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Abstract

OBSERVATION is a central notion to the field of Geographic Information Science. Moni-

toring phenomena (e.g. climate change, landslides, demographic movements) happen-

ing on the earth’s surface, and developing models and simulations for those phenom-

ena rely on observations. Observations can be produced by technical sensors (e.g. a

satellite) or humans. RESOLUTION is an important aspect of observations underlying

geographic information. The consequence of using observations at various resolutions

is (potentially) different decisions, because the resolutions of the observations influence

the patterns that can be detected during an analysis process. Despite the importance

of the notion of resolution, and early attempts at its formalization, there is currently

no theory of resolution of observations underlying geographic information. The goal

and main contribution of this work is the provision of such a theory. The scope of

the work is limited to the characterization of the SPATIAL and TEMPORAL resolution of

single observations, and collections of observations. The use of ONTOLOGY as formal

specification technique helps to produce, not only useful theoretical insights about the

resolution of observations, but also computational artifacts relevant to the Sensor Web.

At a theoretical level, the work suggests a receptor-based theory of resolution for single

observations, and a theory of resolution for observation collections, based on the ob-

served study area and observed study period. The consistency of both theories is tested

through the use of the functional language HASKELL. The practical contribution of the

work comes from the two ONTOLOGY DESIGN PATTERNS suggested and encoded using

the Web Ontology Language. The use of the design patterns in conjunction with the

query language SPARQL helps to retrieve observations at different resolution. All in all,

the work brings up ideas that are of interest to research on data quality in Geographic

Information Science, and in the Sensor Web.
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CHAPTER 1

Introduction

This introductory chapter presents relevant background work on the Sensor Web, sensor ob-

servation and resolution. The requirements of the theory to be developed within the thesis are

introduced, and contents of subsequent chapters are outlined.

1.1 The Sensor Web

Sensors are nowadays used in a variety of disciplines 1 and there are plans of deploy-

ing them ‘everywhere’ for the benefit of the planet2. The huge amount of data result-

ing from the high number of sensors deployed has kindled the interest in mechanisms

which turn data into insight, that is, turn data into something meaningful for the ul-

timate user. O’Reilly sees “sensors and the subsequent automated analysis of sensor

data as the most important element of the next big technology and web-based move-

ment” (Meersschaert, 2011). A prerequisite for an automatic analysis of sensor data is

a standard for the description of sensors producing different types of data. The Sen-

sor Web Enablement (SWE) initiative of Open Geospatial Consortium (OGC) addresses

this issue. It focuses on “developing standards to enable the discovery, exchange, and

processing of sensor observations, as well as the tasking of sensor systems” (Botts

et al., 2007). The OGC defines the sensor web as “web accessible sensor networks

and archived sensor data that can be discovered and accessed using standard proto-

cols and application program interfaces” (Botts et al., 2007). Corcho and García-Castro

(2010) present the characteristics of Sensor Web applications (see the architecture in

Figure 1.1). They are as follows :

• variability and heterogeneity of data, devices and networks (including unreliable

1See some examples of disciplines in (Sheth et al., 2008).
2See (MacManus, 2009; Hempel, 2010) for examples of such projects.
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CHAPTER 1: INTRODUCTION

nodes and links, noise, uncertainty, etc.);

• use of rich data sources (sensors, images, GIS, etc.) in different settings (live,

streaming, historical, and processed);

• existence of multiple administrative domains; and

• need for managing multiple, concurrent, and uncoordinated queries to sensors.

Figure 1.1: Architecture of a Sensor Web application (reprinted from [Corcho and

García-Castro, 2010] with permission)

A review of the recent developments of the OGC SWE initiative was provided

by Bröring et al. (2011a). As indicated by the authors, open research challenges for the

OGC SWE include: (i) the improvement of interoperability; (ii) the facilitation of sensor

and service integration; (iii) the advancement of sensor web eventing concepts; (iv) the

realization of a Human Sensor Web; (v) the integration of the Human Sensor Web with

online social networks; (vi) the assessment of the quality and uncertainty associated

with the sensor outputs; and (vii) the enablement of the Semantic Sensor Web.

1.1.1 The need of semantics for the Sensor Web

Data coming from different providers can be different with respect to their syntax (i.e.

file formats such as netCDF or ESRI Shapefile), their structure (i.e. different schemas 3)

3An example of schema is a table in a relational database.
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CHAPTER 1: INTRODUCTION

and their semantics (i.e. meaning associated with the terms used). Standards devel-

oped by the OGC are useful for the combination of syntactically and structurally het-

erogeneous data but fall short with regard to the interpretation (i.e. semantics) of the

data. In that respect, Botts and Robin (2007) mention the following:

“An important feature of the Sensor Web that has not been completely ex-

plored so far is the connections between measurement systems and their

observations through semantics”.

The Sensor Web enriched with an explicit specification of the meaning of the data

generated by sensors is called Semantic Sensor Web (SSW). The distinguishing feature

of the SSW is that “sensor data is annotated with semantic metadata to increase interop-

erability as well as provide contextual information essential for situational knowledge”

(Sheth et al., 2008). Table 1.1 presents some of the main technologies of the SSW and

their respective purposes.

Table 1.1: Main technologies of the Semantic Sensor Web and their purposes

TECHNOLOGY PURPOSE

OGC Standards a common format to encode data coming from different sources

Ontologies
description of the context in which the data is produced

annotation of data to answer complex queries

Rules derive new knowledge from known instances

1.1.2 Sensor Plug and Play

Plug and Play, sometimes, abbreviated PnP, is a catchy phrase used to describe

devices that work with a computer system as soon as they are connected. The user

does not have to manually install drivers for the device or even tell the computer

that a new device has been added. Instead the computer automatically recognizes

the device, loads new drivers for the hardware if needed, and begins to work with

the newly connected device. (TechTerms.com, 2012)

The idea of Plug and Play for the Sensor Web was suggested in (Bröring et al., 2009,

2011b) and envisions an infrastructure where sensors can be selected, registered and

their observations retrieved with minimal human intervention. For this vision to become

reality, there is a need for mechanisms which facilitate the communication between the

different components of the Sensor Web, i.e. mechanisms which make the different

3



CHAPTER 1: INTRODUCTION

components of the Sensor Web semantically interoperable4. Semantic interoperability

in turn requires a formal description of notions related to sensors and sensor outputs.

The notion of ‘sensor observation’ (or shortly ‘observation’) is most important in this

context. Frank (2003) asserts that “all we know about the world is based on observa-

tion”. Stasch et al. (2014) point out that observations form the basis of empirical and

physical sciences. Kuhn (2009a) notes that “observation is the root of information”, and

stresses that answering some of the deepest and most pressing questions in Geographic

Information Science (GIScience), such as how to monitor change, requires progresses in

the understanding of the notion of ‘observation’. Adams and Janowicz (2011) indicate

that the geosciences rely on observations, models, and simulations to answer complex

scientific questions such as the impact of global change. Bröring et al. (2009) argue that

“taking the vision of a sensor plug & play with minimal human intervention seriously

[requires a modelling of] the feature of interest . . . based on the notions of observations

and stimuli”. The next section will review previous attempts to provide a conceptual

clarification of observation.

1.2 Observation

The word ‘observation’, in the context of geographic information, can be used to de-

note both the process of observing and the outcome of this process. Observation as

a process refers to “an act associated with a discrete time instant or period through

which a number, term or other symbol is assigned to a phenomenon” (Percivall, 2008).

Observation as a result (i.e. the outcome of the observing process) is a special case of

geographic data5 and has three components: space, time and theme. Examples of ob-

servations (as results of an observing process) are an image produced by a satellite, the

value ‘8 decibels’ returned by a mobile phone used as noise sensor to measure the level

of noise at a given location, and the report ‘The road before Building X is impassable’

provided by a human in the aftermath of an earthquake. Throughout the current work,

the terms ‘sensor observation’, ‘sensor output’, ‘observation’, and ‘sample’ are used

interchangeably.

4Semantic interoperability is defined here as the ability of software components to interact, despite

differences in programming languages, interfaces, execution platforms, and meaning of the data they

process (definition adapted and extended from [Wegner, 1996]).
5A map is an example of geographic data which is not an observation.
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1.2.1 Observation vs measurement

The purpose of this subsection is to highlight the differences between the two related

notions of observation and measurement. Stevens (1946) defines measurement as “the

assignment of numerals to objects or events according to rules”. Bittner (1999) as well

as Bittner and Winter (1999) argue that measurement is a precise form of observation.

Kuhn (2009a) suggested to distinguish observation and measurement by requir-

ing that measurements have numeric results. By doing so, the author restricted ‘mea-

surement’ to quantification and used ‘observation’ for sensing processes with results

symbolized in any form, not just numerically. Probst (2008) provided another criterion

to differentiate observation and measurement, namely communicability. Probst states:

“An observation process is turned into a measurement process if the ob-

servation result ... is associated with a communicable sign. We distinguish

measuring from observing by requiring that a measurement process produce

a communicable result, while an observation process only identifies a non-

atomic quality region”.

Probst’s notion of observation limits itself to qualia in the observers’ minds. Mea-

surement only takes place when symbols are assigned to these qualia. The OGC (see

Percivall, 2008) and Kuhn (2009a) consider the assignment of symbols as inherent in

an observation process. This stand is also taken in the current work, and measurement

is distinguished from observation through the type of symbol (i.e. numerical or not)

resulting from the sensing process.

1.2.2 Observation ontologies

Madin et al. (2007) suggested the Extensible Observation Ontology (OBOE), an on-

tology which captures the process of ecological field observation and measurement.

A distinguishing feature of this ontology is the consideration that “observations may

have multiple measurements”.

Probst et al. (2006) have analyzed the O&M 6 standard of the OGC and called for

a more precise definition of central notions of the O&M model such as ‘observation’,

‘phenomenon’ and ‘feature of interest’. Another analysis of O&M was done in (Probst,

2006) and a basic ontology for observations was suggested. The ontology was aligned

6O&M stands for Observations and Measurements. “The OpenGIS® Observations & Measurements

(O&M) standard defines measurements and the relationships between them, mainly to improve the ability

of software systems to discover and use data produced by measuring systems” (Percivall, 2008).
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to the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE), a foun-

dational ontology7 introduced in (Gangemi et al., 2002; Masolo et al., 2003; Borgo and

Masolo, 2009). Observation was identified in (Probst, 2006) as an accomplishment, i.e.

something that has brought a certain state to occur. The focus of (Probst, 2006) was on

the process of observing.

Another look into the process of observing was provided in (Kuhn, 2009a). His

work disclosed the different entities participating in the observation process. Four en-

tities are worth mentioning: the particular (i.e. entity to be observed), the stimulus (i.e.

detectable change in the environment), the observer or sensor (i.e. someone or something

that provides a symbol for a property of the particular) and the observation result (i.e.

a value). The observation process is illustrated in Figure 1.2. Apropos observation as

Figure 1.2: Observation process (reprinted from [Stasch et al., 2009] with permission)

a result, Kuhn (2009a) and also Janowicz and Compton (2010); Compton et al. (2012)

suggest that it is a social object 8, that is, an object that has been created in the process

of social communication.

1.2.3 Discussion

It was pointed out in Section 1.1.1 that standards provided by the OGC are not enough

to provide interpretation (or semantics) to the data they encode. Section 1.1.2 men-

tioned the need for semantic interoperability if the vision of Plug and Play infrastruc-

tures for the Sensor Web is to become reality. Semantic interoperability in turn requires

a formal description of concepts related to sensors and sensor outputs. Section 1.2.2

presented previous observation ontologies that are endeavors to formalize the notion

7See more details on foundational ontologies in Section 3.4.1.
8Kuhn (2009a) states that it is an information object. An information object is a subclass of social object in

the foundational ontology DOLCE Ultra Light.

6



CHAPTER 1: INTRODUCTION

of ‘observation’. Some of the benefits of ontologies and semantic technologies can be

found in (Hepp, 2008; Bergman, 2010; Janowicz and Hitzler, 2012).

As mentioned in Section 1.1, one of the open research challenges of the OGC SWE

initiative (and consequently of the Semantic Sensor Web) is the assessment of the qual-

ity associated with sensor outputs. Bröring et al. (2011a) note:

“Knowledge about the quality ... of sensor outputs is essential for making

the right decisions based upon observations. At the moment, such informa-

tion is often missing in observations and there is no unique way of how to

incorporate it”.

Data quality elements vary depending on the authors. For example, Chrisman

(1991) mentions positional accuracy, attribute accuracy, logical consistency and com-

pleteness; Paradis and Beard (1994) include accuracy, resolution, consistency and lin-

eage; Veregin (1998, 1999) includes accuracy, resolution, consistency and completeness;

the Spatial Data Transfer Standard includes lineage, completeness, logical consistency,

attribute accuracy and positional accuracy (see Goodchild and Clarke, 2002); ISO 19113

includes completeness, logical consistency, positional accuracy, temporal accuracy and

attribute accuracy (see Kumi-Boateng and Yakubu, 2010).

The current work will focus on the formal specification of the resolution of sensor

observations as a first step towards a solution to the problem of lack of knowledge

about the quality of sensor outputs in the Sensor Web. It will limit itself to space and

time. A formal account of the thematic resolution of sensor observations is left for

future work. Resolution is one component of data quality as mentioned in the previous

paragraph and has been identified as an important concept of spatial information (see

Kuhn, 2011). The ontology developed by the W3C Semantic Sensor Network Incubator

Group (see Compton et al., 2012) includes explicitly the concept ‘resolution’. Degbelo

and Stasch (2011) suggested a set of concepts to describe the level of detail or resolution

of datasets. However both works did not tackle the introduction of resolution in the

observation process. The current work aims at addressing this point and providing

an answer to the question: how can resolution be specified using the characteristics of the

observed entity, the stimulus, and the sensor?. The discovery of the rules governing the

interplay between the resolution of the sensor observation and the characteristics of

the different entities participating in the observation process will serve to set up logical

inference mechanisms for the resolution of sensor observations. Inference mechanisms

are in turn useful to address one of the drawbacks of adding semantic annotations

to sensor nodes in sensor networks. Barnaghi et al. (2009) pointed out that adding
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semantics to sensor nodes in a sensor networks implies more data to be exchanged,

which in turn leads to an increase of sensor nodes’ power consumption. Therefore, the

less the amount of semantic data to store, the better. The next section summarizes some

of the previous works in GIScience dealing with the resolution of representations.

1.3 Resolution

Resolution is important to study for at least three reasons: (i) it is a critical element in

determining a data set’s fitness for a given use (see Goodchild and Proctor, 1997), (ii)

it influences the patterns that can be observed during an analysis process (see Gibson

et al., 2000), and (iii) it determines the volume of data which is generated and there-

fore the processing costs and storage volume (see Goodchild, 1982). Furthermore, as

Goodchild and Proctor (1997); Degbelo (2011); Goodchild (2011b) indicate, resolution

is necessarily present in any data collection process because the world is too complex to

be studied in its full detail. Frank (2009b,c) discussed the factors from a data collection

process that induce a level of detail or resolution in the final representation. They are as

follows: (i) a sensor always measures over an extended area and time; (ii) only a finite

number of observations is possible; and (iii) only a finite number of values can be used

to represent an observation.

1.3.1 Related work to the thesis

This subsection touches on four topics, namely (i) the optimum resolution, (ii) the inte-

gration of multi-resolution features and multi-resolution databases, (iii) the influence

of resolution on other variables, and (iv) previous formal accounts for resolution.

The optimum resolution: Lam and Quattrochi (1992) commented on the issues of

scale, resolution, and fractal analysis in the mapping sciences and pointed out one

important research question in this context, namely ‘what is the optimum resolution for a

study or does an optimum really exist?’. On that subject, Marceau et al. (1994) proposed

and tested a method to identify the optimal resolution for a study. They concluded that

(i) the concept of optimal spatial resolution is relevant and meaningful for the field of

remote sensing, and (ii) there is a need of selecting the appropriate resolution in any

study involving the manipulation of geographical data.

Integration of multi-resolution features and multi-resolution databases: Balley et al.

(2004) proposed an approach to build a unified database from source databases (i.e.
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databases which contain the same feature represented at different levels of spatial and

thematic detail). Du et al. (2010) suggested an approach to check directional consis-

tency between representations of features at different resolutions. Examples of direc-

tion relations include east (of), west (of), south (of), north (of), southeast (of), southwest

(of), northeast (of), northwest (of), and directional consistency is evaluated by checking

whether direction relations between pairs of spatial regions at different resolutions are

similar.

Influence of resolution on other variables: Gao (1997) explored the correlations be-

tween spatial resolution and root mean square error (RMSE), spatial resolution and

accuracy, as well as spatial resolution and mean gradient in the context of digital ele-

vation models (DEMs). He concluded that (1) the RMSE of a gridded DEM increases

linearly with its spatial resolution from 10m to 60m, (2) the accuracy of representing a

terrain with a gridded DEM decreases as the resolution decreases from 10m to 60m, and

(3) resolution has a minimal impact on mean gradient. Deng et al. (2007) used correla-

tion and regression analysis to assess the effect of DEM resolution on calculated terrain

attributes such as slope, plan curvature, profile curvature, north–south slope orienta-

tion, east–west slope orientation, and topographic wetness index. Their work indicated

that terrain attributes respond to resolution change in different ways. Among the dif-

ferent terrain attributes studied, plan and profile curvatures were found to be the most

sensitive attributes, and slope was the least sensitive attribute to change in resolution9.

The experiments reported in (Chow and Hodgson, 2009) revealed that there is a loga-

rithmic relationship between DEM resolution and mean slope. Jantz and Goetz (2005)

examined the ability of the urban land-use-change model SLEUTH (slope, land use,

exclusion, urban extent, transportation, hillshade) to capture urban growth patterns

across varying spatial resolutions (i.e. cell sizes). Their results suggest that the reso-

lution of the input data impact the overall performance of an urban land-use-change

model10. A similar conclusion was reached by Kim (2013) whose study indicated that

variations in spatial and temporal resolution can generate substantial differences in the

outcomes of a land-use change simulation. Pontius Jr and Cheuk (2006) have proposed

a method which enables to examine the sensitivity of statistical results to changes in

resolution. The method was designed to facilitate multi-resolution analysis during the

comparison of maps that display a shared categorical variable. Csillag et al. (1992) have

studied the impact of spatial resolution on the classification of areas into taxonomic at-

9The findings are valid only for landscapes found in the Santa Monica Mountains.
10The authors report for example that, during their experiments, the amount of growth that could be

produced through spontaneous growth at a resolution of 360m was more than five times the amount at a

resolution of 45m.
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tributes. ‘Classification’ here means that a measurement is made at a point in space,

and based on the measurement value, one assigns a (predefined) class to the point at

which the measurement is made. Csillag et al. (1992) used two examples during their

study: (i) vegetation is sampled at given locations and classified according to species

and/or associations; and (ii) soil properties are measured at given locations and soil

types are assigned to the locations based on the value of the measured property. Their

study led to the conclusion that there may not be a single best resolution for environ-

mental data.

Formalisms for resolution: A formal framework for multi-resolution spatial data han-

dling was suggested in (Stell and Worboys, 1998). The framework has five main com-

ponents: map, map space, granularity lattice, stratified map space, and sheaf of stratified

map spaces. It can be used to assess the correctness of generalization algorithms and to

model the integration of geometrically and semantically heterogeneous spatial datasets.

A limitation of the work presented in (Stell and Worboys, 1998) is that it only deals

with datasets representing the same spatial extent at different level of details. Skogan

(2001) suggested another framework to deal with multi-resolution objects and multi-

resolution databases. The framework consists of four components: the federated multi-

resolution database management system, the resolution space, the multi-resolution type, and

methods for aggregating resolution. One limitation of the framework is that it accounts

only for intra-type changes of resolution, that is changes in resolution that do not af-

fect the geometry of the initial object11. Worboys (1998) dealt with multi-resolution

geographic spaces and has proposed a formal account for multi-resolution geographic

spaces using ideas related to fuzzy logic and rough set theory. Other formalisms for res-

olution, focusing on sensor observations and processes, can be found in (Frank, 2009c)

and (Weiser and Frank, 2012) respectively. Frank (2009c) has suggested to model (for-

mally) the effect of resolution on the final sensor observation using a convolution with

a Gaussian kernel. Weiser and Frank (2012) proposed a formalism to represent mul-

tiple levels of detail (i.e. resolution) in discrete processes (e.g. a train ride). The last

work worth mentioning in this subsection is the one of Bruegger (1995). The author

suggested a theory for the integration of spatial data presenting differences in spatial

resolution and representation format (i.e. raster and vector). The theory followed an

object-view12 of the world, that is, it assumed that the world is inhabited of discrete

objects.

11Polygons remain polygons after a generalization operation; similarly, lines remain lines and points

remain points.
12More details on the object-view and field-view of the world can be found in (Couclelis, 1992).
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1.3.2 Discussion

The formal accounts for ‘resolution’ presented in Section 1.3.1 are relevant to a number

of research topics including geographic data handling and spatial reasoning (Stell and

Worboys, 1998), the development of a fully dynamic Geographic Information System

(Weiser and Frank, 2012), scale effects in information processes (Frank, 2009c), data in-

tegration (Bruegger, 1995; Stell and Worboys, 1998; Worboys, 1998; Skogan, 2001; Frank,

2009c), but they also present some limitations. Stell and Worboys (1998), Skogan (2001),

Worboys (1998) and Bruegger (1995) take an object-view of the world and leave time

apart. In addition, although many of the formalisms are related to the problem of

data integration, none of them were implemented on actual datasets to detect incon-

sistencies or possibilities of merging. Bruegger (1995) acknowledged this point and

commented on possible strategies of implementation of the proposed theory. Time is

accounted for in the formalisms proposed in (Weiser and Frank, 2012; Frank, 2009c) but

here also, the implementation on actual datasets was lacking.

1.4 Requirements of the theory to be developed

The requirements, both theoretical and practical, of the theory to be developed are the

subject of this section. They are, for the most part, based on the limitations identified

in Section 1.3.

From a theoretical point of view, the theory should:

R1: remain neutral with regard to the distinction field vs object

R2: take into account both observation as a process and observation as a result

R3: explain the relationships between the characteristics of the observed entity, stimulus, sen-

sor and the spatial and temporal resolution of the final sensor observation

R4: provide means to characterize the spatial and temporal resolution of collections of obser-

vations

From a practical point of view, the theory should:

R5: be implementable in use cases relevant for the Sensor Web. More specifically, it should:

R5a. support the discovery of observations at different spatial and temporal resolution

11
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R5b. be usable, both when spatial/temporal resolution is expressed quantitatively, and

when spatial/temporal resolution is expressed qualitatively13

The goal of the work is to provide a formal description of concepts related to the spatial

and temporal resolution of sensor observations. At the theoretical level, the contribu-

tion of the work is: (i) the characterization of the spatial and temporal resolution of a

single observation based solely on the physical properties of the observer participating

in the observation process; (ii) the specification of the spatial and temporal resolution

of a collection of observations based on the portion of the study area (or study period)

that is effectively covered by the collection of observations. At the practical level, the

contribution of the work is: (i) ontology modules which can be used on top of the SSN

ontology from Compton et al. (2012) to characterize the resolution of observations and

collections of observations; and (ii) an enhanced data discovery capability for software

components in the Semantic Sensor Web. The next section presents a brief overview of

the contents of subsequent chapters.

1.5 Tour of the contents

There is a variety of meanings associated with the term resolution. Chapter 2 collects

some of these meanings and presents a framework to reconcile various connotations of

the term. The framework consists of definitions of resolution, proxy measures for resolution

and related notions to resolution. The chapter is a slightly modified version of (Degbelo

and Kuhn, 2012).

Chapter 3 presents related work on ontologies, the ‘tool’ used to formalize the

different concepts related to the spatial and temporal resolution of sensor observations.

The ontology development method used during the work is also discussed in detail.

Chapters 4 and 5 are concerned with the design stage of the ontology develop-

ment process. Chapter 4 is a revised and extended version of (Degbelo, 2013). It

presents the motivating scenario for the work, and introduces a receptor-based theory

for the characterization of the spatial and temporal resolution of single observations.

Chapter 5 complements the specification of the resolution of single sensor observa-

tions with a characterization of resolution relevant to collections of observations. The

formal specification of both fragments of theories in the functional language Haskell

13Here are two equivalent ways of expressing the spatial resolution of the number of inhabitants in a

given region: (a) the number of inhabitants at the county level is 50, and (b) the number of inhabitants

over an area of ‘100km2’ is 50. In the former case, the spatial resolution is expressed qualitatively, in the

latter quantitatively.
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helps to test the consistency of the ideas proposed.

Chapter 6 turns the theory suggested in Chapters 4 and 5 into two ontology design

patterns: one relevant to the specification of the resolution of a single observation,

and one useful for the characterization of the resolution of collections of observations.

These two ontology design patterns extend current work on observation ontologies

(e.g. the SSN ontology from Compton et al., 2012) with concepts useful to characterize

the resolution of sensor observations.

Chapter 7 demonstrates the practical usefulness of the ontology design patterns

(ODPs) proposed in Chapter 6. The ODPs are encoded in the Web Ontology Language,

and examples of SPARQL queries (tested on sample sets of facts from the motivating

scenario) are presented. The chapter discusses also further possible applications of the

ideas presented in the thesis.

Chapter 8 summarizes the findings, discusses their relevance to the field of GI-

Science, and comments on limitations of the work. The chapter ends with a set of

additional research questions that have been raised in the course of this work14.

14A documentation of the ontology of resolution conforming to the checklist suggested in (Agarwal,

2005) is provided in Appendix F.
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CHAPTER 2

Conceptual analysis of resolution

What is resolution? This question motivates the discussion presented in this chapter. The chap-

ter looks at possible ways of defining ‘resolution’1, and positions the term within the landscape

of related notions (e.g. scale, grain, spacing, coverage, support, pixel, accuracy, precision, dis-

crimination). The definition of resolution adopted in this work is also introduced2.

2.1 Introduction

The literature in GIScience has not reached a consensus on what resolution is. By way

of illustration, here are some excerpts from previous work in GIScience, touching on a

definition of the term:

Definition1. “Resolution: the smallest spacing between two displayed or processed

elements; the smallest size of feature that can be mapped or sampled” (Burrough

and McDonnell, 1998, p305).

Definition2. “Resolution refers to the amount of detail in a representation, while gran-

ularity refers to the cognitive aspects involved in selection of features” (Fonseca

et al., 2002a).

Definition3. “Resolution or granularity is concerned with the level of discernibility

between elements of a phenomenon that is being represented by the dataset”

(Stell and Worboys, 1998).

1Resolution is a polysemous word (see OxfordDictionaries.com, 2013, for various examples of mean-

ings). The scope of the current conceptual analysis is limited to resolution, as used in geographic infor-

mation science. For a discussion on the intellectual scope of GIScience, see (Mark, 2003).
2This chapter is an amended version of (Degbelo and Kuhn, 2012), published at GeoInfo2012.
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Definition4. “The capability of making distinguishable the individual parts of an ob-

ject” (a dictionary definition cited in (Tobler, 1987)).

Definition5. “Resolution refers to the smallest distinguishable parts in an object or a

sequence, ... and is often determined by the capability of the instrument or the

sampling interval used in a study” (Lam and Quattrochi, 1992).

Definition6. “The detail with which a map depicts the location and shape of geo-

graphic features” (a dictionary definition from (ESRI, 2012)).

Definition7. “Resolution is an assertion or a measure of the level of detail or the infor-

mation content of an object or a database with respect to some reference frame”

(Skogan, 2001).

This list shows a variety of definitions of ‘resolution’ and illustrates that some of them

are conflicting, namely Definition2 and Definition3. The remark that resolution “seems

intuitively obvious, but its technical definition and precise application ... have been

complex”, made by Robinson et al. (2002) during their discussion on astronaut pho-

tographs as digital remote sensing data, is pertinent to GIScience as a whole. Section

2.2 analyzes some notions closely related to resolution and arranges them based on

the framework suggested in (Dungan et al., 2002). Section 2.3 suggests that resolu-

tion should be defined as the amount of detail in a representation3, and proposes two

types of proxy measures for resolution: smallest unit over which homogeneity is as-

sumed and dispersion. Section 2.4 presents some additional comments pertaining to

the conceptual analysis done in this chapter, and Section 2.5 summarizes the main ideas

introduced.

2.2 Resolution and related notions

In a discussion of terms related to ‘scale’ in the field of ecology, Dungan et al. (2002)

suggested three categories (or dimensions) to which spatial scale-related terms may be

applied. The three dimensions are: (a) the phenomenon dimension, (b) the sampling

dimension, and (c) the analysis dimension. The phenomenon dimension relates to the

(spatial or temporal) unit at which a particular phenomenon operates; the sampling

dimension (or measurement dimension or observation dimension) relates to the (spatial or

temporal) units used to acquire data about the phenomenon; the analysis dimension

3von Glasersfeld (1987) distinguishes for the English language, four principal meanings compounded

in the term ‘representation’. In the current work, representation denotes what von Glasersfeld has termed

‘iconic representation’.
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relates to the (spatial or temporal) units at which data collected about a phenomenon

are summarized and used to make inferences. For instance, if one would like to study

the evolution of domestic energy consumption in a city CT, the phenomenon of interest

would be ‘evolution of domestic energy consumption’. Data may be collected about the

domestic energy consumption of households in CT every month; one month relates to

the sampling dimension. The data collected may then be aggregated to yearly values

which serve as a basis for trend analysis; one year refers to the analysis dimension.

The three dimensions introduced in the previous paragraph will be used to frame

the discussion on resolution and related notions. Though they were initially proposed

in the field of ecology, they can be reused for the purposes of this chapter because

ecology and GIScience overlap to some degree. For example:

• issues revolving around the concept of ‘scale’ have been identified as deserving

prime attention for research by both communities (see for example (UCGIS, 1996)

for GIScience, and (Wu and Hobbs, 2002) for ecology);

• both communities are interested in a ‘science of scale’ (see for example (Good-

child and Quattrochi, 1997) for GIScience, (Wu and Hobbs, 2002) for ecology);

• there exists overlaps in objects of studies (witness for example the research field

of ‘landscape ecology’ introduced in (Wu, 2006, 2008, 2012), and the research field

of ‘ethnophysiography’ presented in (Mark et al., 2007));

• there are overlaps in underlying principles (Wu (2012) mentions for example that

“[s]patial heterogeneity is ubiquitous in all ecological systems” and Goodchild

(2011a) proposed spatial heterogeneity as one of the empirical principles that are

broadly true of all geographic information).

One notion related to ‘resolution’ is ‘scale’. Scale can have many meanings, as

discussed for example in (Lam and Quattrochi, 1992; Quattrochi, 1993; Goodchild and

Proctor, 1997; Goodchild, 2001; Montello, 2001; Förstner, 2003; Goodchild, 2011b). Like

in (Dungan et al., 2002), resolution is seen as one of many components of scale, with other

components being extent, grain, lag, support and cartographic ratio. Dungan et al.

(2002) have discussed the matching up of resolution, grain, lag and support with the

three dimensions of phenomenon, sampling and analysis. The next paragraph briefly

summarizes their discussion. After that, another paragraph will introduce the notions

of discrimination, coverage, precision, accuracy, and pixel.

According to Dungan et al. (2002), grain is a term that can be defined for the phe-

nomenon, sampling and analysis dimensions. Sampling grain refers to the minimum
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spatial or temporal unit over which homogeneity is assumed for a sample4. Another

term that applies to the three dimensions according to Dungan et al. (2002) is the term

lag or spacing5. Sampling spacing refers to the distance between neighboring sam-

ples. Dungan et al. (2002) presented resolution as a term which applies to sampling

and analysis rather than to phenomena. Regarding support, the authors argued that

it is a term which belongs to the analysis dimension. Although Dungan et al. (2002)

limited support to the analysis dimension, it is argued here that support applies also to

the sampling or measurement dimension. This is in line with (Burrough and McDon-

nell, 1998, p101) who defined support as “the technical name used in geostatistics for

the area or volume of the physical sample on which the measurement is made”. The

matching up of resolution, grain, spacing and support with the phenomenon, sampling

and analysis dimensions is depicted in Figure 2.1.

Figure 2.1: Resolution and related notions matched up with the phenomenon, sam-

pling and analysis dimensions

Lam and Quattrochi (1992) claim that “[r]esolution refers to the smallest distin-

guishable parts in an object or a sequence, ... and is often determined by the capability

4The definition is in line with (Wu and Li, 2006). Unless otherwise stated, grain, as used throughout

the thesis denotes sampling (or measurement or observation) grain.
5In the current work, the use of ‘spacing’ is preferred over the use of ‘lag’, and spacing (unless other-

wise stated) refers to sampling (or measurement or observation) spacing.
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of the instrument or the sampling interval used in a study”. This definition points to

two correlates of resolution. One of them relates to the sampling interval and was al-

ready covered in the previous paragraph under the term spacing; the second one relates

to the capability of the instrument, and is called (after Sydenham, 1999) discrimination.

‘Discrimination’ is a term borrowed from the Measurement, Instrumentation, and Sensors

Handbook. It refers to the smallest change in a quantity being measured that causes a

perceptible change in the corresponding observation6. A synonym for discrimination

is step size (see Burrough and McDonnell, 1998, p57). Discrimination is a property of

the sensor (or measuring device) and therefore belongs to the sampling dimension.

