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Abstract. Let P be a closed convex cone in Rd, which we assume to be spanning and
pointed, i.e., P − P = Rd and P ∩ −P = {0}. In this article, we consider CCR flows over
P associated to isometric representations that arise out of P -invariant closed subsets, also
called as P -modules, of Rd. We show that for two P -modules the associated CCR flows are
cocycle conjugate if and only if the modules are translates of each other.

1. Introduction

The theory of E0-semigroups initiated by Powers and further developed ex-
tensively by Arveson is approximately three decades old. We refer the reader to
the beautiful monograph [5] for the history, the development and the literature
on E0-semigroups. In this long introduction, we explain the problem consid-
ered in this paper, collect the preliminaries required and explain the techniques
behind the proof of our main theorem. Let H be an infinite-dimensional sep-
arable Hilbert space. We denote the algebra of bounded operators on H by
B(H). By an E0-semigroup on B(H), one means a 1-parameter semigroup
α := {αt}t≥0 of unital normal ∗-endomorphisms of B(H). However, nothing
prevents us from considering semigroups of endomorphisms on B(H) indexed
by more general semigroups.

The authors in collobaration with others (see [13, 2]) have considered E0-
semigroups over closed convex cones. In this paper, we analyze the basic ex-
amples of Arveson’s theory, i.e., CCR flows associated to modules over cones.
We hope that the reader will be convinced by the end of this paper that this is
not merely for the sake of generalization, and there are some interesting con-
nections to groupoid C∗-algebras and, in particular, to the groupoid approach
to topological semigroup C∗-algebras, which was first systematically explored
by Muhly and Renault in [11].
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We fix the notation that will be used throughout this paper. The norm that
we use on Rd is always the usual Euclidean norm. Let P ⊂ Rd be a closed
convex cone. We assume P is pointed, i.e., P ∩ −P = {0}. By restricting
ourselves to the vector space generated by P , there is no loss of generality in
assuming that P is spanning, i.e., P − P = Rd. The interior of P will be
denoted by Ω. Then Ω is dense in P . For a proof of this, we refer the reader to
[14, Lem. 3.1]. It is also clear that Ω spans Rd. For x, y ∈ Rd, we write x ≥ y
if x− y ∈ P and write x > y if x− y ∈ Ω. We have the following Archimedean

principle: Given x ∈ Rd and a ∈ Ω, there exists a positive integer n0 such that
n0a > x. For a proof of this fact, we refer the reader to [13, Lem. 3.1]

Let us review the definitions of E0-semigroups and some results from [2].
Let H be an infinite-dimensional separable Hilbert space. By an E0-semigroup,

over P , on B(H), we mean a family α := {αx}x∈P of normal unital ∗-
endomorphisms of B(H) such that αx◦αy = αx+y, satisfying the following con-
tinuity condition: For A ∈ B(H) and ξ, η ∈ H, the map P ∋ x → 〈αx(A)ξ|η〉
is continuous.

We consider two E0-semigroups acting on different Hilbert spaces to be
isomorphic if they are unitarily equivalent. The precise definition is as follows.
Let K be an infinite-dimensional separable Hilbert space and let U : H → K
be a unitary. We denote the map B(H) ∋ T → UTU∗ ∈ B(K) by Ad(U).
Let α := {αx}x∈P and β := {βx}x∈P be E0-semigroups acting on B(H) and
B(K), respectively. We say that α is conjugate to β if there exists a unitary
U : H → K such that for every x ∈ P , βx = Ad(U) ◦ αx ◦Ad(U)∗.

Let α := {αx}x∈P be an E0-semigroup on B(H). By an α-cocycle, we
mean a strongly continuous family of unitaries {Ux}x∈P such that Uxαx(Uy) =
Ux+y. If U := {Ux}x∈P is an α-cocycle, it is straight-forward to check that
{Ad(Ux)◦αx}x∈P is an E0-semigroup. Such an E0-semigroup is called a cocycle
perturbation of α. Let β be an E0-semigroup acting on a possibly different
Hilbert space say K. We say that β is cocycle conjugate to α if a conjugate of
β is a cocycle perturbation of α.

One natural operation that one can do with E0-semigroups is the tensor
product operation. Let α and β be E0-semigroups on B(H) and B(K), respec-
tively. Then there exists a unique E0-semigroup, denoted α⊗ β, on B(H⊗K)
such that for x ∈ P , A ∈ B(H) and B ∈ B(K),

(α⊗ β)x(A⊗B) = αx(A) ⊗ βx(B).

For a proof of this fact, we refer the reader to the paragraph preceding Re-
mark 4.8 of [2]. It is routine to verify that if β is cocycle conjugate to γ, then
α⊗ β is cocycle conjugate to α⊗ γ.

As with any mathematical structures, the first question is to know whether
there are enough examples and, if possible, how to classify them. It is be-
yond the scope of the present paper to offer a complete classification of E0-
semigroups. This question is still open even in the 1-dimensional case. We
present here a class of examples that we call the CCR flows associated to P -

modules and we classify them completely.

Münster Journal of Mathematics Vol. 13 (2020), 115–143



CCR flows associated to closed convex cones 117

First let us recall the notion of Weyl operators on the symmetric Fock space
of H. Let Γ(H) be the symmetric Fock space. For u ∈ H, let

e(u) :=

∞∑

n=0

u⊗n

√
n!

.

The set of vectors {e(u) : u ∈ H} is called the set of exponential vectors. We
have the following:

(1) For u, v ∈ H, 〈e(u)|e(v)〉 = e〈u|v〉.
(2) The set {e(u) : u ∈ H} is total in Γ(H).
(3) Any finite subset of {e(u) : u ∈ H} is linearly independent.

For u ∈ H, there exists a unique unitary, W (u) on Γ(H), whose action on the
exponential vectors is given by the following formula:

W (u)e(v) := e−
‖u‖2

2 −〈u|v〉e(u+ v).

The operators {W (u) : u ∈ H} are called the Weyl operators. The Weyl
operators satisfy the following canonical commutation relation: For u, v ∈ H,

W (u)W (v) = e−i Im〈u|v〉W (u+ v),

where Im〈u|v〉 denotes the imaginary part of 〈u|v〉. The linear span of the
Weyl operators {W (u) : u ∈ H} forms a unital ∗-subalgebra of B(Γ(H)) whose
strong closure is B(Γ(H)).

For a unitary U on H, there exists a unique unitary, denoted Γ(U), on Γ(H),
whose action on the exponential vectors is given by

Γ(U)e(v) := e(Uv).

The unitary Γ(U) is called the second quantisation of U . For a unitary U on
H and u ∈ H, we have the relation Γ(U)W (u)Γ(U)−1 = W (Uu).

Let H1 and H2 be Hilbert spaces. The map

Γ(H1 ⊕H2) ∋ e(u1 ⊕ u2) → e(u1)⊗ e(u2) ∈ Γ(H1)⊗ Γ(H2)

extends to a unitary. Via this unitary, we always identify Γ(H1 ⊕ H2) with
Γ(H1)⊗ Γ(H2). Under this identification, we have the equality W (u1 ⊕ u2) =
W (u1) ⊗ W (u2) for u1 ∈ H1 and u2 ∈ H2. For proofs of all the assertions
made so far, we refer the reader to the book [16].

Definition 1.1. By a strongly continuous isometric representation of P on H,
we mean a map V : P → B(H) such that

(1) for x, y ∈ P , VxVy = Vx+y,
(2) for x ∈ P , Vx is an isometry, and
(3) for ξ ∈ H, the map P ∋ x → Vxξ ∈ H is continuous.

Let V : P → B(H) be a strongly continuous isometric representation. Then
there exists a unique E0-semigroup on B(Γ(H)), denoted αV := {αx}x∈P , such
that for x ∈ P and u ∈ H,

αx(W (u)) = W (Vxu).
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For the existence of the E0-semigroup αV , we refer the reader to [2, Prop. 4.7].
We call αV the CCR flow associated to the isometric representation V . The
association V → αV converts the direct sum of isometric representations to
tensor product of E0-semigroups. That is, let V1 and V2 be isometric repre-
sentations of P on Hilbert spaces H1 and H2, respectively. Then V1 ⊕ V2 :=
((V1)x ⊕ (V2)x)x∈P is an isometric representation of P on H1 ⊕H2. It is clear
that if V1 and V2 are strongly continuous, then V1 ⊕ V2 is strongly continuous.
Under the identification Γ(H1 ⊕ H2) ∼= Γ(H1) ⊗ Γ(H2), we have the equality
αV1⊕V2 = αV1 ⊗ αV2 (See [2, Rem. 4.8]).

What are the examples of isometric representations of P? One obvious
isometric representation is the “left” regular representation of P on L2(P ). One
can also consider the “left” regular representation with multiplicity. A slight
generalization of the above is as follows. Let A ⊂ Rn be a proper closed subset
which is invariant under translation by elements of P , i.e., A + x ⊂ A for
x ∈ P . Such a subset is called a P -module. The notion of P -modules in the
discrete setting was first considered by Salas in [20]. Let k ∈ {1, 2, . . . , }∪{∞}
be given and let K be a Hilbert space of dimension k. Consider the Hilbert
space L2(A,K). For x ∈ P , let Vx be the isometry on L2(A,K) defined by the
equation

(1) Vx(f)(y) :=

{
f(y − x) if y − x ∈ A,

0 if y − x /∈ A,

for f ∈ L2(A,K). Then V := {Vx}x∈P is a strongly continuous isometric repre-
sentation of P on L2(A,K). We call V the isometric representation associated

to the P -module A of multiplicity k. We call the associated CCR flow the CCR

flow corresponding to the P -module A of multiplicity k and denote it by α(A,k).
Let A be a P -module and z ∈ Rd be given. Set B := A+z. Then B is clearly

a P -module. It is clear that for k ∈ {1, 2, . . . , } ∪ {∞}, the CCR flow α(A,k)

is conjugate to α(B,k). This is due to the fact that the associated isometric
representations are unitarily equivalent. Thus, there is no loss of generality
in assuming that our P -modules contain the origin 0, which we henceforth
assume. The goal of this paper is to prove the following theorem.

Theorem 1.2. Let A1 and A2 be P -modules and k1, k2 ∈ {1, 2, . . .} ∪ {∞} be

given. Then the following are equivalent:

(1) The CCR flow α(A1,k1) is conjugate to α(A2,k2).

(2) The CCR flow α(A1,k1) is cocycle conjugate to α(A2,k2).

(3) There exists z ∈ Rd such that A1 + z = A2 and k1 = k2.

The implications (1) ⇒ (2) and (3) ⇒ (1) are obvious. The difficult part
lies in establishing the implication (2) ⇒ (3).

