̃d

∫
H(z) (r(x) + b(x))

(
x+ εR̃z

)
dz = C,

where ∫
H(z) (r(x) + b(x))

(
x+ εR̃z

)
dz ≈ r(x) + b(x).
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Consequently, for the radius R̃ is holds

R̃ ≈ (r(x) + b(x))−
1
d .

With

r
(
x+ εR̃z

)
= r(x) + εR̃z∇r(x) and b

(
x+ εR̃z

)
= b(x) + εR̃z∇b(x),

we are able to transform the equations for r and b in the following way:

0 =
∂r

∂t
+∇ ·

(
r(x)R̃d

(∫
H(z)Frr(R̃z) dz · r(x) + εR̃(x)

∫
H(z)Frr(R̃z)z dz · ∇r

+

∫
H(z)Frb(R̃z) dz · b(x) + εR̃(x)

∫
H(z)Frb(R̃z)z dz · ∇b

))
,

0 =
∂b

∂t
+∇ ·

(
b(x)R̃d

(∫
H(z)Fbb(R̃z) dz · b(x) + εR̃(x)

∫
H(z)Fbb(R̃z)z dz · ∇b

+

∫
H(z)Fbr

(
R̃z
)
dz · r(x) + εR̃(x)

∫
H(z)Fbr

(
R̃z
)
z dz · ∇r

))
.

Since none of the first integrals in each line of the above equations contains a density
term, the particular terms are equal to zero. Furthermore, we are able to formulate the
remaining integrals as functions dependent on R̃:

ur

(
R̃
)

:=

∫
H(z)Frr

(
R̃z
)
z dz, vr

(
R̃
)

:=

∫
H(z)Frb

(
R̃z
)
z dz,

ub

(
R̃
)

:=

∫
H(z)Fbb

(
R̃z
)
z dz, vb

(
R̃
)

:=

∫
H(z)Fbr

(
R̃z
)
z dz.

Altogether, this results in

∂r

∂t
+∇ ·

(
εr(x)R̃d+1

(
ur

(
R̃
) · ∇r + vr

(
R̃
) · ∇b

))
= 0,

∂b

∂t
+∇ ·

(
εb(x)R̃d+1

(
ub

(
R̃
) · ∇b+ vb

(
R̃
) · ∇r

))
= 0.

(8.12)

To model a useful repulsion between the particles, we assume that the forces between
particles are stronger in case that they are closer together. Thus, the forces are dependent
on the particular distances and have the following structure:

Frr(x− y) = − krr

(mr + 1) |x− y|mr+1 , Frb(x− y) = − krb

(nr + 1) |x− y|nr+1 ,

Fbr(x− y) = − kbr

(nb + 1) |x− y|nb+1 , Fbb(x− y) = − kbb

(mb + 1) |x− y|nb+1 ,
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for positive constants krr, krb, kbb, kbr, mr, mb, nr, and nb. The idea of the model is
mainly based on the model in Murray et al. (2009) and Murray et al. (2012), which
can also be seen in Agsten (2012).

8.3 Gradient Flow Formulation

For the derivation of the models shown in Section 8.2, we neglected production or
reduction effects of particles of the types r or b. Therefore, we have a mass conservation
in every model, i.e.∫

Ω

r(x) dx = cr and
∫
Ω

b(x) dx = cb, (8.13)

where cr and cb are constants.

In the remainder of this section we develop gradient flow formulations for the previously
introduced models, i.e. we show that they have the following structure:

∂

∂t

(
r

b

)
= ∇ ·

(
M(r, b)∇ ·

(
Er

Eb

))
,

with M(r, b) being a quadratic matrix depending on r and b that is different for every
single model. Er and Eb are the derivations of an entropy functional E(r, b) with respect
to r and b. E(r, b) can also slightly vary depending on the distinct model.

We use this formulation to check the single models for entropy dissipation properties.
For this aim we investigate whether it is E(r, b)t ≤ 0. For the derivation of E(r, b) with
respect to t it applies

d

dt
(E(r, b)) = Errt + Ebbt.

With the help of the Riesz representation theorem and a partial integration, we obtain

Errt = −
∫
Ω

M11|∇Er|2 +M12∇Er∇Eb dx,

Ebbt = −
∫
Ω

M22|∇Eb|2 +M21∇Er∇Eb dx.
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As a consequence it is

d

dt
(E(r, b)) = Errt + Ebbt

= −
∫
Ω

M11|∇Er|2 +M22|∇Eb|2 + (M12 +M21)∇Er∇Eb dx.

In case that M(r, b) is positive definite, it is Et(r, b) ≤ 0. Therefore, we have an
entropy dissipation for every model, which has the above gradient flow formulation and
a positive definite matrix M(r, b). This entropy dissipation serves as a starting point
for the subsequent analysis of the models with respect to the existence of stationary
solution.

8.3.1 Mean-Field Model

In order to specify a gradient flow structure formulation for the mean-field model (8.3),
we assume the interaction matrix G to be symmetric, i.e. Grb = Gbr. This is a useful
assumption, since in common particle systems the force between two particles is equal
to its counter force. We define an entropy functional E(r, b) as follows:

E(r, b) =

∫
Ω

Drr log r +Dbb log b+
1

2
(r2 + b2 + 2br) dx

− 1

2

∫
Ω

r(Gr ∗ r) + r(Grb ∗ b) dr − 1

2

∫
Ω

b(Gb ∗ b) + b(Grb ∗ r) db.
(8.14)

We obtain the following derivatives of the entropy functional with respect to r and b:

Er = Dr log r + r + b−Gr ∗ r −Grb ∗ b,
Eb = Db log b+ r + b−Gb ∗ b−Grb ∗ r,

and the corresponding gradients

∇Er =
Dr

r
∇r +∇r +∇b−∇(Gr ∗ r)−∇(Grb ∗ b),

∇Eb =
Db

b
∇b+∇b+∇r −∇(Gb ∗ b)−∇(Grb ∗ r).

