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ABSTRACT The extraction of graph structures in Euclidean vector space is a topic of interest with
applications in many fields, such as the analysis of vascular networks in the biomedical domain. While a
number of approaches have been proposed to tackle the problem of graph extraction, a quantitative evaluation
of those algorithms remains a challenging task: In many cases, manual generation of ground truth for
real-world data is time-consuming, error-prone, and thus not feasible. While tools for generating synthetic
datasets with corresponding ground truth exist, the resulting data often does not reflect the complexity that
real-world scenarios show in morphology and topology. As a complementary or even alternative approach,
we propose GERoMe, the graph extraction robustness measure, which provides a means of quantifying the
stability of algorithms that extract (multi-)graphs with associated node positions from non-graph structures.
Our method takes edge-associated properties into consideration and does not necessarily require ground truth
data, although available ground truth information can be incorporated to additionally evaluate the correctness
of the graph extraction algorithm. We evaluate the behavior of the proposed graph similarity measure and
demonstrate the usefulness and applicability of our method in an exemplary study on both synthetic and

real-world data.

INDEX TERMS Evaluation, graph extraction, robustness, stability.

I. INTRODUCTION

Extracting graphs which are embedded in Euclidean vec-
tor space from different kinds of data (in particular, non
graph-like structures) has been a topic of interest in various
areas of research, especially with regard to biomedical appli-
cations. Here, researchers may be interested in the general
structure and topology of the graph, the position of branching
points, or specific (e.g., morphologic or geometric) properties
of individual edges. Examples include the analysis of hepatic
blood vasculature for surgical planning [1], measurement of
airway trees [2], or the quantification of properties in lym-
phatic and blood vessel systems as a new approach to 3D
histopathology for diagnosis in clinical applications [3]. In
addition, the extracted graphs allow to make observation of
structural or morphological changes in neural systems [4].
Registration of graph structures is an indispensable element
of prognostic and diagnostic studies that require structural
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analysis and comparison over time, among different samples,
and to some gold standard [5], [6].

Besides the extraction of embedded graphs from 2D
or 3D images, for which several approaches have been
proposed [7]-[9], all of the aforementioned applications
require the extraction of specific properties from individual
vessel segments (i.e., sections without bifurcations in the ves-
sel structure, represented by edges in the graph). Examples of
such properties include geometrical features of vessel seg-
ments (e.g., length or straightness) as well as morphological
features (e.g., average radius or average roundness) which
are derived from the shape of the vessels’ cross-section.
These numerical edge-associated properties (usually a single
scalar value for each individual property of an edge) can
be extracted from the original dataset alongside the graph
structure itself [10]-[12]. Such characteristics can also be
determined after post-processing the extracted graph struc-
tures. For instance, the retinal vessel network can be further
separated into arteries and veins, which is fundamental to
computing the important artery—vein (A-V) caliber ratio [13].
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While a number of existing algorithms produces plausible
results with regard to a specific application domain, providing
an objective evaluation of the quality of the extracted graph
remains a challenging task. This is typically done by some
form of comparison with manual ground truth [14]. Although
manual ground truth generation is conceivable for the topo-
logical structure of the graph as well as the position of each
node in some cases, this process needs to be carried out by
domain experts and is both time-consuming and error-prone,
especially for 3D structures such as complex vessel networks
in biomedical imaging. Even more so, an accurate manual
annotation of edge-associated properties that are implicitly
provided in the original data (e.g., volume, average radius,
or roundness of vessel segments) appears almost impossible
in 3D, despite the fact that they can be derived computa-
tionally by a graph extraction algorithm. Although tools for
producing synthetic datasets have been presented, they only
provide a limited number of edge-associated properties [15].
Moreover, the complexity of the generated datasets does not
compare to real-world data (see Section II).

A lot of works has been proposed for evaluating segmenta-
tion accuracy [14], [16], [17] for various image domains and
segmentation tasks. Such works typically consider the issue
of segmentation accuracy based on some form of comparison
with manual ground truth. In addition to the accuracy there
is, however, also the issue of segmentation stability. In the
context of document image segmentation, for instance, a seg-
mentation algorithm is considered stable [18] if it produces
the same layout for all copies of the same document. One
finding of that study was in fact that four state-of-the-art
segmentation algorithms have a very poor stability. A recent
survey of document segmentation algorithms [19] concludes
that the stability of proposed algorithm is widely neglected
in evaluation and is a problem in actual applications. This
conclusion made on the task of document segmentation can
be generalized to many other instances of image segmentation
since there is a general lacking of stability studies. In this
paper we consider this stability issue in the context of graph
extraction algorithms.

Here we propose GERoMe, the Graph Extraction
Robustness Measure, which provides a means of quantifying
the stability of graph extraction algorithms on arbitrary (i.e.,
specifically including real-world) input data without requir-
ing any ground truth information. Moreover, if ground truth
information is available, it can either be used in combination
with the introduced graph similarity measure to evaluate the
correctness of an algorithm directly, or to extend the original
procedure to evaluate the correctness in conjunction with the
robustness of the algorithm. If the input to a robust algorithm
is changed in a way that is semantically insignificant, but in
terms of the execution relevant, the generated output should
not change. In this context, we define robustness as the
property of an algorithm to produce stable results under a-
posteriori reversible transformations to the input dataset.

To evaluate a specific algorithm, our method generates a
scalar robustness index for a given input dataset, a set of
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transformations, and any edge-associated property. This is
achieved by applying one of the transformations to the input
data, and using the result to extract a graph, which is then
retransformed to the original space. This graph is matched
with a template graph directly extracted from the input. For
each transformation, a similarity measure is computed based
on the difference in features of matched edges and the quality
of the matching itself. The similarities for all transformations
are then combined to form the robustness index GERoMe.
Our method does not require ground truth data for evaluating
the robustness of an algorithm. However, if ground truth
information is available, this data can be used as the template
graph. In this case, the resulting GERoMe value does not only
quantify the robustness of the examined algorithm, but also its
accuracy.