The above theorem in the 1-dimensional case was proved by Arveson. To
see this, observe that when d = 1, i.e., when Rd is 1-dimensional, the only
possible choices of P are [0,∞) or (−∞, 0]. Since [0,∞) and [−∞, 0) are
isomorphic, we can assume that P = [0,∞). Also note that up to a translate,
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the only P -module is P = [0,∞)-itself. Then α([0,∞),k) is nothing but the
usual 1-dimensional CCR flow of index k and the index is a complete invariant
of such CCR flows. For a proof of this well-known fact, we refer the reader
to [5]. The classification of 1-dimensional CCR flows relies heavily on the fact
that the 1-dimensional CCR flows have units in abundance. Though we do
not need the following fact, we must mention here that the situation in the
multi-dimensional case is different and there are not enough units. However,
another invariant, the gauge group of an E0-semigroup, comes to our rescue.

Since the classification of the 1-dimensional CCR flows is complete, we no
longer concentrate on the 1-dimensional case and we assume from now on,
for the dimension of Rd, that d ≥ 2. We now explain the techniques behind
the proof of Theorem 1.2. As already mentioned, the gauge group of an E0-
semigroup plays a key role in establishing the proof of Theorem 1.2. Let us
recall the notion of the gauge group associated to an E0-semigroup.

Let α := {αx}x∈P be an E0-semigroup on B(H), where H is an infinite-
dimensional separable Hilbert space. An α-cocycle is called a gauge cocycle if
it leaves α invariant. To be precise, let U := {Ux}x∈P be an α-cocycle. Then U
is called a gauge cocycle of α if for x ∈ P and A ∈ B(H), Uxαx(A)U

∗
x = αx(A).

The set of gauge cocycles of α, known as the gauge group of α and denoted
G(α), is a topological group. For U := {Ux}x∈P and V := {Vx}x∈P ∈ G(α),
the multiplication UV is given by UV := {UxVx}x∈P . The inverse of U is
given by U∗ := {U∗

x}x∈P . The topology on G(α) is the topology of uniform
convergence on compact subsets of P , where the topology that we impose on
the unitary group U(H) is the strong operator topology.

The main result obtained in [2], which we recall now, is the description of
the gauge group of a CCR flow associated to a strongly continuous isometric
representation which is pure. Let V : P → B(H) be an isometric representa-
tion. We say that V is pure if for a ∈ Ω, V ∗

ta converges strongly to zero as
t tends to infinity (recall that the Ω is the interior of P ). It is proved in [2,
Prop. 4.6] that isometric representations associated to P -modules are pure. In
what follows, let V : P → B(H) be a strongly continuous isometric represen-
tation which is pure. For a ∈ P , we denote the range projection of Va by Ea.
The orthogonal complement of Ea, i.e., 1−Ea will be denoted by E⊥

a . Let M
be the commutant of the von Neumann algebra generated by {Vx : x ∈ P}.
Denote the unitary group of M by U(M). We endow U(M) with the strong
operator topology.

Let ξ : P → H be a map and denote the image of x under ξ by ξx. We
say that ξ is an additive cocycle of V in case ξ satisfies the following three
conditions:

(1) ξx + Vxξy = ξx+y, x, y ∈ P ,
(2) V ∗

x ξx = 0, x ∈ P , and
(3) ξ is continuous with respect to the norm topology on H.

Let A(V ) denote the set of additive cocycles of V . We endow A(V ) with the
topology of uniform convergence on compact subsets of P , where H is given
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the norm topology. The main theorem obtained in [2] (Theorem 7.2) is stated
below.

Theorem 1.3. The map

Rd ×A(V )× U(M) ∋ (λ, ξ, U) →
{
ei〈λ|x〉W (ξx)Γ(UE⊥

x + Ex)
}
x∈P

∈ G(α)

is a homeomorphism.

Now we explain the contents and the organization of this paper.
Let A be a P -module and let V be the isometric representation associated

to A of multiplicity k, where k ∈ {1, 2, . . . , } ∪ {∞}. Denote the CCR flow
associated to V by α(A,k). In Section 2, we show that V admits no nonzero
additive cocycle. (Recall that we have assumed, for the dimension of the vector
space Rd, that d ≥ 2). We achieve this fact by appealing to the theory of
distributions. An immediate consequence of the vanishing of additive cocycles
is the fact that the gauge group of α(A,k) is isomorphic to Rd×U(M), where M
is the commutant of the von Neumann algebra generated by {Vx : x ∈ P} and
U(M) is the unitary group of M endowed with the strong operator topology.
We must mention here that in [2] this result was obtained for a few examples
of R2

+-modules using barehand techniques.
In Section 3, we compute the commutant M of the von Neumann algebra

generated by {Vx : x ∈ P}. It is not difficult to see that it suffices to compute
the commutantM when the isometric representation V is of multiplicity 1. Let
V : P → B(L2(A)) be the isometric representation associated to the P -module
A of multiplicity 1 and let M be the commutant of the von Neumann algebra
generated by {Vx : x ∈ P}. Let

GA := {z ∈ Rd : A+ z = A}.
It is clear that GA forms a subgroup of Rd. We call GA the isotropy group of
the P -module A. For z ∈ GA, let Uz : L

2(A) → L2(A) be the unitary defined
by the equation

Uzf(x) = f(x− z)

for f ∈ L2(A). We show that M is generated by {Uz : z ∈ GA}. Here is
where we employ groupoid techniques. The second author has constructed in
[21] a “universal groupoid” which encodes all isometric representations with
commuting range projections. We must mention here that the results obtained
in [21] owes a lot to the papers [11], [15] and [9]. In Section 4, we prove our
main theorem, i.e., Theorem 1.2.

Let us end this introduction by thanking a few people who has helped us
immensely by sharing their knowledge on Mathematics whenever we were faced
with a difficult problem. First and foremost, we thank R. Srinivasan for intro-
ducing us to the beautiful theory of E0-semigroups and also for illuminating
discussions on the subject. We would like to thank Murugan for useful con-
versations about the symmetric Fock space, the exponential vectors and the
Weyl operators. We thank Prof. Ramadas for directing us towards the theory
of distributions in proving Proposition 2.4. We thank Prof. V. S. Sunder for
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sowing the seeds for the proof of Proposition 4.4. Last but not the least, the
second author is hugely indebted to Prof. Renault for passionately sharing his
knowledge on groupoids without which this paper would not have materialized.

We dedicate this paper in the memory of Prof. Arveson whose ideas have
not only inspired us but also many others.

2. Lack of additive cocycles

First we collect a few topological and measure theoretical aspects of P -
modules. Let A be a P -module which is fixed for the rest of this section.
Recall that we always assume that 0 ∈ A. We denote the interior of A by
Int(A) and the boundary of A by ∂(A). For a proof of the following lemma,
we refer the reader to [9, Lem. II.12].

Lemma 2.1. We have the following.

(1) The interior of A, Int(A), is dense in A, and
(2) The boundary of A, ∂(A), has measure zero.

We need the following topological fact in the sequel.

Lemma 2.2. The interior of A, Int(A), and A are connected.

Proof. Note that A + Ω ⊂ Int(A). Let x, y ∈ Int(A) be given. Since Ω spans
Rd, there exists b, a ∈ Ω such that x − y = b− a, i.e., x + a = y + b. Observe
that {x + ta}t∈[0,1] is a path in Int(A) connecting x and x + a. Similarly,
{y+ tb}t∈[0,1] is a path in Int(A) connecting y and y+ b. Since x+a = y+ b, it
follows that x is connected to y by a path in Int(A). This proves that Int(A)

is path connected and hence connected. Since Int(A) = A, it follows that A is
connected. This completes the proof. �

We collect in the following proposition a few facts regarding the topology
of A and its boundary ∂(A). For E,F ⊂ Rd, we denote the complement of F
in E by E \ F .

Proposition 2.3. Let a ∈ Ω be given. We have the following.

(1) The map ∂(A)× (0, 1) ∋ (x, s) → x+ sa ∈ Int(A) \ (A + a) is continuous

and is onto.

(2) The sequence {A+na}n≥1 is a decreasing sequence of closed subsets which

decreases to the empty set, i.e.,
⋂∞

n=1(A+ na) = ∅.

(3) The map ∂(A)× (0,∞) ∋ (x, s) → x+ sa ∈ Int(A) is a homemorphism.

(4) The boundary ∂(A) is connected.

(5) The boundary ∂(A) is unbounded.

(6) The set Int(A) \ (A+ a) has infinite Lebesgue measure.

Proof. Let (x, s) ∈ ∂(A) × (0, 1) be given. Since A + Ω is an open subset
of Rd contained in A, it follows that A + Ω ⊂ Int(A). This implies that
x + sa ∈ Int(A). Now suppose x + sa ∈ A + a. Then there exists y ∈ A such
that x+ sa = y + a, i.e., x = y + (1− s)a ∈ A+Ω ⊂ Int(A). This contradicts
the fact that x ∈ ∂(A). Hence, x+ sa /∈ A+ a. Thus, we have shown that the
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map prescribed in (1) is meaningful. The continuity of the prescribed map is
obvious.

Now let z ∈ Int(A) \ (A+ a) be given. Let

E := {t ∈ [0, 1] : z − ta ∈ Int(A)}.
Note that E contains 0 and is an open subset of [0, 1]. Denote the supremum
of E by s. Since E is open in [0, 1] and contains 0, it follows that s > 0. Note
that z−a /∈ A and A is a closed subset of Rd. Thus, for t sufficiently close to 1,
z− ta /∈ A. This proves that s < 1. Hence, 0 < s < 1. As E is open in [0, 1], it
follows that s /∈ E, i.e., z − sa /∈ Int(A). Choose a sequence sn ∈ E such that
sn → s. Then z − sna ∈ Int(A) ⊂ A and z − sna → z − sa. Since A is closed
in Rd, it follows that z − sa ∈ A. As a consequence, we have z − sa ∈ ∂(A).
Now note that z = (z − sa) + sa. This proves that the map

∂(A)× (0, 1) ∋ (x, s) → x+ sa ∈ Int(A) \ (A+ a)

is onto. This proves (1).
Since A + P ⊂ A, it is clear that {A + na}n≥1 is a decreasing sequence of

closed subsets. Suppose x ∈
⋂∞

n=1(A + na). This implies that x− na ∈ A for
every n ≥ 1. Let y ∈ Rd be given. By the Archimedean principle, there exists
a positive integer n0 such that n0a − (x − y) ∈ Ω. As A + Ω ⊂ A, it follows
that y = (x− n0a) + (n0a− (x− y)) ∈ A+Ω ⊂ A. This proves that y ∈ A for
every y ∈ Rd, which is a contradiction since A is a proper closed subset of Rd.
This proves (2).

