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Abstract

In this thesis we study realizations of convex polytopes with small integer coordinates. We
develop an efficient duality transform that allows us to go from an efficient integer realization
of a polytope to an efficient integer realization of its dual. Our algorithms are based on
novel techniques based on braced stresses and a generalization of the Maxwell–Cremona lifting
procedure.

Our methods prove to be especially efficient for realizing the class of polytopes dual to
stacked polytopes, known as truncated polytopes. We show that every truncated polytope
with n vertices can be realized on an integer grid of size O(n9 lg 6+1). This is only the second
nontrivial class of polytopes, the first being the class of stacked polytopes, for which realizations
on a polynomial size integer grid are known to exists.

More generally, our techniques are applicable to any simplicial polytope in the following
sense. Given a simplicial polytope with n vertices and the maximal vertex degree ∆, real-
ized on an integer grid of size L, we show how to realize its dual on an integer grid of size
O(nL3∆+9). Although this bound is not purely polynomial, it is a noticeable improvement
over the exponential bound provided by standard polarity.

Our techniques can be generalized to higher dimensions. We present the generalizations of
the duality transforms with all the necessary details and techniques.

The presented duality transform is in large part inspired by the work of Lovász on Colin
de Verdière matrices of graphs of convex polytopes, and in particular by the generalization of
the Maxwell–Cremona lifting procedure presented there. To make these techniques properly
applicable, we develop new tools for operating with equilibrium and braced stresses, liftings,
and interconnections among them.

In addition to the duality transforms, we present a direct embedding procedure for one
special class of 3d polytopes, the class of prismatoids. We show that every prismatoid with n
vertices can be realized on an integral grid of size O(n4)×O(n3)× 1.
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Introduction

Convex polytopes have a long history as a subject of mathematical research. They were
systematically studied already back in ancient Greece with the efforts to classify the platonic
solids. During the following centuries convex polytopes proved to be a fundamental geometrical
concept, with a new wave of interest coming in the last hundred years. However, despite the
seeming simplicity of the concept and a long history of attention, some immediate, striking
questions are still open. One such question is the subject of our research.

A convex 3-dimensional polytope is a full dimensional convex hull of a finite set of points
in R3. We reserve the word polytope for convex polytopes and usually omit the word convex.
The surface of a polytope is formed by extreme points that are called vertices, straight-line
segments connecting pairs of vertices called edges and 2d cells called faces. The vertices and
edges of a polytope form the graph of the polytope.

Incidence relations between faces, edges and vertices define the combinatorial structure, or
the face structure, of a polytope. The face structure of a 3d polytope is completely determined
by its graph (see [45, Theorem 11]). We call two polytopes combinatorially equivalent if their
face structures coincide, what is equivalent in 3d to that their graphs coincide.

The face structure of a polytope is a purely combinatorial object, namely a partially or-
dered set. By this, convex polytopes can be used to decode combinatorial structures. As a
prominent example we mention the associahedron, which can be used to represent Catalan
structures [25]. On the other hand, a polytope is a geometrical object. Thus, representing
a combinatorial structure as a face lattice of a polytope allows us to analyze this structure
from a new, geometrical viewpoint (which makes polytopes a central object in combinatorial
optimization [36]). This raises the following question. Given the combinatorial structure of
a polytope, how “nice” can be the geometry of a polytope, which realizes this combinatorial
structure?

Depending on the goals, by “nice” one can desire the control over many different geometrical
features: classical graph drawing features, such as the edge length ratio, the face area ratio,
the aspect ratio of faces, the angular resolution [40]; or features specific to polytopes, such
as the possibility to prescribe an arbitrarily shape to some of the faces [4]. One particularly
intriguing feature is the realization with small integer vertex coordinates. Such realizations can
be handled efficiently: In the standard computational RAM model with logarithmic costs [43]
the complexity of every elementary arithmetical operation on a number with k bits depends
on k at least linearly. Thus, efficiency of a realization directly influences complexity of any
algorithm working with this realization. Moreover, a realization with integer vertex coordinates
on a bounded grid guarantees bounds on other graph drawing quality measures. The final
subject of our research is the following question:

Question. Let P be a convex 3d polytope. Find a convex 3d polytope Q that
is combinatorially equivalent to P and has small integer vertex coordinates.

The question above is traditionally phrased in terms of realizations of graphs. It can be
traced back to the work by Steinitz of 1916 [38], which gives a combinatorial characterization
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2 INTRODUCTION

of the graphs of 3-dimensional polytopes. To proceed we need some graph theoretic notions.

Figure 1: The graph and two different realizations of the octahedron.

A graph G = (V,E) is a pair of a finite set of vertices V and a set of edges E connecting
some pairs of the vertices. The graph is called simple if its edges are undirected, every two
vertices are connected by no more than one edge, and none of the edges is a loop. A graph is
called connected if every two vertices are connected by a path. A graph is called k-connected
if it stays connected after removing of any k − 1 of its vertices with all the incident edges. A
graph is called planar if it can be drawn on a plane with all the edges drawn as Jordan curves
so that every pair of edges do not intersect except at the common endpoints.

In 1916 Steinitz proved, that a graph G is the graph of a 3-dimensional polytope if and only
if it is simple, planar, and 3-connected. Moreover, as we noticed above, a planar 3-connected
graph defines the polytope uniquely up to combinatorial equivalence [45, Theorem 11]. Thus,
our question can be rephrased as follows: given a planar 3-connected graph G, realize it as a
graph of a convex polytope with small integer vertex coordinates.

State of the art

Best available general result. Although the original proof of Steinitz theorem is construc-
tive and allows us to keep track of integrality of the coordinates of the resulting embedding,
the produced grid size is double exponential in the number of vertices of the input graph. The
first improvement over the double exponential bound was O(n169n3

) due to Onn and Sturm-

fels [26]. The algorithm by Richter-Gebert reduced the bound down to O(218n
2

) [30]. It was

later improved to O(212n
2

) by Ribó Mor [28].
The best nowadays existing algorithm for general 3d polytopes is due to Ribó Mor, Rote

and Schulz [29] and it produces a realization of a polytope with n vertices within an integer
grid of size O (148n). Although this is a huge improvement over the double exponential grid
size produced by the original Steinitz approach, the grid size for general 3d polytopes is still
exponential in the number of vertices.

Lower bound. On the other side, almost nothing is known about the lower bound on the
size of the integral grid needed for realizing any 3d convex polytope with n vertices. The only
known bound is Ω(n3/2) on each dimension [3], and it comes from the lower bound on the size
of the 2d integer grid needed to support the orthogonal projection of a 3d realization.

Special classes of polytopes: stacked and simplicial. A natural direction of research
is thus to try to find algorithms producing polynomial size grid realizations for special classes
of polytopes. Recently, progress has been made for a special class of polytopes, called stacked
polytopes. A 3-dimensional stacked polytope is produced from a tetrahedron by a sequence of
stacking operation, where each stacking operation glues a triangular pyramid atop a triangular
face of a polytope; see Fig. 2. Graphs of stacked polytopes are planar 3-trees. Demaine and
Schulz showed that every stacked polytope with n vertices can be realized within an integer
grid of size O(n2 lg 6) × O(n2 lg 6) × O(n3 lg 6) [9]. This is however the only nontrivial class of
polytopes for which an algorithm producing polynomial size integral realizations is known.
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Another promising class of polytopes are simplicial polytopes. A polytope is called simplicial
if every its face is a simplex, that is in 3d a triangle. Graphs of simplicial 3d polytopes are planar
triangulations. This class is promising, since the position of every vertex of a simplicial polytope
can be perturbed without breaking the combinatorial structure of the polytope. The question
however stays open even for the simplicial polytopes. Recently, progress has been made in a
paper by Pak and Wilson [27], which constructs realizations of simplicial 3d polytopes with
coordinates polynomial in two dimensions (at the expense of the third dimension).

There exists many different approaches to realizing planar 3-connected graphs in the plane
and in space, however none of them yet proved to be properly applicable to our problem. For
a brief account of some of the existing approaches we redirect the reader to Chapter 1.

Other dimensions. In R2 the question is simple: every convex n-gon can be realized on
O(n)×O(n2) grid and no smaller realization is possible: any realization requires O(n3) area [3].

In any dimension higher than 3 there exist polytopes that cannot be realized with integral
coordinates and there exist polytopes that require a double exponential integer grid size, which
is a consequence of the universality theorem by Richter-Gebert [31]. Thus, only the study of
special classes of polytopes is possible. The only studied class to date was the class of stacked
d-dimensional polytopes, which are the d-dimensional counterparts of the 3d stacked polytopes:
Demaine and Schulz showed that every stacked d-polytope with n vertices can be realized on
the integer grid so that all the coordinates have size at most 10d2R2, except for one axis, where
the coordinates have size at most 6R3 for R = nlg(2d) [10].

Main results

Realizing truncated polytopes. We present an efficient duality transformation that allows
us to produce realizations with polynomial integer coordinates of polytopes dual to stacked
polytopes, which are called truncated polytopes. A 3d truncated polytope can be produced
from a tetrahedron by a sequence of truncation operations, where each truncation operation
cuts off a degree-3 vertex of the polytope by replacing it with a new triangular face; see Fig. 2.
We prove that:

Theorem (Theorem 2.5.3). Every truncated 3d polytope with n vertices can be realized with
integer coordinates of size O(n9 lg 6+1).

Figure 2: Left: a tetrahedron after one stacking operation. Right: a tetrahedron after the
corresponding truncation.

Other duality results and the standard polarity approach. To produce realizations
of truncated polytopes we develop an efficient duality transform. We remind that two 3d
polytopes P and P∗ are called dual if the vertices of P∗ are in one-to-one correspondence with
the faces of P, and two vertices of P∗ are connected by an edge if and only if the corresponding
faces of P are adjacent.
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One standard tool to construct a polytope dual to a given one is provided by polarity.
However, for a polytope P with integer coordinates the coordinates of its polar dual are ra-
tionals and they acquire an exponential scaling factor when scaled to integers. Thus, for a
polytope P with polynomial integer coordinates the coordinates of its polar dual are in general
exponential.

We design a duality transform for simplicial polytopes that is more efficient than the stan-
dard polarity. To construct the realizations of truncated polytopes we use the rich structure of
stacked polytopes discovered by Demaine and Schulz [9] in addition to our duality transform.
For general simplicial polytopes we do not have such a rich structure and the efficiency of
the duality transform depends on the maximal vertex degree of the polytope. We prove the
following theorem

Theorem (Theorem 2.5.6). Let G be a triangulation of the plane with maximal vertex degree
∆G and let P = (ui)1≤i≤n be a realization of G as a convex polytope with integer coordinates.
Then there exists a realization (φf )f∈F (G) of the dual graph G∗ as a convex polytope with
integer coordinates bounded by

|φf | = O(nmax |ui|3∆G +9).

Our duality transforms for 3d polytopes are partially based on the ideas, presented by the
author at the 21st International Symposium on Graph Drawing in Bordeaux, 2013 [16]. In
particular, the embedding procedure for truncated 3d polytopes (Theorem 2.5.3) was presented
in [16]. On the contrary, the duality transform for general simplicial polytopes presented in this
thesis (Theorem 2.5.6) is based on a completely new approach in comparison to the conference
version to provide better bounds in larger generality.

Generalizations to higher dimensions. Our results allow generalizations to higher di-
mensions. For truncated polytopes we prove that:

Theorem (Theorem 4.5.2). Let P be a truncated d-polytope with n faces. Then there exists a
realization (φf ) of P as a convex polytope with integer vertex coordinates bounded by

|φf | = nO(d2 lg(d)).

The higher dimensional generalization of the duality transform for general simplicial poly-
topes is quite technical, we refer the reader directly to Theorem 4.6.2.

Main tool and further results

At its core our duality transform algorithms are based on the Lovász duality transform, which
builds on the notion of braced stresses. To the best of our knowledge, it first appeared as an
auxiliary construction in Lovász paper on Steinitz representations of polyhedra and the Colin
de Verdière number [21]. The original paper did not give this construction any name. The
term “braced stress”, together with some further discussion of the concept and connections to
other types of stresses can be found in the draft of a book on geometrical representations of
graphs by the same author [22].

Let u = (ui) be an embedding of a graph G to R3 and let ω : E(G) → R be an assignment
of reals to the edges of G. We say that a vertex ui is in braced equilibrium if there exists a real
σi such that ∑

j∈N(i,G)

ωij(uj − ui) + σiui = 0, (1)

where the sum goes over the neighbours of ui. (For simplicity we used a nonstandard form
of Eq. (1) above. Later in the main part of the thesis we use a different, though equivalent,
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standard form as the basic definition of braced stress.) We say that ω is a braced stress if every
vertex is in braced equilibrium.

The braced stress is a natural 3d counterpart of the classical equilibrium stress. We remind,
that a vertex ui is said to be in equilibrium if

∑

j∈N(i)

ωij(uj − ui) = 0, (2)

where again the sum goes over the neighbours of ui. An assignment ω is called an equilibrium
stress if every vertex is in equilibrium. However, the notion of equilibrium stress is hardly
applicable in the 3-dimensional setup; see Fig. 3. The notions of braced and equilibrium
stresses are deeply interconnected: We establish different connections between braced and
equilibrium stresses in Sect. 2.3.3, Sect. 2.3.4, and Sect. 2.3.6.

0

Figure 3: Left: for a realization of a graph in R3 a degree-3 vertex cannot be in classical
equilibrium Eq. (2) unless it is coplanar with its neighbours. Right: the additional summand
in the braced equilibrium condition Eq. (1) “solves” this problem.

The Lovász duality is an operation that transforms a pair (u, ω) of a 3d embedding u of a
planar 3-connected graph G with a braced stress ω into a realization of the dual to G graph
G∗ as a polytopal surface1. Moreover, under some additional assumption on the geometry of u
(that we call “cone-convexity”) and for a positive braced stresses the resulting realization is a
convex polytope. This construction has a lot in common with the classical Maxwell–Cremona
lifting procedure and can be viewed as a 3d counterpart of the latter.

The Lovász duality transforms the question of realizing a graph as a convex polytope to
the question of finding a cone-convex realization of its dual graph with a positive braced stress.
The latter will be our main target for the scope of this work. Thus, the genuine subject of our
research are braced stresses and, deeply interconnected with them, equilibrium stresses.

Further results

Probably the most popular tool in operating with realizations of convex polytopes is provided
by the pair of techniques of the equilibrium stresses and the Maxwell–Cremona lifting proce-
dure. It transforms a planar realization of a graph equipped with an equilibrium stress to a
polytopal surface in R3 by lifting every vertex along the vertical lines; Fig. 4. Furthermore,
planar realizations with equilibrium stresses can be used to construct spacial realizations with
braced stresses and we use these constructions extensively. Thus we give a comprehensive re-
view of the Maxwell–Cremona lifting procedure and prove some new useful results concerning
equilibrium stresses, such as the wheel-decomposition theorem and the efficient reverse of the
Maxwell–Cremona lifting procedure.

1 We remind that we reserved the word polytope for convex polytopes. However, the majority of constructions
that we use and develop naturally operate with nonconvex objects as well. To avoid any confusion, we refer to
nonconvex (and possibly self-intersecting) polytopes as polytopal surfaces. More precisely, a polytopal surface
is an embedding of a planar 3-connected graph into R3 such that the vertices of every face are coplanar.
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Figure 4: Left: an equilibrium stress. A vertex is in equilibrium if the weighted vectors
connecting it to the neighbours sum up to zero. All interior edges in the figure are assigned
with a stress equal to 1. Right: the Maxwell–Cremona lifting procedure lifts vertices of a
stressed planar embedding along the vertical lines so that the result is a polytopal surface.

Wheel-decomposition theorems. Equilibrium stresses on an embedding of a graph to
the plane form a linear space. We develop the wheel-decomposition theorem, which gives an
explicit geometrical description of a basis of the linear space of equilibrium stresses on a
given triangulation of the plane; see Fig. 5. That allows us to decompose every equilibrium
stress on a triangulation into a linear combination of elementary equilibrium stresses and to
efficiently operate with them. We present two versions of the wheel-decomposition theorem,
for equilibrium and for braced stresses.

Figure 5: An equilibrium (or braced) stress on a triangulation is decomposed into a linear
combination of stresses with support on wheels, which are small subgraphs of the initial trian-
gulation. Two wheels are highlighted on the figure.

The efficient reverse of the Maxwell–Cremona lifting. The Maxwell–Cremona lifting
procedure can be reversed: given a polytopal lifting of a planar realization of a graph, one
can compute the equilibrium stress, such that the lifting is the Maxwell–Cremona lifting with
respect to this stress.

The Maxwell–Cremona lifting procedure is computationally efficient: given a planar em-
bedding with polynomial coordinates and a polynomial equilibrium stress, it produces a lifting
with polynomial vertex coordinates as well. However, computing of the canonical equilibrium
stress is not efficient: given a lifting with integer coordinates of polynomial size, the entries
of the canonical equilibrium stress are rationals, and they require in general an exponential
scaling factor when scaled to integers.

We present a perturbation argument that allows us to avoid scaling with an exponential
scaling factor and produces an integral equilibrium stress ω on P such that |ω| ≤ |maxui|∆G ,
where ∆G is the maximal vertex degree of the graph G. Our intuition in R2 is often stronger
than in R3, thus, the possibility to transform a 3d embedding into a 2d embedding and a stress
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A

B

C D

Ā

B̄

C̄
D̄

Figure 6: The standard reverse of the Maxwell–Cremona lifting computes the stress on the
edge AB as the fraction of the volume of the tetrahedron ABCD and the product of areas of
the projections ĀB̄C̄ and ĀB̄D̄. An exponential scaling factor is in general unavoidable when
scaling to integers.

is a desirable feature. Additional motivation for us is that we use this construction for one of
our duality algorithms.

Fruitful symbiosis between braced and equilibrium stresses. We pay a lot of attention
to interconnections between braced and equilibrium stresses. The majority of Sect. 2.3 is
devoted to this subject. This equivalence can be used in two directions. First, it allows us to
use the established machinery of equilibrium stresses to operate with braced stresses. Second,
it gives a fresh point of view to the equilibrium stresses. As one example, we use braced stresses
for a fresh geometrical view on how the equilibrium stresses of embeddings of graphs to a plane
evolve under projective transformations; see Fig. 7.

Figure 7: Braced stresses allow us to geometrically track equilibrium stresses under projective
transformations.

Lovász lifting procedure. Lovász introduced a lifting procedure that is analogous to the
Maxwell–Cremona procedure [21], but instead of an embedding of a graph to a plane with an
equilibrium stress it starts with any embedding of a graph to R3 with a braced stress; and
instead of lifting vertices along the vertical lines it lifts vertices along the rays emanating from
the origin; see Fig. 8 and Fig. 4. The original paper gives this procedure no name, we refer to
it as the Lovász lifting procedure.

This procedure is of independent interest. Moreover, a part of it constitutes the Lovász
duality transform. In addition, the Lovász lifting procedure allows us to give a geometrical
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sense to the wheel-decomposition theorem for braced stresses, which is one of the main tools
in our duality transform for general simplicial polytopes.

Figure 8: The Lovaśz lifting procedure lifts any 3d embedding of a graph (bold) with a braced
stress to a polytopal surface by lifting every vertex along the rays through the origin.

We are not aware of any detailed presentations of the Lovász lifting procedure, the original
paper [21] provides only the main ideas of the proof of a special case of “cone-convex” realization
of the initial graph. So, for consistency of the presentation, we include an accurate handling of
the Lovász lifting procedure and thus put the wheel-decomposition theorem for braced stresses
and the Lovász duality transform in context.

Prismatoids. As a special example of a class of polytopes which allow especially efficient
realizations we present an algorithm for realizing prismatoids. A prismatoid is a polytope,
whose graph is a triangulated annulus, see Fig. 9. We present an algorithm that realizes every
prismatoid with n vertices as a convex polytope on a O(n4)×O(n3)×1 grid. This algorithm is a
completely independent result, not relying on any of the previously discussed lifting techniques.
This part of the work is based on the ideas presented by the author at the poster session of
the 21st International Symposium on Graph Drawing in Bordeaux, 2013 [15].

Figure 9: A prismatoid.

Higher dimensional generalizations. To generalize the duality transforms to higher di-
mensions we need to generalize the machinery of braced and equilibrium stresses that we use.
To operate with equilibrium stresses in higher dimensions, we use the approaches based on
the works by Rybnikov [32] and Demaine and Schulz [10]. We are, however, unaware of any
available presentation of the theory of braced stresses in Rd. Thus, we developed the neces-
sary vocabulary and machinery from scratch. As a source of inspiration we used the work by
Izmestiev on the Colin de Verdièr number of graphs of higher dimensional polytopes [17].

Structure

The main part of the work consists of three chapters. Chapter 2 is devoted to the constructions
in R3 leading to the duality transforms. In Chapter 3 we present an embedding algorithm for
prismatoids. Chapter 4 presents generalizations of the main 3d results to higher dimensions.
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In presenting material of Chapter 2 we do not follow the shortest routes toward the main
results. Instead, we organize the material by subject: We begin with the results concerning
classical equilibrium stresses, Sect. 2.2. Then we proceed to the braced stresses and intercon-
nections between braced and equilibrium stresses, Sect. 2.3. This is followed by the description
of the main tool in the duality transformations, the Lovász duality transform, and of the con-
nected to it Lovász lifting procedure, Sect. 2.4. Having all the machinery ready, we present
the duality transforms for stacked and for general simplicial polytopes, Sect. 2.5.

Due to substantially more involved technical details, Chapter 4 has a more straightforward
structure and only contains the technical material that is used for building the duality trans-
forms. We begin with a section devoted to an accurate account of equilibrium and braced
stresses in higher dimensions, Sect. 4.2. It is followed by a section describing the d-dimensional
Maxwell–Cremona lifting procedure, Sect. 4.3. Then we present the Lovász duality transfor-
mation in Rd, Sect. 4.4. We conclude with the duality transformations for stacked polytopes,
Sect. 4.5, and for general simplicial polytopes, Sect. 4.6.





Chapter 1

Methods for realizing planar
graphs: overview

To provide a broader picture, below we briefly overview some known methods for realizing
planar graphs. This chapter is independent from the content of our work and might be skipped.
Not all of these techniques are known to be applicable for realizing graphs as convex polytopes,
however none of them is known to be in principle unmodifiable to be applicable. This list is
not complete in any sense and only gives a brief introduction to the field.

We pay a special attention to approaches that produce realizations as convex polytopes. For
the scope of this chapter we call an embedding of a graph to a plane liftable if its vertices can
be assigned with the third coordinate so that the resulting 3d realization is a convex polytope,
see Fig. 1.0.1. Another term commonly used for liftable embeddings is regular.

Figure 1.0.1: Two planar embeddings of the graph of the octahedron, left: nonliftable, right:
liftable.

Equilibrium stresses and the Maxwell–Cremona lifting

We already mentioned the equilibrium stresses, see Eq. (2), and the Maxwell–Cremona lifting
in the introduction. This technique is the most classical tool to construct a liftable planar
realization and then to lift it to R3. Below we briefly put these techniques into context.

The Maxwell–Cremona lifting allows to control the 3d realization of a graph through an
embedding of this graph to a plane with an equilibrium stress on it. Such embeddings can
be produced in many ways. One of the classical constructions by Tutte [42] goes as follows:
we start with an equilibrium stress, prescribe any face of the graph as the outerface and
arbitrarily fix the locations of its vertices in convex position. Then we view Eq. (2) as the
system of equations on the coordinates of the internal vertices of the graph. In other words, we
view the left hand side of Eq. (2) as the Laplace operator and the locations of internal vertices
as the harmonic functions with respect to this Laplacian.

This approach produces realizations with all the internal vertices in equilibrium, however,
the vertices of the outerface can be set to equilibrium only if the outerface is triangular, or if

11
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the locations of the vertices of the outerface are chosen with special precautions. One of such
special modifications led to the currently best existing algorithm for general 3-dimensional
polytopes by Ribó Mor, Rote, and Schulz [29].

Another kind of special treatment of this construction, which used on the fly modifications
of the equilibrium stresses, was used by Schulz to construct realizations of convex polytopes
with good vertex resolution [37].

Canonical order

The next approach to realizing planar graphs on the grid is based on the canonical order
on triangulations of the plane, see Fig. 1.0.2. It was introduced by de Fraiysseix, Pach, and
Pollack [8] to construct efficient planar realizations of triangulations. The so called shift method,
presented by the authors in this paper, realizes every triangulation with n vertices on a 2n− 4
by n− 2 grid [8, Theorem 1]. However, the planar realizations produced by the shift method
are not always liftable.

Recently, Pak and Wilson [27] presented another construction based on the canonical order,
that produces liftable 2d realizations, see Fig. 1.0.2. It realizes every simplicial 3d polytope with
integer coordinates which are small in two dimensions (at the expense of the third dimension):
in a general setup the layout requires a 4n3 × 8n5 × (500n8)n integer grid [27, Corollary 1.1].
For many special subclasses of simplicial polytopes the algorithm of Pak and Wilson allows a
substantial decrease in the last coordinate.

u1 u2

u3

u4

u5

u6

Figure 1.0.2: A triangulation with a canonical order on its vertices.

The canonical order labels the vertices of a triangulation in order they appear starting
from one of the edges of the outerface, see Fig. 1.0.2. It allows to reconstruct the graph
vertex by vertex starting from the base edge. The algorithm by Pak and Wilson performs
this reconstruction so that every horizon is a convex polygonal chain, where a horizon is
the boundary of the graph after an intermediate reconstruction step, on the figure: u1u3u2,
u1u4u3u2, u1u4u5u2 and u1u6u2. This convexity guarantees liftability, since vertices that are
being added can be assigned heights one after another so that the resulting surface is convex.

There exists an extension of the canonical order approach for planar 3-connected graphs
by Chrobak and Kant [6]. It allows us to construct straight-line planar realizations with
nonstrictly convex faces on an integral grid of size (n− 2)× (n− 2).

Schnyder realizer

The algorithm presented by Schnyder in his seminal work [34] allows to build realizations of
planar graphs on a 2d integer grid of very small size. Namely, it produces a straight-line
planar embedding of any planar graph with n vertices on n− 2 by n− 2 grid. There exists a
generalization of Schnyder approach by Felsner, which produces realizations with nonstrictly
convex faces [12]. For a planar 3-connected graph with f faces it requires a grid of size f − 1
by f −1. We are not aware of any modifications of Schnyder construction that produce liftable
planar embeddings. On the other hand, we are also not aware of any arguments that could
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hinder such modifications. Due to the prominence of the construction, we briefly sketch it
below.

The original construction is designed for a full triangulation of the plane G. We start with
any planar embedding of G, see Fig. 1.0.3. Every vertex is connected to the three vertices
of the outerface with disjoint paths, which are constructed following a purely combinatorial
labeling procedure (labeling is present on the figure, we do not go into details). The paths
divide the graph into three regions (white, rising and falling). The vertex is assigned with
three coordinates, n1, n2, n3, the number of faces in each of the regions.

3
33

3

3

3
1
1

1

1
1

1

1

2
2

2

2
2

3
2

Figure 1.0.3: Schnyder construction. The vertex is assigned with coordinates (1, 4, 2).

The coordinates are homogeneous, n1 +n2 +n3 = const, thus they define an embedding of
the graph into an affine plane in R3. This embedding turns out to be planar. An appropriate
affine transformation finishes the construction.

Steinitz’ construction

The construction behind the classical proof of Steinitz theorem is iterative and it constructs
a realization of a graph directly as a convex polytope. It uses the following fact: every pla-
nar 3-connected graph can be transformed to a tetrahedron by a sequence of ∆Y -operations
followed by the elementary reductions: removing of double-edges and vertices of degree 2; see
Fig. 1.0.4. The reversed deconstruction sequence can be carried out geometrically, starting
from a tetrahedron. The construction requires a double exponential grid size.

Figure 1.0.4: A series of ∆Y transformations followed by the elementary reductions of double
edges and vertices of degree 2 transforms any planar 3-connected graph down to a K4.

Circle packing theorem

Yet another approach to realizations of graphs directly as convex polytopes is provided by
the circle packing theorem, see Fig. 1.0.5. This theorem was first proven by Koebe [20] and
rediscovered 50 years later by Thurston [41, Corollary 13.6.2], who found it as a consequence of
previous works by Andreev [1] and [2]. A series of generalizations is known, the one that allows
to realize a graph as a convex polytope is often referred to as the primal-dual circle packing.
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This version is usually attributed to Brightwell and Scheinerman [5], for a constructive proof
see Mohar [24]. We refer the reader to Ziegler [46, page 118] for a detailed historical overview.

Figure 1.0.5: The primal-dual circle packing for the K4.

The circle packing theorem represents every planar graph as a contact graph of a circle
packing: Every vertex of a graph is represented as a circle in the plane. The circles are disjoint
and two circles touch if and only if the vertices are connected by an edge. The stronger primal-
dual circle packing is applicable to planar 3-connected graphs and it constructs a simultaneous
circle packing representation of a graph and of its dual graph, so that the two circle packings are
orthogonal (dual circles are dashed in Fig. 1.0.5). A convex polytope is produced by mapping
a primal-dual circle packing from the plane to the sphere using the standard stereographic
projection, and then intersecting the halfspaces bounded by the circles representing the dual
graph.

The realizations produced by the primal-dual circle packing have an additional property,
they midscribe a sphere: the unit sphere is tangent to every edge of the polytope. A generaliza-
tion of this construction from the sphere to any smooth strictly convex body in R3 is provided
by Schramm [35]. We remark that midscribing a sphere is “the best possible” behaviour of
a polytope with respect to a sphere: It was shown by Steinitz in 1928 [39] that there exists
3-polytopes that are not inscribable, that is not realizable with all the vertices on a unit sphere.
By duality that also means the existence of 3-polytopes that do not have realizations with all
facets touching the unit sphere.

The circle packing theorem is an extremely elegant way of producing realizations that
midscribe the sphere. However, these realizations are hardly geometrically readable: already
for the simplest case of stacked polytopes the circle packing theorem produces realizations with
exponentially small vertex resolution.

Colin de Verdière matrices

This approach originates from the spectral theory of graphs and realizes a graph directly as a
convex polytope. It was developed by Lovász [21]. A Colin de Verdière matrix for a graph G
is a weighted adjacency matrix, fulfilling some additional constraints. We refer to the original
paper for details [21]. For a planar 3-connected graph any Colin de Verdière matrix has three
independent eigenvectors (a basis of the nullspace), which define an embedding (ui) of vertices
of G to R3. This embedding is called a nullspace representation of a graph. It can then be
rescaled in a canonical way to a realization of G as a convex polytope: there exist a set of
real scaling factors λi for each vertex such that λiui is a convex polytope with skeleton G, [21,
Theorem 3]. The scaling factors λi can be derived from the initial matrix. We are not aware



15

of any successful attempts to analyze the geometrical properties of the realizations produced
by this method.

Colin de Verdière matrices are directly related to braced stresses, a concept that we study
extensively in this thesis: every Colin de Verdière matrix is a braced stress on its nullspace
representation. In turn, every negative braced stress on a realization of a graph with some
special geometry (we later define such realizations as cone-convex), is a Colin de Verdière
matrix of this graph (see [21, Theorem 7] and the following discussion).





Chapter 2

Efficient duality transforms in R3

2.1 Preliminaries

2.1.1 Graphs

A directed graph is a pair G = (V,E) of a finite set of vertices V and a subset E ⊂ V × V
of the pairs of vertices that are called edges. An undirected graph contains with every edge
e = (u, v) its opposite edge e′ = (v, u); for an undirected graph we do not distinguish edges
(u, v) and (v, u). A graph is called simple if it is undirected and none of the edges is a loop.
All the graphs that we consider are simple. For a graph G we denote the set of its vertices as
V (G) and the set of its edges as E(G). For a vertex v ∈ V (G) we denote with N(v,G) the set
of neighbours of v, that is the vertices u ∈ V (G) such that (u, v) ∈ E(G). When it does not
lead to confusion we abbreviate N(v,G) with N(v).

A realization or an embedding of a graph G in Rd is a map of the vertices of the graph to
Rd, f : V (G) → Rd, together with a set of curves in Rd connecting those pairs of the points
which are connected by an edge of the graph (parametrization of the curve never plays a role).
When all the curves representing edges are straight-line segments, the realization is called a
straight-line realization. To define a straight-line realization of a graph it is clearly enough to
define the positions of all its vertices f : V (G) → Rd. All the realizations that we study are
straight-line realizations.

We call a realization of a graph in R2 flat. A realization of a graph in R2 is called planar
if every two edges are disjoint except possibly at the common endpoint. Graphs that allow
planar realizations are called planar graphs. Not every graph is planar: an immediate example
of a nonplanar graph is given by a complete graph K5 which contains 5 vertices and each pair
of vertices is connected by an edge. By Fary’s theorem every graph that allows some planar
realization (or every planar graph) also allows a planar straight-line realization [11].

For a planar realization of a graph the connected regions of the plane bounded by the edges
of the graph (including the unbounded region) are called faces. Generally speaking, the faces
of a graph are not predefined by its combinatorics (by the graph itself), but are defined instead
for every planar realization. However, for some graphs the face structure is predetermined by
the graph. For such a graph G we denote the set of faces with F (G).

A graph is called connected if every vertex is connected to any other vertex by a path. A
graph is called vertex k-connected if the removal of any k − 1 vertices with all the adjacent
edges does not break connectivity. The faces of a planar graph are uniquely predetermined by
the graph if and only if the graph is 3-connected [45, Theorem 11]. In this case the cycles of
edges that form a face allow a direct description: a cycle forms a face if an only if it does not
separate the graph, that is the removal of the cycle from the graph keeps the graph connected.
Thus, the planar realization of a planar 3-connected graph is combinatorially unique up to the

17
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choice of the face that is realized as the unbounded face, that we call the outerface. In other
words, using the standard bijection between the (one point compactification) of the plane
and the sphere, the noncrossing realization of a planar 3-connected graph on the sphere is
combinatorially unique.

An embedding of a planar 3-connected graph onto the sphere defines an orientation on the
faces of the graph: we label the boundary cycle of every face in the clockwise order viewed
from the outside of the sphere. (The choice of the clockwise labeling might seem unnatural,
however we stick to it, as it is consistent with the natural choice of orientations in higher
dimensions, which we use in Chapter 4.) Every planar 3-connected graph has exactly two
nonhomeomorphic embeddings into the sphere, thus it can be oriented in exactly two different
ways. We say that a planar 3-connected graph is oriented if one of the two orientations is
chosen.

A choice of a cyclical order on the edges incident to every vertex of a graph is called
a combinatorial embedding of a graph. Every embedding of a graph to a plane defines a
combinatorial embedding of this graph. For a planar 3-connected graph there are exactly two
combinatorial embeddings of this graph that correspond to planar realizations and differ by a
symmetry. Thus, a choice of orientation on a planar 3-connected graph corresponds to a choice
of one of two combinatorial embedding of this graph that correspond to planar realizations.

Given a planar realization of a graph G the dual graph G∗ is defined as the graph whose
vertices are the faces of G and two vertices of G∗ are connected by an edge if and only if the
corresponding faces of G∗ share an edge. For a planar 3-connected graph the dual graph does
not depend on the embedding and thus is a well-defined graph-theoretical object. The graph
dual to a planar 3-connected graph is again planar and 3-connected and the graph, dual to the
dual graph, is the initial graph, (G∗)∗ = G.

2.1.2 Convex polytopes and polytopal surfaces

The notion of a convex d-dimensional polytope allows two dual definitions:

Definition 2.1.1. (1) A convex d-dimensional polytope is the full dimensional convex hull
of a finite set of points in Rd. (2) A convex d-dimensional polytope is the full dimensional
bounded intersection of a finite set of affine half-spaces of Rd.

These definitions are equivalent: a subset of Rd is a convex hull of a finite set of points if
and only if it can be represented as an intersection of a finite set of half-spaces of Rd [46].

We remind that the convex hull of a finite set of points in Rd is defined as the set of all the
convex combinations of these points:

Conv(u1, . . . un) =

⎧
⎨
⎩
∑

1≤i≤n

αiui :
∑

1≤i≤n

αi = 1, αi ≥ 0

⎫
⎬
⎭ .

We note that the points (half-spaces) from the above definition are not by default the
extreme points (half-spaces) of the resulting polytope.

In the remaining of the chapter we work with 3-dimensional polytopes; polytopes of higher
dimensions appear again in Chapter 4.

Faces, edges, vertices and the graph of polytope. We say that an affine plane α =
{x ∈ R3 : ⟨n, x⟩ = c} defined by a normal vector n ∈ R3 and a constant c ∈ R is a supporting
plane for a convex polytope P if

1. The intersection P ∩ α ̸= ∅ is nonempty; and

2. The whole polytope lies in one of the two halfspaces defined by the plane: P ⊂ {x ∈ R3 :
⟨n, x⟩ ≤ c}.
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Definition 2.1.2. The intersection F = α∩P of a supporting hyperplane α and a polytope P
is called a face of a polytope.

The dimension of a face is the dimension of its affine hull,

Aff(F ) = {a+ tb : a, b ∈ F, t ∈ R}.

The faces of the dimension 0 and 1 are called vertices and edges correspondingly and for 3-
dimensional polytopes the faces of the maximal dimension 2 are simply referred to as faces.
We denote the vertices of a polytope P with V (P), the edges with E(P) and the faces with
F (P ).

