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Preface

This thesis belongs to the area of mathematical logic, more precisely to the area of
proof theory. One of the topics of proof theory arose from the famous talk given by
David Hilbert in 1900 at Paris. Shattered by the paradoxes of set theory discovered
at that time! he suggested a research programme, based on two pillars: At first he
demanded an axiomatization of the existing mathematics and at second he proposed
the establishment of metamathematics (proof theory) to secure the consistency of this
axiomatization by pure finitist means.

While the first pillar of this research programme is a fruitful and standardized
method (“the axiomatic method”) in nowadays mathematics, the second demand of
Hilbert suffered a severe setback in 1936 by the famous second incompleteness theo-
rem of Kurt Godel. Godel could show in [Goe31] that it is impossible to prove the
consistency of a theory T, which provides a coding-machinery? by pure means of T.
Thereby, e.g., it is impossible to prove the consistency of analysis by pure finitist
means.

Nonetheless, at the same time Gerhard Gentzen proved in [Gen36] the consistency
of Peano Arithmetic by pure finitist means plus the principle of transfinite induction
up to the ordinal €.

Although this consistency proof cannot be a proof by finitist means (due to Gédel’s
theorem) it still provides an exact encapsulation of the transfinite content of Peano
Arithmetic to the principle of transfinite induction up to the ordinal gg.

The result of Gentzen was the date of founding of ordinal proof theory. Inspired by
this result the proof-theoretic ordinal ||T'|| of a theory T* is defined by

IT]| := sup{otyp(<)| < is a primitive-recursive well-ordering & T+ T1I(<)},

where T'I(<) denotes the principle of transfinite induction for <.

An ordinal analysis of a theory T denotes the endeavor of computing the proof-
theoretic ordinal of T.3 An ordinal analysis of T' not only provides a consistency
proof of T', but also provides proof-theoretic reductions and a characterization of the
provable recursive functions of 7.

As soon as the first big obstacle of ordinal proof theory, the extension of the methods
of Gentzen to impredicative theories, was mastered by Howard in [How72] continuous
progress was achieved in this area of proof theory, culminating in ordinal analyses of

1Most prominently the Russel paradox of the set of all sets that are not members of themselves.

2Already a fragment of Peano Arithmetic provides this.

$Which comprises arithmetic and proves H}—sentences.

3In terms of a “natural” well-ordering. Allowing, e.g. a well-ordering which is defined by use of a
formalized proof-predicate for T, this task becomes trivial, see [Rat99].



Stability and parameter-free IT13-comprehension by Michael Rathjen in [Rat05b] and
[Rat05a].

The original plan of my dissertation thesis was elaborating a characterization of the
provable recursive functions of Stability by extending the methods developed by An-
dreas Weiermann and Benjamin Blankertz in [BW99] and [Bla97]. This was supposed
to be achieved by recoursing to the ordinal analysis of Stability given in [Rat05b].

However, as things turned out the ordinal analysis of Stability presented in [Rat05b]
contains some errors and incompletions.* Because of this, I decided to take (at first)
a step back:

An ordinal analysis of Stability requires a proof-theoretic treatment of ordinals &,
which are k + 6-stable, where 8 < k. Therefore it seems natural to start with investi-
gating the case § = 1. A theory whose ordinal analysis provides techniques to handle
an ordinal xk which is k 4+ 1-stable is the subsystem of set theory KP (Kripke-Platek
set theory) augmented by a first order reflection scheme. From now on denoted by
MM,-Ref.

An ordinal analysis of [1,,-Ref requires a transfinite iteration of techniques needed for
an ordinal analysis of MN3-Ref as published in [Rat94b]. The ordinal analysis of IN4-Ref
given by Christoph Duchhardt in [Duc08] reveals that even a finite iteration of these
techniques is far from being trivial.> Therefore an ordinal analysis of M,,-Ref seems to
be an adequate intermediate step towards a proof-theoretic treatment of Stability.

The present thesis divides therefore into four parts.

The first part of this thesis contains an ordinal analysis® of M,-Ref. To overcome
the imperfections of [Rat05b] an in depth analysis of the collapsing hierarchies which
give rise to the ordinal notation system is required (cf. chapter 3).

Beyond that the ordinal analysis presented here features two improvements of the
techniques developed in [Rat94b]. First, the semi-formal calculus is just equipped
with (cofinal many) II,-reflection rules instead of being equipped with pseudo-3,,1-
reflection rules. Thereby a “Strengthening Reflection Theorem” is not necessary any-
more. Secondly, the Reflection Elimination Theorem (a.k.a. Impredicative Cut Elim-
ination Theorem) is stated with a minimum of provisos, i.e. there is no need for the
informally called “pancake-conditions”. This conduces to a better readability of the
theorem’s proof.

4Contrary to the claim in [Rat05b] a property similar to that in (15.14) (on page 139 in this thesis)
does in general not hold for the reflections instances in [Rat05b]. Moreover this article lacks
a Theorem like 15.2.1, although it is definitely needed there, too. Theses deficiencies seem to
be profound because already the fixing of the first issue requires a change of the definition of the
collapsing hierarchies. This makes the proof of a theorem corresponding to Theorem 15.2.1 (of this
thesis) more awkward than it would be for the collapsing hierarchies actually given in [Rat05b].
Since the ordinal analysis given in [Rat05a] can be regarded as an extension of [Rat05b] the same
remarks also apply to [Rat05a].

5He uses an approach different to ours.

6An ordinal analysis of a theory T comprises two parts in general. At first the elaboration of an
ordinal notation system and by its means a characterization of an upper-bound of the proof-
theoretic ordinal of T is required. In a second step it is proved that this upper-bound is sharp by
giving well-ordering proofs for all ordinals below this upper-bound within 7.

Throughout this thesis we use the term “ordinal analysis” to denote the first part of an ordinal

analysis. L.e. in this thesis no well-ordering proofs are given.



In the second part of the present thesis a characterization of the provable recursive
functions of I -Ref is given by applying an improved version of the methods of A.
Weiermann and B. Blankertz to the ordinal analysis given in the first part of this
thesis.

The crucial new idea employed here is to work with relativized subrecursive hierar-
chies, e.g. subrecursive hierarchies defined on proper subsets of the ordinal notation
system instead of working with one fixed subrecursive hierarchy defined on the whole
ordinal notation system. Thereby subrecursive hierarchies become “collapsible” and
thus a refined version of the Reflection Elimination Theorem is obtained nearly for
free.

In the third part of this dissertation the methods developed in the first part are
extended (transfinitely iterated) to obtain an ordinal analysis of Stability. In essence
the required enhancements are of technical nature.

The Reflection Elimination Theorem of this ordinal analysis differs from that of the
first part. Here 3, (k+ 0)-sentences have to be collapsed, with parameters below x and
parameters of stages in the interval [k, x + 6]. Le. a collapsing of intervals is taking
place. However, since 6 is always less than x this new issue is quite easy to handle.

Finally in the fourth and last part of this thesis the results of the second part are
applied to the ordinal analysis given in the third part to achieve a characterization of
the provable recursive functions of Stability.

In addition there is a review-part following the first part, in which the theories
MM,-Ref are discussed. This part, in cooperation with the first part, might serve as a
good starting point to the reader how is familiar with the ordinal analysis of 3-Ref
given in [Rat94b).

Acknowledgment
I'm deeply indebted to my thesis advisor Professor Dr. Wolfram Pohlers. He sug-

gested this interesting and challenging dissertation undertaking to me. Many fruitful
discussions with him on the topic of proof theory always inspired and motivate me.






Part 1.

An Ordinal Analysis of [l -Ref



1. Introduction

In this first part of the thesis we want to elaborate an ordinal analysis of I,-Ref.

By introducing an infinite verification calculus for (pseudo-)ITi-sentences, which is
N-correct and N-complete it is possible to assign a uniquely determined ordinal, called
truth-complexity (tc), to every (pseudo-)II}-sentence. Moreover this can be done in
a way that for a primitive-recursive well-ordering < it holds otyp(=<) =tc(TI(<)) if
otyp(<) € Lim (cf. [Poh09], Theorem 6.7.2). Thereby it follows that the ordinal

[Tlm: = sup{tc(F) + 1| F is a pseudo I}-sentence & T F F}

is greater than or equal to the proof-theoretic ordinal of T'. In addition, it holds already
for a conservative second-order extension 7' of Peano Arithmetic that |7 < |||
(cf. [Poh09], Theorem 6.7.4). Thereby for most theories computing the proof-theoretic
ordinal is the same as computing the IT} ordinal.

Thus it follows by the Spector-Gandy Theorem that for subsystems of set theory,
which are L-correct and in which L, cx is definable, the ordinal

CK
”T”2“10K := min{a|L, = F for every ;" -sentence F' such that T + F},
1

is an upper-bound of ||T||. Since M,-Ref meets these requirements we therefore com-
pute |||_Iw—Ref||Ewlcz< in this first part of the thesis.
1

The theory M,-Ref denotes the subsystem KP of set theory (Kripke-Platek Set-
Theory) augmented by reflection schemes for first-order formulae. The theory KP was
established by S. Kripke and R. Platek in the 1960’s as an axiomatization of generalized
recursion-theory on sets.

The first crucial step in the proof-theoretic treatment of KP augmented by first-
order reflection schemes was taken by M. Rathjen in [Rat94b], in which he achieved
an ordinal analysis of MN3-Ref (KP augmented by a reflection scheme for IIz-formulae).

In the following we assume that the reader is familiar with [Rat94b]. Since our
ordinal analysis of M,-Ref reads as easy as [Rat94b], as soon as the interplay between
collapsing-hierarchies, reflection instances and the elimination of reflection-rules is un-
derstood and the fine structure of the collapsing hierarchies is elaborated, we first
outline the underlying ideas of these concepts.



Collapsing Hierarchies, Reflection Instances, and the
Elimination of Reflection-Rules

In this explanation we confine to the treatment of I,-Ref for n > 4. To keep it simple
we argue completely semantically, i.e. we ignore any recursiveness-conditions. So let
us assume, a derivation is given in which applications of II,-reflection rules occur and
let us also assume there exists a collapsing hierarchy with reflection degree (rdh) n—1,
i.e. a hierarchy (M, | o € T), such that the elements of M, are II,_;-reflecting on M,
for every £ < a (as we build up our collapsing hierarchies on the cardinal-analogues
of II,,-reflecting ordinals there is always a 2-shift between the notion of the reflection-
strength of ordinals in context of collapsing hierarchies and in context of the actual
reflection-rules).

The idea of “stationary collapsing”, as established in [Rat94b], is to transform the
given derivation (with supposed derivation-length «), in which II,-reflection rules
might occur, into card(91%)-many derivations, in which the applications of the II,,-
reflection rules are replaced by applications of 9¢-II,,_;-reflection rules. Such a Re-
flection Elimination Theorem states (in our approach, i.e. employing (cofinal-many)
I1,,_1-reflection rules) as follows: Suppose I' C 3,,_1(m), with parameters in L, for
some o < 7, then

H[A] l%F =  H'[A, kK] }ﬂF("”‘) for all o < Kk € M2,

In the proof of this theorem, which runs by induction on «a, we face the following
situation: In (the crucial) case that the last inference was an application of the II,-
reflection rule, there is an F' € II,, (), such that

H[A [T, F.
By an application of the derivable rule (V-Inv) we obtain
H[A Y [5- T, F'(t), forallte T

An application of the induction hypothesis yields

NCTIEDN

H'[A, 1] LN E ()™ for all o,t < A € M,

By use of a V-inference we obtain

agB A ~
H'[A] }u L™ PN for all o < X € MY,

Now we fix a ¢ < x € 9. Then it holds {\|oc < A € M} Nk # () and we obtain by
an application of an 3-inference

o ®A .
H'[A] }u D™ 325z = F) for all 0 < A € MY N k. (A)



To finish this case we have to transform '™ to I'(™#)  Therefore let ,M% be a
formalization of the predicate {\|o < A € M }. Then we obtain from (A)

\11‘1"069*‘

H[A]

Va' (oM (z) — \/T™), 32"(z |= F).

Moreover we have

H/[A] \Il‘f(.)eBN _‘(VF(TI"N)),\/F(W,K/),

and _\(\/ 1"(’”‘)) is a II,,_1(m)-sentence (if the class of II,_;-sentences is closed un-
der the Boolean connectives V and A). If every ¢ < k € IMM?* is equipped with a
o M®0-11,,_ 1 (k)-reflection rule, we obtain

H/[A] yiodr Jz (UMOZO (1_) A _|(\/ F(w’x))), \/ F(ﬂ‘,lﬂ)’ (B)
and we get the desired result by a cut.

Now let us have a look at Definition 5.2.7 on page 68 and Definition 4.2.8 to see their
relevance for fulfilling the requirements of the reflection elimination process outlined
above. By clause 0.1 of Definition 5.2.7 and the fourth clause of Definition 4.2.8 7 is
equipped with a II,-reflection rule. The collapsing hierarchy of 7 is defined by means
of clause 1. of Definition 5.2.7. By subclause 1.3 and the fifth clause of Definition 4.2.8
the defined elements of the collapsing hierarchy of 7 are equipped with the reflection
rules required to attain (B).

Therefore we are able to eliminate the II,,-reflection rule of 7 at the cost of introduc-
ing new elements k,, which are equipped with 90t¢-II,,_;-reflection rules for all £ < a.
In the following we denote this property of ko by ko E M<*-P,_;.

Now we want to iterate the above outlined elimination process to get rid of the
reflection rules for k.. First we observe that it is impossible to iterate this process
by introducing only one collapsing hierarchy for k.. The reason is simple: Let us
assume the above outlined case with 7 replaced by k. and the last inference was an
application of a ,M®-II,,_; (k4 )-reflection rule, for some ¢ < a. Then we have to
derive 327 (_M%(2) A z = F) instead of 32"(z |= F) in (A). Therefore all the sets
of the collapsing hierarchy (M2 |3 € T) of ks have to be subsets of 9. However,
since that must hold for any ¢ < « it would follow that any element of the collapsing
hierarchy of k, is already 90¢-II,,_-reflecting for every £ < a, if @ € Lim. As we
want the elements of the collapsing hierarchy of k. to be below k, (to secure that
the reflection-rule elimination process terminates at all) this is absurd, since &, could
itself be the minimal ordinal with the property 90¢-II,,_;-reflecting for every ¢ < a.

Therefore we have to introduce for every £ < « a collapsing hierarchy <9ﬁ§m£ |peT)
whose sets are subsets of 9. Moreover to obtain equation (B) in the above scenario
every K € smﬁmg has to be equipped with a UMEZ7<—Hn_2(n)—reﬂection—rule, for every
¢ < a, since the last inference of the given derivation could have been a M C—Hn,l—(%za)—

reflection inference even if we are proving the theorem for k € imfa ¢- Thus every

10



K € zmﬁmf has to be W§Z7C—Hn_2—reﬂecting for every By < S and every ( < a.

Therefore the collapsing hierarchies <9ﬁ§m£ | B € T) have to be defined simultaneously
for all £ < a.

A closer look at Definition 5.2.7 reveals that this process actually takes place in
clause 2. (with \Il% = Ko in our example). Therefore a reflection configuration “splits”
a block M<®-P,,_; of reflection rules into reflection instances “ M¢-P,_,” with ¢ < «,
which have to be eliminated simultaneously.

At this point it becomes clear how “slow” and intricate the reflection elimination
process actually is. In the above outlined second elimination step we have transformed
a derivation of a set of X,,_1 (k4 )-sentences I« with k, = M<*-P,_, into derivations
of T%#, where rig = M<¢-P,, | with £ < a and ks = l\/|§f$<_Pn_2 for all ¢ < a.

We proceed and define a collapsing hierarchy for kg. Since kg is equipped with IT,,_;-
reflection rules we realize that the reflection degree of this hierarchy must be n — 2 (cf.
equation (B)). In this step we cannot eliminate the (,M,fz’C-Hn_g-(ff,g)—reﬁection rules,
which kg also bears, as otherwise we would have to define a collapsing hierarchy of xg
with reflection degree n — 2 whose sets are subsets of Emi‘; ¢ (to obtain equation (A)).

However, this is impossible in general as smﬁz ¢ s itself a member of a hierarchy with
reflection degree n — 2. Therefore we can just eliminate the M¢-II,,_1-(kg)-reflection
rules and have to inherit all other rules (of reflection degree n — 2) to the elements of
the collapsing hierarchy of xg.

The iteration of the above outlined reflection elimination process leads to elements
which bear more and more reflection rules.

At this point the reader should toy around with Definition 5.2.7 and continue the
above given example. Thereby (s)he should become aware that there are sooner or
later elements such that the length of R (cf. 5.2.7) increases up to n — 3. Moreover it
should become clear that the vector R is just the tip of the iceberg with respect to the
reflection rules an element of a collapsing hierarchy can bear. In general the particular
entries of R have to be regarded as stacks of entries of the form M<®-P,,_; (cf. 3.1.2
—-3.1.4).

Carrying on with defining collapsing hierarchies until elements are reached that do
not bear any reflection rule (cf. clause 1. of 5.2.7 with m = 0) seems to be fine at first
glance. Actually such elements are reached since ON is well-founded. However, the big
problem in the whole definition process is that we are a bit too careless at each step
at which we define a new collapsing hierarchy for 7. We just secure that the newly
defined elements are equipped with all the reflection rules that are needed to eliminate
the reflection rules of 7 in the way outlined above.! However, this does not rule out the
possibility that some of these elements are also part of another collapsing hierarchy.
This causes a problem since for the latter hierarchy the outlined proof scheme would
fail at step (B) as these elements might not be equipped with the needed reflection
rules.?

L Although, even that is not totally clear. E.g. we cut off R‘\Pg at m in clause 2. of Definition 5.2.7.

That we do not loose any information in doing so follows be the Correctness Lemma 3.1.6.
2In [Duc08] C. Duchhardt elaborates an ordinal analysis of ITs-reflection and his concept differs
from ours exactly in this point. To avoid the just mentioned difficulties he defines the collapsing

11



To handle this problem we need an in depth analysis about the allocation of elements
of the form ¥§ over the different collapsing hierarchies. This analysis is carried out
in chapter 3. There we show that all collapsing hierarchies containing ¥§ can be
decoded out of ,R'q;g (cf. Theorem 3.2.4). By using this result we can easily show that
all elements of a given collapsing hierarchy are equipped with the required reflection
rules to perform the reflection elimination process set out above (cf. Theorem 5.2.1).

hierarchies more carefully. He secures by definition that there are no unwanted overlappings.
Although there is no need for a fine structure analysis of his collapsing hierarchies we consider his
concept as more cumbersome than ours from a technical point of view (cf. e.g. the <-Comparison
theorems in his paper). Moreover it seems to be unclear how his concept can be generalized to an
ordinal analysis of ,,-Ref.

12



2. Ordinal Theory

In this chapter we define the ordinal notation system T(Z) by which means we are able
to give an upper-bound of the proof-theoretic ordinal of ,-Ref. By utilizing cardinal-
analogues of the required recursive ordinals many complexity considerations narrow
down to simple cardinality arguments. Thereby we employ these cardinal-analogues.
However, a well-ordering proof, which we do not give in this thesis, but which can be
carried out by the methods of [Sch93] or [Rat94a], requires the use of the recursive
ordinals.

Since the cardinal-analogue of a II,,; o-reflecting ordinal is a II}-indescribable cardi-
nal there is always a +2-shift by switching from notational-based terms, e.g. reflection
instances, to the corresponding reflection-rules (cf. e.g. Definition 4.2.8).

2.1. II!-Indescribable Cardinals

Notation. In the following we denote the class of ordinal numbers by ON, the class
of successor ordinals by Succ, the class of limit ordinals, i.e. ON \ (Succ U{0}), by Lim,
the class of transfinite cardinal numbers by Card and the class of regular cardinals by
Reg. We denote the cardinal successor of a cardinal s by £* and card(S) denotes the
cardinality of the set S.

As usual we denote the binary Veblen function by ¢, ie. ¢(a, ) is defined by
transfinite recursion on « as the enumerating function of the class {w” |38 € ON A
Véca (p(€, B) = wP)}. Throughout the thesis we write w? for (0, 3). In addition we
denote the class of strongly critical ordinals by SC, i.e. it holds v € SC iff p(«, 8) < v
for all o, B < 7.

We refer to the n-time Cartesian product of an ordinal class by adding the exponent
n to the denotation of the respecting class, e.g. ON? := ON x ON. Moreover we use
the following notation:

Vik F(k) :=VEk((1 <k <i)— F(k)).

Definition 2.1.1. A cardinal 7 is called IT}-indescribable if for every Py, ..., Py C Vy
and for all TI.-sentences F' of the language of (V;, €, P, ..., P;) such that

<V7ra€apla"'7pk> ':Fa
there exists a 0 < kK < 7 such that

<V,{,€,P1QV,€7...,P;€0V,{> ':F

13



The cardinal 7 is called 911} -indescribable if in the above situation a 0 < £ € TNM
can be found.
A cardinal 7 is called IIZ-indescribable if it is II},-indescribable for every n € w.

Lemma 2.1.2. 7 is [I}-indescribable iff 7 is strongly inaccessible.
Proof. See [Dra74], Ch.9, Theorem 1.3. O

Theorem 2.1.3. For every n < w there is a 11} formula 1, (X1, ..., X, ), which is
universal for I1% -sentences, i.e. for every I1L -sentence ¢, for every limit ordinal o > w
and any Py, ..., P, CV, we have

<VaaeaP1a"'7Pk> ):(b(_)wn(le"kaa’_qb—l)a
where "¢ is a Gdodel-set for ¢.

Proof. For 0 < n see [Dra74], Ch9, §1, Lemma1.9. The proof of this Lemma also
shows the existence of a A}-formula 1) which is universal for II}-sentences. O

Corollary 2.1.4. Since V, is closed under pairing if 7 is 1L -indescribable w.l.0.g. we
may assume k = 1 in the above definition. Thus 7 is M-I} -indescribable iff

(Ve €,9M) = VX Va (wn(x, ) = ILEM (1 # 0 A Tran(x) A (X N me))),

i.e. the M-II} -indescribableness of m is describable by a 11}, -statement (in the pa-
rameter ).

2.2. Collapsing Hierarchies

To obtain an ordinal notation system for I,-Ref we define by simultaneous recursion
on « the sets C(a, 8) (the ath Skolem closure of ), reflection instances X, collapsing
hierarchies 9% and collapsing functions Wx.

Reflection instances are strings consisting of ordinals, parentheses and the symbols
i,-, 6, M and P. More exactly they are quintuplets of the form (m;P,,; R;Z; a) or of
the form (; I\/Ifw(ﬁ)—Pm; ﬁ; Z; a). Reflection instances are intended as arrays, providing
information of the reflection strength of 7 (second and third component), and record
their own recursive development in the fourth component. The fifth component denotes
the ordinal of the reflection instance, i.e. the step in the recursive process in which the
reflection configuration is generated.

To be able to talk easily about related reflection instances we also introduce reflec-
tion configurations as functions which map finite sequences of ordinals to reflection
instances.

In the following we denote the reflection instance (Z;P,,;€;€;w) by A(m) for m €
(0,w), i.e. we use A as a name for the reflection configuration which maps an element
m € w to (E;P;€60). Moreover we use U, V, W, X,Y,Z as variables for reflection
instances and 0O-ary reflection configurations and F,E, G, H, K, M, R, S as variables for
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reflection configurations. We denote the ath collapsing hierarchy of a reflection in-
stance X by M.

The following definitions have to be read simultaneously to Definition 2.2.4.

Definition 2.2.1. Let F(7) = X = (7;...;Z; ) be a reflection instance with prede-
cessor reflection instance Z = G(7). Then we refer to F as the reflection configuration
of X and vice versa we call X a reflection instance of I, i.e. V is a reflection instance
of E iff there is a ¥ € dom(E), such that V = E(¥) and E is then referred to as the
reflection configuration of V. Moreover we define

o(X) :=o(FF) := o,

i(X) :=i(F) := m,

Prinst(e) := Prenfg(e) = 0,
Prinst(X) := Prinst(F) := {Z} UPrinst(Z),
Prinst(X) := Prinst(X) U {X},
Prenfg(X) := Prenfg(F) := {G} UPrenfg(Z),
Prenfg(X) := Prenfg(F) := Prenfg(F) U {F}.

Notation. Let & be an ordinal, 7 = (11, ...,7n,) be a vector of ordinals and M C ON".
Then we use the following abbreviations'

7€ C(k) & Vik (77k € C(?’}k,li))7
7€ MC(K) & geMNnCO(k).

Definition 2.2.2 (M-P-Expressions). In the following we assume that we have for
every reflection configuration F a symbol Mp. Let o be an ordinal and n € w or
n = —1. Then we refer to expressions of the form M5*-P,, as M-P-expressions. For
technical convenience we also define € as an M-P-expression and as a finite sequence
of M-P-expressions with zero length.

Let U be an 0-ary reflection configuration, G a non 0-ary reflection configuration
and M an arbitrary reflection configuration. Let £ > o(U), ¢’ > o(G), and v > o(M),
plus R = (M]Efl—Pml, cee Mﬂgfi—Pmi), with mq > ... > m;. Then we define

<7 —
MM -P,l = €,

{(Ri(M))m if y =0o(M) and M # A,

|\~/|<’Y—P =
Mo M@W-Pm otherwise,

I'Note, that C(x) and Mc () are not well-defined terms.
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and

kEe = 00
K= |\/|I\<AIO(M)—Pm & K is II} -indescribable,
Kk Mﬁg—Pm = V(e [O(U)7f)c(,§) (k is DJT%—H}n—indescribable,)
Kk EMGE-P, e V(G 7)E€[0(G), &) o) X dom(G)c )
(K is mé(ﬁ)—H}n—indescribable),
KR & Yik (k= Mg*P,,).

Moreover we define the following substrings of R

B o {(Mﬂgftpml) if my = k for some 1 < < i,
€ otherwise.
Ry = (Rp_1,...,Ry),
Rop = (Rm,,..., Ris1),
ﬁ(l,k) = (ﬁl,él,l,...,ékJrl) for | > k.

Analogously we define the substrings égk, ﬁzk and R‘(Lk].

Definition 2.2.3. Let X be a reflection instance. We define by recursion on o(X)

= {m},

= {r},

{6} UparZ,

= {0,¢,V} UparZ.

)

par(n"'; ...;0)
par(¥9; Pp;...)
)

par(\II%; Mg/ﬂ(,j)'PnL; s

In the following we write X € C'(a, ) iff parX C C(«,7) and X € C(k) iff par X C
C(k).

Definition 2.2.4 (Collapsing Hierarchies). ? Let Z be a II3-indescribable cardinal
number. By simultaneous recursion on « we define the sets C'(«a,7), reflection in-
stances X, reflection configurations IF, collapsing hierarchies 901, finite sequences of
M-P-expressions R}; and (partial) collapsing functions ¥ (all these where appropriate
with arguments and indices).

The class of reflection instances is partitioned in three types enumerated by 1., 2., 3.
Whenever we define a new reflection instance we indicate by — p., with p € {1,2,3}

2In this Definition we define finite sequences of M-P-expressions, which we denote by Ry for m > w.
The reader should be aware that Ry with k£ < w denotes an M-P-expression, while R; with 7 > w
denotes a finite sequence of M-P-expressions, cf. Definition 2.2.2.
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of which type this reflection instance is. Clause p. of the definition then specifies how
to proceed with reflection instances of type p. in the recursive definition process.

Cla,m) = U C"(a,m),  where

n<w
C%a,m) == 7U{0,Z}, and
C™(a,m)U
{y+uwi|v,d € C’"(a,w)/\vN:Fuﬂl +o W Ay, > 83U
C"Haym) = {p(&m) |€n € C™(a,m)}U

{7 Kk € C™(a,m)NCardN=} U
{PY X,y € C™(o, ™) Ay < e A WY is well-defined }.

0.1. We define the reflection configuration A with dom(A) = (0,w) and reflection
instances?

A(m) = (B,Pn; 6 6w) — 1.

For technical convenience we also define Rz := e.

0.2. For every cardinal w < k < Z we define the 0-ary reflection configuration
and reflection instance

(k73 Po;€;€;0) — 2.
For technical convenience we also define R+ = ( M$-Py).

1. Let X := A(m + 1) be a reflection instance of the form
(& Pmi1; 6 6 w).

For o > w we define 91§ as the set of all ordinals x < = satisfying
1. Cla, k)N E = &,
2. X, € C(r),
3. k is IT} -indescribable,
4. k= M5*-P,,.

From now on we assume M§ # () and by ¥§ we denote the least element of 9M§.
Moreover we define Rye := (MS¥-Py, MS*-Py_1, ..., M5*-Py).

TThe formulation of closure under + seems to be unnecessarily complicated, but we want + to be
injective.

3Here we could also proceed with o(A(m)) := 0. However, it is more convenient to define o(A(m)) =
w, as otherwise we would have to differentiate between finite and transfinite arguments of reflection
configurations in Lemma 2.3.2 to obtain ® (e). Moreover in the treatment of part two of this thesis
the parameter m becomes a relevant parameter of par A and therefore at least then we have to
choose o(A(m)) = w.
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1.1. Let @ = w. Then we define the 0-ary reflection configuration and reflection
instance

(U5 P (MS*-Po—1,y ., MS*-Po); X w + 1) 5 9.

1.2. Let o > w. Then we define the reflection configuration G with dom(G) :=
[w, OL)C(\I;%) X (m,w) and reflection instances

G(¢,n) = (U MG ) -Pons (ME*Pp 1, ME*Pg); Ksa+1) = 3.

. Let X = F be a 0-ary reflection configuration and a reflection instance of the
form

(75 Pom; B; Z; 9)

Then we either have § = 0 = m and © = k* for some cardinal &, or § = §y + 1
and 7 = ¥, In any case we have R, = (M$“-P,,, R).
For o > § we define Mg as the set consisting of all ordinals £ < 7 satisfying

1. Cla,k)Nm =K,

2. X, € C(k),

3. ifm>0: k = R,

4.1 m > 0: k = Mg®-P,_1.
From now on we assume Mg # () and by ¥§ we denote the least element of 9M§.
If m > 0 we also define R'\I,]g = (I\N/IE‘X—Pm_l,]%<m_1).

For the following 2.- subclauses we suppose m = mg+1 > 0. If m = 0 we do not
equip U§ with any reflection configurations or instances.

2.1. Let @« = 6 and ﬁmo = (M]Efl—Pmo) with o(R;) = &;. Due to the ~-operator
we then have Ry = A, i.e. £, = w and we define the 0-ary reflection config-
uration and reflection instance

(U Py Remy: Xsa+1) =2,
2.2 Let o = § and Rmo = (M§§1—Pmo) with w < &;. Then we define the reflec-

tion configuration G with dom(G) := [w,&1)o(we) X (mo,w) and reflection
instances

G(¢n) = (UF MG ()P Bemgi s +1) =3,

2.3 Let a = 6 and Ry, = (M3*'-Py,) with Ry # A and o(R;) < &. Then
we define the reflection configuration G with dom(G) := [o(R1), &1)c(we) X
dom(Rl)c(\I,§) and reflection instances

G(C, 77) = (\II%; Mﬂil(ﬁ)_PmO; é<mo§X§ o+ 1) — 3.
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2.4. Let a > 0. Then we define the reflection configuration G with dom(G) :=
[0, &) c(we) and reflection instances

G(Q) == (U Mg-Pry; Remps K +1) = 3.
. Let X :=TF(¢,7) be a reflection configuration of the form*

(WS Mgﬂ(ﬁ)-Pm; R:7:6 +1).

Then it holds R&,g = (M"-P,,,, R) for some > & and M € Prenfg(X).
For o > § 4+ 1 we define 9§ as the set consisting of all ordinals « € zmgﬂ(ﬁ) N \Il%
satisfying

1. C(a,k) N WY = &,

2. X,a € C(k),

3. ifm>0: k =R,

4.1 m > 0: k= Mg®-P,_1.
From now on we assume Mg ;é () and by \g% we denote_’ the least element of M.
Moreover we define Ryo := ((R,Ijg41 )o>ms Mg ®-Pp_1, Rep—1).

(7)
Let R%‘) = (M57'-P,,,...).

3.1. Let 01 = 0o(S1). Due to the ~-operator we then have S; = A, ie. 01 = w.
Then we define the 0-ary reflection configuration and reflection instance

(\II%; PS1; ((E\p5 )(s1,m]a '\7|]§Q_Pm—1a E<m—1); X; o+ 1) — 2.

M(7)

3.2. Let 01 > o(S;) and S; = A Then we define the reflection configuration G
with dom(G) := [W,Ul)c(\pcxx) x (81, w) and reflection instances
G(Can) = (\II§7 Mg(n)'Psl;
((émf )(sl,m]v |\7|]F<a_Pm—1; E<m—1); Xv o+ 1) — 3.

M(%)

3.3. Let 01 > 0o(S;) and S; # A. Then we define the reflection configuration G
with dom(G) = [0(S1),01)c(wg) X dom(S1)c(we) and reflection instances

G(C,7) == (§: Mg, (1P
(Rge som) MF* Pt Remo1)i Xia+1) =3,

M(7)

4Note, that 7 can also be a vector of zero length, e.g. if X is defined by subclause 2.4
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2.3. Structure Theory

In this section we show that M§ # 0 if @ € C(i(X)) and give criteria for < -comparisons
like Ug < WP,

Definition 2.3.1. Let X = (m; P,; ﬁ; ..)or X = (m Mgﬂ(ﬁ)—Pm; ﬁ; ...) be a reflection
instance with reflection configuration F, and § = (M;‘”-PS17 ...) be a finite sequence
of M-P-expressions. Then we define.

EX = E[F = E
rdh(A(m + 1) m

and

F if X=(x";...;0) for some &,

otherwise,

>

initl(F) := {

§ if there is a refl. inst. (¥J;...) € Prinst(X),

rang (Z) := rang (Z) = { otherwise

> R

if there is a refl. inst. (¥9;...) € Prinst(X)
rang (E) := rang (E) := and E is the refl. config. of Z,
o otherwise.
Remark. It follows by induction on o(X) that rang(Z) and rang (E) are well-defined,
since we have (U9;:...) = (¥9;...;Z;0 + 1) and Z ¢ Prinst(Z).
Notation. Let M C ON" be a set of vectors of ordinals and let o be an ordinal. Then
we write « > M & V(ny,...,nn) €M Vi (o > n;).

Lemma 2.3.2 (Well-Definedness of Definition 2.2.4). Let X = (U3;...; R;Z;6+1) be
a reflection instance with reflection configuration F. Then it holds:

0O (a) 0(Z) <o(X)=6+1,

(b) Fys = (M5“-P,,, R) if X = (1P,
i (M3 P, R) for some~y > € > o(M), if X = (m; Mg/ﬂ(g)—Pm; ),

(¢) rdh(M(7)) > m > rdh(X) if X = (m; Mgﬂ(ﬁ)-Pm; ),
(d) X eC(¥y),
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(e) parX < o(X) =0+ 1.
® VieMg (k= Rug A k= (Rys)<ranx))-

® Let Ryo = (Mg™-P,,,... ,M3*-P, ). Then it holds for all 1 <i < k:

(a
(b) & <rang(R;) and (fi =o(R;) = R;=A, ie. § = w),
c) & € parXU{a},

) R; € Prenfg(X) and dom(R;) < o,
)
(c)
(d) 1 > rdh(X) and (r1,...,7) =(k—1,k—2,...,1,0),
)
)
)

(k
e) I edom(R;) NparX (rdh(R; (%) = i),

(
() (Bwg)<rance = (M “-Prango), (Re) <ranco)
(g) V7 €dom(R;) (rdh(R; (%)) =r; = rd(Rp, ) if R; # A.
Corollary 2.3.3. The claims made in Definition 2.2.4, e.g. “ M € Prenfg(X)” in
clause 3., are true.
Moreover for every reflection instance Z # (i(Z);Po;...) and every &, such that
MY # () there is a reflection instance X with i(X) = ).

Now we turn to the proof of Lemma 2.3.2.

Proof. At first we observe that for X = A(m + 1) with m € w the propositions of item
®, except for @ (f), do hold. Done this we show the claim by induction on o(X):

Case 1, X = (V9;P,; R:7:6 + 1): @ Then the reflection instance X is defined by
means of the subclause 1.1 or 2.1 or 3.1 of Definition 2.2.4. The propositions of @ hold
in any of these cases owing to the following arguments:

(a) o(Z) < 6, since MY, is only defined for § > o(Z);

(b) we have ﬁwg = (M$“-P,,,, R) by means of the induction hypothesis ® (b);

(¢) here is nothing to show;

(d) the definition of 9y implies that parZ U {§} = parX € C(¥9);

(e) by means of the induction hypothesis we have parZ < o(Z) < 6 + 1 and thus
parX =parZU {6} < §+ 1 =o(X).

@ Follows by definition of M.

®If o = §+1 we have ﬁq,§ = (ﬁq,gkm and the claim follows by means of induction
hypothesis ® and the following arguments:
(a) Prenfg(Z) C Prenfg(X), § < «;
) rand (R;) = rang (R;), if R; € Prenfg(Z);
) parZ U {6} = parX;
) m —1 > rdh(X);
) par Z C parX;,
) follows directly by definition;
g) here is no extra argument needed.

(b
(c
(d
(e
(f
(
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If « >+ 1 we have R@g = (Mg®-Pp,_1, (E¢2)<77L—1)- For i = 1 all propositions
follow directly by definition and for ¢ > 1 by means of the induction hypothesis as
before in the case o = d + 1.

Case 2, X = (0); Mgﬂ(ﬁ)-Pm; ...): @ Then the reflection instance X is defined by
means of one of the subclauses 1.2, 2.2, 2.3, 2.4, 3.2 or 3.3 of Definition 2.2.4. The
propositions of @ hold in any of these cases owing to the following arguments:

(a) cf. the first case;

(b) follows directly by means of the subclause which defines X;

(¢) in case of M = A the claim follows by means of the subclause which defines X.
If M # A it follows due to the induction hypothesis @ (g).

(d) Tt follows by definition of 90}, that parZ U {§} € C(¥)). In addition the
subclauses 1.2, 2.2, 2.3, 2.4, 3.2 and 3.3 secure that £, 7 € C(\I/%). Thereby we have
parZ U {6,&, 7} = parX € C(¥9).

