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Preface

This thesis belongs to the area of mathematical logic, more precisely to the area of
proof theory. One of the topics of proof theory arose from the famous talk given by
David Hilbert in 1900 at Paris. Shattered by the paradoxes of set theory discovered
at that time1 he suggested a research programme, based on two pillars: At first he
demanded an axiomatization of the existing mathematics and at second he proposed
the establishment of metamathematics (proof theory) to secure the consistency of this
axiomatization by pure finitist means.

While the first pillar of this research programme is a fruitful and standardized
method (“the axiomatic method”) in nowadays mathematics, the second demand of
Hilbert suffered a severe setback in 1936 by the famous second incompleteness theo-
rem of Kurt Gödel. Gödel could show in [Goe31] that it is impossible to prove the
consistency of a theory T , which provides a coding-machinery2 by pure means of T .
Thereby, e.g., it is impossible to prove the consistency of analysis by pure finitist
means.

Nonetheless, at the same time Gerhard Gentzen proved in [Gen36] the consistency
of Peano Arithmetic by pure finitist means plus the principle of transfinite induction
up to the ordinal ε0.

Although this consistency proof cannot be a proof by finitist means (due to Gödel’s
theorem) it still provides an exact encapsulation of the transfinite content of Peano
Arithmetic to the principle of transfinite induction up to the ordinal ε0.

The result of Gentzen was the date of founding of ordinal proof theory. Inspired by
this result the proof-theoretic ordinal ‖T‖ of a theory T ‡ is defined by

‖T‖ := sup{otyp(≺) | ≺ is a primitive-recursive well-ordering & T ` TI(≺)},

where TI(≺) denotes the principle of transfinite induction for ≺.
An ordinal analysis of a theory T denotes the endeavor of computing the proof-

theoretic ordinal of T .3 An ordinal analysis of T not only provides a consistency
proof of T , but also provides proof-theoretic reductions and a characterization of the
provable recursive functions of T .

As soon as the first big obstacle of ordinal proof theory, the extension of the methods
of Gentzen to impredicative theories, was mastered by Howard in [How72] continuous
progress was achieved in this area of proof theory, culminating in ordinal analyses of

1Most prominently the Russel paradox of the set of all sets that are not members of themselves.
2Already a fragment of Peano Arithmetic provides this.
‡Which comprises arithmetic and proves Π1

1-sentences.
3In terms of a “natural” well-ordering. Allowing, e.g. a well-ordering which is defined by use of a

formalized proof-predicate for T , this task becomes trivial, see [Rat99].
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Stability and parameter-free Π1
2-comprehension by Michael Rathjen in [Rat05b] and

[Rat05a].
The original plan of my dissertation thesis was elaborating a characterization of the

provable recursive functions of Stability by extending the methods developed by An-
dreas Weiermann and Benjamin Blankertz in [BW99] and [Bla97]. This was supposed
to be achieved by recoursing to the ordinal analysis of Stability given in [Rat05b].

However, as things turned out the ordinal analysis of Stability presented in [Rat05b]
contains some errors and incompletions.4 Because of this, I decided to take (at first)
a step back:

An ordinal analysis of Stability requires a proof-theoretic treatment of ordinals κ,
which are κ+ θ-stable, where θ < κ. Therefore it seems natural to start with investi-
gating the case θ = 1. A theory whose ordinal analysis provides techniques to handle
an ordinal κ which is κ + 1-stable is the subsystem of set theory KP (Kripke-Platek
set theory) augmented by a first order reflection scheme. From now on denoted by
Πω-Ref.

An ordinal analysis of Πω-Ref requires a transfinite iteration of techniques needed for
an ordinal analysis of Π3-Ref as published in [Rat94b]. The ordinal analysis of Π4-Ref
given by Christoph Duchhardt in [Duc08] reveals that even a finite iteration of these
techniques is far from being trivial.5 Therefore an ordinal analysis of Πω-Ref seems to
be an adequate intermediate step towards a proof-theoretic treatment of Stability.

The present thesis divides therefore into four parts.

The first part of this thesis contains an ordinal analysis6 of Πω-Ref. To overcome
the imperfections of [Rat05b] an in depth analysis of the collapsing hierarchies which
give rise to the ordinal notation system is required (cf. chapter 3).

Beyond that the ordinal analysis presented here features two improvements of the
techniques developed in [Rat94b]. First, the semi-formal calculus is just equipped
with (cofinal many) Πn-reflection rules instead of being equipped with pseudo-Σn+1-
reflection rules. Thereby a “Strengthening Reflection Theorem” is not necessary any-
more. Secondly, the Reflection Elimination Theorem (a.k.a. Impredicative Cut Elim-
ination Theorem) is stated with a minimum of provisos, i.e. there is no need for the
informally called “pancake-conditions”. This conduces to a better readability of the
theorem’s proof.

4Contrary to the claim in [Rat05b] a property similar to that in (15.14) (on page 139 in this thesis)
does in general not hold for the reflections instances in [Rat05b]. Moreover this article lacks
a Theorem like 15.2.1, although it is definitely needed there, too. Theses deficiencies seem to
be profound because already the fixing of the first issue requires a change of the definition of the
collapsing hierarchies. This makes the proof of a theorem corresponding to Theorem 15.2.1 (of this
thesis) more awkward than it would be for the collapsing hierarchies actually given in [Rat05b].
Since the ordinal analysis given in [Rat05a] can be regarded as an extension of [Rat05b] the same
remarks also apply to [Rat05a].

5He uses an approach different to ours.
6An ordinal analysis of a theory T comprises two parts in general. At first the elaboration of an

ordinal notation system and by its means a characterization of an upper-bound of the proof-
theoretic ordinal of T is required. In a second step it is proved that this upper-bound is sharp by
giving well-ordering proofs for all ordinals below this upper-bound within T .

Throughout this thesis we use the term “ordinal analysis” to denote the first part of an ordinal
analysis. I.e. in this thesis no well-ordering proofs are given.
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In the second part of the present thesis a characterization of the provable recursive
functions of Πω-Ref is given by applying an improved version of the methods of A.
Weiermann and B. Blankertz to the ordinal analysis given in the first part of this
thesis.

The crucial new idea employed here is to work with relativized subrecursive hierar-
chies, e.g. subrecursive hierarchies defined on proper subsets of the ordinal notation
system instead of working with one fixed subrecursive hierarchy defined on the whole
ordinal notation system. Thereby subrecursive hierarchies become “collapsible” and
thus a refined version of the Reflection Elimination Theorem is obtained nearly for
free.

In the third part of this dissertation the methods developed in the first part are
extended (transfinitely iterated) to obtain an ordinal analysis of Stability. In essence
the required enhancements are of technical nature.

The Reflection Elimination Theorem of this ordinal analysis differs from that of the
first part. Here Σn(κ+θ)-sentences have to be collapsed, with parameters below κ and
parameters of stages in the interval [κ, κ + θ]. I.e. a collapsing of intervals is taking
place. However, since θ is always less than κ this new issue is quite easy to handle.

Finally in the fourth and last part of this thesis the results of the second part are
applied to the ordinal analysis given in the third part to achieve a characterization of
the provable recursive functions of Stability.

In addition there is a review-part following the first part, in which the theories
Πn-Ref are discussed. This part, in cooperation with the first part, might serve as a
good starting point to the reader how is familiar with the ordinal analysis of Π3-Ref
given in [Rat94b].

Acknowledgment

I’m deeply indebted to my thesis advisor Professor Dr. Wolfram Pohlers. He sug-
gested this interesting and challenging dissertation undertaking to me. Many fruitful
discussions with him on the topic of proof theory always inspired and motivate me.
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Part I.

An Ordinal Analysis of Πω-Ref



1. Introduction

In this first part of the thesis we want to elaborate an ordinal analysis of Πω-Ref.

By introducing an infinite verification calculus for (pseudo-)Π1
1-sentences, which is

N-correct and N-complete it is possible to assign a uniquely determined ordinal, called
truth-complexity (tc), to every (pseudo-)Π1

1-sentence. Moreover this can be done in
a way that for a primitive-recursive well-ordering ≺ it holds otyp(≺) =tc(TI(≺)) if
otyp(≺) ∈ Lim (cf. [Poh09], Theorem 6.7.2). Thereby it follows that the ordinal

‖T‖Π1
1

:= sup{tc(F ) + 1 |F is a pseudo Π1
1-sentence & T ` F}

is greater than or equal to the proof-theoretic ordinal of T . In addition, it holds already
for a conservative second-order extension T of Peano Arithmetic that ‖T‖Π1

1
≤ ‖T‖

(cf. [Poh09], Theorem 6.7.4). Thereby for most theories computing the proof-theoretic
ordinal is the same as computing the Π1

1 ordinal.

Thus it follows by the Spector-Gandy Theorem that for subsystems of set theory,
which are L-correct and in which LωCK1

is definable, the ordinal

‖T‖
Σ
ωCK1
1

:= min{α |Lα |= F for every Σ
ωCK1
1 -sentence F such that T ` F},

is an upper-bound of ‖T‖. Since Πω-Ref meets these requirements we therefore com-
pute ‖Πω-Ref‖

Σ
ωCK1
1

in this first part of the thesis.

The theory Πω-Ref denotes the subsystem KP of set theory (Kripke-Platek Set-
Theory) augmented by reflection schemes for first-order formulae. The theory KP was
established by S. Kripke and R. Platek in the 1960’s as an axiomatization of generalized
recursion-theory on sets.

The first crucial step in the proof-theoretic treatment of KP augmented by first-
order reflection schemes was taken by M. Rathjen in [Rat94b], in which he achieved
an ordinal analysis of Π3-Ref (KP augmented by a reflection scheme for Π3-formulae).

In the following we assume that the reader is familiar with [Rat94b]. Since our
ordinal analysis of Πω-Ref reads as easy as [Rat94b], as soon as the interplay between
collapsing-hierarchies, reflection instances and the elimination of reflection-rules is un-
derstood and the fine structure of the collapsing hierarchies is elaborated, we first
outline the underlying ideas of these concepts.
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Collapsing Hierarchies, Reflection Instances, and the
Elimination of Reflection-Rules

In this explanation we confine to the treatment of Πn-Ref for n ≥ 4. To keep it simple
we argue completely semantically, i.e. we ignore any recursiveness-conditions. So let
us assume, a derivation is given in which applications of Πn-reflection rules occur and
let us also assume there exists a collapsing hierarchy with reflection degree (rdh) n−1,
i.e. a hierarchy 〈Mα |α ∈ T〉, such that the elements of Mα are Πn−1-reflecting on Mξ

for every ξ < α (as we build up our collapsing hierarchies on the cardinal-analogues
of Πn-reflecting ordinals there is always a 2-shift between the notion of the reflection-
strength of ordinals in context of collapsing hierarchies and in context of the actual
reflection-rules).

The idea of “stationary collapsing”, as established in [Rat94b], is to transform the
given derivation (with supposed derivation-length α), in which Πn-reflection rules
might occur, into card(Mα̂)-many derivations, in which the applications of the Πn-

reflection rules are replaced by applications of Mξ̂-Πn−1-reflection rules. Such a Re-
flection Elimination Theorem states (in our approach, i.e. employing (cofinal-many)
Πn−1-reflection rules) as follows: Suppose Γ ⊆ Σn−1(π), with parameters in Lσ for
some σ < π, then

H[A] µ̄
α

Γ ⇒ H′[A, κ]
�

Ψα̂⊕κ
Γ(π,κ) for all σ < κ ∈Mα̂.

In the proof of this theorem, which runs by induction on α, we face the following
situation: In (the crucial) case that the last inference was an application of the Πn-
reflection rule, there is an F ∈ Πn(π), such that

H[A] µ̄

α0
Γ, F.

By an application of the derivable rule (∀-Inv) we obtain

H[A, t] µ̄

α0
Γ, F ′(t), for all t ∈ Tπ.

An application of the induction hypothesis yields

H′[A, t]
�

Ψα̂0⊕λ
Γ(π,λ), F ′(t)(π,λ) for all σ, t < λ ∈Mα̂0 .

By use of a ∀-inference we obtain

H′[A]
�

Ψα̂0⊕λ+1
Γ(π,λ), F (π,λ) for all σ < λ ∈Mα̂0 .

Now we fix a σ < κ ∈Mα̂. Then it holds {λ |σ < λ ∈Mα̂0} ∩ κ 6= ∅ and we obtain by
an application of an ∃-inference

H′[A]
�

Ψα̂0⊕λ+2
Γ(π,λ),∃zκ(z |= F ) for all σ < λ ∈Mα̂0 ∩ κ. (A)
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To finish this case we have to transform Γ(π,λ) to Γ(π,κ). Therefore let σM
α̂0 be a

formalization of the predicate {λ |σ < λ ∈Mα̂0}. Then we obtain from (A)

H′[A]
�

Ψα̂0⊕κ ∀xκ
(
σM

α̂0(x)→
∨

Γ(π,x)
)
,∃zκ(z |= F ).

Moreover we have

H′[A]
�

Ψα̂0⊕κ ¬(
∨

Γ(π,κ)),
∨

Γ(π,κ),

and ¬
(∨

Γ(π,κ)
)

is a Πn−1(π)-sentence (if the class of Πn−1-sentences is closed un-
der the Boolean connectives ∨ and ∧). If every σ < κ ∈ Mα̂ is equipped with a

σM
α̂0-Πn−1(κ)-reflection rule, we obtain

H′[A]
�

Ψα̂0⊕κ ∃xκ
(
σ
M α̂0(x) ∧ ¬(

∨
Γ(π,x))

)
,
∨

Γ(π,κ), (B)

and we get the desired result by a cut.
Now let us have a look at Definition 5.2.7 on page 68 and Definition 4.2.8 to see their

relevance for fulfilling the requirements of the reflection elimination process outlined
above. By clause 0.1 of Definition 5.2.7 and the fourth clause of Definition 4.2.8 π is
equipped with a Πn-reflection rule. The collapsing hierarchy of π is defined by means
of clause 1. of Definition 5.2.7. By subclause 1.3 and the fifth clause of Definition 4.2.8
the defined elements of the collapsing hierarchy of π are equipped with the reflection
rules required to attain (B).

Therefore we are able to eliminate the Πn-reflection rule of π at the cost of introduc-
ing new elements κα, which are equipped with Mξ-Πn−1-reflection rules for all ξ < α.
In the following we denote this property of κα by κα |= M<α-Pn−1.

Now we want to iterate the above outlined elimination process to get rid of the
reflection rules for κα. First we observe that it is impossible to iterate this process
by introducing only one collapsing hierarchy for κα. The reason is simple: Let us
assume the above outlined case with π replaced by κα and the last inference was an
application of a σM

ξ-Πn−1(κα)-reflection rule, for some ξ < α. Then we have to
derive ∃zκ

(
σ
Mξ(z) ∧ z |= F

)
instead of ∃zκ(z |= F ) in (A). Therefore all the sets

of the collapsing hierarchy 〈Mβ
κα |β ∈ T〉 of κα have to be subsets of Mξ. However,

since that must hold for any ξ < α it would follow that any element of the collapsing
hierarchy of κα is already Mξ-Πn−1-reflecting for every ξ < α, if α ∈ Lim. As we
want the elements of the collapsing hierarchy of κα to be below κα (to secure that
the reflection-rule elimination process terminates at all) this is absurd, since κα could
itself be the minimal ordinal with the property Mξ-Πn−1-reflecting for every ξ < α.

Therefore we have to introduce for every ξ < α a collapsing hierarchy 〈Mβ
κα,ξ
|β ∈ T〉

whose sets are subsets of Mξ. Moreover to obtain equation (B) in the above scenario

every κ ∈Mβ̂
κα,ξ

has to be equipped with a σM
β̂0

κα,ζ
-Πn−2(κ)-reflection-rule, for every

ζ < α, since the last inference of the given derivation could have been a Mζ-Πn−1-(κα)-

reflection inference even if we are proving the theorem for κ ∈ Mβ̂
κα,ξ

. Thus every

10



κ ∈ Mβ
κα,ξ

has to be Mβ0

κα,ζ
-Πn−2-reflecting for every β0 < β and every ζ < α.

Therefore the collapsing hierarchies 〈Mβ
κα,ξ
|β ∈ T〉 have to be defined simultaneously

for all ξ < α.
A closer look at Definition 5.2.7 reveals that this process actually takes place in

clause 2. (with Ψδ
Z = κα in our example). Therefore a reflection configuration “splits”

a block M<α-Pn−1 of reflection rules into reflection instances “ Mξ-Pn−1” with ξ < α,
which have to be eliminated simultaneously.

At this point it becomes clear how “slow” and intricate the reflection elimination
process actually is. In the above outlined second elimination step we have transformed
a derivation of a set of Σn−1(κα)-sentences Γκα , with κα |= M<α-Pn−1, into derivations

of Γκβ , where κβ |= M<ξ-Pn−1 with ξ < α and κβ |= M<β
κα,ζ

-Pn−2 for all ζ < α.

We proceed and define a collapsing hierarchy for κβ . Since κβ is equipped with Πn−1-
reflection rules we realize that the reflection degree of this hierarchy must be n− 2 (cf.

equation (B)). In this step we cannot eliminate the σM
β0

κα,ζ
-Πn−2-(κβ)-reflection rules,

which κβ also bears, as otherwise we would have to define a collapsing hierarchy of κβ
with reflection degree n− 2 whose sets are subsets of Mβ0

κα,ζ
(to obtain equation (A)).

However, this is impossible in general as Mβ0

κα,ζ
is itself a member of a hierarchy with

reflection degree n − 2. Therefore we can just eliminate the Mζ-Πn−1-(κβ)-reflection
rules and have to inherit all other rules (of reflection degree n− 2) to the elements of
the collapsing hierarchy of κβ .

The iteration of the above outlined reflection elimination process leads to elements
which bear more and more reflection rules.

At this point the reader should toy around with Definition 5.2.7 and continue the
above given example. Thereby (s)he should become aware that there are sooner or

later elements such that the length of ~R (cf. 5.2.7) increases up to n− 3. Moreover it

should become clear that the vector ~R is just the tip of the iceberg with respect to the
reflection rules an element of a collapsing hierarchy can bear. In general the particular
entries of ~R have to be regarded as stacks of entries of the form M<α-Pn−1 (cf. 3.1.2
– 3.1.4).

Carrying on with defining collapsing hierarchies until elements are reached that do
not bear any reflection rule (cf. clause 1. of 5.2.7 with m = 0) seems to be fine at first
glance. Actually such elements are reached since ON is well-founded. However, the big
problem in the whole definition process is that we are a bit too careless at each step
at which we define a new collapsing hierarchy for π. We just secure that the newly
defined elements are equipped with all the reflection rules that are needed to eliminate
the reflection rules of π in the way outlined above.1 However, this does not rule out the
possibility that some of these elements are also part of another collapsing hierarchy.
This causes a problem since for the latter hierarchy the outlined proof scheme would
fail at step (B) as these elements might not be equipped with the needed reflection
rules.2

1Although, even that is not totally clear. E.g. we cut off ~R
Ψ
ξ
~ν

at m in clause 2. of Definition 5.2.7.

That we do not loose any information in doing so follows by the Correctness Lemma 3.1.6.
2In [Duc08] C. Duchhardt elaborates an ordinal analysis of Π4-reflection and his concept differs

from ours exactly in this point. To avoid the just mentioned difficulties he defines the collapsing

11



To handle this problem we need an in depth analysis about the allocation of elements
of the form Ψα

X over the different collapsing hierarchies. This analysis is carried out
in chapter 3. There we show that all collapsing hierarchies containing Ψα

X can be

decoded out of ~RΨαX
(cf. Theorem 3.2.4). By using this result we can easily show that

all elements of a given collapsing hierarchy are equipped with the required reflection
rules to perform the reflection elimination process set out above (cf. Theorem 5.2.1).

hierarchies more carefully. He secures by definition that there are no unwanted overlappings.
Although there is no need for a fine structure analysis of his collapsing hierarchies we consider his
concept as more cumbersome than ours from a technical point of view (cf. e.g. the <-Comparison
theorems in his paper). Moreover it seems to be unclear how his concept can be generalized to an
ordinal analysis of Πω-Ref.
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2. Ordinal Theory

In this chapter we define the ordinal notation system T(Ξ) by which means we are able
to give an upper-bound of the proof-theoretic ordinal of Πω-Ref. By utilizing cardinal-
analogues of the required recursive ordinals many complexity considerations narrow
down to simple cardinality arguments. Thereby we employ these cardinal-analogues.
However, a well-ordering proof, which we do not give in this thesis, but which can be
carried out by the methods of [Sch93] or [Rat94a], requires the use of the recursive
ordinals.

Since the cardinal-analogue of a Πn+2-reflecting ordinal is a Π1
n-indescribable cardi-

nal there is always a +2-shift by switching from notational-based terms, e.g. reflection
instances, to the corresponding reflection-rules (cf. e.g. Definition 4.2.8).

2.1. Π1
n-Indescribable Cardinals

Notation. In the following we denote the class of ordinal numbers by ON, the class
of successor ordinals by Succ, the class of limit ordinals, i.e. ON \(Succ∪{0}), by Lim,
the class of transfinite cardinal numbers by Card and the class of regular cardinals by
Reg. We denote the cardinal successor of a cardinal κ by κ+ and card(S) denotes the
cardinality of the set S.

As usual we denote the binary Veblen function by ϕ, i.e. ϕ(α, β) is defined by
transfinite recursion on α as the enumerating function of the class {ωβ |β ∈ ON ∧
∀ξ∈α (ϕ(ξ, β) = ωβ)}. Throughout the thesis we write ωβ for ϕ(0, β). In addition we
denote the class of strongly critical ordinals by SC, i.e. it holds γ ∈ SC iff ϕ(α, β) < γ
for all α, β < γ.

We refer to the n-time Cartesian product of an ordinal class by adding the exponent
n to the denotation of the respecting class, e.g. ON2 := ON×ON. Moreover we use
the following notation:

∀i1k F (k) :≡ ∀k
(
(1 ≤ k ≤ i)→ F (k)

)
.

Definition 2.1.1. A cardinal π is called Π1
n-indescribable if for every P1, . . . , Pk ⊆ Vπ

and for all Π1
n-sentences F of the language of 〈Vπ,∈, P1, . . . , Pk〉 such that

〈Vπ,∈, P1, . . . , Pk〉 |= F,

there exists a 0 < κ < π such that

〈Vκ,∈, P1 ∩ Vκ, . . . , Pk ∩ Vκ〉 |= F.

13



The cardinal π is called M-Π1
n-indescribable if in the above situation a 0 < κ ∈ π∩M

can be found.
A cardinal π is called Π2

0-indescribable if it is Π1
n-indescribable for every n ∈ ω.

Lemma 2.1.2. π is Π1
0-indescribable iff π is strongly inaccessible.

Proof. See [Dra74], Ch.9, Theorem 1.3.

Theorem 2.1.3. For every n < ω there is a Π1
n formula ψn(X1, . . . , Xk, x), which is

universal for Π1
n-sentences, i.e. for every Π1

n-sentence φ, for every limit ordinal α > ω
and any P1, . . . , Pk ⊆ Vα we have

〈Vα,∈, P1, . . . , Pk〉 |= φ↔ ψn(P1, . . . , Pk, pφq),

where pφq is a Gödel-set for φ.

Proof. For 0 < n see [Dra74], Ch 9, §1, Lemma 1.9. The proof of this Lemma also
shows the existence of a ∆1

0-formula ψ which is universal for Π1
0-sentences.

Corollary 2.1.4. Since Vπ is closed under pairing if π is Π1
n-indescribable w.l.o.g. we

may assume k = 1 in the above definition. Thus π is M-Π1
n-indescribable iff

〈Vπ,∈,M〉 |= ∀X ∀x
(
ψn(X,x)→ ∃κ∈M

(
κ 6= ∅ ∧ Tran(κ) ∧ ψκn(X ∩ Vκ, x)

))
,

i.e. the M-Π1
n-indescribableness of π is describable by a Π1

n+1-statement (in the pa-
rameter M).

2.2. Collapsing Hierarchies

To obtain an ordinal notation system for Πω-Ref we define by simultaneous recursion
on α the sets C(α, β) (the αth Skolem closure of β), reflection instances X, collapsing
hierarchies Mα

X and collapsing functions ΨX.
Reflection instances are strings consisting of ordinals, parentheses and the symbols

; , -, ε,M and P. More exactly they are quintuplets of the form (π; Pm; ~R;Z;α) or of

the form (π; Mξ
M(~ν)-Pm; ~R;Z;α). Reflection instances are intended as arrays, providing

information of the reflection strength of π (second and third component), and record
their own recursive development in the fourth component. The fifth component denotes
the ordinal of the reflection instance, i.e. the step in the recursive process in which the
reflection configuration is generated.

To be able to talk easily about related reflection instances we also introduce reflec-
tion configurations as functions which map finite sequences of ordinals to reflection
instances.

In the following we denote the reflection instance (Ξ; Pm; ε; ε;ω) by A(m) for m ∈
(0, ω), i.e. we use A as a name for the reflection configuration which maps an element
m ∈ ω to (Ξ; Pm; ε; ε; 0). Moreover we use U,V,W,X,Y,Z as variables for reflection
instances and 0-ary reflection configurations and F,E,G,H,K,M,R,S as variables for
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reflection configurations. We denote the αth collapsing hierarchy of a reflection in-
stance X by Mα

X.

The following definitions have to be read simultaneously to Definition 2.2.4.

Definition 2.2.1. Let F(~η) = X = (π; . . . ;Z; δ) be a reflection instance with prede-
cessor reflection instance Z = G(~ν). Then we refer to F as the reflection configuration
of X and vice versa we call X a reflection instance of F, i.e. V is a reflection instance
of E iff there is a ~ν ∈ dom(E), such that V = E(~ν) and E is then referred to as the
reflection configuration of V. Moreover we define

o(X) := o(F) := δ,

i(X) := i(F) := π,

Prinst(ε) := Prcnfg(ε) := ∅,
Prinst(X) := Prinst(F) := {Z} ∪ Prinst(Z),

Prinst(X) := Prinst(X) ∪ {X},
Prcnfg(X) := Prcnfg(F) := {G} ∪ Prcnfg(Z),

Prcnfg(X) := Prcnfg(F) := Prcnfg(F) ∪ {F}.

Notation. Let κ be an ordinal, ~η = (η1, . . . , ηn) be a vector of ordinals and M ⊆ ONn.
Then we use the following abbreviations1

~η ∈ C(κ) :⇔ ∀n1k
(
ηk ∈ C(ηk, κ)

)
,

~η ∈MC(κ) :⇔ ~η ∈M ∩ C(κ).

Definition 2.2.2 (M-P-Expressions). In the following we assume that we have for
every reflection configuration F a symbol MF. Let α be an ordinal and n ∈ ω or
n = −1. Then we refer to expressions of the form M<α

F -Pn as M-P-expressions. For
technical convenience we also define ε as an M-P-expression and as a finite sequence
of M-P-expressions with zero length.

Let U be an 0-ary reflection configuration, G a non 0-ary reflection configuration
and M an arbitrary reflection configuration. Let ξ > o(U), ξ′ > o(G), and γ ≥ o(M),

plus ~R = (M<ξ1
R1

-Pm1
, . . . ,M<ξi

Ri -Pmi), with m1 > . . . > mi. Then we define

M<γ
M -P−1 := ε,

M̃<γ
M -Pm :=

{
(~Ri(M))m if γ = o(M) and M 6= A,
M<γ

M -Pm otherwise,

1Note, that C(κ) and MC(κ) are not well-defined terms.
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and

κ |= ε :⇔ ∅ /∈ ∅
κ |= M

<o(M)
M -Pm :⇔ κ is Π1

m-indescribable,

κ |= M<ξ
U -Pm :⇔ ∀ζ∈ [o(U), ξ)C(κ) (κ is Mζ

U-Π1
m-indescribable,)

κ |= M<ξ′

G -Pm :⇔ ∀(ζ, ~η)∈ [o(G), ξ′)C(κ) × dom(G)C(κ)

(κ is Mζ
G(~η)-Π

1
m-indescribable),

κ |= ~R :⇔ ∀i1k (κ |= M<ξk
Rk -Pmk).

Moreover we define the following substrings of ~R

~Rk :=

{
(M<ξl

Rl -Pml) if ml = k for some 1 ≤ l ≤ i,
ε otherwise.

~R<k := (~Rk−1, . . . , ~R0),

~R>k := (~Rm1
, . . . , ~Rk+1),

~R(l,k) := (~Rl, ~Rl−1, . . . , ~Rk+1) for l ≥ k.

Analogously we define the substrings ~R≤k, ~R≥k and ~R(l,k].

Definition 2.2.3. Let X be a reflection instance. We define by recursion on o(X)

parA(m) := {m},
par(κ+; . . . ; 0) := {κ},

par(Ψδ
Z; Pm; . . .) := {δ} ∪ parZ,

par(Ψδ
Z; Mξ

M(~ν)-Pm; . . .) := {δ, ξ, ~ν} ∪ parZ.

In the following we write X ∈ C(α, π) iff parX ⊆ C(α, π) and X ∈ C(κ) iff parX ⊆
C(κ).

Definition 2.2.4 (Collapsing Hierarchies). 2 Let Ξ be a Π2
0-indescribable cardinal

number. By simultaneous recursion on α we define the sets C(α, π), reflection in-
stances X, reflection configurations F, collapsing hierarchies M, finite sequences of
M-P-expressions ~RΨ and (partial) collapsing functions Ψ (all these where appropriate
with arguments and indices).

The class of reflection instances is partitioned in three types enumerated by 1., 2., 3.
Whenever we define a new reflection instance we indicate by → p., with p ∈ {1, 2, 3}

2In this Definition we define finite sequences of M-P-expressions, which we denote by ~Rπ for π > ω.
The reader should be aware that ~Rk with k < ω denotes an M-P-expression, while ~Rπ with π > ω
denotes a finite sequence of M-P-expressions, cf. Definition 2.2.2.
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of which type this reflection instance is. Clause p. of the definition then specifies how
to proceed with reflection instances of type p. in the recursive definition process.

C(α, π) :=
⋃
n<ω

Cn(α, π), where

C0(α, π) := π ∪ {0,Ξ}, and

Cn+1(α, π) :=



Cn(α, π)∪
{γ + ωδ | γ, δ ∈ Cn(α, π) ∧ γ =

NF
ωγ1 + . . .+ ωγm ∧ γm ≥ δ}† ∪

{ϕ(ξ, η) | ξ, η ∈ Cn(α, π)}∪
{κ+ |κ ∈ Cn(α, π) ∩ Card∩Ξ}∪
{Ψγ

X |X, γ ∈ Cn(α, π) ∧ γ < α ∧Ψγ
X is well-defined}.

0.1. We define the reflection configuration A with dom(A) = (0, ω) and reflection
instances3

A(m) = (Ξ,Pm; ε; ε;ω) → 1.

For technical convenience we also define ~RΞ := ε.

0.2. For every cardinal ω ≤ κ < Ξ we define the 0-ary reflection configuration
and reflection instance

(κ+; P0; ε; ε; 0) → 2.

For technical convenience we also define ~Rκ+ := (M<ω
A -P0).

1. Let X := A(m+ 1) be a reflection instance of the form

(Ξ; Pm+1; ε; ε;ω).

For α ≥ ω we define Mα
X as the set of all ordinals κ < Ξ satisfying

1. C(α, κ) ∩ Ξ = κ,

2. X, α ∈ C(κ),

3. κ is Π1
m-indescribable,

4. κ |= M<α
A -Pm.

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

Moreover we define ~RΨαX
:= (M<α

A -Pm,M
<α
A -Pm−1, . . . ,M

<α
A -P0).

†The formulation of closure under + seems to be unnecessarily complicated, but we want + to be
injective.

3Here we could also proceed with o(A(m)) := 0. However, it is more convenient to define o(A(m)) =
ω, as otherwise we would have to differentiate between finite and transfinite arguments of reflection
configurations in Lemma 2.3.2 to obtain À (e). Moreover in the treatment of part two of this thesis
the parameter m becomes a relevant parameter of parA and therefore at least then we have to
choose o(A(m)) = ω.
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1.1. Let α = ω. Then we define the 0-ary reflection configuration and reflection
instance

(Ψα
X; Pm; (M<α

A -Pm−1, . . . ,M
<α
A -P0);X;ω + 1) → 2.

1.2. Let α > ω. Then we define the reflection configuration G with dom(G) :=
[ω, α)C(ΨαX ) × (m,ω) and reflection instances

G(ζ, n) := (Ψα
X; Mζ

A(n)-Pm; (M<α
A -Pm−1, . . . ,M

<α
A -P0);X;α+1) → 3.

2. Let X = F be a 0-ary reflection configuration and a reflection instance of the
form

(π; Pm; ~R;Z; δ)

Then we either have δ = 0 = m and π = κ̄+ for some cardinal κ̄, or δ = δ0 + 1
and π = Ψδ0

Z . In any case we have ~Rπ = (M<ω
A -Pm, ~R).

For α ≥ δ we define Mα
X as the set consisting of all ordinals κ < π satisfying

1. C(α, κ) ∩ π = κ,

2. X, α ∈ C(κ),

3. if m > 0: κ |= ~R,

4. if m > 0: κ |= M<α
F -Pm−1.

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

If m > 0 we also define ~RΨαF
:= (M̃<α

F -Pm−1, ~R<m−1).

For the following 2.· subclauses we suppose m = m0 + 1 > 0. If m = 0 we do not
equip Ψα

X with any reflection configurations or instances.

2.1. Let α = δ and ~Rm0 = (M<ξ1
R1

-Pm0) with o(R1) = ξ1. Due to the ·̃ -operator
we then have R1 = A, i.e. ξ1 = ω and we define the 0-ary reflection config-
uration and reflection instance

(Ψα
X; Pm0

; ~R<m0
;X;α+ 1) → 2.

2.2 Let α = δ and ~Rm0 = (M<ξ1
A -Pm0) with ω < ξ1. Then we define the reflec-

tion configuration G with dom(G) := [ω, ξ1)C(ΨαX ) × (m0, ω) and reflection
instances

G(ζ, n) := (Ψα
X; Mζ

A(n)-Pm0
; ~R<m0

;X;α+ 1) → 3.

2.3 Let α = δ and ~Rm0 = (M<ξ1
R1

-Pm0) with R1 6= A and o(R1) < ξ1. Then
we define the reflection configuration G with dom(G) := [o(R1), ξ1)C(ΨαX ) ×
dom(R1)C(ΨαX ) and reflection instances

G(ζ, ~η) := (Ψα
X; Mζ

R1(~η)-Pm0
; ~R<m0

;X;α+ 1) → 3.
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2.4. Let α > δ. Then we define the reflection configuration G with dom(G) :=
[δ, α)C(ΨαX ) and reflection instances

G(ζ) := (Ψα
X; Mζ

F-Pm0
; ~R<m0

;X;α+ 1) → 3.

3. Let X := F(ξ, ~ν) be a reflection configuration of the form4

(Ψδ
Z; Mξ

M(~ν)-Pm; ~R;Z; δ + 1).

Then it holds ~RΨδZ
= (M<γ

M -Pm, ~R) for some γ > ξ and M ∈ Prcnfg(X).

For α ≥ δ + 1 we define Mα
X as the set consisting of all ordinals κ ∈Mξ

M(~ν) ∩Ψδ
Z

satisfying

1. C(α, κ) ∩Ψδ
Z = κ,

2. X, α ∈ C(κ),

3. if m > 0: κ |= ~R,

4. if m > 0: κ |= M<α
F -Pm−1.

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

Moreover we define ~RΨαX
:= ((~RΨξM(~ν)

)≥m, M̃
<α
F -Pm−1, ~R<m−1).

Let ~RΨξM(~ν)
= (M<σ1

S1
-Ps1 , . . .).

3.1. Let σ1 = o(S1). Due to the ·̃ -operator we then have S1 = A, i.e. σ1 = ω.
Then we define the 0-ary reflection configuration and reflection instance

(Ψα
X; Ps1 ; ((~RΨξM(~ν)

)(s1,m], M̃
<α
F -Pm−1, ~R<m−1);X;α+ 1) → 2.

3.2. Let σ1 > o(S1) and S1 = A Then we define the reflection configuration G
with dom(G) := [ω, σ1)C(ΨαX ) × (s1, ω) and reflection instances

G(ζ, n) := (Ψα
X; Mζ

A(n)-Ps1 ;

((~RΨξM(~ν)
)(s1,m], M̃

<α
F -Pm−1, ~R<m−1);X;α+ 1) → 3.

3.3. Let σ1 > o(S1) and S1 6= A. Then we define the reflection configuration G
with dom(G) = [o(S1), σ1)C(ΨαX ) × dom(S1)C(ΨαX ) and reflection instances

G(ζ, ~η) := (Ψα
X; Mζ

S1(~η)-Ps1 ;

((~RΨξM(~ν)
)(s1,m], M̃

<α
F -Pm−1, ~R<m−1);X;α+ 1) → 3.

4Note, that ~ν can also be a vector of zero length, e.g. if X is defined by subclause 2.4
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2.3. Structure Theory

In this section we show that Mα
X 6= ∅ if α ∈ C(i(X)) and give criteria for < -comparisons

like Ψα
X < Ψβ

Y.

Definition 2.3.1. Let X = (π; Pm; ~R; . . .) or X = (π; Mξ
M(~ν)-Pm; ~R; . . .) be a reflection

instance with reflection configuration F, and ~S = (M<σ1

S1
-Ps1 , . . .) be a finite sequence

of M-P-expressions. Then we define.

~RX := ~RF := ~R

rdh(A(m+ 1)) := m,

rdh(X) := m− 1,

Rdh(A) := ω,

Rdh(F) := {m− 1}, if F 6= A,

rd(~S) := s1,

rd(ε) := −1,

and

initl(F) :=

{
F if X = (κ+; . . . ; 0) for some κ,

A otherwise,

ranαX(Z) := ranαF (Z) :=

{
δ if there is a refl. inst. (Ψδ

Z; . . .) ∈ Prinst(X),

α otherwise,

ranαX(E) := ranαF (E) :=


δ if there is a refl. inst. (Ψδ

Z; . . .) ∈ Prinst(X)

and E is the refl. config. of Z,
α otherwise.

Remark. It follows by induction on o(X) that ranαX(Z) and ranαX(E) are well-defined,
since we have (Ψδ

Z; . . .) = (Ψδ
Z; . . . ;Z; δ + 1) and Z /∈ Prinst(Z).

Notation. Let M ⊆ ONn be a set of vectors of ordinals and let α be an ordinal. Then
we write α ≥M :⇔ ∀(η1, . . . , ηn)∈M ∀n1 i (α ≥ ηi).

Lemma 2.3.2 (Well-Definedness of Definition 2.2.4). Let X = (Ψδ
Z; . . . ; ~R;Z; δ+ 1) be

a reflection instance with reflection configuration F. Then it holds:

Ê (a) o(Z) < o(X) = δ + 1,

(b) ~RΨδZ
=

{
(M<ω

A -Pm, ~R) if X = (π; Pm; . . .),

(M<γ
M -Pm, ~R) for some γ > ξ ≥ o(M), if X = (π; Mξ

M(~ν)-Pm; . . .),

(c) rdh(M(~ν)) ≥ m > rdh(X) if X = (π; Mξ
M(~ν)-Pm; . . .),

(d) X ∈ C(Ψδ
Z),
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(e) parX < o(X) = δ + 1.

Ë ∀κ∈Mα
X
(
κ |= ~RΨαX

∧ κ |= (~RΨδZ
)≤rdh(X)

)
.

Ì Let ~RΨαX
= (M<ξ1

R1
-Pr1 , . . . ,M

<ξk
Rk -Prk). Then it holds for all 1 ≤ i ≤ k:

(a) Ri ∈ Prcnfg(X) and dom(Ri) ≤ α,

(b) ξi ≤ ranαX(Ri) and
(
ξi = o(Ri) ⇒ Ri = A, i.e. ξi = ω

)
,

(c) ξi ∈ parX ∪ {α},
(d) r1 ≥ rdh(X) and (r1, . . . , rk) = (k − 1, k − 2, . . . , 1, 0),

(e) ∃νi∈dom(Ri) ∩ parX
(
rdh(Ri(~νi) = ri

)
,

(f) (~RΨαX
)≤rdh(X) = (M̃<α

F -Prdh(X), (~RF)<rdh(X))

(g) ∀~νi∈dom(Ri)
(
rdh(Ri(~νi)) = ri = rd(~RRi)

)
if Ri 6= A.

Corollary 2.3.3. The claims made in Definition 2.2.4, e.g. “ M ∈ Prcnfg(X)” in
clause 3., are true.

Moreover for every reflection instance Z 6= (i(Z); P0; . . .) and every δ, such that
Mδ

Z 6= ∅ there is a reflection instance X with i(X) = Ψδ
Z.

Now we turn to the proof of Lemma 2.3.2.

Proof. At first we observe that for X = A(m+ 1) with m ∈ ω the propositions of item
Â, except for Â (f), do hold. Done this we show the claim by induction on o(X):

Case 1, X = (Ψδ
Z; Pm; ~R;Z; δ + 1): À Then the reflection instance X is defined by

means of the subclause 1.1 or 2.1 or 3.1 of Definition 2.2.4. The propositions of À hold
in any of these cases owing to the following arguments:

(a) o(Z) ≤ δ, since Mδ
Z is only defined for δ ≥ o(Z);

(b) we have ~RΨδZ
= (M<ω

A -Pm, ~R) by means of the induction hypothesis Â (b);

(c) here is nothing to show;
(d) the definition of Mδ

Z implies that parZ ∪ {δ} = parX ∈ C(Ψδ
Z);

(e) by means of the induction hypothesis we have parZ < o(Z) < δ + 1 and thus
parX = parZ ∪ {δ} < δ + 1 = o(X).

Á Follows by definition of Mα
X.

Â If α = δ+1 we have ~RΨαX
= (~RΨδZ

)<m and the claim follows by means of induction
hypothesis Â and the following arguments:

(a) Prcnfg(Z) ⊆ Prcnfg(X), δ < α;
(b) ranδZ(Ri) = ranαX(Ri), if Ri ∈ Prcnfg(Z);
(c) parZ ∪ {δ} = parX;
(d) m− 1 ≥ rdh(X);
(e) parZ ⊆ parX;,
(f) follows directly by definition;
(g) here is no extra argument needed.
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If α > δ + 1 we have ~RΨαX
= (M<α

F -Pm−1, (~RΨδZ
)<m−1). For i = 1 all propositions

follow directly by definition and for i > 1 by means of the induction hypothesis as
before in the case α = δ + 1.

Case 2, X = (Ψδ
Z; Mξ

M(~ν)-Pm; . . .): À Then the reflection instance X is defined by

means of one of the subclauses 1.2, 2.2, 2.3, 2.4, 3.2 or 3.3 of Definition 2.2.4. The
propositions of À hold in any of these cases owing to the following arguments:

(a) cf. the first case;
(b) follows directly by means of the subclause which defines X;
(c) in case of M = A the claim follows by means of the subclause which defines X.

If M 6= A it follows due to the induction hypothesis Â (g).
(d) It follows by definition of Mδ

Z, that parZ ∪ {δ} ∈ C(Ψδ
Z). In addition the

subclauses 1.2, 2.2, 2.3, 2.4, 3.2 and 3.3 secure that ξ, ~ν ∈ C(Ψδ
Z). Thereby we have

parZ ∪ {δ, ξ, ~ν} = parX ∈ C(Ψδ
Z).

(e) By means of the induction hypothesis we have parZ < o(Z) < δ + 1. To also
prove ξ, ~ν < δ + 1 we differentiate between the clauses, which define X.

If X is defined by clause 1.2 it holds (M<γ
M -Pm, ~R) = (M<δ

A -Pm, . . . ,M
<δ
A -P0) and

thus ξ < δ. Moreover it holds ~ν ∈ dom(M) = dom(A) = ω ≤ δ since δ ≥ o(A) = ω.
Thus we have parX < δ + 1.

If X is defined by clause 2.2 or 2.3 we have (M<γ
M -Pm, ~R) = (~RΨδZ

)≤m and therefore

it follows due to the induction hypothesis Â (b) that ξ < γ ≤ ranδZ(M) = ranαX(M) <
o(X) = δ + 1 and owing to Â (a) that ~ν ∈ dom(M) ≤ δ < δ + 1.

If X is defined by clause 2.4 then ~ν is a vector of zero length and ξ < δ < δ + 1.
If X is defined by clause 3.2 or 3.3 then Z has a predecessor reflection instance Z′ and

for o(Z) = δ′+ 1 we have ~RΨδ
′

Z′
= (M<γ′

M′ -Pm′ , . . .) for some M′ ∈ Prcnfg(Z′). Moreover

there are a ξ′ < γ′ and a ~ν′ ∈ dom(M′) such that ~R
Ψξ
′

M′(~ν′)
= (M<σ1

S1
-Ps1 , . . .) and

~RΨδZ
= (M<γ

M -Pm, ~R) = (M<σ1

S1
-Ps1 , . . .). Thereby we obtain by means of the induction

hypothesis Â (b) that

ξ < σ1 ≤ ranξ
′

M′(~ν′)(S1) ≤ max{ξ′, oM′} ≤ max{γ′, δ}
≤ max{ranδ

′
Z′(M′), δ} ≤ max{δ′, o(Z′), δ} = δ < δ + 1

and due to Â (a) ~ν ∈ dom(S1) ≤ δ′ < δ + 1.
Thus we have shown {δ, ξ, ~ν} ∪ parZ = parX < δ + 1.

Á We have just shown that ~RΨδZ
= (M<γ

M -Pm, . . .). Thereby it follows by means

of induction hypothesis Â that M ∈ Prcnfg(Z) ⊆ Prcnfg(X). Thus we obtain ∀κ ∈
Mξ

M(~ν) (κ |= ~RΨξM(~ν)
) by employing the induction hypothesis Á. Taking also into account

the definition of Mα
X claim Á follows.

Â For ri ≥ m the claims follow by an application of the induction hypothesis Â to
~RΨξM(~ν)

, analogously to the first case. For ri < m the claims follow by an application

of the induction hypothesis Â to ~RΨδZ
or since Ri = F. We also have r1 ≥ rdh(M(~ν) ≥

m > m− 1 = rdh(X).
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Lemma 2.3.4. It holds

• α ≤ β ∧ κ ≤ π ⇒ C(α, κ) ⊆ C(β, π),

• card
(
C(α, κ)

)
= max{ℵ0, card(κ)},

• λ ∈ Lim ⇒ C(λ, κ) =
⋃
ξ<λ C(ξ, κ) & C(α, λ) =

⋃
ξ<λ C(α, ξ).

Proof. Folklore.

Lemma 2.3.5. Let ω < π be a regular cardinal and X be a reflection instance. Then
it holds

Ê Cαπ := {κ < π |C(α, κ) ∩ π = κ} is club in π.

Ë If par(X) ≤ α and X, α ∈ C(π) then

CαX,π := {κ < π |C(α, κ) ∩ π = κ ∧ X, α ∈ C(κ)} is club in π.

Proof. For the former claim see Lemma 4.3 in [Rat05b].
Lemma 4.3 also implies that

C̃ρπ := {κ < π |C(ρ, κ) ∩ π = κ ∧ ρ ∈ C(ρ, κ)}

is club in π for all ρ ∈ par(X) ∪ {α}. Since card(par(X)) < ℵ0 and ω < π is a regular
cardinal we have

⋂
ρ∈par(X)∪{α} C̃

ρ
π = CαX,π is club in π.

Definition 2.3.6. Let X be a reflection instance. We define

~X :=


(m) if X = A(m),

(κ) if X = (κ+; P0; . . .),

(δ, ~Z) if X = (Ψδ
Z; Pm; . . .),

(δ, ξ, ~ν, ~Z) if X = (Ψδ
Z; Mξ

M(~ν)-Pm; . . .).

Remark. It follows by induction on o(X) that ~X = ~Y ⇔ X = Y.