Clearly, every face of a 3-dimensional polytope is a convex polygon. We call a polytope
simplicial if every its face is a simplex, that is in the 3d case a triangle.

The edges and the vertices of a polytope P form the graph that we call the graph of the
polytope, denoted with G(P). In 1916 Steinitz showed that

Theorem 2.1.1 (Steinitz theorem, [38]). A graph is the graph of a convex 3-dimensional
polytope if and only if it is simple, planar, and 3-connected.

Steinitz theorem allows us to study the realizations of polytopes — given a graph of a
polytope, or simply any planar 3-connected graph G, realize it as a convex 3-polytope that
has some special geometrical features. In this work we are looking for realizations with small
integer coordinates.

Duality and the polar dual. We call two 3d polytopes P and P∗ dual if there exists a
bijection between the faces of P and the vertices of P∗, d : F (P) → V (P∗) such that the faces
f and g of P share an edge if and only if the vertices d(f) and d(g) are connected by an edge
in P∗. This is the translation of the duality of graphs to the language of polytopes: polytopes
P and P∗ are dual if and only if the graphs of these polytopes are dual, G(P∗) = (G(P))∗.

Given a convex polytope P that contains the origin in its interior there is a standard way
of constructing a polytope dual to P called polarity. To every vertex v of P we put into
correspondence an affine plane αv defined by the equation

αv := {x ∈ R3 : ⟨v, x⟩ = 1}

and a halfspace Hv bounded by αv,

Hv := {x ∈ R3 : ⟨v, x⟩ ≤ 1}.

The polytope obtained as the intersection of the halfspaces Hv for all vertices v of P is called
the polar dual polytope for P , or simply the polar polytope, and is denoted with P∗,

P∗ = ∩v∈V (P)Hv.

Every defining plane αv appears as a supporting plane for some facet fv of P∗, and by
definition every facet of P∗ in turn corresponds to some vertex of P. Thus, there is a bijection
between the vertices of P and the faces of P∗ defined by v → fv and, indeed, this bijection
defines the duality between the polytope and its polar dual. Thus, the polar dual polytope is
a dual polytope. The polar dual of the polar dual polytope is the initial polytope, (P∗)∗ = P .

Polarity between vectors and affine planes. Generally speaking, polarity is the bijective
correspondence between the nonzero vectors and the affine planes not passing through the origin
in R3:
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Definition 2.1.3. (1) Let v ̸= 0, v ∈ R3. We call the plane αv defined by

αv = {x ∈ R3 : ⟨x, v⟩ = 1}

the polar plane of the vector v. (2) For an affine plane α in R3 we call the vector v ∈ R3 such
that α = αv the polar vector of the plane α.

Polarity preserves incidence relations: a point v lies in a plane α if and only if the polar
plane to v contains the polar point to α. As a consequence, points in R3 are coplanar if and
only if their polar dual planes pass through one point — the polar dual to the plane containing
the initial points.

Let P∗ be the polar dual polytope for a polytope P. Then the vertices of P∗ are the polar
duals of the faces of P and the faces of P∗ are the polar duals of the vertices of P. Thus, the
polar dual polytope P∗ can be alternatively viewed either as the convex hull of the polar dual
vectors of faces of the initial polytope P; or as the convex body bounded by the polar dual
planes of vertices of the initial polytope P.

Polytopal surfaces. In many cases the notion of convex polytope is too restrictive and the
theory of stresses and liftings discussed further can be developed for larger classes of geometrical
objects. We use the following generalization of the notion of convex polytope, that we call a
polytopal surface

Definition 2.1.4. A polytopal surface is a realization of a planar 3-connected graph G in R3

such that the vertices of every face are coplanar.

A polytopal surface inherits the structure of the underlying planar 3-connected graph,
thus the whole face structure of the surface is well-defined. Topologically, a polytopal surface
is a sphere. Thus, there exists two orientations on a polytopal surface and we say that a
polytopal surface is oriented if one of the two orientations is fixed. This corresponds to fixing
an orientation of the underlying graph, or, in other words, a combinatorial embedding of the
underlying graph.

A polytopal surface can thus be viewed as a nonconvex self-crossing polytope, whose faces
are in turn polygonal chains that can be nonconvex and self-crossing. We do not use the
term polytope instead of polytopal surface to highlight that we allow nonconvexity and self-
intersections. We do not use the term polyhedral surface to highlight that we stick to the
topology of the sphere.

The notion of polytopal surface allows us to take the polar dual: let P be a realization of
a graph G as a polytopal surface such that no faces of P are coplanar with the origin. We
define the polar P∗ as the realization of the dual graph G∗ with vertices — polar duals to the
corresponding faces of P. Clearly, P∗ is in turn a polytopal surface.

Orientation on polytopes and polytopal surfaces. By default we consider all the poly-
topes oriented by the choice of the normal vector — the outer normal vector. Without going
into formalities, we use the notions “left” and “right” on the surface of a polytope, meaning
that the observer looks at the surface of the polytope from the outside.

In a more formal way, let f be a face of a polytope and nf be the normal vector to f ,

oriented outside of the polytope. Let vf1 , v
f
2 be two independent vectors lying in the face f .

We say that the pair of vectors (vf1 , v
f
2 ) is positively oriented if together with the normal nf

they form a positively oriented basis (vf1 , v
f
2 , nf ) of R3.

For a general polytopal surface the notion of the outer normal vector is not defined. Thus
we suppose that every polytopal surface comes with a chosen normal vector for each of its faces
and this choice is consistent among the faces, so that the whole surface is oriented.
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2.2 Equilibrium stresses

2.2.1 Maxwell–Cremona lifting and the canonical equilibrium stress

The main tool in operating with realizations of convex polytopes is the Maxwell–Cremona
lifting procedure which is based on the notion of equilibrium stress:

Definition 2.2.1. Let u = (ui)1≤i≤n be an embedding of a graph G into Rd. We call an
assignment of reals ω : E(G) → R to the edges of G (denoted by ω(i, j) = ωij = ωji) an
equilibrium stress on u if for every vertex ui ∈ V (G)

∑

uj∈N(ui,G)

ωij(uj − ui) = 0. (2.2.1)

We call an equilibrium stress on a planar embedding with a distinguished boundary face f0
positive (negative) if it is positive (negative) on every edge that does not belong to f0.

Let u = (ui)1≤i≤n be an embedding of a graph G onto R2. We call the assignment of reals
h : V (G) → R to the vertices of G a lifting of the embedding u and we view h(ui) as the third
coordinate, height, of the vertex ui, thus (ui, h(ui)) ∈ R3 defines an embedding of G to R3.
We say that the lifting is polyhedral1 if for every face f of G the liftings of the vertices of f are
coplanar.

Maxwell–Cremona lifting

Given a 2d realization p = (pi)1≤i≤n of a graphG and an equilibrium stress ω on this realization
there exists a standard way of constructing a polyhedral lifting of p, that is called Maxwell–
Cremona lifting. Let ui = (pi, 1) be the vertical lifting of p to the affine plane2 {z = 1} of R3.
For every face f of the graph G we define a vector af ∈ R3 in the following way: we start with
any face f0 of G and assign it with an arbitrarily vector af0 . Then we proceed iteratively: let
faces f and g share an edge (uiuj) so that the face g lies to the left (we always assume that
we “look” at the surface of the polytope from the outside) and f lies to the right from −−→ujui

and let the vector af already be defined (see Fig.2.2.1).

ag af

uj

ui

fg

Figure 2.2.1: Iterative steps of the Maxwell–Cremona lifting procedure.

Then we define the vector ag so that

ag − af = −ωij(uj × ui). (2.2.2)

Let f0f1 . . . fk = g and f0f
′
1 . . . f

′
l = g be two different paths of adjacent faces leading from

the initial face f0 to some face g. To show the consistency of the vector assignment we need

1 A polyhedral lifting is a polytopal surface as defined in Sect. 2.1. We use the word “polyhedral” instead of
“polytopal” for liftings to comply with a tradition.

2 Throughout the whole thesis we use a shortcut notation {xk = c} for the affine plane {(x1 . . . xd)
T ∈ Rd :

xk = c} ⊂ Rd.
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to check that the value ag does not depend on which path we choose. Thus, we should show
that for every cycle Γ = (f1 . . . fn = f1) of adjacent faces the sum of increments equals zero:

∑

1≤i≤n−1

ωi′i′′(ui′ × ui′′) = 0,

where the edge ui′ui′′ separates faces fi and fi+1. Since we work only with planar graphs, this
is equivalent to

∑

j∈N(i)

ωij(ui × uj) = 0

for every vertex ui, where the sum goes over the neighbours of ui. And this directly follows
from the definition of equilibrium stress.

The nonhorizontal vectors in R3 are in one-to-one correspondence with the nonvertical
affine planes of R3 through the following procedure: to a vector v we put into correspondence
the affine plane {(x1, x2, ⟨x, v⟩)T , x = (x1, x2, 1)

T ∈ {z = 1}}. In other words, we lift every
point x of the standard affine plane {z = 1} to the point with the height hv(x) = ⟨x, v⟩ and
these liftings form an affine plane.

We use this vector–plane correspondence to finalize the Maxwell–Cremona lifting: we lift
every face f of the graph to the plane defined by the vector af , or in other words we assign
every vertex u of a face f with a height hf (u) = ⟨u, f⟩.

To finish the construction we show that for a vertex ui that lies in the intersection of faces
f and g the heights coming from the lifting of the face f and of the face g coincide. Indeed,
this follows directly from the fact that for an edge (uiuj) separating faces f and g

hg(ui)− hf (ui) = ⟨ag − af , ui⟩ = −⟨ωij(uj × ui), ui⟩ = 0.

For a planar embedding p with an equilibrium stress ω the Maxwell–Cremona procedure
defines the lifting uniquely up to the initial arbitrary choice of the vector af0 for some f0, or, in
other words, up to an arbitrary choice of lifting of any of the faces of the graph. This motivates
the following definition:

Definition 2.2.2. For a planar embedding of a graph p = (pi)1≤i≤n we call two liftings h and
h′ equivalent if there exists a vector a ∈ R3 such that h′(pi) = h(pi) + ⟨a, (pi, 1)⟩ for every
1 ≤ i ≤ n.

We call the space of polyhedral liftings of p the set of all the polyhedral liftings of p modulo
the equivalence relation defined above. We denote this space with Lift(p). This space is clearly
a linear space with respect to the pointwise addition and multiplication with scalars.

The Maxwell–Cremona lifting thus defines a map from the linear space of equilibrium
stresses on p to the linear space of polyhedral liftings of p that we denote with

MC : EQ(p) → Lift(p).

Lemma 2.2.1 (Maxwell [23], Whiteley [44]). Maxwell–Cremona lifting is an isomorphism of
linear spaces.

This correspondence between stresses and liftings was first observed by Maxwell [23], the
full proof is due to Whiteley [44], see also Crapo and Whiteley [7]. Since this is a classical
result, we omit the formal proof and proceed directly to the description of the reverse map,
which is an important component in our work.
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Canonical equilibrium stress

The Maxwell–Cremona lifting procedure can be reversed. Let u = (ui)1≤i≤n be a realization
of a graph G in R3 as a polytopal surface and let p = (pi)1≤i≤n be a projection of u to the
plane {z = 0}. Then the embedding p can be assigned with an equilibrium stress that can be
computed as

ωij :=
[uiujukul]

[pipjpk][pipjpl]
, (2.2.3)

where an edge (ij) separates faces spanned by the vertices (ijk) (on the left) and (ijl) (on the
right) and we use the square bracket notation for signed volumes3:

[uiujukul] := det

⎛
⎜⎜⎝

xi xj xk xl

yi yj yk yl
zi zj zk zl
1 1 1 1

⎞
⎟⎟⎠ , where u =

⎛
⎝
x
y
z

⎞
⎠ ,

for 2d vectors [pipjpk] is defined similarly. We remark that the faces do not have to be triangular
and may contain other vertices in addition to ui, uj , uk and ui, uj , ul.

Definition 2.2.3. We call the equilibrium stress defined above the canonical equilibrium stress
on the orthogonal projection p of u.

Computing of the canonical equilibrium stress is the reverse operation to the Maxwell–
Cremona lifting. The expression of Eq. (2.2.3) is a slight reformulation of the form presented
in Hopcroft and Kahn [14, Equation 11]. We note that the canonical equilibrium stress is
defined only when the denominators participating in Eq.(2.2.3) are nonzero, that is the points
pi, pj , pk and pi, pj , pl are not collinear.

Signs of the stress and convexity of the lifting

Let p be a planar realization of a graph G and u be its lifting by an equilibrium stress ω.
Then it is simple to see that the lifting is convex (concave) if and only if the stress is positive
(negative) (see [30, Lemma 13.1.3] for details).

We do not define the notion of positive equilibrium stress for nonplanar embeddings of
graphs to the plane, however the following property can be observed: Let u be a convex
3-polytope and p be its orthogonal projection to the plane {z = 0}. Then the canonical
equilibrium stress on this projection is positive on all the internal edges of p and negative on
the boundary edges of p.

2.2.2 Wheel-decomposition for equilibrium stresses

We proceed with studying the structure of the linear space of equilibrium stresses in further
details. In this subsection we restrict our attention to the graphs that are full triangulations
of the plane — planar 3-connected graphs with every face (including the outerface) being a
triangle. By Steinitz theorem these graphs are the graphs of simplicial 3-polytopes.

As we mentioned, the space of equilibrium stresses on a planar graph is a linear space.
Below we explicitly present one basis of this linear space, which is simply computable and in
addition has a clear geometrical meaning in context of the Maxwell–Cremona isomorphism
between spaces of equilibrium stresses and polyhedral liftings.

The decomposition of an equilibrium stress into a linear combination of “local” equilibrium
stresses will be the key for the next embedding algorithms. The wheel-decomposition theorem
presented in this subsection provides the underlying theory.

3 Throughout the thesis we use the word “volume” as the synonym of the corresponding determinant,
without rescaling with 1

d!
, where d is the dimension of the space. Thus, the volume of the simplex formed by

the vectors of an orthonormal basis equals 1, while the volume of the unite cube equals d!.
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(a) (b)

i
jk

l

Wi

Wk

Wj

Wl

Figure 2.2.2: Part of a triangulation, participating in the wheel-decomposition of ωij (a);
Wheels Wi, Wl, Wj , Wk ((b), c.c.w) with shadowed areas of the triangles participating in the
definition of the large atomic equilibrium stresses for Wl and Wj .

Definition 2.2.4. A graph formed by a vertex vc, called center, connected to every vertex of
a cycle v1, . . . , vn (no other edge is present) is called a wheel (Fig. 2.2.2); we denote it as
W(vc; v1 . . . vn). We refer to the cycle v1 . . . vn as the base cycle of the wheel W.

Let G be a planar triangulation with n > 3 vertices. We denote the wheel that is a subgraph
of the triangulation G with vi ∈ V (G) as a center as Wi. When G is oriented, we orient the
base cycle of the wheel Wi ⊂ G by labeling it in the counterclockwise order around the vertex
ui, see Fig. 2.2.3. Every triangulation can be “covered” with a set of wheels (Wi)vi∈V (G), so
that every edge is covered exactly four times (Fig. 2.2.2).

ui

q1

q2

q3q4

q5

Figure 2.2.3: The subwheel Wi ⊂ G centered at the vertex ui of a triangulation G with the
labeling of its base cycle, Wi = W (ui; q1 . . . q5). The wheel Wi is drawn bold.

Lemma 2.2.2. Let p = (pc, p1, . . . pn) be an embedding of a wheel W (vc; v1 . . . vn) in R2, such
that for every 1 ≤ i ≤ n the points pi, pi+1 and pc are noncollinear (we use the cyclic notation
for the vertices of the base of the wheel). Then the following expression defines an equilibrium
stress:

ωij =

{
−1/[pipi+1pc], j = i+ 1, 1 ≤ i ≤ n,

[pi−1pipi+1]/([pi−1pipc][pipi+1pc]), j = c, 1 ≤ i ≤ n.

The equilibrium stress for the embedding p is unique up to a renormalization.

Proof. This stress coincides with the canonical equilibrium stress given by Eq. (2.2.3) from
the lifting of p with zc = 1 and zi = 0 for 1 ≤ i ≤ n and so it is an equilibrium stress. The
space of the equilibrium stresses is 1-dimensional, since the space of the polyhedral liftings is
1-dimensional.

We note that the equilibrium stress defined in Lemma 2.2.2 depends on the orientation
of the wheel: The reverse of the order on the base cycle (p1 . . . pn) → (pn . . . p1) of the wheel



2.2. EQUILIBRIUM STRESSES 25

W (pc; p1 . . . pn) does not change the geometry of the embedding, but multiplies the equilibrium
stress of Lemma 2.2.2 with −1.

Definition 2.2.5. 1. In the setup of Lemma 2.2.2, we call the equilibrium stress ω the
small atomic equilibrium stress of the wheel W and denote it as ωa(W ).

2. We call the stress ωA(W ) that is obtained by the multiplication of ωa(W ) by the factor∏
1≤j≤n[pjpj+1pc], the large atomic equilibrium stress of W .

We point out that the large atomic stresses are products of deg(vc) − 1 triangle areas
multiplied by 2, and so, all the stresses ωA

ij(W ) are integers if W is realized with integer
coordinates.

Theorem 2.2.1 (Wheel-decomposition theorem for equilibrium stresses). Let G be a triangu-
lation and p = (pi)1≤i≤n be an embedding of G to R2 such that every face of G is realized as
a nondegenerate triangle. Then every equilibrium stress ω on p can be expressed as a linear
combination of the small atomic equilibrium stresses on the wheels (Wi)1≤i≤n

ω =
∑

1≤i≤n

αiω
a(Wi).

The decomposition is not unique: valid coefficients αi are given by the heights (i.e., z-coordinates)
of the corresponding vertices pi in any of the Maxwell–Cremona liftings of p induced by ω, thus
for every v ∈ R2 and c ∈ R the map αi → αi + ⟨v, pi⟩+ c sends a set of valid coefficients to a
set of valid coefficients and any two sets of valid coefficients are connected this way.

Proof. The Maxwell–Cremona lifting procedure defines a linear isomorphism between the linear
spaces of equilibrium stresses and of polyhedral liftings of a planar embedding of a graph.

As shown in Lemma 2.2.2, the atomic equilibrium stress ωa(Wi) corresponds to a lifting
that lifts the vertex pi to the height 1 and leaves all the other vertices untouched. Thus the
stress that lifts the i-th vertex to zi is exactly the linear combination

∑
1≤i≤n ziω

a(Wi).

2.2.3 An efficient reverse of the Maxwell–Cremona lifting

A direct way to reverse the Maxwell–Cremona lifting procedure would be to project the 3d em-
bedding of a graph to a plane and to compute the canonical equilibrium stress using Eq. (2.2.3).
If the 3d embedding has polynomial size integer coordinates, the computed stresses are, gen-
erally speaking, rational, and when scaled to integers may increase by an exponential factor.
The following theorem provides a more careful method by allowing a small perturbation of the
canonical equilibrium stress as given by Eq. (2.2.3) using the wheel-decomposition theorem.

Theorem 2.2.2 (Reverse of the Maxwell–Cremona lifting). Let u = (ui)1≤i≤n be an embedding
of a triangulation G into Z3 such that none of the planes supporting the faces of G is orthogonal
to the plane {z = 0} and no pair of adjacent faces is coplanar. Let p = (pi)1≤i≤n be the
orthogonal projection of u to the plane {z = 0}. Then one can construct an integer equilibrium
stress ω on p such that

|ωij | < 8 · (2max
i≤n

|ui|)2∆G +5

and sign(ωij) = sign(ω̃ij) for the canonical equilibrium stress ω̃ on p as defined by Eq. (2.2.3).
In particular, for an embedding of u as a convex polytope such that the projection p is non-
crossing the constructed stress is positive.

Proof. Let L := maxi,j |ui − uj | be the size of the grid containing the initial embedding. We
start with the canonical equilibrium stress ω̃ as specified by Eq. (2.2.3) for the embedding p.
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Since all the coordinates are integers, and the embedding u has no flat edges, all stresses are
bounded by

1

L4
≤ 1

|[pipjpk]||[plpjpi]|
≤ |ω̃ij | ≤ |[uiujukul]| ≤ L3.

We are left with making these stresses integral while preserving a polynomial bound. The
faces of u are nonvertical, thus the faces of p are nondegenerate and we may apply the wheel-
decomposition theorem to the stress ω̃: we rewrite it as a linear combination of the large atomic
equilibrium stresses of the wheels,

ω̃ =
∑

1≤k≤n

αkω
A(Wk).

We remark that since we use large atomic equilibrium stresses, coefficients αk are not the
z coordinates of uk, but these z coordinates divided by the multiplicative factor from the
definition of the large atomic equilibrium stress. Since all the points pi have integer coordinates,
the large atomic equilibrium stresses are integers as well. Moreover, each of them, as a product
of deg(uk)− 1 triangle areas, is bounded by |ωA

ij(Wk)| ≤ L2(∆G −1).
To make the ω̃ijs integral we round the coefficients αk down. To guarantee that the rounding

does not alter the signs of the stress, we scale the atomic equilibrium stresses (before rounding)
with the factor

C = 4max
i,j,k

|ωA
ij(Wk)|/min

i,j
|ω̃ij |

and define as the new stress:
ω :=

∑

1≤k≤n

⌊Cαk⌋ωA(Wk).

Clearly,

|ωij − Cω̃ij | =

⏐⏐⏐⏐⏐⏐
∑

1≤k≤n

(⌊Cαk⌋ − Cαk)ω
A
ij(Wk)

⏐⏐⏐⏐⏐⏐

<
∑

1≤k≤n

|ωA
ij(Wk)| ≤ 4max

i,j,k
|ωA

ij(Wk)| = Cmin
i,j

|ω̃ij | ≤ C|ω̃ij |,

where the third inequality holds since exactly four wheels participate in the wheel decomposi-
tion of every single edge. Thus, sign(ωij) = sign(Cω̃ij) = sign(ω̃ij). From the last equation it
also follows that none of the stresses ωij are zero.

Therefore, the constructed equilibrium stress ω is integral and of the same sign structure
as the canonical equilibrium stress. We conclude the proof with an upper bound on its size.
Since C < 4L2(∆G −1)L4,

|ωij | ≤

⏐⏐⏐⏐⏐⏐
∑

1≤k≤n

(Cαk ± 1)ωA
ij(Wk)

⏐⏐⏐⏐⏐⏐
≤ C|ω̃ij |+

∑

1≤k≤n

|ωA
ij(Wk)|

≤ Cmax |ω̃ij |+4max |ωA
ij(Wk)| ≤ 4L2∆G +2 · L3 + 4L2∆G −2 ≤ 8L2∆G +5.
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2.3 Braced stresses

This section is devoted to another kind of stress that we heavily use in our constructions.

2.3.1 Definition

Definition 2.3.1. Let u = (ui)1≤i≤n be an embedding of a graph G into Rd. We call an
assignment of reals ω : E(G) → R to the edges of G a braced stress on the embedding u if
there exists an assignment of reals σ : V (G) → R to the vertices of G (to unify notation we
denote σ(ui) by ωii) such that

∑

j∈N(i,G)

ωijuj + ωiiui = 0 ∀1 ≤ i ≤ n.

We call a braced stress positive if it is positive on every edge.

Trivially, the definition of braced stress is equivalent to that
∑

j∈N(i,G)

ωijuj ∥ ui ∀1 ≤ i ≤ n. (2.3.1)

We refer to the equilibrium condition in the above definition as the braced equilibrium condition.
The braced stresses of an embedding form a linear space with respect to the pointwise ad-

dition and multiplication with scalars. We denote the space of braced stresses of an embedding
u with Br(u).

A braced stress is naturally expressed in a matrix form: we define a braced stress matrix as
a symmetric matrix [Mij ]1≤i,j≤n by

Mij = ωij , (ij) ∈ E(G), or i = j,

Mij = 0, otherwise.

In the matrix form the braced equilibrium condition is rewritten as

Mu = 0,

where u = (u1, . . . , un)
T . In the following we freely switch between braced stresses and braced

stress matrices.
The braced equilibrium condition can also be expressed in a slightly different form similar

to the standard equilibrium stress condition:

∑

j∈N(i,G)

ωij(uj − ui) = −

⎛
⎝ ∑

j∈N(i,G)

ωij + ωii

⎞
⎠ui ∀1 ≤ i ≤ n. (2.3.2)

Thus, a braced stress becomes an equilibrium stress as soon as
∑

j∈N(i,G)

ωij + ωii = 0 ∀1 ≤ i ≤ n. (2.3.3)

and every equilibrium stress is always a braced stress.
To the best of our knowledge, braced stresses were introduced by Lovász [21] in connection

with studies of Colin de Verdière matrices of graphs of 3-polytopes. Since we are interested only
in geometrical results of [21] we do not discuss the notion of Colin de Verdière matrices which
has roots in spectral graph theory. We only remark, that by [21, Theorem 7] and the following
discussion, every positive braced stress of a cone-convex embedding (see Definition 2.4.1) of a
planar 3-connected graph G written as a braced stress matrix is a Colin de Verdière matrix of
G, whose entries are multiplied with -1.



28 CHAPTER 2. EFFICIENT DUALITY TRANSFORMS IN R3

2.3.2 Canonical braced stresses

Before we proceed with properties of the braced stresses, we provide an additional motivation
for why the notion of braced stress is natural: To every 3d embedding of a graph G as a
polytopal surface one can naturally assign a braced stress defined only by the geometry of the
embedding. We call this stress the canonical braced stress. For a convex polytope containing
the origin in its interior the canonical braced stress is positive. The construction is due to
Lovász [21], we repeat the proof due to its simplicity.

Lemma 2.3.1 ([21], Sect.5). Let P = (ui)1≤i≤n be an embedding of a planar 3-connected
graph G into R3 as a polytopal surface (the vertices of each face are coplanar) such that none
of the planes supporting the faces of P passes through the origin. Let (φf )f∈F (G) be the polar
vectors to the faces of P: the normal vectors normalized so that ⟨φf , x⟩ = 1 for every point x
of the face f .

Then there exists a unique braced stress bω for (ui) such that

φg − φf = bωij(uj × ui) (2.3.4)

for every pair of dual edges (ui, uj) ∈ E(G) and (φf , φg) ∈ E(G∗).

Definition 2.3.2. We call the braced stress bω defined above the canonical braced stress of an
embedding.

We remark that the definition of the canonical braced stress is local: to define the stress
on the edge (uiuj) one uses only the positions of its endpoints ui and uj and the polar vectors
to its two incident faces.

Proof of Lemma 2.3.1. First, we check that the left and right hand sides of Eq. (2.3.4) are
parallel vectors and ui × uj ̸= 0 and thus the equation correctly defines bωij . Indeed, for
k ∈ {i, j}

⟨φf − φg, uk⟩ = ⟨φf , uk⟩ − ⟨φg, uk⟩ = 1− 1 = 0

by the chosen normalization of normals, and

⟨ui × uj , uk⟩ = 0

by the definition of cross product. The vectors ui and uj span the plane since, if they were
parallel, planes supporting both faces f and g would pass through the origin. So, both sides of
Eq. (2.3.4) are orthogonal to the plane spanned by the vectors ui and uj and thus are parallel.
Since the vectors ui and uj are not parallel, ui × uj ̸= 0. Thus, Eq. (2.3.4) uniquely defines
bωij for (i, j) ∈ E(G).

To show that bω is a braced stress, it remains to check that
∑

j∈N(i,G) bωijuj ∥ ui for every
1 ≤ i ≤ n. This is however straightforward:

⎛
⎝ ∑

j∈N(i,G)

bωijuj

⎞
⎠× ui =

∑

j∈N(i,G)

bωij(uj × ui) =
∑

1≤k≤deg(vi)

φfk − φfk+1
= 0,

where (φ1, φ2, . . . , φdeg(ui)) is the cyclic sequence of faces incident to ui.

2.3.3 Braced stresses and equilibrium stresses: flat embeddings

Braced stresses are a natural generalization of equilibrium stresses for nonflat embeddings:
Trivially, from Eq. (2.3.2), an equilibrium stress is always a braced stress. Moreover, for flat
embeddings the reverse also holds:
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Lemma 2.3.2. 1. Let u = (ui)1≤i≤n be an embedding of a graph G into R3. Then every
equilibrium stress on u is a braced stress and the additional weights ωii can be computed
with ωii = −∑j∈N(i,G) ωij ;

2. Let u = (ui)1≤i≤n be a flat embedding of G that lies in a plane α not containing the
origin. Then every braced stress on u is an equilibrium stress.

Proof. 1. That is trivial considering the braced equilibrium condition in the form of Eq. (2.3.2).
2. Consider the braced equilibrium condition in form of Eq. (2.3.2). If the left and right

hand sides are nonzero, then the left hand side is parallel to the plane α while the right hand
side is not. So both must equal zero and thus

∑

j∈N(i,G)

ωij(uj − ui) = 0.

2.3.4 Braced stresses and stresses of braced graphs

An additional geometrical meaning to the notion of braced stress gives the fact that the braced
stresses are in 1-to-1 correspondence with equilibrium stresses on braced graphs:

bωij = ωij

bωii = −∑j∈N(G+,i) ωij

ωi0 = −∑1≤j≤n bωij

u0 = (0, 0, 0)T

Figure 2.3.1: The graph G+, with its subgraph G depicted bold. The edges of G+ that do
not belong to G, are dotted. We denote with ω an equilibrium stress on G∗ and with bω the
corresponding braced stress on G.

Lemma 2.3.3. Let u = (ui)1≤i≤n be an embedding of a graph G into R3. Let G+ be the graph
G with one additional vertex u0 connected with every vertex in G, and let this additional vertex
be embedded at the origin: u0 = (0, 0, 0)T (see Fig. 2.3.1) Then the following two statements
hold:

1. Let ω be an equilibrium stress for the embedding u+ = (ui)0≤i≤n of G+. Then the
restriction of ω to G is a braced stress on the embedding u of G, and the additional
weights can be computed with

ωii := −
∑

j∈N(i,G+)

ωij , ∀1 ≤ i ≤ n;

2. Let ω be a braced stress on the embedding u of G. Then the extension of ω to the
embedding u+ of G+ with

ωi0 := −
∑

j∈N(i,G)∪{i}
ωij ∀1 ≤ i ≤ n

is an equilibrium stress for the embedding u+ of G+.
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Proof. 1. We check the braced equilibrium condition in form of Eq. (2.3.2):

∑

j∈N(i,G)

ωij(uj − ui) +

⎛
⎝ ∑

j∈N(i,G)

ωij + ωii

⎞
⎠ui

=
∑

j∈N(i,G+)

ωij(uj − ui)− ωi0(u0 − ui) + (−ωi0)ui = 0.

The last transition holds since ω is a braced stress on G and u0 = 0.
2. We first check that the equilibrium condition holds at the vertices of G: for every

1 ≤ i ≤ n

∑

j∈N(i,G+)

ωij(uj − ui) =
∑

j∈N(i,G)

ωij(uj − ui) + ωi0(u0 − ui)

= −

⎛
⎝ ∑

j∈N(i,G)

ωij + ωii

⎞
⎠ui +

⎛
⎝−

∑

j∈N(i,G)∪{i}
ωij

⎞
⎠ (−ui) = 0.

The second transition used the braced equilibrium condition in form of Eq. (2.3.2), the defini-
tion of ωi0 and that u0 = 0.

Next we check that it also holds at the additional vertex u0 of G+. To simplify the notation
we use the braced stress matrix M , thus ωi0 := −∑1≤i≤n Mij and

∑

i∈N(0,G+)

ω0i(ui − u0) =
∑

1≤i≤n

ω0iui = −
∑

1≤i≤n

⎛
⎝ ∑

1≤j≤n

Mij

⎞
⎠ui = −

∑

1≤j≤n

⎛
⎝ ∑

1≤i≤n

Mijui

⎞
⎠ = 0,

where the last equation holds by the definition of braced stress in terms of braced stress
matrix.

2.3.5 Scalability of braced stresses

Another useful property of braced stresses is that they can be arbitrarily rescaled together with
the embedding. This result was noted by Lovász [21]; we include the proof for completeness.
The graphs in this subsection are not necessarily planar nor 3-connected.

Lemma 2.3.4. Let u = (ui)1≤i≤n and r = (ri)1≤i≤n be two embeddings of a graph G into R3

such that r is a rescaling of u:

ri = λiui, λi ∈ R \ {0}, 1 ≤ i ≤ n.

Then the map pru→r : RE(G) → RE(G) defined as

(pru→r ω)ij =
1

λiλj
ωij , (i, j) ∈ E(G)

is a linear isomorphism between the linear spaces of braced stresses on u and r with pru→r prr→u =
Id .

Proof. For simplicity we work with braced stress matrices: we extend the map to the whole
matrix using the same formula:

(pru→r M)ij =
1

λiλj
Mij , 1 ≤ i, j ≤ n
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We first show that for every braced stress matrix M of u the image pru→r(M) is a braced
stress matrix for r. Indeed,

n∑

j=1

1

λiλj
Mijrj =

1

λi

n∑

j=1

Mij
1

λj
rj =

1

λi

n∑

j=1

Mijuj = 0, 1 ≤ i ≤ n.

Next, trivially, pru→r prr→u = Id:

(prr→u pru→r M)ij = λiλj(pru→r M)ij = λiλj
1

λiλj
Mij = Mij .

Finally, in the matrix form

pru→r M =
(
1/λ1, . . . , 1/λn

)
M

⎛
⎝
1/λ1

· · ·
1/λn

⎞
⎠

and thus pru→r is trivially linear.

2.3.6 Projective equivalence with equilibrium stresses

We already mentioned that the spaces of braced and equilibrium stresses coincide for flat
embeddings of a graph. The scalability property now allows us to describe an isomorphism
between the linear space of braced stresses on any embedding and the linear space of equilibrium
stresses on any of the flat rescalings of this embedding. Thus, we can use for braced stresses
all the machinery available for equilibrium stresses.

We thus show now that the linear spaces of braced stresses and of equilibrium stresses
are isomorphic by presenting a projective correspondence between these two spaces. This
correspondence is also of independent interest as it highlights the projective nature of the
notion of equilibrium stress.

Lemma 2.3.5. Let u = (ui)1≤i≤n be an embedding of a graph G in R3 such that none of its
vertices is at the origin. Let α be any plane that does not contain the origin and is not parallel
to any of the vectors ui. Let p = (pi)1≤i≤n be the central projection of u to α:

pi := λiui, λi ∈ R, pi ∈ α.

Then the map prα : RE(G) → RE(G) defined as

(prα ω)ij =
1

λi

1

λj
ωij , (ij) ∈ E(G)

is a linear isomorphism between the linear space of braced stresses on u and the linear space
of equilibrium stresses on p.

Proof. Due to Lemma 2.3.4, the map pru→p : RE(G) → RE(G) defined as pru→p(ω)ij =
1

λiλj
ωij

is a linear isomorphism between the spaces of braced stresses of u and p. To finish the proof
we remark that p is a flat embedding and thus by Lemma 2.3.2 the spaces of braced stresses
and of equilibrium stresses on p coincide.

We remark that the previous lemma gives a fresh perspective on how the space of equilib-
rium stresses behaves under projective transformations of the plane. We discuss it in Sect. 2.3.8.
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2.3.7 Free lunch: wheel-decomposition for braced stresses

We use the correspondence between equilibrium stresses and braced stresses to define the con-
cept of atomic braced stress and to formulate and prove the wheel-decomposition theorem for
braced stresses, which is the braced analogue of the wheel-decomposition theorem for equilib-
rium stresses, Theorem 2.2.1.

Definition 2.3.3. Let W = W (vc; v1, . . . vn) be a wheel with center vc. Let u = (uc;u1, . . . un)
be an embedding of W to R3 such that for every 1 ≤ i ≤ n the points ui, ui+1 and uc are
noncoplanar with the origin (as usual, we use the cyclic notation for the vertices of the base of
the wheel). Then we call the assignment of reals to the edges of W

bωa
ij :=

{
− 1

det(uiui+1uc)
, j = i+ 1, 1 ≤ i ≤ n,

det(ui−1uiui+1)
det(ui−1uiuc) det(uiui+1uc)

, j = c, 1 ≤ i ≤ n
(2.3.5)

the atomic braced stress on u.
We call the rescaling of bωa with the factor

∏
1≤i≤n det(uiui+1uc) the large atomic braced

stress and denote it with

bωA :=

⎛
⎝ ∏

1≤i≤n

det(uiui+1uc)

⎞
⎠ · bωa.

Note that for a wheel with integer vertex coordinates, ui ∈ Z3, the large atomic braced
stress bωA is integer.

Lemma 2.3.6. In the setup of Definition 2.3.3,

1. The atomic braced stress on u is a braced stress on u.

2. A braced stress on u is unique up to scaling.

3. Let α = {z = 1} be an affine plane and let none of ui be parallel to α. Let p be the
central projection of u to this plane, pi = λiui ∈ α, λi ∈ R. Then, in the notation of
Lemma 2.3.5,

bωa = λc pr
−1
α (ωa),

bωA =
1

λn
c (
∏

1≤i≤n λi)2
pr−1

α (ωA),

where ωa and ωA are the small and large atomic equilibrium stresses on p correspondingly.