(e) By means of the induction hypothesis we have parZ < o(Z) < 6 + 1. To also
prove &,V < § + 1 we differentiate between the clauses, which define X.

If X is defined by clause 1.2 it holds (M;;'-P,,, R) = (M$%-P,,,,...,M£%-Pg) and
thus £ < §. Moreover it holds 7 € dom(M) = dom(A) = w < § since § > o(A) = w.
Thus we have parX < ¢ + 1.

If X is defined by clause 2.2 or 2.3 we have (My; -P,,, R) = (Emg)gm and therefore
it follows due to the induction hypothesis ® (b) that ¢ < v < ran)(M) = rang (M) <
o(X) =6+ 1 and owing to @ (a) that 7 € dom(M) < § < § + 1.

If X is defined by clause 2.4 then ©/ is a vector of zero length and £ < § < 6 + 1.

If X is defined by clause 3.2 or 3.3 then Z has a predecessor reflection instance Z’ and

for o(Z) = §’ +1 we have R'\Pg/ = (M§H7/—Pm/, ...) for some M’ € Prenfg(Z'). Moreover
!

there are a ¢ < 74/ and a v/ € dom(M') such that éwgr = (MS<1‘”—P517 ...) and
M/ (7!)
Rys = (Myy"-P.n, R) = (M;‘”-PS17 ...). Thereby we obtain by means of the induction

hypothesis ® (b) that
<o < rangA;,(g,)(Sl) < max{¢,oM'} < max{~/,§}
< max{rand,(M'), §} < max{0’,0(Z'),6} =6 <6+ 1

and due to ® (a) 7 € dom(S;) < ¢ < d+ 1.

Thus we have shown {0,£,7} UparZ = parX < ¢ + 1.

@ We have just shown that R&,g = (My;"-Ps,...). Thereby it follows by means
of induction hypothesis ® that M € Prenfg(Z) C Prenfg(X). Thus we obtain Vk €
E)ﬁg,ﬂ(ﬁ) (k E ]:2'\1,]31 (D)) by employing the induction hypothesis @. Taking also into account
the definition of Mg claim @ follows.

® For r; > m the claims follow by an application of the induction hypothesis ® to
Ry¢ , analogously to the first case. For r; < m the claims follow by an application
M(7)

of the induction hypothesis @ to ]%\I,g or since R; = F. We also have r; > rdh(M(7) >
m >m — 1 = rdh(X). O

22



Lemma 2.3.4. It holds
e a<fArK<m = Cla,r) CC(B,n),
e card(C(a, k) = max{Ry, card()},
e AeLim = C(\k) = U£<>\ C&, k) & Cla,A) = U§<)\ C(a, §).
Proof. Folklore. O

Lemma 2.3.5. Let w < 7 be a regular cardinal and X be a reflection instance. Then
it holds

O CY ={x<m|Cla,k) N =K} is club in 7.
8 Ifpar(X) < a and X,a € C(m) then
Ogr={r<m|Cla,k)NT=rAX,a € C(k)} is club in T.

Proof. For the former claim see Lemma 4.3 in [Rat05b].
Lemma 4.3 also implies that

Cti={r<m|C(p,s) N7 =rApeC(pr)}

is club in 7 for all p € par(X) U {a}. Since card(par(X)) < Ng and w < 7 is a regular
cardinal we have (), o )ua) C8 = C% ;- is club in . O

Definition 2.3.6. Let X be a reflection instance. We define

(m) if X' = A(m),

% . (k) if X = (kT;Po;...),

) (0,Z) if X = (U;P,ps...),
(6,6, 7,Z) if X= (WM, Pros...).

M(7)
Remark. It follows by induction on o(X) that X =Y < X =Y.

Definition 2.3.7 (Coding of C(a,7)). Let m € Reg. For 8 € C(«a,m) we define the
set of codes Cd, »(B) for 8 as follows (we write "y € Cdy (-) for "y € Cdo = (7)):

Be Cdor(8) ifB<m,
{1} € Cdy-(B) itB=E,
(L,"y,70M € Cdox(B8) ifp =" +wdand Ty, T e Cdy (),
2T € Cdan(B) 1B = p(€,n) and €, T € Clda (),
(3,"k1) € Cdur(B) ifB=r"and "k € Cdyr(k),
(4,767, TN € Cdar(B) it B=0F and X = (&,...,&,) plus

’_’Y—Ia rfl—lv ceeyy ,_fp—l S Cda,ﬂ'(')‘
Furthermore we define Uy, » 1= {Cdn (B) |5 € C(a,m)}.
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Definition 2.3.8 (Coding of i)ﬁ];E). Let F be a reflection configuration with i(F) = 7
and o(IF) < ¢ < a. Suppose further that V(¢,7) € [o(F), &) c(x) x dom(F) e () (DJTICF(ﬁ) #
). Then we define

"M T = {Cla (€)X Cdar(m) X ... x Ol (np) X M |
(€, 7) € [o(F), &) m) x dom(F)c(ry, where 7= (n1,...,7x)}
Corollary 2.3.9. Let k,m € Reg with k < w. Then it holds
o Uy NV, =Uqp,
o Upr CL,.
o If TS, 1 is defined, it holds "M Ty N Vi =TT, .
Lemma 2.3.10. Let T be a reflection configuration with i(F) = 7 and let 7 > k € Reg.
If '—Dﬁ];g—‘a,ﬂ is defined, then there is a 11}, , ; -sentence zDI’F’l(ri)ﬁ];g—‘a,ﬂ), such that
REMS Pn & (Vi€ "0 an) B i (5 a0,

Proof. We define
Y (Y) :=Vxo...Vay <3y ((mo, ce Tk, Y) € Y) —
VX Vz (u)m(x, z) = 3ko ((zo, ..., Tk, ko) EY Awm(XﬂVHO,z)“O)»,

where 1, denotes the formula of Corollary 2.1.4. O

Theorem 2.3.11 (Existence). Let X = (m;...;0) be a reflection instance and 6 < o €
C(r). Then Mg # 0.

Proof. By (main)induction on a. Let X = F = (m; Po;Ri...;0) X =F(¢,v) =
(m; Mgﬂ(ﬁ)—Pm;ﬁ;...;é), resp.) plus R, = (MI\<,H'V—Pm,R') if § > 0, and suppose the
claim holds for all o/ < .

Case 1, m = 0: If X = (m;Pg;...) then we either have 1 = x™ for some x (and
§ = 0) or 7 is II}-indescribable by 2.3.2®@. Thus w < 7 is a regular cardinal. Therefore

(g . is club in 7 by means of Lemma 2.3.5 and thereby Mg # (.

If X = (m; I\/Ig,ﬂ(ﬁ)—Po; ...) then again Cg  is club in 7 and by Lemma 2.3.2 it fol-
lows that 7 is zmgﬂ(ﬁ)
IT§-sentence in the parameter Cg ., there is a x € m?gﬂ(ﬁ), such that Cg . is unbounded

in Vj,. Therefore X, a € C(k) and C(a, k) N7 = k. Hence x € M§.
Case 2, m > 0: We show by subsidiary induction on 3:

-II}-indescribable. Since “Cg , is unbounded” is expressible by a

V(¢ € [0(X), Blo(r (T is S)JT]%—H}n—indescribable) (2.1)

(V(¢, &, 7") € [o(X), Blo@r) x dom(F) () (7 is i)ﬁ]%(f,ﬁ,)—H,ln—indescribable)7 resp.).
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Let 8 € C(m) and suppose (2.1) holds for all (¢,7) € [0(X), B)¢(x) X dom(F)¢(r). By
means of Lemma 2.3.2 we have w < 7 is a regular cardinal and X € C(w). Therefore

1.&2. Cf . is club in 7.

due to Lemma 2.3.5. By means of Lemma 2.3.2@ we have 7 = R, Thereby 7 is
II! -indescribable and m = R. Thus we have

3. k=@,

where @ = (Mgfl—Pri, ceey MH;E“—PT/ ) denotes the sequence of M-P-expressions of the
1 n n

third proviso in the definition of 9t§. Furthermore the subsidiary induction hypothesis

provides

4. mE=MPP,, .

By means of Lemma 2.3.2® and the main induction hypothesis it follows the well-
definedness of rfmﬂfﬁjgm and '—Emgf"‘ Tg,x for all 1 <k < n. Thus we have

n
Ve = “ng is unbounded ” A /\ wﬂgz(ﬁmgfk ) A wglil(rfm]ﬁﬁjg,ﬂ).
k=1

Due to Lemma 2.3.10 this is a II! -sentence in the parameters Cgﬂ, '—fmﬂ;gl 8.
2 1

cen FDJIHEF"%J and r‘)ﬁ;ﬂjg,ﬂ. Suppose now (Vp,€,P) = F(P) for an arbitrary
IT},-sentence F' and an arbitrary parameter P. Since 7 is II} -indescribable (7 is

m?&(g,)—ﬂh—indescribable, for (&',7) € dom(F), resp.) there exists a 0 < Kk < &

(0<ke imell(ﬁ,) N7, resp.) such that
Ve EF(PNVg) A “ng,w NV, is unbounded” A

n
I\ OE (TG A V) AR T (CMET 0V).
k=1

Thus we have

1. C(B,k) N = K,
2. 8,X € C(k),

3.1k (Vi b= 0 (TS5 N V),
4. Ve = romsP s N V).
In addition it also holds

ik (Ve b o (ST 2 N Ve) & Vi o (M5 7) & kb Mg-Py ),
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and
Ve Em M. N V) & Ve gl s ) e k= MePP,, .

Thus it follows x € im’@ (k€ DJT]F(E 71y, Tesp.) and (Vi, € PNV,) E F(PNV,,). Thereby

s 9ﬁ§ I} -indescribable (DJTF@, o IT! -indescribable, resp.) and hence (2.1) follows
which implies Mg # 0 if « € C(m). O

Corollary 2.3.12. The ordinal ¥§ is well-defined iff o(X) < a € C(i(X)).

Notation. Let d’,g € ON". Then we denote by & <jex E that & is less than ﬁ with
respect to the lexicographic ordering on ON™.

Lemma 2.3.13. Let F be a reflection configuration with rdh(F(77)) = m > 0 and let
be an ordinal. Suppose o(F) < B € (a + 1)) and 7,7 € dom(F)¢ (). Then it holds

k€M & (1) >1ex (B,7) = Kis QJY]F(#) -IT} -indescribable.

Proof. We proceed by induction on o(F). Let 7= (n1,...,n,) and ¥ = (v1,...,Vy).

Case 1, a > [3: Since k € imfg‘(ﬁ) we have k = M5*-P,, by the fourth proviso of the
definition of the collapsing hierarchy M . Thus & is E)ﬁg(ﬁ)—H,ln—indescribable.

Case 2, (a,m1,...,mi—1) = (B,v1,...,vi—1) and n; > v; for some 1 < i < n: Then
F(7) = (F); Mygy,... 5y Pt Bs-.) and Mgy € My,
configuration M € Prcnfg(IE‘). Since we have o(M) < o(F), x € 9)?17\’,&(772 .y and
rdh(M,, . .)) = m+1 by Lemma 2.3.2® (c) the induction hypothesis prov1des that
K is My, )11, 4y -indescribable. Furthermore we have

for some reflection

ey Vn

1L.&2. “Cfp) i) is unbounded in £7,

3. kR,
4. K EMz*Pp,.

By coding C(a, k) in L, (cf. Definition 2.3.7) these statements are expressible by a

II}, ,-sentence ® in some parameters Q of L.
Suppose now (V,,, €, P) = F for an arbitrary II! -sentence F. By employing the

93?1’@[(”27 o) -IT}, 1-indescribability of £ we obtain a 0 < ko € zmg,ﬁ(u v,y M such

that (Vy,, €, @ N Ve, PN V) = (® A F). Therefore it holds

1. C(a, ko) Ni(IF) = ko,
2. F@),a e C(kg),

3. ko =R,

4. ko = MSP,,

Hence kg € sz(V = Dﬁg(a) and thereby & is DJ?F(A) ,-indescribable. O
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Theorem 2.3.14 (<-Comparison). Let X = F(7) plus Y = G(¥) be reflection instances
and suppose K = U§ plus m = \Ilg are well-defined. Then it holds k <  iff

T > i(X) (a)
or  w&<i(Y) A (a < BV (F=GA (o) <iex (ﬁ,ﬁ))) A X,a€O(n) (b)
or a>p A= (Y, B € Cw)) (c)

Proof. Obviously the claim follows if (a) is true. So let us assume —(a), i.e. 7 < i(X),
in the following cases.

Case 1, a < B : Suppose k < w: We have to show (b) or (c¢). It holds X, € C(k)
and £ < 7 < i(Y). Thus X, € C(7) and k < i(Y). Therefore we have (b).

Suppose k£ > w. We have to show —(b) and —(c). Since @ < 8 we have —(c). Now
assume (b). Then X, a € C(n) and k < i(Y). Therefore it holds k € C'(8, 7)Ni(Y) = =,
i.e. k < 7. Contradiction! So we have —(b), too.

Case 2, B < a: Suppose £ < w. We have to show (b) or (¢). Since Y, € C(k)
would imply 7 € C(a, k) Ni(X) = &, i.e. 7 < k we have (c).

Suppose £ > m. We have to show —(b) and —(c). We have —(b) since 8 < a.
Moreover we have —(c) since Y, 8 € C(mw) C C(k).

Case 3, a = 3:

Subcase 3.1, i(X) < i(Y): Since we assume —(a) we cannot have x < 7, since
otherwise we would have i(X) € C(a,x) Ni(Y) C C(B,7) Ni(Y) = 7 contradicting
m < i(X). So we have k > 7 and we have to show —(b) and —(c). We have -(«a < ) and
F # G since i(X) # i(Y), hence —(b). Moreover we have —(c) since Y, 8 € C(w) C C(k).

Subcase 3.2, 1(Y) < i(X): Suppose k < 7. Then we have to show (b) or (¢). We have
(c) since Y ¢ C(k), because otherwise we would have 7 < i(Y) € C(a, k) Ni(X) = &.

Suppose £ > 7. Then we have to show —(b) and —(c). Since ~(a < 8) and F # G
we have —(b). Moreover we have —(c) since Y, 8 € C(w) C C(k).

Subcase 3.3, I(X) =i(Y), i.e. F = G: Suppose k < m. We have to show (b) or (c).

Assume —(b), i.e. (8,7) <jex (a,7) since X;a € C(k) C C(n), k < ® < i(Y) and
(8,7) = («, 77) would contradict k < . We have to show (c), i.e. Y ¢ C(k)V B ¢ C(k).

IfY,8 € C(x) and rdh(G(77)) > 0 then s would be imé(ﬁ)—Hidh(G(ﬁ))—indescribable

by Lemma 2.3.13 since k € zmg(ﬁ). Thus \Ilg(g) =7 < k. Contradiction!
IfY,p € Ck) and Y = (i(Y);Po;...) = X then it follows by means of Lemma

2.3.5@ that W, =7 < k. Contradiction!

IfY,3€C(k)and Y = F(¢,7') = (i(X); M@;(D,)—Po; ...) and B < a we obtain the
contradiction 7 € C(a, k) Ni(Y) = k. So we must have o = 8 and ((, 7)) <iex (&,7),
where X = F(¢,77). However, then it follows by means of Lemma 2.3.13 that & is
m?li/ﬂ(ﬁ,)-ﬂé—indescribable. Taking also into account Lemma 2.3.5@ we obtain again
the contradiction 7 < k. So in any case it holds (c).

Now let us assume —(c). We have to show (b). It holds F = G, X, € C(k) C C(mw)
and xk < i(X) = i(Y). Thus it remains to show (a,7) <iex (8, 7). Suppose (5, 7) <jex
(o, 7). Since k # 7 this assumption implies (3, 7) <jex (o, 7). Since we assume —(c)
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we have Y, 8 € C(r). Thereby it follows as above in the case of the assumption —(b)
that m < k. Contradiction! So we must have (o, 7) <iex (8,7) and thereby (b).
Suppose £ > m. Then we have to show —(b) and —(c). The validity of (b) would
lead to the contradiction x < 7 in the same way as we obtained the contradiction
m < k under the assumption x < m above. Moreover we have (c) since Y, 5 € C(7) C
C(k). O

Corollary 2.3.15. Suppose V§ and \Ilf{ are well-defined. Then
V=0 o a=pAX=Y.

Proof. Let X = F(i7), Y = G(7) and let 5 := ¥g plus 7 := W5,

The implication from right to left is trivial. So assume x = 7. If a # 8 we would
have (b) of Theorem 2.3.14. Contradiction! Moreover the assumption i(X) < i(Y)
(i(Y) < i(X), resp.) leads to the contradiction i(X) € C(8,7) Ni(Y) = 7 = &, ie.
iX) < k (i(Y) € C(a,k) Ni(X) = k = 7, resp.). Therefore we have F = G. The
assumption 77 # ¥ then again implies (b) of Theorem 2.3.14 and leads again to the
contradictions kK < 7 or 7 < K. O

Notation. As usual we define the normal form for ordinals as follows
a=wr+ ... +w¥ & a=wT+ ...+ A a1 > > Ay,
NF

a=pnC = a=¢eng Anl<a

Let = w* + ...+ w*, 8 = w¥+t 4 4 w* and 0 = (0(1),...,0(n)) be a
NF NF

permutation of 1, ..., n, such that V% (o) > o(it1)). Then we define the natural
sum by means of

a®pf = WO 4. 4w,
Lemma 2.3.16. It holds

(1] aN:wO‘1+...+wo‘m = (aEC(ﬁ,ﬂ) & al,...,ameC(ﬁ,w)),

®a=9¢(n¢ = (acCBn) < n¢eC(B ),

® kcCardNZ = (ke C(B,m) & wteC(B,m),

@ U} is well-defined and m < U = (U5 € C(B,71) & €< B A &X e C(B,7)).
® a®fel(y,n) & aBeClyn).

Proof. We have C(8, 1) = J,,.,, C"(B,7) and the propositions follow by induction on
n. Claim @ follows by utilizing Corollary 2.3.15 and the fact that \Ilgg cannot, enter
C™*1(B, ) by means of +, ¢ or the cardinal successor function, since C(§, \Ilgg) Ni(X) =
\II§§ and C(¢, \Ilgg) is closed under these respective functions. O
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2.4. The Ordinal Notation System T(Z)

In this section we define the (primitive) recursive ordinal notation system T(Z).
Definition 2.4.1. The set of ordinal notations T(Z) is inductively defined as follows:
e 0,2 T(2),
. ifaN:Fw“l +...+w* and aq,...,am, € T(E) plus m > 1, then a € T(E),
o if o = ©(n,¢) and n,¢ € T(E), then « € T(E),
o if k€ T(E) N CardNZ, then vt € T(E),
o if X,¢ € T(Z) and o(X) < € € C(£,i(X)), then T € T(Z).

Remark. Obviously we have T(Z) = C(I'z41,0), where I'=11 denotes the first strongly
critical v > =.

For every f it follows easily by induction on 3 that C(8,0) Nw™ is transitive, hence
T(Z) Nw™ is transitive. For details see [Duc08], Lemma 4.1

It follows by Lemma 2.3.16 that different ordinal notations denote different ordinals
in T(E). To conceive (T(E), <) as a recursive ordinal notation system we need to be
able to determine if x € T(Z) and to decide if k < &/, for arbitrary &, ', by reducing
these questions to proper subterms of &, «’, resp. Thus, taking into account Theorem
2.3.14 and for other <-comparisons the closure properties of the C' sets plus the fact
C(a, T§) Ni(X) = g, it only remains to show that o € C(a, ) can be determined in
a recursive way.

Obviously we have o € C(§, m) if there is no subterm ¢ = \115( of o, with ¢t > 7 and
B > §. Therefore we can determine « € C(d, ) if we know the arguments of ¥ greater
or equal than § in subterms of a. Therefore we define simultaneously to Definition
2.4.1 by induction on the complexity of o € T(Z):

Definition 2.4.2. The set K, ():

K, (0) = K, (E) =0,

K(a) = UKﬂ(ai) ifozN:Fwal+...+w°"”,
=1
Ky (@) = Kq(n) UK:(C) if a = ¢(n,¢),
Kr(a) = Ky(k) ifa=rT,
K, (%) =0 if U <,
K. (0%) = |J KalpUKL(QU{g ifT§>m

p€Epar(X)

5To be able to determine if X € T(Z), it is also necessary to encode R‘\ng for every \Ifi e T(E).

29



Lemma 2.4.3. For ordinals o, 6,7 € T(E) it holds
aclC,m) < Ki(a)<od.
Proof. By induction on «a.
Theorem 2.4.4. (T(E),<) is a (primitive) recursive ordinal notation system.
Proof. This follows by remark 2.4 and Lemma 2.4.3.

From now on small Greek letters denote ordinals from T(Z).
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3. The Fine Structure of the
Collapsing Hierarchies

“The introduction of suitable abstractions is our only
mental aid to organize and master complexity.”
Edsger W. Dijkstra

Up to now, we hardly know the sets Mg N T(Z). Of course we have by definition
{T% |y > a} C Mg, but we cannot exclude that different elements of T(E) like \Ilg,
for some X # Y, also enter M§ (and of course for some Y they do). However, to
be able to perform the proof strategy of stationary collapsing, i.e. replacing a main
reflection rule of i(X) in a derivation of a set I' of sentences with derivation length «
by transforming this derivation into derivations of I'* for all k € MM$ we have to secure
that every k € M¢ is equipped with the required reflection rules (cf. equation (B) in
the introduction of this part of the thesis).

In Definition 4.2.8 we define the reflection rules of an element 7 in essence by making
recourse to K. Therefore we have to prove that for every 7 € T(E)NSC the collapsing
hierarchies to which 7 belongs can be decoded from R..

We pursue this non-trivial endeavor in the present chapter.

The proof breaks down into three steps. At first we show that an element Vg is
at most an element of collapsing hierarchies of reflection instances Y = G(77), with
G € Prenfg(X) (Path-Fidelity Theorem 3.1.1).

In a second step we show some kind of inversion of Lemma 2.3.2@, i.e. if C(a, k) N
i(X) =k plus X, € C(k) and s = ﬁq,g then it follows k € MG (Correctness Lemma
3.1.6).

By use of this result we show in a third step that every x < i(X) which satisfies “more”
than ﬁmg cannot be the minimal element of M, i.e. R)\I/g is an exact characterization
of the reflection strength of W¥g.

Summing up these results we are able to prove that every collapsing hierarchy which
contains 7 can be decoded out of R (Domination Theorem 3.2.4).

3.1. Path Fidelity and Correctness

Theorem 3.1.1 (Path Fidelity). Let X be a reflection instance and suppose ¥§ is
well-defined. Moreover let Y # (i(Y);Po;...) be a reflection instance with reflection
configuration G. Then it holds

Ugeml = GePrenfg(X) & f<rang(G) & W < ¢ <i(X) <i(Y).
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Proof. Let k := U§. At first we observe, that we must have o(X) > 0 by means
of Lemma 2.3.5®, since k € Dﬁg and Y # (i(Y);Po;...) and thus & is at least II{-
indescribable, i.e. a regular cardinal. Thus we have X, o0 € C(x) and a > p for all
p € par(X) and thereby X, @ € C(a, k). Moreover we have C(8, k) Ni(Y) = « and thus
B < a since otherwise we would have k = ¥§ € C(5, k).

Therefore we have k < i(Y) € C(8,k) C C(a, k) plus C(a, k) Ni(X) = k and thus
i(X) < i(Y).

Let F be the reflection configuration of X. It remains to show G € Prenfg(F) and
B <ran§(G).

We show the former by contradiction. Let us assume G ¢ Prenfg(F).

Case 1, it holds initl(F) # initl(G): Since Y # (i(Y); Po; . ..) we must have Y = A(m)
for some m and thus X = (7F; Py;...) for some cardinal w < 7 < Z. However, above
we already have observed that o(X) > 0. Contradiction!

Case 2: There is an H € Prenfg(F) N Prenfg(G) with X = H(¢', ') € Prinst(X) and
Y’ = H(¢’,77") € Prinst(Y) plus ' := rang(X’) and ' := rang(Y’), where (o/, &', 7') #
(8, ¢,i7"), ie. UG £ W1

Subcase 2.1, \Ilgi < W, : Since k € sm§ C \Ilgi there must be an X” € Prinst(X)
with (X"”) > \II@ and U9 < 0g, < \Ilgi, where o := ran§ (X"). A visualization of this
situation is given in figure 3.1 (where dotted segments might be of zero length). Since
g, < Ug, we must have X’ € Prinst(X”) and thus o/ > par(X”) D par(X’) U {a/}
and thereby o” > o/.

Subcase 2.1.1, / < o’: We have ' > par(Y’') and Y € C(\Ilg). Thus B,Y" €
C(B',¥2). Moreover we have 8 < o’ < o and thereby W%, < W&, € C(8'+1,¥2)n
i(X") C C(a”,¥,) Ni(X") = ¥g,. Contradiction!

Subcase 2.1.2, o < f': We have o/ > par(X’) and X" € C(¥%,). Thus o/, X’ €
C(a/ +1,99,) C C(B, UE,). Therefore it holds ¥, < U2, € C(8,¥5,) Ni(H) = ¥F,.
Contradiction! )

Subcase 2.2, U < WP,: Since x < WY there must be a Y’ € Prinst(Y) with
\I/@Z < U <i(Y") where B := rang(Y”).

Since \Ilgx < \Ilgi we must have Y’ € Prinst(Y”) and thus 8” > par(Y”) D par(Y')U
{B'} and 8" > f'.

Subcase 2.2.1, ' < o: Since Y’ € C(\Ilgi;) we have 8')Y € C(B8' + 1,\11% -
C(a/, ¥%)). Therefore it holds U2, < UF, € C(a/, ¥%) Ni(H) = ¥2,. Contradiction!

Subcase 2.2.2, o/ < ': We have o/ > par(X') and par(X) D par(X') U {a'}. Since
X € C(k) we thus have o/, X' € C(o/ + 1,5) C C(B", k)

Subcase 2.2.2.1, Kk = US < WP, : We have U2, < 0% € C(8”,k) Ni(Y") C
o, \Ilgx) Ni(Y”) = \I/@i Contradiction!

Subcase 2.2.2.2, \I/@Z < k: Then we have 8 = " and Y’ = Y since otherwise

TIn the following the reader should be aware that for a reflection instance Z and Z’' € Prinst(Z)
’
plus ¢ = ran%(Z') it does hold Dﬁ% - \I/% for all £ > o(Z). This follows easily by induction on
card(Prinst(Z)\ Prinst(Z’)).
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i(initial(F)) = i(initial(G))

On e—fe—-e - —— e —
0w owe vy WS i(X" g

i(H) = i(X') = i(Y)

Figure 3.1.: A visualization of the situation in Subcase 2.1.

we would have sm@ - \pgﬁﬁ contradicting k € Dﬁg. Therefore we have k < \If% €
c(p”, k) Ni(Y") = C(B,k) Ni(Y) = k. Contradiction!

Case 3, it holds F € Prenfg(G): Let Y :=F(¢'7j’,) € Prinst(Y) and 8’ := rang(Y').
Then we have i(Y) < \I/§: < i(F) = i(X). Contradiction, since we have already shown
i(X) < i(Y)!

Since the three treated cases provide an exhausting case differentiation (imagine
the nodes in the Prenfg(F) path, where the development of G could branch out!) it
remains to show g < ran§{(G) if G # F, i.e. if G € Prenfg(F).

Suppose G € Prenfg(F) and let Y := G(¢',77’) € Prinst(X) plus 8 := rang(G).
Then we have 5/ > par(Y’) and par(Y') U {8’} C par(X). Since X € C(x) we obtain
thereby 8,Y' € C(B',k). As the assumption 8’ < f yields the contradiction x <
‘llgi e C(B,k)Ni(Y") =C(B,k) Ni(Y) = k the claim follows. O

Definition 3.1.2. Let MI\<41'5—Pm be an M-P-expression. Then we define by recursion
on o(M)

Te(MEEP,) — {My-Po} ) if o(M) ¢ Succ,
Mo {M@f—Pm} U Te((Rioy)m) otherwise.
Definition 3.1.3. On M-P-expressions we define the binary relation < by

€ = M&f—Pm for any M-P-expression M@E—Pm,
Mg-Pr < Myf-Pr & 7 (0(G) ¢ <y A MZ-P,, € Te(My-Po)).
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We extend this relation to finite sequences of M-P-expressions R and § as follows

—

R =<8 o Vmew(R, =<Sn).

Remark. Due to Lemma 2.3.2® (a) Tc is well-defined. Moreover < is transitive and
<, the strict part of <, is well-founded.

Lemma 3.1.4. Let X be a reflection instance with reflection configuration F and
rdh(X) > m. Let k be an ordinal satisfying X € C(k). Then

K ': I\N/l];a'Pm & MI?JIC'Pm = |\7I]I§O¢'Pm = k ): MI\</JIC'P7"'

Proof. We proceed by induction on o(F). If o(F) ¢ Succ the claim is trivial. If

—

o(F) =6+1and o = 641 it follows by definition that Mg*-P,, = (Rj))m. Therefore
the claim follows by the induction hypothesis.

If o(F) =6+ 1 and « > § + 1 we either have M§5*-P,,, = M5*-P,,, and o(F) < ( < «
or M@C—P,n =< (ﬁi(F))m = (Ri(x))m. In the first case the claim is trivial. In the latter

case we have to show, that for every (v,7) € [0(M),()c(x) X dom(M)¢ () and every
IT! -sentence F in parameters P C V. such that (V,, P) = F we can find a ko € Mg
such that (V,,, PN Vy,) = F.

By the provisos s = M5®-P,, and X € C(k) it follows that  is E)JT%(X)—H}n— inde-
scribable. Proceeding as in the proof of Theorem 2.3.11 we can find a k(, € Dﬁ%(x) such
that (V%,ﬁ NVe) F F and par XU {7,717} C C(kg). By means of Lemma 2.3.2@

it follows that k{ = (Ei(x))m. Let (ﬁi(x))m = Mg®-P,,. Due to Lemma 2.3.2® (e)
there exists a 7 € dom(E) N par X such that rdh(E(7)) = m. Therefore it follows by
the induction hypothesis applied to E(7) that x{ = M@C-Pm. Since 7,77 € C'(ky) this
implies that r is 9 -I1; -indescribable. Thus there is a rg € My, such that

(Viey, PN V) = F. O

Lemma 3.1.5. Let X = (m;...;0) be a reflection instance, k < 7 and o > §. Suppose
Cla, k)N =k and X, € C(k). Then it holds for any Z € Prinst(X):

O C(ran{(Z),k)Ni(Z) =r & Z,ran§(Z) € C(k).
® E € Prenfg(X) & Vi (7' € dom(E) NnparX = E(ij') € C(r)).
Proof. ® Let Xg :=X, ap =, mo :=i(X) =7 and X;11 :=Z; if X; = (.. .;Z;;...),
i.e. X;41 is the predecessor of X; plus a;11 := ran§ (X;+1) and w41 := i(X;41).
Obviously we have for all i:

K< < Tig1 & ;> 04 & C(OzH_l,ﬂ'i) N1 = ;.

We show by induction on 4 that C(a;, k) N = k.
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In the initial case ¢ = 0 there is nothing to show. In the successor case ¢ +1 > 0 we
have

Claigr,m)Nmig1 =m = Cloigr, 8) Nmipr Sy

ind.hyp.

= C(Oli+1, Ii) n Ti+1 = C(Ck7;+1, Ii) nm; Q C(O[i7 I{) N, =

Therefore C(a; 11, ) N1 C & and by definition it holds C(a; 41, k) N1 2 & Thus
we have shown for Z € Prinst(X) that C(ran§(Z), k) Ni(Z) = k. Moreover we have
par(Z) U {ran§(Z)} C par(X) C C(k).

@ Let E € Prenfg(X). Then there is a 77" € dom(E) such that E(77”) € Prinst(X).
Thus we have par(E(77”)) C par(X) € C(x) and therefore E(ij") € C(k) since i7" € X
by assumption. O

Lemma 3.1.6 (Correctness). Let X # (i(X); Po;...) be a reflection instance and sup-
pose U§ is well-defined. Then it holds:

O For any reflection configuration E, any o(E) < &, and any e € Rdh(E)
MEE—Pe =< (ng)e = MEP—PQ = R'Iéa’e) =< (é@§)§e,

where ﬁlés’e) = Rg if E# A and R]és’e) = (M55-Pe,...,M55-Pg) otherwise.
@ For any K, such that C(a, k) Ni(X) =k and X, o € C(k)

I'{'/):R’\I}§ = Féem%.

Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X.

® Case 1, X = A(m + 1) for some m € w: Then Rye = (M{*-P,,,...,M5®-Py).
Thus we have E = A and ¢ < a plus e < m. Thereby the claim follows.

Case 2, X = (U;P,,; R;...) with Rys = (M$“-P,,, R): Then it holds m > 0 and
Rys = (M5®Pp_1, Rep1).

If E =F then we have e = m — 1 and the claim holds, since Rg =R < (ﬁ\yx)ge

If E+#F and e = m — 1 we have (R'\I;B%)m_l = MEP—Pm_l. Thus we must have
a=48+1,ie. (é¢§)m_1 = (Ewg)m—1~ Therefore we have l\~/|]§5—Pe < MEP—Pm_l =
(ﬁq,g Ym—1 = (ﬁ\y%)m,l. Thus we obtain by means of the induction hypothesis ﬁf’e) =
(Rys)<e 2 (Hug)<e.

If e < m — 1 we also have (R'\p%)m_l = (R'\I,g)m_l and the claim follows by means

of the induction hypothesis, too.
Case 3, X = (¥); I\/Ifw(ﬁ)-Pm; R;...) with Ry; = (My;-Py, R): Then it holds Rye =
((Rws )>ms M?"—Pm_l,ﬁ<m_1) and £ < v. If e < m the claim follows as in the
M) —

second case. So let us assume e > m. Then we have I\N/IEE—PE = I\/IEP—PE = (qug)e =

—

(R\I,g( ))e. If Z = A(n) for some n € w it follows by definition that M = A and thus
M(7
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o(M) < o(X). If o(Z) > w it follows by means of Lemma 2.3.2®(a) that o(M) < o(X).
Therefore we obtain by the induction hypothesis applied to M(%)

—

Rzés’e) < (Rq,gw)ke' (3.1)
In addition it holds I\7I§H5—Pm < My,"-P,, = (R@g)m Moreover we have m € Rdh(M)
either by definition if Z = A(n) for some n € w (and then M = A), or by Lemma
2.3.2®(e) otherwise. Thus we obtain by the induction hypothesis applied to Z

(Byf™) < = (ﬁ\pgkm = R < (Rug)<m. (32)
Since it holds (Emf( ))<e = (Ems ))[e,m], (R’N(/f,m)km either by definition if Ml = A or
M(Z) T

M(7
by Lemma 2.3.2®(f) otherwise, it follows from (3.1) and (3.2) plus the transitivity of
< that R‘Iés,e) = (R'q;%)ge.

@ If X = (m; Ppp; . . .) the claim is trivial. If X = A(m + 1) for some m € w the claim
follows by use of Lemma 3.1.4. So let us assume that X = (¥J; Mgﬂ(ﬁ)—Pm;ﬁ; o)
with ﬁwg = (My;"-P,,, B). Then it holds Ry = ((E%(D))Zm,Mga-Pm_l,EW_l).
Since we have |\~/II\<,HE—Pm =< MI@IA’—Pm = (ng)m we obtain by means of @ and Lemma
2.3.20(e),(f) that

— — —

(Rye Jem = (RE™)cm = (Rys)em = B = (Bus)<m.

M(7) Z X

Therefore the assumption k = Rq;g in collaboration with Lemma 3.1.4 implies x |=
(Ryg, Joms (B ™ )<m). e = Ry

Since &,V € parX, X € C(k), M € Prenfg(X) and € < v < ran§(M) it follows by
means of Lemma 3.1.5 that C(£, k) Ni(M) = x and {,M(¥) € C(k). Therefore we
obtain by use of the induction hypothesis that x € smfw(g). Combining this with the

provisos C(a, k) Ni(X) = k and X, € C(k) plus & = (ﬁ@§)<m it follows k € Mg. O

3.2. The Domination Theorem

Definition 3.2.1. Let M@f—Pm be an M-P-expression, D a reflection configuration,

and suppose R = (M]Elpl—Ph, U Mng—Prj) is a finite sequence of M-P-expressions.
Then we define '

(MI\</J1§'Pm)D = {

(B = (M5”-P,)% ., (M5P=P,)P).

MsS-P,, if M5S-P,, € Tc(Mt-P,,)

€ otherwise,

Remark. It follows by induction on o(M) that (MI@IE—PM)]D> is well-defined.
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Lemma 3.2.2. Let X # (i(X); Po;...) be a reflection instance, E be a reflection con-
figuration, such that E € Prenfg(X) and suppose U§ is well-defined. Then it holds for

any g < min{rd(Rg), rd(§¢§)} and any D € Prenfg(E):

(Re)<g = (Rus)<y = ()2, = (Rus)2,.

Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X.

Case 1, X = A(m+1) for some m < w: Then we have nothing to show, since there
is not any I € Prenfg(A).

Case 2, X = (¥; P R .. .) with Rg,; = (M&“’-Pm,}_{‘): Then it holds m > 0 and

Rys = (M5®Py,_1, Repp_1). If E =T then the claim holds since
(EE)H%Q = (EF)EQ = (E)H%g = (EW§ )H%g'

So let us assume E # F. Then it follows E € Prenfg(Z) and the proviso (R'E)Sg =
(R)\p%)gg implies (Rg)<y < (Ewg)ggy since E # F. Therefore we obtain

(R']E)H%g e (R"IIZ)H%g = (E)H%g = (R’\I/‘X")H%g

Case 3, X = F(¢,0) = (W%;Mgﬂ(ﬁ)-Pm;ﬁ;...) with EW; = (M -P,n, R) for some
~ > £: Then it holds R'q,;g = ((Rw§ﬂ(ﬁ))2m’ |\7|§0‘—me1, Rem_1).

Subcase 3.1, g < m: Then the claim follows by the same considerations as in the
second case.

Subcase 3.2, g > m: Then we must have E # T, since I'd(é[g‘) =m-—1,1ie E €
Prenfg(Z). The assumption M € Prenfg(E) leads to the following contradiction: By
proviso we have (Rg)<p, = (R'q,%)gm. Since o(E) < o(F) this implies (Rg)<m <
(RQZ)Sm and therefore we obtain by the induction hypothesis (with D = M)

assump.