Definition 2.3.7 (Coding of C(α, π)). Let π ∈ Reg. For β ∈ C(α, π) we define the
set of codes Cdα,π(β) for β as follows (we write pγq ∈ Cdα,π(·) for pγq ∈ Cdα,π(γ)):

β ∈ Cdα,π(β) if β < π,

{1} ∈ Cdα,π(β) if β = Ξ,

〈1, pγq, pδq〉 ∈ Cdα,π(β) if β =
NF
γ + ωδ and pγq, pδq ∈ Cdα,π(·),

〈2, pξq, pηq〉 ∈ Cdα,π(β) if β =
NF
ϕ(ξ, η) and pξq, pηq ∈ Cdα,π(·),

〈3, pκq〉 ∈ Cdα,π(β) if β = κ+ and pκq ∈ Cdα,π(κ),

〈4, pγq, pξ1q, . . . , pξpq〉 ∈ Cdα,π(β) if β = Ψγ
X and ~X = (ξ1, . . . , ξp) plus

pγq, pξ1q, . . . , , pξpq ∈ Cdα,π(·).

Furthermore we define Uα,π := {Cdα,π(β) |β ∈ C(α, π)}.
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Definition 2.3.8 (Coding of M<ξ
F ). Let F be a reflection configuration with i(F) = π

and o(F) ≤ ξ ≤ α. Suppose further that ∀(ζ, ~η)∈ [o(F), ξ)C(π) × dom(F)C(π) (Mζ
F(~η) 6=

∅). Then we define

pM<ξ
F qα,π :=

{
Cdα,π(ζ)× Cdα,π(η1)× . . .× Cdα,π(ηk)×Mζ

F(~η)

∣∣
(ζ, ~η) ∈ [o(F), ξ)C(π) × dom(F)C(π), where ~η = (η1, . . . , ηk)

}
Corollary 2.3.9. Let κ, π ∈ Reg with κ < π. Then it holds

• Uα,π ∩ Vκ = Uα,κ,

• Uα,π ⊆ Lπ.

• If pM<ξ
F qα,π is defined, it holds pM<ξ

F qα,π ∩ Vκ = pM<ξ
F qα,κ.

Lemma 2.3.10. Let F be a reflection configuration with i(F) = π and let π ≥ κ ∈ Reg.

If pM<ξ
F qα,π is defined, then there is a Π1

m+1-sentence ψmF (pM<ξ
F qα,π), such that

κ |= M<ξ
F -Pm ⇔ 〈Vκ,∈, pM<ξ

F qα,π〉 |= ψmF (pM<ξ
F qα,π).

Proof. We define

ψmF (Y ) :≡ ∀x0 . . . ∀xk
(
∃y
(
(x0, . . . , xk, y) ∈ Y

)
→

∀X ∀z
(
ψm(X, z)→ ∃κ0

(
(x0, . . . , xk, κ0) ∈ Y ∧ ψm(X∩Vκ0

, z)κ0
)))

,

where ψm denotes the formula of Corollary 2.1.4.

Theorem 2.3.11 (Existence). Let X = (π; . . . ; δ) be a reflection instance and δ ≤ α ∈
C(π). Then Mα

X 6= ∅.

Proof. By (main)induction on α. Let X = F = (π; Pm; ~R; . . . ; δ) (X = F(ξ, ~ν) =

(π; Mξ
M(~ν)-Pm; ~R; . . . ; δ), resp.) plus ~Rπ = (M<γ

M -Pm, ~R) if δ > 0, and suppose the

claim holds for all α′ < α.
Case 1, m = 0: If X = (π; P0; . . .) then we either have π = κ+ for some κ (and

δ = 0) or π is Π1
0-indescribable by 2.3.2 Á. Thus ω < π is a regular cardinal. Therefore

CαX,π is club in π by means of Lemma 2.3.5 and thereby Mα
X 6= ∅.

If X = (π; Mξ
M(~ν)-P0; . . .) then again CαX,π is club in π and by Lemma 2.3.2 it fol-

lows that π is Mξ
M(~ν)-Π

1
0-indescribable. Since “CαX,π is unbounded” is expressible by a

Π1
0-sentence in the parameter CαX,π, there is a κ ∈Mξ

M(~ν), such that CαX,π is unbounded

in Vκ. Therefore X, α ∈ C(κ) and C(α, κ) ∩ π = κ. Hence κ ∈Mα
X.

Case 2, m > 0: We show by subsidiary induction on β:

∀ζ ∈ [o(X), β]C(π) (π is Mζ
F-Π1

m-indescribable) (2.1)

(∀(ζ, ξ′, ~ν′) ∈ [o(X), β]C(π) × dom(F)C(π) (π is Mζ
F(ξ′,~ν′)-Π

1
m-indescribable), resp.).
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Let β ∈ C(π) and suppose (2.1) holds for all (ζ, ~η) ∈ [o(X), β)C(π)×dom(F)C(π). By
means of Lemma 2.3.2 we have ω < π is a regular cardinal and X ∈ C(π). Therefore

1.& 2. CαX,π is club in π.

due to Lemma 2.3.5. By means of Lemma 2.3.2 Á we have π |= ~Rπ. Thereby π is

Π1
m-indescribable and π |= ~R. Thus we have

3. π |= ~Q,

where ~Q := (M
<ξ′1
R′1

-Pr′1 , . . . ,M
<ξ′n
R′n -Pr′n) denotes the sequence of M-P-expressions of the

third proviso in the definition of Mα
X. Furthermore the subsidiary induction hypothesis

provides

4. π |= M<β
F -Pm−1.

By means of Lemma 2.3.2 Â and the main induction hypothesis it follows the well-

definedness of pM<β
F qβ,π and pM<ξ′k

R′k
qβ,π for all 1 ≤ k ≤ n. Thus we have

Vπ |= “CβX,π is unbounded ” ∧
n∧
k=1

ψrkR′k
(pM<ξ′k

R′k
qβ,π) ∧ ψm−1

F (pM<β
F qβ,π).

Due to Lemma 2.3.10 this is a Π1
m-sentence in the parameters CβX,π, pM

<ξ′1
R′1
qβ,π,

. . ., pM<ξ′n
R′n qβ,π and pM<β

F qβ,π. Suppose now 〈Vπ,∈, P 〉 |= F (P ) for an arbitrary

Π1
m-sentence F and an arbitrary parameter P . Since π is Π1

m-indescribable (π is

Mξ′

M(~ν′)-Π
1
m-indescribable, for (ξ′, ~ν′) ∈ dom(F), resp.) there exists a 0 < κ < π

(0 < κ ∈Mξ′

M(~ν′) ∩ π, resp.) such that

Vκ |= F (P ∩ Vκ) ∧ “CβX,π ∩ Vκ is unbounded”∧
n∧
k=1

ψrkR′k
(pM<ξ′k

R′k
qβ,π ∩ Vκ) ∧ ψm−1

F (pM<β
F qβ,π ∩ Vκ).

Thus we have

1. C(β, κ) ∩ π = κ,

2. β,X ∈ C(κ),

3. ∀n1k
(
Vκ |= ψrkR′k

(pM<ξ′k
R′k
qβ,π ∩ Vκ)

)
,

4. Vκ |= ψm−1
F (pM<β

F qβ,π ∩ Vκ).

In addition it also holds

∀n1k
(
Vκ |= ψrkR′k

(pM<ξ′k
R′k
qβ,π ∩ Vκ) ⇔ Vκ |= ψrkR′k

(pM<ξ′k
R′k
qβ,κ) ⇔ κ |= M

<ξ′k
R′k

-Pr′k
)
,
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and

Vκ |= ψm−1
F (pM<β

F qβ,π ∩ Vκ) ⇔ Vκ |= ψm−1
F (pM<β

F qβ,κ) ⇔ κ |= M<β
F -Pm−1.

Thus it follows κ ∈Mβ
F (κ ∈Mβ

F(ξ′,~ν′), resp.) and 〈Vκ,∈ P∩Vκ〉 |= F (P∩Vκ). Thereby

π is Mβ
X-Π1

m-indescribable (Mβ
F(ξ′,~ν′)-Π

1
m-indescribable, resp.) and hence (2.1) follows

which implies Mα
X 6= ∅ if α ∈ C(π).

Corollary 2.3.12. The ordinal Ψα
X is well-defined iff o(X) ≤ α ∈ C(i(X)).

Notation. Let ~α, ~β ∈ ONn. Then we denote by ~α <lex
~β that ~α is less than ~β with

respect to the lexicographic ordering on ONn.

Lemma 2.3.13. Let F be a reflection configuration with rdh(F(~η)) = m ≥ 0 and let κ
be an ordinal. Suppose o(F) ≤ β ∈ (α+ 1)C(κ) and ~η, ~ν ∈ dom(F)C(κ). Then it holds

κ ∈Mα
F(~η) & (α, ~η) >lex (β, ~ν) ⇒ κ is Mβ

F(~ν)-Π
1
m-indescribable.

Proof. We proceed by induction on o(F). Let ~η = (η1, . . . , ηn) and ~ν = (ν1, . . . , νn).
Case 1, α > β: Since κ ∈Mα

F(~η) we have κ |= M<α
F -Pm by the fourth proviso of the

definition of the collapsing hierarchy Mα
F(~η). Thus κ is Mβ

F(~ν)-Π
1
m-indescribable.

Case 2, (α, η1, . . . , ηi−1) = (β, ν1, . . . , νi−1) and ηi > νi for some 1 ≤ i ≤ n: Then

F(~η) = (i(F); Mη1

M(η2,...,ηn)-Pm+1; ~R; . . .) and Mα
F(~η) ⊆ Mη1

M(η2,...,ηn) for some reflection

configuration M ∈ Prcnfg(F). Since we have o(M) < o(F), κ ∈ Mη1

M(η2,...,ηn) and

rdh(Mη2,...,ηn)) ≥ m+ 1 by Lemma 2.3.2 À (c) the induction hypothesis provides that
κ is Mν1

M(ν2,...,νn)-Π
1
m+1-indescribable. Furthermore we have

1.& 2. “CαF(~ν),i(F) is unbounded in κ”,

3. κ |= ~R,

4. κ |= M<α
F -Pm.

By coding C(α, κ) in Lκ (cf. Definition 2.3.7) these statements are expressible by a

Π1
m+1-sentence Φ in some parameters ~Q of Lκ.
Suppose now 〈Vκ,∈, P 〉 |= F for an arbitrary Π1

m-sentence F . By employing the
Mν1

M(ν2,...,νn)-Π
1
m+1-indescribability of κ we obtain a 0 < κ0 ∈ Mν1

M(ν2,...,νn) ∩ κ such

that 〈Vκ0
,∈, ~Q ∩ Vκ0

, P ∩ Vκ0
〉 |= (Φ ∧ F ). Therefore it holds

1. C(α, κ0) ∩ i(F) = κ0,

2. F(~ν), α ∈ C(κ0),

3. κ0 |= ~R,

4. κ0 |= M<α
F -Pm.

Hence κ0 ∈Mα
F(~ν) = Mβ

F(~ν) and thereby κ is Mβ
F(~ν)-Π

1
m-indescribable.
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Theorem 2.3.14 (<-Comparison). Let X = F(~η) plus Y = G(~ν) be reflection instances

and suppose κ := Ψα
X plus π := Ψβ

Y are well-defined. Then it holds κ < π iff

π ≥ i(X) (a)

or κ < i(Y) ∧
(
α < β ∨

(
F = G ∧ (α, ~η) <lex (β, ~ν)

))
∧ X, α ∈ C(π) (b)

or α ≥ β ∧ ¬
(
Y, β ∈ C(κ)

)
(c)

Proof. Obviously the claim follows if (a) is true. So let us assume ¬(a), i.e. π < i(X),
in the following cases.

Case 1, α < β : Suppose κ < π: We have to show (b) or (c). It holds X, α ∈ C(κ)
and κ < π < i(Y). Thus X, α ∈ C(π) and κ < i(Y). Therefore we have (b).

Suppose κ ≥ π. We have to show ¬(b) and ¬(c). Since α < β we have ¬(c). Now
assume (b). Then X, α ∈ C(π) and κ < i(Y). Therefore it holds κ ∈ C(β, π)∩i(Y) = π,
i.e. κ < π. Contradiction! So we have ¬(b), too.

Case 2, β < α: Suppose κ < π. We have to show (b) or (c). Since Y, β ∈ C(κ)
would imply π ∈ C(α, κ) ∩ i(X) = κ, i.e. π < κ we have (c).

Suppose κ ≥ π. We have to show ¬(b) and ¬(c). We have ¬(b) since β < α.
Moreover we have ¬(c) since Y, β ∈ C(π) ⊆ C(κ).

Case 3, α = β:
Subcase 3.1, i(X) < i(Y): Since we assume ¬(a) we cannot have κ < π, since

otherwise we would have i(X) ∈ C(α, κ) ∩ i(Y) ⊆ C(β, π) ∩ i(Y) = π contradicting
π < i(X). So we have κ ≥ π and we have to show ¬(b) and ¬(c). We have ¬(α < β) and
F 6= G since i(X) 6= i(Y), hence ¬(b). Moreover we have ¬(c) since Y, β ∈ C(π) ⊆ C(κ).

Subcase 3.2, i(Y) < i(X): Suppose κ < π. Then we have to show (b) or (c). We have
(c) since Y /∈ C(κ), because otherwise we would have π < i(Y) ∈ C(α, κ) ∩ i(X) = κ.

Suppose κ ≥ π. Then we have to show ¬(b) and ¬(c). Since ¬(α < β) and F 6= G
we have ¬(b). Moreover we have ¬(c) since Y, β ∈ C(π) ⊆ C(κ).

Subcase 3.3, i(X) = i(Y), i.e. F = G: Suppose κ < π. We have to show (b) or (c).
Assume ¬(b), i.e. (β, ~ν) <lex (α, ~η) since X, α ∈ C(κ) ⊆ C(π), κ < π < i(Y) and

(β, ~ν) = (α, ~η) would contradict κ < π. We have to show (c), i.e. Y /∈ C(κ)∨β /∈ C(κ).

If Y, β ∈ C(κ) and rdh(G(~η)) ≥ 0 then κ would be Mβ
G(~ν)-Π

1
rdh(G(~η))-indescribable

by Lemma 2.3.13 since κ ∈Mα
G(~η). Thus Ψβ

G(~ν) = π < κ. Contradiction!

If Y, β ∈ C(κ) and Y = (i(Y); P0; . . .) = X then it follows by means of Lemma

2.3.5 Á that Ψβ
G(~ν) = π < κ. Contradiction!

If Y, β ∈ C(κ) and Y = F(ζ, ~ν ′) = (i(X); Mξ′

M(~ν ′)-P0; . . .) and β < α we obtain the

contradiction π ∈ C(α, κ) ∩ i(Y) = κ. So we must have α = β and (ζ, ~ν ′) <lex (ξ, ~η ′),
where X = F(ξ, ~η ′). However, then it follows by means of Lemma 2.3.13 that κ is

Mζ
M(~ν ′)-Π

1
0-indescribable. Taking also into account Lemma 2.3.5 Á we obtain again

the contradiction π < κ. So in any case it holds (c).
Now let us assume ¬(c). We have to show (b). It holds F = G, X, α ∈ C(κ) ⊆ C(π)

and κ < i(X) = i(Y). Thus it remains to show (α, ~η) <lex (β, ~ν). Suppose (β, ~ν) ≤lex

(α, ~η). Since κ 6= π this assumption implies (β, ~ν) <lex (α, ~η). Since we assume ¬(c)
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we have Y, β ∈ C(κ). Thereby it follows as above in the case of the assumption ¬(b)
that π < κ. Contradiction! So we must have (α, ~η) <lex (β, ~ν) and thereby (b).

Suppose κ ≥ π. Then we have to show ¬(b) and ¬(c). The validity of (b) would
lead to the contradiction κ < π in the same way as we obtained the contradiction
π < κ under the assumption κ < π above. Moreover we have (c) since Y, β ∈ C(π) ⊆
C(κ).

Corollary 2.3.15. Suppose Ψα
X and Ψβ

Y are well-defined. Then

Ψα
X = Ψβ

Y ⇔ α = β ∧ X = Y.

Proof. Let X = F(~η), Y = G(~ν) and let κ := Ψα
X plus π := Ψβ

Y.
The implication from right to left is trivial. So assume κ = π. If α 6= β we would

have (b) of Theorem 2.3.14. Contradiction! Moreover the assumption i(X) < i(Y)
(i(Y) < i(X), resp.) leads to the contradiction i(X) ∈ C(β, π) ∩ i(Y) = π = κ, i.e.
i(X) < κ (i(Y) ∈ C(α, κ) ∩ i(X) = κ = π, resp.). Therefore we have F = G. The
assumption ~η 6= ~ν then again implies (b) of Theorem 2.3.14 and leads again to the
contradictions κ < π or π < κ.

Notation. As usual we define the normal form for ordinals as follows

α =
NF
ωα1 + . . .+ ωαm :⇔ α = ωα1 + . . .+ ωαm ∧ α1 ≥ . . . ≥ αm

α =
NF
ϕ(η, ζ) :⇔ α = ϕ(η, ζ) ∧ η, ζ < α.

Let α =
NF
ωα1 + . . . + ωαm , β =

NF
ωαm+1 + . . . + ωαn and σ = (σ(1), . . . , σ(n)) be a

permutation of 1, . . . , n, such that ∀n−1
1 i (ασ(i) ≥ ασ(i+1)). Then we define the natural

sum by means of

α⊕ β := ωασ(1) + . . .+ ωασ(n) .

Lemma 2.3.16. It holds

Ê α =
NF
ωα1 + . . .+ ωαm ⇒

(
α ∈ C(β, π) ⇔ α1, . . . , αm ∈ C(β, π)

)
,

Ë α =
NF
ϕ(η, ζ) ⇒

(
α ∈ C(β, π) ⇔ η, ζ ∈ C(β, π)

)
,

Ì κ ∈ Card∩Ξ ⇒
(
κ ∈ C(β, π) ⇔ κ+ ∈ C(β, π)

)
,

Í Ψξ
X is well-defined and π ≤ Ψξ

X ⇒
(
Ψξ

X ∈ C(β, π) ⇔ ξ < β ∧ ξ,X ∈ C(β, π)
)
.

Î α⊕ β ∈ C(γ, π) ⇔ α, β ∈ C(γ, π).

Proof. We have C(β, π) =
⋃
n<ω C

n(β, π) and the propositions follow by induction on

n. Claim Ã follows by utilizing Corollary 2.3.15 and the fact that Ψξ
X cannot enter

Cn+1(β, π) by means of +, ϕ or the cardinal successor function, since C(ξ,Ψξ
X)∩i(X) =

Ψξ
X and C(ξ,Ψξ

X) is closed under these respective functions.

28



2.4. The Ordinal Notation System T(Ξ)

In this section we define the (primitive) recursive ordinal notation system T(Ξ).

Definition 2.4.1. The set of ordinal notations T(Ξ) is inductively defined as follows:

• 0,Ξ ∈ T(Ξ),

• if α =
NF
ωα1 + . . .+ ωαm and α1, . . . , αm ∈ T(Ξ) plus m > 1, then α ∈ T(Ξ),

• if α =
NF
ϕ(η, ζ) and η, ζ ∈ T(Ξ), then α ∈ T(Ξ),

• if κ ∈ T(Ξ) ∩ Card∩Ξ, then κ+ ∈ T(Ξ),

• if X, ξ ∈ T(Ξ) and o(X) ≤ ξ ∈ C(ξ, i(X)), then Ψξ
X ∈ T(Ξ).

Remark. Obviously we have T(Ξ) = C(ΓΞ+1, 0), where ΓΞ+1 denotes the first strongly
critical γ > Ξ.

For every β it follows easily by induction on β that C(β, 0)∩ω+ is transitive, hence
T(Ξ) ∩ ω+ is transitive. For details see [Duc08], Lemma 4.1

It follows by Lemma 2.3.16 that different ordinal notations denote different ordinals
in T(Ξ). To conceive 〈T(Ξ), <〉 as a recursive ordinal notation system we need to be
able to determine if κ ∈ T(Ξ) and to decide if κ < κ′, for arbitrary κ, κ′, by reducing
these questions to proper subterms of κ, κ′, resp. Thus, taking into account Theorem
2.3.14 and for other <-comparisons the closure properties of the C sets plus the fact
C(α,Ψα

X)∩ i(X) = Ψα
X, it only remains to show that α ∈ C(α, π) can be determined in

a recursive way.5

Obviously we have α ∈ C(δ, π) if there is no subterm t ≡ Ψβ
Y of α, with t ≥ π and

β ≥ δ. Therefore we can determine α ∈ C(δ, π) if we know the arguments of Ψ greater
or equal than δ in subterms of α. Therefore we define simultaneously to Definition
2.4.1 by induction on the complexity of α ∈ T(Ξ):

Definition 2.4.2. The set Kπ(α):

Kπ(0) := Kπ(Ξ) := ∅,

Kπ(α) :=

m⋃
i=1

Kπ(αi) if α =
NF
ωα1 + . . .+ ωαm ,

Kπ(α) := Kπ(η) ∪Kπ(ζ) if α =
NF
ϕ(η, ζ),

Kπ(α) := Kπ(κ) if α = κ+,

Kπ(Ψξ
X) := ∅ if Ψξ

X < π,

Kπ(Ψξ
X) :=

⋃
ρ∈par(X)

Kπ(ρ) ∪Kπ(ξ) ∪ {ξ} if Ψξ
X ≥ π.

5To be able to determine if X ∈ T(Ξ), it is also necessary to encode ~R
Ψ
ξ
X

for every ΨξX ∈ T(Ξ).
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Lemma 2.4.3. For ordinals α, δ, π ∈ T(Ξ) it holds

α ∈ C(δ, π) ⇔ Kπ(α) < δ.

Proof. By induction on α.

Theorem 2.4.4. 〈T(Ξ), <〉 is a (primitive) recursive ordinal notation system.

Proof. This follows by remark 2.4 and Lemma 2.4.3.

From now on small Greek letters denote ordinals from T(Ξ).
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3. The Fine Structure of the
Collapsing Hierarchies

“The introduction of suitable abstractions is our only
mental aid to organize and master complexity.”

Edsger W. Dijkstra

Up to now, we hardly know the sets Mα
X ∩ T(Ξ). Of course we have by definition

{Ψγ
X | γ ≥ α} ⊆ Mα

X, but we cannot exclude that different elements of T(Ξ) like Ψβ
Y,

for some X 6= Y, also enter Mα
X (and of course for some Y they do). However, to

be able to perform the proof strategy of stationary collapsing, i.e. replacing a main
reflection rule of i(X) in a derivation of a set Γ of sentences with derivation length α
by transforming this derivation into derivations of Γκ for all κ ∈Mα̂

X we have to secure
that every κ ∈ Mα̂

X is equipped with the required reflection rules (cf. equation (B) in
the introduction of this part of the thesis).

In Definition 4.2.8 we define the reflection rules of an element π in essence by making
recourse to ~Rπ. Therefore we have to prove that for every π ∈ T(Ξ)∩SC the collapsing

hierarchies to which π belongs can be decoded from ~Rπ.
We pursue this non-trivial endeavor in the present chapter.
The proof breaks down into three steps. At first we show that an element Ψα

X is
at most an element of collapsing hierarchies of reflection instances Y = G(~η), with
G ∈ Prcnfg(X) (Path-Fidelity Theorem 3.1.1).

In a second step we show some kind of inversion of Lemma 2.3.2 Á, i.e. if C(α, κ) ∩
i(X) = κ plus X, α ∈ C(κ) and κ |= ~RΨαX

then it follows κ ∈Mα
X (Correctness Lemma

3.1.6).
By use of this result we show in a third step that every κ < i(X) which satisfies“more”

than ~RΨαX
cannot be the minimal element of Mα

X, i.e. ~RΨαX
is an exact characterization

of the reflection strength of Ψα
X.

Summing up these results we are able to prove that every collapsing hierarchy which
contains π can be decoded out of ~Rπ (Domination Theorem 3.2.4).

3.1. Path Fidelity and Correctness

Theorem 3.1.1 (Path Fidelity). Let X be a reflection instance and suppose Ψα
X is

well-defined. Moreover let Y 6= (i(Y); P0; . . .) be a reflection instance with reflection
configuration G. Then it holds

Ψα
X ∈Mβ

Y ⇒ G ∈ Prcnfg(X) & β ≤ ranαX(G) & Ψβ
Y ≤ Ψα

X < i(X) ≤ i(Y).
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Proof. Let κ := Ψα
X. At first we observe, that we must have o(X) > 0 by means

of Lemma 2.3.5 À, since κ ∈ Mβ
Y and Y 6= (i(Y); P0; . . .) and thus κ is at least Π1

0-
indescribable, i.e. a regular cardinal. Thus we have X, α ∈ C(κ) and α > ρ for all
ρ ∈ par(X) and thereby X, α ∈ C(α, κ). Moreover we have C(β, κ)∩ i(Y) = κ and thus
β ≤ α since otherwise we would have κ = Ψα

X ∈ C(β, κ).
Therefore we have κ < i(Y) ∈ C(β, κ) ⊆ C(α, κ) plus C(α, κ) ∩ i(X) = κ and thus

i(X) ≤ i(Y).
Let F be the reflection configuration of X. It remains to show G ∈ Prcnfg(F) and

β ≤ ranαX(G).
We show the former by contradiction. Let us assume G /∈ Prcnfg(F).
Case 1, it holds initl(F) 6= initl(G): Since Y 6= (i(Y); P0; . . .) we must have Y = A(m)

for some m and thus X = (π+; P0; . . .) for some cardinal ω ≤ π < Ξ. However, above
we already have observed that o(X) > 0. Contradiction!

Case 2: There is an H ∈ Prcnfg(F)∩Prcnfg(G) with X′ = H(ξ′, ~ν ′) ∈ Prinst(X) and

Y′ = H(ζ ′, ~η ′) ∈ Prinst(Y) plus α′ := ranαX(X′) and β′ := ranβY(Y′), where (α′, ξ′, ~ν ′) 6=
(β′, ζ ′, ~η ′), i.e. Ψα′

X′ 6= Ψβ′

Y′ .
†

Subcase 2.1, Ψβ′

Y′ < Ψα′
X′ : Since κ ∈ Mβ

Y ⊆ Ψβ′

Y′ there must be an X′′ ∈ Prinst(X)

with i(X′′) > Ψβ′

Y′ and Ψβ
Y < Ψα′′

X′′ ≤ Ψβ′

Y′ , where α′′ := ranαX(X′′). A visualization of this
situation is given in figure 3.1 (where dotted segments might be of zero length). Since
Ψα′′

X′′ < Ψα′
X′ we must have X′ ∈ Prinst(X′′) and thus α′′ > par(X′′) ⊇ par(X′) ∪ {α′}

and thereby α′′ > α′.
Subcase 2.1.1, β′ ≤ α′: We have β′ > par(Y′) and Y ∈ C(Ψβ

Y). Thus β′,Y′ ∈
C(β′,Ψβ

Y). Moreover we have β′ ≤ α′ < α′′ and thereby Ψα′′
X′′ ≤ Ψβ′

Y′ ∈ C(β′ + 1,Ψβ
Y)∩

i(X′′) ⊆ C(α′′,Ψα′′
X′′) ∩ i(X′′) = Ψα′′

X′′ . Contradiction!

Subcase 2.1.2, α′ < β′: We have α′ > par(X′) and X′′ ∈ C(Ψα′′
X′′). Thus α′,X′ ∈

C(α′+ 1,Ψα′′
X′′) ⊆ C(β′,Ψβ′

Y′). Therefore it holds Ψβ′

Y′ < Ψα′
X′ ∈ C(β′,Ψβ′

Y′)∩ i(H) = Ψβ′

Y′ .
Contradiction!

Subcase 2.2, Ψα′
X′ < Ψβ′

Y′ : Since κ ≤ Ψα′
X′ there must be a Y′′ ∈ Prinst(Y) with

Ψβ′′

Y′′ ≤ Ψα′
X′ < i(Y′′) where β′′ := ranβY(Y′′).

Since Ψβ′′

Y′′ < Ψβ′

Y′ we must have Y′ ∈ Prinst(Y′′) and thus β′′ > par(Y′′) ⊇ par(Y′)∪
{β′} and β′′ > β′.

Subcase 2.2.1, β′ < α′: Since Y′′ ∈ C(Ψβ′′

Y′′) we have β′,Y′ ∈ C(β′ + 1,Ψβ′′

Y′′) ⊆
C(α′,Ψα′

X′). Therefore it holds Ψα′
X′ < Ψβ′

Y′ ∈ C(α′,Ψα′
X′) ∩ i(H) = Ψα′

X′ . Contradiction!
Subcase 2.2.2, α′ ≤ β′: We have α′ > par(X′) and par(X) ⊇ par(X′) ∪ {α′}. Since

X ∈ C(κ) we thus have α′,X′ ∈ C(α′ + 1, κ) ⊆ C(β′′, κ)

Subcase 2.2.2.1, κ = Ψα
X ≤ Ψβ′′

Y′′ : We have Ψβ′′

Y′′ ≤ Ψα′
X′ ∈ C(β′′, κ) ∩ i(Y′′) ⊆

C(β′′,Ψβ′′

Y′′) ∩ i(Y′′) = Ψβ′′

Y′′ . Contradiction!

Subcase 2.2.2.2, Ψβ′′

Y′′ < κ: Then we have β = β′′ and Y′′ = Y since otherwise

†In the following the reader should be aware that for a reflection instance Z and Z′ ∈ Prinst(Z)

plus ξ′ = ranξZ(Z′) it does hold Mξ
Z ⊆ Ψξ

′
Z′ for all ξ ≥ o(Z). This follows easily by induction on

card(Prinst(Z)\Prinst(Z′)).
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i(H) = i(X′) = i(Y′)

Ψα′
X′

i(initial(F)) = i(initial(G))

Ψα
X

Ψβ
Y

i(G)

Ψβ′

Y′

0 Ψβ
Y Ψα′′

X′′ Ψβ′

Y′ i(X′′) Ψα′
X′Ψα

X

Mβ
Y

On

Figure 3.1.: A visualization of the situation in Subcase 2.1.

we would have Mβ
Y ⊆ Ψβ′′

Y′′ contradicting κ ∈ Mβ
Y. Therefore we have κ ≤ Ψα′

X′ ∈
C(β′′, κ) ∩ i(Y′′) = C(β, κ) ∩ i(Y) = κ. Contradiction!

Case 3, it holds F ∈ Prcnfg(G): Let Y′ := F(ζ ′~η ′, ) ∈ Prinst(Y) and β′ := ranβY(Y′).
Then we have i(Y) ≤ Ψβ′

Y′ < i(F) = i(X). Contradiction, since we have already shown
i(X) ≤ i(Y)!

Since the three treated cases provide an exhausting case differentiation (imagine
the nodes in the Prcnfg(F) path, where the development of G could branch out!) it
remains to show β ≤ ranαX(G) if G 6= F, i.e. if G ∈ Prcnfg(F).

Suppose G ∈ Prcnfg(F) and let Y′ := G(ζ ′, ~η ′) ∈ Prinst(X) plus β′ := ranαX(G).
Then we have β′ > par(Y′) and par(Y′) ∪ {β′} ⊆ par(X). Since X ∈ C(κ) we obtain
thereby β′,Y′ ∈ C(β′, κ). As the assumption β′ < β yields the contradiction κ <

Ψβ′

Y′ ∈ C(β, κ) ∩ i(Y′) = C(β, κ) ∩ i(Y) = κ the claim follows.

Definition 3.1.2. Let M<ξ
M -Pm be an M-P-expression. Then we define by recursion

on o(M)

Tc(M<ξ
M -Pm) :=

{
{M<ξ

M -Pm} if o(M) /∈ Succ,

{M<ξ
M -Pm} ∪ Tc((~Ri(M))m) otherwise.

Definition 3.1.3. On M-P-expressions we define the binary relation � by

ε � M<ξ
M -Pm for any M-P-expression M<ξ

M -Pm,

M<ζ
G -Pm � M<ξ

M -Pm :⇔ ∃γ
(
o(G) ≤ ζ ≤ γ ∧ M<γ

G -Pm ∈ Tc(M<ξ
M -Pm)

)
.
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We extend this relation to finite sequences of M-P-expressions ~R and ~S as follows

~R � ~S :⇔ ∀m∈ω (~Rm � ~Sm).

Remark. Due to Lemma 2.3.2 Â (a) Tc is well-defined. Moreover � is transitive and
≺, the strict part of �, is well-founded.

Lemma 3.1.4. Let X be a reflection instance with reflection configuration F and
rdh(X) ≥ m. Let κ be an ordinal satisfying X ∈ C(κ). Then

κ |= M̃<α
F -Pm & M<ζ

M -Pm � M̃<α
F -Pm ⇒ κ |= M<ζ

M -Pm.

Proof. We proceed by induction on o(F). If o(F) /∈ Succ the claim is trivial. If

o(F) = δ+1 and α = δ+1 it follows by definition that M̃<α
F -Pm = (~Ri(F))m. Therefore

the claim follows by the induction hypothesis.

If o(F) = δ+ 1 and α > δ+ 1 we either have M<α
M -Pm = M<α

F -Pm and o(F) ≤ ζ ≤ α
or M<ζ

M -Pm � (~Ri(F))m = (~Ri(X))m. In the first case the claim is trivial. In the latter
case we have to show, that for every (γ, ~η) ∈ [o(M), ζ)C(κ) × dom(M)C(κ) and every

Π1
m-sentence F in parameters ~P ⊆ Vκ such that 〈Vκ, ~P 〉 |= F we can find a κ0 ∈Mγ

M(~η)

such that 〈Vκ0
, ~P ∩ Vκ0

〉 |= F .

By the provisos κ |= M̃<α
F -Pm and X ∈ C(κ) it follows that κ is M

o(X)
X -Π1

m- inde-

scribable. Proceeding as in the proof of Theorem 2.3.11 we can find a κ′0 ∈M
o(X)
X such

that 〈Vκ′0 , ~P ∩ Vκ′0〉 |= F and parX ∪ {γ, ~η} ⊆ C(κ′0). By means of Lemma 2.3.2 Á

it follows that κ′0 |= (~Ri(X))m. Let (~Ri(X))m = M<ε
E -Pm. Due to Lemma 2.3.2 Â (e)

there exists a ~ν ∈ dom(E) ∩ parX such that rdh(E(~ν)) = m. Therefore it follows by

the induction hypothesis applied to E(~ν) that κ′0 |= M<ζ
M -Pm. Since γ, ~η ∈ C(κ′0) this

implies that κ′0 is Mγ
M(~η)-Π

1
m-indescribable. Thus there is a κ0 ∈ Mγ

M(~η), such that

〈Vκ0 ,
~P ∩ Vκ0〉 |= F .

Lemma 3.1.5. Let X = (π; . . . ; δ) be a reflection instance, κ ≤ π and α ≥ δ. Suppose
C(α, κ) ∩ π = κ and X, α ∈ C(κ). Then it holds for any Z ∈ Prinst(X):

Ê C(ranαX(Z), κ) ∩ i(Z) = κ & Z, ranαX(Z) ∈ C(κ).

Ë E ∈ Prcnfg(X) & ∀~η ′
(
~η ′ ∈ dom(E) ∩ parX ⇒ E(~η ′) ∈ C(κ)

)
.

Proof. À Let X0 := X, α0 := α, π0 := i(X) = π and Xi+1 := Zi if Xi = (. . . ;Zi; . . .),
i.e. Xi+1 is the predecessor of Xi plus αi+1 := ranαX(Xi+1) and πi+1 := i(Xi+1).

Obviously we have for all i:

κ ≤ πi < πi+1 & αi > αi+1 & C(αi+1, πi) ∩ πi+1 = πi.

We show by induction on i that C(αi, κ) ∩ πi = κ.
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In the initial case i = 0 there is nothing to show. In the successor case i+ 1 > 0 we
have

C(αi+1, πi) ∩ πi+1 = πi ⇒ C(αi+1, κ) ∩ πi+1 ⊆ πi
⇒ C(αi+1, κ) ∩ πi+1 = C(αi+1, κ) ∩ πi ⊆ C(αi, κ) ∩ πi ind.hyp.

= κ.

Therefore C(αi+1, κ)∩πi+1 ⊆ κ and by definition it holds C(αi+1, κ)∩πi+1 ⊇ κ. Thus
we have shown for Z ∈ Prinst(X) that C(ranαX(Z), κ) ∩ i(Z) = κ. Moreover we have
par(Z) ∪ {ranαX(Z)} ⊆ par(X) ⊆ C(κ).

Á Let E ∈ Prcnfg(X). Then there is a ~η ′′ ∈ dom(E) such that E(~η ′′) ∈ Prinst(X).
Thus we have par(E(~η ′′)) ⊆ par(X) ⊆ C(κ) and therefore E(~η ′) ∈ C(κ) since ~η ′ ∈ X
by assumption.

Lemma 3.1.6 (Correctness). Let X 6= (i(X); P0; . . .) be a reflection instance and sup-
pose Ψα

X is well-defined. Then it holds:

Ê For any reflection configuration E, any o(E) ≤ ε, and any e ∈ Rdh(E)

M̃<ε
E -Pe � (~RΨαX

)e = M<ρ
E -Pe ⇒ ~R

(ε,e)
E � (~RΨαX

)≤e,

where ~R
(ε,e)
E := ~RE if E 6= A and ~R

(ε,e)
E := (M<ε

A -Pe, . . . ,M
<ε
A -P0) otherwise.

Ë For any κ, such that C(α, κ) ∩ i(X) = κ and X, α ∈ C(κ)

κ |= ~RΨαX
⇒ κ ∈Mα

X.

Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X.

À Case 1, X = A(m + 1) for some m ∈ ω: Then ~RΨαX
= (M<α

A -Pm, . . . ,M
<α
A -P0).

Thus we have E = A and ε ≤ α plus e ≤ m. Thereby the claim follows.
Case 2, X = (Ψδ

Z; Pm; ~R; . . .) with ~RΨδZ
= (M<ω

A -Pm, ~R): Then it holds m > 0 and

~RΨαX
= (M̃<α

F -Pm−1, ~R<m−1).

If E = F then we have e = m− 1 and the claim holds, since ~RE = ~R � (~RΨαX
)≤e.

If E 6= F and e = m − 1 we have (~RΨαX
)m−1 = M<ρ

E -Pm−1. Thus we must have

α = δ + 1, i.e. (~RΨαX
)m−1 = (~RΨδZ

)m−1. Therefore we have M̃<ε
E -Pe � M<ρ

E -Pm−1 =

(~RΨαX
)m−1 = (~RΨδZ

)m−1. Thus we obtain by means of the induction hypothesis ~R
(ε,e)
E �

(~RΨδZ
)≤e � (~RΨαX

)≤e.

If e < m − 1 we also have (~RΨαX
)m−1 = (~RΨδZ

)m−1 and the claim follows by means
of the induction hypothesis, too.

Case 3, X = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .) with ~RΨδZ
= (M<γ

M -Pm, ~R): Then it holds ~RΨαX
=

((~RΨξM(~ν)
)≥m, M̃

<α
F -Pm−1, ~R<m−1) and ξ < γ. If e < m the claim follows as in the

second case. So let us assume e ≥ m. Then we have M̃<ε
E -Pe � M<ρ

E -Pe = (~RΨαX
)e =

(~RΨξM(~ν)
)e. If Z = A(n) for some n ∈ ω it follows by definition that M = A and thus
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o(M) < o(X). If o(Z) > ω it follows by means of Lemma 2.3.2 Â(a) that o(M) < o(X).
Therefore we obtain by the induction hypothesis applied to M(~ν)

~R
(ε,e)
E � (~RΨξM(~ν)

)≤e. (3.1)

In addition it holds M̃<ξ
M -Pm � M<γ

M -Pm = (~RΨδZ
)m. Moreover we have m ∈ Rdh(M)

either by definition if Z = A(n) for some n ∈ ω (and then M = A), or by Lemma
2.3.2 Â(e) otherwise. Thus we obtain by the induction hypothesis applied to Z

(~R
(ξ,m)
M )<m � (~RΨδZ

)<m = ~R � (~RΨαX
)<m. (3.2)

Since it holds (~RΨξM(~ν)
)≤e = (~RΨξM(~ν)

)[e,m], (~R
(ξ,m)
M )<m either by definition if M = A or

by Lemma 2.3.2 Â(f) otherwise, it follows from (3.1) and (3.2) plus the transitivity of

� that ~R
(ε,e)
E � (~RΨαX

)≤e.

Á If X = (π; Pm; . . .) the claim is trivial. If X = A(m+ 1) for some m ∈ ω the claim

follows by use of Lemma 3.1.4. So let us assume that X = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .)

with ~RΨδZ
= (M<γ

M -Pm, ~R). Then it holds ~RΨαX
= ((~RΨξM(~ν)

)≥m, M̃<α
F -Pm−1, ~R<m−1).

Since we have M̃<ξ
M -Pm � M<γ

M -Pm = (~RΨδZ
)m we obtain by means of À and Lemma

2.3.2 Â(e),(f) that

(~RΨξM(~ν)
)<m = (~R

(ξ,m)
M )<m � (~RΨδZ

)<m = ~R � (~RΨαX
)<m.

Therefore the assumption κ |= ~RΨαX
in collaboration with Lemma 3.1.4 implies κ |=

((~RΨξM(~ν)
)≥m, (~R

(ξ,m)
M )<m), i.e. κ |= ~RΨξM(~ν)

.

Since ξ, ~ν ∈ parX, X ∈ C(κ), M ∈ Prcnfg(X) and ξ < γ ≤ ranαX(M) it follows by
means of Lemma 3.1.5 that C(ξ, κ) ∩ i(M) = κ and ξ,M(~ν) ∈ C(κ). Therefore we

obtain by use of the induction hypothesis that κ ∈ Mξ
M(~ν). Combining this with the

provisos C(α, κ)∩ i(X) = κ and X, α ∈ C(κ) plus κ |= (~RΨαX
)<m it follows κ ∈Mα

X.

3.2. The Domination Theorem

Definition 3.2.1. Let M<ξ
M -Pm be an M-P-expression, D a reflection configuration,

and suppose ~R = (M<ρ1

R1
-Pr1 , . . . ,M

<ρj
Rj -Prj ) is a finite sequence of M-P-expressions.

Then we define

(M<ξ
M -Pm)D :=

{
M<ζ

D -Pm if M<ζ
D -Pm ∈ Tc(M<ξ

M -Pm)

ε otherwise,

(~R)D := ((M<ρ1

R1
-Pr1)D, . . . , (M

<ρj
Rj -Prj )

D).

Remark. It follows by induction on o(M) that (M<ξ
M -Pm)D is well-defined.
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Lemma 3.2.2. Let X 6= (i(X); P0; . . .) be a reflection instance, E be a reflection con-
figuration, such that E ∈ Prcnfg(X) and suppose Ψα

X is well-defined. Then it holds for

any g ≤ min{rd(~RE), rd(~RΨαX
)} and any D ∈ Prcnfg(E):

(~RE)≤g � (~RΨαX
)≤g ⇒ (~RE)D≤g = (~RΨαX

)D≤g.

Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X.

Case 1, X = A(m+ 1) for some m < ω: Then we have nothing to show, since there
is not any D ∈ Prcnfg(A).

Case 2, X = (Ψδ
Z; Pm; ~R; . . .) with ~RΨδZ

= (M<ω
A -Pm, ~R): Then it holds m > 0 and

~RΨαX
= (M̃<α

F -Pm−1, ~R<m−1). If E = F then the claim holds since

(~RE)D≤g = (~RF)D≤g = (~R)D≤g
D 6=F
= (~RΨαX

)D≤g.

So let us assume E 6= F. Then it follows E ∈ Prcnfg(Z) and the proviso (~RE)≤g �
(~RΨαX

)≤g implies (~RE)≤g � (~RΨδZ
)≤g, since E 6= F. Therefore we obtain

(~RE)D≤g
ind.hyp.

= (~RΨδZ
)D≤g = (~R)D≤g

D6=F
= (~RΨαX

)D≤g.

Case 3, X = F(ξ, ~ν) = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .) with ~RΨδZ
= (M<γ

M -Pm, ~R) for some

γ > ξ: Then it holds ~RΨαX
= ((~RΨξM(~ν)

)≥m, M̃<α
F -Pm−1, ~R<m−1).

Subcase 3.1, g < m: Then the claim follows by the same considerations as in the
second case.

Subcase 3.2, g ≥ m: Then we must have E 6= F, since rd(~RF) = m − 1, i.e. E ∈
Prcnfg(Z). The assumption M ∈ Prcnfg(E) leads to the following contradiction: By

proviso we have (~RE)≤m � (~RΨαX
)≤m. Since o(E) < o(F) this implies (~RE)≤m �

(~RΨδZ
)≤m and therefore we obtain by the induction hypothesis (with D = M)

M<γ
M -Pm = (~RΨδZ

)Mm
ind.hyp.

= (~RE)Mm � (~RE)m
assump.

� (~RΨαX
)m = M<ξ

A -Pm.

However this contradicts ξ < γ and thus we must have M /∈ Prcnfg(E), i.e. o(D) <
o(E) ≤ o(M) < o(F). If M = A we have nothing to show, since there is not any
D ∈ Prcnfg(A). So it remains the case g ≥ m with A 6= M /∈ Prcnfg(E).

We want to apply the induction hypothesis toM(~ν). Therefore we have to show that

(~RE)<m � (~RΨξM(~ν)
)<m = (~RM)<m. By the provisos we have (~RE)<m � ~R = (~RΨδZ

)<m

since o(E) < o(F). Thus the induction hypothesis applied to Z provides

(~RE)D<m = (~RΨδZ
)D<m for every D ∈ Prcnfg(E). (3.3)

In addition we have M̃<ξ
M -Pm � M<γ

M -Pm = (~RΨδZ
)m. Thereby it follows (~RM)<m �

(~RΨδZ
)<m by Lemma 3.1.6 À. Thus the induction hypothesis applied to Z with E = M

provides

(~RM)D<m = (~RΨδZ
)D<m for every D ∈ Prcnfg(M). (3.4)
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Since Prcnfg(E) ⊆ Prcnfg(M) it follows by means of (3.3) and (3.4) plus taking into

account Lemma 2.3.2 Â(a) that (~RE)<m � (~RM)<m. Therefore we have (~RE)≤g �
(~RΨξM(~ν)

)[g,m], (~RM)<m = (~RΨξM(~ν)
)≤g. Thus the induction hypothesis applied to M(~ν)

yields

(~RE)D[g,m] = (~RΨξM(~ν)
)D[g,m] = (~RΨαX

)D[g,m] for every D ∈ Prcnfg(E). (3.5)

Moreover it holds (~RΨδZ
)D<m = ~RD = (~RΨαX

)D<m for every D ∈ Prcnfg(E). Thereby the

claim follows by composing the equations (3.5) and (3.3).

Lemma 3.2.3. Let X 6= (i(X); P0; . . .) be a reflection instance and suppose Ψα
X is

well-defined and rdh∗(X) := max{0, rdh(X)}. Let E ∈ Prcnfg(X) be a reflection con-
figuration and o(E) ≤ ε ≤ ranαX(E) plus e ∈ Rdh(E). Then it holds for any κ, such
that C(α, κ) ∩ i(X) = κ and X, α ∈ C(κ)

κ |= M̃<ε
E -Pe, (~RΨαX

)<e & M̃<ε
E -Pe � (~RΨαX

)e ⇒ κ is Mα
X-Π1

rdh∗(X)-indescribable.

Proof. We proceed by induction on o(X). In the following let F be the reflection

configuration of X and let F be a Π1
rdh∗(X)-sentence in parameters ~P ⊆ Vκ, such that

〈Vκ, ~P 〉 |= F .

Case 1, X = A(m + 1) for some m < ω: Then ~RΨαX
= (M<α

A -Pm, . . . ,M
<α
A -Pm).

Since E ∈ Prcnfg(X) and ε ≤ ranαX(E) it holds E = A and ε ≤ α. Due to M̃<ε
E -Pe �

(~RΨαX
)e we must have e > m. Therefore κ |= M̃<ε

E -Pe, (~RΨαX
)<e implies that κ is

Π1
e-indescribable and κ |= (~RΨαX

)<e. Proceeding as in the proof of Theorem 2.3.11 it
follows the existence of a κ0 < κ, such that C(α, κ0) ∩ i(X) = κ0, X, α ∈ C(κ0), κ0 is

Π1
m-indescribable, and κ0 |= M<α

A -Pm plus 〈Vκ0
, ~P ∩Vκ0

〉 |= F . Thus κ is Mα
X-Π1

rdh∗(X)-
indescribable.