Next to the discrimination of a sensor, coverage is another correlate of resolution.

Coverage is defined after Wu and Li (2006) as the sampling intensity in space or time.

Ergo, coverage is a term that applies to the sampling dimension of the framework.

Synonyms for coverage are sampling density, sampling frequency or sampling rate.

Figure 2.2 illustrates the difference between sampling grain, sampling coverage and

sampling spacing for the spatial dimension. The grain size is G = λ1 ∗ λ2, the spacing

is S = ε and the coverage is C = Number o f samples ∗ Grain size
Extent = 6∗λ1∗λ2

L1∗L2
= 3

10 .

Figure 2.2: Illustration of sampling grain, sampling spacing and sampling coverage

for the spatial dimension

Precision is defined after JCGM/WG 2 (2008) as the “closeness of agreement be-

tween indications or measured quantity values obtained by replicate measurements on

the same or similar objects under specified conditions”. Precision belongs therefore to

6This definition is adapted and extended from (JCGM/WG 2, 2008) and (Sydenham, 1999).
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the sampling (or observation) dimension of the framework. On the contrary, accuracy,

the “closeness of agreement between a measured quantity value and a true quantity

value of a measurand” (JCGM/WG 2, 2008) is a concept which belongs to the analysis

dimension. In order to assign an accuracy value to a measurement, one needs not only

the measurement value, but also the specification of a reference value. Because the

specification of the reference value is likely to vary from task to task (or user to user), it

is suggested here that accuracy is classified as a concept belonging to the analysis level.

The last correlate of resolution introduced in this section is the notion of pixel. As in-

dicated by Fisher (1997), the pixel is the elementary unit of analysis in remote sensing.

The pixel is also the “smallest unit of information in a grid cell map or scanner image”

(Burrough and McDonnell, 1998, p304). As a result, pixel is a term that belongs to both

the sampling and analysis dimensions. Figure 2.1 shows the matching up of discrim-

ination, coverage, precision, accuracy, and pixel with the phenomenon, sampling and

analysis dimensions.

2.3 Proxy measures for resolution

The previous section has discussed various notions related to resolution and shown

how these notions can be arranged according to the framework suggested in (Dungan

et al., 2002). This section introduces a complementary framework which can be used

to link resolution and some of its related notions. Dungan et al.’s framework is valu-

able in the sense that it suggests care should be taken when using terms belonging to

several dimensions as synonyms. Wu and Li (2006) mention, for example, that in most

cases, grain and support have quite similar meanings, and thus have often been used

interchangeably in the literature. Such a use is fine in some cases because at the analy-

sis or sampling level, the distinction between the two terms becomes blurred. On the

contrary, the use of phenomenon grain and support as synonyms might not always be

appropriate, since phenomenon grain might differ from analysis or sampling grain (=

support).

2.3.1 A unifying framework for resolution and related notions

The framework introduced in this subsection aims at providing a basis to make com-

patible different views on (or definitions of) resolution in the literature. The frame-

work has three dimensions: definitions of resolution, proxy measures for resolution,

and closely related notions to resolution. Definitions of resolution refer to possible ways
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of defining the term. Proxy measures for resolution7 denote different measures that can

be used to characterize resolution. It is argued here that several proxy measures for

resolution exist, and the choice of the appropriate measure is dependent on the task at

hand8. This argument generalizes what Forshaw et al. (1983), after a review of different

ways of describing spatial resolution in the field of remote sensing, concluded:

“No single-figure measure of spatial resolution can sensibly or equitably

be used to assess the general value of remotely sensed imagery, or even its

value in any specific field”.

Using the analysis from (Frank, 2009b,c) as a basis, two types of proxy measures

for resolution are suggested. As mentioned in Section 1.3, resolution is introduced in

the data collection process due to three factors: (a) a sensor always measures over an

extended area and time, (b) only a finite number of samples is possible, and (c) only a

finite number of values can be used to represent the observation. Two9 types of proxy

measures can be isolated from this: (i) proxy measures related to the limitations of

the sensing device and (ii) proxy measures related to the limitations of the sampling

strategy. The former type of proxy measures is concerned with the minimum unit

over which homogeneity is assumed for a sample, the latter deals essentially with the

dispersion of the different samples used during a data collection process. Finally, the

last dimension of the framework introduced in this subsection, closely related notions to

resolution, refers to notions closely related to resolution, but in fact different from it.

2.3.2 Using the framework suggested

Different authors have used different terms as synonyms for resolution in the literature.

Resolution has been used as synonym for amount of detail in (Veregin, 1998; Fonseca

et al., 2002a), level of detail in (Goodchild and Proctor, 1997; Goodchild, 2001; Skogan,

2001), degree of detail in (Goodchild, 2011b), precision in (Veregin, 1998, 1999), grain in

(Reitsma and Bittner, 2003; Pontius Jr and Cheuk, 2006), granularity in (Stell and Wor-

boys, 1998; Worboys, 1998), step size in (Burrough and McDonnell, 1998, p57) and scale

in (Burrough and McDonnell, 1998, p40) and (Frank, 2009c). This list of ‘synonyms’ for

resolution will be used as input in the next paragraph to illustrate the usefulness of the

framework introduced in the previous subsection.

7A short introduction to proxy measurement can be found at (Blugh, 2012).
8Proxy measures for resolution are also expected to vary from era to era. Goodchild (2004) points out

that metrics of spatial resolution are strongly affected by the analog to digital transition.
9It is straightforward to see that factor (a) relates to (i) and factor (b) relates to (ii). Factor (c) relates also

to (i) and is called the dynamic range of the sensor (see Frank, 2009c).
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To the definitions of resolution belong “amount of detail in a representation”, “de-

gree of detail” and “level of detail” in a representation. Step size and grain can be seen

as proxy measures for resolution, related to the minimum unit over which homogeneity

is assumed. Precision however is a proxy measure for resolution, related to the dispersion

of replicate measurements on the same object. Additional examples of proxy measures

for resolution are the size of the minimum mapping unit10, the instantaneous field of

view of a satellite, the mean spacing and the coverage. Granularity, accuracy and scale

are closely related terms to resolution. Stating that ‘scale’ is a closely related term to ‘reso-

lution’ is in line with Dungan et al. (2002); Wu and Li (2006) who argued that resolution

is one of many components of scale. Resolution is also different from accuracy. The for-

mer is concerned with how much detail there exists in a representation. The latter has

to do with the closeness of a representation to the ‘truth’ (i.e. a prefect representation),

and since there is no perfect representation, accuracy deals in fact with how close a

representation is to a referent representation. Veregin (1999) points out that one would

generally expect accuracy and resolution to be inversely related.

In line with Hornsby, cited in (Fonseca et al., 2002a), resolution and granularity

are viewed as two different notions. If both notions deal with amount of detail in some

sense, they are different because granularity is a property of a conceptualization and

resolution is a property of a representation. The following remark on granularity was

made in the field of Artificial Intelligence:

“Our ability to conceptualize the world at different granularities and to

switch among these granularities is fundamental to our intelligence and

flexibility” (Hobbs, 1985).

Thus, in GIScience, granularity should be used while referring to the amount of

detail in a conceptualization (e.g. field- or object-based) or a conceptual model (e.g. an

ontology), whereas resolution should be used to denote the amount of detail of digital

representations (e.g. raster or vector data). The definition of resolution as a property

of data, and not of sensors is admittedly restrictive, but this restriction is proposed

because of the following comment from the Measurement, Instrumentation, and Sensors

Handbook:

“Although now officially declared as wrong to use, the term resolution still

finds its way into books and reports as meaning discrimination” (Syden-

ham, 1999).
10“The ‘minimum mapping unit’ defines the smallest polygon the cartographer is willing to map

(smaller polygons are forcibly merged with a neighbor)” (Goodchild and Quattrochi, 1997).
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In a nutshell: resolution applies to data, discrimination to sensors, and granularity

to conceptual models. The framework suggested as well as the different examples

introduced in this section are summarized in Figure 2.3. Proxy measures dealing with

the minimum unit over which homogeneity is assumed are underlined on the figure.

Proxy measures not underlined are possible measures to characterize the dispersion of

the samples used during a data collection process.

Figure 2.3: Possible definitions of, proxy measures for and notions related to resolu-

tion

2.4 Accommodating variability in word usage

Sections 2.2 and 2.3 provided a basis for conceptual clarity on resolution, discussing

some of its related notions, their similarity in meaning as well as their differences. This

notwithstanding, the author is aware of the unpredictability and variability inherent to

the use of terms by different people and communities. This section will shed light on

some ways to accommodate this issue of variability in word usage, an issue termed the

‘vocabulary problem’ in (Furnas et al., 1987).

Furnas et al. (1987) studied spontaneous word choice for items in a setting of

human-system communication. They found that the probability that people use the

same word to refer to the same item is less than 20%. As a cure, they suggested that

software designers should provide many alternative words for software items. This

23



CHAPTER 2: CONCEPTUAL ANALYSIS OF RESOLUTION

recommendation is relevant to the current discussion, and Table 2.1 provides a list of

synonyms for some of the terms mentioned in the previous sections.

Table 2.1: Table of synonyms

TERM SYNONYM(S)

Dimensions used during the analysis

Analysis dimension analysis level

Observation dimension

geographic dimension, measurement

dimension/level, observation level,

sampling dimension/level

Phenomenon dimension
operational dimension/level,

phenomenon level

Resolution and related notions

Amount of detail
degree of detail, level of detail,

quantity of detail

Analysis grain analysis support

Coverage
sampling density, sampling frequency,

sampling intensity, sampling rate

Discrimination step size

Observation grain observation support

Proxy measure indirect measure, substitute measure

Spacing lag, interval

Relevant to the current discussion also is a recommendation from (Galton, 2009).

As he puts it:

“When reading the GIScience literature, one can find varied (and sometimes

idiosyncratic) usage conventions regarding the key terms ‘state’, ‘process’,

and ‘event’, but it is always a good policy here to adopt the ‘principle of

charity’... and seek to understand an author’s usage on the assumption that

what they are saying is sensible”.

It can be seen from Section 2.1 that ‘resolution’ is not immune to the problem of va-

riety of usage conventions in the literature. As a result, adopting Galton’s recommen-

dation appears reasonable. The ‘principle of charity’ was introduced in (Wilson, 1959).

In the context of the current discussion, its adoption implies the following: concepts
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which satisfy most properties of ‘resolution’ (as introduced in this chapter), should be

read ‘resolution’, even if different labels are used to refer to them11.

2.5 Summary

Kuhn (2011), in a work aiming at selecting concepts of spatial information relevant to

transdisciplinary research12, pointed out a requirement that is unavoidable, if spatial

information is to become a cross-cutting enabler of knowledge and analysis. As he

argued: “An effort at the conceptual level is needed [in GIScience], in order to present

a coherent and intelligible view of spatial information to those who may not want to

dive into the intricacies of standards and data structures”. This chapter is a contribution

along these lines, with a focus on resolution. The ideas presented can be summarized

as follows:

I. Resolution and related notions can be applied to three dimensions: the phenomenon,

observation, and analysis dimensions;

II. Resolution is a term that applies to the observation and analysis dimensions rather

to phenomenon;

III. A basic distinction should be drawn between definitions of resolution, proxy mea-

sures for resolution, and notions related to resolution but different from it;

IV. There are (at least) two types of proxy measures for resolution: those which deal

with the minimum unit over which homogeneity is assumed for an observation,

and those which revolve around the dispersion of the observations used during

an observation process;

V. Discrimination is a property of sensors, resolution is a property of representations,

granularity is a property of conceptual models;

VI. Amount of detail is central to both resolution and granularity, but resolution is a

more specific concept than granularity13.

11The same applies to the related notions of resolution (as they have been earlier presented).
12See also (Kuhn, 2012) for a subsequent work pursuing the same goal.
13See also (Degbelo and Kuhn, 2014) for a more detailed discussion on the difference between resolution

and granularity.
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CHAPTER 3

Ontology development method

How is ontology defined in this work? ... and which method of ontology development is used for

the formal specification of the spatial and temporal resolution of sensor observations? Providing

answers to these two questions is the central theme of the current chapter. In addition, the

relevance of an ontology of resolution is stressed anew.

3.1 Definition of ontology

‘Ontology’ is a term associated with a variety of meanings in both philosophy and

information science (i.e. computer science and related disciplines such as artificial in-

telligence and information systems research). This section will not review all the pos-

sible interpretations of the term. The distinction (brought up for example in Guarino,

1998; Zúñiga, 2001) between ontology as a sphere of investigation, and a particular

ontology that results from an ontological investigation is also left out, and the scope

of the discussion presented here is limited to particular ontologies. The section aims

at touching upon the difference between ontology 1 and ontology, and introducing the

definition of ontology adopted throughout the thesis. A collection of definitions of on-

tology (i.e. from the philosophical perspective) is available at (Corazzon, 2012a) and

(Corazzon, 2012b). Fonseca et al. (2003) discuss the differences between ontology and

conceptual schema. Sánchez et al. (2005) look into the relation between ontology and

model. Gokhale et al. (2011) present the differences between ontology and thesaurus.

A reference terminology for ontology research 2 was proposed in (Smith et al., 2006).

Discussions on the different understandings of the term can be found in (Guarino and

1In the remainder of this section, ‘ontology’ (with change in font) is used to refer to ontology as used in

philosophy; ‘ontology’ (without change in font) refers to ontology as used in information science.
2The reference terminology was initially suggested for the biomedical domain, but is relevant to the

whole body of ontology research in information science.
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Giaretta, 1995; Mizoguchi and Ikeda, 1997; Gómez-Pérez, 1999b; Corcho et al., 2001;

Smith and Welty, 2001; Zúñiga, 2001; Corcho et al., 2003; Smith, 2003; Mark et al., 2004;

Wyssusek, 2004; Agarwal, 2005; Guizzardi, 2007; Gruber, 2009). The difference between

ontology and ontology can be summarized as follows:

“In philosophy, . . .ontology is the basic description of things in the world

[i.e. the description of what is said to truly exist]. In information science, an

ontology refers to an engineering artifact, constituted by a specific vocabu-

lary used to describe a certain reality” (Fonseca, 2007).

Ontology in philosophy is “a systematic explanation of Existence” (Gómez-Pérez

and Benjamins, 1999). It seeks, as Smith points out, “to provide a definitive and ex-

haustive classification of entities in all spheres of being”. ‘What exists?’ and ‘what

does existence means?’ are questions that form the gist of ontology. Some examples

of philosophical viewpoints on ‘being’ and ‘not-being’ can be found in (Peña, 1991)

and (Quine, 1953). Ontology is independent of language (see Guarino, 1998; Guiz-

zardi, 2007). On the contrary, the goal of ontology in information science is at least

threefold 3: (i) communication (between computers, between humans, between humans

and computers), computational inference, and knowledge reuse and organization. Ontol-

ogy in information science is a representational artifact, i.e. “a representation that is

fixed in some medium” (Smith et al., 2006). It is also, as Fonseca observes, “a theory

that explain a domain”. Ontology in information science is language-dependent (see

Guarino, 1998; Guizzardi, 2007). In the rest of this work, the following definition (mir-

roring an information-science-oriented interpretation of the term) from Guarino (1998)

is adopted:

“An ontology is a logical theory accounting for the intended meaning of a

formal vocabulary, i.e. its ontological commitment to a particular conceptual-

ization of the world”;

where conceptualization denotes “a set of conceptual relations defined on a do-

main space” (Guarino, 1998).

3.2 Relevance of ontology research to GIScience

Ontology research has both a theoretical and a practical pertinence to the field of geo-

graphic information science. Two key benefits - from a theoretical perspective - appear
3These three aspects were initially presented as uses of ontology in (Grüninger and Lee, 2002), but they

are also valid as goals for ontology research in information science.
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in (Agarwal, 2005): (i) an ontology can generate an underlying ‘theory for everything’

in GIScience via the determination of rules, relations and entities that can conceptualize

all processes and phenomena within a minimum set of mathematical equations; and (ii)

an ontological approach can pave the way for future research directions by questioning

current approaches in the definition of categorization and semantic content.

From a practical point of view, Abdelmoty et al. (2005) indicate that a geo-ontology

has a key role to play in the development of a spatially aware search engine. It sup-

ports in particular tasks such as query disambiguation, query term expansion, rele-

vance ranking and web resource annotation. Furthermore, as Smith and Mark (1998)

indicate, “geographic information systems need to manipulate representations of ge-

ographic entities, and ontological study of the corresponding entity types . . . will pro-

vide default characteristics for such systems”. Finally, since ontologies help to make

the intended meaning of vocabularies explicit, ontology research in GIScience helps to

understand why people succeed or fail to exchange geographic information.

3.3 Research method

The method for ontology development adopted for the formal characterization of the

resolution of sensor observations is expounded in this section. The philosophical basis

for the method is presented first, and its steps are detailed afterwards.

3.3.1 Philosophical standpoint

The engineering view of semantics proposed in (Kuhn, 2009b) is adopted in the cur-

rent work for the development of the ontology of spatial and temporal resolution of

sensor observations. This view, as described in (Kuhn, 2009b), makes minimal assump-

tions about philosophical issues (e.g. realism vs nominalism), to the end of pragmatic

solutions to semantic problems. Regarding the philosophical basis for such a view,

Kuhn (2009b) suggested radical constructivism. A constructivistic approach, as Couclelis

(2010) mentions, is philosophically “closest to instrumentalist and pragmatist philoso-

phies of science, which tend to be neutral on the question of external reality but focus

instead on seeking the most productive solutions to specific problems”.

A presentation of the main epistemological tenets of radical constructivism can be

found in (von Glasersfeld, 1974, 1984, 1992, 2004). At this stage, two remarks on con-

structivistic4 approaches are of importance: Firstly, it should be noted that (a) “[con-

4Chiari and Nuzzo (2004) point out that the vague definition of the term has led scholars to suggest
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structivists] are constructing a model that should be tested in practice, not another

metaphysical system to explain what the ontological world might be like” (von Glasers-

feld, 2000); and secondly: (b) “constructivists never say: this is how it is! They merely

suggest: this may be how it functions” (von Glasersfeld, 2000). As for the current work,

the choice of a constructivistic approach has two main implications. The first one - re-

lated to remark (a) - is that the purpose of the ontology presented in Chapters 4 and 5

is not an explanation of the world (a.k.a. external reality), but the provision of a con-

ceptual backdrop for (geographic) information systems. The second implication - from

remark (b) - is that the ontology developed is only one way of formally specifying the

spatial and temporal resolution of sensor observations. The adoption of constructivism

as philosophical basis for the ontology development method is consistent with one of

the fundamental rules brought up in (Noy and McGuinness, 2001), as regards the de-

velopment of ontologies in information sciences. As the authors put it: “There is no one

correct way to model a domain - there are always viable alternatives. The best solution

almost always depends on the application that you have in mind and the extensions

that you anticipate”.

3.3.2 Research method: a bird’s-eye view

Kuhn (2010) argues for the separation of two distinct tasks in the context of (web) on-

tologies: modelling semantics and encoding it. The former is a design task whereas

the latter is an implementation task. These two tasks will constitute the main blocks

of the method for ontology building taken in this work. For other ontology building

methods, see reviews provided in (Jones et al., 1998; Fernández-López, 1999; Gómez-

Pérez, 1999b; Corcho et al., 2001; Fernández-López and Gómez-Pérez, 2002; Corcho

et al., 2003; Mizoguchi, 2004; Sure et al., 2009; Lavbič and Krisper, 2010; Gokhale et al.,

2011; Nguyen, 2011).

The distinction between modelling task and implementation task in ontology

building was already implicit in (Masolo et al., 2003) and (Bittner and Donnelly, 2007;

Guizzardi, 2007). Masolo et al. stated that using the Web Ontology Language (OWL)

for specifying foundational ontologies would be “non-sensical”, because foundational

ontologies requires an expressive language, in order to suitably characterize their in-

tended models. For that reason, the authors resorted to a full first-order logic with

modality while developing their foundational ontologies. Bittner and Donnelly argued

different types of constructivism. In the current work, constructivism is primarily used sensu von Glasers-

feld and refers to what von Glasersfeld calls ‘radical constructivism’. For examples of other types of

constructivism, see (Troelstra, 1991).
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for the need to understand a computational ontology as consisting of two complemen-

tary components: (i) an expressive ontology developed in first-order logic, and (ii) an

ontology developed in description logics, which is computationally efficient, and thus

useful for computer implementations. The ontology developed in descriptions logics

is an approximation of the ontology developed in first-order logic. Guizzardi advocated

two classes of languages for the discipline of ontology engineering5: (i) “well-founded

ontology representation languages” with the focus on representation adequacy, and

(ii) “lightweight representation languages” with the focus on guaranteeing desirable

computational properties. He pointed out that the name ‘ontology representation lan-

guages’ when applied to Semantic Web languages (e.g. the Web Ontology Language)

is a misnomer, because these languages are motivated by epistemological and compu-

tational concerns, not ontological ones6.

Table 3.1: Key features of the design and implementation stages of an ontology build-

ing process

DESIGN IMPLEMENTATION

Goal Support human understanding Support automated reasoning

End consumer
Humans (in tasks such as com-

munication & domain analysis)

Machines (in tasks such as in-

ference & reasoning)

Requirements

for supporting

languages

Conceptual clarity

Expressiveness

Efficient automated reason-

ing, Decidability, Scalability7

Examples of

supporting

languages

First-order logic, Haskell, UML
OIL, DAML, DAML+OIL,

RDFs, OWL, LINGO

Nota bene: an explanation of the acronyms used in this table is available at Page xvii.

That some languages are classified as implementation languages in this table implies

by no means that they cannot be (or have not been) used for design, but such a use

might come at the expense of greater expressiveness and understanding.

5After Sure et al. (2009), ontology engineering is defined in this work as the “discipline that investigates

the principles, methods and tools for initiating, developing and maintaining ontologies”.
6See (Guizzardi, 2007) for the thorough discussion.
7Admittedly, ontology implementation languages need also expressiveness to a certain degree. Anto-

niou and van Harmelen (2003, 2009) identified ‘sufficient expressive power’ as a requirement for ontology

implementation languages, and motivated the development of OWL by the limitations of the expressive

power of RDF Schema. Nonetheless, the key feature of ontology implementation languages is not expres-

siveness per se, rather it is the compromise between expressiveness and efficient reasoning support. This has been

the reason for not explicitly mentioning ‘expressiveness’ in the column IMPLEMENTATION of the table.
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Table 3.1 synthesizes the distinguishing features of the two tasks of design and

implementation. The synthesis is based for the most part on the discussions provided

in (Guizzardi, 2007; Kuhn, 2010). Sections 3.3.3 and 3.3.4 present in detail the tasks

performed during the design stage and the implementation stage respectively. Figure

3.1 presents the main features of the research method.

Figure 3.1: Research method

Nota bene: dotted arrows indicate the possibility of iteration between different steps.

3.3.3 Design (or modelling) stage

The steps followed during this stage are partially modified from the method for design

and evaluation of ontologies suggested in (Grüninger and Fox, 1995). The design stage

is an iterative process consisting of three steps: (i) identification of a motivating sce-

nario, (ii) identification of the terms of the ontology, and (iii) formal specification of the

terms of the ontology.
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Identification of a motivating scenario

According to Grüninger and Fox (1995); Uschold and Grüninger (1996), a motivating

scenario is a story problem or example which is not adequately addressed by existing

ontologies. A motivating scenario provides a set of intuitively possible solutions to the

scenario problems, and helps to understand the motivation for the proposed ontology

in terms of its applications.

Given the motivating scenario, a set of questions to be answered by the ontology

(i.e. competency questions) is extracted. As indicated by Grüninger and Fox (1995);

Uschold and Grüninger (1996), competency questions specify the (expressiveness) re-

quirements for an ontology, and are a means to give an informal justification of the

necessity of the ontology to be developed. All in all, the specification of a motivating

scenario as well as competency questions helps to delineate the scope of the ontology.

Identification of the terms of the ontology

Grüninger and Fox (1995) as well as Uschold and Grüninger (1996) indicate that for

every competency question, there must be objects, attributes, or relations in the pro-

posed ontology, which are intuitively required to answer the question. This step of the

design stage consists in identifying the terms (i.e. objects, attributes, relations) to be

used in the ontology. Terms from existing ontologies will be considered for reuse, and

new terms (i.e. terms that do not appear in previous ontologies) will be introduced

if necessary, to cover the needs arising from the motivating scenario. All the terms of

the ontology will be aligned to a foundational ontology. As Brodaric and Probst (2008)

indicate, an alignment to a foundational ontology is realized by establishing an is-a

relation between an ontology element and a foundational ontology element8.

Formal specification of the terms of the ontology

At this step of the design stage, axioms are provided and the terms of the ontology are

specified using an ontology design language. An axiom “contains formulas which are

considered to be always true (and therefore sharable among multiple agents), indepen-

dently of particular states of affairs” (Guarino and Giaretta, 1995). As mentioned in

(Grüninger and Fox, 1995; Uschold and Grüninger, 1996), axioms are useful to specify

the definitions of terms in the ontology, and constraints on their interpretation. The

8See Section 3.4.1 for a detailed presentation of foundational ontologies, and the benefits of an align-

ment to a foundational ontology.
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whole obtained by putting together terms and axioms is a logical theory, and this theory

represents the outcome of the design stage.

3.3.4 Implementation (or encoding) stage

The terms of the ontology identified during the design stage (all or some of them) are

reused at the implementation stage. A subset of the axioms from the design stage is

isolated and implemented in an ontology implementation language. A distinguishing

criterion between ontology implementation language and ontology design language is

that the former must be machine-readable, whereas the latter does not need to be. There is a

need to use different languages for design and implementation because, as Bittner et al.

(2009) remark: “[o]nce one has developed a highly expressive theory, less expressive

logics with better computational properties can be used to implement certain portions

of the full theory for specific purposes”. The outcome of the implementation stage is a

computational artifact that can be used in practical tasks such as query disambiguation,

query term expansion, relevance ranking and web resource annotation9.

3.3.5 Ontology languages

Several languages have been proposed in the past for the design and implementation

of ontologies. Examples already mentioned in Table 3.1 are first-order logic, Haskell,

UML, OIL, DAML, DAML+OIL, RDFs, OWL and LINGO. The second edition of the

Handbook on Ontologies points further to description logics (see Baader et al., 2009),

RDFS-FA10 (see Pan, 2009), frame logic (see Angele et al., 2009), and the semantic web

rule language (see Hitzler and Parsia, 2009). Additional examples of languages that

have been used to design and/or implement ontologies can be found in (Corcho and

Gómez-Pérez, 1999, 2000; Corcho et al., 2001; Bechhofer, 2002; Gómez-Pérez and Cor-

cho, 2002; Su and Ilebrekke, 2002; Kalinichenko et al., 2003; Mizoguchi, 2004; Pulido

et al., 2006; Cardoso, 2007; Maniraj and Sivakumar, 2010; Kalibatiene and Vasilecas,

2011; Nguyen, 2011). The reader might ask him-/herself why the discussion on ontol-

ogy languages has not been integrated with the separation of the two tasks of design

and implementation. The reason lies in the fact that ontology languages should be

placed along a continuum, rather than be classified as either belonging to one category

(design) or to the other (implementation). At one end of the continuum, there are lan-

9At this stage, no facts (or instances) are added to the ontology. Adding facts or instances to the on-

tology leads (following the distinction introduced in Noy and McGuinness, 2001) to the creation of a

knowledge base.
10RDFS-FA stands for RDFs with fixed layered meta-modelling architecture.
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guages that are more appropriate for implementation (e.g. RDF), and at the other end,

languages more adequate for design (e.g. first-order logic). In-between, there are lan-

guages that might be used for both (e.g. OWL DL11), albeit with the risk of obtaining

suboptimal results. If the three species of OWL described in (Antoniou and van Harme-

len, 2003, 2008, 2009) were to be placed on this continuum, the result would be as Figure

3.2 shows12. Comparisons of ontology languages done in (Corcho and Gómez-Pérez,

1999, 2000; Gómez-Pérez and Corcho, 2002; Su and Ilebrekke, 2002; Ding et al., 2005;

Keet and Rodriguez, 2007; Kalibatiene and Vasilecas, 2011) can be used as a starting

point for a comprehensive characterization of this continuum13, but this endeavour is

out of the scope of the current work.

The requirements of the task to complete drive the choice of the ontology lan-

guage. Chapters 4 and 7 will present the languages chosen in the current work for

the design and implementation tasks respectively, as well as the motivations for their

choice.

Figure 3.2: The three species of OWL on the implementation-design continuum

Note: languages further right provide greater support for design, languages further

left provide greater support for implementation.

3.3.6 Evaluation

Ontology evaluation can be carried out for two major goals (indicated in Yu et al.,

2009): tracking progress in ontology development, and ontology selection. The distinction

mentioned in (Gómez-Pérez et al., 1995; Gómez-Pérez, 2001, 2003) between technical

11OWL DL (short for: OWL Description Logic) is a variant of OWL. A presentation of OWL DL can be

found in (Antoniou and van Harmelen, 2003, 2008, 2009).
12Interchangeable names for this continuum are ‘implementation-design continuum’, ‘design-

implementation continuum’.
13Nguyen’s statement that “languages based on higher-order logics are more expressive than languages

based on first-order logics, which, in turn, are more expressive than languages based on description log-

ics”, is a rule of thumb that may also be useful for such a task.
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evaluation, and user evaluation fits with these two goals. Technical evaluation is carried

out by ontology developers and aims at tracking progress during ontology develop-

ment; user evaluation is done by end-users of the ontology, and aims at selecting an

ontology for a given purpose. The next paragraphs present work done along these two

different axes.

OntoClean, presented in (Welty and Guarino, 2001; Guarino and Welty, 2002),

is a method useful to expose inappropriate and inconsistent modelling choices dur-

ing the development of taxonomies. The method adopts several philosophical no-

tions such as identity, essence, unity and dependence, and adapts them for use in

information systems. As an alternative to OntoClean, Sleeman and Reul (2006) sug-

gested CleanONTO, a checking system for taxonomies based on definitions extracted

from WordNet. CleanONTO helps to remove inconsistent relations from a taxonomic

structure and produce a consistent ontology. Relevant also to the evaluation of tax-

onomies is work done by Gómez-Pérez (1999a, 2001, 2003), where three main classes

of errors that can arise during the development of taxonomies were identified: incon-

sistency errors, incompleteness errors, and redundancy errors. Another discussion on

errors arising during the creation of taxonomies can be found in (Fahad and Qadir,

2008). With the view that a substantial amount of an ontology’s expressive and infer-

ential capabilities lies in the non-taxonomic relations that hold between the concepts,

Porzel and Malaka (2004) proposed a method for task-based evaluation which yields a

measure of how well vocabularies, taxonomies and non-taxonomic relations are mod-

elled for a given task at hand. The method is useful to indicate superfluous (and also

missing, ambiguous) concepts, isa- and semantic relations. Several authors also tried

to automatize the evaluation task during ontology development. Völker et al. (2005,

2008) proposed AEON, a tool to automatize the different steps of OntoClean. Lavbič

and Krisper (2010); Lavbič et al. (2011) introduced rapid ontology development (ROD).

ROD (with the accompanying tool IntelliOnto) aims at decreasing the technical knowl-

edge required for the development of ontologies, and tracks progress in the ontology

development task through the ontology completeness indicator. Besides, Pammer et al.

(2006) presented a method (called ontology coverage check) which helps, in the course

of ontology development, to check the extent to which an ontology’s concepts and

axioms cover a set of (test) individuals. Baclawski et al. (2002) proposed ConsVISor,

a tool for checking the consistency of ontologies encoded in languages such as RDF

and DAML+OIL. Brewster et al. (2004) proposed the comparison between the terms

of an ontology and a corpus of text representing a given domain as a method for on-

tology evaluation. Brank et al. (2006) suggested an approach for ontology evaluation

based on the comparison between an ontology and a gold standard ontology. Casel-
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las (2009) hypothesized that ontology evaluation would benefit from the inclusion of

human-centred methods (e.g. expert involvement for the evaluation task) in the on-

tology development life-cycle. Finally, Evermann and Fang (2010) identified cognitive

ontology quality as an important characteristic of ontologies and proposed a method

to evaluate it.

Regarding the selection of ontologies for a given task, Lozano-Tello and Gómez-

Pérez (2004) suggested a method which enables users to choose among existing ontolo-

gies. The method is called ONTOMETRIC and takes into account 160 characteristics

of ontologies, spread over five dimensions: content, language, methodology, tool and

costs. Supekar (2005) proposed a peer-review based approach for ontology evaluation

that allows users to provide qualitative ratings on the ontology content. Lewen et al.

(2006) suggested an approach for ontology evaluation based on Open Rating System14.

Alani and Brewster (2006) presented a system (called AKTiveRank) for ranking ontolo-

gies based on the analysis of their structures. OntoQA, proposed in (Tartir and Budak,

2007), is another tool which helps to evaluate ontologies and rank them according to a

set of metrics.