My P = (Rys )i ™27 (Re) 2 (Be)m X (Rug)m = M;S-P,.

However this contradicts £ < « and thus we must have M ¢ Prenfg(E), ie. o(D) <
o(E) < o(M) < o(F). If M = A we have nothing to show, since there is not any
D € Prenfg(A). So it remains the case g > m with A # M ¢ Prenfg(E).

We want to apply the induction hypothesis to M(7). Therefore we have to show that

(RE)<m = (R'\Pg( ))<m = (RM)<m. By the provisos we have (ﬁE)<m <R= (E¢2)<m
M(T
since o(E) < o(F). Thus the induction hypothesis applied to Z provides

(ﬁE)Em = (éw%)]gm for every D € Prenfg(E). (3.3)

In addition we have |\7|I\<AI£'Pm < My"-P,, = (R&,g)m Thereby it follows (Ryr)<m =<

(ﬁwg)<,,L by Lemma 3.1.6 @. Thus the induction hypothesis applied to Z with E = M
provides

(RM)Em = (sz)gm for every D € Prenfg(M). (3.4)
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Since Prenfg(E) C Prenfg(M) it follows by means of (3.3) and (3.4) plus taking into
account Lemma 2.3.2®(a) that (Rg)em < (Ruy)em. Therefore we have (RE)SQ =<

(Rq,& )lg,m]> (Rpg)<m = (E‘I’@[m)gg' Thus the induction hypothesis applied to M(7)

M(7)

yields

— —

(Rs)fym = (R Ngm) = (Rug)fym  for every D € Prenfg(E). (3.5)
Moreover it holds (EW%)Em = RP = (éq;%)gm for every D € Prenfg(E). Thereby the
claim follows by composing the equations (3.5) and (3.3). O

Lemma 3.2.3. Let X # (i(X);Po;...) be a reflection instance and suppose U§ is
well-defined and rdh™(X) := max{0,rdh(X)}. Let E € Prenfg(X) be a reflection con-
figuration and o(E) < e < ran§(E) plus e € Rdh(E). Then it holds for any k, such
that C(a, k) Ni(X) = k and X, o € C (k)

Kk = MSe-P,, (§@§)<e & Mse-P, £ (ﬁq,@e = K is MG gy, x) -indescribable.

Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X and let F be a Hi dh= (x)-Sentence in parameters PcC V., such that
(V,.,P) = F.

Case 1, X = A(m + 1) for some m < w: Then ﬁ¢§ = (M5%-Pp, ..., MSYP,,).
Since E € Prenfg(X) and € < rang(E) it holds E = A and ¢ < a. Due to M5*-P, 4
(Ewg)e we must have e > m. Therefore kK = MEE—PG,(E¢§)<E implies that & is
ITl-indescribable and & = (ﬁ@§)<e. Proceeding as in the proof of Theorem 2.3.11 it
follows the existence of a ko < k, such that C(a, ko) Ni(X) = kg, X, € C(kog), ko is
IT! -indescribable, and ko = MS®-P,,, plus (Vy,, PNV,,) = F. Thus  is MG-TI} 4= 30"
indescribable.

Case 2, X = (U3;Pyy; s ...) with Rys = (M5¥-Py,, B): Then it holds m > 0 and
Rys = (M5®Py_1, Repy).

Subcase 2.1, e < m: If E = F we have e = m — 1 and ¢ < ran§(F) = a. However
this leads to the contradiction |\~/|]§6—Pe = |\~/I§E—Pm_1 = |\~/I];°‘—Pm_1 = (Eq;}g)e

Therefore we must have E # F. Then it holds E € Prenfg(Z) and by means of
Lemma 3.1.5 we have C(d, k) Ni(Z) = k and Z,§ € C (k). Moreover it holds ran§ (E) =

rany(E). The provisos x = MEE—PG,(§@§)<6 and M<°-P, £ (§¢§)€ imply s |
I\~/II§€-P67 (ﬁwg)<e and l\~/II§5-Pe £ (R&,g)e Thus the induction hypothesis provides that

K is im%-ﬂ%dh*(Z)—indescribable, but this is absurd, since the proviso C(a, k) Ni(X) = &

implies x < i(X) = ). Therefore we must e > m.

Subcase 2.2, e > m: Then the proviso k = |\7I]§E—Pe, (Rq;)gg)<e implies that r is IT} -
indescribable and & = Ewg Thereby there is a ko < & such that C(a, ko) Ni(X) = &,
X,a € C(ko), ko = Rq,§ and (V,, PNV,,) = F. Thus Theorem 3.1.6 @ provides that

K is fm%-ﬂ%dh*(X)—indescribable.
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Case3, X = F(§, V) = (\I'%;Mﬁﬂ(g)—lz’m;é;...) with ﬁ\l}% = (M@’Y—Pm,é) for some

7> & Then it holds Ry = (Rye )sms My P, Mg ®-Pr_1, Repno1).

M(7)
Subcase 3.1, e < m: Then we have e > 0, since M5°-P_; = ¢ < (éw§)—1 = ¢. Thus
the claim follows by the same considerations as in the second case.
Subcase 3.2, e = m: Since Rdh(F) = {m — 1} and e € Rdh(E) it follows E # F.

Thus we cannot have Ms*-P, 4 (1:2\1,%)6 — M;7-P,,, as otherwise we would obtain a
contradiction as in subcase 2.1. Therefore we have l\~/II§5—Pe £ |\~/II\<415—Pm, but |\~/|]§5—Pe =<
M&[W—Pm. Thus it follows £ < € <y and E = M. Thereby & is mfw(g)—l'[#—indescribable
and K = (ﬁ@§)<m. Therefore there exists a ko < Qﬁgﬂ(ﬁ)ﬂm, such that C'(a, ko)Ni(X) =

ko, X, € Cko), ko = R and ko = M5¥P,,, 1 plus (Vi,, PN V) = F. Thus & is
M-I, . (x)-indescribable.

Subcase 3.3, m < e < rd(ﬁwg ): Let |\~/I]§5—Pe = MEOE"—PE. If ¢ = o(Eg) we

M(7)
have Eg = A and ¢y = w. However, then we obtain the contradiction |\7I]§E—Pe =<
(é@§)e Thus we must have g9 > o(Eg). Since m —1 < e € Rdh(Eq) we also have
(i(Eo); Pos...) # Eo # F.

Subcase 3.3.1, Ml ¢ Prenfg(Eg): Then it holds Eg € Prenfg(M) and M # A. By

the provisos we have k = (R ﬂ))(e’m],(é\pg)<m. Moreover it holds I\N/II\jf-Pm =

Ty
My"-Py = (ﬁmg)m- Thus Theorem 3.1.6 ® provides that (Ry)em = (ﬁ¢%)<m =
(ém§)<m. Therefore x = (ﬁ\p§)<m implies = (Rp)<m due to Lemma 3.1.4. Since

it holds (E%ﬂ))@ = (é%»)(e’m]’ (Ri)<m we have

KEMEP By e & MEPL £ (Ryg ) (3:6)
and Eq € Prenfg(M) plus ¢ < ran§(Ey) by means of Lemma 2.3.2 ®(b).

If rang (Bo) > e > rang; , (Bo) it holds Eg = M and g9 > &. Thus r is 9,
indescribable, since e > m.

Ifeo < rang/ﬂ(ﬁ) (Eo) we also have C(&, k) Ni(M(¥)) = x and &, M(¥) € C(k) by means
of Lemma 3.1.5®. Thus we obtain from (3.6) and the induction hypothesis that x is
Emfw(g)—l'[}n—indescribable, as rdh(M(7)) > m.

In addition it holds C(a, k) Ni(X) = k, X, € C(k), k = R, k |= Ms%-P,,—1 and
(V,., P) = F. All these statements are expressible by a I -sentence. Thereby & is
IMG-TL, 4y, () -indescribable.

Subcase 3.3.2, Ml € Prenfg(Eg): At first we observe that By # A, as otherwise we
would have M ¢ Prenfg(Eq). Thus we have e = rd(Rg,) due to Lemma 2.3.2@(g).

We proceed by subsidiary induction on d := e —m. The initial step of the subsidiary
induction is treated in subcase 3.2. In the successor step we have e = m+dp+1 > m.
Since we assume &g > o(Eg) the proviso k = MEE—Pe,(}?\p%)@ implies that & is

WE&%%;—Hé—indescribable (for some 77 € dom(Eg) N X—which does exist due to Lemma

1
@ i~
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o(Eo)

Eo () satisfies

2.3.2 since E € Prenfg(X)) and thereby s |= Rg,, as any element of 90
Rg, and rd(Rg,) = e by Definition 2.2.4.

Let us assume that (Rg,)<e < (R)\pg)@. Since o(Ep) < o(FF) this implies (EEO)SW =
(ﬁwg)Sm- Moreover we have M € Prenfg(Eg), Eg € Prenfg(Z), since E € Prenfg(F),

and m < min{rd(Rg, ), rd(ﬁq,g )}. Thus we obtain the following contradiction by means
of Lemma 3.2.2

(Reo )i = (Rug)m = MyS-Pry < My-Py, = (Rys ) *2 (R, -

Therefore we must have (Rg,)<. £ (ﬁq,§)<e. Let Rg, = (I\ilgfl—Pel,...,Mglgl—Pel).
Then there exists a 1 < j < [ such that ME;" -Pe, £ (Rq;)cg)ej and furthermore
k= I\/IEJ_E"—PQJ., (ﬁ\p§)<ej. In addition it holds by Lemma 2.3.2 that E; € Prenfg(Eq) C
Prenfg(F) and ¢; < rang (E;) = rang(E;). Thus & is m?%—H}dh*(X)—indescribable either
by subcase 3.1 if e; < m, or by subcase 3.2 if e; = m, or by subcase 3.3.1,if m < e; <e
and M ¢ Prenfg(E;), or by the subsidiary induction hypothesis, if m < e; < e and
M € Prenfg(E;).

Subcase 3.4, e > rd(ﬁ\llg ): Then the claim follows just like in the first case. O

M(7)

Theorem 3.2.4 (Domination). Let X and Y # (i(Y); Po;...) be reflection instances
and suppose W§ is well-defined plus 3 € ON. Then it holds

vy € sm@ = Ew@ = Rxp;y

Proof. Let us at first assume that X = (i(X); Pg;...). Since ¥§ € S)ﬁg it follows that
¢ is [I}-indescribable, and thereby ¥¢ is a regular cardinal by means of Lemma 2.1.2.
Since X, a € C(¥§) Lemma 2.3.5 @ provides a kg < ¥§, such that C(«, ko) Ni(X) = ko
and X, o € C(ko), i.e. kg € ME NPE. However, this contradicts the minimality of U§.

Thus we must have X # (i(X);Pg;...). Let G be the reflection configuration of
Y. It follows by Theorem 3.1.1 that G € Prenfg(X) and 8 < ran§(G). Let R'\I,g =

(Mﬁgfl—Prl, e MHEE"—PW). Then it follows by means of Lemma 2.3.2 for all 1 <i < k

that R; € Prenfg(G) C Prenfg(X) and & < ran(R;) < rang(R;). To obtain a proof

by contradiction let us assume waa 7§ Eq;;g Then there exists a 1 < j < k such that
Y

Mz®-Pr, £ (Rug)r, - (3.7)

Let x := ¥§. Then it holds C(o, k) Ni(X) = K, X,a € C(k) and k = éq,g, since
Kk € Mg. Moreover we have k |= R’\Pg as Kk € Qﬁg. Therefore it holds
Y

K EMY P (Rug)<r,. (3.8)
Thus it follows from (3.7) and (3.8) and Lemma 3.2.3 that there is a ko € M§ N &.
Since this contradicts the minimality of k = ¥§, we must have 132‘1,5 < é@§t O
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4. A semi-formal Calculus for [1 -Ref

In this chapter we augment the Tait-language Eg of set theory by terms, representing
elements of the constructible hierarchy L, whose L-rank is an ordinal of T(Z). Moreover
we augment Eg by predicates M;E, which are intended to represent the sets {L, |k €
ms .

Straight forwardly it is possible to define an infinitary derivation calculus for this
augmented language, which is correct (respecting L) for cut-free derivations of formu-
lae whose “ordinal parameters” belong to the transitive part of T(Z). Moreover by
employing a reflection rule, such a calculus is strong enough to derive all axioms of
M,-Ref.

Inspired by this we define an infinitary calculus which features the mentioned items,
but also allows derivations restricted to subsets of T(E), i.e. all derivations-lengths and
all ordinal parameters of the formulae of such derivations have to belong to a certain
subset of T(Z). This restriction is arranged in a way, that if a finite set I" of sentences
is derivable on a subset H; and it holds H; C Hs, then I' is also derivable on Hs.

4.1. Ramified Set Theory

Definition 4.1.1. We augment the Tait language LL of set theory (for which we regard
equality as defined, i.e. x = y is an abbreviation for Vz€z (2 € y) AVz €y (z € x))
by new unary predicate symbols (—), Mg for every reflection instance X and every
a > o(X) and every 7 < i(X). The augmented language is denoted by Ly(z).

Notation. We write Vz € z F(z) for Va (r € z — F(x)) and Iz € z F(z) for 3z (x €
2z A F(z)) and call such quantifiers restricted. Moreover we write F'(x)* for the Ly =)-
formula F'(z) in which every unrestricted quantifier is restricted to z.

By —F we denote the £ z)-formula which arises from F' by putting — in front of
each atomic subformula (by use of the De Morgan’s laws) and then dropping double
negations and replacing —(s € t) by s ¢ ¢.

Definition 4.1.2 (The Language Lrsz)). The Lrg=)-terms and their stages are
defined as follows:

e for each a < E, L, is an Lrg(z)-term of stage a.
e the formal expression {z € L, | F(z,51,...,58,)F} is an Lrs=)-term of stage

a < Z,if F(x,y1,...,Yn) is an Lyy(z)-formula and sy, ..., s, are Lpg(z)-terms
with stages less than a.
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By 7o we denote the set of Lrg(z)-terms with stages less than a. The Lgrg(z)-

sentences are the expressions of the form F(sy,...,s,)"=, where F(xy,...,2,) is
an Lyz)-formula which contains at most the shown free variables xi,...,7, and
81,--+,8n are Lpg(z)-terms.

We define 1h(F(sy,...,5,)"=) as the number of occurrences of the connectives V

and A in F(z1,...,2,)%.

Notation. In the sequel, Lrg(z)-sentences are referred to as sentences. The same
usage applies to £ RS(E)-terms.

Definition 4.1.3 (The transfinite content of ordinals, terms and sentences). For or-
dinals we define!

(@ ~{a) 0L

k({x € Lo | F(z,51,...,8,) ) == {a} U U k(s;).

For a sentence F' we define by recursion on the complexity of F":

k(s €t)
k(- Mx (s))
k(Fo Vv 1)

)
)

k(s) Uk(t),

{7, a} Upar XUk(s),
k(Fo) Uk(Fy),

k(t) Uk(G(Lo)),

= k(G).

k(3zet G(x)
k(=G

If ¢ is a term or a sentence, we set |¢| := max(k(¢)).
If A is a finite set consisting of ordinals, terms and sentences, we put

= |J k(¢) and |A]:=sup{|¢|| ¢ € A}.
PpeA

Since we want to apply reflection rules to sentences of the shape AT, where T’
is a finite set of II,-sentences, we close the set of II,-sentences under the Boolean
connectives A and V.

1We define the transfinite content of ordinals just for technical convenience.
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Definition 4.1.4. A sentence is said to be Ag(r) if it contains only terms with stages
less than 7. A sentence F' is elementary-I1, () if it has the form

Va1 €Ly ...Qunen €Ly F(xq,...,z,),

where the n quantifiers in front are alternate and F'(Lg, ..., Lg) is Ag(7). Analogously
we define elementary-%,, (7)-sentences.

The set of II,,(m)-sentences (3, (m)-sentences, resp.) is the smallest set of Lpg(=)-
sentences which contains the elementary-II (7)-sentences (elementary-Xy (7)-sentences,
resp.) for k& < n plus the elementary-X;(m)-sentences (elementary-II;(7)-sentences,
resp.) for j < n and is closed under the connectives A and V.

By Aj(7) we denote the smallest class of sentences, which comprises the class IL,, (),
for any n € w.

Notation. In the following we refer to a II,i(7) sentence F as F(Fy,..., Fy),
where Fi, ..., F,, denote exactly the elementary-II,;(7) and elementary-II, () sub-
sentences of F' and for 1 < ¢ < m it holds F; = Vz; € L, F!(z;). Thus we have
F(F(t1),... F! (tm)) € 2y (n) for all £ = (t1,...,t,) € T

Given a sentence F and terms s,t, we denote by F(5) the sentence which arises
from F by replacing all restricted quantifiers Va € s and 3x € s by Vx €t and Jx € ¢,
respectively. We also write F(5™) for F($:Lx) and V2™ for Ve e L,.

If F(s1,...,s.) € II,(m), where s1, ..., s, denote all terms of F of levels less than 7
we define

ZEF(s1,...,8) © z#0ATan(z) A N\ (s € 2) AP,
i=1

4.2. Semi-formal Derivations on Hull-Sets of T(Z)

Now we define an infinitary derivation calculus for sentences of Lpg(z), which “acts”
on subsets of T(E). As we want the following persistency property

(Str) Hil; T & HiCHo = Hof3T

we have to relativize the parameter restriction in the (V)-rule.

It will transpire that the axioms of 1,,-Ref are already derivable on sets which satisfy
minimal closure conditions. In the following we denote sets, which meet such closure
conditions as hull-sets.

Definition 4.2.1. In the following we call a (partial) function f : (T(E))" —, T(E)
or a (partial) function g : (T(Z))<¥ —,, T(E) an ordinal function.

A hull-set is a triple (H, Ho, (fi)ier), such that H,Ho C T(Z), 0 € Ho, (fi)iecr is a
finite family of ordinal functions, o, 8 — a+ 8, v — w” € (fi)ier and H is the closure
of Ho under (f;)icy-

Henceforth we often omit the second and third component of a hull-set, i.e. we refer
to (H,Ho, (fi)ier) simply by H.
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Let (H,Ho, (fi)icr) be a hull-set and A be a finite set containing ordinals, terms
and sentences. The we denote by H[A] the hull-set (G, Ho Uk(A), (fi)icr) = (G, H U
k(A), (fi)ier)."

Example. For every a and 7 the set C'(a, 7) can be regarded as the hull-set (C'(a, 7),
mU{0,E}, (+,9,-7, ¥)), where W : (T(Z))<* —, T(E) and

- Uy if = X for some refl. inst. X and o(X) <~ € C(i(X)) Na,
U(y,1) = :
T otherwise.
Corollary 4.2.2. [t holds
e ACH = HA=H.
o Let ¢ be an ordinal, a term or a sentence. Then H[A][p] = H[A, ¢].

Definition 4.2.3. We use = to mean syntactical identity. For terms s,t with |s| < |¢|
we set

. {F(s) it = {2 € La| F(2))
T ift=1L,

where T is not considered as a formula, but we define T A F := F.}

Definition 4.2.4. To each sentence F' we assign (a possibly infinite) disjunction
V(F})ter or conjunction A(F)ier of sentences. This assignment is indicated by
F 2 \/(F})ier and F = A\(F})ter, respectively.

recs = \/(tés ANt =T)ieT, s
AMg(s) 2= \/(t = s)ier where T:={Lg|Be Mg A 7<B<]s},
Jres G(z) = \/(tés NG(@))eeT,»
FoVE = \/(Ft)te{o,l}7
~F 2 N\(=F)er, if F22\/(F)er.

Notation. We use the following notation

F,eCS(F) ¢ F=\/(F)ir oo F= \(F)ier and seT.

TThe reader who is familiar to Buchholz concept of operator-controlled derivations should have
realized, that derivations on hull-sets will be the same as operator controlled derivations, controlled
by a uniform kind of finite operators, since every hull-set induces a finite operator via A — H[A].

The notion of “derivations on subsets” simplifies the proof of the Reflection Elimination Theorem.
In this proof we directly employ the hull-set C'(v, 0) instead of defining an operator H;, as e.g. in
[Rat94b].

#This improvement is due to [Buc01] and has the advantage that 3z™ G(z) 2 \/(G(t))¢e T, in contrast

to the “usual” setting s€Lo = s ¢ Lo.
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Definition 4.2.5. For terms and sentences we define the rank as follows:

= max{w - o+ 1,rmk(F (L)) + 2},
max{rnk(s) + 6, rnk(¢) + 1},
rnk(s) + 5,
max{rnk(Fp),rnk(F1)} + 1,
max{rnk(t), rnk(F(Lg)) + 2},
= rnk(G).

H
=
=5
2
%
XQ
—
Va)
S~—
S N N N N N N
Il

Lemma 4.2.6. Let F' and G be sentences and s,t be terms. Then the following holds
o rnk(F;) < rnk(F) for all Fy € CS(F),

o k(t) Ck(F;) Ck(F)Uk(t) for allt € T and Fy € CS(F),

rmk(F) =w- |F|+n for somen < w,

rnk(s) = w - |s| +m for some m < w,

|F| < |G| = rnk(F) < rnk(G),
o |s| < [|t|] = rnk(s) < rnk(¢).

Proof. See [Buc93], Lemma 1.9 O

Notation. Let F be a reflection configuration, then we define
dom(F)=™ := {7 € dom(F) | rdh(F(7)) > m}.

Definition 4.2.7. Let R = (Mﬁfl—Prl, ...) be a finite sequence of M-P-expressions.
Then we define

R'/ = ((Ei(Rl))T1 ) R'<7“1)'

Definition 4.2.8. Let H be a hull-set and let I'; A be finite sets of £Lpg(=)-sentences.
Then we define ‘H I% T" by recursion on « via

{a} UK() CH

and the following inductive clauses:
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H I% A Fy, for some to €T

(V) = oy < «
HiG ANV (Fier
N 7WH7§J}fMMMET o < a
H |T Aa /\(Ft)tET
(Cut) HIS-AF HES-A-F ap < a
HI%A rmk(F) < p
g
(ILps5(m)-Ref) idratotd oo
H |% A, HZW(Z ': F) € m+2(77)
if there is a reflection instance (m; P,,;...)
H 2 A F <
(TMI@I(D‘)_Hmw%(W)'Ref) P |T£ Fe Hao ( C;
HIz A, 327 (TMM(J)(Z) ANz EF) m+2\T
for all 7 < 7 if there is a reflection instance (; I\/I€M(Z7)—Pm; o)
oy < o
HE-AF F € Iyo(m)
(Mg o -Tg 5 (7)-Ref) P ¢e o)

HIEA, 37 ( M (2)AzEF
583 (M@ A B e domzt,

for all 7 < 7, K and k if there is a refl. inst. (;...), such that M]ECH—P;C < (R )i

Notation. To the last but two and the last but one rule we refer to as “main reflection
rules of 7”7, while the last rule we call a “subsidiary reflection rule of 7”.

Notation. Let H and H’ be hull-sets. By H C H’ we denote that H C H’ and that
for any ordinal function f, H’ is closed under f, if H is closed under f.

Lemma 4.2.9 (Derived rules of semi-formal derivations on hull-sets of T(Z)).

(Hull) HAT&ACH = HIST,
(Str) HIFTE&HCH &a<d &p<p&TClY = H'[a',F’]}%F’,
(V-Ex) HIZT,FVG = HIFT,FG,
(A-Ex) HIFT,FAG = HIFT,F&HIFT,G,
(Up-Per) HIF T, 30" F(z) & F(Ly) € A(n) & 7 < p,v & v € SC
= M P22 3R,
(V-Inv) Hig T, N(Foer = VteT H[ 5T, F).

46



Let F be a 11,41 (m)-sentence, then:

(E-V) T MG D, F(F](h), ., Flyltm) = Hr] 2 I, F,
(Ev-lnv)  HIZTF = VEeT H[i] |5 T, F(F(t), ..., Fp(tm)),

(E-Up-Per) HIET,~F&n=0&r<p&ryesSC = H P2 p g,

Proof. (Hull) holds since H[A] = H.

We show (Up-Per) by induction on . If 32" F(z) is not the principal formula of the
last inference the claim follows by use of the induction hypothesis and the last inference.
If 32™ F(z) is the principal formula of the last inference and the last inference is (V)
then the claim follows by a (V)-inference, since the premise of this inference is also
contained in CS(3z7F(z)). Now suppose the last inference is a (Ref)-inference with
principal formula 3z F(z). Then we have rnk(3z™ F(x)) = 7 since 7 € SC. For an

Wmk(G)
arbitrary sentence G it follows by induction on rnk(G) that H[G] 0 2 G, -G.
Moreover it follows by induction on « that H l% V27 G(z) implies H[r] }5- V2™ G (x)
for all m < «. Thereby we obtain H[7] I'YT.Z A2VF (x), ~(Fz™ F(z)). Moreover we have

H l% I, 32" F(x). Thus the claim follows by a cut, since © < p.

The claim (E-V) follows by induction on the complexity of F by use of (V-Ex) and
(A-Ex).

All remaining propositions follow by induction on . O

4.3. Embedding of I1,-Ref

In this section we show that the axioms of I,-Ref and logically valid sentences are
derivable on arbitrary hull-sets.

To avoid bothering with derivation lengths we follow the concept of [Buc93] and
introduce an intermediate proof calculus which operates on multisets.? Derivations of
these intermediate calculus are finally easily transformable into derivations on hull-sets
by use of the formula rank, extended to finite sets of formulae, as derivation lengths.

Definition 4.3.1 (Axioms of M,-Ref). The language of N,,-Ref is the language L¢ of
set theory (with identity).

2A finite multiset is the same as a finite family, i.e. a finite set, whose members can have more than
one (but at most finitely many) occurrences in this.
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The axioms of N,,-Ref comprise the following sentences and schemes:

(Ext) VeVyVz (z =y — (z €2 = y € 2))

(Found) VZ(Vx (Vy€xz F(y, Z) — F(z, 2)) — VaF(z, 2))

(Nullset) 3JzVy(y ¢ x)

(Pair) VeVy3Iz(x € z ANy € z)

(Union) VzIzVyeaxVucy(u € 2)

(Ag-Sep) VZVw3Iy (Vzey(z € wA F(z,2)) AVzew(F(z,Z) =z €y)) (F € A)
(Refl) VZ(F(Z) = Jz(z E F(2)) (Fell,, n<w)

Remark. The two omitted axioms of KPw
(Inf) Jz (Jy (y € ) AVyexTzex (y € 2))
(Ag-Col)  VZVw (VzewIy F(z,y,Z) = Jw VecwIycw F(z,y,7)) (F € Ao)

are easily derivable by use of (Nullset), (Pair), (Union) and (Refl). For details confer
[Poh09], section 11.8. Therefore KPw is a subtheory of IM,-Ref.

Definition 4.3.2 (The calculus RS*). We define RS* as the collection of all deriva-
tions of finite multisets of Lrg(z)-sentences generated by the following two inference
rules

. AF.,...F
\Y ST T if g, ..ty € T and k(... 1) C k(A, F *
) AV (F)eer nh and k(ty ) < k( \/( t)teT)
(N AF, forallteT

A7 /\(Ft)tET

where for S C ON we set S* :=SU{{+1|&€ STU{w}.
We denote by Ii A that there is an RS*-derivation of A.

Notation. In the following we write s C ¢ for the sentence Vz € s (x € t).

Lemma 4.3.3. Let s,t be terms and F a sentence. Then

O F-F

0 s¢s

©sCs

O [ s¢t, sét for s € Ty
0 s#£tt=s

(6] IiséLT andliseL,., if |s| <7
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(7] Ii Tran(L,,) for all o

® 341, -F(3), F(i)

Proof. See [Buc93], Lemma 2.4, Lemma 2.5. and Lemma 2.7 plus the Corollary to
2.7. O

Theorem 4.3.4 ((Ext), (Nullset), (Pair), (Union), (Ag-Sep)). For every limit ordinal
A we have

Ii (Ext)* A (Nullset)* A (Pair)* A (Union)* A (Ag-Sep)*.

Proof. We obtain (Nullset) as follows:
Ii s ¢ Ly for all s € Ty and thus Ii Vy* (y ¢ Lo) and hence Il e vy (y ¢ x).
For the remaining statements consult the proof of [Buc93], Theorem 2.9. O

Definition 4.3.5. For a multiset A = {Fy,..., F,} let [|A] := w™ ) @, @umkFn),
For a set I' of sentences we use the following abbreviation

”— I & H[] }@ I' for every hull-set H.

Lemma 4.3.6 (Embedding of RS*). It holds

Fr = |r
Proof. See [Buc93|, Lemma 3.10. O

Lemma 4.3.7 (Found). Let F(Lg) be a sentence. Then it holds for every «
”— vz (Vyex F(y) — F(z)) = Vo F(x).
Proof. See [Rat94b], Lemma 8.5. or Lemma 8.2.2 of the second part of this thesis. [

Lemma 4.3.8 (Refl). Let F € II,(E). Then

- F — 32 £ F).

Proof. Choose m < w, such that F € II,,,12(Z). By Lemma 4.3.3® we have I1 -F, F.
By use of the RS*-embedding and an application of (II,,2(Z)-Ref) plus a (V)-inference
we obtain the claim. O

Lemma 4.3.9 (Embedding of Logic). Let A € Lim. If T'(@) is a logically valid set of
Ly z)-formulae, then there is an m € w such that

w-A+m

HEN F——T*(5) forall 5€T,.

w

Proof. See [Buc93|, Lemma 3.11. O
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Since Le¢ is a language with identity, but in Lrgz) we regard identity as defined,
we also have to secure that the identity axioms

(Iden) Vz(x = x),
VevVy(z =y —y =),
VaVyVz ((x=yAy=2) >z =2z),
Ve VyVuWo (z =y Au=v— (z €u—y€v)),

are derivable on hull-sets.
Lemma 4.3.10. It holds [~ A\(Iden).
Proof. Follows directly from Lemma 4.3.3®,® and ®. O

Theorem 4.3.11 (Embedding of MN,,-Ref). Let F' be a theorem of N,,-Ref. Then there
is an m € w such that

E4+m =

Proof. Follows by the Embedding of Logic and the above given derivations of the
axioms of ,-Ref plus the derivability of (Iden) via some cuts. O
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5. Cut and Reflection Elimination
Theorems

The aim of this chapter is to transform a given derivation on a hull-set, in which
reflection rules may occur, into a derivation, in which no reflection rules occur by use
of the scheme of stationary collapsing.

5.1. Predicative Cut Elimination
Lemma 5.1.1. Tt holds

o o(a, B) is closed under + and @,

e bo<B = ¢lo,fo) <pla,B),

e ag<a = ¢l (pla,B)) = ela, B).

Proof. Folklore. O

Lemma 5.1.2 (Reduction Lemma). Let F = \/(F})ier and p := rnk(F') not be regu-
lar. Then
HIEA-F & HIp T F = HFSEAT

Proof. Use induction on §. For details see [Buc93]|, Lemma 3.14. O

Theorem 5.1.3 (Predicative Cut Elimination). Let H be closed under ¢ and [p,p +
w*)NReg =0 plus « € H. Then

B e(a,p)
Hoow D = H— T

Proof. By main induction on a and subsidiary induction on 8. For details see [Buc93],
Theorem 3.16. O

Corollary 5.1.4. 7—[%1" & p ¢ Reg = H}%F.

51



5.2. Reflection Elimination

Theorem 5.2.1 (Existence of Reflection Rules). Let X be a reflection instance with
reflection configuration F and rdh(X) =n > 0. Let k € M§. Then

Q V7 <k Yoo €[o(X),a)cw) ViTE dom(]F)é?n) ((- M];‘(n)—HnJrg(n)—Ref) exists).

@ V7 <k V(e (k) VK Vije dom(K)c () ((TMHi(ﬁ) 112 (i(X))-Ref) is a subsidiary
reflection rule of i(X) = (TMﬂi(ﬁ)-Hk+2(f$)-Ref) exists).

Proof. ® Let us assume, that o > o(X), as otherwise we have nothing to show. As

k is at least II}-indescribable there must be a reflection instance Y and a 3, so that

K= \I'ﬁ By Theorem 3.2.4 it follows ﬁ@a < R,. If (Ewg)n = Mz®-P, = (R.), it
follows by Definition 4.2.8 that (M, ]F( )—H,L+2( k)-Ref) is a (subsidiary) reflection rule

of k. If (R\pg) £ (R..), then it must hold R, = (Mg%P,,...), for some o < &. Thus
for ag € [0(X),@)c () and 7 € dom(F)¢ C() Definition 2. 2 4 provides the existence of
the reflection instance (k; I\/IF(q) P,;...) and by Definition 4.2.8 (, MO‘( )—Hn+2( K)-Ref)
is a (main) reflection rule of .

@ Let (» Mﬂg(n) -1 2(i(X))-Ref) be a subsidiary reflection rule of i(X). Then F # A
and a run through the cases of Definition 2.2.4 yields R i(x) = R\pa. Therefore the

claim follows analogously to proposition @, since Rq;a < R,. O
Lemma 5.2.2. Let § < a and kK < 7. Then
p€Cla,k)NC(B,7) and Cla, k)N =K = peC(B,K).

Proof. Taking into account Definition 2.3.6 and Definition 2.3.7 we sloppily refer to
C(v,v) as U,<, C™(7,v), where CO(y,v) ;== v U{0,E} and C"! := {f;(@)]|1 < i <
4 & a; € C™(,v)}, not specifying the arities of the f;. However f; is intended to be
+, fo = ¢, f3 the cardinal successor function and f4 is the partial function ¥, where
all f; come with the provisos given in the actual definition of C(~,v), i.e. every f; is
injective (for f4 this follows by Theorem 2.3.15).

We show the claim by induction on stg »(p), where st . (p) ;= min(n|p € C"(v,v)).

If stg«(p) = 0 it holds p € k U{0,Z} since C(a, k) Nw = k. Thus p € C(B, k).

Let stg »(p) =n + 1. Then

p= filaa, ..., apy) for some aq,...,an € C™ (8, 7).
Since £ < 7 we cannot have p € C%(a, k). Thus sty .(p) > 0 and therefore
p= filad, ... ap,), for some o, ..., a., € C(a, k).

Since the fr, 1 < k < 4, have pairwise disjoint ranges on normal form conditions we
must have f; = f;. Due to the injectivity of the f it follows m = m/ and ay, = «, for
all 1 < k < m. Considering the induction hypothesis we have ay ..., a,, € C(8, k).
Thus p = fi(a1,...,am) € C(B, k). O
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Notation. Henceforth we use the following notation

Cy[A] = Cly+1,0)[4],
093?% = {KEW%‘O’<K}.

Remark. It holds

Cy[A] = C(y+1,0)[A] = | C"(v + 1,k(A)),

n<w
where C"(a, k(A)) is defined analogously to C"(«, 7), i.e. we set

C%a,k(A) = k(A)U{0,E}, and
C"(a, k(A))U
{y+wi|v,d € C"(a,k(A)) /\'y;oﬂl +. 4w Ay, > 0HU

O™ o k(A)) = 4 {p(&,m [ €m € C (@ k(AU
{7 | K € C™"(a,k(A)) N Card} U
{0y X,y € C"(a, k(A)) Ay < a AT is well-defined}.

Lemma 5.2.3. Let X = F(¥) = (m;...;9) be a reflection instance and v, X, pp € C,[A],
where w,§ < v+ 1 and 0 := |A] < m < p € Card. Let & := v @ w*® . Then the
following hold:

O If oy, € Cy[A] and ag < « then ) # SME C c,mtg‘go. Moreover for every
K € MG and every Y := F(i7) with ij € dom(F) N C,[A] the ordinals Y$®* and
W%OEB” are well-defined and it holds \I/§“®” < \Ilg@" € CamprlA, K]

@® It holds m € Cy[A]. Moreover for k € Card and p € C,[A], such that 7 < k <
p < kT we have k, kT € C,[A].

® Letm < p € RegNCy[A]. Then there exists a reflection instance Z with i(Z) = p,
o(Z) <v+1 and Z € C, [ A].

Proof. ® Since v,a, 1 € Cy[A] C C(y+ 1,0 +1) and 0 < m we have & ® 0 € C(m)
and thereby k, := \I'%@” is well-defined. This implies 0 € C(& ® 0, k,) N T = K, and
hence 0 < k,. Moreover we have & < & ® o and v,a,pp € C(y+ 1,0 +1) C C(&, ko)
and thereby k, € Ui)ﬁ%.

Now let & € ,9M%. Then it holds dp < & and v, a9, € C(y + 1,0 4 1) C C(do, &),
hence dy € C(x) and thus & € ,IMG°.

Obviously we have & ® & € C(), thus W§®* is well-defined and WE®* € Cag[A, k).

Now let Y := F(7}) for some 7 € dom(F) NC,[A]. As shown above for X it follows
that ky = \Ilggﬂ@"€ is well-defined. If 77 = € it holds Y = X and it follows by Theorem
2.3.14 that ky < kx = \IJ§€B“. If 77 # € let us assume Ky £ Kkx. Since dg Dk # & D Kk
this implies by Theorem 2.3.14 kx < ky. As we have X, dy @ k € C(kx) there must
be a component 7; of 77, such that n; ¢ C(kx). By proviso we have 77 € C,[A] C
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C(y+1,04+1) C C(& &k, kx) and thereby n; < & ® k. Moreover we have n; € C(ky)
by definition and C(& ® k, kx) N T = kx, i.e. C(& ® Kk, kx) N Ky = kx. However, this
implies the contradiction n; € C(kx) by means of Lemma 5.2.2. Therefore we must
have ky < kx.

@ If 7 = Z or 7 is a successor cardinal the claim follows since parX € C,[Al.
Otherwise we have X = (\Ilg,_l; .3V 58). Then it holds 6 —1 <y + 1 and {§} U
parV C parX. Thus 7 € C,[A].

By definition we have C,[A] = [U,c,, C" (7 + 1,k(A)). We show by induction on
n, if p € C"(y + 1,k(A)) then x,xT € C(y + 1,k(A)). The interesting case is that
K < p=US < rT. Then we have £ < and par W C C"(vy + 1,k(A)) as p ¢ k(A).
Since C(&, p) Ni(W) = p and C(&, p) is closed under the cardinal successor function we
must have i(W) = k% and hence s, sT € C(v,k(A)).