Case 2, X = (Ψδ
Z; Pm; ~R; . . .) with ~RΨδZ

= (M<ω
A -Pm, ~R): Then it holds m > 0 and

~RΨαX
= (M̃<α

F -Pm−1, ~R<m−1).
Subcase 2.1, e < m: If E = F we have e = m − 1 and ε ≤ ranαX(F) = α. However

this leads to the contradiction M̃<ε
E -Pe = M̃<ε

F -Pm−1 � M̃<α
F -Pm−1 = (~RΨαX

)e.

Therefore we must have E 6= F. Then it holds E ∈ Prcnfg(Z) and by means of
Lemma 3.1.5 we have C(δ, κ)∩ i(Z) = κ and Z, δ ∈ C(κ). Moreover it holds ranαX(E) =

ranδZ(E). The provisos κ |= M̃<ε
E -Pe, (~RΨαX

)<e and M̃<ε
E -Pe � (~RΨαX

)e imply κ |=
M̃<ε

E -Pe, (~RΨδZ
)<e and M̃<ε

E -Pe � (~RΨδZ
)e. Thus the induction hypothesis provides that

κ is Mδ
Z-Π1

rdh∗(Z)-indescribable, but this is absurd, since the proviso C(α, κ)∩ i(X) = κ

implies κ ≤ i(X) = Ψδ
Z. Therefore we must e ≥ m.

Subcase 2.2, e ≥ m: Then the proviso κ |= M̃<ε
E -Pe, (~RΨαX

)<e implies that κ is Π1
m-

indescribable and κ |= ~RΨαX
. Thereby there is a κ0 < κ such that C(α, κ0) ∩ i(X) = κ,

X, α ∈ C(κ0), κ0 |= ~RΨαX
and 〈Vκ0

, ~P ∩Vκ0
〉 |= F . Thus Theorem 3.1.6 Á provides that

κ is Mα
X-Π1

rdh∗(X)-indescribable.
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Case3, X = F(ξ, ~ν) = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .) with ~RΨδZ
= (M<γ

M -Pm, ~R) for some

γ > ξ: Then it holds ~RΨαX
= ((~RΨξM(~ν)

)>m, M̃
<ξ
M -Pm, M̃

<α
F -Pm−1, ~R<m−1).

Subcase 3.1, e < m: Then we have e ≥ 0, since M̃<ε
E -P−1 = ε � (~RΨαX

)−1 = ε. Thus
the claim follows by the same considerations as in the second case.

Subcase 3.2, e = m: Since Rdh(F) = {m − 1} and e ∈ Rdh(E) it follows E 6= F.

Thus we cannot have M̃<ε
E -Pe � (~RΨδZ

)e = M̃<γ
M -Pm, as otherwise we would obtain a

contradiction as in subcase 2.1. Therefore we have M̃<ε
E -Pe � M̃<ξ

M -Pm, but M̃<ε
E -Pe �

M<γ
M -Pm. Thus it follows ξ < ε ≤ γ and E = M. Thereby κ is Mξ

M(~ν)-Π
1
m-indescribable

and κ |= (~RΨαX
)<m. Therefore there exists a κ0 <Mξ

M(~ν)∩κ, such that C(α, κ0)∩i(X) =

κ0, X, α ∈ C(κ0), κ0 |= ~R and κ0 |= M<α
F -Pm−1 plus 〈Vκ0 ,

~P ∩ Vκ0〉 |= F . Thus κ is
Mα

X-Π1
rdh∗(X)-indescribable.

Subcase 3.3, m < e ≤ rd(~RΨξM(~ν)
): Let M̃<ε

E -Pe = M<ε0
E0

-Pe. If ε0 = o(E0) we

have E0 = A and ε0 = ω. However, then we obtain the contradiction M̃<ε
E -Pe �

(~RΨαX
)e. Thus we must have ε0 > o(E0). Since m − 1 < e ∈ Rdh(E0) we also have

(i(E0); P0; . . .) 6= E0 6= F.

Subcase 3.3.1, M /∈ Prcnfg(E0): Then it holds E0 ∈ Prcnfg(M) and M 6= A. By

the provisos we have κ |= (~RΨξM(~ν)
)(e,m], (~RΨαX

)<m. Moreover it holds M̃<ξ
M -Pm �

M<γ
M -Pm = (~RΨδZ

)m. Thus Theorem 3.1.6 À provides that (~RM)<m � (~RΨδZ
)<m �

(~RΨαX
)<m. Therefore κ |= (~RΨαX

)<m implies κ |= (~RM)<m due to Lemma 3.1.4. Since

it holds (~RΨξM(~ν)
)<e = (~RΨξM(~ν)

)(e,m], (~RM)<m we have

κ |= M<ε0
E0

-Pe, (~RΨξM(~ν)
)<e & M<ε0

E0
-Pe � (~RΨξM(~ν)

)e, (3.6)

and E0 ∈ Prcnfg(M) plus ε0 ≤ ranαX(E0) by means of Lemma 2.3.2 Â(b).

If ranαX(E0) ≥ ε0 > ranξM(~ν)(E0) it holds E0 = M and ε0 > ξ. Thus κ is Mξ
M(~ν)-Π

1
m-

indescribable, since e > m.

If ε0 ≤ ranξM(~ν)(E0) we also have C(ξ, κ)∩ i(M(~ν)) = κ and ξ,M(~ν) ∈ C(κ) by means

of Lemma 3.1.5 À. Thus we obtain from (3.6) and the induction hypothesis that κ is

Mξ
M(~ν)-Π

1
m-indescribable, as rdh(M(~ν)) ≥ m.

In addition it holds C(α, κ) ∩ i(X) = κ, X, α ∈ C(κ), κ |= ~R, κ |= M<α
F -Pm−1 and

〈Vκ, ~P 〉 |= F . All these statements are expressible by a Π1
m-sentence. Thereby κ is

Mα
X-Π1

rdh∗(X)-indescribable.

Subcase 3.3.2, M ∈ Prcnfg(E0): At first we observe that E0 6= A, as otherwise we

would have M /∈ Prcnfg(E0). Thus we have e = rd(~RE0
) due to Lemma 2.3.2 Â(g).

We proceed by subsidiary induction on d := e−m. The initial step of the subsidiary
induction is treated in subcase 3.2. In the successor step we have e = m+ d0 + 1 > m.
Since we assume ε0 > o(E0) the proviso κ |= M̃<ε

E -Pe, (~RΨαX
)<e implies that κ is

M
o(E0)
E0(~η)-Π

1
e-indescribable (for some ~η ∈ dom(E0)∩X—which does exist due to Lemma
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2.3.2 since E0 ∈ Prcnfg(X)) and thereby κ |= ~RE0 , as any element of M
o(E0)
E0(~η) satisfies

~RE0
and rd(~RE0

) = e by Definition 2.2.4.

Let us assume that (~RE0
)<e � (~RΨαX

)<e. Since o(E0) < o(F) this implies (~RE0
)≤m �

(~RΨδZ
)≤m. Moreover we have M ∈ Prcnfg(E0), E0 ∈ Prcnfg(Z), since E ∈ Prcnfg(F),

and m ≤ min{rd(~RE0), rd(~RΨδZ
)}. Thus we obtain the following contradiction by means

of Lemma 3.2.2

(~RE0)Mm � (~RΨαX
)m = M<ξ

M -Pm ≺ M<γ
M -Pm = (~RΨδZ

)Mm
3.2.2
= (~RE0)Mm.

Therefore we must have (~RE0)<e � (~RΨαX
)<e. Let ~RE0 = (M<ε1

E1
-Pe1 , . . . ,M

<εl
El -Pel).

Then there exists a 1 < j ≤ l such that M
<εj
Ej -Pej � (~RΨαX

)ej and furthermore

κ |= M
<εj
Ej -Pej , (~RΨαX

)<ej . In addition it holds by Lemma 2.3.2 that Ej ∈ Prcnfg(E0) ⊆
Prcnfg(F) and εj < ranαE0

(Ej) = ranαX(Ej). Thus κ is Mα
X-Π1

rdh∗(X)-indescribable either
by subcase 3.1 if ej < m, or by subcase 3.2 if ej = m, or by subcase 3.3.1, if m ≤ ej < e
and M /∈ Prcnfg(Ej), or by the subsidiary induction hypothesis, if m ≤ ej < e and
M ∈ Prcnfg(Ej).

Subcase 3.4, e > rd(~RΨξM(~ν)
): Then the claim follows just like in the first case.

Theorem 3.2.4 (Domination). Let X and Y 6= (i(Y); P0; . . .) be reflection instances
and suppose Ψα

X is well-defined plus β ∈ ON. Then it holds

Ψα
X ∈Mβ

Y ⇒ ~RΨβY
� ~RΨαX

.

Proof. Let us at first assume that X = (i(X); P0; . . .). Since Ψα
X ∈ Mβ

Y it follows that
Ψα

X is Π1
0-indescribable, and thereby Ψα

X is a regular cardinal by means of Lemma 2.1.2.
Since X, α ∈ C(Ψα

X) Lemma 2.3.5 Á provides a κ0 < Ψα
X, such that C(α, κ0)∩i(X) = κ0

and X, α ∈ C(κ0), i.e. κ0 ∈Mα
X ∩Ψα

X. However, this contradicts the minimality of Ψα
X.

Thus we must have X 6= (i(X); P0; . . .). Let G be the reflection configuration of

Y. It follows by Theorem 3.1.1 that G ∈ Prcnfg(X) and β ≤ ranαX(G). Let ~RΨβY
=

(M<ξ1
R1

-Pr1 , . . . ,M
<ξk
Rk -Prk). Then it follows by means of Lemma 2.3.2 for all 1 ≤ i ≤ k

that Ri ∈ Prcnfg(G) ⊆ Prcnfg(X) and ξi ≤ ranβG(Ri) ≤ ranαX(Ri). To obtain a proof

by contradiction let us assume ~RΨβY
� ~RΨαX

. Then there exists a 1 ≤ j ≤ k such that

M
<ξj
Rj -Prj � (~RΨαX

)rj . (3.7)

Let κ := Ψα
X. Then it holds C(α, κ) ∩ i(X) = κ, X, α ∈ C(κ) and κ |= ~RΨαX

, since

κ ∈Mα
X. Moreover we have κ |= ~RΨβY

as κ ∈Mβ
Y. Therefore it holds

κ |= M
<ξj
Rj -Prj , (~RΨαX

)<rj . (3.8)

Thus it follows from (3.7) and (3.8) and Lemma 3.2.3 that there is a κ0 ∈ Mα
X ∩ κ.

Since this contradicts the minimality of κ = Ψα
X, we must have ~RΨβY

� ~RΨαX
.
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4. A semi-formal Calculus for Πω-Ref

In this chapter we augment the Tait-language LT∈ of set theory by terms, representing
elements of the constructible hierarchy L, whose L-rank is an ordinal of T(Ξ). Moreover

we augment LT∈ by predicates Mξ
X, which are intended to represent the sets {Lκ |κ ∈

Mξ
X}.
Straight forwardly it is possible to define an infinitary derivation calculus for this

augmented language, which is correct (respecting L) for cut-free derivations of formu-
lae whose “ordinal parameters” belong to the transitive part of T(Ξ). Moreover by
employing a reflection rule, such a calculus is strong enough to derive all axioms of
Πω-Ref.

Inspired by this we define an infinitary calculus which features the mentioned items,
but also allows derivations restricted to subsets of T(Ξ), i.e. all derivations-lengths and
all ordinal parameters of the formulae of such derivations have to belong to a certain
subset of T(Ξ). This restriction is arranged in a way, that if a finite set Γ of sentences
is derivable on a subset H1 and it holds H1 ⊆ H2, then Γ is also derivable on H2.

4.1. Ramified Set Theory

Definition 4.1.1. We augment the Tait language LT∈ of set theory (for which we regard
equality as defined, i.e. x = y is an abbreviation for ∀z ∈ x (z ∈ y) ∧ ∀z ∈ y (z ∈ x))
by new unary predicate symbols (¬)τM

α
X for every reflection instance X and every

α ≥ o(X) and every τ < i(X). The augmented language is denoted by LM(Ξ).

Notation. We write ∀x∈ z F (x) for ∀x (x ∈ z → F (x)) and ∃x∈ z F (x) for ∃x (x ∈
z∧F (x)) and call such quantifiers restricted. Moreover we write F (x)z for the LM(Ξ)-
formula F (x) in which every unrestricted quantifier is restricted to z.

By ¬F we denote the LM(Ξ)-formula which arises from F by putting ¬ in front of
each atomic subformula (by use of the De Morgan’s laws) and then dropping double
negations and replacing ¬(s ∈ t) by s /∈ t.

Definition 4.1.2 (The Language LRS(Ξ)). The LRS(Ξ)-terms and their stages are
defined as follows:

• for each α ≤ Ξ, Lα is an LRS(Ξ)-term of stage α.

• the formal expression {x ∈ Lα |F (x, s1, . . . , sn)Lα} is an LRS(Ξ)-term of stage
α < Ξ, if F (x, y1, . . . , yn) is an LM(Ξ)-formula and s1, . . . , sn are LRS(Ξ)-terms
with stages less than α.
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By Tα we denote the set of LRS(Ξ)-terms with stages less than α. The LRS(Ξ)-
sentences are the expressions of the form F (s1, . . . , sn)LΞ , where F (x1, . . . , xn) is
an LM(Ξ)-formula which contains at most the shown free variables x1, . . . , xn and
s1, . . . , sn are LRS(Ξ)-terms.

We define lh(F (s1, . . . , sn)LΞ) as the number of occurrences of the connectives ∨
and ∧ in F (x1, . . . , xn)z.

Notation. In the sequel, LRS(Ξ)-sentences are referred to as sentences. The same
usage applies to LRS(Ξ)-terms.

Definition 4.1.3 (The transfinite content of ordinals, terms and sentences). For or-
dinals we define1

k(0) := k(1) := ∅,
k(α) := {α}, if 0 6= α 6= 1.

For terms we define by recursion on α:

k(Lα) := {α},

k({x ∈ Lα |F (x, s1, . . . , sn)Lα}) := {α} ∪
n⋃
i=1

k(si).

For a sentence F we define by recursion on the complexity of F :

k(s ∈ t) := k(s) ∪ k(t),

k(τM
α
X (s)) := {τ, α} ∪ parX ∪ k(s),

k(F0 ∨ F1) := k(F0) ∪ k(F1),

k(∃x∈ t G(x)) := k(t) ∪ k(G(L0)),

k(¬G) := k(G).

If φ is a term or a sentence, we set |φ| := max(k(φ)).

If A is a finite set consisting of ordinals, terms and sentences, we put

k(A) :=
⋃
φ∈A

k(φ) and |A| := sup{|φ| | φ ∈ A}.

Since we want to apply reflection rules to sentences of the shape
∧

Γ, where Γ
is a finite set of Πn-sentences, we close the set of Πn-sentences under the Boolean
connectives ∧ and ∨.

1We define the transfinite content of ordinals just for technical convenience.
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Definition 4.1.4. A sentence is said to be ∆0(π) if it contains only terms with stages
less than π. A sentence F is elementary-Πn(π) if it has the form

∀x1∈Lπ . . . Qnxn∈Lπ F (x1, . . . , xn),

where the n quantifiers in front are alternate and F (L0, . . . , L0) is ∆0(π). Analogously
we define elementary-Σn(π)-sentences.

The set of Πn(π)-sentences (Σn(π)-sentences, resp.) is the smallest set of LRS(Ξ)-
sentences which contains the elementary-Πk(π)-sentences (elementary-Σk(π)-sentences,
resp.) for k ≤ n plus the elementary-Σj(π)-sentences (elementary-Πj(π)-sentences,
resp.) for j < n and is closed under the connectives ∧ and ∨.

By ∆1
0(π) we denote the smallest class of sentences, which comprises the class Πn(π),

for any n ∈ ω.

Notation. In the following we refer to a Πn+1(π) sentence F as F (F1, . . . , Fm),
where F1, . . . , Fm denote exactly the elementary-Πn+1(π) and elementary-Πn(π) sub-
sentences of F and for 1 ≤ i ≤ m it holds Fi ≡ ∀xi ∈ Lπ F ′i (xi). Thus we have
F (F ′1(t1), . . . F ′m(tm)) ∈ Σn(π) for all ~t = (t1, . . . , tm) ∈ T mπ .

Given a sentence F and terms s, t, we denote by F (s,t) the sentence which arises
from F by replacing all restricted quantifiers ∀x∈ s and ∃x∈ s by ∀x∈ t and ∃x∈ t,
respectively. We also write F (s,π) for F (s,Lπ) and ∀xπ for ∀x∈Lπ.

If F (s1, . . . , sr) ∈ Πn(π), where s1, . . . , sr denote all terms of F of levels less than π
we define

z |= F (s1, . . . , sr) ⇔ z 6= ∅ ∧ Tran(z) ∧
r∧
i=1

(si ∈ z) ∧ F (π,z).

4.2. Semi-formal Derivations on Hull-Sets of T(Ξ)

Now we define an infinitary derivation calculus for sentences of LRS(Ξ), which “acts”
on subsets of T(Ξ). As we want the following persistency property

(Str) H1 ρ
α

Γ & H1 ⊆ H2 ⇒ H2 ρ
α

Γ

we have to relativize the parameter restriction in the (∀)-rule.
It will transpire that the axioms of Πω-Ref are already derivable on sets which satisfy

minimal closure conditions. In the following we denote sets, which meet such closure
conditions as hull-sets.

Definition 4.2.1. In the following we call a (partial) function f : (T(Ξ))n −→p T(Ξ)
or a (partial) function g : (T(Ξ))<ω −→p T(Ξ) an ordinal function.

A hull-set is a triple 〈H,H0, (fi)i∈I〉, such that H,H0 ⊆ T(Ξ), 0 ∈ H0, (fi)i∈I is a
finite family of ordinal functions, α, β 7→ α+ β, γ 7→ ωγ ∈ (fi)i∈I and H is the closure
of H0 under (fi)i∈I .

Henceforth we often omit the second and third component of a hull-set, i.e. we refer
to 〈H,H0, (fi)i∈I〉 simply by H.
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Let 〈H,H0, (fi)i∈I〉 be a hull-set and A be a finite set containing ordinals, terms
and sentences. The we denote by H[A] the hull-set 〈G,H0 ∪ k(A), (fi)i∈I〉 = 〈G,H ∪
k(A), (fi)i∈I〉.†

Example. For every α and π the set C(α, π) can be regarded as the hull-set 〈C(α, π),
π ∪ {0,Ξ}, (+, ϕ, ·+, Ψ̃)〉, where Ψ̃ : (T(Ξ))<ω −→p T(Ξ) and

Ψ̃(γ, ~η) :=

{
Ψγ

X if ~η = ~X for some refl. inst. X and o(X) ≤ γ ∈ C(i(X)) ∩ α,
↑ otherwise.

Corollary 4.2.2. It holds

• A ⊆ H ⇒ H[A] = H.

• Let φ be an ordinal, a term or a sentence. Then H[A][φ] = H[A, φ].

Definition 4.2.3. We use ≡ to mean syntactical identity. For terms s, t with |s| < |t|
we set

s∈̇t ≡
{
F (s) if t ≡ {x ∈ Lα |F (x)}
> if t ≡ Lα

where > is not considered as a formula, but we define > ∧ F :≡ F.‡

Definition 4.2.4. To each sentence F we assign (a possibly infinite) disjunction∨
(Ft)t∈T or conjunction

∧
(Ft)t∈T of sentences. This assignment is indicated by

F ∼=
∨

(Ft)t∈T and F ∼=
∧

(Ft)t∈T , respectively.

r ∈ s ∼=
∨

(t∈̇s ∧ t = r)t∈T|s| ,

τM
α
X (s) ∼=

∨
(t = s)t∈T where T := {Lβ |β ∈Mα

X ∧ τ < β ≤ |s|},

∃x∈s G(x) ∼=
∨

(t∈̇s ∧G(t))t∈T|s| ,

F0 ∨ F1
∼=
∨

(Ft)t∈{0,1},

¬F ∼=
∧

(¬Ft)t∈T , if F ∼=
∨

(Ft)t∈T .

Notation. We use the following notation

Fs ∈ CS(F ) :⇔ F ∼=
∨

(Ft)t∈T or F ∼=
∧

(Ft)t∈T and s ∈ T.
†The reader who is familiar to Buchholz concept of operator-controlled derivations should have

realized, that derivations on hull-sets will be the same as operator controlled derivations, controlled
by a uniform kind of finite operators, since every hull-set induces a finite operator via A 7→ H[A].

The notion of“derivations on subsets”simplifies the proof of the Reflection Elimination Theorem.
In this proof we directly employ the hull-set C(γ, 0) instead of defining an operator Hδ, as e.g. in
[Rat94b].

‡This improvement is due to [Buc01] and has the advantage that ∃xπ G(x) ∼=
∨

(G(t))t∈Tπ in contrast
to the “usual” setting s∈̇Lα ≡ s /∈ L0.
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Definition 4.2.5. For terms and sentences we define the rank as follows:

rnk(Lα) := ω · α,
rnk({x ∈ Lα |F (x, s1, . . . , sn)Lα}) := max{ω · α+ 1, rnk(F (L0)) + 2},

rnk(s ∈ t) := max{rnk(s) + 6, rnk(t) + 1},
rnk(τM

α
X (s)) := rnk(s) + 5,

rnk(F0 ∨ F1) := max{rnk(F0), rnk(F1)}+ 1,

rnk(∃x∈ t G(x)) := max{rnk(t), rnk(F (L0)) + 2},
rnk(¬G) := rnk(G).

Lemma 4.2.6. Let F and G be sentences and s, t be terms. Then the following holds

• rnk(Ft) < rnk(F ) for all Ft ∈ CS(F ),

• k(t) ⊆ k(Ft) ⊆ k(F ) ∪ k(t) for all t ∈ T and Ft ∈ CS(F ),

• rnk(F ) = ω · |F |+ n for some n < ω,

• rnk(s) = ω · |s|+m for some m < ω,

• |F | < |G| ⇒ rnk(F ) < rnk(G),

• |s| < |t| ⇒ rnk(s) < rnk(t).

Proof. See [Buc93], Lemma 1.9

Notation. Let F be a reflection configuration, then we define

dom(F)≥m := {~η ∈ dom(F) | rdh(F(~η)) ≥ m}.

Definition 4.2.7. Let ~R = (M<ξ1
R1

-Pr1 , . . .) be a finite sequence of M-P-expressions.
Then we define

~R′ := ((~Ri(R1))r1 ,
~R<r1).

Definition 4.2.8. Let H be a hull-set and let Γ, ∆ be finite sets of LRS(Ξ)-sentences.

Then we define H ρ
α

Γ by recursion on α via

{α} ∪ k(Γ) ⊆ H

and the following inductive clauses:
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(V)
H ρ

α0
∆, Ft0 for some t0 ∈ T
H ρ

α
∆,
∨

(Ft)t∈T
α0 < α

(Λ)
H[t] ρ

αt
∆, Ft for all t ∈ T

H ρ
α

∆,
∧

(Ft)t∈T
αt < α

(Cut)
H ρ

α0
∆, F H ρ

α0
∆,¬F

H ρ
α

∆

α0 < α
rnk(F ) < ρ

(Πm+2(π)-Ref)
H ρ

α0
∆, F

H ρ
α

∆, ∃zπ(z |= F )

α0 < α
F ∈ Πm+2(π)

if there is a reflection instance (π; Pm; . . .)

(τM
ξ
M(~ν)-Πm+2(π)-Ref)

H ρ
α0

∆, F

H ρ
α

∆, ∃zπ
(
τ
Mξ

M(~ν)(z) ∧ z |= F
) α0 < α

F ∈ Πm+2(π)

for all τ < π if there is a reflection instance (π; Mξ
M(~ν)-Pm; . . .)

(τM
ζ
K(~η)-Πk+2(π)-Ref)

H ρ
α0

∆, F

H ρ
α

∆, ∃zπ
(
τ
Mζ

K(~η)(z) ∧ z |= F
)

α0 < α
F ∈ Πk+2(π)

ζ ∈ C(π)

~η ∈ dom(K)≥kC(π)

for all τ < π, K and k if there is a refl. inst. (π; . . .), such that M<ζ+1
K -Pk � (~R′π)k

Notation. To the last but two and the last but one rule we refer to as “main reflection
rules of π”, while the last rule we call a “subsidiary reflection rule of π”.

Notation. Let H and H′ be hull-sets. By H v H′ we denote that H ⊆ H′ and that
for any ordinal function f , H′ is closed under f , if H is closed under f .

Lemma 4.2.9 (Derived rules of semi-formal derivations on hull-sets of T(Ξ)).

(Hull) H[A] ρ
α

Γ & A ⊆ H ⇒ H ρ
α

Γ,

(Str) H ρ
α

Γ &H vH′ & α < α′ & ρ < ρ′ & Γ ⊆ Γ′ ⇒ H′[α′,Γ′]
ρ′
α′

Γ′,

(∨-Ex) H ρ
α

Γ, F ∨G ⇒ H ρ
α

Γ, F,G,

(∧-Ex) H ρ
α

Γ, F ∧G ⇒ H ρ
α

Γ, F & H ρ
α

Γ, G,

(Up-Per) H ρ
α

Γ,∃xπF (x) & F (L0) ∈ ∆(π) & π < ρ, γ & γ ∈ SC

⇒ H[γ] ρ
(α+γ)·2

Γ,∃xγF (x),

(∀-Inv) H ρ
α

Γ,
∧

(Ft)t∈T ⇒ ∀t∈T H[t] ρ
α

Γ, Ft.
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Let F be a Πn+1(π)-sentence, then:

(E-∀) ∀~t∈T mπ H[~t] ρ
α

Γ, F (F ′1(t1), . . . , F ′m(tm)) ⇒ H[π] ρ
α+2·lh(F )

Γ, F,

(E-∀-Inv) H ρ
α

Γ, F ⇒ ∀~t∈T mπ H[~t] ρ
α

Γ, F (F ′1(t1), . . . , F ′m(tm)),

(E-Up-Per) H ρ
α

Γ,¬F & n = 0 & π < ρ, γ & γ ∈ SC ⇒ H[γ] ρ
(α+γ)·2

Γ,¬F (π,γ).

Proof. (Hull) holds since H[A] = H.

We show (Up-Per) by induction on α. If ∃xπF (x) is not the principal formula of the
last inference the claim follows by use of the induction hypothesis and the last inference.
If ∃xπF (x) is the principal formula of the last inference and the last inference is (V)
then the claim follows by a (V)-inference, since the premise of this inference is also
contained in CS(∃xγF (x)). Now suppose the last inference is a (Ref)-inference with
principal formula ∃xπF (x). Then we have rnk(∃xπF (x)) = π since π ∈ SC. For an

arbitrary sentence G it follows by induction on rnk(G) that H[G] 0
ωrnk(G)·2

G,¬G.

Moreover it follows by induction on α that H ρ
α ∀xγG(x) implies H[π] ρ

α ∀xπG(x)

for all π ≤ γ. Thereby we obtain H[γ] 0

γ·2 ∃xγF (x),¬(∃xπF (x)). Moreover we have

H ρ
α

Γ,∃xπF (x). Thus the claim follows by a cut, since π < ρ.

The claim (E-∀) follows by induction on the complexity of F by use of (∨-Ex) and
(∧-Ex).

All remaining propositions follow by induction on α.

4.3. Embedding of Πω-Ref

In this section we show that the axioms of Πω-Ref and logically valid sentences are
derivable on arbitrary hull-sets.

To avoid bothering with derivation lengths we follow the concept of [Buc93] and
introduce an intermediate proof calculus which operates on multisets.2 Derivations of
these intermediate calculus are finally easily transformable into derivations on hull-sets
by use of the formula rank, extended to finite sets of formulae, as derivation lengths.

Definition 4.3.1 (Axioms of Πω-Ref). The language of Πω-Ref is the language L∈ of
set theory (with identity).

2A finite multiset is the same as a finite family, i.e. a finite set, whose members can have more than
one (but at most finitely many) occurrences in this.
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The axioms of Πω-Ref comprise the following sentences and schemes:

(Ext) ∀x∀y ∀z
(
x = y → (x ∈ z → y ∈ z)

)
(Found) ∀~z

(
∀x (∀y∈xF (y, ~z)→ F (x, ~z))→ ∀xF (x, ~z)

)
(Nullset) ∃x∀y (y /∈ x)

(Pair) ∀x∀y ∃z (x ∈ z ∧ y ∈ z)
(Union) ∀x∃z ∀y∈x∀u∈y (u ∈ z)
(∆0-Sep) ∀~z ∀w ∃y

(
∀x∈y(x ∈ w ∧ F (x, ~z )) ∧ ∀x∈w(F (x, ~z )→ x ∈ y)

)
(F ∈ ∆0)

(Refl) ∀~z
(
F (~z )→ ∃x(x |= F (~z ))

)
(F ∈ Πn, n < ω)

Remark. The two omitted axioms of KPω

(Inf) ∃x
(
∃y (y ∈ x) ∧ ∀y∈x∃z∈x (y ∈ z)

)
(∆0-Col) ∀~z ∀w

(
∀x∈w ∃y F (x, y, ~z )→ ∃w1 ∀x∈w ∃y∈w1F (x, y, ~z )

)
(F ∈ ∆0)

are easily derivable by use of (Nullset), (Pair), (Union) and (Refl). For details confer
[Poh09], section 11.8. Therefore KPω is a subtheory of Πω-Ref.

Definition 4.3.2 (The calculus RS?). We define RS? as the collection of all deriva-
tions of finite multisets of LRS(Ξ)-sentences generated by the following two inference
rules

(V)
? Λ, Ft1 , . . . Ftn

Λ,
∨

(Ft)t∈T
if t1, . . . , tn ∈ T and k(t1, . . . , tn) ⊆ k(Λ,

∨
(Ft)t∈T )?

(Λ)
? Λ, Ft for all t ∈ T

Λ,
∧

(Ft)t∈T

where for S ⊆ ON we set S? := S ∪ {ξ + 1 | ξ ∈ S} ∪ {ω}.
We denote by

?
Λ that there is an RS?-derivation of Λ.

Notation. In the following we write s ⊆ t for the sentence ∀x∈s (x ∈ t).

Lemma 4.3.3. Let s, t be terms and F a sentence. Then

Ê
?
F,¬F

Ë
?
s /∈ s

Ì
?
s ⊆ s

Í
?
s /̇∈t, s∈̇t for s ∈ T|t|

Î
?
s 6= t, t = s

Ï
?
s∈̇Lτ and

?
s ∈ Lτ , if |s| < τ
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Ð
?

Tran(Lα) for all α

Ñ
?
~s 6= ~t,¬F (~s), F (~t)

Proof. See [Buc93], Lemma 2.4, Lemma 2.5. and Lemma 2.7 plus the Corollary to
2.7.

Theorem 4.3.4 ((Ext), (Nullset), (Pair), (Union), (∆0-Sep)). For every limit ordinal
λ we have

?
(Ext)λ ∧ (Nullset)λ ∧ (Pair)λ ∧ (Union)λ ∧ (∆0-Sep)λ.

Proof. We obtain (Nullset) as follows:
?
s /∈ L0 for all s ∈ Tλ and thus

? ∀yλ (y /∈ L0) and hence
? ∃xλ ∀yλ (y /∈ x).

For the remaining statements consult the proof of [Buc93], Theorem 2.9.

Definition 4.3.5. For a multiset Λ = {F1, . . . , Fn} let ‖Λ‖ := ωrnk(F1)⊕. . .⊕ωrnk(Fn).
For a set Γ of sentences we use the following abbreviation

Γ :⇔ H[Γ] 0

‖Γ‖
Γ for every hull-set H.

Lemma 4.3.6 (Embedding of RS?). It holds

?
Γ ⇒ Γ.

Proof. See [Buc93], Lemma 3.10.

Lemma 4.3.7 (Found). Let F (L0) be a sentence. Then it holds for every α

∀xα
(
∀y∈xF (y)→ F (x)

)
→ ∀xαF (x).

Proof. See [Rat94b], Lemma 8.5. or Lemma 8.2.2 of the second part of this thesis.

Lemma 4.3.8 (Refl). Let F ∈ Πn(Ξ). Then

F → ∃zΞ(z |= F ).

Proof. Choose m < ω, such that F ∈ Πm+2(Ξ). By Lemma 4.3.3 À we have
? ¬F, F .

By use of the RS?-embedding and an application of (Πm+2(Ξ)-Ref) plus a (V)-inference
we obtain the claim.

Lemma 4.3.9 (Embedding of Logic). Let λ ∈ Lim. If Γ(~u) is a logically valid set of
LM(Ξ)-formulae, then there is an m ∈ ω such that

H[~s, λ]
ωλ

ωω·λ+m

Γλ(~s) for all ~s ∈ Tλ.

Proof. See [Buc93], Lemma 3.11.
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Since L∈ is a language with identity, but in LRS(Ξ) we regard identity as defined,
we also have to secure that the identity axioms

(Iden) ∀x (x = x),

∀x ∀y (x = y → y = x),

∀x ∀y ∀z
(
(x = y ∧ y = z)→ x = z

)
,

∀x ∀y ∀u∀v
(
x = y ∧ u = v → (x ∈ u→ y ∈ v)

)
,

are derivable on hull-sets.

Lemma 4.3.10. It holds
? ∧

(Iden).

Proof. Follows directly from Lemma 4.3.3 Â, Ä and Ç.

Theorem 4.3.11 (Embedding of Πω-Ref). Let F be a theorem of Πω-Ref. Then there
is an m ∈ ω such that

H[Ξ] Ξ+m
ωΞ+m

FΞ.

Proof. Follows by the Embedding of Logic and the above given derivations of the
axioms of Πω-Ref plus the derivability of (Iden) via some cuts.
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5. Cut and Reflection Elimination
Theorems

The aim of this chapter is to transform a given derivation on a hull-set, in which
reflection rules may occur, into a derivation, in which no reflection rules occur by use
of the scheme of stationary collapsing.

5.1. Predicative Cut Elimination

Lemma 5.1.1. It holds

• ϕ(α, β) is closed under + and ⊕,

• β0 < β ⇒ ϕ(α, β0) < ϕ(α, β),

• α0 < α ⇒ ϕ(α0, (ϕ(α, β)) = ϕ(α, β).

Proof. Folklore.

Lemma 5.1.2 (Reduction Lemma). Let F ∼=
∨

(Ft)t∈T and ρ := rnk(F ) not be regu-
lar. Then

H ρ
α

Λ,¬F & H ρ
β

Γ, F ⇒ H ρ
α+β

Λ,Γ.

Proof. Use induction on β. For details see [Buc93], Lemma 3.14.

Theorem 5.1.3 (Predicative Cut Elimination). Let H be closed under ϕ and [ρ, ρ+
ωα) ∩ Reg = ∅ plus α ∈ H. Then

H
ρ+ωα
β

Γ ⇒ H ρ
ϕ(α,β)

Γ.

Proof. By main induction on α and subsidiary induction on β. For details see [Buc93],
Theorem 3.16.

Corollary 5.1.4. H ρ+1

β
Γ & ρ /∈ Reg ⇒ H ρ

ωβ
Γ.
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5.2. Reflection Elimination

Theorem 5.2.1 (Existence of Reflection Rules). Let X be a reflection instance with
reflection configuration F and rdh(X) = n ≥ 0. Let κ ∈Mα

X. Then

Ê ∀τ <κ ∀α0∈ [o(X), α)C(κ) ∀~η∈dom(F)≥nC(κ)

(
(τM

α0

F(~η)-Πn+2(κ)-Ref) exists
)
.

Ë ∀τ <κ ∀ζ∈C(κ) ∀K ∀~η∈dom(K)C(κ)

(
(τM

ζ
K(~η)-Πk+2(i(X))-Ref) is a subsidiary

reflection rule of i(X) ⇒ (τM
ζ
K(~η)-Πk+2(κ)-Ref) exists

)
.

Proof. À Let us assume, that α > o(X), as otherwise we have nothing to show. As
κ is at least Π1

0-indescribable there must be a reflection instance Y and a β, so that

κ = Ψβ
Y. By Theorem 3.2.4 it follows ~RΨαX

� ~Rκ. If (~RΨαX
)n = M<α

F -Pn � (~R′κ)n it
follows by Definition 4.2.8 that (τM

α0

F(~η)-Πn+2(κ)-Ref) is a (subsidiary) reflection rule

of κ. If (~RΨαX
)n � (~R′κ)n then it must hold ~Rκ = (M<α̃

F -Pn, . . .), for some α ≤ α̃. Thus

for α0 ∈ [o(X), α̃)C(κ) and ~η ∈ dom(F)≥nC(κ) Definition 2.2.4 provides the existence of

the reflection instance (κ; Mα0

F(~η)-Pn; . . .) and by Definition 4.2.8 (τM
α0

F(~η)-Πn+2(κ)-Ref)

is a (main) reflection rule of κ.

Á Let (τM
ζ
K(~η)-Πk+2(i(X))-Ref) be a subsidiary reflection rule of i(X). Then F 6= A

and a run through the cases of Definition 2.2.4 yields ~R′i(X) � ~RΨαX
. Therefore the

claim follows analogously to proposition À, since ~RΨαX
� ~Rκ.

Lemma 5.2.2. Let β ≤ α and κ ≤ π. Then

ρ ∈ C(α, κ) ∩ C(β, π) and C(α, κ) ∩ π = κ ⇒ ρ ∈ C(β, κ).

Proof. Taking into account Definition 2.3.6 and Definition 2.3.7 we sloppily refer to
C(γ, ν) as

⋃
n<ω C

n(γ, ν), where C0(γ, ν) := ν ∪ {0,Ξ} and Cn+1 := {fi(~α) | 1 ≤ i ≤
4 & αj ∈ Cn(γ, ν)}, not specifying the arities of the fi. However f1 is intended to be
+, f2 = ϕ, f3 the cardinal successor function and f4 is the partial function Ψ, where
all fi come with the provisos given in the actual definition of C(γ, ν), i.e. every fi is
injective (for f4 this follows by Theorem 2.3.15).

We show the claim by induction on stβ,π(ρ), where stγ,ν(ρ) := min(n | ρ ∈ Cn(γ, ν)).
If stβ,π(ρ) = 0 it holds ρ ∈ κ ∪ {0,Ξ} since C(α, κ) ∩ π = κ. Thus ρ ∈ C(β, κ).
Let stβ,π(ρ) = n+ 1. Then

ρ =
NF
fi(α1, . . . , αm) for some α1, . . . , αm ∈ Cn(β, π).

Since κ ≤ π we cannot have ρ ∈ C0(α, κ). Thus stα,κ(ρ) > 0 and therefore

ρ =
NF
fj(α

′
1, . . . , α

′
m′), for some α′1, . . . , α

′
m′ ∈ C(α, κ).

Since the fk, 1 ≤ k ≤ 4, have pairwise disjoint ranges on normal form conditions we
must have fi = fj . Due to the injectivity of the fk it follows m = m′ and αk = α′k for
all 1 ≤ k ≤ m. Considering the induction hypothesis we have α1 . . . , αm ∈ C(β, κ).
Thus ρ = fi(α1, . . . , αm) ∈ C(β, κ).
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Notation. Henceforth we use the following notation

Cγ [A] := C(γ + 1, 0)[A],

σM
ξ
X := {κ ∈Mξ

X |σ < κ}.

Remark. It holds

Cγ [A] = C(γ + 1, 0)[A] =
⋃
n<ω

Cn(γ + 1, k(A)),

where Cn(α, k(A)) is defined analogously to Cn(α, π), i.e. we set

C0(α, k(A)) := k(A) ∪ {0,Ξ}, and

Cn+1(α, k(A)) :=



Cn(α, k(A))∪
{γ + ωδ | γ, δ ∈ Cn(α, k(A)) ∧ γ =

NF
ωγ1 + . . .+ ωγm ∧ γm ≥ δ}∪

{ϕ(ξ, η) | ξ, η ∈ Cn(α, k(A))}∪
{κ+ |κ ∈ Cn(α, k(A)) ∩ Card}∪
{Ψγ

X |X, γ ∈ Cn(α, k(A)) ∧ γ < α ∧Ψγ
X is well-defined}.

Lemma 5.2.3. Let X = F(~ν) = (π; . . . ; δ) be a reflection instance and γ,X, µ ∈ Cγ [A],
where ω, δ ≤ γ + 1 and σ := |A| < π ≤ µ ∈ Card. Let α̂ := γ ⊕ ωα⊕µ. Then the
following hold:

Ê If α0, α ∈ Cγ [A] and α0 < α then ∅ 6= σM
α̂
X ⊆ σM

α̂0

X . Moreover for every

κ ∈ σM
α̂
X and every Y := F(~η) with ~η ∈ dom(F) ∩ Cγ [A] the ordinals Ψα̂⊕κ

X and

Ψα̂0⊕κ
Y are well-defined and it holds Ψα̂0⊕κ

Y < Ψα̂⊕κ
X ∈ Cα̂⊕κ[A, κ]

Ë It holds π ∈ Cγ [A]. Moreover for κ ∈ Card and ρ ∈ Cγ [A], such that π ≤ κ ≤
ρ ≤ κ+ we have κ, κ+ ∈ Cγ [A].

Ì Let π ≤ µ ∈ Reg∩Cγ [A]. Then there exists a reflection instance Z with i(Z) = µ,
o(Z) ≤ γ + 1 and Z ∈ Cγ [A].

Proof. À Since γ, α, µ ∈ Cγ [A] ⊆ C(γ + 1, σ + 1) and σ < π we have α̂ ⊕ σ ∈ C(π)
and thereby κσ := Ψα̂⊕σ

X is well-defined. This implies σ ∈ C(α̂ ⊕ σ, κσ) ∩ π = κσ and
hence σ < κσ. Moreover we have α̂ < α̂⊕ σ and γ, α, µ ∈ C(γ + 1, σ + 1) ⊆ C(α̂, κσ)
and thereby κσ ∈ σM

α̂
X.

Now let κ ∈ σM
α̂
X. Then it holds α̂0 < α̂ and γ, α0, µ ∈ C(γ + 1, σ + 1) ⊆ C(α̂0, κ),

hence α̂0 ∈ C(κ) and thus κ ∈ σM
α̂0

X .

Obviously we have α̂⊕κ ∈ C(π), thus Ψα̂⊕κ
X is well-defined and Ψα̂⊕κ

X ∈ Cα̂⊕κ[A, κ].
Now let Y := F(~η) for some ~η ∈ dom(F) ∩ Cγ [A]. As shown above for X it follows

that κY := Ψα̂0⊕κ
Y is well-defined. If ~η = ε it holds Y = X and it follows by Theorem

2.3.14 that κY < κX := Ψα̂⊕κ
X . If ~η 6= ε let us assume κY 6< κX. Since α̂0 ⊕ κ 6= α̂ ⊕ κ

this implies by Theorem 2.3.14 κX < κY. As we have X, α̂0 ⊕ κ ∈ C(κX) there must
be a component ηi of ~η, such that ηi /∈ C(κX). By proviso we have ~η ∈ Cγ [A] ⊆
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C(γ + 1, σ+ 1) ⊆ C(α̂⊕ κ, κX) and thereby ηi < α̂⊕ κ. Moreover we have ηi ∈ C(κY)
by definition and C(α̂ ⊕ κ, κX) ∩ π = κX, i.e. C(α̂ ⊕ κ, κX) ∩ κY = κX. However, this
implies the contradiction ηi ∈ C(κX) by means of Lemma 5.2.2. Therefore we must
have κY < κX.

Á If π = Ξ or π is a successor cardinal the claim follows since parX ∈ Cγ [A].
Otherwise we have X = (Ψδ−1

V ; . . . ;V; . . . ; δ). Then it holds δ − 1 < γ + 1 and {δ} ∪
parV ⊆ parX. Thus π ∈ Cγ [A].

By definition we have Cγ [A] =
⋃
n∈ω C

n(γ + 1, k(A)). We show by induction on
n, if ρ ∈ Cn(γ + 1, k(A)) then κ, κ+ ∈ C(γ + 1, k(A)). The interesting case is that

κ < ρ = Ψξ
W < κ+. Then we have ξ ≤ γ and parW ⊆ Cn(γ + 1, k(A)) as ρ /∈ k(A).

Since C(ξ, ρ)∩ i(W) = ρ and C(ξ, ρ) is closed under the cardinal successor function we
must have i(W) = κ+ and hence κ, κ+ ∈ C(γ, k(A)).

Â If µ = Ξ or µ = ν+ for some ν ∈ Card∩Ξ the claim is trivial. Otherwise we
have µ = Ψζ

V for some ζ and a reflection instance V. By Lemma 2.3.16 it follows
ζ,V ∈ Cγ [A] ⊆ C(γ + 1, σ + 1). Thus ζ ≤ γ. Assuming V = (i(V); P0; . . .) we obtain

that an element κ ∈ Mζ
V only has to satisfy C(ζ, κ) ∩ i(V) = κ and V, ζ ∈ C(κ).

However, since µ is regular, these elements form a club in µ by Lemma 2.3.5 Á in
contradiction to the fact that µ is the least element of Mζ

V. So V 6= (i(V); P0; . . .) and
the claim follows from Corollary 2.3.3.

If the arity of G is zero, we can choose Z = G ∈ Cγ [A]. If dom(G) = [o(M), ξ)C(µ)×
dom(M)C(µ) with G(ζ ′, ~ν) = (µ; Mζ′

M(~ν)-Pm; . . .), we have M ∈ Prcnfg(G), i.e. it exists

a ~η ∈ dom(M)C(µ) such that M(~η) ∈ Prinst(G) = Prinst(V). Thus we have Z :=
G(o(M), ~η) ∈ Cγ [A].

Definition 5.2.4. For µ ∈ Card we define

µ̄ :=

{
µ+ 1 if µ ∈ Reg

µ otherwise.

Theorem 5.2.5 (Reflection Elimination). Let X = (π; . . . ; δ) be a reflection instance
with rdh(X) = m− 1 and γ,X, µ ∈ Cγ [A], where ω, δ ≤ γ + 1 and σ := |A| < π ≤ µ ∈
Card. Let Γ ⊆ Σm+1(π) and α̂ := γ ⊕ ωα⊕µ. Then

Cγ [A] µ̄
α

Γ ⇒ Cα̂⊕κ[A, κ]
�

Ψα̂⊕κX
Γ(π,κ) for all κ ∈ σM

α̂
X.

Proof. We proceed by main induction on µ and subsidiary induction on α.
Case 1: The last inference is (V) with principal formula F ∼=

∨
(Ft)t∈T ∈ Γ. Thus

Cγ [A] µ̄

α0
Γ, Ft0 ,

for some α0 < α and some t0 ∈ T . By use of the subsidiary induction hypothesis we
obtain

Cα̂0⊕κ[A, κ]
�

Ψ
α̂0⊕κ
X

Γ(π,κ), F
(π,κ)
t0 for all κ ∈ σM

α̂0

X . (5.1)
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By Lemma 5.2.3 À we have σM
α̂
X ⊆Mα̂0

X and Ψα̂0⊕κ
X < Ψα̂⊕κ

X ∈ Cα̂⊕κ[A, κ]. Moreover

it holds F (π,κ) ∼=
∨

(F
(π,κ)
t )t∈T∩Tκ and |t0| ∈ Cγ [A] ∩ π ⊆ C(γ + 1, σ + 1) ∩ π ⊆

C(α̂, κ) ∩ π = κ for κ ∈ σM
α̂
X. Thus we obtain from (5.1) the desired result by means

of (Str) and (V).
Case 2: The last inference is (Λ) with principal formula F ∼=

∧
(Ft)t∈T ∈ Γ. Then

for all t ∈ T , there exists an αt < α such that

Cγ [A, t] µ̄

αt
Γ, Ft. (5.2)

Since F ∈ Γ we have Ft ∈ Σm+1(π) and |t| < π for all t ∈ T . Thus we may apply the
subsidiary induction hypothesis to (5.2) and obtain for all t ∈ T

Cα̂t⊕λ[A, t, λ]
�

Ψ
α̂t⊕λ
X

Γ(π,λ), F
(π,λ)
t for all λ ∈ σt

Mα̂t
X , (5.3)

where σt := |A, t|.
Let κ ∈ σM

α̂
X. Then we have κ ∈ σt

Mα̂
X for all t ∈ T ∩ Tκ. Thus Lemma 5.2.3 À

(with A replaced by A, t) provides κ ∈ σt
Mα̂t

X and Ψα̂t⊕κ
X < Ψα̂⊕κ

X . Therefore the claim

follows from (5.3) by use of (Str) and a (Λ)-inference, since F (π,κ) ∼=
∧

(F
(π,κ)
t )t∈T∩Tκ

and obviously Ψα̂⊕κ
X ∈ Cα̂⊕κ[A, κ].

