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Introduction

Let S be a Hilbert modular variety (uncompactified) defined overQ attached
to a totally real field F . We assume S is nonsingular. The ℓ-adic cohomology
of S carries a nontrivial weight filtration, and one may consider the possible
extensions of Gal(Q/Q)-modules thereby arising.

If F = Q, then S is an open modular curve. The only possible cohomology
where a nontrivial extension could arise is degree 1, and by the Manin–Drinfeld
principle, the H1 is in fact split.

In dimension greater than 1, the cohomology in each degree has at most two
nonzero steps in the weight filtration. The Manin–Drinfeld principle still shows
that cusp forms cannot give rise to nontrivial extensions in the cohomology
of S, but there is the possibility that nontrivial extensions could arise between
the boundary cohomology and the part of the cohomology coming from 1-
dimensional automorphic representations. Caspar [2] investigated this in the
case of Hilbert modular surfaces. He computed the extension classes that arise
for the H2, and showed that they are nontrivial, giving an explicit description
via Kummer theory.

In this paper we consider the case of arbitrary F . We show (Theorems 2.1
and 2.3) that nontrivial extensions can occur only in degree 2r−2, and that in
this case the extensions which arise are nontrivial, and can again be described
explicitly using Kummer theory.

One motivation for this work is the “plectic conjecture” of Nekovář and the
second author [8]. A consequence of the results proved here is that the Galois
action on H∗(S) (for S now a GL2(F )-Shimura variety) extends to the “plectic
Galois group”; this completes the proof of [8, Proposition 6.6], as explained in
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the last section. We also indicate how the same method gives a proof of the
analogous statement [9, (3.3.11)] in Hodge theory.

After completing this paper we learnt of independent work by Silliman [11],
proving results equivalent to Theorem 2.3 and its Hodge-theoretic analogue.

1. Hilbert modular varieties

Throught the paper, F will denote a fixed totally real number field of degree
r > 1, oF its ring of integers, and Σ = HomQ−alg(F,Q), whereQ is the algebraic

closure of Q in C. (We do not fix a preferred embedding of F into Q). For a
field k, we write Γk for its absolute Galois group (for some algebraic closure,
which will be clear from the context).

For any k-scheme X (where k ⊂ Q), we will generally write H∗(X,Qℓ) =
H∗

ét(X ⊗k Q,Qℓ) and H∗(X,Q) = H∗(X(C),Q), and similar for compact sup-
ports, or sheaves. (We make an exception to this convention in Proposition 2.5,
where it would cause confusion.)

We let G ⊂ RF/QGL2 be the algebraic subgroup whose group of Q-points
is G(Q) = {g ∈ GL2(F ) | det g ∈ Q∗}. Until the last section, S will be a
Hilbert–Blumenthal modular variety over Q associated to some open subgroup
K ⊂ G(A∞

Q ). We assume that K is sufficently small to ensure that S is smooth.

The minimal compactification. This is a compactification

S
j
−→ S∗ i

←− S∞,

where S∗ is normal and proper, and S∞ is zero-dimensional. We have the long
exact sequence of cohomology:

(1) Hn
c (S,Qℓ) → Hn(S,Qℓ) → Hn(S∞, i∗Rj∗Qℓ) → · · · .

Write Hn
! (S,Qℓ) = im(Hn

c (S,Qℓ) → Hn(S,Qℓ)) for the interior cohomology,
Hn

∂ (S,Qℓ) = Hn(S∞, i∗Rj∗Qℓ) for the boundary cohomology. The exact se-
quence is auto-dual, via Poincaré duality between H(S) and Hc(S), and the
duality on boundary cohomology Hn

∂ (S,Qℓ)
∨ ≃ H2r−1−n

∂ (S,Qℓ)(r).
The boundary cohomology is independent of the choice of compactification;

both it and the exact sequence (1) can be computed using singular cohomol-
ogy of the Borel–Serre compactification, as was first done by Harder [3], who
showed that for n = 1, 2r − 1 one has Hn

! (S,Q) = 0, and the sequence splits
into short exact sequences:
• for 2 ≤ n < r,

(2) 0 → Hn−1
∂ (S,Q) → Hn

c (S,Q) → Hn
! (S,Q) = Hn(S,Q) → 0,

• for r < n ≤ 2r − 2,

0 → Hn
c (S,Q) = Hn

! (S,Q) → Hn(S,Q) → Hn
∂ (S,Q) → 0,
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• in middle degree,

0 // Hr−1
∂ (S,Q) // Hr

c (S,Q) //

'' ''P
PP

PP
P

Hr(S,Q) // Hr
∂(S,Q) // 0.