®@If p = Z or p = vT for some v € CardNZ the claim is trivial. Otherwise we
have py = \Ilgl for some ¢ and a reflection instance V. By Lemma 2.3.16 it follows
¢, Vel A CC(y+1,0+1). Thus ¢ <. Assuming V = (i(V); Py;...) we obtain
that an element x € Z)JT@ only has to satisfy C((,x) Ni(V) = k and V,( € C(r).
However, since p is regular, these elements form a club in g by Lemma 2.3.5®@ in
contradiction to the fact that p is the least element of zm@. So V # (i(V); Po;...) and
the claim follows from Corollary 2.3.3.

If the arity of G is zero, we can choose Z = G € C,[A]. If dom(G) = [o(M), §) ¢, ¥
dom(M)c () with G(C', 7) = (1; Miy ) -Pms ...), we have M € Prenfg(G), i.e. it exists
a 77 € dom(M)¢(,) such that M(77) € Prinst(G) = Prinst(V). Thus we have Z :=
G(o(M), ) € C,[A]. O

Definition 5.2.4. For i € Card we define

) {u +1 if 4 € Reg
fi= .
o otherwise.

Theorem 5.2.5 (Reflection Elimination). Let X = (m;...;9) be a reflection instance

with rdh(X) =m — 1 and v, X, p € C,[A], where w,6 <y+1ando :=|A| <1 <pe€
Card. Let T C X,,11(7) and & :== v ® w*®*. Then

Poon .
CIAIET = CionlAH] }— L5 for all k € LM,

Proof. We proceed by main induction on p and subsidiary induction on «.
Case 1: The last inference is (V) with principal formula F' 2 \/(F});er € T'. Thus

C, AT, R,

for some ay < a and some ty € T. By use of the subsidiary induction hypothesis we
obtain

g0 .
CopmrlA, K| }7 I‘(”’“),Ft(:’ﬁ) for all k € ,MMG°. (5.1)
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By Lemma 5.2.3® we have ,9§ C M° and UGOP* < WEP* € Cap [ A, k]. Moreover
it holds F(™%) = \/(F\™)),crnr. and |to| € C,[A] N7 C C(y+ Lo+ 1)Nx C

C(&, k) Nm =k for k € Mg. Thus we obtain from (5.1) the desired result by means
of (Str) and (V).

Case 2: The last inference is (A) with principal formula F 2 A(F})ter € . Then
for all £ € T, there exists an a; < « such that

Co[A ) [5-T, Fy. (5.2)

Since F' € T we have F; € ¥,,,41(m) and |¢t| < 7 for all t € T. Thus we may apply the
subsidiary induction hypothesis to (5.2) and obtain for all t € T

paOA N
Ca, oA 1, N }— TN FmY for all A e oINS (5.3)

where o, 1= | A, t|. )
Let k € o9M%. Then we have k € , My for all t € TN 7,. Thus Lemma 5.2.3®
(with A replaced by A, t) provides k € atimg? and \I/gteaﬁ < \Il?g@“. Therefore the claim

follows from (5.3) by use of (Str) and a (A)-inference, since Fmor) /\(Ft(ﬁ’ﬁ'))teTmTﬁ
and obviously W$%" € Cagy|A, K.
Case 3: The last inference is (Cut) Then for some oy < « it holds

C AT, (O)F, (5-4)

where rnk(F') < fi.
Subcase 3.1, rnk(F') < w: Then we have (=)F € X,,41(7). Thus we are allowed to
apply the subsidiary induction hypothesis to (5.4) and obtain

g go®r .
CavernlA, K] }— LR (L) FR) - for all k € MG,

By similar considerations as in the first case it follows that rnk(F(™%)) = mk(F) <
k< WSO for k € ,ME". Thus the claim follows by a (Cut) and (Str) taking into
account Lemma 5.2.3 ®.

Subcase 8.2, m < rnk(F) < p: If rnk(F) < p then it holds # < pg := sup{x €
Card |k < mk(F)} < mk(F) < pf < p and by Lemma 5.2.3@ it follows
(1d;Pose;€,0) € Cy[A]l. If rnk(F) = p we must have y € Reg and by Lemma
5.2.3 @ it follows the existence of a reflection instance Z € C,[A] with i(Z) = p
and o(Z) < v+ 1. Thus in all cases there is a reflection instance Y € C,[A] with
7 < rnk(F) < pg :=1i(Y) < pand o(Y) <+ 1. In the following we choose Y = X if
= u.

W.lo.g. F is an elementary 3q(pu;)-sentence and —F = Vz#1G(z) an elementary
IT; (pq )-sentence. Therefore applying the subsidiary induction hypothesis to (5.4) we
obtain

Tlo®A A
Capar[ A, N] }Y— D) Fled) - for all A € 950 (5.5)
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and by use of (5.4) and (V-Inv) plus the subsidiary induction hypothesis we obtain for
allt € T,

poo®A _
Cavar| A, t, Al }— LN Gty for all A € ,, M0, (5.6)

where o, := | A, t|. Let A € ,95°. Then it follows \ € , MS° for all t € Ty. Thus by
an application of (A) to (5.6) we obtain

T L) ) d
Catnor[A DD S0 for all A € ,mE0, (5.7)

Since k(F(*1:2) € C[AN Ny C Ody @ A\, UL 0y = wEoBr if X € M9 it
follows rnk(F#1:N) < UEP* Thus a (Cut) applied to (5.5) and(5.7) yields

PooBA+H1

Cavart1[A, A —— TN for all A € , M. (5.8)

If Y = X Lemma 5.2.3 @ provides that the claim follows from (5.8) by use of (Str).

If Y # X it follows 7 < gy < p. Let Ao 1= U9°%7 and 7 := \P{'}AOGB/\OH. Then it
follows as shown in the proof of Lemma 5.2.3 @ \g € Uamgo and m < n < p; since
1€ C(y+1,04+1) C C(do Do, \o) N1 = Ag. Hence T(™2) =T and (5.8) plus (Hull)
provides

Cdo@AoJrl[A] ll I. (59)

If n € Card we apply the main induction hypothesis to (5.9) and obtain

wyoe
CoanlA, K] }— ™% for all k € ,MY, (5.10)

where v 1= (dg @\ ® 1) Bw"®. Since ag B, \o+1,n®7 < ad it follows v < & and
since v, ag, 1, Y € C(y+1,0+41) it follows successively Ao, n,v,v®k € C(v Sk, \Ilg'g@“)
for k € ;MY and thus P4P* < WP~ for all k € ,MY by Theorem 2.3.14. In the same
vein it follows v € C(v, k) for every k € ,MG and hence x € ,IMY implies & € , M.
Thereby the claim follows from (5.10) by use of (Str).

If 7 < pp < pand 1 ¢ Card then it holds m < g < 1 < g = p1. Through the use
of predicative cut elimination, (5.9) yields

»(n,n)
Caoaro+t Al T (5.11)

Since p1 € Cy[A] implies p € C,[A] we may apply the main induction to (5.11) and
obtain

v _
CoanlA, K] }Xi r™®)  for all k € ,M%,
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where 7 := (dg @ Ao @ 1) @ w0 By analogue considerations as in the case
1 € Card the claim follows by (Str).

Case 4, the last inference is by a main reflexion rule of m:

Subcase 4.1, it holds X = A(m) (i.e. m = Z) and the last inference is (I, 42(7)-Ref)
with principal formula 32" (z = F): Let n’ := max(m,n) and Y := A(n/).T Then we
have

C AT, F

for some ap < av and F' € II,,syo(m). Thus by an application of (E-V-Inv) we obtain for
all t € T,

Co AT =T, F(F (1), .., FL(t,)). (5.12)

Since Y € C,[A] and T, F(F{(t1), ..., F.(t;)) € L41(n) for all £ € T, we may apply
the subsidiary induction hypothesis and obtain for all £ € 7

S| wge®r
Coven[A, T A] }— N pEN(EEN ) TN (1)
for all A € , M,

(5.13)

where o7 1= | A, ﬂ Let A € gzmgﬂ. Then we have \ € JTDJT;A” for all £ € T5. Thus we
obtain from (5.13) by means of (E-V) for some | < w

7O 4 A by 7
Capar[ A, A] T PN for all o < A € MO, (5.14)

In the sequel, we fix a x thi)ﬁg

It holds o < \Ilg‘{f)@” € MO, Since v, a0, p,0,Y € C(6, k) and dp ® o < & it follows
U097 ¢ O(&, k) N = k. Therefore we have ;IS Nk # 0.

For )\ € gzmg’fﬂ N k we have ”— Ly # 0 A Tran(Ly) A /\f=1 a; € Ly, where ai,...,ap
denote the terms of F' less than m. Thus we obtain from (5.14) by means of (A) and

(V)
\Ilgoes)‘-&-w -
Cavar[ A, N, K] }7 \/TN, 325z = F)  forall A€ ;MG Nk (5.15)
In the following let G := 32"(z = F). Now let s € 7,;. By Lemma 4.3.3® we get

=Ly # s, \ -0, \/T(m), (5.16)
Applying (Cut) to (5.15) and (5.16) we obtain

w0l .
Cdo@K[A’ )‘7 R, S] L)\ 7é S, \/F(Tr7s), G fOI' all )\ e ngO M |S| + 1.

THere we could also define n’ := max{m, n} + 1. Then we could directly apply the subsidiary induc-
tion hypothesis to the derivation of I, F'. However by choosing n/ := max{m,n} the treatment of
subcase 4.1 works also fine for subcase 4.2.
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Since =, M (s) = A\(L, # 5) e o ns|+1 Ve obtain by a (A)- and a (V)-inference
o ¥ty

wo®l oy N ?
CapanrlAs K, 8] }Yi Mg (s)Vs=0V-Tran(s) vV \/ b ¢ s, \/F(”’S), G,
) i=1

for s € 7., where by, ...,b,; denotes the terms of I' less than x. By means of (V) and
(N), we arrive at

ag®r R
Cavanl A, K] }L Va" (=g My (z) vz = \ =T, G. (5.17)

Since rdh(X) = m — 1 > 0 (note that dom(A) = (0,w)), k(') C C,[A] and s € ;MG
Theorem 5.2.1 provides the existence of the reflection rule (, MG-TI,,, 1 (k)-Ref). As
A-T™%) is a II,,,1(x) formula we obtain by Lemma 4.3.3 ®, an application of this
rule and (Str)

adgBr
Camn A, K] }L Jot (Mo (x) Az = [\ D)), \/ TR (5.18)

Therefore we obtain the desired derivation by a (Cut) applied to (5.17) and (5.18) plus
(V-Ex) and (Str).

Subcase 4.2, it holds X = (m; P R;.. ) # A(m) and the last inference is by the
main reflection rule (I1,,2(7)-Ref): Then the claim follows by simplifying (i.e. setting
Y := X) the considerations of the previous case. If m = 0 then \/T(™» € $;(\) and
the claim follows directly from (5.15), with A := W5°®? and by use of (E-Up-Per) plus
(Hull) and (Str).

Subcase 4.3, it holds X = F(¢,7) = (m; Mgﬂ(g)—Pm; ...) and the last inference is by
a main reflection rule (TMRC/H(ﬁ) I, 42(m)-Ref) of m with (¢, 7) € dom(F) and principal
formula 32 (TMI\C,HW)(Z) Az = F): Let Y :=F(¢, 7). Then we have

C,lAl 5T, F

for some ap < @ and F' € II,,,12(m). Since Y € C,[A] we may proceed analogously to
case 4.1 and obtain by use of (E-V-Inv), the subsidiary induction hypothesis and (E-V)
for some [ < w

w0t A A o
Capar[A, Al r™) PN for all X € , M50, (5.19)

In the sequel, we fix a k € ,,img‘g. As shown in subcase 4.1 it follows Ji)ﬁgfo Nk # 0.
Since by Definition 2.2.4 it holds 9g° C E)thﬂ(ﬁ) and moreover 7 € Cy[A] N7 C
Cly+1,0+1)N7 C Cdg, \) N = A for A € ,MMS° we have

p
[ - My (Lx) A Ly # O A Tran(Ly) A J\ a; € Ly for all A € ,9M°,
=1
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where a1, ..., a, denotes the terms of F' less than k. Therefore we obtain from (5.19)
by means of (A) and (V)

\I/doea)‘-&-w 9
Camn[A, N, K] }7 \VANSERR=FY (TMI@I(ﬁ)(z)Az = F) forall A € ,M°Nk. (5.20)

If m = 0, we choose A = ¥3°P?. Since \/T(™ € ¥;(\) the claim follows from
(5.20) by use of (E-Up-Per) plus (Hull) and (Str).
If m>0let G:=3z" (TMI\C,H(ﬁ)(z) Az = F). Analogously to subcase 4.1 we obtain

ag®r N
Camn A, K] }W— Va© (= M (z) V2 j£ [\ -T7), G. (5.21)

Since rdh(X) =m —12>0and 7 <k € MG Theorem 5.2.1 provides the existence
of the reflection rule (, M{°-T1,, 11 (k)-Ref). Since A\ =T'(™*) € TI,,, . (k) we obtain by
use of Lemma 4.3.3® and this reflection rule

ao®k .
Comn A, K] }L 3o (MG (z) A k= \ ~DD),\/ 1), (5.22)

Since (¢,7) € dom(F) N C,[A] Lemma 5.2.3® provides U5°®" < WE®* and a (Cut)
applied to (5.21) and (5.22) yields the desired derivation.

Case 5, the last inference is by a subsidiary reflection rule of w of the form
(TMHg(ﬁ)-Hk+2(7T)'Ref), i.e. MHECH-P;C =< Rl and principal formula 327 (TM]é(ﬁ)(z) A
z = F): We have

C,lAl 5T, F

for some o < v, ¢ € Cy[A]c(a), 7T € Cy[A] N dom(K)é’fﬂ) and I', F' € II,;,42(m), since
k < m. Proceeding as in subcase 4.1, i.e. applying (E—V—Inv), the subsidiary induction
hypothesis, (E-V) and taking into account 9y C ,IMF° we obtain

grodn )
Cawn A, K] }X— r™e) pms) - for all k € 9. (5.23)

Let 7= (n1,...,7mn). Since we have V7 ({,7; <) by Lemma 2.3.2, ¢,7 € C(n) and
(,7eC(y+1,0+1) CC(y+1,k) plus C(y+1,k) Nm = & it follows by Lemma 5.2.2
¢,77 € C(k) for any k € ,9ME. Moreover we have 7 € C,[A]N7T C C(y+1,0+1)N7 C
C(é&, k)N = £ for k € ,MF. Thus the reflection rule (TM]]i(ﬁ)_Hk+2 (k)-Ref) exists by
means of Theorem 5.2.1. Applying this rule to (5.23) and taking into account Lemma
5.2.3 @ plus (Str) we obtain the desired derivation.

Case 6, the last inference is a (TMé(ﬁ)-Hngg(wo)-Ref) inference with T < mp < w
and principal formula 327 (TMé(ﬁ)(Z) Az | F): Thus we have

C[AI[F-T,F (5.24)
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for some oy < «. Since g < m we have I',} F' € ¥,,11(w). Thus we may apply the
subsidiary induction hypothesis to (5.24) and obtain

godn A
Cawn A, K] }— ™) e for all k € ,OMG0. (5.25)

Since mp € C,[A] N7 C C(y+ 1,0 +1) N7 C C(dp,k) N7 = Kk we have F(™*) = F
if K € , M. Thus by means of (TMé(ﬁ)—Hg+2(7ro)—Ref) and (Str) plus taking into
account ,9MG C , ML the claim follows from (5.25). O

Theorem 5.2.6. In the following let ag :=1 and 41 = zan

The property of being an admissible set above w can be expressed by a L(€)-Ag-
formula Ad(z). For definiteness let Ad(x) be the formula given in [RAT4]. If F is a
Y1-sentence and

M,,-Ref - Va(Ad(z) — F*),

then there is a k < w such that

\Pake;\pgk ap
X AV
Cay, F¥x

ck
where X = (w¥;€;¢;€;0). Thus at Lye=+1 all ETI -sentences of T,-Ref are true, i.e.
X
€=
||_|U_,-Ref‘2lﬁk < \IIX +1

Proof. By the embedding theorem there exists an m such that

Co wi: Vo= (Ad(z) — F*).

By (V-Inv) and (V-Ex) we obtain

E4+m
w
Co

E+m

—Ad(Ly+), Fw+

Moreover we have!

w++

Co [ Ad(Ly+).

w++w

TNote that for af:=0and o) _ ;= WEtTen we have ap = W . Thus on € T(E)Neztr.

1 This is a bit cheated, but there is an abstract argument, which justifies that we do not bother about
an exact proof for this: Let £44(€) be the language £(€) augmented by an unary predicate symbol
Ad and let My,-Ref* be the extension by definitions of [M.,-Ref formalized in the language £ 44(€)
plus the axiom (Ad.1) Vz(Ad(z) — (Tran(z) Az | KP.)). Defining Ad(s) :2 (Lx = s)xer
and T := {k € Regn|s| + 1} we easily obtain a derivation of (Ad.1)% on hull-sets (for L, the
axiom (Ag-Coll) is derivable by use of (II2(k)-Ref)). Moreover it holds M.-Ref* F (Vz(Ad(z) —
F?)) « (Vo (Ad(z) — F%)), if F is a £1-sentence, and thus My-Ref - Vz(Ad(z) — F*) implies
My-Ref* - Va(Ad(z) — F®). Thereby we do not need a formal derivation of Ad(L,,+ ).
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Thus by (Cut) it follows

as +
Cozry F¥ -
Applying predicative cut elimination m — 1 times we obtain

A2

ol Fe.

Since 0,X,Z € C, = C(w,0), 0O,w < w < wt < = and F*" € ¥ (w") we can apply
Theorem 5.2.5 plus (Hull) and obtain

ocm+4€B\I/§"L+4
X

XU 44
F%

(5.26)

Semi-formal derivations with countable cut rank of Lrg(z)-sentences containing only

parameters less than w™ are correct, since T(Z)Nw™ is transitive. Thus, (5.26) implies

Lgom+s F F. O
X
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Review: Ordinal Analysis of
[1,,-Ref



Ordinal Analysis of [1,-Ref

The treatment of N,-Ref which we present in the first part of this thesis is highly
cumulative, i.e. by some minor modifications we obtain ordinal analyses of I1,,-Ref for
every n < w.

Although these modifications consist essentially of (trivial) cutbacks of Definition
2.2.4 we give them here, as they provide a good access point to an understanding of
our methods to the reader who is familiar with an ordinal analysis of KPw or [M3-Ref.

Beyond that we outline which amount of Structure and Fine Structure Theory is
needed in the different cases. Thereby it becomes clear that the increase of effort
needed for a treatment of the different cases can be visualized as follows:

My-Ref < My-Ref < My-Ref = Mx-Ref = ... = M,-Ref < M,-Ref.

Singular Collapsing: [1,-Ref

The proof-theoretic ordinal of Mo-Ref equals that of KPw and IDq, the theory of non-
iterated inductive definitions. It is the well-known Howard-Bachmann-Ordinal. The
theory ID; can be viewed as a paradigmatic example of an impredicative theory, since
the definition of a fix-point of an operator “from above” is one of the obvious examples
of an impredicative definition.

To make our approach work for a treatment of Mo-Ref we need the following:

Definition.

Cla,m) = U C"(a,m), where

n<w
C%a,m) == 7U{0,w"}, and
C™(a,m)U
{y+w|v,6€ C"(oz,7r)/\’yN:Fw'YI +. W Ay, > 60U

{e(&m&mn e C(a,m)}U
{PY X,y € C"(a, ™) Ay < e A U is well-defined}.

C’"’Ll(a,ﬁ) =

For w™ we define the following 0-ary reflection configuration and a reflection instance

(w5 Po; € €0).
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For a > 0 we define MM as the set consisting of all ordinals x < w* satisfying
1. Cla,k) Nwt =k,
2. X,a € C(k).

If Mg # 0 we denote the least element of ME by U§.

Disscusion. Of course this definition is oversized, as it would also be enough to just
define the minimal elements ¥§ for all & € C'(I'y,+41,0) of the hierarchies M.

The existence of ¥§ follows directly by means of Lemma 2.3.5. The proof of the
<-comparison Theorem 2.3.14 shrinks down to a part of subcase 3.3. Moreover the
Reflection Elimination Theorem 5.2.5 has just to be proved for m = 0 and p = w™.
Therefore we can suspend with the consideration X # Y in subcase 3.2 in the proof of
this Theorem and in case four of this proof we just have to consider the subcase 4.2
with m = 0. Moreover the cases five and six are not needed at all. Thus there is not

any need for a fine structure analysis of the collapsing hierarchies.

Before turning to the theory MN3-Ref we want to emphasize that it was (historically)
a big step from an ordinal-analysis of [Ns-Ref towards an ordinal-analysis of N3-Ref.
Thereby there are a lot of theories in strength between INo-Ref and [N3-Ref which have
been investigated proof-theoretically. Most prominent the theories KPI, KPi and KPM.

The first one axiomatizes a universe, which is a union of admissible sets and the
second one an admissible union of admissible sets. The fundamentals of a proof-
theoretic treatment of these theories goes back to the investigations of W. Pohlers
and W. Buchholz on theories of iterated-inductive-definability (see. e.g [WBS81]) and
the work of G. Jdger, mainly [Jae86]. For an excellent exposition of the historical
development of impredicative proof-theory consult [Fefl0]. Ordinal-analyses of these
theories can be found in [Buc93] and [Poh98]. The latter also gives a good survey of
proof-theoretic investigations of a hole zoo of theories about the strength of KPI and
KPi.

The theory KPM axiomatizes a recursive Mahlo-Universe. An ordinal-analysis of
this theory was at first obtained by M. Rathjen in [Rat91].

By simple extensions of the above given definition of the collapsing-hierarchies for
M5-Ref we obtain collapsing-hierarchies for the theories KPI, KPi and KPM. In technical
aspects the proof of the Reflection Elimination Theorem for this theories differs from
that of My-Ref in the point, that we have to consider the case Y # X in subcase 3.2.

Simultaneous Collapsing: [15-Ref
The theory lM3-Ref is the simplest theory whose proof-theoretic treatment actually re-
quires a definition of collapsing hierarchies instead of just defining collapsing functions.

An ordinal analysis of this theory was at first achieved by M. Rathjen in [Rat94b].
To make our approach work for a treatment of 3-Ref we define:
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Definition. Let = be a IIj-indescribable cardinal.

0.1.

0.2.

Cla,m) = U C"(a,m), where

m<w
C%a,m) == 7U{0,Z}, and
C"(a, m)U
{y+uwl|y,d € Cm(a,w)/\'yN:Fw“fl + . W Ay, > 60U
Cm o) = {p(En) €& n € C™(a,m)}U

{k*|Kk € C"™(a,7) N CardNE} U
{Td X,y € C™(a,m) Ay < a A BY is well-defined}.

We define the 0-ary reflection configuration and reflection instance
A= (5;Py; M§O—P0; €;0) — 1.
For technical convenience we also define Rz := (M£%-Py, M£0-Py).

For every cardinal w < k < = we define the O-ary reflection configuration and
reflection instance

(k75 Po; €€, 0) — 1.

For technical convenience we also define R+ := (M$9-Py).

. Let X = F be a 0-ary reflection configuration and a reflection instance of the

form
(75 Pons € 23 6)

Then we either have § = 0 = m and © = &1 for some cardinal &, or § = §y + 1,
mzlandw:\Ilézo.
For o > ¢ we define Mg as the set consisting of all ordinals x < 7 satisfying

1. Cla, k) N7 =k,

2. X, € C(r),

3.ifm=1: ke

4. iff m=1: k | Mg*-Py.
From now on we assume 9§ # () and by U§ we denote the least element of .
If m = 1 we also define ﬁpr = (M52-Py).

For the following 1.- subclauses we suppose m = 1. If m = 0 we do not equip
U§ with any reflection configurations or instances.

1.1. Let a = 4. Then we define the 0-ary reflection configuration and reflection
instance

(% Pos e Xsa+ 1) — 1.
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1.2. Let o > §. Then we define the reflection configuration G with dom(G) :=
[0, &) c(we) and reflection instances

G(Q) = (¥ ME-Poiga+1)  —2.

2. Let X :=T(&) be a reflection configuration of the form
(W5 My-Po; € Z; 6 + 1),

Then it holds Rys = (My;"-Po) for some v > & and M = A.

For o > § 4+ 1 we define 9§ as the set consisting of all ordinals « € zmgﬂ(ﬁ) nw)
satisfying

1. C(a,k) N WY = &k,
2. X,a € C(k).

From now on we assume 9§ # () and by V¢ we denote the least element of .
Moreover we define Ryg := (My6-Py).

2.1. Let £ = 0. Then we define the 0-ary reflection configuration and reflection
instance

(UE;Pos X+ 1) — 1.

2.2. Let € > 0. Then we define the reflection configuration G with dom(G) =
[0, §)C(q,§) and reflection instances

G(¢) :== (v Mgﬂ—Po; eX;a+1) — 2.

Disscusion. Here we need in essence the full Structure Theory presented in section
2.3.

With respect to the Fine Structure Theory we just have to secure that for every
k € T(E) NG there are reflection instances (k; Mi—PO; ...) for every £ € [0,a)c(w)-
This holds since if £ € MY there must be a reflection instance X and an ¢ such that
K= \Ilgg as C(a, ko) is closed under +, ¢ and -t for every k.

If X = A we must have ( > « as otherwise we would obtain the contradiction
% € C(a, k) NE = k. Therefore we have R, = (M5 -Pg) for some ¢ > a and thus the
desired reflection instances exists.

The case X = (m;Pp;...,) cannot occur, since k € MY and therefore x is II}-
indescribable. This would contradict the minimality of x € smgg.

If X = (m;M]-Pg;...) we have R, = (I\~/I§7—P0). If we would have o > ~ then &
would be 9] -II}-indescribable, but then there would be a ko < k with the defining
properties of k. Thereby we must have o < - and the desired reflection instances exist.
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Iterated Simultaneous Collapsing: [1,-Ref

An ordinal-analysis of I,-Ref cannot be obtained from an ordinal-analysis of lM3-Ref
by simple iteration-arguments as indicated in [Rat94b).

Even in a treatment of l4-Ref we are confronted with the handling of ordinals which
are Ils-reflecting on a set of II3-reflecting ordinals. Such “schizophrenic” ordinals, as C.
Duchhardt calls them, do not occur in an ordinal-analysis of M3-Ref. A proof-theoretic
management of such ordinals requires either a painstaking definition of the collapsing
hierarchies or already the Fine Structure Theory of Chapter 3. The first option was
chosen by C. Duchhardt in [Duc08] to obtain an ordinal analysis of IN4-Ref.

In the following we want to present some modifications of the first part of this thesis
which lead to an ordinal analysis of I1,,-Ref. It will transpire that the case n = 4 is
the generic case for a treatment of ,-Ref for arbitrary n < w.

Definition 5.2.7. Suppose that n > 1 and let = be a IT}-indescribable cardinal.

Cla,m) == U C"(a,m), where

m<w
C%a,m) == 7U{0,Z}, and
C™(a,m)U
{7+l |7, € C™(a,m) Ay = w" + ...+ W™ A > 5} U
O aum) = {p(&m) & € C™ (o, m)} U

{7 Kk € C™(a,m)N CardN=} U
{TY X,y € C"™(a, ™) Ay < e A U is well-defined}.

0.1. We define the 0-ary reflection configuration and reflection instance
A= (Z;Pp; (MF%Po_1, ... ,M%-Pg);6,0)  — 1.
For technical convenience we also define Rz = (M3%-P,,,...,M5-Pyg).

0.2. For every cardinal w < k < = we define the 0-ary reflection configuration and
reflection instance

(k5 Po;s €5 €;0) — 1.
For technical convenience we also define R, + := (M$2-Py).

1. Let X = F be a 0-ary reflection configuration and a reflection instance of the
form

(75 P R Z;6)

Then we either have § = 0 = m and © = k* for some cardinal &, or § = §y + 1
and 7 = Y. In any case we have R, = (M -P,,, R).
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For a > § we define Mg as the set consisting of all ordinals x < 7 satisfying
1. Cla, k) N = K,
2. X,a € C(r),
3. if m>0: k = R,
4. if m > 0: k = Mg®-Pp,_1.

From now on we assume Mg # () and by ¥§ we denote the least element of 9M§.
If m > 0 we also define R'\I,]g = (ME“—Pm_l,EQ,@_l).

For the following 1.- subclauses we suppose m = mg+1 > 0. If m = 0 we do not
equip U§ with any reflection configurations or instances.

1.1. Let o = 6§ and R,,, = (Mﬁfl—Pmo) with o(Ry) = &;. Due to the “~operator
we then have & = 0 and R; = A. Then we define the 0-ary reflection
configuration and reflection instance

(W%;Pmo;é<mn;x;a+l) — 1.

1.2, Let @« = ¢ and Emo = (M@fl—Pmo) with o(R;) < & . Then we define the
reflection configuration G with dom(G) := [0(R1), §1)c(we) X dom(R1)o(we)
and reflection instances

G(¢,7) = (¥x; M]%l(ﬁ)‘Pmo; é<mo;X§ a+1) - 2.

1.3. Let > 6. Then we define the reflection configuration G with dom(G) :=
[0, ) c(we) and reflection instances

G(C) = (UF;ME-Prg; Repngi Ko+ 1) — 2.
2. Let X := F(&,7) be a reflection configuration of the form?

(Wg; M, o-Pms B3 Z;6 4 1),

(
Then it holds Rys = (My"-Py, ) for some v > & and M € Prenfg(X).

For ao > § + 1 we define Mg as the set consisting of all ordinals k € S)ﬁg/ﬂ(g) N \II%
satisfying

1. Cla, k) N = &,

2. X, € C(r),

3. ifm>0: k =R,

4.1 m > 0: k = Mg®-Pp,_1.

?Note, that # can also be a vector of zero length, cf. 1.3
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From now on we assume 9§ # () and by U§ we denote the least element of M.

Moreover we define Rye := ((Rye  )>m; Mg®-Pr1, Rem1).
M) =

Let Rye = (M57-Pu..).

2.1. Let 01 = 0o(S1). Due to the “-operator we then have o7 = 0 and S; = A.
Then we define the 0-ary reflection configuration and reflection instance

(‘I’§'£; Psl; ((R"pﬁ )(sl,m]a 'vl];a‘melv Ra<m71)§ X;a+ 1) — 1.

M(7)

2.2. Let 01 > o(S1). Then we define the reflection configuration G, defined on
dom(G) := [0(S1), 1) c(we) x dom(S1)c(we) and reflection instances

G((7) = (V5 Mg, (P
((Z‘:L;\IJE )(Sl,m]yM§Q‘Pm—laé<m—1)§x;a+ 1) — 2.

M(7)

Disscusion

Here we need the full amount of Structure Theory and also the entire Chapter 3 of
Fine Structure Theory.

Thus a treatment of ,,-Ref differs only in the presence of the reflection configuration
A, as defined in clause 0.1 and 1 on page 17 from a treatment of I1,-Ref. Since this is

a reflection configuration with variable reflection degree the vector R’\px(erl) has to be

defined as (M3®-Py,, ..., M{%-Py) instead of just (M3*-P;,) (note that x € MG, . )
implies € MY, ;) for all k < m).f

Moreover to enable a Fine Structure Theory some non-canonical (with respect to a
straight forward extension of Definition 5.2.7) restrictions of domains (cf. subclauses
1.2, 2.2, 3.2 of Definition 2.2.4) have to be made.

These peculiarities of reflection configurations with variable reflection degrees be-
come even more awkward in a proof-theoretical treatment of the Theory Stability,
which is given in part three of this thesis.

TThe entry (M§O-Pn_1, ey M§O-Po) in clause 0.1 on page 68 is of pure technical nature to secure
that for all ¢ < rdh(X) the component (Ex); # ¢, but could also be defined as .
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Part Il.

The Provable Recursive
Functions of [l ,-Ref



6. Introduction

In this second part of the thesis we want to achieve a characterization of the provable
recursive functions of [M,-Ref. There are several ways to extract a classification of
the provable recursive functions of a theory T out of an ordinal-analysis of T'. For a
brief overview see [Rat99]. The most perspicuous one seems to be the method of A.
Weiermann, developed in [Wei96].

Roughly sketched this method runs as follows: Define a subrecursive hierarchy
(fo | € T) on the given ordinal notation system T by use of fundamental sequences
defined via a norm on the notation system (e.g. a canonical norm is given by letting
N(a) be the number of symbols occurring in the term for «) as established in [CBW94].
Define a semi-formal derivation calculus which acts on fragmented hull-sets instead of
hull-sets, where the fragmentation of a hull-set H[A] to the index + is defined as the
set of all a € H[A] with N(a) < f,(N(A)), in the following denoted by F,[A].

Then it holds for a derivation of a 31 (w)-sentence 32% F(2) on a fragmented hull-set
F+[A] that there exists an s < f,(N(A)) which satisfies F'. Therefore we are able to
dominate the provable recursive functions of a theory T' by functions of (f, |a € T) as
soon as we are able to transform the embedding and (im)-predicative-cut-elimination
theorems given by an ordinal-analysis of T to embedding and (im)-predicative-cut-
elimination theorems on fragmented hull-sets. Moreover this domination of the prov-
able recursive functions of T provides a characterization of these functions, if the
utilized domination-functions f, are itself provable recursive in T, i.e. if the index  is
less than the proof-theoretic ordinal of T

By this method we obtain straight forwardly a characterization of the provable
recursive functions of Peano Arithmetic, PA, from an ordinal-analysis of PA. We
obtain the embedding theorems and the predicative cut-elimination theorem of such
an ordinal-analysis also on fragmented hull-sets by choosing the fragmentation index
v (more or less) equal to the derivation lengths occurring in these theorems.

In case of KP,, (i.e. M2-Ref) we can nearly proceed in the same way, but instead of
choosing 7 equal to the derivation length o we have to set v &~ ¥(«). With this setting
it is possible to transform the impredicative-cut-elimination theorem on fragmented
hull-sets as follows:

(8] U (ay) .
FaMEST = Fae)ll }%R if T' C %4 (Q).

For details see e.g. [Ste06].
However, in case of theories whose ordinal-analysis requires an iterated impredicative
cut-elimination theorem the parameter v cannot be handled in such a trivial manner.

An iterated application of the collapsing function W to ~ fails, since in general it does
not hold f,(z) < fy(y)(x) for almost all z.
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In [BW99] and [Bla97] A. Weiermann and B. Blankertz refined the controlling con-
ditions of the parameter ~, by which means even a treatment of theories whose ordinal-
analyses require an iterated impredicative-cut-elimination theorem can be carried out.
The drawbacks of such a refined parameter v are a proper amount of (often trivial but
tedious) extra calculations.

In the following we want to introduce a slightly modificated version of the Weier-
mannian method, by which means it is possible to obtain a characterization of the
provable recursive functions from an ordinal analysis in an easy way. Even for theories
whose proof-theoretic handling requires an iterated cut-elimination theorem.

The main idea is to employ not only the subrecursive hierarchy (f, |« € T), but to
utilize also subrecursive hierarchies (f, | & € H) (uniformly) defined on proper subsets
H of T. Henceforth we want to indicate by a supscript H that fff is defined with
respect to the underlying set H. Such relativized defined subrecursive hierarchies are
“collapsible” in the following sense: Let Hi,H2 C T and suppose ¥ : Hy — Ho is
an order-preserving function (which behaves “good” with respect to the norm). Then
it holds f71(z) < fé;‘({y)(x) for almost all . Thereby we do not have to care about
the parameter v in the Reflection Elimination Theorem, but we can choose it equally
to the “complexity degree” (i.e. the parameter v in Theorem 5.2.5) of this theorem,
if there eventually is an order-preserving function which collapses v to the transitive
part of T. However, such a function can easily be given in this situation. E.g. suppose

5(7»0) C(v,0)N(y+1) and

we have to “collapse” . This function is equal to f,

AT O(,0) Ny +1 — C(y-2+1,0),
is a total, order-preserving function, if v, X € C(~,0). Therefore we have

f$(%0) (z) < f$§f§'2+1’0)(x) for almost all .
X

To be able to chose the fragmentation index ~ in the embedding theorems on frag-
mented hull-sets equal to the derivation length we also modify (compared to [BW99]
and [Bla97]) the definition of the norm [t|x of an Lpg(z)-term ¢. By this modification
we lose the property |t|n = |t| for terms ¢ of finite stage, but even in our setting there
exists for every u € L, a canonical term @, such that |4|x and || are related in a
primitive recursive manner.

Finally we also save the trouble of giving a derivation (on a fragmented hull-set) of
a formula “z = L,”. Instead we add a unary predicate symbol Ady by which means it
is possible to characterize L., as the amenable set, whose elements are all finite.
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7. Subrecursive Hierarchies

In this chapter we define the subrecursive hierarchies (relativized on subsets of T(Z))
by means of the methods developed in [CBW94]. I.e. we utilize a norm on T(E),
which is directly given by the inductive definition of T(Z), by which means we de-
fine fundamental sequences which give rise to a subrecursive hierarchy (cf. Definition
7.3.1).1

7.1. The Theory I1,-Ref*

Since there are no primitive recursive function symbols in L¢ a coding of a computation
of a partial recursive function can only be carried out in L, but not in w. So to be
able to talk about recursive functions in L¢ we either need an Le-formula ¢(u) which
defines LL,, or we assume that there is a unary predicate Ady, which applies exactly to
L.,. As the second approach is proof-theoretically a bit easier to handle, we follow this
way.

Definition 7.1.1. Let £44,(€) be the language £(€) augmented by a unary predicate
symbol Ady. Let M,-Ref* be the theory M,-Ref formalized in the language L£agq,(€)
and extended by the axioms and scheme:

(Adg.1) Vaz(Ado(x) — ((Tran)” A (Nullset)” A (Pair)” A (Union)”)),

(Ady.2) Vm(Ado(a:) — (Ao-Sep)z),

(Adg.3) Vax(Ado(x) — Vy3j(3f€jInej (Fun(f) ANatno(n) A f:y RN n))r),
where Fun(z), Natno(z) and f :y =L 0 are L(€)-Ag-formulae describing that = is a
function, z is a finite ordinal and f is a one-to-one function from y to n, respectively.
Corollary 7.1.2. The theory N,,-Ref™ is a conservative extension I, -Ref.