The extracted graphs can be of arbitrary structure and
may include multiple edges connecting two nodes (i.e., they
may be multigraphs), and evaluation can be performed for
arbitrary positive real-valued edge-associated properties. The
input data of the considered graph extraction algorithm can
be of arbitrary nature, as long as a geometric transforma-
tion can be applied to it. We demonstrate the applicability
of our approach in an exemplary study using a preliminary
version of the algorithm proposed in [11] on both artificial
and real-world datasets. Additionally, we observe and eval-
uate the influence of various errors commonly produced by
graph extraction algorithms on the proposed graph similarity
measure.

Our contribution is twofold: We describe a general frame-
work for evaluation of graph extraction algorithms that is
especially useful in situations where no ground truth data
is available (Section III-A). Additionally, we apply this
framework to present a specific robustness measure with a
graph similarity score tailored to a specific problem domain
(Section III-B, Section III-C).

The remainder of this paper is structured as follows.
In the following section we give an overview of related
publications. Afterwards we provide an in-depth description
of our proposed method. Finally, we evaluate the behavior
of the introduced graph similarity measure and exemplarily
apply the proposed graph robustness measure to an existing
algorithm before discussing the results.

This paper is an extended version of the work previously
published in [20]. We have extended our previous work by
refinements to the method. In particular, we have removed
an edge case by more precisely defining the requirements
of properties, modified the edge distance used in the pro-
posed similarity measure to properly match multi-edges with
identical node positions, and replaced the suggested match-
ing algorithm with a more efficient method. Furthermore,
we have added an additional section evaluating the behavior
of the introduced graph similarity measure in the presence of
typical perturbations identified in other literature. Addition-
ally, we have substantially expanded the discussion on prior
research with respect to methods for evaluation of the specific
case of vessel system analysis algorithms, graph matching,
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as well as evaluation without ground truth information in
general.

Il. RELATED WORK

The most obvious validation strategy for graph extraction
methods is the comparison of the extracted graphs to ground
information for the corresponding datasets. However, due
to the aforementioned difficulties, the generation of ground
truth data is difficult for real-world data in many applications.
One possibility to overcome this issue is the use of synthetic
data for which ground truth information is automatically
available. VascuSynth [15] is a tool for generating simulated
3D medical images of blood vasculature. In addition to the
raw volume datasets the software provides ground truth data
information, which includes a binary foreground segmenta-
tion, the generated graph (i.e., branching point positions as
nodes and edges for connecting vessel segments), as well
as information about the radius, length, and flow for each
of the graph’s edges. However, there are two major limita-
tions when using synthetic data generated using VascuSynth.
First, the resulting vessel networks always have a tree-like
topology and thus do not include cycles or multiple edges
connecting the same pair of nodes. Second, the approach only
simulates images of blood vasculature where the generated
vessels are of relatively simple morphology (e.g., vessels are
relatively round). The generated data sets thus do not heavily
challenge graph extraction algorithms in that regard. (This
is also reflected in the results of our experimental study,
see Section V-A.) Furthermore, VascuSynth has been inte-
grated into a framework for validation of vessel segmentation
algorithms [21] where it is used to simulate hepatic vascula-
ture imaging data and to generate corresponding ground truth
segmentations. Segmentation algorithms can be evaluated not
only in terms of the differences in foreground segmentation
when compared to the generated ground truth data, but also
with regard to errors in graph-based metrics such as number
of branches, branch length, branch volume, and branch diam-
eter.

Drechsler and Laura [10] have developed a graph extrac-
tion method which is specifically designed for hepatic blood
vasculature. In order to evaluate their algorithm quantita-
tively, they rotate and resample the original volume using
various rotation angles. For each angle they extract a graph
and make note of the number of generated nodes and edges.
Afterwards, they visualize the results in a plot. This eval-
uation reveals that their algorithm is not rotation-invariant,
although the authors note that an ideal algorithm should fulfill
this requirement.

Mayerich et al. [22] have proposed two methods for quan-
titatively comparing a pair of input graphs. If one of the exam-
ined graphs is considered to be ground truth data, their tool
can calculate false negative and false positive ratios both in
terms of geometric differences and topological information,
i.e., the connectivity of the graphs. However, at least the geo-
metric method is based on the knowledge of paths connecting
two bifurcation points and neither mode makes use of scalar
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numeric properties of edges in the graph. Furthermore, for
evaluating the performance of graph extraction algorithms
using this method, a ground truth graph is required, which
— as outlined earlier -- is often difficult to obtain.

Heumann and Wittum [23] propose using the tree-edit dis-
tance as a measure for quantifying morphological similarity
of neurons. Their method incorporates additional information
into the process by using numeric node labels, but is limited
to tree-like structures. Moreover, their research is aimed at
the comparison of neuronal structures, and would therefore
require ground truth data for performance evaluation as well.

One important aspect of this paper is matching edges of
two (multi-)graphs. Traditional graph matching, which aims
to find a mapping between the nodes and edges of two
graphs, is a current and popular research topic [24], [25].
In particular, for error-tolerant graph matching and sim-
ilarity computation, the graph edit distance [26], which
assigns costs to modification, insertion and deletion oper-
ations for edges and nodes and computes the modification
sequence with the lowest cost, is a popular and general,
but computationally expensive approach. The bipartite graph
matching-based approximation by Riesen and Bunke [27] and
Stauffer et al. [28] computes the distance (and the implied
matching) by matching nodes with respect to their properties
and the local surrounding structure. In contrast to [27] we
instead employ a direct edge matching approach using both
geometric and additional edge-associated information and
avoid the need to explicitly formulate (application-specific)
edge deletion or insertion costs (see Section III).