Examples of work covering both technical evaluation and user evaluation are

(Gangemi et al., 2005a,b, 2006; Kehagias et al., 2008). Kehagias et al. (2008) proposed a

set of criteria to ensure ontology validation. The authors distinguish between internal

measures concerned with the ontologies themselves (e.g. density, cognitive adequacy),

and external measures concerned with their take-up and use within user communi-

ties (e.g. availability, ease and effectiveness of access). Gangemi et al. (2005a,b, 2006)

identified three types of measures for ontology evaluation: structural measures, func-

tional measures, and usability-related measures. Structural and functional measures

are pertinent to both technical and user evaluation, usability measures are relevant to

user evaluation. Reviews of approaches for ontology evaluation can be found in (Staab

et al., 2004; Brank et al., 2005; Hartmann et al., 2005; Sabou et al., 2006; Brank et al.,

2007; Obrst et al., 2007; Yu et al., 2007; Murdock et al., 2010; Tartir et al., 2010; Murdock

et al., 2013).

Since ‘evaluation’ is used in the literature in reference to both the tasks of select-

ing ontologies, and tracking progress during ontology development, there is a need for

further precision regarding the use of this term in the current work. Ontology evalua-

tion is defined after Gómez-Pérez et al. (1995) as a technical judgment of the ontology

with respect to a frame of reference. As Gómez-Pérez et al. point out, the frame of

14“The basic idea of Open Rating Systems ... is to have a democratic approach to rating where anyone

can review pieces of content” (Lewen et al., 2006).
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reference can be requirements specification, competency questions, and the real world.

Henceforth, ontology evaluation refers to the technical evaluation done by the ontology

developer, during an ontology development endeavour.

All the works previously cited have one point in common, namely that they have

not discussed ontology evaluation in relation to the design-implementation distinction.

To fill this gap, this work proposes the following repartition of previous criteria sug-

gested in the context of ontology evaluation. The focus is on what should be evaluated,

not how the evaluation should be carried out. Relevant references to the criteria in-

troduced next include (Gruber, 1995; Grüninger and Fox, 1995; Noy and Hafner, 1997;

Gómez-Pérez, 2003; Kehagias et al., 2008; Kuhn, 2009b; Vrandečić, 2009).

Evaluation of the design stage

Criteria for the evaluation of the design stage of an ontology development process

include:

• accuracy (i.e. correct representation of aspects of the real world)

• adaptability (i.e. ease of performing changes)

• clarity (i.e. effective communication of the intended meaning of defined terms)

• cognitive adequacy (i.e. match between formal and cognitive semantics)

• completeness (i.e. appropriate coverage of the domain of interest)

• conciseness (i.e. absence of unnecessary or useless definitions or axioms)

• consistency (i.e. incapacity of getting contradictory conclusions from valid input

data)

• expressiveness (i.e. number of competency questions that the ontology can answer)

• grounding (i.e. number of assumptions done by the ontology’s underlying philo-

sophical theory about reality)

Evaluation of the implementation stage

Criteria for the evaluation of the implementation stage of an ontology development

process include:

• computational efficiency (i.e. ease and speed of processing by reasoners)
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• congruency (i.e. fitness between ontology and corpus terms)

• practical usefulness (i.e. number of practical problems to which the ontology can

be applied)

• precision (i.e. fraction of retrieved instances by the ontology that are relevant)

• recall (i.e. fraction of relevant instances that are retrieved by the ontology)

• scalability (i.e. ability of the ontology to handle a growing amount of instances)

3.3.7 Documentation

Ontology documentation is an activity done in parallel to the design and implementa-

tion stages. It is viewed (in accord with Fernández-López, 1999; Fernández-López and

Gómez-Pérez, 2002) as a support activity, i.e. an activity happening concurrently with

the development of the ontology, without which the ontology could not be built. In

line with Gómez-Pérez (1995), ontology documentation is broadly defined to include

general information about the ontology, definition of its terms, studied cases in its evaluation,

definitions of terms taken from other ontologies, axioms of the ontology, description of the soft-

ware and/or ontology languages used during the ontology development process, frequently asked

questions about the ontology and tutorials, or any combination of these. Chapters 4, 5, 6,

and 7 of this PhD thesis play the role of documentation for the ontology of resolution

developed. A shorter documentation, conforming to Agarwal’s checklist of considera-

tions for ontologies in the geographic domain, is provided in Appendix F.

3.3.8 Discussion

Three methods15 from the literature may be found similar to the method introduced in

Sections 3.3.2 to 3.3.6: the ‘skeletal methodology for building ontologies’ suggested in

(Uschold and King, 1995), METHONTOLOGY from (Fernández et al., 1997; Fernández-

López et al., 1999), and ‘rapid ontology development’ introduced in (Lavbič and Krisper,

2010; Lavbič et al., 2011). The goal of this subsection is to outline both the correspon-

dences and differences.

15Worth mentioning also is the three-steps method from Bachimont et al. (2002). Contrary to this work,

the authors did not mention how to give a scope to the ontology, nor did they discuss evaluation.
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The skeletal methodology for building ontologies

Uschold and King (1995) suggest that a (comprehensive) method for ontology building

should include the following four phases:

• Identify the purpose and scope

• Building the ontology

– ontology capture

– ontology coding

– integrating existing ontologies

• Evaluation

• Documentation

The authors add that any ontology building method should also include a set of

guidelines for each of the four phases, and indicate what relationships exist between

the phases (e.g. recommended order, interleaving, or input/outputs).

The activities performed during the design and implementation phases were de-

scribed in Sections 3.3.3 and 3.3.4 respectively. As Figure 3.1 illustrates, the method is

iterative, but design precedes implementation. The identification of the purpose and the

scope of the ontology is achieved through the specification of the motivating scenario

and the competency questions. The phase of ontology capture and the stage called ‘iden-

tification of the terms of the ontology’ (see Section 3.3.3) are alike. Integrating existing

ontologies is done through the reuse of terms from existing ontologies, and/or align-

ment to a foundational ontology. The research method used in this PhD thesis takes

also evaluation into account, and documentation is done throughout. However, it is at

the ontology coding stage that it substantially differs from Uschold and King’s method.

The authors defined coding as follows:

“By coding, we mean explicit representation of the conceptualisation cap-

tured in the above stage [i.e. ontology capture stage] in some formal lan-

guage. This will involve committing to some meta-ontology, choosing a

representation language, and creating the code” (Uschold and King, 1995).

In the current context in which two types of representation languages exist and

support different goals, the ontology coding phase as defined originally by Uschold

and King can be understood in more than one sense. It might be attached to the design
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phase (if the goal of the coding stage is to support human understanding), or consid-

ered to be an implementation activity (if the goal is automated machine reasoning).

Based on the premise that “ontologies should be developed according to the standards

proposed for software generally, which should be adapted to the special characteristics

of ontologies”, Fernández-López (1999) analyzed Uschold and King’s method using

the IEEE Standard for Developing Software Life Cycle Processes, 1074-1995. He concluded

that Uschold and King’s method does not propose a design process for ontology build-

ing.

METHONTOLOGY

Fernández-López’s analysis disclosed that METHONTOLOGY proposes a separation

between the design phase and implementation phase during ontology building. Other

similarities between METHONTOLOGY and the research method used in this work

are: (i) METHONTOLOGY also starts with the identification of the ontology’s purpose

(see Blázquez et al., 1998), and (ii) it identifies the need for ontology evaluation (see

Fernández-López et al., 1999, page 38). There is also a correspondence between the dif-

ferent stages of METHONTOLOGY, and the different steps of the method previously

presented: Specification, Conceptualization, and Formalization (from METHONTOL-

OGY) are covered by the design stage; Implementation (from METHONTOLOGY) is

equivalent to the implementation stage; and Maintenance (from METHONTOLOGY) is

covered by the possibility of iteration between steps (see Figure 3.1). There are however

a couple of differences between METHONTOLOGY and the research method outlined

in previous sections.

First, as indicated by Fernández-López and Gómez-Pérez (2002), METHONTOL-

OGY is an application-independent method for ontology development. The method intro-

duced previously, which extends and adapts Grüninger and Fox’s method, is application-

dependent. Application-dependence has advantages and disadvantages. The advantage

of an application-dependent method is that the application helps during the evaluation

stage to determine the suitability of the ontology developed. The drawback, is that the

generality of the (logical) theory obtained (after the design stage) is questionable. On-

tology development done with an application-dependent method is nonetheless valu-

able. As Frank (1997) notes: “New insight can be gained from detailed investigations

in particular cases; . . . generalizations, if the same observations are made several times,

can then lead to a better general theory”16.

16A similar view is shared by Guttag and Horning (1980) who were hoping to discover general techniques

that govern the formulation of problem-specific questions during software design, by looking first at
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Second, Fernández-López and Gómez-Pérez (2002) state: “It is important to say

that formalisation is not a mandatory activity, because if you use ODE or WebODE [i.e.

tools supporting METHONTOLOGY], the conceptualisation model is automatically

generated into ontological specification languages”. Formalization, on the contrary,

is a mandatory activity of the ontology development method previously introduced.

One of the important benefits of formalization is that terms “become unambiguously

defined such that the danger of miscommunication and misuse is reduced” (Egenhofer

et al., 1999). For this reason, it is argued here that, despite the high learning curve of

formal languages, formalization should be kept in any ontology design activity.

Third, METHONTOLOGY discusses (in addition to design, implementation, eval-

uation, documentation, presented in this work) some additional activities such as knowl-

edge acquisition, configuration management, scheduling, control and quality assur-

ance. The importance of these activities is acknowledged, but their detailed discussion

is postponed to future work.

The rapid ontology development (ROD) method

ROD, as presented in (Lavbič and Krisper, 2010; Lavbič et al., 2011), has three steps:

pre-development, development, and post-development. The design stage introduced

in this chapter is equivalent to the combination ‘pre-development + development’ (from

ROD); implementation stage and post-development (from ROD) are alike; both meth-

ods take into consideration ontology evaluation. There are two main differences:

• the first difference concerns the goals of the methods. ROD intends to serve ‘less

technically knowledgeable users’, and therefore tries “to minimize the need of

knowing formal syntax required for codifying the ontology” (Lavbič and Krisper,

2010). The method proposed in this work does not pursue this goal. Rather, the

goal is to achieve excellent ontology designs, which will support better ontology

implementations. A direct consequence of this goal is that there is no need to

restrain oneself to tools and techniques that can be easily and quickly learned,

and used by non-experts17.

• the second difference is that ontology evaluation is achieved in ROD through

the ontology completeness indicator. On the contrary, the method introduced

in this work has only (and intentionally) specified what should be evaluated,

leaving room for flexibility as regards how the evaluation should be done (e.g.

individual examples of problem-specific questions.
17See (Guttag and Horning, 1980) for similar arguments in the context of software design.
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automatic, semi-automatic or manual evaluation, involvement of domain experts

or not, etc.).

3.4 Related work

Section 3.3 has given a detailed presentation of the method for ontology building used

in this work. This section touches upon foundational ontologies and ontologies for the

geographic domain, and provides examples for each of these types of ontologies.

3.4.1 Foundational ontologies

According to Borgo and Masolo (2009), foundational ontologies are ontologies that: (i)

have a large scope, (ii) can be highly reusable in different modeling scenarios, (iii) are

philosophically and conceptually well founded, and (iv) are semantically transparent

and richly axiomatized. The authors indicate further that the focus of foundational on-

tologies is on very general concepts (e.g. object, event, quality, role) and relations (e.g.

constituency, participation, dependence, parthood), that are not specific to particular

domains but can be suitably refined to match application requirements. Foundational

ontologies correspond to what is termed top-level ontologies in (Guarino, 1997, 1998), up-

per ontologies in (Mascardi et al., 2007a,b; Nguyen, 2011), upper-level ontologies in (Smith,

2003) and reference ontologies in (Lamp and Milton, 2004). Some examples of founda-

tional ontologies can be found in (Mascardi et al., 2007a,b). Comparisons of BFO, Cyc,

DOLCE, GFO, and SUMO18 are documented in (Mascardi et al., 2007a,b; Ahmad and

Lindgren, 2010).

As mentioned in Section 3.3.3, all the terms of the ontology developed in this work

will be aligned to a foundational ontology19. Mika et al. (2004) argue that one of the

long term benefits of alignment is that it allows a comparison between several aligned

ontologies. Additional benefits of alignment for ontology design are conceptual dis-

ambiguation, increased axiomatization, improved design (see Mika et al., 2004). A last

benefit of alignment to a foundational ontology is that it helps the ontology designer to

relate his/her work to already existing ontologies.

18The explanation of the acronyms is available at Page xvii.
19Section 4.3.2 presents the foundational ontology used in this work as well as the motivation for its

choice.
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3.4.2 Geo-ontologies

Geo-ontologies can be defined after Fonseca and Câmara (2009), as ontologies which

describe entities, semantic relations, and spatial relations: entities can be assigned to loca-

tions on the surface of the Earth; semantic relations between these entities include for

example hypernymy, hyponymy, mereonomy, and synonymy; spatial relations between

entities include for instance adjacency, spatial containment, proximity and connected-

ness. Significant attention has been devoted to ontology research in GIScience, and

the goal of this section is to briefly present some of the previous work20. Examples

of geo-ontologies21, with different levels of generality and formality, can be found in

(Smith and Mark, 1998, 1999; Bittner and Smith, 2003a,b; Lemmens, 2003; Raskin, 2003;

Reitsma and Bittner, 2003; Grenon and Smith, 2004; Raskin and Pan, 2005; Abdelmoty

et al., 2005; Arpinar et al., 2006; Perry et al., 2006; Raskin, 2006; Hess et al., 2007; Bennett

et al., 2008; Kauppinen et al., 2008; Bittner et al., 2009; Lopez-Pellicer et al., 2010; Sinha

and Mark, 2010; Bittner, 2011).

Relevant frameworks for ontology research in GIScience are the tiers of ontology

presented in (Frank, 2001, 2003), the layered mereotopological framework suggested

in (Donnelly and Smith, 2003), the framework for mapping ontologies and geographic

conceptual schema from Fonseca et al. (2003), and the framework for identification

and resolution of semantic heterogeneity between geographic categories presented in

(Kokla and Kavouras, 2005). Further examples of frameworks include the architec-

ture of an ontology-driven GIS outlined in (Fonseca et al., 2002b), the framework for

measuring the degree of interoperability between geo-ontologies suggested in (Fon-

seca et al., 2006), the framework for geographic information ontologies proposed in

(Couclelis, 2010), and the observation-driven framework from Janowicz (2012).

In parallel, there has also been works bringing to the fore some desiderata for

geo-ontologies. Galton (2003) identified three key desiderata for a fully-temporal geo-

ontology; Smith and Mark (2003) pointed out the need for both field-based and object-

based ontologies; and Galton (2005) called for the development of an ontological frame-

work which takes into account the relationship between objects and fields. Additional

examples of desiderata for geo-ontologies can be found in (Klien and Probst, 2005;

Henriksson et al., 2008): Klien and Probst argued in favor of the separation between

concepts for data representation (e.g. point, line, polygons) and geospatial concepts

(e.g. town); Henriksson et al. argued that geo-ontologies should contain classes that

20The section serves illustrative purposes only and does not aim to be exhaustive.
21The examples that follow are a mix of ontologies developed from both a philosophical and an infor-

mation science point of views, and this reflects the interdisciplinary nature of the field of GIScience.
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describe four aspects, namely: spatial aspects of places (e.g. location), aspects of re-

gional geography (e.g. administrative regions), aspects related to human interaction

with nature (e.g. land use), and aspects related solely to the physical environment (e.g.

landforms).

Examples of research projects devoted to the development of geo-ontologies were

mentioned in (Mark et al., 2000, 2004). Cognitive categorization of geographic entities

was the subject of (Mark et al., 1999; Mark and Turk, 2003), and Casati et al. (1998)

proposed three key theoretical tools that can help to solve ontological problems arising

in the geographic domain. Relevant reviews to ontology research in GIScience appear

in (Agarwal, 2005) and (Bateman and Farrar, 2004, 2006).

3.4.3 Discussion

Section 3.4.2 provides evidence that the topic of ontology has received a significant

amount of scholarly attention in GIScience. Nonetheless, apart from (Reitsma and Bit-

tner, 2003), few authors in GIScience have touched upon the notion of resolution22.

Reitsma and Bittner’s investigation relied on the tacit assumption that the world is or-

ganized into hierarchies23, and focused on the characterization of the relationships be-

tween objects and processes at various hierarchical levels (‘granularity tree’ in the au-

thors’ terminology). Their study led to a conclusion regarding the nature of processes,

namely: a part of a process is contained within the spatial and temporal extent of the

whole process, and has a higher spatial and temporal grain than the whole process. As

mentioned in Section 1.2.3, the goal of the current work is to investigate how resolution

is introduced in observation processes. A necessary assumption thereby is that there

exists a world (a.k.a. reality) that can be observed through some means. More specif-

ically, it follows from the adoption of Kuhn’s semantic engineering view, that there is

an assumption of the existence of observation sentences in the sense of Quine. According

to Quine (1995)24, observation sentences:

“. . . are occasion sentences - true on some occasions, false on others . . . they

report intersubjectively observable situations, observable outright . . . all mem-

bers of the language community are disposed to agree on the truth or falsity

of such a sentence on the spot, if they have normal perception and are wit-

nesses to the occasion” (page 22).

22See, along the same lines, an early statement from Frank (2009a).
23See for example the last comment of the paper in (Reitsma and Bittner, 2003, section 6).
24See also (Quine, 1993) for a pertinent discussion on observation sentences.
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The investigation pursued here is therefore different in its goal and underlying

assumption from the one done in (Reitsma and Bittner, 2003); both works however are

necessary pieces of the ‘science of scale’ whose agenda was outlined in (Goodchild and

Quattrochi, 1997).

3.5 Summary

Ontology is the ‘tool’ used for the formal specification of the spatial and temporal res-

olution of sensor observations, and this chapter situates the thesis in the current litera-

ture on ontology. There has been (implicit and explicit) calls for the separation between

design task and implementation task during ontology development (in information sci-

ence), and the chapter offered an in-depth discussion of ontology development along

these lines. The following is an epitome of the main ideas exposed:

I. The work adopts an information science interpretation of ontology;

II. Constructivism is the philosophical basis for the ontology development method

proposed;

III. The ontology development method has two main blocks: a design (or modelling)

stage, and an implementation (or encoding) stage;

IV. The outcome of the design stage is a (logical) theory, the implementation stage

produces a computational artifact that can serve the purposes of practical prob-

lem solving. Each of these stages should be evaluated separately, and possible

evaluation criteria for each of the stages were presented;

V. Ontology languages cannot be rigorously classified as belonging to one category

(i.e. design) or to the other (i.e. implementation), but should be placed along the

implementation-design continuum;

VI. No work on ontology in GIScience has so far investigated how resolution is intro-

duced in observation processes.
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Ontology design stage - resolution

of single observations

The design of the ontology of resolution is spread over two chapters. This chapter - the first of

the two - presents the motivating scenario for the work and selects one of the existing observa-

tion ontologies as starting point for the development of the ontology of resolution. It introduces

a receptor-based theory of spatial and temporal resolution (applicable to single sensor observa-

tions) and presents the formal specification of the theory in Haskell1.

4.1 Motivating scenario

A collection of sensors has been deployed in a city to measure the concentration of car-

bon monoxide (CO) in the air. The concentration of CO is taken at different moments of

the day, by different carbon monoxide analyzers (COAs) placed at different locations

in the city. A group of scientists is interested in analyzing the quality of the air in the

city. Using the Semantic Sensor Observation Service (SemSOS)2, the group is able to

develop an application software which retrieves data generated by the COAs so that

differences of sensors and observations regarding measurement procedures and mea-

surement units are harmonized. The group is now interested in extending the semantic

capabilities of the application so that the resolution of the observations is made explicit,

and retrieval at different resolution, with minimal human intervention, is made possi-

ble. In particular, the group would like to know the spatial and temporal resolution of

one observation (Q1), and the spatial and temporal resolution of the observation col-

lection produced by the COAs (Q2). Making an application software understand what

1This chapter is an extended and substantially revised version of (Degbelo, 2013), published at

GI_Forum 2013.
2See an introduction to SemSOS in (Henson et al., 2009).
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‘resolution’ of an observation (or an observation collection) means, is only possible

through a formal characterization of the concept3.

4.2 Viewpoint on space and time

Galton (2004) brought forward two different ways of viewing space and time4: the

Newtonian, and the Non-Newtonian. The Newtonian view of space and time reposes

on two tenets indicated in (Galton, 2004):

P1: space and time are absolute frameworks existing independently of any objects and

events that might populate them;

P2: space and time are separate frameworks, i.e. given two events, their spatio-temporal

separation can be cleanly resolved into a temporal component and a spatial com-

ponent, and these components, for those two events, are absolute (i.e. the same

for all observers).

Regarding the Non-Newtonian ways of viewing space and time, Galton (2004) draws

a distinction between two doctrines: Leibniz’s relationalism, and Einstein’s relativistic

point of view. As Galton (2004) notes, Leibniz is opposed to Newton on P1, that is,

Leibniz argues that space and time have no absolute, independent existence but only

exist by virtue of the things that exist and the events that occur. In a nutshell, Leibniz’s

viewpoint is that space and time are relational. Einstein, on the contrary, is opposed

to Newton as regards P2. Einstein’s standpoint is that space and time are not cleanly

separable in the way that Newton (and common sense) supposed, rather, space and

time are relative to one another, and to the observer5.

Galton (2004) asserts that the Theory of Relativity (TR) is largely irrelevant to

GIScience because of the scale of the earth6. For this reason, a relative view on space

and time is not adopted for the theory of spatial and temporal resolution proposed in

this work. Newton’s tenet P2 is adopted, i.e. space and time are viewed as separate

frameworks. Commitment to either an absolute (Newton’s tenet P1) or a relational

3This scenario presupposes the use of in-situ COAs, but remote COAs such as the MOPITT instrument

introduced in (Drummond and Mand, 1996) might be also used for data collection purposes. The theory

proposed in this chapter takes into account both in-situ and remote sensors.
4See also, related to this, (Nunes, 1991) for an early discussion on a model of geographic space suitable

for GIS, and (Couclelis, 1999) for a discussion on the conceptual roots of space and time representations.
5See (Galton, 2004) for the detailed discussion.
6On the scale of the earth, TR can indeed be replaced by its Newtonian approximation, in which there

is a clean separation between the time dimension and the three dimensions of space.
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(Leibniz) view on space and time is not required for the theories of resolution exposed

in the rest of the work. The author remains neutral as regards these two views.

The assumption that space and time are separate frameworks allows the projec-

tion of the scenario introduced in Section 4.1 onto space and onto time7. The projection

onto space omits altitude for simplicity, and results in a plane on which points repre-

senting the sensors are distributed (see Figure 4.1)8. The projection onto time results in

six lines as Figure 4.2 shows. Each line represents a day, and a point on a line indicates

that a sensor measures the concentration of carbon monoxide at this moment of the

day. For example, sensor A returns three values per day; sensor B, five values a day;

sensor C, one value; sensor D, three values; sensor E, two values; and sensor F, four

values.

Figure 4.1: Projection of the motivating scenario onto space

7If space and time were not cleanly separable, such a differentiation between a spatial component (i.e.

projection onto space) and a temporal component (i.e. projection onto time) for the scenario would not

have been adequate.
8The representation of the x-axis and y-axis on the figure reflects the possibility of ascribing a coordi-

nate system to the plane, in order to locate the sensors.
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Figure 4.2: Projection of the motivating scenario onto time

4.3 Identification of the terms of the ontology (Part I)

This section presents the terms of the ontology of resolution relevant to single obser-

vations. Existing observation ontologies are first considered for reuse. Second, the

foundational ontology and the ontology design language adopted for the remainder

of the work are presented. The terms of the ontology are presented third, and their

alignment to DOLCE is presented at last.

4.3.1 Reuse of existing ontologies

Section 1.2 introduced previous attempts to provide a conceptual clarification of ob-

servation, and touched upon existing observation ontologies. This section aims at se-

lecting one of these observation ontologies as starting point for the development of the

ontology of resolution. Three criteria are used to guide this choice. They are as follows:

• Remain neutral with respect to the distinction between field and object (C1): as men-
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tioned in (Fonseca et al., 2003), the most widely accepted conceptual model for

GIScience considers that geographic reality is represented either as fully defin-

able entities (objects) or smooth, continuous spatial variation (fields). An ontol-

ogy of resolution which remains neutral to the distinction field vs object is there-

fore highly desirable, to ensure a wide applicability of the terms suggested in

GIScience.

• Take into account humans as sensors (C2): Goodchild (2007) defined Volunteered Ge-

ographic Information (VGI) as the widespread engagement of private citizens in

the creation of geographic information, and pointed out some valuable aspects of

the information produced by volunteers: (i) the information can be timely; (ii) it

is far cheaper than any alternative; and (iii) information produced by volunteers

can tell about local activities in various geographic locations that go unnoticed by

the world’s media. Humans acting as sensors are at the heart of VGI; the ontology

of resolution should therefore be developed using a notion of sensor encompass-

ing both instruments and humans, to be usable for both observations generated

by humans and technical devices. Only ontologies capable of processing both

types of observations can help to take advantage of VGI’s potential, namely, “the

potential to be a significant source of geographers’ understanding of the surface

of the Earth” (Goodchild, 2007).

• Take into account observation as a result and observation as a process (C3): the term

‘observation’ is used to denote both the process of observing and the outcome of

this process, and the ontology of resolution should be developed in such a way

that justice is done to these two senses of observation.

Table 4.1 presents the results of the application of these 3 criteria to the observation

ontologies from Section 1.2.2. An explanation of the results is provided in the next

paragraphs.

Probst (2006) includes the concept Instrument in his basic ontology for observa-

tions. The concept of HumanObserver which appeared earlier in the paper is however

omitted in the ontology, and this suggests that the author accounted only for technical

sensors in his ontology. The modelling of the concept Observation as a subcategory of

the class Accomplishment from the foundational ontology DOLCE accounts for the fact

that an observation is a process (which might have other subprocesses as parts, and

in which some entities participate). The class Observation is related to a class Symbol

through the relation ‘has_result’, and this helps to incorporate the outcome of the ob-

servation process (i.e. observation as a result) in Probst’s ontology. Observation is also
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Table 4.1: Criterias C1, C2 and C3 applied to the observation ontologies

ONTOLOGIES C1 C2 C3

Probst (2006) � x �

Madin et al. (2007) x x x

Kuhn (2009a) � � �

Janowicz and Compton (2010) � � x

Compton et al. (2012) � � x

Legend

�: the ontology fulfills the criterion

x: the ontology doesn’t fulfill the criterion

related to the DOLCE class Quality by means of the relation ‘observes’, and this indi-

cates neutrality with respect to the distinction field vs object, because a Quality can be

attributed to objects or abstract positions9.

Madin et al. (2007) did not include any concept referring explicitly to sensors in

their observation ontology called OBOE10. The definition of observation as “a state-

ment that an entity of a particular type was observed” implies a consideration of ob-

servation as a result, but not as a process. In OBOE, the ‘Entity’ is what is observed, and

the notion of entity is said to be ‘extremely generic’, but the extensions of the ‘Entity’

class presented in the paper (e.g. ‘Organism Entity’, ‘Population Entity’, ‘Community

Entity’) suggest an object-based view of the world.

The functional ontology of observation and measurement (FOOM) from Kuhn

(2009a) includes humans as sensors through the introduction of the term Observer. The

specification of the class Observable as a quality (in the sense of the foundational ontol-

ogy DOLCE) guarantees the neutrality vis-à-vis the object-based and field-based views.

The ontology discusses both observation as a process, and observation as a result.

The ontology from Janowicz and Compton (2010) is one module of the ontology

presented in (Compton et al., 2012). Both ontologies have in common that they model

observation as a context (i.e. one way of interpreting detectable changes in the envi-

ronment) and this modelling choice connotes a move from the notion of observation as

9DOLCE allows qualities to inhere in PhysicalEndurants and Non-PhysicalEndurants. Objects from an

object-based view are PhysicalEndurants. Abstract positions from a field-based view are DOLCE SocialOb-

jects, which in turn are Non-PhysicalEndurants.
10The authors link ‘Observation’ to ‘Measurement’ in OBOE, and state in the paper that

“[m]easurements are taken by a Recorder (human or non-human)”, but do not mention this ‘Recorder’ in

the ontology itself.
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a process11. The definition of ‘sensor’ used in both ontologies includes humans. The

explicit specification of the ObservedProperty (a quality in the sense of the foundational

ontology DOLCE) suggests that both ontologies fulfill the criterion C1.

From the foregoing discussion, FOOM is the only ontology which fulfills all the

criteria C1, C2 and C3 as outlined previously, and this motivates its choice as a basis

for the development of the ontology of resolution.

4.3.2 Foundational ontology and ontology design language

Two additional choices go hand in hand with the choice of Kuhn’s observation ontol-

ogy: the choice of the foundational ontology, and the choice of the ontology design

language. At this stage, the following argument holds, namely that while extending a

base ontology12, using its original foundational ontology and ontology design language

is more efficient than using another foundational ontology and/or ontology design lan-

guage. As a result, DOLCE is used as foundational ontology, and Haskell is used as on-

tology design language. DOLCE is descriptive and multiplicative. Descriptive means

that the foundational ontology is based on the assumption that “the surface structure

of natural language and the so-called commonsense have ontological relevance” (Ma-

solo et al., 2003); multiplicative signifies that DOLCE “allows for different entities to

be co-localized in the same space-time” (Masolo et al., 2003). Furthermore, the use of

DOLCE as foundational ontology is in line with the engineering view of semantics pre-

sented in Section 3.3.1, in that DOLCE “does not make claims on the intrinsic nature

of the world” (Borgo and Masolo, 2009). The taxonomy of DOLCE’s basic categories is

depicted in Figure 4.3.

Haskell is a functional programming language13, and examples of its use as for-

mal specification language can be found in (Timpf and Kuhn, 2000; Kuhn, 2002; Frank,

2003; Kuhn and Raubal, 2003; Winter and Nittel, 2003; Raubal and Kuhn, 2004; Schade

et al., 2004; Kuhn, 2007; Ortmann and Kuhn, 2010; Posthuma, 2010; Schade et al., 2012;

Weiser and Frank, 2012; Weiser et al., 2012). In the context of the current work, the use

11Compton et al. (2012) state: “Researchers interested in the internal processes by which sensors trans-

late stimuli into other representations may model observations as events”, with ‘event’ being the term

used in the foundational ontology DOLCE Ultra Light (DUL) to denote ‘[a]ny physical, social, or mental

process, event, or state’ (DUL was accessed from http://www.ontologydesignpatterns.org/ont/dul/

DUL.owl on January 10, 2013).
12The term ‘base ontology’ denotes in this context an ontology taken in its entirety, and which is used as a

starting point for another ontology development task.
13Or ‘functional language’ for short. An introduction to functional programming in Haskell can be

found in (Thompson, 1999).
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Figure 4.3: Taxonomy of DOLCE’s basic categories (from [Masolo et al., 2003])

of Haskell as formal specification language comes with the benefit that it guarantees an

evaluation of the ontology with respect to consistency, correctness and completeness. These

three aspects (briefly discussed below) were already mentioned in (Frank and Kuhn,

1995), and have been revisited for detailed discussion in (Winter and Nittel, 2003). Def-

initions of consistency, correctness14 and completeness are available in Section 3.3.6.

• consistency: “consistency [of an Haskell specification] is proven if a module or

package is loaded successfully” (Winter and Nittel, 2003);

• correctness: there are two main aspects that are covered under the term ‘cor-

rectness’: (i) the fact that the ontology effectively represents ‘aspects of the real

world’, and (ii) the fact that the ontology developer said what he intended to say. A

firm and definite statement about the ontology’s ability to effectively represent as-

pects of the real world cannot be provided (though validation by domain experts

or peers is often used as means to guarantee this aspect of correctness). On the

other hand, Haskell helps the ontology developer to check whether he said what

he intended to say. This is possible through tests on the behaviour of the specifi-

cation, and comparison of the test values with the values expected. Examples of

test cases are available in the two Haskell modules accompanying the theory of

resolution proposed (see http://purl.net/ifgi/degbelo/thesisresources);

• completeness: completeness of the ontology (i.e. its appropriate coverage of the do-

14Correctness as defined in Winter and Nittel is covered under the term ‘accuracy’ in Section 3.3.6.
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main of interest) has also various aspects. In the strict sense, completeness refers

to the ability of the ontology to cover all what should be said about spatial and tem-

poral resolution of sensor observations. Gómez-Pérez (2001, 2003) pointed out

that “we cannot prove . . . the completeness of an ontology”. A more manageable

aspect of completeness is the appropriate coverage of competency questions. This

aspect of completeness is equivalent to expressiveness, and “competency questions

are used to evaluate the expressiveness of the ontology” (Noy and Hafner, 1997).

The examples introduced later in Sections 4.3.4 and 5.2.3 show how the terms

of the ontology provide the necessary information to answer questions (Q1) and

(Q2) from the motivating scenario; Sections 4.4 and 5.3 present how the terms of

the ontology can be formally specified.