For

M(r, b) =

(
r 0

0 b

)
(8.15)



180 8 Outlook: Modeling of Motion

we finally achieve the gradient flow structure

∂

∂t

(
r

b

)
= ∇ ·

(
M(r, b)∇ ·

(
Er

Eb

))
.

To prove the positive definiteness of M(r, b), it is sufficient to verify that all leading
principal minors are positive. The first one is simply r, which is positive by definition.
The second one is rb, which is positive due to the positivity of r and b. Thus, the matrix
M(r, b) is always positive definite, which means that the entropy is dissipating for the
mean-field model.

8.3.2 Discrete Jump Process

Discrete Jumps with Space Exchange

To show the gradient flow structure of the discrete jump model with space exchange
(8.5) – (8.6), we define Vb := −Vr, as well as μ1

r = μ2
r = μr and μ1

b = μ2
b = μb. Again,

we start by defining the entropy functional E(r, b):

E(r, b) =

∫
Ω

(r log r + b log b+ (1− r − b) log(1− r − b)

+μrrVr − μbbVr) dx.

(8.16)

The derivatives of the entropy functional with respect to r and b have the following
structure:

Er = log r − log(1− r − b) + μrVr,

Eb = log b− log(1− r − b)− μbVr.

We are now able to determine the gradients of these derivatives:

∇Er =
∇r

r
+

∇(r + b)

1− r − b
+ μr∇Vr,

∇Eb =
∇b

b
+

∇(r + b)

1− r − b
− μb∇Vr.
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Transformation of (8.5) leads us to

∂r

∂t
=∇ ·

(
D1

r(1− r − b)r

(∇r

r
+

∇(r + b)

1− r − b
+ μr∇Vr

)
+ (D2

r +D2
b )rb∇ ·

((∇r

r
+

∇(r + b)

1− r − b
+ μr∇Vr

)
−
(∇b

b
+

∇(r + b)

1− r − b
− μb∇Vr

)))
=∇ · (D1

r(1− r − b)r∇Er + (D2
r +D2

b )rb∇ · (Er − Eb)
)

=∇ · ((D1
rr(1− r − b) + (D2

r +D2
b )rb

)∇Er − (D2
r +D2

b )rb∇Eb

)
.

Analog calculations for (8.6) achieve:

∂b

∂t
= ∇ · ((D1

bb(1− r − b) + (D2
r +D2

b )rb
)∇Eb − (D2

r +D2
b )rb∇Er

)
.

Thus, we obtain the following gradient flow structure:

∂

∂t

(
r

b

)
= ∇ ·

(
M(r, b)∇ ·

(
Er

Eb

))
,

with

M(r, b) =

(
D1

rr(1− r − b) + (D2
r +D2

b )rb −(D2
r +D2

b )rb

−(D2
r +D2

b )rb D1
bb(1− r − b) + (D2

r +D2
b )rb

)
. (8.17)

To test M(r, b) for positive definiteness, we analyze the leading principal minors. For
the first one it applies

Mf (r, b) = D1
rr(1− r − b) + (D2

r +D2
b )rb,

which is positive, since r + b is smaller than one and thus 1− r − b > 0. The remaining
parameters are positive by definition. The second leading principal minor is given by

Ms(r, b) =
(
D1

rr(1− r − b) + (D2
r +D2

b )rb
) (

D1
bb(1− r − b) + (D2

r +D2
b )rb

)
− (D2

r +D2
b )

2r2b2

=D1
rD

1
rrb(1− r − b)2 + (D2

r +D2
b )

2r2b2

+ (D1
rr +D1

bb)(D
2
r +D2

b )(1− r − b)rb− (D2
r +D2

b )
2r2b2

=D1
rD

1
rrb(1− r − b)2 + (D1

rr +D1
bb)(D

2
r +D2

b )(1− r − b)rb,
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which is greater than zero, since again (1− r− b) as well as all remaining parameters are
positive. Consequently, M(r, b) is positive definite and we obtain an entropy dissipation.

Discrete Jumps without Space Exchange

The determination of the gradient flow formulation for the discrete model without space
exchange is analog to that for the discrete model with space exchange, which we already
showed previously. We choose the same entropy functional as before:

E(r, b) =

∫
Ω

(
r log r + b log b+ (1− r − b) log(1− r − b)

+ μrrVr − μbbVr

)
dx.

(8.18)

Insertion of the gradients of the derivatives of E(r, b) into (8.7) leads us to:

∂

∂t

(
r

b

)
= ∇ ·

(
M(r, b)∇ ·

(
Er

Eb

))
,

with

M(r, b) =

(
D1

rr(1− r − b) 0

0 D1
bb(1− r − b)

)
. (8.19)

Due to the symmetry of the matrix, we check again the positivity of the leading principal
minors to verify the positive definiteness of M(r, b). The first leading principal minor is

Mf (r, b) = D1
rr(1− r − b),

which is greater than zero due to the positivity of (1 − r − b) and of all remaining
parameters. The second leading principal minor is

Ms(r, b) = D1
rD

1
brb(1− r − b)2,

which is also greater than zero. Again, the resulting positive definiteness of M(r, b)

gives us an entropy dissipation for this model.
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8.3.3 Macroscopic Hydrodynamic Models

Pressure

Before showing the gradient flow structure of the pressure model, we perform a diffusive
scaling, i.e.

t̃ = ε2t, x̃ = εx, ṽ =
v

ε
.