Hr
! (S,Qℓ)

)
	

77♥♥♥♥♥♥

By the comparison isomorphism, the same holds for ℓ-adic cohomology.
It is also shown in [3] that for any z ∈ S∞(C), the boundary cohomology at

z satisfies

H1((Rj∗Q)z) = Hom(o∗F ,Q),

Hn((Rj∗Q)z) =

n
∧

H1((Rj∗Q)z) for 1 ≤ n ≤ r − 1.

The toroidal compactification. This is a smooth, projective compactifica-
tion S −֒→ S̃ whose boundary S̃∞ is a divisor with strict normal crossings. It
depends on a choice of admissible cone decomposition of the cone of totally
positive elements (F ⊗QR)+ ⊂ F ⊗QR (see [10, §4] or [4, §4.1.4]). The bound-

ary component S̃∞
y over y ∈ S∞ is the quotient Zy/∆y, where Zy is a reduced

scheme locally of finite type over k(y), whose irreducible components Zy,σ are
smooth toric varieties, and ∆y ⊂ o

∗
F is a torsion-free subgroup of finite index.

The varieties Zy,σ have vanishing H1. So by Meyer–Vietoris H1(Zy) equals
the H1 of the nerve of the cover {Zy,σ}. This nerve, being the simplicial com-
plex associated to the cone decomposition of (F ⊗Q R)+, is contractible, so Zy

has vanishing H1. It follows that H1(S̃∞,Qℓ) = H0(S∞,Qℓ) ⊗Q Hom(o∗F ,Q)

as ΓQ-modules, and that the natural homomorphismH1(S̃∞,Qℓ) → H1
∂(S,Qℓ)

is an isomorphism, giving isomorphisms

Hn
∂ (S,Qℓ) ≃ H0(S∞,Qℓ)⊗Q

n
∧

Hom(o∗F ,Q)

for 1 ≤ n ≤ r − 1.
One also has H2

! (S,Qℓ) = im(H2(S̃,Qℓ) → H2(S,Qℓ)) = W2H
2(S,Qℓ) and

so the exact sequence (2) for n = 2 may be rewritten as

(3) 0 → H1(S̃∞,Qℓ) → H2
c (S,Qℓ) → im(H2(S̃,Qℓ) → H2(S,Qℓ)) → 0.

Define, for any y ∈ S∞(Q), Pic0 S̃∞
y = ker(Pic S̃∞

y → H2(S̃∞
y ,Qℓ(1)).

Lemma 1.1. One has

Pic0 S̃∞
y = ker(Pic S̃∞

y → PicZy) ≃ Hom(∆y,Q
∗
).

Proof. By the above discussion of the toroidal boundary, we haveH0(Zy,Qℓ) =

Qℓ and H1(Zy,Qℓ) = 0 = Pic0 Zy. So from the Cartan spectral sequences for

Zy → S̃∞
y with coefficients in Gm, we obtain the exact rows of the commutative
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diagram

0 // H1(∆y ,Q
∗
) //

��

Pic S̃∞
y

//

��

(PicZy)
∆y

_�

��

0 // H2(∆y ,Qℓ)(1) // H2(S̃∞
y ,Qℓ(1)) // H2(Zy,Qℓ(1))

∆y ,

in which the right-hand vertical arrow is injective. If x ∈ H1(∆y,Q
∗
), then its

image in H2(∆y,Qℓ)(1) is fixed by an open subgroup of ΓQ, hence the left-hand
vertical map is zero. The result then follows by the snake lemma. �

The line bundles Lτ . For each τ : F → L ⊂ C, there is an invertible sheaf Lτ

on S⊗L, with the property that the sections of
⊗

Lkτ
τ are the modular forms

of weight (kτ ) (see [10, 6.9 (b)]). If L = C, this is the usual line bundle on S(C)
associated to the factor of automorphy (γ, z) 7→ (cτzτ+dτ ) (see [10, 6.15]), and
extends to the toroidal compactification in a unique way such that the pullback
to each Zy is trivial (see [12, §II.7], which is for the case r = 2, but the general
case is the same). By its very definition and the previous lemma, the restriction
of Lτ to S̃∞

y , y ∈ S∞(Q), lies in Pic0 S̃∞
y and can be identified (up to a sign

independent of τ) with the homomorphism τ ∈ H1(∆y,Q
∗
) ⊂ Hom(F ∗,Q

∗
).

By definition, the Galois action on the line bundles is given by σ∗Lτ = Lστ

for σ ∈ ΓQ.
Write ητ ∈ H2

! (S,Qℓ(1)) for the cohomology class of Lτ . The classes ητ
are linearly independent and therefore generate a subspace isomorphic to the
permutation representation Qℓ[Σ].

2. The extension classes

For I ⊂ Σ, with 0 < #I = m < r, let ηI =
∧

τ∈I ητ ∈ H2
! (S,Qℓ(1)), and let

H2m
A (S,Qℓ) =

∑

#I=m

H0(S,Qℓ) ∪Qℓ(−m)ηI ⊂ H2m
! (S,Qℓ).

From [3] one has the following description of the interior cohomology:
• For n 6= r odd or n = 2r, Hn

! (S,Qℓ) = 0.
• For 0 < n = 2m < 2r, n 6= r, H2m

! (S,Qℓ) = H2m
A (S,Qℓ).

• If r = 2m is even, then Hr
! (S,Qℓ) = Hr

A(S,Qℓ) ⊕ Hr
cusp(S,Qℓ), a direct

sum of Gal(Q/Q)-modules stable under the Hecke algebra.

Theorem 2.1. (i) For 2 < n ≤ r, there is a unique splitting of Gal(Q/Q)-
modules: Hn

c (S,Qℓ) = Hn
! (S,Qℓ)⊕Hn−1

∂ (S,Qℓ).

(ii) For r ≤ n < 2r − 2, there is a unique splitting of Gal(Q/Q)-modules:

Hn(S,Qℓ) = Hn
! (S,Qℓ)⊕Hn

∂ (S,Qℓ).

Proof. As (i) and (ii) are equivalent by Poincaré duality, it is enough to
prove (i). Because Hn−1

∂ (S,Qℓ) is pure of weight 0, there is at most one
splitting.

If n < r is odd, there is nothing to prove as Hn
! = 0 for n < r.
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If n = r then by Manin–Drinfeld principle, the extension splits over Hr
cusp.

So it is enough in every case to split the extension over Hn
A ⊂ Hn

! . Therefore
(i) will follow from the next proposition. �

Proposition 2.2. Let 1 < m ≤ r/2. Let ∪mH2
c (S,Qℓ) ⊂ H2m

c (S,Qℓ) be the

image of
⊗m H2

c (S,Qℓ) under the cup product. Then the composite

∪mH2
c (S,Qℓ) −֒→H2m

c (S,Qℓ) −→−→ H2m
! (S,Qℓ)

is an isomorphism if m < r/2; for r = 2m even, it gives an isomorphism

∪r/2H2
c (S,Qℓ) ∼−−→ Hr

A(S,Qℓ) ⊂ Hr
! (S,Qℓ).