In many application domains unreliable, scarce or entirely
unavailable ground truth information makes the quantitative
evaluation and comparison of automatic data processing sys-
tems difficult or even impossible. In order to avoid rely-
ing on subjective evaluation and to improve the reliability
of existing systems, there has been an interest in research
towards ground truth-independent evaluation strategies in
recent years. Lamiroy and Sun [29] reinterpret and compute
precision and recall as a probabilistic measure of agreement
with the consensus between binary classifiers in the pattern
recognition context and thus do not require ground truth infor-
mation. They observe that their modified measure can often
reproduce classifier ranking, but (by its nature) is sensitive to
collective bias. Lamiroy and Pierrot [30], present a statistical
framework for assessing the risk of missranking an algorithm
in the presence of error in the ground truth.

Spampinato et al. [31] define a number of application-
specific features to describe tracks extracted from 2D or 3D
data. Then they train a naive Bayes classifier using these
features and known ground truth as well as artificially gen-
erated known bad tracks. The trained classifier is then used
to estimate the performance of tracking algorithms on data
without known ground truth. They observe that shape and
appearance based features seem to be reasonably comparable
between domains (tracking of fish and vehicles for example).
On the other hand, Zhang et al. [32] evaluate tracking algo-
rithms by, rather than comparing the result of the algorithm
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with (unknown) ground truth, comparing the observation that
was used to construct the result with a simulated observation
using the result as a basis.

Reverse classification accuracy [33] is a way to estimate
the quality of a segmentation operation on data without
ground truth information. After training a model on data
with available ground truth, it is applied to segment data in
the actual application. This segmented data (without known
ground truth) is then used to train a second model, for which
the performance is measured on all datasets previously used
to train the original method. The assumption is that if at least
one dataset in the training set closely resembles the assessed
dataset, the single dataset-model should perform as well as
original model.

The measure introduced in our work does not try to approx-
imate the accuracy of an algorithm, but instead evaluates
the stability of an algorithm, which is a desirable property
in many cases. As accurate algorithms are not necessarily
robust, this method can even be used as an additional feature
to test for in addition to accuracy if ground truth information
is available. Indeed, in that case and if desired, the presented
method can be used to compute a combined measure of
accuracy and robustness.

lil. METHOD

An embedded multigraph shall be defined as a tuple G =
(N, E) of a set of nodes N C R” (where we assume nodes
with the same spatial position to be identical) and a set of
edges E C (N x N x N). Edges (n1, na, I) are defined by
two nodes np, np € N and a unique identifier / € N (for the
purpose of allowing multiple edges between the same pair
of nodes). Additionally, all edges e € E have m associated
positive real-valued properties Pi(e) > 0,i € {1, ...m}.

A. THE GRAPH EXTRACTION ROBUSTNESS MEASURE

The graph extraction robustness measure (GERoMe), which
will be denoted G for the remainder of this paper, provides a
stability measure for multigraph extraction algorithms. Con-
ceptually, it describes a process which compares a template
graph Gy, to the result of the extraction algorithm A applied
to a transformed version of the input s. The kind of input
data is arbitrary, but should allow for the extraction of a
graph with associated spatial node positions. In practice this
is often the case for 2D or 3D images, but also conceivable
for other data, such as point cloud datasets. The template
graph can either be given as ground truth Ggr, or — e.g.,
if ground truth information for the property of interest is not
available -- extracted from the input dataset without applying
any transformation, i.e., Gy = A(s). The input dataset is then
transformed by a transformation 7', and the result is used as
input to the examined graph extraction algorithm, i.e. G =
(A o T)(s). The extracted graph G is then transformed back
into the original space using the inverse of T: G’ = T~'(G).
The entire procedure can therefore be summarized as follows:

transform with T, extract with A ~, transform with T~1 =~
N

G G
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For a robust algorithm, the resulting graph G’ should be
similar to the template graph Gy, for any T. Therefore,
the measure G is defined as the minimum similarity Sp (see
Section I1I-B) over all elements 7' of a set of transformations
T for a given dataset. The entire process is illustrated in
Figure 1. Hence, T must be an automorphism (and thus
in particular be invertible) that can be applied to both the
input dataset s and an extracted graph G’. Moreover, for a
perfect extraction algorithm .A* for the corresponding edges
eand ¢ in G = A*s) and G = (T~ o A* o T)(s)
one should have P(e) ~ P(¢') for any property P. This
can be illustrated by a simple example: If T includes a
scaling operation (on s), and the information extracted via
A* includes the distance between two nodes Pgisance for all
edges, 7! subsequently must scale P jjance accordingly. For
many properties in real-world applications, this is the case
if the set of transformations 7 is restricted to contain only
rigid-body transformations.