Now it applies

∂

∂t̃
=

∂

∂t

(
∂t

∂t̃

)
=

∂

∂t

1

ε2
and

∂

∂x̃
=

∂

∂x

(
∂x

∂x̃

)
=

∂

∂x

1

ε
,

and the model for the densities transforms to

ε2
∂r(x̃, t̃)

∂t̃
= ε2DrΔr − ε2∇ · (ṽlrl + ṽrrr),

ε2
∂b(x̃, t̃)

∂t̃
= ε2DbΔb− ε2∇ · (ṽlbl + ṽrbr).

After dividing both equations by ε2 and neglecting the tildes, we retrieve the original
model:

∂r

∂t
= DrΔr −∇ · (vlrl + vrrr),

∂b

∂t
= DbΔb−∇ · (vlbl + vrbr).

(8.20)

The same scaling as previously used applied to the velocity model (8.8) leads us to

ε3
∂ṽl

∂t̃
+ ε3ṽl∇ · ṽl = − ε

rl + bl
∇ · (r + b) +

ε3s

rl + bl
Δṽl − εvl,

ε3
∂ṽr

∂t̃
+ ε3ṽr∇ · ṽr = − ε

rr + br
∇ · (r + b) +

ε3s

rr + br
Δṽr − εvr.

For the above equations, we set k2 = λ = 1 and ∇Vr = ∇Vb = 0. Dividing by ε,
subsequent approaching of ε towards zero and neglecting the tildes yields

vl = − 1

rl + bl
∇(r + b) and vr = − 1

rr + br
∇(r + b),

which is equivalent to

(rl + bl)vl = −∇(r + b) and (rr + br)vr = −∇(r + b).
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Inserting this into (8.20) results in

∂r

∂t
= DrΔr +Δ(r + b) = (Dr + 1)Δr +Δb,

∂b

∂t
= DbΔb+Δ(r + b) = (Db + 1)Δb+Δr.

(8.21)

We define the following entropy functional:

E(r, b) =

∫
Ω

r log r + b log b dx.

Subsequently, we are able to determine the gradients of the derivatives with respect to
r and b:

∇Er =
∇r

r
, ∇Eb =

∇b

b
.

We insert these gradients into (8.21) and obtain the gradient flow structure

∂

∂t

(
r

b

)
= ∇ ·

(
M(r, b)∇ ·

(
Er

Eb

))
,

with

M(r, b) =

(
(Dr + 1)r b

r (Db + 1)b

)
. (8.22)

Since the mobility matrix M(r, b) is symmetric, we again check the positivity of the
principal leading minors to verify the positive definiteness. The first one is

Mf (r, b) = (Dr + 1)r,

which is greater than zero due to the positivity of the Dr and r. The second one is

Ms(r, b) = (Dr + 1)(Db + 1)rb− rb

= DrDbrb+Drrb+Dbrb,

which is greater than zero due to the positivity of all parameters. Thus, M(r, b) is
positive definite and the entropy is dissipating.
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Pressure Including Empty Spaces

Similar to the previous section, for the entropy functional

E(r, b) =

∫
Ω

r log r + b log b dx,

we obtain the following gradients of the derivatives with respect to r and b:

∇Er =
∇r

r
, ∇Eb =

∇b

b
.

Insertion into (8.11) leads us to

∂

∂t

(
r

b

)
= ∇ ·

(
M̃(r, b)∇ ·

(
Er

Eb

))

with

M̃(r, b) =
1

k

(
2srr(1− r)(1 + θb)− sbθrb

2 srθr
2 − 2sbrb(1− θr)

sbθb
2 − 2srrb(1 + θb) 2sbb(1− b)(1 + θr)− srθr

2b

)
.

We choose the following scaling:

ts =
t

τ
, xs =

x

l
, τ =

kl2

sr
, β =

sb
sr
,

and obtain

∂

∂ts

(
r

b

)
= ∇xs ·

(
M(r, b)∇xs ·

(
Er

Eb

))

with xs ∈ (0, 1), ts > 0 and

M(r, b) =

(
2r(1− r)(1 + θb)− βθrb2 θr2 − 2βrb(1− θr)

βθb2 − 2rb(1 + θb) 2βb(1− b)(1 + θr)− θr2b

)
. (8.23)

The positive definiteness of this matrix is ambiguous. It strongly depends on the choice
of parameters. In case that β is not close to one, i.e. sr and sb are very different, the
positive definiteness can not be achieved. In case that sr and sb are not equal, the
external force exerted on one of the particle types is much higher then the force exerted
on the other type.
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Nearest-Neighbor Repulsion

Once again, we use the entropy functional

E(r, b) =

∫
Ω

r log r + b log b dx,

and its gradients

∇Er =
∇r

r
and ∇Eb =

∇b

b
.