We note that the requirement α = {z = 1} in the last statement of the lemma is excessive:
the rotation of coordinates in R3 allows α to be any plane with distance 1 to the origin and
after an appropriate rescaling α can be any plane not passing through the origin. We state the
lemma for α = {z = 1} to avoid complications with defining coordinates (and orientation) on
α that we need to compute the atomic equilibrium stresses of flat realizations of wheels.

Proof of Lemma 2.3.6. Pick any affine plane β that does not contain the origin and such that
none of ui is parallel to β. Let p be the central projection of u to this plane, pi = λiui ∈ β.
Due to Lemma 2.3.5 the braced stresses of u are in 1-to-1 correspondence with the equilibrium
stresses of p, which proves the uniqueness (part 2 of the lemma).

To finish the proof we check the expressions in part 3. Due to Lemma 2.3.5, pr−1
α (ωa) is

a braced stress, which also proves part 1 of the lemma. We check only the equation for small
atomic stresses. The case of large atomic stresses can be checked similarly. Since none of the
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triples of points ui, ui+1, uc for 1 ≤ i ≤ n is coplanar with the origin, none of the triples of
points pi, pi+1, pc is collinear. Thus we can construct the small atomic stress for p:

ωa
ij :=

{
− 1

[pipi+1pc]
, j = i+ 1, 1 ≤ i ≤ n,

[pi−1pipi+1]
[pi−1pipc][pipi+1pc]

, j = c, 1 ≤ i ≤ n.

By Lemma 2.3.5, the image of ωa under the reverse projection bω := pr−1
α (ωa) of p to u is a

braced stress for u with

bωij := λiλjω
a
ij .

We additionally rescale it with a factor λc to

bωa := λcbω

and remark that
[pipkpl]

λiλkλl
= det(uiukul).

A straightforward computation finishes the proof.

The wheel-decomposition theorem for braced stresses is now in context of Lemma 2.3.5 a
straightforward consequence of the wheel-decomposition theorem for equilibrium stresses as
given in Theorem 2.2.1:

Theorem 2.3.1 (Wheel-decomposition theorem for braced stresses). Let u = (ui)1≤i≤n be
an embedding of a triangulation G with n > 3 vertices in R3 such that none of the planes
supporting the faces of u passes through the origin. Let bω be a braced stress for u. Then there
exists a set of real coefficients (αi)1≤i≤n such that

bω =
∑

1≤i≤n

αibω
a(Wi),

where bωa(Wi) is the atomic braced stress for the wheel Wi ⊂ G centered at the vertex ui. The
set of coefficients is unique up to the “parallel translation” transformation

αi → αi + ⟨v, ui⟩ ∀i

for any vector v in R3.

Proof. Let α be any affine plane at the distance 1 from the origin that is not parallel to any
of the vectors ui. We rotate coordinates in R3 so that α = {z = 1}, what does not affect the
statement of the theorem. Let p = (pi)1≤i≤n be the central projection of u to this plane and
ω = prα(bω) be the central projection of bω (see Lemma 2.3.5):

pi = λiui : pi ∈ α, 1 ≤ i ≤ n,

ωij =
1

λiλj
bωij , (i, j) ∈ E(G).

Due to Lemma 2.3.5, ω is an equilibrium stress for p. Since the faces of u are not coplanar
with the origin, the faces of p are nondegenerate triangles. Thus we can apply the wheel-
decomposition theorem for equilibrium stresses (Theorem 2.2.1) to get

ω =
∑

1≤k≤n

αkω
a(Wk), (2.3.6)
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where ωa(Wk) is the small atomic equilibrium stress for the wheel centered at the vertex pk.
We use the second part of Lemma 2.3.5 and project both sides of Eq. (2.3.6) back to u:

pr−1
α ω =

∑

1≤k≤n

αk pr
−1
α ωa(Wk).

By construction, the left-hand side equals bω. By the third part of Lemma 2.3.6, the summands
on the right-hand side equal the rescaled atomic braced stresses of the wheels,

pr−1
α ωa(Wk) =

1

λk
bωa(Wk), 1 ≤ k ≤ n.

Thus,

bω =
∑

1≤k≤n

pr−1
α (αk)bω

a(Wk),

where we denote pr−1
α (αk) =

αk

λk
.

To finish the proof we analyze the uniqueness of the coefficients. The coefficients in the
planar decomposition, Eq. (2.3.6), are the heights of the corresponding vertices in any of the
Maxwell–Cremona liftings of p with help of ω. They are unique up to the transformation
αk → α′

k = αk + ⟨v, pk⟩, where v is any vector in R3. The corresponding transformation for
the coefficients of the wheel-decomposition of braced stresses is:

pr−1
α (αk) → pr−1

α (α′
k) =

α′
k

λk
=
αk + ⟨v, pk⟩

λk

=pr−1
α (αk) + ⟨v, pk

λk
⟩ = pr−1

α (αk) + ⟨v, uk⟩.

2.3.8 Free lunch: projective properties of equilibrium stresses

In this subsection we want to observe one trivial consequence of the connection between braced
and equilibrium stresses developed above. We present a very geometric view on how equilibrium
stresses on a planar embedding of a graph behave under projective transformations of the plane.
This is in no way a new result, but the point of view might be new.

Pure projective transformation

α

β

Figure 2.3.2: Projective transformation of a plane.
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One standard way to geometrically view a projective transformation is depicted on Fig. 2.3.2:
let α and β be two affine planes in R3, then the central projection from α to β via lines through
the origin defines a projective transformation of the plane.

Lemmas 2.3.3 and 2.3.4 allow to track equilibrium stresses during the central projection:
Let ω be an equilibrium stress on the embedding of a graph G to α. We denote the central
projection from α to β with prα→β and the corresponding scaling coefficient of each point
u ∈ α with c(u):

prα→β(u) = c(u)u ∈ β.

Then by combining Lemma 2.3.4 and Lemma 2.3.2

prα→β(ω)ij := c(ui)c(uj)ωij

is an equilibrium stress on the projective image — the embedding prα→β(u) of G to β.
The disadvantage of this interpretation of projective transformation is that the points of α

that are parallel to β are not properly projected and form a line at infinity that is not properly
observable in β. The braced stresses provide a fix to this problem: unlike the equilibrium
stresses they are also defined for embeddings of graphs to the sphere, thus one may use the
natural model of projective plane as a sphere with glued opposite points, where the line at
infinity is just another large circle on the sphere. We discuss this fix below.

Projective transformation seen through the sphere

Before we proceed, we introduce a notation: let α be an affine plane in R3. We denote the
central projection from α to the unit sphere with πα:

πα(u) =
u

|u| .

The reverse of πα is then directly defined only on the half sphere bounded by the large circle
parallel to α. We define it on the other side of the sphere symmetrically π−1

α (x) = π−1
α (−x)

and thus it is defined (and is 2-to-1) on the whole sphere except the large circle parallel to α.
Any projective transformation of the plane f : R2 → R2 can now be geometrically viewed

in the following way:

1. Embed the initial plane to R3 as some affine plane α;

2. Project points of α to the unit sphere via lines through the origin:

u → πα(u);

3. Pick some other affine plane β ∈ R3 and project the points of the sphere to β:

s → π−1
β (s).

Thus, for every f one finds α and β such that f = π−1
β ◦ πα.

Fig. 2.3.3 illustrates the process, first (1) the graph is drawn on a plane, then we project it
to the sphere and it is stored on the sphere (2), and in the end (3) it is projected to the other
plane.

The notion of braced stress makes it possible to assign stresses directly to the embedding
of a graph to the sphere. This allows us to avoid difficulties, connected with the infinite line
of the projective plane: from the point of view of the sphere the infinite line is a large circle
and is indistinguishable from any other line.

By this we can look at the behavior of stresses during the projective transformation of
the plane once again: Let ω be an equilibrium stress on an embedding of a graph G onto a
plane α. Then, pr−1

α (ω) is a braced stress on an embedding of G onto the sphere. And finally,
prβ pr

−1
α (ω) is an equilibrium stress on the embedding of G to β, projective image of the initial

embedding.
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Figure 2.3.3: Projective transformation with one intermediate step, embedding to the sphere.

2.3.9 Canonical braced stresses as Hessians of volume

A different approach to the construction of canonical braced stresses was developed by Iz-
mestiev [17] in his work on the Colin de Verdière matrices of skeletons of d-polytopes.

Let (vi)1≤i≤n be a set of vectors in R3. The polytope with normal vectors (vi) and support
parameters x = (xi)1≤i≤n is the intersection of half-spaces defined by ⟨p, vi⟩ ≤ xi,

P (x) = ∩1≤i≤n{p ∈ R3 : ⟨p, vi⟩ ≤ xi}.

Let P be a convex polytope with a set of normals to faces (vf )f∈F (P ) and faces lying in
planes {p ∈ R3 : ⟨p, vf ⟩ = xf}f∈F (P ). Then with respect to the set of vectors (vf ) we can write
P = P (x). By varying the support parameters xf we change the polytope and its volume.
The following holds:

Lemma 2.3.7 (Lemma 2.3, [17]). Let P be a convex polytope and let P∗ = (vf )f∈F (P ) be its
polar dual, thus P = P (1). Then for the canonical braced stress ωc on P ∗

ωc
fg =

∂Vol(P (x))

∂xf∂xg

⏐⏐⏐⏐
x=1

f ∼ g ∈ F (P ).

Moreover the whole Hessian matrix

Mfg :=
∂Vol(P (x))

∂xf∂xg

⏐⏐⏐⏐
x=1

∀f, g ∈ F (P )

is a braced stress matrix for P∗, and a Colin de Verdière matrix for the skeleton of P∗.

We do not repeat the whole proof, the part about braced stresses is a straightforward
geometrical check that (the equation is informal and we ignore signs)

φf − φg

ui × uj
=

|φf − φg|
|ui||uj | sin(ui, uj)

=
∂Vol(P (x))

∂xf∂xg

⏐⏐⏐⏐
x=1

.

We only remark, that the representation as a Hessian matrix makes the braced equilibrium
condition trivial: the well known Minkowski theorem asserts that

∑

g∈F (G)

Vol2(g)
φg

|φg|
= 0.
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By differentiating this equality with respect to xf and noticing that Vol2(f) =
∂ Vol(P (x))

∂xf
|φf |

we deduce

∑

g ̸=f

∂Vol(P (x))

∂xf∂xg
φg = −∂Vol(P (x))

(∂xf )2
φf ,

what is exactly the braced equilibrium condition.

2.3.10 Orthogonal projection of the canonical braced stresses

The notion of the canonical braced stress is not translationally invariant: when one moves the
origin, the canonical braced stress changes. In this section we study what happens when we
send the origin to infinity.

Specifically, let P be a polytopal surface in R3. In this section we do not require P to be
convex, nor we require it to be non-self-intersecting; we only need that the canonical braced
stress and the canonical dual braced stress (see Definition 2.3.4 below) are defined, what is
guaranteed as soon as all the faces of P are flat and not coplanar with the origin.

Let us consider the canonical braced stress ω(t) of the parallelly translated polytopal surface
P(t) = P + tv, where v ∈ R3 and t ∈ R. And then let t → ∞. The intuition is that the
“additional” stresses ωii(t) from the definition of the braced stress, Definition 2.3.1, on the
“additional” edges from the origin will now cancel with the v components of the forces on the
“real” edges of P; thus the braced stress becomes an equilibrium stress on the projection of
P to the plane orthogonal to v. This is indeed the case and moreover this equilibrium stress
coincides with the canonical equilibrium stress of the orthogonal projection Pv of P to this
plane, Theorem 2.3.2.

We begin our exposition with an even stronger version of the limit statement above: In
fact, the limit of braced stresses ω(t) on P(t) is an equilibrium stress on Pv for any converging
sequence of braced stresses ω(t) and not only for the canonical ones:

Lemma 2.3.8. Let P be a polytopal surface in R3, let P(t) = P + tv with t ∈ R and a fixed
vector v ∈ R3 be a family of its parallel translations. Let ω(tk) be a braced stress on P(tk)
for some sequence of times tk −−−−→

k→∞
∞. Suppose this sequence of stresses converge: for every

edge (i, j) of P there exists the finite limit limk→∞ ωij(tk) which we denote with ωv
ij. Then this

limit is an equilibrium stress on the orthogonal projection Pv of P to the plane orthogonal to
v.

0

ui(t)
p′i(t)

pi(t)

α(t)

v

Figure 2.3.4: The limiting braced stress is an equilibrium stress.
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Proof. To clarify the notation we shortcut tk −−−−→
k→∞

∞ with t → ∞, what does not lead to any

confusion in our setup.

Let α be any affine plane orthogonal to v. We fix the relative position of α and P and
when P(t) goes to infinity, we move α simultaneously, α(t) := α + tv; Fig. 2.3.4. We denote
the vertices of P(t) with ui(t). Let p′i(t) be the central projection of the vertex ui(t) to the
plane α(t),

p′i(t) = λi(t)ui(t) ∈ α(t), λi(t) ∈ R.

For every t the stress ω(t) is a braced stress on ui(t). Thus, by Lemma 2.3.5, the central
projection prα(t) ω(t) of this stress to the plane α(t), defined as

(prα(t) ω(t))ij =
1

λi(t)

1

λj(t)
ωij(t)

is an equilibrium stress on the embedding p′(t) = (p′i(t)). We denote this projected stress with
ωp(t) := prα(t) ω(t). Since the relative position of P(t) and α(t) is fixed, λi(t) → 1. Thus, the
limit of ωp(t) exists and it equals the limit ωv of the braced stresses ω(t):

lim
t→∞

ωp
ij(t) = lim

t→∞
(prα(t) ω(t))ij = lim

t→∞
1

λi(t)

1

λj(t)
ωij(t) = lim

t→∞
ωij(t) = ωv

ij .

0

v

ui
p′i(t)

pi

α

Figure 2.3.5: After the change of coordinates.

We show next that the constructed limit stress ωv is an equilibrium stress on Pv. Let pi(t)
be the orthogonal projection of ui(t) to the plane α(t). Trivially, p′i(t) → pi(t) with t → ∞.
Let us now change the system of coordinates (use the reverse parallel translation x → x− tv)
so that α(t) = α and P(t) = P are fixed. Thus the orthogonal projection pi(t) = pi of P to α
is fixed as well, and it is the projection Pv of the polytopal surface P to the plane orthogonal
to the vector v from the statement of the theorem, thus (pi) = Pv. And we have a family of
embeddings p′(t) = (p′i(t)) that converge to Pv = (pi) (see Fig.2.3.5),

p′(t) = (p′i(t)) → Pv = (pi).

The notion of equilibrium stress is invariant under translations, thus after the change of
coordinates the stress ωp(t) is still an equilibrium stress on p′(t). Thus, since p′(t) → Pv, the
limit limt→∞ ωp(t) is an equilibrium stress on Pv. And as we established before, this limit
exactly equals ωv. Thus, ωv is an equilibrium stress on Pv.

As we established the general limit result we move on to the behavior of the canonical
braced stresses:
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Theorem 2.3.2. Let P = (ui) be a polytopal surface in R3 and let P(t) = P+tv be a family of
parallel translations of P, where t ∈ R and v ∈ R3 is a fixed unit vector not parallel to any face
of P. Let ωc(t) be the canonical braced stress on P(t) and let Pv be the orthogonal projection
of P to the plane orthogonal to v. Then

(1) For every edge (i, j) there exists the finite limit lim
t→∞

t2ωc
ij(t), which we denote with ωv

ij,

and this limit equals

ωv
ij := lim

t→∞
t2ωc

ij(t) =
1

⟨v, φf ⟩⟨v, φg⟩
ωc
ij , (2.3.7)

where φf and φg are the polar vectors to the faces f and g of P separated by the edge (i, j),
and ωc = ωc(0) is the canonical braced stress on the initial polytopal surface P;

(2) This limit is a nonzero equilibrium stress on the projection Pv of P;
(3) And moreover, this equilibrium stress coincides with the canonical equilibrium stress on

the projection Pv of P.

Before proving Theorem 2.3.2 we explicitly compute ωc(t) in terms of ωc, P and t. To facil-
itate this computation we use the reciprocity of the canonical braced stresses of the polytopal
surface and of its polar dual as noticed by Lovász [21]:

Definition 2.3.4. Let P = (ui) be a polytopal surface in R3 such that none of its faces is
coplanar with the origin, let P∗ = (φf ) be its polar dual. We call the canonical braced stress
ω∗c of the polar dual P∗ the canonical dual braced stress of P. Thus,

ω∗c
fg =

uj − ui

φf × φg
(2.3.8)

for every pair of dual edges (i, j) of P and (f, g) of P∗.

We remark that the polytopal surfaces P and P∗ generally may be nonconvex and self-
intersecting. Though, the equation Eq. (2.3.8) defines ω∗c as soon as the points of every face
are coplanar, which always holds. The following was noticed by Lovász in [21, part 7]:

Lemma 2.3.9. Let P be a polytopal surface in R3, let ωc be its canonical braced stress and let
ω∗c be its canonical dual braced stress. Then

ω∗c
fg =

1

ωc
ij

,

for every pair of dual edges (i, j) of P and (f, g) of P∗.

For the purpose of completeness and due to its simplicity we repeat the original proof.

Proof. We build the cross product of both sides of the equation φg − φf = ωc
ij(uj × ui) with

φg to get (φg − φf )× φg = −φf × φg on the left hand side and

ωc
ij(uj × ui)× φg = ωc

ij(⟨uj , φg⟩ui − ⟨ui, φg⟩uj) = ωc
ij(ui − uj)

on the right hand side. Thus

(uj − ui) =
1

ωc
ij

(φf × φg),

what by the definition of the canonical dual braced stress ω∗c finishes the proof.

We use the reciprocity established above to explicitly compute ωc(t). For all but finitely
many t the shifted polytopal surface P(t) is in general position: none of the planes of its faces
contains the origin, and thus the polar dual, the canonical braced stress and the canonical dual
braced stress are well-defined. Since we are interested in the behaviour of the system with
t → ∞, we are free to consider all but these finitely many values of t.
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Lemma 2.3.10. In the setup of Theorem 2.3.2

ωc
ij(t) =

1

(1 + t⟨v, φf ⟩)(1 + t⟨v, φg⟩)
ωc
ij ,

where φf and φg are the polar vectors to the faces f and g incident to the edge (i, j) and
ωc = ωc(0) is the canonical braced stress on the initial polytopal surface P.

Proof. As usual the vertices of P(t) are denoted with ui(t). By the definition of the canonical
braced and dual braced stresses,

ωc
ij(t) =

φf (t)− φg(t)

ui(t)× uj(t)
, ω∗c

fg(t) =
uj(t)− ui(t)

φf (t)× φg(t)
,

where ui(t) are the vertices of P(t) and φf (t) are the polar vectors to the faces of P(t).
First, we notice that by construction ui(t) = ui + tv. Second, we recompute φf (t). Since

P(t) is a translation of P, the faces of P(t) are parallel to the corresponding faces of P and
thus the polar vectors to the corresponding faces are collinear. So,

φf (t) = λf (t)φf , λf (t) ∈ R

for some real scalar λf (t) ∈ R. To determine these scalars we use the definition of the polar:

⟨φf , u⟩ = ⟨φf (t), u(t)⟩ = 1

for any vertex u that belongs to the face f . Thus,

1 = ⟨φf (t), u(t)⟩ = λf (t)⟨φf , u+ tv⟩ = λf (t)(1 + t⟨v, φf ⟩)

and we derive

λf (t) =
1

1 + t⟨v, φf ⟩
, φf (t) =

1

1 + t⟨v, φf ⟩
φf .

Thus, for the canonical dual braced stress of the shifted polytopal surface:

ω∗c
fg(t) =

uj(t)− ui(t)

φf (t)× φg(t)
= (1 + t⟨v, φf ⟩)(1 + t⟨v, φg⟩)

uj − ui

φf × φg

= (1 + t⟨v, φf ⟩)(1 + t⟨v, φg⟩)ω∗c
fg,

and for the canonical braced stress:

ωc
ij(t) =

1

ω∗c
fg(t)

=
1

(1 + t⟨v, φf ⟩)(1 + t⟨v, φg⟩)ω∗c
fg

=
1

(1 + t⟨v, φf ⟩)(1 + t⟨v, φg⟩)
ωc
ij .

Now we are ready to move on to the proof of the first two parts of Theorem 2.3.2.

Proof of Theorem 2.3.2, parts (1) and (2). (1) We use the translation formula of Lemma 2.3.10:

lim
t→∞

t2ωij(t) = lim
t→∞

1

(1/t+ ⟨v, φf ⟩)(1/t+ ⟨v, φg⟩)
ωij =

1

⟨v, φf ⟩⟨v, φg⟩
ωij .

We remind that the direction v is chosen so that it is not parallel to any of the faces of P, thus
⟨v, φf ⟩ ≠ 0 and the denominator above is nonzero.

(2) To show that ωv is an equilibrium stress on Pv we use Lemma 2.3.8 for the family of
braced stresses t2ωc(t), which converge to ωv due to part (1) of the theorem.
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Before we move on to part (3) of Theorem 2.3.2 we revisit the notion of the canonical
equilibrium stress on an orthogonal projection. We introduced the canonical equilibrium stress
in Sect. 2.2.1 with Eq. (2.2.3), as an equilibrium stress on the orthogonal projection of a
polytopal surface to the plane {z = 0}. Below we briefly discuss the notation for projecting to
any plane.

Let P = (ui)1≤i≤n be a polytopal surface with a graph G. Let α be a plane in R3 with fixed
orientation (with a chosen normal vector v), and Pv = (uv

i )1≤i≤n be the orthogonal projection
of P to α. Then, the canonical equilibrium stress is the assignment of reals ωα

ij : E(G) → R to
the edges of G

ωα
ij :=

[uiujukul]

JuiujukKαJuiujulKα
, (2.3.9)

where as always we use the square bracket notation for the oriented volume, and the double
square bracket notation is for the oriented area of the projection:

JuiujukKα := [uv
i u

v
ju

v
k],

where the coordinates on α to compute the area are chosen in accordance with the orientation
of α and the coordinates in R3: the ordered set of vectors {(1, 0)α, (0, 1)α, v} is a positively
oriented orthonormal basis in R3.

For part (3) of Theorem 2.3.2 we use the following geometrical observation:

Lemma 2.3.11. Let the vectors ui, uj , uk, ul define four affinely independent points in R3.
Let φf and φg be the polar vectors to the planes f and g spanned by (uiujuk) and (uiujul)
correspondingly. We also fix a projection plane α with a unit normal vector v. Then,

1

⟨v, φf ⟩⟨v, φg⟩
φf × φg

uj − ui
=

[uiujukul]

JuiujukKαJuiujulKα
. (2.3.10)

Proof. We assume that the faces (uiujuk) and (uiujul) are oriented by this order of vertices.
Since the left hand side of Eq. (2.3.10) is invariant under rescalings of φf and φg, we replace
φf and φg with positively oriented unit normal vectors to f and g correspondingly.

We show that both sides of Eq. (2.3.10) are equal to

sin(φf , φg)

cos(v, φf ) cos(v, φg)|uj − ui|
,

where sin(v1, v2) and cos(v1, v2) are the sine and cosine of the angle between the two vectors
and the angle ∠(φf , φg) is counted counterclockwise around the edge −−→ujui.

On the left hand side we use that ⟨v, φf ⟩ = |v||φf | cos(v, φf ) and that

φf × φg

uj − ui
=

|φf ||φg| sin(φf , φg)

|uj − ui|
.

On the right hand side we use geometrical relations between volumes, areas and distances:

[uiujukul] = dist(ul, (uiujuk))Area(uiujuk)

=
(
dist(ul, (uiuj)) sin(φf , φg)

)
Area(uiujuk)

=

(
Area(uiujul)

|uj − ui|

)
sin(φf , φg)Area(uiujuk),

where dist(ul, (uiujuk)) is the signed distance between ul and the plane spanned by (uiujuk);
the area Area(uiujuk) is positive, since the orientation on the plane (uiujuk) is set by exactly
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this order of the points; and dist(ul, (uiuj)) is the nonsigned, positive distance between ul and
the line through ui and uj . Thus,

[uiujukul] =
Area(uiujuk)Area(uiujul) sin(φf , φg)

|uj − ui|
.

To finalize the proof we use that

Area(uiujuk) =
JuiujukKα
cos(φf , v)

,

Area(uiujul) =
JuiujulKα
cos(φg, v)

.

Proof of Theorem 2.3.2, part (3). Lemma 2.3.11 and the reciprocal representation for the canon-
ical braced stress ωc of Lemma 2.3.9 show that the expressions for the limit of the braced
stresses of Eq. (2.3.7) and for the canonical equilibrium stress of Eq. (2.3.9) coincide.
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2.4 Lovász lifting procedure

In the paper on the Colin de Verdière number of graphs of polytopes and Steinitz represen-
tations [21] Lovász introduced a procedure that is analogous to the Maxwell–Cremona lifting,
but instead of a flat embedding with an equilibrium stress it takes as an input a 3d embedding
with a braced stress, and instead of lifting the vertices along the vertical lines, it lifts the ver-
tices along the lines through the origin. The original paper gives this procedure no name, we
refer to it as the Lovász lifting. In this section we review the Lovász lifting procedure, and use
it to give the wheel-decomposition theorem for braced stresses a geometrical meaning. Half of
the Lovász lifting algorithm will later be a key instrument in our algorithms for constructing
realizations of graphs as convex polytopes.

Cone-convex embeddings. In the Lovász lifting procedure an important role is played by
special 3d realizations of graphs that we call cone-convex:

Definition 2.4.1. We call an embedding u = (ui)i≤1≤n of a planar 3-connected graph G to

R3 a cone-convex embedding, if its projection onto the sphere
(

ui

|ui|

)
1≤i≤n

with edges drawn

as geodesic arcs is a strictly convex embedding of G into the sphere.

We remark that the embedding of a graph G into the sphere is strictly convex if the faces
of the embedding are strictly convex spherical polygons, or, in other words, the faces are the
intersections of pointed convex disjoint polyhedral cones with the sphere. So, an embedding is
cone-convex if the cones over its faces are pointed, convex and disjoint. Note that the vertices
of a cone-convex embedding are not supposed to form a convex polytope.

In the analogy between the Lovász and the Maxwell–Cremona lifting procedures the cone-
convex realizations in the construction of Lovász play the same role as the planar (noncrossing)
realizations in the Maxwell–Cremona construction.

2.4.1 Lovász dual transform

The following lemma is due to Lovász [21]:

Lemma 2.4.1 (Lemma 4, Lemma 5, [21]). (1) Let u = (ui)1≤i≤n be any embedding of a planar
3-connected graph G in R3, let ω be a braced stress on u. Then there exists a realization (φf )
in R3 of the graph G∗ dual to G such that

φg − φf = ωij(uj × ui) (2.4.1)

for every pair of dual edges (i, j) of G and (f, g) of G∗, this realization is unique up to trans-
lations, and any such realization is a realization of G∗ as a polytopal surface (the vertices of
each face are coplanar).

(2) Moreover, for a cone-convex realization u and a positive braced stress ω any (φf )
satisfying Eq. (2.4.1) is a realization of G∗ as a convex polytope.

Proof. (1) This is Lemma 4 of [21]. We repeat the proof since it illustrates one of the basic
algorithms that we use to construct realizations of graphs as convex polytopes.

To construct the family of vectors (φf ), we start by assigning an arbitrary value to φf0 (for
an arbitrary face f0); then we proceed iteratively picking φ vectors such that Eq. (2.4.1) is
fulfilled. To prove the consistency of the construction, we show that the differences (φg − φf )
sum to zero over every cycle in G∗. Since G as well as G∗ is planar and 3-connected, it suffices
to check this condition for all elementary cycles of G∗, which are the faces of G∗. Let τ(i)
denote the set of counterclockwise oriented edges of the face in G∗ dual to ui ∈ V (G). Then,
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combining Eq. (2.4.1) and the definition of braced stress yields

∑

(f,g)∈τ(i)

(φg − φf ) =
∑

j∈N(i,G)

ωij(uj × ui) =

⎛
⎝ ∑

j∈N(i,G)

ωijuj

⎞
⎠× ui

= (−ωiiui)× ui = 0.

The vectors (φf ) are unique up to the initial choice for φf0 .
To show that (φf ) is a polytopal surface, let F be some face of G∗. The graph G∗ is dual

to G, thus the face F corresponds to some vertex u of G and we can denote F = Fu. Let
f1, . . . fn be the cyclic sequence of faces of G incident to the vertex u, let the edge uui separate
fi and fi+1. Then by Eq. (2.4.1)

⟨φfi+1
− φfi , u⟩ = ⟨ωuui

(u× ui), u⟩ = 0,

thus, for all the faces fi incident to the vertex u the dot products ⟨u, φf ⟩ coincide, so, all the
vertices φf of G∗ that belong to the face Fu of G∗ lie in the same affine plane orthogonal to
the vector u.

(2) This is Lemma 5 of [21]. Lovász formulates this result with an additional constraint
|ui| = 1 for all the vertices of G, that is for an embedding of a graph onto the sphere. However,
he never uses this constraint in the proof. Additionally he formulates the rescaling property
of braced stresses showing why the renormalization of u doesn’t change the result (we have
reviewed this property in details in Lemma 2.3.4).

The construction of Lemma 2.4.1 is a natural reverse to the canonical braced stress con-
struction that we presented in Sect. 2.3.2 and it uses the same defining equation Eq. (2.4.1).
The part (2) of Lemma 2.4.1 is the key ingredient of the duality transforms for polytopes that
we present in Sect. 2.5.

2.4.2 Lovász lifting procedure: convex case

The following result is the core geometrical argument in [21]:

Theorem 2.4.1 (Theorem 3, [21]). Let u = (ui)1≤i≤n be a cone-convex realization of a planar
3-connected graph G in R3 and let ω be a positive braced stress on it. Then there exists a
positive rescaling q = (qi)1≤i≤n of u,

qi = λiui, λi ∈ R+ ∀1 ≤ i ≤ n,

such that q is a realization of G as a convex polytope.

The Lovász lifting is a “braced” analogue of the Maxwell–Cremona lifting. Indeed, the
rescaling property of the braced stresses, Lemma 2.3.4, allows to reformulate the Lovász lift-
ing procedure for the initial embeddings u of graphs lying in some fixed convex surface, for
example, the unit sphere. Then, the Lovász lifting procedure lifts every vertex of a graph from
the unit sphere somewhere along the ray through the origin so that the lifting is a convex
polytope. While the Maxwell–Cremona lifting lifts every vertex of a graph from the horizon-
tal plane somewhere along the vertical line so that the lifting is a convex polytope. Thus,
the Maxwell–Cremona lifting procedure may be geometrically (informally) seen as the Lovász
lifting procedure with the origin at the infinity.

Below we sketch the original construction by Lovász. We then also present a slightly
different point of view to this construction, which highlights its local nature and the (very
strong) analogy with the Maxwell–Cremona lifting.
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Proof of Theorem 2.4.1. We follow Lemma 2.4.1 to construct the embedding (φf ) of the dual
to G graph G∗ such that for every pair of dual edges (uiuj) of G and (φf , φg) of G

∗ Eq. (2.4.1)
holds:

φg − φf = ωij(uj × ui).

Due to the part (2) of Lemma 2.4.1 the embedding (φf ) of G
∗ is a convex polytope P∗. The

polytope P∗ is unique up to parallel translation, if necessary, we shift P∗ so that it contains
the origin in its interior.

Let P = (ri)1≤i≤n be the polar dual to P∗. Then it is straightforward from the definition
of the polar dual that ri = λiui for some λi ∈ R+. The origin in the interior of P∗ guarantees
that these λi > 0. By the construction the graph of P is G, what finishes the proof.

The last step of taking the polar dual from the previous proof can be seen from a slightly
different point of view, which makes the construction a full analogue of Maxwell–Cremona
lifting. Moreover, this alternative point of view is easily generalized to any (non cone-convex)
3d embeddings u, to nonpositive braced stresses ω and to abandoning the condition of the
origin lying inside P∗.

2.4.3 Lovász lifting procedure: general case

Let u be any 3d embedding of a planar 3-connected graph G and let ω be any braced stress
on u. We mimic the Maxwell–Cremona procedure. For every face f of u we define an affine
plane αf , to which we lift this face: we define the lifting of the face f as the intersection of the
cone over this face with the plane αf . The details are presented below:

We start as usual and use Lemma 2.4.1 to construct an embedding (φf ) of the graph G∗

dual to G as a polytopal surface such that for every pair of dual edges Eq. (2.4.1) holds.
For every face f let αf be the affine plane, polar to the vector φf : an affine plane with the

normal vector φf normalized so that ⟨x, φf ⟩ = 1 for every x ∈ αf . We lift every vertex ui of
the face f to the plane αf along the ray {tui : t ∈ R} through the origin and ui:

ui → qfi := αf ∩ {tui : t ∈ R} =
1

⟨φf , ui⟩
ui. (2.4.2)

Eq. (2.4.1) guarantees that if a vertex ui belongs to both faces f and g, the liftings qfi and qgi
of ui constructed using the liftings of faces f and g correspondingly coincide: Let f1, . . . fdeg(ui)

be the cyclic sequence of all the faces incident to ui, then

⟨φfl − φfl+1
, ui⟩ = ⟨ωijl(ui × ujl), ui⟩ = 0,

where the edge (uiujl) is dual to (flfl+1), so all of ⟨φfl , ui⟩ for 1 ≤ l ≤ deg(ui) coincide and

thus all the qfli coincide as well.

Thus, the vector qi := qfi does not depend on the choice of the face f incident to ui and so
it is well-defined. Thus, the lifting of every vertex is well-defined. By definition, every face of
G is lifted to some plane, thus the lifting is a polytopal surface. A simple check shows that if
we start with a cone-convex embedding u and a positive braced stress ω, and if we then pick
P∗ with the origin in its interior, the positiveness of the braced stress guarantees convexity on
every edge, thus the lifting is a convex polytope.

It is clear that the construction presented above is the original Lovász’s proof of The-
orem 2.4.1 where the last step of taking the polar dual polytope is replaced by taking the
polar dual planes for each of the vertices of the polytope and then studying how these planes
intersect. Thus, the two constructions give the same result.

Definition 2.4.2. We call the embedding q of a graph G into R3 constructed above the Lovász
lifting of u by the braced stress ω.
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The result of the Lovász lifting is not necessarily a convex polytope, but some polytopal
surface that is a rescaling qi = λiui of u. Analogously to the Maxwell–Cremona liftings, we call
any such rescaling a central lifting and those forming a polytopal surface — a central polytopal
lifting.

The result of the Lovász lifting is not uniquely defined: In the construction we had the
freedom to choose any initial value φf for one of the faces f . Thus, all the vectors (φf ) are
defined up to a parallel translation

φf → φf + φ, ∀f ∈ F (G)

for any vector φ ∈ R3. This corresponds to the following transformation on the set of central
polytopal liftings: two liftings q and r of the same embedding u correspond to the same braced
stress if and only if there exists a vector φ ∈ R3 such that

ui

qi
− ui

ri
= ⟨ui, φ⟩

for every vertex ui of G. (The left hand side of the equation above is well-defined since ui, qi
and ri are collinear.) The last condition defines an equivalence relation on the set of all the
central polytopal liftings of u; and the two Lovász liftings of u are equivalent if and only if they
are produced by the same braced stress ω. We denote the class of equivalence of all the Lovász
liftings of u by the braced stress ω with L(u, ω). We call the set of all the central polytopal
liftings modulo this equivalence relation the space of central polytopal liftings and denote with
L(u). Thus, L(u, ω) ∈ L(u) for any braced stress ω on u.

The Lovász lifting procedure is clearly reversible: Let u be a 3d embedding of a graph G
and let qi = λiui be a rescaling of u such that q = (qi) is a polytopal surface. Then there
exists a unique braced stress ω on u such that q ∈ L(u, ω). Moreover, this braced stress is the
canonical braced stress ωc(q) on q rescaled to u; in the notation of Sect. 2.3

ω = prq→u(ω
c(q)).

In particular, the Lovász lifting of a polytopal surface u with its canonical braced stress is this
polytopal surface itself.

We summarize the remarks above into the following observation:

Lemma 2.4.2. Let u = (ui)1≤i≤n be any realization of a planar 3-connected graph G in R3.
Then the Lovász lifting procedure is a bijection L : BR(u) → L(u) between the space of braced
stresses BR(u) on u and the space of polytopal central liftings L(u) of u.

2.4.4 Geometry of the wheel-decomposition

We are ready to provide a geometrical meaning to the wheel-decomposition theorem for braced
stresses, Theorem 2.3.1. In the remainder of the section we suppose that the graph G is a
triangulation.

Lemma 2.4.3. Let u = (ui)1≤i≤n be 3d embedding of a triangulation G with n > 3 vertices.
Let ω0 be a braced stress on u and let ω := ω0 + αωa(Wk) for some 1 ≤ k ≤ n, where ωa(Wk)
is the atomic braced stress on the wheel Wk ⊂ G centered at the vertex uk of G.

Let f0 be any face of G that does not contain uk. Let q = (qi)1≤i≤n ∈ L(u, ω0) and
r = (ri)1≤i≤n ∈ L(u, ω) be two Lovász liftings of u by stresses ω0 and ω respectively that
coincide on the face f0. Then

qi = ri, i ̸= k,

1

qk
− 1

rk
= α

1

uk
,

where the last equation is an informal equivalent of uk

qk
− uk

rk
= α and the left hand side fractions

make sense since uk, qk and rk are collinear.
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Proof. For the proof we follow the construction of the Lovász lifting step by step. For the
liftings q and r we denote the vectors φf and the planes αf from the lifting procedure with
φf (q), αf (q) and φf (r), αf (r) correspondingly.