More formally, given the parameters mentioned above, this
procedure can be defined as follows:

Go.7.p(A) = min Sp(Gy, (T'oAoT)s) (1)

It should be noted that G; 7 p € [0, 1]. A robust extraction
algorithm A will produce similar graphs regardless of any
transformation 7 € 7, yielding a GERoMe-value near the
optimal value of 1. If ground truth information for P in form
of a ground truth graph Ggr is available, G also includes
information about the accuracy of A for Gy; = Ggr. This
follows directly from the common definition of accuracy
and the robustness: An algorithm is accurate if it produces
a graph that is similar to the ground truth graph of a dataset,
i.e., if Sp(Ggr, A(s)) ~ 1. If we add the identity T to the
set of transformations when quantifying the robustness of an
algorithm using the ground truth graph, a high value for G
implies a high accuracy:

Gs, 7oy, p(A) = ;

= min(min Sp(Ggr, (T~ o Ao T)(s)),
TeT

min Sp(Ggr, (T ' o Ao T)(s) (2)
eTu(l}

Sp(Gar, (I7" o Ao I)(s))) A3)
= min(G, 7.p(A), Sp(Gar, A)) (4

If no ground truth information Ggr is available, the accuracy
of the algorithm cannot be computed. In this case, we set
Gy = A(s) and only quantify the robustness of the algo-
rithm.

B. GRAPH SIMILARITY

The first step in computing the similarity between two graphs
in our method is to find correspondences in both graphs,
i.e., to find a matching. Since we are interested in differences
in edge-associated properties, and since nodes have an asso-
ciated position and may be connected by multiple edges, it is
essential (and also sufficient) to find a matching Mg, 6, C
E1 x E; for two graphs G| = (N1, E1), G2 = (N2, E») which
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— non-Graph
— Graph
Scalar

FIGURE 1. A schematic overview of the proposed method. 7 is a set of transformations, P is an edge-associated property, .A is a graph extraction
algorithm, s is a non-graph structure. Annotated images on the sides show intermediate results of the approach when applied to a preliminary version of
the algorithm described by [11] and a lymphatic vessel foreground segmentation dataset [3].

matches edges in G to edges in G,. The exact process used
to find a matching is given in Section III-C. Note that not all
of the edges in Ej or E» necessarily have to be part of the
matching, but that any edge in E7 or E> can only be part of
one pair in Mg, G,-

Mg, 6, CEl x Ey = Vey € Ey : |{(e1,e) € Mg, ,6,}| <1
NVey € Ey i [{(e,e2) € Mg, 6}l =1 (5)
Moreover, given a specific property P > 0 we define the

relative error in terms of that property Ep of two edges eq, e2
as follows:

[P(e1) — Plea)]
max(P(e1), P(e2))
Then, given a graph matching Mg, G, and a property P,
the relative error of a graph matching with respect to P can
be defined using (6):

€ [0, 1] 6)

Ep(ey, e2) =

1
Ep(MGy.G) = [pr—— > Eplere)  (7)

IMa,.G, (e1,e2)eM
However, Ep(Mg,,G,) ignores edges in the original graph that
have not been matched. Therefore, in order to quantify the

quality of a matching for two graphs G| and G, we define
the similarity (in terms of the property P) as follows:

2|MG1,G2|

Sp(G1,Gy) = (1 — Ep(Mg, ,6,) - —————7— (®)
U E + B

The term 2Ms,.G)| i.e., the edge match ratio, can be
EHE> 1S g ’

understood as the DICE index for E; N E; = Mg, G,
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For |Ej| = |E>| the term simulates (arbitrarily) pairing all
leftover (i.e., non-matched) edges while setting the relative
error of all of these fake matches to 1.

C. MATCHING

A standard approach for error-tolerant graph matching is
based on the graph edit distance [26]. As the exponential
runtime complexity makes it infeasible to compute even for
moderately sized graphs, an approximation based on bipartite
graph matching has been developed [27]. While this method
includes information about the edges in the form of local
structure around nodes is included, the method focuses on the
nodes, and implicitly only generates a node matching. At least
the naive approach of constructing an edge matching from the
node matching penalizes cases where an edge is disconnected
near one of its nodes unnecessarily harshly (cf. Section IV-C).
For these reasons we employ a direct edge matching approach
that is similar to the method proposed in [27], which is only
based on the distance d between two edges, and does use
explicit insertion or deletion costs.

As a basis for d we first define d’ which only relies on the
spatial positions and Euclidean distances between the node
positions of two edges. The distance d’ is calculated by con-
catenating the nodes for both edges to form a 2n-dimensional
vector, and computing the Euclidean distance. In comparison
to a simple sum of node distances this punishes the matching
of edges harder if they share one node but not the other. This
of course is deliberate and inhibits matching of two distinct
edges which share a node in favor of a (correct) matching of
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slightly translated edges. Since the order of nodes within the
definition of edges is arbitrary, the minimum distance of both
unique node pairing permutations is denoted d’.

d'((n1, na, 1), (ny, s, 1)) = min(||(n1 o n2) — (n} o ny)l2,
l|(n1 0 n2) — (M 0nll2) (9
The distance d is then defined by increasing the spatial dis-
tance given by d’ if the average of relative property errors (6)
is large:
d'(e1, e2) + €
L= ¥ Epler,e)

ie[1,m]

d(er, e2) = (10)

By incorporating the node information directly in the edge
cost in this way, we avoid the need to formulate compa-
rable costs for edges and nodes (in contrast to the graph
edit distance-based approach). In order to omit false positive
matches, we ignore all distances above a certain threshold
t. The threshold is chosen to be equal to the W-
quantile (i.e., the 2 - min(|E}]|, |E2|)’th smallest value) of
the set of all possible |E;| - |E2| edge distances. In this
way, obvious matches can still be found by the matching
algorithm, while edges that do not have a correspondence in
the other graph stay unmatched and do not skew the overall
result by interfering with other matches in the search for a
globally minimal sum of edge distances. In total, no more
than min(|E1|, |E2|) matches can be found. However, in prac-
tice two edges connecting the same nodes will have similar
distances to both corresponding edges in the other graph.
Therefore, the min(|E| |, |E>|)’th value cannot be a hard cutoff
point. In order to include all likely match candidates the
2 -min(|E;|, |[E2|)’th smallest value is chosen as the thresh-
old ¢. It should be noted that the threshold is designed for
real-world applications such as the extraction of blood or
lymphatic vasculature where only few pairs of nodes are
connected by several edges. Extreme cases where a large
percentage of nodes are connected by multiple edges may
thus require a larger threshold.