Henceforth we also assume that the language Lrg (=) is defined with respect to the
language L4, (€) instead of £(€). Thereby we obtain new primitive Lpg (=) formulae
Ady(s). For these we define:

Definition 7.1.3.
k(Ado(s)) = k(s),
Ady(s) = (L, = s),
rnk(Ado(s)) := max{rnk(L,),rnk(s)} + 5.

1We do not define these fundamental sequences explicitly, but employ them implicitly in the definition
of the subrecursive hierarchy.
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7.2. The Finite Content of Ordinals, Terms and
Sentences

Definition 7.2.1. N(«) := min{n € w|a € C"(I'z11,0)}.

Lemma 7.2.2. N is a well-defined norm on T(Z), i.e. it holds N : T(E) — w and
Vn<w (card{¢ | N(§) < n} < w). Moreover for all « it holds N(aw + 1) = N(«) + 1.

Convention. From now on we assume that par is defined as follows
parA(m) = {m},
par(kt;...;0) = {k,N(k) + 1},
par(¥9;Pp;...) = parZU{d, max{N(¢)|¢ € parZ} + 1},

par (09 Mg,ﬂ(g); ...) = parZU{&, 7,6, max{N(¢) |¢ € parZ} + 1}.

All propositions of the foregoing chapters also hold with this modificated definition
of par, since w is a subset of every hull-set and we just add finite parameters to the
usual par sets.

Definition 7.2.3 (The finite content of ordinals, terms and sentences).
laly = N(a),
|La|N 2-N(a),
{x € Lo | F(z,51,...,5.)" }x := max{2-N(a)+ 1, |F(Lo)|x + 2},
|s € t|n = max{|s|n + 6, [t|x + 1},
|Ado(s)|n = max{9,|s|nx + 5},
=Mz (s)In += max{N(7),N(a), [s|x + 5, N(§) [ £ € par X},
|Fy VvV Fi|n = max{|Fy|n, |Fi|n} + 1,
|[FretG(x)|n = max{|t|n, |G(Lo)|Nn + 2},
[=GIn = |Gl

If A is a finite set consisting of ordinals, terms and sentences we put
|Alx = sup{card(A),[¢|x | ¢ € A},

and

[Eln = (t1, - tn)Ix o= [{t1, - tu}IN

7.3. Subrecursive Hierarchies on Hull-Sets of T(Z)

Definition 7.3.1 (Subrecursive Hierarchies on 7). Let H be a hull-set and let ®(0) :=
1 and ®(n + 1) := 2% for n € w. By recursion on a € H we define

fH(x) == max({2z + 1} U {fg{(fg"(a:)) | BeHNa & N(B) < P*(N(a)+x)}),

where for a number theoretic function g we set g2 :==g o g.
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Lemma 7.3.2. Let H,Hi,Ho be hull-sets and o« € H,H1. Then it holds
o flli(x) < fH2(x) for all x € w, if H1 C Ha,

N(a) < f}(x) for alla € H and z € w,

®2(N(a) +z) < fH(z) ifw < a,

e +y) < fH,(x) for alla e H and 2,y € w,

z-y<®(zx+y+1),
8- (®%(2))? < ®*(x +1) ifx > 2.

Proof. The first four statements follow by induction on «a.
The fifth statement follows since x < 2%.
The last item holds, since for z > 1 we have

O(z)+2<P(x+1) and 2-P(x)+3< d(x+2).
Therefore it holds for z =2’ +1 > 2
8- (®(x))% =27 (22(+))2 = 22243 92" +2) — @(g + 2).
Thus it holds for x > 2
8- (0?%(x))* < ®(®(z) +2) < ®*(x + 1). O

Notation. Let A be a finite set of ordinals, terms and sentences. Then we use the
abbreviation f7t(A) := f(|A|x). Moreover we dispense with the index H of f in
inequalities, i.e. we define

falw) < fola) over H e fIHx) < fiH(y).

Lemma 7.3.3. Let ¢ be a term or a sentence, s be a term and Fy plus F' be sentences,
such that F; € CS(F). Then it holds

0 2 1h(F) < @Q(F),

@ N(|¢]) < N(rk(¢)) < [¢|n <w,
© [s|n < |F(s)In < |F(Lo)In + |s]n,
O [Fin <[F|x+[tIn+T7.

Proof. @ follows by induction on the build-up of F' by use of Lemma 7.3.2.

@ follows readily by definition, since N(w - o) < 2 - N(a).

® Follows by induction on the build-up of F'.

@ Follows by an exhausting run through the different cases by use of |s = t|xy =
max{9, |s|n + 4, |t|n + 4} and ®. O
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8. A refined semi-formal Calculus for
[1,,-Ref*

This chapter is the analogue of chapter 4 elaborated on fragmented hull-sets. At first
we give the definition of the fragmentation of a hull-set. Of course the paradigm of a
hull-set is not a transitive set and in this point of view already a hull-set is fragmented
in general. However, a fragmented hull-set (in the sense defined below) is a set of
ordinals which consist only of sections of finite “length”. Notably the fragmentation of
a hull-set is a set which is so strongly fragmented that it is not a hull-set at all.

8.1. Semi-formal Derivations on Fragmented Hull-Sets
of T(Z)

Definition 8.1.1 (Fragmentation of a hull-set). Let H be a hull-set and A a finite set
of ordinals, terms and sentences. For v € H[A] we define

FRA] = {a € H[A] | N(a) < fy(A) over H[A}}.

7
Notation. In the following we use the abbreviation F* := F}[f].

Definition 8.1.2. Let H be a hull-set, A be a finite set of ordinals, terms and sentences
and suppose v € H[A]. For a finite set I' of sentences we define the semi-formal
derivability relation 7 [A] }5-T by recursion on « via

{a} UkI) C FHA] & [Ty € AL

plus the inference-rules of Definition 4.2.8 with H replaced by F7*[A] and the conven-
tion FH[A][t] := FH[A,1].

A main difference between hull-sets and fragmented hull-sets is that former feature
the hull property, i.e. A C H = H[A] = H, which does not hold for fragmented
hull-sets.

Thereby we have to argue more carefully in the following as in the foregoing chapters,
were we often make tacitly use of the hull property. However, as we employ the iteration
of fz in the definition of the subrecursive hierarchies we are able to handle this issue
without bothering too much on adequate iterations of the fragmentation index.
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Lemma 8.1.3 (Derived rules of semi-formal derivations on fragmented hull-sets).

(Inc) FHAGT & a<d & p<p & T'CT' & k(o/,p/,T") C F[A]
& [ p T e FHA = FHAT
(Str) vyeHA, € H[B] & ACH[B] & f(A) < f5(B) over H[B],
then FIAIl;T = ]-"H[B 5T,
(V-Ex) FHATLFVG =  FL AT, FG,
(A-Ex) FHAT,FAG = FHMAGTF & FHAFT,G,
(Up-Per) }",:”l[.A]I%REI:E“F()&:n<7r,p&:7r€SC & m-2<y
= P A P2 e B,
(V-Inv) Al T, N(Fer = VteT FHAAGT, F.

Let F be a 11,41 (m)-sentence, then:

(E-Y) vte T f”[A,E] b D, E(FY (1), ..., F)y(tm)) & -2 € FIA]
a+<1>2( )

(E-V-Inv) A I—I‘ F o= VieT™ FI AL T F(F(t), ..., F(tn),

(E-Up-Per) FH[AFST,-F & n=0& 1<XAp & AeSC & A-2<y
O¢+)\)2

= FI AN L, -FN),

Proof. The rule (E-Up-Per) follows as in the proof of Lemma 4.2.9 supplemented with
the following extra considerations: In the case that the last inference is a (Ref)-
inference with principal formula 32" F(z) it follows by induction on the build-up of F'
that

Fro[32" F(z),Va" F ()] o2 327 F(x), V2" F ().
Since 7 -2 <y and it holds by assumption F,[A] |5 T, 32" F(x) this leads to

Fr+1lA, 7] lﬂTQ Az"F(z), Vz" F(z),
and the claim follows by a cut.

Propositions (Inc) — (V-Inv) follow by induction on «. Note that in case of (V-Ex)
the index  has to be increased by one since the cardinality of a finite set of sentences
is also a parameter of its finite content.

To prove (E-V) we proceed by induction on the build-up of F: If F is an elementary
I1,, 41 (m)-sentence the claim follows by an application of (A). If F(Fy,...,F,) =
Go(Fy,...,F)VG1(Fyi1, ..., Fn), with Go, G1 € T1,,41(7) we obtain by use of (V-Ex)

vEe T FrGA G T, Go(F(ty), - Fi(te)), G1(Fipy (thsn), - By ().
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Applying the induction hypothesis twice we get

a+®%(Go)+22(G1)
‘7:'3{+1+<I>2(G0)+<I>2(G1) [A] I p I', Go, Gy,

and the claim follows by two (V)-inferences and use of (Inc) and (Str). If we have
F(Fi,...,Fpn) =Go(F1, ..., Fy) NG1(Fxt1,. .., Fy) the claim follows analogously.

The claim (E-V-Inv) follows by induction on a. If F' = GoV Gy and F is the principal
formula of the last inference the claim follows since |F/(FY (t1), ..., F, (tm))|n < |F|n+
1 < F2 (A, =

8.2. Embedding of 1 -Ref”

Notation. In the following we extend the dot-notation as follows
FHAGT = FHAIGT.
Moreover we define

”W I = FHI }HOL” I" for every hull-set H.

Remark. Without loosing any propositions of Lemma 4.3.3 and Theorem 4.3.4 we
can add the proviso |{t1,...,t,}|x < ®2(T) to the (\/)*-rule of Definition 4.3.2.F

Lemma 8.2.1 (Embedding of RS*). It holds Ii r = ”ﬁ I.

Proof. We proceed by induction on the RS*-derivation.
Case 1, the last inference is by the (V)" -rule: Then we have I' = I, \/(F})¢er and
there are t1,...,t, € T, such that

T, F,....F
I,V (Fy)ter

Let FO = F/,Ftl,.. .,Ft
provides

» where k{t1,...,t,} Ck(I)* and |{t1,...,t,}|Ix < ®*(T). (8.1)

and g := ||Tg| plus « := ||T'||. The induction hypothesis

n

FTo] 5= To- (82)

TOnly in the proof of the Corollary to Lemma 2.7 in [Buc93] there is an inference which makes
use of more than one (but less or equal then 1h(\/(F%):c7)) premises of \/(F})ier and thus we
come through all these proofs with n < ®2(T'). With respect to |t;|x < ®2(T') there is just
the non-trivial case of d in the RS*-derivation of (Ap-Sep). However, there we have |d|x =
max{2N(|a|+3),2N(|c1)+3,...,2N(len|)+3, | Lo € aAd(Lo,E)|n+2} < D(|Lo € anp(Lo,d)|N) <
<I’(|3y€L/\ (Tﬁl(y, a, 6) A "7[12(%0'7 6))|N)
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Moreover we have

n

N(ao) < N(a) + Z(N(rnk(Ft,.,)) +1) <N(@) + > (IR,

=1

N+1)

<N(@) + YV Eeerly + It +8)
i=1
< N(@) + ®*(T) - (|T|x + ®*(I) + 8) < N(a) + 3(®*(I))?
< N(a) + ®*(|T|x + 1), (8.3)
and by nearly the same considerations
Toln < @*(|D|x + 1). (8.4)
From (8.1) it follows k(T'g) C k({T",\/(Fy)ter,t1,---,tn}) C k(I™*) C H[A], a0 < a,
ap € H[To] and (8.3) plus (8.4) provide
fOéo (FO) < fao(f|F0\N F)) < fao+|Fo\N+1(F) < fa<F) over H[F]

(
Thereby we obtain from (8.2) and by means of (Str)
f;{[r} o:)o Flthlv"'thn~ (85)

Taking into account (8.3), n < ®2(I') and w < « it follows ag +n € F2¢[[']. Moreover
we have |T, Fy,, ..., Fy, |n < @2(|T|n +1) < fzf[r] (T"). Thus we may perform n (V)-
inferences to obtain the claim from (8.5).

Case 2, the last inference is by the (N)*-rule: Then we have I' = I'", A(F})ser and

I'"F, forallteT
I, A(Fy)eer

Let Ty :=T", F; and ay := ||T|| plus a := ||T'||. By use of the induction hypothesis we
obtain

FHOISET, forallteT. (8.6)
Just like in the first case it follows
N(oy) < N(a) 4+ ®*(|T,t|y +1)  and  |Tyn < ®*(|T,t|x + 1). (8.7)

Moreover we have k(I'y) C H[I',t], o < o and oy € H[T', t], o € H[[']. By use (8.7) we
obtain

Jao(Te) < fa, (firin (T 1) < faytmn41 (L 1) < fo(I',t)  over H[I,t] for all t € T.

Therefore we obtain by (8.6) and taking into account (Str)
FRAO A T/, F, forallteT.

Thus the claim follows by an application of (A). O
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Lemma 8.2.2 (Found). Let F'(Ly) be a sentence. Then it holds for every &
”W vzt (VyexF(y) — F(x)) — V2t F(x).

Proof. Let H be an arbitrary hull-set and let G := Vat (Vy czF(y) — F(x)) plus
s = WG @ wlsIH At first we show by induction on |s|

FHIG, 5] I% -G,F(s) forallseTe. (8.8)

Equation (8.8) holds for all ¢+ € 7[5 by the induction hypothesis. Let G € CS(G).
Then —(Vy€sF(y)) is a subformula of G,. Thus we have

VyesF(y)In < |GIn+sIn+7<2-|G,s|n+7 and (8.9)
[t€s = F(t)|n < [VyesF(y)|n+|tIn+T7<2-|G,s|n + 7T+ [tIn+ 7
<3-|G, sty + 14 (8.10)

This implies |-G, t€s = F(t)|n < fa,+1(G, s,t) over H[G, s, 1], and thereby we obtain
by means of the induction hypothesis and an application of (V)

FUG, 5,8 Y5~ ~G, tés — F(t)  for all t € Ty, (8.11)
Let B, := w™k(&) g wlsl. Since fa,41(G,s,t) < fs.12(G,s,t) over H[G,s,t] for all

t € T}s| we obtain from (8.11) by use of (Str) and (Inc), a (A)-inference and taking into
account (8.9)

FRG, 5] % -G, VzesF(x). (8.12)

By Lemma 4.3.3® and the embedding of RS* we have ”W - F(s),F(s). Moreover it
holds N(ruk(F'(s))) < |F(s)|n < |s€s = F(s)|n <3+ |G, s|x + 14 by (8.10), and thus

Jormxrn.o(2F (), F(s)) < f5,(f5.(G,8)) < fa,+2(G,s) over H[G, s].

Thereby we have

FHIG, 5] 5 ~F(5), F(s).

By use of (8.12) and an (A)-inference we obtain

FUG, 8] 52 -G, Wy e sF(y) A—F(s), F(s),

and therefore
FH[G, 5] }% -G, 32* (VyexF(y) A =F(x)), F(s),

via (V). This shows (8.8).
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Since oy < w™K(@) k(T F(@) || — Vaf F(xz)| for all s € Te and fo, (G, s,§) <
fic=vatp(a))| (G, 5,§) over H[G, s,&] we obtain by (Str) and (Inc) plus a (A)-inference
from (8.8)

k(@) @wmk(\mf F(x))

From this the claim follows by use of (V) and (Str). O
Lemma 8.2.3 (Refl). Let F € II,(E). Then

s F — 3:5(z = F).

Proof. Let ‘H be an arbitrary hull-set. Choose m < w, such that F' € II,,12(Z). By
Lemma 4.3.3® and the RS*-embedding we have

k()
FH[-F, F }# ~F,F.

By an application of (IL,,12(E)-Ref) plus a (V)-inference we obtain

WK(F) -
FM[-F, F,=] }% F— 35z F). (8.13)

Since rnk(F) < rnk(F — 32=(z | F)) it follows

WwkE) L9 4 9 < ||F - 3E(z E F)||  and
fomir.242(7F, F,E) < firpoa.2cem)(F = 325z E F))
over H[-F,F,Z] = H[F — 3:5(z & F)].
Therefore the claim follows by use of (Str) and (Inc) from (8.13). O

Lemma 8.2.4. Let I'(Z) be a finite set of Lyy(z)-formulae and X € H. Then there is
an m € w, such that for all §= (s1,...,8n) with s; € Ty it holds

e TE) = FMs1,....5] }% ().

Proof. Suppose

I (5)]
0

FHONE)] 2 (@), (8.14)

Lemma 4.2.6 implies, that there is an m; such that ||[[*(5)|| < w***™ and for F € T
we have

[FAE)In < P2 (Lo)ls + [Laln + D lsilx
=1
<[FEo(Lo)|x + [Lalx + [FE0(Lo)|n - |5]x

<|TEo(Lo)Ix + [Laln + T (Lo) Ix - 51N
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Thus there is an mg € w such that for all F' € T we have |F*(5)|x < ma - |5]n. Since
N(rnk(F*(3)) < |F*(3)|x there is an m3 € w such that |T*(5)|xy < mg - |3]n and
N(|ITAS)|) < m3 - |5]x for all 5€ 7.

Thereby we obtain for m := max{m;, ms, m3} and v := [|T*(5)|| that

F2(TAE)) < fy(m- [81x) < fy(fr4m(3))
< frimi1(8) < fowrim(8)  over H[TNE)] = Hsy, ..., sn)-
Thus the claim follows from (8.14) by use of (Inc) and (Str). O

Lemma 8.2.5 (Embedding of Logic). Let A € H. If T'(@) is a logically valid set of
Ly z)-formulae, then there is an m € w such that

w-A+m

Fls1,..., 80 > T3  for all 5= (s1,...,8,), with s; € Ty.

Proof. Analogously to [Buc93], Lemma 3.11. by use of Lemma 8.2.4. O

8.2.1. Embedding of (Ad,.1) — (Ady.3)

Lemma 8.2.6. There exists an m < w, such that for every hull-set H with 2 € H it
holds

FH }% (Adg.i)Z  forie {1,2}.

Proof. By use of Lemma 4.3.3® and a (A)*-, a (V)*- plus again a (A)*-inference we
obtain

P~ (Ado.1)%, —((Tran)“ A (Nullset)” A (Pair)” A (Union)*),
and by Theorem 4.3.4 we have
P~ (Tran)® A (Nullset)” A (Pair)” A (Union)®.

Thereby the claim follows for i = 1 by use of the RS*-Embedding Lemma 8.2.1 and
Lemma 8.2.4 plus a (Cut), taking into account that |L,|n = 4.
In the same vein the claim follows for all instances of the scheme (Adg.2). O

To obtain Lemma 8.2.6 also for ¢ = 3 we have to prove
IiVy“’Hj“’ (3f€j3nej (Fun(f) ANatno(n) A f:y St n)). (8.15)

Since we cannot expect completeness for Ils(w)-sentences derived on fragmented-
hull-sets we have to do some extra work to yield (8.15).

Notation. By L we denote the constructible hierarchy. For u € L. we define |u|y, :=
min{a |u € Lo}
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Definition 8.2.7 (The Canonical Interpretation of Lgg(z)). To obtain an interpreta-
tion of Lpg (=) in L we interpret € as the standard membership relation of I, Ady as

the set {L,} and the predicates , M5 as the sets {L¢ |¢ € .25}
We define the interpretation of the £pg(=)-terms by recursion on « as follows

LY = L,,
{z € Lo |F(z,s1,...,50) Y = {uelLy|Ly = F(u,sk,... %))

In general the finite content of an Lrg(=)-term ¢ € 7, contains too much syntactical
information (the length of t) to decode the stage of ¢ out of |t|x. Nevertheless for every
u € L, there is a canonical term ¢, such that L = u = t* and ||y < ®(|¢] + 1).

Definition 8.2.8 (Canonical Terms for L,,). By recursion on n € w we define the sets
T, € 7T, as follows:

To =0,
Tos1 = {LyU{{z € L, | B(z,f1,....6) "}
E(w,t1,....t5)=a=0V...Vao =1, &Wi(t; € To) & k < d(n)},
T.=UT

necw

Lemma 8.2.9. Let s € L,,. Then there erists an § € 72,, such that L = s = 8% and
sl = 13| plus |3]n < (5[ +1).
Moreover for t € T, there is a t € Tp, such that L = = ¢,

Proof. We show the first claim by induction on m := |s|r. If m = 1 the claim holds
with § = Lo. If m = j + 2 then there is a £ < ®(j + 1) and s1,...,5; € Lj
such that s = {s1,...,s,} since card(Lj41) < ®(j + 1). Thus it follows by the
induction hypothesis that there are s1,...,5; € ’~7~; such that for all 1 < i < kit
holds L | s = 3F and |s;l = |3, i.e. 3 € Tj41. Therefore we have for § :=
{z € Lj1|E(x,5,...,5,)%+} € T, that L = s = 8~ and |3| = j + 2. Moreover
we have |Lg = §;|n < max{9,|Lo|n + 4,|5i|x + 4} and hence |E(Log, 51,...,5k)|n <
max{9, |$1|n +4,...,[8kIn+4,2(j + 1)} < ®(j +2) + 5. Thereby it follows

Now let ¢ € T,,. Then |[t"|p < n and thus there is a € 7~;L with L |= & = ¢&. O

Lemma 8.2.10. Let F = Va* Jy* G(x,y) be an elementary I (w)-sentence, such that
L = FY and for every s € L, there is at € L, with |t|, < 2-®(|s|1) and L = G(s,t)*.
Then it holds = F.

Proof. Let H be a true Ag(w)-sentence, i.e. L = H™. Then it follows by a straight
forward induction on rnk(H) (by use of canonical terms) that Ii H.
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Now let s € T,. Then there is a t € L, such that L = G(s* ¢t)* with |t <
2. ®(|s%|L). Therefore Lemma 8.2.9 provides a t € 7,, such that

= G(s, ),
and

Iy < @(JElL +1) < ®(2- @(|s™[L) + 1) < (2 ®(|s]) + 1) < @3(|s|) < @*(|s|n).
Thus it follows Ii F by means of (V)" plus (A)*. O

Corollary 8.2.11. There ezists an m < w, such that for every hull-set H with = € H
it holds

PR (Adg3),

Proof. For every u € L, there is an f : u RN card(u), such that {f,card(u)} €
L (2.Jup) since card(L,) < ®(n). Therefore we obtain (8.15) by means of Lemma
8.2.10 and the claim follows analogously to the proof of Lemma 8.2.6. O

Theorem 8.2.12 (Embedding of MN,,-Ref*). Let F be a theorem of MN,,-Ref and ZE € H.
Then there is an m € w such that

H wE+7n =
F. }mF .
Proof. Follows by the Embedding of Logic, Theorem 4.3.4, the RS*-derivability of

(Iden), the embedding of RS*-derivations and the above given derivations of (Found),
(Ref) and (Adp.1)-(Adp.3) via some cuts. O
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0. Cut and Reflection Elimination
Theorems for Refined Derivations

In this chapter we prove the Reflection Elimination Theorem for derivations on frag-
mented hull-sets. It will turn out that we just have to do some minimal extra consid-
erations compared to the proof of Theorem 5.2.5, which are (in essence) explained by
the loss of the hull-property.

9.1. Predicative Cut Elimination for Infinitary
Derivations on Fragmented Hull-Sets

Lemma 9.1.1 (Reduction Lemma). Let F = \/(F})ier and p := rnk(F') not be regu-
lar. Then

a B a+p
FHANS A -F & FUAGTE = FAL A AT

Proof. Analogue to [Buc93|, Lemma 3.14 by induction on 3. Taking also into ac-
count that k(z) C k(C,,) € H[A] and |io|n < |Copln < fy(A) imply fy (A1) <
(A, 4 (A)) < fy+1(A) over H[A] and therefore ]-'?f[.A, o] C .7:?+1[A}.

Moreover have in mind, that 2 - f,(A) < fy+1(A) and therefore o + 8 € ff;il[A] if
a, 3 € FIA] and |17, T|n € F2 L [A]if [I|x, [Py € FI[A] O

Theorem 9.1.2 (Predicative Cut Elimination!). Let H be closed under ¢ and [p,p+
a) NReg = 0 plus o € FI*[A]. Then

B »(o,8)
Fit [A] pta r = f’;{@s@(%ﬂ)-&-l['A] L

Proof. We proceed by main induction on « and subsidiary induction on 5. We only

treat the non-trivial cases, that the last inference is (A) or (Cut).
In the former case we have I' = TV, A(F})ter and

Be
pta

‘F"Z—[[Aﬂt] Flth7

for all t € T, with 5; < 8. The induction hypothesis provides

p(a,Bt)
P

T (o)1 A ] I",F, forallteT. (9.1)

1This theorem also holds with p + « replaced by p + w® in the premise. However, in impredicative
proof theory we do not need this stronger version.
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Since N(B;) < fﬁz{[A’t] (A, t) it holds

f'y@ap(a,ﬂt)Jrl('A’ t) < fv@tp(a,ﬁ)(f'y(-A’ t)) < fw@w(a,ﬁ)ﬂ(-"l’ t) over H[Av t}’

for all ¢ € T. Thus the claim follows from (9.1) by use of (Str) and (A).
If the last inference is a (Cut) we have

Bo
pta

FHA] I () F,

for some By < S and o := rmk(F) < p + a. Therefore the subsidiary induction
hypothesis provides

w(a,Bo)
Fotonpoy A =5 T, () F. (9.2)

Case 1, it holds o < p: Since By < B and «, By, 8 € .7-2'[ [A] it follows y@y(a, Bo)+1 <
7@ ¢(a,B) + 1 and

f7@¢(a,60)+1(“4) < f’y@tp(a,ﬁ)(f’y(A)) < f'y@tp(a,ﬂ)+1(“4) over H[A]

Thus the claim follows from (9.2) by use of (Str), (Inc) and a (Cut).
Case 2, it holds p < 0 = p+ g, for some 0 < oy < a: Since o ¢ Reg we may apply
the Reduction Lemma to (9.2) and obtain

2 o(,B0)-2
]:“f@w(aﬁo)H[A] pt+ao L. (9-3)

As we have k(F) € F[A] and |Fly € F}[A] it follows o € F*[A] and thereby
Qg € .7:,3{ [A]. Therefore an application of the main induction hypothesis yields

p(ao,p(a,80)2)
FlA e T (9.4)

with 7:= 7 & ¢(a, fo) +2 & (a0, p(, fo) - 2) + 1.

Since 50(040, w(av ﬁo) : 2) < <)0(a07 LP(CV, 60 + 1)) = (,0(04, ﬁO + 1) < w(av ﬂ) we obtain the
claim from (9.4) by means of (Inc) and (Str) if we can show f,(A) < fi@e(a,8)+1(A)
over H[A].

It holds n < ¢(a, ) + 1. Moreover we have

N(n) < N(7) + 3N (a) + N(ao) + 3N(Bo) +5 < 6 - f;(A).

Thus we obtain

fn(-A) < fv@w(a,ﬁ)(fv(A)) < fvEBso(oc’B)Jrl(A) over H[A]
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9.2. Reflection Elimination for Infinitary Derivations on
Fragmented Hull-Sets

Notation. Suppose v € C(y + 1,0). Then we use the following notation
C(v+1,0
Nyl AL = P A = FETTHO1AL

Lemma 9.2.1 (NV-version of Lemma 5.2.3). Let X = F(7) = (m;...;0) be a reflection
instance and v, X, p € N,[A], where w,6 <~y+1 and 0 := |A| < 7 < p € Card. Let
&=y @ wr®H, Then the following holds:

Q If g, € N, [A] and ag < o then B # (,zmg‘g C gzmggff’. For every k € UEITI;O‘;
and every j < ®?(f (A, k)) it holds Nuy@ntilA, k] C NawxlA, k]. Moreover for
every Y := F(7f) with ij € dom(F) NN, [A] the ordinals W$®* and W5 are
well-defined and it holds UE°®" < WESR 4 j € Naw,[A, k).

@ [t holds m € N, [A]. In addition for k € Card and p € N, [A], such that 7 < k <
p < kT it holds k, kT € N, [A].

© Letm <y € RegNN,[A]. Then there exists a reflection instance Z with i(Z) = p,
o(Z) <v+1 and Z,par Z € N, [A].

Proof. We just show those parts of the propositions which go beyond the statements
of Lemma 5.2.3.

® Let j < ®%(f,(A, k). We have dp + j < & and since card(A, ) > 1 it follows
f+(A, k) > 3. Therefore we have

N(do@®r)+j+1 <8 ®*(fy (A k) < P*(fy (A k) +1) < PEN(GDK) + £ (A K))
and thereby
Jaoontit1(A k) < faoantit1(fy (A K))
< faon(fy(AK)) < famnt1(A, k) over C,[A, K]

Hence Ngy@rtjA, k] € NaaxlA, K.
It holds

N(USP%) 45 < 8- B (f, (A, k) < D2(f, (A, k) + 1)
< fa(fa(A,K)) < fawrt1(A, k) over Cy[A, K],

and thereby WE®" + j € NagxlA, &].

@ If m = Z or 7 is a successor cardinal the claim follows since parX € N, [A].
Otherwise we have X = (\Ilg,*l; .3V .;8). Thenit holds 6 — 1 < v+ 1, parVC X
and N(7) = max({N(0) }U{N(£)+1|¢ € par V}) < max{N(({) | ¢ € par X} and thereby
€ N, [A.

The second claim follows as in Lemma 5.2.3.
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®If 4 = Z or p = vt for some v € Card NE the claim is trivial. Otherwise we have
= \Ilgj for some ¢ and a reflection instance V. Since o < m < p it follows by Lemma
2.3.16 that (,V e N,[A] CC(y+ 1,0 +1). Thus ( <~ and as u € Reg it follows the
existence of a reflection configuration G = (y;...;V;¢ + 1)

If the arity of G is zero, we can choose Z = G € N,[A], since max{N(p)|o €
parG} < N(p). If dom(G) = [o(M),{)¢cu *x dom(M)g(,y with G({',7) =
(5 MICM,I(g)-Pan), we have M € Prenfg(G), ie. it exists a 7 € dom(M)¢(,) such
that M(77) € Prinst(G) = Prinst(V). Thus we have Z := G(o(M), 77) € N,[A]. O

Theorem 9.2.2 (Reflection Elimination on fragmented Hull-Sets). Let X = (7;...;0)
be a reflection instance with rdh(X) = m — 1, N, [A] be defined and v,X, pn € N,[A],
where w,§ < y+1 and o :=|A| <7 < p € Card. LetT € ¥,,11(7) and & 1= yBw®r,
Then

ween .
N, [A] I% ' = MNaaxlA K| }L L™ for all k € 4OMG.
Proof. The proof is similar to the proof of Theorem 5.2.5%. Consequently we list the

extra considerations, which are necessary to come through the proof of the N -version:

— |08 |y < |D|x + |Le|n and hence |T(9) |y < fagw(A, k) since [Ty < f+(A)
over C,[A, k].

Case 1 up to Subcase 3.2 with m = p:
— Follow by use of Lemma 9.2.1
Subcase 3.2, with m < p:

— Instead of (5.9) we only get Nyygao+2[A] ll T, with 7 := W$®2 2 Therefore
we have to replace “1” by “2” in v, but we still can argue as in the proof of
Theorem 5.2.5. N,gx[A, k] C Nagx|A, k] follows by the same considerations as
in the proof of Lemma 9.2.1 ®, since N(v) < ®(f,(A, K)).

— If n ¢ Card statement (5.11) modifies to Nyy@xomep(n,n)+1 4] sa(;;n) I'. Thus in

the following we have to set & := (dip ® Ao @ @(1, 1) + 1) ® WMk,
Case 4, Subcase 4.1:

— We only get equation (5.12) with ~ replaced by v+ 1, but this modification does
not affect the applicability of the induction hypothesis it only necessitates to
replace Ng,@r by Nagyer+1 and \Ilg'{“’@’\ by W%O@AH in (5.13).

TFor a more detailed argumentation confer the proof of Lemma 5.2.3 on page 54.

*In the proof of Theorem 5.2.5 we tacitly replaced IV by T, where I' = IV, F and F was the principal
formula of the last inference. We were allowed to do so by means of (Str). However, for a proof of
the N -version of Theorem 5.2.5 we have to work with I'V instead of T'.
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— The application of (E-V) forces us to replace the index dy of N by ap + 1 +
®2(f,(A, k) in (5.14) — (5.17). Moreover [ has to be replaced by ®%(f., (A, k))
in (5.14).

H
— Let H := Ly # 0 ATran(Lx) AAL_; a; € Ly. Then ”ﬁ H implies N g [H] ”0”

H. Tt follows easily that |H|x = max{12, |Lx|n+p+7, |a;|n+p+8} < (f1(A,N))
since |F|x < fy(A). Hence N| g [H] C Ngyor[A, A, £].

— To obtain (5.15) we have to perform card(I') — 1 many (V)-inferences. Thus we
can replace w by 3 - fy(A) in (5.15), since card(I') < |T|n < fy(A).

— Let H' := Ly # s, \-T(™N \/T(™9)_ Since |Ly # s|x = max{9, |Lx|n+4, |s|x+
4} and |T|n < fy(A) it follows |H'|x < ®(f(A, A, s)) and thereby N g [H'] C
Naoan[A, A, K, s]. Therefore we are able to perform the (Cut) to (5.15) and (5.16).

— | MG (s)V = BV = Tran(s) V (AL, b € 5), VT Glx < ®(f, (A k,5)) <
JaoanlA,s K, 8] over Coyan A, K, 8]

— It also follows easily that the finite contents of the formulae in (5.17) and (5.18)
are in N ax[A, K], since [T, F|x € N, [A].

Subcase 4.2 up to Case 6:

— The proof of this cases is made by the same extra considerations as stated above.
O
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10. A Characterization of the Provable
Recursive Functions of [1, -Ref

In this final chapter we utilize the “collapsibility” of relativized defined subrecursive
hierarchies to achieve a characterization of the provable recursive functions of I1,-Ref.

10.1. Collapsing and the Witnessing Theorem

The growth rate of ¥ only depends on the otyp of < | H N« and the norm on HNa,
but not on the actual size of . Thereby, given a hull-set %’ and a 8 < «a such that
otyp(< | HNa) <otyp(< [ H' N B) and assumed that the norm on H N and H' N 3
is “similar” it follows that f(z) < fg{/ (x) for all but finitely many x € w.

Thereby a subrecursive hierarchy defined on a hull-set H is “collapsible” by replacing
‘H by an appropriate hull-set H'.

Notation. Let S7,S2 be subsets of T(E) and ¥ : S; — Sy. Then we declare the
following notation

<-stable

v Sl
N -stable

Sy & Va,ﬁedom(\ll)((a <B = ¥la) <T(B)) A
Vzew(N(a) < ®*(N(B) +z) =

N(¥ () < QA(N(¥()) +2)) ).

Theorem 10.1.1 (Collapsing!). Let Hy, Ho be hull-sets, A be a finite set of ordinals,
terms and sentences and v € Hi[A] C Ha[A]. Then

) <-stable H1 Ho
VAN (1) S ), 5 FIA(A) C R (AL

Proof. Since H1[A] € Hy[A] we just have to prove f1° Ay < pA g,

w(v)
We show by induction on a < « that fz’jl[A] () < f;r,t(if] (z) for all x € w.

1The name of this theorem is a bit pointless without specifying ¥ as a “collapsing-function”.
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If o« = 0 the claim is trivial. For a > 0 it holds

Frllg) - max{f;mA]z(x) |8 € Hi[A]Na & N(B) < P*(N(a) +z)}

IN

max{ £1209%(2) | B € H1[A] N 0 & N(B) < *(N(a) +2)}
maxc{ 77 (@) 5 € HalA] N W(a) & N(8) < B*(N(¥(a) + )}

Ha[A
= ‘p(i)](x). O

IA

Lemma 10.1.2 (Detachment). Suppose D € Ag(w) and L = —D%. Then
FHAKT,D = FX ..AfT

Proof. We proceed by induction on «.
Case 1, the principal formula of the last inference is D = \/(D;)ter: Then we have

FHAET, Dy,

for some oy < « and some ¢y € T. Since L = =D" we also have L = =Dy . Therefore
the claim follows by an application of the induction hypothesis and means of (Str)
since fguoot1 (A) < fygwoti (A) over H[A].

Case 2, the principal formula of the last inference is D = N\(Dy)ter:

Subcase 2.1, it holds T' = T, for some s € T,: Then we have

FHA 5T, Dy forallt € Ty, (10.1)

with a¢ < a. Since L = D" there exists a to € T}, such that L = —=Df;. By Lemma
8.2.9 we can choose a o € T, with [to| = |fo| and L |= t§ = t§ plus |to|x < @(|te]+1) <
O(]s]) < ®(D) < (f,(A)) over H[A]. Thus we have

FUAGET,D;, & Lo b -DE. (10.2)

Since H[A,ty] = H[A] and f, (A, to) < f1(®(f1(A)) < frowra(A) over H[A] we
obtain from (10.2)
Frowial AT, Dy (10.3)

An application of the induction hypothesis yields

Oé{o

iAo T (10.4)

F o
YOw+2Qw

Since N(oy,) < fy(A,t0) < fypwr2(A) over H[A] it holds

fgwtiom pra(A) <L g ity o (frewi2(A) < frowetwra(frawrz(A))
< f’y@w“+w+4(~’4) < f'y@w"+1 (A) over H[A}
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Thereby the claim follows from (10.4) by use of (Str).

Subcase 2.2, it holds T = {0,1}: Then the claim follows analogously to the first
case.

Case 3, the principal formula F' = \(F)ie7;, € I': Let I' = I, F. Then we have

Fy A T, F, D forall t € Ty, (10.5)
with a; < o. The induction hypothesis provides

]:

Sewerrt [A Y (5T Fy for all t € Ty, (10.6)
Since H[A,t] = H[A] and N(ay) < f+(A,t) over H[A] we have
fny@waﬁrl (.A, t) < fay@wa_t,_l(f»y (A, t)) < f»y@wa+2 (A, t) < f,y@wa+1 (A, t) over H[A]

Thereby the claim follows from (10.6) by use of (Str) and (A).

Case 4, the principal formula F of the last inference belongs to T' but is not of the
form (A\(Ft)ter;, - Then the claim follows by use of the induction hypothesis and the
last inference. O

Theorem 10.1.3 (Witnessing Theorem). Let G(Lg) € Ag(w). Then

FHANE 30G(z) = LE 3™ G(@)k, wherem = {744 (4).