We start with defining vectors φf (q) and φf (r). Since the liftings q and r coincide on the
face f0, the vectors φf0(q) and φf0(r) also coincide, φf0(q) = φf0(r) = φf0 . The vectors φf (q)
and φf (r) for other faces of G are computed iteratively using Eq. (2.4.1).

Let f be any face of G that does not contain the vertex uk. Then φf (q) = φf (r) and
thus the lifting planes also coincide αf (q) = αf (r). Indeed, the faces incident to uk form an
elementary cycle (boundary of a face) Γk in the graph G∗ dual to G. Since G and thus G∗ are
planar 3-connected, there is a path f0, f1, . . . fm = f in the dual graph G∗ connecting f0 with f
not passing through Γk. We use this path to compute the values φf (q) and φf (r) from φf0(q),
φf0(r) and the iterative Eq. (2.4.1). Since the braced stresses ω and ω0 coincide on edges of G
not containing uk, the right hand sides of Eq. (2.4.1) along the path f0, f1, . . . fm = f coincide
for the liftings r and q. Thus

φf (q) = φf (r) ∀f : uk /∈ f.

Thus, the lifting planes αf (q) and αf (r) also coincide for all the faces f not containing uk.
Since every vertex ul that is not uk lies in at least one (in fact, in at least two, but we need

only one) face f that does not contain uk, the liftings of ul can be defined from the face f as

ql := αf (q) ∩ {tul : t ∈ R},
rl := αf (r) ∩ {tul : t ∈ R}.

Since the planes αf (q) and αf (r) coincide, ql = rl for every l ̸= k.
The last step is to compute the liftings of uk. Let g = (uiujuk) be any face adjacent to uk

and f = (ujuiul) be the other face adjacent to the edge (ujui), thus f does not contain uk.
We assume that g lies to the left and f to the right of (ujui), otherwise we relabel. Then,

φg(q)− φf (q) = ω0
ij(uj × ui),

φg(r)− φf (r) = ωij(uj × ui).

Since φf (q) = φf (r),

φg(r)− φg(q) = (ωij − ω0
ij)(uj × ui).

Thus,

⟨φg(r)− φg(q), uk⟩ = (ωij − ω0
ij)⟨uj × ui, uk⟩

= ωa
ij(Wk)⟨uj × ui, uk⟩

= −α
1

det(ujuiuk)
⟨uj × ui, uk⟩ = −α.

The third transition holds, since we assumed that the face g = (uiujuk) lies to the left of the
edge (ujui), thus the vertex uj precedes the vertex ui in the order on vertices of the base cycle
of the wheel Wk, thus by the definition of the atomic braced stress ωa

ij(Wk) = − 1
det(ujuiuk)

.

By the definition of the Lovász lifting, Eq (2.4.2),

qk =
1

⟨φg(q), uk⟩
uk,

rk =
1

⟨φg(r), uk⟩
uk.
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Thus,

uk

rk
− uk

qk
= ⟨φg(r), uk⟩ − ⟨φg(q), uk⟩ = −α,

where the left hand side makes sense since uk, qk and rk are collinear.

In the remaining of the section we use the fractions u
v for collinear u and v without addi-

tionally mentioning it.

Lemma 2.4.4. Let q = (qi)1≤i≤n ∈ L(u, ωq) and r = (ri)1≤i≤n ∈ L(u, ωr) be two Lovász
liftings of a 3d embedding u = (ui)1≤i≤n of a triangulation G with n > 3 vertices. Then,

ωr − ωq =
∑

1≤i≤n

(
ui

qi
− ui

ri

)
ωa(Wi),

where ωa(Wi) is the atomic braced stress on the wheel Wi ⊂ G centered at the vertex ui of G.

Proof. The proof is in two steps: (1) first we prove the lemma when the liftings differ only at
one vertex and (2) then the general case.

(1) First, let q and r differ only at one vertex: qi = ri, i ̸= k. Then, by Lemma 2.4.3

r ∈ L

(
u, ωq +

(
uk

qk
− uk

rk

)
ωa(Wk)

)
.

Though, the braced stress is uniquely defined by the lifting, so

ωr = ωq +

(
uk

qk
− uk

rk

)
ωa(Wk).

(2) Now we move on to the general case. Let

Q0 = (q1, q2, q3, . . . qn),

Q1 = (r1, q2, q3, . . . qn),

Q2 = (r1, r2, q3, . . . qn),

. . .

Qn = (r1, r2, r3, . . . rn)

be a sequence of liftings such that each two consecutive differ only on one vertex, Q0 = q and
Qn = r. Let ω0, . . . , ωn be the corresponding braced stresses, Qk ∈ L(u, ωk).

Then by the first part of the proof,

ωk − ωk−1 =

(
uk

qk
− uk

rk

)
ωa(Wk) ∀1 ≤ k ≤ n,

and to finish the proof we sum up the equations above for 1 ≤ k ≤ n and note that ω0 = ωq

and ωn = ωr.

Theorem 2.4.2 (Geometry of the wheel-decomposition). Let q = (qi)1≤i≤n ∈ L(u, ω) be a
Lovász lifting of a 3d embedding u = (ui)1≤i≤n of a triangulation G with n > 3 vertices by a
braced stress ω. Then,

ω =
∑

1≤i≤n

−ui

qi
ωa(Wi),

where ωa(Wi) is the atomic braced stress on the wheel Wi ⊂ G centered at the vertex ui of G.
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Proof. Let q(t) = tq for t ∈ R+ be a continuous family of rescalings of q, thus qi(t) = tqi. Let
φf (t) =

1
tφf be the corresponding polar vectors from the Lovász lifting construction and let

ω(t) be the corresponding braced stresses, q(t) ∈ L(u, ω(t)). Then

φg(t)− φf (t) = ωij(t)(qj(t)× qi(t))

and thus

ωij(t) =
1

t3
ωij .

By Lemma 2.4.4

ω − ω(t) =
∑

1≤i≤n

(
ui

qi(t)
− ui

qi

)
ωa(Wi).

With t → ∞ the left hand side goes to

ω − ω(t) = ω − 1

t3
ω → ω

and the right hand side goes to

∑

1≤i≤n

(
ui

qi(t)
− ui

qi

)
ωa(Wi) =

∑

1≤i≤n

(
ui

tqi
− ui

qi

)
ωa(Wi) →

∑

1≤i≤n

−ui

qi
ωa(Wi).

2.4.5 Geometry of the wheel-decomposition: equilibrium stresses

Lemma 2.3.3 allows to restate the wheel-decomposition theorem for braced stresses (Theo-
rem 2.3.1) in terms of equilibrium stresses on braced simplicial polytopes.

Let G be a graph. We call the graph G+ formed by G with one additional vertex v0
connected with every vertex of G (no other edge is present) the bracing of G and we denote
G+ = br(v0, G). In a symbolic notation, G+ is a join of G and one vertex v0, G

+ = G+ {v0}.
We call a bracing of a triangulation a braced triangulation.

We call a biwheel a graph G formed by a cycle (v1, . . . vn) and two additional vertices A
and B connected to every vertex of the cycle and to each other (no other edge is present, see
Fig. 2.4.1). We denote it with bW(A,B; v1, . . . vn). While the wheel is a graph of a pyramid,
the biwheel is a graph of a bipyramid. Clearly, a biwheel bW(A,B; v1, . . . vn) is the bracing
of the wheel W(B; v1, . . . vn) with the vertex A and simultaneously the bracing of the wheel
W(A; v1, . . . vn) with the vertex B.

Giving an order on the cycle (v1, . . . vn) and on the apexesA,B, the biwheel bW(A,B, (v1, . . . vn))
can be considered oriented. We however do not track orientations of the biwheels and thus
also partly omit the discussion of signs of equilibrium stresses on biwheels.

Before we proceed with the wheel-decomposition theorem for braced triangulations, we
study equilibrium stresses on biwheels.

Lemma 2.4.5. Let U = bW(A,B;u1, . . . un) be a biwheel with apexes A and B embedded in
R3.

Then the assignment

ωi,i+1 := − 1

[Auiui+1B]
1 ≤ i ≤ n,

ωi,B :=
[Aui−1uiui+1]

[Aui−1uiB][Auiui+1B]
1 ≤ i ≤ n,

ωi,A :=
[Bui+1uiui−1]

[Bui−1uiA][Buiui+1A]
1 ≤ i ≤ n
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defines an equilibrium stress on U and this stress is unique up to rescaling.

We do not define the stress on the edge AB since we do not have a nice closed formula for
it and since it can be immediately derived from the other stresses using elementary geometry.
Indeed, suppose that the lemma holds and ω is an equilibrium stress. Then for the value ωAB

ωAB(B −A) = −
∑

1≤i≤n

ωiA(ui −A).

Thus, to find ωAB we can use the formula

ωAB = −
∑

1≤i≤n ωiA⟨ui −A,B −A⟩
|B −A|2 .

A

B

u1

u2

ωii+1 = − 1
[Auiui+1B]

ωiB = [Aui−1uiui+1]
[Aui−1uiB][Auiui+1B]

ωAi =
[Bui+1uiui−1]

[Aui+1uiB][Auiui−1B]

Figure 2.4.1: A biwheel with the atomic equilibrium stress.

Proof of Lemma 2.4.5. Let bWa = bW−A be the parallel translation of the biwheel such that
one of its apexes, A, coincides with the origin.

By Lemma 2.3.3 the equilibrium stresses on the translated biwheel bWa are in 1-to-1
correspondence with the braced stresses on a (translated) wheel Wa(B;u1, . . . un), obtained
from the biwheel bWa by removing the apex A. The braced stress on a wheel is unique up to
rescaling, what proves the uniqueness.

To compute the braced stress on the wheel Wa(B;u1, . . . un) we use the atomic braced
stress bωa on the wheel, Eq. (2.3.5):

bωa
i,i+1 := − 1

det(ua
i u

a
i+1B

a)
1 ≤ i ≤ n,

bωa
iB :=

det(ua
i−1u

a
i u

a
i+1)

det(ua
i−1u

a
iB

a) det(ua
i u

a
i+1B

a)
1 ≤ i ≤ n,

where we denote with ua
i := ui −A, Ba := B −A and Aa := A−A = (0, 0, 0)T the translated

vertices of the initial biwheel.
Though, for any three vectors u, v, w, det(u, v, w) = Vol((0, 0, 0)T , u, v, w) and since Aa =

(0, 0, 0)T we rewrite the formulas in terms of Vol(Aa, ua
i , u

a
j , u

a
k). The volumes are translational

invariant, so we omit superscripts.
Finally, we use Lemma 2.3.3 to go from the braced stress on the wheel to the equilibrium

stress ω0 on the biwheel bW0. The transition map is identical on edges (Bi) and (i, i+1) thus
we get:

ωa
i,i+1 = − 1

[Auiui+1B]
,

ωa
iB =

[Aui−1uiui+1]

[Aui−1uiB][Auiui+1B]
.
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We do not compute stress ωa for edges (Ai) and (AB) since these computations are involved
and require computing of additional coefficients bωa

ii which we omitted. Instead, we consider a
second parallel translation of the initial biwheel bWb = bW−B such that this time the other
apex B is at the origin.

Ab

Bb = (0, 0, 0)T

ub
1

ub
2

Aa = (0, 0, 0)T

Ba

ua
1

ua
2

ωii+1 = − 1
[Auiui+1B]

ωiB = [Aui−1uiui+1]
[Aui−1uiB][Auiui+1B]

ωAi =
[Bui+1uiui−1]

[Aui+1uiB][Auiui−1B]

Figure 2.4.2: Two translations of the biwheel with the stresses computed from each of them.

Again by Lemma 2.3.3 the equilibrium stresses on the biwheel are in 1-to-1 correspondence
with the braced stresses on the wheel W (A;un, . . . u1) (for convenience in this wheel we reori-
ented the cycle u1, . . . un). We compute the atomic braced stress on the wheel W (A;un, . . . u1)
as we did for the wheel W (B;u1, . . . un) and use Lemma 2.3.3 to transform it into an equilib-
rium stress ωb on the whole biwheel bWb. Again we compute only the easily computable edges
(Ai) and (i, i+ 1):

ωb
i,i+1 = − 1

[Bui+1uiA]
,

ωb
Ai =

[Bui+1uiui−1]

[Bui+1uiA][Buiui−1A]
.

The notion of equilibrium stress is translational invariant thus both equilibrium stresses
ωa and ωb are equilibrium stresses on the initial biwheel bW. Though, as the computation
showed, the stresses ωa and ωb coincide on the edges (i, i+1) of the biwheel. Moreover, as we
already discussed, the space of equilibrium stresses on the biwheel is 1-dimensional. Thus, the
stresses ωa and ωb are equal and we denote them simply as ω = ωa = ωb.

Let G = (ui)1≤i≤n be a triangulation of the plane with n > 3 vertices. Then, as we already
discussed in the wheel-decomposition theorem, the edges and faces of G incident to any vertex
ui of G form a wheel, that we denote Wi(G). When we brace a triangulation G with a vertex
A, we automatically brace every wheel Wi(G), thus every wheel Wi(G) turns into a biwheel
that we denote with bWi(G).

Translated by Lemma 2.3.3 to the language of equilibrium stresses on braced graphs, the
wheel-decomposition theorem states that every equilibrium stress on a braced triangulation is
a linear combination of stresses on biwheels:

Theorem 2.4.3. Let U+ = br(A, (ui)1≤i≤n) be an embedding of a braced triangulation G+ =
br(A;G) into R3, where G is a planar triangulation with n vertices. Then every equilibrium
stress ω on U+ is a linear combination of atomic equilibrium stresses on the biwheels bWi for
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Figure 2.4.3: Covering a braced triangulation with biwheels: a triangulation (left), a braced
triangulation (center) and one biwheel of this braced triangulation (right).

1 ≤ i ≤ n:
ω =

∑

1≤i≤n

αiω
a(bWi).

The decomposition is unique up to an automorphism of the set of coefficients

αi → αi + ⟨ui, v⟩

for any vector v in R3.

Proof. This is an immediate consequence of the wheel-decomposition theorem for braced
stresses Theorem 2.3.1 and Lemma 2.3.3.
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2.5 Duality transforms

In this section we use the techniques developed above to efficiently construct the duals of
convex polytopes.

2.5.1 High level description

Our duality transform algorithms are based on the Lovász duality transformation that we
introduced in Lemma 2.4.1. In the theorem below we sum up the results of Lemma 2.4.1 in a
form that we use for duality transforms together with the estimates on the size of the integer
grid required by the algorithm:

Theorem 2.5.1 (Lovász duality construction). Let G be a planar 3-connected graph, let u =
(ui)1≤i≤n be its cone-convex embedding with integer coordinates and let ω be an integer positive
braced stress on u. Then there exists a realization (φf )f∈F (G) of the dual graph G∗ as a convex
polytope with integer coordinates bounded by

|φf | < 2n · max
(i,j)∈E(G)

|ωij(uj × ui)|.

Proof. We use Lemma 2.4.1 to construct (φf )f∈F (G) that satisfy Eq. (2.4.1) and such that
φf0 = (0, 0, 0)T for a distinguished face f0 ∈ F (G). The part (2) of Lemma 2.4.1 guaranties
that (φf )f∈F (G) form a convex polytope with graph G∗. Since (φf ) satisfy Eq. (2.4.1), φf0 =
(0, 0, 0)T and all ωij as well as all ui are integral, all φf have integer coordinates as well.

To finish the proof we estimate how large the vectors (φf ) are. We evaluate φfk for some
face fk ∈ F (G). The following algebraic expression holds for all values φfi :

φfk = φf0 + (φf1 − φf0) + . . .+ (φfk−1
− φfk−2

) + (φfk − φfk−1
).

Let us now consider the shortest path f0, f1, . . . , fk in G∗ connecting the faces f0 and fk.
Clearly, k is less than 2n, and hence

|φfk | ≤ 2n · max
(fa,fb)∈E(G∗)

|φfa − φfb | = 2n · max
(i,j)∈E(G)

|ωij(ui × uj)|.

Then, all our duality algorithms follow the same two-stage approach:

• Construct a cone-convex embedding of a graph G∗ dual to G with a positive braced stress
ω;

• Apply the construction from Theorem 2.5.1.

In this section we present a duality transform for three types of polytopes: stacked poly-
topes, simplicial polytopes with a degree 3 vertex and special geometry, and general simplicial
polytopes.

The second stage of the algorithms for all types of polytopes is the same and is described
in Theorem 2.5.1. The first stages of the algorithms for different types of polytopes differ a lot.
Thus in the remainder of this section we describe the different first stages of the algorithms for
the different types of polytopes: we present three different approaches to constructing small
integer cone-convex realizations of graphs with small positive integer braced stresses.



54 CHAPTER 2. EFFICIENT DUALITY TRANSFORMS IN R3

2.5.2 The stacking approach

Here we present an approach for constructing 3d cone-convex embeddings with braced stresses
out of 2d planar realizations with equilibrium stress by stacking an additional vertex (tetrahe-
dron) to the graph. This approach leads to the embedding algorithm for truncated polytopes,
and for a special class of simple polytopes with a degree 3 vertex, however proves to be ineffi-
cient for general simple polytopes.

Let G be a planar graph with a triangular face f . We say that the graph G+ is build by
stacking a vertex u atop a face f of G and we denote with G+ = Stack(G, f, u) if the graph
G+ is formed by the graph G with one additional vertex u which is connected by edges to the
three corners of the face f . Clearly, the graph Stack(G, f, u) is planar, and for a 3-connected
graph G the result of stacking operation is again 3-connected.

Lemma 2.5.1. Let p↑ = (pi)2≤i≤n be a 2d integer planar convex embedding of a planar 3-
connected graph G↑ with a designated triangular face f = (p2p3p4) embedded as the boundary
face. Let ω be a positive integer equilibrium stress for p↑.

Then the embedding u = (ui)1≤i≤n of the graph G = Stack(G↑, (v2v3v4), v1) defined as

ui = (3pi − (p2 + p3 + p4), 1)
T 2 ≤ i ≤ n,

u1 = (0, 0,−3)T ,

where (p, 1)T = (px, py, 1)
T ∈ R3 for p = (px, py) ∈ R2, is an integral cone-convex embedding

and there exists a positive integer braced stress bω for u such that

bωij = ωij for each internal edge (i, j) of the original embedding of G↑,

|bωij | ≤ max
(i,j)∈E(G↑)

|ωij |+ 1 ∀(i, j) ∈ E(G).

Proof. The embedding u can be described as follows: The planar embedding p↑ of G↑ is
realized in the plane {z = 1}, scaled 3 times, and translated so that the barycenter of the
boundary face coincides with the origin. The stacked vertex u1 is then placed at (0, 0,−3)T .
The embedding is cone-convex since it describes a tetrahedron containing the origin with one
face that is refined with a plane convex subdivision.

Following the structure of G = Stack(G↑, (v2v3v4), v1), we decompose G into two subgraphs:
G↑ = G[{v2, . . . , vn}] and G↓ := G[{v1, v2, v3, v4}].

We first compute a braced stress bω′ for the embedding u↑ = (ui)2≤i≤n of G↑. The plane
embedding p↑ of G↑ has an integer equilibrium stress ω. Since u↑ is just a rescaling and
translation of p↑, clearly, ω is also an equilibrium stress for u↑ and thus it is a braced stress
for this embedding.

As a second step we compute a braced stress bω′′ for the embedding (u1, u2, u3, u4) of the
tetrahedron G↓. By the construction, u1 + u2 + u3 + u4 = 0. Thus, the matrix

bω′′ :=

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠

is a braced stress matrix for the embedding (u1, u2, u3, u4) of G
↓.

In the final step we extend the two braced stresses bω′ and bω′′ to G and combine them.
Clearly, a braced stress on a subgraph is a braced stress on the whole graph. Furthermore,
braced stresses form a linear space and thus any linear combination of braced stresses is again
a braced stress. Thus, we form an integer braced stress for the whole embedding u of G by
setting:

bω := bω′ + λbω′′,
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where λ is a positive integer chosen so that bω is a positive braced stress. This can be done
as follows. Recall that ω is a positive equilibrium stress and bω′′ is a positive braced stress.
Hence, the only three entries in bω that may be negative are: bω23, bω34 and bω42, for which
bωij := bω′

ij + λbω′′
ij with bω′

ij = ωij < 0 and bω′′
ij = 1. Thus, we choose λ such that bω is

positive at these entries. To satisfy this condition we pick

λ := max
(i,j)∈{(2,3),(3,4),(4,2)}

|bω′
ij |+ 1.

The bound |bωij | ≤ max(k,l)∈E(G↑) |ωkl|+ 1 for every edge (i, j) of G trivially follows.

Combining Lemma 2.5.1 and the Lovász duality transform, Theorem 2.5.1, leads to

Theorem 2.5.2. Let G = Stack(G↑; v1; v2v3v4) and let p↑ = (pi)2≤i≤n be a planar 2d embed-
ding of G↑ with integer coordinates, boundary face (v2v3v4), and a positive integer equilibrium
stress ω. Then there exists a realization (φf )f∈F (G∗) of the graph G∗, dual to G, as a convex
polytope with integer coordinates such that

|φf | = O(n ·max |ωij | ·max |pi|2).

Proof. We first apply Lemma 2.5.1 to obtain a cone-convex embedding u = (ui)1≤i≤n of G
with integer coordinates and a positive integral braced stress ω. We then apply Theorem 2.5.1
and obtain a family of vectors (φf )f∈F (G∗) that forms a desired realization of G∗ as a convex
polytope with integer coordinates.

To estimate how large the coordinates of the embedding (φf ) are, we combine bounds for
(φf ) given by Theorem 2.5.1 with the bounds for the entries of ω given by Lemma 2.5.1:

|φf | ≤ 2n · max
(i,j)∈E(G)

|ωij(uj × ui)| ≤ 2n · (max |ωij |+ 1) ·max |ui|2

= O(n ·max |ωij | ·max |pi|2).

Realizations of Truncated Polytopes

The framework presented in Theorem 2.5.2 can now be used to construct an integer polynomial
size grid embedding for truncated polytopes.

We remind, that given a convex polytope P with a triangular face f the operation of
stacking a vertex u atop the face f glues to P atop the face f a triangular pyramid with base
f and apex u so that the resulting polytope is convex again. This operation is the polytope
language translation of stacking a vertex to a graph. We call a polytope stacked polytope if
it can be produced from a tetrahedron by a sequence of stacking operations. The graphs of
stacked polytopes are planar 3-trees.

The truncated polytopes are dual to stacked. Another description is possible through the
truncation operation. A truncation operation cuts off a vertex of a polytope by intersecting the
polytope with a half space bounded by a plane that separates this vertex from all the other
vertices of the polytope. The truncation operation is clearly dual to stacking. Thus, truncated
polytopes are those that can be produced from a tetrahedron by a series of truncation operations.

We realize truncated polytopes as dual to stacked polytopes using the framework of The-
orem 2.5.2. To construct an input for the framework of Theorem 2.5.2 we use a result by
Demaine and Schulz [9]:

Lemma 2.5.2. Any graph of a stacked polytope with n vertices and any distinguished face f0
can be embedded on a O(n2 lg 6)×O(n2 lg 6) grid with boundary face f0 and with integral positive
equilibrium stress ω such that, for every edge (i, j), we have |ωij | = O(n5 lg 6).
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Proof. This lemma is not explicitly stated in [9] but it is a by-product of the presented con-
structions. In particular, the estimates for the coordinate size are stated there in Theorem 1
and the integer stresses are defined there by Lemma 9.

Recently, a flaw was discovered in [9], which affected the estimates. The flaw was within
the balancing procedure, Sect. 3.1 of [9]. It was corrected in the latest version of the paper [10,
Lemma 7].

The fix affected the estimate of Eq. (3.3) in [9] and the numbers in the following compu-
tations (but not the arguments). Since we need the corrected computations for the bounds of
this lemma we report briefly the necessary changes using the exact notations of the original
paper. The updated bound of Eq. (3.3) is w(f0) ≤ nlg 6 [10, Lemma 7] instead of n2. We
denote this bound with R. To correct the values in Sect. 3.3 we replace in the computations
n with

√
R = n(lg 6)/2. In particular, in Subsect. 3.3.1 the (preliminary) boundary face is now

given by p1 = (0, 0),p2 = (
√
R, 0),p3 = (0,

√
R). In Subsect. 3.3.2 the (final) boundary face is

now given by p1 = (0, 0),p2 = (10R2, 0),p3 = (0, 10R2); and the corrected scaling factor for
the stress is Y = 4R. The lemma follows by taking the updated values from [9].

(a)

0

(b) (c)

Figure 2.5.1: The 2d embedding of G↑ (a), the cone-convex embedding of G (b), and the
resulting embedding of the dual (c).

Theorem 2.5.3. Any truncated 3d polytope with n vertices can be realized with integer coor-
dinates of size O(n9 lg 6+1).

Proof. Let G∗ be the graph of the truncated polytope and let G := (G∗)∗ be its dual. Clearly,
G is the graph of a stacked polytope with (n + 4)/2 vertices. We denote the last stacking
operation (for some sequence of stacking operations producing G) as the stacking of the vertex
v1 onto the face (v2v3v4) of the graph G↑ := G[V \ {v1}]. The graph G↑ is again a graph of
a stacked polytope, and hence, by Lemma 2.5.2, there exists an embedding (pi)2≤i≤n of G↑

into Z2 with an equilibrium stress ω satisfying the properties of Theorem 2.5.2. We apply
Theorem 2.5.2 and obtain a polytope embedding (φf ) of G

∗ with bound

|φf | = O(n ·max |ωij | ·max |pi|2) = O(n9 lg 6+1).

Fig. 2.5.1 shows an example of our algorithm. The computations for this example are
presented below.

Example of the algorithm for truncated polytopes

As an example for our embedding algorithm for truncated polytopes we show how to embed
the truncated tetrahedron. This polytope is obtained from the tetrahedron by truncating all of
its four vertices. The graph G∗ of this polytope and its dual G are depicted in Fig. 2.5.1. We
start with the planar embedding of G↑ = G[v2, . . . , v8] that is defined on Fig. 2.5.2.
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p2 p3

p4

p5

p6

p7p8

p2 = (−3,−3)T

p3 = (6,−3)T

p4 = (−3, 6)T

p5 = (0, 0)T

p6 = (1,−2)T

p7 = (1, 1)T

p8 = (−2, 1)T

Figure 2.5.2: The original plane embedding of G↑.

The embedding has the integer equilibrium stress ω52 = ω53 = ω54 = 1, ω23 = ω34 = ω42 =
−2, and all the other entries have value 3.

Following Lemma 2.5.1, we embed the drawing of G↑ onto the plane {z = 1}. Unlike the
general case of Lemma 2.5.1, we do not have to scale 3 times and translate, since the barycenter
of p2, p3, p4 is initially at the origin. We add the stacked point u1 := (0, 0,−3)T .

The corresponding braced stresses [bω′′
ij ]1≤ij≤4 and [bω′

ij ]2≤ij≤8 (in the braced stress matrix
form) are:

bω′′ =

⎛
⎜⎜⎝

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎞
⎟⎟⎠ , bω′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 −2 −2 1 3 0 3
−2 −3 −2 1 3 3 0
−2 −2 −3 1 0 3 3
1 1 1 −12 3 3 3
3 3 0 3 −9 0 0
0 3 3 3 0 −9 0
3 0 3 3 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.5.1)

We extend bω′ and bω′′ to the whole graph G and form the final braced stress bω = bω′+3bω′′:

bω =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 3 3 3 0 0 0 0
3 0 1 1 1 3 0 3
3 1 0 1 1 3 3 0
3 1 1 0 1 0 3 3
0 1 1 1 −12 3 3 3
0 3 3 0 3 −9 0 0
0 0 3 3 3 0 −9 0
0 3 0 3 3 0 0 −9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We can now apply Theorem 2.5.1 and compute the vectors (φf ). We first assign φ(236) =
(0,−18, 27)T . (One can start with assigning of any vector to any face — the resulting em-
bedding will be the same up to translation. This assignment makes the resulting coordinates
look slightly nicer.) The remaining vectors are then iteratively computed with Eq. (2.4.1). We
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obtain as a result:

φ(236) = (0,−18, 27)T

φ(265) − φ(236) = M26(u2 × u6) = (−3, 12, 27)T φ(265) = (−3,−6, 54)T

φ(258) − φ(265) = M25(u2 × u5) = (−3, 3, 0)T φ(258) = (−6,−3, 54)T

φ(284) − φ(258) = M28(u2 × u8) = (−12, 3,−27)T φ(284) = (−18, 0, 27)T

φ(485) − φ(284) = M48(u4 × u8) = (15, 3, 27)T φ(485) = (−3, 3, 54)T

φ(457) − φ(485) = M45(u4 × u5) = (6, 3, 0)T φ(457) = (3, 6, 54)T

φ(473) − φ(457) = M47(u4 × u7) = (15, 12,−27)T φ(473) = (18, 18, 27)T

φ(375) − φ(473) = M37(u3 × u7) = (−12,−15, 27)T φ(375) = (6, 3, 54)T

φ(356) − φ(375) = M35(u3 × u5) = (−3,−6, 0)T φ(356) = (3,−3, 54)T

φ(362) − φ(356) = M36(u3 × u6) = (−3,−15,−27)T φ(362) = (0,−18, 27)T

φ(321) − φ(362) = M32(u3 × u2) = (0,−9,−27)T φ(321) = (0,−27, 0)T

φ(124) − φ(321) = M12(u1 × u2) = (−27, 27, 0)T φ(124) = (−27, 0, 0)T

φ(143) − φ(124) = M14(u1 × u4) = (54, 27, 0)T φ(143) = (27, 27, 0)T .

The final result is depicted in Fig. 2.5.3. The embedding requires a 54× 54× 54 grid.

x
y

z

Figure 2.5.3: The final embedding of the truncated tetrahedron.

A duality transform for simplicial polytopes with degree-3 vertex

As an immediate consequence of the framework of Theorem 2.5.2 and of the efficient reverse
of the Maxwell–Cremona lifting, Theorem 2.2.2, we state the following result:

Theorem 2.5.4. Let G↑ be a triangulation and let u↑ = (ui)2≤i≤n be its realization as a convex
polytope with integer coordinates, such that its orthogonal projection into the plane {z = 0}
is a planar embedding p↑ = (pi)2≤i≤n of G↑ with boundary face (v2v3v4). Then the exists a
realization (φf )f∈F (G) of a graph dual to G = Stack(G↑; v1; v2v3v4) with integer coordinates
bounded by

|φf | = O(nmax |ui|2∆G +7).

Proof. By combining Theorem 2.5.2 with Theorem 2.2.2 we obtain the statement of the theo-
rem.

We remark that the algorithms following the lifting approach, e.g. [30], generate embeddings
that fulfill the geometrical conditions of the above theorem. Although the theorem proved
above can be seen as a special case of a more general Theorem 2.5.6, the bounds for this
special case are better. The approach that led to the theorem above can be modified for
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general simplicial polytopes without restrictions on the geometry and without a degree-3 vertex.
However, such a modification requires a substantial amount of technicalities and leads to worse
estimates than the 3-dimensional techniques developed in the next subsection.

2.5.3 A duality transform for general simplicial polytopes

The last type of 3-dimensional polytopes for which we present the duality transform are sim-
plicial polytopes. As usual, the duality transform goes in two stages described in Subsec. 2.5.1.
In the second stage we apply as usual the Lovász duality transform, Theorem 2.5.1.

The first stage for this class of polytopes is however completely different from the stacking
approach discussed above. Unlike the algorithms of stacking approach, the algorithm of this
section is intrinsically 3-dimensional and use neither planar (flat) embeddings in intermedi-
ate steps, nor 2-dimensional equilibrium stresses. Instead, it operates directly with braced
stresses and uses the techniques developed in Sect. 2.3 with the main tool being the wheel-
decomposition theorem for braced stresses, Theorem 2.3.1.

The main content of this subsection is the following theorem, which is the first stage of the
duality transform scheme presented in Sect. 2.5.1:

Theorem 2.5.5. Let P = (ui)1≤i≤n be a convex simplicial polytope in R3 with integer coordi-
nates, containing the origin in its interior. Then there exists an integral positive braced stress
ω on P such that its entries are bounded by

|ωij | = O( max
1≤i≤n

|ui|3∆G +7)

where ∆G is the maximal vertex degree of the graph G of P.

Proof. The proof goes through 3 steps:

(I) We construct as ωc the canonical braced stress for P and bound its entries;

(II) We use the wheel-decomposition theorem to decompose ωc =
∑

1≤k≤n αkω
a(Wk) and

bound the entries of atomic braced stresses;

(III) We define the final braced stress ω :=
∑

1≤k≤n⌊Cαk⌋ωa(Wk) with C = 4max(ωa(Wk))
min(ωc) and

check its correctness.

Throughout the proof we set L := maxij |ui − uj |.
Step (I): Let ωc be the canonical braced stress for P:

φg − φf = ωc
ij(uj × ui)

for every pair of dual edges (uiuj) and (φfφg). On the next steps we need to bound |ωc
ij |.

Obviously,
max |φg − φf |
min |uj × ui|

≥ |ωc
ij | ≥

min |φg − φf |
max |uj × ui|

.

To bound |ωc
ij | further we need a lower bound for |φg − φf | (estimate a) and an upper bound

for |φf | (estimate b).
(estimate a) We remark that φf is the solution of the linear system

⟨φf , u
f
1 ⟩ = 1, ⟨φf , u

f
2 ⟩ = 1, ⟨φf , u

f
3 ⟩ = 1,

where the vertices uf
1u

f
2u

f
3 belong to the face f . Thus, since ui are integral,

φf =
1

det(uf
1u

f
2u

f
3 )

Z3
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for Z3 being some vector in Z3. Similarly,

φg =
1

det(ug
1u

g
2u

g
3)
Z ′
3.

Again, Z ′
3 is some vector in Z3. Thus, going to the common denominator,

|φg − φf | =
1

det(uf
1u

f
2u

f
3 ) det(u

g
1u

g
2u

g
3)
Z ′′
3

for some third Z ′′
3 in Z3. So, since φf ̸= φg,

|φg − φf | ≥
1

det(uf
1u

f
2u

f
3 ) det(u

g
1u

g
2u

g
3)

≥ 1

L6
. (2.5.2)

(estimate b) To bound |φf | from above we consider the pyramid over the face f = (uf
1u

f
2u

f
3 )

with the tip at 0 = (0, 0, 0)T . Its (nonoriented) volume Vol(0, uf
1 , u

f
2 , u

f
3 ) can be computed as

hf Area(uf
1 , u

f
2 , u

f
3 ) = Vol(0, uf

1 , u
f
2 , u

f
3 ),

where hf is the height to the base f . Since all uis are integral, Vol(0, u
f
1 , u

f
2 , u

f
3 ) ≥ 1. Trivially,

Area(uf
1u

f
2u

f
3 ) ≤ L2. Since φf is the polar vector for the plane supporting the face f , and |hf |

is the distance from the origin to this plane, |hf | = 1
|φf | . Thus,

|φf | ≤
Area(uf

1 , u
f
2 , u

f
3 )

Vol(0, uf
1 , u

f
2 , u

f
3 )

≤ L2. (2.5.3)

Using the two bounds of Eq. (2.5.2) and Eq. (2.5.3) gives:

|ωc
ij | ≥

min |φg − φf |
max |uj × ui|

≥ 1/L6

L2
=

1

L8
,

|ωc
ij | ≤

max |φg − φf |
min |uj × ui|

≤ 2max |φf | ≤ 2L2.

Step (II): We use the wheel-decomposition theorem for braced stresses, Theorem 2.3.1, to
decompose ωc into a linear combination of the large atomic braced stresses of wheels:

ωc =
∑

1≤k≤n

αkω
A(Wk). (2.5.4)

As a next step we bound the entries |ωA
ij | from above. By definition,

|ωA
ij(Wk)| ≤ (max

o,p,q
|det(uoupuq)|)deg(uk)−1 ≤ L3(deg(uk)−1).

Step (III): The large atomic braced stresses in the decomposition Eq. (4.6.3) are integers.
To make the whole sum integral we round the coefficients. Though, direct rounding may
influence the sign of the resulting stresses. To overcome this effect we scale the coefficients
before rounding. We pick the scaling factor

C := 4

⌈
maxi,j,k |ωA

ij(Wk)|
mini,j |ωc

ij |

⌉

and construct a braced stress

ω :=
∑

1≤k≤n

⌊Cαk⌋ωA(Wk).
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The braced stress ω is integral. It remains to prove that the signs of ωij and ωc
ij coincide,

which would validate that ω is positive. Indeed,

|ωij − Cωc
ij | =

⏐⏐⏐⏐⏐⏐
∑

1≤k≤n

(⌊Cαk⌋ − Cαk)ω
A
ij(Wk)

⏐⏐⏐⏐⏐⏐

≤
∑

1≤k≤n

|ωA
ij(Wk)| ≤ 4max |ωA

ij(Wk)| ≤ Cmin |ωc
ij |.