The matching is computed by creating a bipartite matching
graph for the sets of edges in both graphs (i.e., for £ and
E>). The match-edges (i.e., edges in the bipartite match-
ing graph, not to be confused with edges fo be matched
from E; or E3) are not weighted by the distance d, but by
dmax =t — d. Additionally, all match-edges corresponding
to a match with d > ¢ (and therefore match-edges with
dmay < 0), are removed from the matching graph. The final
matching is then computed by finding a maximum weight
matching in the matching graph. It should be noted that (for
n = min(|E1|, |E2|)), as the number of edges in the matching
graph is limited to 2-min(|E} |, |E>|) € O(n), the total runtime
of the matching procedure is within O(n” log n) when using
an efficient algorithm [34]. Additionally, by limiting the total
number of possible matches, this approach (in contrast to
graph edit distance-based algorithms) does not require the
definition of insertion or deletion costs for nodes or edges.
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The constant € in (10) is a very small positive number
which enables the differentiation of two pairs of edges con-
necting the same pair of nodes that spatially match up exactly
in both graphs (i.e.,n; = n} Any = n orn; = ny Any; = nj),
resulting in a spatial distance d’ of 0. In a real-world scenario
this is only required if the node positions are discrete, e.g.,
if nodes are positioned on a grid (and thus this scenario has a
non-zero chance of occurring randomly). In that case a value
for € can be chosen so that either d’ = 0 or d’ > €. In the
latter case, € barely contributes to d and does not affect the
result of the matching, while in the former case the value of
d is defined solely by the average property error.

IV. EVALUATION

Since it is difficult to provide a quantitative evaluation of the
entire proposed method, we restrict the evaluation to the intro-
duced graph similarity measure Sp. Instead of comparing the
output of a graph extraction algorithm to a ground truth or
template graph, in this section we take a graph G, and perturb
it in a well-defined manner D, by a degree d € [0, 1]. The
resulting graph D;(G) can then be compared to the original
graph G by computing the similarity measure Sp(G, D4(G)).
When performed for different perturbation degrees, this pro-
cedure illustrates the behavior of Sp with regard to changes
in the graph. The perturbation methods include geometrical,
property-affecting, and topological procedures.

A. GEOMETRICAL PERTURBATION

To perform a geometrical perturbation of the input graph
G = (N, E), we shift the positions of each node n € N in
a randomly selected direction. For each node, the amount of
movement is sampled randomly from a normal distribution
with a mean of 0 and a standard deviation of 2d multiplied
by the average length of all edges in the graph.

B. PROPERTY PERTURBATION

In order to model error introduced to non-geometrical prop-
erties, we multiply the value of each property of each edge
in the graph by a random value sampled from a log-normal
distribution with 0 = d and u = 0. Thus, the transformed
property values can be anywhere in the range of (0, +00), but
are still relatively close to the original value in most cases.
Also, the modified property values are equally likely to be
smaller or larger than the original value. A larger value of
d = o increases the variance of the distribution and thus
causes a larger property error on average.

C. TOPOLOGICAL PERTURBATION

Mayerich et al. [22] provide an overview of common topo-
logical errors in graph extraction algorithms and assign them
to the following four categories. All four topological per-
turbation schemes in conjunction with the geometrical and
property perturbations are also visualized schematically in
Figure 2.
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FIGURE 2. A schematic, exemplary overview of the used geometrical
(red), property (green), and topological (blue) perturbation methods. The
topological methods [22] include additional edges near branching points
(1), edges subdivided by additional branches (2), split edges (3), and split
nodes (4). The geometrical perturbation changes the positions of nodes
while the property perturbation scales edge-associated property values
up or down.

1) Additional Edge: An additional edge connects two
nodes that are otherwise indirectly connected to each
other via a bifurcation. Although this kind of error is
most likely not introduced by graph extraction methods
that operate on a binary volume, it may occur due to
noisy branching points in the original volume either
in a prior segmentation step or using graph extraction
methods that operate on raw image data. The pertur-
bation amount controls how many additional edges are
added to the dataset so that for d = 1 the amount of
edges within the graph is doubled and for d = O the
graph is completely unchanged.

2) Subdivided Edge: An edge is subdivided by an addi-
tional node which is connected to an extra edge that is
also added to the graph. Many existing skeletonization
or graph extraction algorithms often introduce spurious
edges. This is especially the case if the input data is
noisy. In these cases the algorithm is likely to split an
edge in half due to the added connection point (i.e.,
node in the graph). The perturbation amount controls
the fraction of edges in the original graph that will be
connected to artificial spurious edges and are thus sub-
divided. While this approach does not truly reflect real-
ity where edges might be split multiple times, it makes
the expected changes to the graph easier to reason
about. Due to the nature of this perturbation, for the
value d = 1 the number of edges in the graph is tripled
as each original edge is replaced by the two components
created by the subdivision plus the additional spurious
edge.

3) Split Edge: An edge is split by removing a section
along its run and thus inserting two additional nodes
of degree 1 at the resulting stubs. This is an error
that occurs most likely due to spurious signal along a
vessel in the original volume, which produces a frag-
mentation of a segment, i.e., an edge of the graph.
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The perturbation amount controls the fraction of edges
in the original graph to be split. Similar to the previous
perturbation, each edge is only split once, which does
not reflect reality, but allows for simpler theoretical
reasoning.