,Y@wa+l

Proof. We proceed by induction on «. We do not know, if 32“G(z) already occurs in
the premise of the last inference, but by use of (Str) we have in either case

FIa A5 32G(2), G(to), (10.7)
for some ap < a and some ty € T,,. If L = G(to)" the claim follows, since |t5|L <

|t0| < |t0|N < m as |t0|N € .F:;Ll[A]
If L = ~G(to)" we apply the Detachment Lemma 10.1.2 to (10.7) and obtain

ffz{-s-l@waoﬂ[-/‘l] O:)O G (). (10.8)
The induction hypothesis provides L = 3z™0G(z)% with mg = fzﬂﬁewaoﬂ_z(A).

Since N(ag) < 24 (A) it holds
mo < f'y+2@wa.2(fry(u4)) < f7+3@wa.2(v4) <m over ’H[.A}

Since G(Lg) € Ag(w) the claim follows by the upwards persistency of X-sentences. [
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10.2. A Subrecursive Hierarchy Dominating the
Provable Recursive Functions of [1 -Ref

It is an elementary result of recursion theory that for every partial recursive function
f there is a primitive recursive predicate T such that

fl@) 2y & F2Tf(x,vy, 2).

Since we can code arbitrary n-tuples in L, via (x,y) := {{z},{z,y}} there is an
Le-Ao-formula Tt (z,y, z) such that f(z) ~y & L, F 32T}(z,y,2). Coding also y
and z into one set we obtain an Lc-Ap-formula Gy(x, z), such that f is recursive iff
L, EVz3zGy(z, 2).

Therefore an LL-correct subsystem T of set theory, in which L, is definable, proves
the recursiveness of f iff T + Vz(“z = L,"— Vy*32"Gy(y,z)). Since Ly, = Gy(s,t)
also implies f(s) < [t|L we are able to outvote the provable recursive functions of T
if we are able to give an upper bound (depending on y) for the witness z in the above
formula.

Lemma 10.2.1. Let £(u) be a AXPY-formula, which defines LL,,. Then it holds
My,-Ref* -V (U(z) +» Ado(x)).

Proof. We argue in an arbitrary model of ,-Ref*. The direction from left to right is
trivial. So let us assume Adg(u) for some set u. We have to show u = L,.

At first we show by induction on n that L,, C u for all n € w. So assume L,, C u.
If n = 0 it follows by (Nullset)” and (Ag-Sep)* that Lo € u. If n > 0 it follows by
iterated use of (Pair)* and (Union)* that L,, € u, as L,, is finite. Therefore we obtain
by use of (Ap-Sep)* that L, 41 C u. Thus we have shown L,, C u.

In addition it follows for every z € u by induction on rnky(z) that z € L, since z is
finite due to (Adg.3). Therefore we also have u C L. O

Notation. Let X := (w";Pg;€;¢;0) and H := WSS . Then we just write f, () instead
of fIt(z) for a < W&,

Theorem 10.2.2. Let £(u) be a AXPY_formula, which defines L. Suppose X :=
(wF;Po;€60) and F =Va Iy G(z,y) is an elementary Le-113-sentence, such that

My-Ref - Vz(€(z) — F?).
Then there exists an o < W™, satisfying
L, | ¥z 3y’ 121 Gz, y).

Proof. By Lemma 10.2.1 and Theorem 8.2.12 there is an m € w such that

NS 2 (Ado(z) — F?).

=+m
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By (¥-Inv), (Str) and (V-Ex) we obtain

wEJr""—&-Q
N =2 Ady (L) — F*. (10.9)

=+m
Due to Lemma 4.3.3®, Lemma 8.2.1 and Lemma 8.2.4 there is an m’ such that

w3+7n,

N =" Ado(Ly,). (10.10)

Let ag := w=t™ + 2@ =t By a (Cut) applied to (10.9) and (10.10) we obtain

N =2 F@.

=+m

For 1 <i < mlet ;31 := a; ®w* + 1. By iterated application of predicative cut
elimination we obtain

QAm—1 w
M =41 .

Let Qo1 = @1 @ w*™19% and a, = Q1 ® \Il?gm‘l + 1. Then we obtain by
Theorem 9.2.2 and (Str)

am

Na,, —— F*. (10.11)
Moreover it holds

AT I 0 (g +2) =222 € g
N -stable

Let H = C(a,,+1).2- Thus it follows by Theorem 10.1.1 that N, C fy(amﬂm.
X
Thereby we obtain from (10.11) and use of (Str)

wom
H X w
Fplomsn2 [T F.
X

Let a := @(¥g™, ¥5™) and 7y := \Ilggo””"'rl)'2 @ a+ 1. By predicative cut elimination we
obtain

H | w
FHe pe.
By means of (V-Inv) we get
.7-'3"[5] l% JG(5,y) forall 5eT,.
By the Witnessing Theorem 10.1.3 it follows
L E 3y™G(5,y)", where m = f,:'[[g] (5) forall 5 €T, (10.12)

@wa+1

A closer look at the build-up of a and 7 reveals that o,y < U5Z*"'. Since H[3] = H
and H N WS C WEEH it follows fIH(x) < fs(z) for all 6 € HN YT and z € w.
Moreover we have f5(®(z) + 1) < fsy1(x) if 6 > w. Thus we obtain from (10.12) and
Lemma 8.2.9

Lo, EVedy™ G(z,y), where m := f gy a+2(|2[L). O
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As a consequence of the last theorem we obtain:

Theorem 10.2.3. The provable recursive functions of M,-Ref are contained in the
class §, where § is the smallest class of number theoretic functions, which contains

S,CF, Pl (fa)aep;(sﬂ) and s closed under substitution and primitive recursion.
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Part IlI.

An Ordinal Analysis of Stability



11. Introduction

A transitive set which is a model of KP is called admissible. The theory KPi comprises
the theory KP plus an axiom (Lim), which postulates that every set is contained in
an admissible set. The theory Stability is the theory KPi augmented by the axiom
Va3k > a(Ly =1 Lita), where L, <1 L1, denotes that L, is a Xi-elementary
substructure of L, .

Obviously every k + 1-stable ordinal is already II,, reflecting, for all n < w. In this
sense the notion of an a-stable ordinal can be regarded as a transfinite extension of the
notion of a II,-reflecting ordinal. Therefore one might informally refer to the theory
Stability as Aut-l1-Ref. Thus a treatment of Stability marks in some sense a completion
of ordinal analyses of theories of the form KP augmented by a (first order) reflection
principle.

However, in view of ordinal-analyses of even stronger theories, i.e. KP + ¥;- sep-
aration a proof-theoretic treatment of Stability features the simplest case of a new
paradigm: The collapsing of intervals.

To achieve a reflection-elimination theorem for the theory I,-Ref we have to “col-
lapse” the derivation of a finite set of ¥, (7)-sentences I'™ with parameters in L, for
some o < 7 to a derivation of I'*, for kK < 7. In contrast to that in case of Stability
we have to employ a collapsing-procedure for 3, (7w + 6)-sentences, i.e. sentences with
parameters in some L, for 0 < 7w and in L4\ Ly, as visualized in figure 11.1.

However, in case of Stability this new issue is not that problematic, since it always
holds # < o and thereby we are able to collapse the interval [, 7 + 6] by a term-
shift-down procedure ¢t — t™7", where t"7" is obtained from ¢ € 7,19 by replacing
all occurrences of L,1s, with § < 0 in ¢ (viewed as a string of Lc-symbols plus the
symbols {L4s |0 < 0} and terms of T;) by Lus.

With respect to the Ordinal Theory and the fine structure theory of the collapsing
hierarchies we just have to face the problem of keeping the notion of a reflection
instance finite. A one-to-one adaption of Definition 2.2.4 to Stability would quickly
lead to reflection instances of infinite length. To avoid this we introduce the notion of
the closure R of a vector R of M-P-expressions. The required modifications in the
analogue of chapter 3 are due to this notion.

IThe denotation “Stability” is explained by the fact that an ordinal & such that L, <1 Luia is
called k + a-stable.
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Figure 11.1.: Parameter allocation in case of single point- and interval-collapsing.
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12. Ordinal Theory for Stability

Just like in the treatment of I,-Ref we employ cardinal-analogues of the required
recursive ordinals to define the collapsing hierarchies which give rise to the ordinal
notation system T(Y).

12.1. O-Indescribable Cardinals

Definition 12.1.1. Let # > 0. A cardinal 7 is called #-II}-indescribable if for any
Py, ..., Py C V, and for all IT}-sentences F(z1,...,7)) in the language of set-theory
L, whenever

V7'r+9 ':F(P1a7pk)
then there exists a 0 < k < 7 such that
Vivo E F(PLNV,,...,P.NV,).

The cardinal 7 is called 9M-0-I1!-indescribable if in the above situation a 0 < x €
7 N9 can be found.

Remark. The notation of #-indescribability can be regarded as a transfinite extension
of the concept of II7"-indescribability as it holds:

7 is 1-TIj-indescribable <« 7 is I1}-indescribable for all n € w,
i.e.  is ITZ-indescribable,

7 is w-Ij-indescribable <>  is II"-indescribable for all m,n € w,

i.e. 7 is totally indescribable.

Notation. To assimilate notations we refer to cardinals, which are IT}-indescribable
as 0-IT}-indescribable cardinals.

Theorem 12.1.2.
O Let T <0 <meLim. Then there is a Apy1-formula ¢ (x1,. .., Tp+3) such that
V‘n’+9 ': (d)n(Pla-",PkaVﬂaaarF—l) x4 Vﬂ+T ': F(Pla"'vpn))v

for every set-theoretic I} -formula F (z1, ..., xx) and any Py, ..., P, C V.. Where
Z1,...,2 are all free variables occurring in F and "F7 is a Godel-set for F.
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® Letn <w and 0 < < € Lim. Then there is a 11} -formula ®,(x1, ..., 2x11),
which is universal for the I1\-formulae, i.e. for every set-theoretic 11! -formula
F(zy,...,z), where x1,...,x, are all free variables occurring in F, and any
Pi,..., P, CV, it holds

V7r+9 ':F(P17"'7Pk)H(bn(P17"'7PkarF—l)7
where "F7 is a Gddel-set for F.

Proof. ® By use of the parameters V. and 6 plus a flat pairing function, which does
not increase the rank (cf. [Dra74], Ch2, §3, 3.11(10)) we can describe V¢ for all
0 < & < 6 within V, 1. Therefore a II!-sentences F holding in V4, can be expressed
equally well as a IT2-sentences holding in V19 by replacing first oder quantifiers Qz by
Qz € V4, and replacing second order quantifiers by first order quantifiers, if 7+1 = 6,
and by Qr € V4,41 if 74+ 1 < 6. Thereby the claim follows by use of a Il,,41-, Xy 41-
respectively, satisfaction relation for IT2-formulae.

@Analogue to [Dra74], Ch9, §1, Lemma1.9. O

12.2. Collapsing Hierarchies based on #-Indescribable
Cardinals

Definition 12.2.1. From now on we denote by Y the minimal cardinal, such that!

Vo < T dk < ¥  “k is f-indescribable”,
VO < T Vk <Y (“kis #-indescribable” — 6 < k).

Moreover we define ©(6) as the least ordinal, which is #-indescribable.
Remark. If § < T it follows ©(0) < Y.

In the following small fraktur letters denote elements of (T x w) U {(0,—1)}. Since
a confusion with elements of T (which are denoted by small Greek letters) can be
excluded we use the symbol < not only to denote the usual ordering of T but also to
denote the lexicographic-ordering on T x w. In addition we use the predicates Succ
and Lim also in the context of (T X w, <) and define 0 := (0,0), —1 := (0,—1) and
(0,m)+1:=(6,m+ 1). Moreover we extend the relation < on T x w by —1 with the
convention —1 < g for ally € Txw. Finally we define (8, m) € C(a,7) & 0 € C(a, 7).

The following Definition is the (canonical) extension of M-P-expressions to elements
of T x w.

Definition 12.2.2 (M-P-Expressions). Henceforth we assume that we have for every
reflection configuration F a symbol Mg. We refer to expressions of the form My®-P,
as M-P-expressions. For technical convenience we also define € and M<%-P,, as M-P-
expressions. Moreover ¢ is also a finite sequence of M-P-expressions with zero length.

IThe existence of Y follows from the existence of a subtle cardinal, for details see [Rat05b] Corollary
2.9.
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Let U be an 0-ary reflection configuration, G a non 0-ary reflection configuration
and M an arbitrary reflection configuration. Let £ > o(U), ¢ > o(G), and v > o(M),

plus R = (M&il)—Pml,...,M(fRii)—Pmi) with my; > ... > m;. Then we define

B (M&%‘)—Pml) if m; =€ for some 1 <1<1,
£ € otherwise.
Ree = (M(<H§:)-Pmk, . M(jéi)-Pmi), my, == max{m; |1 <j <iAm; <t}

Analogously we define the finite substrings Ege, E<Eaﬁzg and for [ > ¢ the finite
sections E(I,E) plus R(I7P]' Moreover we define the (possibly infinite) sets

R .= {M&f?)-Pn ‘ 1<j<i A my>n>mjiypq, where myyy = —1},
J

(ﬁcl)e — (R)

_ [(M5Sh-Py) if for some 1 <1 < it holds m; > € > my 1,
€ otherwise,

(R = {Mafjf)_Pn ‘ M(flé,j)—PnER‘d A n <t}

Analogously to R(I,E) and (R -y we also use the notation (R’Cl)([vg).
The meaning of the M-P-expressions is given by

<7 o
MM —P_1 = €,

M Py = (Riiig)m  if 7= o(M)
M My'-Pw  otherwise,
and
ke 00

K= M<0-P(9’m) k is O-II} -indescribable,
kM P g )
5 = MG*P(g.m)

K MG -Pom)

K is O-II} -indescribable,

V(e [o(U), &) c(x) (K is W%—H—H}n—indescribable,)
Y(¢, 1M €0(G), &) ey x dom(G) )

(k is ‘.mé(ﬁ)—H-H}n—indescribable),

kR o Vik (kEME-P,),

k=R o VM(féj)-Pn e R (k= M(féé)_Pn).

$ ¢ ¢ ¢ ¢

Definition 12.2.3. Let X be a refl. instance. Then we define by recursion on o(X)
par(O(p); Pmi...) = {p,m},

) = {x},

par(¥9;Py;...) == {6, m} UparZ,

par(\II%; M Pui..n) {6,&,¥,m} UparZ.

par(st;. ..

3
M(7)
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Moreover we define X € C(a, ) < parX C C(a,m)and X € C(k) & parX C C(k).

Definition 12.2.4. By simultaneous recursion on a we define the sets C(«, ), reflec-
tion instances X, reflection configurations F, collapsing hierarchies 9, finite sequences
of M-P-expressions Ry and collapsing functions ¥ (all these where appropriate with
arguments and indices).

The class of reflection instances is partitioned in four types enumerated by 1. — 4.
Whenever we define a new reflection instance we indicate by — p., with p € {1,...,4}
of which type this reflection instance is. Clause p of the definition then specifies how
to proceed with reflection instances of type p. in the recursive definition process.

There are reflection configurations, whose first argument is an element of T x w.
To these reflection configurations we refer to as “reflection configurations with variable
reflection degree”, while we refer to reflection configurations whose first argument is an
ordinal or which are constant reflection configurations as “reflection configurations with
constant reflection degree”. Reflection configurations of the former type are treated in
the clauses 1. and 3., while reflection configurations of the second type are treated in
the clauses 2. and 4.

Cla,m) = U C"(a,m), where

n<w
C%a,m) == 7U{0,Y}, and
C™(a, m)U
Y+ w7, € CMa,m) Ay =W + ...+ wim Ay, > 63 U
C’nJrl(a ﬂ.) — {@(5777) |§777 € Cn(aaﬂ-)}u

{T|rk € C"(a,m)NCardNT}U
{O(N) | A € C" (o, 7) N T N Lim} U
{PY X,y € C™(o, ™) Ay < o AU is well-defined }.

0.1. For any A € LimNY we define the reflection configuration G with dom(G) =
(0, co(n)), where [:= (X, 0) and reflection instances

G(m) := (O(\);Pu; €6 ) — 1.

For technical convenience we also define E@( ) = (M<0-Py).

0.2. For any cardinal w < k < T we define the 0-ary reflection configuration and
reflection instance

(k75 Pose;€;0) — 2.
For technical convenience we also define R+ := (M<0-Py).

For the remainder of this definition we refer to the nth component of R as
MgSn-P., .
Rp tn

TThe formulation of closure under + seems to be unnecessarily complicated, but we want + to be
injective.
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1. Let X :=F(m) be a reflection instance of the form
(7 P B3 23 9).

Then we have Ry = (M<°-P(, B) with m < [ € Lim and m > 0 plus m > v, if
R #e.
For o > ¢ we define Mg as the set of all ordinals k < 7 satisfying

1. Clayk)NT =k

2. X, € C(k)

3. k= (RN, R

4. Kk EMz®-Py
From now on we assume 9§ # () and by U§ we denote the least element of .
Moreover we define éq,§ = (I\~/II§°‘-Pm7 ﬁ)
In the following subclauses replace t; by 0 if R=e

1.1. Suppose that @« = ¢ and m € Lim. Then we define the reflection configura-
tion G with dom(G) := (v1,m)c(we) and reflection instances

G(n) := (Tg; Pn;é; X;a+1) — 1.

1.2. Suppose that @« = § and m € Succ. Then we define the 0-ary reflection
configuration and reflection instance

(U P; B X+ 1) — 2.
1.3. Suppose that @ > § and m € Lim. Then we define the reflection configura-

tion G with dom(G) := {(n,(,¢) € (thm)c(%)x[é, a)c(q,§)xdom(]F)c(\p§)
t > n} and reflection instances

G(n, ¢, v) = (U5; M]%(t)—Pn; ﬁ; X;ja+1) — 3.

1.4. Suppose that a > § and m € Succ. Then we define the reflection configura-
tion G with dom(G) = [4, @) c(we) X (m, [)c(we) and reflection instances

G(¢,x) == (Tg; M]%:(t)—Pm; R:X;a+1) — 4.

2. Let X be a reflection instance of the form

Then it holds R, = (M<°-P,,, R) and m ¢ Lim. Moreover we have m > tj if
R+#e
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For o« > ¢ we define the set Mg as the set consisting of all ordinals k < 7
satisfying

1.
2.
3.
4.

Cla, k) NV =k

X,a € C(k)

ifm>0: k= (R m1, Bem_1
ifm>0: k| Mg*Pr_q

From now on we assume MM§ # 0 and by U§ we denote the least element of .
Moreover we define R'\I;Q = (Mg®-Pu_1, Rewm_1).
For the following 2.- subclauses we suppose m = mg + 1 > 0. If m = 0 we do not

equip ¥§ with any reflection configurations and instances. In the following let
to :=t7 if mp > v1 and tg := vy otherwise.

2.1.

2.2.

2.3.

2.4.

2.5.

Suppose that a = 6 plus (E&)ym, = M<°-P,,, and mg € Lim. Then we define
the reflection configuration G with dom(G) = (ro, mo)c(wg) and reflection
instances

G(n) == (0§; Pn;ﬁ<mo;x;a +1) — 1.

Suppose that o = § plus (B)m, = M<9-Py, and my ¢ Lim. Then we
define the O-ary reflection configuration and reflection instance

(U5 Py Bemi Xa +1) = 2.

Suppose that a = § plus ﬁmo = I\/I]Efl—PmO with mg € Lim and Ry is a
reflection configuration with variable reflection degree. Then we define the
reflection configuration G with dom(G) = {(n,(,v,7) € (r2,mo)c(we) X
[0(R1),&1)c(we) x dom(R1)c(wg) [t > n} and reflection instances

G(n, ¢ v ) = (UM (o -Pos Bemps Kja+1) =3,

Suppose that a = § plus Rmo = Mﬂgfl—Pmo with mp € Lim and R; is a
reflection configuration with constant reflection degree. Then we define the
reflection configuration G with dom(G) = (r2,mo)c(we) X [0(R1), §1)c(we) X
dom(Rl)c(\y§) and reflection instances

(G(n, G 77) = (\P?G Mﬁgl(ﬁ)‘Pn; R<m0§ X;a+ 1) — 3.

Suppose that o = § plus ﬁmo = Mﬁfl—Pmo with mg ¢ Lim and R, is a
reflection configuration with variable reflection degree. Then we define the
reflection configuration G with dom(G) = {((,t,7) € [o(R1),&1)c(we) ¥
dom(R1)c(we) [t > mo} and reflection instances

G(¢, v, 7) = (\II§;MC —Pmo;ﬁ<m0;X;a+1) — 4.

Ry (t7ﬁ)
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2.6. Suppose that a = § plus Emo = M]Efl—Pmo with mg ¢ Lim and R; is a
reflection configuration with constant reflection degree. Then we define the
reflection configuration G with dom(G) = [o(R1), 1) o(we) x dom(R1)c(ws)
and reflection instances

G(C ) = (Ui MG, (P Bemei s+ 1) = 4.

2.7. Suppose that o > § and mg € Lim. Then we define the reflection configura-
tion G with dom(G) := (o, mo)c(q,g) X [6, a)c(\p§) and reflection instances

G(n, Q) = (¥g; M}Cg‘Ptﬂ E<mo§X§ a+1) — 3.

2.8. Suppose that @ > § and mg ¢ Lim. Then we define the 0-ary reflection
configuration G with dom(G) := [0, a)c(%x) and reflection instances

G(() = (U§; Mg-Prmgi Ramps s +1) = 4.
. Let X :=TF(m,&, 7) be a reflection instance of the form

(W9; M§

M(g)‘Pm; R;Z;6 4+ 1).

Then we have R"I,% = (My/-Py, R), for some m < [ € Lim and £ < . Moreover
it holds M € Prenfg(X) and m > 0, plus m > vy if R # e.
For ao > § + 1 we define Mg as the set of all ordinals x € E)th/ﬂ(g) N \II% satisfying
L Cla,k)NTY =k
2. X, € C(r)
3. k= (RN m, R
4. k= Mg*-Py
From now on we assume Mg # () and by g we denote the least element of 5.
Moreover we define éq;g = ((EW@(J))>m’ MS®-Py, R).
Let ﬁm§4(ﬂ) = (I\/IS<101—P51,...,ngaj-st). In the following replace s by m if
7 =1
3.1. Suppose that 07 = 0 and s; € Lim. Then we define the reflection configu-
ration G with dom(G) = (s2,51)c(we) and reflection instances

— ~ —

G(n) := (Wg; Pa; ((Rye )(517m), I\/Iﬂfo‘—Pm,R);X; a+1) — 1.

M(7)

3.2. Suppose that o3 = 0 and s7 ¢ Lim. Then we define the 0-ary reflection
configuration and reflection instance

(W55 P (R, (o1 My®-Puw,B);Xja+1)  —2.
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3.3. Suppose that o1 > 0(Sy), 51 € Lim and S; is a reflection configuration
with variable reflection degree. Then we define the reflection configura-
tion G with dom(G) = {(n,(,v,7) € (s2,51)c(ws) % [0(S1),a1)c(we) ¥
dom(S1)c(we) |t > n} and reflection instances

G(n, ¢, v ) := (UF; M, (P

—

(Rt V(or.m)s MF®-Pr, R); X;a + 1) - 3.

M(7)

3.4. Suppose that o1 > 0(S1), 51 € Lim and S; is a reflection configuration
with constant reflection degree. Then we define the reflection configura-
tion G with dom(G) = (s2,51)c(wg) X [0(S1), 1) o(we) X dom(Ry)c(we) and
reflection instances

G(n, ¢, 1) == (¥g; Mél(ﬁ)'Pn;

(Rt V(or.m)s Mg®-Pr, R); X;a + 1) 3.

M(7)

3.5. Suppose that o1 > 0(S1), $1 ¢ Lim and S; is a reflection configuration with
variable reflection degree. Then we define the reflection configuration G
with dom(G) = {(¢,r,7) € [0(S1), a1)c(wg) X dom(S1)c(we) [v > 51} and
reflection instances

G((, v, 1) = (Pg; Mél(t’ﬁ)'Psﬂ
(Rye Voym)s Mi®-Pu, R);Xsa+ 1) —4.

M(7)

3.6. Suppose that o1 > 0(S1), 61 ¢ Lim and S; is a reflection configuration with
constant reflection degree. Then we define the reflection configuration G
with dom(G) = [0(S1), 1) c(we) X dom(S1)c(we) and reflection instances

G(¢,17) = (U5 Mg, (5)-Pous
(Rgs V) Me®Pu, B);Xia+1) =4
4. Let X :=F(¢, 7) be a reflection instance of the form
(U5 Mg -Prmi B Z; 6+ 1).

Then we have FB\I,% = (M@W—Pm,é) for some £ < 7y plus m ¢ Lim and M €
Prenfg(X).
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For a > § + 1 we define Mg as the set of all ordinals x € smgw) N \IJ% satisfying
Cla, k) NV =k

X,a e C(k)

ifm>0: k= (R mo1, Rem1

4. ifm>0: kK = Mg®-Pu_1

w o

From now on we assume 9§ # () and by U§ we denote the least element of .

Moreover we define Rye = ((Ry¢  )>m, Mg®-Pm_1, Rem—1).
M) =

Let ﬁwﬁ

M(7)

= (MS<1"1-P51,...,ngaj—st). In the following replace s by m if
j=1.

4.1. Suppose that 07 = 0 and s; € Lim. Then we define the reflection configu-
ration G with dom(G) = (s2,51)c(we) and reflection instances

G(n) := (¥ Pa; (Rye  )or.m]s M5 -Prnct, Remo1); X;a+1) 1.

M(7)

4.2. Suppose that o1 = 0 and s; ¢ Lim. Then we define the 0-ary reflection
configuration and reflection instance

(W%; Pm§ ((R"P}f,l(a))@hm]’ |\7|]F<~Q-Pm,1, R’<m,1); X; o+ ].) — 2.

4.3. Suppose that o1 > 0o(S;), 51 € Lim and S; is a reflection configuration
with variable reflection degree. Then we define the reflection configura-
tion G with dom(G) = {(ﬂ,c,t,ﬁ) € (52,51)0(@3@ X [O(Sl),al)c(\y%) X
dom(S1)c(wg) |t > n} and reflection instances

G(ﬂ, ¢, ﬁ) = (\Ijgi; Mgl(hﬁ)_Pn;

((RQE )(51,m]7M§Q‘Pm—laﬁ<m—l);x;a+1) — 3.

M(7)

4.4. Suppose that o1 > 0o(S;), 51 € Lim and S; is a reflection configuration
with constant reflection degree. Then we define the reflection configura-
tion G with dom(G) = (s2,51)c(we) X [0(S1), 1) o(we) X dom(Ry)c(we) and
reflection instances

G(n, ¢, 1) = (¥5; Mél(ﬁ)_Pn;

(Rt orm Ms®Puo1, Remo1);Xia+1) = 3.

M(7)
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4.5. Suppose that o1 > 0(S1), 61 ¢ Lim and S is a reflection configuration with
variable reflection degree. Then we define the reflection configuration G
with dOHl(G) = {(C,t, 77) € [O(Sl),al)c(\p§) X dOl’n(Sl)C(\yg) |t > 51} and

reflection instances

G(C7t> ﬁ) = (\I/%§ Mél(t’ﬁ)'Pm;

((R\pﬁ )(sl,m]aM§Q'mel7é<mfl)§x;a+ 1) — 4.

Mi(7)

4.6. Suppose that o1 > 0(S;), 51 ¢ Lim and S; is a reflection configuration with
constant reflection degree. Then we define the reflection configuration G
with dom(G) = [0(S1), a1)c(we) X dom(S1)c(we) and reflection instances

G(¢,7) = (¥x; Mél(ﬁ)‘Psﬁ

(Byg, Jonm)s M5 Pt Bema)iXia+1) =,

12.3. Structure Theory of Stability

In this section we show that 9§ # 0 if « € C(i(X)) and give criteria for < -comparisons
like Ug < WO,

The existence of the universal formulae of Theorem 12.1.2 enables us to express
K = My?-P(r ) by a 10, -formula in V.1 for every 6 > 7 and by a II}, , ;-formula
in VK+T.

In the following we assume a coding of C(«, ) analogue to Definitions 2.3.7 and
2.3.8.

Lemma 12.3.1. Let F be a reflection configuration with i(F) = m and let 7 > Kk € Reg
plus 0 < 8 < k. Suppose rm?;gja’ﬂ is defined. Then it holds:

@ For every (t,m) < (0,0) there is a 119, -formula ¢r(x) such that
K= M§£-P(T,m) & Vg E (™M - N V).

@® For every m < w there is a 11} . | -formula ®g(x) such that
KEMSSPom < Vi = Se(TMs 0 NV,

Proof. Assume w.l.o.g. that there is only one parameter in the reflected formulae
and proceed as in the proof of Lemma 2.3.10, but employ the universal formulae of
Theorem 12.1.2 instead of the universal formula of Theorem 2.1.3. [
Corollary 12.3.2. Let 0 < k and (6, m) > (7,n) then it holds
o k is (MM)-0-I1} -indescribable = K is (M)-7-I1 -indescribable,
® K ': ﬁ = K ': ﬁ Cl.
109



Definition 12.3.3. Let X = F = (m;Py; R;...) or X = F(¢, 7) = (m; Mg/ﬂ(g)—Pm; R;..),
and Y = G(n) = (m; Py R;...) or Y = G(n, &, 7) = (m; Mg/jl(ﬁ,)—Pn; R;...).t Moreover

let V be a reflection instance and § = (M;‘”—Psl, ...) be a finite sequence of M-P-
expressions. Then we define.

rd(S) = sy,
rd(e) = —1,
R'[F —RX :EG Z:EY = E
Rdh(F) := {m -1},
Rdh(F) := {m—1}U{t|m >t >rd(Rem_1)},
Rdh(G) := RAh(G) = {v|37((r,7) € dom(G))},
rdh(X) = m— 1,
rdh(Y) = n,
and
initl(V) := E, where E € Prenfg(V) and o(E) ¢ Succ,
ran (Z) = rang(Z) = {(5 if there. is a refl. inst. (¥9;...) € Prinst(X),
«a  otherwise,
§ if there is a refl. inst. (¥J;...) € Prinst(X)
rang (E) := rang (E) := and E is the refl. config. of Z,
o otherwise.
Remark. initl(V) is-well defined, since we either have V = (x7;...;0) or there is a

uniquely determined E(A) = (©(\);...;T) € Prinst(X).

Lemma 12.3.4 (Well-Definedness of Definition 12.2.4). Let X = (.. .; RiZ:6 + 1)
be a reflection instance with reflection configuration F. Then it holds:

O (a) o(Z)<oX)=0d+1,

(b) R :{(M<0_Pm7é) if X = (m;Pm; R; .. ),

—

(M P, R) for some v > € > o(M), if X = (m; Mg,ﬂ(ﬁ)—Pm; R;...),
(¢) rdh(M(7)) > m > rdh(X) and rdh(M(7)) > rdh(X) if X = (7; Mgﬂ(ﬁ)—Pm; ),
(d) XeC(n),

(e) parX < o(X) =46+ 1.

1.e. F is supposed to be a reflection configuration with constant reflection degree and G is supposed
to be a reflection configuration with variable reflection degree.
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@ VieMy (k= R'qjg AN KkE (Eﬁl)grdh(x))-
© Let Ryp = (MG} -Pe,, -, MG -Pe,). Then it holds for all 1 <i <k:
(a) R; € Prenfg(X) and dom(R;) < a,
(b) & <rang(R;) and (& > o(R;) V Mz%-P,, =M<0-P ),
(c) &, v € parXU {a},
(d) v > rdh(X) and v > ... > v, > 0 plus V(v; > ¢ > v;41)3TE (v €

RAW (R;) A (Bl ))e; = MES-Pe, A (RSl o = M5=-Py),

(e) Jv; €dom(R;) NparX (rdh(R;(7) > v;),
(f) (Rwg)<rancx) = (M5 Prangoy: (Fr) <raneo)

(g) V7 €edomR; (rdh(R; (7)) > ¢; > rd(ﬁRi)) if R; is a reflection configuration
with constant reflection degree,

Proof. The proof of Lemma 2.3.2 provides an adequate instruction how to proceed
here. O

Corollary 12.3.5. The claims in Definition 12.2.4, e.g. “M € Prenfg(X)” in clause
3., are true.

Moreover for every reflection instance Z # (i(Z);Po;...) and every &, such that
OMNY, # O there is a reflection instance X with i(X) = ¥J.

Theorem 12.3.6 (Existence). Let X = (m;...;0) be a reflection instance and 6 < o €
C(m). Then Mg # 0.

Proof. The claim follows analogously to Theorem 2.3.11. If rd(R,) € Lim we have
to make use of Theor§m 12.1.2® and Lemma 12.3.1 ® instead of Theorem 2.1.3 and

Lemma 2.3.10. If rd(R;) = (6, m) with § > 0 < m the claim follows by use of Theorem
12.1.2@ and Lemma 12.3.1@. O

Lemma 12.3.7. Let F be a reflection configuration with vdh(F(77)) =m = (0,m) >0
and suppose k is an ordinal. Let o(F) < B € (a+1)¢(x) and 77,V € dom(F)c(x). Then
it holds

K € Mgz & (a,7]) >1ex (B,7) = Kis smfg(g) -1} -indescribable.

Proof. We proceed by induction on o(F). Let 7= (n1,...,n,) and ¥ = (vy,...,vy).
Case 1, a > (3: Since k € sz;(ﬁ) we have k = M5®-Py, by the fourth proviso of the
definition of the collapsing hierarchy Mp(;). Thus & is Emg(ﬁ)—9—H7171—indescribable.
Case 2, (a,m1,...,mi—1) = (B,v1,..-,vi—1) and n; > v; for some 1 <1i < n:
Subcase 2.1, F(7) = F(m) = (7; Pm;...) for somem, i.e. n = 1: Then we have v = n
for some n < m and m = (0, m). The assumption x € im]?;(ﬁ) implies

“Ch(n), is unbounded in k” A & E (R',fl)n, Rew A K = My *-Py,. (12.1)
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Let F(P) be a II} -sentence in parameter P C V,; such that
Veso F F(P). (12.2)

Owing to Lemma 12.3.1 and the 6-II} -indescribableness of k there exists a kg < k,
which satisfies the conjunction of (12.1) and (12.2). Hence kg € Dﬁg(g) N« and thereby

K is Dﬁﬂé(ﬁ)—9—H7171—indescribable.
Subcase 2.2, F(if) = F(m, &,77") = (U5; Mgy ) Prmi ) and Rys = (M -Py,....) for
some m < [ € Lim: Then we have m = (6, m). In the following let 7 = (¢, n,7").
Subcase 2.2.1, m > n: The proviso k € im%‘(ﬁ) implies that & = M&IW—Pm due to the

third clause of the definition of 9z .. Since we have v/ € dom(IF) ¢,y it follows thereby

that x is Sﬁfw(ﬁ,)-O—H}n-indescribable. In addition we have Cﬁ?(n)m is unbounded in &,

Kk E (ﬁﬁl)n, ﬁ<n and k = M5®-P,. Thus it follows analogously to subcase 2.1 that x

is imf;(ﬁ)—H—H,ln—indescribable.

Subcase 2.2.2, m = n: The proviso k € Qﬁﬁf(ﬁ) implies that x € smg,ﬂ(ﬁ,), since it holds

by definition that Mg . < Smfw(ﬁ,). Moreover we have o(M) < o(F), rdh(M(7’) > m by
Lemma 12.3.4 ®(c) and (&,7") >1ex (¢, 7). Thus it follows by means of the induction

hypothesis and Corollary 12.3.2 that & is Dﬁgﬂ(g,)—G—H}n y1-indescribable. As in the

subcases before we also have Cf,,) - is unbounded in r, x |= (RN, Rey and & =

M5®-Py. Thereby it follows that « is M, ) -6-IT} -indescribable.
Subcase 2.3, F(if) = F(&,7) = (V5; Mgﬂ(ﬁ,)—Pm+1; ...) and R’\I,g = My -Pri1,..2):
Then the claim follows literally as in subcase 2.2.2 by use of the induction hypothesis.
O

Theorem 12.3.8 (<-Comparison). Let X = F(7]) and Y = G(¥) be reflection instances
and suppose k = V§ and w = ‘1/§ are well-defined. Then it holds k < 7 iff

T > 1(X) (a)
or & <i(Y) A (a < BV (F=G A (o) <iex (5,ﬁ))) A X,ae ) (b)
or a>p A (Y, B € C(r)) (c)

Proof. The proof is literally the same as the proof of Theorem 2.3.14. Instead of
Lemma 2.3.13 the Lemma 12.3.7 has to be employed. O

Corollary 12.3.9. [t holds:
O U5 and \If§ are well-defined = (0§ = \Ilg & a=p4AX=Y),

@ o =w+. . Fwim = ((XEC(,B,?T) = al,...,ameC(ﬁ,ﬂ')),

® a=p(,¢) = (acCBm) & n(el(b ),
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O ke CardNY = (ke C(B,m) & kT €C(B,m)),
0 1< \I/§g and \I/§g is well-defined = (\I/§g €eC(B,m) & £<B AEXeC(B ).
@ aspfel(ynm) & afel(ym).

12.4. The Ordinal Notation System T(7)

Analogue to the Definition of T(Z) we define the ordinal notation system T(Y).
Definition 12.4.1. The set of ordinal notations T(Y) is inductively defined as follows:

e 0,T € T(Y),

o if o Nszal +...4+w* and aq,...,q, € T(T) plus m > 1, then « € T(T),

o if = w(n,¢) and n,{ € T(Y), then a € T(Y),

e if x € T(Y)N CardNT, then k* € T(Y),

e if pe T(T)NLimNY, then O(p) € T(T),

e if X,& € T(T) and o(X) < € € C(£,i(X)), then ¥§ € T().

Defining simultaneously the set K (a) analogously to Definition 2.4.2 with the extra
clause K (0©(p)) := K, (p)) we get:

Theorem 12.4.2. (T(Y), <) is a (primitive) recursive ordinal notation system.
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13. The Fine Structure Theory

Theorem 13.0.3 (Path Fidelity). Let X be a reflection instance and suppose U§ is
well-defined. Moreover let Y # (i(Y); 0-Po;...) be a reflection instance with reflection
configuration G. Then it holds

Ugeml = G ePrenfg(X) & B <rang(G) & U5 < 0§ <i(X) <i(Y).