4.3.3 Terms of the ontology: resolution of a single observation

The observation ontology, as introduced in (Kuhn, 2009a) has five core concepts: ob-

servable, stimulus, observer, observation value, and observation process. The observable is the

physical or temporal quality to be observed; the stimulus is a detectable change in the

environment; the observer is someone or something that assigns a symbol to the observ-

able; the observation value is the outcome of the observation process. For the remainder

of the discussion, the term observation will be used to denote the observation value, and

the term particular will be used to refer to the observed entity15. The specific terms of

the ontology of resolution are highlighted in this section (and in Section 5.2) using a

different font16.

As discussed in Chapter 2, resolution is a property of a representation. On that

account, two terms are introduced: spatial resolution, and temporal resolution. The

spatial resolution is the amount of spatial detail in an observation, and the temporal

resolution is the amount of temporal detail in an observation. There are at least three

ways of modelling the spatial and temporal resolution of an observation.

The stimulus-centric approach

Stasch et al. (2009) suggested to constrain the spatial and temporal resolution of an

observation by the spatial and temporal extent of the stimulus. A drawback of this ap-

proach is that there is no one-way of defining the spatial and/or temporal extent of the

stimulus involved in an observation process. For instance, in the case of a thermometer

15The observable inheres in the particular.
16See Appendix A for a recap of all the terms of the ontology of resolution and their definitions.
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placed in a room of area 20m2 and measuring the temperature, the stimulus is the heat

flow of the amount of air in the room. It can be stated that the spatial extent of the stimulus

is equal to the spatial footprint of the amount of air in the room (e.g. 20 m2), but there

is no logical basis for preferring the value 20m2 over smaller values of the amount of

air in the room such as 15m2, 10m2 or 1m2. In fact, every size of the amount of air in the

room falling within the interval ] 0, 20 ] has an equal right to be called the spatial extent

of the stimulus participating in the observation process. Said another way, vagueness

issues arise as to the determination of the spatial extent of the stimulus. As regards

the temporal extent of the stimulus, its characterization is not straightforward because,

as Kuhn (2009a) pointed out, a detectable change can be viewed as a process (periodic

or continuous) or an event (intermittent). The duration of the stimulus is therefore

perspective-dependent.

The property-centric approach

Frank (2009c) indicates that a sensor always measures over an extended area and time

(called ε), and reports a point-observation (i.e. average value for an attribute) for this

extended area and time. The extended area or time was termed the support of the sen-

sor. Frank ascribes support to the sensor, but support has also been attributed in the

literature to the observation17. Modelling support as an attribute of the observation

rather than of the sensor is the standpoint adopted in this work18, because ε needs

not be related to the characteristics of the sensing device. For example, as Burrough

and McDonnell (1998) pointed out, the support in demographic studies is often an ir-

regularly shaped area determined by a census district or postcode area19. A general

definition of support is “the largest time interval [T], area [L2] or volume [L3] for which

the property of interest is considered homogeneous” (Finke et al., 2002). The spatial

resolution of an observation can be equated with its spatial support, and its temporal

resolution with its temporal support. The downside of such an approach is that no

precision is given regarding the way of estimating the area, volume or time interval for

which the property of interest is considered homogeneous. The example of demographic

studies mentioned above, illustrates that the determination of the support involves in

certain cases a certain degree of arbitrariness. Using support as a criterion to character-

17For example, Atkinson and Tate (2000) define support as “[t]he size, geometry, and orientation of the

space on which the observation is defined [emphasis added]”.
18This standpoint departs from the approach taken in (Degbelo, 2013) where support was modelled as

an attribute of the sensor.
19See page 101. The support in this case is determined independently of the sensor (i.e. the person

collecting and reporting the number of people available in a district).
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ize the resolution of the observation implies therefore a certain degree of arbitrariness

inherent in the resolution value. The next subsection will attempt to improve this situ-

ation by proposing a method to characterize the resolution of the observation based on

the physical characteristics of the observer.

The receptor-centric approach

In line with Kuhn (2009a), the observation process is conceptualized as consisting of

four steps (the first two steps are required only once, to determine the observed phe-

nomenon):

Step1: choose an observable,

Step2: find one or more stimuli that are causally linked to the observable,

Step3 (also called ‘impression’): detect the stimuli producing analog signals,

Step4 (also called ‘expression’): convert the signals to observation values.

The entity which produces the analog signal upon detection of the stimulus (Step

3) is termed at this point the receptor. Receptors are similar to the threshold devices

introduced in (Braitenberg, 1984), in that the production of the output (analog signal)

doesn’t happen immediately upon activation of the input (stimulus), but only after a

short delay. However (and contrary to Quine, 1993), receptors are not considered as

the interface between the external world and the observer. In other words, receptors

don’t need to be located at the surface of the observer. It is suggested here to use the

spatial region containing all the receptors stimulated during the observation process

as criterion to characterize the spatial resolution of the observation. The short delay

required by the receptors to produce analog signals (upon detection of the stimulus)

can be used a criterion to specify the temporal resolution of the observation.

Two new terms (borrowed and adapted from Neuroscience) are introduced at this

stage: the spatial receptive �eld (of the observer) and the temporal receptive window

(of the observer). The spatial receptive �eld (SRF) is the spatial region of the observer

which is stimulated during the observation process20. The temporal receptive window

(TRW) is the smallest interval of time required by the observer’s receptors in order

to produce analog signals. This definition of SRF is compatible with the one of recep-

tive field in Neuroscience as a “specific region of sensory space in which an appropriate

20This spatial region can be seen as two-dimensional (e.g. the palm of the hand) or three-dimensional

(e.g. the whole hand) depending on the type of receptors participating in the observation process, and

hence the word ‘field’ in SRF to reflect this fact.
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stimulus can drive an electrical response in a sensory neuron” (Alonso and Chen, 2009).

The definition of TRW paraphrases and generalizes to all sensor devices the definition

proposed in (Hasson et al., 2008; Lerner et al., 2011)21. The spatial resolution of an

observation can be approximated by the spatial receptive �eld of the observer, and its

temporal resolution could be equated with the temporal receptive window of the ob-

server participating in the observation process. There might be a chaining of different

types of receptors in an observation process. In such cases, the relevant receptors for

the computation of the spatial and temporal resolution are those that are stimulated by

external stimuli. Figure 4.4 illustrates this point.

Figure 4.4: Observer with several receptors*

*Only receptor R1 is relevant to the estimation of the spatial and temporal resolution of the

observation because it is directly stimulated by external stimuli. An example of observation

process where several receptors are chained is the hearing process as described in (Society for

Neuroscience, 2012). The process can be summarized as follows: eardrums (R1) collect sound

waves and vibrate; after them, hair cells (R2) convert the mechanical vibrations to electrical

signals. These electrical signals are then carried to the auditory cortex, i.e. the part of the brain

involved in perceiving sound. In the auditory cortex, there are specialist neurons (R3) which

specialize in different combinations of tone (e.g. some are sensitive to pure tones, such as those

produced by a flute, and some to complex sounds like those made by a violin). At last, there

are other neurons (R4) which can combine information from the specialist neurons to recognize

a word or an instrument.

21Hasson et al. (2008); Lerner et al. (2011) initially defined TRW of a neuron (or a cortical microcircuit)

as “the length of time before a response during which sensory information may affect that response”.
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4.3.4 Examples of SRF and TRW for a single observation

With the approach introduced in Section 4.3.3, the computation of the spatial and tem-

poral resolution of a single sensor observation involves three steps:

Step1: identify the type of receptor involved in the observation process;

Step2: find the duration needed for the production of analog signal upon detection of

the stimulus (relevant to the estimation of the TRW);

Step3: find the size of the receptors and the number of receptors stimulated during the

observation process (relevant to the estimation of the SRF).

The author expects the information for Steps 1-3 to be found in technical docu-

mentations (for sensor devices), and in research outcomes of the field of Neuroscience

(for human observers). This section will give some examples of receptor, spatial recep-

tive field and temporal receptive window for human and technical observers22.

EXAMPLE 1: A Carbon Monoxide Analyzer of type GM90123 returns the concen-

tration of carbon monoxide (Observation) in a gas. The receptor of this sensing device

is the measuring probe. The spatial receptive field is equal to the size of the opening

of the measuring probe, and the temporal receptive window is equal to the response

time. The value of the temporal receptive window lies between 5 and 360 seconds. The

diameter of the opening of the measuring probe varies between 300 and 500 millime-

ters and this suggests a spatial receptive field between 707 and 1963 square centime-

ters. This example provides the necessary information to answer the question ‘what is

the spatial and temporal resolution of one observation?’24 (i.e. Q1) in reference to the

motivating scenario from Section 4.1.

22The production of an observation involves two stages mentioned in Section 4.3.3: impression and

expression. Strictly speaking, the TRW is the time interval required for the impression operation. Most

information currently available is about the duration of the whole observation process (i.e. impression +

expression). More work will be needed in the future to tease the impression’s duration and the expres-

sion’s duration apart. For the time being, the examples of temporal receptive window that follow are based

on the assumption that the time needed for the expression operation is negligible compared to the time

needed for the impression operation. That is, for now, TRW ≈ duration of the whole observation process.
23See http://www.sick.com/us1/en-us/home/products/product_portfolio/analyzers_systems/

Pages/gm901.aspx; last accessed: April 19, 2014.
24Goodchild (2011b) points out that resolution - for the spatial dimension - can be expressed in either

a linear or areal or volumetric measure. Goodchild and Proctor (1997) are more restrictive, indicating

that the scientific community has traditionally defined resolution as a linear measure, and arguing that

measures of spatial resolution should always have dimensions of length. Throughout the work, values of

spatial resolution are expressed using areal measures. Conversions to linear measures are straightforward

and are achieved by taking the square roots of areal measures.
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EXAMPLE 2: A digital camera returns an image (Observation), with a spatial re-

ceptive field equal to the size of the aperture, and a temporal receptive window equal

to the shutter speed. The aperture is “the size of the adjustable opening inside the lens,

which determines how much light passes through the lens to strike the image sensor”

(Schurman, 2013a), and the shutter speed is “the amount of time the digital camera’s

shutter remains open when capturing a photograph” (Schurman, 2013b). The recep-

tor of the camera is the image sensor, but the size of the aperture determines the actual

portion of the image sensor that is stimulated during the production of an image. The

shutter speed determines the duration of the image sensor’s exposure to light. Further

examples of receptors for technical observers include thermistors (for medical digital

thermometers), bulbs (for clinical mercury thermometers), telescopes (for laser altime-

ters), aneroid capsules (for pressure altimeters), bulbs (for psychrometers), to name a few.

EXAMPLE 3: A human observer reports on a scenery at a temporal receptive win-

dow of about 14 milliseconds (ms) using the sentence ‘there is an apple here’ (Ob-

servation). The value of TRW is assigned based on the results from (Keysers et al.,

2001), where the authors investigated the mechanisms involved in object recognition by

monkeys’- and humans’ visual systems. Keysers et al. (2001) studied visual responses

to very rapid image sequences composed of “color photographs of faces, everyday ob-

jects familiar and unfamiliar to the subjects, and naturalistic images taken from image

archives” and reported a rate of 14 ms per image for human perception and memory.

EXAMPLE 4: The previous example is illustrative of the temporal receptive win-

dow of an observation sentence as defined in (Quine, 1993, 1995) in that the observer

assigns unreflectively on the spot a value to external stimuli. Lederman (1997) indi-

cates that, in the context of purposive exploration of the world, it typically takes 1 to

2 seconds to identify common objects such as spoon. Therefore, the temporal recep-

tive window for the observation ‘spoon’ in the context of a purposive exploration task

using human hands (of blind subjects) varies between 1 and 2 seconds. The temporal

receptive windows of observations produced by human observers will depend on the

observer, the type of task, and the stimulus.

EXAMPLE 5: The spatial receptive field of human observations is equal to the

size of the surface stimulated during the observation process. This surface might be

calculated using the product N * S, where N is the number of receptors which have

participated in the observation process, and S is the size of one receptor. As starting

point for the computation, the knowledge presented in Table 4.2 can be used. The

exact knowledge of the receptors which have participated in an observation process
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will become available as Neuroscience evolves25.

Table 4.2: Examples of receptors for a human observer

SENSE RECEPTORS, NUMBER & SIZE REFERENCES

Hearing

eardrum (or tympanic membrane) of

the ear26; there is one eardrum per

ear; the surface area of an eardrum is

about 85 mm2

(Society for Neuroscience, 2012;

Britannica.com, 2013b; Chudler,

2013)

Sight

photoreceptors of the retina; photore-

ceptors are about 125 million in each

human eye; their diameter varies

roughly between 2.5 µm and 10 µm27

(Kolb, 2005; Society for Neu-

roscience, 2012; Chudler, 2013;

Optipedia, 2013)

Smell

olfactory cilia of the olfactory neuron

in the nose; there are about five mil-

lion olfactory neurons in each nose,

each neuron has 8-20 cilia; cilia have

a length between 30 and 200 µm

(Leffingwell, 2001; Jenkins et al.,

2009; Chudler, 2013; Pines, 2013)

Taste

taste buds of the tongue; a human has

between 5,000 and 10,000 taste buds;

taste stimuli interact with taste buds

at a small 2-10 µm region called the

taste pore

(Linden, 2001; Meyerhof, 2008;

Society for Neuroscience, 2012;

Britannica.com, 2013a; Chudler,

2013)

Touch

touch receptors of the skin; there are

about 17,000 touch receptors in the

human hand; the mean spatial re-

ceptive field of touch receptors of

type FAI is about 12.6 mm2

(Lederman, 1997; Society for

Neuroscience, 2012; Chudler,

2013)

As this section shows, a receptor-centric approach to characterize the spatial and

temporal resolution of a sensor observation is applicable to both in-situ (e.g. tongue)

and remote (e.g. eye) sensors, and to both human and technical observers. Informa-

25Krulwich (2007) informs that it is only in 2002 that it became the new view that there is a fifth taste

(umami), in addition to the four admitted during many centuries (bitter, salty, sour, sweet). This fifth taste

is detected by a specific type of receptors (receptors for L-glutamate on the tongue).
26Treating eardrums as receptors (instead of the hair cells of the cochlea for example) is the direct con-

sequence of the fact that receptors in this context must be directly stimulated by external stimuli.
27There are two major types of photoreceptors: rods and cones (see Kolb, 2005; Society for Neuroscience,

2012, for details). Diameters vary between 3 and 5.5 µm for rods, and between 2.5 and 10 µm for cones.
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tion given about the Carbon Monoxide Analyzer of type GM901 (technical observer)

was extracted from the technical documentation of the product28. Table 4.2 illustrates

that the (neuroscience) literature is a useful source to gather necessary information to

estimate the spatial resolution of observations produced by human observer. (Keysers

et al., 2001), cited previously, is an example showing that the literature on neuroscience

is also a useful source to collect information for the computation of the temporal reso-

lution of observations generated by human observers.

4.3.5 Alignment to DOLCE: resolution of an observation

‘Spatial resolution’, ‘temporal resolution’, ‘spatial receptive field’, and ‘temporal recep-

tive window’ as characteristics of an entity (the observation or the observer) correspond

to the notion of quality in DOLCE. A quality can be defined as “any aspect of an entity

(but not a part of it), which cannot exist without that entity”29. Spatial receptive field

and temporal receptive window inhere in the observer, and are therefore physical quali-

ties30. Spatial resolution and temporal resolution inhere in the observation (i.e. a social

object), and hence belong to DOLCE’s class abstract quality. Finally, DOLCE proposes a

general distinction between agentive physical objects (i.e. endurants with unity to which

we ascribe intentions, beliefs and desires), and non-agentive physical objects (which are

endurants which constitute these agentive physical objects). The receptor, being an

element of the observer, is a non-agentive physical object31.

4.4 Formal specification: resolution of a sensor observation

The following example adapted from (Winter and Nittel, 2003) gives a brief introduc-

tion to the use of Haskell as formal specification language. A formal specification in

Haskell consists of data types, operations (specifying behaviours pertaining to the data

types), and axioms (i.e. equations that hold for the data types). A specification for points

could include, for example, a data type POINTS, two operations (getX, getY) which re-

turn coordinates, and an axiom for equality between two points. Listing 4.1 presents a

28See http://www.sick.com/us1/en-us/home/products/product_portfolio/analyzers_systems/

Pages/gm901.aspx; last accessed: April 19, 2014.
29The definition is taken from the foundational ontology DOLCE Ultra Light (http://www.

ontologydesignpatterns.org/ont/dul/DUL.owl; last accessed: February 08, 2013).
30Spatial receptive field and temporal receptive window are also examples of referential qualities, i.e.

“qualities of an entity taken with reference to another entities” (Ortmann and Daniel, 2011). Both SRF and

TRW are qualities of the observer taken with reference to the stimulus.
31Put differently, the observer (which is an agentive physical object) is constituted by the receptor. For a

more detailed discussion on constitution, see (Masolo et al., 2003).
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simple formal specification for points in Haskell (comments to facilitate understanding

are in italics)32.

Listing 4.1: Haskell specification for the type ‘Point’

1 −− t h e keyword ’ type ’ c r e a t e s a synonym f o r an e x i s t i n g H a s k e l l d a t a t y p e

2 type Name = String −− t h e ( p o i n t ’ s ) name i s o f t y p e S t r i n g

3 type Value = Int −− a v a l u e in t h i s example i s o f t y p e I n t

4 type Abscissa = Value −− t h e ( p o i n t ’ s ) a b s c i s s a i s o f t y p e Value

5 type Ordinate = Value −− t h e ( p o i n t ’ s ) o r d i n a t e i s o f t y p e Value

6

7 {− new d a t a t y p e d e c l a r a t i o n us ing t h e keyword ’ data ’

8 ’ da ta ’ i s u s e f u l t o d e f i n e a s i n g l e and new d a t a t y p e ;

9 t h i s t y p e o f p o i n t has a name , an a b s c i s s a , and an o r d i n a t e −}

10 data Point = Point Name Abscissa Ordinate

11

12 {− new d a t a t y p e d e c l a r a t i o n us ing t h e keyword ’ c l a s s ’

13 ’ c l a s s ’ i s u s e f u l t o d e f i n e a c o l l e c t i o n o f d a t a t y p e s ;

14 ’POINTS ’ ( be l ow ) r e f e r s t o a l l t h e t y p e s o f p o i n t s f o r which i t i s

p o s s i b l e t o a p p l y f u n c t i o n s t o r e t u r n t h e i r name , t h e i r a b s c i s s a and

t h e i r o r d i n a t e v a l u e s ( t h e t y p e ’ Po int ’ d e f i n e d on l i n e 10 i s a

s p e c i f i c example f o r t h e t y p e ’POINTS ’ ) −}

15 c l a s s POINTS p where −− c l a s s d e c l a r a t i o n

16 −− d e c l a r a t i o n o f t h e s i g n a t u r e o f t h e c l a s s

17 getName : : p −> Name

18 getX : : p −> Abscissa

19 getY : : p −> Ordinate

20

21 −− d e f i n i t i o n s o f o p e r a t i o n s f o r t h e s p e c i f i c t y p e ’ Point ’

22 instance POINTS Point where

23 getName ( Point n x y ) = n −− o p e r a t i o n d e f i n i t i o n

24 getX ( Point n x y ) = x −− o p e r a t i o n d e f i n i t i o n

25 getY ( Point n x y ) = y −− o p e r a t i o n d e f i n i t i o n

26

27 −− d e f i n i t i o n o f t h e e q u a l i t y axiom f o r t h e t y p e P o i n t

28 −− H a s k e l l comes with a number o f b u i l t −in c l a s s e s . C l a s s e s have d i f f e r e n t

i m p l e m e n t a t i o n s a c c o r d i n g t o t h e t y p e o f d a t a t h e y a r e g i v e n . The Eq

c l a s s i s t h e g e n e r i c c l a s s in H a s k e l l t o s p e c i f y e q u a l i t y & i n e q u a l i t y

b e h a v i o u r o v e r d a t a t y p e s and t h e P o i n t d a t a t y p e i s d e f i n e d h e r e a s an

i n s t a n c e o f t h i s c l a s s

29 instance Eq Point where

32More details about the Haskell class Eq introduced in the example can be found in (Thompson, 1999,

page 220). The specification of the equality axiom for points is done using the instantiation of the type Eq

(rather than the deriving mechanism in Haskell) as it gives more flexibility regarding the specification of

the behaviour of the equality axiom.
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30 −− two P o i n t s a r e " e q u a l " i f t h e y have t h e same name

31 point1 == point2 = ( getName point1 == getName point2 ) −− axiom

d e f i n i t i o n

The case of a carbon monoxide analyzer (COA) of type GM901 reporting a value

of the concentration of carbon monoxide (CO) at a certain location of the city (see Sec-

tion 4.1) is taken as running example for the formal specification presented in this sec-

tion33. Listing 4.2 introduces three relevant datatypes for the scenario: Magnitude (to

represent the magnitude of a quality), Quale (entity evoked in a cognitive agent’s mind

when observing a quality), and ObsValue (to represent observation values)34.

Listing 4.2: Definition of the datatypes Magnitude, Quale and ObsValue

32 −− A magnitude in t h i s c o n t e x t i s t h e s i z e o f a c e r t a i n r e g i o n in a q u a l i t y

s p a c e ( magnitude as Double ) . Th i s i s in l i n e with ( P r o b s t 2008) who v i ews

magni tudes a s r e g i o n s in a c e r t a i n q u a l i t y s p a c e and c a l l s them a t o m i c

q u a l i t y r e g i o n s

33 type Magnitude = Double −− magnitude as Double

34

35 −− D e f i n i t i o n o f t h e d a t a t y p e Quale

36 data Quale = Quale Magnitude

37

38 −− An o b s e r v a t i o n v a l u e can have one o f f o u r t y p e s : n u m e r i c a l d i s c r e t e (

r e s u l t i n g from a c o u n t i n g p r o c e s s ) ; n u m e r i c a l c o n t i n u o u s ( r e s u l t i n g from

a measurement p r o c e s s − what i s measured i s t h e magnitude o f a c e r t a i n

q u a l i t y , and measurement r e s u l t s a lways come with an a s s o c i a t e d

measurement u n i t ) ; c a t e g o r i c a l nominal ( canno t be o r g a n i z e d in a l o g i c a l

s e q u e n c e ) ; c a t e g o r i c a l o r d i n a l ( can be l o g i c a l l y o r d e r e d or ran ke d )

39 type Unit = String −− measurement u n i t a s S t r i n g

40 data ObsValue = Count Int | Measure Magnitude Unit | Category String |

Ordinal String

The amount of air surrounding the COA is modelled as containing a certain amount

(i.e. magnitude) of carbon monoxide, that is:

41 type Id = String −− an i d e n t i f i e r

42 data AmountOfAir = AmountOfAir { carbonMonoxideMagnitude : : Magnitude }

43 c i t y A i r = AmountOfAir { carbonMonoxideMagnitude = 2 . 8 }

33The specification presented in this section is available for download at http://purl.net/ifgi/

degbelo/thesisresources/chapter4/ObservationResolution.hs.
34See Probst (2008) for a detailed discussion about these notions.
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A receptor has an id, a size, a processing time for incoming stimuli and a certain

role. The receptor involved in the observation of the CO concentration in the city is the

measuring probe (see Section 4.3.4). It has a size and a processing time set provisionally

to 1500 cm2 and 60 seconds respectively, and the role of detecting CO molecules35. The

receptor’s role is modelled here as a description in natural language.

44 type Area = Int −− s p a t i a l a r e a as I n t

45 type Duration = Int −− t e m p o r a l d u r a t i o n as I n t

46 type Descr ipt ion = String −− d e s c r i p t i o n in n a t u r a l l a n g ua g e as S t r i n g

47 −− a r e c e p t o r has an id , a s i z e , a p r o c e s s i n g t ime f o r incoming s t i m u l i , and

a c e r t a i n r o l e

48 data Receptor = Receptor { r e c e p t o r I d : : Id , r e c e p t o r S i z e : : Area ,

processingTime : : Duration , r o l e : : Descr ipt ion }

49 measuringProbe = Receptor { r e c e p t o r I d = " re1 " , r e c e p t o r S i z e = 1500 ,

processingTime = 60 , r o l e = " d e t e c t i o n of CO molecules " }

An observer has an id and a number of receptors of a certain type. It carries a

quale and an observation value. The measurement unit used below for observation

values is “ppm” standing for parts per million. For simplicity, it is assumed here that

all receptors (with a similar function) have the same size36, and there is no malfunction

during the observation process (i.e. either all the receptors detecting the stimulus are

stimulated or none of them). A COA has one measuring probe.

50 data Observer = Observer { observerId : : Id , r e c e p t o r : : Receptor ,

numberOfReceptors : : Int , quale : : Quale , observat ionValue : : ObsValue }

51 coAnalyzer = Observer { observerId = " ob1 " , r e c e p t o r = measuringProbe ,

numberOfReceptors = 1 , quale = Quale 0 . 0 , observat ionValue = Measure 0 . 0

"ppm" }

Listing 4.3 presents the alignment of the terms ‘observer’ and ‘receptor’ to DOLCE.

Listing 4.3: Alignment of observer and receptor to DOLCE

52 c l a s s PHYSICAL_ENDURANTS physicalEndurant

53 c l a s s PHYSICAL_ENDURANTS p h y s ic a l O b j e c t => PHYSICAL_OBJECTS p h y s i c a lO b j e c t

54 c l a s s PHYSICAL_OBJECTS agent => AGENTIVE_OBJECTS agent −− a g e n t i v e p h y s i c a l

o b j e c t s

35The size of the receptor is set here to the size of the opening of the measuring probe; the opening of

the measuring probe determines the actual portion of the measuring probe that is stimulated by external

stimuli.
36This is in line with Quine (1993) who states: “The subject’s sensory receptors are fixed in position,

limited in number, and substantially alike”.
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55 c l a s s PHYSICAL_OBJECTS nonAgent => NON_AGENTIVE_OBJECTS nonAgent −− non−
a g e n t i v e p h y s i c a l o b j e c t s

56

57 −− Q u a l i t i e s

58 −− Q u a l i t i e s have h o s t s in which t h e y i n h e r e

59 c l a s s QUALITIES q u a l i t y e n t i t y where

60 host : : q u a l i t y e n t i t y −> e n t i t y

61

62 −− an o b s e r v e r i s an a g e n t i v e p h y s i c a l o b j e c t

63 instance PHYSICAL_ENDURANTS Observer

64 instance PHYSICAL_OBJECTS Observer

65 instance AGENTIVE_OBJECTS Observer

66

67 −− a r e c e p t o r i s a non−a g e n t i v e p h y s i c a l o b j e c t

68 instance PHYSICAL_ENDURANTS Receptor

69 instance PHYSICAL_OBJECTS Receptor

70 instance NON_AGENTIVE_OBJECTS Receptor

During the perception of the observed quality (i.e. the carbon monoxide of the

amount of air), the observer produces a quale. The perception of the observed quality

involves inherently a loss of spatial and temporal detail, and this leads to a spatial and

temporal resolution for the quale. The spatial resolution of the quale is modelled in the

current work as being equal to the spatial receptive field of the observer involved in

the perception operation. The temporal resolution of the quale is equal to the temporal

receptive window of the observer which participated in the perception of the observed

quality. The function magnitudeToQuale establishes a mapping from a certain magni-

tude to the corresponding quale, and more details about it are provided later in this

formal specification.

71 −− d e f i n i t i o n o f t h e q u a l i t y c a r b o n monoxide

72 data PHYSICAL_ENDURANTS physicalEndurant => CarbonMonoxide physicalEndurant =

CarbonMonoxide physicalEndurant

73 instance QUALITIES CarbonMonoxide AmountOfAir where

74 −− t h e h o s t o f t h e c a r b o n monoxide q u a l i t y i s t h e amount o f a i r

75 host ( CarbonMonoxide amountOfAir ) = amountOfAir

76

77 −− St imulus as a p r o c e s s which i n v o l v e s a q u a l i t y and an a g e n t

78 c l a s s ( QUALITIES q u a l i t y e n t i t y , AGENTIVE_OBJECTS agent ) => STIMULI q u a l i t y

e n t i t y agent where

79 −− p e r c e p t i o n as a b e h a v i o u r , t h a t t a k e s a s i n p u t a s t imulus , and r e t u r n s as

ou tp ut a q u a l e t h a t i s c a r r i e d by an a g e n t

80 perce ive : : q u a l i t y e n t i t y −> agent −> agent

81
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82 instance STIMULI CarbonMonoxide AmountOfAir Observer where

83 perce ive ( CarbonMonoxide amountOfAir ) observer = observer { quale =

magnitudeToQuale ( carbonMonoxideMagnitude amountOfAir ) }

Based on the quale, the observer produces an observation value. The function

qualeToMeasure introduced below establishes a mapping between a quale and an ob-

servation value (resulting from a measurement process), and is presented in detail later

in this section.

84 −− O b s e r v a t i o n as a p r o c e s s which i n v o l v e s a q u a l i t y and an a g e n t

85 c l a s s STIMULI q u a l i t y e n t i t y agent => OBSERVATIONS q u a l i t y e n t i t y agent where

86 observe : : q u a l i t y e n t i t y −> agent −> agent

87

88 instance OBSERVATIONS CarbonMonoxide AmountOfAir Observer where

89 observe ( CarbonMonoxide amountOfAir ) observer = observer { quale = quale (

perce ive ( CarbonMonoxide amountOfAir ) observer ) , observat ionValue =

qualeToMeasure ( quale ( perce ive ( CarbonMonoxide amountOfAir ) observer ) ) }

The spatial resolution and the temporal resolution of the observation value are

now equated with the spatial resolution and temporal resolution of the quale respec-

tively37.

90 −− t h e s p e c i f i c a t i o n o f t h e r e s o l u t i o n o f an o b s e r v a t i o n n e c e s s i t a t e s t h e

o c c u r r e n c e o f t h e o b s e r v a t i o n

91 c l a s s OBSERVATIONS q u a l i t y e n t i t y agent => OBSERVATION_RESOLUTIONS q u a l i t y

e n t i t y agent where

92 −− s p a t i a l r e s o l u t i o n o f an o b s e r v a t i o n v a l u e ( wi th r e f e r e n c e t o a c e r t a i n

q u a l i t y ) i s an a r e a . The o b s e r v a t i o n v a l u e i s c a r r i e d by t h e a g e n t

93 s p a t i a l R e s o l u t i o n O b s e r v a t i o n : : q u a l i t y e n t i t y −> agent −> Area

94 −− t e m p o r a l r e s o l u t i o n o f an o b s e r v a t i o n v a l u e ( wi th r e f e r e n c e t o a c e r t a i n

q u a l i t y ) i s a d u r a t i o n . The o b s e r v a t i o n v a l u e i s c a r r i e d by t h e a g e n t

95 temporalResolut ionObservat ion : : q u a l i t y e n t i t y −> agent −> Duration

96

97 instance OBSERVATION_RESOLUTIONS CarbonMonoxide AmountOfAir Observer where

98 −− s p a t i a l r e s o l u t i o n o f an o b s e r v a t i o n i s e q u a l t o t h e s p a t i a l r e c e p t i v e

f i e l d o f t h e o b s e r v e r

37In fact, the following equations hold: spatialResolution(observation) <= spatialResolution(quale);

temporalResolution(observation) <= temporalResolution(quale); thematicResolution(observation) <=

thematicResolution(quale), since the transformation of the quale into an observation value (through the

expression operation mentioned in Section 4.3.3) might involve another loss of spatial/temporal/thematic

detail. The example introduced here assumes no loss of spatial/temporal detail during the expression oper-

ation, and equates the spatial/temporal resolution of the observation with the spatial/temporal resolution

of the quale. A thorough investigation of the interplay between resolution of quale and resolution of ob-

servation value (for the spatial, temporal and thematic dimensions) is deferred to future work.
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99 s p a t i a l R e s o l u t i o n O b s e r v a t i o n ( CarbonMonoxide amountOfAir ) observer =

s p a t i a l R e c e p t i v e F i e l d ( perce ive ( CarbonMonoxide amountOfAir ) observer )

100 −− t e m p o r a l r e s o l u t i o n o f an o b s e r v a t i o n i s e q u a l t o t h e t e m p o r a l r e c e p t i v e

window o f t h e o b s e r v e r

101 temporalResolut ionObservat ion ( CarbonMonoxide amountOfAir ) observer =

temporalReceptiveWindow ( perce ive ( CarbonMonoxide amountOfAir ) observer )

Spatial receptive field is now specified as the size of the spatial region containing

all receptors stimulated during the observation process. Temporal receptive window is

the processing time of the receptors stimulated during the observation process.