4) Split Node: Two edges are split off from a branching
point (the node to be split) and replaced by a single
edge. In a four-way branch this results in the removal of
the entire node while in a three-way branch the original
node remains, but its degree is changed to 1. If the node
has a degree higher than four, the degree of the split
node is reduced by two. Similar to the case of additional
edges, nodes are most likely split due to bad initial
imaging conditions around bifurcations. The perturba-
tion amount controls the fraction of nodes with degree
of two or more that will be perturbed. It should be noted
that in actual applications on real-world data, there may
occur even more complex scenarios where nodes are
split into multiple components forming connected or
unconnected subgraphs.

For artificial edges added in the context of one of the
above perturbation schemes, properties that are not implicitly
defined by the geometry itself are sampled randomly from the
distribution of edge properties in the graph.

D. OBSERVATIONS

The perturbations listed above were applied to a graph G
extracted from a real-world lymphatic vessel dataset. For
comparison of similarities we chose the average roundness
m (defined as the minimum radius divided by the maximum
radius of the vessel, m € [0, 1]) as the property of interest.
By choosing a morphological property for comparison we
ensure that only property perturbations affect the property
value of edges, but geometrical or topological perturbations
do not. For each perturbation type, 100 values of d were
spread evenly in the range [0, 1] and the resulting similarity
was computed for each value of d. The simulations were
performed 10 times for each perturbation type and value
of d.

As illustrated in figure Figure 3a, small values of d
(i.e., insignificant displacements) do not affect the similarity
between the original and the perturbed graph. For a larger
displacement, some edges cannot be matched to those on the
original positions, reducing the relative size of the match-
ing itself (i.e., the edge match ratio) and thus decreasing
the similarity. Due to the choice of a geometry-independent
property of interest, the similarity does in fact depend entirely
on the edge match radio and no artificial property error is
introduced. In combination with the (overall) monotonically
decreasing value of Sp (for larger perturbation degrees d),
this shows that the strategy of ignoring implausible matches
in the matching phase is successful: There is no prominent,
clearly defined increase in the similarity, which would origi-
nate from an incorrect, but globally optimal matching in terms
of the distance function (cf. Section III-C). Instead, by and
large the similarity monotonically decreases with increasing
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FIGURE 3. The similarity Sp(G, D4(G)) between a graph by real-world lymphatic vessel dataset G and the perturbed versions D (G) for a given
degree d and P = average roundness as the observed property. Both property and geometrical perturbations (a) and topological perturbations

(b) were applied. In all cases an increased perturbation results in an approximately monotonic decrease in similarity. Each simulation was repeated
10 times. The average similarity is displayed as a solid line, while the minimum and maximum for each respective value of d are represented using
the error bars. For topological properties (b) dashed lines indicate predicted lower bounds.

perturbation degree d. This is also true for all 10 individual
simulations, although not directly visible in Figure 3a.

On the other hand, introducing errors to the property values
itself while leaving spatial positions of edges intact does
not impact the edge match ratio except in extreme unlikely
(or artificial) cases of changes to the property values (i.e.,
so that for all properties (1 — Ep) = ¢€). Consequently,
the similarity depends entirely on the error introduced to
the property of interest. The analysis of expected similarity
values (assuming perturbation of properties by a log-normal
distributed factor) is not discussed here in detail, but suggests
a hyperbolic curve (as indicated in Figure 3a). The observed
curve indeed appears to follow the prediction and (most
importantly) decreases monotonically.

As can be seen in Figure 3b, for all topological perturbation
types (by and large) the similarity decreases monotonically
for an increasing degree d. In the case of additional edges,
the generated curve almost exactly matches the following
prediction and shows little to no variation between simulation
runs.

2lMg oyl 2 2
|EG| + |Ep,c)l 1+ +2d) 2+d

This suggests that while computing the similarity measure, all
original edges are correctly matched and the added edges are
ignored. In the case of a perturbation by subdividing edges,
a lower bound for the resulting similarity is given by:

2MGp,) 2-(1—d) 1-d
Egl+ Epyo)  1+(+2d) 1+d

(Assuming that subdivided edges are not matched to any
edges in the original graph.) In the case of the example
shown in Figure 3b, the general shape of the curve follows
a hyperbolic path (and thus decreases monotonically), but is
always larger than the lower bound, suggesting that at least
some of the subdivided edges are matched with edges in the
original graph. This should be expected (and is desirable in
general) since at least the larger part of the original segment
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can often still approximately match the original path. For split
edges the lower bound changes to:

2Mgp,l  2-(1—d) 2-2d
|Egl + |Epy)l 1+ +d) 2+d

Again, the curve does not follow the lower bound curve
exactly, but is similar in shape. Similar to the subdivision
of edges, one should assume that larger parts of some split
edges can be matched to the original edge, albeit with a lower
similarity resulting in a relatively low (but not the lowest
possible) total similarity. It should be noted that this is desired
behavior. While errors that subdivide or split edges should
be penalized by a similarity measure, the resulting drop in
similarity should be lower than if the edges would have been
deleted. This is not the case for the bipartite graph matching
procedure, where splitting or subdividing an edge most likely
results in the same cost as a deleted edge if both originally
connected nodes are matched correctly, but are not directly
connected by an edge anymore.

For split nodes a prediction of an expected curve shape is
difficult due to the unknown relationship of branch nodes and
edges in the graph. Still, observation shows that overall the
curve decreases monotonically for an increased perturbation
degree. Also, for fixed values of d there is little variation in
similarity between simulations.

In total, for all considered perturbation types the similarity
between the original and the modified graph for a given prop-
erty (in this case the average roundness) seems to behave in a
predictable and expected manner: The similarity of identical
graphs is 1 and decreases for larger degrees of perturbation
monotonically — in many cases more or less following a
parabola suggesting the usefulness of the described measure
even for larger differences in the input graphs.