Case 3: The last inference is (Cut) Then for some α0 < α it holds

Cγ [A] µ̄

α0
Γ, (¬)F, (5.4)

where rnk(F ) < µ̄.
Subcase 3.1, rnk(F ) < π: Then we have (¬)F ∈ Σm+1(π). Thus we are allowed to

apply the subsidiary induction hypothesis to (5.4) and obtain

Cα̂0⊕κ[A, κ]
�

Ψ
α̂0⊕κ
X

Γ(π,κ), (¬)F (π,κ) for all κ ∈ σM
α̂0

X .

By similar considerations as in the first case it follows that rnk(F (π,κ)) = rnk(F ) <
κ < Ψα̂⊕κ

X for κ ∈ σM
α̂0

X . Thus the claim follows by a (Cut) and (Str) taking into
account Lemma 5.2.3 À.

Subcase 3.2, π ≤ rnk(F ) ≤ µ: If rnk(F ) < µ then it holds π ≤ µ0 := sup{κ ∈
Card |κ ≤ rnk(F )} ≤ rnk(F ) < µ+

0 ≤ µ and by Lemma 5.2.3 Á it follows
(µ+

0 ; P0; ε; ε; 0)∈ Cγ [A]. If rnk(F ) = µ we must have µ ∈ Reg and by Lemma
5.2.3 Â it follows the existence of a reflection instance Z ∈ Cγ [A] with i(Z) = µ
and o(Z) ≤ γ + 1. Thus in all cases there is a reflection instance Y ∈ Cγ [A] with
π ≤ rnk(F ) ≤ µ1 := i(Y) ≤ µ and o(Y) ≤ γ + 1. In the following we choose Y = X if
π = µ.

W.l.o.g. F is an elementary Σ1(µ1)-sentence and ¬F ≡ ∀xµ1G(x) an elementary
Π1(µ1)-sentence. Therefore applying the subsidiary induction hypothesis to (5.4) we
obtain

Cα̂0⊕λ[A, λ]
�

Ψ
α̂0⊕λ
Y

Γ(µ1,λ), F (µ1,λ) for all λ ∈ σM
α̂0

Y (5.5)
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and by use of (5.4) and (∀-Inv) plus the subsidiary induction hypothesis we obtain for
all t ∈ Tµ1

Cα̂0⊕λ[A, t, λ]
�

Ψ
α̂0⊕λ
Y

Γ(µ1,λ), G(t) for all λ ∈ σt
Mα̂0

Y , (5.6)

where σt := |A, t|. Let λ ∈ σM
α̂0

Y . Then it follows λ ∈ σt
Mα̂0

Y for all t ∈ Tλ. Thus by
an application of (Λ) to (5.6) we obtain

Cα̂0⊕λ[A, λ]
�

Ψ
α̂0⊕λ
Y +1

Γ(µ1,λ),¬F (µ1,λ) for all λ ∈ σM
α̂0

Y , (5.7)

Since k(F (µ1,λ)) ∈ Cγ [A, λ] ∩ µ1 ⊆ C(α̂0 ⊕ λ,Ψα̂0⊕λ
Y ) ∩ µ1 = Ψα̂0⊕λ

Y if λ ∈ σM
α̂0

Y it

follows rnk(F (µ1,λ)) < Ψα̂0⊕λ
Y . Thus a (Cut) applied to (5.5) and(5.7) yields

Cα̂0⊕λ+1[A, λ]
�

Ψ
α̂0⊕λ+1

Y
Γ(µ1,λ) for all λ ∈ σM

α̂0

Y . (5.8)

If Y = X Lemma 5.2.3 À provides that the claim follows from (5.8) by use of (Str).
If Y 6= X it follows π < µ1 ≤ µ. Let λ0 := Ψα̂0⊕σ

Y and η := Ψα̂0⊕λ0+1
Y . Then it

follows as shown in the proof of Lemma 5.2.3 À λ0 ∈ σM
α̂0

Y and π < η < µ1 since
π ∈ C(γ+ 1, σ+ 1) ⊆ C(α̂0⊕σ, λ0)∩µ1 = λ0. Hence Γ(π,λ0) = Γ and (5.8) plus (Hull)
provides

Cα̂0⊕λ0+1[A] �
η

Γ. (5.9)

If η ∈ Card we apply the main induction hypothesis to (5.9) and obtain

Cν⊕κ[A, κ]
�

Ψν⊕κX
Γ(π,κ) for all κ ∈ σM

ν
X, (5.10)

where ν := (α̂0⊕λ0⊕1)⊕ωη⊕η̄. Since α0⊕µ, λ0 +1, η⊕ η̄ < α⊕µ it follows ν < α̂ and
since γ, α0, µ,Y ∈ C(γ+1, σ+1) it follows successively λ0, η, ν, ν⊕κ ∈ C(ν⊕κ,Ψα̂⊕κ

X )

for κ ∈ σM
ν
X and thus Ψν⊕κ

X < Ψα̂⊕κ
X for all κ ∈ σM

ν
X by Theorem 2.3.14. In the same

vein it follows ν ∈ C(ν, κ) for every κ ∈ σM
α̂
X and hence κ ∈ σM

α̂
X implies κ ∈ σM

ν
X.

Thereby the claim follows from (5.10) by use of (Str).
If π < µ1 ≤ µ and η /∈ Card then it holds π ≤ µ0 < η < µ+

0 = µ1. Through the use
of predicative cut elimination, (5.9) yields

Cα̂0⊕λ0+1[A] µ̄0

ϕ(η,η)
Γ. (5.11)

Since µ1 ∈ Cγ [A] implies µ0 ∈ Cγ [A] we may apply the main induction to (5.11) and
obtain

Cν̂⊕κ[A, κ]
�

Ψν̂⊕κX
Γ(π,κ) for all κ ∈ σM

ν̂
X,
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where ν̂ := (α̂0 ⊕ λ0 ⊕ 1) ⊕ ωϕ(η,η)⊕µ̄0 . By analogue considerations as in the case
η ∈ Card the claim follows by (Str).

Case 4, the last inference is by a main reflexion rule of π:
Subcase 4.1, it holds X = A(m) (i.e. π = Ξ) and the last inference is (Πn+2(π)-Ref)

with principal formula ∃zπ(z |= F ): Let n′ := max(m,n) and Y := A(n′).† Then we
have

Cγ [A] µ̄

α0
Γ, F

for some α0 < α and F ∈ Πn′+2(π). Thus by an application of (E-∀-Inv) we obtain for
all ~t ∈ Tπ

Cγ [A,~t ] µ̄

α0
Γ, F (F ′1(t1), . . . , F ′r(tr)). (5.12)

Since Y ∈ Cγ [A] and Γ, F (F ′1(t1), . . . , F ′r(tr)) ∈ Σn′+1(π) for all ~t ∈ Tπ we may apply
the subsidiary induction hypothesis and obtain for all ~t ∈ Tπ

Cα̂0⊕λ[A,~t, λ]
�

Ψ
α̂0⊕λ
Y

Γ(π,λ), F (π,λ)(F
′(π,λ)
1 (t1), . . . , F ′(π,λ)

r (tr))

for all λ ∈ σ~t
Mα̂0

Y ,

(5.13)

where σ~t := |A,~t |. Let λ ∈ σM
α̂0

Y . Then we have λ ∈ σ~t
Mα̂0

Y for all ~t ∈ Tλ. Thus we
obtain from (5.13) by means of (E-∀) for some l < ω

Cα̂0⊕λ[A, λ]
�

Ψ
α̂0⊕λ
Y +l

Γ(π,λ), F (π,λ) for all σ < λ ∈Mα̂0

Y . (5.14)

In the sequel, we fix a κ ∈ σM
α̂
X.

It holds σ < Ψα̂0⊕σ
Y ∈ σM

α̂0

Y . Since γ, α0, µ, σ,Y ∈ C(α̂, κ) and α̂0⊕σ < α̂ it follows

Ψα̂0⊕σ
Y ∈ C(α̂, κ) ∩ π = κ. Therefore we have σM

α̂0

Y ∩ κ 6= ∅.
For λ ∈ σM

α̂0

Y ∩ κ we have Lλ 6= ∅ ∧ Tran(Lλ) ∧∧pi=1 ai ∈ Lλ, where a1, . . . , ap
denote the terms of F less than π. Thus we obtain from (5.14) by means of (Λ) and
(V)

Cα̂0⊕λ[A, λ, κ]
�

Ψ
α̂0⊕λ
Y +ω ∨

Γ(π,λ), ∃zκ(z |= F ) for all λ ∈ σM
α̂0

Y ∩ κ. (5.15)

In the following let G := ∃zκ(z |= F ). Now let s ∈ Tκ. By Lemma 4.3.3 Ç we get

Lλ 6= s,
∧
¬Γ(π,λ),

∨
Γ(π,s). (5.16)

Applying (Cut) to (5.15) and (5.16) we obtain

Cα̂0⊕κ[A, λ, κ, s]
�

Ψ
α̂0⊕|s|
Y +ω+1

Lλ 6= s,
∨

Γ(π,s), G for all λ ∈ σM
α̂0

Y ∩ |s|+ 1.

†Here we could also define n′ := max{m,n}+ 1. Then we could directly apply the subsidiary induc-
tion hypothesis to the derivation of Γ, F . However by choosing n′ := max{m,n} the treatment of
subcase 4.1 works also fine for subcase 4.2.
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Since ¬σM α̂0

Y (s) ∼=
∧

(Lτ 6= s)
τ∈σMα̂0

Y ∩|s|+1
we obtain by a (Λ)- and a (V)-inference

Cα̂0⊕κ[A, κ, s]
�

Ψ
α̂0⊕|s|
Y +ω+3

¬σM α̂0

Y (s)∨ s = ∅∨¬Tran(s)∨
q∨
i=1

bi /∈ s,
∨

Γ(π,s), G,

for s ∈ Tκ, where b1, . . . , bq denotes the terms of Γ less than κ. By means of (V) and
(Λ), we arrive at

Cα̂0⊕κ[A, κ]
�

Ψ
α̂0⊕κ
Y ∀xκ

(
¬σM α̂0

Y (x) ∨ x 6|=
∧
¬Γ(π,x)

)
, G. (5.17)

Since rdh(X) = m − 1 ≥ 0 (note that dom(A) = (0, ω)), k(Γ) ⊆ Cγ [A] and κ ∈ σM
α̂
X

Theorem 5.2.1 provides the existence of the reflection rule (σM
α̂0

Y -Πm+1(κ)-Ref). As∧¬Γ(π,κ) is a Πm+1(κ) formula we obtain by Lemma 4.3.3 Ç, an application of this
rule and (Str)

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
Y ∃xκ

(
σ
M α̂0

Y (x) ∧ x |=
∧
¬Γ(π,x)

)
,
∨

Γ(π,κ). (5.18)

Therefore we obtain the desired derivation by a (Cut) applied to (5.17) and (5.18) plus
(∨-Ex) and (Str).

Subcase 4.2, it holds X = (π; Pm; ~R; . . .) 6= A(m) and the last inference is by the
main reflection rule (Πm+2(π)-Ref): Then the claim follows by simplifying (i.e. setting
Y := X) the considerations of the previous case. If m = 0 then

∨
Γ(π,λ) ∈ Σ1(λ) and

the claim follows directly from (5.15), with λ := Ψα̂0⊕σ
Y and by use of (E-Up-Per) plus

(Hull) and (Str).

Subcase 4.3, it holds X = F(ξ, ~ν) = (π; Mξ
M(~ν)-Pm; . . .) and the last inference is by

a main reflection rule (τM
ζ
M(~η)-Πm+2(π)-Ref) of π with (ζ, ~η) ∈ dom(F) and principal

formula ∃zπ
(
τ
Mζ

M(~η)(z) ∧ z |= F
)
: Let Y := F(ζ, ~η). Then we have

Cγ [A] µ̄

α0
Γ, F

for some α0 < α and F ∈ Πm+2(π). Since Y ∈ Cγ [A] we may proceed analogously to
case 4.1 and obtain by use of (E-∀-Inv), the subsidiary induction hypothesis and (E-∀)
for some l < ω

Cα̂0⊕λ[A, λ]
�

Ψ
α̂0⊕λ
Y +l

Γ(π,λ), F (π,λ) for all λ ∈ σM
α̂0

Y . (5.19)

In the sequel, we fix a κ ∈ σM
α̂
X. As shown in subcase 4.1 it follows σM

α̂0

Y ∩ κ 6= ∅.
Since by Definition 2.2.4 it holds Mα̂0

Y ⊆ Mζ
M(~η) and moreover τ ∈ Cγ [A] ∩ π ⊆

C(γ + 1, σ + 1) ∩ π ⊆ C(α̂0, λ) ∩ π = λ for λ ∈ σM
α̂0

Y we have

τM
ζ
M(~η)(Lλ) ∧ Lλ 6= ∅ ∧ Tran(Lλ) ∧

p∧
i=1

ai ∈ Lλ for all λ ∈ σM
α̂0

Y ,
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where a1, . . . , ap denotes the terms of F less than κ. Therefore we obtain from (5.19)
by means of (Λ) and (V)

Cα̂⊕κ[A, λ, κ]
�

Ψ
α̂0⊕λ
Y +ω ∨

Γ(π,λ),∃zκ
(
τ
Mζ

M(~η)(z)∧z |= F
)

for all λ ∈ σM
α̂0

Y ∩κ. (5.20)

If m = 0, we choose λ = Ψα̂0⊕σ
Y . Since

∨
Γ(π,λ) ∈ Σ1(λ) the claim follows from

(5.20) by use of (E-Up-Per) plus (Hull) and (Str).

If m > 0 let G := ∃zκ
(
τ
Mζ

M(~η)(z) ∧ z |= F
)
. Analogously to subcase 4.1 we obtain

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
Y ∀xκ

(
¬τM α̂0

Y (x) ∨ x 6|=
∧
¬Γ(π,x)

)
, G. (5.21)

Since rdh(X) = m− 1 ≥ 0 and τ < κ ∈ σM
α̂
X Theorem 5.2.1 provides the existence

of the reflection rule (τM
α̂0

Y -Πm+1(κ)-Ref). Since
∧¬Γ(π,κ) ∈ Πm+1(κ) we obtain by

use of Lemma 4.3.3 Ç and this reflection rule

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
Y ∃xκ

(
τ
M α̂0

Y (x) ∧ x |=
∧
¬Γ(π,x)

)
,
∨

Γ(π,κ). (5.22)

Since (ζ, ~η) ∈ dom(F) ∩ Cγ [A] Lemma 5.2.3À provides Ψα̂0⊕κ
Y < Ψα̂⊕κ

X and a (Cut)
applied to (5.21) and (5.22) yields the desired derivation.

Case 5, the last inference is by a subsidiary reflection rule of π of the form
(τM

ζ
K(~η)-Πk+2(π)-Ref), i.e. M<ζ+1

K -Pk � ~R′π, and principal formula ∃zπ
(
τ
Mζ

K(~η)(z) ∧
z |= F

)
: We have

Cγ [A] µ̄

α0
Γ, F

for some α0 < α, ζ ∈ Cγ [A]C(π), ~η ∈ Cγ [A] ∩ dom(K)≥kC(π) and Γ, F ∈ Πm+2(π), since

k ≤ m. Proceeding as in subcase 4.1, i.e. applying (E-∀-Inv), the subsidiary induction
hypothesis, (E-∀) and taking into account σM

α̂
X ⊆ σM

α̂0

X we obtain

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
X

Γ(π,κ), F (π,κ) for all κ ∈ σM
α̂
X. (5.23)

Let ~η = (η1, . . . , ηh). Since we have ∀h1 i (ζ, ηi ≤ γ) by Lemma 2.3.2, ζ, ~η ∈ C(π) and
ζ, ~η ∈ C(γ+ 1, σ+ 1) ⊆ C(γ+ 1, κ) plus C(γ+ 1, κ)∩π = κ it follows by Lemma 5.2.2
ζ, ~η ∈ C(κ) for any κ ∈ σM

α̂
X. Moreover we have τ ∈ Cγ [A]∩π ⊆ C(γ+ 1, σ+ 1)∩π ⊆

C(α̂, κ)∩π = κ for κ ∈ σM
α̂
X. Thus the reflection rule (τM

ζ
K(~η)-Πk+2(κ)-Ref) exists by

means of Theorem 5.2.1. Applying this rule to (5.23) and taking into account Lemma
5.2.3 À plus (Str) we obtain the desired derivation.

Case 6, the last inference is a (τM
ζ
G(~η)-Πg+2(π0)-Ref) inference with τ < π0 < π

and principal formula ∃zπ0
(
τ
Mζ

G(~η)(z) ∧ z |= F
)
: Thus we have

Cγ [A] µ̄

α0
Γ, F (5.24)
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for some α0 < α. Since π0 < π we have Γ, F ∈ Σm+1(π). Thus we may apply the
subsidiary induction hypothesis to (5.24) and obtain

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
X

Γ(π,κ), F (π,κ) for all κ ∈ σM
α̂0

X . (5.25)

Since π0 ∈ Cγ [A] ∩ π ⊆ C(γ + 1, σ + 1) ∩ π ⊆ C(α̂0, κ) ∩ π = κ we have F (π,κ) ≡ F

if κ ∈ σM
α̂0

X . Thus by means of (τM
ζ
G(~η)-Πg+2(π0)-Ref) and (Str) plus taking into

account σM
α̂
X ⊆ σM

α̂0

X the claim follows from (5.25).

Theorem 5.2.6. In the following let α0 := 1 and αn+1 := Ξαn .†

The property of being an admissible set above ω can be expressed by a L(ε)-∆0-
formula Ad(x). For definiteness let Ad(x) be the formula given in [RA74]. If F is a
Σ1-sentence and

Πω-Ref ` ∀x
(
Ad(x)→ F x

)
,

then there is a k < ω such that

Cαk
�

Ψ
αk⊕Ψ

αk
X

X
FΨ

αk
X ,

where X = (ω+; ε; ε; ε; 0). Thus at L
Ψ
εΞ+1
X

all Σ
ωck1
1 -sentences of Πω-Ref are true, i.e.

|Πω-Ref|
Σ
ωck1
1

≤ Ψ
εΞ+1

X .

Proof. By the embedding theorem there exists an m such that

C0 Ξ+m
ωΞ+m

∀xΞ
(
Ad(x)→ F x

)
.

By (∀-Inv) and (V-Ex) we obtain

C0 Ξ+m
ωΞ+m

¬Ad(Lω+), Fω
+

.

Moreover we have1

C0 ω++ω

ωω
++1

Ad(Lω+).

†Note that for α′0 := 0 and α′n+1 := ωΞ+α′n we have αn = ωα
′
n . Thus αn ∈ T(Ξ) ∩ εΞ+1.

1 This is a bit cheated, but there is an abstract argument, which justifies that we do not bother about
an exact proof for this: Let LAd(∈) be the language L(∈) augmented by an unary predicate symbol
Ad and let Πω-Ref∗ be the extension by definitions of Πω-Ref formalized in the language LAd(∈)
plus the axiom (Ad.1) ∀x

(
Ad(x) → (Tran(x) ∧ x |= KPω)

)
. Defining Ad(s) :∼= (Lκ = s)κ∈T

and T := {κ ∈ Reg∩|s| + 1} we easily obtain a derivation of (Ad.1)Ξ on hull-sets (for Lκ the
axiom (∆0-Coll) is derivable by use of (Π2(κ)-Ref)). Moreover it holds Πω-Ref∗ `

(
∀x
(
Ad(x) →

Fx
))
↔
(
∀x
(
Ad(x) → Fx

))
, if F is a Σ1-sentence, and thus Πω-Ref ` ∀x

(
Ad(x) → Fx

)
implies

Πω-Ref∗ ` ∀x
(
Ad(x)→ Fx

)
. Thereby we do not need a formal derivation of Ad(Lω+ ).
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Thus by (Cut) it follows

C0 Ξ+m

α3
Fω

+

.

Applying predicative cut elimination m− 1 times we obtain

C0 Ξ+1

αm+2
Fω

+

.

Since 0,X,Ξ ∈ Cω = C(ω, 0), 0, ω ≤ ω < ω+ ≤ Ξ and Fω
+ ∈ Σ1(ω+) we can apply

Theorem 5.2.5 plus (Hull) and obtain

Cαm+5

�

Ψ
αm+4⊕Ψ

αm+4
X

X
FΨ

αm+4
X . (5.26)

Semi-formal derivations with countable cut rank of LRS(Ξ)-sentences containing only
parameters less than ω+ are correct, since T(Ξ)∩ω+ is transitive. Thus, (5.26) implies
L

Ψ
αm+4
X

|= F .
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Review: Ordinal Analysis of
Πn-Ref



Ordinal Analysis of Πn-Ref

The treatment of Πω-Ref which we present in the first part of this thesis is highly
cumulative, i.e. by some minor modifications we obtain ordinal analyses of Πn-Ref for
every n < ω.

Although these modifications consist essentially of (trivial) cutbacks of Definition
2.2.4 we give them here, as they provide a good access point to an understanding of
our methods to the reader who is familiar with an ordinal analysis of KPω or Π3-Ref.

Beyond that we outline which amount of Structure and Fine Structure Theory is
needed in the different cases. Thereby it becomes clear that the increase of effort
needed for a treatment of the different cases can be visualized as follows:

Π2-Ref ≺ Π3-Ref ≺ Π4-Ref = Π5-Ref = . . . = Πn-Ref ≺ Πω-Ref.

Singular Collapsing: Π2-Ref

The proof-theoretic ordinal of Π2-Ref equals that of KPω and ID1, the theory of non-
iterated inductive definitions. It is the well-known Howard-Bachmann-Ordinal. The
theory ID1 can be viewed as a paradigmatic example of an impredicative theory, since
the definition of a fix-point of an operator “from above” is one of the obvious examples
of an impredicative definition.

To make our approach work for a treatment of Π2-Ref we need the following:

Definition.

C(α, π) :=
⋃
n<ω

Cn(α, π), where

C0(α, π) := π ∪ {0, ω+}, and

Cn+1(α, π) :=


Cn(α, π)∪
{γ + ωδ | γ, δ ∈ Cn(α, π) ∧ γ =

NF
ωγ1 + . . .+ ωγm ∧ γm ≥ δ}∪

{ϕ(ξ, η) | ξ, η ∈ Cn(α, π)}∪
{Ψγ

X |X, γ ∈ Cn(α, π) ∧ γ < α ∧Ψγ
X is well-defined}.

For ω+ we define the following 0-ary reflection configuration and a reflection instance

(ω+; P0; ε; ε; 0).
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For α ≥ 0 we define Mα
X as the set consisting of all ordinals κ < ω+ satisfying

1. C(α, κ) ∩ ω+ = κ,

2. X, α ∈ C(κ).

If Mα
X 6= ∅ we denote the least element of Mα

X by Ψα
X.

Disscusion. Of course this definition is oversized, as it would also be enough to just
define the minimal elements Ψα

X for all α ∈ C(Γω++1, 0) of the hierarchies Mα
X.

The existence of Ψα
X follows directly by means of Lemma 2.3.5. The proof of the

<-comparison Theorem 2.3.14 shrinks down to a part of subcase 3.3. Moreover the
Reflection Elimination Theorem 5.2.5 has just to be proved for m = 0 and µ = ω+.
Therefore we can suspend with the consideration X 6= Y in subcase 3.2 in the proof of
this Theorem and in case four of this proof we just have to consider the subcase 4.2
with m = 0. Moreover the cases five and six are not needed at all. Thus there is not
any need for a fine structure analysis of the collapsing hierarchies.

Before turning to the theory Π3-Ref we want to emphasize that it was (historically)
a big step from an ordinal-analysis of Π2-Ref towards an ordinal-analysis of Π3-Ref.
Thereby there are a lot of theories in strength between Π2-Ref and Π3-Ref which have
been investigated proof-theoretically. Most prominent the theories KPl, KPi and KPM.

The first one axiomatizes a universe, which is a union of admissible sets and the
second one an admissible union of admissible sets. The fundamentals of a proof-
theoretic treatment of these theories goes back to the investigations of W. Pohlers
and W. Buchholz on theories of iterated-inductive-definability (see. e.g [WBS81]) and
the work of G. Jäger, mainly [Jae86]. For an excellent exposition of the historical
development of impredicative proof-theory consult [Fef10]. Ordinal-analyses of these
theories can be found in [Buc93] and [Poh98]. The latter also gives a good survey of
proof-theoretic investigations of a hole zoo of theories about the strength of KPl and
KPi.

The theory KPM axiomatizes a recursive Mahlo-Universe. An ordinal-analysis of
this theory was at first obtained by M. Rathjen in [Rat91].

By simple extensions of the above given definition of the collapsing-hierarchies for
Π2-Ref we obtain collapsing-hierarchies for the theories KPl, KPi and KPM. In technical
aspects the proof of the Reflection Elimination Theorem for this theories differs from
that of Π2-Ref in the point, that we have to consider the case Y 6= X in subcase 3.2.

Simultaneous Collapsing: Π3-Ref

The theory Π3-Ref is the simplest theory whose proof-theoretic treatment actually re-
quires a definition of collapsing hierarchies instead of just defining collapsing functions.

An ordinal analysis of this theory was at first achieved by M. Rathjen in [Rat94b].
To make our approach work for a treatment of Π3-Ref we define:
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Definition. Let Ξ be a Π1
1-indescribable cardinal.

C(α, π) :=
⋃
m<ω

Cm(α, π), where

C0(α, π) := π ∪ {0,Ξ}, and

Cm+1(α, π) :=



Cm(α, π)∪
{γ + ωδ | γ, δ ∈ Cm(α, π) ∧ γ =

NF
ωγ1 + . . .+ ωγm ∧ γm ≥ δ}∪

{ϕ(ξ, η) | ξ, η ∈ Cm(α, π)}∪
{κ+ |κ ∈ Cm(α, π) ∩ Card∩Ξ}∪
{Ψγ

X |X, γ ∈ Cm(α, π) ∧ γ < α ∧Ψγ
X is well-defined}.

0.1. We define the 0-ary reflection configuration and reflection instance

A := (Ξ; P1; M<0
A -P0; ε; 0) → 1.

For technical convenience we also define ~RΞ := (M<0
A -P1,M

<0
A -P0).

0.2. For every cardinal ω ≤ κ < Ξ we define the 0-ary reflection configuration and
reflection instance

(κ+; P0; ε; ε; 0) → 1.

For technical convenience we also define ~Rκ+ := (M<0
A -P0).

1. Let X = F be a 0-ary reflection configuration and a reflection instance of the
form

(π; Pm; ε;Z; δ)

Then we either have δ = 0 = m and π = κ̄+ for some cardinal κ̄, or δ = δ0 + 1,
m = 1 and π = Ψδ0

Z .

For α ≥ δ we define Mα
X as the set consisting of all ordinals κ < π satisfying

1. C(α, κ) ∩ π = κ,

2. X, α ∈ C(κ),

3. if m = 1: κ |= ε,

4. if m = 1: κ |= M<α
F -P0.

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

If m = 1 we also define ~RΨαF
:= (M̃<α

F -P0).

For the following 1.· subclauses we suppose m = 1. If m = 0 we do not equip
Ψα

X with any reflection configurations or instances.

1.1. Let α = δ. Then we define the 0-ary reflection configuration and reflection
instance

(Ψα
X; P0; ε;X;α+ 1) → 1.
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1.2. Let α > δ. Then we define the reflection configuration G with dom(G) :=
[δ, α)C(ΨαX ) and reflection instances

G(ζ) := (Ψα
X; Mζ

F-P0; ε;α+ 1) → 2.

2. Let X := F(ξ) be a reflection configuration of the form

(Ψδ
Z; Mξ

M-P0; ε;Z; δ + 1).

Then it holds ~RΨδZ
= (M<γ

M -P0) for some γ > ξ and M = A.

For α ≥ δ + 1 we define Mα
X as the set consisting of all ordinals κ ∈Mξ

M(~ν) ∩Ψδ
Z

satisfying

1. C(α, κ) ∩Ψδ
Z = κ,

2. X, α ∈ C(κ).

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

Moreover we define ~RΨαX
:= (M̃<ξ

M -P0).

2.1. Let ξ = 0. Then we define the 0-ary reflection configuration and reflection
instance

(Ψα
X; P0; ε;X;α+ 1) → 1.

2.2. Let ξ > 0. Then we define the reflection configuration G with dom(G) =
[0, ξ)C(ΨαX ) and reflection instances

G(ζ) := (Ψα
X; Mζ

M-P0; ε;X;α+ 1) → 2.

Disscusion. Here we need in essence the full Structure Theory presented in section
2.3.

With respect to the Fine Structure Theory we just have to secure that for every
κ ∈ T(Ξ) ∩Mα

A there are reflection instances (κ; Mξ
A-P0; . . .) for every ξ ∈ [0, α)C(κ).

This holds since if κ ∈ Mα
A there must be a reflection instance X and an ζ such that

κ = Ψζ
X as C(α, κ0) is closed under +, ϕ and ·+ for every κ0.

If X = A we must have ζ ≥ α as otherwise we would obtain the contradiction
κ ∈ C(α, κ) ∩ Ξ = κ. Therefore we have ~Rκ = (M<ζ

A -P0) for some ζ ≥ α and thus the
desired reflection instances exists.

The case X = (π; P0; . . . , ) cannot occur, since κ ∈ Mα
A and therefore κ is Π1

0-

indescribable. This would contradict the minimality of κ ∈Mζ
X.

If X = (π; Mγ
A-P0; . . .) we have ~Rκ = (M̃<γ

A -P0). If we would have α > γ then κ
would be Mγ

A-Π1
0-indescribable, but then there would be a κ0 < κ with the defining

properties of κ. Thereby we must have α ≤ γ and the desired reflection instances exist.
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Iterated Simultaneous Collapsing: Πn-Ref

An ordinal-analysis of Πn-Ref cannot be obtained from an ordinal-analysis of Π3-Ref
by simple iteration-arguments as indicated in [Rat94b].

Even in a treatment of Π4-Ref we are confronted with the handling of ordinals which
are Π2-reflecting on a set of Π3-reflecting ordinals. Such “schizophrenic” ordinals, as C.
Duchhardt calls them, do not occur in an ordinal-analysis of Π3-Ref. A proof-theoretic
management of such ordinals requires either a painstaking definition of the collapsing
hierarchies or already the Fine Structure Theory of Chapter 3. The first option was
chosen by C. Duchhardt in [Duc08] to obtain an ordinal analysis of Π4-Ref.

In the following we want to present some modifications of the first part of this thesis
which lead to an ordinal analysis of Πn-Ref. It will transpire that the case n = 4 is
the generic case for a treatment of Πn-Ref for arbitrary n < ω.

Definition 5.2.7. Suppose that n > 1 and let Ξ be a Π1
n-indescribable cardinal.

C(α, π) :=
⋃
m<ω

Cm(α, π), where

C0(α, π) := π ∪ {0,Ξ}, and

Cm+1(α, π) :=



Cm(α, π)∪
{γ + ωδ | γ, δ ∈ Cm(α, π) ∧ γ =

NF
ωγ1 + . . .+ ωγm ∧ γm ≥ δ}∪

{ϕ(ξ, η) | ξ, η ∈ Cm(α, π)}∪
{κ+ |κ ∈ Cm(α, π) ∩ Card∩Ξ}∪
{Ψγ

X |X, γ ∈ Cm(α, π) ∧ γ < α ∧Ψγ
X is well-defined}.

0.1. We define the 0-ary reflection configuration and reflection instance

A := (Ξ; Pn; (M<0
A -Pn−1, . . . ,M

<0
A -P0); ε; 0) → 1.

For technical convenience we also define ~RΞ := (M<0
A -Pn, . . . ,M

<0
A -P0).

0.2. For every cardinal ω ≤ κ < Ξ we define the 0-ary reflection configuration and
reflection instance

(κ+; P0; ε; ε; 0) → 1.

For technical convenience we also define ~Rκ+ := (M<0
A -P0).

1. Let X = F be a 0-ary reflection configuration and a reflection instance of the
form

(π; Pm; ~R;Z; δ)

Then we either have δ = 0 = m and π = κ̄+ for some cardinal κ̄, or δ = δ0 + 1
and π = Ψδ0

Z . In any case we have ~Rπ = (M<0
A -Pm, ~R).
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For α ≥ δ we define Mα
X as the set consisting of all ordinals κ < π satisfying

1. C(α, κ) ∩ π = κ,

2. X, α ∈ C(κ),

3. if m > 0: κ |= ~R,

4. if m > 0: κ |= M<α
F -Pm−1.

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

If m > 0 we also define ~RΨαF
:= (M̃<α

F -Pm−1, ~R<m−1).

For the following 1.· subclauses we suppose m = m0 + 1 > 0. If m = 0 we do not
equip Ψα

X with any reflection configurations or instances.

1.1. Let α = δ and ~Rm0
= (M<ξ1

R1
-Pm0

) with o(R1) = ξ1. Due to the ·̃-operator
we then have ξ1 = 0 and R1 = A. Then we define the 0-ary reflection
configuration and reflection instance

(Ψα
X; Pm0 ; ~R<m0 ;X;α+ 1) → 1.

1.2. Let α = δ and ~Rm0
= (M<ξ1

R1
-Pm0

) with o(R1) < ξ1. Then we define the
reflection configuration G with dom(G) := [o(R1), ξ1)C(ΨαX )×dom(R1)C(ΨαX )

and reflection instances

G(ζ, ~η) := (Ψα
X; Mζ

R1(~η)-Pm0
; ~R<m0

;X;α+ 1) → 2.

1.3. Let α > δ. Then we define the reflection configuration G with dom(G) :=
[δ, α)C(ΨαX ) and reflection instances

G(ζ) := (Ψα
X; Mζ

F-Pm0 ; ~R<m0 ;X;α+ 1) → 2.

2. Let X := F(ξ, ~ν) be a reflection configuration of the form2

(Ψδ
Z; Mξ

M(~ν)-Pm; ~R;Z; δ + 1).

Then it holds ~RΨδZ
= (M<γ

M -Pm, ~R) for some γ > ξ and M ∈ Prcnfg(X).

For α ≥ δ + 1 we define Mα
X as the set consisting of all ordinals κ ∈Mξ

M(~ν) ∩Ψδ
Z

satisfying

1. C(α, κ) ∩Ψδ
Z = κ,

2. X, α ∈ C(κ),

3. if m > 0: κ |= ~R,

4. if m > 0: κ |= M<α
F -Pm−1.

2Note, that ~ν can also be a vector of zero length, cf. 1.3
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From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

Moreover we define ~RΨαX
:= ((~RΨξM(~ν)

)≥m, M̃
<α
F -Pm−1, ~R<m−1).

Let ~RΨξM(~ν)
= (M<σ1

S1
-Ps1 , . . .).

2.1. Let σ1 = o(S1). Due to the ·̃-operator we then have σ1 = 0 and S1 = A.
Then we define the 0-ary reflection configuration and reflection instance

(Ψα
X; Ps1 ; ((~RΨξM(~ν)

)(s1,m], M̃
<α
F -Pm−1, ~R<m−1);X;α+ 1) → 1.

2.2. Let σ1 > o(S1). Then we define the reflection configuration G, defined on
dom(G) := [o(S1), σ1)C(ΨαX ) × dom(S1)C(ΨαX ) and reflection instances

G(ζ, ~η) := (Ψα
X; Mζ

S1(~η)-Ps1 ;

((~RΨξM(~ν)
)(s1,m], M̃

<α
F -Pm−1, ~R<m−1);X;α+ 1) → 2.

Disscusion

Here we need the full amount of Structure Theory and also the entire Chapter 3 of
Fine Structure Theory.

Thus a treatment of Πω-Ref differs only in the presence of the reflection configuration
A, as defined in clause 0.1 and 1 on page 17 from a treatment of Πn-Ref. Since this is
a reflection configuration with variable reflection degree the vector ~RΨαA(m+1)

has to be

defined as (M<α
A -Pm, . . . ,M

<α
A -P0) instead of just (M<α

A -Pm) (note that κ ∈Mα
A(m+1)

implies κ ∈Mα
A(k+1) for all k < m).†

Moreover to enable a Fine Structure Theory some non-canonical (with respect to a
straight forward extension of Definition 5.2.7) restrictions of domains (cf. subclauses
1.2, 2.2, 3.2 of Definition 2.2.4) have to be made.

These peculiarities of reflection configurations with variable reflection degrees be-
come even more awkward in a proof-theoretical treatment of the Theory Stability,
which is given in part three of this thesis.

†The entry (M<0
A -Pn−1, . . . ,M

<0
A -P0) in clause 0.1 on page 68 is of pure technical nature to secure

that for all i ≤ rdh(X) the component (~RX)i 6= ε, but could also be defined as ε.
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Part II.

The Provable Recursive
Functions of Πω-Ref



6. Introduction

In this second part of the thesis we want to achieve a characterization of the provable
recursive functions of Πω-Ref. There are several ways to extract a classification of
the provable recursive functions of a theory T out of an ordinal-analysis of T . For a
brief overview see [Rat99]. The most perspicuous one seems to be the method of A.
Weiermann, developed in [Wei96].

Roughly sketched this method runs as follows: Define a subrecursive hierarchy
〈fα |α ∈ T〉 on the given ordinal notation system T by use of fundamental sequences
defined via a norm on the notation system (e.g. a canonical norm is given by letting
N(α) be the number of symbols occurring in the term for α) as established in [CBW94].
Define a semi-formal derivation calculus which acts on fragmented hull-sets instead of
hull-sets, where the fragmentation of a hull-set H[A] to the index γ is defined as the
set of all α ∈ H[A] with N(α) < fγ(N(A)), in the following denoted by Fγ [A].

Then it holds for a derivation of a Σ1(ω)-sentence ∃zωF (z) on a fragmented hull-set
Fγ [A] that there exists an s < fγ(N(A)) which satisfies F . Therefore we are able to
dominate the provable recursive functions of a theory T by functions of 〈fα |α ∈ T〉 as
soon as we are able to transform the embedding and (im)-predicative-cut-elimination
theorems given by an ordinal-analysis of T to embedding and (im)-predicative-cut-
elimination theorems on fragmented hull-sets. Moreover this domination of the prov-
able recursive functions of T provides a characterization of these functions, if the
utilized domination-functions fγ are itself provable recursive in T , i.e. if the index γ is
less than the proof-theoretic ordinal of T .

By this method we obtain straight forwardly a characterization of the provable
recursive functions of Peano Arithmetic, PA, from an ordinal-analysis of PA. We
obtain the embedding theorems and the predicative cut-elimination theorem of such
an ordinal-analysis also on fragmented hull-sets by choosing the fragmentation index
γ (more or less) equal to the derivation lengths occurring in these theorems.

In case of KPω (i.e. Π2-Ref) we can nearly proceed in the same way, but instead of
choosing γ equal to the derivation length α we have to set γ ≈ Ψ(α). With this setting
it is possible to transform the impredicative-cut-elimination theorem on fragmented
hull-sets as follows:

FΨ(γ)[A] Ω+1
α

Γ ⇒ FΨ(α̂γ)[A] �

Ψ(α̂γ)
Γ, if Γ ⊆ Σ1(Ω).

For details see e.g. [Ste06].
However, in case of theories whose ordinal-analysis requires an iterated impredicative

cut-elimination theorem the parameter γ cannot be handled in such a trivial manner.
An iterated application of the collapsing function Ψ to γ fails, since in general it does
not hold fγ(x) < fΨ(γ)(x) for almost all x.
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In [BW99] and [Bla97] A. Weiermann and B. Blankertz refined the controlling con-
ditions of the parameter γ, by which means even a treatment of theories whose ordinal-
analyses require an iterated impredicative-cut-elimination theorem can be carried out.
The drawbacks of such a refined parameter γ are a proper amount of (often trivial but
tedious) extra calculations.

In the following we want to introduce a slightly modificated version of the Weier-
mannian method, by which means it is possible to obtain a characterization of the
provable recursive functions from an ordinal analysis in an easy way. Even for theories
whose proof-theoretic handling requires an iterated cut-elimination theorem.

The main idea is to employ not only the subrecursive hierarchy 〈fα |α ∈ T〉, but to
utilize also subrecursive hierarchies 〈fα |α ∈ H〉 (uniformly) defined on proper subsets
H of T. Henceforth we want to indicate by a supscript H that fHγ is defined with
respect to the underlying set H. Such relativized defined subrecursive hierarchies are
“collapsible” in the following sense: Let H1,H2 ⊆ T and suppose Ψ : H1 → H2 is
an order-preserving function (which behaves “good” with respect to the norm). Then
it holds fH1

γ (x) ≤ fH2

Ψ(γ)(x) for almost all x. Thereby we do not have to care about

the parameter γ in the Reflection Elimination Theorem, but we can choose it equally
to the “complexity degree” (i.e. the parameter γ in Theorem 5.2.5) of this theorem,
if there eventually is an order-preserving function which collapses γ to the transitive
part of T. However, such a function can easily be given in this situation. E.g. suppose

we have to “collapse” f
C(γ,0)
γ . This function is equal to f

C(γ,0)∩(γ+1)
γ and

λξ.Ψγ⊕ξ
X : C(γ, 0) ∩ γ + 1 −→ C(γ · 2 + 1, 0),

is a total, order-preserving function, if γ,X ∈ C(γ, 0). Therefore we have

fC(γ,0)
γ (x) ≤ fC(γ·2+1,0)

Ψγ·2X
(x) for almost all x.

To be able to chose the fragmentation index γ in the embedding theorems on frag-
mented hull-sets equal to the derivation length we also modify (compared to [BW99]
and [Bla97]) the definition of the norm |t|N of an LRS(Ξ)-term t. By this modification
we lose the property |t|N = |t| for terms t of finite stage, but even in our setting there
exists for every u ∈ Lω a canonical term ũ, such that |ũ|N and |ũ| are related in a
primitive recursive manner.

Finally we also save the trouble of giving a derivation (on a fragmented hull-set) of
a formula “x = Lω”. Instead we add a unary predicate symbol Ad0 by which means it
is possible to characterize Lω as the amenable set, whose elements are all finite.
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7. Subrecursive Hierarchies

In this chapter we define the subrecursive hierarchies (relativized on subsets of T(Ξ))
by means of the methods developed in [CBW94]. I.e. we utilize a norm on T(Ξ),
which is directly given by the inductive definition of T(Ξ), by which means we de-
fine fundamental sequences which give rise to a subrecursive hierarchy (cf. Definition
7.3.1).1

7.1. The Theory Πω-Ref∗

Since there are no primitive recursive function symbols in L∈ a coding of a computation
of a partial recursive function can only be carried out in Lω but not in ω. So to be
able to talk about recursive functions in L∈ we either need an L∈-formula `(u) which
defines Lω or we assume that there is a unary predicate Ad0, which applies exactly to
Lω. As the second approach is proof-theoretically a bit easier to handle, we follow this
way.

Definition 7.1.1. Let LAd0
(∈) be the language L(∈) augmented by a unary predicate

symbol Ad0. Let Πω-Ref∗ be the theory Πω-Ref formalized in the language LAd0(∈)
and extended by the axioms and scheme:

(Ad0.1) ∀x
(
Ad0(x)→ ((Tran)x ∧ (Nullset)x ∧ (Pair)x ∧ (Union)x)

)
,

(Ad0.2) ∀x
(
Ad0(x)→ (∆0-Sep)x

)
,

(Ad0.3) ∀x
(
Ad0(x)→ ∀y∃j

(
∃f ∈j ∃n∈j (Fun(f) ∧Natno(n) ∧ f : y

1−1−−→ n)
)x)

,

where Fun(x), Natno(x) and f : y
1−1−−→ n are L(∈)-∆0-formulae describing that x is a

function, x is a finite ordinal and f is a one-to-one function from y to n, respectively.

Corollary 7.1.2. The theory Πω-Ref∗ is a conservative extension Πω-Ref.

Henceforth we also assume that the language LRS(Ξ) is defined with respect to the
language LAd0

(∈) instead of L(∈). Thereby we obtain new primitive LRS(Ξ) formulae
Ad0(s). For these we define:

Definition 7.1.3.

k(Ad0(s)) := k(s),

Ad0(s) :∼= (Lω = s),

rnk(Ad0(s)) := max{rnk(Lω), rnk(s)}+ 5.

1We do not define these fundamental sequences explicitly, but employ them implicitly in the definition
of the subrecursive hierarchy.
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7.2. The Finite Content of Ordinals, Terms and
Sentences

Definition 7.2.1. N(α) := min{n ∈ ω |α ∈ Cn(ΓΞ+1, 0)}.
Lemma 7.2.2. N is a well-defined norm on T(Ξ), i.e. it holds N : T(Ξ) → ω and
∀n<ω (card{ξ | N(ξ) ≤ n} < ω). Moreover for all α it holds N(α+ 1) = N(α) + 1.

Convention. From now on we assume that par is defined as follows

parA(m) := {m},
par(κ+; . . . ; 0) := {κ,N(κ) + 1},

par(Ψδ
Z; Pm; . . .) := parZ ∪ {δ, max{N(ζ) | ζ ∈ parZ}+ 1},

par(Ψδ
Z; Mξ

M(~ν); . . .) := parZ ∪ {ξ, ~ν, δ, max{N(ζ) | ζ ∈ parZ}+ 1}.
All propositions of the foregoing chapters also hold with this modificated definition

of par, since ω is a subset of every hull-set and we just add finite parameters to the
usual par sets.

Definition 7.2.3 (The finite content of ordinals, terms and sentences).

|α|N := N(α),

|Lα|N := 2 ·N(α),

|{x ∈ Lα |F (x, s1, . . . , sn)Lα}|N := max{2 ·N(α) + 1, |F (L0)|N + 2},
|s ∈ t|N := max{|s|N + 6, |t|N + 1},
|Ad0(s)|N := max{9, |s|N + 5},
|τMα

X (s)|N := max{N(τ),N(α), |s|N + 5, N(ξ) | ξ ∈ parX},
|F0 ∨ F1|N := max{|F0|N, |F1|N}+ 1,

|∃x∈ tG(x)|N := max{|t|N, |G(L0)|N + 2},
|¬G|N := |G|N.

If A is a finite set consisting of ordinals, terms and sentences we put

|A|N := sup{card(A), |φ|N |φ ∈ A},

and

|~t |N = |(t1, . . . , tn)|N := |{t1, . . . , tn}|N.

7.3. Subrecursive Hierarchies on Hull-Sets of T(Ξ)

Definition 7.3.1 (Subrecursive Hierarchies onH). LetH be a hull-set and let Φ(0) :=
1 and Φ(n+ 1) := 2Φ(n) for n ∈ ω. By recursion on α ∈ H we define

fHα (x) := max
({

2x+ 1
}
∪
{
fHβ (fHβ (x))

∣∣ β ∈ H ∩ α & N(β) ≤ Φ2(N(α) + x)
})
,

where for a number theoretic function g we set g2 := g ◦ g.
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Lemma 7.3.2. Let H,H1,H2 be hull-sets and α ∈ H,H1. Then it holds

• fH1
α (x) ≤ fH2

α (x) for all x ∈ ω, if H1 ⊆ H2,

• N(α) < fHα (x) for all α ∈ H and x ∈ ω,

• Φ2(N(α) + x) < fHα (x) if ω ≤ α,

• fHα (x+ y) < fHα+y(x) for all α ∈ H and x, y ∈ ω,

• x · y < Φ(x+ y + 1),

• 8 · (Φ2(x))2 < Φ2(x+ 1) if x ≥ 2.