Proof. The proof is essentially the same as the proof of Theorem 3.1.1. There is just
one new subcase in the first case, in which we lead the assumption initl(F) # initl(G)
to a contradiction.

As a new subcase we have to treat the case X = (0(p1);P(p, 0566 Y) and Y =
(©(p2); P(ps,0): 6 6, 1) with p; # pa. We obtain a contradiction by the following argu-

mentation: Since U§ € M§ N zm@ we have U§ < ©(p1),O(p2) and p1,p2 € C(TF).
Thus the assumption ps < p; implies the contradiction O(ps2) € C(a, ¥§) N O(p1) =
Ug, since py € C(p2, ¥§) C C(o, ¥§) and pa < py implies O(p2) < O(p1). The as-
sumption p; < po implies the contradiction ©(p1) € C(5,¥§) N O(p2) = Vg, since
p € Cp1,¥§) C Cla, ¥§) and p1 < p2 implies ©(p1) < O(p2). Therefore we obtain
the desired contradiction for this new case, too. O]

Definition 13.0.4. We define by recursion on o(M)
Tc(M<0-P,) = {M<%-P,},
Te(My-P) = {Myi*-Pm} U Te((Eifg)m)-
Definition 13.0.5. On M-P-expressions we define the binary relation < by
e < M@f—Pm for any M-P-expression M&f—Pm,

Mg -Pm < My-Pm & 37(0(G) <<y A MS7-Py € Te(MyS-Pw)).

We extend this relation to the closures of finite sequences of M-P- expressions R and
S as follows

R < §d = Vm ((ECl)m = (gd)m)'

Remark. Due to Lemma 12.3.4 ®(a),(b) and since ﬁ@(A) = (M<%-P(, ¢)) the operator
Te is well-defined, if m € Rdh® (M). Moreover < is transitive.

Lemma 13.0.6. Let X be a reflection instance with reflection configuration F and
rdh(X) > m. Let k be an ordinal satisfying X € C (k). Then

B EME Py & M P SME“Poy = 5 = My P
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Proof. Follows analogously to the proof of Lemma 3.1.4 by taking into account Lemma
12.3.4®, ® (e) instead of Lemma 2.3.2. O

Remark. Lemma 3.1.5 also holds in the context of reflection instances defined by
means of Definition 12.2.4.

Lemma 13.0.7. Let X = (\Il%; MﬁM(ﬁ)-Pm;R’; ...) be a reflection instance with my =
rdh(X). Then it holds

Roe =(Bge )ome U (Myf-Pum, (Fan)<m)) <mp-
Proof. Let n := rdh(M(7)). Then it holds

R = (R2 )on U (M55Pu, (Fag) <)),

M(7) M(7)

either by definition, if M is an initial reflection configuration, or by means of Lemma
12.3.4®(f) otherwise. Thus the claim follows if we can prove

(Fu)en = (Bi)em & n>m>my. (13.1)

We have n,m € Rdh® (M) by means of Lemma 12.3.4 ®(d) since R&,g = (My,"-Py, R)

—

with [ > m > rd(R) if X is a reflection instance with variable reflection degree, or
R&,g = (M§J1"’—Pm7 ﬁ) if X is a reflection instance with constant reflection degree. Thus
we have (Ry)<n = (Ru)<m since we either have n,m > rd(Ry) if M is a reflection
configuration with variable reflection degree, or n > n,m > rd((By) <) otherwise (cf.
Definition 12.3.3).

Finally we have n > m > mg by Lemma 12.3.4®(c). Thereby it follows (13.1) and
thus the claim. O

Theorem 13.0.8 (Correctness). Let X # (i(X); Po;...) be a reflection instance and
suppose Vg is well-defined. Then it holds:

O For any k, any reflection configuration E, any o(E) < e, and any ¢ € RdhCI(IE)

ME*Pe < (Rib)e = Mg#-Pe = (M5°-P, (Re)<o) ™ < (Rib)<c.

o)<
O For any k, such that C(a, k) Ni(X) =k and X, a € C(k)
K ): ﬁ@§ = KE EDI%

Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X.

@ Case 1, X = (m; Pu: ;.. .) with R, = (M<0-P[*7}§), where either m < I* € Lim
orm = I* € Succ: Then it holds Ryg = (M§®-Pu,, R<m,), where rdh(X) = mo = m if
m < [* € Lim and mg + 1 = m if m = [* € Succ.
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If E = F we must have ¢ < mg and ¢ < a. Moreover it holds (Rg)<e = (Ep)<m, =
ﬁ<m0 since ¢, my € Rdh®(F) and if F is a reflection configuration with variable reflec-
tion degree it holds ¢, mg > rd(]:f[g) and otherwise mg > mg, ¢ > rd((ép)<m0). Thereby
the claim follows.

If E # F there exist a  and a Z such that 7 = ¥J, since E € Prenfg(F). Moreover
the proviso I\N/IEE—Pe < M;?-P, = (R'\f,lg)e then implies |\~/I]§E—Pe < My?-P, = (]:2'\;15)@
Therefore we obtain by means of the induction hypothesis ’

(MEE‘PM (EE)<e)Cl = (éélg)_e = (R’l(fll%)gt'
Case 2, X = (09; I\/Ig,ﬂ(i)-Pm; R;.. .) with R&,; = (MI?,HW-P[, é), where £ < 7 and either
m < [ € Lim orm = [¢ Lim: Let mg := rdh(X). Then it holds mg = m if [ € Lim and
mp + 1 = m elsewise. In addition we have ﬁ@§ = ((ﬁ\y&w_)bmo, |\7|§“—Pm0, Rewmy)-

If ¢ < mg the claim follows as in the first case. So let us assume ¢ > mg. Then
we have M5¢-P, < Ms?-P, = (Eg% e = (é;%ﬂ(g))e. Thus we obtain by means of the

induction hypothesis applied to M(#7) and Lemma 13.0.7

(I\NAEE'Pev (ﬁE><e)C1 = (ECIE 7 )Se = (ﬁolé 7 )[e,mo) U ((M@g'Pm’ (EM)<m)Cl)Smo-
Wy (7) W (7)
(13.2)

Moreover we have I\N/II§JIE—Pm < My"-Pp = (R;lé)m and m € Rdh® (M) by Lemma
Z
12.3.4®(d). Thereby we obtain by the induction hypothesis applied to Z

(M5E-Pon, (Fng) <o) D) <y < (Bl )<y < (5l ) <. (13.3)

Combining (13.2) and (13.3) the claim follows by means of the transitivity of <.
@ If X = (m; P . . .) the claim follows by use of Lemma 13.0.6.
If X = (09; I\/Iﬁ,ﬂ(ﬁ)-Pm; R;.. .) we show at first

kERee = KEMy,. (13.4)

By definition we have x |= ]3@,}%, which implies « = (ﬁwg( )s>me- Moreover it follows by
M(7) - N
means of @ plus taking into account Lemma 13.0.6 that x = ((l\/|1\</f—|:’m7 (Ru)<m) ) <mg
(for more details also consult the proof of Lemma 3.1.6 @ on page 36). Thus we have
K= R&,g by means of Lemma 13.0.7.
M(7)

In addition the provisos C(a, k)Ni(X) = k and X, a € C(k) imply C(&, x)Ni(M) = &
and M(7),¢ € C(k) by means of Lemma 3.1.5. Thus we obtain k € zmgﬂ(ﬁ) by use of
the induction hypothesis and therefore we have proved (13.4).

Ask | éql§ also implies that x = (ﬁglg)mo,ﬁ<m0 and Kk = My ®-Py, it follows that
K € Mg. O
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13.1. The Domination Theorem

Definition 13.1.1. Let M< -P1, be an M-P-expression, R= (M<P1 Pevenn, M<m P.,)
be a finite sequence of M- P expressions and D be a reflection conﬁguratlon Tilen we
define
(M=Ep, )P o= [ M55 P if M5E-Pry € Te(Mif-Pn)
e € otherwise,

(B = (M57'-Pe ), (M7 P )P,

Lemma 13.1.2. Let X # (i(X);Po;...) be a reflection instance and suppose ¥§ is
well-defined. Let E € Prenfg(X) be a reflection configuration and € > o(E) plus ¢ €
Rdh®(E). Then it holds for any g < min{rd(ﬁwg), e} and any D € Prenfg(E)

(M5=-Pe, (Fe)ee) )y 2 (Bil)<e = ((M5=-Pe, (Fe)<e) )2, = (52,
Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X and P := (Mg*-P., (Rg)<.) .

If X is an initial reflection instance, i.e. o(X) = 0 or o(X) = T then we have nothing
to show, since there is not any D € Prenfg(X).

Case 1, X = (W3; Py; R ...): Tt holds Rys = (M<0-Py, R), where either m < [ € Lim
orm = [ ¢ Lim. Then we have Rys = (M5®Pu,, Rcm,) with rdh(X) = mg = m if
[ € Lim and mg + 1 = m otherwise.

If E = F we must have ¢ < mg and ¢ < a. Moreover it holds (Rg)<. = (Ep)<m, =
R, since e, mg € RAh®(F) and if F is a reflection configuration with variable reflec-
tion degree it holds ¢, my > rd(Ry) and otherwise mg > mg, ¢ > rd((Ep)<m, ). Thereby
the claim follows.

If E # F then it follows E € Prenfg(Z) and the proviso P<g < (R51§)Sg implies
P<g = (R \I,l<;)<g since o(E) < o(F). Therefore we obtain by means of the induction

hypothesis apphed to Z
%HSDQ = (Rl; )]I<Dg = (R\I/C‘)<g

Case 2, X = (0); I\/Ifw(y P B;...) with ﬁ\pg = (My;”-Py, R), where € < ~ and either
m < [ € Lim orm =[¢ Lim: Let mg := rdh(X). Then it holds mg = m if [ € Lim and
mp + 1 = m otherwise. In addition we have ﬁg,§ = ((R\Ps )>mos M§Q-Pmo»ﬁ<mo)~

()

If g < mg the claim follows as in the first case. So let us assume ¢ > g > mg. At
first we observe that we cannot have [E = [F, because the assumption E = FF leads to
the following contradiction:

Prov.

Def. ~ ~
<y _ /pcl <e _ D cl _ n<é
My -Pmot1 = (Bys)mot1 = Me“-Pugi1 = Pugr1 2 (Byg)mo+1 = My -Pmg 1.

Thus we have E € Prenfg(Z). Now we show that then we also must have E €
Prenfg(M).  The assumption E ¢ Prenfg(M) implies M € Prenfg(E) since
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E,M € Prenfg(Z). Thus we obtain by use of the induction hypothesis applied to

Z—note that P<y = (R’ff}%)q implies P, = (R’élskm—the following contradiction:
< < < s)<

Prov.

M5 P = (Bgm " P = (Rfe)m = M -Pu.

Thereby we have g > mg and E € Prenfg(M). To obtain the claim we want to apply
the induction hypothesis to M(7). In the following let R := (M@E—Pm, (EM)<m)C1. We
have

Peg < (R )<g = (R’E,%d(d))[mmo) U (R )>mos (13.5)
and
R;IE = = (Rélﬁ = )>m0 U mgmo; (136)
(%) (%)

by Lemma 13.0.7. Thereby we have to prove
P<mo X Remo- (13.7)
The provisos imply
Pem = (i) <o (13.8)
Thus we obtain by the induction hypothesis

”%m - (ﬁglg)ﬂgm for any D € Prenfg(E). (13.9)

Moreover we have I\N/I@f-Pm =< My"-Pn = (ﬁ;lé)m and M € Prenfg(Z) plus m €
Z

Rdh® (M). Thus it follows by means of Theorem 13.0.8 ® that %t < (§$15)<m. Thereby
s)<
we obtain by the induction hypothesis applied to Z

R = (R’\;lg)]zm for any D € Prenfg(M). (13.10)

To prove (13.7), let (Rg)<. = (M(<]E511)-Pel,...,M(<]E5l‘)-Pel). Now let mg > € > ey. If
E = M it holds rd((Rg)<.) = rd((Ru)<m) < m since e,m € RAh® (M) and thus we
have e, m > rd(Ry) if M is a reflection configuration with variable reflection degree
or rdh(M) > e,m > rd((ﬁM)<rdh(M)) otherwise. Thus we have P, = I\N/II§JI*5—Pm =

(é;tx,)m = M;5-Pyy and thereby & < . Thus it follows

Pe = M5=-Pe < My;"-Pe = Re. (13.11)

If E # M we must have E € Prenfg(M). Then it holds

(13.8)

Pe = MgS-Pe = M5™-P¢ < (R\;‘g)]fo 29 Ry <3, (13.12)
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since Eq € Prenfg(E) C Prenfg(M).
Now suppose mg > £ and ¢; > £ > ¢;4; for some 1 < j < [, where ¢;41 := 0. If

MG -Pe, = M<O-P it holds e = M<0-Pe < Re. Tf M-, # M<O-P, we have

]E (13. 9)

mé ‘333

(Rgs)e "27 Ry <9, (13.13)

since E; € Prenfg(E) by Lemma 12.3.4®(a).
By means of (13.11), (13.12) and (13. 13) it follows (13.7), which in collaboration
with (13.5) and (13.6) provides P<4 < (R c )<g- Since E € Prenfg(M) we obtain
M)

by means of the induction hypothesis applied to M(7)

;'B[g mo) = (12, 7, )[g mg) for any D € Prenfg(E). (13.14)

M( )

In addition (13.8) and the induction hypothesis applied to Z provide

P2, = (R @s)ﬂimo = (RE% )2m, for any D € Prenfg(E). (13.15)
Combining (13.14) and (13.15) the claim follows. O

Lemma 13.1.3. Let X # (i(X); Po;...) be a reflection instance with rdh(X) = my =
(0, mo) and suppose that U§ is well-defined plus m§ := max{0,mo}. Let E € Prenfg(X)
be a reflection configuration and o(E) < & < rang(E) plus ¢ € Rdh(E). Then it holds
for any k, such that C(a, k) Ni(X) =k and X, o € C(k)

K= |\~/|I§5—|3’67 (é@%)« & |\~/|]§E—Pe £ (R'E,lg)e = K is m%-@-ﬂ:ns -indescribable.

Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X and let F(P ) be a II}, s-sentence in parameters PcC V., such that
/{—0—9 ': F( ) . . .

Case 1, X = (m;Pw; R;...): It holds Ry, = (M<P-P( R), where either 0 <m < [ €
Lim or 0 < m = [ ¢ Lim. Then we have R\p;{x = (|\7|§°‘—Pm0,]:2'<m0) with my = m if
[ € Lim and mg + 1 = m otherwise.

_ Subcase 1._)1, ¢ < mg: Then we must have E # F as otherwise we would have
Mg"-Pe < (Rgh)e = Mg®-Pe, since ¢ € Rdh®(X) and ¢ < rang(E).

Therefore we have o(E) < o(F) and thereby o(FF) € Succ. Thus there is a reflection
instance Z and a § such that m = ¥J. Let rdh(Z) = (6, n0). By means of the provisos
Kk E Mge-Pe, (R\f,l%)@ and Mg°-P, £ (Rg,lgg)e we also have k = Mg*-P., (R‘Ic}lz)q and

Mse-P, 4 (R’gg)e. In addition it follows from Lemma 3.1.5 that C(6, k) Ni(Z) = & and

7,6 € C(k). Moreover we are allowed to apply the induction hypothesis, but thereby
we obtain that & is 99-0o-11 —mdescrlbable which is absurd since x < i(X) = 3.
Thus the case ¢ < my cannot occur
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Subcase 1.2, ¢ > mg: Then k = Mg*-P 27(R\I,a) <c implies that s is 6-II,, .-
indescribable. Moreover we have

Cla, k) Ni(X) =k, X,aeCk), rE(RBmy, Rem:
K= My®Pn, and Viig | F(P). (13.16)

Lemma 12.3.1® in combination with Lemma 12.1.2® shows, that we are able to
express the statements of (13.16) by a H}no 41-sentence in Vi, 9. Thus it follows by
means of the 6-II}, . -indescribability of «, that there is a ko < & which features
(13.16). Therefore  is W%—Q—H#S—indescribable by means of Theorem 13.0.8@.

Case 2, X = (¥; Mg/ﬂ(u) P R;...) with R:w = (My-Py, R), where & < ~ and either

m < [ € Lim orm =[¢ Lim: Let mg := rdh(X) Then it holds my = m if [ € Lim and

mg + 1 = m otherwise. In addition we have Rq,a = ((R‘I’fiﬂ<~))>m°’ M?O‘ Pugs Bemo)-

Subcase 2.1, ¢ < my: Then we must have my > 0, since MEE—P,l =¢e = (RE,Q),l,
and the claim follows by the same considerations as in subcase 1.1.

Subcase 2.2, ¢ = mg +1: fE =T th(in F is a reflection configuration with vari-
able reflection degree and k = Mg°-P, (R,f,lg)g implies that x = M5®-Py 1. Since
F(mg + 1,&,7) € C(k) and rdh(F(mg + 1,£,7)) = mg + 1 it follows by Lemma 13.0.6
that % f= (B)mer1. Thus k is Mgy ) -6-IT%, , -indescribable since (Rf)me41 =
M@W—Pmo+l. Therefore the claim follows analogously to subcase 1.2.

If E # F we have £ = Mg-Pe, (R§l)<c and Mg=-Pe £ (Rh)e = (RS ). =

Viso)
I\~/I§,H§—Pe, either by definition if M is an initial reflection configuration or by means of
Lemma 12.3.4®(f) and Lemma 13.0.7. Thus we cannot have M5-P, £ Ms;7-P, since
otherwise we would obtain a contradiction as in subcase 1.1 by use of the 1nduct10n
hypothesis. Therefore we have M<€ P. 2 M<£ P. but M<€ P, < My,"-P.. Thus it
follows that E =M and £ < € < ~. Thereby s | ME -Pe, (RW§)<Q implies that k is

3
SDtM(l/

Subcase 2.3, mg +1 < e < rd( e ): Let |\~/I]§E—Pe = MEOEO—PQ. We must have
()

MEOEO—Pe # M<C-P, (and thus g9 > o(Eg)) since otherwise we would have |\~/I]§E—Pe =
(ﬁ@§)e If Eg = FF then the claim follows readily as in subcase 2.2. Therefore let us
assume Ey # F in the following.

Subcase 2.3.1, M ¢ Prenfg(Eg), i.e. Eg € Prcnfg( ) By the provisos we have
K= (R\Iiiaw))(e»mo%(R‘fllg)ﬁmtr Moreover it holds M5*-Pyn < My7-P = (R\pé)mv

-0-I1}, ,+1-indescribable and the claim follows analogously to subcase 1.2.

<

since m > rd(R). Thus Theorem 13.0.8® provides that ((My*-Pp, (RM)<m) Dem mo
(Bgy) <mo < (Rl )<y Thereby s |= (gl ) <m, mplies s [= (Mi5-Po, (Fyr) cm) ) <in
due to Lemma 13.0.6. By means of Lemma 13.0.7 it follows

K Mg2e- Pe,(R J<e & Mg-P. £ ( R Ve

M[( ) M(V)

Moreover we have by means of Lemma 3.1.5 that C(§, k) N i(M(¥)) = k and

120



&,M(V) € C(k). By proviso we have gg < ran§(Eq). If rang(Eq) # ranli,ﬂ(ﬁ) (Eo)
we must have Eg = M and ¢y > &. Then the claim follows as in subcase 1.2. If
rang (Eo) = ranéﬂ(ﬁ) (Eo) we are allowed to apply the induction hypothesis to M(7) and
obtain that x is Smgﬂ(g)—H—H}noﬂ—indescribable, since rdh(M(%)) > mg due to Lemma
12.3.4®(c). Therefore the claim follows analogously to subcase 1.2.

Subcase 2.3.2, Ml € Prenfg(Ep): Suppose ¢ = mg + 1+ 0. We proceed by subsidiary
induction on d. So, let us assume the claim holds for all ¢/ = mg + 1+ 0" with ?/ <.

The proviso k = MEOEO—Pe implies £ = (R, )<. since g9 > o(E).!

At first we consider the case that ((Mg=-P., (Rey)<e) Mo < (R:f,{i )<c. This implies
((MEOEO—PQ,(ﬁEO)<e)CI)<mO+1 < (ﬁ$15)<m0+1 since o(Eg) < o(F). Moreover we have

< s)<

M € Prenfg(Eg) and Eg € Prenfg(Z). However, then we obtain by means of Lemma
13.1.2 the following contradiction

assump. —

((MIEJEO_PM (EE0)<2) 01)1214104_1 = ((M]EJEO_PM (EE0)<2) Cl)mo-l-l = (REIIQ)mo-H
= My -Prgi1 < My -Prg 11

= (Rgh o1 27 (M5°-Pe, (By) <o) iy

Therefore we must have ((Mg:°-P., (RE,)<e)?) e £ (RE,%)«. Let (Rg,)ce =
(MEIEI—PQI,...,MELEL—PEL). Then there exist a 0 < j <[ and an ¢ > ¢} € Rdh*(E;)
such that Mgfj P £ (ﬁ$1§)e; and k = l\/l];;j P, (ﬁ$1§)<e;. Furthermore it holds by
Lemma 12.3.4 that E; € Prenfg(E) C Prenfg(F) and ¢; < rang (E;) = rang(E,), where
& = ran§ (Eo).

Thus & is m%-H-H}ng—indescribable either by subcase 2.1, if ¢/ < mg, or by subcase
2.2.2,if mp + 1 = ¢} or by subcase 2.3.1, if mg + 1 < ¢’ and M ¢ Prenfg(E;) or by the
subsidiary induction hypothesis, if mg + 1 < ¢; and M € Prenfg(E;).

Subcase 2.4, (1,e) > (01,s1): Then the assumption x |= I\N/IEE—T—PE, (ﬁ@§)<(7-,e)
implies that r is 6;-1I} . +1-indescribable and the claim follows just like in subcase 1.2
with R replaced by ﬁm§ O

Theorem 13.1.4 (Domination for Stability). Let X and Y # (i(Y); Po;...) be reflection
instances and suppose that Vg is well-defined plus 8 € On. Then it holds

vgeml = ﬁg@ < R,

Proof. This proof runs in the same vein as the proof of Theorem 3.2.4 by use of Lemma
13.1.3 instead of Lemma 3.2.3. O

1For a more detailed argumentation consult the proof of Lemma 3.2.3, subcase 3.3.2. on page 39.

121



14. A semi-formal Calculus for Stability

A look at the Reflection Elimination Theorem 15.2.4 which we want to prove, reveals
that this theorem becomes false, if the sentence —|’5M§(X) () occurs in T', because it
must hold ’5M§(X)(n) if Kk € , MY for any reasonable formalization of ngz(X).

To ban such sentences from an appearing in the Reflection Elimination Theorem we

define the compound language ﬁ%s(r).

14.1. The Compound Language L‘%sm

Definition 14.1.1 (The Languages Lrg(r), EES(T), and L%S(Y)). We define the lan-
guage Lrs(v) analogously to the language Lrg(z) and the L g(v)-terms analogously to
the Lgg=)-terms, but with the proviso that £ =) is replaced by ,Cg in the definition.
Therefore the only predicate-symbols of Lrg(y) are € and ¢.

We define the classes of E%S(T)—terms and E}S(T)—terms as the class of Lrg(r)-
terms.

The class of E}}S(T)—sentences is the smallest class of formulae which contains the
Lrs(r)-sentences and for every x € T(T) with R, = (M<O—P(9,m), ...), any n < w,
any t € (Trto U{Lkto})™ and any E*RS(T)—terms $1,...,8, the primitive formulae
(ﬁ)fMﬁ(sl, ...,8p) and is closed under the boolean operations plus bounded (by an
E}‘%S(T)-term) quantification.

In the same vein we obtain the class of E%S(T)—Sentences from the class of [,}‘%S(T)—
sentences by adding for any reflection instance X with i(X) = [, 7+0] for any o > 0o(X),
any 7 < m,any n < w and any t = (t1,...,tn) € (Tr40 U{Lrt0})" the n-ary predicate
symbols (=), 'Mg.

Remark. Obviously we have Lrg(yv) C ﬁj{s(r) - E%S(T). In the following we refer

® ®
to LRS(T)—sentences as sentences and to LRS(T)—terms as terms.

Definition 14.1.2 (Term Shift Down). Let k < m and ¢t € Tr4- U {0,1}. Then we
define t™7" by recursion on the build-up of ¢ by means of the following clauses

"R =t if |t| <mworte{0,1},
(Lpys)™ " = Luys forall 6 <,
{2 € Loys | Fla,8)5+ 17" i= {w € Loys | Fla,5™7%)k )

Let T C T4 be a set of terms. Then we define T™% := {t77" |t € T}.

122



Definition 14.1.3. We define the transfinite content of ordinals, terms and sentences
as in the context of T(Z). The same applies for the definition of the characteristic
sequences and the definition of the term and formula rank of sentences of ﬁ% S(1)* Let

:= max{rnk(r;) |1 < i < n} + max{mk(t]7°)[1 < j < n} +n+5,

t=(t1,...,t,) and 7= (r1,...,7,). Then we define for the new predicates
K(M(7) = k(1) U {m} UK(),
K(FMg(7) = () U {7, 0} Upar X UK(F),
M () =\ (7 =), g ()
Mg () = V(= ™) ne g ofl1
)
)

= max{rnk(r;) |1 <i<n}+ max{rnk(t;-HO) [1<j<n}+n+5.

Notation. In the context of the language E%S(Y) we slightly modify the complexity
classes of sentences. More exactly, we extend the class of elementary-IL, (7)-sentences
(cf. Definition 4.1.4) as follows:

A sentence F' is elementary-II,, () if it has the form

(Va1, €Lr ... Vo1, €Lg) ... (Qn¥n, €Lx,...,Qur, €Ly)

F(@1y, 0 T1g sy Tngs e oo Ty )

where the n quantifier blocks in front are alternate and F(Lo, ..., L) is Ag(m). Anal-
ogously we define the elementary-X,, (7)-sentences.

We redefine the set of I, ()-, 3, (7)- and A}-sentences by use of the above extended
version of elementary-IL, (7)- and elementary-%,, (7)-sentences.

In the following we refer to a IL,1(m) sentence F' as F(F1,...,Fy). In this de-
notation the Fi,..., F,, represent exactly the elementary-II, (7)- and elementary-
I1,,(7)-subsentences of F and for 1 < i < m it holds F; = (Vz;, € Lr... .V, €

Lz)F{(xi,,... %, ). Therefore we have F(F/(t1),...,F!,(tn)) € Z,(n) for all t =
(e fon) € (T X x (T,

Definition 14.1.4. We let IL,,(k+0*) :=II,,(x) and for 0 < € < x we define I, (k+6*)
as the smallest class of E%S(T)—sentences which contains the Aé(n)—ﬁ%s(r)—sentences
plus the I, (k + 9)-£’1‘%S(T)—sentences and is closed under the boolean connectives Vv
and A.

Analogously we define the class X, (k + 6*).

fHere and in the following we write ™% = 7 for the sentence Al,(t7~" = r;) and we let

7= {ri,....rn}.
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14.2. Semi-formal Derivations on Hull-Sets of T(7)

Notation. To be able to define the reflection rules for Stability in a uniform way we
introduce the following notation

pio(m+6) if6=0,

m,,. 0) =
mi2(m+6) {HW(W_FQ) otherwise.

Notation. Let F be a reflection configuration, then we define

{(n,7) € dom(F) |n > (§,m)} ifFis arefl. config. with variable
dom(F)>(@m) .= reflection degree,

dom(TF) otherwise.

Definition 14.2.1. Let R be a finite sequence of M-P-expressions. Then we define

R’cl' . (§C1)<t1 lfé: (M<O-Pt1,...),
(Beh, e (BN <e) if B= (MSF-Py,,..0).

Definition 14.2.2. Let H be a hull-set and I', A be finite sets of E%S(T)—sen‘cences.
Suppose F'is a E%S(T)-sentence, such that § denotes exactly all terms occurring in F

of stage greater than or equal to m. Then we define H I% T’ by recursion on « via
{a} UK(I) CH

and the following inductive clauses:
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H I% A Fy, for some to €T

(V) o ap < a
H |7 ANV (F)ier
N H[t]bf,ﬂ forallt €T o < a
H |T Aa /\(Ft)tET
(Cut) HIS-AF HES-A-F ap < a
H |% A rnk(F) <p
ag
(Hm-';—2(77 + 9)‘Ref) a " |T-»A) F(g) Fell o <9*a
HIE A, 32" (FML(2) A F(2)) €I, o(m +67)
if there is a reflection instance (7; P (g,m);. . .)
(+ Mg )T, 55 (7 + 0)-Ref)
H l% Av F(g) oy < o
HIG A, 327 (M () A F(2)) F el o(m +0%)
for all 7 < 7, if there is a reflection instance (; Mg/ﬂ(ﬁ)-P(gym); cl)
(TMﬂi(ﬁ)_HkQFQ (7T + 0)—Ref)
oy < o
HIET A F(5) F €Tyyy(m+0%)
o e > ¢eC(m)
H |T Av 3z (TM]K(ﬁ)(Z) A F(Z)) 77 c dom(K)éEZ’)k)

for all 7 < 7, K and (o, k) ¢ Lim if there is a reflection instance (7;...), such
that MH§C+1—P(J’]€) =< (R},ﬁl,)(g’k)

Remark. The propositions of Lemma 4.2.6 and Lemma 4.2.9 also hold in the context
of T(T).

14.3. Embedding of Stability

Instead of embedding Stability it is more convenient to embed the theory KP augmented
by the axiom (Stab), where

(Stab) Vz3a€Lim 3x€Lim (o < kAx € Lo AVYE Ly (Saty (y) "+ — Saty(y)"~)).

Here Saty(z) denotes a Xj-formula, such that for all transitive, rudimentary closed
sets A1, As it holds

A1 <1 A2 = VZEAl (Satl(z)A2 — Satl(z)Al).

Such a formula exists, see e.g. [Dev84], Ch.VI, Lemma 1.15.
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Theorem 14.3.1. The theories Stability and KP+(Stab) have the same proof-theoretic
ordinal.

Proof. At first we show that Stability + V' = L and KP+(Stab) are equal in the sense
that every axiom of the first one is a theorem of the latter one and vice versa. Therefore
we have to show that in every model of Stability+V = L it holds (Stab) and contrariwise
that in every model of KP+(Stab) it holds V = L, (Lim) and Va 3k >a (L, <1 Lita)-

To obtain (Stab) in any model of Stability + V' = L choose to a given z a § > w such
that € Lg and let o := S+ w. Such f§ and « exist since we assume V = L and argue
in a model of KPw. Thus we obtain a k£ > a such that L, <1 L,t4. By [Bar75], Ch.V,
Theorem 7.5 it holds that every stable ordinal is admissible. Thereby x is admissible
and thereby we have k € Lim. Thus it follows (Stab).

Vice versa it is obvious that any model of KP+(Stab) satisfies V.= L. To proof
Va3k > a (L <1 Leta) let a be given. By (Stab) there exists a A € Lim such that
a € Ly and a A < k € Lim such that VyELN(Satl(y)L“+* — Satl(y)LN). Since Ly
and Ly are rudimentary closed it follows L, <; L1 and thus it follows by [Bar75],
Ch.V, Proposition 7.4 that L, <1 Lyiq.

To show (Lim) choose by (Stab) to any given x an «, such that € L,. Due to
(Stab) there exists an admissible k > a. Thus we have found an admissible x such
that x € L.

To finish the proof we observe that Stability F Stability” and therefore the theories
Stability and Stability + V' = L have the same proof-theoretic ordinal by Theorem 7.10
of [Sch93]. O

Unfortunately the axiomatization of KP4(Stab) makes use of the X-function symbols
+ and A.Le. Thus an embedding of KP+(Stab) requires L%S(T)—derivations of all
instances of these functions, i.e. let F(z,y) be the X-formula used in (Stab) to describe

the 3-function A{.Lg¢, such that F(«,z) <& « = L,. Then we have to proof a theorem
like ”? F(ar, Ly) Y, for every a < Y, where o denotes a (canonical) E%S(T)
a.

To proof such a theorem in full detail is a tedious and extensive task. As we are
not intrinsically interested in the theory Stability, but rather use it to present proof-
theoretic techniques (fine structure of the collapsing hierarchies, Reflection Elimination
Theorem) required for a treatment of even stronger theories (set-theoretic analogues
of (parameter-free) I13-comprehension), whose axiomatization does not make use of
Y-function symbols, we just outline how an embedding of these ¥-function symbols
can be obtained, but omit most of the proofs.

-term for

14.3.1. Embedding of Ordinal-Addition and \{.L,

Notation. In the following we use Ord(z), Succ(z), Lim(x), Reln(z), 15°(z) as abbre-
viations for £(€)-formulae, which describe that x is an ordinal, a successor ordinal, a
limit ordinal, a binary relation or the first argument of an ordered pair, respectively.
Moreover we write S(z) for the successor set of z, i.e. x U {z} and we use small Greek
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letters to denote variables of £(€) which range over ordinals. In addition we extend
the notation of Definition 4.3.5 in the following way:

”? I & H[] w I' for every hull-set .

Definition 14.3.2. Let « be an ordinal. Then we define the £%S(Y)—term a- as follows:

Ly if a=0,
o= ¢ {z € Ly| Ord(z) V (Vz€z Ord(z) AVz(Ord(z) = z € 2))} if a € Succ,
{z € Ly| Ord(z)} if € Lim.

Corollary 14.3.3. Let a be an ordinal. Then it holds

Ii Ord(a'), I1 Succ(a®) if a € Sucec, Ii Lim(a) if « € Lim
and I1 (a+ 1) =S(a).

To keep the RS-embedding of the ordinal-addition and A{.L¢ as simple as possible,
it is convenient to assume that the defining £(€)-formulae of these functions make use
of binary relations (which are indeed functions) instead of functions. Thereby we do
not have to give an RS-proof of the uniqueness of these functions. Therefore we put:

Definition 14.3.4.

Ri(r,k,a) := Reln(r) A Vzer(1*(z) € S(a))
A (0,5) €r A Vz((0,2) €r — 2 =kK)

A V(f,z)€r<(£ €Succ —» Iy((—Ly) erAz= S(y))) A
(f € Lim — (VzOEZ &€ Hy((fo,y) ErAz € y)
AVE EE Hy((éo,y) ETAyEz)))).

By use of this formula we define the £(€)-formula
(k+a=a) = Irez(Ri(r,k,a) A (o,z) €T).
Remark. Obviously in every model of KP it holds k + « = « iff x is the ordinal x + «.

Lemma 14.3.5. For every ordinal o it holds

e (5 + ar = (s a)) e
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Proof. The claim follows by induction on a by employing Corollary 14.3.3 and making
use of the E%S(T)—terms:

tro = {x € Lss x= (o,m-)},
trgir = {z € Lyspia 3r<R+(r, KB A
(ver v a(B.er no=(B+1)50))))}
try = {:v € Luiris | XTI (Ry(r ) A zET)

\Y EIz(:r =\, 2) A

Vzpez I eN Ely(y: K +E&Nz € y) A

VEeX Jy(y=r +EAY € z))}
as witnesses for r, if « =0, « = f 4+ 1 or « = A € Lim, respectively. O
Definition 14.3.6. Let z = Def(y) be an £(€)-formula which states that z is the
set of all subsets of y which are y-definable, i.e. the set of all subsets a of y, such
that there is an £(€)-formula F(z,Z) and si1,...,8, € y such that « = {z € y|y =
F(z,s1,...,8,)}. Then we define

Ry(r,e) := Reln(r) A Vzer(1*(z) € S(o))
A (0,0) er A V2((0,2) e — 2 =0)

A V(ﬁ,z)€r<(§ €Succ —» Iy((—1y) €ErAz= Def(y))) A
(5 € Lim — (vZoez &0 €€ Iy ((Coy) €7 A 20 € y)

AVE €€ Ty((Goy) €T Ay € 2) ))>.
By use of this formula we define the £(€)-formula
lo,x)* == Frez(Re(r,a) A (a,z) €7).
Lemma 14.3.7. For every ordinal o it holds
”T é(a',La)L“”.

Proof. This proof runs in the same vein as the proof of Lemma 14.3.5, but instead of
employing Corollary 14.3.3 we also have to prove

”? Loy1 = Def(Ly)"++  for every a € ON. (14.1)
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An economic way to prove (14.1) is to assume that z = Def(y) is exactly the formula
given in [Dev84] on page 67, and to elaborate an RS-Version of Ch.1,9. of [Dev84] up to
Lemma 9.11. By this we mean to choose canonical [Z%S(T)—terms for the sets given there

as codes for the language £(€) (in [Dev84] denoted by LST) and to prove RS-versions
of the lemmata given there. E.g. assuming an enumeration (vg, vy ..., v;,... |i € w) of
the free variables of £(€) the (canonical) ﬁ%S(T)—term for the code of the variable v;
is (v;) :=={zx € Liy1|x = {2} Vo = {2,4'}} and the (canonical) E%S(T)—term for the
code of an E%S(T)—term t={x€Ly|F(x)}ist:={x € Lot1|z={3}Vva={31t}}
Proceeding in this vein the RS-version of Lemma 9.1 of [Dev84] reads as

P~ Vbl((v;)7), F=Const(f), F~PFml(P),

if (v;)* is the canonical term for the code of v;, £ is the canonical term for the code of
t, and P* is the canonical term for the code of a primitive formula.

More generally all lemmata of Ch.I,9. of [Dev84] of the form “A, B, C are %"
have an RS-analogon like that of Lemma 9.1. Moreover lemmata of the form “F(x) is
APS” provide propositions of the form Ii Fs(t) and Ii Fy(t)I> for all appropriate
terms t* and every A € Lim with w, || < A, where Fs, Fy1 are the provided - and
[-formulae for F. E.g. Lemma 9.6 “The LST formula Fml(x) is APS.” turns into

Ii Fml(F*)* for every £%S(T)—term F*, which represents the code of a formula and
every w, |F"| < A € Lim.
By use of this RS-versions up to Lemma 9.11 we obtain for every a and every L(€)-

formula F(vg,...,v,) plus the term f((vo)",..., (vo)")" of the code of this formula,
that

”? Vo€ Lq ...V, € Lo (F (o, . .. ,xn)Ee & Sat(La, f(Zo, - .. ,j’:n)')L““.