Proof. It is enough to check that the composite

⊗m
H2

c (S,Qℓ)
∪
−→ H2m

c (S,Qℓ) → H2m(S,Qℓ)

has image H2m
A , and is zero on elements ⊗xi, where some xi is in the image of

the boundary cohomology. The first assertion is clear as the cup product map
∪ :

⊗m
H2

A(S,Qℓ) −→−→ H2m
A (S,Qℓ) is surjective. As for the second, we have a

commutative diagram:

H1
∂(S,Qℓ)⊗H2

c (S,Qℓ)
∂1

⊗id
//

0

++❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱

H2
c (S,Qℓ)⊗H2

c (S,Qℓ)
∪

//

��

H4
c (S,Qℓ)

H2(S,Qℓ)⊗H2
c (S,Qℓ)

∪
44❥❥❥❥❥❥❥❥❥❥❥❥❥

and therefore the composite of the horizontal arrows H1
∂ ⊗H2

c → H4
c is zero.

Therefore, if ηcτ ∈ H2
c (Qℓ(1)) are any classes lifting ητ ∈ H2

A(S,Qℓ(1)), then

∪mH2
c (S,Qℓ(1)) = ∪m〈 {ηcτ} 〉 =

⊕

#I=m

(
∧

τ∈I η
c
τ )Qℓ

∼−−→ H2m
A (S,Qℓ(m)). �

For the second result we need some more notation. Consider the Kummer
homomorphism κF : F ∗ → H1(ΓF ,Qℓ(1)). Composing with the isomorphism
given by Shapiro’s lemma:

H1(ΓF ,Qℓ(1)) ∼−−→ H1(ΓQ,Q
Σ
ℓ (1))

(which does not depend on a choice of embedding F ⊂ Q), we obtain a homo-
morphism

κ′
F : F ∗ → H1(ΓQ,Q

Σ
ℓ (1))

inducing an isomorphism between the completed tensor product F ∗ ⊗̂Qℓ and
the right-hand side.

The morphism of 0-dimensional schemes ε : S∞ → π0(S) gives the ΓQ-
equivariant map

ε∗ : H0(S,Qℓ) → H0(S∞,Qℓ).

Münster Journal of Mathematics Vol. 13 (2020), 509–518
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Theorem 2.3. Assume r > 2. Consider the extension

0 −−−−→ H1
∂(S,Qℓ) −−−−→ H2

c (S,Qℓ) −−−−→ H2
! (S,Qℓ) −−−−→ 0

‖ ‖

Hom(o∗F , H
0(S∞,Qℓ)) H0(S,Qℓ)⊗Qℓ[Σ](−1).

Its class is the image of ε∗ ⊗ κ′
F under the map

HomΓQ
(H0(S,Qℓ), H

0(S∞,Qℓ))⊗Hom(o∗F , H
1(ΓQ,Q

Σ
ℓ (1)))

↓

Hom(o∗F , H
1(ΓQ,Hom(H0(S,Qℓ), H

0(S∞,Qℓ)⊗QΣ
ℓ (1)))

‖

Ext1ΓQ
(H2

! (S,Qℓ), H
1
∂(S,Qℓ)) .

Remarks 2.4. (i) By duality, the same class classifies the extension in co-
homology without support:

0 → H2r−2
! (S,Qℓ) → H2r−2(S,Qℓ) → H2r−2

∂ (S,Qℓ) → 0.

(ii) The analogous result for r = 2 is proved in [2] by a different method; the
same proof as given below also works in this case with minor modification.

Proof. The extension class is determined by its restriction to any open sub-
group of ΓQ. Let k ⊂ Q be a number field containing a Galois closure of F , for

which Γk acts trivially on π0(S ⊗Q) and S∞(Q). For each connected compo-
nent S′ ⊂ S ⊗Q k and for each τ ∈ Σ = HomQ−alg(F, k), consider the pullback
E(S′, η)

0 // H1
∂(S

′,Qℓ) // H2
c (S

′,Qℓ) // H2
! (S

′,Qℓ) // 0

0 // Hom(o∗F , H
0(S′∞,Qℓ)) // E(S′, η) //

OO

Qℓ(−1)ητ //

� ?

OO

0.