The third transition holds since exactly 4 wheels participate in the wheel-decomposition of
any single edge. In the remainder of the proof we bound the entries of ω. Due to the bounds
on ωc and ωA, the constant C is bounded by

C ≤ 4L3(∆G −1)+8.

The constructed braced stress ω is therefore bounded by

|ωij | ≤|Cωc
ij |+ 4max |ωA

ij(Wk)|
≤|C|max |ωc

ij |+ 4max |ωA
ij(Wk)|

≤4L3(∆G −1)+82L2 + 4L3(∆G −1).

The duality transform theorem is now a direct consequence of Theorem 2.5.1 and 2.5.5:

Theorem 2.5.6. Let G be a triangulation with maximal vertex degree ∆G and let P =
(ui)1≤i≤n be a realization of G as a convex polytope with integer coordinates. Then there exists
a realization (φf )f∈F (G) of the dual graph G∗ as a convex polytope with integer coordinates
bounded by

|φf | < O(nmax |ui|3∆G +9).





Chapter 3

Prismatoid

The algorithms for realizing large classes of polytopes on the integer grid usually require a
large grid size. However, for special classes of polytopes more effective algorithms exist. Below
we present an embedding algorithm for one particular type of polytopes called prismatoids.

A prismatoid is a polytope whose graph is a triangulated annulus. We show how to embed
such a graph with n vertices as a convex polytope on a O(n4)×O(n3)× 1 grid.

1

O(n4)

O(n3)

3.0.1 Analysis

The graph of a prismatoid has two special faces that form the exterior of the annulus. We call
one (any) of these faces the outerface and the other the innerface. In our algorithm we first
construct a planar realization of a prismatoid in the plane, and the outerface will indeed be
an outerface of this planar realization. The remaining faces of the prismatoid are n triangular
faces that form the triangulation of the annulus.

The n triangular faces of the prismatoid are of two types: some are adjacent to the outerface
and some to the innerface. We call the triangular faces adjacent to the outerface grey and those
adjacent to the innerface white. Then we replace each group of consecutive triangles of the
same colour by one triangle. We call the result the reduced prismatoid. The reduction is
depicted on Fig. 3.0.1.

We denote the vertices of the outerface of the reduced prismatoid with A1 . . . Ak and the
vertices of the innerface with B1, . . . Bk so that AiBiAi+1 is a face of the reduced prismatoid.
We denote the number of vertices removed from the edge AiAi+1 during the initial reduction
with ai and from the edge BiBi+1 with bi.

We call a prismatoid a (k,m)-prismatoid if the inner- and the outerface of the reduced
prismatoid are k-gons and ai = bi = m for all 1 ≤ i ≤ k, see Fig. 3.0.2. We note that
the reduced prismatoid is a (k, 0)-prismatoid. We present an algorithm that realizes every
(k,m)-prismatoid on the integer grid of size

2⌈k/4⌉ (⌈k/4⌉+ 1)

⌈
1

4
m(15m+ 13)

⌉
× 4⌈k/4⌉

⌈
1

4
m(15m+ 13)

⌉
× 1.
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Ai
Ai+1

Bi

Bi+1

Bi−1

Ai+2

Figure 3.0.1: The initial prismatoid (left) and the reduced prismatoid (right). The triangles
adjacent to the outerface (innerface) are colored grey (white).

Then every prismatoid with n vertices is, trivially, a subpolytope of a (k,m)-prismatoid with
m = max1≤i≤k(max(ai, bi)), see Fig. 3.0.2, and thus can be realized on a grid of size O(n4)×
O(n3)× 1.

Figure 3.0.2: Left: a (k,m)-prismatoid with k = 5,m = 2. The dashed edges represent
the border between grey and white faces and simultaneously the outerface of the reduced
prismatoid. Right: the realization of the initial prismatoid (bold black) induced by a realization
of a (k,m)-prismatoid (grey). Some of the grey faces of the final realization are vertical and
thus not visible.

3.0.2 Realization of the (k,m)-prismatoid

The algorithm follows a two stages approach. First we realize the reduced prismatoid (see
Fig. 3.0.1) and then we reintroduce the missing vertices.

Realization of the reduced prismatoid

We realize the outerface of the reduced prismatoid as a convex polygon with k vertices on a
O(k2) × O(k1) grid (we note that a convex polygon cannot be realized on an asymptotically
smaller grid, see [3]). One possible construction is given by the following procedure: let first
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k = 4l for some l ∈ Z. We define a chain (see Fig. 3.0.3)

Ak = (0,−l),

A1 = Ak + (l, 1),

A2 = A1 + (l − 1, 1),

. . .

Al = Al−1 + (1, 1) = (l(l + 1)/2, 0).

A12

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

Figure 3.0.3: The grid realization of the 12-gon.

Four mirror w.r.t the axes copies of the above chain give a convex 4l-gon. For k not divisible
by 4 we construct a 4⌈k/4⌉-gon and pick any k-vertex subpolygon. Our construction requires
the grid of size ⌈k/4⌉ (⌈k/4⌉+ 1)× 2⌈k/4⌉.

We scale the realization of the outerface by a factor of 2 so that the midpoints of its edges
have integer coordinates. We realize the innerface of the reduced prismatoid as the middle
k-gon (the k-gon whose vertices are the middle points of the edges of the initial k-gon) of
the outerface (see Fig. 3.0.4). To finish the realization of the reduced prismatoid as a convex
polytope, we lift the innerface to the {z = 1} plane, the outerface stays in the {z = 0}. Thus
we realized the reduced (k, 0)-prismatoid on the grid of size

2⌈k/4⌉ (⌈k/4⌉+ 1)× 4⌈k/4⌉ × 1. (3.0.1)

Reintroduction of missing points: general idea

The second step is the reintroduction of the points removed during the reduction. We rein-
troduce the vertices to the outer- and innerface of the reduced prismatoid by replacing the
edges of these faces with the convex chains of length m + 1, see Fig. 3.0.4. We replace every
edge AiAi+1 by a convex chain AiA

1
i . . . A

m
i Ai+1 and every edge BiBi+1 by a convex chain

BiB
1
i . . . B

m
i Bi+1.

The resulting embedding is convex if and only if the following condition holds: For every
edge AiBi or BiAi+1 separating grey and white triangles, the angle between this edge and
the innerface is larger than the angle between this edge and the outerface, that is for every
1 ≤ i ≤ k (we use the cyclic notation for indices)

1. ∠(AiBiB
m
i−1) > ∠(BiAiA

1
i ), and

2. ∠(Ai+1BiB
1
i ) > ∠(BiAi+1A

m
i ).
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Bi

Ai
A1

i

Bm
i−1

B1
i

Am
i

Ai+1

Bi−1

Bi

Bi+1

Ai Ai+1

Figure 3.0.4: Reintroducing the points removed during the initial reduction. Left: bold is the
reduced prismatoid and thin are the chains with the reintroduced vertices. Right: dashed are
the edges separating the white and grey triangles.

We refer to the conditions above as the convexity conditions. We briefly discuss why these
two convexity conditions suffice for the convexity of the prismatoid. To show convexity of the
prismatoid we show that it is convex on every edge. We have edges of four types and we handle
them separately:

• Edges that belong to the outer- or inner- face are convex, since we deploy the outerface
in the {z = 0} and the innerface in the {z = 1} affine planes correspondingly;

• Edges that separate two white triangular faces are convex, since for every 1 ≤ i ≤ k the
chain BiB

1
i . . . B

m
i Bi+1 is a convex chain lying inside the triangle BiAi+1Bi+1;

• Edges that separate two grey triangular faces are convex, since for every 1 ≤ i ≤ k the
chain AiA

1
i . . . A

m
i Ai+1 is a convex chain built on the edge AiAi+1;

• Edges that separate a grey and a white triangular faces. Consider the edge AiBi. It is
incident to two faces AiBiB

m
i−1 and AiBiA

1
i . We argue that the edge AiBi is convex if

on the flat drawing of the prismatoid, Fig. 3.0.4, the angle ∠(AiBiB
m
i−1) is larger than

the angle ∠(BiAiA
1
i ). The spatial realization of the prismatoid is obtained by lifting the

innerface to the {z = 1} affine plane. Let us consider this lifting. Let us fix the face
A1

iAiBi and allow the plane containing the face AiBiB
m
i−1 to rotate around the edge

AiBi. When the edge AiBi is flat, the points A1
iAiBiB

m
i−1 lie on one plane. This plane

dissects two parallel planes {z = 0} and {z = 1} along the edge A1
iAi and BiB

m
i−1,

thus these edges are parallel and the angles ∠(AiBiB
m
i−1) = ∠(BiAiA

1
i ) are equal. The

rotation of the face Bm
i−1BiAi around the edge AiBi, that makes the edge AiBi convex,

increases the angle AiBiB
m
i−1.

Further we present an algorithm that constructs convex chains satisfying these conditions.
The construction that we present is trivial but contains some technical computations. One can
instead use any other construction satisfying the convexity conditions listed above.

Reintroduction of missing points: details

Expansion of the innerface. First we expand the edges of the innerface. Consider one
edge of the innerface, (Bi−1Bi). We will replace it with a convex chain Bi−1B

1
i−1 . . . B

m
i−1Bi

that lies within the triangle Bi−1AiBi, Fig. 3.0.4 (left) and Fig. 3.0.5.
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We start with a realization of the reduced prismatoid. First we scale this realization with
a large factor N , that will be accurately estimated later. Before scaling, the points Bi−1, Ai,
Bi are integral, thus after scaling the vectors

e1 :=
1

N

−−−−→
Bi−1Ai

e2 :=
1

N

−−−→
AiBi

are integral and define an integer grid, see Fig. 3.0.5.

Bi−1

Bi

Ai

B1
i−1

B2
i−1

B3
i−1

e1

e2

Figure 3.0.5: The grid generated by the triangle Bi−1AiBi, expansion of an edge of the inner-
face. To guarantee the convexity condition (1), the last point Bm

i−1 lies above the dotted line
with the slope (1,m) through the point Bi.

We use this grid to construct a convex chain inside the triangle Bi−1AiBi:

B1
i−1 = Bi−1 + (m, 1),

B2
i−1 = B1

i−1 + (m− 1, 1),

B3
i−1 = B2

i−1 + (m− 2, 1),

. . .

Bm
i−1 = Bm−1

i−1 + (1, 1),

where (x, y) = xe1 + ye2. The slope of the last edge Bm
i−1Bi is thus not predetermined by the

construction and we control it later with the choice of the scaling factor N .
The point Bm

i−1 (and thus, the whole chain) lies inside the triangle Bi−1AiBi if and only if

N > m+ (m− 1) + (m− 2) + . . .+ 1 = m(m+ 1)/2. (3.0.2)

This gives the first bound on the scaling factor N . The two convexity conditions (1) and (2),
that we discussed above, later will give us two more bounds on N . In the end of the proof we
will combine these three bounds and define the final scaling factor.

To guarantee the convexity condition (1) on the next step, we need as an additional re-
quirement that the slope of the last edge (Bm

i−1Bi) is at least (1,m) w.r.t. the (e1, e2)-grid,
or equivalently that the point Bm

i−1 lies above the line from Bi in the direction e1 +me2, see
Fig. 3.0.5. That is,

N −m(m+ 1)/2

N −m
>

1

m
or

N >
m2(m+ 1)/2−m

m− 1
= m

m(m+ 1)/2− 1

m− 1
=

1

2
m(m+ 2). (3.0.3)

This gives the second bound on the scaling factor N .
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Bi−1

Bi

Bi+1

Ai+1Ai

Ai−1

Ai+2

Bi−2
Bi+2

Figure 3.0.6: The example shows how to expand an edge of the outerface with m = 3 new
vertices. The available subgrid is big enough to realize any chain of up to m vertices while
guaranteeing the convexity conditions (1) and (2).

Expansion of the outerface. Now we are ready to expand the outerface. We consider an
edge AiAi+1 and replace it with a convex chain AiA

1
i . . . A

m
i Ai+1, Fig. 3.0.6. On the previous

step we generated two integer grids adjacent to this edge (see Fig. 3.0.7) — one coming from
the “left” triangle Bi−1AiBi with the basis vectors

el1 :=
1

N

−−−−→
Bi−1Ai

el2 :=
1

N

−−−→
AiBi,

the other coming from the “right” triangle BiAi+1Bi+1 with the basis vectors

er1 :=
1

N

−−−−→
BiAi+1,

er2 :=
1

N

−−−−−−→
Ai+1Bi+1.

We use the grid coming from the left to define the convex chain AiA
1
i . . . A

m
i Ai+1 and the grid

coming from the right to control the convexity condition (2).

We define the convex chain:

A1
i = Ai + (1,m+ 1)l,

A2
i = A1

i + (1,m+ 2)l,

A3
i = A2

i + (1,m+ 3)l,

. . .

Am
i = Am−1

i + (1, 2m)l,

where (x, y)l = xel1 + yel2, see Fig. 3.0.7.

The convexity condition (1) states that the slope of the first edge AiA
1
i should be smaller

than the slope of the last edge Bm
i−1Bi of the chain ending at the vertex Bi. By condition (2)
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the slope of the last edge Am
i Ai+1 should be smaller than the slope of the first edge BiB

1
i of

the chain starting from the vertex Bi,

∠(Am
i Ai+1Bi) < ∠(Ai+1BiB

1
i ).

The condition (1) is guaranteed by the bound of Eq. (3.0.3) on the scaling factor N that
we discussed above, since the slope of AiA

1
i w.r.t. the left grid is (1,m + 1) and the slope of

Bm
i−1Bi is at least (1,m). We thus proceed with the convexity condition (2) and we rephrase

this condition so that it provides a bound on N . The remainder of the section is devoted to
this computation. The resulting bound on N is presented in Eq. (3.0.4).

Bi

Ai+1
Ai

A2
i A3

i

A1
i

el2

el1

er2

er1

x

y

α β

Figure 3.0.7: The expansion of an edge of the outerface with m = 3 new vertices. The left grid
is light green and the right grid is light blue.

To provide the computations we introduce the euclidean coordinates on the plane: the

x-axis is set parallel to the vector
−−−−→
AiAi+1, the origin is at the point Bi, see Fig. 3.0.7. We

denote the lengths c := |AiAi+1|, cl := |Ai−1Ai|, cr := |Ai+1Ai+2| and the oriented angles
α = ∠(el1, e

l
2) and β = ∠(er1, e

r
2). In these coordinates:

Ai =
(
− c

2
, 0
)
, Ai+1 =

( c
2
, 0
)
,

el1 =
( cl
2N

cos(α),− cl
2N

sin(α)
)
, el2 =

( c

2N
, 0
)
,

er1 =
( c

2N
, 0
)
, er2 =

( cr
2N

cos(β),
cr
2N

sin(β)
)
.

The coordinates of the point Am
i with respect to the left grid are

Am
i = Ai + (1,m+ 1)l + (1,m+ 2)l + . . .+ (1, 2m)l = Ai + (m,m2 +m(m+ 1)/2)l,

where (x, y)l = xel1 + yel2. Thus, in euclidean coordinates

(Am
i )x = − c

2
+m

cl
2N

cos(α) + (m2 +m(m+ 1)/2)
c

2N
,

(Am
i )y = −m

cl
2N

sin(α).

So the slope of the edge Am
i Ai+1 is

(Ai+1 −Am
i )y

(Ai+1 −Am
i )x

=
m cl

2N sin(α)

c−m cl
2N cos(α)− (m2 +m(m+ 1)/2) c

2N

.

The point B1
i with respect to the right grid has coordinates

B1
i = Bi + (m, 1)r,
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where (x, y)r = xer1 + yer2. Thus, in euclidean coordinates

(B1
i )x = m

c

2N
+

cr
2N

cos(β),

(B1
i )y =

cr
2N

sin(β),

and the slope of the edge BiB
1
i is

(B1
i −Bi)y

(B1
i −Bi)x

=
cr
2N sin(β)

m c
2N + cr

2N cos(β)
.

The convexity condition (2) is satisfied if and only if the slope of the edge Am
i Ai+1 is smaller

than the slope of the edge BiB
1
i , that is

(Ai+1 −Am
i )y

(Ai+1 −Am
i )x

<
(B1

i −Bi)y
(B1

i −Bi)x
.

We substitute the computed values, go to the common denominator and obtain

mcl sin(α)[mc+ cr cos(β)] < cr sin(β)[(2Nc−mcl cos(α)− (m2 +m(m+ 1)/2)c]

⇔ mcl sin(α)[mc+ cr cos(β)] + cr sin(β)[mcl cos(α) + (m2 +m(m+ 1)/2)c]

2crc sin(β)
< N

⇐ cl sin(α)[m
2c+mcr] + cr sin(β)[mcl + (m2 +m(m+ 1)/2)c]

2crc sin(β)
< N

⇐ 1

2

cl
cr

sinα

sinβ
m2 +

1

2

cl
c

sinα

sinβ
m+

1

2

cl
c
m+

1

2
(m2 +m(m+ 1)/2) < N.

The first transition holds since the polygon A1, . . . Ak is convex and thus sin(β) > 0. On the
second transition we replace cos(β) and cos(α) on the left hand side with its maximal value 1.
Since sinα > 0 and sinβ > 0 it makes the inequality stronger.

In the construction of the outer- and innerface k-gons presented above, the lengths of any
two consecutive edges differ by no more than a factor of 2 and of any three consecutive edges
by no more than a factor of 3,

cl
c
< 2,

cl
cr

< 3,

and the sines of any two consecutive angles differ by no more than a factor of 2,

sinα

sinβ
< 2.

Thus the last inequality holds if

N > 3m2 + 2m+m+
1

2

(
m2 +

m(m+ 1)

2

)
=

1

4
m(15m+ 13). (3.0.4)

We finally collected all the three constraints on the scaling factor N , Eq. (3.0.2), Eq. (3.0.3)
and Eq. (3.0.4) and the first two of them clearly follow form the third, thus we pick as the
scaling factor

N :=

⌈
1

4
m(15m+ 13)

⌉
.

Combining this bound with the bound of Eq. (3.0.1) on the size of the grid we used to
realize the reduced prismatoid, we deduce that our algorithm realizes a (k,m)-prismatoid on
the integer grid of size

2⌈k/4⌉ (⌈k/4⌉+ 1)

⌈
1

4
m(15m+ 13)

⌉
× 4⌈k/4⌉

⌈
1

4
m(15m+ 13)

⌉
× 1.
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Since every prismatoid with n vertices is a subpolytope of a (k,m)-prismatoid with k,m <
n, every prismatoid can be realized on an integer grid of size

O(n4)×O(n3)× 1.





Chapter 4

Efficient duality transforms in Rd

4.1 Preliminaries

4.1.1 Combinatorics and notation of d-polytopes: overview

Before we proceed with d-dimensional polytopes we review the basic combinatorial properties
and introduce the notation that we use further without additional references. For a compre-
hensive review of d-dimensional polytopes we refer the reader to the book by Ziegler [46]. In
our terminology polytopes are always considered convex, thus we often omit the word “con-
vex” and write simply a d-polytope. For nonconvex polytopes we later introduce the notion of
polytopal surface.

The notion of convex polytopes allows two equivalent approaches, as the convex hull of a
set of points and as the intersection of a set of halfspaces.

Let (u1, . . . un) be a finite set of points in Rd. We remind that the convex hull of this set
of points, Conv(u1, . . . un) is the set of all the convex combinations of (ui):

Conv(u1, . . . un) =

⎧
⎨
⎩
∑

1≤i≤n

αiui :
∑

1≤i≤n

αi = 1, αi ≥ 0

⎫
⎬
⎭ .

Definition 4.1.1 (Convex polytope as a convex hull). The full-dimensional convex hull of a
finite set of points in Rd is called a d-dimensional convex polytope.

A polytope as the convex hull of a set of points is often referred to as a V-polytope. We
note that the points from the definition above are not by default the vertices of the resulting
polytope, however the vertices of the polytope form a subset of the initial set of points.

Definition 4.1.2 (Convex polytope as an intersection of halfspaces). A bounded full-dimensional
subset of Rd which is the intersection of a finite set of halfspaces of Rd is called a d-dimensional
convex polytope.

A polytope as the intersection of a set of halfspaces is often referred to as an H-polytope.
Again we note that the hyperplanes bounding the halfspaces from the definition above are not
by default supporting the resulting polytope, however the set of hyperplanes supporting the
(d− 1)-dimensional faces of the polytope is a subset of the initial set of bounding hyperplanes.

The two definitions of a convex polytope are equivalent (we refer to [46] for details).

Faces. We say that an affine hyperplane α = {x ∈ Rd : ⟨n, x⟩ = c} defined by a normal
vector n ∈ Rd and a constant c ∈ R is a supporting hyperplane for a convex polytope P if

1. The intersection P ∩ α ̸= ∅ is nonempty and
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Figure 4.1.1: There is not much hope to visualize a higher dimensional polytope. Though,
4-dimensional polytopes can be viewed through Schlegel diagrams. A polytope P is centrally
projected to the hyperplane of one of its facets f . The center of projection is chosen outside
the polytope close to the barycenter of f . The right figure illustrates the construction of a
Schlegel diagram (bold) of the 3d cube. The left figure shows a Schlegel diagram of the 4d
cube. Schlegel diagrams are a special case of flat realizations that we discuss in the end of the
section.

2. The whole polytope lies in one of the two halfspaces defined by the hyperplane: P ⊂
{x ∈ Rd : ⟨n, x⟩ ≤ c} or P ⊂ {x ∈ Rd : ⟨n, x⟩ ≥ c}.

Definition 4.1.3. The intersection F = α∩P of a supporting hyperplane α and a polytope P
is called a face of a polytope. For convenience and to comply with tradition we also consider
the whole polytope P and the empty set ∅ being faces of P.

The dimension of a face is the dimension of its affine hull,

Aff(F ) = {a+ t(b− a) : a, b ∈ F, t ∈ R}.

We refer to the faces of the dimension k as k-faces and denote the set of all the k-faces with
Fk(P). The faces of dimension d− 1 are called facets. The faces of dimension d− 2 are called
ridges. The faces of dimensions 0 and 1 are called vertices and edges correspondingly.

Face lattice and combinatorial equivalence. The faces of a convex polytope form a
partially ordered set with respect to the inclusion as a subset. This poset is called the face
lattice of the polytope. The face lattice of a polytope represents the combinatorial structure of
the polytope: We say that two polytopes P and Q are combinatorially equivalent if their face
lattices are isomorphic.

The combinatorial equivalence of polytopes corresponds to a topological equivalence: the
polytopes P andQ are combinatorially equivalent if and only if there exist of a homeomorphism
h : P → Q such that h(F ) is a k-face of Q if and only if F is a k-face of P .

Let F be a k-face of a polytope P. We call the boundary of F and denote with ∂F the set
of (k − 1)-faces of P that are subsets of F . We call the coboundary of F and denote with δF
the set of (k + 1)-faces of P, that contain F as a subset.

Polytopal complexes and the skeleton of a polytope. In defining the notion of polytopal
complex we follow Ziegler [46, chapter 5]:

Definition 4.1.4. A polytopal complex C is a finite collection of polytopes in Rd such that

• the empty polytope is in C;

• if P ∈ C, then all the faces of P are also in C;

• the intersection P ∩Q of two polytopes P , Q in C is a face both of P and of Q.
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The dimension of a complex dim(C) is the largest dimension of a polytope in C.

An immediate example of a polytopal complex is provided by the set of all faces of a convex
polytope. Thus, a convex polytope can be viewed as a polytopal complex.

We call the face lattice of a polytopal complex the polytopal complex itself with the partial
order given by the relation of inclusion as a subset. Thus the notion of face lattice of a polytopal
complex naturally generalizes the notion of face lattice of a polytope. In particular, the face
lattice of a polytope is the face lattice of the polytopal complex of faces of this polytope.

For a convex polytope P we call the k-skeleton of P the polytopal complex of all the faces
of P of dimension smaller or equal than k and we denote with Skk(P). Thus,

Skk(P) = ∪0≤i≤kFi(P).

The k-skeleton of a polytopal complex C is the union of the k-skeletons of the polytopes
contained in it, Skk(C) = ∪P∈C(Skk(P)).

Polarity between points and affine hyperplanes in Rd. Polarity is a bijective corre-
spondence between nonzero vectors (points) and affine hyperplanes not containing the origin
in Rd. Let v ∈ Rd be a nonzero vector. We put into correspondence to v the affine hyperplane
αv ⊂ Rd defined by the equation

v → αv := {x ∈ Rd : ⟨v, x⟩ = 1}.

We call the hyperplane αv the polar dual hyperplane to v. Conversely, for an affine hyperplane
α we call the vector v ∈ Rd the polar dual vector to α if α = αv.

Polarity preserves incidence relations: let the point v ∈ Rd lie in an affine hyperplane
α ⊂ Rd. Then the polar dual hyperplane to v contains the polar dual point to α. As a
consequence, polarity maps a set of coplanar points to a set of hyperplanes passing through
one point, which is the polar dual point to the hyperplane containing the initial points.

Duality and the polar dual polytope. We say that a lattice L is dual to a lattice L∗ if
L∗ is equivalent to L with all the arrows inverted. We say that a polytope P∗ is dual to a
polytope P if their face lattices L(P) and L(P∗) are dual face lattices. Thus, to every k-face
f of P there corresponds a unique dual (d − k − 1)-face f∗ of P∗. By definition, the dual of
the dual polytope (P∗)∗ is combinatorially equivalent to the initial polytope P.

Given a convex polytope P that contains the origin in its interior, there is a standard way
of constructing a polytope dual to P which uses polarity. To every vertex v of P we put into
correspondence the polar dual affine hyperplane αv defined by the equation

αv := {x ∈ Rd : ⟨v, x⟩ = 1}

and a halfspace Hv bounded by αv,

Hv := {x ∈ Rd : ⟨v, x⟩ ≤ 1}.

The polytope obtained as an intersection of the halfspaces Hv for all vertices v of P is called
the polar dual polytope for P, or simply the polar polytope, and is denoted with P∗,

P∗ = ∩v∈F0(P)Hv.

Every defining hyperplane αv is indeed a supporting hyperplane for some facet fv of P∗

and by definition every facet of P∗ in turn corresponds to some vertex of P. Indeed, the polar
dual polytope is a dual polytope and the isomorphism between the face lattices is generated
by the correspondence v → fv.
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Since the polarity in Rd preserves incidences between points and planes, the vertices of the
polar dual polytope are the polar dual points to the faces of the primal polytope. Thus, the
polar dual polytope can be alternatively defined as the convex hull of points that are polar
duals to the faces of the primal polytope. The polar dual to the polar dual polytope is the
primal polytope (P∗)∗ = P .

Details on the structure of (d−1)- and (d−2)-faces of a polytope. Let F be a (d−2)-
face of P. Then the face dual to F is an edge F ∗ of P∗ connecting two vertices f∗ and g∗ of
P∗, which in turn are dual to facets f and g of P. Thus, every (d − 2)-face of P is incident
to exactly two facets f and g (and separates them) and can be denoted as (fg). The notation
(fg) assumes an order of f and g, mnemonically (fg) = −(gf), see Fig. 4.1.2 and Sect. 4.1.3
for details on orientations.

For every (d−3)-face F of P the set δ(F ) of adjacent (d−2)-faces has a natural cyclic order.
Indeed, the dual to F face is a 2-face F ∗ of P∗, that is a simple polygon, whose boundary is a
cycle (f∗

1 , f
∗
2 , . . . , f

∗
k , f

∗
k+1 = f∗

1 ), consisting of 0-faces f∗
i and 1-faces (f∗

i f
∗
i+1) incident to F ∗.

Thus, the (d− 1)-faces incident to F are

(f1, f2, . . . , fk, fk+1 = f1)

and the (d− 2)-faces incident to F are

(f1f2), (f2f3), . . . , (fk, f1)

and there is a natural cyclic order on them.

4.1.2 Conventions on orientations

Orientation on a real vector space. Let L be a d-dimensional real vector space, we say
that it is oriented if a positively oriented basis e1, . . . ed is chosen. Two orders on the same set
of vectors that differ by a permutation σ define the same orientation if and only if σ is an even
permutation. Two bases e = (ei) and f = (fi) define the same orientation if and only if the
determinant

det(f1, . . . fd) > 0,

where the columns are the coordinates of the vectors fi in the basis e. We also say that the
basis e = (ei) is positively (negatively) oriented (or simply positive (negative)) with respect to
the basis f = (fi) and use the notation

signf (e) = ±1.

The standard euclidean space Rd is naturally oriented with the basis

e1 =

⎛
⎜⎜⎝

1
0
. . .
0

⎞
⎟⎟⎠ , e2 =

⎛
⎜⎜⎝

0
1
. . .
0

⎞
⎟⎟⎠ , . . . , ed =

⎛
⎜⎜⎝

0
0
. . .
1

⎞
⎟⎟⎠ .

When some standard basis is assumed, we write simply sign(e) = ±1 to denote that a basis e
is positive (negative) w.r.t this standard basis.

Orientation on an (affine) hyperplane by a choice of normal. Let α be an (affine)
hyperplane in Rd. Then the orientation on α can be prescribed by a choice of a positively
oriented normal vector and we use the “normal - last” rule:
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Let n be a normal vector to α. Then the basis (e1, . . . ed−1) in α is positively oriented w.r.t
the chosen normal n if (e1, . . . ed−1, n) is a positively oriented basis in Rd, or in the notation
of the previous paragraph

sign(e1, . . . ed−1, n) = 1.

Conversely, given a basis e = (e1, . . . ed−1) in α we say that the normal vector n is a positive
normal vector w.r.t e if (e1, . . . ed−1, n) is a positively oriented basis in Rd.

Orientation on an (affine) subspace of Rd of any dimension by an ordered set of
points. Let α be a k-dimensional (affine) subspace of Rd. Then the orientation on α can be
prescribed by a choice of an ordered set of points u1, . . . uk+1 in α: we map a set of points to
a basis

e1 := u1 − uk+1, . . . , ek := uk − uk+1

and appoint this basis as a positively oriented.

This definition complies with the sign of the signed volume (see Subsec. 4.1.4 for an
overview): Let (u1, . . . uk+1) be points in Rk. Then the signed volume of the simplex gen-
erated by these points

Vol(u1, . . . , uk+1) := det

(
u1 u2 . . . uk+1

1 1 . . . 1

)
= det

⎛
⎜⎜⎜⎜⎝

u1
1 u1

2 . . . u1
k+1

u2
1 u2

2 . . . u2
k+1

. . .
uk
1 uk

2 . . . uk
k+1

1 1 . . . 1

⎞
⎟⎟⎟⎟⎠

,

where ui = (u1
i , u

2
i , . . . , u

k
i )

T , is exactly the determinant of the basis generated by these points:

det(u1 − uk+1, . . . , uk − uk+1) = det

(
u1 u2 . . . uk+1

1 1 . . . 1

)
. (4.1.1)

The equation above motivates the following useful observation:

Lemma 4.1.1. Let α be a k-dimensional real vector space. Given two orders on the same set
of points (u1 . . . uk+1) and (uσ(1) . . . uσ(k+1)) they define the same orientation if and only if σ
is an even permutation.

Proof. We fix any euclidean structure on α so that α = Rk. Then two bases (e1, . . . ek) and
(e′1 . . . e

′
k) defined by the given sets of points have the same orientation if and only if the

determinants det(e1, . . . ek) and det(e′1, . . . e
′
k) have the same sign. The reference to Eq. (4.1.1)

finishes the proof.

We say that the set of points u = (u1 . . . uk+1) is positively (negatively) oriented w.r.t some
basis e = (e1, . . . ek) and write

signe(u) = 1

if the orientation defined by the set of points u coincides with the orientation of the basis e.
If the orientation defined by u is opposite to the orientation of e, we say that u is negatively
oriented w.r.t e and write signe(u) = −1. When some standard basis e is assumed, we write
simply sign(u) = ±1.

We remark that this definition might appear counterintuitive in R: the orientation on the
line through two points A and B given by an order of the points (A,B) corresponds to the

orientation given by the basis vector
−−→
BA.
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4.1.3 Orientation on faces of a polytope

Orientation on facets. Let P be a convex polytope. Then for every facet f the outer
normal vector nf is defined as a vector normal to f and directed outside of the polytope P.
Thus every facet is canonically oriented by this choice of the normal vector, see Fig. 4.1.2.

In particular, let (uf
1 , . . . u

f
d) be a sequence of affinely independent points in f . Then these

points define positive orientation on f if and only if (uf
1 − uf

d , . . . u
f
d−1 − uf

d , nf ) is a positively

oriented basis in Rd,
det(uf

1 − uf
d , . . . u

f
d−1 − uf

d , nf ) > 0. (4.1.2)

Orientation on (d−2)-faces. Let f and g be two adjacent facets and let (fg) be the (d−2)-
face separating them. The facets f and g are canonically oriented by the outer normal vectors
of P. We define the canonical orientation on (fg) as follows. Let (u1, . . . ud−1) be any set of
affinely independent points in (fg), let uf be a vertex of f \ (fg) and ug be a vertex of g \ (fg),
see Fig. 4.1.2.

Definition 4.1.5. We say that the ordered set of points (u1, . . . ud−1) defines a positive ori-
entation on (fg) and denote with sign(fg)(u1, . . . ud−1) = 1 if

signf (u1, . . . ud−1, uf ) = −1,

signg(u1, . . . ud−1, ug) = 1,

where by signf (u1, . . . ud−1, uf ) = 1(−1) we denote that the ordered set (u1, . . . ud−1, uf ) is
positively (negatively) oriented in f .

u1

u2

uf

ug

ng

nf

(fg)

f

g

(fg) = (u1, u2) = −−→u2u1,
(f) = −(u1, u2, uf ),
(g) = (u1, u2, ug).

Figure 4.1.2: The orientation on (d − 1)- and (d − 2)-dimensional faces in the case d = 3.
The order (u1, u2, ug) defines the positive orientation on g w.r.t the positive normal ng. The
order (u1, u2, uf ) defines the negative orientation on f w.r.t the positive normal nf . Thus, the
order (u1, u2) defines a positive orientation on (fg). Counterintuitively, but by definition, the
positive basis vector on the line spanned by (u1, u2) that corresponds to the orientation given
by the order (u1, u2) is directed from u2 to u1.

Clearly, the two conditions of the above definition are equivalent. Moreover, by the defini-
tion

sign(fg)(u1, . . . ud−1) = − sign(gf)(u1, . . . ud−1).

4.1.4 Volumes

Signed volume of a full dimensional simplex. Let u = (u1 . . . ud+1) be a set of points
in Rd. Then the signed volume is the determinant of the set of vectors generating the simplex
u, where as a convention we subtract the last point ud+1 from all the others to go from the set
of points to a set of vectors, and we use the standard notations:

Vold(u1, . . . ud+1) = det(u1 − ud+1, u2 − ud+1, . . . , ud − ud+1)

= det

(
u1 u2 . . . ud+1

1 1 . . . 1

)
.
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We note that analogously to the 3d setup, we use a nonstandard rescaling for volume, as we do
not multiply the determinant with 1

d! . Thus, the volume of the simplex formed by the vectors
of an orthonormal basis equals 1, while the volume of the unite cube equals d!. We use as a
shortcut notation:

[u1, . . . ud+1] := Vold(u1, . . . ud+1).

Signed volume of a k-dimensional simplex in Rd. Let α ⊂ Rd be a k-dimensional affine
subspace with a chosen orientation and let (u1 . . . uk+1) be a sequence of affinely independent
points in α, thus forming a k-dimensional simplex T . Then we naturally compute the volume
of T as follows: We choose an orthonormal basis e = (e1 . . . ek) in α that is positively oriented
with respect to the initial orientation on α. Then α has a structure of Rk and we compute the
standard signed volume

Volk(u1, . . . uk+1) = det

(
u1 u2 . . . uk+1

1 1 . . . 1

)
,

where the coordinates of points ui are in the basis e.

Special case: volumes of facets of a polytope. As described in the Sect. 4.1.3, every
facet f of a polytope has an orientation defined by the outernormal vector nf . Then for a
simplicial facet f = (u1, . . . ud) the signed volume equals

Vold−1(u1, . . . ud) = det(u1 − ud, . . . , ud−1 − ud, nf ).

Nonsigned volumes. The signed volumes require the containing space to be oriented. How-
ever in many cases the orientation on the containing space is not prescribed. In this case we
compute the nonsigned volumes, that is effectively the signed volume with respect to the
orientation defined by the set of points itself.

Let (u1 . . . uk+1) be affinely independent points in Rd, thus forming a k-dimensional simplex
T lying in a k-dimensional affine subspace α of Rd. When α is not oriented, we compute the
nonsigned volume of T as follows. We define an orientation on α by the given set of points
(u1 . . . uk+1) and then compute the signed volume with respect to this orientation.

We choose an orthonormal basis e = (e1 . . . ek) in α that is positively oriented with respect
to the set of points (ui). Then α has a structure of Rk and we compute the standard signed
volume

Vol+k [u1, . . . uk+1] = det

(
u1 u2 . . . uk+1

1 1 . . . 1

)
,

where the coordinates of points ui are in the basis e. Thus, by definition, the nonsigned volume
Vol+k [u1, . . . uk+1] is always nonnegative (and positive for a nondegenerate set of points), what
motivates the notation.

4.1.5 Realizations of polytopes

The main question of this chapter is the following: given a convex d-polytope P, find a convex
d-polytope Q that is combinatorially equivalent to P and that has small integer coordinates of
its vertices. In other words, we are looking for realizations of a given polytope P as a convex
polytope with small integer coordinates. To attack this problem, we use many other types of
realizations of polytope, which we introduce below.