We insert the gradient functions into (8.12) and therefore obtain the gradient flow
structure:

∂

∂t

(
r

b

)
= ∇ ·

(
M(r, b)∇ ·

(
Er

Eb

))
,

with

M(r, b) =

(
−εR̃d+1r2(x)ur

(
R̃
) −εR̃d+1r(x)b(x)vr

(
R̃
)

−εR̃d+1r(x)b(x)vb
(
R̃
) −εR̃d+1b2(x)ub

(
R̃
) )

. (8.24)

We assume Frb = Fbr, which means that the force that a particle exerts on another
particle is equal to the counterforce of the other particle on the first one. With this
assumption the matrix M(r, b) is symmetric and we are able to analyze its positive
definiteness by testing the positivity of the principal leading minors. The first one is

Mf (r, b) = −εR̃d+1r2(x)

∫
H(z)Frr

(
R̃z
)
z dz,

which is greater than zero, since Frr is negative. The second principal leading minor is

Ms(r, b) = ε2R̃2(d+1)r2(x)b2(x)

(∫
H(z)Frr

(
R̃z
)
z dz

∫
H(z)Fbb

(
R̃z
)
z dz

−
(∫

H(z)Frb

(
R̃z
)
z dz

)2
)
.

The positivity of this minor depends on the choice of parameters. If we assume Frr and
Fbb to be greater than Frb, then Ms(r, b), and thus also M(r, b), are positive definite.
This choice of parameters means that the forces between two particles of the same
type are stronger than the forces between two particles of different types. Only if this
condition is fulfilled, the model has a guaranteed entropy dissipation.
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8.4 Stationary Solutions

Based on the gradient flow formulations we presented in the previous section, this
section is about showing the existence of stationary solutions. We start the investigation
by using Lagrange multipliers to determine the critical points. We use (8.13) to obtain
the constraints

gr(x) =

∫
Ω

r(x, t) dx− cr = 0,

gb(x) =

∫
Ω

b(x, t) dx− cb = 0,

where cr and cb are constants. The Lagrangian functional has the form

L(r, b) = E(r, b) + λr

(∫
Ω

r dx− cr

)
+ λb

(∫
Ω

b dx− cb

)
,

with positive constants λr and λb.

As we already showed in Section 8.3, the mean-field model and the discrete models
always have an entropy dissipation. Therefore, critical points of L(r, b) are already
stationary solutions for the models. For the macroscopic models we additionally analyze
the bordered Hessian to show that the sufficient criterion for a stationary solution is
fulfilled.

8.4.1 Mean-Field Model

The entropy functional for the mean-field model is given by

E(r, b) =

∫
Ω

Drr log r +Dbb log b+
1

2
(r2 + b2 + 2br) +DrrVr +DbbVb dx

− 1

2

∫
Ω

r(Gr ∗ r) + r(Grb ∗ b) dr − 1

2

∫
Ω

b(Gb ∗ b) + b(Grb ∗ r) db.

For the derivatives of the Lagrangian functional it holds

Lr = Er + λr

= Dr log r + r + b+DrVr −Gr ∗ r −Grb ∗ b+ λr,

Lb = Eb + λb

= Db log b+ r + b−Gb ∗ b−Grb ∗ r + λb.
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Critical points for these functionals are existent in case that Lr = 0 and Lb = 0 hold.
To facilitate the analysis of the stationary solutions, we neglect the influence of the
electrostatic fields Vr and Vb. Additionally, we assume the logarithm terms to be zero.
Hence, the derivatives of the Lagrangian functional reduce to

Lr = r + b−Gr ∗ r −Grb ∗ b+ λr,

Lb = r + b−Gb ∗ b−Grb ∗ r + λb.

Regardless of this reduction, the existence of stationary solutions strongly depends on
the appearance of the convolution kernels Gr and Gb. In principle, the above equations
could be solved with respect to r and b in case that Gr and Gb are large enough and
do not contain zero points. However, in this case they cannot be calculated properly.
Consequently, we are not able to state stationary solutions for the mean-field model.

8.4.2 Discrete Jump Process

The discrete models have the entropy functional

E(r, b) =

∫
Ω

(r log r + b log b+ (1− r − b) log(1− r − b) + μrrVr − μbbVb) dx.

For the derivatives of the Lagrangian functional with respect to r and b it means that

Lr = Er + λr

= log r − log(1− r − b) + μrVr + λr,

Lb = Eb + λb

= log b− log(1− r − b)− μbVr + λb.

Since we are searching for critical points, we need to look for points, which satisfy
Lr = 0, as well as Lb = 0. In the absence of the external force Vr, the equations are
uniquely solvable for r and b, i.e. we obtain

r =

(
1− e−λr + e−λb

1 + e−λr + e−λb

)
e−λr ,

b =

(
1− e−λr + e−λb

1 + e−λr + e−λb

)
e−λb .

As previously explained, this critical point is already a stationary solution of L(r, b).
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8.4.3 Macroscopic Hydrodynamic Models

All of the macroscopic models have the entropy functional

E(r, b) =

∫
Ω

r log r + b log b dx.

In order to obtain a critical point, we need to satisfy

Lr = Er + λr = log r + λr = 0,

Lb = Eb + λb = log b+ λb = 0.

The unique solutions for these equations are

r = e−λr , and b = e−λb .