The well-definiteness of the map in (3) is clear as A + Ω ⊂ Int(A). Let
y ∈ Int(A) be given. By (2), there exists n ≥ 1 such that y /∈ A + na. Now
by (1), applied to the interior point na, it follows that there exists s ∈ (0, 1)
and x ∈ ∂(A) such that y = x+ s(na). This proves that the map

∂(A)× (0,∞) ∋ (x, s) → x+ sa ∈ Int(A)

is onto. Let x1, x2 ∈ ∂(A) and s1, s2 ∈ (0,∞) be such that x1 + s1a =
x2 + s2a. We claim that x1 = x2 and s1 = s2. It suffices to show that
s1 = s2. Suppose not. Without loss of generality, we can assume s1 > s2.
Then x2 = x1 + (s1 − s2)a ∈ A+ Ω ⊂ Int(A), which contradicts the fact that
x2 ∈ ∂(A). This proves our claim. In other words, the map

∂(A)× (0,∞) ∋ (x, s) → x+ sa ∈ Int(A)

is an injection. It is clear that the above map is continuous. Let (xn, sn) ∈
∂(A) × (0,∞) be a sequence and let (x, s) ∈ ∂(A)× (0,∞) be such that xn +
sna → x+ sa. We claim that xn → x and sn → s. It is enough to prove that
sn → s. Suppose sn 9 s. Then there exists ǫ > 0 such that sn /∈ (s− ǫ, s+ ǫ)
for infinitely many n. Suppose sn ≤ s − ǫ for infinitely many n. Choose a
subsequence snk

such that snk
∈ (0, s − ǫ]. By passing to a subsequence if

necessary, we can assume that snk
converges, say to, t. Then t < s. Now note

that xnk
→ x + (s − t)a ∈ A + Ω ⊂ Int(A). This is a contradiction, since

xnk
∈ ∂(A) and ∂(A) is a closed subset of Rd which is disjoint from Int(A).
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Now suppose that sn ≥ s + ǫ for infinitely many n. Choose a subsequence
(snk

) such that snk
≥ s+ ǫ. Write snk

= tnk
+ s+ ǫ with tnk

≥ 0. Note that

xnk
+ tnk

a+ ǫa = (xnk
+ snk

a)− sa → x.

But xnk
+ tnk

a+ ǫa ∈ A+ ǫa and A+ ǫa is a closed subset of Rd. This implies
that x ∈ A + ǫa ⊂ A + Ω ⊂ Int(A). This contradicts the fact that x ∈ ∂(A).
These contradictions imply that our assumption sn 9 s is wrong and hence
sn → s. Therefore, the map

∂(A)× (0,∞) ∋ (x, s) → x+ sa ∈ Int(A)

is a homeomorphism. This proves (3). It is immediate that (3) implies (4).
Suppose ∂(A) is bounded. Since 0 ∈ A and A+Ω ⊂ Int(A), it follows that

Ω ⊂ Int(A). Let b ∈ Ω be given. By (3), there exists a sequence (sn) ∈ (0,∞)
and xn ∈ ∂(A) such that nb−sna = xn. Since ∂(A) is bounded, it follows that
b− sn

n
a = xn

n
→ 0. In other words, sn

n
a → b. Note that {sa : s ≥ 0} is a closed

subset of Rd. Hence, there exists s ≥ 0 such that b = sa. Since Ω − Ω = Rd,
it follows that the linear span of a is Rd. This implies that d = 1, which is a
contradiction to our assumption that d ≥ 2. This contradiction implies that
∂(A) is unbounded.

Let E := {x ∈ Rd : 0 < x < a}. Then E is a nonempty (as a
2 ∈ E) open

and bounded set. For a proof of this fact, we refer the reader to the first line
of the proof of [8, Prop. I.1.8]. Let M := sup{‖x‖ : x ∈ E}, where the norm

on Rd is the usual Euclidean norm. Since a
2 ∈ E, it follows that M ≥ ‖a‖

2 .
Thus, M > 0. The unboundedness of ∂(A) implies that there exists a sequence
{xn}n≥1 in ∂(A) such that ‖xn−xm‖ ≥ 3M if n 6= m. We claim the following:

(i) For n ≥ 1, E + xn ⊂ Int(A) \ (A+ a), and
(ii) the sequence {E + xn}n≥1 forms a disjoint family of nonempty open

subsets of Rd.

Let n ≥ 1 be given. Note that E ⊂ Ω. Since Ω + A ⊂ Int(A), it follows that
E + xn is contained in the interior of A. Suppose (E + xn) ∩ (A + a) 6= ∅.
Then there exists e ∈ E, y ∈ A such that e+ xn = y + a. Hence,

xn = y + (a− e) ∈ A+Ω ⊂ Int(A).

This implies that xn ∈ Int(A), which contradicts the fact that xn ∈ ∂(A).
This contradiction implies that (E + xn) ∩ (A + a) = ∅. Hence, E + xn ⊂
Int(A) \ (A+ a). This proves (i).

Let m,n ≥ 1 be such that m 6= n. Suppose that the intersection (E +xn)∩
(E+xm) is nonempty. Then there exists e1, e2 ∈ E such that e1+xn = e2+xm.
Now observe that

3M ≤ ‖xn − xm‖ = ‖e2 − e1‖ ≤ ‖e2‖+ ‖e1‖ ≤ 2M,

which is a contradiction since M > 0. This proves that the intersection (E +
xn) ∩ (E + xm) is empty. This proves (ii).
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Let λ be the Lebesgue measure on Rd. Since E is a nonempty open subset
of Rd, it follows that λ(E) > 0. Now calculate as follows to observe that:

∞ =

∞∑

n=1

λ(E)

=
∞∑

n=1

λ(E + xn)

= λ
( ∞∐

n=1

E + xn

)

≤ λ(Int(A) \ (A+ a)).

Hence, Int(A)\ (A+a) has infinite Lebesgue measure. This proves (6) and the
proofs are now complete. �

The next proposition shows that the isometric representation associated to
A of multiplicity 1 admits no nonzero additive cocycles.

Proposition 2.4. Let V : P → B(L2(A)) be the isometric representation asso-

ciated to the P -module A of multiplicity 1. Suppose that {ξx}x∈P is an additive

cocycle of V . Then for every x ∈ P , ξx = 0.

Proof. Fix a ∈ Ω. Since V ∗
a ξa = 0, it follows that ξa(x) = 0 for almost all

x ∈ A + a. Without loss of generality, we can assume that ξa(x) = 0 for all
x ∈ A + a. Also A \ (A + a) and Int(A) \ (A + a) differ by a set of measure
zero. The boundary ∂(A) has measure zero. Thus, without loss of generality,
we can assume that ξa(x) = 0 for x ∈ ∂(A).

Let U := Int(A) \ (A + a). By (1) and (4) of Proposition 2.3, it follows
that U is a nonempty open connected subset of Rd. Note that the complex
conjugate of ξa, i.e., ξa ∈ L2(U) ⊂ L1

loc(U). Thus, we view ξa as a distribution
on U . Let φ : U → R be a smooth function such that supp(φ) is compact and
supp(φ) ⊂ U . Denote the support of φ by K. We view φ as a smooth function
on Rd by declaring its value on the complement of U to be zero. We denote
its ith partial derivative of φ by ∂iφ. For x ∈ Rd, let ∇φ(x) be the gradient of
φ, i.e.,

∇φ(x) = (∂1φ(x), ∂2φ(x), . . . , ∂nφ(x)).

Let

M := sup
x∈Rd

‖∇φ(x)‖.

Fix b ∈ Ω such that ‖b‖ = 1. We claim that there exists δ0 > 0 such that
if 0 < t < δ0, then K ∩ (A \ (A + tb)) = ∅. Suppose not. Then there
exists a sequence (xn) ∈ K and a sequence of positive real numbers tn → 0
such that xn ∈ A \ (A + tnb). By passing to a subsequence, if necessary, we
can assume that xn converges, say to x ∈ K. Note that K ⊂ Int(A) and
xn − tnb → x ∈ Int(A). Hence, eventually xn ∈ Int(A) + tnb ⊂ A+ tnb, which

Münster Journal of Mathematics Vol. 13 (2020), 115–143



CCR flows associated to closed convex cones 125

is a contradiction to the fact that xn ∈ A \ (A + tnb). This proves our claim.
Choose such a δ0.

Let δ > 0 be such that δ < δ0 and K +B(0, δ) ⊂ U . Let L := K +B(0, δ).
Note that L is a compact subset of U . Let (tn) be a sequence of positive
numbers such that tn < δ and tn → 0. Note that by the mean value inequality,
we have for x ∈ Rd and n ≥ 1,

(2)
∣∣∣φ(x+ tnb)− φ(x)

tn

∣∣∣ ≤ M1L(x).

Note that since K ∩ (A \ (A+ tnb)) = ∅, we have 〈ξtnb|φ〉 = 0. Now calculate
as follows to observe that:

∫

U

φ(x + tnb)− φ(x)

tn
ξa(x)dx =

1

tn

(
〈ξa|V ∗

tnbφ〉 − 〈ξa|φ〉
)

=
1

tn

(
〈Vtnbξa|φ〉 − 〈ξa|φ〉

)

=
1

tn

(
〈ξtnb + Vtnbξa|φ〉 − 〈ξa|φ〉

)

=
1

tn

(
〈ξtnb+a|φ〉 − 〈ξa|φ〉

)

=
1

tn

(
〈ξa + Vaξtnb|φ〉 − 〈ξa|φ〉

)

=
1

tn
〈ξtnb|V ∗

a φ〉

= 0 (since φ vanishes on A+ a).

Thus, we obtain, for n ≥ 1, the equation

(3)

∫

U

φ(x+ tnb)− φ(x)

tn
ξa(x) dx = 0.

For x ∈ U and n ≥ 1, Equation (2) implies that

∣∣∣
(φ(x + tnb)− φ(x)

tn

)
ξa(x)

∣∣∣ ≤ M1L(x)|ξa(x)|.

The function U ∋ x → 1L(x)|ξa(x)| ∈ [0,∞) is integrable. Thus, letting
n → ∞ in Equation (3) and applying the dominated convergence theorem, we
obtain ∫

U

〈∇φ(x)|b〉ξa(x) = 0.

Since tΩ = Ω for every t > 0, it follows that for every b ∈ Ω,
∫

U

〈∇φ(x)|b〉ξa(x) = 0.

Since Ω is spanning, it follows that for every z ∈ Rd,
∫
U
〈∇φ(x)|z〉ξa(x) = 0.

Let e1, e2, . . . , ed be the standard orthonormal basis of Rd. Then for every
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i = 1, 2, . . . , d, ∫

U

∂iφ(x)ξa(x) dx =

∫

U

〈∇φ(x)|ei〉ξa(x) = 0.