It is then enough to check that the extension class of each E(S′, η) in

Ext1Γk
(Qℓ(−1),Hom(o∗F , H

0(S′∞,Qℓ))) = Hom
(

o
∗
F , H

1(Γk,Qℓ(1))
S′∞)

is (up to sign independent of S′ and η) given by the composite homomorphism

o
∗
F

τ∗◦κF−−−−→ H1(Γk,Qℓ(1))
diag
−֒→H1(Γk,Qℓ(1))

S′∞

.

For this, we use the alternative description (3) of the extension, which then
puts us in the following general situation. Let k be any field of characteristic
different from ℓ, X/k smooth and proper, i : Y −֒→X the inclusion of a reduced
divisor, and U = X \ Y . To avoid ambiguity, we temporarily change notation
in order to distinguish between the ℓ-adic cohomology of X = X⊗k k̄ and that
of X , and likewise for Y .

Münster Journal of Mathematics Vol. 13 (2020), 509–518
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Let L ∈ PicX such that 0 = clY (i
∗L) ∈ H2(Y ,Qℓ(1)). We then obtain by

pullback an extension EL of Γk-modules:

0 // coker
(

H1(X,Qℓ) → H1(Y ,Qℓ)
)

// H2
c (U,Qℓ) // H2(X,Qℓ)

i∗
// H2(Y ,Qℓ)

0 // coker
(

H1(X,Qℓ) → H1(Y ,Qℓ)
)

// EL
////

OO

Qℓ(−1) //

clX(L)

OO

clY (L)=0

99ttttttttt

0,

and thus an extension class eL ∈ H1(Γk, coker(H
1(X,Qℓ) → H1(Y ,Qℓ))(1)).

Proposition 2.5. eL equals the image of i∗L under the composite map

Pic0 Y
AJY−−−→ H1(Γk, H

1(Y ,Qℓ)(1))

→ H1(Γk, coker(H
1(X,Qℓ) → H1(Y ,Qℓ))(1)),

where AJY is the ℓ-adic Abel-Jacobi map.

Recall that AJY is defined to be the composite of the following two maps:
• the Chern class

Pic0 Y → Fil1 H2(Y,Qℓ(1)) = ker
(

H2(Y,Qℓ(1)) → H2(Y ,Qℓ(1))
Γk
)

,

• the map

Fil1 H2(Y,Qℓ(1)) → H1(Γk, H
1(Y ,Qℓ)(1))

coming from the Hochschild–Serre spectral sequence in continuous ℓ-adic
cohomology.

Proof. Apply [5, 9.5] to the triangle

RΓ(X,Qℓ)
i∗
−−→ RΓ(Y ,Qℓ) → RΓc(U,Qℓ)[1] → RΓ(X,Qℓ)[1]

to get the commutative pentagon:

H0(Γk, kerH
2(i∗)(1)) // H1(Γk, cokerH

1(i∗)(1))

ker
(

H2(X,Qℓ(1)) → H2(Y ,Qℓ(1))
Γk
)

OO

//

i∗

))❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

H1(Γk, H
1(Y ,Qℓ)(1))

OO

ker
(

H2(Y,Qℓ(1)) → H2(Y ,Qℓ(1))
Γk
)

,

77♣♣♣♣♣♣♣♣♣♣♣♣

under which the various cohomology classes of L are mapped as follows:

clX(L)
✤ // eL

clX(L)
✤ //

❴

OO

AJY (i
∗L).

The commutativity then gives the desired result. �
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To apply this in our situation, take k as above, X = S̃′⊗Q k, Y = S̃′∞⊗Q k,
and L = Lτ . We have seen that for each y ∈ S∞(k), the restriction Lτ |S̃∞

y
∈

Pic0(S̃∞
y ) = Hom(∆y , k

∗) (using the isomorphism of Lemma 1.1) is the map
τ (up to a sign independent of y and τ). The result then follows from the
commutative diagram

Pic0(S̃∞
y )

AJ
−−−−→ Fil1 H2(S̃∞

y ,Qℓ(1)) ⊂H2(S̃∞
y ,Qℓ(1))

x





≀

x





≀

H1(∆y , H
0(Zy,Gm) H1(∆y, H

1(Zy,Qℓ(1))

‖ ‖

H1(∆y , k
∗)