Proof. The first four statements follow by induction on α.
The fifth statement follows since x < 2x.
The last item holds, since for x ≥ 1 we have

Φ(x) + 2 < Φ(x+ 1) and 2 · Φ(x) + 3 < Φ(x+ 2).

Therefore it holds for x = x′ + 1 ≥ 2

8 · (Φ(x))2 = 23 · (2Φ(x′))2 = 22·Φ(x′)+3 < 2Φ(x′+2) = Φ(x+ 2).

Thus it holds for x ≥ 2

8 · (Φ2(x))2 < Φ(Φ(x) + 2) < Φ2(x+ 1).

Notation. Let A be a finite set of ordinals, terms and sentences. Then we use the
abbreviation fHα (A) := fHα (|A|N). Moreover we dispense with the index H of f in
inequalities, i.e. we define

fα(x) < fβ(x) over H :⇔ fHα (x) < fHβ (y).

Lemma 7.3.3. Let φ be a term or a sentence, s be a term and Ft plus F be sentences,
such that Ft ∈ CS(F ). Then it holds

Ê 2 · lh(F ) < Φ2(F ),

Ë N(|φ|) ≤ N(rnk(φ)) ≤ |φ|N < ω,

Ì |s|N ≤ |F (s)|N ≤ |F (L0)|N + |s|N,

Í |Ft|N < |F |N + |t|N + 7.

Proof. À follows by induction on the build-up of F by use of Lemma 7.3.2.
Á follows readily by definition, since N(ω · α) ≤ 2 ·N(α).
Â Follows by induction on the build-up of F .
Ã Follows by an exhausting run through the different cases by use of |s = t|N =

max{9, |s|N + 4, |t|N + 4} and Â.
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8. A refined semi-formal Calculus for
Πω-Ref∗

This chapter is the analogue of chapter 4 elaborated on fragmented hull-sets. At first
we give the definition of the fragmentation of a hull-set. Of course the paradigm of a
hull-set is not a transitive set and in this point of view already a hull-set is fragmented
in general. However, a fragmented hull-set (in the sense defined below) is a set of
ordinals which consist only of sections of finite “length”. Notably the fragmentation of
a hull-set is a set which is so strongly fragmented that it is not a hull-set at all.

8.1. Semi-formal Derivations on Fragmented Hull-Sets
of T(Ξ)

Definition 8.1.1 (Fragmentation of a hull-set). Let H be a hull-set and A a finite set
of ordinals, terms and sentences. For γ ∈ H[A] we define

FHγ [A] :=
{
α ∈ H[A]

∣∣ N(α) < fγ(A) over H[A]
}
.

Notation. In the following we use the abbreviation FHγ := FHγ [∅].

Definition 8.1.2. LetH be a hull-set, A be a finite set of ordinals, terms and sentences
and suppose γ ∈ H[A]. For a finite set Γ of sentences we define the semi-formal
derivability relation FHγ [A] ρ

α
Γ by recursion on α via

{α} ∪ k(Γ) ⊆ FHγ [A] & |Γ|N ∈ FHγ [A],

plus the inference-rules of Definition 4.2.8 with H replaced by FHγ [A] and the conven-

tion FHγ [A][t] := FHγ [A, t].

A main difference between hull-sets and fragmented hull-sets is that former feature
the hull property, i.e. A ⊂ H ⇒ H[A] = H, which does not hold for fragmented
hull-sets.

Thereby we have to argue more carefully in the following as in the foregoing chapters,
were we often make tacitly use of the hull property. However, as we employ the iteration
of fβ in the definition of the subrecursive hierarchies we are able to handle this issue
without bothering too much on adequate iterations of the fragmentation index.
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Lemma 8.1.3 (Derived rules of semi-formal derivations on fragmented hull-sets).

(Inc) FHγ [A] ρ
α

Γ & α < α′ & ρ < ρ′ & Γ ⊆ Γ′ & k(α′, ρ′,Γ′) ⊆ FHγ [A]

& |{α′, ρ′,Γ′}|N ∈ FHγ [A] ⇒ FHγ [A]
ρ′
α′

Γ′,

(Str) γ ∈ H[A], δ ∈ H[B] & A ⊆ H[B] & fγ(A) ≤ fδ(B) over H[B],

then FHγ [A] ρ
α

Γ ⇒ FHδ [B] ρ
α

Γ,

(∨-Ex) FHγ [A] ρ
α

Γ, F ∨G ⇒ FHγ+1[A] ρ
α

Γ, F,G,

(∧-Ex) FHγ [A] ρ
α

Γ, F ∧G ⇒ FHγ [A] ρ
α

Γ, F & FHγ [A] ρ
α

Γ, G,

(Up-Per) FHγ [A] ρ
α

Γ, ∃xκ F (x) & κ < π, ρ & π ∈ SC & π · 2 < γ

⇒ FHγ+1[A, π] ρ
(α+π)·2

Γ, ∃xπ F (x),

(∀-Inv) FHγ [A] ρ
α

Γ,
∧

(Ft)t∈T ⇒ ∀t∈T FHγ [A, t] ρ
α

Γ, Ft.

Let F be a Πn+1(π)-sentence, then:

(E-∀) ∀~t∈T mπ FHγ [A,~t ] ρ
α

Γ, F (F ′1(t1), . . . , F ′m(tm)) & π · 2 ∈ FHγ [A]

⇒ FHγ+Φ2(F )[A] ρ
α+Φ2(F )

Γ, F,

(E-∀-Inv) FHγ [A] ρ
α

Γ, F ⇒ ∀~t∈T mπ FHγ+1[A,~t ] ρ
α

Γ, F (F ′1(t1), . . . , F ′m(tm)),

(E-Up-Per) FHγ [A] ρ
α

Γ,¬F & n = 0 & π < λ, ρ & λ ∈ SC & λ · 2 < γ

⇒ FHγ+1[A, λ] ρ
(α+λ)·2

Γ,¬F (π,λ).

Proof. The rule (E-Up-Per) follows as in the proof of Lemma 4.2.9 supplemented with
the following extra considerations: In the case that the last inference is a (Ref)-
inference with principal formula ∃xκF (x) it follows by induction on the build-up of F
that

Fπ·2[∃xπF (x),∀xκF (x)] 0
π·2 ∃xπF (x),∀xκF (x).

Since π · 2 < γ and it holds by assumption Fγ [A] ρ
α0

Γ,∃xκF (x) this leads to

Fγ+1[A, π] 0
π·2 ∃xπF (x), ∀xκF (x),

and the claim follows by a cut.

Propositions (Inc) – (∀-Inv) follow by induction on α. Note that in case of (∨-Ex)
the index γ has to be increased by one since the cardinality of a finite set of sentences
is also a parameter of its finite content.

To prove (E-∀) we proceed by induction on the build-up of F : If F is an elementary
Πn+1(π)-sentence the claim follows by an application of (Λ). If F (F1, . . . , Fm) ≡
G0(F1, . . . , Fk)∨G1(Fk+1, . . . , Fm), with G0, G1 ∈ Πn+1(π) we obtain by use of (∨-Ex)

∀~t∈T mπ FHγ+1[A,~t ] ρ
α

Γ, G0(F ′1(t1), . . . , F ′k(tk)), G1(F ′k+1(tk+1), . . . , F ′m(tm)).
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Applying the induction hypothesis twice we get

FHγ+1+Φ2(G0)+Φ2(G1)[A] ρ
α+Φ2(G0)+Φ2(G1)

Γ, G0, G1,

and the claim follows by two (V)-inferences and use of (Inc) and (Str). If we have
F (F1, . . . , Fm) ≡ G0(F1, . . . , Fk) ∧G1(Fk+1, . . . , Fm) the claim follows analogously.

The claim (E-∀-Inv) follows by induction on α. If F ≡ G0∨G1 and F is the principal
formula of the last inference the claim follows since |F (F ′1(t1), . . . , F ′m(tm))|N ≤ |F |N +
|~t |N < FHγ+1[A,~t ].

8.2. Embedding of Πω-Ref∗

Notation. In the following we extend the dot-notation as follows

FH· [A] ρ
α

Γ :⇔ FHα [A] ρ
α

Γ.

Moreover we define

N Γ :⇔ FH· [Γ] 0

‖Γ‖
Γ for every hull-set H.

Remark. Without loosing any propositions of Lemma 4.3.3 and Theorem 4.3.4 we
can add the proviso |{t1, . . . , tn}|N ≤ Φ2(Γ) to the (

∨
)?-rule of Definition 4.3.2.†

Lemma 8.2.1 (Embedding of RS?). It holds
?

Γ ⇒ N Γ.

Proof. We proceed by induction on the RS?-derivation.

Case 1, the last inference is by the (V)
?
-rule: Then we have Γ = Γ′,

∨
(Ft)t∈T and

there are t1, . . . , tn ∈ T , such that

Γ′, Ft1 , . . . , Ftn
Γ′,
∨

(Ft)t∈T
where k{t1, . . . , tn} ⊆ k(Γ)? and |{t1, . . . , tn}|N ≤ Φ2(Γ). (8.1)

Let Γ0 := Γ′, Ft1 , . . . , Ftn and α0 := ‖Γ0‖ plus α := ‖Γ‖. The induction hypothesis
provides

FH· [Γ0] 0

α0
Γ0. (8.2)

†Only in the proof of the Corollary to Lemma 2.7 in [Buc93] there is an inference which makes
use of more than one (but less or equal then lh(

∨
(Ft)t∈T )) premises of

∨
(Ft)t∈T and thus we

come through all these proofs with n ≤ Φ2(Γ). With respect to |ti|N < Φ2(Γ) there is just
the non-trivial case of d in the RS?-derivation of (∆0-Sep). However, there we have |d|N =
max{2 N(|a|+3), 2 N(|c1|)+3, . . . , 2 N(|cn|)+3, |L0 ∈ a∧φ(L0, ~c)|N+2} < Φ(|L0 ∈ a∧φ(L0, ~c)|N) <
Φ(|∃y∈Lλ (ψ1(y, a,~c) ∧ ψ2(y, a,~c))|N).
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Moreover we have

N(α0) ≤ N(α) +

n∑
i=1

(
N(rnk(Fti)) + 1

)
≤ N(α) +

n∑
i=1

(
|Fti |N + 1

)
< N(α) +

n∑
i=1

(∣∣∨(Ft)t∈T
∣∣
N

+ |ti|N + 8
)

< N(α) + Φ2(Γ) · (|Γ|N + Φ2(Γ) + 8) < N(α) + 3(Φ2(Γ))2

< N(α) + Φ2(|Γ|N + 1), (8.3)

and by nearly the same considerations

|Γ0|N < Φ2(|Γ|N + 1). (8.4)

From (8.1) it follows k(Γ0) ⊆ k({Γ′,∨(Ft)t∈T , t1, . . . , tn}) ⊆ k(Γ?) ⊆ H[A], α0 < α,
α0 ∈ H[Γ0] and (8.3) plus (8.4) provide

fα0
(Γ0) < fα0

(f|Γ0|N(Γ)) < fα0+|Γ0|N+1(Γ) < fα(Γ) over H[Γ].

Thereby we obtain from (8.2) and by means of (Str)

FHα [Γ] 0

α0
Γ′, Ft1 , . . . , Ftn . (8.5)

Taking into account (8.3), n ≤ Φ2(Γ) and ω ≤ α it follows α0 + n ∈ FHα [Γ]. Moreover

we have |Γ, Ft1 , . . . , Ftn |N < Φ2(|Γ|N + 1) < f
H[Γ]
α (Γ). Thus we may perform n (V)-

inferences to obtain the claim from (8.5).
Case 2, the last inference is by the (Λ)

?
-rule: Then we have Γ = Γ′,

∧
(Ft)t∈T and

Γ′, Ft for all t ∈ T
Γ′,
∧

(Ft)t∈T

Let Γt := Γ′, Ft and αt := ‖Γt‖ plus α := ‖Γ‖. By use of the induction hypothesis we
obtain

FH· [Γt] 0

αt
Γt for all t ∈ T. (8.6)

Just like in the first case it follows

N(αt) < N(α) + Φ2(|Γ, t|N + 1) and |Γt|N < Φ2(|Γ, t|N + 1). (8.7)

Moreover we have k(Γt) ⊆ H[Γ, t], αt < α and αt ∈ H[Γ, t], α ∈ H[Γ]. By use (8.7) we
obtain

fαt(Γt) < fαt(f|Γt|N(Γ, t)) < fαt+|Γt|N+1(Γ, t) < fα(Γ, t) over H[Γ, t] for all t ∈ T.

Therefore we obtain by (8.6) and taking into account (Str)

FHα [Γ, t] 0

αt
Γ′, Ft for all t ∈ T.

Thus the claim follows by an application of (Λ).
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Lemma 8.2.2 (Found). Let F (L0) be a sentence. Then it holds for every ξ

N ∀xξ
(
∀y∈xF (y)→ F (x)

)
→ ∀xξF (x).

Proof. Let H be an arbitrary hull-set and let G :≡ ∀xξ
(
∀y ∈ xF (y) → F (x)

)
plus

αs := ωrnk(G) ⊕ ω|s|+1. At first we show by induction on |s|

FH· [G, s] 0

αs ¬G,F (s) for all s ∈ Tξ. (8.8)

Equation (8.8) holds for all t ∈ T|s| by the induction hypothesis. Let Gs ∈ CS(G).

Then ¬
(
∀y∈sF (y)

)
is a subformula of Gs. Thus we have

|∀y∈sF (y)|N < |G|N + |s|N + 7 ≤ 2 · |G, s|N + 7 and (8.9)

|t∈̇s→ F (t)|N < |∀y∈sF (y)|N + |t|N + 7 < 2 · |G, s|N + 7 + |t|N + 7

≤ 3 · |G, s, t|N + 14 (8.10)

This implies |¬G, t∈̇s→ F (t)|N < fαt+1(G, s, t) over H[G, s, t], and thereby we obtain
by means of the induction hypothesis and an application of (V)

FH· [G, s, t] 0

αt+1 ¬G, t∈̇s→ F (t) for all t ∈ T|s|. (8.11)

Let βs := ωrnk(G) ⊕ ω|s|. Since fαt+1(G, s, t) < fβs+2(G, s, t) over H[G, s, t] for all
t ∈ T|s| we obtain from (8.11) by use of (Str) and (Inc), a (Λ)-inference and taking into
account (8.9)

FH· [G, s] 0

βs+2 ¬G, ∀x∈sF (x). (8.12)

By Lemma 4.3.3 À and the embedding of RS? we have N ¬F (s), F (s). Moreover it
holds N(rnk(F (s))) ≤ |F (s)|N ≤ |s∈̇s→ F (s)|N ≤ 3 · |G, s|N + 14 by (8.10), and thus

fωrnk(F (s))·2(¬F (s), F (s)) < fβs(fβs(G, s)) < fβs+2(G, s) over H[G, s].

Thereby we have

FH· [G, s] 0

βs+2 ¬F (s), F (s).

By use of (8.12) and an (Λ)-inference we obtain

FH· [G, s] 0

βs+3 ¬G, ∀y∈sF (y) ∧ ¬F (s), F (s),

and therefore

FH· [G, s] 0

βs+4 ¬G,∃xξ
(
∀y∈xF (y) ∧ ¬F (x)

)
, F (s),

via (V). This shows (8.8).
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Since αs < ωrnk(G)⊕ωrnk(∀xξF (x)) < ‖G→ ∀xξF (x)‖ for all s ∈ Tξ and fαs(G, s, ξ) <
f‖G→∀xξF (x)‖(G, s, ξ) over H[G, s, ξ] we obtain by (Str) and (Inc) plus a (Λ)-inference
from (8.8)

FH‖G→∀xξF (x)‖[G, ξ] 0

ωrnk(G)⊕ωrnk(∀xξF (x))

G,∀xξF (x).

From this the claim follows by use of (V) and (Str).

Lemma 8.2.3 (Refl). Let F ∈ Πn(Ξ). Then

N F → ∃zΞ(z |= F ).

Proof. Let H be an arbitrary hull-set. Choose m < ω, such that F ∈ Πm+2(Ξ). By
Lemma 4.3.3 À and the RS?-embedding we have

FH· [¬F, F ] 0
ωrnk(F )·2 ¬F, F.

By an application of (Πm+2(Ξ)-Ref) plus a (V)-inference we obtain

FH· [¬F, F,Ξ] 0

ωrnk(F )·2+2
F → ∃zΞ(z |= F ). (8.13)

Since rnk(F ) < rnk(F → ∃zΞ(z |= F )) it follows

ωrnk(F ) · 2 + 2 < ‖F → ∃zΞ(z |= F )‖ and

fωrnk(F )·2+2(¬F, F,Ξ) < f‖F→∃zΞ(z|=F )‖(F → ∃zΞ(z |= F ))

over H[¬F, F,Ξ] = H[F → ∃zΞ(z |= F )].

Therefore the claim follows by use of (Str) and (Inc) from (8.13).

Lemma 8.2.4. Let Γ(~x) be a finite set of LM(Ξ)-formulae and λ ∈ H. Then there is
an m ∈ ω, such that for all ~s = (s1, . . . , sn) with si ∈ Tλ it holds

N Γλ(~s) ⇒ FH· [s1, . . . , sn] 0
ωωλ+m

Γλ(~s).

Proof. Suppose

FH· [Γλ(~s)] 0

‖Γλ(~s)‖
Γλ(~s). (8.14)

Lemma 4.2.6 implies, that there is an m1 such that ‖Γλ(~s)‖ < ωωλ+m1 and for F ∈ Γ
we have

|Fλ(~s)|N ≤ |FL0( ~L0)|N + |Lλ|N +

n∑
i=1

|si|N

≤ |FL0( ~L0)|N + |Lλ|N + |FL0( ~L0)|N · |~s|N
≤ |ΓL0( ~L0)|N + |Lλ|N + |ΓL0( ~L0)|N · |~s|N
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Thus there is an m2 ∈ ω such that for all F ∈ Γ we have |Fλ(~s)|N < m2 · |~s|N. Since
N(rnk(Fλ(~s)) < |Fλ(~s)|N there is an m3 ∈ ω such that |Γλ(~s)|N < m3 · |~s|N and
N(‖Γλ(~s)‖) < m3 · |~s|N for all ~s ∈ Tλ.

Thereby we obtain for m := max{m1,m2,m3} and γ := ‖Γλ(~s)‖ that

fγ(Γλ(~s)) < fγ(m · |~s|N) < fγ(fγ+m(~s))

< fγ+m+1(~s) < fωωλ+m(~s) over H[Γλ(~s)] = H[s1, . . . , sn].

Thus the claim follows from (8.14) by use of (Inc) and (Str).

Lemma 8.2.5 (Embedding of Logic). Let λ ∈ H. If Γ(~u) is a logically valid set of
LM(Ξ)-formulae, then there is an m ∈ ω such that

FH· [s1, . . . , sn]
ωλ

ωω·λ+m

Γλ(~s) for all ~s = (s1, . . . , sn), with si ∈ Tλ.

Proof. Analogously to [Buc93], Lemma 3.11. by use of Lemma 8.2.4.

8.2.1. Embedding of (Ad0.1)− (Ad0.3)

Lemma 8.2.6. There exists an m < ω, such that for every hull-set H with Ξ ∈ H it
holds

FH· Ξ
ωΞ+m

(Ad0.i)
Ξ for i ∈ {1, 2}.

Proof. By use of Lemma 4.3.3 Ç and a (Λ)?-, a (V)?- plus again a (Λ)?-inference we
obtain

?
(Ad0.1)Ξ,¬

(
(Tran)ω ∧ (Nullset)ω ∧ (Pair)ω ∧ (Union)ω

)
,

and by Theorem 4.3.4 we have

?
(Tran)ω ∧ (Nullset)ω ∧ (Pair)ω ∧ (Union)ω.

Thereby the claim follows for i = 1 by use of the RS?-Embedding Lemma 8.2.1 and
Lemma 8.2.4 plus a (Cut), taking into account that |Lω|N = 4.

In the same vein the claim follows for all instances of the scheme (Ad0.2).

To obtain Lemma 8.2.6 also for i = 3 we have to prove

? ∀yω∃jω
(
∃f ∈j ∃n∈j (Fun(f) ∧Natno(n) ∧ f : y

1−1−−→ n)
)
. (8.15)

Since we cannot expect completeness for Π2(ω)-sentences derived on fragmented-
hull-sets we have to do some extra work to yield (8.15).

Notation. By L we denote the constructible hierarchy. For u ∈ L we define |u|L :=
min{α |u ∈ Lα}.
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Definition 8.2.7 (The Canonical Interpretation of LRS(Ξ)). To obtain an interpreta-
tion of LRS(Ξ) in L we interpret ∈ as the standard membership relation of L, Ad0 as

the set {Lω} and the predicates τM
ξ
X as the sets {Lζ | ζ ∈ τM

ξ
X}.

We define the interpretation of the LRS(Ξ)-terms by recursion on α as follows

LL
α := Lα,

{x ∈ Lα |F (x, s1, . . . , sn)Lα}L := {u ∈ Lα |Lα |= F (u, sL1 , . . . , s
L
n)}.

In general the finite content of an LRS(Ξ)-term t ∈ Tω contains too much syntactical
information (the length of t) to decode the stage of t out of |t|N. Nevertheless for every
u ∈ Lω there is a canonical term t̃, such that L |= u = t̃L and |t̃|N ≤ Φ(|t̃|+ 1).

Definition 8.2.8 (Canonical Terms for Lω). By recursion on n ∈ ω we define the sets

T̃n ⊆ Tn as follows:

T̃0 := ∅,
T̃n+1 := {Ln} ∪

{
{x ∈ Ln

∣∣ E(x, t̃1, . . . , t̃k)Ln} |
E(x, t̃1, . . . , t̃k) ≡ x = t̃1 ∨ . . . ∨ x = t̃k & ∀k1i (t̃i ∈ T̃n) & k ≤ Φ(n)

}
,

T̃ω :=
⋃
n∈ω
T̃n.

Lemma 8.2.9. Let s ∈ Lω. Then there exists an s̃ ∈ T̃ω, such that L |= s = s̃L and
|s|L = |s̃| plus |s̃|N < Φ(|s̃|L + 1).

Moreover for t ∈ Tn there is a t̃ ∈ T̃n, such that L |= tL = t̃L.

Proof. We show the first claim by induction on m := |s|L. If m = 1 the claim holds
with s̃ = L0. If m = j + 2 then there is a k < Φ(j + 1) and s1, . . . , sk ∈ Lj+1

such that s = {s1, . . . , sk} since card(Lj+1) < Φ(j + 1). Thus it follows by the

induction hypothesis that there are s̃1, . . . , s̃k ∈ T̃ω such that for all 1 ≤ i ≤ k it
holds L |= sLi = s̃Li and |si|L = |s̃i|, i.e. s̃i ∈ T̃j+1. Therefore we have for s̃ :=

{x ∈ Lj+1 |E(x, s̃1, . . . , s̃k)Lj+1} ∈ T̃ω that L |= s = s̃L and |s̃| = j + 2. Moreover
we have |L0 = s̃i|N ≤ max{9, |L0|N + 4, |s̃i|N + 4} and hence |E(L0, s̃1, . . . , s̃k)|N ≤
max{9, |s̃1|N + 4, . . . , |s̃k|N + 4,Φ(j + 1)} ≤ Φ(j + 2) + 5. Thereby it follows

|s̃|N := max{2 N(j + 1) + 1, |E(L0, s̃1, . . . , s̃k)|N + 2} < Φ(j + 3) = Φ(|s̃|+ 1).

Now let t ∈ Tn. Then |tL|L ≤ n and thus there is a t̃ ∈ T̃n with L |= tL = t̃L.

Lemma 8.2.10. Let F ≡ ∀xω ∃yω G(x, y) be an elementary Π2(ω)-sentence, such that
L |= FL and for every s ∈ Lω there is a t ∈ Lω with |t|L < 2 ·Φ(|s|L) and L |= G(s, t)L.

Then it holds
?
F.

Proof. Let H be a true ∆0(ω)-sentence, i.e. L |= HL. Then it follows by a straight

forward induction on rnk(H) (by use of canonical terms) that
?
H.
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Now let s ∈ Tω. Then there is a t ∈ Lω such that L |= G(sL, t)L with |t|L <

2 · Φ(|sL|L). Therefore Lemma 8.2.9 provides a t̃ ∈ T̃ω such that

?
G(s, t̃),

and

|t̃|N ≤ Φ(|t̃|L + 1) < Φ(2 · Φ(|sL|L) + 1) ≤ Φ(2 · Φ(|s|) + 1) < Φ2(|s|) < Φ2(|s|N).

Thus it follows
?
F by means of (V)

?
plus (Λ)?.

Corollary 8.2.11. There exists an m < ω, such that for every hull-set H with Ξ ∈ H
it holds

FH· Ξ
ωΞ+m

(Ad0.3)Ξ.

Proof. For every u ∈ Lω there is an f : u
1-1−−→ card(u), such that {f, card(u)} ∈

LΦ(2·|u|L) since card(Ln) < Φ(n). Therefore we obtain (8.15) by means of Lemma
8.2.10 and the claim follows analogously to the proof of Lemma 8.2.6.

Theorem 8.2.12 (Embedding of Πω-Ref∗). Let F be a theorem of Πω-Ref and Ξ ∈ H.
Then there is an m ∈ ω such that

FH· Ξ+m
ωΞ+m

FΞ.

Proof. Follows by the Embedding of Logic, Theorem 4.3.4, the RS?-derivability of
(Iden), the embedding of RS?-derivations and the above given derivations of (Found),
(Ref) and (Ad0.1)-(Ad0.3) via some cuts.
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9. Cut and Reflection Elimination
Theorems for Refined Derivations

In this chapter we prove the Reflection Elimination Theorem for derivations on frag-
mented hull-sets. It will turn out that we just have to do some minimal extra consid-
erations compared to the proof of Theorem 5.2.5, which are (in essence) explained by
the loss of the hull-property.

9.1. Predicative Cut Elimination for Infinitary
Derivations on Fragmented Hull-Sets

Lemma 9.1.1 (Reduction Lemma). Let F ∼=
∨

(Ft)t∈T and ρ := rnk(F ) not be regu-
lar. Then

FHγ [A] ρ
α

∆,¬F & FHγ [A] ρ
β

Γ, F ⇒ FHγ+1[A] ρ
α+β

∆,Γ.

Proof. Analogue to [Buc93], Lemma 3.14 by induction on β. Taking also into ac-
count that k(ι0) ⊆ k(Cι0) ⊆ H[A] and |ι0|N ≤ |Cι0 |N < fγ(A) imply fγ(A, ι) <
fγ(A, fγ(A)) ≤ fγ+1(A) over H[A] and therefore FHγ [A, ι0] ⊆ FHγ+1[A].

Moreover have in mind, that 2 · fγ(A) < fγ+1(A) and therefore α+ β ∈ FHγ+1[A] if

α, β ∈ FHγ [A] and |Γ′,Γ|N ∈ FHγ+1[A] if |Γ′|N, |Γ|N ∈ FHγ [A].

Theorem 9.1.2 (Predicative Cut Elimination1). Let H be closed under ϕ and [ρ, ρ+
α) ∩ Reg = ∅ plus α ∈ FHγ [A]. Then

FHγ [A] ρ+α

β
Γ ⇒ FHγ⊕ϕ(α,β)+1[A] ρ

ϕ(α,β)
Γ.

Proof. We proceed by main induction on α and subsidiary induction on β. We only
treat the non-trivial cases, that the last inference is (Λ) or (Cut).

In the former case we have Γ = Γ′,
∧

(Ft)t∈T and

FHγ [A, t] ρ+α

βt
Γ′, Ft,

for all t ∈ T , with βt < β. The induction hypothesis provides

FHγ⊕ϕ(α,βt)+1[A, t] ρ
ϕ(α,βt)

Γ′, Ft, for all t ∈ T. (9.1)

1This theorem also holds with ρ+ α replaced by ρ+ ωα in the premise. However, in impredicative
proof theory we do not need this stronger version.
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Since N(βt) < f
H[A,t]
γ (A, t) it holds

fγ⊕ϕ(α,βt)+1(A, t) < fγ⊕ϕ(α,β)(fγ(A, t)) < fγ⊕ϕ(α,β)+1(A, t) over H[A, t],

for all t ∈ T . Thus the claim follows from (9.1) by use of (Str) and (Λ).

If the last inference is a (Cut) we have

FHγ [A] ρ+α

β0
Γ, (¬)F,

for some β0 < β and σ := rnk(F ) < ρ + α. Therefore the subsidiary induction
hypothesis provides

FHγ⊕ϕ(α,β0)+1[A] ρ
ϕ(α,β0)

Γ, (¬)F. (9.2)

Case 1, it holds σ < ρ: Since β0 < β and α, β0, β ∈ FHγ [A] it follows γ⊕ϕ(α, β0)+1 <
γ ⊕ ϕ(α, β) + 1 and

fγ⊕ϕ(α,β0)+1(A) < fγ⊕ϕ(α,β)(fγ(A)) < fγ⊕ϕ(α,β)+1(A) over H[A].

Thus the claim follows from (9.2) by use of (Str), (Inc) and a (Cut).

Case 2, it holds ρ ≤ σ = ρ+α0, for some 0 ≤ α0 < α: Since σ /∈ Reg we may apply
the Reduction Lemma to (9.2) and obtain

FHγ⊕ϕ(α,β0)+2[A] ρ+α0

ϕ(α,β0)·2
Γ. (9.3)

As we have k(F ) ⊆ FHγ [A] and |F |N ∈ FHγ [A] it follows σ ∈ FHγ [A] and thereby

α0 ∈ FHγ [A]. Therefore an application of the main induction hypothesis yields

FHη [A] ρ
ϕ(α0,ϕ(α,β0)·2)

Γ, (9.4)

with η := γ ⊕ ϕ(α, β0) + 2⊕ ϕ(α0, ϕ(α, β0) · 2) + 1.

Since ϕ(α0, ϕ(α, β0) ·2) < ϕ(α0, ϕ(α, β0 +1)) = ϕ(α, β0 +1) ≤ ϕ(α, β) we obtain the
claim from (9.4) by means of (Inc) and (Str) if we can show fη(A) < fγ⊕ϕ(α,β)+1(A)
over H[A].

It holds η < ϕ(α, β) + 1. Moreover we have

N(η) ≤ N(γ) + 3N(α) + N(α0) + 3 N(β0) + 5 < 6 · fγ(A).

Thus we obtain

fη(A) < fγ⊕ϕ(α,β)(fγ(A)) < fγ⊕ϕ(α,β)+1(A) over H[A].
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9.2. Reflection Elimination for Infinitary Derivations on
Fragmented Hull-Sets

Notation. Suppose γ ∈ C(γ + 1, 0). Then we use the following notation

Nγ [A] := FCγγ+1[A] = FC(γ+1,0)
γ+1 [A].

Lemma 9.2.1 (N -version of Lemma 5.2.3). Let X = F(~ν) = (π; . . . ; δ) be a reflection
instance and γ,X, µ ∈ Nγ [A], where ω, δ ≤ γ + 1 and σ := |A| < π ≤ µ ∈ Card. Let
α̂ := γ ⊕ ωα⊕µ. Then the following holds:

Ê If α0, α ∈ Nγ [A] and α0 < α then ∅ 6= σM
α̂
X ⊆ σM

α̂0

X . For every κ ∈ σM
α̂
X

and every j < Φ2(fγ(A, κ)) it holds Nα̂0⊕κ+j [A, κ] ⊆ Nα̂⊕κ[A, κ]. Moreover for

every Y := F(~η) with ~η ∈ dom(F) ∩ Nγ [A] the ordinals Ψα̂⊕κ
X and Ψα̂0⊕κ

Y are

well-defined and it holds Ψα̂0⊕κ
Y < Ψα̂⊕κ

X + j ∈ Nα̂⊕κ[A, κ].

Ë It holds π ∈ Nγ [A]. In addition for κ ∈ Card and ρ ∈ Nγ [A], such that π ≤ κ ≤
ρ ≤ κ+ it holds κ, κ+ ∈ Nγ [A].

Ì Let π ≤ µ ∈ Reg∩Nγ [A]. Then there exists a reflection instance Z with i(Z) = µ,
o(Z) ≤ γ + 1 and Z,parZ ∈ Nγ [A].

Proof. We just show those parts of the propositions which go beyond the statements
of Lemma 5.2.3.

À Let j < Φ2(fγ(A, κ)). We have α̂0 + j < α̂ and since card(A, κ) ≥ 1 it follows
fγ(A, κ) ≥ 3. Therefore we have

N(α̂0⊕κ) + j+ 1 < 8 ·Φ2(fγ(A, κ)) < Φ2(fγ(A, κ) + 1) < Φ2(N(α̂⊕κ) + fγ(A, κ))

and thereby

fα̂0⊕κ+j+1(A, κ) < fα̂0⊕κ+j+1(fγ(A, κ))

< fα̂⊕κ(fγ(A, κ)) < fα̂⊕κ+1(A, κ) over Cγ [A, κ].

Hence Nα̂0⊕κ+j [A, κ] ⊆ Nα̂⊕κ[A, κ].
It holds

N(Ψα̂⊕κ
X ) + j < 8 · Φ2(fγ(A, κ)) < Φ2(fγ(A, κ) + 1)

< fα̂(fα̂(A, κ)) < fα̂⊕κ+1(A, κ) over Cγ [A, κ],

and thereby Ψα̂⊕κ
X + j ∈ Nα̂⊕κ[A, κ].

Á If π = Ξ or π is a successor cardinal the claim follows since parX ∈ Nγ [A].
Otherwise we have X = (Ψδ−1

V ; . . . ;V; . . . ; δ). Then it holds δ − 1 < γ + 1, parV ⊆ X
and N(π) = max({N(δ)}∪{N(ξ)+1 | ξ ∈ parV}) ≤ max{N(ζ) | ζ ∈ parX} and thereby
π ∈ Nγ [A].

The second claim follows as in Lemma 5.2.3.
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Â If µ = Ξ or µ = ν+ for some ν ∈ Card∩Ξ the claim is trivial. Otherwise we have
µ = Ψζ

V for some ζ and a reflection instance V. Since σ < π ≤ µ it follows by Lemma
2.3.16 that ζ,V ∈ Nγ [A] ⊆ C(γ + 1, σ + 1). Thus ζ ≤ γ and as µ ∈ Reg it follows the
existence of a reflection configuration G = (µ; . . . ;V; ζ + 1)†.

If the arity of G is zero, we can choose Z = G ∈ Nγ [A], since max{N(%) | % ∈
parG} ≤ N(µ). If dom(G) = [o(M), ξ)C(µ) × dom(M)C(µ) with G(ζ ′, ~ν) =

(µ; Mζ′

M(~ν)-Pm; . . .), we have M ∈ Prcnfg(G), i.e. it exists a ~η ∈ dom(M)C(µ) such

that M(~η) ∈ Prinst(G) = Prinst(V). Thus we have Z := G(o(M), ~η) ∈ Nγ [A].

Theorem 9.2.2 (Reflection Elimination on fragmented Hull-Sets). Let X = (π; . . . ; δ)
be a reflection instance with rdh(X) = m − 1, Nγ [A] be defined and γ,X, µ ∈ Nγ [A],
where ω, δ ≤ γ+1 and σ := |A| < π ≤ µ ∈ Card. Let Γ ∈ Σm+1(π) and α̂ := γ⊕ωα⊕µ.
Then

Nγ [A] µ̄
α

Γ ⇒ Nα̂⊕κ[A, κ]
�

Ψα̂⊕κX
Γ(π,κ) for all κ ∈ σM

α̂
X.

Proof. The proof is similar to the proof of Theorem 5.2.5‡. Consequently we list the
extra considerations, which are necessary to come through the proof of the N -version:

– |Γ(π,κ)|N ≤ |Γ|N + |Lκ|N and hence |Γ(π,κ)|N < fα̂⊕κ(A, κ) since |Γ|N < fγ(A)
over Cγ [A, κ].

Case 1 up to Subcase 3.2 with π = µ:

– Follow by use of Lemma 9.2.1

Subcase 3.2, with π < µ:

– Instead of (5.9) we only get Nα̂0⊕λ0+2[A] �
η

Γ, with η := Ψα̂0⊕λ0+2
Y . Therefore

we have to replace “1” by “2” in ν, but we still can argue as in the proof of
Theorem 5.2.5. Nν⊕κ[A, κ] ⊆ Nα̂⊕κ[A, κ] follows by the same considerations as
in the proof of Lemma 9.2.1 À, since N(ν) < Φ(fγ(A, κ)).

– If η /∈ Card statement (5.11) modifies to Nα̂0⊕λ0⊕ϕ(η,η)+1[A] µ̄0

ϕ(η,η)
Γ. Thus in

the following we have to set ν̂ := (α̂0 ⊕ λ0 ⊕ ϕ(η, η) + 1)⊕ ωϕ(η,η)⊕µ̄0 .

Case 4, Subcase 4.1:

– We only get equation (5.12) with γ replaced by γ+ 1, but this modification does
not affect the applicability of the induction hypothesis it only necessitates to
replace Nα̂0⊕λ by Nα̂0⊕λ+1 and Ψα̂0⊕λ

Y by Ψα̂0⊕λ+1
Y in (5.13).

†For a more detailed argumentation confer the proof of Lemma 5.2.3 on page 54.
‡In the proof of Theorem 5.2.5 we tacitly replaced Γ′ by Γ, where Γ = Γ′, F and F was the principal

formula of the last inference. We were allowed to do so by means of (Str). However, for a proof of
the N -version of Theorem 5.2.5 we have to work with Γ′ instead of Γ.
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– The application of (E-∀) forces us to replace the index α̂0 of N by α̂0 + 1 +
Φ2(fγ(A, κ)) in (5.14) – (5.17). Moreover l has to be replaced by Φ2(fγ(A, κ))
in (5.14).

– Let H :≡ Lλ 6= ∅ ∧ Tran(Lλ) ∧∧pi=1 ai ∈ Lλ. Then N H implies N‖H‖[H] 0

‖H‖

H. It follows easily that |H|N = max{12, |Lλ|N+p+7, |ai|N+p+8} < Φ(fγ(A, λ))
since |F |N < fγ(A). Hence N‖H‖[H] ⊆ Nα̂0⊕λ[A, λ, κ].

– To obtain (5.15) we have to perform card(Γ)− 1 many (V)-inferences. Thus we
can replace ω by 3 · fγ(A) in (5.15), since card(Γ) ≤ |Γ|N < fγ(A).

– Let H ′ :≡ Lλ 6= s,
∧¬Γ(π,λ),

∨
Γ(π,s). Since |Lλ 6= s|N = max{9, |Lλ|N+4, |s|N+

4} and |Γ|N < fγ(A) it follows |H ′|N < Φ(fγ(A, λ, s)) and thereby N‖H′‖[H ′] ⊆
Nα̂0⊕κ[A, λ, κ, s]. Therefore we are able to perform the (Cut) to (5.15) and (5.16).

– |¬σM α̂0

Y (s)∨ = ∅ ∨ ¬Tran(s) ∨ (
∧q
i=1 bi ∈ s),

∨
Γ(π,s), G|N < Φ(fγ(A, κ, s)) <

fα̂0⊕κ[A, κ, s] over Cα̂0⊕κ[A, κ, s].

– It also follows easily that the finite contents of the formulae in (5.17) and (5.18)
are in Nα̂0⊕κ[A, κ], since |Γ, F |N ∈ Nγ [A].

Subcase 4.2 up to Case 6:

– The proof of this cases is made by the same extra considerations as stated above.
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10. A Characterization of the Provable
Recursive Functions of Πω-Ref

In this final chapter we utilize the “collapsibility” of relativized defined subrecursive
hierarchies to achieve a characterization of the provable recursive functions of Πω-Ref.

10.1. Collapsing and the Witnessing Theorem

The growth rate of fHα only depends on the otyp of < � H ∩ α and the norm on H∩α,
but not on the actual size of α. Thereby, given a hull-set H′ and a β < α such that
otyp(< � H ∩ α) <otyp(< � H′ ∩ β) and assumed that the norm on H ∩ α and H′ ∩ β
is “similar” it follows that fHα (x) < fH

′
β (x) for all but finitely many x ∈ ω.

Thereby a subrecursive hierarchy defined on a hull-set H is “collapsible” by replacing
H by an appropriate hull-set H′.

Notation. Let S1, S2 be subsets of T(Ξ) and Ψ : S1 −→ S2. Then we declare the
following notation

Ψ : S1
<-stable−−−−−→
N -stable

S2 :⇔ ∀α, β∈dom(Ψ)
((
α < β → Ψ(α) < Ψ(β)

)
∧

∀x∈ω
(
N(α) ≤ Φ2(N(β) + x) ⇒
N(Ψ(α)) ≤ Φ2(N(Ψ(β)) + x)

))
.

Theorem 10.1.1 (Collapsing1). Let H1, H2 be hull-sets, A be a finite set of ordinals,
terms and sentences and γ ∈ H1[A] ⊆ H2[A]. Then

Ψ : H1[A] ∩ (γ + 1)
<-stable−−−−−→
N -stable

H2[A], ⇒ FH1
γ [A] ⊆ FH2

Ψ(γ)[A].

Proof. Since H1[A] ⊆ H2[A] we just have to prove f
H1[A]
γ (A) ≤ fH2[A]

Ψ(γ) (A).

We show by induction on α ≤ γ that f
H1[A]
α (x) ≤ fH2[A]

Ψ(α) (x) for all x ∈ ω.

1The name of this theorem is a bit pointless without specifying Ψ as a “collapsing-function”.
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If α = 0 the claim is trivial. For α > 0 it holds

fH1[A]
α (x) = max{fH1[A]

β

2
(x) |β ∈ H1[A] ∩ α& N(β) ≤ Φ2(N(α) + x)}

≤ max{fH2[A]
Ψ(β)

2
(x) |β ∈ H1[A] ∩ α& N(β) ≤ Φ2(N(α) + x)}

≤ max{fH2[A]
δ

2
(x) | δ ∈ H2[A] ∩Ψ(α) & N(δ) ≤ Φ2(N(Ψ(α)) + x)}

= f
H2[A]
Ψ(α) (x).

Lemma 10.1.2 (Detachment). Suppose D ∈ ∆0(ω) and L |= ¬DL. Then

FHγ [A] 0
α

Γ, D ⇒ FHγ⊕ωα+1 [A] 0
α

Γ.

Proof. We proceed by induction on α.
Case 1, the principal formula of the last inference is D ∼=

∨
(Dt)t∈T : Then we have

FHγ [A] 0

α0
Γ, Dt0 ,

for some α0 < α and some t0 ∈ T . Since L |= ¬DL we also have L |= ¬DL
t0 . Therefore

the claim follows by an application of the induction hypothesis and means of (Str)
since fγ⊕ωα0+1(A) < fγ⊕ωα+1(A) over H[A].

Case 2, the principal formula of the last inference is D ∼=
∧

(Dt)t∈T :
Subcase 2.1, it holds T = T|s| for some s ∈ Tω: Then we have

FHγ [A, t] 0

αt
Γ, Dt for all t ∈ T|s|, (10.1)

with αt < α. Since L |= ¬DL there exists a t0 ∈ T|s| such that L |= ¬DL
t0 . By Lemma

8.2.9 we can choose a t̃0 ∈ T̃ω with |t0| = |t̃0| and L |= tL0 = t̃L0 plus |t̃0|N < Φ(|t0|+1) ≤
Φ(|s|) < Φ(D) < Φ(fγ(A)) over H[A]. Thus we have

FHγ [A, t̃0] 0

αt̃0
Γ, Dt̃0

& Lω |= ¬DL
t̃0
. (10.2)

Since H[A, t̃0] = H[A] and fγ(A, t̃0) < fγ(Φ(fγ(A))) < fγ⊕ω+2(A) over H[A] we
obtain from (10.2)

Fγ⊕ω+2[A] 0

αt̃0
Γ, Dt̃0

. (10.3)

An application of the induction hypothesis yields

F
γ⊕ω+2⊕ωαt̃0+1 [A] 0

αt̃0
Γ. (10.4)

Since N(αt̃0) < fγ(A, t̃0) < fγ⊕ω+2(A) over H[A] it holds

f
γ⊕ωαt̃0+1

+ω+2
(A) < f

γ⊕ωαt̃0+1
+ω+2

(fγ⊕ω+2(A)) < fγ⊕ωα+ω+3(fγ⊕ω+2(A))

< fγ⊕ωα+ω+4(A) < fγ⊕ωα+1(A) over H[A].
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Thereby the claim follows from (10.4) by use of (Str).

Subcase 2.2, it holds T = {0, 1}: Then the claim follows analogously to the first
case.

Case 3, the principal formula F ∼=
∧

(Ft)t∈T|s| ∈ Γ: Let Γ = Γ′, F . Then we have

Fγ [A, t] 0

αt
Γ′, Ft, D for all t ∈ T|s|, (10.5)

with αt < α. The induction hypothesis provides

Fγ⊕ωαt+1 [A, t] 0

αt
Γ′, Ft for all t ∈ T|s|. (10.6)

Since H[A, t] = H[A] and N(αt) < fγ(A, t) over H[A] we have

fγ⊕ωαt+1(A, t) < fγ⊕ωα+1(fγ(A, t)) < fγ⊕ωα+2(A, t) < fγ⊕ωα+1(A, t) over H[A].

Thereby the claim follows from (10.6) by use of (Str) and (Λ).

Case 4, the principal formula F of the last inference belongs to Γ but is not of the
form (

∧
(Ft)t∈T|s| : Then the claim follows by use of the induction hypothesis and the

last inference.

Theorem 10.1.3 (Witnessing Theorem). Let G(L0) ∈ ∆0(ω). Then

FHγ [A] 0
α ∃xωG(x) ⇒ L |= ∃xmG(x)L, where m := f

H[A]
γ⊕ωα+1(A).

Proof. We proceed by induction on α. We do not know, if ∃xωG(x) already occurs in
the premise of the last inference, but by use of (Str) we have in either case

FHγ+1[A] 0

α0 ∃xωG(x), G(t0), (10.7)

for some α0 < α and some t0 ∈ Tω. If L |= G(t0)L the claim follows, since |tL0 |L ≤
|t0| ≤ |t0|N < m as |t0|N ∈ FHγ [A].

If L |= ¬G(t0)L we apply the Detachment Lemma 10.1.2 to (10.7) and obtain

FHγ+1⊕ωα0+1 [A] 0

α0 ∃xωG(x). (10.8)

The induction hypothesis provides L |= ∃xm0G(x)L with m0 := f
H[A]

γ+1⊕ωα0+1·2(A).

Since N(α0) < f
H[A]
γ (A) it holds

m0 < fγ+2⊕ωα·2(fγ(A)) < fγ+3⊕ωα·2(A) < m over H[A].

Since G(L0) ∈ ∆0(ω) the claim follows by the upwards persistency of Σ-sentences.
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10.2. A Subrecursive Hierarchy Dominating the
Provable Recursive Functions of Πω-Ref

It is an elementary result of recursion theory that for every partial recursive function
f there is a primitive recursive predicate Tf such that

f(x)) ' y ⇔ ∃z Tf (x, y, z).

Since we can code arbitrary n-tuples in Lω via 〈x, y〉 := {{x}, {x, y}} there is an
L∈-∆0-formula T ′f (x, y, z) such that f(x) ' y ⇔ Lω |= ∃z T ′f (x, y, z). Coding also y
and z into one set we obtain an L∈-∆0-formula Gf (x, z), such that f is recursive iff
Lω |= ∀x∃z Gf (x, z).

Therefore an L-correct subsystem T of set theory, in which Lω is definable, proves
the recursiveness of f iff T ` ∀x

(
“x = Lω”→ ∀yx∃zxGf (y, z)

)
. Since Lω |= Gf (s, t)

also implies f(s) < |t|L we are able to outvote the provable recursive functions of T ,
if we are able to give an upper bound (depending on y) for the witness z in the above
formula.