Hence, each partial derivative of ξa, in the distribution sense, vanishes. By
[6, Theorem 6.3-4], it follows that there exists a complex number ca such that
ξa(x) = ca for almost all x ∈ U . Since ξa ∈ L2(A) and U has infinite measure
by Proposition 2.3, it follows that ca = 0. Hence, ξa = 0 for every a ∈ Ω. The
density of Ω in P and the continuity of the map P ∋ ξ → ξx ∈ L2(A) implies
that ξx = 0 for every x ∈ P . This completes the proof. �

Remark 2.5. Let k ∈ {1, 2, . . .} ∪ {∞} be given. For each i, let Hi be a
Hilbert space. Denote the direct sum

⊕Hi by H. For a vector ξ ∈ H, we
denote its ith-component by ξi. For each i, let V i := {V i

x}x∈P be an isometric
representation of P on Hi. Let V :=

⊕
V i be the direct sum. Then cleary V

is an isometric representation of P on H. If each V i is strongly continuous,
then V is strongly continuous.

If ξ := {ξx}x∈P is an additive cocycle of V , then ξi := {ξix}x∈P is an additive
cocycle of V i for each i. Thus, if each V i admits no nontrivial additive cocycle,
then V admits no nontrivial additive cocycle.

Now the following is an immediate corollary of Proposition 2.4 and Re-
mark 2.5.

Corollary 2.6. Let k ∈ {1, 2, . . . , } ∪ {∞} and let K be a Hilbert space of

dimension k. Let V : P → B(L2(A) ⊗ K) be the isometric representation as-

sociated to the P -module A of multiplicity k. Suppose that ξ := {ξx}x∈P is an

additive cocycle of V . Then ξx = 0 for every x ∈ P .

Corollary 2.6 and Theorem 1.3 lead to the next Theorem.
Let k ∈ {1, 2, . . . , } ∪ {∞} and let K be a Hilbert space of dimension k.

Let V be the isometric representation of P on the Hilbert space L2(A) ⊗ K
associated to the P -module A of multiplicity k. For x ∈ P , we denote the
range projection of Vx by Ex. The orthogonal complement of Ex, i.e., 1− Ex

will be denoted by E⊥
x . Denote the commutant of the von Neumann algebra

generated by {Vx : x ∈ P} by M . Denote the unitary group of M by U(M).
We endow U(M) with the strong operator topology. Let α(A,k) be the CCR
flow associated to the isometric representation V and denote the gauge group
of α(A,k) by G(α(A,k)).

Theorem 2.7. With the foregoing notation, the map

Rd × U(M) ∋ (λ, U) → {ei〈λ|x〉Γ(UE⊥
x + Ex)}x∈P ∈ G(α(A,k))

is a homeomorphism, where the topology on Rd×U(M) is the product topology.

3. The commutant calculation

Let A be a P -module, k ∈ {1, 2, . . .} ∪ {∞} and let K be a Hilbert space
of dimension k. Let V : P → B(L2(A) ⊗ K) be the isometric representation
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associated to A of multiplicity k. The goal of this section is to compute the
commutant of the von Neumann algebra generated by {Vx : x ∈ P}. First we
compute the commutant when the multiplicity is k = 1. This relies heavily on
the groupoid approach developed in [21] to study C∗-algebras arising out of
Ore semigroup actions.

We must mention here that the results obtained in [21] are due to the deep
insight of Muhly and Renault in using groupoids to understand the Wiener–
Hopf C∗-algebras. This is achieved in their seminal paper [11]. This view was
further developed by Nica in [15] and Hilgert and Neeb in [9]. The results
obtained in [21] also owes a lot to [9]. For completeness, we review the basics
of groupoid C∗-algebras. For a quick introduction to the theory of groupoids
and the associated C∗-algebras, we either recommend the first two sections of
[10] or the second section of [11]. For a more detailed study of groupoids, we
refer the reader to [18]. We recall here the basics of C∗-algebras associated to
a topological groupoid.

Let G be a topological groupoid with a left Haar system. We assume that
G is locally compact, Hausdorff and second countable. The unit space of G
will be denoted by G(0) and let r, s : G → G(0) be the range and source maps.
For x ∈ G(0), let G(x) = r−1(x). Fix a left Haar system (λ(x))x∈G(0) . Let
Cc(G) be the space of continuous complex-valued functions defined on G. The
space Cc(G) forms a ∗-algebra, where the multiplication and the involution are
defined by the following formulas:

f ∗ g(γ) =
∫

f(η)g(η−1γ) dλ(r(γ))(η), f∗(γ) = f(γ−1)

for f, g ∈ Cc(G). We obtain bounded representations of the ∗-algebra Cc(G) as
follows. Fix a point x ∈ G(0). Consider the Hilbert space L2(G(x), λ(x)). For
f ∈ Cc(G) and ξ ∈ L2(G(x), λ(x)), let πx(f)ξ ∈ L2(G(x), λ(x)) be defined by the
formula

(πx(f)ξ)(γ) :=

∫
f(γ−1γ1)ξ(γ1) dλ

(x)(γ1)

for γ ∈ G(x). Then πx : Cc(G) → B(L2(G(x), λ(x)) is a non-degenerate ∗-
representation. Moreover, πx is continuous when Cc(G) is given the inductive
limit topology. For f ∈ Cc(G), let

‖f‖red := sup
x∈G(0)

‖πx(f)‖.

Then ‖ ‖red is well-defined and is a C∗-norm on Cc(G). The completion of
Cc(G) with respect to the norm ‖ ‖red is called the reduced C∗-algebra of G
and denoted C∗

red(G). There is also a universal C∗-algebra associated to G and
denoted C∗(G). However, we do not need the universal one as the groupoids
that we consider are amenable and for amenable groupoids C∗

red(G) and C∗(G)
coincide. Fix x ∈ G(0). We denote the extension of πx to C∗(G) by πx itself.
The representation πx is called the representation of C∗(G) induced at the

point x.
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Let γ ∈ G be such that s(γ) = x and r(γ) = y. Let Uγ : L
2(G(y), λ(y)) →

L2(G(x), λ(x)) be defined by the formula

Uγξ(γ1) = ξ(γγ1)

for ξ ∈ L2(G(y), λ(y)). The fact that (λ(x))x∈G(0) is a left Haar system implies
that Uγ is a unitary. Moreover, it is routine to verify that Uγ intertwines the
representations πx and πy, i.e., for f ∈ Cc(G), Uγπy(f) = πx(f)Uγ .

We need the following two facts:

(1) Let x ∈ G(0) be given. Denote the isotropy group at x by Gx
x , i.e.,

Gx
x := {γ ∈ G : r(γ) = s(γ) = x}.

Note that Gx
x is a group. The commutant of {πx(f) : f ∈ Cc(G)} is

generated by {Uγ : γ ∈ Gx
x}.

(2) For x, y ∈ G(0), the representations πx and πy are non-disjoint if and only
if there exists γ ∈ G such that s(γ) = x and r(γ) = y.

Connes proved the above two facts in his paper [7]. In the appendix, we
offer a proof for (1) and (2) for Deaconu–Renault groupoids considered by the
second author and Renault in [17], which is all we need. We believe that the
appendix is interesting on its own right as the proof uses notions like groupoid
equivalence and Rieffel’s notion of strong Morita equivalence.

Let us recall the Deaconu–Renault groupoid considered in [17]. Let X be a
compact metric space. By an action of P on X , we mean a continuous map
X × P ∋ (x, t) → x+ t ∈ X such that x+ 0 = x and (x + s) + t = x+ (s+ t)
for x ∈ X and s, t ∈ P . We assume that the action of P on X is injective, i.e.,
for every t ∈ P , the map X ∋ x → x+ t ∈ X is injective. Let

X ⋊ P :=
{
(x, t, y) ∈ X × Rd ×X : there exists r, s ∈ P

such that t = r − s and x+ r = y + s
}
.

The set X ⋊ P has a groupoid structure, where the groupoid multiplication
and the inversion are given by

(x, s, y)(y, t, z) = (x, s+ t, z) and (x, s, y)−1 = (y,−s, x).

We call X ⋊ P the Deaconu–Renault groupoid determined by the action of P
on X . The set X ⋊ P is a closed subset of X × Rd × X . When endowed
with the subspace topology, X ⋊ P becomes a topological groupoid. The map
X ⋊ P ∋ (x, t, y) → (x, t) ∈ X × Rd is an embedding and the range of the
prescribed map is a closed subset of X×Rd. From here on, we always consider
X ⋊ P as a subspace of X × Rd.

For x ∈ X , let

Qx := {t ∈ Rd : (x, t) ∈ X ⋊ P}.
Note that for x ∈ X , Qx is a closed subset of Rd containing the origin 0 and
Qx + P ⊂ Qx. By [17, Lem. 4.1], it follows that Int(Qx) is dense in Qx and
the boundary ∂(Qx) has Lebesgue measure zero.
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For x ∈ X , let λ(x) be the measure on X ⋊ P defined by the following
formula: For f ∈ Cc(X ⋊ P ),

(4)

∫
f dλ(x) =

∫
f(x, t)1Qx

(t) dt.

Here dt denotes the usual Lebesgue measure on Rd. The groupoid X ⋊ P
admits a Haar system if and only if the map X × Ω ∋ (x, s) → x + s ∈ X is
open. In such a case, (λ(x))x∈X forms a left Haar system. When X⋊P admits
a Haar system, we use only the Haar system described above.

Assume that X ⋊ P has a Haar system. Then the action of P on X can be
dilated to an action of Rd on a locally compact space Y . More precisely, there
exists a locally compact Hausdorff space Y , an action of Rd on Y , Y × Rd ∋
(y, t) → y + t, and an embedding i : X → Y such that

(1) the embedding i : X → Y is P -equivariant,
(2) the set X0 := i(X) + Ω is open in Y , and
(3) Y =

⋃
t∈P (i(X)− t) =

⋃
t∈Ω(X0 − t).

The space Y is uniquely determined by conditions (1), (2) and (3), up to an
Rd-equivariant isomorphism. We suppress the notation i and simply identify
X as a subspace of Y . We call the pair (Y,Rd) the dilation associated to the
pair (X,P ). Moreover, the groupoid X ⋊ P is merely the reduction of the
transformation groupoid Y ⋊Rd onto X , i.e., X ⋊ P := (Y ⋊Rd)|X . Also the
groupoids X⋊P and Y ⋊Rd are equivalent in the sense of [12]. Since Y ⋊Rd is
amenable, it follows from [1, Thm. 2.2.17] that X ⋊P is amenable. For proofs
and details of the facts about Deaconu–Renault groupoids (mentioned in the
previous paragraphs), we refer the reader to [17].

Let X be a compact metric space and let X ×P ∋ (x, t) → x+ t ∈ X be an
action of P on X . Assume that X⋊P has a Haar system. Denote the dilation
associated to (X,P ) by (Y,Rd). Let G := X ⋊P and H := Y ⋊Rd. The range
and source maps of both G and H will be denoted by r and s, respectively. Fix
x ∈ X and let

Qx := {t ∈ Rd : x+ t ∈ X}.
Note that G(x) := r−1(x) := {x} ×Qx. Thus, the Hilbert space L2(G(x), λ(x))
can be identified with L2(Qx) = L2(Qx, dt), where dt denotes the Lebesgue
measure on Rd. Let Gx

x be the isotropy group of G at x, i.e., Gx
x := {t ∈ Rd :

x + t = x}. Note that for t ∈ Rd, t ∈ Gx
x if and only if (x, t, x) ∈ X ⋊ P . For

s ∈ Gx
x , let Us be the unitary on L2(Qx) defined by the following formula:

(Usξ)(t) = ξ(t− s) for ξ ∈ L2(Qx).