To verify a sufficient criterion for stationary solutions we check the sign of the determinant
of the Hessian matrix

H(r, b) =

⎛⎜⎝ 0 gr gb

gr Lrr Lrb

gb Lrb Lbb

⎞⎟⎠ ,

where the indices denote the specific derivatives of the particular functional. For the
given constraint and the Lagrangian functional we obtain the following determinant of
the Hessian matrix H(r, b):

det (H(r, b)) =

∣∣∣∣∣∣∣
0 1 1

1 1
r

0

1 0 1
b

∣∣∣∣∣∣∣ = −1

r
− 1

b
.

This determinant is negative for every choice of r and b, since per definition r and b are
greater than zero. Thus, it is also negative for the above determined critical point. As a
consequence, the critical point is a stationary solution for all of the macroscopic models.

8.5 Small Density Expansion

In this section we perform small density expansions for the different models. Therefore,
we approximate the previously calculated mobilities M(r, b) around a small density
δ = (0, 0) with the help of Taylor expansions.
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8.5.1 Mean-Field Model

We start by analyzing the mobility matrix (8.15) of the mean-field model. The first
term of the Taylor expansion at δ = (0, 0) is M(0, 0). For the second term, we need
to determine the Jacobian matrix of the mobility at δ = (0, 0). The two matrices are
given by

M(0, 0) =

(
0 0

0 0

)
and JM(0, 0) =

(
1 0

0 1

)
.

Hence, the Taylor expansion up to the first order of the mobility matrix reads

M(r, b) ≈ M(0, 0) + JM(0, 0)

(
r

b

)
=

(
r 0

0 b

)
.

For the Taylor expansion of the entropy functional (8.14), we need to determine E(0, 0),
the Jacobian matrix at δ = (0, 0), and the Hessian matrix at δ = (0, 0). In this context
we assume the diffusion coefficients Dr and Db to be zero. Hence, logarithm term of
the functional can be neglected. With this precondition it holds

E(0, 0) = c, JE(0, 0) =
(
0 0

)
, and HE(0, 0) =

(
1 1

1 1

)
,

where c is a constant. Thus, the Taylor expansion up to the second order is given by

E(r, b) ≈ E(0, 0) + JE(0, 0)

(
r

b

)
+

1

2

(
r

b

)T

HM(0, 0)

(
r

b

)
= c+

1

2
(r2 + 2br + b2).

8.5.2 Discrete Jump Process

Regarding the mobilities (8.17) and (8.19), we see that for the discrete models with and
without space exchange, it holds

M(0, 0) =

(
0 0

0 0

)
and JM(0, 0) =

(
D1

r 0

0 D1
b

)
.
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Thus, for both of the discrete models, we obtain the following Taylor expansion at
δ = (0, 0):

M(r, b) ≈
(
D1

rr 0

0 D1
bb

)
.

The entropy functionals (8.16) and (8.18), and also their Taylor expansions, are again
identical for both of the discrete models. For the remainder of this section, we neglect
the terms including r log r and b log b. Consequently, we achieve

E(0, 0) = c, JE(0, 0) =
(
μrVr μbVb

)
, and HE(0, 0) =

( −1 −1
−1 −1

)
,

where c is a constant. Hence, at δ = (0, 0) we obtain

E(r, b) ≈ c+ μrVrr + μbVbb− 1

2
(r2 + 2br + b2).

8.5.3 Macroscopic Hydrodynamic Models

For the mobility (8.22) of the pressure model without empty spaces, we have

M(0, 0) =

(
0 0

0 0

)
and JM(0, 0) =

(
Dr + 1 0

0 Db + 1

)
.

Altogether, at δ = (0, 0) it holds

M(r, b) ≈
(
(Dr + 1)r 0

0 (Db + 1)b

)
.

For the mobility (8.23) of the pressure model including empty spaces, it applies

M(0, 0) =

(
0 0

0 0

)
and JM(0, 0) =

(
2 0

0 2

)
.

Therefore, at δ = (0, 0) we obtain

M(r, b) ≈
(
2r 0

0 2b

)
.
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For the mobility (8.24) of the nearest-neighbor repulsion model, we achieve

M(0, 0) = JM(0, 0) =

(
0 0

0 0

)

due to the quadratic density term, and thus at δ = (0, 0) it holds

M(r, b) ≈
(
0 0

0 0

)
.

The entropy functional of the macroscopic models only consists of logarithm terms.
Again, we neglect these terms due to the non-defined Jacobian and Hessian matrices at
δ = (0, 0). There remains an integral of zero, which we specify by a constant c, i.e.

E(r, b) ≈ c.



Bibliography 193

BIBLIOGRAPHY

Acar, R. and Vogel, C.R., Analysis of bounded variation penalty methods for
ill-posed problems, Inverse Problems (1994), 10(6): p. 1217. 37

Agsten, B., Makroskopische Modelle für Kraftgesetze zwischen Zellen, Master’s thesis,
Westfälische Wilhelms-Universität Münster (2012). 178

Ambrosio, L., Fusco, N. and Pallara, D., Functions of bounded variation and
free discontinuity problems, volume 254, Clarendon Press Oxford (2000). 35

Arning, K., Mathematical Modelling and Simulation of Ion Channels, Ph.D. thesis,
Radon Institute for Computational and Applied Mathematics (2009). 168

Aubert, G., Deriche, R. and Kornprobst, P., Computing optical flow via
variational techniques, SIAM Journal on Applied Mathematics (1999), 60(1): pp.
156–182. 19

Aubert, G. and Kornprobst, P., Mathematical problems in image processing:
partial differential equations and the calculus of variations, volume 147, Springer
(2006). 26, 45