Lemma 10.2.1. Let `(u) be a ∆KPω
1 -formula, which defines Lω. Then it holds

Πω-Ref∗ ` ∀x
(
`(x)↔ Ad0(x)

)
.

Proof. We argue in an arbitrary model of Πω-Ref∗. The direction from left to right is
trivial. So let us assume Ad0(u) for some set u. We have to show u = Lω.

At first we show by induction on n that Ln ⊆ u for all n ∈ ω. So assume Ln ⊆ u.
If n = 0 it follows by (Nullset)u and (∆0-Sep)u that L0 ∈ u. If n > 0 it follows by
iterated use of (Pair)u and (Union)u that Ln ∈ u, as Ln is finite. Therefore we obtain
by use of (∆0-Sep)u that Ln+1 ⊆ u. Thus we have shown Lω ⊆ u.

In addition it follows for every z ∈ u by induction on rnkV(z) that z ∈ Lω since z is
finite due to (Ad0.3). Therefore we also have u ⊆ Lω.

Notation. Let X := (ω+; P0; ε; ε; 0) andH := Ψ
εΞ+1

X . Then we just write fα(x) instead
of fHα (x) for α < Ψ

εΞ+1

X .

Theorem 10.2.2. Let `(u) be a ∆KPω
1 -formula, which defines Lω. Suppose X :=

(ω+; P0; ε; ε; 0) and F ≡ ∀x∃y G(x, y) is an elementary L∈-Π0
2-sentence, such that

Πω-Ref ` ∀z
(
`(z)→ F z

)
.

Then there exists an α < Ψ
εΞ+1

X , satisfying

Lω |= ∀x ∃yfα(|x|L)G(x, y).

Proof. By Lemma 10.2.1 and Theorem 8.2.12 there is an m ∈ ω such that

N· Ξ+m
ωΞ+m

∀zΞ
(
Ad0(z)→ F z

)
.
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By (∀-Inv), (Str) and (∨-Ex) we obtain

N· Ξ+m

ωΞ+m+2 ¬Ad0(Lω)→ Fω. (10.9)

Due to Lemma 4.3.3 Â, Lemma 8.2.1 and Lemma 8.2.4 there is an m′ such that

N· 0
ωΞ+m′

Ad0(Lω). (10.10)

Let α0 := ωΞ+m + 2⊕ ωΞ+m′ . By a (Cut) applied to (10.9) and (10.10) we obtain

N· Ξ+m

α0
Fω.

For 1 ≤ i < m let αi+1 := αi ⊕ ωαi + 1. By iterated application of predicative cut
elimination we obtain

N· Ξ+1

αm−1
Fω.

Let α̂m−1 := αm−1 ⊕ ωαm−1⊕Ξ and αm := α̂m−1 ⊕ Ψ
α̂m−1

X + 1. Then we obtain by
Theorem 9.2.2 and (Str)

Nαm �

ΨαmX
Fω. (10.11)

Moreover it holds

λξ.Ψαm+1⊕ξ
X : Cαm ∩ (αm + 2)

<-stable−−−−−→
N -stable

C(αm+1)·2

Let H := C(αm+1)·2. Thus it follows by Theorem 10.1.1 that Nαm ⊆ FHΨ(αm+1)·2
X

.

Thereby we obtain from (10.11) and use of (Str)

FH
Ψ

(αm+1)·2
X �

ΨαmX
Fω.

Let α := ϕ(Ψαm
X ,Ψαm

X ) and γ := Ψ
(αm+1)·2
X ⊕α+ 1. By predicative cut elimination we

obtain

FHγ 0
α
Fω.

By means of (∀-Inv) we get

FHγ [s̃] 0
α ∃yωG(s̃, y) for all s̃ ∈ T̃ω.

By the Witnessing Theorem 10.1.3 it follows

L |= ∃ymG(s̃, y)L, where m := f
H[s̃]
γ⊕ωα+1(s̃) for all s̃ ∈ T̃ω. (10.12)

A closer look at the build-up of α and γ reveals that α, γ < Ψ
εΞ+1

X . Since H[s̃] = H
and H ∩ Ψ

εΞ+1

X ⊆ Ψ
εΞ+1

X it follows fHδ (x) ≤ fδ(x) for all δ ∈ H ∩ Ψ
εΞ+1

X and x ∈ ω.
Moreover we have fδ(Φ(x) + 1) < fδ+1(x) if δ ≥ ω. Thus we obtain from (10.12) and
Lemma 8.2.9

Lω |= ∀x ∃ymG(x, y), where m := fγ⊕ωα+2(|x|L).
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As a consequence of the last theorem we obtain:

Theorem 10.2.3. The provable recursive functions of Πω-Ref are contained in the
class F, where F is the smallest class of number theoretic functions, which contains
S,Cnk , P

n
k , (fα)

α∈Ψ
ε(Ξ+1)
X

and is closed under substitution and primitive recursion.

96



Part III.

An Ordinal Analysis of Stability



11. Introduction

A transitive set which is a model of KP is called admissible. The theory KPi comprises
the theory KP plus an axiom (Lim), which postulates that every set is contained in
an admissible set. The theory Stability is the theory KPi augmented by the axiom
∀α ∃κ ≥ α (Lκ �1 Lκ+α), where Lκ �1 Lκ+α denotes that Lκ is a Σ1-elementary
substructure of Lκ+α.1

Obviously every κ+ 1-stable ordinal is already Πn reflecting, for all n < ω. In this
sense the notion of an α-stable ordinal can be regarded as a transfinite extension of the
notion of a Πn-reflecting ordinal. Therefore one might informally refer to the theory
Stability as Aut-Π-Ref. Thus a treatment of Stability marks in some sense a completion
of ordinal analyses of theories of the form KP augmented by a (first order) reflection
principle.

However, in view of ordinal-analyses of even stronger theories, i.e. KP + Σ1- sep-
aration a proof-theoretic treatment of Stability features the simplest case of a new
paradigm: The collapsing of intervals.

To achieve a reflection-elimination theorem for the theory Πω-Ref we have to “col-
lapse” the derivation of a finite set of Σn(π)-sentences Γπ with parameters in Lσ for
some σ < π to a derivation of Γκ, for κ < π. In contrast to that in case of Stability
we have to employ a collapsing-procedure for Σn(π + θ)-sentences, i.e. sentences with
parameters in some Lσ for σ < π and in Lπ+θ\Lπ, as visualized in figure 11.1.

However, in case of Stability this new issue is not that problematic, since it always
holds θ < σ and thereby we are able to collapse the interval [π, π + θ] by a term-
shift-down procedure t 7→ tπ 7→κ, where tπ 7→κ is obtained from t ∈ Tπ+θ by replacing
all occurrences of Lπ+δ, with δ < θ in t (viewed as a string of L∈-symbols plus the
symbols {Lπ+δ | δ < θ} and terms of Tπ) by Lκ+δ.

With respect to the Ordinal Theory and the fine structure theory of the collapsing
hierarchies we just have to face the problem of keeping the notion of a reflection
instance finite. A one-to-one adaption of Definition 2.2.4 to Stability would quickly
lead to reflection instances of infinite length. To avoid this we introduce the notion of
the closure ~R cl of a vector ~R of M-P-expressions. The required modifications in the
analogue of chapter 3 are due to this notion.

1The denotation “Stability” is explained by the fact that an ordinal κ such that Lκ �1 Lκ+α is
called κ+ α-stable.
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L

κ

κ+ θ

π

π + θ

L

π

Lπ 7→ Lκ

t 7→ tπ 7→κ
κ+ θ

π + θ

κ

σ

θθ

σ

Figure 11.1.: Parameter allocation in case of single point- and interval-collapsing.
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12. Ordinal Theory for Stability

Just like in the treatment of Πω-Ref we employ cardinal-analogues of the required
recursive ordinals to define the collapsing hierarchies which give rise to the ordinal
notation system T(Υ).

12.1. θ-Indescribable Cardinals

Definition 12.1.1. Let θ > 0. A cardinal π is called θ-Π1
n-indescribable if for any

P1, . . . , Pk ⊆ Vπ and for all Π1
n-sentences F (x1, . . . , xk) in the language of set-theory

L∈, whenever

Vπ+θ |= F (P1, . . . , Pk)

then there exists a 0 < κ < π such that

Vκ+θ |= F (P1 ∩ Vκ, . . . , Pk ∩ Vκ).

The cardinal π is called M-θ-Π1
n-indescribable if in the above situation a 0 < κ ∈

π ∩M can be found.

Remark. The notation of θ-indescribability can be regarded as a transfinite extension
of the concept of Πm

n -indescribability as it holds:

π is 1-Π1
0-indescribable ⇔ π is Π1

n-indescribable for all n ∈ ω,
i.e. π is Π2

0-indescribable,

π is ω-Π1
0-indescribable ⇔ π is Πm

n -indescribable for all m,n ∈ ω,
i.e. π is totally indescribable.

Notation. To assimilate notations we refer to cardinals, which are Π1
n-indescribable

as 0-Π1
n-indescribable cardinals.

Theorem 12.1.2.

Ê Let τ < θ < π ∈ Lim. Then there is a ∆n+1-formula φn(x1, . . . , xk+3) such that

Vπ+θ |=
(
φn(P1, . . . , Pk, Vπ, θ, pFq)↔ Vπ+τ |= F (P1, . . . , Pn)

)
,

for every set-theoretic Π1
n-formula F (x1, . . . , xk) and any P1, . . . , Pk ⊆ Vπ. Where

x1, . . . , xk are all free variables occurring in F and pFq is a Gödel-set for F .
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Ë Let n < ω and 0 < θ < π ∈ Lim. Then there is a Π1
n-formula Φn(x1, . . . , xk+1),

which is universal for the Π1
n-formulae, i.e. for every set-theoretic Π1

n-formula
F (x1, . . . , xk), where x1, . . . , xk are all free variables occurring in F , and any
P1, . . . , Pk ⊆ Vπ it holds

Vπ+θ |= F (P1, . . . , Pk)↔ Φn(P1, . . . , Pk, pFq),

where pFq is a Gödel-set for F .

Proof. À By use of the parameters Vπ and θ plus a flat pairing function, which does
not increase the rank (cf. [Dra74], Ch 2, §3, 3.11(10)) we can describe Vπ+ξ for all
0 < ξ < θ within Vπ+θ. Therefore a Π1

n-sentences F holding in Vπ+τ can be expressed
equally well as a Π0

n-sentences holding in Vπ+θ by replacing first oder quantifiers Qx by
Qx ∈ Vπ+τ and replacing second order quantifiers by first order quantifiers, if τ+1 = θ,
and by Qx ∈ Vπ+τ+1 if τ + 1 < θ. Thereby the claim follows by use of a Πn+1-, Σn+1-
respectively, satisfaction relation for Π0

n-formulae.
ÁAnalogue to [Dra74], Ch 9, §1, Lemma 1.9.

12.2. Collapsing Hierarchies based on θ-Indescribable
Cardinals

Definition 12.2.1. From now on we denote by Υ the minimal cardinal, such that1

∀θ < Υ ∃κ < Υ “κ is θ-indescribable”,

∀θ < Υ ∀κ < Υ (“κ is θ-indescribable”→ θ < κ).

Moreover we define Θ(θ) as the least ordinal, which is θ-indescribable.

Remark. If θ < Υ it follows Θ(θ) < Υ.

In the following small fraktur letters denote elements of (Υ× ω) ∪ {(0,−1)}. Since
a confusion with elements of Υ (which are denoted by small Greek letters) can be
excluded we use the symbol < not only to denote the usual ordering of Υ but also to
denote the lexicographic-ordering on Υ × ω. In addition we use the predicates Succ
and Lim also in the context of 〈Υ × ω,<〉 and define 0 := (0, 0), −1 := (0,−1) and
(θ,m) + 1 := (θ,m+ 1). Moreover we extend the relation < on Υ× ω by −1 with the
convention−1 < x for all x ∈ Υ×ω. Finally we define (θ,m) ∈ C(α, π) :⇔ θ ∈ C(α, π).

The following Definition is the (canonical) extension of M-P-expressions to elements
of Υ× ω.

Definition 12.2.2 (M-P-Expressions). Henceforth we assume that we have for every
reflection configuration F a symbol MF. We refer to expressions of the form M<α

F -Pn

as M-P-expressions. For technical convenience we also define ε and M<0-Pn as M-P-
expressions. Moreover ε is also a finite sequence of M-P-expressions with zero length.

1The existence of Υ follows from the existence of a subtle cardinal, for details see [Rat05b] Corollary
2.9.
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Let U be an 0-ary reflection configuration, G a non 0-ary reflection configuration
and M an arbitrary reflection configuration. Let ξ > o(U), ξ′ > o(G), and γ ≥ o(M),

plus ~R = (M<ξ1
(R1)-Pm1

, . . . ,M<ξi
(Ri)-Pmi) with m1 ≥ . . . ≥ mi. Then we define

~Rk :=

{
(M<ξl

(Rl)-Pml) if ml = k for some 1 ≤ l ≤ i,
ε otherwise.

~R<k := (M<ξk
(Rk)-Pmk , . . . ,M

<ξi
(Ri)-Pmi), mk := max{mj | 1 ≤ j ≤ i ∧mj < k}

Analogously we define the finite substrings ~R≤k, ~R<k, ~R≥k and for l ≥ k the finite

sections ~R(l,k) plus ~R(l,k]. Moreover we define the (possibly infinite) sets

~R cl :=
{

M
<ξj
(Rj)-Pn

∣∣ 1 ≤ j ≤ i ∧ mj ≥ n > mj+1, where mi+1 := −1
}
,

(~R cl)k :=

{
(M<ξl

(Rl)-Pk) if for some 1 ≤ l ≤ i it holds ml ≥ k > ml+1,

ε otherwise,

(~R cl)<k :=
{

M
<ξj
(Rj)-Pn

∣∣ M
<ξj
(Rj)-Pn ∈ ~R cl ∧ n < k

}
.

Analogously to ~R(l,k) and (~R cl)<k we also use the notation (~R cl)(l,k).
The meaning of the M-P-expressions is given by

M<γ
M -P−1 := ε,

M̃<γ
M -Pm :=

{
(~R cl

i(M))m if γ = o(M)

M<γ
M -Pm otherwise,

and

κ |= ε :⇔ ∅ /∈ ∅
κ |= M<0-P(θ,m) :⇔ κ is θ-Π1

m-indescribable,

κ |= M
<o(M)
M -P(θ,m) :⇔ κ is θ-Π1

m-indescribable,

κ |= M<ξ
U -P(θ,m) :⇔ ∀ζ∈ [o(U), ξ)C(κ) (κ is Mζ

U-θ-Π1
m-indescribable,)

κ |= M<ξ′

G -P(θ,m) :⇔ ∀(ζ, ~η)∈ [o(G), ξ′)C(κ) × dom(G)C(κ)

(κ is Mζ
G(~η)-θ-Π

1
m-indescribable),

κ |= ~R :⇔ ∀i1k (κ |= M<ξk
(Rk)-Pmk),

κ |= ~R cl :⇔ ∀M
<ξj
(Rj)-Pn ∈ ~R cl (κ |= M

<ξj
(Rj)-Pn).

Definition 12.2.3. Let X be a refl. instance. Then we define by recursion on o(X)

par(Θ(ρ); Pm; . . .) := {ρ,m},
par(κ+; . . .) := {κ},

par(Ψδ
Z; Pm; . . .) := {δ,m} ∪ parZ,

par(Ψδ
Z; Mξ

M(~ν)-Pm; . . .) := {δ, ξ, ~ν,m} ∪ parZ.
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Moreover we define X ∈ C(α, π) :⇔ parX ⊆ C(α, π) and X ∈ C(κ) :⇔ parX ⊆ C(κ).

Definition 12.2.4. By simultaneous recursion on α we define the sets C(α, π), reflec-
tion instances X, reflection configurations F, collapsing hierarchies M, finite sequences
of M-P-expressions ~RΨ and collapsing functions Ψ (all these where appropriate with
arguments and indices).

The class of reflection instances is partitioned in four types enumerated by 1. – 4.
Whenever we define a new reflection instance we indicate by → p., with p ∈ {1, . . . , 4}
of which type this reflection instance is. Clause p of the definition then specifies how
to proceed with reflection instances of type p. in the recursive definition process.

There are reflection configurations, whose first argument is an element of Υ × ω.
To these reflection configurations we refer to as “reflection configurations with variable
reflection degree”, while we refer to reflection configurations whose first argument is an
ordinal or which are constant reflection configurations as“reflection configurations with
constant reflection degree”. Reflection configurations of the former type are treated in
the clauses 1. and 3., while reflection configurations of the second type are treated in
the clauses 2. and 4.

C(α, π) :=
⋃
n<ω

Cn(α, π), where

C0(α, π) := π ∪ {0,Υ}, and

Cn+1(α, π) :=



Cn(α, π)∪
{γ + ωδ | γ, δ ∈ Cn(α, π) ∧ γ =

NF
ωγ1 + . . .+ ωγm ∧ γm ≥ δ}† ∪

{ϕ(ξ, η) | ξ, η ∈ Cn(α, π)}∪
{κ+ |κ ∈ Cn(α, π) ∩ Card∩Υ}∪
{Θ(λ) |λ ∈ Cn(α, π) ∩Υ ∩ Lim}∪
{Ψγ

X |X, γ ∈ Cn(α, π) ∧ γ < α ∧Ψγ
X is well-defined}.

0.1. For any λ ∈ Lim∩Υ we define the reflection configuration G with dom(G) =
(0, l)C(Θ(λ)), where l := (λ, 0) and reflection instances

G(m) := (Θ(λ); Pm; ε; ε; Υ) → 1.

For technical convenience we also define ~RΘ(λ) := (M<0-Pl).

0.2. For any cardinal ω ≤ κ < Υ we define the 0-ary reflection configuration and
reflection instance

(κ+; P0; ε; ε; 0) → 2.

For technical convenience we also define ~Rκ+ := (M<0-P0).

For the remainder of this definition we refer to the nth component of ~R as
M<ξn

Rn -Prn .

†The formulation of closure under + seems to be unnecessarily complicated, but we want + to be
injective.
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1. Let X := F(m) be a reflection instance of the form

(π; Pm; ~R;Z; δ).

Then we have ~Rπ = (M<0-Pl, ~R) with m < l ∈ Lim and m > 0 plus m > r1 if
~R 6= ε.

For α ≥ δ we define Mα
X as the set of all ordinals κ < π satisfying

1. C(α, κ) ∩ π = κ

2. X, α ∈ C(κ)

3. κ |= (~R cl
π )m, ~R

4. κ |= M<α
F -Pm

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

Moreover we define ~RΨαX
:= (M̃<α

F -Pm, ~R).

In the following subclauses replace r1 by 0 if ~R = ε.

1.1. Suppose that α = δ and m ∈ Lim. Then we define the reflection configura-
tion G with dom(G) := (r1,m)C(ΨαX ) and reflection instances

G(n) := (Ψα
X; Pn; ~R;X;α+ 1) → 1.

1.2. Suppose that α = δ and m ∈ Succ. Then we define the 0-ary reflection
configuration and reflection instance

(Ψα
X; Pm; ~R;X;α+ 1) → 2.

1.3. Suppose that α > δ and m ∈ Lim. Then we define the reflection configura-
tionG with dom(G) := {(n, ζ, r) ∈ (r1,m)C(ΨαX )×[δ, α)C(ΨαX )×dom(F)C(ΨαX ) |
r > n} and reflection instances

G(n, ζ, r) := (Ψα
X; Mζ

F(r)-Pn; ~R;X;α+ 1) → 3.

1.4. Suppose that α > δ and m ∈ Succ. Then we define the reflection configura-
tion G with dom(G) := [δ, α)C(ΨαX ) × (m, l)C(ΨαX ) and reflection instances

G(ζ, r) := (Ψα
X; Mζ

F(r)-Pm; ~R;X;α+ 1) → 4.

2. Let X be a reflection instance of the form

(π; Pm; ~R; . . . ; δ).

Then it holds ~Rπ = (M<0-Pm, ~R) and m /∈ Lim. Moreover we have m > r1 if
~R 6= ε.
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For α ≥ δ we define the set Mα
X as the set consisting of all ordinals κ < π

satisfying

1. C(α, κ) ∩Ψδ
Z = κ

2. X, α ∈ C(κ)

3. if m > 0: κ |= (~R cl
π )m−1, ~R<m−1

4. if m > 0: κ |= M<α
X -Pm−1

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

Moreover we define ~RΨαX
:= (M̃<α

F -Pm−1, ~R<m−1).

For the following 2.· subclauses we suppose m = m0 + 1 > 0. If m = 0 we do not
equip Ψα

X with any reflection configurations and instances. In the following let
r0 := r1 if m0 > r1 and r0 := r2 otherwise.

2.1. Suppose that α = δ plus (~R cl
π )m0

= M<0-Pm0
and m0 ∈ Lim. Then we define

the reflection configuration G with dom(G) = (r0,m0)C(ΨαX ) and reflection
instances

G(n) := (Ψα
X; Pn; ~R<m0 ;X;α+ 1) → 1.

2.2. Suppose that α = δ plus (~R cl
π )m0

= M<0-Pm0
and m0 /∈ Lim. Then we

define the 0-ary reflection configuration and reflection instance

(Ψα
X; Pm0

; ~R<m0
;X;α+ 1) → 2.

2.3. Suppose that α = δ plus ~Rm0
= M<ξ1

R1
-Pm0

with m0 ∈ Lim and R1 is a
reflection configuration with variable reflection degree. Then we define the
reflection configuration G with dom(G) = {(n, ζ, r, ~η) ∈ (r2,m0)C(ΨαX ) ×
[o(R1), ξ1)C(ΨαX ) × dom(R1)C(ΨαX ) | r > n} and reflection instances

G(n, ζ, r, ~η) := (Ψα
X; Mζ

R1(r,~η)-Pn; ~R<m0
;X;α+ 1) → 3.

2.4. Suppose that α = δ plus ~Rm0
= M<ξ1

R1
-Pm0

with m0 ∈ Lim and R1 is a
reflection configuration with constant reflection degree. Then we define the
reflection configuration G with dom(G) = (r2,m0)C(ΨαX )× [o(R1), ξ1)C(ΨαX )×
dom(R1)C(ΨαX ) and reflection instances

G(n, ζ, ~η) := (Ψα
X; Mζ

R1(~η)-Pn; ~R<m0 ;X;α+ 1) → 3.

2.5. Suppose that α = δ plus ~Rm0
= M<ξ1

R1
-Pm0

with m0 /∈ Lim and R1 is a
reflection configuration with variable reflection degree. Then we define the
reflection configuration G with dom(G) = {(ζ, r, ~η) ∈ [o(R1), ξ1)C(ΨαX ) ×
dom(R1)C(ΨαX ) | r > m0} and reflection instances

G(ζ, r, ~η) := (Ψα
X; Mζ

R1(r,~η)-Pm0
; ~R<m0

;X;α+ 1) → 4.
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2.6. Suppose that α = δ plus ~Rm0
= M<ξ1

R1
-Pm0

with m0 /∈ Lim and R1 is a
reflection configuration with constant reflection degree. Then we define the
reflection configuration G with dom(G) = [o(R1), ξ1)C(ΨαX )×dom(R1)C(ΨαX )

and reflection instances

G(ζ, ~η) := (Ψα
X; Mζ

R1(~η)-Pm0
; ~R<m0

;X;α+ 1) → 4.

2.7. Suppose that α > δ and m0 ∈ Lim. Then we define the reflection configura-
tion G with dom(G) := (r0,m0)C(ΨαX ) × [δ, α)C(ΨαX ) and reflection instances

G(n, ζ) := (Ψα
X; Mζ

X-Pn; ~R<m0
;X;α+ 1) → 3.

2.8. Suppose that α > δ and m0 /∈ Lim . Then we define the 0-ary reflection
configuration G with dom(G) := [δ, α)C(ΨαX ) and reflection instances

G(ζ) := (Ψα
X; Mζ

X-Pm0
; ~R<m0

;X;α+ 1) → 4.

3. Let X := F(m, ξ, ~ν) be a reflection instance of the form

(Ψδ
Z; Mξ

M(~ν)-Pm; ~R;Z; δ + 1).

Then we have ~RΨδZ
= (M<γ

M -Pl, ~R), for some m < l ∈ Lim and ξ < γ. Moreover

it holds M ∈ Prcnfg(X) and m > 0, plus m > r1 if ~R 6= ε.

For α ≥ δ + 1 we define Mα
X as the set of all ordinals κ ∈Mξ

M(~ν) ∩Ψδ
Z satisfying

1. C(α, κ) ∩Ψδ
Z = κ

2. X, α ∈ C(κ)

3. κ |= (~R cl
π )m, ~R

4. κ |= M<α
F -Pm

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

Moreover we define ~RΨαX
:= ((~RΨξM(~ν)

)>m, M̃
<α
F -Pm, ~R).

Let ~RΨξM(~ν)
= (M<σ1

S1
-Ps1

, . . . ,M
<σj
Sj -Psj ). In the following replace s2 by m if

j = 1.

3.1. Suppose that σ1 = 0 and s1 ∈ Lim. Then we define the reflection configu-
ration G with dom(G) = (s2, s1)C(ΨαX ) and reflection instances

G(n) := (Ψα
X; Pn; ((~RΨξM(~ν)

)(s1,m), M̃
<α
F -Pm, ~R);X;α+ 1) → 1.

3.2. Suppose that σ1 = 0 and s1 /∈ Lim. Then we define the 0-ary reflection
configuration and reflection instance

(Ψα
X; Pm; ((~RΨξM(~ν)

)(s1,m), M̃
<α
F -Pm, ~R);X;α+ 1) → 2.
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3.3. Suppose that σ1 > o(S1), s1 ∈ Lim and S1 is a reflection configuration
with variable reflection degree. Then we define the reflection configura-
tion G with dom(G) = {(n, ζ, r, ~η) ∈ (s2, s1)C(ΨαX ) × [o(S1), α1)C(ΨαX ) ×
dom(S1)C(ΨαX ) | r > n} and reflection instances

G(n, ζ, r, ~η) := (Ψα
X; Mζ

S1(r,~η)-Pn;

((~RΨξM(~ν)
)(s1,m), M̃

<α
F -Pm, ~R);X;α + 1) → 3.

3.4. Suppose that σ1 > o(S1), s1 ∈ Lim and S1 is a reflection configuration
with constant reflection degree. Then we define the reflection configura-
tion G with dom(G) = (s2, s1)C(ΨαX )× [o(S1), α1)C(ΨαX )×dom(R1)C(ΨαX ) and
reflection instances

G(n, ζ, ~η) := (Ψα
X; Mζ

S1(~η)-Pn;

((~RΨξM(~ν)
)(s1,m), M̃

<α
F -Pm, ~R);X;α + 1) → 3.

3.5. Suppose that σ1 > o(S1), s1 /∈ Lim and S1 is a reflection configuration with
variable reflection degree. Then we define the reflection configuration G
with dom(G) = {(ζ, r, ~η) ∈ [o(S1), α1)C(ΨαX ) × dom(S1)C(ΨαX ) | r > s1} and
reflection instances

G(ζ, r, ~η) := (Ψα
X; Mζ

S1(r,~η)-Ps1 ;

((~RΨξM(~ν)
)(s1,m), M̃

<α
F -Pm, ~R);X;α + 1) → 4.

3.6. Suppose that σ1 > o(S1), s1 /∈ Lim and S1 is a reflection configuration with
constant reflection degree. Then we define the reflection configuration G
with dom(G) = [o(S1), α1)C(ΨαX ) × dom(S1)C(ΨαX ) and reflection instances

G(ζ, ~η) := (Ψα
X; Mζ

S1(~η)-Ps1
;

((~RΨξM(~ν)
)(s1,m), M̃

<α
F -Pm, ~R);X;α + 1) → 4.

4. Let X := F(ξ, ~ν) be a reflection instance of the form

(Ψδ
Z; Mξ

M(~ν)-Pm; ~R;Z; δ + 1).

Then we have ~RΨδZ
= (M<γ

M -Pm, ~R) for some ξ < γ plus m /∈ Lim and M ∈
Prcnfg(X).
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For α ≥ δ + 1 we define Mα
X as the set of all ordinals κ ∈Mξ

M(~ν) ∩Ψδ
Z satisfying

1. C(α, κ) ∩Ψδ
Z = κ

2. X, α ∈ C(κ)

3. if m > 0: κ |= (~R cl
π )m−1, ~R<m−1

4. if m > 0: κ |= M<α
F -Pm−1

From now on we assume Mα
X 6= ∅ and by Ψα

X we denote the least element of Mα
X.

Moreover we define ~RΨαX
:= ((~RΨξM(~ν)

)≥m, M̃
<α
F -Pm−1, ~R<m−1).

Let ~RΨξM(~ν)
= (M<σ1

S1
-Ps1

, . . . ,M
<σj
Sj -Psj ). In the following replace s2 by m if

j = 1.

4.1. Suppose that σ1 = 0 and s1 ∈ Lim. Then we define the reflection configu-
ration G with dom(G) = (s2, s1)C(ΨαX ) and reflection instances

G(n) := (Ψα
X; Pn; ((~RΨξM(~ν)

)(s1,m], M̃
<α
F -Pm−1, ~R<m−1);X;α+1) → 1.

4.2. Suppose that σ1 = 0 and s1 /∈ Lim. Then we define the 0-ary reflection
configuration and reflection instance

(Ψα
X; Pm; ((~RΨξM(~ν)

)(s1,m], M̃
<α
F -Pm−1, ~R<m−1);X;α+ 1) → 2.

4.3. Suppose that σ1 > o(S1), s1 ∈ Lim and S1 is a reflection configuration
with variable reflection degree. Then we define the reflection configura-
tion G with dom(G) = {(n, ζ, r, ~η) ∈ (s2, s1)C(ΨαX ) × [o(S1), α1)C(ΨαX ) ×
dom(S1)C(ΨαX ) | r > n} and reflection instances

G(n, ζ, r, ~η) := (Ψα
X; Mζ

S1(r,~η)-Pn;

((~RΨξM(~ν)
)(s1,m], M̃

<α
F -Pm−1, ~R<m−1);X;α+ 1) → 3.

4.4. Suppose that σ1 > o(S1), s1 ∈ Lim and S1 is a reflection configuration
with constant reflection degree. Then we define the reflection configura-
tion G with dom(G) = (s2, s1)C(ΨαX )× [o(S1), α1)C(ΨαX )×dom(R1)C(ΨαX ) and
reflection instances

G(n, ζ, ~η) := (Ψα
X; Mζ

S1(~η)-Pn;

((~RΨξM(~ν)
)(s1,m], M̃

<α
F -Pm−1, ~R<m−1);X;α+ 1) → 3.

108



4.5. Suppose that σ1 > o(S1), s1 /∈ Lim and S1 is a reflection configuration with
variable reflection degree. Then we define the reflection configuration G
with dom(G) = {(ζ, r, ~η) ∈ [o(S1), α1)C(ΨαX ) × dom(S1)C(ΨαX ) | r > s1} and
reflection instances

G(ζ, r, ~η) := (Ψα
X; Mζ

S1(r,~η)-Ps1
;

((~RΨξM(~ν)
)(s1,m], M̃

<α
F -Pm−1, ~R<m−1);X;α+ 1) → 4.

4.6. Suppose that σ1 > o(S1), s1 /∈ Lim and S1 is a reflection configuration with
constant reflection degree. Then we define the reflection configuration G
with dom(G) = [o(S1), α1)C(ΨαX ) × dom(S1)C(ΨαX ) and reflection instances

G(ζ, ~η) := (Ψα
X; Mζ

S1(~η)-Ps1
;

((~RΨξM(~ν)
)(s1,m], M̃

<α
F -Pm−1, ~R<m−1);X;α+ 1) → 4.

12.3. Structure Theory of Stability

In this section we show that Mα
X 6= ∅ if α ∈ C(i(X)) and give criteria for < -comparisons

like Ψα
X < Ψβ

Y.

The existence of the universal formulae of Theorem 12.1.2 enables us to express
κ |= M<γ

F -P(τ,m) by a Π0
m+1-formula in Vκ+θ for every θ > τ and by a Π1

m+1-formula
in Vκ+τ .

In the following we assume a coding of C(α, π) analogue to Definitions 2.3.7 and
2.3.8.

Lemma 12.3.1. Let F be a reflection configuration with i(F) = π and let π ≥ κ ∈ Reg

plus 0 < θ < κ. Suppose pM<ξ
F qα,π is defined. Then it holds:

Ê For every (τ,m) < (θ, 0) there is a Π0
m+1-formula φF(x) such that

κ |= M<ξ
F -P(τ,m) ⇔ Vκ+θ |= φF(pM<ξ

F qα,π ∩ Vκ).

Ë For every m < ω there is a Π1
m+1-formula ΦF(x) such that

κ |= M<ξ
F -P(θ,m) ⇔ Vκ+θ |= ΦF(pM<ξ

F qα,π ∩ Vκ).

Proof. Assume w.l.o.g. that there is only one parameter in the reflected formulae
and proceed as in the proof of Lemma 2.3.10, but employ the universal formulae of
Theorem 12.1.2 instead of the universal formula of Theorem 2.1.3.

Corollary 12.3.2. Let θ < κ and (θ,m) ≥ (τ, n) then it holds

• κ is (M)-θ-Π1
m-indescribable ⇒ κ is (M)-τ -Π1

n-indescribable,

• κ |= ~R ⇒ κ |= ~R cl.
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Definition 12.3.3. Let X = F = (π; Pm; ~R; . . .) or X = F(ξ, ~ν) = (π; Mξ
M(~ν)-Pm; ~R; . . .),

and Y = G(n) = (π; Pn; ~R; . . .) or Y = G(n, ξ′, ~ν′) = (π; Mξ′

M(~ν′)-Pn; ~R; . . .).† Moreover

let V be a reflection instance and ~S = (M<σ1

S1
-Ps1 , . . .) be a finite sequence of M-P-

expressions. Then we define.

rd(~S) := s1,

rd(ε) := −1,

~RF := ~RX := ~RG := ~RY := ~R

Rdh(F) := {m− 1},
Rdhcl(F) := {m− 1} ∪ {r |m > r > rd(~R<m−1)},

Rdh(G) := Rdhcl(G) := {r | ∃~η
(
(r, ~η) ∈ dom(G)

)
},

rdh(X) := m− 1,

rdh(Y) := n,

and

initl(V) := E, where E ∈ Prcnfg(V) and o(E) /∈ Succ,

ranαX(Z) := ranαF (Z) :=

{
δ if there is a refl. inst. (Ψδ

Z; . . .) ∈ Prinst(X),

α otherwise,

ranαX(E) := ranαF (E) :=


δ if there is a refl. inst. (Ψδ

Z; . . .) ∈ Prinst(X)

and E is the refl. config. of Z,
α otherwise.

Remark. initl(V) is-well defined, since we either have V = (κ+; . . . ; 0) or there is a
uniquely determined E(λ) = (Θ(λ); . . . ; Υ) ∈ Prinst(X).

Lemma 12.3.4 (Well-Definedness of Definition 12.2.4). Let X = (π; . . . ; ~R;Z; δ + 1)
be a reflection instance with reflection configuration F. Then it holds:

Ê (a) o(Z) < o(X) = δ + 1,

(b) ~Rπ =

{
(M<0-Pm, ~R) if X = (π; Pm; ~R; . . .),

(M<γ
M -Pm, ~R) for some γ > ξ ≥ o(M), if X = (π; Mξ

M(~ν)-Pm; ~R; . . .),

(c) rdh(M(~ν)) ≥ m ≥ rdh(X) and rdh(M(~ν)) > rdh(X) if X = (π; Mξ
M(~ν)-Pm; . . .),

(d) X ∈ C(π),

(e) parX < o(X) = δ + 1.

†I.e. F is supposed to be a reflection configuration with constant reflection degree and G is supposed
to be a reflection configuration with variable reflection degree.
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Ë ∀κ∈Mα
X
(
κ |= ~RΨαX

∧ κ |= (~R cl
π )≤rdh(X)

)
.

Ì Let ~RΨαX
= (M<ξ1

(R1)-Pr1 , . . . ,M
<ξk
(Rk)-Prk). Then it holds for all 1 ≤ i ≤ k:

(a) Ri ∈ Prcnfg(X) and dom(Ri) ≤ α,

(b) ξi ≤ ranαX(Ri) and
(
ξi > o(Ri) ∨ M<ξi

Ri -Pri ≡ M<0-Pri

)
,

(c) ξi, ri ∈ parX ∪ {α},
(d) r1 ≥ rdh(X) and r1 > . . . > rk ≥ 0 plus ∀(ri ≥ r′ > ri+1)∃ε∃E

(
r′ ∈

Rdhcl(Ri) ∧ (~Rcl
i(Ri))ri = M<ε

E -Pri ∧ (~Rcl
i(Ri))r′ = M<ε

E -Pr′
)
,

(e) ∃νi∈dom(Ri) ∩ parX
(
rdh(Ri(~νi) ≥ ri

)
,

(f) (~RΨαX
)≤rdh(X) = (M̃<α

F -Prdh(X), (~RF)<rdh(X))

(g) ∀~νi∈domRi
(
rdh(Ri(~νi)) ≥ ri ≥ rd(~RRi)

)
if Ri is a reflection configuration

with constant reflection degree,

Proof. The proof of Lemma 2.3.2 provides an adequate instruction how to proceed
here.

Corollary 12.3.5. The claims in Definition 12.2.4, e.g. “ M ∈ Prcnfg(X)” in clause
3., are true.

Moreover for every reflection instance Z 6= (i(Z); P0; . . .) and every δ, such that
Mδ

Z 6= ∅ there is a reflection instance X with i(X) = Ψδ
Z.

Theorem 12.3.6 (Existence). Let X = (π; . . . ; δ) be a reflection instance and δ ≤ α ∈
C(π). Then Mα

X 6= ∅.

Proof. The claim follows analogously to Theorem 2.3.11. If rd(~Rπ) ∈ Lim we have
to make use of Theorem 12.1.2 À and Lemma 12.3.1 À instead of Theorem 2.1.3 and
Lemma 2.3.10. If rd(~Rπ) = (θ,m) with θ > 0 < m the claim follows by use of Theorem
12.1.2 Á and Lemma 12.3.1 Á.

Lemma 12.3.7. Let F be a reflection configuration with rdh(F(~η)) = m = (θ,m) ≥ 0
and suppose κ is an ordinal. Let o(F) ≤ β ∈ (α+ 1)C(κ) and ~η, ~ν ∈ dom(F)C(κ). Then
it holds

κ ∈Mα
F(~η) & (α, ~η) >lex (β, ~ν) ⇒ κ is Mβ

F(~ν)-θ-Π1
m-indescribable.

Proof. We proceed by induction on o(F). Let ~η = (η1, . . . , ηn) and ~ν = (ν1, . . . , νn).
Case 1, α > β: Since κ ∈Mα

F(~η) we have κ |= M<α
F -Pm by the fourth proviso of the

definition of the collapsing hierarchy MF(~η). Thus κ is Mβ
F(~ν)-θ-Π

1
m-indescribable.

Case 2, (α, η1, . . . , ηi−1) = (β, ν1, . . . , νi−1) and ηi > νi for some 1 ≤ i ≤ n:
Subcase 2.1, F(~η) = F(m) = (π; Pm; . . .) for some m, i.e. n = 1: Then we have ~ν = n

for some n < m and m = (θ,m). The assumption κ ∈Mα
F(~η) implies

“CαF(n),π is unbounded in κ” ∧ κ |= (~R cl
π )n, ~R<n ∧ κ |= M<α

F -Pn. (12.1)

111



Let F (P ) be a Π1
m-sentence in parameter P ⊆ Vκ such that

Vκ+θ |= F (P ). (12.2)

Owing to Lemma 12.3.1 and the θ-Π1
m-indescribableness of κ there exists a κ0 < κ,

which satisfies the conjunction of (12.1) and (12.2). Hence κ0 ∈Mβ
F(~ν)∩κ and thereby

κ is Mβ
F(~ν)-θ-Π

1
m-indescribable.

Subcase 2.2, F(~η) = F(m, ξ, ~η ′) = (Ψδ
Z; Mξ

M(~η ′)-Pm; . . .) and ~RΨδZ
= (M<γ

M -Pl, . . .) for

some m < l ∈ Lim: Then we have m = (θ,m). In the following let ~ν = (ζ, n, ~ν ′).
Subcase 2.2.1, m > n: The proviso κ ∈Mα

F(~η) implies that κ |= M<γ
M -Pm due to the

third clause of the definition of Mα
F(~η). Since we have ~ν ∈ dom(F)C(κ) it follows thereby

that κ is Mζ
M(~ν ′)-θ-Π

1
m-indescribable. In addition we have CαF(n),π is unbounded in κ,

κ |= (~R cl
π )n, ~R<n and κ |= M<α

F -Pn. Thus it follows analogously to subcase 2.1 that κ

is Mβ
F(~ν)-θ-Π

1
m-indescribable.

Subcase 2.2.2, m = n: The proviso κ ∈Mα
F(~η) implies that κ ∈Mξ

M(~η ′), since it holds

by definition that Mα
F(~η) ⊆Mξ

M(~η ′). Moreover we have o(M) < o(F), rdh(M(~η ′) > m by

Lemma 12.3.4 À(c) and (ξ, ~η ′) >lex (ζ, ~ν ′). Thus it follows by means of the induction

hypothesis and Corollary 12.3.2 that κ is Mζ
M(~ν ′)-θ-Π

1
m+1-indescribable. As in the

subcases before we also have CαF(n),π is unbounded in κ, κ |= (~R cl
π )n, ~R<n and κ |=

M<α
F -Pn. Thereby it follows that κ is Mβ

F(~ν)-θ-Π
1
m-indescribable.

Subcase 2.3, F(~η) = F(ξ, ~η ′) = (Ψδ
Z; Mξ

M(~η ′)-Pm+1; . . .) and ~RΨδZ
= (M<γ

M -Pm+1, . . .):

Then the claim follows literally as in subcase 2.2.2 by use of the induction hypothesis.

Theorem 12.3.8 (<-Comparison). Let X = F(~η) and Y = G(~ν) be reflection instances

and suppose κ := Ψα
X and π := Ψβ

Y are well-defined. Then it holds κ < π iff

π ≥ i(X) (a)

or κ < i(Y) ∧
(
α < β ∨

(
F = G ∧ (α, ~η) <lex (β, ~ν)

))
∧ X, α ∈ C(π) (b)

or α ≥ β ∧ ¬
(
Y, β ∈ C(κ)

)
(c)

Proof. The proof is literally the same as the proof of Theorem 2.3.14. Instead of
Lemma 2.3.13 the Lemma 12.3.7 has to be employed.

Corollary 12.3.9. It holds:

Ê Ψα
X and Ψβ

Y are well-defined ⇒
(
Ψα

X = Ψβ
Y ⇔ α = β ∧ X = Y

)
,

Ë α =
NF
ωα1 + . . .+ ωαm ⇒

(
α ∈ C(β, π) ⇔ α1, . . . , αm ∈ C(β, π)

)
,

Ì α =
NF
ϕ(η, ζ) ⇒

(
α ∈ C(β, π) ⇔ η, ζ ∈ C(β, π)

)
,
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Í κ ∈ Card∩Υ ⇒
(
κ ∈ C(β, π) ⇔ κ+ ∈ C(β, π)

)
,

Î π ≤ Ψξ
X and Ψξ

X is well-defined ⇒
(
Ψξ

X ∈ C(β, π) ⇔ ξ < β ∧ ξ,X ∈ C(β, π)
)
.

Ï α⊕ β ∈ C(γ, π) ⇔ α, β ∈ C(γ, π).

12.4. The Ordinal Notation System T(Υ)

Analogue to the Definition of T(Ξ) we define the ordinal notation system T(Υ).

Definition 12.4.1. The set of ordinal notations T(Υ) is inductively defined as follows:

• 0,Υ ∈ T(Υ),

• if α =
NF
ωα1 + . . .+ ωαm and α1, . . . , αm ∈ T(Υ) plus m > 1, then α ∈ T(Υ),

• if α =
NF
ϕ(η, ζ) and η, ζ ∈ T(Υ), then α ∈ T(Υ),

• if κ ∈ T(Υ) ∩ Card∩Υ, then κ+ ∈ T(Υ),

• if ρ ∈ T(Υ) ∩ Lim∩Υ, then Θ(ρ) ∈ T(Υ),

• if X, ξ ∈ T(Υ) and o(X) ≤ ξ ∈ C(ξ, i(X)), then Ψξ
X ∈ T(Υ).

Defining simultaneously the set Kπ(α) analogously to Definition 2.4.2 with the extra
clause Kπ(Θ(ρ)) := Kπ(ρ)) we get:

Theorem 12.4.2. 〈T(Υ), <〉 is a (primitive) recursive ordinal notation system.
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13. The Fine Structure Theory

Theorem 13.0.3 (Path Fidelity). Let X be a reflection instance and suppose Ψα
X is

well-defined. Moreover let Y 6= (i(Y); 0-P0; . . .) be a reflection instance with reflection
configuration G. Then it holds

Ψα
X ∈Mβ

Y ⇒ G ∈ Prcnfg(X) & β ≤ ranαX(G) & Ψβ
Y ≤ Ψα

X < i(X) ≤ i(Y).

Proof. The proof is essentially the same as the proof of Theorem 3.1.1. There is just
one new subcase in the first case, in which we lead the assumption initl(F) 6= initl(G)
to a contradiction.

As a new subcase we have to treat the case X = (Θ(ρ1); P(ρ1,0); ε; ε; Υ) and Y =
(Θ(ρ2); P(ρ2,0); ε; ε; Υ) with ρ1 6= ρ2. We obtain a contradiction by the following argu-

mentation: Since Ψα
X ∈ Mα

X ∩Mβ
Y we have Ψα

X < Θ(ρ1),Θ(ρ2) and ρ1, ρ2 ∈ C(Ψα
X).

Thus the assumption ρ2 < ρ1 implies the contradiction Θ(ρ2) ∈ C(α,Ψα
X) ∩ Θ(ρ1) =

Ψα
X, since ρ2 ∈ C(ρ2,Ψ

α
X) ⊆ C(α,Ψα

X) and ρ2 < ρ1 implies Θ(ρ2) < Θ(ρ1). The as-
sumption ρ1 < ρ2 implies the contradiction Θ(ρ1) ∈ C(β,Ψα

X) ∩ Θ(ρ2) = Ψα
X, since

ρ1 ∈ C(ρ1,Ψ
α
X) ⊆ C(α,Ψα

X) and ρ1 < ρ2 implies Θ(ρ1) < Θ(ρ2). Therefore we obtain
the desired contradiction for this new case, too.

Definition 13.0.4. We define by recursion on o(M)

Tc(M<0-Pm) := {M<0-Pm},
Tc(M<ξ

M -Pm) := {M<ξ
M -Pm} ∪ Tc((~R cl

i(M))m).

Definition 13.0.5. On M-P-expressions we define the binary relation � by

ε � M<ξ
M -Pm for any M-P-expression M<ξ

M -Pm,

M<ζ
G -Pm � M<ξ

M -Pm :⇔ ∃γ
(
o(G) ≤ ζ ≤ γ ∧ M<γ

G -Pm ∈ Tc(M<ξ
M -Pm)

)
.

We extend this relation to the closures of finite sequences of M-P- expressions ~R and
~S as follows

~R cl � ~S cl :⇔ ∀m
(
(~R cl)m � (~S cl)m

)
.

Remark. Due to Lemma 12.3.4 Â(a),(b) and since ~RΘ(λ) = (M<0-P(λ,0)) the operator

Tc is well-defined, if m ∈ Rdhcl(M). Moreover � is transitive.

Lemma 13.0.6. Let X be a reflection instance with reflection configuration F and
rdh(X) ≥ m. Let κ be an ordinal satisfying X ∈ C(κ). Then

κ |= M̃<α
F -Pm & M<ζ

M -Pm � M̃<α
F -Pm ⇒ κ |= M<ζ

M -Pm.
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Proof. Follows analogously to the proof of Lemma 3.1.4 by taking into account Lemma
12.3.4 Á, Â (e) instead of Lemma 2.3.2.