102 s p a t i a l R e c e p t i v e F i e l d : : Observer −> Area

103 s p a t i a l R e c e p t i v e F i e l d observer = numberOfReceptors observer * r e c e p t o r S i z e (

r e c e p t o r observer )

104

105 temporalReceptiveWindow : : Observer −> Duration

106 temporalReceptiveWindow observer = processingTime ( r e c e p t o r observer )

The last stage of this formal specification is the definition of the functions mag-

nitudeToQuale and qualeToMeasure38. These two functions are introduced to reflect

the idea (already present in Probst, 2008) that an observation process is the approx-

imation of the absolute magnitude of a certain quality. Probst indicated two types of

approximations: qualia approximate absolute magnitude (this happens during the per-

ception or impression process), and observation values approximate qualia (this hap-

pens during the expression process). It is argued here that - as a general requirement -

the composition of magnitudeToQuale and qualeToMeasure is a monotonic increasing

function39. This ought to be so, to ensure consistency of observation values with respect

to the absolute magnitudes approximated40. This leaves us with two possibilities re-

garding magnitudeToQuale and qualeToMeasure: either both functions are monotonic

increasing, or both functions are monotonic decreasing41. In the context of the current

scenario, these two functions will be given a simple definition, assuming an approx-

38Future work should investigate the specification of a more generic function, say qualeToValue, which

goes beyond qualeToMeasure and establishes the mappings from quale to all types of observation values

introduced in Listing 4.2.
39See (Singh, 2008; Weisstein, 2014) for a short introduction to monotonic functions.
40That is, if magnitude1 < magnitude2, then it must be the case that: observationValue1 = f (magni-

tude1) ≤ observationValue2 = f (magnitude2).
41It might appear surprising to speak about monotonic decreasing functions in this context, but an

example is the process of formation of images on the human’s retina. As Society for Neuroscience (2012)

mentions, “the image on the retina is reversed: [...] information from the retina - in the form of electrical

signals - is sent via the optic nerve to other parts of the brain, which ultimately process the image and

allow us to see [upright]” (page 19).
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imation factor of the magnitude amounting to 0.9 during the mapping magnitudeTo-

Quale, and another approximation factor of 0.9 during the mapping qualeToMeasure.

107 aFactor = 0 . 9 : : Double

108

109 −− t h e a p p r o x i m a t i o n f a c t o r i s i n t r o d u c e d t o r e f l e c t t h e f a c t t h a t q u a l i a

a p p r o x i m a t e a b s o l u t e magni tudes

110 magnitudeToQuale : : Magnitude −> Quale

111 magnitudeToQuale magnitude = Quale ( magnitude * aFactor )

112

113 −− t h e u n i t a s s o c i a t e d with o b s e r v a t i o n v a l u e s in t h i s example i s "ppm " .

114 −− t h e r e i s a f u r t h e r a p p r o x i m a t i o n o f t h e magnitude dur ing t h e e x p r e s s i o n

p r o c e s s

115 qualeToMeasure : : Quale −> ObsValue

116 qualeToMeasure ( Quale magnitude ) = Measure ( magnitude * aFactor ) "ppm"

4.5 Summary

Despite different attempts to formalize resolution in the past, there is currently no for-

mal theory of resolution of observations underlying geographic information. With a

limited scope to spatial and temporal resolution, and a focus on single sensor obser-

vations, this chapter has proposed a component of such a theory as an ontology. The

main ideas introduced can be recapitulated as follows:

I. The theory presupposes that space and time are separate frameworks;

II. The functional ontology of observation and measurement from Kuhn (2009a) is

used as starting point for the development of the ontology of resolution. DOLCE

is used as foundational ontology, and Haskell as ontology design language;

III. There are at least three ways of modelling the spatial and temporal resolution of

a single sensor observation: a stimulus-centric approach, a property-centric ap-

proach, and a receptor-centric approach;

IV. A stimulus-centric approach constrains spatial/temporal resolution using the spa-

tial/temporal extent of the stimulus participating in the observation process. It

suffers from vagueness issues regarding the determination of the spatial extent of

the stimulus, and is strongly dependent on one’s adopted view (i.e. stimulus as

process or an event) for the determination of the temporal extent of the stimulus;

V. A property-centric approach specifies resolution based on the spatial/temporal

region over which the property of interest is considered homogeneous. It avoids
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vagueness issues, but needs to accommodate arbitrariness since there might be

various reasons for which a data provider considers the property of interest homo-

geneous for his/her data collection purposes;

VI. The work opted for a receptor-centric approach where the spatial and temporal

resolution of a single sensor observation are specified based on the physical prop-

erties of the observer. Spatial resolution is equated with the spatial receptive field

of the observer (i.e. spatial region of the observer which is stimulated during the

observation process), and temporal resolution is equated with the observer’s tem-

poral receptive window (i.e. smallest interval of time required by the observer’s

receptors in order to produce analog signals). The approach is workable, avoids

both vagueness and arbitrariness issues, but would benefit from future work mak-

ing explicit the contribution (in terms of duration) of the observer’s receptors to

the duration of the whole observation process.
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CHAPTER 5

Ontology design stage - resolution

of observation collections

This chapter builds on the theory introduced in the previous chapter and complements it with a

characterization of the resolution of observation collections based on two criteria: the observed

study area, and the observed study period of an observation collection. Terms suggested for

the characterization of the resolution of observation collections are also formally specified in

Haskell.

5.1 Introduction

Chapter 4 has proposed a theory of resolution applicable to single sensor observations.

If single observations are sufficient for situation appraisal in some cases (e.g. one value

produced by an altimeter is enough to get a hiker’s current altitude), there are contexts

where more than one observation is needed to assess a situation. A typical example is

the understanding of change where at least two observations of the same phenomenon

are required. Another example is the analysis of phenomena spread over large spatial

areas but observable only at specific locations. For instance, evaluating the quality of

the air in a city (i.e. the goal of the scientists from Section 4.1) requires observations at

different spatial locations of the city to arrive at a sound conclusion.

The goal of this chapter is to discuss the specification of resolution when single

observations are grouped (and viewed as a whole) for the purpose of analyses. Several

ideas introduced in Chapter 4 are reused: the motivating scenario (presented in Section

4.1), space and time as separate frameworks (see Section 4.2), the choice of FOOM as

base ontology (discussed in Section 4.3.1), and the use (motivated in Section 4.3.2) of

DOLCE as foundational ontology and of Haskell as ontology design language. Terms
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specific to the ontology of resolution are also highlighted using a different font1. Before

examining specifics pertaining to resolution, the chapter offers a discussion (currently

missing in the literature) about the characterization of observation collections. The

discussion is tailored to the needs of the Sensor Web.

5.2 Identification of the terms of the ontology (Part II)

A discussion of observation collections is presented first, before introducing additional

terms of the ontology of resolution, their alignment to DOLCE, and the dependencies

between the resolution of an observation collection and the resolution of the single

observations belonging to the collection.

5.2.1 Observation collection

Wood and Galton (2009) recently reviewed a number of existing ontologies (including

for example DOLCE and the Basic Formal Ontology) for the representation of collec-

tives2, and proposed a taxonomy allowing the classification of around 1800 distinct

types of collectives. Following Wood and Galton and adapting their reflections to the

current discussion:

• An observation collection is a concrete particular, not a type, nor an abstract entity;

• An observation collection is an endurant in the sense of DOLCE, that is, it is to

be thought of as wholly present at any time it is present (by contrast to perdurants

that are only partially present at any time);

• An observation collection has multiple observations (and only observations) as

members3.

The next subsections provide a more detailed analysis of the main characteristics

of observation collections. The five key distinguishing features for collectives proposed

1Appendix A compiles a list of all the terms of the ontology of resolution and their definitions.
2The term ‘collective’ was used in (Wood and Galton, 2009) as the favoured general term to cover phe-

nomena denoted by ‘collection’, ‘collective’, ‘group’, and ‘social group’. The term ‘collection’ is preferred

in this work because its use predominates in the Sensor Web community to refer to a group of observations

viewed as a whole.
3The member-collection relationship is, following Winston et al. (1987); Chaffin et al. (1988); Wood and

Galton (2009), a more specific kind of part-of relation. The requirement that the members of observation

collections are homogeneous (i.e. only observations) suggests that they rather belong to the category

COLLECTION from Gerstl and Pribbenow (1995) than MASS or COMPLEX.
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in (Wood and Galton, 2009) - namely coherence, membership, spatial location, roles,

and depth - are used to frame the discussion.

Coherence

According to Wood and Galton (2009), coherence refers to that in virtue of which many

observations taken together form an observation collection. The coherence of an ob-

servation collection lies in the fact that all observations belonging to the collection are

outcomes of observing the same observable (i.e. physical or temporal quality to be ob-

served). An observation collection is an externally caused collection because it results

from the action of a collector (i.e. someone who decides to group different observations

and form a whole out of them).

Membership

There are two ways of viewing collections in relation to their members: (i) a collec-

tion cannot have different members at different times (constant membership), and (ii)

a collection can have different members at different times (variable membership). This

work takes the stance that observation collections cannot contain different observations

at different times. The example from Figure 5.1 presents the reason for this choice. Fig-

ure 5.1a depicts the evolution of the temperature in a city during the past three days,

and suggests that ‘the temperature in the city has been increasing over the last three

days’. In Figure 5.1b, a new observation (made say this morning) has become avail-

able, and is added to the previous three observations in the collection from Figure 5.1a.

Figure 5.1b suggests a new trend for the temperature, namely that ‘the temperature in

the city has been increasing over the past three days, but slightly decreasing since this

morning’.

The point of the example is that the addition of a single observation to an obser-

vation collection potentially leads to different assessments of a situation4. Said another

way, different observation collections are associated with potentially different informa-

tion contents. For that reason, it is suggested that observation collections have exactly

the same members at any time. Addition of an observation to (or subtraction of an

observation from) an existing observation collection produces new and distinct obser-

vation collections. Furthermore, constant membership as a modelling choice connotes

constant cardinality, i.e. an observation collection in this context has n members, where

4A logical consequence from this is that subtraction of a single observation from an observation collec-

tion leads potentially to different assessments of a situation.
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n is a natural number. n must be greater than one5. An observation collection with only

one observation is viewed in the current work as a single observation.

Figure 5.1: Temperature in a city - two examples of observation collections

The standpoint on membership adopted in this subsection implies that an entity,

in the current context, is either a single observation or an observation collection. It

cannot be both. The rationale for this is that a single observation and an observation

collection are distinct. Ontologically, a single observation is a social object (in DOLCE’s

sense) directly derived from physical reality (i.e. an observable that inheres in an en-

durant or a perdurant). An observation collection is a social object as well, but derived

from social objects (i.e. the single observations). With reference to Chapter 2 and the

framework introduced in Section 2.2, a single observation belongs to the measurement

dimension. An observation collection, on the contrary, belongs to the analysis dimension,

that is, the dimension which relates to the summarization of data about the observed

phenomenon. The standpoint adopted also suggests that observation collections are

like mathematical sets because they are identified through their members. However,

and in line with previous work in the literature (e.g. Bottazzi et al., 2006; Rector et al.,

2006; Bittner et al., 2009; Wood and Galton, 2009; Guizzardi, 2010), observation collec-

tions are not seen as sets. The main difference between the two lies in the fact that

sets are abstract entities, whereas collections are concrete entities. Finally, the view on

observation collection exposed here has the derivative advantage that it preserves the

principle of ‘social fairness’ introduced in (Frank, 2003). A proof for this is provided in

Appendix B.

5That is, ‘Cardinality necessarily > 1’ in Wood and Galton’s terminology.
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Spatial location

As Wood and Galton (2009) indicate, there are various possibilities regarding the char-

acterization of the spatial location of a collection. For example, the collection might be

assigned a location (or not) and this location might be fixed or variable. It is worth

mentioning three points regarding observations collections:

• an observation can have a spatial location, and this location is fixed: the location of the

observation is the location of the sensor6 which has produced that observation.

A sensor cannot be at two locations at the same time, therefore an observation

always has a fixed (or unique) location. In line with (Casati and Varzi, 1996;

Bittner, 1999; Bittner and Winter, 1999; Bittner and Smith, 2003a; Grenon, 2003;

Grenon and Smith, 2004), spatial location is seen as a relation between an entity

(i.e. the observation) and a spatial region7. Appendix C presents the rationale for

modelling the location of an observation as the location of the sensor (and not of

the stimulus or the particular).

• an observation collection can have a spatial location: this location is the spatial region

occupied by the locations of each observation. This spatial region is called (in

line with Galton and Duckham, 2006) ‘footprint’, and methods for generating

footprints for sets of points were discussed in (Galton and Duckham, 2006)8.

• an observation collection cannot move (i.e. change its spatial location): this follows

from the fact that (i) observation collections always have the same members, (ii)

the location of these members is fixed, and (iii) the location of the observation

collection is derived from the location of its members.

Ordering and differentiation of roles

Ordering is important for observation collections because different orderings of the

same observations lead potentially to different information contents for the observa-

tion collection. There are, following Ferreira et al. (2013), three possible ways of looking

at a given observation collection: as time series (i.e. variation of a property over time

6This location might be georeferenced or not. Stasch et al. (2009) use the ability to produce an observa-

tion with georeferenced location as the distinguishing criterion between sensors and geosensors.
7‘Spatial region’ is provisionally defined in this work as an identifiable portion of space, and a ‘tempo-

ral region’ is an identifiable portion of time. A thorough treatment of the ontological status of space, time,

spatial regions and temporal regions, is out of the scope of this work.
8Galton and Duckham (2006) discussed also ‘extended footprints’, i.e. the case where one would also

like to represent the spatial region occupied by the points themselves.
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in a fixed location), as trajectory (i.e. evolution of locations or boundaries of an object

over time) or as coverage data type9 (i.e. variation of a property within a spatial extent at

a time). Ordering is important in all three cases. Consider for example the observation

collection mentioned in (Ferreira et al., 2013), and obtained by gathering air pollution

values produced by cars equipped with GPS devices and air pollution sensors in a city.

Different sequencings of air pollution values entail different trends for air pollution

variation over time (time series); different sequencings of car locations suggest different

trends for car location variation over time (trajectory); and different spatial orderings

(i.e. the associated locations to air pollution values) imply different trends for air pol-

lution variation within the city limits. For this reason, it is argued here that the (spatial

and temporal) ordering of the observations in an observation collection should always

be documented (or specified).

The fact that spatial and temporal orderings matter to observation collections en-

tails that all members of an observation collection do not play the same role. In particular,

there is always an observation that plays the role of first, and an observation that plays

the role of next10. The choice of the first observation and the next of another one might

be straightforward or involve some arbitrariness, depending on whether time or space

is used as ordering scheme. Using time as ordering scheme for a time-series, the first

observation is the one that happened first, and the next observation is the subsequent

one. Conversely, while computing the total spacing of a coverage data type (a task that

necessitates spatial ordering), one can take any location (of the irregularly spaced set

of locations) as the first, and the next location as the closest one in terms of distance11.

With reference to Wood and Galton (2009), an observation collection is a hierarchically

differentiated collection, because the first observation plays the role of ‘leader’.

Depth

The depth of a collection refers to the fact that members of a collection can themselves

be collections or not. This work takes the stance that observations are the base-level12

9The term used in (Ferreira et al., 2013) is ‘coverage’. The use of ‘coverage’ is avoided here, and ‘cov-

erage data type’ is preferred instead since the term ‘coverage’ has already been used in Chapter 2 in the

sense of Wu and Li (2006) to refer to the sampling intensity in space and time.
10There is no need to explicitly define the last observation of a collection: the last observation is the one

that has no next. It follows from the view adopted here that List is the suitable abstract data type for the

specification of observation collections.
11While looking for the closest location in terms of distance, further arbitrariness creeps into when more

than one location can play the role of ‘next’.
12Most entities can be viewed as collectives at some level of granularity. Wood and Galton define base-

level entities as entities which are not themselves considered as collectives in a certain context and stressed
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entities of an observation collection. An observation cannot have other entities as mem-

bers13. The depth of an observation collection is therefore 1.

Summary

This subsection has offered an analysis of possible modelling choices regarding obser-

vation collections. It complements previous treatments of observation ontologies in the

literature which focused solely on single observations. The main points set out are:

• observation collections are concrete particulars, not types, nor abstract entities.

They are different from single observations in that the latter belong to the mea-

surement dimension while they belong to the analysis dimension;

• the coherence of observation collections lies in the fact that they are gatherings of

observations of the same observable14;

• observation collections should be modelled as having constant membership to

reflect the fact that the addition (or subtraction) of one observation to an exist-

ing observation collection may significantly affect the information content of the

existing observation collection;

• observations are the base-level entities of observation collections and observation

collections have a fixed spatial location;

• spatial and temporal orderings matter to observation collections, and should there-

fore be documented explicitly.

The analysis helps extract five essential parameters for the characterization of ob-

servation collections in the Sensor Web, namely: collector, observable, members, spatial

ordering, and temporal ordering. Changes in one of these parameters lead necessarily to

a new observation collection.

5.2.2 Terms of the ontology: resolution of an observation collection

Spatial resolution and temporal resolution can also be specified for an observation col-

lection. ‘Spatial resolution’ and ‘temporal resolution’ denote the amount of spatial de-

tail in the observation collection, and the amount of temporal detail in the observation

the need of specifying such base-level entities in order to avoid an infinite regress.
13This viewpoint is adopted because - as already indicated in Section 5.2.1 - an observation and an

observation collection are different in their nature.
14Observation collections mixing observables (say temperature values and humidity values) should

therefore be detected by software agents of the Sensor Web as incoherent (or inconsistent).

77



CHAPTER 5: ONTOLOGY DESIGN STAGE - RESOLUTION OF OBSERVATION

COLLECTIONS

collection respectively. Figure 5.2 shows four examples of observation collections. Two

criteria suggested in previous work - spacing and coverage - can be used to character-

ize the spatial resolution of the observation collections. These two criteria are critically

discussed in the next two paragraphs15.

Figure 5.2: Some examples of observation collections*

*Each point on the figure represents the spatial location of a single observation, the dotted box

in black represents the spatial extent of the study area for which the observations have been

generated.

Spacing: Goodchild and Proctor (1997) mentioned the spacing of the points (i.e. obser-

vations) as a criterion to characterize the spatial resolution of observation collections.

The estimation of spacing necessitates some information about the spatial location of

each observation. Spacing can be calculated in (at least) four ways: the maximum spac-

ing, the minimum spacing, the total spacing and the mean spacing. All four have some dis-

advantages. For example, the maximum spacing and the minimum spacing say nothing

about how the observation collection is spatially detailed. They rather tell that, within

the current observation collection, the closest locations are within a distance equal to

the minimum spacing, the farthest within a distance equal to the maximum spacing16. Re-

garding the total spacing, one disadvantage is the need to define which observation is

the first, and which is the next. As mentioned in Section 5.2.1, this choice might involve
15The arguments brought forward for the spatial resolution hold, mutatis mutandis, for the temporal

resolution of the observation collections.
16Maximum/minimum spacing become relevant to the estimation of the spatial level of detail in the

case of regularly spaced observation collections though. In this case, the distinction between max-

imum/minimum spacing and mean spacing becomes blurred, according to whether one uses maxi-

mum/minimum as criterion for the mean spacing. Mean spacing has its own disadvantage that is pre-

sented later in this paragraph.
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some arbitrariness. The ultimate implication of the use of total spacing as criterion, is

that a decision-maker will be provided with different values of spatial resolution for

an observation collection, with no means to decide which one to choose for his or her

purpose. In addition, there are cases such as the one from Figure 5.2a where the total

spacing fails to capture the fact that two observation collections have different amounts

of spatial detail. It is indeed arguable that (under the assumption that the size of the

points is negligible) the two observation collections from Figure 5.2a have the same

spacing S. The use of the mean spacing has the advantage that it is no longer necessary

to define what observation is the first, and what is the next. However, a serious draw-

back of this criterion is that, when applied to the observation collections17 from Figure

5.2b, it gives the same value. In other words, this criterion fails to capture the fact, as

far as Figure 5.2b is concerned, the observation collection further right is spatially more

detailed than the observation collection further left.

Coverage: coverage, proposed in (Degbelo and Stasch, 2011), is another criterion that

can be used to characterize the spatial resolution of observation collections. The value

C of this criterion for the observation collections presented in Figure 5.2 is:

C =
number o f observations ∗ area covered by each observation

extent o f the study area

This criterion will yield different values for the spatial resolutions of the observation

collections from Figures 5.2a-b, capturing the fact that these observation collections

have different amounts of spatial detail. There is also no need to face the arbitrariness

which comes with the definition of the first and next observation. A drawback of this

criterion is that it leads to a dimensionless value, and this fails to account for the intu-

ition (reflected in expressions such as ‘10 meters resolution’, ‘20 meters resolution’, and

so on) that resolution is a property to which humans associate a dimension of length.

From the previous paragraphs, spacing and coverage as criteria to characterize the

spatial/temporal resolution of observation collections are wanting in some respects. As

a general requirement for the Sensor Web (and also GIScience), proxy measures for the

spatial/temporal resolution of observation collections should: (i) avoid the arbitrari-

ness ensuant on the necessity to choose the ‘first’ and ‘next’ observation; (ii) have the

dimension of length/time18; and (iii) mirror the fact that a perfect sampling strategy

covers the whole study area/period. This motivates the introduction of the following

two terms for the ontology of resolution: observed study area and observed study pe-

17These observation collections are representative of regularly spaced observation collections.
18Length/time is mentioned here in opposition to dimensionless values. Area/time or volume/time as

dimensions are also suitable to proxy measures for resolution.

79



CHAPTER 5: ONTOLOGY DESIGN STAGE - RESOLUTION OF OBSERVATION

COLLECTIONS

riod. The observed study area is the portion of the study area that has been observed.

The observed study period is the portion of the study period that has been observed.

The study area is the spatial extent of the analysis and the study period is the temporal

extent of the analysis.

Observed study area and observed study period

The observed study area of an observation collection can be obtained by summing up

the observed areas of each of the observations of the collection. The observed area of an

observation is the spatial region of the phenomenon of interest that has been observed.

ObservedStudyArea = Sumn
i=1[ai]

where ai denotes the observed area of each observation, and n is the number of obser-

vations in the observation collection. Sum is borrowed from (Casati and Varzi, 1996)

and designates the sum of two spatial regions. Sum is similar to the operator union19

used in set theory in that the Sum of two regions A and B is a region C such that all the

elements belonging to C either belong to A, or B or both A and B.

Likewise, the observed study period of an observation collection can be obtained

by summing up the observed periods of each of the observations in the observation

collection. The observed period of a single observation is the temporal region of the

phenomenon of interest that has been observed.

ObservedStudyPeriod = Sumn
i=1[wi]

where wi designates the observed period of each observation, and n is the number of

observations in the observation collection.

Modelling the resolution of an observation collection

The spatial resolution and temporal resolution of the observation collection can be

equated with the observed study area, and the observed study period respectively.

The observed study area20 provides the decision-maker with a value which reflects

how much of the study area has effectively been observed (or sampled). Its value is

independent of the ordering of the observations, and also independent of the type of

sampling strategy (i.e. regular vs irregular). The observed areas of the individual ob-

servations in the collection need not be alike (some might be greater or smaller than

19See (Weisstein, 2013) for a short introduction to this operator.
20To prevent the discussion from becoming repetitive, the remainder of this paragraph focuses on the

observed study area but the same arguments hold, mutatis mutandis, for the observed study period.
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others). The observed study area has a dimension of length squared, but a linear mea-

sure can be obtained by taking the square root. For a given study area, the equation

ObservedStudyArea = Sumn
i=1[ai] will approximate the study area if n tends to infinity

(and under the sufficient condition that the ai are disjoint21).

The observed study area and the observed study period are more suitable than

spacing and coverage to characterize the spatial and temporal resolution of observation

collections. Decision-makers are free to compute the proportion of the study area/s-

tudy period that has effectively been observed through the ratios ObservedStudyArea
StudyArea or

ObservedStudyPeriod
StudyPeriod . A minor drawback of these two criteria is that their full significance

is only unfolded when the extent of the whole study area/period is known. For exam-

ple, stating that the observed study period of an observation collection is one hour says

nothing about the actual quality of the observation collection, unless the whole tem-

poral extent under consideration (e.g. one day or one month22) is also made explicit.

The extent of the study area/period will also be required for a meaningful comparison

of two observation collections with respect to their spatial and temporal resolution23.

This drawback is not intrinsic to the criteria; it rather stems from the general fact that

values need some context if their significance is to be assessed.

5.2.3 Resolution of an observation collection: illustrative example

This section applies the terms suggested for the description of the resolution of ob-

servation collections to the motivating scenario presented in Section 4.1. The observable

which serves as coherence criterion for all the individual observations is the ‘concentra-

tion of carbon monoxide (CO) in the ambient air of the city’. The collector who formed

the observation collection is the group of scientists interested in analyzing the quality

of the ambient air. The points in Figure 4.1 represent the spatial locations of the obser-

vations, and the points in Figure 4.2 stand for the temporal locations (i.e. when they

happened) of the observations. A number of different spatial orderings can be defined

while computing the mean or total spacing of the observation collection (e.g. B-F-E-

D-C-A or B-C-F-E-D-A); temporal ordering is unambiguous: observations further right

succeed observations further left.

The observed area and observed period of single observations are estimated using

the spatial receptive field and the temporal receptive window of the observer which

21Disjointness is not a general constraint imposed on the ai; they might overlap.
22The observation collection covers only 4% of the period under consideration if the extent of the study

period is one day, only 0.14 % if the extent is one month.
23See Appendix D for more details on the comparison of two different observation collections.
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produced the observation respectively24. Sensors A, B, C, D, E and F are alike in the

example, and have the same spatial receptive field and temporal receptive window.

Values of spatial receptive field and temporal receptive window are set provisionally

to 1500 cm2 and 60 seconds25. Let observationcollection1, observationcollection2, ob-

servationcollection3 be three observation collections with their members defined as fol-

lows: observationcollection1 = {b1, b2, b3, b4, b5}; observationcollection2 = {b3, c1}; and

observationcollection3 = {e1, b2} (e1 and b2 have a temporal overlap of about 15 sec-

onds, see Figure 4.2). Values of the observed study area and observed study period for these

three observation collections are displayed in Table 5.1. The observed study area and ob-

served study period behave as expected in that they reflect the differences in amounts of

spatial and temporal detail of the observation collections. More specifically, they reflect

the intuition that:

Table 5.1: Examples of observed study areas and observed study periods for observa-

tion collections

OBSERVATION COLLECTION MEMBERS OSA OSP

observationcollection1 b1, b2, b3, b4, b5 1500 cm2 300 seconds

observationcollection2 b3, c1 3000 cm2 60 seconds

observationcollection3 e1, b2 1500 cm2 105 seconds

OSA: observed study area

OSP: observed study period

• an observation collection which contains two observations made at different lo-

cations (observationcollection2) is spatially more detailed than an observation

collection which contains many observations made at the same location (obser-

vationcollection1);

• an observation collection which contains two observations with different times-

tamps (observationcollection3) is temporally more detailed than an observation

24SRF and TRW pinpoint at best the spatial region or temporal region of the phenomenon of interest that

has been observed, because they make explicit the spatial region of the observer which was stimulated,

and the temporal duration of the exposure to the stimulus during the perception operation. Alternatives

to the SRF and TRW, providing also an approximation of observed area/period of a single observation

are the spatial footprint of the platform on which the observer is mounted or the whole duration of the

observation process.
25The values are taken from the documentation of the COA analyzer of type GM901 (see http://www.

sick.com/us1/en-us/home/products/product_portfolio/analyzers_systems/Pages/gm901.aspx;

last accessed: April 19, 2014.). A spatial receptive field of 1500 cm2 corresponds to an active aperture of

the measuring probe of 437 millimeters.
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collection which contains two observations with the same timestamp (observa-

tioncollection2).

The example presented in this section provides the necessary information to an-

swer the second question (Q2) from the motivating scenario introduced in Section 4.1,

namely: ‘what is the spatial and temporal resolution of an observation collection?’.

5.2.4 Alignment to DOLCE: resolution of an observation collection

In line with Bottazzi et al. (2006), an ‘observation collection’ is viewed as a social object.

A social object is an object that exists only within a process of social communication,

in which at least one PhysicalObject participates26. For an observation collection, the

physical object which participates in the process of social communication is the ‘col-

lector’ (see Section 5.2.1). ‘Spatial resolution’, ‘temporal resolution’, ‘observed study

area’, ‘observed study period’, ‘observed area’ and ‘observed period’ are all qualities

that inhere in a social object, and therefore abstract qualities.

5.2.5 Dependency between the resolution of an observation collection and

the resolution of its member observations

If the observed area/period is defined as spatial receptive field/temporal receptive

window, there is a correlation between the resolution of the collection and the resolu-

tion of its members. This correlation is linear when (i) all the observed areas/periods

of the single observations are exactly the same, and (ii) all the observed areas/periods

are disjoint.

5.3 Formal specification: observation collection resolution

The running example from Section 4.4 is extended in this section for the formal specifi-

cation task27. A new data type is first introduced to represent observation results.

117 −− an o b s e r v a t i o n has an i d and was produced by an o b s e r v e r ( which c a r r i e s

t h e o b s e r v a t i o n v a l u e )

118 data Observation = Observation { obsId : : Id , observer : : Observer }

119 −− b1 has t h e i d " oa1 " and was produced by t h e o b s e r v e r " ob1 "

26The definition is adapted from http://www.ontologydesignpatterns.org/ont/dul/DUL.owl (last

accessed: February 08, 2013).
27The formal specification presented in this section can be downloaded from http://purl.net/ifgi/

degbelo/thesisresources/chapter5/ObservationCollectionResolution.hs.
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120 b1= Observation { obsId =" oa1 " , observer = Observer { observerId = " ob1 " ,

r e c e p t o r = measuringProbe , numberOfReceptors = 1 , quale = Quale 2 . 5 ,

observat ionValue = Measure 2 . 3 "ppm" } }

An observation collection has different observations as members, and is uniquely

identified by its members (i.e. there is no need for an id); observationcollection1, ob-

servationcollection2 and observationcollection3 as presented in Section 5.2.3 are now

introduced as examples of observation collections. Observation collections are speci-

fied as Haskell lists, in accordance with the modelling choice presented in Section 5.2.1.

121 type Observat ionCol lec t ion = [ Observation ]

122 −− t h r e e e x a m p l e s o f o b s e r v a t i o n c o l l e c t i o n s

123 obsCol lec t ion1 = [ b1 , b2 , b3 , b4 , b5 ]

124 obsCol lec t ion2 = [ b3 , c1 ]

125 obsCol lec t ion3 = [ e1 , b2 ]

The observed area is a spatial region with a size equal to the spatial receptive

field of the observer which produced the observation. The observed period is a tem-

poral region with a size equal to the temporal receptive window of the observer which

generated the observation. Observations (through the observed areas and observed

periods) are associated with different spatial regions, and different temporal regions.

126 observedArea : : Observation −> Spat ia lRegion

127 observedArea Observation { obsId=oId , observer=obsSensor }

128 | observerId obsSensor == " ob1 " = spaceRegion1

129 | observerId obsSensor == " ob2 " = spaceRegion2

130 | otherwise = spaceRegion3

131

132 observedPeriod : : Observation −> TemporalRegion

133 observedPeriod Observation { obsId=oId , observer=obsSensor }

134 | oId == " oa1 " = timeRegion1

135 | oId == " oa2 " = timeRegion2

136 | oId == " oa3 " = timeRegion3

137 | oId == " oa4 " = timeRegion4

138 | oId == " oa5 " = timeRegion5

139 | oId == " oa6 " = timeRegion3

140 | otherwise = timeRegion6

For simplicity, spatial regions representing the observed areas are approximated

in this example using bounding boxes; temporal regions corresponding to the observed

periods are time intervals28. Listing 5.1 presents the alignment of ‘spatial region’ and
28There is also the additional assumption that the center points of these spatial and temporal regions

are fixed with respect to the spatial and temporal locations of the respective observers, in an uniform way
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‘temporal region’ to DOLCE as well as some examples of spatial and temporal regions.

Values for positions are provisional, and so are values for the corners of the bounding

boxes, and those of the bounds of the time intervals. The model maintains its con-

sistency in that: (i) the sizes of the spatial regions are equal to the sizes of the spatial

receptive fields of the observer; and (ii) the sizes of the temporal regions are equal to

the sizes of the temporal receptive windows of the observer.

Listing 5.1: Alignment of spatial and temporal region to DOLCE

141 −− i n t r o d u c t i o n o f DOLCE’ s c l a s s e s s p a c e _ r e g i o n and t e m p o r a l _ r e g i o n

142 c l a s s ABSTRACTS a b s t r a c t

143 c l a s s ABSTRACTS region => REGIONS region where

144 reg ionS ize : : region −> Int −− a r e g i o n has a s i z e

145 c l a s s REGIONS temporalRegion => TEMPORAL_REGIONS temporalRegion −− a DOLCE

t e m p o r a l r e g i o n ( t e m p o r a l r e g i o n i s a r e g i o n )

146 c l a s s REGIONS physicalRegion => PHYSICAL_REGIONS physicalRegion

147 c l a s s PHYSICAL_REGIONS spaceRegion => SPACE_REGIONS spaceRegion −− a DOLCE

s p a c e r e g i o n ( s p a c e r e g i o n i s a r e g i o n )

148

149 −− a s p a t i a l r e g i o n i s a (DOLCE) s p a c e r e g i o n

150 instance ABSTRACTS Spat ia lRegion

151 instance PHYSICAL_REGIONS Spat ia lRegion

152 instance SPACE_REGIONS Spat ia lRegion

153

154 −− a t e m p o r a l r e g i o n i s a (DOLCE) t e m p o r a l r e g i o n

155 instance ABSTRACTS TemporalRegion

156 instance TEMPORAL_REGIONS TemporalRegion

157

158 −− some e x a m pl e s o f p o s i t i o n s

159 pos1 = ( 1 , −28)

160 pos2 = ( 5 1 , 2 )

161 pos3 = ( 5 2 , 3 )

162 pos4 = ( 1 0 2 , 33)

163 pos5 = ( 1 0 3 , 34)

164 pos6 = ( 1 5 3 , 64)

165

166 −− s p a t i a l r e g i o n as bounding box

167 type Spat ia lRegion = BoundingBox

168

169 −− e x a m pl e s o f s p a t i a l r e g i o n s

170 spaceRegion1= BoundingBox { s r s =" wgs84 " , minLongLat = pos1 , maxLongLat = pos2 }

171 spaceRegion2= BoundingBox { s r s =" wgs84 " , minLongLat = pos3 , maxLongLat = pos4 }

(This assumption guaranties that overlap computation of the observed areas and observed periods is done

without loss of information).