Bachmayr, M., Iterative total variation methods for nonlinear inverse problems,
Master’s thesis, Johannes Kepler Universität Linz (2007). 64

Bachmayr, M. and Burger, M., Iterative total variation schemes for nonlinear
inverse problems, Inverse Problems (2009), 25(10): p. 105004. 64

Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J. and Szeliski,

R., A database and evaluation methodology for optical flow, International Journal of
Computer Vision (2011), 92(1): pp. 1–31. 86

Barron, J.L., Fleet, D.J. and Beauchemin, S.S., Performance of optical flow
techniques, International Journal of Computer Vision (1994), 12(1): pp. 43–77. 87

Becker, F., Petra, S. and Schnörr, C., Optical flow, Handbook of Mathematical
Methods in Imaging (2015), pp. 1945–2004. 45



194 Bibliography

Bergen, J.R., Anandan, P., Hanna, K.J. and Hingorani, R., Hierarchical
model-based motion estimation, in Computer Vision - ECCV’92, Springer (1992) pp.
237–252. 44

Bertsekas, D.P., Nonlinear programming, Athena scientific Belmont (1999). 47

Bian, J., Siewerdsen, J.H., Han, X., Sidky, E.Y., Prince, J.L., Pelizzari,

C.A. and Pan, X., Evaluation of sparse-view reconstruction from flat-panel-detector
cone-beam ct, Physics in medicine and biology (2010), 55(22): p. 6575. 135

Black, M.J., Robust incremental optical flow, Ph.D. thesis, Yale university (1992). 46

Blaschke, B., Neubauer, A. and Scherzer, O., On convergence rates for the
iteratively regularized Gauss-Newton method, IMA Journal of Numerical Analysis
(1997), 17(3): pp. 421–436. 47

Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J., Distributed
optimization and statistical learning via the alternating direction method of multipliers,
Foundations and Trends in Machine Learning (2011), 3(1): pp. 1–122. 40

Bredies, K., Kunisch, K. and Pock, T., Total generalized variation, SIAM Journal
on Imaging Sciences (2010), 3(3): pp. 492–526. 19, 60

Bredies, K. and Valkonen, T., Inverse problems with second-order total generalized
variation constraints, Proceedings of SampTA (2011), 201. 60

Bressloff, P.C. and Newby, J.M., Stochastic models of intracellular transport,
Reviews of Modern Physics (2013), 85(1): p. 135. 166

Brune, C., 4d imaging in tomography and optical nanoscopy, Ph.D. thesis, Westfälische
Wilhelms-Universität Münster (2010). 20, 40

Brunet, D., Vrscay, E.R. and Wang, Z., On the mathematical properties of the
structural similarity index, IEEE Transactions on Image Processing (2012), 21(4): pp.
1488–1499. 146

Burger, M., Capasso, V. and Morale, D., On an aggregation model with long
and short range interactions, Nonlinear Analysis: Real World Applications (2007a),
8(3): pp. 939–958. 166, 168

Burger, M., Dirks, H. and Schönlieb, C.B., A variational model for joint motion
estimation and image reconstruction, preprint arXiv:1607.03255 (2016a). 100, 110

Burger, M. and Osher, S., A guide to the TV zoo, Springer (2013). 35, 61, 107



Bibliography 195

Burger, M., Papafitsoros, K., Papoutsellis, E. and Schönlieb, C.B., Infimal
convolution regularisation functionals of bv and lp spaces. part i: The finite p case,
Journal of Mathematical Imaging and Vision (2016b), 55(3): pp. 343–369. 59

Burger, M., Resmerita, E. and He, L., Error estimation for Bregman iterations
and inverse scale space methods in image restoration, Computing (2007b), 81(2-3):
pp. 109–135. 61, 97

Chambolle, A., An algorithm for total variation minimization and applications,
Journal of Mathematical imaging and vision (2004), 20(1-2): pp. 89–97. 85

Chambolle, A. and Pock, T., A first-order primal-dual algorithm for convex
problems with applications to imaging, Journal of Mathematical Imaging and Vision
(2011), 40(1): pp. 120–145. 38, 40

Charbonnier, P., Blanc-Féraud, L., Aubert, G. and Barlaud, M., Deter-
ministic edge-preserving regularization in computed imaging, IEEE Transactions on
image processing (1997), 6(2): pp. 298–311. 19

Cormack, A.M., Representation of a function by its line integrals, with some radiolog-
ical applications, Journal of applied physics (1963), 34(9): pp. 2722–2727. 136

Cormack, A.M., Representation of a function by its line integrals, with some radi-
ological applications. ii, Journal of Applied Physics (1964), 35(10): pp. 2908–2913.
136

Dacorogna, B., Introduction to the Calculus of Variations, volume 13, World Scientific
(2004). 27, 33

Dirks, H., Variational Methods for Joint Motion Estimation and Image Reconstruction,
Ph.D. thesis, Westfälische Wilhelms-Universität Münster (2015). 20, 32, 80, 100, 101,
111, 112, 145, 162

Dirks, H., https://github.com/hendrikmuenster/motionestimationgui (2016a). 83

Dirks, H., Joint large-scale motion estimation and image reconstruction, preprint
arXiv:1610.09908 (2016b). 84, 112

Dorigo, M., Maniezzo, V. and Colorni, A., Ant system: optimization by a colony
of cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) (1996), 26(1): pp. 29–41. 166