Remark. Lemma 3.1.5 also holds in the context of reflection instances defined by
means of Definition 12.2.4.

Lemma 13.0.7. Let X = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .) be a reflection instance with m0 :=

rdh(X). Then it holds

~R cl
ΨξM(~ν)

= (~R cl
ΨξM(~ν)

)>m0 ∪ ((M̃<ξ
M -Pm, (~RM)<m)cl)≤m0 .

Proof. Let n := rdh(M(~ν)). Then it holds

~R cl
ΨξM(~ν)

= (~R cl
ΨξM(~ν)

)>n ∪ ((M̃<ξ
M -Pn, (~RM)<n)cl),

either by definition, if M is an initial reflection configuration, or by means of Lemma
12.3.4 Â(f) otherwise. Thus the claim follows if we can prove

(~RM)<n = (~RM)<m & n ≥ m ≥ m0. (13.1)

We have n,m ∈ Rdhcl(M) by means of Lemma 12.3.4 Â(d) since ~RΨδZ
= (M<γ

M -Pl, ~R)

with l > m > rd(~R) if X is a reflection instance with variable reflection degree, or
~RΨδZ

= (M<γ
M -Pm, ~R) if X is a reflection instance with constant reflection degree. Thus

we have (~RM)<n = (~RM)<m since we either have n,m > rd(~RM) if M is a reflection

configuration with variable reflection degree, or n ≥ n,m > rd((~RM)<n) otherwise (cf.
Definition 12.3.3).

Finally we have n ≥ m ≥ m0 by Lemma 12.3.4 À(c). Thereby it follows (13.1) and
thus the claim.

Theorem 13.0.8 (Correctness). Let X 6= (i(X); P0; . . .) be a reflection instance and
suppose Ψα

X is well-defined. Then it holds:

Ê For any κ, any reflection configuration E, any o(E) ≤ ε, and any e ∈ Rdhcl(E)

M̃<ε
E -Pe � (~R cl

ΨαX
)e = M<ρ

E -Pe ⇒ (M̃<ε
E -Pe, (~RE)<e)

cl � (~R cl
ΨαX

)≤e.

Ë For any κ, such that C(α, κ) ∩ i(X) = κ and X, α ∈ C(κ)

κ |= ~RΨαX
⇒ κ ∈Mα

X.

Proof. We proceed by induction on o(X). In the following let F be the reflection
configuration of X.

À Case 1, X = (π; Pm; ~R; . . .) with ~Rπ = (M<0-Pl∗ , ~R), where either m < l∗ ∈ Lim

or m = l∗ ∈ Succ: Then it holds ~RΨαX
= (M̃<α

F -Pm0
, ~R<m0

), where rdh(X) = m0 = m if
m < l∗ ∈ Lim and m0 + 1 = m if m = l∗ ∈ Succ.
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If E = F we must have e ≤ m0 and ε ≤ α. Moreover it holds (~RE)<e = (~RF)<m0
=

~R<m0
since e,m0 ∈ Rdhcl(F) and if F is a reflection configuration with variable reflec-

tion degree it holds e,m0 > rd(~RF) and otherwise m0 ≥ m0, e > rd((~RF)<m0
). Thereby

the claim follows.
If E 6= F there exist a δ and a Z such that π = Ψδ

Z, since E ∈ Prcnfg(F). Moreover

the proviso M̃<ε
E -Pe � M<ρ

E -Pe = (~R cl
ΨαX

)e then implies M̃<ε
E -Pe � M<ρ

E -Pe = (~R cl
ΨδZ

)e.

Therefore we obtain by means of the induction hypothesis

(M̃<ε
E -Pe, (~RE)<e)

cl � (~R cl
ΨδZ

)≤e � (~R cl
ΨαX

)≤e.

Case 2, X = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .) with ~RΨδZ
= (M<γ

M -Pl, ~R), where ξ < γ and either

m < l ∈ Lim or m = l /∈ Lim: Let m0 := rdh(X). Then it holds m0 = m if l ∈ Lim and

m0 + 1 = m elsewise. In addition we have ~RΨαX
= ((~RΨξM(~ν)

)>m0
, M̃<α

F -Pm0
, ~R<m0

).

If e ≤ m0 the claim follows as in the first case. So let us assume e > m0. Then
we have M̃<ε

E -Pe � M<ρ
E -Pe = (~R cl

ΨαX
)e = (~R cl

ΨξM(~ν)

)e. Thus we obtain by means of the

induction hypothesis applied to M(~ν) and Lemma 13.0.7

(M̃<ε
E -Pe, (~RE)<e)

cl � (~R cl
ΨξM(~ν)

)≤e = (~R cl
ΨξM(~ν)

)[e,m0) ∪ ((M̃<ξ
M -Pm, (~RM)<m) cl)≤m0

.

(13.2)

Moreover we have M̃<ξ
M -Pm � M<γ

M -Pm = (~R cl
ΨδZ

)m and m ∈ Rdhcl(M) by Lemma

12.3.4 Â(d). Thereby we obtain by the induction hypothesis applied to Z

((M̃<ξ
M -Pm, (~RM)<m) cl)≤m0

� (~R cl
ΨδZ

)≤m0
� (~R cl

ΨαX
)≤m0

. (13.3)

Combining (13.2) and (13.3) the claim follows by means of the transitivity of �.
Á If X = (π; Pm; . . .) the claim follows by use of Lemma 13.0.6.

If X = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .) we show at first

κ |= ~RΨαX
⇒ κ ∈Mξ

M(~ν). (13.4)

By definition we have κ |= ~RΨαX
, which implies κ |= (~RΨξM(~ν)

)>m0
. Moreover it follows by

means of À plus taking into account Lemma 13.0.6 that κ |= ((M̃<ξ
M -Pm, (~RM)<m) cl)≤m0

(for more details also consult the proof of Lemma 3.1.6 Á on page 36). Thus we have

κ |= ~RΨξM(~ν)
by means of Lemma 13.0.7.

In addition the provisos C(α, κ)∩ i(X) = κ and X, α ∈ C(κ) imply C(ξ, κ)∩ i(M) = κ

and M(~ν), ξ ∈ C(κ) by means of Lemma 3.1.5. Thus we obtain κ ∈ Mξ
M(~ν) by use of

the induction hypothesis and therefore we have proved (13.4).

As κ |= ~RΨαX
also implies that κ |= (~R cl

ΨδZ
)m0 ,

~R<m0 and κ |= M<α
F -Pm0 it follows that

κ ∈Mα
X.
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13.1. The Domination Theorem

Definition 13.1.1. Let M<ξ
M -Pm be an M-P-expression, ~R = (M<ρ1

R1
-Pr1 , . . . ,M

<ρj
Rj -Prj )

be a finite sequence of M-P-expressions and D be a reflection configuration. Then we
define

(M<ξ
M -Pm)D :=

{
M<ζ

D -Pm if M<ζ
D -Pm ∈ Tc(M<ξ

M -Pm)

ε otherwise,

(~R)D := ((M<ρ1

R1
-Pr1)D, . . . , (M

<ρj
Rj -Prj )

D).

Lemma 13.1.2. Let X 6= (i(X); P0; . . .) be a reflection instance and suppose Ψα
X is

well-defined. Let E ∈ Prcnfg(X) be a reflection configuration and ε ≥ o(E) plus e ∈
Rdhcl(E). Then it holds for any g ≤ min{rd(~RΨαX

), e} and any D ∈ Prcnfg(E)((
M̃<ε

E -Pe, (~RE)<e

) cl)
≤g � (~R cl

ΨαX
)≤g ⇒

((
M̃<ε

E -Pe, (~RE)<e

) cl)D
≤g = (~R cl

ΨαX
)D≤g.

Proof. We proceed by induction on o(X). In the following let F be the reflection

configuration of X and P := (M̃<ε
E -Pe, (~RE)<e)

cl.
If X is an initial reflection instance, i.e. o(X) = 0 or o(X) = Υ then we have nothing

to show, since there is not any D ∈ Prcnfg(X).

Case 1, X = (Ψδ
Z; Pm; ~R; . . .): It holds ~RΨδZ

= (M<0-Pl, ~R), where either m < l ∈ Lim

or m = l /∈ Lim. Then we have ~RΨαX
= (M̃<α

F -Pm0
, ~R<m0

) with rdh(X) = m0 = m if
l ∈ Lim and m0 + 1 = m otherwise.

If E = F we must have e ≤ m0 and ε ≤ α. Moreover it holds (~RE)<e = (~RF)<m0
=

~R<m0
since e,m0 ∈ Rdhcl(F) and if F is a reflection configuration with variable reflec-

tion degree it holds e,m0 > rd(~RF) and otherwise m0 ≥ m0, e > rd((~RF)<m0
). Thereby

the claim follows.
If E 6= F then it follows E ∈ Prcnfg(Z) and the proviso P≤g � (~R cl

ΨαX
)≤g implies

P≤g � (~R cl
ΨδZ

)≤g since o(E) < o(F). Therefore we obtain by means of the induction

hypothesis applied to Z

PD
≤g = (~R cl

ΨδZ
)D≤g

D 6=F
= (~R cl

ΨαX
)D≤g.

Case 2, X = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .) with ~RΨδZ
= (M<γ

M -Pl, ~R), where ξ < γ and either

m < l ∈ Lim or m = l /∈ Lim: Let m0 := rdh(X). Then it holds m0 = m if l ∈ Lim and

m0 + 1 = m otherwise. In addition we have ~RΨαX
= ((~RΨξM(~ν)

)>m0
, M̃<α

F -Pm0
, ~R<m0

).

If g ≤ m0 the claim follows as in the first case. So let us assume e ≥ g > m0. At
first we observe that we cannot have E = F, because the assumption E = F leads to
the following contradiction:

M<γ
M -Pm0+1 = (~R cl

ΨδZ
)m0+1

Def.

� M̃<ε
F -Pm0+1 = Pm0+1

Prov.

� (~R cl
ΨαX

)m0+1 = M̃<ξ
M -Pm0+1.

Thus we have E ∈ Prcnfg(Z). Now we show that then we also must have E ∈
Prcnfg(M). The assumption E /∈ Prcnfg(M) implies M ∈ Prcnfg(E) since
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E,M ∈ Prcnfg(Z). Thus we obtain by use of the induction hypothesis applied to

Z—note that P≤g � (~R cl
ΨαX

)≤g implies P≤m � (~R cl
ΨδZ

)≤m—the following contradiction:

M<γ
M -Pm = (~R cl

ΨδZ
)Mm

ind.hyp.
= PM

m

Prov.

� (~R cl
ΨαX

)m = M̃<ξ
M -Pm.

Thereby we have g > m0 and E ∈ Prcnfg(M). To obtain the claim we want to apply

the induction hypothesis to M(~ν). In the following let R := (M̃<ξ
M -Pm, (~RM)<m)cl. We

have

P≤g � (~R cl
ΨαX

)≤g = (~R cl
ΨξM(~ν)

)[g,m0) ∪ (~R cl
ΨαX

)≥m0
, (13.5)

and

~R cl
ΨξM(~ν)

= (~R cl
ΨξM(~ν)

)>m0
∪R≤m0

, (13.6)

by Lemma 13.0.7. Thereby we have to prove

P≤m0
� R≤m0

. (13.7)

The provisos imply

P≤m � (~R cl
ΨδZ

)≤m. (13.8)

Thus we obtain by the induction hypothesis

PD
≤m = (~R cl

ΨδZ
)D≤m for any D ∈ Prcnfg(E). (13.9)

Moreover we have M̃<ξ
M -Pm � M<γ

M -Pm = (~R cl
ΨδZ

)m and M ∈ Prcnfg(Z) plus m ∈
Rdhcl(M). Thus it follows by means of Theorem 13.0.8 À that R � (~R cl

ΨδZ
)≤m. Thereby

we obtain by the induction hypothesis applied to Z

RD = (~R cl
ΨδZ

)D≤m for any D ∈ Prcnfg(M). (13.10)

To prove (13.7), let (~RE)<e = (M<ε1
(E1)-Pe1

, . . . ,M<εl
(El)-Pel). Now let m0 ≥ k > e1. If

E = M it holds rd((~RE)<e) = rd((~RM)<m) < m since e,m ∈ Rdhcl(M) and thus we

have e,m > rd(~RM) if M is a reflection configuration with variable reflection degree

or rdh(M) ≥ e,m > rd((~RM)<rdh(M)) otherwise. Thus we have Pm = M̃<ε
M -Pm �

(~R cl
ΨαX

)m = M̃<ξ
M -Pm and thereby ε ≤ ξ. Thus it follows

Pk = M̃<ε
E -Pk � M̃<ξ

M -Pk = Rk. (13.11)

If E 6= M we must have E ∈ Prcnfg(M). Then it holds

Pk = M̃<ξ
E -Pk =: M<ε0

E0
-Pk

(13.8)

� (~R cl
ΨδZ

)E0

k

(13.10)
= RE0

k � Rk, (13.12)
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since E0 ∈ Prcnfg(E) ⊆ Prcnfg(M).

Now suppose m0 ≥ k and ej ≥ k > ej+1 for some 1 ≤ j ≤ l, where el+1 := 0. If

M
<εj
(Ej)-Pej ≡ M<0-Pej it holds Pk = M<0-Pk � Rk. If M

<εj
(Ej)-Pej 6≡ M<0-Pej we have

Pk = M
<εj
Ej -Pk = P

Ej
k

(13.9)
= (~R cl

ΨδZ
)
Ej
k

(13.10)
= R

Ej
k � Rk, (13.13)

since Ej ∈ Prcnfg(E) by Lemma 12.3.4 Â(a).

By means of (13.11), (13.12) and (13.13) it follows (13.7), which in collaboration

with (13.5) and (13.6) provides P≤g � (~R cl
ΨξM(~ν)

)≤g. Since E ∈ Prcnfg(M) we obtain

by means of the induction hypothesis applied to M(~ν)

PD
[g,m0) = (~R cl

ΨξM(~ν)

)D[g,m0) for any D ∈ Prcnfg(E). (13.14)

In addition (13.8) and the induction hypothesis applied to Z provide

PD
≤m0

= (~R cl
ΨδZ

)D≤m0

D 6=F
= (~R cl

ΨαX
)D≤m0

for any D ∈ Prcnfg(E). (13.15)

Combining (13.14) and (13.15) the claim follows.

Lemma 13.1.3. Let X 6= (i(X); P0; . . .) be a reflection instance with rdh(X) = m0 =
(θ,m0) and suppose that Ψα

X is well-defined plus m∗0 := max{0,m0}. Let E ∈ Prcnfg(X)

be a reflection configuration and o(E) ≤ ε ≤ ranαX(E) plus e ∈ Rdhcl(E). Then it holds
for any κ, such that C(α, κ) ∩ i(X) = κ and X, α ∈ C(κ)

κ |= M̃<ε
E -Pe, (~R

cl
ΨαX

)<e & M̃<ε
E -Pe � (~R cl

ΨαX
)e ⇒ κ is Mα

X-θ-Π1
m∗0

-indescribable.

Proof. We proceed by induction on o(X). In the following let F be the reflection

configuration of X and let F (~P ) be a Π1
m∗0

-sentence in parameters ~P ⊆ Vκ, such that

Vκ+θ |= F (~P ).

Case 1, X = (π; Pm; ~R; . . .): It holds ~RΨδZ
= (M<0-Pl, ~R), where either 0 < m < l ∈

Lim or 0 < m = l /∈ Lim. Then we have ~RΨαX
= (M̃<α

F -Pm0
, ~R<m0

) with m0 = m if
l ∈ Lim and m0 + 1 = m otherwise.

Subcase 1.1, e ≤ m0: Then we must have E 6= F as otherwise we would have
M̃<ε

E -Pe � (~R cl
ΨαX

)e = M̃<α
F -Pe, since e ∈ Rdhcl(X) and ε ≤ ranαX(E).

Therefore we have o(E) < o(F) and thereby o(F) ∈ Succ. Thus there is a reflection
instance Z and a δ such that π = Ψδ

Z. Let rdh(Z) = (θ0, n0). By means of the provisos

κ |= M̃<ε
E -Pe, (~R

cl
ΨαX

)<e and M̃<ε
E -Pe � (~R cl

ΨαX
)e we also have κ |= M̃<ε

E -Pe, (~R
cl
ΨδZ

)<e and

M̃<ε
E -Pe � (~R cl

ΨδZ
)e. In addition it follows from Lemma 3.1.5 that C(δ, κ)∩ i(Z) = κ and

Z, δ ∈ C(κ). Moreover we are allowed to apply the induction hypothesis, but thereby
we obtain that κ is Mδ

Z-θ0-Π1
n∗0

-indescribable, which is absurd since κ ≤ i(X) = Ψδ
Z.

Thus the case e ≤ m0 cannot occur.
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Subcase 1.2, e > m0: Then κ |= M̃<ε
E -Pe, (~R

cl
ΨαX

)<e implies that κ is θ-Π1
m0+1-

indescribable. Moreover we have

C(α, κ) ∩ i(X) = κ, X, α ∈ C(κ), κ |= (~R cl
π )m0 ,

~R<m0 ,

κ |= M<α
F -Pm0

and Vκ+θ |= F (~P ). (13.16)

Lemma 12.3.1 À in combination with Lemma 12.1.2 À shows, that we are able to
express the statements of (13.16) by a Π1

m0+1-sentence in Vκ+θ. Thus it follows by
means of the θ-Π1

m0+1-indescribability of κ, that there is a κ0 < κ which features
(13.16). Therefore κ is Mα

X-θ-Π1
m∗0

-indescribable by means of Theorem 13.0.8 Á.

Case 2, X = (Ψδ
Z; Mξ

M(~ν)-Pm; ~R; . . .) with ~RΨδZ
= (M<γ

M -Pl, ~R), where ξ < γ and either

m < l ∈ Lim or m = l /∈ Lim: Let m0 := rdh(X). Then it holds m0 = m if l ∈ Lim and

m0 + 1 = m otherwise. In addition we have ~RΨαX
= ((~RΨξM(~ν)

)>m0 , M̃
<α
F -Pm0 ,

~R<m0).

Subcase 2.1, e ≤ m0: Then we must have m0 ≥ 0, since M̃<ε
E -P−1 = ε � (~R cl

ΨαX
)−1,

and the claim follows by the same considerations as in subcase 1.1.
Subcase 2.2, e = m0 + 1: If E = F then F is a reflection configuration with vari-

able reflection degree and κ |= M̃<ε
E -Pe, (~R

cl
ΨαX

)<e implies that κ |= M̃<ε
F -Pm0+1. Since

F(m0 + 1, ξ, ~ν) ∈ C(κ) and rdh(F(m0 + 1, ξ, ~ν)) = m0 + 1 it follows by Lemma 13.0.6

that κ |= (~R cl
π )m0+1. Thus κ is Mξ

M(~ν)-θ-Π
1
m0+1-indescribable since (~R cl

π )m0+1 =

M<γ
M -Pm0+1. Therefore the claim follows analogously to subcase 1.2.

If E 6= F we have κ |= M̃<ε
E -Pe, (~R

cl
ΨαX

)<e and M̃<ε
E -Pe � (~R cl

ΨαX
)e = (~R cl

ΨξM(~ν)

)e =

M̃<ξ
M -Pe, either by definition if M is an initial reflection configuration or by means of

Lemma 12.3.4 Â(f) and Lemma 13.0.7. Thus we cannot have M̃<ε
E -Pe � M<γ

M -Pe since
otherwise we would obtain a contradiction as in subcase 1.1 by use of the induction
hypothesis. Therefore we have M̃<ε

E -Pe � M<ξ
M -Pe but M̃<ε

E -Pe � M<γ
M -Pe. Thus it

follows that E = M and ξ < ε ≤ γ. Thereby κ |= M̃<ε
E -Pe, (~R

cl
ΨαX

)<e implies that κ is

Mξ
M(~ν)-θ-Π

1
m0+1-indescribable and the claim follows analogously to subcase 1.2.

Subcase 2.3, m0 + 1 < e ≤ rd(~RΨξM(~ν)
): Let M̃<ε

E -Pe = M<ε0
E0

-Pe. We must have

M<ε0
E0

-Pe 6= M<0-Pe (and thus ε0 > o(E0)) since otherwise we would have M̃<ε
E -Pe �

(~RΨαX
)e. If E0 = F then the claim follows readily as in subcase 2.2. Therefore let us

assume E0 6= F in the following.
Subcase 2.3.1, M /∈ Prcnfg(E0), i.e. E0 ∈ Prcnfg(M): By the provisos we have

κ |= (~R cl
ΨξM(~ν)

)(e,m0), (~R
cl
ΨαX

)≤m0 . Moreover it holds M̃<ξ
M -Pm � M<γ

M -Pm = (~R cl
ΨδZ

)m,

since m > rd(~R). Thus Theorem 13.0.8 À provides that ((M̃<ξ
M -Pm, (~RM)<m) cl)≤m0

�
(~R cl

ΨδZ
)≤m0

� (~R cl
ΨαX

)≤m0
. Thereby κ |= (~R cl

ΨαX
)<m0

implies κ |= ((M̃<ξ
M -Pm, (~RM)<m) cl)≤m0

due to Lemma 13.0.6. By means of Lemma 13.0.7 it follows

κ |= M<ε0
E0

-Pe, (~R
cl
ΨξM(~ν)

)<e & M<ε0
E0

-Pe � (~R cl
ΨξM(~ν)

)e.

Moreover we have by means of Lemma 3.1.5 that C(ξ, κ) ∩ i(M(~ν)) = κ and
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ξ,M(~ν) ∈ C(κ). By proviso we have ε0 ≤ ranαX(E0). If ranαX(E0) 6= ranξM(~ν)(E0)

we must have E0 = M and ε0 > ξ. Then the claim follows as in subcase 1.2. If
ranαX(E0) = ranξM(~ν)(E0) we are allowed to apply the induction hypothesis to M(~ν) and

obtain that κ is Mξ
M(~ν)-θ-Π

1
m0+1-indescribable, since rdh(M(~ν)) > m0 due to Lemma

12.3.4 À(c). Therefore the claim follows analogously to subcase 1.2.
Subcase 2.3.2, M ∈ Prcnfg(E0): Suppose e = m0 + 1 + d. We proceed by subsidiary

induction on d. So, let us assume the claim holds for all e′ = m0 + 1 + d′ with d′ < d.
The proviso κ |= M<ε0

E0
-Pe implies κ |= (~RE0

)<e since ε0 > o(E).1

At first we consider the case that ((M<ε0
E0

-Pe, (~RE0)<e)
cl)<e � (~R cl

ΨαX
)<e. This implies

((M<ε0
E0

-Pe, (~RE0
)<e)

cl)≤m0+1 � (~R cl
ΨδZ

)≤m0+1 since o(E0) < o(F). Moreover we have

M ∈ Prcnfg(E0) and E0 ∈ Prcnfg(Z). However, then we obtain by means of Lemma
13.1.2 the following contradiction

((M<ε0
E0

-Pe, (~RE0
)<e)

cl)Mm0+1 � ((M<ε0
E0

-Pe, (~RE0
)<e)

cl)m0+1

assump.

� (~R cl
ΨαX

)m0+1

= M̃<ξ
M -Pm0+1 ≺ M<γ

M -Pm0+1

= (~R cl
ΨδZ

)Mm0+1
13.1.2
= ((M<ε0

E0
-Pe, (~RE0

)<e)
cl)Mm0+1

Therefore we must have ((M<ε0
E0

-Pe, (~RE0
)<e)

cl)<e � (~R cl
ΨαX

)<e. Let (~RE0
)<e =

(M<ε1
E1

-Pe1
, . . . ,M<εl

El -Pel). Then there exist a 0 ≤ j ≤ l and an e > e′j ∈ Rdhcl(Ej)
such that M

<εj
Ej -Pe′j

� (~R cl
ΨαX

)e′j and κ |= M
<εj
Ej -Pe′j

, (~R cl
ΨαX

)<e′j
. Furthermore it holds by

Lemma 12.3.4 that Ej ∈ Prcnfg(E) ⊆ Prcnfg(F) and εj < ranα̂E(Ej) = ranαX(Ej), where
α̂ := ranαX(E0).

Thus κ is Mα
X-θ-Π1

m∗0
-indescribable either by subcase 2.1, if e′j ≤ m0, or by subcase

2.2.2, if m0 + 1 = e′j or by subcase 2.3.1, if m0 + 1 < e′j and M /∈ Prcnfg(Ej) or by the
subsidiary induction hypothesis, if m0 + 1 < e′j and M ∈ Prcnfg(Ej).

Subcase 2.4, (τ, e) > (θ1, s1): Then the assumption κ |= M̃<ε
E -τ -Pe, (~RΨαX

)<(τ,e)

implies that κ is θ1-Π1
s1+1-indescribable and the claim follows just like in subcase 1.2

with ~R replaced by ~RΨαX
.

Theorem 13.1.4 (Domination for Stability). Let X and Y 6= (i(Y); P0; . . .) be reflection
instances and suppose that Ψα

X is well-defined plus β ∈ On. Then it holds

Ψα
X ∈Mβ

Y ⇒ ~R cl
ΨβY
� ~R cl

ΨαX
.

Proof. This proof runs in the same vein as the proof of Theorem 3.2.4 by use of Lemma
13.1.3 instead of Lemma 3.2.3.

1For a more detailed argumentation consult the proof of Lemma 3.2.3, subcase 3.3.2. on page 39.
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14. A semi-formal Calculus for Stability

A look at the Reflection Elimination Theorem 15.2.4 which we want to prove, reveals

that this theorem becomes false, if the sentence ¬ π0Mo(X)
X (π) occurs in Γ, because it

must hold π
0M

o(X)
X (κ) if κ ∈ σM

α̂
X for any reasonable formalization of π0M

o(X)
X .

To ban such sentences from an appearing in the Reflection Elimination Theorem we
define the compound language L~RS(Υ).

14.1. The Compound Language L~RS(Υ)

Definition 14.1.1 (The Languages LRS(Υ), L∗RS(Υ), and L~RS(Υ)). We define the lan-

guage LRS(Υ) analogously to the language LRS(Ξ) and the LRS(Υ)-terms analogously to
the LRS(Ξ)-terms, but with the proviso that LM(Ξ) is replaced by LT∈ in the definition.
Therefore the only predicate-symbols of LRS(Υ) are ∈ and /∈.

We define the classes of L~RS(Υ)-terms and L∗RS(Υ)-terms as the class of LRS(Υ)-
terms.

The class of L∗RS(Υ)-sentences is the smallest class of formulae which contains the

LRS(Υ)-sentences and for every κ ∈ T(Υ) with ~Rκ = (M<0-P(θ,m), . . .), any n < ω,

any ~t ∈ (Tκ+θ ∪ {Lκ+θ})n and any L∗RS(Υ)-terms s1, . . . , sn the primitive formulae

(¬)~tMκ(s1, . . . , sn) and is closed under the boolean operations plus bounded (by an
L∗RS(Υ)-term) quantification.

In the same vein we obtain the class of L~RS(Υ)-sentences from the class of L∗RS(Υ)-

sentences by adding for any reflection instance X with i(X) = [π, π+θ] for any α ≥ o(X),
any τ < π, any n < ω and any ~t = (t1, . . . , tn) ∈ (Tπ+θ ∪{Lπ+θ})n the n-ary predicate

symbols (¬)
~t
τM

α
X .

Remark. Obviously we have LRS(Υ) ⊆ L∗RS(Υ) ⊆ L~RS(Υ). In the following we refer

to L~RS(Υ)-sentences as sentences and to L~RS(Υ)-terms as terms.

Definition 14.1.2 (Term Shift Down). Let κ < π and t ∈ Tπ+π ∪ {0, 1}. Then we
define tπ 7→κ by recursion on the build-up of t by means of the following clauses

tπ 7→κ := t if |t| < π or t ∈ {0, 1},
(Lπ+δ)

π 7→κ := Lκ+δ for all δ < π,{
x ∈ Lπ+δ

∣∣ F (x,~s)Lπ+δ
}π 7→κ

:=
{
x ∈ Lκ+δ

∣∣ F (x,~sπ 7→κ)Lκ+δ
}
.

Let T ⊆ Tπ+κ be a set of terms. Then we define Tπ 7→κ := {tπ 7→κ | t ∈ T}.
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Definition 14.1.3. We define the transfinite content of ordinals, terms and sentences
as in the context of T(Ξ). The same applies for the definition of the characteristic
sequences and the definition of the term and formula rank of sentences of L~RS(Υ). Let

~t = (t1, . . . , tn) and ~r = (r1, . . . , rn). Then we define for the new predicates

k(
~tMπ(~r )) := k(~t) ∪ {π} ∪ k(~r ),

k(
~t
τM

α
X (~r )) := k(~t) ∪ {τ, α} ∪ parX ∪ k(~r ),

~tMπ (~r ) :∼=
∨(

~tπ 7→κ = ~r
)
κ∈ SC∩(|~r |+1)

†,

~t
τM

α
X (~r ) :∼=

∨(
~tπ 7→κ = ~r

)
κ∈τMα

X∩|~r |+1
,

rnk(
~tMπ(~r )) := max{rnk(ri) | 1 ≤ i ≤ n}+ max{rnk(tπ 7→0

j ) | 1 ≤ j ≤ n}+ n+ 5,

rnk(
~t
τM

α
X (~r)) := max{rnk(ri) | 1 ≤ i ≤ n}+ max{rnk(tπ 7→0

j ) | 1 ≤ j ≤ n}+ n+ 5.

Notation. In the context of the language L~RS(Υ) we slightly modify the complexity

classes of sentences. More exactly, we extend the class of elementary-Πn(π)-sentences
(cf. Definition 4.1.4) as follows:

A sentence F is elementary-Πn(π) if it has the form

(∀x11
∈Lπ . . . ∀x1k1

∈Lπ) . . . (Qnxn1
∈Lπ, . . . , Qnxkn ∈Lπ)

F (x11
, . . . , x1k1

, . . . , xn1
, . . . , xnkn ),

where the n quantifier blocks in front are alternate and F (L0, . . . , L0) is ∆0(π). Anal-
ogously we define the elementary-Σn(π)-sentences.

We redefine the set of Πn(π)-, Σn(π)- and ∆1
0-sentences by use of the above extended

version of elementary-Πn(π)- and elementary-Σn(π)-sentences.

In the following we refer to a Πn+1(π) sentence F as F (F1, . . . , Fm). In this de-
notation the F1, . . . , Fm represent exactly the elementary-Πn+1(π)- and elementary-
Πn(π)-subsentences of F and for 1 ≤ i ≤ m it holds Fi ≡ (∀xi1 ∈ Lπ . . . ∀xiki ∈
Lπ)F ′i (xi1 , . . . , xiki ). Therefore we have F (F ′1(~t1), . . . , F ′m(~tm)) ∈ Σn(π) for all ~t =

(~t1, . . . ,~tm) ∈ (Tπ)k1 × . . .× (Tπ)kn .

Definition 14.1.4. We let Πn(κ+0∗) := Πn(κ) and for 0 < θ < κ we define Πn(κ+θ∗)
as the smallest class of L~RS(Υ)-sentences which contains the ∆1

0(κ)-L~RS(Υ)-sentences

plus the Πn(κ + θ)-L∗RS(Υ)-sentences and is closed under the boolean connectives ∨
and ∧.

Analogously we define the class Σn(κ+ θ∗).

†Here and in the following we write ~tπ 7→κ = ~r for the sentence
∧n
i=1(tπ 7→κi = ri) and we let

|~r| := |{r1, . . . , rn}|.
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14.2. Semi-formal Derivations on Hull-Sets of T(Υ)

Notation. To be able to define the reflection rules for Stability in a uniform way we
introduce the following notation

Πm+̇2(π + θ) :=

{
Πm+2(π + θ) if θ = 0,

Πm(π + θ) otherwise.

Notation. Let F be a reflection configuration, then we define

dom(F)>(θ,m) :=


{(n, ~η) ∈ dom(F) | n > (θ,m)} if F is a refl. config. with variable

reflection degree,

dom(F) otherwise.

Definition 14.2.1. Let ~R be a finite sequence of M-P-expressions. Then we define

~R cl′ :=

{
(~R cl)<r1 if ~R = (M<0-Pr1 , . . .),

((~R cl
i(R1))r1 , (

~R cl)<r1) if ~R = (M<ξ1
R1

-Pr1 , . . .).

Definition 14.2.2. Let H be a hull-set and Γ, ∆ be finite sets of L~RS(Υ)-sentences.

Suppose F is a L~RS(Υ)-sentence, such that ~s denotes exactly all terms occurring in F

of stage greater than or equal to π. Then we define H ρ
α

Γ by recursion on α via

{α} ∪ k(Γ) ⊆ H

and the following inductive clauses:
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(V)
H ρ

α0
∆, Ft0 for some t0 ∈ T
H ρ

α
∆,
∨

(Ft)t∈T
α0 < α

(Λ)
H[t] ρ

αt
∆, Ft for all t ∈ T

H ρ
α

∆,
∧

(Ft)t∈T
αt < α

(Cut)
H ρ

α0
∆, F H ρ

α0
∆,¬F

H ρ
α

∆

α0 < α
rnk(F ) < ρ

(Πm+̇2(π + θ)-Ref)
H ρ

α0
∆, F (~s)

H ρ
α

∆,∃~z π
(
~sMπ(~z) ∧ F (~z)

) α0 < α
F ∈ Πm+̇2(π + θ∗)

if there is a reflection instance (π; P(θ,m); . . .)

(τM
ξ
M(~ν)-Πm+̇2(π + θ)-Ref)

H ρ
α0

∆, F (~s)

H ρ
α

∆,∃~z π
(
~s
τM

ξ
M(~ν)(~z) ∧ F (~z)

) α0 < α
F ∈ Πm+̇2(π + θ∗)

for all τ < π, if there is a reflection instance (π; Mξ
M(~ν)-P(θ,m); . . .)

(τM
ζ
K(~η)-Πk+̇2(π + σ)-Ref)

H ρ
α0

∆, F (~s)

H ρ
α

∆,∃~z π
(
~s
τM

ζ
K(~η)(~z) ∧ F (~z)

)
α0 < α

F ∈ Πk+̇2(π + σ∗)
ζ ∈ C(π)

~η ∈ dom(K)
>(σ,k)
C(π)

for all τ < π, K and (σ, k) /∈ Lim if there is a reflection instance (π; . . .), such

that M<ζ+1
K -P(σ,k) � (~R cl′

π )(σ,k)

Remark. The propositions of Lemma 4.2.6 and Lemma 4.2.9 also hold in the context
of T(Υ).

14.3. Embedding of Stability

Instead of embedding Stability it is more convenient to embed the theory KP augmented
by the axiom (Stab), where

(Stab) ∀x ∃α∈Lim ∃κ∈Lim
(
α ≤ κ∧x ∈ Lα ∧∀y∈Lκ

(
Sat1(y)Lκ+α → Sat1(y)Lκ

))
.

Here Sat1(z) denotes a Σ1-formula, such that for all transitive, rudimentary closed
sets A1, A2 it holds

A1 �1 A2 ⇔ ∀z∈A1

(
Sat1(z)A2 → Sat1(z)A1

)
.

Such a formula exists, see e.g. [Dev84], Ch.VI, Lemma 1.15.
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Theorem 14.3.1. The theories Stability and KP+(Stab) have the same proof-theoretic
ordinal.

Proof. At first we show that Stability + V = L and KP+(Stab) are equal in the sense
that every axiom of the first one is a theorem of the latter one and vice versa. Therefore
we have to show that in every model of Stability+V = L it holds (Stab) and contrariwise
that in every model of KP+(Stab) it holds V = L, (Lim) and ∀α ∃κ≥α (Lκ �1 Lκ+α).

To obtain (Stab) in any model of Stability +V = L choose to a given x a β > ω such
that x ∈ Lβ and let α := β+ω. Such β and α exist since we assume V = L and argue
in a model of KPω. Thus we obtain a κ ≥ α such that Lκ �1 Lκ+α. By [Bar75], Ch.V,
Theorem 7.5 it holds that every stable ordinal is admissible. Thereby κ is admissible
and thereby we have κ ∈ Lim. Thus it follows (Stab).

Vice versa it is obvious that any model of KP+(Stab) satisfies V = L. To proof
∀α ∃κ≥α (Lκ �1 Lκ+α) let α be given. By (Stab) there exists a λ ∈ Lim such that
α ∈ Lλ and a λ ≤ κ ∈ Lim such that ∀y∈Lκ

(
Sat1(y)Lκ+λ → Sat1(y)Lκ

)
. Since Lκ+λ

and Lλ are rudimentary closed it follows Lκ �1 Lκ+λ and thus it follows by [Bar75],
Ch.V, Proposition 7.4 that Lκ �1 Lκ+α.

To show (Lim) choose by (Stab) to any given x an α, such that x ∈ Lα. Due to
(Stab) there exists an admissible κ ≥ α. Thus we have found an admissible κ such
that x ∈ Lκ.

To finish the proof we observe that Stability ` StabilityL and therefore the theories
Stability and Stability + V = L have the same proof-theoretic ordinal by Theorem 7.10
of [Sch93].

Unfortunately the axiomatization of KP+(Stab) makes use of the Σ-function symbols
+ and λξ.Lξ. Thus an embedding of KP+(Stab) requires L~RS(Υ)-derivations of all

instances of these functions, i.e. let F (x, y) be the Σ-formula used in (Stab) to describe
the Σ-function λξ.Lξ, such that F (α, x)⇔ x = Lα. Then we have to proof a theorem

like Υ F (α�, Lα)Υ, for every α < Υ, where α� denotes a (canonical) L~RS(Υ)-term for
α.

To proof such a theorem in full detail is a tedious and extensive task. As we are
not intrinsically interested in the theory Stability, but rather use it to present proof-
theoretic techniques (fine structure of the collapsing hierarchies, Reflection Elimination
Theorem) required for a treatment of even stronger theories (set-theoretic analogues
of (parameter-free) Π1

2-comprehension), whose axiomatization does not make use of
Σ-function symbols, we just outline how an embedding of these Σ-function symbols
can be obtained, but omit most of the proofs.

14.3.1. Embedding of Ordinal-Addition and λξ.Lξ

Notation. In the following we use Ord(x), Succ(x), Lim(x), Reln(x), 1st(x) as abbre-
viations for L(∈)-formulae, which describe that x is an ordinal, a successor ordinal, a
limit ordinal, a binary relation or the first argument of an ordered pair, respectively.
Moreover we write S(x) for the successor set of x, i.e. x∪ {x} and we use small Greek
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letters to denote variables of L(∈) which range over ordinals. In addition we extend
the notation of Definition 4.3.5 in the following way:

Υ Γ :⇔ H[Γ] Υ

‖Γ‖
Γ for every hull-set H.

Definition 14.3.2. Let α be an ordinal. Then we define the L~RS(Υ)-term α� as follows:

α� :=


L0 if α = 0,

{x ∈ Lα | Ord(x) ∨
(
∀z∈x Ord(z) ∧ ∀z(Ord(z)→ z ∈ x)

)
} if α ∈ Succ,

{x ∈ Lα | Ord(x)} if α ∈ Lim .

Corollary 14.3.3. Let α be an ordinal. Then it holds

?
Ord(α�),

?
Succ(α�) if α ∈ Succ,

?
Lim(α�) if α ∈ Lim

and
?

(α+ 1)� = S(α�).

To keep the RS-embedding of the ordinal-addition and λξ.Lξ as simple as possible,
it is convenient to assume that the defining L(∈)-formulae of these functions make use
of binary relations (which are indeed functions) instead of functions. Thereby we do
not have to give an RS-proof of the uniqueness of these functions. Therefore we put:

Definition 14.3.4.

R+(r, κ, α) := Reln(r) ∧ ∀x∈r
(
1st(x) ∈ S(α)

)
∧ (0, κ) ∈ r ∧ ∀z

(
(o, z) ∈ r → z = κ

)
∧ ∀(ξ, z)∈r

((
ξ ∈ Succ→ ∃y

(
(ξ − 1, y) ∈ r ∧ z = S(y)

))
∧(

ξ ∈ Lim→
(
∀z0∈z ∃ξ0∈ξ ∃y

(
(ξ0, y) ∈ r ∧ z0 ∈ y

)
∧ ∀ξ0∈ξ ∃y

(
(ξ0, y) ∈ r ∧ y ∈ z

))))
.

By use of this formula we define the L(∈)-formula

(κ+ α = x)z := ∃r∈z
(
R+(r, κ, α) ∧ (α, x) ∈ r

)
.

Remark. Obviously in every model of KP it holds κ+α = x iff x is the ordinal κ+α.

Lemma 14.3.5. For every ordinal α it holds

Υ

(
κ� + α� = (κ+ α)�

)Lκ+α+4
.
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Proof. The claim follows by induction on α by employing Corollary 14.3.3 and making
use of the L~RS(Υ)-terms:

tr,0 :=
{
x ∈ Lκ+1

∣∣∣ x = (0, κ�)
}
,

tr,β+1 :=
{
x ∈ Lκ+β+4

∣∣∣ ∃r(R+(r, κ�, β�) ∧(
x ∈ r ∨ ∃ξ

(
(β�, ξ) ∈ r ∧ x = ((β + 1)�,S(ξ))

)))}
,

tr,λ :=
{
x ∈ Lκ+λ+3

∣∣∣ ∃ξ∈λ� ∃r(R+(r, κ�, ξ) ∧ x ∈ r
)

∨ ∃z
(
x = (λ�, z) ∧

∀z0∈z ∃ξ∈λ� ∃y
(
y = κ� + ξ ∧ z0 ∈ y

)
∧

∀ξ∈λ� ∃y
(
y = κ� + ξ ∧ y ∈ z

))}
,

as witnesses for r, if α = 0, α = β + 1 or α = λ ∈ Lim, respectively.

Definition 14.3.6. Let z = Def(y) be an L(∈)-formula which states that z is the
set of all subsets of y which are y-definable, i.e. the set of all subsets a of y, such
that there is an L(∈)-formula F (x, ~z) and s1, . . . , sn ∈ y such that a = {x ∈ y | y |=
F (x, s1, . . . , sn)}. Then we define

R`(r, α) := Reln(r) ∧ ∀x∈r
(
1st(x) ∈ S(α)

)
∧ (0, ∅) ∈ r ∧ ∀z

(
(0, z) ∈ r → z = ∅

)
∧ ∀(ξ, z)∈r

((
ξ ∈ Succ→ ∃y

(
(ξ − 1, y) ∈ r ∧ z = Def(y)

))
∧(

ξ ∈ Lim→
(
∀z0∈z ∃ξ0∈ξ ∃y

(
(ξ0, y) ∈ r ∧ z0 ∈ y

)
∧ ∀ξ0∈ξ ∃y

(
(ξ0, y) ∈ r ∧ y ∈ z

) )))
.

By use of this formula we define the L(∈)-formula

`(α, x)z := ∃r∈z
(
R`(r, α) ∧ (α, x) ∈ r

)
.

Lemma 14.3.7. For every ordinal α it holds

Υ `(α�, Lα)Lα+5 .

Proof. This proof runs in the same vein as the proof of Lemma 14.3.5, but instead of
employing Corollary 14.3.3 we also have to prove

Υ Lα+1 = Def(Lα)Lα+4 for every α ∈ ON . (14.1)
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An economic way to prove (14.1) is to assume that z = Def(y) is exactly the formula
given in [Dev84] on page 67, and to elaborate an RS-Version of Ch.I,9. of [Dev84] up to
Lemma 9.11. By this we mean to choose canonical L~RS(Υ)-terms for the sets given there

as codes for the language L(∈) (in [Dev84] denoted by LST) and to prove RS-versions
of the lemmata given there. E.g. assuming an enumeration 〈v0, v1 . . . , vi, . . . | i ∈ ω〉 of
the free variables of L(∈) the (canonical) L~RS(Υ)-term for the code of the variable vi

is (vi)
� := {x ∈ Li+1 |x = {2�} ∨ x = {2�, i�}} and the (canonical) L~RS(Υ)-term for the

code of an L~RS(Υ)-term t = {x ∈ Lα |F (x)} is t̊ := {x ∈ Lα+1 |x = {3�}∨x = {3�, t}}.
Proceeding in this vein the RS-version of Lemma 9.1 of [Dev84] reads as

?
Vbl((vi)

�),
?

Const(̊t),
?

PFml(P �),

if (vi)
� is the canonical term for the code of vi, t̊ is the canonical term for the code of

t, and P � is the canonical term for the code of a primitive formula.

More generally all lemmata of Ch.I,9. of [Dev84] of the form “A, B, C are Σ0”
have an RS-analogon like that of Lemma 9.1. Moreover lemmata of the form “F(x) is

∆BS
1 ” provide propositions of the form

?
FΣ(t�)Lλ and

?
FΠ(t�)Lλ for all appropriate

terms t� and every λ ∈ Lim with ω, |t�| < λ, where FΣ, FΠ are the provided Σ- and
Π-formulae for F . E.g. Lemma 9.6 “The LST formula Fml(x) is ∆BS

1 .” turns into
?

Fml(F �)λ for every L~RS(Υ)-term F �, which represents the code of a formula and

every ω, |F �| < λ ∈ Lim.

By use of this RS-versions up to Lemma 9.11 we obtain for every α and every L(∈)-
formula F (v0, . . . , vn) plus the term f((v0)�, . . . , (v0)�)� of the code of this formula,
that

Υ ∀x0∈Lα . . . ∀xn∈Lα
(
F (x0, . . . , xn)Lα ↔ Sat(Lα, f (̊x0, . . . , x̊n)�

)Lα+4
.

Finally we are able to prove (14.1) by employing this proposition.

14.3.2. Embedding of the Axiom (Stab)

Since we have already proved embedding theorems for all axioms of KP and for pure
logic in section 4.3 we just have to care about the axiom (Stab) to obtain an embedding
of KP+(Stab).

Lemma 14.3.8 (Stab). It holds

Υ ∀x∃α∈Lim ∃κ∈Lim
(
α ≤ κ ∧ x ∈ Lα ∧ ∀y∈Lκ

(
Sat1(y)Lκ+α → Sat1(y)Lκ

))Υ
.

Proof. Let us assume given is a term s. In the following our strategy is to employ
|s|+ ω as a witness for α and Θ(|s|+ ω) as a witness for κ.
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Let Sat1(z) = ∃yF (y, z). Then the claim renders to

Υ ∀x∃y ∃z ∃w ∃l1 ∃l2 ∃l3
(

Lim(y) ∧ Lim(z) ∧ (y ∈ z ∨ y = z) ∧

`(y, l1) ∧ x ∈ l1 ∧ `(z, l2) ∧ z + y = w ∧ `(w, l3) ∧

∀z0∈ l1
(
∀y0∈ l3 ¬F (y0, z0) ∨ ∃y1∈ l2F (y1, z0)

))Υ

.

Let s be an L~RS(Υ)-term and let λ := |s|+ω. Moreover let s0 ∈ TΘ(λ)+λ and t0 ∈ TΘ(λ).

By use of 4.3.3 and 4.3.6 we obtain for every hull-set H

H[s0, t0] 0
ωrnk(F (s0,t0))·2 ¬F (s0, t0), F (s0, t0).

Let σ0 := 0 if |s0| ≤ Θ(λ) and choose σ0 such that Θ(λ) + σ0 = |s0| elsewise.
As there exists the reflection instance G((σ0 + 1, 0)) = (Θ(λ); P(|σ0|+1,0); ε; ε; Υ)

there exists also the reflection-rule (Π0(Θ(λ) + σ0 + 1)-Ref). An application of this
rule provides

H[s, s0, t0] 0

ωrnk(F (s0,t0))·2+1 ¬F (s0, t0),∃yΘ(λ)
1

(
s0MΘ(λ)(y1) ∧ F (y1, t0)

)
.