Theorem 3.1. With the foregoing notation, we have the following:

(1) For x ∈ X, let πx be the representation of C∗(G) induced at x. Then the

commutant of {πx(f) : f ∈ Cc(G)} is the von Neumann algebra generated

by {Us : s ∈ Gx
x}.

(2) Let x, y ∈ X be given. Then πx and πy are non-disjoint if and only if there

exists t ∈ Rd such that x+ t = y, i.e., (x, t, y) ∈ G.
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We provide a proof of the above theorem in the appendix.
Let V : P → B(H) be a strongly continuous isometric representation with

commuting range projections. More precisely, let Ex := VxV
∗
x for x ∈ P . We

say that V has commuting range projections if {Ex : x ∈ P} is a commuting
family of projections. For z ∈ Rd, write z = x−y, with x, y ∈ P , and let Wz :=
V ∗
y Vx. Then Wz is well defined and is a partial isometry for every z ∈ Rd. Also

{Wz}z∈Rd forms a strongly continuous family of partial isometries. We refer
the reader to [21, Prop. 3.4] for proofs of the above mentioned facts. For
f ∈ Cc(R

d), let

Wf :=

∫
f(z)Wz dz.

For f ∈ Cc(R
d), Wf is called the Wiener–Hopf operator with symbol f .

Lemma 3.2. With the foregoing notation, the von Neumann algebra generated

by the set of Wiener–Hopf operators {Wf : f ∈ Cc(R
d)} and the von Neumann

algebra generated by {Vx : x ∈ P} coincide.

Proof. It is clear that the von Neumann algebra generated by the set of
Wiener–Hopf operators {Wf : f ∈ Cc(R

d)} is contained in the von Neu-
mann algebra generated by {Vx : x ∈ P}. Let z0 ∈ Rd be given. For
n ≥ 1, let B(z0,

1
n
) be the open ball centered at z0 and of radius 1

n
. For

n ≥ 1, choose a function fn ∈ Cc(R
d) such that fn ≥ 0,

∫
fn(z)dz = 1 and

supp(fn) ⊂ B(z0,
1
n
). We claim that

∫
fn(z)Wz dz → Wz0 weakly.

Let ξ, η ∈ H and ǫ > 0 be given. Since {Wz}z∈Rd is strongly continuous, it
follows that there exists N ≥ 1 such that |〈Wzξ|η〉 − 〈Wz0ξ|η〉| ≤ ǫ for every
z ∈ B(z0,

1
N
). Let n ≥ N be given. Calculate as follows to observe that:

∣∣∣
〈( ∫

fn(z)Wzdz
)
ξ
∣∣∣η
〉
− 〈Wz0ξ|η〉

∣∣∣

=
∣∣∣
∫

fn(z)〈Wzξ|η〉 dz −
∫

fn(z)〈Wz0ξ|η〉 dz
∣∣∣

=
∣∣∣
∫

fn(z)(〈Wzξ|η〉 − 〈Wz0ξ|η〉) dz
∣∣∣

≤
∫

z∈B(z0,
1
N

)

fn(z)
∣∣〈Wzξ|η〉 − 〈Wz0ξ|η〉

∣∣ dz

≤ ǫ

∫
fn(z) dz ≤ ǫ.

This proves that
∫
fn(z)Wzdz → Wz0 . Now it is immediate that the von

Neumann algebra generated by {Vx : x ∈ P} is contained in the von Neumann
algebra generated by {Wf : f ∈ Cc(R

d)}. This completes the proof. �

Next we recall the universal groupoid constructed in [21]. Denote the set of
closed subsets of Rd by C(Rd). Let

Xu := {A ∈ C(Rd) : 0 ∈ A,−P +A ⊂ A}.
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Consider L∞(Rd) as the dual of L1(Rd) and endow L∞(Rd) with the weak∗-
topology. The map Xu ∋ A → 1A ∈ L∞(Rd) is injective. Via this injection,
we view Xu as a subset of L∞(Rd) and endow Xu with the subspace topology
inherited from the weak∗-topology on L∞(Rd). The space Xu is a compact
metric space. The map

Xu × P ∋ (A, x) → A+ x ∈ Xu

provides us with an injective action of P on Xu. Moreover, the map Xu ×Ω ∋
(A, x) → A + x ∈ Xu is open. See [21, Prop. 4.4 and Rem. 4.5] for a proof
of this fact. Consequently, the Deaconu–Renault groupoid Xu ⋊P has a Haar
system. We denote the Deaconu–Renault groupoid Xu ⋊ P by Gu. The range
and source maps of Gu will be denoted by r and s, respectively. We need the
following two facts about the groupoid Gu. For proofs, we refer the reader to
[21, Rem. 4.5 and Prop. 2.1].

(1) For A ∈ Xu, let QA := {z ∈ Rd : (A, z) ∈ Xu ⋊ P}. Then QA = −A for
every A ∈ Xu.

(2) For f ∈ Cc(R
d), let f̃ ∈ Cc(Gu) be defined by the equation

(5) f̃(A, z) := f(z) for (A, z) ∈ Gu.

Then C∗(Gu) is generated by {f̃ : f ∈ Cc(R
d)}.

Let (λ(A))A∈Xu
be the Haar system on Gu defined by Equation (4). Fix

A ∈ Xu. Then GA
u := r−1(A) = {A}×QA = {A}×−A. We identify L2(GA

u , λA)
with L2(−A).

Let A be a P -module and let V : P → B(L2(A)) be the isometric representa-
tion associated to A of multiplicity 1. Let {Wz}z∈Rd be the partial isometries,
described in the paragraph following Theorem 3.1, associated to the isometric
representation V . Note that −A ∈ Xu. Denote the representation of C∗(Gu)
induced at −A by πA.

Proposition 3.3. . With the foregoing notation, we have

πA(f̃) =

∫
f(−z)Wz dz

for every f ∈ Cc(R
d). Here for f ∈ Cc(R

d), f̃ ∈ Cc(Gu) is as defined in

Equation (5).

We omit the proof of the above proposition as it is similar to the calculations
carried out in the two paragraphs following Remark 5.3 of [17].

Fix a P -module say A for the rest of this section. Let V : P → B(L2(A))
be the isometric representation associated to A of multiplicity 1. Let GA be
the isotropy group of A, i.e.,

GA := {z ∈ Rd : A+ z = A}.
For z ∈ GA, let Uz be the unitary defined on L2(A) by the equation

(6) Uzf(x) := f(x− z) for f ∈ L2(A).
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The following corollary is an immediate consequence of Theorem 3.1, Propo-

sition 3.3, Lemma 3.2 and the fact that {f̃ ∈ Cc(Gu) : f ∈ Cc(R
d)} generates

C∗(Gu).

Corollary 3.4. With the foregoing notation, we have that the commutant of

the von Neumann algebra generated by {Vx : x ∈ P} coincides with the von

Neumann algebra generated by {Uz : z ∈ GA}.

Let k ∈ {1, 2, . . . , } ∪ {∞} be given and let K be a Hilbert space of dimen-
sion k. Let V : P → B(L2(A) ⊗K) be the isometric representation associated
to A of multiplicity k. Denote the isometric representation associated to A of

multiplicity 1 by Ṽ . Then it is clear that for x ∈ P , Vx = Ṽx ⊗ 1. Let N be

the von Neumann algebra on L2(A) generated by {Ṽx : x ∈ P}. Denote the
commutant of N by M , i.e., M = N ′. Corollary 3.4 implies that M is gen-
erated by {Uz : z ∈ GA}. In particular, M is abelian. Denote the CCR flow
associated to the isometric representation V by α(A,k). Let G(α(A,k)) denote
the gauge group of α(A,k). The following corollary is now immediate.

Corollary 3.5. With the foregoing notation, the commutant of the von Neu-

mann algebra generated by {Vx : x ∈ P} is M ⊗ B(K). The gauge group of

α(A,k), i.e., G(α(A,k)) is isomorphic to Rd×U(M⊗B(K)), where U(M⊗B(K))
is the unitary group of M ⊗B(K) endowed with the strong operator topology.

Proof. The von Neumann algebra generated by {Vx : x ∈ P} is N ⊗ 1 :=
{T ⊗ 1 : T ∈ N}. Hence, the commutant of N ⊗ 1 is M ⊗B(K). The fact that
G(α(A,k)) is isomorphic to Rd×U(M ⊗B(K)) follows from Theorem 2.7. This
completes the proof. �

4. Proof of the main theorem

In this section, we prove Theorem 1.2. We need a basic fact regarding the
representation theory of the unitary group of an n-dimensional Hilbert space.
We start with a combinatorial lemma. Fix ℓ ≥ 2. Denote the permutation
group on {1, 2, . . . , ℓ} by Sℓ. For i, j ∈ {1, 2, . . . , ℓ} and i 6= j, the permutation
that interchanges i and j and leaves the rest fixed will be denoted by (i, j). For
σ ∈ Sℓ−1, let σ̂ ∈ Sℓ be defined by σ̂(i) = σ(i) for 1 ≤ i ≤ ℓ− 1 and σ̂(ℓ) = ℓ.
Via the embedding Sℓ−1 ∋ σ → σ̂ ∈ Sℓ, we view Sℓ−1 as a subgroup of Sℓ. For
m := (m1,m2, . . . ,mℓ) ∈ Zℓ and σ ∈ Sℓ, let

mσ := (mσ(1),mσ(2), . . . ,mσ(ℓ)).

Lemma 4.1. Let ℓ ≥ 2 and m := (m1,m2, . . . ,mℓ) ∈ Zℓ be given. Suppose

that there exists i, j ∈ {1, 2, . . . , ℓ} such that i 6= j and mi 6= mj. Then the

cardinality of the set {mσ : σ ∈ Sℓ} is at least ℓ.

Proof. We prove this by induction on ℓ. The base case, i.e., when ℓ = 2, is
clearly true. Fix ℓ ≥ 3 and assume that the conclusion of the lemma holds for
ℓ − 1. Choose i, j ∈ {1, 2, . . . , ℓ} such that i 6= j and mi 6= mj . Replacing m
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by mσ for a suitable σ if necessary, we can without loss of generality assume
that i = 1.