196 Bibliography

Douglas, J. and Rachford, H.H., On the numerical solution of heat conduction
problems in two and three space variables, Transactions of the American mathematical
Society (1956), 82(2): pp. 421–439. 40

Dyson, L., Maini, P.K. and Baker, R.E., Macroscopic limits of individual-based
models for motile cell populations with volume exclusion, Physical Review E (2012),
86(3): p. 031903. 171

Ekeland, I. and Témam, R., Convex analysis and variational inequalities (1999).
26, 27, 32

Elstrodt, J., Maß-und Integrationstheorie, Springer-Verlag (2006). 25

Engl, H.W., Hanke, M. and Neubauer, A., Regularization of inverse problems,
volume 375, Springer Science & Business Media (1996). 18

Esser, E., Zhang, X. and Chan, T.F., A general framework for a class of first order
primal-dual algorithms for convex optimization in imaging science, SIAM Journal on
Imaging Sciences (2010), 3(4): pp. 1015–1046. 38

Evans, L.C., Partial Differential Equations, American Mathematical Society (1997).
26, 29, 34

Fleet, D.J. and Jepson, A.D., Computation of component image velocity from local
phase information, International Journal of Computer Vision (1990), 5(1): pp. 77–104.
87

Forster, O., Analysis 1, Springer (2006). 50

Franek, M.M., Variational Methods using Transport Metrics and Applications, Ph.D.
thesis, Westfälische Wilhelms-Universität Münster (2011). 168

Frerking, L., Mathematische Modelle für Chemotaxis gemischter Zellsysteme, Bache-
lor’s thesis, Westfälische Wilhelms-Universität Münster (2010). 171

Frerking, L., Mathematical Models for Transport in Axons, Master’s thesis, West-
fälische Wilhelms-Universität Münster (2012). 173

Gilland, D.R., Mair, B.A., Bowsher, J.E. and Jaszczak, R.J., Simultaneous
reconstruction and motion estimation for gated cardiac ECT, IEEE Transactions on
nuclear science (2002), 49(5): pp. 2344–2349. 20

Gillespie, D., Nonner, W. and Eisenberg, R.S., Coupling Poisson–Nernst–Planck
and density functional theory to calculate ion flux, Journal of Physics: Condensed
Matter (2002), 14(46): p. 12129. 166



Bibliography 197

Giusti, E., Minimal surfaces and functions of bounded variation, 80, Springer Science
& Business Media (1984). 36

Goldstein, T., Li, M., Yuan, X., Esser, E. and Baraniuk, R., Adaptive primal-
dual hybrid gradient methods for saddle-point problems, preprint arXiv:1305.0546
(2013). 85, 86

Hadamard, J., Sur les problèmes aux dérivées partielles et leur signification physique,
Princeton university bulletin (1902), 13(49-52): p. 28. 18

Hämäläinen, K., Harhanen, L., Hauptmann, A., Kallonen, A., Niemi, E.

and Siltanen, S., Total variation regularization for large-scale x-ray tomography,
International Journal of Tomography and Simulation (2014), 25(1): pp. 1–25. 153

Hauptmann, A., Local computerized tomography and total variation regularization,
Master’s thesis, Technische Universität München (2012). 138

He, L., Burger, M. and Osher, S.J., Iterative total variation regularization with
non-quadratic fidelity, Journal of Mathematical Imaging and Vision (2006), 26(1-2):
pp. 167–184. 65

Helbing, D. and Molnar, P., Social force model for pedestrian dynamics, Physical
review E (1995), 51(5): p. 4282. 166

Hillen, T. and Painter, K.J., A users guide to PDE models for chemotaxis, Journal
of mathematical biology (2009), 58(1-2): pp. 183–217. 166

Horn, B.K. and Schunck, B.G., Determining optical flow, in 1981 Technical
Symposium East, International Society for Optics and Photonics (1981) pp. 319–331.
19, 53

Horng, T.L., Lin, T.C., Liu, C. and Eisenberg, B., PNP equations with steric
effects: a model of ion flow through channels, The Journal of Physical Chemistry B
(2012), 116(37): pp. 11422–11441. 168

Huber, P.J., Robust regression: asymptotics, conjectures and monte carlo, The Annals
of Statistics (1973), pp. 799–821. 57

Huber, P.J. et al., Robust estimation of a location parameter, The Annals of
Mathematical Statistics (1964), 35(1): pp. 73–101. 57

Jackson, T.L. and Byrne, H.M., A mechanical model of tumor encapsulation and
transcapsular spread, Mathematical Biosciences (2002), 180(1): pp. 307–328. 173



198 Bibliography

Jüngel, A. and Stelzer, I.V., Entropy structure of a cross-diffusion tumor-growth
model, Mathematical Models and Methods in Applied Sciences (2012), 22(07). 173

Jungel, A. and Stelzer, I.V., Existence analysis of Maxwell–Stefan systems for
multicomponent mixtures, SIAM Journal on Mathematical Analysis (2013), 45(4): pp.
2421–2440. 173

Landman, K.A. and Fernando, A.E., Myopic random walkers and exclusion pro-
cesses: Single and multispecies, Physica A: Statistical Mechanics and its Applications
(2011), 390(21): pp. 3742–3753. 171

Ley, K., Laudanna, C., Cybulsky, M.I. and Nourshargh, S., Getting to the site
of inflammation: the leukocyte adhesion cascade updated, Nature Reviews Immunology
(2007), 7(9): pp. 678–689. 120