85



CHAPTER 5: ONTOLOGY DESIGN STAGE - RESOLUTION OF OBSERVATION

COLLECTIONS

172 spaceRegion3= BoundingBox { s r s =" wgs84 " , minLongLat = pos5 , maxLongLat = pos6 }

173

174 −− t e m p o r a l r e g i o n as t ime i n t e r v a l

175 type TemporalRegion = TimeInterval

176

177 −− e x a m pl e s o f t e m p o r a l r e g i o n s

178 timeRegion1 = TimeInterval { minTimeStamp = 1 , maxTimeStamp = 61}

179 timeRegion2 = TimeInterval { minTimeStamp = 122 , maxTimeStamp = 182}

180 timeRegion3 = TimeInterval { minTimeStamp = 242 , maxTimeStamp = 302}

181 timeRegion4 = TimeInterval { minTimeStamp = 362 , maxTimeStamp = 422}

182 timeRegion5 = TimeInterval { minTimeStamp = 482 , maxTimeStamp = 542}

183 timeRegion6 = TimeInterval { minTimeStamp = 77 , maxTimeStamp = 137}

The observed study area of an observation collection is an area equal to the sum

of the sizes of the distinct observed areas of the observations, minus the size of their

spatial overlaps. The observed study period of an observation collection is a duration

equal to the sum of the sizes of the distinct observed periods of the observations, mi-

nus the size of their temporal overlaps. The specification of observedStudyArea and

observedStudyPeriod presented below ensures that the observedStudyArea is equal to

the observedArea, and the observedStudyPeriod equal to the observedPeriod, when

the observation collection contains only one element.

184 −− t h e o b s e r v e d s tudy a r e a i s t h e sum o f t h e s i z e s o f t h e d i s t i n c t o b s e r v e d

a r e a s o f t h e o b s e r v a t i o n s minus t h e s i z e o f t h e i r o v e r l a p s

185 observedStudyArea : : Observat ionCol lec t ion −> Area

186 observedStudyArea ( x : xs ) =

187 i f observedAreas ( x : xs ) == overlapsOfObservedAreas ( x : xs )

188 then sSumOfSizes ( observedAreas ( x : xs ) )

189 e lse sSumOfSizes ( observedAreas ( x : xs ) ) − sSumOfSizes (

overlapsOfObservedAreas ( x : xs ) )

190

191 −− t h e o b s e r v e d s tudy p e r i o d i s t h e sum o f t h e s i z e s o f t h e d i s t i n c t o b s e r v e d

p e r i o d s o f t h e o b s e r v a t i o n s minus t h e s i z e o f t h e i r o v e r l a p s

192 observedStudyPeriod : : Observat ionCol lec t ion −> Duration

193 observedStudyPeriod ( x : xs ) =

194 i f observedPeriods ( x : xs ) == overlapsOfObservedPeriods ( x : xs )

195 then tSumOfSizes ( observedPeriods ( x : xs ) )

196 e lse tSumOfSizes ( observedPeriods ( x : xs ) ) − tSumOfSizes (

overlapsOfObservedPeriods ( x : xs ) )

The definitions of the functions sSumOfSizes and tSumOfSizes are presented below.

197 −− sum o f t h e s i z e s o f a s e t o f d i s t i n c t s p a t i a l r e g i o n s

198 sSumOfSizes : : [ Spat ia lRegion ] −> Area
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199 sSumOfSizes ( x : xs ) = i f null xs

200 then reg ionS ize x

201 e lse reg ionS ize x + sSumOfSizes xs

202

203 −− sum o f t h e s i z e s o f a s e t o f d i s t i n c t t e m p o r a l r e g i o n s

204 tSumOfSizes : : [ TemporalRegion ] −> Duration

205 tSumOfSizes ( x : xs ) = i f null xs

206 then reg ionS ize x

207 e lse reg ionS ize x + tSumOfSizes xs

The observedAreas of an observation collection is a list of distinct observed areas

of the observation collection. The observedPeriods of an observation collection is the

list of distinct observed periods of the collection.

208 −− d i s t i n c t o b s e r v e d a r e a s o f an o b s e r v a t i o n c o l l e c t i o n

209 observedAreas : : Observat ionCol lec t ion −> [ Spat ia lRegion ]

210 observedAreas ( x : xs ) = i f null xs

211 then [ observedArea x ]

212 e lse nub ( ( observedArea x ) : observedAreas xs )

213

214 −− d i s t i n c t o b s e r v e d p e r i o d s o f an o b s e r v a t i o n c o l l e c t i o n

215 observedPeriods : : Observat ionCol lec t ion −> [ TemporalRegion ]

216 observedPeriods ( x : xs ) = i f null xs

217 then [ observedPeriod x ]

218 e lse nub ( ( observedPeriod x ) : observedPeriods xs )

The overlapsOfObservedAreas of an observation collection is a list of spatial re-

gions where the observedAreas of an observation collection overlap. The overlapsO-

fObservedPeriods represents the temporal regions where the observedPeriods of an

observation collection overlap29.

219 −− t h e f u n c t i o n i d e n t i f i e s t h e d i s t i n c t s p a t i a l r e g i o n s where t h e o b s e r v e d

a r e a s o f o b s e r v a t i o n s w i t h i n an o b s e r v a t i o n c o l l e c t i o n o v e r l a p

220 overlapsOfObservedAreas : : Observat ionCol lec t ion −> [ Spat ia lRegion ]

221 overlapsOfObservedAreas ( x : xs ) = i f null xs

222 then [ ]

223 e lse nub ( ( overlapsOfaSingleObservedArea x xs ) ++ overlapsOfObservedAreas xs )

224

225 −− t h e f u n c t i o n i d e n t i f i e s t h e d i s t i n c t t e m p o r a l r e g i o n s where t h e o b s e r v e d

p e r i o d s o f d i f f e r e n t o b s e r v a t i o n s in an o b s e r v a t i o n c o l l e c t i o n o v e r l a p

29The specification of overlapsOfObservedAreas and overlapsOfObservedPeriods presented below ac-

counts only for the case where at most two observed areas/periods overlap simultaneously. The extension

of overlapsOfObservedAreas and overlapsOfObservedPeriods to account for situations where n observed

areas (or observed periods) overlap simultaneously (n >=3) is postponed to future work.
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226 overlapsOfObservedPeriods : : Observat ionCol lec t ion −> [ TemporalRegion ]

227 overlapsOfObservedPeriods ( x : xs ) = i f null xs

228 then [ ]

229 e lse nub ( ( overlapsOfaSingleObservedPeriod x xs ) ++

overlapsOfObservedPeriods xs )

Listing 5.2 shows the alignment of ‘observation’ and ‘observation collection’ to

DOLCE. Observation and observation collection are both social objects.

Listing 5.2: Alignment of observation and observation collection to DOLCE

230 −− non−p h y s i c a l e n d u r a n t s and s o c i a l o b j e c t s

231 c l a s s NON_PHYSICAL_ENDURANTS nonPhysicalEndurant

232 c l a s s NON_PHYSICAL_ENDURANTS nonPhysicalObject => NON_PHYSICAL_OBJECTS

nonPhysicalObject

233 c l a s s NON_PHYSICAL_OBJECTS s o c i a l O b j e c t => SOCIAL_OBJECTS s o c i a l O b j e c t −−
s o c i a l o b j e c t

234

235 −− an o b s e r v a t i o n i s a s o c i a l o b j e c t

236 instance NON_PHYSICAL_ENDURANTS Observation

237 instance NON_PHYSICAL_OBJECTS Observation

238 instance SOCIAL_OBJECTS Observation

239

240 −− an o b s e r v a t i o n c o l l e c t i o n i s a s o c i a l o b j e c t

241 instance NON_PHYSICAL_ENDURANTS Observat ionCol lec t ion

242 instance NON_PHYSICAL_OBJECTS Observat ionCol lec t ion

243 instance SOCIAL_OBJECTS Observat ionCol lec t ion

The spatial resolution of an observation collection is its observed study area, and

its temporal resolution is its observed study period.

244 −− s p a t i a l r e s o l u t i o n as t h e o b s e r v e d s tudy a r e a o f t h e c o l l e c t i o n

245 s p a t i a l R e s o l u t i o n C o l l e c t i o n = observedStudyArea

246

247 −− t e m p o r a l r e s o l u t i o n as t h e o b s e r v e d s tudy p e r i o d o f t h e c o l l e c t i o n

248 tempora lReso lut ionCol lec t ion = observedStudyPeriod

5.4 Is a high value for resolution always desirable?

Two criteria - spatial receptive �eld and temporal receptive window - have been sug-

gested to characterize the spatial and temporal resolution of a single observation, and

two criteria - observed study area and observed study period - have been proposed for
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the characterization of the spatial and temporal resolution of an observation collection.

The spatial receptive �eld reflects the extent to which the observer was spatially stim-

ulated by the stimulus, the temporal receptive window expresses the extent to which

the observer was exposed to the stimulus before producing the observation value. The

observed study area makes apparent how much of the study area is actually covered

by the observation collection, the observed study period accounts for the portion of the

study period which is covered by the observation collection. The question whether a

high value for each of these criteria is always desirable has no straightforward answer.

Csillag (1991) states: “There is an obvious assumption about objects, or processes in

space, namely, the larger the sample we have, the better [emphasis added]”. Yet, this as-

sumption might not always be accurate, because the assessment of what ‘better’ means

involves the consideration of other parameters. Examples of these parameters include

the spatio-temporal variability of the phenomenon of interest30, the benefit/cost ratio

of producing a new observation, the cost-effectiveness ratio of adding new receptors to

an observer (or acquiring a new observer with more receptors), the expectations (very

short vs. moderate or quick response time), etc. The answer to the question ‘what does

better resolution mean?’ requires the characterization of the value of the single obser-

vations (or observation collections). Value is a core aspect of spatial information (see

Kuhn, 2011, 2012), but also of one the least understood. For this reason, no attempt

is made in this work to characterize what ‘better’, ‘best’, or ‘optimal’ resolution of an

observation/observation collection means. This task is left for future work.

5.5 Summary

Chapter 4 brought forward an observation-based theory of spatial and temporal res-

olution relevant to single sensor observations. This chapter extends and complements

the theory previously introduced by suggesting a means of specifying the spatial and

temporal resolution of observation collections. Here is a synthesis of the ideas exposed:

I. This chapter also presupposes space and time as separate frameworks, uses FOOM

as base ontology, DOLCE as foundational ontology, and Haskell as ontology de-

sign language;

II. An observation collection is a collection of observations. Observation collections

in this work can have a spatial location (but cannot move), cannot have different

observations at different times, and are different (in their nature) from single ob-

servations. With reference to the framework introduced in Section 2.2, a single
30Credit goes to Christoph Stasch for this example.
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observation belongs to the measurement dimension but an observation collection

relates to the analysis dimension;

III. There are at least five essential parameters for the specification of observation col-

lections (the collector, the observable, the members, the spatial ordering and the

temporal ordering) and changes in one of these parameters lead to new observa-

tion collections;

IV. The observed area of an observation is the spatial region of the phenomenon of

interest that has been observed. It can be estimated using the spatial receptive

field of the observer which produced the observation. The observed period of an

observation denotes the temporal region of the phenomenon of interest that has

been observed and can be computed using the temporal receptive window of the

observer which generated the observation;

V. The observed study area is the spatial Sum of the observed areas of the individual

observations in the collection, and the observed study period is the temporal Sum of

the observed periods of the individual observations in the observation collection;

VI. Criteria brought forward earlier in the literature for the specification of resolution

of observation collections (i.e. spacing and coverage) have serious drawbacks, and

the chapter proposed (as alternative and improvement) to specify the spatial res-

olution of an observation collection using its observed study area, and the temporal

resolution of an observation collection using its observed study period. The theory

of observation collection resolution exposed guarantees that for n=1 (n being the

number of observations in an observation collection), resolution of the observation

collection equals resolution of a single observation.
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Ontology design patterns for

resolution

With resolution now formally specified, the next task - according to the agenda outlined by the

research method - is the implementation of the ontology of resolution. This sixth chapter allows

a smooth transition between the two stages of ontology design and ontology implementation.

The chapter presents two ontology design patterns: one useful to characterize the resolution of a

single observation, and one for the characterization of the resolution of observation collections.

6.1 Ontology design pattern

The use of patterns for ontology design was suggested in (Svátek, 2004) and (Gangemi,

2005) as a modelling paradigm for Semantic Web content. Since then, ontology design

patterns1 have been used to model a wide variety of notions, including notions from

the legal domain (see Gangemi, 2007), notions related to sensors and observations (see

Janowicz and Compton, 2010), ecological notions (see Ortmann and Daniel, 2011), car-

tographic map scaling (see Carral et al., 2013), semantic trajectories (see Hu et al., 2013),

to name but a few.

Gangemi and Presutti (2009) define an ontology design pattern (ODP) as a mod-

eling solution to solve a recurrent design problem. A typology 2 of ontology design

patterns was suggested in (Gangemi and Presutti, 2009). The authors suggested six

families of ODPs, namely: structural ODPs, correspondence ODPs, content ODPs, rea-

1‘Ontology design pattern’, as used in this work shall not be confused with ‘ontology design pattern’,

as used in the biological domain (e.g. in [Hoehndorf et al., 2010]), although the two notions are closely

related. See Aranguren et al. (2008) for the discussion.
2Other classification schemes for ODPs are possible. See for example (Blomqvist and Sandkuhl, 2005),

(Gangemi et al., 2007) and (Blomqvist, 2010).
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soning ODPs, presentation ODPs, and lexico-syntactic ODPs. The next paragraph will

give a detailed description of content ODPs (CPs) which are the focus of this work. The

reader is referred to (Gangemi and Presutti, 2009) for details on other types of ODPs.

Examples of ODPs can be found at ontologydesignpattern.org, a web portal dedicated

to ontology design patterns3.

A simple definition of content ODPs can be found in (Gangemi, 2005). Gangemi

defines them as formal patterns that encode a generic use case, a generic use case de-

noting a generalization of use cases that can be provided as example for an issue of do-

main modeling. A more elaborated definition was suggested in (Presutti and Gangemi,

2008). According to the authors:

“CPs are distinguished ontologies. They address a specific set of compe-

tency questions, which represent the problem they provide a solution for.

Furthermore, CPs show certain characteristics i.e., they are: computational,

small and autonomous, hierarchical, cognitively relevant, linguistically rel-

evant, and best practices”.

Empirical tests conducted by Blomqvist et al. (2009) revealed several advantages

of pattern-based ontology design: content ODPs were (i) perceived as useful by on-

tology developers; (ii) they helped to improve the clarity and understandability of the

ontology; and (iii) their use led to fewer modeling ‘mistakes’. The usefulness of CPs

observed by Blomqvist et al. (2009) was confirmed in follow-up experiments reported

in (Blomqvist et al., 2010). In another study, Hammar (2012) reported that CPs were

perceived as useful by participants, and their use was observed to increase the speed

with which tasks were solved.

For these reasons, this chapter will introduce ontology design patterns4 for reso-

lution, based on the ontology presented in Chapters 4 and 5. It should be noted, that

besides ODP’s advantages for ontology design, ontology design patterns can act as a

bridge between the two stages of ontology design and ontology implementation. The

decomposition into simple, reusable modules can help to organize knowledge during

the design stage. If the ODP is additionally implemented in an ontology implementa-

tion language, it becomes usable for the various practical tasks mentioned in Section

3.3.4. The use of ODPs in this work ensures therefore a gradual, smooth transition from

the theoretical investigations done in Chapters 4 and 5 to their practical complements to

be presented in Chapter 7. An example template to describe ODPs is the catalog entry5

3See a presentation of the portal in (Presutti et al., 2008) and (Daga et al., 2008).
4In the remainder of this work, ‘ontology design pattern’ (ODP) is used to refer only to content ODP.
5Other templates to document ODPs exist. See for example (Gangemi et al., 2007; Scharffe et al., 2008).
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suggested in (Gangemi and Presutti, 2009). The catalog entry includes 12 information

fields which are presented in Table 6.1. This catalog entry will be used to document the

ODPs proposed in this chapter.

Table 6.1: Fields of a catalog entry for an ontology design pattern

FIELD NAME PURPOSE

Name gives a name for the pattern

Intent describes a generic use case addressed by the pattern

Competency questions
contains examples of competency questions addressed by the

pattern

Also known as gives other names (if any) with which the pattern is known

Scenarios
provides examples of requirements which can be modeled us-

ing the pattern. The requirements are expressed in natural lan-

guage

Diagram shows a conceptual map representing the pattern6

Elements
describes the elements (classes and relations) included in the

pattern, and their role within the pattern

Consequences
gives a description of the benefits and/or possible trade-offs

when using the pattern

Known uses gives examples of realistic ontologies where the pattern is used

Extracted from
gives the reference ontology/conceptual schema (if any), from

which the pattern has been extracted

Related patterns
indicates other patterns (if any) that are either a specialization,

generalization, composition, or component of the pattern being

described

Building block
provides references to implementations of the pattern, e.g. a

URI of an OWL file containing an implementation of the pat-

tern

6.2 Resolution of a single observation

The ODP useful for the characterization of the spatial and temporal resolution of a sen-

sor observation has six elements: observer, spatial receptive field, temporal receptive window,

spatial resolution, temporal resolution, and observation. The definitions of these terms can

be found in Section 4.3.3. The pattern along with relations between its elements are

depicted in Figure 6.1. Alignment of the pattern to DOLCE is the subject of Appendix

6This is a small deviation from the field ‘Diagram’ as originally presented in (Gangemi and Presutti,

2009) where the authors proposed a UML class diagram to represent the pattern.
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E, and additional information on the pattern can be found in Table 6.2.

Table 6.2: Catalog entry for the ODP useful to characterize the resolution of a single

observation

FIELD NAME PURPOSE

Name
Ontology design pattern for the characterization of the spatial

and temporal resolution of a sensor observation

Intent
to describe the spatial and temporal resolution of a single sensor

observation

Competency questions
(i) what is the spatial resolution of a sensor observation? (ii)

what is the temporal resolution of a sensor observation?

Also known as -

Scenarios the motivating scenario presented in Section 4.1

Diagram see Figure 6.1

Elements the elements of the patterns are presented in Section 6.2

Consequences

Benefits: annotation of sensor observations with their spatial

and temporal resolution; inference of the spatial and

temporal resolution of the sensor observation based on

the physical characteristics (i.e. spatial receptive field and

temporal receptive window) of the observer

Trade-offs: the computation of the spatial receptive field, and

the temporal receptive window necessitates knowledge

about relevant receptors to the observation process; for the

time being, the value of the spatial receptive field should

be computed manually7

Known uses see an example of use in Section 7.2.1

Extracted from -

Related patterns -

Building block
details on the implementation of the pattern are provided in

Section 7.1

6.3 Resolution of an observation collection

The ODP for the characterization of the spatial and temporal resolution of an observa-

tion collection has eight elements: observation, observed area, observed period, observation

7The reason for this is provided in Section 7.2.3.
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Figure 6.1: ODP for the resolution of a single observation

collection, spatial resolution, temporal resolution, observed study area, and observed study pe-

riod. The definitions of these terms (except observation which is defined in Section 4.3.3)

are provided in Section 5.2.2. Figure 6.2 depicts the pattern and relations between its

terms, and Table 6.3 provides further description of its characteristics. The alignment

of the pattern to DOLCE is presented in Appendix E.

Figure 6.2: ODP for the resolution of an observation collection

6.4 Validation of the ontology design patterns

Two types of validation mentioned in (Hammar and Sandkuhl, 2010) are relevant to

the current work: validation by example, and empirical validation9. According to the au-

8The rationale for this is provided in Section 7.2.2.
9The difference between theoretical validation and empirical validation suggested in (Hammar, 2011) is by

and large similar to the distinction introduced in (Hammar and Sandkuhl, 2010).

95



CHAPTER 6: ONTOLOGY DESIGN PATTERNS FOR RESOLUTION

Table 6.3: Catalog entry for the ODP useful to characterize the resolution of an obser-

vation collection

FIELD NAME PURPOSE

Name
Ontology design pattern for the characterization of the spatial

and temporal resolution of observation collections

Intent
to describe the spatial and temporal resolution of observation

collections

Competency questions
(i) what is the spatial resolution of an observation collection?

(ii) what is the temporal resolution of an observation collec-

tion?

Also known as -

Scenarios the motivating scenario from Section 4.1

Diagram see Figure 6.2

Elements the elements of the patterns are presented in Section 6.3

Consequences

Benefits: annotation of observation collections with their spa-

tial and temporal resolution; inference of the spatial and

temporal resolution of an observation collection, based

on the observed study area and the observed study pe-

riod of the collection

Trade-offs: for the time being, the value of the observed study

area and the observed study period should be computed

manually8

Known uses see an example of use in Section 7.2.2

Extracted from -

Related patterns -

Building block
details on the implementation of the pattern are provided in

Section 7.1

thors, validation by example is performed when “one or more examples are presented

in the text, validating the concepts presented in a theoretical manner” (Hammar and

Sandkuhl, 2010). Empirical validation takes place when “some sort of experimental

procedure or case study has been performed” (Hammar and Sandkuhl, 2010). The

examples presented in Sections 4.3.4 and 5.2.3 ensure the theoretical validation of the

two ODPs proposed. The implementations presented in Sections 7.2.1 and 7.2.2 (see

Chapter 7) guarantee the empirical validation of the ODPs.
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6.5 ODPs for resolution and the Semantic Sensor Web

Since resolution is an element of spatial data quality, progress towards its understand-

ing is also useful to tackle the general problem of describing the quality of sensor out-

puts in the Sensor Web. This section establishes the link between the ODPs introduced

previously, and the ODP proposed in (Degbelo, 2012) to characterize the quality of

sensor observations in the Semantic Sensor Web.

6.5.1 Refining the ODP for spatial data quality characterization

Degbelo (2012) took a consumer-oriented perspective on data quality and suggested an

ODP extracted from the SSN ontology presented in (Compton et al., 2012). The ODP

has five elements: Data, DataQualityCriterion, DataQualityComponent, DataQualityOb-

servation and DataQualityResult. Data is the output of an observation process involving

a sensor, a stimulus, a sensed property and a feature. According to Degbelo, Data is

equivalent to ‘Observation’ as defined in the SSN ontology. A DataQualityComponent

is any property of the data which a consumer would like to approximate. A DataQual-

ityCriterion is a criterion defined by the data consumer to get information about the

quality of the data. A DataQualityObservation is an operation by which a data quality

value is assigned to a data quality component using a data quality criterion. The out-

come of a DataQualityObservation is a DataQualityResult. Figure 6.3 presents the ODP

in pictorial form.

Figure 6.3: ODP for spatial data quality characterization in the Semantic Sensor Web
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The ODP from Figure 6.3 does not show where to put observation collections. Ac-

tually, the concept ‘observation collection’ appears neither in (Degbelo, 2012), nor in

the SSN ontology from which the ODP for spatial data quality characterization was ex-

tracted. In fact, Degbelo (2012) mixes single observation and observation collection under

the same label ‘data’ in his ODP10. One might argue that observation collections can

be viewed as single observations when they are aggregated (and define the aggregation

procedure as a sensor). Yet, criteria such as membership, coherence, roles, depth (in-

troduced in Wood and Galton, 2009) or spacing, extent, sampling intensity (mentioned

in Degbelo and Stasch, 2011) are only relevant when talking of collections of observations.

This suggests that observation collections deserve their own treatment in observation

ontologies. For this reason, the ODP presented earlier in (Degbelo, 2012) is now refined

to explicitly include observation collections. The term ‘data’ is removed, and replaced

by the two terms ‘observation’ and ‘observation collection’ which are more precise. The

definitions of DataQualityComponent and DataQualityCriterion are adjusted accordingly:

a DataQualityComponent is any property of the observation (or observation collection)

which a consumer would like to approximate; a DataQualityCriterion is a criterion de-

fined by the data consumer to get information about the quality of the observation

(or observation collection). Definitions of DataQualityObservation and DataQualityRe-

sult are left unchanged. Figure 6.4 shows the new version of the ODP for spatial data

quality characterization in the Semantic Sensor Web. This new version of the ODP is

used as basis for the remainder of the discussion.

6.5.2 Mappings between the ODPs for resolution and the ODP for spatial

data quality characterization

There are some correspondences between the ODP for the characterization of the res-

olution of a single observation and the ODP for spatial data quality characterization.

‘Observation’ (see Figure 6.1) and Observation (from Figure 6.4) are alike; ‘Spatial Res-

olution’ and ‘Temporal Resolution’ (from Figure 6.1) are both a DataQualityComponent.

Since ‘Spatial Receptive Field’ and ‘Temporal Receptive Window’ are identified to be

proxy measures for resolution, they can be used as criteria for the assessment of the

sensor observation’s quality. Thus, ‘Spatial Receptive Field’ and ‘Temporal Receptive

Window’ belong to the class DataQualityCriterion. An advantage of using spatial re-

ceptive field and temporal receptive window for quality assessment is that these two

10For instance, Degbelo states that the term ‘data’ from the ODP is equivalent to ‘observation’, but the

scenarios demonstrating the usefulness of the ODP point to assessments of the quality of observation

offerings (i.e. observation collections).
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Figure 6.4: Amended version of the ODP for spatial data quality characterization

criteria are based solely on the physical properties of the observer participating in an

observing process11, and avoid vagueness and arbitrariness issues.

Likewise, there are some correspondences between the ODP for the characteriza-

tion of the resolution of an observation collection, and the ODP for spatial data quality

characterization. ‘Spatial Resolution’ and ‘Temporal Resolution’ (from Figure 6.2) are

both a DataQualityComponent, and the ‘ObservedStudyArea’ and ‘ObservedStudyPer-

iod’ are examples of DataQualityCriterion. The two criteria are derived from the ob-

served area, and the observed period of the individual observations respectively. When

observed area/period are computed using the spatial receptive fields/temporal recep-

tive windows of the observers (as in Section 5.2.3), assessment of resolution based on

the physical properties of the observer is the main benefit of using the ‘ObservedStud-

yArea’ and the ‘ObservedStudyPeriod’ to assess the quality of observation collections.

In brief, the ODPs presented in Sections 6.2 and 6.3 are one way of specializing the

ODP for spatial data quality (with respect to the data quality components ‘Spatial Res-

olution’ and ‘Temporal Resolution’). The ODP for spatial data quality was proposed by

Degbelo (2012) as both extension of, and complement to the SSN ontology from Comp-

ton et al. (2012). Therefore, the ODPs for resolution also extend and complement the

11This approach is very much in line with (Frank, 2009c) where the following call can be found: “Data

quality research needs a quantitative, theory based approach. The theory must relate to the physical char-

acteristics of the observation process’’. However, Frank did not provide an in-depth discussion on how

resolution can be characterized based on the physical properties of the observer. Section 4.3.3 proposes

one way of doing such a characterization.
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SSN ontology, offering a set of concepts useful to characterize the resolution of obser-

vations and observation collections.

6.6 Summary

Ontology design patterns are modelling solutions to solve recurrent design problems,

and previous work suggests that they are useful for ontology design. They can also

act as a bridge between the stages of ontology design and ontology implementation,

when they are encoded into ontology implementation languages. Yet, Janowicz (2012)

reminds us that “while ontology design patterns have been successfully applied in on-

tology engineering, patterns specific to the needs of geographic information are largely

missing and have to be developed”. Janowicz adds further that “[i]t is important that

such geo-patterns are closely tied to the observations and primitives levels”. This chap-

ter is an effort in that direction, with a focus on spatial and temporal resolution of sen-

sor observations. The contributions of the chapter can be summed-up as follows:

I. ODPs are used as a bridge between the design stage and the implementation stage.

They ensure a gradual transition between the theoretical investigations presented

in Chapters 4 and 5, and their practical complements introduced in Chapter 7;

II. Two ODPs have been proposed: one for the characterization of the resolution of

a single observation and one for the characterization of the resolution of obser-

vation collections. The two ODPs for resolution are extracted from the ontology

presented in Chapters 4 and 5, and are documented using the catalog entry from

Gangemi and Presutti (2009);

III. The ODPs for resolution extend and complement the SSN ontology from Compton

et al. (2012), with a set of concepts useful to characterize the spatial and temporal

resolution of observations and observation collections;

IV. The ODP for spatial data quality characterization in the Semantic Sensor Web sug-

gested in (Degbelo, 2012) has been revisited, and one of its terms has been made

more precise;

V. The ODPs for resolution are one way of specializing the ODP for spatial data

quality. They can be used to assess the quality of observations and observation

collections based on the physical properties of the observers which produced the

observations;
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VI. The two ODPs suggested are relevant both to GIScience (where resolution is an

important notion), and the Semantic Sensor Web (where work is currently needed

on the characterization of the quality of sensor outputs).
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CHAPTER 7

Ontology of resolution -

implementation stage

Implementing the ontology of resolution is the main concern of this chapter. The computa-

tional artifacts useful to characterize the resolution of sensor observations are produced at this

stage. The implementation is done with the help of Semantic Web technologies such as the Web

Ontology Language, the Semantic Web Rule Language, and the query language SPARQL.

7.1 Ontology implementation: language and tool

The Web Ontology Language (OWL) is the language recommended by the World Wide

Web Consortium (W3C) for the encoding of ontologies. OWL as a W3C recommenda-

tion has a status of standard, and the features of its last version (OWL 2) were presented

in (Cuenca Grau et al., 2008; Hitzler et al., 2012; W3C OWL Working Group, 2012).

OWL is not only a de jure standard. It is also, as indicated by Horrocks (2008), the de

facto standard for ontology development in fields as diverse as biology, medicine, ge-

ography, geology, agriculture, and defense. Hence, ontologies supporting implemen-

tation activities are placed in a state where reuse is most facilitated if they are encoded

in OWL. As a result, the Web Ontology Language is adopted for the implementation of

the ontology of resolution.

The encoding of the ontology (or ontology design patterns) in OWL is done using

Protégé1. Some of the advantages of Protégé are mentioned in (Albrecht et al., 2008): it

is free and open source; it offers many extensions for different paradigms (e.g. frames,

OWL), many export formats (e.g. RDF/XML, OWL/XML, LaTeX), and has a good ef-

fort/result ratio. These features of Protégé suffice for the ontology implementation task

1http://protege.stanford.edu/.
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in the context of this PhD thesis. The reader is referred to (Gómez-Pérez, 1999b; Corcho

et al., 2001; Su and Ilebrekke, 2002; Corcho et al., 2003; Mizoguchi, 2004; Ding et al.,

2005; Tomai and Spanaki, 2005; Cardoso, 2007; Escórcio and Cardoso, 2007; Albrecht

et al., 2008; Kalibatiene and Vasilecas, 2011) for additional examples of tools2 which

can be used to support ontology implementation.

The encoding of the ontology design patterns introduced in Chapter 6 results in

two OWL ontologies: one relevant to the annotation of single observations with their

resolution3, and one appropriate for the annotation of observation collections with their

resolution4. The version 4.2.0 of Protégé-OWL was used to perform the encoding task.

7.2 Implementation of the motivating scenario

The approach used at this point is adapted from the four steps suggested in (Presutti

et al., 2009) to test an ontology module developed to address (a certain user story asso-

ciated with) a specific competency question. The four steps are as follows:

1. encode a sample set of facts in the ontology, based on the motivating scenario;

2. define one or a set of SPARQL queries that encode the competency question;

3. associate each SPARQL query with the expected result;

4. run the SPARQL queries against the ontology, and compare obtained results with

expected results.

Tables 7.1 and 5.1 present the sample sets of facts used to test the ODP character-

izing the resolution of single observations, and the ODP characterizing the resolution

of observation collections respectively. The values of SRF and TRW displayed in Table

7.1 are provisional examples of SRF and TRW for the carbon monoxide analyzer of type

GM901 introduced in Section 4.3.4. Regarding observation collections, the example in-

troduced in Section 5.2.3 has been reused for the implementation. The sample sets of

facts were encoded (step 1 of the approach outlined above) in OWL 2.

2These tools are also called ‘ontology editors’, ‘ontology development environments’, ‘ontology engi-

neering tools’ in the literature.
3This ODP is available at http://purl.net/ifgi/degbelo/thesisresources/chapter7/odp_

resolution_oneObservation.owl.
4The ODP is accessible at http://purl.net/ifgi/degbelo/thesisresources/chapter7/odp_

resolution_observationCollection.owl.
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SPARQL, as introduced in (Prud’hommeaux and Seaborne, 2008), is the query lan-

guage for RDF5 recommended by the W3C6. SPARQL is also, as indicated by O’Connor

and Das (2009), the de facto standard RDF query language. O’Connor and Das (2009)

point out that OWL can be serialized as RDF, and W3C OWL Working Group (2012)

indicates that any OWL 2 ontology can be viewed as an RDF graph. Thus, OWL 2

ontologies can also be queried using SPARQL7.