Realizations of polytopes allow two equivalent natural approaches: as polytopal complexes
and as maps. We present both. As usual, we use a strong analogy with the 3d case, where the
combinatorics of the polytope is predetermined by its graph and thus where we studied the
realizations of graphs of polytopes in R3.
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Realizations of polytopes as polytopal complexes

Definition 4.1.6. Let P be a convex d-polytope.

• We call a convex d-polytope that is combinatorially equivalent to P a realization of P as
a convex polytope;

• We call a (d − 1)-dimensional polytopal complex whose face lattice is equivalent to the
(d− 1)-skeleton of P a realization of P as a polytopal surface;

• We call a (d − 2)-dimensional polytopal complex whose face lattice is equivalent to the
(d− 2)-skeleton of P a ridged realization of P .

By the higher dimensional generalization of Whitney’s theorem [13, Theorem 12.3.1], the
combinatorial structure of a d-polytope is predetermined by its (d − 2)-skeleton. Thus, the
combinatorial structure of a polytope is recoverable from its ridge realization as well as from its
realization as a polytopal surface. (A realization as a convex polytope tells the combinatorial
structure by definition.) In particular, that allows us to use the terms polytopal surface and
ridged realization without mentioning the underlying polytope.

Counterintuitively, we say that a polytopal surface is d-dimensional if the underlying poly-
tope is d-dimensional. A polytopal surface can be viewed as a nonconvex self-intersecting
generalization of a convex polytope.

Ridged realizations of a polytope is the least restrictive class of realizations which we use
and on which we are able to define the notions of stress. We remark, that for polytopes with
simplicial (d−2)-faces, in particular, for simplicial polytopes, the notion of ridged realization is
tautological: every embedding of vertices of such a polytope P in Rd, Rd−1 or Rd−2 of general
position realizes every (d − 2)-face as a convex polytope and thus defines a ridged realization
of P . Ridged realizations generalize to Rd the straight-line embeddings of graphs in R3.

We make an intense use of realizations of d-polytopes in Rd−1 thus we introduce two “flat”
types of realizations. The planar realization below generalizes the planar embedding of a graph
to a plane:

Definition 4.1.7. Let P be a convex d-polytope.

• We call the realization of P as a polytopal surface in Rd−1 a flat realization.

• We call a flat realization planar if it lies within the realization of one distinguish outerfacet
f and the realizations of all the other facets are pairwise interiorly disjoint.

Realizations of polytopes as maps

Another natural approach to realizations of polytopes, which directly generalizes the notion of
realizations of graphs, and allows to track orientations, is given by maps:

Definition 4.1.8. Let P be a convex d-polytope. We say that a continuous map h : P → Rm

realizes P in Rm. In particular,

• A map h realizes P as a convex polytope if h is a homeomorphism onto its image, h(P )
is a convex polytope and h(f) is a k-face of h(P ) if and only if f is a k-face of P for
every 0 ≤ k ≤ d;

• A map h realizes P as a polytopal surface if for every facet f of P the map h realizes f
as a convex (d− 1)-polytope;

• A map h defines a ridged realization of P if for every (d − 2)-face f of P the map h
realizes f as a convex (d− 2)-polytope;
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Due to the topological description of combinatorial equivalence of polytopes, the definition
above is consistent with the definition in terms of polytopal complexes: a polytope (or a
polytopal complex) is a realization (as a convex polytope / as a polytopal surface / a ridged
realization) in terms of Definition 4.1.6 if and only if it is the image of some realizing map (of
the corresponding type) in terms of Definition 4.1.8.

Orientations on realizations

We always assume that the d-polytope P that is being realized comes oriented. In particular
every facet of P comes with an ordered set of d points on it, that define the positive orientation
of this facet. Though, the combinatorial structure of a polytope does not contain any informa-
tion about the orientation. Thus the realizations of a polytope viewed as polytopal complexes
do not inherit the orientation of the underlying polytope. However, realizations seen as images
of maps do. Thus, when we work with orientations on realizations, we always assume that
some realizing map h is fixed. As a consequence, every facet of a realization is oriented with
an ordered set of points.



82 CHAPTER 4. EFFICIENT DUALITY TRANSFORMS IN RD

4.2 Approaches to stresses in higher dimensions

In this subsection we review some of the existing approaches to the notions of equilibrium and
braced stresses in higher dimensions and the interconnections between them.

4.2.1 Equilibrium stress

We start with a generalization to higher dimensions of the concept of equilibrium stress on an
embedding of a graph to a plane. We follow the approach presented by Rybnikov [32].

Let P be a ridged realization of a d-polytope P in Rd−1. Let (fg) be a (d−2)-face separating
two facets f and g. Then the face (fg) spans a (d− 2)-dimensional hyperplane in Rd−1 and it
has two opposite unit normal vectors n1 and n2. The face (fg) is as usual oriented, thus one
of the normal vectors is the positive normal vector. We denote the positive unit normal vector
to (fg) within Rd−1 with nfg, see Fig. 4.2.1. Naturally, nfg = −ngf .

u1

u2

ug uf

nfg

fg

Figure 4.2.1: The positive normal nfg to a (d− 2)-face (fg) = (u1, u2) in the case d = 3.

Definition 4.2.1 (Equilibrium stress). Let P be a ridged realization of a d-polytope in Rd−1.
The assignment Ω : Fd−2(P) → R of reals to (d − 2)-faces of P (we shortcut Ω(F ) with ΩF )
is called an equilibrium stress if

∑

(fifi+1)∈δ(F )

Ωfifi+1 Vol
+
d−2(fifi+1)nfifi+1 = 0 (4.2.1)

for every (d− 3)-face F of P, where the sum goes over the cycle δ(F ) of (d− 2)-faces adjacent
to F .

We remark that the notation that we use in the definition above is different from the
notation that we use in the 3d case, Definition 2.2.1: In the 3d case every (d − 2)-face is
an edge and we denote it through its endpoints. In the higher dimensions this notation is
inapplicable and we use the notation through the incident faces. However the two definitions
are consistent, see Fig. 4.2.2 and the discussion of the 3d case below.

We call the equation Eq. (4.2.1) the local equilibrium condition. The stresses are assigned
to nonoriented faces, for a (d− 2)-face (fg), Ω(fg) = Ω(gf). We also note that the volumes in
the definition are unsigned (positive).

The notion of equilibrium stress is clearly invariant under isometries of Rd−1: Let P be a
ridged realization of a d polytope P in Rd−1, let h : Rd−1 → Rd−1 be an isometry, let Q = h(P)
be the image of P under the isometry h. Then any equilibrium stress on P is an equilibrium
stress on Q.

Equilibrium stresses on P form a linear space w.r.t. the pointwise addition and multipli-
cation with real scalars. We denote this space with EQ(P). For a planar realization P we call
and equilibrium stress Ω positive if it is positive on every nonboundary (d − 2)-face, that is
Ωfg > 0, ∀(fg) ∈ Fd−2(P), f, g ̸= f0, where f0 is the outerfacet. In applications we mainly
need the following global reformulation of the equilibrium condition:

Lemma 4.2.1 (Global equilibrium condition). In the setup of Definition 4.2.1, Ω is an equi-
librium stress if and only if it satisfies the global equilibrium condition

∑

(fifi+1)∈Γ

Ωfifi+1
Vol+d−2(fifi+1)nfifi+1

= 0, (4.2.2)
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where Γ is any cycle Γ = {f1, f2, . . . , fn = f1} of adjacent facets fi ∼ fi+1 of P.

Proof. The implication from global to local is trivial. To check the reverse we show that any
cycle Γ in the graph of a dual polytope Γ ∈ Sk1(P∗) can be decomposed into a collection of
elementary cycles — boundaries of 2-faces. This is true since the 1-homologies of P are null.

The link to the 3d case. For d = 3, the (d− 2)-dimensional faces are edges, so the stress
defined by Definition 4.2.1 assigns reals to the edges. An edge e can be denoted through its
two endpoints, e = (uiuj) or through two incident faces, e = (gf). In the 3-dimensional setup
of Definition 2.2.1 we follow a well established tradition and use the notation through the
endpoints. In the higher dimensional setup of Definition 4.2.1, the (d− 2)-face is an arbitrary
(d−2)-dimensional convex polytope and the notation through the endpoints in not applicable.
Thus we use the notation through the incident faces. In case d = 3 both definitions are
applicable and define the same object. Indeed, by definition

Vol+d−2(fg)ngf = (uj − ui)
⊥

for an edge (uiuj) incident to faces f and g so that g lies to the left and f lies to the right of−−→ujui. Thus the d-dimensional equilibrium condition of Eq. (4.2.1) is the π/2 rotation of the
3-dimensional equilibrium condition of Eq. (2.2.1), see Fig. 4.2.2.

ui
uj

ul

uk g

h

f

ngf

nhg

nfh

0 =
∑

(fifi+1)∈δ(ui)
ωfifi+1V ol+d−2(fifi+1)nfifi+1

= ωgf |uj − ui|ngf + ωhg|uk − ui|nhg + ωfh|ul − ui|nfh
= (ωgf (uj − ui) + ωhg(uk − ui) + ωfh(ul − ui))

⊥ = 0

ngf = (uj − ui)
⊥/|uj − ui|

Figure 4.2.2: The link between the 3-dimensional and the higher dimensional setups.

4.2.2 Braced stress

Below we generalize to higher dimensions the notion of braced stress that we introduced in
Sect. 2.3. As for the equilibrium stress, the generalization contains the 3d case as a special
case. We do not follow in our presentation any previously published text as we are not aware
of any that describes the object that satisfies our needs. However the object that we define is
closely connected to Colin de Verdière matrices for graphs of d-polytopes and as a source of
inspiration we used the work of Izmestiev on the subject [17].

Our generalization is direct and to use the definition of 3d braced stress in higher dimensions
we start with reviewing some approaches to generalizing the notion of cross product.

Generalization of cross product to higher dimensions

Let e be a convex k-polytope in Rd. We remind that we call e oriented if it comes with an
ordered set of k + 1 affinely independent points (e1, e2, . . . , ek+1) in it.

For a (d − 2)-dimensional embedding of a (d − 2)-polytope e in Rd that is oriented by a
chosen set of points e1, . . . ed−1, and any additional point v ∈ Rd we define the oriented volume
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of the convex hull of e, v and the origin as

Vold(e, v,0) = det(e1, . . . ed−1, v)
Vol+d−2(e)

Vol+d−2(e1, . . . ed−1)

and we use a natural shortcut notation [e, v,0] := Vold(e, v,0). Clearly, [e, v,0] is linear on
v and thus there exists a vector Ue ∈ Rd such that [e, v,0] = ⟨Ue, v⟩ for every v ∈ Rd. This
motivates the definition (see Fig. 4.2.3):

Definition 4.2.2 (Generalization of cross product). Let e be an oriented (d − 2)-polytope in
Rd. We define the vector Ue ∈ Rd such that

⟨Ue, v⟩ = Vold(e, v,0) ∀v ∈ Rd.

In the case of d = 3, the polytope e is a directed line segment e = (a, b) and Ue = a × b,
thus Ue is a natural generalization of the cross product. The vector Ue is clearly orthogonal
to the hyperplane (0, e) spanned by the origin and the (d− 2)-polytope e. Indeed, a stronger
geometrical property holds:

Lemma 4.2.2. Let e be an oriented (d − 2)-polytope in Rd lying in the affine hyperplane
{xd = 1}. Then

pr{xd=0} Ue = −Vol+d−2(e)ne, (4.2.3)

where pr{xd=0} is the orthogonal projection to the hyperplane {xd = 0} ⊂ Rd and ne is the
positively oriented unit normal to e inside the hyperplane {xd = 1}.

As an immediate corollary we also have that

Corollary 4.2.1. In the setup of the lemma above

⟨Ue, ne⟩ = −Vol+d−2(e).

Proof of Lemma 4.2.2. By the definition of Ue and ne it is enough to prove the lemma for the
case e is a simplex with the orientation given by an order on its vertices e = (e1, . . . ed−1).

Trivially Ue is orthogonal to the hyperplane (0, e) spanned by the origin and e. Thus,
pr{xd=0} Ue is parallel to ne, and it remains to show that

⟨Ue, ne⟩ = −Vol+d−2(e).

Let ek = ēk + nd where ēk lies in {xd = 0} and nd = (0, . . . , 0, 1)T is the unit normal to
{xd = 0}. Then by the definition of Ue the right hand side equals

⟨Ue, ne⟩ = det(e1, . . . , ed−1, ne)

= det(ē1 + nd, . . . , ēd−1 + nd, ne)

= det(ē1, . . . , ēd−1, ne) +
∑

1≤i≤d

(−1)d−k det ((ē1, . . . ēd−1) \ ēk, ne, nd)

=
∑

1≤i≤d−1

(−1)d−k det ((ē1, . . . ēd−1) \ ēk, ne, nd) ,

where we denote with (ē1, . . . ēd−1) \ ēk the ordered set of points with missing ēk. The last
equation holds since det(ē1, . . . , ēd−1, ne) = 0 as a determinant of d vectors lying in a (d− 1)-
dimensional hyperplane {xd = 0}. On the other hand Vol+d−2(e) equals the volume of the
projection of e onto {xd = 0}:

Vol+d−2(e) = Vol+d−2(ē1 . . . ēd−1)

= det(ē1 − ēd−1, . . . , ēd−2 − ēd−1, ne, nd)

=
∑

1≤i≤d−1

(−1)d−1−k det((ē1, . . . , ēd−1) \ ēk, ne, nd).
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Braced stress

Let P be a ridged realization of a d-polytope P. Then for every (d− 2)-face (fg) of P we can
define the generalized cross product U(fg), see Fig. 4.2.3.

u1

u2

uf

ug

(fg) = (u1, u2) = −−→u2u1

Ufg = u1 × u2

f

g

0 = (0, 0, 0)T

Figure 4.2.3: The generalized cross product Ufg of a (d−2)-face (fg) of a ridged realization of a
d-polytope in case d = 3. In 3d case the face (fg) is an oriented edge (u1, u2) and Ufg = u1×u2.
We remind that an edge oriented with an order on its vertices is directed counterintuitive.

We use the generalized cross product U(fg) very often, so, when it does not lead to confusion
we use a shortcut notation which omits brackets and write Ufg instead of U(fg). With the

generalization of the cross product in hands we can define braced stresses in Rd:

Definition 4.2.3 (Braced stress). Let P be a ridged realization of a d-polytope in Rd. The
assignment Ω : Fd−2(P) → R of reals to (d− 2)-faces of P is called a braced stress if

∑

(fifi+1)∈δ(F )

Ωfifi+1
Ufifi+1

= 0 (4.2.4)

for every (d− 3)-face F of P, where the sum goes over the cycle δ(F ) of (d− 2)-faces adjacent
to F and we denote with Ufg the generalized cross product for a (d− 2)-face (fg) of P.

We call Eq. (4.2.4) from the definition above the local braced equilibrium condition.

Lemma 4.2.3 (Global property of the braced stresses). In the setup of Definition 4.2.3, Ω is
a braced stress if and only if it satisfies the global braced equilibrium condition:

∑

(fifi+1)∈Γ

Ωfifi+1
Ufifi+1

= 0,

where Γ is any cycle Γ = {f1, f2, . . . , fn = f1} of adjacent facets fi ∼ fi+1 of P.

Proof. The proof mimics the proof of Lemma 4.2.1.

Braced stresses on P form a linear space w.r.t. the pointwise addition and multiplication
with real scalars. We denote this space with BR(P).

A second notation for the cross product and the braced equilibrium condition

A slightly different point of view on the generalization of the cross product is possible, that
produces a binary operation.

Let F be a (d − 3)-dimensional polytope in Rd and let u be any vector in Rd. Then we
define the cross product

F × u := U(F,u),
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where we denote with (F, u) the convex hull Conv(F, u). The defined operation is linear on
the second argument: Indeed, by definition F × u = U(F,u) is such a vector that

U(F,u)x = Vold((F, u), x,0) = det(uF
1 , . . . , u

F
d−2, u, x)

Vol+d−3(F )

Vol+d−3(u
F
1 , . . . u

F
d−2)

for any x ∈ Rd, where (uF
1 , . . . u

F
d−2) is any set of affinely independent points in F . The right

hand side is linear on u, thus

UF,λu+βvx = λ det(F, u, x) + β det(F, v, x) = λU(F,u)x+ βU(F,v)x, ∀x ∈ Rd

⇔ UF,λu+βv = λU(F,u) + βU(F, v)

⇔ F × (λu+ βv) = λF × u+ βF × v.

So we have the 3-dimensional cross product of two vectors a × b generalized to Rd with
F × u where F is a (d − 3)-dimensional polytope and u is a vector in Rd. (We remark, that
for the definition F can be any (d−3)-dimensional measurable subset of Rd, however we never
use generality more than of a polytope.)

Braced equilibrium condition revisited

A binary operation introduced above allows a convenient restatement of the braced equilibrium
condition for simplicial polytopes. Let e be a (d− 2)-dimensional face of a polytope P. Then
it allows two points of views: (1) as a (d− 2)-face separating two facets f and g and then we
use the notation e = (fg) or (2) as a (d− 2)-face spanned by one of its subfaces, a (d− 3) face
F , and the vertex u of e that does not lie in this subface, u ∈ e \ F Then we use the notation
e = (F, u), see Fig. 4.2.4. These two points of view are equivalent and we use the freedom to
switch between them depending on the context.

f1

f2

f3

f4

f5

F

u1

u2

u3 u4

u5

(f1, f2) = (F, u1)

f1

f2

f3

f4 f5

F

u1

u2

u3 u4

u5

(f1, f2) = (F, u1)

Figure 4.2.4: The cycle of (d − 2)-faces (F, ui) incident to a (d − 3)-face F , in simplicial case
(left) and in general case (right), for d = 4.

Let us now return to the definition of braced stress. The braced equilibrium condition
states that ∑

(fifi+1)∈δ(F )

Ωfifi+1Ufifi+1 = 0

for every (d− 3)-face F of P, where the sum goes over the cycle of (d− 2)-faces adjacent to F .
Thus, every (d−2)-face (fifi+1) is in fact a face spanned by the (d−3)-face F and some vertex
ui that does not lie in F , thus (fifi+1) = (F, ui), see Fig. 4.2.4. The equation (fifi+1) = (F, ui)
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assumes an orientation on F , we choose it so that the equation holds: as usual we orient F
with an order on its vertices F = (uf

1 , . . . u
f
d−2) so that adding the vertex ui to the end makes

the orientation on (F, ui) = (uf
1 , . . . , u

f
d−1, ui) coincide with the orientation on (fifi+1). It is

a straightforward check that the orientation on F induced by the equation (fifi+1) = (F, ui)
does not depend on the index i.

The above notation allows us to operate with d-dimensional braced stresses in exactly the
same way as in 3-dimensional case: We rewrite the left hand side of Eq. (4.2.4):

∑

(fifi+1)∈δ(F )

Ωfifi+1
Ufifi+1

=
∑

uj∈N(F )

Ω(F,uj)F × uj

= F ×

⎛
⎝ ∑

uj∈N(F )

Ω(F,uj)uj

⎞
⎠ ,

where the last transition holds since the generalized cross product is linear on the second
argument; and where N(F ) denotes the set of vertices of P that are “neighbours” of the
(d − 3)-face F , that is whose convex hull with F form a (d − 2)-face of P. Thus, the local
braced equilibrium condition of Eq. (4.2.4) is equivalent to

F ×

⎛
⎝ ∑

uj∈N(F )

Ω(F,uj)uj

⎞
⎠ = 0.

This in turn is equivalent to that the sum
∑

uj∈N(F ) Ω(F,uj)uj lies in the (d− 2)-dimensional
plane spanned by the face F and the origin, what we can denote as

∑

uj∈N(F )

Ω(F,uj)uj ∥ F. (4.2.5)

So, the notion of braced stress in Rd is indeed a straightforward generalization of the braced
stress for graphs in R3, where instead of the set of neighbours (uj)j∈N(i) of a vertex ui we have
a set of (d− 2)-faces (F, uj)j∈N(F ) incident to a given (d− 3)-face F , see Fig. 4.2.4. For d = 3
the (d−3)-face F of P is a vertex u and Eq. (4.2.5) is exactly the braced equilibrium condition
in 3d.

For nonsimplicial polytopes we also can use the cross-product notation in higher di-
mensions. The definition of the cross product F × u does not use the fact that F is simplicial.
For a nonsimplicial (d− 2)-face e that has a (d− 3)-dimensional subface F we can select any
point u that does not lie in this subface, u ∈ e \ F and then clearly

Ufifi+1 =
Vol+d−2(ei ∈ δ(F ) : ui ∈ ei)

Vol+d−2(Conv(F, ui))
F × ui,

where in the nominator we compute the volume of the (d−2)-face adjacent to F that contains
the vertex ui.

Thus for nonsimplicial polytopes the braced equilibrium condition is equivalent to

∑

ui∈N(F )

Ω(F,ui)

Vol+d−2(ei ∈ δ(F ) : ui ∈ ei)

Vol+d−2(Conv(F, ui))
ui ∥ F.

This however looks pretty monstrous and we never have to use it.
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4.2.3 From equilibrium stresses to braced stresses and back

A braced stress on a flat embedding is an equilibrium stress

Lemma 4.2.4. Let P be a ridged realization of a d-polytope P in some hyperplane α of Rd

that does not contain the origin. Then every braced stress ω on P is an equilibrium stress on
P.

Proof. W.l.o.g we assume that α = {xd = 1}. Then by Lemma 4.2.2

pr{xd=0} U(fg) = −Vol+d−2(fg)nfg.

This completes the proof.

An equilibrium stress on a flat embedding is a braced stress

Lemma 4.2.5. Let P be a ridged realization of a d-polytope P in the (d − 1)-dimensional
Euclidean space X and let ω be an equilibrium stress on P. Then for any realization of X as
an affine hyperplane in Rd, ω is a braced stress on P.

Proof. Let X be realized as a hyperplane in Rd. We choose the Euclidean coordinates so that
this hyperplane is X = {xd = 1}.

We prove that for every (d− 3)-face F of P
∑

(fifi+1)∈δ(F )

Ωfifi+1Ufifi+1 = 0.

We do it in two steps: (1) we prove that the projection of the sum onto the {xd = 0} hyperplane
is zero and (2) we prove that the component orthogonal to {xd = 0} is zero as well.

(1) Indeed, by Lemma 4.2.2

pr{xd=0}

⎛
⎝ ∑

(fifi+1)∈δ(F )

Ωfifi+1Ufifi+1

⎞
⎠ = −

∑

(fifi+1)∈δ(F )

Ωfifi+1 Vol(fifi+1)nfifi+1 = 0

by the definition of equilibrium stress.

(2) We prove that

pr{xd=0}T

⎛
⎝ ∑

(fifi+1)∈δ(F )

Ωfifi+1
Ufifi+1

⎞
⎠ = 0.

First we prove that the notion of braced stress is invariant under parallel translations within
the affine hyperplane {xd = 1}: Let ha : Rd → Rd be the affine transformation of Rd that sends
every x ∈ {xd = 1} to ha(x) = x + a for some vector a ∈ {xd = 0} and such that ha(0) = 0.
This transformation is trivially volume preserving. Thus,

⟨U(ha(fg)), v⟩ = Vold(ha(fg), v,0)

= Vold((fg), h
−1
a (v), h−1

a (0)) = ⟨Ufg, h
−1
a (v)⟩ ∀v ∈ Rd,

where the second transition holds since ha preserves volumes and the last transition holds since
ha(0) = 0. The stress ω is a braced stress on the translated polytope ha(P) = P + a if and
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only if

∑

(fifi+1)∈δ(F )

Ωfifi+1
Uha(fifi+1) = 0

⇔
∑

(fifi+1)∈δ(F )

Ωfifi+1
⟨Uha(fifi+1), v⟩ = 0 ∀v ∈ Rd

⇔
∑

(fifi+1)∈δ(F )

Ωfifi+1
⟨Ufifi+1

, h−1
a v⟩ = 0 ∀v ∈ Rd

⇔
∑

(fifi+1)∈δ(F )

Ωfifi+1
Ufifi+1

= 0,

and the last condition is the definition of ω being a braced stress on P.
Thus, the braced stress is translational invariant within {xd = 1} and w.l.o.g we suppose

that P is embedded into {xd = 1} so that ed = (0, 0, . . . , 0, 1) ∈ F , or, equivalently, so that
the origin lies inside the orthogonal projection of F onto {xd = 0}. Then

⟨U(fifi+1), ed⟩ = Vold((fifi+1), ed,0) = 0

for any (fifi+1) since ed lies in F and thus in every (fifi+1). But by definition

pr{xd=0}T Ufg = ⟨Ufg, ed⟩,

which means that every summand of the sum in question is zero, thus the whole sum is zero
as well.

4.2.4 Scalability of braced stresses

Analogously with the 3-dimensional case, any braced stress of an embedding can be rescaled
together with the embedding:

Lemma 4.2.6. Let C = (ui)1≤i≤n be a ridged realization of a simplicial d-polytope in Rd and
let Ω : Fd−2(C) → R be a braced stress for C. Let C ′ := (λ(ui)ui)1≤i≤n be any rescaling of C
with λ(ui) ∈ R.

Then the map prC→C′ : R|Fd−2(C)| → R|Fd−2(C)| defined as

(prC→C′ Ω)(uf
1 ,...u

f
d−1)

=
1

∏
1≤i≤d−1(λ(u

f
i ))

Ω(uf
1 ,...u

f
d−1)

, ∀(uf
1 , . . . u

f
d−1) ∈ Fd−2(C)

is a linear isomorphism between the linear spaces of braced stresses on C and C ′ with prC→C′ ◦
prC′→C = Id .

Proof. The linearity of the map is trivial. Since the map is symmetric w.r.t C and C ′, to prove
the lemma it is enough to show that for every braced stress Ω on C the image prC→C′ Ω is a
braced stress on C ′. We prove that for every (d− 3)-face F ′ of C ′

F ′ ×

⎛
⎝ ∑

u′
j∈N(F ′)

(prC→C′ Ω)(F ′,u′
j)
u′
j

⎞
⎠ = 0.

This holds since, for F ′ being the image of the face F of P,
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F ′ ×

⎛
⎝ ∑

u′
j∈N(F ′)

(prC→C′ Ω)(F ′,u′
j)
u′
j

⎞
⎠ =

⎛
⎝ ∏

ui∈F0(F )

λ(ui)

⎞
⎠F

×

⎛
⎝ ∑

uj∈N(F )

1∏
ui∈F0(F )∪uj

λ(ui)
Ω(F,uj)λ(uj)uj

⎞
⎠

= F ×

⎛
⎝ ∑

uj∈N(F )

Ω(F,uj)uj

⎞
⎠ = 0.

4.2.5 Canonical braced stress

Analogously to the 3d case with every d-dimensional polytopal surface P one associates the
canonical braced stress Ωc.

Definition 4.2.4. Let P be a d-dimensional polytopal surface such that none of its facets lies
on a hyperplane passing through the origin. The canonical braced stress Ωc is the assignment
of reals to the (d− 2)-faces of P such that

φg − φf = Ωc
fgUfg (4.2.6)

for every (d− 2)-face (fg) separating facets f and g, where φg and φf are the polar vectors to
the facets f and g.

A priory the existence of such an assignment is not guaranteed, thus we prove the existence
and that the defined object is indeed a braced stress of the embedding:

Lemma 4.2.7. The canonical braced stress is well-defined and is a braced stress on the un-
derlying polytopal surface.

Proof. By the definition of canonical braced stress none of the facets of P lie in a hyperplane
passing through the origin, thus Ufg ̸= 0 for every (d− 2)-face of P. It remains to show that

φg − φf ∥ Ufg.

For every point u ∈ (fg)

⟨φg − φf , u⟩ = ⟨φg, u⟩ − ⟨φf , u⟩ = 1− 1 = 0

and
⟨Ufg, u⟩ = 0

by the definition of Ufg. Thus Ufg and φg−φf are orthogonal to the hyperplane spanned by the
origin and the face (fg), so they are parallel. Thus the canonical braced stress is well-defined
by Eq. (4.2.6).

To show that Ωc is a braced stress on P we check the braced equilibrium condition: let
Γ = (f1, f2, . . . fn = f1) be any cyclic sequence of adjacent facets of P, then by definition

∑

(fifi+1)∈Γ

Ωc
fifi+1

Ufifi+1 =
∑

Γ

(φfi − φfi+1) = 0.
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Lemma 4.2.8. Let P be a convex d-polytope that contains the origin in its interior. Then the
canonical braced stress on P is positive.

Proof. Let f and g be two adjacent facets of P, let ug be a vertex of g \ (fg). Then, since P
is convex and contains the origin in its interior, ⟨ug, φf ⟩ < 1 while ⟨ug, φg⟩ = 1, thus

⟨ug, φg − φf ⟩ > 0. (4.2.7)

Then we compute the sign of ⟨Ufg, ug⟩. Let (fg) = (u1, . . . ud−1), then

⟨Ufg, ug⟩ = Vold((fg), ug,0)

= det(u1, . . . , ud−1, ug)

= det(u1 − ug, . . . , ud−1 − ug, ug),

and since P is convex and contains the origin,

sign(det(u1 − ug, . . . , ud−1 − ug, ug)) = sign(det(u1 − ug, . . . , ud−1 − ug, ng)) > 0,

where ng is the outernormal vector of the facet g and the last inequality is the definition of
orientation on (fg). Thus,

⟨ug, Ufg⟩ > 0. (4.2.8)

The statement of the lemma follows by combining Eq. (4.2.7), Eq. (4.2.8) and the definition of
the canonical braced stress, Eq. (4.2.6).
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4.3 Maxwell–Cremona lifting

The lifting approach is a very common tool to operate with convex polytopes and, more
generally, with polytopal surfaces. It takes as an input a flat realization of a polytope (we
remind, that in the d-dimensional setup flat means (d − 1)-dimensional) and assigns every
point of the flat realization the last coordinate following some lifting procedure. Thus the lifting
approach allows us to control the geometrical features of the final d-dimensional realization
through controlling the geometry of a flat realization, what is often simpler, especially in case
d = 3 where the flat realization is a drawing on the plane.

In our presentation we generally follow the presentation by Demaine and Schulz [10].

Definition 4.3.1. Let P be a flat realization of a d-polytope P in Rd−1 = {xd = 0} ⊂ Rd. We
call an assignment of reals h : F0(P) → R to vertices of P a lifting.

We regard h(p) as a new (last) coordinate of a point p ∈ Rd−1. Thus h lifts a point p ∈ Rd−1

to (p, h(p)) ∈ Rd.
We call a lifting polyhedral if the lifting of every facet is a (d − 1)-polytope. We remark

that every lifting of a simplicial polytope is polyhedral. We denote the set of all the polyhedral
liftings of P as L0(P).

The lifting procedure p → (p, h(p)) is complemented by the projection operation π : Rd →
Rd−1 that simply removes the last coordinate

π(p, h(p)) → p,

where p ∈ Rd−1. Throughout the section we use prα(u) for the orthogonal projection of a point
u ∈ Rd to an affine hyperplane α ⊂ Rd. In particular, pr{xd=c}(u) for a real c ∈ R projects

u ∈ Rd to the affine hyperplane {xd = c} ⊂ Rd, and in terms of the projection π defined above

pr{xd=c}(u) = (π(u), c).

Bijection between the nonhorizontal vectors and the nonvertical affine hyperplanes
in Rd: To every nonvertical affine hyperplane α in Rd we put in one-to-one correspondence
a vector a ∈ Rd (we say that the vector a defines the affine hyperplane α) and a function
h : Rd → R that we call the height function. The function h computes the last coordinate of
the orthogonal projection of a point u ∈ Rd to the affine hyperplane α. Thus h(u) is such a
number that

(π(u), h(u)) ∈ α.

The vector a is such a vector that

h(u) = ⟨a,pr{xd=1} u⟩ ∀u ∈ Rd.

Such a vector exists since h restricted to the horizontal hyperplane {xd = 0} is an affine
function. Thus the vector a defines the lifting of the affine hyperpane {xd = 1} to α through
the assignment

u → (π(u), ⟨u, a⟩) ∀u ∈ {xd = 1}.
Thus, for every polyhedral lifting of a flat realization of a polytope P, to every face f of P
that is lifted to an affine hyperplane αf we associate a vector af ∈ Rd and a height function
hf : Rd → R.

Conversely, a set of vectors (af )f∈Fd−1(P) (or, equivalently, a set of functions hf or of
hyperplanes αf ) defines a polyhedral lifting of P if and only if hf (u) = hg(u) (or, equivalently,
⟨pr{xd=1} u, af ⟩ = ⟨pr{xd=1} u, ag⟩) for every u ∈ (fg) for every pair of adjacent facets f and
g.
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4.3.1 Maxwell–Cremona lifting

The Maxwell–Cremona lifting is a lifting algorithm that produces a polyhedral lifting given a
flat embedding and an equilibrium stress on this embedding. The Maxwell–Cremona lifting
allows us to efficiently control the geometry of the lifting through the properties of the stress,
in particular, the convexity of the resulting lifting is directly controlled by the signs of the
equilibrium stress. Below we describe the algorithm.

Let P be a flat realization of a d-polytope, and let Ω be an equilibrium stress on P. First
we embed the Rd−1 containing P into Rd as the {xd = 1} affine hyperplane. We denote the
vertices of this homogenized embedding of P with ui. Second, we assign a vector af ∈ Rd to
every facet f of P in such a way that for any two adjacent facets f and g

ag − af = −ΩfgUfg. (4.3.1)

To produce this assignment we start with assigning an arbitrarily value af0 to an arbitrarily
facet f0 and proceed iteratively. To verify that this assignment process is well-defined we show
that ∑

(fifi+1)∈Γ

Ufifi+1Ωfifi+1 = 0

for every cycle Γ = (f1 . . . fm = f1) in Sk1(P∗). This is however guaranteed by the definition
of braced stress, and due to Lemma 4.2.5, every equilibrium stress on a realization in {xd = 1}
is a braced stress.

We use the correspondence between the affine hyperplanes and the vectors in Rd discussed
above to assign to every facet f of P the lifting plane αf defined by the vector af through

u → (π(u), ⟨af ,pr{xd=1}(u)⟩),

where u is any vertex of f . In terms of the height function, we assign to every vertex ui of P
a new height hf (ui) = ⟨af ,pr{xd=1}(ui)⟩ where f is any facet containing ui in its boundary.

To prove the consistency of the lifting procedure we show that for any two facets f and
g such that each of them contains a vertex u, the liftings of u defined by the facets f and g
coincide:

hf (u) = hg(u).

By connectivity arguments, this is enough to check for the case when f and g share a common
(d− 2)-face (fg) and u ∈ (fg). Then

hg(u)− hf (u) = ⟨u, ag − af ⟩ = ⟨u,ΩfgUfg⟩ = Ωfg⟨u, Ufg⟩ = 0,

where the last equation holds since u ∈ (fg).
Given a flat realization P of a d-polytope P and an equilibrium stress Ω on P the Maxwell–

Cremona lifting of P by Ω is defined uniquely up to the initial choice of lifting of any one facet
f0 of P. This motivates the following definitions:

Definition 4.3.2. (1) Let P be a flat realization of a d-polytope P in {xd = 1} ⊂ Rd. We call
two polyhedral liftings h1 and h2 of P equivalent and denote it with h1 ∼ h2 if there exists a
vector v ∈ Rd such that

h1(ui) = h2(ui) + ⟨v, ui⟩
for every vertex ui of P.

(2) Let P be a flat realization of a d-polytope P in Rd−1. The space of polyhedral liftings
L(P) is the set of polyhedral liftings L0(P) modulo the equivalence relation,

L(P) := L0(P)/ ∼ .
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Lemma 4.3.1. The space of polyhedral liftings is a linear space with respect to the pointwise
addition and multiplication to scalars.

Proof. The lemma is equivalent to that

h1 + h2 ∼ h′
1 + h′

2 ∀h1 ∼ h′
1, h2 ∼ h′

2 ∈ L0(P),

ch1 ∼ ch′
1 ∀h1 ∼ h′

1 ∈ L0(P), c ∈ R,

what follows immediately from the definition of the equivalence relation.

Theorem 4.3.1. Let P be a flat realization of a d-polytope P . Then the Maxwell–Cremona
lifting procedure defines a linear map from the linear space of equilibrium stresses EQ(P) to
the linear space of polyhedral liftings L(P) of P,

MC : EQ(P) → L(P).

Proof. We prove that

MC(Ω1 +Ω2) = MC(Ω1) +MC(Ω2), ∀Ω1,Ω2 ∈ EQ(P),

MC(cΩ) = cMC(Ω), ∀Ω ∈ EQ(P), c ∈ R.

We start with additivity. Let f0 be any facet of P. We pick an element (a lifting) of each
of the equivalence classes of liftings MC(Ω1), MC(Ω2) and MC(Ω1 +Ω2):

h1 ∈ MC(Ω1), h2 ∈ MC(Ω2), hs ∈ MC(Ω1 +Ω2)

such that the face f0 is lifted to the hyperplane {xd = 0} in each of h1, h2, hs,

a1f = a2f = asf = 0,

where the vectors a1f , a
2
f and asf define the liftings of the face f by h1, h2 and hs correspondingly.