Case 1: 1 ≤ j ≤ ℓ − 1. Then, by the induction hypothesis, the cardinality of
the set {mσ̂ : σ ∈ Sℓ−1} is at least ℓ − 1. Since m1 6= mj , either m1 6= mℓ or
mj 6= mℓ. Hence, there exists i ∈ {1, j} such that mi 6= mℓ. Then {m(i,ℓ)}
is disjoint from {mσ̂ : σ ∈ Sℓ−1}. This proves that the cardinality of the set
{mσ : σ ∈ Sℓ} is at least ℓ.

Case 2: j = ℓ. If there exists k ∈ {1, 2, . . . , ℓ − 1} such that m1 6= mk, then,
by Case 1, we have that the cardinality of the set {mσ : σ ∈ Sℓ} is at least ℓ.
Now assume that m1 = mk for every k ∈ {1, 2, . . . , ℓ− 1}. Then note that the
cardinality of the set {m(i,ℓ) : 1 ≤ i ≤ ℓ} is ℓ and hence the cardinality of the
set {mσ : σ ∈ Sℓ} is at least ℓ. This completes the proof. �

Consider the n-dimensional Hilbert space Cn with the usual Euclidean inner
product. For i = 1, 2, . . . , n, let ei ∈ Cn be the vector which has 1 in the
ith-coordinate and zero elsewhere. Denote the unitary group of Cn endowed
with the norm topology by U(n). The special unitary group, i.e., the set of
unitary operators with determinant one will be denoted by SU(n). Let Tn

be the subgroup of U(n) consisting of diagonal matrices. For λ ∈ Tn and
1 ≤ i ≤ n, denote the (i, i)th-entry of λ by λi. Given λ1, λ2, . . . , λn ∈ T,
the diagonal matrix with diagonal entries λ1, λ2, . . . , λn will be denoted by
diag(λ1, λ2, . . . , λn). Here by T, we mean the unit circle of the complex plane.

For σ ∈ Sn, let Uσ be the unitary on Cn such that Uσ(ei) = eσ(i) for
i ∈ {1, 2, . . . , n}. For λ := diag(λ1, λ2, . . . , λn) ∈ Tn and σ ∈ Sn, let λσ :=
diag(λσ(1), λσ(2), . . . , λσ(n)). Note that for σ ∈ Sn and λ ∈ Tn, UσλU

∗
σ = λσ−1 .

The following proposition may be known to experts. We use the notation
introduced in the preceding two paragraphs in its proof.

Proposition 4.2. Let n ≥ 2, let H be a Hilbert space and let ρ be a strongly

continuous unitary representation of U(n) on H. Suppose that the dimension

of H is strictly less than n. Then ρ(U) = 1 for every U ∈ SU(n). Here 1
denotes the identity operator on H.

Proof. For m := (m1,m2, . . . ,mn) ∈ Zn, let

Hm := {v ∈ H : for every λ ∈ Tn, ρ(λ)v = λm1
1 λm2

2 · · ·λmn

n v}.

Restrict ρ to the compact abelian group Tn. Then the Hilbert space H decom-
poses as H =

⊕
m∈Zn Hm.

Fix m := (m1,m2, . . . ,mn) ∈ Zn. Suppose Hm 6= 0. Then mi = mj for
every i, j ∈ {1, 2, . . . , n}. Suppose not. Then there exists i, j ∈ {1, 2, . . . , n}
such that i 6= j and mi 6= mj . Let v ∈ Hm, λ := diag(λ1, λ2, . . . , λn) ∈ Tn and
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σ ∈ Sn be given. Calculate as follows to observe that:

ρ(Uσ)ρ(λ)ρ(Uσ)
∗v = ρ(UσλU

∗
σ)v

= ρ(λσ−1 )v

= λm1

σ−1(1)λ
m2

σ−1(2) · · ·λ
mn

σ−1(n)v

= λ
mσ(1)

1 λ
mσ(2)

2 · · ·λmσ(n)
n v.

The calculation implies that ρ(Uσ)
∗ maps Hm into Hmσ

. This implies, in
particular, that Hmσ

6= 0 for every σ ∈ Sn. Note that for m′,m′′ ∈ Zn if
m′ 6= m′′, then Hm′ is orthogonal to Hm′′ . This together with the fact that
the cardinality of {mσ : σ ∈ Sn} is at least n (Lemma 4.1) implies that the
dimension of H is at least n, which contradicts the hypothesis. Hence, if
Hm 6= 0, then mi = mj for every i, j ∈ {1, 2, . . . , n}. This has the consequence
that if λ ∈ Tn ∩ SU(n), then ρ(λ) = 1.

Let U ∈ SU(n) be given. Then there exists λ ∈ Tn and V ∈ U(n) such
that V λV ∗ = U . Since U ∈ SU(n), it follows that the determinant of λ is one.
Hence,

ρ(U) = ρ(V λV ∗) = ρ(V )ρ(λ)ρ(V )∗ = ρ(V )ρ(V )∗ = ρ(V V ∗) = ρ(1) = 1.

This completes the proof. �

Let G be a compact group, let H be a separable Hilbert space and let
π : G → B(H) be a strongly continuous unitary representation of G on H. Let
{(Hα, πα)}α∈Λ be the complete list of irreducible subrepresentations occuring
in (H, π). For α ∈ Λ, Hα is finite-dimensional. For α ∈ Λ, let nα be the
multiplicity of (Hα, πα) in (H, π). For α ∈ Λ, let ℓnα

2 be a Hilbert space of
dimension nα. Up to a unitary equivalence, we can write

H =
⊕

α∈Λ

(Hα ⊗ ℓnα

2 ), π(g) =
⊕

α∈Λ

(πα(g)⊗ 1)

for g ∈ G. Let
⊕

α∈Λ

B(Hα) :=
{
(Tα)α∈Λ : sup

α∈Λ
‖Tα‖ < ∞

}
.

For T := (Tα)α∈Λ ∈ ⊕
α∈ΛB(Hα), define

‖T ‖ := sup
α∈Λ

‖Tα‖.

Then (
⊕

α∈ΛB(Hα), ‖ ‖) is a C∗-algebra. For T = (Tα)α∈Λ ∈ ⊕
α∈ΛB(Hα),

define T̃ ∈ B(H) by the formula

T̃ :=
⊕

α∈Λ

(Tα ⊗ 1).

The map
⊕

α∈ΛB(Hα) ∋ T → T̃ ∈ B(H) is an injective ∗-homomorphism.
The proof of the following proposition is elementary. Thus, we omit its proof.
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Proposition 4.3. With the foregoing notation, we have

π(G)′′ =
{
T̃ : T ∈

⊕

α∈Λ

B(Hα)
}
.

Let H1,H2,K1,K2 be nonzero separable Hilbert spaces. For i ∈ {1, 2},
let Mi be a unital commutative von Neumann algebra acting on Hi. Fix
i ∈ {1, 2}. Consider the tensor product von Neumann algebra Mi ⊗ B(Ki)
acting on Hi⊗Ki. Denote the unitary group of Mi⊗B(Ki) endowed with the
strong operator topology by U(Mi⊗B(Ki)). Suppose that dim(K1) < dim(K2).

Let K̃2 be a finite-dimensional subspace of K2 such that dim(K1) < dim(K̃2).

Denote the unitary group of K̃2 by U(K̃2), and endow U(K̃2) with the norm

topology. Write K2 = K̃2 ⊕ K̃⊥
2 . We denote the special unitary group of K̃2 by

SU(K̃2), i.e.,

SU(K̃2) := {U ∈ U(K̃2) : det(U) = 1}.
For U ∈ U(K̃2), define Ũ ∈ B(K2), by Ũ = U ⊕ 1. Observe that the map

U(K̃2) ∋ U → 1⊗ Ũ ∈ U(M2 ⊗B(K2))

is a topological embedding and is also a group homomorphism. We use the
preceding notation in the statement and the proof of the following proposition.

Proposition 4.4. Let Φ: Rd × U(M2 ⊗B(K2)) → Rd × U(M1 ⊗B(K1)) be a

continuous group homomorphism. Then {(0, 1⊗Ũ) : U ∈ SU(K̃2)} is contained

in the kernel of Φ. In particular, Φ is not 1-1.
Here, for i ∈ {1, 2}, the topology on Rd × U(Mi ⊗ B(Ki)) is the product

topology and the group structure on Rd × U(Mi ⊗ B(Ki)) is that of cartesian

product.

Proof. Let π1 : R
d × U(M1 ⊗ B(K1)) → Rd and π2 : R

d × U(M1 ⊗ B(K1)) →
U(M1 ⊗ B(K1)) be the first and second coordinate projections. Define Φ1 =

π1 ◦ Φ and Φ2 = π2 ◦ Φ. Let L := H1 ⊗ K1 and π : U(K̃2) → B(L) be the
strongly continuous unitary representation defined by the equation

π(U) := Φ2(0, 1⊗ Ũ).

Let {(Lα, πα)}α∈Λ be the complete list of irreducible subrepresentations of

U(K̃2) occuring in (L, π). Note that for each α ∈ Λ, Lα is finite-dimensional.
For α ∈ Λ, let nα be the multiplicity of (Lα, πα) in (L, π). We use/apply the

notation explained before Proposition 4.3 to the compact group U(K̃2) and the
representation (L, π).
Claim: dim(Lα) ≤ dim(K1) for every α ∈ Λ. Let α0 ∈ Λ be fixed. For
S ∈ B(Lα0 ), let S := (Sα)α∈Λ ∈ ⊕

α∈Λ B(Lα) be defined by the following
equation:

Sα :=

{
S if α = α0,

0 if α 6= α0.
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Clearly the map B(Lα0) ∋ S → S ∈
⊕

α∈ΛB(Lα) is an injective ∗-homo-
morphism. Let P ∈ B(Lα0) be a nonzero element.

Since π(U(K̃2)) ⊂ U(M1⊗B(K1)), it follows that the von Neumann algebra

generated by π(U(K̃2)), i.e., π(U(K̃2))
′′, is contained in M1 ⊗ B(K1). Note

that P̃ ∈ M1 ⊗ B(K1) is nonzero. Treating M1 as a C∗-algebra, we see that

there exists a character χ of M1 such that (χ⊗1)(P̃ ) 6= 0. This shows that the

map B(Lα0) ∋ S → (χ⊗ 1)(S̃) ∈ B(K1) is a nonzero ∗-homomorphism. Since
Lα0 is finite-dimensional, it follows that B(Lα0) has no nonzero ideal. As a

consequence, we conclude that the map B(Lα0) ∋ S → (χ⊗ 1)(S̃) ∈ B(K1) is
an injection. Hence, dim(Lα0) ≤ dim(K1). This proves our claim.