V. EXEMPLARY STUDY

In order to demonstrate the applicability and usefulness of
GERoMe, we have performed an exemplary study to evaluate
the robustness of a preliminary version of the graph creation
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FIGURE 4. The datasets used in the exemplary study rendered as
isosurfaces: The real-world dataset is a foreground segmentation of an
ultramicroscopy image of human lymphatic vessel tissue [3] while the
synthetic dataset is the foreground segmentation of a simulation of a
blood vessel tree generated using VascuSynth [15]. The real-world
lymphatic vessel dataset (a) shows higher complexity in both topology
and morphology when compared to the synthetic dataset (b).

and feature extraction algorithm proposed in [11]. Given a
binary volumetric input dataset, the algorithm first creates a
binary voxel skeleton. From this skeleton, a graph embedded
in 3D space is extracted. Afterwards, the algorithm calcu-
lates geometric and morphological edge-associated proper-
ties using the skeleton as well as the original binary volume.
For the purpose of this study we restrict the set of examined
edge-associated properties to length (the length of a branch
when following the medial line), distance (the Euclidean
distance of the connected nodes), straightness = %,
avgRadius (i.e., the average distance of the medial line to the
surface of the branch) and volume (the total volume occupied
by a branch in the original dataset).

For the set of applied transformations 7, 4 rotation axes
(the diagonal axis (1, 1, 1) as well as the three main coor-
dinate axes) are taken into account. For each axis, 36 rota-
tions with respective rotation angles equally distributed in the
range [0, 2m) are considered, in total resulting in 4 -36 = 144
transformations.

Using these parameters, G, 7 p is applied to the 3D ground
truth foreground segmentation of an artificial blood vessel
tree structure generated by VascuSynth [15] as well as a fore-
ground segmentation of an ultramicroscopy image of human
lymphatic vessel tissue [3] (both depicted in Figure 4). While
the first dataset has isotropic resolution, i.e., constant voxel
spacing in x-, y- and z-direction, the second is anisotropic
(i.e., the voxel-spacing is larger in z-direction than in x-, and
y-direction). For each rotation 7 the binary 3D image input
data is transformed by resampling it from the original volume
using nearest neighbor filtering. Since a rotation T (and thus
also the inverse rotation 7~!) does not change the values
of the aforementioned edge-associated properties (length,
distance, straightness, avgRadius, and volume), an extracted
graph can be transformed back into the original space by
applying T~ merely to the node positions. As both test
datasets contain vessels of low avgRadius, the transformed
volume (i.e., T'(s)) is generated by doubling the resolution in
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FIGURE 5. Intermediate results of the procedure depicted in Figure 1 for
a synthetic (a) and a real-world dataset (b) without using ground truth
information. A preliminary version of the algorithm described by [11] has
been used to extract the examined graphs. For each dataset, the similarity
Sp of the graph extracted from the original dataset and the graphs
extracted after applying 36 rotations around the x-axis are shown for

5 selected properties.

each dimension in order to reduce the error introduced in the
resampling step itself.

Since there is no ground truth information available for
the real-world dataset, and the ground truth for the synthetic
dataset does not include all properties of interest, we use
graphs extracted from the input dataset as template graphs
and thus only consider the robustness of the algorithm as
opposed to evaluating its accuracy which requires ground
truth information. The resolution of each original dataset is
also octupled prior to starting the graph extraction process in
order to allow for an equal level of accuracy in the genera-
tion of the intermediate voxel skeleton and the extraction of
edge-associated properties of the template graph.

A. SYNTHETIC DATA

The similarity of the original graph extracted from a syn-
thetic blood vasculature dataset generated using VascuSynth
and a transformed version of the input volume is illustrated
in Figure 5a for the 5 selected properties. The set of applied
transformations comprises 36 rotations around the x-axis of
the coordinate system. As can be seen, the plot shows 4 peaks
for all properties which correspond to the angles in which
the transformed volume is aligned with the voxel grid of the
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TABLE 1. The robustness measure GERoMe G applied to a preliminary version of the algorithm proposed in [11] for 5 selected properties, using the

synthetic dataset generated by VascuSynth and a real-world lymphatic vessel dataset. The sets of transformations comprise 36 rotations around each of
the coordinate axes (7x, 7y, 7z) as well as the diagonal axis (1, 1, 1) (7xyz)-

[ Gs,7.p(A)

[ length | distance | straightness | avgRadius | volume ]

Tz

Ty

T
7;yz

Synthetic Dataset

0.822
0.816
0.830
0.730

0.835
0.828
0.837
0.735

0.891
0.874
0.880
0.790

0.900
0.892
0.893
0.799

0.787
0.789
0.801
0.675

Ta
Ty

Real-World Dataset T

0.460
0.460
0.559
0.298

0.486
0.484
0.575
0.312

0.528
0.556
0.651
0.341

0.553
0.563
0.656
0.371

0.429
0.429
0.528
0.272

z
7—1yz

original volume (i.e., all angles that are multiples of 7). This
illustrates that the observed error can partially be attributed
to the resampling process rather than the graph extraction
algorithm itself. Moreover, for some properties the relative
error seems to be affected more by the transformation process
than for others: Both avgRadius and straightness are less
affected than distance, length, and especially volume. The
relative errors of length and distance are probably caused by
small variations in node positions, while this does not have
such a strong effect on straightness = dl’:;‘g}cf. The per-edge
volume can be expected to be more strongly affected by errors
in the resampling process than other properties. The relative
error of avgRadius is likely caused by errors in the resampling
process as well, but to a lesser extent, since the property is
averaged along the run of a branch. GERoMe values for sets
of rotations for the 4 considered rotation axes are shown in
Table 1.