Table 7.1: Sample dataset for the ODP characterizing the resolution of single observa-

tions

OBSERVATION OBSERVER SRF TRW

observation1 observerA 800 70

observation2 observerB 900 50

observation3 observerC 1000 30

observation4 observerD 1100 85

observation5 observerE 1200 90

observation6 observerF 900 45

7.2.1 Resolution of an observation

There are a couple of technical requirements for the successful implementation of the

ODP useful to characterize the resolution of a single observation. There is a need for rules,

stating explicitly that the spatial (or temporal) resolution of an observation is equal to

the spatial receptive field (or temporal receptive window) of the observer which has

produced the observation8. There is also a need for a reasoner to infer new informa-

tion based on input ontology instances. The Semantic Web Rule Language (SWRL)
5An introduction to the basic concepts of RDF is available at (Manola and Miller, 2004).
6An extensive discussion on the semantics of SPARQL can be found in (Pérez et al., 2009).
7SQWRL, presented in (O’Connor and Das, 2009), is a query language that has been specifically

developed for querying OWL. Nonetheless, SQWRL is not yet supported in Protégé 4 (see https:

//mailman.stanford.edu/pipermail/protege-owl/2011-September/017425.html; last accessed: June

9, 2014).
8These rules are useful to implement the relation ‘hasProxyMeasure’ shown in Figure 6.1. In lieu of

rules, one could think of implementing the ‘hasProxyMeasure’ relation using the OWL construct Equiva-

lentObjectProperties. For instance, one can state that the properties hasSpatialReceptiveField and hasSpatial-

Resolution from Figure 6.1 are owl:EquivalentObjectProperties. There are two ways of assigning meaning to

ontologies in OWL 2 (see Hitzler et al., 2012): the Direct Semantics and the RDF-Based Semantics. Under

OWL direct semantics, the use of EquivalentObjectProperties has undesirable consequences, since it entails

that the properties denote the same concept. In particular, the use of owl:EquivalentObjectProperties would

imply that ‘SpatialReceptiveField and SpatialResolution denote the same concept’ (an inconsistent statement
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presented in (Horrocks et al., 2004; Hitzler and Parsia, 2009) has been used as rule lan-

guage, and Pellet (introduced in Parsia and Sirin, 2004; Sirin et al., 2007) has been used

as reasoner9. At the moment of this writing, SPARQL queries performed using Pro-

tégé 4 only return asserted information, not inferred one. For that reason, the author

used the OWL API presented in (Horridge and Bechhofer, 2009, 2011), in conjunction

with the Jena Framework10 to perform steps 2, 3 and 4 (see Section 7.2) of the imple-

mentation of the ODP. The implementation was done in Java using Eclipse11, an open

source software development environment. Listing 7.1 shows an example of SWRL

rule. Listing 7.2 presents the formulation of Q1 (see Section 4.1) in SPARQL, and Fig-

ure 7.1 depicts the results of this query. Listing 7.3 shows another possible query with

the ODP (called Q1*), and Figure 7.2 presents its results.

Listing 7.1: A SWRL rule to infer the temporal resolution of a single observation

Observation(?observation), Observer(?observer), produces(?observer, ?

observation), hasTemporalReceptiveWindow(?observer, ?trw) ->

hasTemporalResolution(?observation, ?trw)

Listing 7.2: Retrieve the existing sensor observations as well as their spatial and tem-

poral resolution (query Q1)

prefix obsres: .....

SELECT ?observation ?spatialresolution ?temporalresolution

WHERE {

?observer obsres:produces ?observation.

?observation obsres:hasSpatialResolution ?spatialresolution.

?observation obsres:hasTemporalResolution ?temporalresolution

}

since one is a physical quality and the second an abstract quality). Under OWL rdf-based semantics, the

use of EquivalentObjectProperties would entail that the concepts have the same extension, but may have

different intensions. That is, they have the same values, but do not necessarily denote the same concept.

Cuenca Grau et al. (2008) indicate that the design of an rdf-based semantics for OWL 2 is work in progress.

As a result, rules are currently the only option that help implement the relation ‘hasProxyMeasure’.
9For an overview of OWL reasoners, see (Bock et al., 2008).

10http://jena.apache.org/.
11http://www.eclipse.org/downloads/.
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Figure 7.1: Results of Q1

Listing 7.3: Return existing sensor observations whose spatial resolution is greater

than 800 mm2, and temporal resolution is smaller than or equal to 80 sec-

onds (query Q1*)

prefix obsres: .....

SELECT ?observation ?spatialresolution ?temporalresolution

WHERE {

?observer obsres:produces ?observation.

?observation obsres:hasSpatialResolution ?spatialresolution.

?observation obsres:hasTemporalResolution ?temporalresolution.

FILTER (?spatialresolution > 800 && ?temporalresolution <= 80)

}

Figure 7.2: Results of Q1*

7.2.2 Resolution of an observation collection

Jena, the OWL API, SWRL, SPARQL and Pellet have also been used for the implemen-

tation of the ODP relevant to the characterization of the resolution of observation collec-

tions. It is worth mentioning here that the inference rule ‘infer resolution to be the Sum

of all the observed areas of the individual observations’ or simpler ‘infer resolution to

be the product of the observed area of one observation times the number of observations in

the observation collection’ cannot be written in SWRL. This implies that the computation

of the observed study area (or observed study period) based on the individual values
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of the observed areas (or periods) cannot be automatized using OWL supplemented

by SWRL. The reason for this traces back to the fact that OWL offers weak support for

general formulas such as the ones presented above12. For the time being, users have

to manually enter the values of the observed study areas/periods of each observation

collection in the ODP13. The implementation of the ODP was done using the values of

the observed study areas (and study periods) from Section 5.2.3. Listing 7.4 presents

Q2 (from Section 4.1) formulated in SPARQL, and Figure 7.3 displays the results of the

query.

Listing 7.4: Return the existing observation collections as well as their spatial resolu-

tion and temporal resolution

prefix obscollres: .....

SELECT ?obscollection ?spatialresolution ?temporalresolution

WHERE {

?obscollection obscollres:hasSpatialResolution ?spatialresolution.

?obscollection obscollres:hasTemporalResolution ?temporalresolution

}

Figure 7.3: Results of Q2

7.2.3 Discussion

Four main insights can be gained from the implementation presented in the previous

subsections. First, the implementation of the theory presented in Chapters 4 and 5

is feasible, but to some extent. The inference of the resolution of single observations

based on the spatial receptive field and the temporal receptive window is doable, and

12The general formulas referred to here follow the pattern ∑N
i=0 Xi, where Xi is a data property value in

OWL. Iannone and Rector (2008) propose a framework to improve the situation, but there is no standard

way to express in OWL that the fillers of a data property can (or should) be derived from others by means

of a formula.
13It is still recommended, as a good documentation practice, to add the values of the observed areas/pe-

riods of each individual observation to the ontology.
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so is the inference of the resolution of observation collections based on the observed

study area and observed study period. In contrast, the implementation of the function

Sum is currently not realizable because of OWL’s weak support for general formu-

las. For the same reason, automatizing the definition of spatial receptive field as the

product N*S (see Section 4.3.4) is presently not feasible. There are two ways of cop-

ing with this issue: (i) manually pre-process the values of spatial receptive field of an

observer, as well as observed study area/period of an observation collection (this is

the approach taken in Sections 7.2.1 and 7.2.2); or (ii) increase the expressiveness of

OWL and/or SWRL (this calls for further research on the enhancement of the expres-

sive power of the two languages). Second, the tests done previously show that despite

the popularity of OWL, the language recommended by the W3C might not always be

the best alternative for design purposes14. Third, the tests (together with the theory

presented in Chapters 4 and 5) document a practical use of the method of ontology

development shown in Figure 3.1. The design stage was the subject of Chapters 4 and

5; the implementation stage was presented in Section 7.2. With reference to the criteria

for ontology evaluation presented in Section 3.3.6, the implementation introduced in

this chapter illustrate the practical usefulness of the ontology of resolution. In particu-

lar, it shows how the ontology can support the retrieval of different observations (or

observation collections) at different spatial and temporal resolution. Lastly, the tests

(along with Chapters 4 and 5) serve as a proof of concept that the research method

from Figure 3.1 is workable, and the distinction between design and implementation

stages during ontology development produces valuable and distinct insights. From

a researcher’s point of view, ontology design is useful to explore possible coherent ways

of approaching an issue; ontology implementation is helpful to expose areas for future in-

vestigations regarding available technologies. The Java code used to perform the tests is

accessible at http://purl.net/ifgi/degbelo/thesisresources/chapter7/JavaCode.

The ODPs enriched with instances can be found at http://purl.net/ifgi/degbelo/

thesisresources/chapter7.

7.3 Further application scenarios

Section 7.2 has presented the implementation of the ontology of resolution using Se-

mantic Web technologies. This section aims at presenting additional examples illustrat-

ing the relevance of the ideas presented in this work. The next subsections show how

the ODP for the resolution of single sensor observation can be used to annotate and

retrieve Flickr data with their temporal resolution, illustrate how qualitative values of

14The function Sum which cannot be specified using OWL was specified using Haskell in Section 5.3.
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resolution can be accounted for, present an application of some of the ideas previously

introduced to the Linked Brazilian Amazon Rainforest Data, and comment on the rel-

evance of the observed study area/period for cross-comparison of average values for

air quality in Europe.

7.3.1 Retrieval of Flickr data at a certain temporal resolution

The implementation presented in Section 7.2 was based on synthetic data. As a com-

plement to this, the current subsection illustrates how the ODP useful to characterize

the resolution of single observations can be used to retrieve Flickr data satisfying some

(temporal) resolution constraints. Flickr15 is an online platform for the sharing of pho-

tographs. Flickr photographs are associated with a great variety of themes but they

can be organized into albums or galleries with a limited thematic scope. The Lava

shots gallery16 for example groups photos capturing “volcanic activity and areas, fea-

turing Sicily’s Mt. Etna and Hawaii’s national parks”. The ODP for the resolution

of single observations can be used to annotate and infer the temporal resolutions of

these images, based on the physical properties (i.e. the shutter speeds) of the cameras

which produced them. Figure 7.4 shows the ids of the photographs from the Lava shots

gallery which have a temporal resolution below 0.4 seconds. The query of the data was

done on June 30, 2014 using the Flickr API17. The different steps followed to get the

results displayed are18:

Step1: Retrieve the pictures contained in the Lava shots gallery using the method

flickr.galleries.getPhotos from the Flickr API;

Step2: Get the Exif19 data about each picture, as well as the shutter speed (if available)

of the camera which produced the picture;

Step3: Populate the ODP with pictures (for which the shutter speed has been explicitly

documented) using the OWL API;

15For a short presentation of Flickr, see https://www.flickr.com/about/ (last accessed: June 30, 2014).
16See https://www.flickr.com/photos/flickr/galleries/72157645265344193/ (last accessed: June

30, 2014).
17The documentation of the Flickr API is available at https://www.flickr.com/services/api/ (last

accessed: June 30,2014).
18The Java Code implementing these five steps is available at http://purl.net/ifgi/degbelo/

thesisresources/chapter7/JavaCode.
19Exif stands for Exchangeable Image File Format. As Turner (2006) indicates, digital photographs store

their metadata in Exif, and this often includes camera model, shutter speed, aperture, and date/time.

Information about the cameras which produced the images is - when available - accessible through the

flickr.photos.getExif method of the Flickr API.
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Step4: Infer the temporal resolution of these pictures using the Pellet Reasoner;

Step5: Retrieve pictures at a given temporal resolution using SPARQL.

Figure 7.4: Photographs of the Lava shots gallery (Flickr) with a temporal resolution

less than or equal to 0.4 seconds

7.3.2 Expressing resolution qualitatively

The examples introduced so far in this work have given only quantitative values to the

resolution of spatial and temporal observations (or observation collections). Even so,

spatial and temporal resolution can also be expressed qualitatively. One could envision

the following information needs where resolution is expressed qualitatively:

• retrieve all the remote sensing imageries (observation) in the knowledge base,

which have a high spatial resolution

• return the census data (observation collection) from last year, at the county level

• provide daily data (observation collection) about the level of the Danube river

• retrieve the air quality observations in the database, which have a low temporal

resolution

To account for such queries, one must specify translation rules establishing corre-

spondences between quantitative and qualitative values of resolution. As an example illus-

trating how the translation could be done, Listing 7.5 presents a SPARQL query to

retrieve the Flickr photographs from the Lava shots gallery with both their qualita-

tive and quantitative temporal resolution. The translation rule is specified in the query

through “BIND(IF(?quantitativeTres <= 0.4 , ’high’, ’low’ ) AS ?qualitativeTres)” which
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states that pictures with a temporal resolution less than or equal to 0.4 seconds have a

‘high’ temporal resolution, and those with a temporal resolution greater than 0.4 sec-

onds have a ‘low’ temporal resolution. Figure 7.5 displays the results of the query.

Listing 7.5: Query to retrieve the Flickr photographs with their qualitative and quan-

titative temporal resolution (Q3)

SELECT ?observer ?observation ?qualitativeTres ?quantitativeTres

WHERE {

?observer obsres:produces ?observation.

?observation obsres:hasTemporalResolution ?quantitativeTres.

BIND(IF(?quantitativeTres <= 0.4 , `high', `low' ) AS ?qualitativeTres).

}

Figure 7.5: Results of Q3

7.3.3 The Linked Brazilian Amazon Rainforest Data

The Linked Brazilian Amazon Rainforest Data (LBARD) described in (Kauppinen et al.,

2013) is a dataset about the Brazilian Amazon rainforest. LBARD contains observations

about the deforestation of the rainforest, as well as related data about things such as

rivers, road networks, population, amount of cattle, and market prices of agricultural

products. Kauppinen et al. (2013) indicate that all available data (representing defor-

estation, land uses, natural and social factors) were aggregated to grid cells of 25 km

* 25 km. This suggests a spatial resolution of 625 km2 for the dataset. The perspec-

tive taken at this point is the one of an information consumer aiming at exploring the

dataset and retrieving it at a certain resolution. The information needs used as example

is ‘return observations having a spatial resolution of 625 km2, and reporting the per-
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centage of new deforestation in 2008’. To be able to satisfy his/her information needs,

the consumer needs to (a) define an observation, (b) specify the proxy measure for

resolution used, and (c) choose either a quantitative or qualitative way of expressing

resolution. Listing 7.6 presents a SPARQL query making the choices of the information

consumer explicit. The query states that an observation is equivalent to a grid cell (from

LBARD), the cell size (from LBARD) is the proxy measure for the spatial resolution of

the observation, and the cell value (from LBARD) plays the role of observation value.

In addition, spatial resolution is expressed quantitatively, and takes the value 625 km2,

for each observation.

Listing 7.6: Establishing correspondences between the user needs and LBARD

prefix amazon: <http://spatial.linkedscience.org/context/amazon/>

prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

prefix lsv: <http://linkedscience.org/lsv/ns#>

CONSTRUCT { ?gridcell a amazon:observation.

?gridcell amazon:hasSpatialResolution 625.

?gridcell amazon:hasValue ?cellvalue }

WHERE {

?gridcell amazon:DEFOR_2008 ?cellvalue }

Listing 7.7 presents the SPARQL query useful to retrieve LBARD at the spatial

resolution of 625 km2 and Figure 7.6 displays the observations with the five highest

percentages of new deforestation in 2008.

Listing 7.7: Query to retrieve LBARD at a certain spatial resolution (Q4)

SELECT ?observation ?observationvalue ?spatialresolution

WHERE {

?observation a amazon:observation.

?observation amazon:hasValue ?observationvalue.

?observation amazon:hasSpatialResolution ?spatialresolution

FILTER (?spatialresolution = 625)

}

Besides giving an example of use of the ideas previously introduced, this section

touches indirectly on an important aspect of research on spatial data quality. In a re-

cent review reflecting on achievements and failures of spatial data quality research,
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Figure 7.6: Results of Q4

Devillers et al. (2010) suggested that raising users’ awareness of data quality issues

is an aspect that should be further explored. About 30 years ago, Openshaw (1983)

pointed out that the modifiable areal unit problem is endemic to all studies of spa-

tially aggregated data20. In fact, results of spatial studies invariably depend on the

areal units (i.e. in this case the size of the cell) that are being studied. One way

to let the user become aware of this issue is to always report the spatial (or tempo-

ral) resolution corresponding to an aggregated value. Listing 7.7 illustrates that this

is possible at the query level, or at the result level in SPARQL. If resolution is to be

always displayed at the query level, the relevant instruction in SPARQL is ‘FILTER

(?spatialresolution = 625)’. The user would then be required to fill in the value of

spatial resolution he or she is interested in. If, on the contrary, resolution is to be

always reported at a result level, adding the variable ‘?spatialresolution’ will help

to inform the data consumer of the spatial resolution associated with the aggregated

value. The Java code used to test the query introduced in this subsection is available at

http://purl.net/ifgi/degbelo/thesisresources/chapter7/JavaCode.

7.3.4 Cross-comparison of average values for air quality in Europe

In 2008, the European Commission introduced the Directive 2008/50/EC on ambient

air quality and cleaner air for Europe. The following quote is taken from this directive:

“In order to ensure that the information collected on air pollution is suffi-

ciently representative and comparable across the Community, it is impor-

tant that standardised measurement techniques and common criteria for

the number and location of measuring stations are used for the assessment

of ambient air quality” (European Commission, 2008).

20In this case, the aggregated value is the percentage of new deforestation in 2008.
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It is argued here that the observed study area, and the observed study period of

observation collections should be taken into consideration, if average values are to be

“sufficiently representative and comparable across the Community” as the directive

2008/50/EC requires. To give an example, Table 7.2 shows three European Member

states with their respective numbers of monitoring stations measuring ozone levels.

The numbers of monitoring stations are taken from (EEA, 2013), a recent report on air

pollution by ozone across Europe. It is assumed, for the purposes of the illustration,

that each of the monitoring station in these countries has an observed area of 100 m2.

Table 7.2: Number of monitoring stations for the ozone level in three European coun-

tries

COUNTRY NUMBER OF STATIONS OBSERVED STUDY AREA

France 375 37,500 m2

Germany 260 26,000 m2

United Kingdom 83 8,300 m2

Only average values from France and Germany over an observed study area of 8,300

m2 can be used for a consistent comparison of the average ozone levels in France, Ger-

many and United Kingdom. Likewise, only average values from France over an ob-

served study area of 26,000 m2 are pertinent for an adequate comparison of average

ozone levels in France and Germany. The report presented in (EEA, 2013) remained

silent about this aspect. For instance, the occurrence of exceedances in each European

country (henceforth called ‘occurrences per country’) was defined as “the average num-

ber of exceedances observed per station in a country [emphasis added]” and the report

informed about the occurrences per country21. The occurrences per country have later

been summed up and averaged, to give an average value of occurrences in Europe of

1.5 (and this without mention of the spatial areas for which the occurrences per country

are valid). This approach bears the risk of producing meaningless results22. Observed

study area and observed study period should always be documented when manipu-

lating average values and a similar observed study area or observed study period is a pre-

requisite for an appropriate comparison of average values of observations belonging to

observation collections23. This work has provided the basis for assessing the observed

21See page 11 of the report.
22Average values over 83 stations cannot be compared with average values over 260 stations, in the

same way as average values over a day cannot be compared with average values over a month (observed

areas and observed periods being equal).
23This section puts forth one prerequisite for a meaningful comparison of spatially and/or temporally

aggregated values. Meaningful aggregation of the values themselves is another prerequisite for such a
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study area and observed study period of observation collections. Both criteria are de-

rived from the observed areas and observed periods respectively (see Section 5.2.2).

The observed areas and observed periods can be estimated using the spatial receptive

fields and temporal receptive windows of the observers - in this case the monitoring

stations in Europe - which produced the observations.

7.4 Summary

This chapter has presented the technical requirements accompanying the implementa-

tion of the observation-based theory of resolution presented in Chapters 4 and 5. The

following recapitulates the main ideas exposed:

I. The Web Ontology Language (OWL) has been used as ontology implementation

language, and Protégé 4 has been used to encode the ontology design patterns

from Chapter 6 in OWL;

II. The method of ontology testing from Presutti et al. (2009) has been adapted to test

the ODPs presented in Chapter 6 and ensure their empirical validation;

III. The theory introduced earlier in Chapters 4 and 5 is (partially) implementable

using current Semantic Web technologies;

IV. The chapter showed how qualitative expressions of the spatial and temporal reso-

lution of observations (or observation collections) can be related to the equivalent

quantitative values of resolution;

V. The chapter illustrated how ideas presented in this work can be applied to retrieve

(i) Flickr data at a given temporal resolution, and (ii) the Linked Brazilian Amazon

Rainforest Data at a certain spatial resolution;

VI. Similar observed study areas and observed study periods should be used while

comparing average values of observations belonging to an observation collection.

task. For a recent and thorough discussion on meaningful spatial aggregation, see (Stasch et al., 2014).
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Conclusion

This chapter reflects on the importance of the work, touches on its limitations, and hints at

future work.

8.1 Novel contributions

The main contributions of the thesis can be summarized as follows:

• a conceptual framework to reconcile various notions of resolution (Chapter 2);

• an application-dependent method of ontology development with a clear separa-

tion between a design and an implementation stage (Chapter 3);

• an observation-based and receptor-centric theory of spatial and temporal resolu-

tion applicable to a single observation (Chapter 4);

• a theory of spatial and temporal resolution of observation collections, based on

the portion of the study area (or study period) that is effectively covered by the

observation collection (Chapter 5);

• two ontology design patterns that can be used on top of the ontology developed

by the W3C Semantic Sensor Network Incubator Group (henceforth called ‘SSN-

XG’), to annotate observations and observation collections with their spatial and

temporal resolution (Chapter 6);

• an illustration of the practical usefulness of the ideas exposed through a variety

of examples (Chapter 7).

The requirements R1 to R5 presented at the outset of the work (see Section 1.4) are

now re-examined, before discussing the importance of the thesis in the next section.
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According to R1, the theory developed should remain neutral with respect to the

distinction of field and object. Field-based and object-based views are two ways of con-

ceptualizing geographic reality. The theory of resolution developed in Chapters 4 and

5 has taken FOOM - the observation ontology proposed in (Kuhn, 2009a) - as starting

point. FOOM is neutral vis-a-vis the distinction field vs object. Its adoption entails that

the first entity required for an observation process is an observable, i.e. a physical or

temporal quality to be observed. The observable can (as one desires) be attributed to

locations (leading to a field-based view) or to objects (leading to an object-based view).

FOOM offered also some facilities for the fulfillment of requirement R2, because the

ontology accounted for both observation as a process, and observation as a result. Re-

garding requirement R3, this work has proposed a theory that is applicable to both

in-situ and remote sensors, as well as human and technical observers. For a proper

characterization of the spatial and temporal resolution of a single observation, the fol-

lowing information is required: (i) the type of receptors participating in an observation

process; (ii) their size (i.e. spatial extent); (iii) the number of receptors triggered dur-

ing the observation process; (iv) the time needed by receptors to transform incoming

stimuli into analog signals; and (v) receptors directly stimulated by external stimuli

(in case there are several receptors). Only an indirect relationship holds between the

spatial/temporal resolution of the observation, and the extents of the stimulus and the

particular. The surface (or region) of the observer that is stimulated during an obser-

vation process and the duration of the perception process are always smaller than (or

equal to) the spatial/temporal extent of the stimulus to which the observer is exposed.

Likewise, the extent of the stimulus cannot be greater than the extent of the particular

observed.

The following axioms recapitulate the main ideas of the theory of resolution ap-

plicable to a single observation. They can be used as starting point for the development

of (geographic) information systems, and will be useful to check the consistency of the

information stored in the system1. No particular syntax is used here, as the aim is to

communicate the outcomes of the work in a format that is as easy as possible to grasp.

A1: temporalResolution (observation) = temporalReceptiveWindow (observer)

A2: temporalReceptiveWindow (observer) = processingTime (receptor)

A3: temporalReceptiveWindow (observer) <= temporalExtent (stimulus) <= temporalExtent

(particular)

A4: spatialResolution (observation) = spatialReceptiveField (observer)

A5: spatialReceptiveField (observer) = size (Receptor) * NumberOfReceptors (observer)

1See a similar comment on the usefulness of axioms in (Bittner et al., 2009).
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A6: spatialReceptiveField (observer) <= spatialExtent (stimulus) <= spatialExtent (particular)

Requirement R4 called for a means to characterize the spatial and temporal reso-

lution of observation collections. This requirement has been fulfilled with the introduc-

tion of the observed study area and observed study period as proxy measures for the

spatial resolution and the temporal resolution of observation collections respectively.

Observed study area/period has been defined as the Sum of the observed areas/pe-

riods of the individual observations constituting an observation collection. Details on

the function Sum are provided in Section 5.2.2. Observed areas and observed periods

of the observations can be estimated using the spatial receptive fields and temporal re-

ceptive windows of the observers which produced the observations respectively. The

main axioms of the theory of resolution for observation collections are summarized

below.

A7: temporalResolution (observationcollection) = observedStudyPeriod (observationcollection)

A8: observedStudyPeriod (observationcollection) = Sum (observedPeriods)

A9: observedPeriod (observation) = temporalReceptiveWindow (observer)

A10: spatialResolution (observationcollection) = observedStudyArea (observationcollection)

A11: observedStudyArea (observationcollection) = Sum (observedAreas)

A12: observedArea (observation) = spatialReceptiveField (observer)

Finally, requirement R5 imposed that the theory should be implementable on use

cases relevant to the Sensor Web (a point that was missing in previous formalisms for

resolution in GIScience). Chapter 7 showed that a partial implementation of the the-

ory using current Semantic Web technologies is feasible. The examples presented in

Section 7.2 illustrate that requirement R5a has been met. Section 7.3.2 provided the

necessary basis for the fulfillment of requirement R5b. With regard to previous work,

the investigation presented in (Frank, 2009c) is most closely related to the work pre-

sented here. The main difference is in the nature of the investigation: Frank (2009c)

essentially discussed the effects of observations’ limited resolution on the size of the

objects that could be formed based on these observations; this thesis analyzed the rela-

tionship between the characteristics of entities participating in an observation process,

and the resolution of the final observations. Table 8.1 recapitulates the similarities and

differences between the two works ( ‘previous work’ denotes the work done in (Frank,

2009c) and ‘current work’ refers to this thesis).

2See (Frank, 2001, 2003) for a presentation of the tiers of ontology.
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Table 8.1: Comparison with previous work

PREVIOUS WORK CURRENT WORK

Goal

Influence of observation

resolution on the size of

derived objects

Influence of stimulus,

particular, observer on

observation resolution

Field vs Object field-based view required neutral

Formalism for resolution convolution-based receptor-based

Spatial resolution discussed discussed

Temporal resolution mentioned discussed

Tiers involved2 0, 1 & 2 0 & 1

Observation collections not discussed discussed

Sensor Web applicability not discussed applicable

8.2 Importance of the work

Previous sections have alluded to the relevance of ideas exposed in this work to trans-

disciplinary research (see Section 2.5), the science of scale (see Section 3.4.3), ontology

design patterns tailored to the needs of geographic information (see Section 6.6), spa-

tial data quality characterization in the SSW (see Section 6.5), spatial data quality re-

search in general (see Section 7.3.3), and the Directive 2008/50/EC of the European

Commission (see Section 7.3.4). The next subsections establish the connection between

the current work, and the topics of observation ontologies, ontology development and

evaluation, and semantic interoperability.

8.2.1 Observation ontologies

The outcome of the ontology design stage presented in Chapters 4 and 5 extends FOOM

with a specification of the resolution of observations. The extension put forward in this

work follows a slightly different approach from Kuhn’s early suggestion. The author

of FOOM initially proposed “specifying the resolution of observations in space, time,

and theme, based on the granularity of the sensed endurants and perdurants”. On

the contrary, the specification of resolution done in this work is primarily based on

the properties of the observer, not those of the sensed endurant or perdurant. The

two OWL ontologies referred to in Section 7.1 are the main outcomes of the ontology

implementation stage. They can be used as complements to the ontology (hereafter
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called ‘SSN ontology’) developed by the W3C Sensor Network Incubator Group for

the description of sensors and observations. Such complements to the SSN ontology

are needed because, as Compton (2011) reports:

“In developing the ontology, the group worked to include only the sensor

specific concepts and properties, thus the need to include domain and other

concerns when using the ontology”.

Further examples of modules extending the SSN ontology include (Stasch et al.,

2011), where the authors proposed a set of concepts to describe aggregated observa-

tions, and (Bendadouche et al., 2012) where the authors suggested a pattern to describe

communication in Wireless Sensor Networks. To sum up the ideas presented in this

subsection, this thesis takes previous work on observation ontologies one step further,

both at the theoretical and the practical level.

8.2.2 Ontology development and evaluation

As Yu et al. (2007) pointed out: “Ontology evaluation techniques are improving as

more measures and methodologies are proposed. However, few specific examples of

these evaluations have been found in literature. That is, specific examples of ontolo-

gies, applications and their requirements, measures and methodologies to link these

together in one cohesive evaluation”. The method of ontology development presented

in Chapter 3 offers a possible solution to the issue of lack of cohesive examples of ontol-

ogy evaluation mentioned above. Besides the neat distinction between the design stage

and the implementation stage, the work has separated what should be done (discussed

in Chapter 3) from how this should be done (presented in subsequent chapters). Chap-

ters 4 and 5 are cases in point for an ontology design endeavour, Chapter 7 presents

how a specific ontology implementation activity could be conducted. The method has

been kept as general as possible (to facilitate reuse), and has (as Figure 3.1 depicts)

foreseen an evaluation for each of its stages.

8.2.3 Semantic interoperability

The interoperability of geographic information was identified by the University Con-

sortium for Geographic Science as one the topics deserving prime attention for re-

search, in its agenda presented in (UCGIS, 1996). Three classes of semantic interoper-

ability problems were differentiated in (Kuhn, 2005), namely: (i) interoperability prob-

lems related to data discovery and evaluation, (ii) those related to service discovery
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and evaluation, and (iii) those related to service composition. Kuhn argued further

that a methodological approach which goes beyond the construction of ontologies and

involve their use for discovery, evaluation and combination of geospatial information

is required to solve these semantic interoperability problems. The method for ontology

development presented in this work fulfills this desideratum. In a first stage, compe-

tency questions were extracted from a motivating scenario (see Chapter 4); in a second

stage, a theory was proposed as an ontology (see Chapters 4 and 5); in a third stage,

the ontology has been implemented over sample datasets, to answer the initial com-

petency questions (see Chapter 7). As a result, this method is relevant to GIScience as

a whole, not only for ontology research, but also for progress on the topic of semantic

interoperability3.

Another contribution of this work to semantic interoperability lies in the fact, that

it provides a basis for the (detection and) handling of semantic heterogeneity as regards

the use of the term ‘resolution’ by different information communities. The conceptual

analysis in Chapter 2 is relevant to understand why semantic heterogeneity (might) oc-

cur, when different communities are using the term. The high number of proxy measures

for resolution (see Figure 2.3) suggests that heterogeneity is likely to occur because dif-

ferent information communities have used different proxy measures to assess the reso-

lution of their data. Data consumers should therefore take a closer look at the measure

used to assess the resolution of the data, before adopting it for reuse.

8.3 Limitations

Ludlow (2012) rightly remarked that word meanings are dynamic, but they are also

underdetermined. As the author further states: “What this means is that there is no

complete answer to what does and doesn’t fall within the range of a term like ‘red’ or

‘city’ or ‘hexagonal’. We may sharpen the meaning and we may get clearer on what

falls in the range of these terms, but we never completely sharpen the meaning”. The

word ‘resolution’, which has been the focus of this work is by no means an exception.

Additional formal specifications of the resolution of sensor observations, might com-

plement this work which attempted to provide a better understanding of the resolution

3It is worth noting that semantic interoperability is not only of interest to GIScience. As mentioned in

Section 1.1.2, semantic interoperability is required if the vision of Plug and Play for the Sensor Web is to

become reality. Progress on semantic interoperability is also of importance for other visions (or long-term

research goals) such as the Semantic Web (introduced in Berners-Lee et al., 2001), the Semantic Geospatial

Web (suggested in Egenhofer, 2002), the Geospatial Semantic Web (presented in Fonseca and Sheth, 2002),

Digital Earth (proposed by Gore, 1998), Next Generation Digital Earth (mentioned in Craglia et al., 2008).
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of observations underlying geographic information.

Besides underdeterminacy, Ludlow (2012) alluded also to another unavoidable

limitation of ontology development undertakings. This limitation stems from the fact

that word meanings are dynamic, or more generally, from the fact that domains mod-

elled using ontologies (might) evolve. Hepp (2007) used the terms ontology engineering

lag, and ontology maintenance lag to refer to this issue. The idea is that ontology building

involves a phase of domain capture where knowledge about the domain of interest is

gathered, and a phase of development where knowledge about the domain is effectively

turned into an ontology. Because development takes time, it might occur that new con-

ceptual elements, which meanwhile have become relevant in the domain of discourse,

are not included in the final ontology. If this happens when one is developing a new

ontology, there is an ontology engineering lag; if on the contrary, it happens when one

is updating an existing ontology, there is an ontology maintenance lag. The argument

against these two issues is a pragmatic one (adapted from Buckner et al., 2011), i.e.

given the real and pressing information management needs, and for the stake of meet-

ing those needs, having an imperfect formal representation of a domain is better than

having none at all4.