Thanks to Proposition 4.2 and the fact that dim(Lα) < dim(K̃2) for every

α ∈ Λ, we obtain that π(U) = 1 for every U ∈ SU(K̃2). This implies that

Φ2(0, 1⊗ Ũ) = 1 for every U ∈ SU(K̃2). Note that the map Φ1 : R
d ×U(M2 ⊗

B(K2)) → Rd is continuous. Consequently, {Φ1(0, 1 ⊗ Ũ) : U ∈ SU(K̃2)}
is a compact subgroup of Rd. But the only compact subgroup of Rd is the

trivial one, i.e., {0}. Hence, Φ1(0, 1 ⊗ Ũ) = 0 for every U ∈ SU(K̃2). As a

consequence, we obtain that {(0, 1 ⊗ Ũ) : U ∈ SU(K̃2)} is contained in the
kernel of Φ. This completes the proof. �

The following corollary is immediate from Proposition 4.4 and Corollary 3.5.

Corollary 4.5. Let A be a P -module and let k1, k2 ∈ {1, 2, . . .} ∪ {∞}. For

i ∈ {1, 2}, denote the CCR flow associated to the P -module A of multiplicity ki
by α(A,ki). Then α(A,k1) is cocycle conjugate to α(A,k2) if and only if k1 = k2.

Let H1,H2,K be nonzero separable Hilbert spaces. Assume that K is
infinite-dimensional. For i ∈ {1, 2}, let Mi ⊂ B(Hi) be a unital commu-
tative von Neumann algebra. For i ∈ {1, 2}, consider the tensor product
von Neumann algebra Mi ⊗ B(K) acting on Hi ⊗ K. The unitary groups of
M1,M1 ⊗ B(K) and M2 ⊗ B(K) are endowed with the corresponding strong
operator topologies and we will denote them by U(M1), U(M1 ⊗ B(K)) and
U(M2⊗B(K)), respectively. We denote the identity element of various unitary
groups involved by 1. The identity element of Rd will be denoted by 0.

Lemma 4.6. With the foregoing notation, the topological groups Rd×U(M1⊗
B(K)) and Rd × U(M1)× U(M2 ⊗B(K)) are not isomorphic.

Proof. Suppose that there exists a map, say,

Φ: Rd × U(M1 ⊗B(K)) → Rd × U(M1)× U(M2 ⊗B(K))

such that Φ is a topological group isomorphism. Denote the second coordi-
nate projection from Rd × U(M1) × U(M2 ⊗ B(K)) onto U(M1) by π. De-

fine Φ̃ : U(M1 ⊗ B(K)) → U(M1) as follows: for U ∈ U(M1 ⊗ B(K)), let

Φ̃(U) = π ◦ Φ(0, U). Note that Φ̃ is a continuous group homomorphism.

We claim that for x ∈ U(M1), Φ̃(x ⊗ 1) = 1. Let x ∈ U(M1) be given.
Choose an orthonormal basis, say, {ξ1, ξ2, ξ3, . . .} of K. Let N := {1, 2, 3, . . .}.
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For n ∈ N, let En be the orthogonal projection onto the 1-dimensional subspace
of K spanned by {ξn}. For m,n ∈ N, let Um,n be a unitary on K such that
Um,nEnU

∗
m,n = Em. For n ∈ N, define

Tn : = x⊗ En + 1⊗ (1− En),

Sn : = T1T2 · · ·Tn.

Note that for n ∈ N, Sn = x ⊗ (
∑n

k=1 Ek) + 1 ⊗ (1 −
∑n

k=1 Ek). Note also
that the sequence {Tn}n∈N converges strongly to 1 and the sequence {Sn}n∈N

converges strongly to x⊗ 1.
Fix m,n ∈ N. Note that (1 ⊗ Um,n)Tn(1 ⊗ Um,n)

−1 = Tm. The fact

that U(M1) is abelian implies that Φ̃(Tn) = Φ̃(Tm). Hence, the sequence

{Φ̃(Tn)}n∈N is a constant sequence. Since {Tn} → 1 and Φ̃ is continuous, it

follows that Φ̃(Tn) = 1 for every n ∈ N. The fact that Φ̃ is a group homomor-

phism implies that Φ̃(Sn) = 1 for every n ∈ N. But {Sn} → x ⊗ 1 and Φ̃ is

continuous. As a consequence, we obtain that Φ̃(x ⊗ 1) = 1. This proves our
claim.

Since Φ is a group isomorphism, it follows that Φ maps the center of the
topological groupRd×U(M1⊗B(K)), which is {(λ, x⊗1) : λ ∈ Rd, x ∈ U(M1)},
onto the center of Rd × U(M1) × U(M2 ⊗ B(K)), which is {(µ, y, z ⊗ 1) : µ ∈
Rd, y ∈ U(M1), z ∈ U(M2)}. Consider the element (0,−1, 1⊗1) ∈ Rd×U(M1)×
U(M2 ⊗B(K)), which is in the center of Rd×U(M1)×U(M2 ⊗B(K)). Hence,
there exists λ ∈ Rd and x ∈ U(M1) such that Φ(λ, x ⊗ 1) = (0,−1, 1 ⊗ 1).
Note that (0,−1, 1⊗ 1) has order 2. Since Φ is a group isomorphism, it follows
that (λ, x ⊗ 1) has order 2. This implies that λ = 0. Consequently, we have

Φ̃(x⊗ 1) = −1, which is a contradiction to the fact that Φ̃(x⊗ 1) = 1. Hence,
the proof. �

Let A1, A2 be P -modules and let k1, k2 ∈ {1, 2, . . .} ∪ {∞}. Fix i ∈ {1, 2}.
Let Ki be a Hilbert space of dimension ki. Let V

(i) : P → B(L2(Ai)⊗ Ki) be
the isometric representation associated to the P -module Ai of multiplicity ki.
Denote the isometric representation associated to the P -module Ai of multi-

plicity 1 by Ṽ (i). Set Hi := L2(Ai)⊗Ki, H := H1 ⊕H2 and V := V (1) ⊕V (2).

Let {W (i)
z }z∈Rd be the family of partial isometries, described in the paragraph

following Theorem 3.1, associated to the isometric representation V (i), and let

{W̃ (i)
z }z∈Rd and {Wz}z∈Rd be the family of partial isometries associated to the

isometric representations Ṽ (i) and V , respectively. Note that W
(i)
z = W̃

(i)
z ⊗ 1.

We use the notation developed in the paragraphs between Lemma 3.2 and
Proposition 3.3.

Let GAi
be the isotropy group of Ai, i.e., GAi

:= {z ∈ Rd : Ai + z = Ai}.
For z ∈ GAi

, let U
(i)
z be the unitary on L2(Ai) defined by the formula

U (i)
z f(x) := f(x− z) for f ∈ L2(Ai).
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Let Mi be the von Neumann algebra generated by {U (i)
z : z ∈ GAi

} acting on
L2(Ai). Denote the CCR flow associated to the P -module Ai of multiplicity
ki by α(Ai,ki).

Proposition 4.7. Assume that A2 is not a translate of A1, i.e., for every

z ∈ Rd, A1+z 6= A2. With the foregoing notation, the gauge group of α(A1,k1)⊗
α(A2,k2) is isomorphic to Rd × U(M1 ⊗B(K1))× U(M2 ⊗B(K2)).

Proof. Note that α(A1,k1) ⊗ α(A2,k2) is the CCR flow, denoted αV , associated
to the isometric representation V . Since V (1) and V (2) admits no nonzero
additive cocycles, by Remark 2.5, it follows that V admits no nonzero additive
cocycle. By Theorem 2.7, it follows that the gauge group of αV is isomorphic to
Rd×U(M), where M is the commutant of the von Neumann algebra generated
by {Vx : x ∈ P}.

By Corollary 3.5, for i ∈ {1, 2}, the commutant of the von Neumann algebra

generated by {V (i)
x : x ∈ P} is Mi ⊗B(Ki). We write the operators acting on

H = H1 ⊕H2 in terms of block matrices. We claim that

M =

{(
T1 0
0 T2

)
: T1 ∈ M1 ⊗B(K1), T2 ∈ M2 ⊗B(K2)

}
.

Once the above claim is established, thanks to Theorem 2.7, the conclusion
follows immediately. It is clear that

{(
T1 0
0 T2

)
: T1 ∈ M1 ⊗B(K1), T2 ∈ M2 ⊗B(K2)

}

is contained in M . Let T := ( T11 T12

T21 T22
) ∈ M be given. It is routine to verify

that T12W
(2)
z = W

(1)
z T12 for z ∈ Rd. Let f ∈ Cc(R

d) be given. Calculate as
follows to observe that:

T12(πA2(f̃)⊗ 1) = T12

((∫
f(−z)W̃ (2)

z dz
)
⊗ 1

)

= T12

( ∫
f(−z)W (2)

z dz
)

=

∫
f(−z)T12W

(2)
z dz

=

∫
f(−z)W (1)

z T12 dz

=
( ∫

f(−z)W (1)
z dz

)
T12

=
( ∫

f(−z)(W̃ (1)
z ⊗ 1) dz

)
T12

= (πA1(f̃)⊗ 1)T12.

Since {f̃ : f ∈ Cc(R
d)} generates C∗(Gu), it follows that T12 intertwines the

representation (πA2( · )⊗ 1,H2) and the representation (πA1( · )⊗ 1,H1). The-
orem 3.1 and the hypothesis A1 + z 6= A2 for every z ∈ Rd imply that πA1
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and πA2 are disjoint. This implies that πA1( · )⊗ 1 and πA2( · )⊗ 1 are disjoint.
Consequently, T12 = 0. In a similar fashion, we conclude that T21 = 0. It is
now clear that T11 ∈ M1 ⊗ B(K1) and T22 ∈ M2 ⊗ B(K2). This proves our
claim, hence, the proof. �

Now we prove Theorem 1.2. We use the notation developed in the two
paragraphs that precede Proposition 4.7 and we write α ∼= β to indicate that
α and β are cocycle conjugate.

Proof of Theorem 1.2. As mentioned in the introduction, it is clear that (3) ⇒
(1) ⇒ (2). Suppose that (2) holds. Then the gauge group of α(A1,k1) is
isomorphic to the gauge group of α(A2,k2). By Corollary 3.5, it follows that
Rd × U(M1 ⊗ B(K1)) is isomorphic to Rd × U(M2 ⊗ B(K2)). Since M1 and
M2 are abelian, it follows from Proposition 4.4 that k1 = k2. With no loss of
generality, we can assume that K1 = K2.

Suppose, on the contrary, that A1 and A2 are not translates of each other.
Since α(A1,k1) is cocycle conjugate to α(A2,k2), it follows that

α(A1,k1+1) ∼= α(A1,1) ⊗ α(A1,k1) ∼= α(A1,1) ⊗ α(A2,k2).

Hence, α(A1,k1+1) and α(A1,1)⊗α(A2,k2) have isomorphic gauge groups. Corol-
lary 3.5 and Proposition 4.7 together imply that the topological groups Rd ×
U(M1 ⊗ B(K̃1)) and Rd × U(M1) × U(M2 ⊗ B(K2)) are isomorphic, where

K̃1 is a Hilbert space of dimension k1 + 1. Let Φ: Rd × U(M1 ⊗ B(K̃1)) →
Rd × U(M1)× U(M2 ⊗B(K2)) be a topological group isomorphism.