B. REAL-WORLD LYMPHATIC VESSEL DATA

The similarity of the original graph extracted from a
real-world lymphatic vasculature dataset and a transformed
version of this data is shown in Figure 5b for the 5 selected
properties. Again, the set of applied transformations com-
prises 36 rotations around the x-axis of the coordinate system.
In comparison to the similarities extracted from the synthetic
dataset, the property similarities Sp are much lower. These
relatively low similarity values originate from both the rela-
tive property error (see Figure 6a) as well as the edge match
ratio (see Figure 6b). As observed for the synthetic dataset,
the similarity, the edge match ratio, and (to a lesser extent)
the relative error seem to assume local extrema whenever the
voxel grids of the original volume and the transformed vol-
ume are aligned, i.e., for rotation angles that are multiples of
Z for coordinate axes as rotational axes, and for multiples of
%’T for (1, 1, 1). This behavior can at least partly be attributed
to the resampling process involved in transforming the image
data. This is illustrated in Figure 7, which shows the differ-
ence between the original dataset and a version transformed
by 7 and subsequently by 7~!. The plot shows that the
resampling process itself produces peaks at the same rotation
angles and comparatively of similar magnitude. The overall
lower error for rotations around the z-axis can be explained
by the voxel spacing of the real world dataset which is equal
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FIGURE 6. Intermediate measures generated from a real-world dataset
for a preliminary version of the algorithm described by [11]. In (a),

the relative errors of 5 selected properties are plotted for 36 rotations 7~
around the x-axis. In (b) the edge match ratios for 36 rotations around
the x-, y-, and z-axis, as well as (1,1,1) are shown.

in x- and y-direction, but larger in z-direction. In should be
noted that the magnitude of the resampling errors in Figure 7
cannot be directly compared to the measured similarity to
the template graph. Still, this suggests that at least part of
the dissimilarity originates from resampling errors. However,
this does not imply a weakness of the proposed method itself,
as the parameter 7 as well as optional upsampling can and
should always be kept constant when comparing methods
and specified along with the results. Indeed, at least in this
example of binary volumetric input data, some amount of
error has to be introduced to the initial dataset in order to
force an examined (deterministic, but unspecified) algorithm
to take a different path in its execution. An example of an
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FIGURE 7. The voxel-wise DICE index between the original real-world
dataset (s) and a version that has been transformed back and forth using
T (i.e., T~1(T(s))) for 36 rotations 7~ around the x-, y-, and z-axis, as well
as (1,1,1).

(in terms of GERoMe) ineffective transformation 7 would be
a translation in combination with the nearest neighbor resam-
pling strategy: Except for a fixed voxel offset, the initial and
transformed dataset would be equivalent and (even otherwise
non-robust) algorithms would likely produce identical results
regardless of the specific definition of 7.

The fact that a rotational axis of (1,1,1) produces
larger resampling errors also becomes apparent in the final
GERoMe values (see Table 1): For both datasets the minimum
similarity for all properties was reached for a transformation
around this (non-aligned) axis. Moreover, it can be observed
that the amount of relative error introduced by the transfor-
mation and resampling process seems to be relatively inde-
pendent of the dataset: Just like it is the case for the synthetic
dataset, avgRadius and straightness seem to be less affected
than distance, length, and volume.

Another aspect to note is that at least the examined algo-
rithm does not produce outliers in terms of the similarity
between two graphs for any transformation. This is an impor-
tant property of robust graph extraction algorithms. Any
potentially generated outliers (and thus flaws of the exam-
ined algorithm causing unstable results) would immediately
become visible in G, as it is defined as the minimum of all
similarities.

These results also show that the examined extraction algo-
rithm produces much more stable results for the synthetic
dataset than for the real-world dataset. This indicates that
evaluating graph extraction algorithms solely on the basis of
synthetic datasets is a highly problematic strategy. In com-
bination with difficulties in obtaining ground truth annota-
tions for real-world data this underlines the usefulness of our
method.

VI. CONCLUSION

We have proposed GERoMe, a novel robustness measure
for graph extraction algorithms. Our approach does not
necessarily require ground truth data and can be applied
to evaluate the stability of any algorithm which extracts
(multi-)graphs that are embedded in Euclidean space from
non-graph structures for which an edge property-preserving
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invertible transformation is defined. If ground truth data is
available, the method and the introduced similarity measure
can be used to quantify the accuracy of graph extraction algo-
rithms in conjunction with the robustness. In order to be able
to match true multigraphs, we use edge-associated properties
to distinguish edges in addition to the node positions. The
proposed graph similarity measure has been shown to behave
predictably and expectedly on common graph perturbation
patterns. The applicability and usefulness of our method has
been demonstrated in an exemplary study on synthetic as well
as real-world biomedical 3D image data. We are convinced
that GERoMe will prove useful for evaluating graph extrac-
tion algorithms, especially in cases where ground truth data
is not available.

In the future, we plan to study and compare the perfor-
mance of state-of-the-art graph extraction algorithms using
GERoMe. Moreover, we would like to augment and gen-
eralize the matching process and the similarity measure by
incorporating information from node-associated properties.
Similarly, it may be interesting to apply the presented frame-
work for robustness evaluation to other problem domains,
e.g., using the similarity measure presented in [22] or meth-
ods that focus on node similarity. Additionally, it may be
worthwhile to consider and compare alternative matching
approaches which utilize the expected spatial proximity of
matched edges if the runtime of the proposed method (which
is dominated by the edge matching computation) is problem-
atic.
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