Finally, Studer et al. (1998) proposed the definition of ontology as a “formal, ex-

plicit specification of a shared conceptualisation” as the one that characterizes best the

essence of an ontology (defined from an information scientist’s point of view). In com-

parison to Guarino’s definition introduced in Section 3.1 and adopted for the whole

work, the definition above stresses the fact that an ontology should convey a ‘shared

conceptualization’. According to the authors, the keyword ‘shared’ in the definition

“reflects the notion that an ontology captures consensual knowledge, that is, it is not

private to some individual, but accepted by a group” (Studer et al., 1998). Modulo the

fact that consensus-based ontologies have their own limitations5, they are desirable be-

cause they have better chances of adoption by the research community (and beyond).

There is little evidence supporting the claim that the ontology of resolution proposed

in this work mirrors consensual knowledge in GIScience, since the work has primarily

been conducted by the author6. Nonetheless, it is argued here that ontologies pro-

posed by individuals, and ontologies reflecting consensual knowledge are not mutually

exclusive. This work should be seen as a first step towards an ontology of resolution

4Additional examples of works that adopt the same view are (Murdock et al., 2010, 2013).
5For example, as Di Donato (2010) notes, the original community that committed to a certain concep-

tualization of a domain may evolve as new members enter or old members leave it. This can ultimately

result in a new consensus, invalidating the original ontology.
6Of course, the ideas presented have been shaped through discussions with many people.
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reflecting consensus of the whole community of GIScience. Future working groups in

GIScience might reuse the ideas exposed in this work7, and if necessary refine them

while developing such an ontology. Past experience with the development of the SSN

ontology suggests that this expectation is realistic8.

8.4 Future work

An extension of the current work could provide an elaborated discussion of activities

such as knowledge acquisition, configuration management, scheduling, control and quality as-

surance, with respect to the distinction between design stage and implementation stage

during ontology development. This task was left out during the work, and could be the

focus of future research. Further investigation areas worth mentioning include (i) incor-

porating complex arithmetic operations in OWL/SWRL, (ii) exploring the behaviour of

the theory as regards spatio-temporal aggregation, (iii) specifying the thematic resolu-

tion of sensor observations, (iv) working on quality characterization in the Semantic

Sensor Web, and (v) shedding light on the implementation-design continuum.

8.4.1 Incorporation of complex arithmetic operations in OWL/SWRL

Section 7.2.2 pointed out that the computation of the observed study area (or observed

study period) based on the observed areas (or periods) cannot be automatized using

OWL supplemented by SWRL. Enabling this computation requires improvements of

OWL or SWRL or both. OWL offers weak support for mathematical formulas, and this

calls for future research to incorporate complex arithmetic operations in the language.

The incorporation of such complex operations necessitates the discovery of more ex-

pressive description logics than SROIQ9 which still guarantee efficient computational

properties. Whether such description logics exist is an open question, since Baader and

Sattler (1998) showed that extending description logics by simple aggregation func-

tions (such as min, max, count, sum) may lead to undecidability. That being said,

Iannone and Rector (2008) point out that the issue of incorporating complex arithmetic

7Preliminary versions of these ideas were documented in (Degbelo and Stasch, 2011; Degbelo and

Kuhn, 2012; Degbelo, 2013).
8In 2009, Kuhn (2009a) proposed FOOM as an extensible backbone for emerging standards in the Se-

mantic Sensor Web. Some of the ideas conveyed in FOOM (e.g. the notion of stimulus) were later adopted

by the SSN-XG while developing its ontology to describe sensors and observations. Compton et al. (2012)

indicate that the SSN ontology “was developed by group consensus over a period of one year”, and some

41 people from 16 organizations joined the group.
9SROIQ is the name of the description logics underlying OWL 2.
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operations in OWL 2 has been raised and discussed during the drafting phase of the

language, and will be resumed in the preparation of following versions of OWL. SWRL

presented in (Horrocks et al., 2004) comes with some simple mathematical built-ins10,

and Horrocks et al. (2004) indicated that the set of built-ins for SWRL is motivated by

a modular approach that will allow further extensions in future releases. It appears

therefore promising to examine the specification of more sophisticated mathematical

functions in SWRL.

8.4.2 Spatio-temporal aggregation

The need to change the spatial, temporal and thematic resolution of observation data

can arise in a context of data reuse. Observation collections may be spatially or tem-

porally aggregated to fit the purposes of a decision-maker. Pebesma et al. (2011) give

a good example of a situation where spatially aggregated observations are needed. As

the authors note, in case of emergency evacuation, “we cannot evacuate single points,

but decide whether neighbourhoods, regions, villages, towns, or flood plain sections

will be evacuated”11. Extending the theory of resolution proposed so that it incorpo-

rates spatio-temporal aggregation is, for the moment, an open issue. The theory is

based on observed study areas and observed study periods of observation collections,

which in turn, relate to physical (i.e. observable) properties of the observers which

produced the observations in the collection. Spatio-temporal aggregation, on the con-

trary, brings in a mix between observed properties at a point (in space or time), and

non-observed (or observable) ones. Future work can look at the provision of ways to

inform about the original observed study areas and observed study periods after ob-

servation collections have been spatially or temporally aggregated. For instance, in the

motivating scenario from Section 4.1 the concentration of carbon monoxide in the air is

only observed at specific spatial locations of the city. With information about the carbon

monoxide analyzers (COA), and the theory presented in this work, the observed study

areas of the observation collection can be determined, and inform about the amount

of spatial detail in the observation collections. If, for the sake of decision-making, the

observation collections is spatially aggregated to a city or national or European level,

how to keep the data consumer informed about the original observed study areas and observed

study periods?

10For example, built-ins for addition, subtraction, multiplication and division.
11This example implies that, in an emergency evacuation situation, all point observation data available

must be aggregated to area observation data in order to be used for decision-making.
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8.4.3 Thematic resolution

The work has focused on a formal specification of the spatial and temporal resolu-

tion of sensor observations. The ideas proposed can be used as a starting point for a

formal specification of the thematic resolution of observations underlying geographic

information. Veregin (1998) proposed a distinction between two types of thematic res-

olution: thematic resolution for quantitative data and thematic resolution for categorical data.

The former refers to the degree to which small differences in the quantitative attribute

can be discerned (e.g. 10.03mA and 10.0251mA12 indicate two different thematic reso-

lutions for an observation reporting about the amount of electric current in an electrical

circuit); the latter denotes the fineness of category definition (e.g. a classification of en-

tities as being either ‘anthropogenic’ or ‘natural’ as opposed to a classification of the

same entities as belonging to the classes ‘Agriculture’, ‘Grass and Riparian and Dense

Urban vegetation’ ‘Desert’ or ‘Urban’13). The best setting for reuse of the ideas pre-

sented in this work is a theory of thematic resolution of quantitative data. In particular,

interesting questions to investigate are whether a receptor-based approach is applicable to

the thematic resolution of sensor observations and what the interplay between the thematic res-

olution of an observation (say an image), and the discrimination of the sensor (e.g. satellite)

which has produced the observation is. These questions have not been discussed in this

work and could be taken up by future studies.

8.4.4 Ontology design patterns for quality characterization in the SSW

This work has proposed two ontology design patterns (ODPs) for the description of the

resolution of sensor observations, and refined the ontology design pattern proposed in

Degbelo (2012), for spatial data quality characterization in the Semantic Sensor Web.

More work is needed along the same lines in the future, to address other aspects of

data quality such as accuracy, completeness, consistency and lineage. Since some of

these terms (e.g. completeness, consistency, accuracy) are also used in the literature to

denote certain aspects of ontologies, ODPs useful for their description should separate

aspects pertaining to data from aspects relevant to ontologies. For example, the ODPs

should help to distinguish completeness applied to data from completeness applied to

ontologies. Besides the quality of observations and observation collections, additional

ODPs are needed to describe the quality of: (i) web services, and (ii) ontologies them-

selves. The description of the quality of all components (i.e. data, web services and

12mA is an abbreviation for milliampere.
13This second example is based on the illustration of map reclassification rules from (Buyantuyev and

Wu, 2007).
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ontologies) of the Semantic Sensor Web is a long-term research goal. In the medium

term, efforts could address two questions, namely: how can accuracy, completeness, con-

sistency and lineage be formally specified for observation and observation collections? and

how to make these formal specifications applicable to use cases relevant to the Semantic Sensor

Web? The approach taken in this work - involving a conceptual analysis of the notion

studied, an ontology design phase where a theory is proposed that relates to the phys-

ical characteristics of the observation process, and an ontology implementation phase

which illustrates the practical usefulness of the theory - can be reused and adapted for

accuracy, consistency, completeness and lineage.

8.4.5 The implementation-design continuum

Section 3.3.5 presented some examples of languages that have been proposed for the

design and implementation of ontologies, and touched on the implementation-design

continuum. An important question remains, namely: what are the languages most ade-

quate for design, and what are the languages most appropriate for implementation? The answer

to this question requires a systematic comparison of existing languages across a num-

ber of dimensions which include expressiveness, decidability and scalability. This com-

parison in turn necessitates one or several frameworks/use cases where the behaviours

of these different languages can simultaneously be tested and objectively evaluated

with reference to the others. To the nontriviality of such a task should be added the fact

that languages evolve. Said another way, any result of the comparison will ultimately

be subject to change, and potentially quickly outdated. Accordingly, there is not only

a need for comparison, but for a periodic comparison of languages for ontology design

and implementation. There is, for example, a valuable discussion in (Frank and Kuhn,

1999) where the authors presented some of the shortcomings of logic-based formalisms

for the specification of semantics, and suggested as an alternative the use of functional

languages. An ontology engineer can ask him-/herself: are these shortcomings still

present 15 years later? Or have logic-based formalisms caught up? Besides, Haskell

was proposed in the paper as being “currently the language with the least semantic am-

biguities in their typing systems and execution procedures”. Is this still the case, given

that other functional languages such as Isabelle14 have recently been used as formal

specification language15? A characterization of the implementation-design continuum

that can be used as reference for the practice of ontology design and implementation in

GIScience and the Semantic Web is currently needed and missing.

14See a brief introduction to Isabelle as well as the relationship between Isabelle and Haskell in (Haft-

mann, 2010).
15See an example of such a use in (Bittner et al., 2009).

127



CHAPTER 8: CONCLUSION

128



References

Abdelmoty, A. I., Smart, P. D., Jones, C. B., Fu, G., and Finch, D. (2005). A critical eval-

uation of ontology languages for geographic information retrieval on the Internet.

Journal of Visual Languages & Computing, 16(4):331–358. (Cited on pages 29 and 44.)

Adams, B. and Janowicz, K. (2011). Constructing geo-ontologies by reification of ob-

servation data. In Agrawal, D., Cruz, I., Jensen, C., Ofek, E., and Tanin, E., editors,

Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geo-

graphic Information Systems, pages 309–318, Chicago, Illinois, USA. ACM. (Cited on

page 4.)

Agarwal, P. (2005). Ontological considerations in GIScience. International Journal of Geo-

graphical Information Science, 19(5):501–536. (Cited on pages 13, 28, 29, 39, 45 and 179.)

Ahmad, F. and Lindgren, H. (2010). Selection of foundational ontology for collabora-

tive knowledge modeling in healthcare domain. In Dicheva, D. and Dochev, D., ed-

itors, Artificial Intelligence: Methodology, Systems, and Applications - 14th International

Conference, AIMSA 2010, pages 261–262, Varna, Bulgaria. Springer-Verlag Berlin Hei-

delberg. (Cited on page 43.)

Alani, H. and Brewster, C. (2006). Metrics for ranking ontologies. In Vrandecic, D.,

Suárez-Figueroa, M. C., Gangemi, A., and Sure, Y., editors, Proceedings of 4th Interna-

tional EON Workshop on Evaluation of Ontologies for the Web, Edinburgh, Scotland, UK.

CEUR-WS.org. (Cited on page 37.)

Albrecht, J., Derman, B., and Ramasubramanian, L. (2008). Geo-ontology tools: the

missing link. Transactions in GIS, 12(4):409–424. (Cited on pages 103 and 104.)

Alonso, J. and Chen, Y. (2009). Receptive field. Scholarpedia, 4(1):5393. (Cited on

page 58.)

Angele, J., Kifer, M., and Lausen, G. (2009). Ontologies in F-logic. In Staab, S. and

Studer, R., editors, Handbook on ontologies, pages 45–70. Springer Berlin Heidelberg,

2nd edition. (Cited on page 34.)

129



REFERENCES

Antoniou, G. and van Harmelen, F. (2003). Web ontology language: OWL. In Staab, S.

and Studer, R., editors, Handbook on ontologies, pages 67–92. Springer Berlin Heidel-

berg, 1st edition. (Cited on pages 31 and 35.)

Antoniou, G. and van Harmelen, F. (2008). A semantic web primer. The MIT Press, 2nd

edition. (Cited on page 35.)

Antoniou, G. and van Harmelen, F. (2009). Web ontology language: OWL. In Staab, S.

and Studer, R., editors, Handbook on ontologies, pages 91–110. Springer Berlin Heidel-

berg, 2nd edition. (Cited on pages 31 and 35.)

Aranguren, M. E., Antezana, E., Kuiper, M., and Stevens, R. (2008). Ontology design

patterns for bio-ontologies: a case study on the Cell Cycle Ontology. BMC Bioinfor-

matics, 9(Suppl 5):S1. (Cited on page 91.)

Arpinar, B. I., Sheth, A., Ramakrishnan, C., Usery, L. E., Azami, M., and Kwan, M.

(2006). Geospatial ontology development and semantic analytics. Transactions in

GIS, 10(4):551–575. (Cited on page 44.)

Atkinson, P. M. and Tate, N. J. (2000). Spatial scale problems and geostatistical solu-

tions: a review. The Professional Geographer, 52(4):607–623. (Cited on page 56.)

Baader, F., Horrocks, I., and Sattler, U. (2009). Description logics. In Staab, S. and

Studer, R., editors, Handbook on ontologies, pages 21–43. Springer Berlin Heidelberg,

2nd edition. (Cited on page 34.)

Baader, F. and Sattler, U. (1998). Description Logics with concrete domains and ag-

gregation. In Prade, H., editor, ECAI 98 - Proceedings of the 13th European Conference

on Artificial Intelligence, pages 336–340, Brighton, UK. John Wiley & Sons. (Cited on

page 124.)

Bachimont, B., Isaac, A., and Troncy, R. (2002). Semantic commitment for designing

ontologies: a proposal. In Gómez-Pérez, A. and Benjamins, V. R., editors, Knowledge

Engineering and Knowledge Management - Ontologies and the Semantic Web: 13th Inter-

national Conference (EKAW 2002), pages 114–121, Sigüenza, Spain. Springer-Verlag

Berlin Heidelberg. (Cited on page 39.)

Baclawski, K., Kokar, M., Waldinger, R., and Kogut, P. (2002). Consistency checking

of semantic web ontologies. In Horrocks, I. and Hendler, J. A., editors, The Semantic

Web - ISWC 2002, First International Semantic Web Conference, pages 454–459, Sardinia,

Italy. Springer. (Cited on page 36.)

130



REFERENCES

Balley, S., Parent, C., and Spaccapietra, S. (2004). Modelling geographic data with

multiple representations. International Journal of Geographical Information Science,

18(4):327–352. (Cited on page 8.)

Barnaghi, P., Meissner, S., Presser, M., and Moessner, K. (2009). Sense and sens’ability:

Semantic data modelling for sensor networks. In Cunningham, P. and Cunningham,

M., editors, Proceedings of the ICT-MobileSummit 2009, Santander, Spain. (Cited on

page 7.)

Bateman, J. and Farrar, S. (2004). Towards a generic foundation for spatial ontology.

In Varzi, A. and Vieu, L., editors, Formal Ontology in Information Systems: Proceedings

of the Third International Conference(FOIS-2004), pages 237–248, Turin, Italy. (Cited on

page 45.)

Bateman, J. and Farrar, S. (2006). Spatial ontology baseline. I1-[OntoSpace] Deliverable

D2 (version 2.0). Technical report, Collaborative Research Center for Spatial Cogni-

tion (SFB/TR8). (Cited on page 45.)

Bechhofer, S. (2002). Ontology language standardisation efforts. Technical report.

(Cited on page 34.)

Bendadouche, R., Roussey, C., De Sousa, G., Chanet, J., and Hou, K. M. (2012). Exten-

sion of the Semantic Sensor Network Ontology for Wireless Sensor Networks: the

Stimulus-WSNnode-Communication pattern. In Henson, C., Taylor, K., and Corcho,

O., editors, The 5th international workshop on Semantic Sensor Networks, pages 49–64,

Boston, Massachusetts, USA. CEUR-WS.org. (Cited on page 121.)

Bennett, B., Mallenby, D., and Third, A. (2008). An ontology for grounding vague

geographic terms. In Eschenbach, C. and Grüninger, M., editors, Formal Ontology

in Information Systems - Proceedings of the Fifth International Conference (FOIS 2008),

volume 183, pages 280–293, Saarbrücken, Germany. IOS Press. (Cited on page 44.)

Bergman, M. (2010). An executive intro to ontologies (http://www.mkbergman.com/

900/an-executive-intro-to-ontologies/; last accessed: August 22, 2012). (Cited

on page 7.)

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific Ameri-

can, 284(5):34–43. (Cited on page 122.)

Bittner, T. (1999). On ontology and epistemology of rough location. In Freksa, C. and

Mark, D. M., editors, Spatial Information Theory - Cognitive and Computational Foun-

dations of Geographic Information Science (COSIT’99), pages 433–448, Stade, Germany.

Springer-Verlag Berlin Heidelberg. (Cited on pages 5 and 75.)

131

http://www.mkbergman.com/900/an-executive-intro-to-ontologies/
http://www.mkbergman.com/900/an-executive-intro-to-ontologies/


REFERENCES

Bittner, T. (2011). Vagueness and the tradeoff between the classification and delineation

of geographic regions - an ontological analysis. International Journal of Geographical

Information Science, 25(5):825–850. (Cited on page 44.)

Bittner, T. and Donnelly, M. (2007). Logical properties of foundational relations in bio-

ontologies. Artificial Intelligence in Medicine, 39(3):197–216. (Cited on page 30.)

Bittner, T., Donnelly, M., and Smith, B. (2009). A spatio-temporal ontology for geo-

graphic information integration. International Journal of Geographical Information Sci-

ence, 23(6):765–798. (Cited on pages 34, 44, 74, 118 and 127.)

Bittner, T. and Smith, B. (2003a). Formal ontologies for space and time. Technical report.

(Cited on pages 44 and 75.)

Bittner, T. and Smith, B. (2003b). Granular spatio-temporal ontologies. In Güsgen,

H. W., Mitra, D., and Renz, J., editors, Proceedings of the AAAI Spring Symposium on

Foundations and Applications of Spatio-Temporal Reasoning, pages 12–17, Palo Alto, Cal-

ifornia, USA. AAAI Press. (Cited on page 44.)

Bittner, T. and Winter, S. (1999). On ontology in image analysis. In Agouris, P. and Ste-

fanidis, A., editors, Integrated Spatial Databases: Digital Images and GIS: International

Workshop (ISD’99), pages 168–191, Portland, Maine, USA. Springer-Verlag Berlin Hei-

delberg. (Cited on pages 5 and 75.)

Blázquez, M., Fernández, M., García-Pinar, J. M., and Gómez-Pérez, A. (1998). Building

ontologies at the knowledge level using the ontology design environment. In Gaines,

B. and Musen, M., editors, Proceedings of the 11th Workshop on Knowledge Acquisition

for Knowledge-Based Systems (KAW’98), pages 1–15, Banff, Alberta, Canada. (Cited on

page 41.)

Blomqvist, E. (2010). Ontology patterns - Typology and experiences from design pat-

tern development. In Bol, R., editor, The 26th annual workshop of the Swedish Artificial

Intelligence Society (SAIS), pages 55–64, Uppsala, Sweden. Linköping University Elec-

tronic Press, Linköpings universitet. (Cited on page 91.)

Blomqvist, E., Gangemi, A., and Presutti, V. (2009). Experiments on pattern-based on-

tology design. In Gil, Y. and Noy, N., editors, Proceedings of the 5th international con-

ference on knowledge capture, pages 41–48, Redondo Beach, California, USA. ACM.

(Cited on page 92.)

Blomqvist, E., Presutti, V., Daga, E., and Gangemi, A. (2010). Experimenting with eX-

treme Design. In Cimiano, P. and Pinto, H. S., editors, Knowledge Engineering and

132



REFERENCES

Management by the Masses - 17th International Conference (EKAW 2010), pages 120–134,

Lisbon, Portugal. Springer-Verlag Berlin Heidelberg. (Cited on page 92.)

Blomqvist, E. and Sandkuhl, K. (2005). Patterns in ontology engineering: Classifica-

tion of ontology patterns. In Chen, C., Filipe, J., Seruca, I., and Cordeiro, J., editors,

ICEIS 2005 - Proceedings of the Seventh International Conference on Enterprise Information

Systems, pages 413–416, Miami, USA. (Cited on page 91.)

Blugh, A. (2012). Definition of proxy measures (http://www.ehow.com/facts_

7621616_definition-proxy-measures.html; last accessed: November 9, 2012).

(Cited on page 21.)

Bock, J., Haase, P., Ji, Q., and Volz, R. (2008). Benchmarking OWL reasoners. In van

Harmelen, F., Herzig, A., Hitzler, P., Lin, Z., Piskac, R., and Qi, G., editors, Proceed-

ings of the Workshop on Advancing Reasoning on the Web: Scalability and Commonsense

(ARea2008), Tenerife, Spain. CEUR-WS.org. (Cited on page 106.)

Borgo, S. and Masolo, C. (2009). Foundational choices in DOLCE. In Staab, S. and

Studer, R., editors, Handbook on ontologies, pages 361–381. Springer Berlin Heidelberg,

2nd edition. (Cited on pages 6, 43 and 53.)

Bottazzi, E., Catenacci, C., Gangemi, A., and Lehmann, J. (2006). From collective in-

tentionality to intentional collectives: an ontological perspective. Cognitive Systems

Research, 7(2):192–208. (Cited on pages 74 and 83.)

Botts, M., Percivall, G., Reed, C., and Davidson, J. (2007). OGC White Paper - OGC®

sensor web enablement: overview and high level architecture (OGC 07-165). Open

Geospatial Consortium. (Cited on page 1.)

Botts, M. and Robin, A. (2007). Bringing the sensor web together. Geosciences, 6:46–53.

(Cited on page 3.)

Braitenberg, V. (1984). Vehicles: experiments in synthetic psychology. MIT press, Cam-

bridge, Massachusetts, USA. (Cited on page 57.)
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APPENDIX A

Terms of the ontology

The goal of this appendix is to draw up a list of all the terms of the ontology of resolu-

tion and their definitions. The terms are presented in alphabetical order.

Observation collection: a collection of observations

Observed area: spatial region of the phenomenon of interest that has been observed

(the term applies to a single observation)

Observed period: temporal region of the phenomenon of interest that has been ob-

served (the term applies to a single observation)

Observed study area: portion of the study area that has been observed (the term ap-

plies to an observation collection)

Observed study period: portion of the study period that has been observed (the term

applies to an observation collection)

Receptor: the entity of the observer which produces analog signals upon detection of

a(n external) stimulus

Spatial receptive field: spatial region of the observer which is stimulated during the

observation process

Spatial resolution: amount of spatial detail in a representation (i.e. observation or

observation collection)

Temporal receptive window: smallest interval of time required by the observer’s re-

ceptors in order to produce analog signals

Temporal resolution: amount of temporal detail in a representation (i.e. observation

or observation collection)
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APPENDIX B

Proof

The goal of this appendix is to demonstrate that the statement ‘observation collections

cannot have different members at different times’ (hereafter called S), has the additional

advantage that it preserves the principle of ‘social fairness’ introduced in (Frank, 2003).

This is achieved through a proof by contradiction.

A short introduction to the proof by contradiction can be found in (Cusick, 2006;

Cole, 2012). The basics of this type of proof are as follows:

“In a proof by contradiction we assume, along with the hypotheses, the

logical negation of the result we wish to prove, and then reach some kind

of contradiction” (Cusick, 2006).

Regarding social fairness, Frank (2003) states:

“Agents use their knowledge to make decisions about actions . . . Social fair-

ness dictates that decisions of agents are judged with respect to what they

could have known, not the perfect knowledge available later”.

Proof: an agent has at his/her disposal an observation collection {obs1, ..., obsn} when

taking a decision at time T0. It follows that decision knowledge = {obs1, ..., obsn}. Later,

at T1 > T0, the ‘perfect knowledge’ becomes available: perfect knowledge = {obs1, ..., obsn,

obsn+1}1.

In case of ‘social fairness’, the following equality relation holds: judgment basis

= decision knowledge; and nothing is done with the perfect knowledge except learning

1obsn+1 might be a single observation, or an observation collection (with a finite number of observa-

tions as members). The fact that the perfect knowledge contains more observations than the decision

knowledge echoes an early intuition from (Frank, 2001), namely: “[t]he knowledge possessed by a person

or an organization increases over time”.
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from eventual mistakes. Along similar lines, Frank (2003) points to the popular saying:

“Hindsight is 20/20” or “afterwards, everybody is wiser”.

Let’s now assume that S holds and the principle of ‘social fairness’ as presented

above no longer holds. The perfect knowledge is now on a par with the decision

knowledge and the following equality relation holds in that case: judgment basis = per-

fect knowledge = decision knowledge. It follows that:

{obs1, ..., obsn, obsn+1} = {obs1, ..., obsn} (contradiction with S)

In conclusion, modelling observation collections as having exactly the same mem-

bers at any time preserves the intuitive principle of social fairness2.

2The inverse of this (i.e. modelling observation collections as having different members at different

times does not preserve the intuitive principle of social fairness) is not necessarily true.
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Location of an observation

This appendix discusses the characterization of the spatial location of a sensor obser-

vation. Location, as mentioned in Section 5.2.1, is viewed in this work as a relation

between the observation and a spatial region. The location of an observation can be

equated with one of the locations of the entities participating in the observation pro-

cess1. That is, the location of the observation can be equated with either (i) the location

of the stimulus, or (ii) the location of the particular, or (iii) the location of the sensor.

Section 4.3.3 pointed out that vagueness issues arise as to the determination of

the spatial extent of the stimulus which participates in an observation process. As a

result, modelling the observation’s spatial location based on the location of the stimulus

would also suffer from vagueness issues. Modelling location of the observation as the

location of the particular (i.e. observed phenomenon) would perform better as regards

vagueness issues, but would lead to a significant loss in spatial detail regarding the

site where the observation happened. For example, using this approach, observations

produced by two different weather stations located in a city, would have as location ‘the

city’2. Modelling location of the observation as the location of the sensor is therefore the

approach which pinpoints at best the spatial region where the observation happened.

This approach implies basically that the location of the observation is equated with the

spatial region occupied by the sensor3.

1These entities were introduced in Section 1.2.2.
2The observed phenomenon here is the amount of air in the city (which occupies the whole city).
3The area (or volume) of this spatial region is approximately equal to the size of the sensor.
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APPENDIX D

Comparing resolutions

The goal of this appendix is to briefly present the steps involved in the comparison

of the spatial and temporal resolution of two observation collections. There are three

steps required for such a comparison:

Step1: define the ‘area of interest’ or ‘period of interest’ for the analysis task;

Step2: determine the relevant observed area (or relevant observed period) for each of the ob-

servation collections. The relevant observed area is the intersection of the ‘observed

study area’ and the ‘area of interest’; the relevant observed period is the intersec-

tion of the ‘observed study period’ and the ‘period of interest’. The intersection

of two regions A and B, is the region C such that all the elements of C belong to

both A and B. If the ‘relevant observed area’ (or ‘relevant observed period’) of

an observation collection is empty, the observation collection is not relevant for the

purposes of the analysis. If the ‘relevant observed area’ (or ‘relevant observed

period’) of an observation collection is non-empty, the observation collection is

relevant for the purposes of the analysis. Empty and non-empty as values for the

intersection of two regions are adopted from Egenhofer and Franzosa (1991)1.

Step3: if both ‘relevant observed areas’ (or ‘relevant observed periods’) are non-empty,

the observation collection with the greater ‘relevant observed area’ (or ‘relevant

observed period’) is spatially (or temporally) more detailed with reference to the

area (or period) of interest. If only one of the two observation collections has an

empty ‘relevant observed area’ (or ‘relevant observed period’), the second ob-

servation collection is spatially (or temporally) more detailed with respect to the

1It is worth mentioning that Egenhofer and Franzosa’s definition of ‘spatial region’ is more restrictive

than the definition of spatial region adopted in this work. In this work, no constraint is imposed on a

spatial region except being an identifiable portion of space. Likewise, no additional constraint is put on a

temporal region other than being an identifiable portion of time.
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area (or period) of interest. If both observation collections have empty ‘relevant

observed areas’ (or ‘relevant observed periods’), none of them is relevant for the

purposes of the analysis.

ILLUSTRATIVE EXAMPLE: Let A, B, be two observation collections with the observed

areas of their members as depicted in Figure D.1 (the observed areas of A’s observations

are depicted as circles, those of B’s observations as triangles). Let α be the observed area

of each observation from A, and β be the observed area of each observation from B.

Figure D.1: Two observation collections A and B

Step1 of the comparison consists in the definition of the area of interest for the analysis

task as Figure D.2 shows. The area of interest is depicted in gray in the figure.

Figure D.2: Comparison of two observation collections: Step1

Step2 of the comparison consists in the determination of the relevant observed area (=

2α for A, and 3β for B) for each of the observation collections. Step3 boils down to

the comparison of 2α and 3β to determine the observation collection which is spatially

more detailed for the analysis. The example illustrates one of the advantages of the use

of observed study area/period as criteria to characterize the resolution of observation col-

lections, namely that it is possible to compare two observation collections with respect

to their resolution, without (i) ordering their individual members, and (ii) knowing

explicitly their (spatial or temporal) extent. Having both constraints fulfilled simulta-

neously wouldn’t have been possible if spacing or coverage was used as criterion to

characterize the resolution of observation collections.
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ODPs aligned to DOLCE

This appendix presents the alignment of the ontology design patterns (ODPs) for res-

olution to the foundational ontology DOLCE. There are many versions of DOLCE1,

and the version used for the alignment of the ontology design patterns is DOLCE Ultra

Light (DUL)2. DUL (in its version 3.27) has been proposed as a simplified version of

DOLCE+ (i.e. DOLCE with its basic extensions such as ‘Descriptions and Situations’

and the ‘Ontology of Plans’)3. Motivations for using DUL at this stage are: (i) the fact

that names of classes and relations have been made more intuitive, and (ii) the fact that

the architecture of DUL is pattern-based (which fits with the objective of Chapter 6 to

provide the ontology of resolution as reusable modules). Figure E.1 presents the align-

Figure E.1: Resolution of a single observation: ODP aligned to DUL

1See a list at http://www.loa.istc.cnr.it/DOLCE.html; last accessed: February 26, 2013.
2See http://www.loa-cnr.it/ontologies/DUL.owl; last accessed: February 26, 2013.
3The term ‘DOLCE+’ was coined in (Mika et al., 2004).
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ment of the ontology design pattern (ODP) useful to characterize the resolution of one

observation to DUL, and Figure E.2 depicts the alignment of the ODP useful to charac-

terize the resolution of observation collections to the same foundational ontology. To

avoid overloading, the relation ‘hasProxyMeasure’ is omitted on both figures. Details

on the alignments can be found in Sections 4.3.5 and 5.2.4. Benefits of alignment to a

foundational ontology were presented in Section 3.4.1.

Figure E.2: Resolution of an observation collection: ODP aligned to DUL
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Ontology’s summary

To decide whether to buy a book, we read the blurb on the book jacket; to decide

whether a paper is relevant to our work, we read its abstract. (Staab et al., 2004)

Natalya Noy used the words above-quoted to introduce ontology summarization as

a means of helping potential ontology consumers to find suitable ontologies for their

tasks. In line with her, this appendix provides a succinct overview of the main charac-

teristics of the ontology of resolution proposed. Agarwal’s checklist which “offers the

possibility of a common basis for ontology development in the geographic discipline”

is, for the purposes of this appendix, an appropriate means to an end.

Framework

i. Terms of the ontology: spatial resolution, temporal resolution, receptor, spatial re-

ceptive field, temporal receptive window, observation collection, observed area, ob-

served period, observed study area, observed study period

Domain and intended role of the ontology

i. Type of the ontology: domain ontology

ii. Paradigm: knowledge engineering

iii. Purpose of the ontology: descriptive

Specification of the ontology and ontological commitments

i. Assumption: observation sentences (in the sense of Quine) exist

ii. Standpoint on space and time: space and time are separate frameworks

Validation

i. Linked to a foundational ontology?: Yes, DOLCE

ii. Applicability: implementable to use cases relevant for the Sensor Web
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