Finally we are able to prove (14.1) by employing this proposition. O

14.3.2. Embedding of the Axiom (Stab)

Since we have already proved embedding theorems for all axioms of KP and for pure
logic in section 4.3 we just have to care about the axiom (Stab) to obtain an embedding
of KP+(Stab).

Lemma 14.3.8 (Stab). It holds

”T Va Joa € Lim Jk € Lim (a <KkKAx€LyAN VyGLK(Satl(y)L”“ — Satl(y)L”))T.

Proof. Let us assume given is a term s. In the following our strategy is to employ
|s| +w as a witness for o and O(|s| + w) as a witness for x.
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Let Sat1(z) = JyF(y, z). Then the claim renders to

I ¥ 3y 32 330 302 305 (Lim(y) A Lim(z) A (e zvy=2) A
Ly,l1) AN xely ANLlzl) N z+y=w A Lw,l3) A

T
Vzo€ly (Vy0€l3 _‘F(yo,ZQ) A= 77 el2F(y17ZO))> .

Let s be an E%S(T)—term and let A := [s|+w. Moreover let sg € Tg(x)4a and to € Tg(y)-
By use of 4.3.3 and 4.3.6 we obtain for every hull-set H

rnk(F(s0,t0)).9
H[So, to] }W# —\F(So,to), F(So,to).

Let g := 0 if |so| < ©()) and choose o such that ©(X\) 4+ ¢ = |s¢]| elsewise.

As there exists the reflection instance G((o¢ + 1,0)) = (O(A); P(joy41,0); 66 1)
there exists also the reflection-rule (IIo(©(\) + oo + 1)-Ref). An application of this
rule provides

wmk(F(s0.t0)) .94 1 s
H[s, s0, to] }f —~F(so,t0), Hy?(k)( " Meg(x)(y1) A F(y1,t0)).

Due to Lemma 4.3.3, (Str), two (A)-inferences and a (A)-inference we also obtain

IO
H[s, s0, to] }T Vy?w (=*Me(x)(y1) V ~F (u1, to))ﬂ!he(/\)F(yh to)-
An application of (Cut) yields

O(\) +w™K(F(30,t0)) .91 9 o0\
H[Svso’tO]I T ~F (50, t0), 3yy M F(y1, o),

and by use of (A) and (V) we obtain
(O(N)+X)-3
H([s, to] }f Hy(?(A)HF(yo,to) — Hy?(A)F(yl,to)

By another application of (A) we get

O(N)+A)3+1 o S) S)
H|s] }7T Yz, ) EMN (A)H‘F(yo, z0) — Jy; (A)F(yl, 20)).

The embedding of all other subformulae of (Stab) follows directly by the results of
section 14.3.1. Finally the claim follows by six (V)-inferences and a (A)-inference. [

Theorem 14.3.9 (Embedding of KP+(Stab)). Let F' be a theorem of KP+(Stab).
Then there is an m € w such that

L Y+m
HY] o P

Proof. This follows by the results of section 4.3 and the above given derivation of
(Stab). O
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15. Elimination of Reflection Rules

In this chapter we prove the Reflection Elimination Theorem for Stability. In contrast
to M,,-Ref now we have to collapse intervals instead of just single points. To be able
to handle this we need the following preparations.

15.1. Useful Properties of E]@%S(T)

Notation. Let k < m and F be an Ag(m + ﬂ)—ﬁ%s(m—sentence. Then we denote by
F™>% the formula F in which every term ¢ is replaced by t™*. If F; and F(s) meet
the conditions of F' we also use the following notations

F7% = (F,)™" and F(s)™7" = (F(s))™".

Lemma 15.1.1. Let 8 < k < w and k, 7 € SC plus n € w. Suppose F' € ¥, (7 + 6*)
(or F € I, (7 + 0%) ) with F 2 \/(Fy)ter and K(F) N7 C k. Then

Fmr 2\ (FT ") e rnm)u(m\ 7o)
The analogue statement holds for F = \(Fy)ier.
Remark. The Lemma does not hold for F' € %, (7 +6) in general; e.g. F' = Mg ().

Proof. To prove the Lemma we proceed by induction on the build-up of F. At first
assume that F' € Aé(w)-ﬁ%sw). Then F™* = F(™#) and a closer look at the possible
characteristic sequences of F' reveals the claim.

Now suppose F' € (7 + 0)-Lpgyy- If F'= (=)(r € s) or F' = (=)(3z € sG(2))

then we have T' = 7}, and it holds Tjgren| = (TNT)U(T\T)™ 7" If F' = (=) M (7)
then it holds 7' = SC N(|7| + 1) and we have SCN(|7™~"|+1) = (TNT.)U(T\T,)™"
since k,m € SC. If F = (=)(Fp V Fy) then T = {0,1} and the claim holds since
({0, T\T)™ = {0,1}.

Finally, if F' is a Boolean composition of 3, (7 + 6*)-sentences the claim holds, since
T =1{0,1}. O

Let F be a Ag(m+1)-sentence. Then we can find a A}(r)-sentence F such that L =
F + F. We simply obtain F from F by resolving all terms t = {x € L, | H(x,5)%"}
of stage m occurring in F.

In the next Lemma we show that this equivalence does also hold for derivations on
hull-sets.
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Definition 15.1.2. Let F be a Ag(m+(6+1)*)-sentence. Then we define F” recursively
by means of the following clauses:

, reEs if |r| < 7w+ 6,
(res) = .
Jzes(z=7r) otherwise,

(M(s)):= M(s), (BresG(x)) = Tres(G(x)), (FoVF) = FVF], (-F) = =(F),

where M represents an arbitrary E%S(T) IM-predicate.

Now let G € Ag(m+ (04 1)*) be a sentence without any occurrences of subformulae
of the form r € s with |r| > 7 + 6. Then we define:

reEs if |s| <7+,
(res) = ¢3z€Log(z=7) if s = Lryg,
F2€Lppg(H(z)Nz=71) if s={x € Lryg|H(z)}
(EIxEsG(x))N ) FzesGa)” if |s| <7+ 6,
Jx € Layo(H(x) AG(x)") if s={x € Lryg| H(z)}.

and
M(s)" := M(s), (GoVv Gy)":=GHvGY, (=G)" = =(G").
Finally we define F := (F')".

Lemma 15.1.3. Let 0 < k <7 and let F € Ag(m+ (0 + 1)*) plus T' be a finite set of
Aé(w)—ﬁ%s(,r) sentences. Then it holds

o FecAlr+6%),

e HIFT,F = HIFT,F.

—_~—

o (F)™h = Frok,

Proof. At first we observe that F' is well-defined, since there are not any subformulae
in F” of the form r € s with |r| > 7 + .

The first and third claims follow by induction on the build-up of F’.

The second claim holds, since it follows by induction on « that H I% I'NFeH I%
T, F’, as it holds CS(r € s) = CS(Fz € s(z = r)) if |r| > m + 0 and we must have
F = F" if F is the principal formula of a reflection inference.

Referring to these arguments we can also prove that H I— ILLFMesH |— I,F. O
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15.2. Reflection Elimination for Stability

Theorem 15.2.1 (Existence of Reflection-Rules). Let X = (m;...) be a reflection
instance with reflection configuration F plus rdh(X) =m > 0, and let k € M§.

Q It holds:

6 C T xw VY(5,s) €6 Vr<r VYag € [oX),a)cnw)
Vi € dom(IF)éE:v)S) (sup(&) = (m) A ("'MH?((;?) 1,5 (k+0)-Ref) exists).

@ For every (V,k), such that (9,k) ¢ RdAh(F) or m > (¥, k), it holds:

Vr <k V(e C(k) VK Vijedom(K)c(n
<(TMH§(77) I}, 1o (7 4 U)-Ref) is a subsidiary reflection rule of 1 =

((TMﬂg(ﬁ) 11, 5 (k + ¥)-Ref) ewists)).

Proof. At first we observe, that there must be a reflection instance Y and a (3, such
that kK = \Ilg,, since & is at least II3-indescribable.

@ If o = o(X) we have nothing to show. So let us assume a > o(X). Due to the
Domination Theorem 13.1.4 it holds E@% < R If we have (E@%)m = My*-Pn <
(R )y and m € Lim the claim follows taking into account Lemma 2.3.2® (g) and by
means of Definition 14.2.2. If m ¢ Lim the claim follows with & := {m} by means of
Definition 14.2.2. In both cases the reflection rules are subsidiary reflection rules of .

Now suppose M5®-Py, £ (R )n. Then we must have R, = (Mg*-Py,,...) for
some £ > « since ME“—Pm = (Eﬂ)m. Thus Definition 12.2.4 provides that there are
appropriate reflection instances and an & with sup(&) = m such that Definition 14.2.2
provides the desired reflection rules (as main reflection rules of k).

@ Suppose (TMﬂi(ﬁ)—Hk io(m + U)-Ref) is a subsidiary reflection rule of 7 and let
¢t := (¥,k). A run through the four cases of Definition 12.2.4 reveals that it holds
(R")<e = (Rug)<t, if £ ¢ Rdh(F) or m > €. Thereby we have Mg®™'-Pe < (B)e <
(Rq;g)g and the claim follows by the same considerations as in the proof of @ taking

also into account that £ ¢ Lim by means of Definition 14.2.2.
O

Definition 15.2.2. Let 7 = (v4,...,v,) and 7 = (91,...,7n,) be vectors of ordinals
of the same length. Then we define

pmax{V, 7} = (u1,...,pn), where foralll <i<n p;:=max{v;,n;}.

Lemma 15.2.3. Let F be a reflection configuration and 7,7 € dom(F) and o(F) <
a, € C(i(F)). Then it holds

o pmax{¥,7} € dom(F),
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o (B.i) = pmax{(a.7), (B,0)} = Mg, C M.
Proof. This follows by a straight forward induction on o(TF). O

Remark. The propositions of Lemma 5.2.3 (with T, 6 < v+1) also hold in the context
of Stability. In the proof of proposition ® of this Lemma in the case that u = \II\C, we can
extract an appropriate reflection degree for the desired reflection instance Z € C,[A]

out of R\If@'

Theorem 15.2.4 (Reflection Elimination). Let X = (7;...;0) be a reflection instance
with rdh(X) = (0, m) and v, X, p € Cy[A], where T,0 < v+ 1 and § < o :=|A| <7 <
pe Card. Let T C X, o(m+6%) and & :=y & w*®*. Then

Peoen .
Cy[A] I% I' = CaaxlA K] }Xf ™" for all k € MK,

Proof. We proceed by main induction on p and subsidiary induction on a.
Case 1, the last inference is (V) with principal formula F = \/(F})ier € I': Thus

C AT, F,,

for some ay < a and some ty € T. By use of the subsidiary induction hypothesis we
obtain

prodr N
CooanlA, K }Xi e Femr for all k€ oOMNg°. (15.1)

By Lemma 5.2.3® we have ,9§ C MG and U°P" < WEPF € Cs0,[A, K]. Moreover it
holds F™7" = \/(F["7")ie(rnT.)u(r\7,) by Lemma 15.1.1. We either have to € T'N T
and then [to| € C,[AINT CC(y+ 1,0+ 1) N7 C C(&, k) NT =k, il.e. tg € TNTy, or
to € T\Tx. Thereby it follows F7—* € CS(F™"). Thus we obtain the desired result
by means of (Str) and (V) from (15.1).

Case 2, the last inference is (N) with principal formula F = A(F;)ier € T': Then
for all t € T there exists an «; < « such that

Co[A ) 5T, F.
Since 7 € C,[A] it holds C,[A, t] = C,[A,t™°]. Therefore we obtain by use of (Str)
C,[A, 1™ 5- T, F,, (15.2)
for all t € T. Since F' € T we have F; € X, i,(7 + 0*). Moreover it holds oy, =

|A, ™9 < 7 for all t € T. Thus we may apply the subsidiary induction hypothesis
to (15.2) and obtain for all t € T

. 70 ‘Pgte% T T ay
Caraon] A, 1770 ] D™ FFA forall A € 5, MG (15.3)

134



Now let K € Mg, For t € T N 7T, we have x € gtoi)ﬁ‘;;. For t € (T\T,) it holds
[t™0] < o since § < ¢ and thus o, = o and hence x € o, zm;‘g. Making also use of
Lemma 5.2.3® (with A replaced by A, t) it follows for every ¢ € (T'NTy) U (T\T)
that k € 5, 95", Since we also have C,[A, 1™, k] = C,[A, ™7, k] we obtain by use
of (Str) from (15.3)

‘Ijoit@ﬁ
Caron[ A 77", K] }Xi =" FF7% forall t € (TNTe) U(T\Tr). (15.4)

Thereby the claim follows by a (A)-inference, taking into account Lemma 15.1.1.
Case 3, the last inference is (Cut): Then for some «g < « it holds

C[A BT, (-)F, (15.5)

where rnk(F') < fi.
Subcase 3.1, rnk(F) < m: Then we have (-)F € ¥o(m + 0*). Therefore we are
allowed to apply the subsidiary induction hypothesis to (15.5) and obtain

prodr R
Caipan[A, K] ™" (=) F™"  for all k € ;M.

By similar considerations as in the first case it follows that rnk(F™") = rnk(F) <
Ko< UEPF for k € MG, Thus the claim follows by a (Cut) and (Str) taking into
account Lemma 5.2.3 @.

Subcase 3.2, 1 < rnk(F) < p: If rnk(F) < p then it holds 7 < o := sup{x €
Card |k < mk(F)} < mk(F) < pf < p and due to Lemma 5.2.3@ it follows
(g3 Pos €5 €, 0) € Cy[A]. If rnk(F) = p we must have 1 € Reg and by Lemma 5.2.3 ® it
follows the existence of a reflection instance Z € C,[A] with i(Z) = p and o(Z) < y+1.
Thus in all cases there is a reflection instance Y € C,, [A] withi(Y) = 1 and o(Y) < v+1
such that 7 < rnk(F) < pg < p. Let (9,n) := rdh(Y). In the following we choose
Y=Xif 7= pu.

It holds I' € X, {5(p1 + ¥*) and w.lo.g. F is an elementary X;(u)-sentence and
—F = V"1 G(x) an elementary Iy (p1)-sentence since rnk(F) < p;. As we also have
Y1(pu1) € B, 10(p1 +19%) we are allowed to apply the subsidiary induction hypothesis
to (15.5) and obtain

plo®A .
Capmn] A Al }— A Frm A for all A € , NG (15.6)

By use of (V-Inv), the subsidiary induction hypothesis and an (A)-inference the
derivation of T', = F of (15.5) is transformable to

O 4 A by 7
Cavor[ A, A DX SFIed for all A € LGP, (15.7)
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Since k(F*17%) € Cy[A N N pn € C(do @ A, UFEY) Ny = WOV i A € ,mgP it
follows rnk(F#17A) < \II§°@>‘. Thus a (Cut) applied to (15.6) and(15.7) yields

PEOBA+L

Coprs1 A, A rM=A for all A € ,MM9°. (15.8)

If Y = X Lemma 5.2.3 @ provides that the claim follows from (15.8) by use of (Str).

If Y # X we have 7 + 0 < p; < p and therefore T#1=* = T. Let \g := ¥$°®7 and
7= \Ilg'{z(’@)“’ﬂ. Then it follows as shown in the proof of Lemma 5.2.3 @ Ay € aimgfﬂ
and T <1 < pp sincem € C(y+1,0+1) C C(dp ® 7, Ao) N1 = Ag. Thus (15.8) plus
(Hull) provides

Cavmros1 [A 1 T. (15.9)

If n € Card we apply the main induction hypothesis to (15.9) and obtain

pyon
CoanlA, K] }X— ™% for all k € ,I%, (15.10)

where v := (dg® A ® 1) Bw"®7. Since ag B p, \o+1,n®7 < ad p it follows v < & and
since v, ag, 1, Y € C(y+1,0+1) it follows successively Ao, n, v, v @k € C(v Sk, \I/gg@"‘)
for & € ;MY and hence U4P* < WEP" for all k € , MY by Theorem 2.3.14. In the same
vein it follows v € C(v, k) for every x € ,9M§ and hence k € ,ME implies x € M.
Thereby the claim follows from (15.10) by use of (Str).

If 7 < pp < pand 1 ¢ Card then it holds m < g < 1 < g = p1. Through the use
of predicative cut elimination, (15.9) yields

»(n,m)
Caparo+1[A4] o I. (15.11)

Since p; € C,[A] implies p9 € C,[A] we may apply the main induction to (15.11) and
obtain

gL _
CoanlA, K] }L ™% for all kK € ,Mx,

where ¥ := (dp ® A\g ® 1) @ w?M®H0 By analogue considerations as in the case
1 € Card the claim follows by (Str).

Case 4, the last inference is by a main reflexion rule of m:

Subcase 4.1, the reflection configuration F of X is a reflection configuration with
variable reflection degree, i.e. it holds X = F(m) = (m;Pn;...) or X = F(m, &, V) =
(r; Mﬁ/ﬂ(ﬁ)-Pm; ...), with m = (6,m) > 0:

Let us at first treat the latter case, i.e. X = F(m,&,7) and the last inference is
by a main reflection rule (TMI@HW)—H”M(W + ¥)-Ref) of © with ((¢,n),(,7) € dom(F)
and principal formula G := EIZ”(T;MN%( )(5) A F(Z)). Let n := (J,n). We define

u
n = (¢,n') := max{m + 1,n + 1} and (¢, 7’) := pmax{(£,¥), (¢,7)}. It follows by
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means of Lemma 15.2.3 and since m,n < rd(R,) € Lim that (w,¢’,7’) € dom(F).
Therefore we can define Y := F(n’,¢’, 7). Then we have

Al 5T, F(5), (15.12)

for some o < av and I', F(§) C Zo(m + ¢'*), where § denotes all terms occurring in F'
with stage greater than or equal to m. Thereby we are allowed to apply the subsidiary
induction hypothesis to (15.12) and obtain

P T0OA
CapanlA, A]}Y—F“HA F(5)™ for all A € ,MM°. (15.13)

In the sequel, we fix a k € Umtg“g. It holds 0 < \Ilg’;“@” € a{)ﬁ{'{z‘). Since v, ag, i, 0, Y €

C(a, k) and do ® 0 < @ it follows WS*®7 € C(d, k) N7 = k. Therefore we have
SDTOZO Nk # 0.

Due to Definition 12.2.4 and Lemma 15.2.3 it holds zm“o C DJIM(A,) C zm ) and

moreover 7 € C,[A] N7 C C(y+ 1,0 +1) C C(dg, \) N = A for A € , M. Thus we
have

= Mg (5777) for all A € SO, (15.14)

Thus we obtain from (15.13) by means of (A) and (V)

aOQ}A
tw T ﬁm ESVaS -
Capar[A, \, K] }7\/r 32" (FMyy o (2) A F(2)) (15.15)

for all A € ;9L N k.

Now we define I' := T if m = (6 + 1,0) for some g, and T := I otherwise. Let (15.15)
be (15.15) with T replaced by I'. Due to Lemma 15.1.3 the derivability of (15.15)
implies (15.15). Now let ¢ be a list of all the terms occurring in I' with stage greater
than or equal to m and @ € (7,,)?, where p is the arity of ¢. By Lemma 4.3.3 (viii) we
get

-em #a-\/T@)™* \/T@). (15.16)
Applying (Cut) to (15.15) and (15.16) we obtain

DAL RS |

Covanl A\, K, @] &N £, \[T(@),G™)  for all X € ,Mg°N|a|+1.

Since ~ M0 (@) = \(@™ 7 # EL'))\EUDJT\(;ONE\Jrl we obtain by a (A)- and a (V)-inference

w0l 43
CdO@K[A,K,C_i] ¥ o CM(m \/ \/1’\ (TF,H)’
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for every @ € (T,)P. By means of p (A)-inferences, we arrive at

\IIOZOEBN
Cdo@H[A,n]}yiv*” LM (E) v \/T(&)), G, (15.17)

Due to Lemma 15.2.1® there exists an & with sup(&) = m, such that for every
(1,5) € & there exists the reflection rule (UEMgo-HS_;_Q(m + 7)-Ref). If m ¢ Lim we
must have m € &. If § € Lim and m = 0 it holds that =\/T™ 7" is a Ag(k + 6%)-
sentence, i.e. there exists a 7 < @ such that —\/T™* is a Ag(k + 7*)-sentence. If
m = (0o + 1,0) then =\/T™* is a Ag(k + (6p + 1)*)-sentence and hence —\/ '™*
is a Al(k + 63)-sentence, i.e. there exists a (fp,s) < m such that =\/T™7" is a
II, ; o (k + 0%)-sentence. Thus in any case we can find a (7,s) € &, such that —\/ ™"
is a II, 5 (x + 7*)-sentence.

Moreover we have k(37" ( FMG° (Z)A-V T(Z)), V IT™*) C CawxlA, &]. Therefore we
obtain by means of Lemma 4.3.3 @, Lemma 4.3.6 and Lemma 15.1.3 plus an application
of (EMG 11, (K + 7)-Ref)

grodm
CawnlA, K] }—” 32 ( SM0 () A= \[T(&)), \/ T, (15.18)
Thereby we obtain the desired derivation by a (Cut) applied to (15.17) and (15.18)
plus (V-Ex) and (Str).

If it holds X = F(m) then the proof is literally the same, with Y := F(n’) and MM(W)
replaced by M.

Subcase 4.2, the reflection configuration F of X is a reflection configuration with
constant reflection degree, i.e. it holds X = F = (m;Pmy1;...) or X = F(§,7) =
(3 MM(ﬁ) Put1;...) withm > —1:

Let us at first treat the latter case, i.e. X = F(¢, 7) and the last inference is by a main
reflection rule (; I\C’ﬂ(n)_ miog1(m + 0)-Ref) of m with ((,7) € dom(F) and principal
formula G := 37 ( M(n)( Z)AF(Z)). Let Y :=F((, 7). Then we have

Cy[A] - T, F(5), (15.19)

for some g < aand F(5) = F(5,F1(5),...,Fy(5)) € I, 194, (7+0%), where 5 lists all
the terms occurring in F' with stage greater than or equal to 7. Thus by an application
of (E-V-Inv) we obtain for all £ = (f1,...,%,) € (Teg0)™ X ... X (Ture)ks = (Tri0)?

C,[A, ] - T, F(5, F{(t1,5),...,F(tg, ). (15.20)

Since Cy[A,t] = Cy[A,£7% and Y € C,[A] plus I, F(3, F{(£1,5),..., Fi(t,,5)) €
Y io(m+60*) we may apply the subsidiary induction hypothesis to (15.20) and obtain
for all £ € (Try9)?

. ggor -
CV[A,t”HO,A]}LF”HA,F(‘?,F{(%E’) ,Fl(tg,8)™

for all A € 5 zm;ff), (15.21)

138



where o7 1= | A, t™=0|. For A € ;M and ¥ € (TAU(Tr16\Tx))7 it holds \ € ot 9)?;’;0.

Moreover we have C,[A, {7 \] = C,[A,£77*, A]. Thus by use of (Str) and (E-Y)
applied to (15.21) we obtain for some | < w

00@)\_"_1

Cy AN = ™A F(5)™ for all A € ,9M5°. (15.22)

Now fix a k € ,9§. Analogue to case 4.1 we obtain from (15.22)

0O

Co[A N 212 G0 for all A € e, (15.23)

If m = —1 it holds I'™* C ¥;()\). We choose A = ‘llgf’@” € [,img‘fo N k and the claim
follows from (15.23) by use of (E-Up-Per) plus (Inc) and (Str).
If m > —1 we proceed as in subcase 4.1 (cf. (15.15)—(15.17) and obtain

\Pofo@ﬁ
Caipanl A K] }LV — Mo (@) v \/T(#)), G, (15.24)

where T := T if m = (fp + 1,0) and T := I otherwise.

By the same argumentation as in subcase 4.1 it follows the existence of a set &,
such that sup(6&) = m and there is a (0, s) € & such that = \/T™" is a I ; ,(k+0*)-
sentence and the reflection rule (CMg°-TI, io(k + 0)-Ref) exists. Therefore we obtain

ag®r
Cawn[A, K] }LT”( MG (@) A - \/T (@), \/T™" (15.25)

and the desired derivation follows by a (Cut) applied to (15.24) and (15.25) plus (V-Ex)
and (Str).

If it holds X = F then the proof is literally the same, with Y := X and ?°
replaced by M.

Case 5, the last inference is by a subsidiary reflection rule of m of the form
(FMyg i Ty o (7 + 0)-Ref) with Mg -0-Py, < (RE") (9 x) and principal formula G =

327 ( G‘Mﬂi(n)( Z)AF(Z)): Let § denote all the terms occurring in F' with stage greater
than or equal to 7. Then we have

M(*)

Cy AT, F(3) (15.26)

for some ap < o and ¢ € C,[A] N C(7) plus 7 € Cy[A] N dom(K) ¢ ().

Subcase 5.1, X = F(m, V) is a reflection configuration with variable reflection degree:
Then we have ¢ := (9, k) € Rdh(F) or m > ¢. Let m’ = (0',m/) := max{(J, k) + 1, m}.
Then it holds (m’,7) € dom(F) and we set Y := F(m’, 7). In the following we fix a
K € oIMG. Just hke in subcase 4.1 it holds ,9MM5° Nk # 0. Since I, FC %, , rpo(m40")
we obtain by means of the subsidiary 1nduct10n hypothesis

oo A
Caar[A, N }— ™A F(5)™*  for all A € ,9MG° N k. (15.27)

139



Let 7= (11,...,7x). Since we have Vi (¢,n; < ) by Lemma 12.3.4, ¢,77 € C(m) and
¢,7eC(y+1,04+41) C C(y+1,A) plus C(y+ 1,A) N7 = A it follows by Lemma
5.2.2 ¢, 7€ C(\) for A € ,MS°. Moreover we have for such a A that 7 € C,[A] N7 C
C(y+1,0+1)N7 C C(& A\)Nm = \. Thus due to Lemma 15.2.1@ for every A € ,OM°
7 Hri2(A +9)-Ref). By use of these reflection
rules plus (Up-Per) we obtain from 15.27

there exists the reflection rule (fMHi(

QpdA
Camal A\, o] E—=T™A G™%  for all A € ;M k. (15.28)
Proceeding now as in subcase 4.1 (cf. equations (15.15)—(15.18)) the claim follows.

Subcase 5.2, it holds F is a reflection configuration with constant reflection degree:
Then we either have £ = m + 1 ¢ Rdh(F) or m > £ If m > ¢ we are allowed to
apply the subsidiary induction hypothesis directly to (15.26). If m < £ we proceed just
like in subcase 4.2, i.e. we apply (E-V-Inv) to F, make use of the subsidiary induction
hypothesis and employ (E-V). In either case we obtain

gro®m .
CaamnlA, K] }X— ™% F(5)™" for all kK € ,IE, (15.29)

since UEI)T?{ - gﬂﬁgo.

As in subcase 5.1 it follows by means of Theorem 15.2.1®@ the existence of the
reflection rule (fMﬂi(ﬁ)—Hk+2(n + 9)-Ref). Applying this rule to (15.29) and taking
into account Lemma 5.2.3 @ plus (Str) we obtain the desired derivation.

Case 6, the last inference is a (fMé(ﬁ) -I1, 5 (mo+00)-Ref) inference with < mo < 7

and principal formula 32" SMS, - (Z) A F(Z)): Thus we have

&)
C A5 T, F(3) (15.30)

for some oy < «. Since my < 7w we also have my + 6y < 7 and thereby it holds
I'F €X,,;,5(m+0%). Therefore we may apply the subsidiary induction hypothesis to
(15.30) and obtain

gro®m _
CaanlA, K] }X— ™% F(5)  for all k € ,OMGO. (15.31)
Thus the claim follows from (15.31) by means of (TSHM(é(ﬁ)—l_[g*2 (mo +6p)-Ref) and (Str)
plus taking into account UE)JT% - Umtg’ng. O

Theorem 15.2.5. Let ag :=1 and ay,41 := Y The property of being an admissible
set above w can be expressed by a L(€)-Ag-formula Ad(x). If F is a ¥1-sentence and

KP + (Stab) - Va (Ad(z) — F*),

then there is a k < w such that

a
NG} 2ot

\y;k@ % vk

Cay Fox
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ck
where X = (wT; Po; €;¢;0). Thus at Lyersr all Y71 -sentences of Stability are true, i.e.
X
|Stablhty|2‘f5k < WP

Proof. Analogue to the proof of Theorem 5.2.6 by use of Theorem 15.2.4 and Theorem
14.3.1. O
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Part IV.

The Provable Recursive
Functions of Stability



16. A Characterization of the Provable
Recursive Functions of Stability

In this short final part we want to apply the methods developed in Part II to the
theory Stability.

We extend all definitions and modifications of Part IT to the theory Stability. More-
over we define

(0,m) € F,[A] & 0,m e F,[A.

It follows by simultaneous induction on the build-up of terms and sentences that
it holds [t™*|n < |t|n + & for every E%S(T)—term t and |F™"% |y < |F™"|x + & for

every L’%S(T)—sentence F if k € Lim.

®
RS(Y)

we have |F|y > |F|y and thereby we have a A-version of Lemma 15.1.3, too.

A run through the cases of Definition 15.1.2 yields that for every L -sentence

Theorem 16.0.6 (Reflection Elimination). Let X = (7;...;0) be a reflection instance
with rdh(X) = (0,m) and v, X, u € N, [A], where T,§ <y+1and§ <o :=|A <7 <
p€ Card. Let T C X, 1o(m+6%) and & := v & w*®*. Then

ahr

N, [A] I% I' = MNaaxlA K| }‘I’L L™ for all k € ;M.

Proof. The proof follows by an application of the modifications given in the proof of
Theorem 9.2.2 to the proof of Theorem 15.2.4.

Even the application of the rule (fMgO—HSJFQ(H +7)-Ref) to obtain equation (15.18)
on page 138 is not an obstacle, since the parameter (7,m) does not have to be con-
trolled. O

By use of the results of Section 10 and Section 8.2 plus a refined embedding of the
axiom (Stab), which is a Sisyphean challenge, we obtain:

Theorem 16.0.7. Let £(u) be a AXPY-formula, which defines L,,. Suppose X :=
(wh;Po;€60) and F = Vo Iy G(z,y) is an elementary Le-T19-sentence, such that

KP + (Stab) - Vz({(z) — F*).

Then there exists an o < W™, satisfying

L, E Vz ﬂyfa(l’dflL) G(x,y).
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Thereby we obtain:

Theorem 16.0.8. The provable recursive functions of the theory Stability are con-
tained in the class §, where § is the smallest class of number theoretic functions,
which contains S, CY, P, (fa)a@a(rﬂ) and 1s closed under substitution and primitive
TecuUTrsion. :
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Index of Notation Part |

Z denotes a ITZ-indescribable cardinal. V,, denotes the ath stage in the von Neu-
mann hierarchy of sets and L, denotes the ath stage in the constructible hierarchy.
A(m) := (E;Pn;66w) and UV, W, X Y, Z denote variables for reflection instances
and 0-ary reflection configurations and F,E, G, H, K, M, R,S denote variables for re-
flection configurations. Small Greek letters denote ordinals and small Roman letters
denote finite ordinals.

ON, Succ, Lim 13
Card, Reg, SC 13
card(S) The cardinality of S. 13
Kt 13
o(a, B) The (binary) Veblen function. 13
7 is II!-indescribable 13
dom(F) The domain of the refl. config. F.
dom(F)=™ {77 € dom(F) | rdh(F(77) > m}. 45
o(X), o(F) The ordinal of the refl. inst. X, refl. config. F. resp. 15
i(X), i(F) The refl. point of the refl. inst. X, refl. config. F. resp. 15
Prinst(X), Prinst(F) The predecessor refl. insts. of X, IF resp. 15
Prinst(X) Prinst(X) U {X}. 15
Prenfg(X), Prenfg(F)  The predecessor refl. configs. of X, F resp. 15
Prenfg(F) Prenfg(F) U {F}. 15
i€ C(k) Vik (i € Clnk, K)). 15
7€ MC(n) 7€MNC(k). 15
My "-P, 15
K My -Po, Y(¢, 1) € [o(M), &) c(r) X dom(M) ()
(k is smg,ﬂ(ﬁ)-n}n- indescribable).15
k=R Vik (k = Mg®-Pp,,). 16
ﬁk, ﬁ<k, R>k, R’(l_’k) Substrings of the M-P-vector R. 15
R The derivation of the M-P-vector R. 45
par X The parameters of X. 16
C(a, ) The ath Skolem-closure of 7. 17
C(a,k(A)) The ath Skolem-closure of k(.A). 53
Mg The ath thinning of the coll. hier. of X. Definition 2.2.4 on p. 16
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oM

Ry, Ry

R‘]%a,m)

rdh(X)

Rdh(F)

rd(R)

initl(FF)

rang(Z), rang(Z)
a>M

<lex

LE, L)
LRrs(z)

k(a), k(t), k(F), k(A)
tl, [F, | A
(), ()
FZ

F(mr) o™ F(z)
zE F(s1,...,8)
Lo

Mg (s)

CS(F)

rnk(F)

{k e ME|o < Kk}. 53
The refl. vector of U§. Definition 2.2.4 on p. 16
The third component of X, F resp. 20

The reflection degree of the coll. hier. of X. 20
The set of refl. degr. of the coll. hiers. of F. 20
The refl. degr. of the M-P-vector R. 20

The initial refl. config. in the development of F. 20
The range of Z (or «) in the dev. of X F resp. 20
20

The lexicographic ordering on ON™. 26

23

23

Codes of g € C(a,7) in L. 23
Coding of C(a,7) in L,. 23

Codes of the coll. hier. of F in L. 24
24

Normal form. 28

The natural sum. 28
The prim. rec. ordinal notation system. 29
29

The transitive closure of M§H£—Pm. 33
33
36

41

41

The transfinite content of «, t, F', A, resp. 42
The stage of ¢, F', A, resp. 42

43

41

43

z # 0 Tran(z) A \i_, (s; € 2) A FE™. 43
The Lrg(z)-term for L. 41

44

The characteristic sequence of F.44

The rank of an Lpg(z)-sentence. 45

150



HCEH

H[A]

Cy[A]

HIGT

HIET

T

(Hull), (Str), (E-V),
(\/—EX), (/\—EX),
(Up-Per), (E-Up-Per)
(V-Inv), (E-V-Inv),

RS*
V)", ()
l_

[A]

KP,,

M,-Ref

(Ext),(Found), (Nullset),
(Pair), (Union), (Ap-Sep),
(Refl), (Inf), (Ap-Col)
(Iden)

i

46

43

C(y+1,0)[A]. 53

The semi-formal deriv. calc. relativized on H. 45

HIGT.
HIT) 5 T for every hull-set #. 49

Derived rules of the semi formal calculus. 46

An intermediate calc. defined on finite multisets. 48
48
48
49

Kripke-Platek set theory with infinity axiom. 48
KP augmented by a first order reflection scheme. 48

The axioms of KP,, and I ,-Ref. 48
The identity axioms. 50

o4
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Index of Notation Part |l

Items not listed here can be found in the Index of Notation Part I.

Ady

(Ado.1), (Adp.2), (Ado.3)

M,-Ref*
1h

N(a)

|Oé|N, |t|N7 |ﬂN7 |F|N7 ‘A|N

Az.®(x)

fa(z) < fa(x) over H

Az fiH (@)

fg" [A]
N, [A]
FH[A
FRAIS

e

(Inc), (Str)v (E_V)
(V-Ex), (A-Ex)
(Up-Per), (E-Up-Per)

t, To

L

<-stable
N -stable

St So

74

Axioms defining Ady.74

MM,-Ref augm. by the unary pred. symbol Ady. 74
The length of an Lpg(=)-sentence. 42

The norm of a. 75

The finite content of «, ¢, F' and A, resp. 75

®(0) :=1 and ®(n + 1) := 22", 75

) < fy). 76

The atP-function in the subrecursive hierarchy rela-
tivized on H. 75

{a € HIA] | N(a) < f,(A) over H[A]}. 77
¥ C )
FrualAl = FEGV1A). 88
The semi-formal deriv. calc. on fragm. hull-sets. 77
FRIAFT. 79
FHT) w T for every hull-set H. 79

Derived rules of the semi-formal calculus. 77

The canonical term for ¢ € 7, the set of canonical
terms for IL,,, resp. 84
The canonical interpretation of Lrg(z). 84

91
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Index of Notation Part |l

Items not listed here can be found in the Index of Notation Part I. Small fraktur letters
denote elements of T x w U {(0,—1)}.

7 is O-IT}-indescribable

Y
o(0)

R;?a ﬁ<j> R’([,E)J ﬁ([,?]
RCI, (RCl)e, (RC1)<E

—

Rcl'
M:-P,.,

K = My-Po,m)

par X

Rdh(F)
Rdhe(F)
dom(F)> ™)

—

rd(R)

Lrs(r), ﬁES(T)a ‘C%S(T)

tm—)ﬁ

FTI"—)H7 th_)ﬁv F(S)ﬂ'i—}.‘i

F
k(-)
rnk(F)

100
101
The least ordinal which is #-indescribable. 101
Substrings of the M-P-vector R. 104
The closure of the M-P-vector R. 101
The derivation of E¢.124
102
V(¢ 17) € [o(M), §) ¢ () x dom(M)c(x)
K is imfw(ﬁ)—Q—H}n—indescribable. 102
102
The ath Skolem-closure of 7. 103
The ath thinning of the coll. hier. of X. Definition 12.2.4 on page 103
The refl. vector of ¥§. Definition 12.2.4 on page 103
The reflection degree of the coll. hier. of X. 110
The set of refl. degr. of the coll. hiers. of F. 110
The closure of Rdh(F). 110
124
The refl. degr. of the M-P-vector R.110
The prim. rec. ordinal notation system.113

The transitive closure of M@E—Pm. 114
114

V(B < (S9)m). 114

117

Languages of ramified set theory. 122
Term shift down. 122

131

132

123

The rank of an Lrg(z)-sentence. 123
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123
123
123
124

The semi-formal deriv. calc. relativized on H. 124
r
HITHEL T for every hull-set #. 127

125
125
The (canonical) L%S(T)—term for a. 127

An L(€)-formula; {(a,z) < L, =x. 128

The pointwise max. of a fin. set of vectors. 133
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