We show that
h1 + h2 = hs.

We prove it iteratively, and mimic the Maxwell–Cremona construction. We show that for
every facet f

a1f + a2f = asf .

As a base we use the face f0, for which both sides are zero. Consider the iterative step going
from the lifting of a facet f , for which a1f + a2f = asf to the lifting of the facet g adjacent to f ,
using the iterative equation Eq. (4.3.1)

a1f − a1g = −Ω1
fgUfg,

a2f − a2g = −Ω2
fgUfg,

asf − asg = −(Ω1 +Ω2)fgUfg.

Thus

a1g + a2g − asg = (a1f + a2f − asf )− (Ω1
fg +Ω2

fg − (Ω1 +Ω2)fg)Ufg = 0− 0 = 0,

what finishes the proof of additivity.
The scalability with scalars

MC(cΩ) = cMC(Ω), ∀Ω ∈ EQ(P), c ∈ R

is trivial.
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4.3.2 Canonical equilibrium stress

Let P l be a polytopal surface in Rd and P be its projection to an affine hyperplane α. Then this
projection is naturally equipped with an equilibrium stress that we call canonical equilibrium
stress. In this subsection we present a construction of the canonical equilibrium stress which
is the direct reverse of the Maxwell–Cremona lifting procedure. Later in Subsect. 4.3.4 we
present a formula for the canonical equilibrium stress based on the notion of creasing.

Let P l be a polytopal surface in Rd and P be its projection to the affine hyperplane
{xd = 1}. Then we can try to reverse-engineer the Maxwell–Cremona lifting construction to
find an equilibrium stress on P that would lead from the flat realization P to the polytopal
surface P l.

For every facet f of P we can compute the vector af from the Maxwell–Cremona lifting
procedure. Then the reverse-engineering expects that ag − af ∥ Ufg for every pair of adja-
cent facets f and g, and that the scaling coefficients between ag − af and Ufg constitute an
equilibrium stress on P. This is indeed the case:

Theorem 4.3.2. Let P l be a polytopal surface in Rd, and let P be its orthogonal projection to
the horizontal affine hyperplane {xd = 1}. Then the assignment of reals to (d− 2)-faces of P:

Ωfg :=
⟨(ag − af ), nfg⟩
Vol+d−2(fg)

, (fg) ∈ Fd−2(P) (4.3.2)

is an equilibrium stress on P and

ag − af = −ΩfgUfg, (4.3.3)

where af ∈ Rd defines the lifting in P l of a facet f of P and nfg ∈ {xd = 0} ⊂ Rd is the
positive unit normal to the (d− 2)-face (fg) of P within the affine hyperplane {xd = 1}.
Definition 4.3.3. We call the stress Ω constructed in Theorem 4.3.2 the canonical equilibrium
stress on the orthogonal projection P of P l.

We remark that the notion of equilibrium stress is translationally invariant, thus Ω is an
equilibrium stress on the orthogonal projection of P l to a more natural hyperplane {xd = 0}
as well. However, the Maxwell–Cremona lifting procedure starts with a homogenized flat
embedding into {xd = 1} and Ufg in Eq. (4.3.3) is computed for the face (fg) realized in {xd =
1} as well. Thus, to avoid unnecessary complications, we work directly with the projection
plane {xd = 1}.

Proof of Theorem 4.3.2. First we prove the second part, that

ag − af = −ΩfgUfg.

The proof goes in two steps, (1) we first show that ag − af ∥ Ufg and (2) then we compute the
coefficient. As usual for a point u in P we define by hf (u) the height of the vertical projection
of the point u to the hyperplane spanned by the face f of P, or in the notation of the vectors
af we have hf (u) = ⟨pr{xd=1}(u), af ⟩.

Step (1): For every point u in (fg), hf (u) = hg(u), thus

⟨ag − af , u⟩ = hg(u)− hf (u) = 0.

Moreover, from the definition of Ufg

⟨Ufg, u⟩ = Vold((fg), u, 0) = 0

for any point u in (fg). Thus,

⟨ag − af , u⟩ = ⟨Ufg, u⟩ = 0
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for any vector u in the hyperplane (0, (fg)) spanned by the origin and the face (fg). Since this
hyperplane has maximal dimension, its orthogonal complement is one-dimensional and thus
ag − af ∥ Ufg.

Step (2): Let us now compute the constant cfg such that ag − af = cfgUfg. We consider
the dot product of both sides with nfg and get

⟨ag − af , nfg⟩ = Vol+d−2(fg)Ωfg

by the definition of Ωfg (Eq. (4.3.2)) on the left hand side and

cfg⟨Ufg, nfg⟩ = −cfg Vol
+
d−2(fg)

by Corollary 4.2.1 on the right hand side. Thus,

Vol+d−2(fg)Ωfg = −cfg Vol
+
d−2(fg),

that shows that the coefficient in question is exactly −Ωfg and

ag − af = −ΩfgUfg.

Now we move on to the first part of the theorem. Clearly, Ωfg is a braced stress on P: due
to Eq. (4.3.3), for every cyclic sequence (f1, f2, . . . , fn = f1) of adjacent facets of P

n−1∑

i=1

Ωfifi+1
Ufifi+1

= −
n−1∑

i=1

(afi+1
− afi) = 0.

By Lemma 4.2.4 every braced stress on a flat realization in the {xd = 1} affine hyperplane is
an equilibrium stress, what finishes the proof.

4.3.3 Full version of Maxwell–Cremona lifting theorem

Theorem 4.3.3. Let P be a flat realization of a d-polytope P in Rd−1. Then

1. The Maxwell–Cremona lifting procedure defines an isomorphism of the linear spaces of
equilibrium stresses EQ(P) and of polyhedral liftings L(P) of P,

MC : EQ(P) → L(P).

2. The inverse to the Maxwell–Cremona lifting is the operation CS : L(P) → EQ(P) of
computing the canonical equilibrium stress.

Proof. 1. This holds due to Theorem 4.3.1 and the bijectivity, which follows from part 2 of
the theorem.

2. First we notice that the canonical equilibrium stress is well-defined on the space of
polyhedral liftings L(P). Indeed, that follows from the definition of the canonical equilibrium
stress Eq. (4.3.2), and from the fact that the set of differences {(ag − af )}(fg)∈Fd−2(P) in the
Maxwell–Cremona lifting procedure does not depend on the choice of a representative of the
equivalence class L(P).

To finish the proof we show that

CS ◦MC = IdEQ(P) .

Let Ω ∈ EQ(P) be any equilibrium stress on P; let P l ∈ MC(Ω) be a Maxwell–Cremona
lifting of P by Ω; and finally let Ωc = CS(P l) be the canonical equilibrium stress generated by
the projection of P l back onto P. The introduced objects are depicted on Fig. 4.3.1. We show
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(Ωfg) ∈ EQ(P)

(af ) ∈ L(P) : ag − af = −ΩfgUfg

(Ωc
fg) ∈ EQ(P), Ωc

fg := 〈ag − af , nfg〉/V ol+d−2(fg)

Figure 4.3.1: The way of an equilibrium stress through the Maxwell–Cremona lifting isomor-
phism.

that Ωc = Ω. Indeed,

Ωc
fg =

⟨ag − af , nfg⟩
Vol+d−2(fg)

= −⟨ΩfgUfg, nfg⟩
Vol+d−2(fg)

= −Ωfg
⟨Ufg, nfg⟩
Vol+d−2(fg)

= Ωfg.

As usual, af stands for the vector defining the lifting in P l of a facet f of P. The second
equation is the definition of the Maxwell–Cremona lifting procedure. The last equation is due
to Lemma 4.2.2.

4.3.4 Creasing formula for canonical equilibrium stress

Another, but equivalent approach to the canonical equilibrium stress is presented by Demaine
and Schulz [10]. The authors introduce the notion of creasing to numerically operate with
dihedral angles between facets. Authors mention there that this notion is inspired by the
work of Rybnikov [32] though they don’t explicitly connect the creasing with the notion of
equilibrium stress. Below we accurately show that these notions coincide.

Creasing between two affine hyperplanes in Rd

Definition 4.3.4. Let f and g be two transversal affine hyperplanes in Rd and let (fg) be
their intersection, an affine plane of dimension d− 2. Let u1, . . . ud−1 span a full dimensional
simplex X in (fg) and let uf ∈ f \ (fg) and ug ∈ g \ (fg). We define as creasing on X:

c(f, g,X) :=
[u1, . . . , ud−1, uf , ug]

Ju1, . . . ud−1, uf KJu1, . . . , ud−1, ugK
. (4.3.4)

We use the square bracket notation for volumes: as usual by [u1, . . . ud+1] we denote the
oriented volume of the simplex spanned by these d+1 points in Rd; and by Ju1, . . . udK we denote
[ū1, . . . ūd] where ū = π(u) stands for the orthogonal projection of u to Rd−1. In particular,
for ui ∈ {xd = 1}

Ju1, . . . udK = [u1, . . . ud,0],

where 0 stands for the origin. In [10, Lemma 2] the following properties are observed:

Lemma 4.3.2. In the setup of Definition 4.3.4

1. the creasing c(f, g,X) is well-defined and does not depend on the choice of the points uf

and ug;

2. c(f, g,X) = −c(g, f,X);

3. c(f, g,X) =
hf (ug)−hg(ug)
Ju1,...,ud−1,ugK ∀ug ∈ g \ (fg).

Proof. We include the proof for completeness. The first two statements are straightforward and
follow from simple computations with determinants. We prove the last one. For a hyperplane
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{xd = 1}

u1, . . . , ud−1

ug

uf

Liftf (ug)

ug = Liftg(ug)

g

fuf = Liftf (uf )

(fg)

u1, . . . , ud−1

Figure 4.3.2: The creasing on the (d− 2)-face (fg). We denote with Liftf (u) := (π(u), hf (u))
the lifting of a point u to the hyperplane f .

f we denote with Liftf (u) := (π(u), hf (u)) the vertical lifting of the point u ∈ Rd to f , see
Fig. 4.3.2. Then

[u1, . . . ud−1, uf , ug] = det

(
u1 . . . ud−1 uf ug

1 . . . 1 1 1

)

= det

(
u1 . . . ud−1 uf ug − Liftf (ug)
1 . . . 1 1 0

)

+ det

(
u1 . . . ud−1 uf Liftf (ug)
1 . . . 1 1 1

)

= det

⎛
⎝

ū1 . . . ūd−1 ūf 0
hf (u1) . . . hf (ud−1) hf (uf ) hg(ug)− hf (ug)

1 . . . 1 1 0

⎞
⎠+ 0

= −(hg(ug)− hf (ug)) det

(
ū1 . . . ūd−1 ūf

1 . . . 1 1

)

= (hf (ug)− hg(ug))Ju1, . . . , ud−1, uf K.

The third transition holds since all the points u1, . . . ud−1, uf ,Lift
f (ug) lie in the affine hyper-

plane f , thus they are coplanar and

det

(
u1 . . . ud−1 uf Liftf (ug)
1 . . . 1 1 1

)
= Vold(u1, . . . ud−1, uf ,Lift

f (ug)) = 0.

The creasing c(f, g,X) is sensible to the orientation: the change of orientation onX changes
the sign of c(f, g,X). The orientation on facets of a polytope allows to define a robust version.

Creasing on ridges of polytope

Definition 4.3.5. Let P l be a realization of a d-polytope P as a polytopal surface in Rd. Let
(fg) ∈ Fd−2(P ) be an oriented (d−2)-face separating facets f and g, let X(fg) = (u1, . . . ud−1)
be a (d−2)-simplex in (fg) oriented by the order on its vertices positively w.r.t the orientation
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on (fg). Then the creasing on the face (fg) is

c(fg) :=
Vol+d−2 X(fg)

Vol+d−2(fg)
c(f, g,X(fg)) =

Vol+d−2 X(fg)

Vol+d−2(fg)

[u1, u2, . . . ud−1, uf , ug]

Ju1, . . . ud−1, uf KJu1, . . . ud−1, ugK
,

(4.3.5)

where uf ∈ f \ (fg) and ug ∈ g \ (fg).

In the next lemma we show that the canonical equilibrium stress that we defined in Defi-
nition 4.3.3 coincides with creasing:

Lemma 4.3.3. Let P l be a polytopal surface in Rd, let P be its orthogonal projection to the
horizonatal affine hyperplane {xd = 1}. Let (fg) ∈ Fd−2(P). Then

c(fg) = Ωfg

where c(fg) is the creasing as defined by Definition 4.3.5 and Ωfg is the canonical equilibrium
stress as defined by Definition 4.3.3.

Proof. The right hand side of Eq. (4.3.5) is invariant under positive rescalings of the simplex
X(fg), we pick X(fg) such that Vol+d−2 X(fg) = Vol+d−2(fg), thus the scaling factor on the right
hand side equals 1.

Let Ω be the canonical equilibrium stress as defined by Definition 4.3.3. Then for every
pair of adjacent facets f and g,

ag − af =− ΩfgUfg, (fg) ∈ Fd−2(P),

where af and ag are as usual the vectors defining liftings of the facets f and g in P l. Then for
every point u ∈ {xd = 1},

⟨ag − af , u⟩ = −Ωfg⟨Ufg, u⟩
or equivalently

hg(u)− hf (u) = −Ωfg Vold((fg), u,0).

Let the face (fg) be oriented by an ordered set of points u1, . . . ud−1, then the volume on the
right hand side equals

Vold((fg), u,0) = [u1, . . . ud−1, u,0] = Ju1, . . . ud−1, uK,

where the first equation is due to the definition of volume of a simplex, thus

hg(u)− hf (u) = −ΩfgJu1, . . . ud−1, uK.

At least one of the facets f and g is not parallel to the affine hyperplane {xd = 1}, w.l.o.g we
assume that it is g (otherwise we recompute everything swapping f and g). The last equality
holds for any point u ∈ {xd = 1}. We pick any point ug ∈ αg ∩ {xd = 1} where αg is the
hyperplane supporting the facet g. Thus

Ωfg = −hg(ug)− hf (ug)

Ju1 . . . ud−1, ugK

and the right hand side equals c(fg) by Lemma 4.3.2.

As a result of the observations of this subsection, the canonical equilibrium stress allows
two points of view: through the reverse-engineering of Maxwell–Cremona lifting, Eq. (4.3.2)
and as the creasing, Eq. (4.3.5).
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Final version of creasing representation of canonical equilibrium stress

Below we wrap up the results of the creasing approach to the canonical equilibrium stresses
on simplicial polytopes and give it a less technical, closed form:

Corollary 4.3.1. Let P l be a simplicial polytopal surface in Rd and P be its orthogonal pro-
jection to the {xd = 0} hyperplane. Then the canonical equilibrium stress equals creasing:

Ωfg =
[u1, u2, . . . ud−1, uf , ug]

Ju1, . . . ud−1, uf KJu1, . . . ud−1, ugK
, (4.3.6)

where (u1, . . . ud−1) is a positively oriented set of points in (fg), and uf ∈ f \(fg), ug ∈ g\(fg).
Eq. (4.3.6) can be given a less technical closed form:

Ωfg =
[(f ∪ g)]

JfKJgK
, (4.3.7)

where facets f and g on the right hand side are taken with a positive orientation and (f ∪ g) =

Conv(f, g) with the orientation given by the ordered set of vertices (f ∪ g) = (uf
1 , u

f
2 , . . . u

f
d , ug)

where (uf
1 , u

f
2 , . . . u

f
d) are vertices of f in a positive order.

Proof. We denote the vertices of (fg) in a positive order with (u1, . . . , ud−1) and let uf ∈
f \ (fg), ug ∈ g \ (fg). By the definition of creasing

Ωfg =
[u1, u2, . . . ud−1, uf , ug]

Ju1, . . . ud−1, uf KJu1, . . . ud−1, ugK
.

By the definition of orientation on (fg),

signg(u1, . . . ud−1, ug) > 0,

signf (u1, . . . ud−1, uf ) < 0,

and thus

Ju1, . . . ud−1, ugK = JgK,
Ju1, . . . ud−1, uf K = −JfK,
Ju1, . . . ud−1, uf , ugK = −[f, ug] = −[(f ∪ g)].

We remark, that it also follows from the proof above, that the orientation on (f ∪ g) does
not depend on the order of f and g, and can be viewed using the common (d− 2)-face (fg) as

sign(f ∪ g) = sign((fg), uf , ug) = sign((gf), ug, uf ) = sign(g ∪ f).

Corollary 4.3.2. Let P l be a convex d-polytope such that its orthogonal projection P to the
hyperplane {xd = 0} is a planar realization of P l. Then the canonical equilibrium stress on P
is a positive equilibrium stress: Ωfg > 0 for every (fg) ∈ Fd−2(P) : f, g ̸= f0, where f0 is the
outerfacet of P.

Proof. This follows directly from the representation of Eq. (4.3.7).
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4.4 Lovász construction in Rd

The main tool for constructing dual polytopes is, analogously to the 3d case, the Lovász duality
procedure. The construction in Rd word for word repeats the procedure in R3.

Lemma 4.4.1. Let P be a realization of a convex polytope P as a polytopal surface in Rd

equipped with a braced stress Ω. Then every facet f of P can be assigned with a vector φf , so
that for each adjacent facet g and the separating (d-2)-face (fg)

φg − φf = ΩfgUfg. (4.4.1)

The set of vectors (φf ) is uniquely defined up to translations of Rd and can be chosen so that

|φf | ≤ diam(Sk1(P∗)) max
(fg)∈Fd−2(P)

|Ωfg| max
u∈F0(P)

|u|d−1,

where Sk1(P∗) is the 1-skeleton of the polytope dual to P and diam(Sk1(P∗)) is the diameter
of this graph (see remark below).

Before we proceed with the proof, we make a short remark on the diameter of the graph
of a polytope. The question of an efficient bound on diam(Sk1(P∗)) in terms of the number
of vertices n of the d-polytope P is open and is known under the name of Hirsch conjecture,
which in 1957 initially conjectured that diam(Sk1(P∗)) ≤ n−d. This conjecture was disproved
by Francisco Santos in 2010, see [33], and the best known general upper bound to date is

diam(Sk1(P∗)) = O(n⌊log(d)⌋+2),

due to Kalai and Kleitman [18]. For a detailed overview of the subject we refer the reader
to [19].

We now move on back to the lemma:

Proof of Lemma 4.4.1. To construct the family of vectors (φf ), we start by assigning an arbi-
trary value to φf0 (for an arbitrary facet f0); then we proceed iteratively using Eq. (4.4.1). To
prove the consistency of the construction, we show that the differences (φg − φf ) sum to zero
over every cycle Γ in the dual graph G∗. This is indeed straightforward from the definition of
braced stress: ∑

(f,g)∈Γ

(φg − φf ) =
∑

(f,g)∈Γ

ΩfgUfg = 0.

The vectors (φf ) are unique up to the initial choice for φf0 . To bound |φf | we pick the origin
as the initial value, φf0 := (0, . . . 0)T . Then, for every facet f , the value φf is bounded by

φf ≤ diam(Sk1(P∗)) max
(fg)∈Fd−2(P)

|Ωfg| max
u∈F0(P)

|u|d−1,

where diam(Sk1(P∗)) is the diameter of the graph of the polytope P∗ dual to P.

The cone-convex realizations of polytopes in Rd directly generalize cone-convex embeddings
of graphs in R3:

Definition 4.4.1. We call a realization P of a d-polytope P in Rd as a polytopal surface
a cone-convex realization if the cones over the facets of P are pointed, convex and pairwise
interiorly disjoint.

We remind that we call a cone pointed if it does not contain any whole line.

Lemma 4.4.2. In the setup of Lemma 4.4.1 for a cone-convex embedding P and a positive
braced stress Ω the vectors (φf )f∈Fd−1(P) are the vertices of a convex polytope dual to P.

Proof. The proof of this result word for word coincides with the original proof by Lovász for
d = 3, Lemma 5 of [21].
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4.5 Realizations of truncated polytopes

In this section we present an algorithm for realizing d-dimensional truncated polytopes on
the integer grid Zd of size polynomial in the number of vertices of the polytope. The section
generalizes the presentation of the 3-dimensional algorithm of Sect. 2.5.2.

4.5.1 Truncated and stacked polytopes

Definition 4.5.1. A d-dimensional truncated polytope is a d-polytope constructed from a d-
dimensional simplex by a sequence of truncation operations, where each truncation operation
cuts off one vertex of a polytope by introducing a new supporting hyperplane that separates this
vertex from the other vertices of the polytope.

Formally, let P be a convex d-polytope and u be a vertex of P. Let α be any supporting
hyperplane to P at the vertex u such that u is the only point in α ∩ P, see Fig. 4.5.1. The
hyperplane α is defined by some vector v ∈ Rd and a scalar c ∈ R so that α = αv,c = {x ∈
Rd : ⟨x, v⟩ = c} and w.l.o.g we assume that

P ⊂ H−
v,c = {x ∈ Rd : ⟨x, v⟩ ≤ c}.

Since u is the only point in the intersection of α and P, there exists some δ > 0 such that u is
the only vertex of P in

Rd \ {x ∈ Rd : ⟨x, v⟩ ≤ c− δ}.
Then we define the result of the truncation of the vertex u from the polytope P as

Tr(P, u) = P ∩ {x ∈ Rd : ⟨x, v⟩ ≤ c− δ}.

Given the freedom of choice of the truncation plane, the truncation operation defines only the
combinatorics of the resulting polytope.

u α = {〈x, v〉 = c}

{〈x, v〉 = c− δ}

{〈x, v〉 ≤ c− δ}

Figure 4.5.1: Truncation of a vertex u from a simplex in R3, the result of the truncation is
marked bold.

As usual, to construct a realization of a polytope we start with constructing a cone-convex
realization of its dual polytope equipped with an equilibrium stress. As in R3, the duals to
truncated polytopes are stacked polytopes:

Let P be a convex polytope and P∗ be a polytope dual to P, let u be a vertex of P and
fu = u∗ be a facet of P∗ dual to u. Then the operation on P∗ that corresponds to truncating
the vertex u of P is stacking a new vertex atop the facet fu = u∗ of P∗:

Definition 4.5.2. Let P be a convex d-polytope with a facet f . The stacking operation atop
the facet f adds to P one vertex uf by gluing atop of f outside P a pyramid with base f and an
apex — the new vertex uf , such that the result after gluing is a convex polytope. We denote the
resulting polytope with Stack(P, f, uf ). In the above terms, Stack(P, f, uf ) = Conv(P ∪{uf}).

A stacked d-polytope is a d-polytope produced from a d-simplex by a sequence of stacking
operations.
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The truncation operation cuts off a vertex of a polytope and adds one new facet, thus the
dual operation removes a facet of the dual polytope and adds a new vertex instead. Analogously
to the truncation operation, the definition of stacking does not explicitly specify the location
of the new vertex uf , it only defines the combinatorics of the resulting polytope.

4.5.2 High level description of the algorithm

At the high level, the algorithm that realizes truncated polytopes on the grid is the following:

Step 1 Let P be a truncated polytope and P∗ be its dual — a stacked polytope. Let the
last stacking operation in some sequence of stacking operations that produce P∗ from a
simplex be the stacking of a vertex un to the facet fn−1 of the polytope P∗

n−1 (clearly,
P∗
n−1 is a stacked d-polytope as well), thus P∗ = Stack(P∗

n−1, fn−1, un). We temporarily
remove the vertex un from P∗ and construct a planar embedding of P∗

n−1 onto the affine
hyperplane {xd = 1} ⊂ Rd equipped with a positive equilibrium stress Ωn−1 such that
the facet fn−1 is the outerfacet of this planar embedding.

Step 2 We geometrically perform the last stacking of Stack(P∗
n−1, fn−1, un) by putting the last

vertex un at the point (0, . . . 0,−d)T ∈ Rd. We prove that the resulting realization of
P = Stack(P∗

n−1, fn−1, un) is cone-convex and we expand the positive equilibrium stress
Ωn−1 on P∗

n−1 to a positive braced stress Ω on the whole P∗ = Stack(P∗
n−1, fn−1, un).

Step 3 We use the construction of Lovász, Lemma 4.4.2, to transform the cone-convex embedding
of P∗ with the positive braced stress Ω to a realization of P as a convex polytope.

In the following we discuss these steps in more details.

4.5.3 Step 1: Realizations of stacked polytopes

Given a stacked polytope P we have to construct a planar realization of P with a prescribed
outerfacet f , small integer coordinates, and with a small integer positive equilibrium stress.
As a starting point we use the result by Demaine and Schulz [10]:

Lemma 4.5.1 (Demaine and Schulz [10], Theorem 1). Any stacked d-polytope with n vertices
can be realized on the integer grid so that all the coordinates have size at most 10d2R2, except
for one axis, where the coordinates have size at most 6R3 where R = nlg(2d).

The construction of Demaine and Schulz also guaranties that the orthogonal projection
Ppr of the constructed polytope onto the plane {xd = 0} is a planar realization of P inside
a prescribed outerfacet f . However, the construction does not directly follow the standard
Maxwell–Cremona lifting approach, to achieve better bounds the authors operate directly
with liftings without handling equilibrium stresses.

Thus, Lemma 4.5.1 immediately provides us with a desired planar embedding Ppr of P,
but it does not generate an integer equilibrium stress on it. In this subsection we adapt the
construction of Demaine and Schulz to produce a polynomial integer equilibrium stress for
some scaling (Cu0

1, . . . Cu0
n) of the planar embedding Ppr produced by Demaine and Schulz.

To construct stresses we follow the standard procedure:

1. We start with a realization P of the stacked polytope as a convex d-polytope with small
integer coordinates produced by the method of Demaine and Schulz (Lemma 4.5.1);

2. We project P to the hyperplane {xd = 0} to a flat realization Ppr and compute the
canonical equilibrium stress Ωc;
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3. We decompose the canonical equilibrium stress into a linear combination

Ωc =
∑

i

αiΩ
a
i

of integer equilibrium stresses Ωa
i on parts (“building blocks”) of the polytope P. We

call the stresses Ωa
i the atomic equilibrium stresses;

4. We finally perturb the coefficients αi of the linear combination to integers, preserving
the signs of the resulting sum

∑
αiΩ

a
i .

Atomic equilibrium stress of a simplex

Definition 4.5.3. Let u1, . . . ud+1 ∈ Rd−1 be the vertices of a d-simplex T in Rd−1. Then the
assignment of reals Ωa : Fd−2(T ) → R to (d− 2)-faces of T defined by

Ωa
fg =

∏

h∈Fd−1(T ),h ̸=f,g

[h]

is called the atomic equilibrium stress on T ; where for hk ∈ Fd−1(T ) formed by all the vertices
of T except uk we denote with [hk] the signed volume of hk:

[hk] = (−1)d+1−k[(u1, . . . , ud+1) \ uk],

where (u1, . . . , ud+1) \ uk is the ordered set of vertices with omitted vertex uk.

Lemma 4.5.2. The atomic equilibrium stress is an equilibrium stress.

Proof. Let us consider any lifting ul
1, . . . , u

l
d+1 of T into Rd such that [ul

1, . . . , u
l
d+1] > 0, and

denote the resulting simplex with T l = (ul
1, . . . , u

l
d+1). Then, u1, . . . , ud+1 is the orthogonal

projection of T l to {xd = 0} and thus possesses the canonical equilibrium stress.
We use the creasing formula Eq. (4.3.7) for the canonical equilibrium stress:

Ωc
fg =

[f ∪ g]

JfKJgK
.

We notice that for any (d− 2)-face (fg) of T l

[f ∪ g] = [ul
1, . . . u

l
d+1] = [T l].

Indeed, let f = hk and g = hl. Then f = (ul
1, . . . , u

l
d+1) \ ul

k and ul
k ∈ g \ (fg) thus by the

definition of [f ∪ g]

[f ∪ g] = (−1)d+1−k[(ul
1 . . . u

l
d+1) \ ul

k, u
l
k]

= (−1)d+1−k(−1)d+1−k[ul
1, . . . , u

l
d+1] = [T l].

Thus [f ∪ g] does not depend on the choice of facets f and g of T l.
We rescale the canonical equilibrium stress to

Ω =

∏
h∈Fd−1(T l)JhK

[T l]
Ωc,

where all the facets h ∈ Fd−1(T
l) participate with positive orientation. Thus, Ω is an equilib-

rium stress on T and
Ωfg =

∏

h∈Fd−1(T l),h ̸=f,g

JhK,
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where all the facets h ∈ Fd−1(T
l) participate with positive orientation.

To show that Ωfg coincides with Ωa
fg from the statement of the lemma, we explicitly

compute the positive order on the vertices of h ∈ Fd−1(T
l): we show that for a facet hk =

((ul
1, . . . u

l
d+1) \ ul

k) of T
l that is formed by all the vertices except the vertex ul

k

signhk
((ul

1, . . . u
l
d+1) \ ul

k) = (−1)d+1−k.

Indeed, for nk being the outernormal to the facet hk of T l (we assume in the computation
below that k ̸= d+ 1, the case k = d+ 1 can be handled similarly)

signhk
((ul

1, . . . , u
l
d+1) \ ul

k) = sign((ul
1 − ul

d+1, . . . , u
l
d − ul

d+1) \ ul
k − ul

d+1, nk)

= (−1) sign((ul
1 − ul

d+1, . . . , u
l
d − ul

d+1) \ ul
k − ul

d+1, u
l
k − ul

d+1)

= (−1)(−1)d−k sign(ul
1 − ul

d+1, . . . , u
l
d − ul

d+1)

= (−1)(−1)d−k sign([ul
1, . . . , u

l
d+1])

= (−1)d+1−k.

The first transition is the definition of orientation on a facet of a polytope, Eq. (4.1.2). The
second transition holds since the vectors nf and ul

k − ul
d+1 are oppositely directed w.r.t the

facet hk of T l. The fourth transition is the definition of the oriented volume, and the last
transition holds by the choice of lifting T l.

Decomposition into atomic stresses

Lemma 4.5.3. Let P = (u1, . . . un) be an embedding of a stacked d-polytope P onto Rd. Let
P be produced by the stacking sequence

Pd+1 = (u1, . . . ud+1), — initial simplex,

Pd+2 = Stack(Pd+1, fd+1, ud+2), fd+1 ∈ Fd−1(Pd+1),

. . .

P = Pn = Stack(Pn−1, fn−1, un), fn−1 ∈ Fd−1(Pn−1).

We denote the simplices that are being stacked with Ti = Conv(fi−1, ui). Let Ppr be the
orthogonal projection of P to the hyperplane {xd = 0} and the stress Ωc be the canonical
equilibrium stress on this projection. Then, there exists a unique set of real coefficients αi such
that

Ωc =
∑

d+1≤i≤n

αiΩ
a(Ti),

where Ωa(Ti) is the atomic equilibrium stress on the simplex Ti.

Proof. We use Theorem 4.3.3 and conduct the proof by induction on the stacking sequence
(Pi). The base for Pd+1 is a direct consequence of Theorem 4.3.3.

We prove the induction step. Let Ωn−1 be the canonical equilibrium stress on the projection
of Pn−1. Then by the definition of the canonical equilibrium stress, Ωn−1 and Ωn coincide on
all the (d− 2)-faces of Pn that are not faces of the simplex Tn = Conv(fn−1, un) that is being
stacked:

(Ωn−1)(fg) = (Ωn)(fg) ∀(fg) ∈ Fd−2(Pn) \ Fd−2(Tn).

Thus, the difference between these canonical equilibrium stresses Ωn−Ωn−1 has its support on
Tn. But this difference is an equilibrium stress on its support, thus Ωn−Ωn−1 is an equilibrium
stress on Tn. The space of equilibrium stresses on a simplex is 1-dimensional, thus

Ωn − Ωn−1 = αnΩ
a(Tn).
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Estimates, scaling, rounding

Lemma 4.5.4. Let P = (u1, . . . un) be an embedding of a stacked d-polytope P onto Rd with
integer coordinates such that

|xi(uj)| < L ∀1 ≤ j ≤ n, 1 ≤ i < d,

|xd(uj)| < M ∀1 ≤ j ≤ n.

Then the orthogonal projection Ppr of P onto {xd = 0} possesses an equilibrium stress Ω that
is integer and bounded by

|Ωfg| ≤ (n− d)(2L)(d−1)2
(
(2L)3(d−1)(2M) + 1

)
.

Moreover the signs of Ω coincide with the signs of the canonical equilibrium stress Ωc on P.
In particular, when the projected realization Ppr is planar, Ω is a positive equilibrium stress.

Proof. We follow the plan announced at the beginning of the subsection. Let Ωc be the
canonical equilibrium stress for the projection Ppr. We use Lemma 4.5.3 to decompose Ωc

onto a linear combination of atomic equilibrium stresses on the simplices forming P (and we
also import the notation and conventions for stacking sequence from Lemma 4.5.3):

Ωc =
∑

d+1≤i≤n

αiΩ
a(Ti).

Since the embedding Ppr has integer coordinates, all the atomic stresses Ωa(Ti) are integral.
To make the final equilibrium stress Ωc integer we round the coefficients αi. Though, after
rounding the stress Ωc should preserve signs. To achieve it, we scale Ωc before rounding.

We start with estimating the bounds on Ωc and Ωa(Ti). For the canonical equilibrium
stress Ωc on Ppr, for every (d− 2)-face (fg)

Ωc
fg =

[f ∪ g]

JfKJgK
≥ 1

(2L)d−1(2L)d−1
.

And for the atomic equilibrium stresses on Ti

Ωa
fg(Ti) =

∏

h∈Fd−1(Ti),h̸=f,g

JhK ≤

∏

h∈Fd−1(Ti),h̸=f,g

(2L)d−1 ≤ (2L)(d−1)2 .

The last inequality holds since any simplex has exactly d+ 1 (as many as vertices) facets.
We chose the integral scaling factor

C := (n− d)(2L)2(d−1)+(d−1)2

so that

C ≥ (n− d)
maxi,(fg) |Ωa

(fg)(Ti)|
min(fg) |Ωc

(fg)|
and define the new coefficients and the new equilibrium stresses:

α′
i :=⌊Cαi⌋,

Ω′ :=
∑

n+1≤i≤d

α′
iΩ

a(Ti).
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To finish the construction we show that Ω′ is positive, in other words that the scaling and
rounding don’t affect the sign of any of the stresses:

|Ωc
fg −

1

C
Ω′

fg| ≤
∑

d+1≤i≤n

|αi −
1

C
α′
i||Ωa

fg(Ti)|

≤ (n− d) max
d+1≤i≤n

|αi −
1

C
α′
i| max

i,(fg)
|Ωa

fg(Ti)|

≤ (n− d)
1

C
max
i,(fg)

|Ωa
fg(Ti)|

≤ min
(fg)∈Fd−1(P)

|Ωc
fg| ≤ |Ωc

fg|.

The resulting equilibrium stress Ω′ is thus integer and has the same signs as Ωc. To finish the
proof we bound it from above:

|Ω′
fg| =

⏐⏐⏐⏐⏐⏐
∑

d+1≤i≤n

⌊Cαi⌋Ωa
fg(Ti)

⏐⏐⏐⏐⏐⏐

≤

⏐⏐⏐⏐⏐⏐
∑

d+1≤i≤n

CαiΩ
a
fg(Ti)

⏐⏐⏐⏐⏐⏐
+

∑

d+1≤i≤n

|Ωa
fg(Ti)|

≤ C|Ωc
fg|+ (n− d) max

d+1≤i≤n
|Ωa

fg(Ti)|.

To bound the last equation we bound |Ωc
fg| from above:

⏐⏐Ωc
fg

⏐⏐ =
⏐⏐⏐⏐
[f ∪ g]

JfKJgK

⏐⏐⏐⏐ ≤ |[f ∪ g]| ≤ (2L)d−1(2M).

Thus finally

|Ω′
(fg)| ≤ (n− d)(2L)2(d−1)+(d−1)2(2L)d−1(2M) + (n− d)(2L)(d−1)2 .

We combine the result by Demaine and Schulz, Lemma 4.5.1, and the previous Lemma 4.5.4
for the final result on the planar realizations of stacked polytopes with equilibrium stresses:

Theorem 4.5.1. Let P be a stacked d-polytope with n vertices. Then there exists an integer
planar realization P = (ui)1≤i≤n of P in Rd−1 and a positive integer equilibrium stress Ω on
this realization such that

|Ωfg| = nO(d2 lg(d)),

|ui| = nO(lg(d)).

Proof. We feed the output of Lemma 4.5.1 into Lemma 4.5.4 to get

|Ωfg| ≤ (n− d)(20d2R2)(d−1)2((20d2R2)3(d−1)(12R3) + 1),

|ui| ≤ 10d2R2,

where R = nlg(2d). Since d = nO(lg(d)), the statement of the theorem holds.
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4.5.4 Step 2: Stacking of the missing vertex

Lemma 4.5.5 (Framework for truncated polytopes). Let P be a planar integer realization of a
convex d polytope in Rd−1 with simplicial outerfacet f . Let ΩP be a positive integer equilibrium
stress for P. Let Stack(P, f, u0) be the result of stacking a new vertex u0 atop the facet f of
P. Then

1. There exists an integer cone-convex realization of Stack(P, f, u0) with an integer positive
braced stress ΩS such that

|u| ≤ d max
v∈F0(P)

|v| ∀u ∈ F0(Stack(P, f, u0)),

|ΩS(F )| ≤ max
H∈Fd−2(P)

|ΩP (H)|+ 1 ∀F ∈ Fd−2(Stack(P, f, u0));

2. There exists an integer realization of the polytope dual to Stack(P, f, u0) as a convex
polytope in Rd such that the coordinates of its vertices are bounded by

|φ| ≤ dd−1 diam(Sk1(Stack(P, f, u0)
∗))

(
max

H∈Fd−2(P)
|ΩP (H)|+ 1

)
max

u∈F0(P)
|u|d−1.