Lin, T.C. and Eisenberg, B., A new approach to the Lennard-Jones potential and
a new model: PNP-steric equations, in 2012 International Conference on Nonlin-
ear Analysis: Evoutionary PDE and Kinetic Theory. Taipei, Taiwan: Institute of
Mathematics, Academia Sinica (2012) . 168

Middlebury, http://vision.middlebury.edu/flow (2016). 86, 87

Moré, J.J., The Levenberg-Marquardt algorithm: implementation and theory, in
Numerical analysis, pp. 105–116, Springer (1978). 64

Murray, P.J., Edwards, C.M., Tindall, M.J. and Maini, P.K., From a discrete
to a continuum model of cell dynamics in one dimension, Physical Review E (2009),
80(3): p. 031912. 178

Murray, P.J., Edwards, C.M., Tindall, M.J. and Maini, P.K., Classifying
general nonlinear force laws in cell-based models via the continuum limit, Physical
Review E (2012), 85(2): p. 021921. 178

Natterer, F., The mathematics of computerized tomography, volume 32, Siam (1986).
20, 136

Natterer, F. and Wübbeling, F., Mathematical methods in image reconstruction,
Siam (2001). 139

Niemi, E., Lassas, M. and Siltanen, S., Dynamic x-ray tomography with multiple
sources (2013), pp. 618–621. 20



Bibliography 199

Nikolova, M., Minimizers of cost-functions involving nonsmooth data-fidelity terms.
application to the processing of outliers, SIAM Journal on Numerical Analysis (2002),
40(3): pp. 965–994. 45

Orlicz, W., Beiträge zur Theorie der Orthogonalentwicklungen II, Studia Mathematica
(1929), 1(1): pp. 241–255. 37

Osher, S., Burger, M., Goldfarb, D., Xu, J. and Yin, W., An iterative
regularization method for total variation-based image restoration, Multiscale Modeling
& Simulation (2005), 4(2): pp. 460–489. 20, 61, 62, 63

Otte, M. and Nagel, H.H., Optical flow estimation: advances and comparisons
(1994), pp. 49–60. 86

Papenberg, N., Bruhn, A., Brox, T., Didas, S. and Weickert, J., Highly
accurate optic flow computation with theoretically justified warping, International
Journal of Computer Vision (2006), 67(2): pp. 141–158. 19

Penington, C.J., Hughes, B.D. and Landman, K.A., Building macroscale models
from microscale probabilistic models: a general probabilistic approach for nonlinear
diffusion and multispecies phenomena, Physical Review E (2011), 84(4): p. 041120.
171

Pettis, B.J., On integration in vector spaces, Transactions of the American Mathe-
matical Society (1938), 44(2): pp. 277–304. 37

Radon, J., 1.1 Über die Bestimmung von Funktionen durch ihre Integralwerte längs
gewisser Mannigfaltigkeiten, Classic papers in modern diagnostic radiology (1917), 5.
20, 136, 138

Ranftl, R., Bredies, K. and Pock, T., Non-local total generalized variation for
optical flow estimation, in Computer Vision–ECCV 2014, pp. 439–454, Springer
(2014). 60

Ranftl, R., Gehrig, S., Pock, T. and Bischof, H., Pushing the limits of stereo
using variational stereo estimation, in Intelligent Vehicles Symposium (IV), 2012
IEEE, IEEE (2012) pp. 401–407. 60

Richardson, G. and King, J., Time-dependent modelling and asymptotic analysis of
electrochemical cells, Journal of Engineering Mathematics (2007), 59(3): pp. 239–275.
173



200 Bibliography

Rockafellar, R.T., Convex analysis (princeton mathematical series), Princeton
University Press (1970), 46: p. 49. 25, 30, 32

Rockafellar, R.T., Augmented lagrangians and applications of the proximal point
algorithm in convex programming, Mathematics of operations research (1976), 1(2):
pp. 97–116. 62

Rudin, W., Functional analysis. 1973, McGraw-Hill Education (1973). 28

Rudin, W., Real and complex analysis, McGraw-Hill Education (1987). 33

Schlake, B.A., Mathematical Models for Particle Transport: Crowded Motion, Ph.D.
thesis, Westfälische Wilhelms-Universität Münster (2011). 171

Showalter, R.E., Monotone operators in Banach space and nonlinear partial differ-
ential equations, volume 49, American Mathematical Soc. (2013). 37, 39

Suhr, S., Variational Methods for Combined Image and Motion Estimation, Ph.D.
thesis, Westfälische Wilhelms-Universität Münster (2015). 20, 100, 101

Sutton, M., Yan, J., Tiwari, V., Schreier, H. and Orteu, J., The effect of
out-of-plane motion on 2d and 3d digital image correlation measurements, Optics and
Lasers in Engineering (2008), 46(10): pp. 746–757. 42

Vestweber, D., Adhesion and signaling molecules controlling the transmigration of
leukocytes through endothelium, Immunological reviews (2007), 218(1): pp. 178–196.
121

Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D. and

Bischof, H., Anisotropic Huber-l1 optical flow, BMVC (2009), 1(2): p. 3. 59

Zach, C., Pock, T. and Bischof, H., A duality based approach for realtime tv-l 1
optical flow, in Pattern Recognition, pp. 214–223, Springer (2007). 54, 82

Zhang, X., Burger, M. and Osher, S., A unified primal-dual algorithm framework
based on bregman iteration, Journal of Scientific Computing (2011), 46(1): pp. 20–46.
38