H1(κk)
−−−−−→ H1(∆y, H

1(Γk,Qℓ(1)),

where the right-hand vertical isomorphism comes from the Cartan spectral
sequence for Zy → S̃∞

y . �

3. Further remarks

We may perform the same computations in Hodge theory. The proof of
the splitting in Theorem 2.1 carries through without change. For the proof
of Theorem 2.3, one should replace absolute ℓ-adic cohomology with absolute
Hodge cohomology [1]. Then the Kummer homomorphism κ′

F is replaced by
the archimedean regulator map

κ′
F,H : F ∗ → H1

H(SpecC,R(1)Σ) = RΣ,

x 7→ (log|τ(x)|)τ∈Σ.

This gives a proof of [9, Theorem 3.3.11]. An alternative approach is to use
explicit formulae for Eisenstein cohomology, as done in the case r = 2 in [2];
details will appear elsewhere.

Suppose now that S = SK is a Shimura variety for the full group GL2/F ,
where K ⊂ GL2(A

∞
F ) is a sufficiently small open compact subgroup. Theo-

rems 2.1 and 2.3 are equally valid in this setting. We can now complete the
proof of the relevant part of [8, Proposition 6.6]:

Corollary 3.1. There exists an action of Γpl
F on H∗(S,Qℓ), extending the

action of ΓQ.

Proof. We recall some definitions and facts from [8] concerning the “plectic
Galois group”, which is the group

Γpl
F = Aut(F ⊗Q Q/F ).

It canonically contains ΓQ as a subgroup. After fixing embeddings τ̄ : F → Q

extending τ ∈ Σ, one obtains an isomorphism with the wreath product

Γpl
F

∼−−→ ΓΣ
F ⋉ Sym(Σ).

Münster Journal of Mathematics Vol. 13 (2020), 509–518
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The homomorphism ΓΣ
F ⋉ Sym(Σ) → Γab

F , which is trivial on the symmetric
group and on each copy of ΓF is the obvious quotient, defines a homomorphism

Γpl
F → Gab

F which does not depend on choices, and whose restriction to ΓQ is
the transfer homomorphism Ver : ΓQ → Γab

F .

The action on ΓQ on both π0(S ⊗Q) and S∞(Q) factors1 through Ver, and

so extends to Γpl
F . The subspace of H2

! (S,Qℓ) spanned by the classes ητ is

the induced representation Ind
ΓQ

ΓF
Qℓ(−1) = Qℓ(−1)Σ, and more generally the

subspace of H2m
! (S,Qℓ) spanned by the products ηI is the degree m part of

the tensor induction (Qℓ(0)⊕Qℓ(−1))⊗Σ, with Qℓ(−i) in degree i, so extends

(canonically) to a representation of Γpl
F . It follows from all of this that there

is a canonical action of the plectic Galois group on H∗
∂(S,Qℓ) and H∗

A(S,Qℓ).

The main result of [7] shows that Hr
cusp(S,Qℓ) is a sum of tensor inductions

of 2-dimensional representations of ΓF , and therefore carries a (noncanonical)
action of the plectic Galois group extending that of ΓQ. To complete the proof,
in view of Theorems 2.1 and 2.3 it is therefore enough to show that the action
of ΓQ on H2

! (S,Qℓ) can be extended to the plectic Galois group. Since ε∗ is

Γpl
F -equivariant, this follows from the next lemma:

Lemma 3.2. The restriction homomorphism

H1(Γpl
F ,Qℓ(1)

Σ) → H1(ΓQ,Qℓ(1)
Σ) = H1(ΓF ,Qℓ(1))

is an isomorphism.

This is a consequence of the Künneth formula:

H1(Γpl
F ,Qℓ(1)

Σ) ≃ H1(ΓΣ
F ,Qℓ(1)

Σ)Sym(Σ)

=
(

H1(ΓF ,Qℓ(1))
Σ
)Sym(Σ)

= H1(ΓF ,Qℓ(1)). �
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nionic Shimura varieties. Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 5, 1179–1252.
MR3942040
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