To proceed we need the following technical statement about braced stresses on a simplex:

Lemma 4.5.6. Let T = (u1, . . . ud+1) be a simplex in Rd and let for some nonzero λi ∈ R
∑

1≤i≤d+1

λiui = 0.

Then, the assignment

Ωij :=
1

λi

1

λj

is a braced stress on T , where with (ij) we denote the (d − 2)-face of T spanned by all the
vertices of T except ui and uj.

Proof. Let F be any (d− 3)-face of T . We denote the three vertices that do not lie in F with
ui, uj , uk. Then, the (d − 2)-faces in δ(F ) are Fij = (F, uk), Fjk = (F, ui) and Fki = (F, ui).
Thus,

∑

(fifi+1)∈δ(F )

Ωfifi+1
Ufifi+1

= ΩijUij +ΩjkUjk +ΩkiUki

=
1

λjλk
F × ui +

1

λiλk
F × uj +

1

λiλj
F × uk

=
1

λiλjλk
F × (λiui + λjuj + λkuk)

= − 1

λiλjλk
F ×

∑

m̸=i,j,k

λmum = 0,

where the last equality holds because F is spanned exactly by the vertices (um)m̸=i,j,k.

Proof of Lemma 4.5.5. The proof of this result mimics the proof of the 3-dimensional case,
Lemma 2.5.1 and Theorem 2.5.2.
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(1) We denote the vertices spanning the face F with u1, . . . ud. We scale the realization P
with factor d so that

1

d
(u1 + . . .+ ud) ∈ Zd−1

has integer coordinates, and translate it so that 1
d (u1 + . . . + ud) = 0. The new realization

P̄ has integer coordinates as well. We embed P̄ onto the {xd = 1} hyperplane of Rd so that
1
d (u1 + . . . + ud) = (0, . . . , 0, 1)T . To facilitate notation, we forget about the bar on P̄ and
denote the vertices of P̄ as the vertices of the initial P with (ui).

We put the new vertex u0 of Stack(P, f, u0) at the point (0, . . . 0,−d)T . Then

u0 + . . .+ ud = 0.

By Lemma 4.5.6 the stress ΩT ≡ 1 is a braced stress on the simplex T = (u0, . . . ud).
So, the stress ΩS = µΩT + ΩP is a braced stress for Stack(P, f, u0) for any real µ. We

pick µ so that the braced stress ΩS is positive. To do so we remind that all the entries of ΩP

are positive apart from those that correspond to (d− 2)-faces of the outerfacet f , and all the
entries of ΩT equal 1, thus we pick

µ := max
F∈Fd−2(f)

|ΩP (F )|+ 1.

The constructed embedding of Stack(P, f, u0) is cone-convex since it is a convex embedding
of the simplex (u0, . . . ud) with one facet refined in a convex way.

(2) We use the d-dimensional version of the Lovász duality transformation (Lemma 4.4.2)
for the embedding of Stack(P, f, u0) with the stress ΩS to construct an integer realization (φf )
of the polytope dual to Stack(P, f, u0):

|φf | = diam(Sk1(Stack(P, f, u0)
∗)) max

F∈Fd−2(Stack(P,f,u0))
|ΩS(F )| max

u∈F0(Stack(P,f,u0))
|u|d−1

= diam(Sk1(Stack(P, f, u0)
∗))

(
max

F∈Fd−2(P)
|ΩP (F )|+ 1

)
dd−1 max

u∈F0(P)
|u|d−1.

4.5.5 Step 3: Realizing truncated polytopes

Theorem 4.5.2. Let P be a truncated polytope with n faces. Then there exists a realization
(φf ) of P as a convex polytope with integer coordinates bounded by

|φf | = nO(d2 lg(d)).

Proof. The proof of this theorem mimics the proof of the 3d case, Theorem 2.5.3. Let P ∗ be
the polytope dual to P . Then P ∗ is a stacked polytope with n vertices.

We follow the notation of Subsec. 4.5.3 and denote the last stacking operation (for some
sequence of stacking operations producing P ∗) as the stacking of the vertex un onto the face
fn−1 of the polytope P ∗

n−1, thus P
∗ = Stack(P ∗

n−1, fn−1, un).
The polytope P ∗

n−1 is a stacked polytope with n− 1 vertices, and hence, by Theorem 4.5.1,
there exists a planar embedding (pi)1≤i≤n−1 of P ∗

n−1 into Rd−1 with integer coordinates and
a positive integer equilibrium stress ΩP∗

n−1
for this embedding satisfying the properties of

Lemma 4.5.5 and such that

|ΩP∗
n−1

(F )| = nO(d2 lg(d)) ∀F ∈ Fd−2(P
∗
n−1),

|pi| = nO(lg(d)) ∀pi ∈ F0(P
∗
n−1).
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We apply Lemma 4.5.5 and obtain an embedding (φf ) of P = (Stack(Pn−1, fn−1, un))
∗

with the bound on the coordinates size

|φf | ≤ dd−1 diam(Sk1(P ))

(
max

F∈Fd−2(P∗
n−1)

|ΩP∗
n−1

(F )|+ 1

)
max

pi∈F0(P∗
n−1)

|pi|d−1

= diam(Sk1(P ))nO(d2 lg(d)).

Every truncation operation increases the diameter of the skeleton of the polytope by no
more than 1, and the diameter of the skeleton of a simplex is 1 as well. The polytope P is
produced from a simplex by n− d− 1 truncation operations, thus

diam(Sk1(P )) ≤ n− d

and the final estimate follows.
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4.6 Duality transform for general simplicial polytopes

In this section we present a duality transform for general simplicial polytopes. It mimics the
construction for 3-dimensional polytopes presented in Sect. 2.5.3.

4.6.1 Wheel-decomposition theorem

We begin the section with studying the space of braced stresses of a convex polytope: we
introduce the d-dimensional generalization of the wheel and prove the d-dimensional version of
the wheel-decomposition theorem. Analogously to the 3-dimensional case, the d-dimensional
wheel-decomposition theorem explicitly describes a basis of the linear space of braced stresses
of a polytopal surface.

We remind that in the 3-dimensional setup we call a wheel the graph of a pyramid. However,
in Rd the combinatorics of a polytope is not predetermined by its graph, thus we abandoned
graphs of polytopes and work directly with realizations of polytopes. The most natural gener-
alization of the wheel to Rd is the d-dimensional pyramid itself. However, to keep the language
consistent between the 3-dimensional and d-dimensional parts, we also introduce the notion of
a d-dimensional wheel, which is the full synonym of the d-dimensional pyramid with a simplicial
base.

Definition 4.6.1. (1) Let B be a convex (d−1)-polytope in Rd−1 ⊂ Rd. Let a be a point in Rd

not in the hyperplane containing B. We call the polytope given by the convex hull Conv({a}∪B)
the pyramid with the base B and apex a and we denote this pyramid with P (a,B).

(2) Let B be a simplicial (d− 1)-polytope. A wheel W(a,B) with the base B and apex a is
the pyramid P (a,B).

We use only ridged realizations of wheels, thus we usually do not put any restrictions on
how the base facet is realized: neither should it be realized as a convex (d − 1)-polytope, nor
should it lie in any hyperplane (does not have to be “flat”). This is another reason to introduce
the notion of wheel, since the word “pyramid” bears a strong connotation with the flatness
of the base. The following observation provides a motivation to study ridged realizations of
wheels and stresses on them.

Lemma 4.6.1. Let P be a simplicial d-polytope. For a vertex u of P let N(u,P) be the
polytopal complex defined by all the facets ((d−1)-simplices) of P that are incident to u. Then
the (d − 2) skeleton of N(u,P) is a ridged realization of a wheel with apex u and the base of
this wheel can be oriented in a canonical way.

For the vertex ui of P we denote the wheel defined by N(ui,P) with Wi and we refer to
this wheel as the subwheel of P centered at the vertex ui.

Proof. We choose the euclidean coordinates in Rd so that the vertex u = (0, 0 . . . 0)T is the
origin, the hyperplane {xd = 0} is a supporting hyperplane to P at u and the polytope P
without the vertex u, P \ {u}, lies in the upper halfspace {xd > 0}.

Let α = {xd = 1}. For every (d− 1)-simplex T ∈ N(u,P) we consider its (d− 2)-face that
does not contain the vertex u, we denote this face with B(T ), thus T = Conv({u} ∪ B(T )).
We centrally project each of B(T ) for T ∈ N(u,P) to α, thus every point x ̸= 0 goes to
x/|x|. We denote this projection of B(T ) with B′(T ). Then we construct the new simplex
T ′(T ) = Conv({u} ∪ B′(T )) for every T ∈ N(u,P). The simplices (T ′(T ))T∈N(u,P) form a
polytopal complex that we denote with N ′(u,P). The face lattice of N ′(u,P) is by construction
equivalent to the face lattice of N(u,P).

We construct B := Conv(∪T∈N(u,P)B
′(T )). Clearly, B is a convex (d − 1)-polytope that

lies in α, such that the (d− 2)-faces of B are exactly all the simplices B′(T ) for T ∈ N(u,P).
Thus, by the definition of the wheel, the polytopal complex N ′(u,P) is the (d− 1)-skeleton of
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the wheel W(u,B) without the base facet B. Since the face structures of N(u,P) and N ′(u,P)
coincide, the statement of the lemma follows. The wheel W(u,B) is a convex polytope, thus
its facet B is oriented through the outer normal vector. Clearly, different choices of the initial
projection plane α produce wheels that are isomorphic preserving the orientation.

Figure 4.6.1: Depicted are flat realizations of wheels. Left: a 4-wheel with the 5-gonal bipyra-
mid as the base. Right: a 3-wheel with the convex 6-gon as the base. The bases are bold. The
apex is the point in the center.

In context of the previous lemma, every simplicial d-polytope P can be viewed as “covered”
by wheels centered at its vertices. Considering all these wheels (Wi)ui∈F0(P) simultaneously,
every (d − 2)-face F of P is covered exactly d + 1 times: by 2 wheels for which the face F
belongs to the base and d− 1 wheels centered at d− 1 vertices of F . The goal of this section
is to show that every stress on P can be decomposed into a linear combination of elementary
stresses on the wheels Wi. Before we proceed, we discuss the structure of a wheel in more
details.

The structure of the (d− 2)-faces of a wheel

Following the structure of the wheel, the (d − 2)-faces of a wheel W(a,B) are by definition
of two types (see Fig. 4.6.2): (1) the (d − 2)-faces of the underlying base F ∈ Fd−2(B) and
(2) the pyramids with apex a over the (d − 3)-faces of the underlying base, F = (a, f) with
f ∈ Fd−3(B).

We distinguish between these two types in the definition of atomic stresses, see Defini-
tion 4.6.2.

The orientation on the (d− 2)-faces of a wheel

For an oriented (d − 2)-face F ∈ Fd−2(B) with vertices F = (uF
1 , . . . u

F
d−1) and an additional

point a we use the standard shortcut notation for the oriented volumes (for realizations in
Rd−1) and determinants (for realizations in Rd):

[F, a] = [uF
1 , . . . u

F
d−1, a], a, uF

i ∈ Rd−1,

det(F, a) = det(uF
1 , . . . u

F
d−1, a), a, uF

i ∈ Rd.

Analogously, for an oriented (d− 3)-face f ∈ Fd−3(B) with vertices f = (uf
1 , . . . u

f
d−2) and two

additional points a, b we shortcut

[f, a, b] = [uf
1 , . . . u

f
d−2, a, b], a, b, uf

i ∈ Rd−1,

det(f, a, b) = det(uf
1 , . . . u

f
d−2, a, b), a, b, uf

i ∈ Rd.

We suppose that every wheel comes with a chosen orientation of its base B. In other words,
for every (d− 2)-face of B a positive order of its vertices is chosen and this choice is consistent
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Ωa
F = − 1

[F, a]

F ∈ Fd−2(B)

(a, f) : f ∈ Fd−3(B)

Ωa
(a,f) =

[f, uf
l , u

f
r ]

[f, uf
l , a][f, a, uf

r ]
f

uf
r

uf
l

f

uf
r

uf
l a

f

uf
r

uf
l

a

f

uf
r

uf
l

a

Figure 4.6.2: A 4-wheel (center left) and a 3-wheel (center right) with two types of (d − 2)-
faces. The (d − 1)-faces whose volumes participate in the atomic equilibrium stresses on the
corresponding (d− 2)-faces are labeled directly on the picture.

throughout all the (d − 2)-faces of B. If not explicitly specified otherwise, we assume every
F ∈ Fd−2(B) that we consider with the positive orientation. Thus, [F, a] (or, depending on
the dimension of a realization, det(F, a)) is well-defined.

The orientation on the base B of the wheel does not induce an orientation on its (d−3)-faces.

However, for every choice of the orientation on a (d− 3)-face f ∈ Fd−3(B), f = (uf
1 , . . . u

f
d−2),

it defines an order on the pair of its two adjacent (d−2)-faces of B: We say that the (d−2)-face

F ∈ Fd−2(B) is adjacent to f on the left (right) if F = (uf
1 , . . . u

f
d−2, u

F ) is a negative (positive)

orientation on F , where uF is the vertex of F not in f . We denote uF with uf
l (uf

r ). We call

the vertex uf
l (uf

r ) the left (right) neighbour of f in B,

Thus, for every f ∈ Fd−3(B) the determinant [f, uf
l , u

f
r ] is well-defined. The sign of the

product [f, uf
l , a][f, u

f
r , a] for any point a is also well-defined because the change of the order

of vertices of f changes the signs of both factors.

Realizations of a wheel

Let W be any embedding of vertices of a d-wheel W(a,B) in Rd−1 or Rd. The (d − 2)-faces
of W(a,B) are of two types: the (d− 2)-faces of the base and the pyramids with apex a over
the (d − 3)-faces of the base. Since the base B is a simplicial (d − 1)-polytope, its (d − 2)-
and (d − 3)-faces are simplices of corresponding dimensions. Thus, all the (d − 2)-faces of
W(a,B) are simplices and any embedding of the vertices of W(a,B) in Rd−1 or Rd realizes
every (d− 2)-face of W(a,B) as a convex (d− 2)-polytope. Thus, every embedding of vertices
of a wheel in Rd−1 (Rd) defines a ridged embedding of this wheel, and for every embedding the
notion of equilibrium (braced) stress is defined.

Atomic equilibrium and braced stresses on wheels

The analysis above allows us to define atomic stresses on a wheel:
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Definition 4.6.2 (Atomic equilibrium stress on a wheel). Let W be a ridged realization of
a d-wheel W(a,B) in Rd−1. We call the atomic equilibrium stress the assignment of reals
Ωa : Fd−2(W ) → R to (d− 2)-faces of W

Ωa
F =

⎧
⎨
⎩
− 1

[F,a] , F ∈ Fd−2(B),
[f,uf

l ,u
f
r ]

[f,uf
l ,a][f,u

f
r ,a]

, F = (a, f), f ∈ Fd−3(B),

where F ∈ Fd−2(B) is considered with positive orientation and (f, uf
l ) and (f, uf

r ) are two
(d− 2)-faces of B adjacent to the (d− 3)-face f ∈ Fd−3(B) of the base on the left and on the
right correspondingly; see Fig. 4.6.2.

Definition 4.6.3 (Atomic braced stress on a wheel). Let W be a ridged realization of a d-wheel
W(a,B) in Rd. We call the atomic braced stress the assignment of reals Ωa : Fd−2(W ) → R
to (d− 2)-faces of W

Ωa
F =

⎧
⎨
⎩
− 1

det(F,a) , F ∈ Fd−2(B),
det(f,uf

l ,u
f
r )

det(f,uf
l ,a) det(f,u

f
r ,a)

, F = (a, f), f ∈ Fd−3(B),

where F ∈ Fd−2(B) is considered with positive orientation and (f, uf
l ) and (f, uf

r ) are two
(d− 2)-faces of B adjacent to the (d− 3)-face f ∈ Fd−3(B) of the base on the left and on the
right correspondingly, see Fig. 4.6.2.

The two definitions above are clearly consistent with the equivalence between the spaces
of braced and equilibrium stresses (Subsec. 4.2.3): for a flat realization of W(a,B) in Rd−1 =
{xd = 1} ⊂ Rd the atomic braced stress coincides with the atomic equilibrium stress. Thus
in the definition above we use the same notation for the atomic equilibrium stress and for the
atomic braced stress.

Link to the d = 3 case. In the 3-dimensional case the base B is a k-gon B = (u1, . . . , uk)
and this notation implies orientation.

A (d− 2)-face F of B is an edge (uiui+1). Thus,

Ωa
F = − 1

[F, a]
= − 1

[ui, ui+1, a]
∀F = (uiui+1) ∈ Fd−2(B).

A (d − 3)-face f of B is a vertex ui. It has two neighbours in B, ui−1 and ui+1. The edge
(uiui+1) is positively oriented thus ui+1 is the right neighbour of ui,

ui+1 = ur
f .

The edge (uiui−1) is negatively oriented thus ui−1 is the left neighbour of ui,

ui−1 = ul
f .

Thus,

Ωa
(f,a) =

[f, uf
l , u

f
r ]

[f, uf
l , a][f, u

f
r , a]

=
[ui, ui−1, ui+1]

[ui, ui−1, a][ui, ui+1, a]
∀f = ui ∈ Fd−3(B).

Thus, the atomic stresses of a d-wheel is a direct generalization of the atomic stresses of a
wheel in R3.

Lemma 4.6.2. (1) The atomic equilibrium stress on a ridged realization W of a d-wheel
W(a,B) in Rd−1 is an equilibrium stress on W . (2) The atomic braced stress on a ridged
realization W of a d-wheel W(a,B) in Rd is a braced stress on W .
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Proof. (1) We construct the lifting W l of W such that the base B stays in the hyperplane
{xd = 0} and the apex a is lifted to {xd = 1}. Then W is the orthogonal projection of W l and
thus W possesses the canonical equilibrium stress as defined by Eq. (4.3.5), which coincides
with the atomic equilibrium stress on W .

(2) We pick any affine hyperplane α on distance 1 from the origin, such that none of the
vectors representing the vertices of W is parallel to α. We centrally project W to α. We use
Lemma 4.2.6 to rescale the atomic braced stress following the projection. A direct computation
shows that after rescaling it equals the atomic equilibrium stress on the projection. By part (1)
of the lemma, the latter is an equilibrium stress. Thus, by Lemma 4.2.5 it is also a braced
stress. So, again by Lemma 4.2.6, it was a braced stress before rescaling as well.

Similarly to the 3-dimensional case we define the large atomic stresses that are rescalings
of the atomic stresses such that the stresses are integral for integral embeddings:

Definition 4.6.4 (Large atomic stress). (1) Let W be a ridged realization of a d-wheel W(a,B)
in Rd−1. We call the large atomic equilibrium stress ΩA the rescaling of the atomic equilibrium
stress Ωa with the factor

∏
f∈Fd−1(W ),f ̸=B [f ]:

ΩA =

⎛
⎝ ∏

f∈Fd−1(W ),f ̸=B

[f ]

⎞
⎠Ωa,

where the facets of W are taken with the positive orientation.
(2) Let W be a ridged realization of a d-wheel W(a,B) in Rd. We call the large atomic

braced stress ΩA the rescaling of the atomic braced stress Ωa with the factor
∏

f∈Fd−1(W ) det(f):

ΩA =

⎛
⎝ ∏

f∈Fd−1(W ),f ̸=B

det(f)

⎞
⎠Ωa,

where the facets of W are taken with the positive orientation.

Theorem 4.6.1 (Wheel-decomposition theorem). (1) Let Ω be an equilibrium stress on a
ridged realization P of a d-polytope P in Rd−1. Then

Ω =
∑

1≤i≤n

αiΩ
a(Wi), αi ∈ R,

where Ωa(Wi) is the atomic equilibrium stress on the wheel Wi ⊂ P, centered at the vertex ui

of P. The coefficients αi are the heights of the corresponding vertices of P in any Maxwell–
Cremona lifting of P by the stress Ω. The set of coefficients αi is unique up to a “translation”
transformation αi → αi + ⟨ui, v⟩+ c for any v ∈ Rd−1 and c ∈ R.

(2) Let Ω be a braced stress on a ridged realization P of a d-polytope P in Rd. Then

Ω =
∑

1≤i≤n

αiΩ
a(Wi), αi ∈ R,

where Ωa(Wi) is the atomic braced stress on the wheel Wi ⊂ P, centered at the vertex ui of P.
The set of coefficients αi is unique up to a “translation” transformation αi → αi + ⟨ui, v⟩ for
any v ∈ Rd.

Proof. (1) This proof is identical to the proof of d = 3 dimensional version, Theorem 2.2.1.
(2) The proof follows the same pattern as the proof of part (2) of Lemma 4.6.2. We use

Lemma 4.2.6 to transfer the question to some hyperplane α, and Lemma 4.2.5 to restate the
question in terms of equilibrium stresses. It reduces part (2) to part (1).
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4.6.2 Duality transform for general simplicial polytopes

Lemma 4.6.3. Let P = (ui)1≤i≤n be a convex simplicial d-polytope in Rd with integer coordi-
nates, containing the origin in its interior. Then there exists an integral positive braced stress
Ω for P such that its entries are bounded by

|Ωfg| = O

(
d max
u∈F0(P)

|u|d(∆G
∗ +3)−2

)
,

where ∆G
∗ is the maximum over the vertices v of P of the number of facets of P adjacent to

v.

Proof. The proof mimics the proof of 3-dimensional case. It goes through 3 steps:

(I) We construct the canonical braced stress Ωc
fg for P and bound its entries;

(II) We use the wheel-decomposition theorem to decompose Ωc =
∑

1≤k≤n αkΩ
A(Wk) and

bound the large atomic braced stresses;

(III) We define the final braced stress Ω :=
∑

1≤k≤n⌊Cαk⌋Ωa(Wk) with C = (d+1)
maxf,g,k(Ω

A
fg(Wk))

minf,g(Ωc
fg)

and check its correctness.

Throughout the proof we set L := maxij |ui − uj |.
Step (I): Let Ωc be the canonical braced stress for P:

φg − φf = Ωc
fgUfg

for every pair of adjacent facets f and g. On the next steps we need to bound |Ωc
fg|. Obviously,

max(fg)∈Fd−2(P) |φg − φf |
min(fg)∈Fd−2(P) |Ufg|

≥ |Ωc
fg| ≥

min(fg)∈Fd−2(P) |φg − φf |
max(fg)∈Fd−2(P) |Ufg|

.

To bound |Ωc
fg| further we need a lower bound on |φg−φf | (estimate (a)) and an upper bound

on |φf | (estimate (b)).
Estimate (a): We remark that φf is the solution of the linear system

⟨φf , u
f
1 ⟩ = 1, ⟨φf , u

f
2 ⟩ = 1, . . . , ⟨φf , u

f
d⟩ = 1,

where the vertices uf
1u

f
2 . . . u

f
d belong to the face f . Thus, since (uf

i ) are integral,

φf =
1

det(uf
1u

f
2 . . . u

f
d)

Zd

for Zd being some vector in Zd. Similarly,

φg =
1

det(ug
1u

g
2 . . . u

g
d)
Z ′
d,

where Z ′
d is some vector in Zd. Thus, going to the common denominator,

|φg − φf | =
1

det(uf
1u

f
2 . . . u

f
d) det(u

g
1u

g
2 . . . u

g
d)
Z ′′
d

for some third Z ′′
d in Zd. So, since φf ̸= φg,

|φg − φf | ≥
1

det(uf
1u

f
2 . . . u

f
d) det(u

g
1u

g
2 . . . u

g
d)

≥ 1

L2d
. (4.6.1)
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Estimate (b): To bound |φf | from above we consider the pyramid over the face f =

(uf
1u

f
2 . . . u

f
d) with apex at the origin 0 = (0, 0, . . . , 0)T . Its (nonoriented) volume Vol+d (0, u

f
1 , u

f
2 , . . . , u

f
d)

can be computed as

Vol+d (0, u
f
1 , u

f
2 , . . . , u

f
d) = hf Vol

+
d−1(u

f
1 , u

f
2 , . . . , u

f
d),

where hf is the height to the base f . Since all uf
i s are integral, Vol+d (0, u

f
1 , u

f
2 , . . . , u

f
d) ≥ 1.

Trivially, Vol+d−1(u
f
1 , u

f
2 , . . . , u

f
d) ≤ Ld−1. Since φf is the polar vector for the hyperplane

supporting the facet f , and |hf | is the distance from the origin to this hyperplane, |hf | = 1
|φf | .

Thus,

|φf | ≤
Vol+d−1(u

f
1u

f
2 . . . u

f
d)

Vol+d (0, u
f
1 , u

f
2 , . . . , u

f
d)

≤ Ld−1. (4.6.2)

Using the two bounds of Eq. (4.6.1) and Eq. (4.6.2) gives:

|Ωc
fg| ≥

min(fg)∈Fd−2(P) |φg − φf |
max(fg)∈Fd−2(P) |Ufg|

≥ 1/L2d

Ld−1
=

1

L3d−1
,

|Ωc
fg| ≤

max(fg)∈Fd−2(P) |φg − φf |
min(fg)∈Fd−2(P) |Ufg|

≤ 2 max
f∈Fd−1(P)

|φf | ≤ 2Ld−1.

We additionally used that |Ufg| = Vol+d−1(0, (f, g)) ≤ Ld−1 and that Ufg is integral when f
and g are simplices with integral vertices and thus |Ufg| ≥ 1.

Step (II): We use the wheel-decomposition theorem (Theorem 4.6.1) to decompose Ωc into
a linear combination of the large atomic braced stresses of wheels, centered at the vertices of
P:

Ωc =
∑

1≤k≤n

αkΩ
A(Wk). (4.6.3)

As a next step we bound the entries |ΩA
fg| from above. By definition,

|ΩA
fg(Wk)| ≤

(
max

ui1
,...uid

∈F0(Wk)
det(ui1 , . . . uid)

)deg∗(uk)−1

≤ Ld(deg∗(uk)−1),

where we denote with deg∗(uk) the number of facets of P adjacent to the vertex uk.
Step (III): The large atomic braced stresses in the decomposition of Eq. (4.6.3) are integers.

To make the whole sum integral we round the coefficients. Though, direct rounding may
influence the sign of the resulting stresses. To overcome this effect we scale the coefficients
before rounding. We pick the scaling factor

C := (d+ 1)

⌈
maxf,g,k |ΩA

fg(Wk)|
minf,g |Ωc

fg|

⌉

and construct
Ω :=

∑

1≤k≤n

⌊Cαk⌋ΩA(Wk).

The stress Ω is an integral braced stress for (ui). It remains to prove that the signs of Ωfg

and Ωc
fg coincide, which would validate that Ω is positive. Indeed,

|Ωfg − CΩc
fg| =

⏐⏐⏐⏐⏐⏐
∑

1≤k≤n

(⌊Cαk⌋ − Cαk)Ω
A
fg(Wk)

⏐⏐⏐⏐⏐⏐

≤
∑

1≤k≤n

|ΩA
fg(Wk)| ≤ (d+ 1) max

(fg),k
|ΩA

fg(Wk)| ≤ Cmin
(fg)

|Ωc
fg|.
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The third transition holds since exactly d + 1 wheels participate in the wheel-decomposition
of every single (d− 2)-face (fg): (d− 1) wheels with apexes in each of the vertices of (fg) and
2 wheels with apexes in the vertices of f and g that do not belong to (fg).

In the remainder of the proof we bound the entries of Ω. Due to the bounds on Ωc and ΩA,
the constant C is bounded by

C ≤ (d+ 1)Ld(∆G
∗ +2)−1.

The constructed braced stress Ω is therefore bounded by

|Ωfg| ≤|CΩc
fg|+ (d+ 1) max

(fg),k
|ΩA

fg(Wk)|

≤|C|max
(fg)

|Ωc
fg|+ (d+ 1) max

(fg),k
|ΩA

fg(Wk)|

≤(d+ 1)Ld(∆G
∗ +2)−12Ld−1 + (d+ 1)Ld(∆G

∗ −1)

=O
(
dLd(∆G

∗ +3)−2
)
,

where we denote with ∆G
∗ := maxv∈F0(P)(deg

∗(v)).

The duality transform theorem is now a direct consequence of the Lovász duality construc-
tion of Lemma 4.4.2 and Lemma 4.6.3:

Theorem 4.6.2. Let P be a simplicial polytope with n vertices in Rd. Then there exists
a realization (φf )f∈Fd−1(P) of the polytope P∗ dual to P as a convex polytope with integer
coordinates bounded by

|φf | = O

(
dn⌊log(d)⌋+2 max

u∈F0(P)
|u|d(∆G

∗ +4)−3

)
,

where ∆G
∗ is the maximum over the vertices v of P of the number of facets of P adjacent to

v.

Proof. We first use Lemma 4.6.3 to construct a positive integer braced stress Ω on P such that

Ωfg = O

(
d max
u∈F0(P)

|u|d(∆G
∗ +3)−2

)
.

Then by Lemma 4.4.2 there exists a realization (φf )f∈Fd−1(P) of the dual polytope P∗ as a
convex polytope with integral vertices such that

|φf | ≤ diam (Sk1(P∗)) max
(fg)∈Fd−2(P)

|Ωfg| max
u∈F0(P)

|u|d−1.

We use the general bound on diam(Sk1(P∗) due to Kalai and Kleitman [18]:

diam (Sk1(P∗)) = O
(
n⌊log(d)⌋+2

)

and the statement of the theorem follows.



Conclusion

In our work we presented some advances in finding polynomial size integral realizations of
convex polytopes. Together with the previous work by Demaine and Schulz [9] on stacked
polytopes, we are now aware of two large classes of polytopes that admit such realizations:
the class of stacked and the class of truncated polytopes. However, the final answer to the
question of whether every 3-dimensional polytope admits such a realization, or, if not, of
classifying those polytopes that admit, still stays outrageously open.

In the introduction we observed that in context of our question a particularly perspective
class of polytopes is the class of simplicial polytopes. We remind that this general belief is based
on the observation, that every vertex of a simplicial polytope can be independently slightly
perturbed so that the combinatorial structure of the polytope is not affected. In particular,
stacked polytopes, the only previously known class of polytopes which allow small integral
realizations, are simplicial.

One particularly interesting feature of our results is that our algorithms construct realiza-
tions of nonsimplicial polytopes. Indeed, truncated polytopes are simple polytopes, without
any restrictions on the number of vertices in one face. Nevertheless, every truncated polytope
can be realized on a grid of fixed polynomial in the number of vertices size. Moreover, we show
how to transform an efficient realization of any simplicial polytope into a realization of its dual,
which is in turn simple, however this transformation is efficient only for simplicial polytopes
with bounded maximal vertex degree.

That weakens our belief in that the nonsimplicial polytopes are hopeless in the context of our
question as well as that the simplicial polytopes are simpler to approach. Now, with an efficient
duality transform in hand, any progress in realizing simplicial polytopes will immediately lead
to a progress in realizing simple polytopes. However, we are not a single step closer to efficient
realizations of polytopes that are neither simplicial nor simple. General handwaving apart, we
consider the following directions of research as perspective:

• We are sure that the limits of applicability of the developed duality transform are not
reached in our work. We remind that the Lovász duality rephrases the question of
efficiently realizing a convex polytope to the question of finding a cone-convex realization
of the dual graph with small integral coordinates and a small integral positive braced
stress. We presented two constructions that build such realizations: one builds it for
stacked polytopes “from scratch”, another starts with a convex realization of a simplicial
polytope and computes a small braced stress on it. We believe that there are more
classes of polytopes, for which the cone-convex realizations with braced stresses of the
dual graphs can be constructed from scratch, similar to the pair of truncated/stacked
polytopes. This belief is strengthened by the fact that braced stresses represent a new
tool, which is well-connected to equilibrium stresses, which in turn is a well-established
and well-studied object.

• We believe that there is still room for the direct application of Tutte’s stressed embeddings
and the Maxwell–Cremona lifting. As we have mentioned in the review of the existing
approaches, Chapter 1, this approach is used as a base for the best to date algorithm
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for realizing an arbitrary 3d convex polytope with small integral coordinates [29], as well
as for the best to date algorithm for realizing 3d convex polytopes with good vertex
resolution [37]. We believe that further advances using these approaches are possible. In
particular, we mention a new technology for locally adjusting stresses, developed in [37],
which in our opinion may be successfully used in other setups operating with equilibrium
and braced stresses.

• Another not yet investigated direction is the possibility of employing Colin de Verdière
matrices. We remind that a Colin de Verdière matrix of a graph is defined in terms of
spectral properties of the graph. For a 3-connected planar graph any Colin de Verdière
matrix has rank 3 and thus defines an embedding of the underlying graph into R3 that
can be scaled to a convex polytope in a canonical way. This technology was developed by
Lovász [21] and we use the geometrical ideas of this work as the main source of inspiration
in this thesis. However, we expect that the spectral ideas of Lovász’ work can also be
used. In particular, we expect that there exists a way to directly produce “efficient”
Colin de Verdière matrices for special classes of polytopes.

• The example of the prismatoid presented in our work shows that not all the direct
combinatorially-geometrical ideas are yet developed. We expect that larger classes of
polytopes can be handled using available constructions for prismatoids, truncated, and
stacked polytopes as some kinds of “building blocks”.

• Additional motivation in favour of geometrical methods is provided by a recent devel-
opment in realizing simplicial polytopes with two coordinates of polynomial size at the
expense of the third coordinate by Pak and Wilson [27]. Their method combines combi-
natorial and purely geometrical ideas and does not involve any stresses.

To conclude, our greatest hope is that new results may be achieved by combining the geomet-
rical, spectral, and stressed methods listed above.
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[28] A. Ribó Mor. Realization and counting problems for planar structures. PhD thesis, Freie
Universität Berlin, Germany, 2006.
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[39] E. Steinitz. Über isoperimetrische Probleme bei konvexen Polyedern. Journal für die reine
und angewandte Mathematik, 159:133–143, 1928.

[40] R. Tamassia. Handbook of graph drawing and visualization. CRC press, 2013.

[41] W. P. Thurston. The geometry and topology of three-manifolds. http://library.msri.
org/books/gt3m/, 2002. Princeton University lecture notes.

[42] W. T. Tutte. How to draw a graph. Proceedings London Mathematical Society, 13(52):743–
768, 1963.

[43] J. Van Leeuwen. Handbook of theoretical computer science: Algorithms and complexity,
volume 1. Elsevier, 1990.

[44] W. Whiteley. Motions and stresses of projected polyhedra. Structural Topology, 7, 1982.

[45] H. Whitney. Congruent graphs and the connectivity of graphs. Amer. J. Math., 54:150–
168, 1932.

[46] G. M. Ziegler. Lectures on polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995.

http://library.msri.org/books/gt3m/
http://library.msri.org/books/gt3m/

	Introduction
	Main results
	Main tool and further results
	Structure


	Methods for realizing planar graphs: overview
	Efficient duality transforms in R3
	Preliminaries
	Graphs
	Convex polytopes and polytopal surfaces

	Equilibrium stresses
	Maxwell–Cremona lifting and the canonical equilibrium stress
	Wheel-decomposition for equilibrium stresses
	An efficient reverse of the Maxwell–Cremona lifting

	Braced stresses
	Definition
	Canonical braced stresses
	Braced stresses and equilibrium stresses: flat embeddings
	Braced stresses and stresses of braced graphs
	Scalability of braced stresses
	Projective equivalence with equilibrium stresses
	Free lunch: wheel-decomposition for braced stresses
	Free lunch: projective properties of equilibrium stresses
	Canonical braced stresses as Hessians of volume
	Orthogonal projection of the canonical braced stresses

	Lovász lifting procedure
	Lovász dual transform
	Lovász lifting procedure: convex case
	Lovász lifting procedure: general case
	Geometry of the wheel-decomposition
	Geometry of the wheel-decomposition: equilibrium stresses

	Duality transforms
	High level description
	The stacking approach
	A duality transform for general simplicial polytopes


	Prismatoid
	Analysis
	Realization of the (k,m)-prismatoid


	Efficient duality transforms in Rd
	Preliminaries
	Combinatorics and notation of d-polytopes: overview
	Conventions on orientations
	Orientation on faces of a polytope
	Volumes
	Realizations of polytopes

	Approaches to stresses in higher dimensions
	Equilibrium stress
	Braced stress
	From equilibrium stresses to braced stresses and back
	Scalability of braced stresses
	Canonical braced stress

	Maxwell–Cremona lifting
	Maxwell–Cremona lifting
	Canonical equilibrium stress
	Full version of Maxwell–Cremona lifting theorem
	Creasing formula for canonical equilibrium stress

	Lovász construction in Rd
	Realizations of truncated polytopes
	Truncated and stacked polytopes
	High level description of the algorithm
	Step 1: Realizations of stacked polytopes
	Step 2: Stacking of the missing vertex
	Step 3: Realizing truncated polytopes

	Duality transform for general simplicial polytopes
	Wheel-decomposition theorem
	Duality transform for general simplicial polytopes


	Conclusion