Suppose k1 = k2 is finite. Let π12 : R
d × U(M1) × U(M2 ⊗ B(K2)) →

Rd × U(M1) and π13 : R
d × U(M1)× U(M2 ⊗B(K2)) → Rd ×U(M2 ⊗B(K2))

be defined by the following formulas:

π12(x, Y, Z) = (x, Y ), π13(x, Y, Z) = (x, Z)

for (x, Y, Z) ∈ Rd × U(M1) × U(M2 ⊗ B(K2)). Let Φ12 = π12 ◦ Φ and Φ13 =

π13 ◦Φ. Proposition 4.4 implies that {(0, 1⊗U) : U ∈ SU(K̃1)} is contained in

the kernel of both Φ12 and Φ23. This implies that {(0, 1 ⊗ U) : U ∈ SU(K̃1)}
is contained in the kernel of Φ, which is a contradiction. This implies that

k1 = k2 = ∞. Hence, K̃1 and K2 are infinite-dimensional separable Hilbert
spaces. The fact that Φ is a topological group isomorphism is a contradiction
to Lemma 4.6. These contradictions are due to our initial assumption that A1

and A2 are not translates of each other. Hence, there exists z ∈ Rd such that
A1 + z = A2. The proof of the implication (2) ⇒ (3) is now complete. �

5. Appendix

Here we provide a proof of Theorem 3.1. The proof is an application of
Rieffel’s theory of Morita equivalence. Rieffel’s theorem, [19, Thm. 6.23], as-
serts that if A and B are Morita equivalent C*-algebras, then the category of
representations of A and that of B are equivalent. As the Deaconu–Renault
groupoid X ⋊ P is equivalent to a transformation groupoid Y ⋊Rd, it follows
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from [12] that the C∗-algebras C∗(X ⋊ P ) and C∗(Y ⋊Rd) ∼= C0(Y )⋊Rd are
Morita equivalent. Consequently, it suffices to prove the result for a transfor-
mation groupoid.

Let us begin by reviewing the basics of Rieffel’s notion of Morita equivalence.
Let B be a C∗-algebra. For a Hilbert B-module E, we denote the C∗-algebra of
adjointable operators on E by LB(E) and the C∗-algebra of compact operators
by KB(E). The Hilbert module E is said to be full if the linear span of
{〈x|y〉 : x, y ∈ E} is dense in B. Let A and B be C∗-algebras. By an A-B
imprimitivity bimodule, we mean a pair (E, φ), where E is a full Hilbert B-
module, φ : A → LB(E) is an injective ∗-homomorphism and φ(A) = KB(E).
The C∗-algebras A and B are said to be Morita equivalent if there exists an
A-B imprimitivity bimodule.

Next we recall Rieffel’s induction procedure. Let A and B be Morita equiv-
alent C∗-algebras, with E being an A-B imprimitivity bimodule. Suppose π
is a representation of B on a Hilbert space Hπ. Consider the internal tensor
product E ⊗π Hπ, which is a Hilbert space. The C∗-algebra A acts on the
Hilbert space E ⊗π Hπ as follows: for a ∈ A, let Ind(π)(a) := φ(a)⊗ 1. Then
Ind(π) is a representation of A. Rieffel’s fundamental theorem, [19, Thm. 6.23],
asserts that

π → Ind(π)

is a functor which identifies the category of representations of B and the cate-
gory of representations of A. Let us isolate two consequences of the above fact
in the following remark.

Remark 5.1. With the foregoing notation, we have the following:

(1) Let π1 and π2 be representations of B. Then π1 and π2 are disjoint if and
only if Ind(π1) and Ind(π2) are disjoint.

(2) Let π be a representation of B. Then

(Ind(π)(A))′ = {1⊗ F : F ∈ π(B)′}.

We keep the notation explained in the paragraphs starting from line 8, page
17 until the end of Theorem 3.1. Let us fix a few notations: Let Z := {(y, s) :
y + s ∈ X} and let ρ : Z → Y and σ : Z → X be defined by ρ(y, s) = y and
σ(y, s) = y+ s. Then Z is a (Y ⋊Rd, X ⋊P )-equivalence where the actions of
Y ⋊Rd and X ⋊ P on Z are given by the formulas

(y, s)(z, t) = (y, s+ t) if y + s = z,

(z, t)(x, r) = (z, t+ r) if z + t = x,

for (x, r) ∈ X ⋊ P , (y, s) ∈ Y ⋊ Rd and (z, t) ∈ Z. For the definition of an
action of a groupoid on a space and for the notion of groupoid equivalence, we
refer the reader to [12]. Let A := C∗(Y ⋊ Rd) and B := C∗(X ⋊ P ). Denote
Cc(Y ⋊Rd) and Cc(X ⋊ P ) by A and B, respectively. Note that A and B are
dense in A and B, respectively. Denote Cc(Z) by E . For ξ ∈ A, χ ∈ E , and
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η ∈ B, let

(ξ.χ)(y, r) =

∫
ξ(y, s)χ(y + s, r − s) ds,

(χ.η)(y, r) =

∫
χ(y, s)η(y + s, r − s)1X(y + s) ds,

〈χ1, χ2〉B(x, r) =
∫

χ1(x+ s,−s)χ2(x+ s, r − s) ds.

The above formulas make E into a pre-Hilbert A-B bimodule. On completion,
we obtain a genuine Hilbert A-B bimodule which we denote by E. Moreover,
E is an A-B imprimitivity bimodule. For details, we refer the reader to [12].

For a point x ∈ X , we denote the representation of C∗(X ⋊ P ) on L2(Qx)
induced at the point x by πx and the representation of C∗(Y ⋊Rd) on L2(Rd)
induced at the point x by π̃x. We claim that Ind(πx) = π̃x.

Fix x0 ∈ X . For χ ∈ Cc(Z), η ∈ Cc(X ⋊ P ) and r ∈ Rd , let

χ̃⊗ η(r) =

∫
χ(x0 + r, s− r)η(x0, s)1X(x0 + s) ds.

(1) It is routine to see that the map Cc(Z)⊗B Cc(X ⋊ P ) ∋ χ⊗ η → χ̃⊗ η ∈
Cc(R

d) is well defined and extends to an isometry from E ⊗B L2(Qx0) to
the Hilbert space L2(Rd).

(2) The set {χ̃⊗ η : χ ∈ Cc(Z), η ∈ Cc(X ⋊ P )} is total in L2(Rd). Thus, we
can identify E⊗BL2(Qx0) with L2(Rd) via the unitary E⊗BL2(Qx0) ∋ χ⊗
η → χ̃⊗ η ∈ L2(Rd). Once this identification is made, a direct calculation
shows that Ind(πx0) = π̃x0 .

Thus, in view of [19, Thm. 6.23] and Remark 5.1, it suffices to prove Theo-
rem 3.1 for a transformation groupoid Y ⋊Rd. We do not claim any originality
of what follows as it is well known. We include the details for completeness.

Let us fix the notation. Let Y be a second countable, locally compact
Hausdorff space on which Rd acts. Let y ∈ Y be given. We denote the
representation of C∗(Y ⋊Rd) induced at y by πy. Let B(Y ) be the algebra of
bounded measurable functions on Y . For f ∈ B(Y ), let My(f) ∈ B(L2(Rd))
be defined by the equation

My(f)ξ(t) = f(y + t)ξ(t)

for ξ ∈ L2(Rd). For s ∈ Rd, let Ls be the unitary on L2(Rd) defined by the
equation

Lsξ(t) = ξ(t+ s).

Then (My, L) is a covariant representation of the dynamical system (C0(Y ),Rd).
If we identify C∗(Y ⋊Rd) with C0(Y )⋊Rd, the covariant representation that
corresponds to the non-degenerate representation πy is (My, L).

Proposition 5.2. With the foregoing notation, we have the following:

(1) Let y1, y2 ∈ Y be given. The representations πy1 and πy2 are non-disjoint

if and only if there exists s ∈ Rd such that y1 + s = y2.
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(2) For y0 ∈ Y , the commutant of the von Neumann algebra generated by the

set {πy0(ξ) : ξ ∈ C∗(Y ⋊ Rd)} is the von Neumann algebra generated by

{Ls : s ∈ H}, where H is the stabilizer group of y0, i.e., H := {s ∈ Rd :
y0 + s = y0}.

Proof. Suppose there exists s ∈ Rd such that y1 + s = y2. Then Ls

intertwines πy1 and πy2 . Conversely, suppose πy1 and πy2 are non-disjoint.
Let T be a nonzero intertwiner. Then T intetwines My1 and My2 . As a
consequence, we have TMy1(f) = My2(f)T for every f ∈ B(Y ). For i = 1, 2,
let Hi be the stabilizer group of yi. Note that the map Rd/Hi ∋ s + Hi →
yi + s ∈ Y is 1-1 and continuous. We denote its image by Ei. Thanks to
[3, Thm. 3.3.2], it follows that Ei is a Borel set. Note that My1(1E1) = 1.
The equation T = TMy1(1E1) = My2(1E1)T implies that My2(1E1) 6= 0. This
implies that the orbit of y2 meets the orbit of y1. This proves (1).

It is clear that {Ls : s ∈ H} lies in the commutant of πy0(C0(Y ) ⋊ Rd).
Conversely, suppose T lies in the commutant of πy0(C0(Y ) ⋊ Rd). Then T
commutes with the algebra {My0(f) : f ∈ B(Y )} and {Ls : s ∈ Rd}.

Note that R
d

H
∋ s+H → y0+ s ∈ Y is continuous and 1-1. Since Rd/H and

Y are Polish spaces, it follows from [3, Thm. 3.3.2] that via the embedding
Rd/H ∋ s + H → y0 + s ∈ Y , we can identify the Borel space Rd/H with a
subspace of Y . Thus, bounded measurable functions on Rd/H can be consid-
ered as bounded measurable functions on Y . More precisely, suppose f is a
bounded measurable function on Rd/H , then we consider f as a function on
Y simply by declaring the values of f on the complement of Rd/H to be zero.
This way we embed C0(R

d/H) inside B(Y ).
Hence, we get a covariant representation (My0 , L) of (C0(R

d/H),Rd). By
Mackey’s imprimitivity theorem, it follows that C0(R

d/H)⋊Rd is Morita equiv-
alent to C∗(H). Then the representation My0 ⋊L of C0(R

d/H)⋊Rd is Ind(ρ)
where ρ is the regular representation of H on L2(H). Note that T lies in the
commutant of Ind(ρ). Since the group H is abelian, it follows that the com-
mutant of ρ is the von Neumann algebra generated by {ρ(s) : s ∈ H}. The
statement now follows by appealing to Remark 5.1. ✷
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