Due to Lemma 4.3.3, (Str), two (Λ)-inferences and a (Λ)-inference we also obtain

H[s, s0, t0] 0

Θ(λ) ∀yΘ(λ)
1

(
¬s0MΘ(λ)(y1) ∨ ¬F (y1, t0)

)
,∃yΘ(λ)

1 F (y1, t0).

An application of (Cut) yields

H[s, s0, t0] Υ

Θ(λ)+ωrnk(F (s0,t0))·2+2 ¬F (s0, t0),∃yΘ(λ)
1 F (y1, t0),

and by use of (Λ) and (V) we obtain

H[s, t0] Υ

(Θ(λ)+λ)·3 ∃yΘ(λ)+λ
0 F (y0, t0)→ ∃yΘ(λ)

1 F (y1, t0).

By another application of (Λ) we get

H[s] Υ

Θ(λ)+λ)·3+1 ∀zΘ(λ)
0

(
∃yΘ(λ)+λ

0 F (y0, z0)→ ∃yΘ(λ)
1 F (y1, z0)

)
.

The embedding of all other subformulae of (Stab) follows directly by the results of
section 14.3.1. Finally the claim follows by six (V)-inferences and a (Λ)-inference.

Theorem 14.3.9 (Embedding of KP+(Stab)). Let F be a theorem of KP+(Stab).
Then there is an m ∈ ω such that

H[Υ] Υ+m
ωΥ+m

FΥ.

Proof. This follows by the results of section 4.3 and the above given derivation of
(Stab).
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15. Elimination of Reflection Rules

In this chapter we prove the Reflection Elimination Theorem for Stability. In contrast
to Πω-Ref now we have to collapse intervals instead of just single points. To be able
to handle this we need the following preparations.

15.1. Useful Properties of L~RS(Υ)

Notation. Let κ < π and F be an ∆0(π + π)-L~RS(Υ)-sentence. Then we denote by

Fπ 7→κ the formula F in which every term t is replaced by tπ 7→κ. If Ft and F (s) meet
the conditions of F we also use the following notations

Fπ 7→κt := (Ft)
π 7→κ and F (s)π 7→κ := (F (s))π 7→κ.

Lemma 15.1.1. Let θ < κ < π and κ, π ∈ SC plus n ∈ ω. Suppose F ∈ Σn(π + θ∗)
(or F ∈ Πn(π + θ∗)) with F ∼=

∨
(Ft)t∈T and k(F ) ∩ π ⊆ κ. Then

Fπ 7→κ ∼=
∨

(Fπ 7→κt )t∈(T∩Tκ)∪(T\Tπ).

The analogue statement holds for F ∼=
∧

(Ft)t∈T .

Remark. The Lemma does not hold for F ∈ Σn(π+ θ) in general; e.g. F ≡ t
τM

α
X (π).

Proof. To prove the Lemma we proceed by induction on the build-up of F . At first
assume that F ∈ ∆1

0(π)-L~RS(Υ). Then Fπ 7→κ ≡ F (π,κ) and a closer look at the possible

characteristic sequences of F reveals the claim.
Now suppose F ∈ Σn(π + θ)-L∗RS(Υ). If F ≡ (¬)(r ∈ s) or F ≡ (¬)(∃x ∈ sG(x))

then we have T = T|s| and it holds T|sπ 7→κ| = (T ∩Tκ)∪(T\Tπ)π 7→κ. If F ≡ (¬)~tMπ′(~r )
then it holds T = SC∩(|~r |+1) and we have SC∩(|~rπ 7→κ|+1) = (T ∩Tκ)∪ (T\Tπ)π 7→κ

since κ, π ∈ SC. If F ≡ (¬)(F0 ∨ F1) then T = {0, 1} and the claim holds since
({0, 1}\Tπ)π 7→κ = {0, 1}.

Finally, if F is a Boolean composition of Σn(π+ θ∗)-sentences the claim holds, since
T = {0, 1}.

Let F be a ∆0(π+1)-sentence. Then we can find a ∆1
0(π)-sentence F̃ such that L |=

F ↔ F̃ . We simply obtain F̃ from F by resolving all terms t = {x ∈ Lπ |H(x,~s)Lπ}
of stage π occurring in F .

In the next Lemma we show that this equivalence does also hold for derivations on
hull-sets.
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Definition 15.1.2. Let F be a ∆0(π+(θ+1)∗)-sentence. Then we define F ′ recursively
by means of the following clauses:

(r ∈ s)′ :=

{
r ∈ s if |r| < π + θ,

∃z∈s (z = r) otherwise,

and(
M(s)

)′
:= M(s),

(
∃x∈sG(x)

)′
:= ∃x∈s (G(x))′, (F0∨F1)′ := F ′0∨F ′1, (¬F )′ := ¬(F )′,

where M represents an arbitrary L~RS(Υ) M-predicate.

Now let G ∈ ∆0(π+ (θ+ 1)∗) be a sentence without any occurrences of subformulae
of the form r ∈ s with |r| ≥ π + θ. Then we define:

(r ∈ s)′′ :=


r ∈ s if |s| < π + θ,

∃z∈Lπ+θ (z = r) if s ≡ Lπ+θ,

∃z∈Lπ+θ

(
H(z) ∧ z = r

)
if s ≡ {x ∈ Lπ+θ |H(x)}(

∃x∈sG(x)
)′′

:=

{
∃x∈sG(x)′′ if |s| < π + θ,

∃x∈Lπ+θ

(
H(x) ∧G(x)′′

)
if s ≡ {x ∈ Lπ+θ |H(x)}.

and

M(s)′′ := M(s), (G0 ∨G1)′′ := G′′0 ∨G′′1 , (¬G)′′ := ¬(G′′).

Finally we define F̃ := (F ′)′′.

Lemma 15.1.3. Let θ < κ < π and let F ∈ ∆0(π + (θ + 1)∗) plus Γ be a finite set of
∆1

0(π)-L~RS(Υ) sentences. Then it holds

• F̃ ∈ ∆1
0(π + θ∗),

• H ρ
α

Γ, F ⇒ H ρ
α

Γ, F̃ .

• (F̃ )π 7→κ ≡ F̃π 7→κ.

Proof. At first we observe that F̃ is well-defined, since there are not any subformulae
in F ′ of the form r ∈ s with |r| ≥ π + θ.

The first and third claims follow by induction on the build-up of F ′.
The second claim holds, since it follows by induction on α that H ρ

α
Γ, F ⇔ H ρ

α

Γ, F ′, as it holds CS(r ∈ s) = CS(∃z ∈ s (z = r)) if |r| ≥ π + θ and we must have
F = F ′ if F is the principal formula of a reflection inference.

Referring to these arguments we can also prove that H ρ
α

Γ, F ′ ⇔ H ρ
α

Γ, F̃ .

132



15.2. Reflection Elimination for Stability

Theorem 15.2.1 (Existence of Reflection-Rules). Let X = (π; . . .) be a reflection
instance with reflection configuration F plus rdh(X) = m ≥ 0, and let κ ∈Mα

X.

Ê It holds:

∃S ⊆ Υ× ω ∀(σ, s) ∈ S ∀τ < κ ∀α0 ∈ [o(X), α)C(κ)

∀~η ∈ dom(F)
>(σ,s)
C(κ)

(
sup(S) = (m) ∧ (τM

α0

F(~η)-Πs+̇2(κ+σ)-Ref) exists
)
.

Ë For every (ϑ, k), such that (ϑ, k) /∈ Rdh(F) or m ≥ (ϑ, k), it holds:

∀τ < κ ∀ζ ∈ C(κ) ∀K ∀~η ∈ dom(K)C(κ)(
(τM

ζ
K(~η)-Πk+̇2(π + ϑ)-Ref) is a subsidiary reflection rule of π ⇒(

(τM
ζ
K(~η)-Πk+̇2(κ + ϑ)-Ref) exists

))
.

Proof. At first we observe, that there must be a reflection instance Y and a β, such
that κ = Ψβ

Y, since κ is at least Π1
0-indescribable.

À If α = o(X) we have nothing to show. So let us assume α > o(X). Due to the

Domination Theorem 13.1.4 it holds ~R cl
ΨαX
� ~R cl

κ . If we have (~R cl
ΨαX

)m = M<α
F -Pm �

(~Rcl′
κ )m and m ∈ Lim the claim follows taking into account Lemma 2.3.2 Â (g) and by

means of Definition 14.2.2. If m /∈ Lim the claim follows with S := {m} by means of
Definition 14.2.2. In both cases the reflection rules are subsidiary reflection rules of κ.

Now suppose M<α
F -Pm � (~Rcl′

κ )m. Then we must have ~Rκ = (M<ξ
F -Pm, . . .) for

some ξ ≥ α since M<α
F -Pm � (~Rκ)m. Thus Definition 12.2.4 provides that there are

appropriate reflection instances and an S with sup(S) = m such that Definition 14.2.2
provides the desired reflection rules (as main reflection rules of κ).

Á Suppose (τM
ζ
K(~η)-Πk+̇2(π + ϑ)-Ref) is a subsidiary reflection rule of π and let

k := (ϑ, k). A run through the four cases of Definition 12.2.4 reveals that it holds

(~R cl′
π )≤k � (~RΨαX

)≤k, if k /∈ Rdh(F) or m ≥ k. Thereby we have M<ζ+1
K -Pk � (~R cl′

π )k �
(~RΨαX

)k and the claim follows by the same considerations as in the proof of À taking
also into account that k /∈ Lim by means of Definition 14.2.2.

Definition 15.2.2. Let ~ν = (ν1, . . . , νn) and ~η = (η1, . . . , ηn) be vectors of ordinals
of the same length. Then we define

pmax{~ν, ~η} := (µ1, . . . , µn), where for all 1 ≤ i ≤ n µi := max{νi, ηi}.

Lemma 15.2.3. Let F be a reflection configuration and ~ν, ~η ∈ dom(F) and o(F) ≤
α, β ∈ C(i(F)). Then it holds

• pmax{~ν, ~η} ∈ dom(F),
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• (β, ~η) = pmax{(α, ~ν), (β, ~η)} ⇒ Mβ
F(~η) ⊆Mα

F(~ν).

Proof. This follows by a straight forward induction on o(F).

Remark. The propositions of Lemma 5.2.3 (with Υ, δ ≤ γ+1) also hold in the context

of Stability. In the proof of proposition Â of this Lemma in the case that µ = Ψζ
V we can

extract an appropriate reflection degree for the desired reflection instance Z ∈ Cγ [A]

out of ~RΨζV
.

Theorem 15.2.4 (Reflection Elimination). Let X = (π; . . . ; δ) be a reflection instance
with rdh(X) = (θ,m) and γ,X, µ ∈ Cγ [A], where Υ, δ ≤ γ + 1 and θ < σ := |A| < π ≤
µ ∈ Card. Let Γ ⊆ Σm+̇2(π + θ∗) and α̂ := γ ⊕ ωα⊕µ. Then

Cγ [A] µ̄
α

Γ ⇒ Cα̂⊕κ[A, κ]
�

Ψα̂⊕κX
Γπ 7→κ for all κ ∈ σM

α̂
X.

Proof. We proceed by main induction on µ and subsidiary induction on α.
Case 1, the last inference is (V) with principal formula F ∼=

∨
(Ft)t∈T ∈ Γ: Thus

Cγ [A] µ̄

α0
Γ, Ft0 ,

for some α0 < α and some t0 ∈ T . By use of the subsidiary induction hypothesis we
obtain

Cα̂0⊕κ[A, κ]
�

Ψ
α̂0⊕κ
X

Γπ 7→κ, Fπ 7→κt0 for all κ ∈ σM
α̂0

X . (15.1)

By Lemma 5.2.3 À we have σM
α̂
X ⊆Mα̂0

X and Ψα̂0⊕κ
X < Ψα̂⊕κ

X ∈ Cα̂⊕κ[A, κ]. Moreover it
holds Fπ 7→κ ∼=

∨
(Fπ 7→κt )t∈(T∩Tκ)∪(T\Tπ) by Lemma 15.1.1. We either have t0 ∈ T ∩Tπ

and then |t0| ∈ Cγ [A] ∩ π ⊆ C(γ + 1, σ + 1) ∩ π ⊆ C(α̂, κ) ∩ π = κ, i.e. t0 ∈ T ∩ Tκ, or
t0 ∈ T\Tπ. Thereby it follows Fπ 7→κt0 ∈ CS(Fπ 7→κ). Thus we obtain the desired result
by means of (Str) and (V) from (15.1).

Case 2, the last inference is (Λ) with principal formula F ∼=
∧

(Ft)t∈T ∈ Γ: Then
for all t ∈ T there exists an αt < α such that

Cγ [A, t] µ̄

αt
Γ, Ft.

Since π ∈ Cγ [A] it holds Cγ [A, t] = Cγ [A, tπ 7→0]. Therefore we obtain by use of (Str)

Cγ [A, tπ 7→0] µ̄

αt
Γ, Ft, (15.2)

for all t ∈ T . Since F ∈ Γ we have Ft ∈ Σm+̇2(π + θ∗). Moreover it holds σt0 :=
|A, tπ 7→0| < π for all t ∈ T . Thus we may apply the subsidiary induction hypothesis
to (15.2) and obtain for all t ∈ T

Cα̂t⊕λ[A, tπ 7→0, λ]
�

Ψ
α̂t⊕λ
X

Γπ 7→λ, Fπ 7→λt for all λ ∈ σt0
Mα̂t

X . (15.3)
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Now let κ ∈ σM
α̂
X. For t ∈ T ∩ Tκ we have κ ∈ σt0

Mα̂
X. For t ∈ (T\Tπ) it holds

|tπ 7→0| < σ since θ < σ and thus σt0 = σ and hence κ ∈ σt0
Mα̂

X. Making also use of
Lemma 5.2.3 À (with A replaced by A, t) it follows for every t ∈ (T ∩ Tκ) ∪ (T\Tπ)
that κ ∈ σt0

Mα̂t
X . Since we also have Cγ [A, tπ 7→0, κ] = Cγ [A, tπ 7→κ, κ] we obtain by use

of (Str) from (15.3)

Cα̂t⊕κ[A, tπ 7→κ, κ]
�

Ψ
α̂t⊕κ
X

Γπ 7→κ, Fπ 7→κt for all t ∈ (T ∩ Tκ) ∪ (T\Tπ). (15.4)

Thereby the claim follows by a (Λ)-inference, taking into account Lemma 15.1.1.

Case 3, the last inference is (Cut): Then for some α0 < α it holds

Cγ [A] µ̄

α0
Γ, (¬)F, (15.5)

where rnk(F ) < µ̄.

Subcase 3.1, rnk(F ) < π: Then we have (¬)F ∈ Σ0(π + θ∗). Therefore we are
allowed to apply the subsidiary induction hypothesis to (15.5) and obtain

Cα̂0⊕κ[A, κ]
�

Ψ
α̂0⊕κ
X

Γπ 7→κ, (¬)Fπ 7→κ for all κ ∈ σM
α̂0

X .

By similar considerations as in the first case it follows that rnk(Fπ 7→κ) = rnk(F ) <
κ < Ψα̂⊕κ

X for κ ∈ σM
α̂0

X . Thus the claim follows by a (Cut) and (Str) taking into
account Lemma 5.2.3 À.

Subcase 3.2, π ≤ rnk(F ) ≤ µ: If rnk(F ) < µ then it holds π ≤ µ0 := sup{κ ∈
Card |κ ≤ rnk(F )} ≤ rnk(F ) < µ+

0 ≤ µ and due to Lemma 5.2.3 Á it follows
(µ+

0 ; P0; ε; ε; 0)∈ Cγ [A]. If rnk(F ) = µ we must have µ ∈ Reg and by Lemma 5.2.3 Â it
follows the existence of a reflection instance Z ∈ Cγ [A] with i(Z) = µ and o(Z) ≤ γ+1.
Thus in all cases there is a reflection instance Y ∈ Cγ [A] with i(Y) = µ1 and o(Y) ≤ γ+1
such that π ≤ rnk(F ) ≤ µ1 ≤ µ. Let (ϑ, n) := rdh(Y). In the following we choose
Y = X if π = µ.

It holds Γ ∈ Σn+̇2(µ1 + ϑ∗) and w.l.o.g. F is an elementary Σ1(µ1)-sentence and
¬F ≡ ∀xµ1G(x) an elementary Π1(µ1)-sentence since rnk(F ) ≤ µ1. As we also have
Σ1(µ1) ⊆ Σn+̇2(µ1 + ϑ∗) we are allowed to apply the subsidiary induction hypothesis
to (15.5) and obtain

Cα̂0⊕λ[A, λ]
�

Ψ
α̂0⊕λ
Y

Γµ1 7→λ, Fµ1 7→λ for all λ ∈ σM
α̂0

Y (15.6)

By use of (∀-Inv), the subsidiary induction hypothesis and an (Λ)-inference the
derivation of Γ,¬F of (15.5) is transformable to

Cα̂0⊕λ[A, λ]
�

Ψ
α̂0⊕λ
Y +1

Γµ1 7→λ,¬Fµ1 7→λ for all λ ∈ σM
α̂0

Y . (15.7)
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Since k(Fµ1 7→λ) ∈ Cγ [A, λ] ∩ µ1 ⊆ C(α̂0 ⊕ λ,Ψα̂0⊕λ
Y ) ∩ µ1 = Ψα̂0⊕λ

Y if λ ∈ σM
α̂0

Y it

follows rnk(Fµ1 7→λ) < Ψα̂0⊕λ
Y . Thus a (Cut) applied to (15.6) and(15.7) yields

Cα̂0⊕λ+1[A, λ]
�

Ψ
α̂0⊕λ+1

Y
Γµ1 7→λ for all λ ∈ σM

α̂0

Y . (15.8)

If Y = X Lemma 5.2.3 À provides that the claim follows from (15.8) by use of (Str).
If Y 6= X we have π + θ < µ1 ≤ µ and therefore Γµ1 7→λ ≡ Γ. Let λ0 := Ψα̂0⊕σ

Y and

η := Ψα̂0⊕λ0+1
Y . Then it follows as shown in the proof of Lemma 5.2.3 À λ0 ∈ σM

α̂0

Y
and π < η < µ1 since π ∈ C(γ + 1, σ+ 1) ⊆ C(α̂0 ⊕ σ, λ0)∩ µ1 = λ0. Thus (15.8) plus
(Hull) provides

Cα̂0⊕λ0+1[A] �
η

Γ. (15.9)

If η ∈ Card we apply the main induction hypothesis to (15.9) and obtain

Cν⊕κ[A, κ]
�

Ψν⊕κX
Γπ 7→κ for all κ ∈ σM

ν
X, (15.10)

where ν := (α̂0⊕λ0⊕1)⊕ωη⊕η̄. Since α0⊕µ, λ0 +1, η⊕ η̄ < α⊕µ it follows ν < α̂ and
since γ, α0, µ,Y ∈ C(γ+1, σ+1) it follows successively λ0, η, ν, ν⊕κ ∈ C(ν⊕κ,Ψα̂⊕κ

X )

for κ ∈ σM
ν
X and hence Ψν⊕κ

X < Ψα̂⊕κ
X for all κ ∈ σM

ν
X by Theorem 2.3.14. In the same

vein it follows ν ∈ C(ν, κ) for every κ ∈ σM
α̂
X and hence κ ∈ σM

α̂
X implies κ ∈ Mν

X.
Thereby the claim follows from (15.10) by use of (Str).

If π < µ1 ≤ µ and η /∈ Card then it holds π ≤ µ0 < η < µ+
0 = µ1. Through the use

of predicative cut elimination, (15.9) yields

Cα̂0⊕λ0+1[A] µ̄0

ϕ(η,η)
Γ. (15.11)

Since µ1 ∈ Cγ [A] implies µ0 ∈ Cγ [A] we may apply the main induction to (15.11) and
obtain

Cν̂⊕κ[A, κ]
�

Ψν̂⊕κX
Γπ 7→κ for all κ ∈ σM

ν̂
X,

where ν̂ := (α̂0 ⊕ λ0 ⊕ 1) ⊕ ωϕ(η,η)⊕µ̄0 . By analogue considerations as in the case
η ∈ Card the claim follows by (Str).

Case 4, the last inference is by a main reflexion rule of π:
Subcase 4.1, the reflection configuration F of X is a reflection configuration with

variable reflection degree, i.e. it holds X = F(m) = (π; Pm; . . .) or X = F(m, ξ, ~ν) =

(π; Mξ
M(~ν)-Pm; . . .), with m = (θ,m) > 0:

Let us at first treat the latter case, i.e. X = F(m, ξ, ~ν) and the last inference is

by a main reflection rule (τM
ζ
M(~η)-Πn+̇2(π + ϑ)-Ref) of π with ((ϑ, n), ζ, ~η) ∈ dom(F)

and principal formula G := ∃~z π
(
~s
τM

ζ
M(~η)(~z ) ∧ F (~z )

)
. Let n := (ϑ, n). We define

n′ := (ϑ′, n′) := max{m + 1, n + 1} and (ζ ′, ~η ′) := pmax{(ξ, ~ν), (ζ, ~η)}. It follows by
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means of Lemma 15.2.3 and since m, n < rd(~Rπ) ∈ Lim that (n′, ζ ′, ~η ′) ∈ dom(F).
Therefore we can define Y := F(n′, ζ ′, ~η ′). Then we have

Cγ [A] µ̄

α0
Γ, F (~s), (15.12)

for some α0 < α and Γ, F (~s) ⊆ Σ0(π + ϑ′∗), where ~s denotes all terms occurring in F
with stage greater than or equal to π. Thereby we are allowed to apply the subsidiary
induction hypothesis to (15.12) and obtain

Cα̂0⊕λ[A, λ]
�

Ψ
α̂0⊕λ
Y

Γπ 7→λ, F (~s)π 7→λ for all λ ∈ σM
α̂0

Y . (15.13)

In the sequel, we fix a κ ∈ σM
α̂
X. It holds σ < Ψα̂0⊕σ

Y ∈ σM
α̂0

Y . Since γ, α0, µ, σ,Y ∈
C(α̂, κ) and α̂0 ⊕ σ < α̂ it follows Ψα̂0⊕σ

Y ∈ C(α̂, κ) ∩ π = κ. Therefore we have

σM
α̂0

Y ∩ κ 6= ∅.
Due to Definition 12.2.4 and Lemma 15.2.3 it holds Mα̂0

Y ⊆ Mζ′

M(~η ′) ⊆ Mζ
M(~η ) and

moreover τ ∈ Cγ [A] ∩ π ⊆ C(γ + 1, σ + 1) ⊆ C(α̂0, λ) ∩ π = λ for λ ∈ σM
α̂0

Y . Thus we
have

~s
τM

ζ
M(~η)(~s

π 7→λ) for all λ ∈ σM
α̂0

Y . (15.14)

Thus we obtain from (15.13) by means of (Λ) and (V)

Cα̂0⊕λ[A, λ, κ]
�

Ψ
α̂0⊕λ
Y +ω ∨

Γπ 7→λ,∃~z κ
(
~s
τM

ζ
M(~η)(~z ) ∧ F (~z )

)
for all λ ∈ σM

α̂0

Y ∩ κ.
(15.15)

Now we define Γ̄ := Γ̃ if m = (θ0 + 1, 0) for some θ0, and Γ̄ := Γ otherwise. Let (15.15)
be (15.15) with Γ replaced by Γ̄. Due to Lemma 15.1.3 the derivability of (15.15)
implies (15.15). Now let ~c be a list of all the terms occurring in Γ̄ with stage greater
than or equal to π and ~a ∈ (T ·κ)p, where p is the arity of ~c. By Lemma 4.3.3 (viii) we
get

~cπ 7→λ 6= ~a,¬
∨

Γ̄(~c)π 7→λ,
∨

Γ̄ (~a) . (15.16)

Applying (Cut) to (15.15) and (15.16) we obtain

Cα̂0⊕κ[A, λ, κ,~a ]
�

Ψ
α̂0⊕|~a |
Y +ω+1

~cπ 7→λ 6= ~a,
∨

Γ̄(~a), G(π,κ) for all λ ∈ σM
α̂0

Y ∩|~a |+1.

Since ¬ ~cσM α̂0

Y (~a) ∼=
∧

(~cπ 7→λ 6= ~a)
λ∈σMα̂0

Y ∩|~a |+1
we obtain by a (Λ)- and a (V)-inference

Cα̂0⊕κ[A, κ,~a ]
�

Ψ
α̂0⊕|~a |
Y +ω+3

¬ ~cσM α̂0

Y (~a) ∨
∨

Γ̄(~a), G(π,κ),
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for every ~a ∈ (Tκ)p. By means of p (Λ)-inferences, we arrive at

Cα̂0⊕κ[A, κ]
�

Ψ
α̂0⊕κ
Y ∀~xκ

(
¬ ~cσM α̂0

Y (~x) ∨
∨

Γ̄(~x)
)
, G(π,κ). (15.17)

Due to Lemma 15.2.1 À there exists an S with sup(S) = m, such that for every
(τ, s) ∈ S there exists the reflection rule ( ~cσM

α̂0

Y -Πs+̇2(κ + τ)-Ref). If m /∈ Lim we
must have m ∈ S. If θ ∈ Lim and m = 0 it holds that ¬∨ Γ̄π 7→κ is a ∆0(κ + θ∗)-
sentence, i.e. there exists a τ < θ such that ¬∨ Γ̄π 7→κ is a ∆0(κ + τ∗)-sentence. If
m = (θ0 + 1, 0) then ¬∨Γπ 7→κ is a ∆0(κ + (θ0 + 1)∗)-sentence and hence ¬∨ Γ̄π 7→κ

is a ∆1
0(κ + θ∗0)-sentence, i.e. there exists a (θ0, s) < m such that ¬∨ Γ̄π 7→κ is a

Πs+̇2(κ+ θ∗)-sentence. Thus in any case we can find a (τ, s) ∈ S, such that ¬∨ Γ̄π 7→κ

is a Πs+̇2(κ+ τ∗)-sentence.

Moreover we have k(∃~xκ( ~cσM
α̂0

Y (~x)∧¬∨ Γ̄(~x)),
∨

Γ̄π 7→κ) ⊆ Cα̂⊕κ[A, κ]. Therefore we
obtain by means of Lemma 4.3.3 À, Lemma 4.3.6 and Lemma 15.1.3 plus an application
of ( ~cσM

α̂0

Y -Πs+̇2(κ+ τ)-Ref)

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
Y ∃~xκ

(
~c
σM

α̂0

Y (~x) ∧ ¬
∨

Γ̄(~x)
)
,
∨

Γπ 7→κ. (15.18)

Thereby we obtain the desired derivation by a (Cut) applied to (15.17) and (15.18)
plus (∨-Ex) and (Str).

If it holds X = F(m) then the proof is literally the same, with Y := F(n′) and ~s
τM

ζ
M(~η)

replaced by ~sMπ.
Subcase 4.2, the reflection configuration F of X is a reflection configuration with

constant reflection degree, i.e. it holds X = F = (π; Pm+1; . . .) or X = F(ξ, ~ν) =

(π; Mξ
M(~ν)-Pm+1; . . .) with m ≥ −1:

Let us at first treat the latter case, i.e. X = F(ξ, ~ν) and the last inference is by a main

reflection rule (τM
ζ
M(~η)-Πm+̇2+1(π + θ)-Ref) of π with (ζ, ~η) ∈ dom(F) and principal

formula G :≡ ∃~z π
(
~s
τM

ζ
M(~η)(~z ) ∧ F (~z )

)
. Let Y := F(ζ, ~η). Then we have

Cγ [A] µ̄

α0
Γ, F (~s), (15.19)

for some α0 < α and F (~s) ≡ F (~s, F1(~s), . . . , Fq(~s)) ∈ Πm+̇2+1(π+θ∗), where ~s lists all
the terms occurring in F with stage greater than or equal to π. Thus by an application
of (E-∀-Inv) we obtain for all ~t = (~t1, . . . ,~tq) ∈ (Tπ+θ)

k1 × . . .× (Tπ+θ)
kq =: (Tπ+θ)

~q

Cγ [A,~t ] µ̄

α0
Γ, F (~s, F ′1(~t1, ~s), . . . , F ′q(~tq, ~s)). (15.20)

Since Cγ [A,~t ] = Cγ [A,~tπ 7→0] and Y ∈ Cγ [A] plus Γ, F (~s, F ′1(~t1, ~s), . . . , F ′q(~tq, ~s)) ∈
Σm+̇2(π+ θ∗) we may apply the subsidiary induction hypothesis to (15.20) and obtain

for all ~t ∈ (Tπ+θ)
~q

Cγ [A,~tπ 7→0, λ]
�

Ψ
α̂0⊕λ
Y

Γπ 7→λ, F (~s, F ′1(~t1, ~s), . . . , F ′q(~tq, ~s))π 7→λ

for all λ ∈ σ~t0
Mα̂0

Y , (15.21)
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where σ~t0 := |A,~tπ 7→0|. For λ ∈ σM
α̂0

Y and ~t ∈ (Tλ∪ (Tπ+θ\Tπ))~q it holds λ ∈ σ~t0
Mα̂0

Y .

Moreover we have Cγ [A,~tπ 7→0, λ] = Cγ [A,~tπ 7→λ, λ]. Thus by use of (Str) and (E-∀)
applied to (15.21) we obtain for some l < ω

Cγ [A, λ]
�

Ψ
α̂0⊕λ
Y +l

Γπ 7→λ, F (~s)π 7→λ for all λ ∈ σM
α̂0

Y . (15.22)

Now fix a κ ∈ σM
α̂
X. Analogue to case 4.1 we obtain from (15.22)

Cγ [A, λ]
�

Ψ
α̂0⊕λ
Y +ω

Γπ 7→λ, G(π,κ) for all λ ∈ σM
α̂0

Y . (15.23)

If m = −1 it holds Γπ 7→λ ⊆ Σ1(λ). We choose λ = Ψα̂0⊕σ
Y ∈ σM

α̂0

Y ∩ κ and the claim
follows from (15.23) by use of (E-Up-Per) plus (Inc) and (Str).

If m > −1 we proceed as in subcase 4.1 (cf. (15.15)–(15.17) and obtain

Cα̂0⊕κ[A, κ]
�

Ψ
α̂0⊕κ
Y ∀~xκ

(
¬ ~cσM α̂0

Y (~x) ∨
∨

Γ̄(~x)
)
, G(π,κ), (15.24)

where Γ̄ := Γ̃ if m = (θ0 + 1, 0) and Γ̄ := Γ otherwise.
By the same argumentation as in subcase 4.1 it follows the existence of a set S,

such that sup(S) = m and there is a (σ, s) ∈ S such that ¬∨ Γ̄π 7→κ is a Πs+̇2(κ+σ∗)-

sentence and the reflection rule ( ~cσM
α̂0

Y -Πs+̇2(κ+ σ)-Ref) exists. Therefore we obtain

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
Y ∃~xκ

(
~c
σM

α̂0

Y (~x) ∧ ¬
∨

Γ̄(~x)
)
,
∨

Γπ 7→κ (15.25)

and the desired derivation follows by a (Cut) applied to (15.24) and (15.25) plus (∨-Ex)
and (Str).

If it holds X = F then the proof is literally the same, with Y := X and ~s
τM

ζ
M(~η)

replaced by ~sMπ.
Case 5, the last inference is by a subsidiary reflection rule of π of the form

( ~sτM
ζ
K(~η)-Πk+̇2(π+ϑ)-Ref) with M<ζ+1

K -ϑ-Pk � (~R cl′
π )(ϑ,k) and principal formula G :=

∃~z π
(
~s
τM

ζ
K(~η)(~z )∧F (~z )

)
: Let ~s denote all the terms occurring in F with stage greater

than or equal to π. Then we have

Cγ [A] µ̄

α0
Γ, F (~s) (15.26)

for some α0 < α and ζ ∈ Cγ [A] ∩ C(π) plus ~η ∈ Cγ [A] ∩ dom(K)C(π).
Subcase 5.1, X = F(m, ~ν) is a reflection configuration with variable reflection degree:

Then we have k := (ϑ, k) ∈ Rdh(F) or m > k. Let m′ = (θ′,m′) := max{(ϑ, k) + 1,m}.
Then it holds (m′, ~ν) ∈ dom(F) and we set Y := F(m′, ~ν). In the following we fix a
κ ∈ σM

α̂
X. Just like in subcase 4.1 it holds σM

α̂0

Y ∩κ 6= ∅. Since Γ, F ⊆ Σm′+̇2(π+ θ′∗)
we obtain by means of the subsidiary induction hypothesis

Cα̂⊕λ[A, λ]
�

Ψ
α̂0⊕λ
Y

Γπ 7→λ, F (~s)π 7→λ for all λ ∈ σM
α̂0

Y ∩ κ. (15.27)
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Let ~η = (η1, . . . , ηh). Since we have ∀h1 i (ζ, ηi ≤ γ) by Lemma 12.3.4, ζ, ~η ∈ C(π) and
ζ, ~η ∈ C(γ + 1, σ + 1) ⊆ C(γ + 1, λ) plus C(γ + 1, λ) ∩ π = λ it follows by Lemma
5.2.2 ζ, ~η ∈ C(λ) for λ ∈ σM

α̂0

Y . Moreover we have for such a λ that τ ∈ Cγ [A] ∩ π ⊆
C(γ+1, σ+1)∩π ⊆ C(α̂, λ)∩π = λ. Thus due to Lemma 15.2.1 Á for every λ ∈ σM

α̂0

Y
there exists the reflection rule ( ~sτM

ζ
K(~η)-Πk+̇2(λ + ϑ)-Ref). By use of these reflection

rules plus (Up-Per) we obtain from 15.27

Cα̂⊕λ[A, λ, κ]
�

Ψ
α̂0⊕λ
Y +1

Γπ 7→λ, Gπ 7→κ for all λ ∈ σM
α̂0

Y ∩ κ. (15.28)

Proceeding now as in subcase 4.1 (cf. equations (15.15)–(15.18)) the claim follows.
Subcase 5.2, it holds F is a reflection configuration with constant reflection degree:

Then we either have k = m + 1 /∈ Rdh(F) or m ≥ k. If m > k we are allowed to
apply the subsidiary induction hypothesis directly to (15.26). If m ≤ k we proceed just
like in subcase 4.2, i.e. we apply (E-∀-Inv) to F , make use of the subsidiary induction
hypothesis and employ (E-∀). In either case we obtain

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
X

Γπ 7→κ, F (~s)π 7→κ for all κ ∈ σM
α̂
X, (15.29)

since σM
α̂
X ⊆ σM

α̂0

X .
As in subcase 5.1 it follows by means of Theorem 15.2.1 Á the existence of the

reflection rule ( ~sτM
ζ
K(~η)-Πk+̇2(κ + ϑ)-Ref). Applying this rule to (15.29) and taking

into account Lemma 5.2.3 À plus (Str) we obtain the desired derivation.

Case 6, the last inference is a ( ~sτM
ζ
G(~η)-Πg+̇2(π0 +θ0)-Ref) inference with τ < π0 < π

and principal formula ∃~z π0
(
~s
τM

ζ
G(~η)(~z ) ∧ F (~z )

)
: Thus we have

Cγ [A] µ̄

α0
Γ, F (~s) (15.30)

for some α0 < α. Since π0 < π we also have π0 + θ0 < π and thereby it holds
Γ, F ∈ Σm+̇2(π + θ∗). Therefore we may apply the subsidiary induction hypothesis to
(15.30) and obtain

Cα̂⊕κ[A, κ]
�

Ψ
α̂0⊕κ
X

Γπ 7→κ, F (~s) for all κ ∈ σM
α̂0

X . (15.31)

Thus the claim follows from (15.31) by means of ( ~sτM
ζ
G(~η)-Πg+̇2(π0 +θ0)-Ref) and (Str)

plus taking into account σM
α̂
X ⊆ σM

α̂0

X .

Theorem 15.2.5. Let α0 := 1 and αn+1 := Υαn The property of being an admissible
set above ω can be expressed by a L(ε)-∆0-formula Ad(x). If F is a Σ1-sentence and

KP + (Stab) ` ∀x
(
Ad(x)→ F x

)
,

then there is a k < ω such that

Cαk
�

Ψ
αk⊕Ψ

αk
X

X
FΨ

αk
X ,
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where X = (ω+; P0; ε; ε; 0). Thus at L
Ψ
εΥ+1
X

all Σ
ωck1
1 -sentences of Stability are true, i.e.

|Stability|
Σ
ωck1
1

≤ Ψ
εΥ+1

X .

Proof. Analogue to the proof of Theorem 5.2.6 by use of Theorem 15.2.4 and Theorem
14.3.1.

141





Part IV.

The Provable Recursive
Functions of Stability



16. A Characterization of the Provable
Recursive Functions of Stability

In this short final part we want to apply the methods developed in Part II to the
theory Stability.

We extend all definitions and modifications of Part II to the theory Stability. More-
over we define

(θ,m) ∈ Fγ [A] :⇔ θ,m ∈ Fγ [A].

It follows by simultaneous induction on the build-up of terms and sentences that
it holds |tπ 7→κ|N ≤ |t|N + κ for every L~RS(Υ)-term t and |Fπ 7→κ|N ≤ |Fπ 7→κ|N + κ for

every L~RS(Υ)-sentence F if κ ∈ Lim.

A run through the cases of Definition 15.1.2 yields that for every L~RS(Υ)-sentence

we have |F |N ≥ |F̃ |N and thereby we have a N -version of Lemma 15.1.3, too.

Theorem 16.0.6 (Reflection Elimination). Let X = (π; . . . ; δ) be a reflection instance
with rdh(X) = (θ,m) and γ,X, µ ∈ Nγ [A], where Υ, δ ≤ γ+ 1 and θ < σ := |A| < π ≤
µ ∈ Card. Let Γ ⊆ Σm+̇2(π + θ∗) and α̂ := γ ⊕ ωα⊕µ. Then

Nγ [A] µ̄
α

Γ ⇒ Nα̂⊕κ[A, κ]
�

Ψα̂⊕κX
Γπ 7→κ for all κ ∈ σM

α̂
X.

Proof. The proof follows by an application of the modifications given in the proof of
Theorem 9.2.2 to the proof of Theorem 15.2.4.

Even the application of the rule ( ~cσM
α̂0

Y -Πs+̇2(κ+ τ)-Ref) to obtain equation (15.18)
on page 138 is not an obstacle, since the parameter (τ,m) does not have to be con-
trolled.

By use of the results of Section 10 and Section 8.2 plus a refined embedding of the
axiom (Stab), which is a Sisyphean challenge, we obtain:

Theorem 16.0.7. Let `(u) be a ∆KPω
1 -formula, which defines Lω. Suppose X :=

(ω+; P0; ε; ε; 0) and F ≡ ∀x∃y G(x, y) is an elementary L∈-Π0
2-sentence, such that

KP + (Stab) ` ∀z
(
`(z)→ F z

)
.

Then there exists an α < Ψ
εΥ+1

X , satisfying

Lω |= ∀x∃yfα(|x|L)G(x, y).
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Thereby we obtain:

Theorem 16.0.8. The provable recursive functions of the theory Stability are con-
tained in the class F, where F is the smallest class of number theoretic functions,
which contains S,Cnk , P

n
k , (fα)

α∈Ψ
ε(Υ+1)
X

and is closed under substitution and primitive

recursion.
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Index of Notation Part I

Ξ denotes a Π2
0-indescribable cardinal. Vα denotes the αth stage in the von Neu-

mann hierarchy of sets and Lα denotes the αth stage in the constructible hierarchy.
A(m) := (Ξ; Pm; ε; ε;ω) and U,V,W,X,Y,Z denote variables for reflection instances
and 0-ary reflection configurations and F,E,G,H,K,M,R,S denote variables for re-
flection configurations. Small Greek letters denote ordinals and small Roman letters
denote finite ordinals.

ON, Succ, Lim 13
Card, Reg, SC 13
card(S) The cardinality of S. 13
κ+ 13
ϕ(α, β) The (binary) Veblen function. 13
π is Π1

n-indescribable 13

dom(F) The domain of the refl. config. F.
dom(F)≥m {~η ∈ dom(F) | rdh(F(~η) ≥ m}. 45
o(X), o(F) The ordinal of the refl. inst. X, refl. config. F. resp. 15
i(X), i(F) The refl. point of the refl. inst. X, refl. config. F. resp. 15
Prinst(X), Prinst(F) The predecessor refl. insts. of X, F resp. 15
Prinst(X) Prinst(X) ∪ {X}. 15
Prcnfg(X), Prcnfg(F) The predecessor refl. configs. of X, F resp. 15

Prcnfg(F) Prcnfg(F) ∪ {F}. 15
~η ∈ C(κ) ∀n1k (ηk ∈ C(ηk, κ)). 15
~η ∈MC(κ) ~η ∈M ∩ C(κ). 15

M̃<γ
M -Pm 15

κ |= M<ξ
M -Pm ∀(ζ, ~η)∈ [o(M), ξ)C(κ) × dom(M)C(κ)

(κ is Mζ
M(~η)-Π

1
m- indescribable).15

κ |= ~R ∀i1k (κ |= M<ξk
Rk -Pmk). 16

~Rk, ~R<k, ~R>k, ~R(l,k) Substrings of the M-P-vector ~R. 15
~R′ The derivation of the M-P-vector ~R. 45
parX The parameters of X. 16
C(α, π) The αth Skolem-closure of π. 17
C(α, k(A)) The αth Skolem-closure of k(A). 53
Mα

X The αth thinning of the coll. hier. of X. Definition 2.2.4 on p. 16
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σM
α
X {κ ∈Mα

X |σ < κ}. 53
~RΨαX

The refl. vector of Ψα
X. Definition 2.2.4 on p. 16

~RX, ~RF The third component of X, F resp. 20
~R

(α,m)
F

rdh(X) The reflection degree of the coll. hier. of X. 20
Rdh(F) The set of refl. degr. of the coll. hiers. of F. 20

rd(~R) The refl. degr. of the M-P-vector ~R. 20
initl(F) The initial refl. config. in the development of F. 20
ranαX(Z), ranαF (Z) The range of Z (or α) in the dev. of X, F resp. 20
α ≥M 20
<lex The lexicographic ordering on ONn. 26

CαX,π 23
~X 23
Cdα,π(β) Codes of β ∈ C(α, π) in Lπ. 23
Uα,π Coding of C(α, π) in Lπ. 23

pM<ξ
F qα,π Codes of the coll. hier. of F in Lπ. 24

ψmF (Y ) 24

=
NF

Normal form. 28

⊕ The natural sum. 28
T(Ξ) The prim. rec. ordinal notation system. 29
Kπ(α) 29

Tc(M<ξ
M -Pm) The transitive closure of M<ξ

M -Pm. 33
� 33

(~R)D 36

LT∈ , LM(Ξ) 41
LRS(Ξ) 41
k(α), k(t), k(F ), k(A) The transfinite content of α, t, F , A, resp. 42
|t|, |F |, |A| The stage of t, F , A, resp. 42
Πn(π), Σn(π) 43
F z 41
F (π,κ), ∀xπF (x) 43
z |= F (s1, . . . , sr) z 6= ∅Tran(z) ∧∧ri=1(si ∈ z) ∧ F (z,π). 43
Lα The LRS(Ξ)-term for Lα. 41

τM
α
X (s) 44

CS(F ) The characteristic sequence of F .44
rnk(F ) The rank of an LRS(Ξ)-sentence. 45
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H v H′ 46
H[A] 43
Cγ [A] C(γ + 1, 0)[A]. 53
H ρ

α
Γ The semi-formal deriv. calc. relativized on H. 45

H �
α

Γ H α
α

Γ.

Γ H[Γ] 0

‖Γ‖
Γ for every hull-set H. 49

(Hull), (Str), (E-∀),

Derived rules of the semi formal calculus. 46
(∨-Ex), (∧-Ex),
(Up-Per), (E-Up-Per)
(∀-Inv), (E-∀-Inv),

RS? An intermediate calc. defined on finite multisets. 48
(V)?, (Λ)? 48
?

48
‖Λ‖ 49

KPω Kripke-Platek set theory with infinity axiom. 48
Πω-Ref KP augmented by a first order reflection scheme. 48
(Ext),(Found), (Nullset),

The axioms of KPω and Πω-Ref. 48(Pair), (Union), (∆0-Sep),
(Refl), (Inf), (∆0-Col)
(Iden) The identity axioms. 50

µ̄ 54
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Index of Notation Part II

Items not listed here can be found in the Index of Notation Part I.

Ad0 74
(Ad0.1), (Ad0.2), (Ad0.3) Axioms defining Ad0.74
Πω-Ref∗ Πω-Ref augm. by the unary pred. symbol Ad0. 74
lh The length of an LRS(Ξ)-sentence. 42

N(α) The norm of α. 75

|α|N, |t|N, |~t|N, |F |N, |A|N The finite content of α, t, F and A, resp. 75
λx.Φ(x) Φ(0) := 1 and Φ(n+ 1) := 2Φ(n). 75
fα(x) < fβ(x) over H fHα (x) < fHβ (y). 76

λx.fHα (x) The αth-function in the subrecursive hierarchy rela-
tivized on H. 75

FHγ [A]
{
α ∈ H[A]

∣∣ N(α) < fγ(A) over H[A]
}

. 77

Nγ [A] FCγγ+1[A] = FC(γ+1,0)
γ+1 [A]. 88

FHγ [A] ρ
α

Γ The semi-formal deriv. calc. on fragm. hull-sets. 77

FH· [A] ρ
α

Γ FHα [A] ρ
α

Γ. 79

N FH· [Γ] 0

‖Γ‖
Γ for every hull-set H. 79

(Inc), (Str), (E-∀)
Derived rules of the semi-formal calculus. 77(∨-Ex), (∧-Ex)

(Up-Per), (E-Up-Per)

t̃, T̃ω The canonical term for t ∈ Tω, the set of canonical
terms for Lω, resp. 84

·L The canonical interpretation of LRS(Ξ). 84

S1
<-stable−−−−−→
N -stable

S2 91
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Index of Notation Part III

Items not listed here can be found in the Index of Notation Part I. Small fraktur letters
denote elements of Υ× ω ∪ {(0,−1)}.

π is θ-Π1
n-indescribable 100

Υ 101
Θ(θ) The least ordinal which is θ-indescribable. 101
~Rk, ~R<k, ~R(l,k), ~R(l,k] Substrings of the M-P-vector ~R. 104
~R cl, (~R cl)k, (~R cl)<k The closure of the M-P-vector ~R. 101
~R cl′ The derivation of ~R cl.124

M̃<γ
M -Pm 102

κ |= M<ξ
M -P(θ,m) ∀(ζ, ~η)∈ [o(M), ξ)C(κ) × dom(M)C(κ)

κ is Mζ
M(~η)-θ-Π

1
m-indescribable. 102

parX 102
C(α, π) The αth Skolem-closure of π. 103
Mα

X The αth thinning of the coll. hier. of X. Definition 12.2.4 on page 103
~RΨαX

The refl. vector of Ψα
X. Definition 12.2.4 on page 103

rdh(X) The reflection degree of the coll. hier. of X. 110
Rdh(F) The set of refl. degr. of the coll. hiers. of F. 110

Rdhcl(F) The closure of Rdh(F). 110
dom(F)>(θ,m) 124

rd(~R) The refl. degr. of the M-P-vector ~R.110
T(Υ) The prim. rec. ordinal notation system.113

Tc(M<ξ
M -Pm) The transitive closure of M<ξ

M -Pm. 114
� 114
~R cl � ~S cl ∀m

(
(~Rcl)m � (~Scl)m

)
. 114

(~R)D 117

LRS(Υ), L∗RS(Υ), L~RS(Υ) Languages of ramified set theory. 122

tπ 7→κ Term shift down. 122
Fπ 7→κ, Fπ 7→κt , F (s)π 7→κ 131

F̃ 132
k(·) 123
rnk(F ) The rank of an LRS(Ξ)-sentence. 123
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~t
τM

α
X (~r ) 123

Πn(π), Σn(π) 123
Πn(π + θ∗), Σn(π + θ∗) 123
Πm+̇2(θ +m) 124

H ρ
α

Γ The semi-formal deriv. calc. relativized on H. 124

Υ Γ H[Γ] Υ

‖Γ‖
Γ for every hull-set H. 127

(Stab) 125
Sat1(z) 125
α� The (canonical) L~RS(Υ)-term for α. 127

`(α, x) An L(∈)-formula; `(α, x) ⇔ Lα = x. 128

pmax The pointwise max. of a fin. set of vectors. 133
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