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Abstract. Generalizing work by Pinzari and Roberts, we characterize actions of a compact
quantum group G on C∗-algebras in terms of what we call weak unitary tensor functors from
RepG into categories of C∗-correspondences. We discuss the relation of our construction of
a C∗-algebra from a functor to some well-known crossed product type constructions, such
as cross-sectional algebras of Fell bundles and crossed products by Hilbert bimodules. We
also relate our setting to recent work of De Commer and Yamashita by showing that any
object in a module C∗-category over RepG produces a weak unitary tensor functor, and,
as a consequence, actions can also be described in terms of (RepG)-module C∗-categories.
As an application we discuss deformations of C∗-algebras by cocycles on discrete quantum
groups.

Introduction

Category theory has, from the early beginning, played an important role in
quantum groups. In the operator algebraic approach to quantum groups the
key result connecting the two areas is due to Woronowicz [16]. Generalizing the
classical Tannaka–Krein duality he showed that by associating to a compact
quantum group its representation category together with the canonical fiber
functor, we get a duality between compact quantum groups on one side, and
C∗-tensor categories with conjugates and a unitary fiber functor, on the other.
Therefore, in principle, all properties of a compact quantum group G can be
formulated entirely in terms of its representation category RepG and canonical
fiber functor. Remarkably, a lot of properties depend on RepG alone. A sys-
tematic study of such properties was made possible by Bichon, De Rijdt and
Vaes [2], who showed how, given two monoidally equivalent (that is, having
equivalent representation categories) compact quantum groups, to construct a
linking C∗-algebra connecting the two. The linking algebra is equipped with er-
godic actions of both quantum groups, and by fixing one quantum group G and
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varying the other, or in other words, by considering all possible unitary fiber
functors on RepG, we get all ergodic actions of G of full quantum multiplicity.
This categorical point of view on actions, together with the construction of
linking algebra, has been extremely successful. It has been applied to a variety
of seemingly unrelated problems, from a study of random walks on discrete
quantum groups [6] to K-theoretic computations [15].

The results of Bichon, De Rijdt and Vaes were later generalized by Pin-
zari and Roberts [13], who showed how to describe all ergodic actions of G in
terms of RepG. Namely, for every ergodic action they constructed a “spectral
functor” from RepG into the category of Hilbert spaces, and then gave an
abstract characterization of such functors. Their result implies, in particular,
that isomorphism classes of ergodic actions of monoidally equivalent compact
quantum groups are in canonical correspondence with each other. Soon af-
terwards De Rijdt and Vander Vennet [6] showed that the same is true even
for nonergodic actions. Their argument bypasses category theory altogether
and is based on induction using the linking algebra. A natural problem com-
pleting this circle of ideas is nevertheless to find a description of actions of G
entirely in terms of RepG. Our goal in this paper is to do exactly that. By
modifying the definition of a spectral functor and the axioms of Pinzari and
Roberts, we show that actions of a compact quantum group G correspond to
a class of functors, which we call weak unitary tensor functors, from RepG
into categories CorrA of C∗-correspondences over C∗-algebras A. It should
become apparent from our results, and is not difficult to show directly, that
in the case A = C our definitions/axioms are equivalent to the ones given by
Pinzari and Roberts. Overall, the construction of a C∗-algebra from a functor
RepG → CorrA follows familiar lines going back to Woronowicz [16]. Since
some of the maps involved are not adjointable, we just have to be more careful
not to overuse various dualities.

A different solution to the same problem is suggested by recent work of
De Commer and Yamashita [4]. Complementing the results of Pinzari and
Roberts, they showed that ergodic actions of G can also be described in terms
of semisimple (RepG)-module C∗-categories with a fixed simple generating
object. In fact, a significant part of their arguments does not involve ergod-
icity/semisimplicity in any way, and we show that indeed by discarding these
assumptions we get a characterization of general actions in terms of module
categories. The relation between two categorical pictures can be described as
follows. Given a right (RepG)-module C∗-category and an object M in it, the
functor Mor(M,M⊗·) has a canonical structure of a weak unitary tensor func-
tor. Therefore, using the analogy with representation theory, we can say that
the relation between two pictures is as between a cyclic representation and its
matrix coefficient defined by the cyclic vector. From this point of view weak
unitary tensor functors are categorifications of positive definite functions. It is
interesting that the module category approach, being less economical than the
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approach via weak tensor functors, seems, nevertheless, more suitable for clas-
sification of actions, at least for representation categories described by simple
universal properties [5].

In the last section of this paper we discuss some examples and applications
of our general results. The construction of a C∗-algebra from a weak unitary
tensor functor is reminiscent of various crossed product type constructions.
To make the connection more explicit, we reformulate this construction in a
category-free way. This will make it clear that for duals of discrete groups
it generalizes such constructions as cross-sectional algebras of Fell bundles or
crossed products by Hilbert bimodules. We also show that categorical point of
view on actions naturally leads to a construction of deformation of C∗-algebras
by 2-cocycles on discrete quantum groups.

1. Spectral functors

Let us first fix the notation; overall, we follow the same conventions as
in [12]. Consider a compact quantum group G. The Hopf ∗-algebra of matrix
coefficients of finite dimensional representations of G is denoted by (C[G],∆).
A finite dimensional representation U of G is an invertible element of B(HU )⊗
C(G) such that (ι ⊗∆)(U) = U12U13. The tensor product of two representa-
tions U and V is denoted by U × V and is defined by U × V = U13V23.

The contragredient representation to a finite dimensional representation U
is defined by

U c = (j ⊗ ι)(U−1) ∈ B(H∗
U )⊗ C(G),

where j is the canonical anti-isomorphism B(HU ) ∼= B(H∗
U ). When HU is

a Hilbert space, we identify the dual space H∗
U with the complex conjugate

Hilbert space H̄U .
We denote the Woronowicz character f1 ∈ C[G]∗ by ρ. For every finite

dimensional representation U of G we have a representation πU of the alge-
bra C[G]∗ on HU defined by πU (ω) = (ι ⊗ ω)(U). Given a finite dimensional
unitary representation U of G, the conjugate representation is defined by

Ū = (j(πU (ρ)
1/2)⊗ 1)U c(j(πU (ρ)

−1/2)⊗ 1) ∈ B(H̄U )⊗ C(G).

This is a unitary representation equivalent to U c, and πŪ (ρ) = j(πU (ρ)
−1).

Unitarity of Ū essentially characterizes ρ: if U is an irreducible unitary rep-
resentation, then πU (ρ) is the unique strictly positive operator in B(HU )
such that the above definition of Ū gives a unitary element and such that
Tr(πU (ρ)) = Tr(πU (ρ)

−1). We will usually suppress πU and simply write ρξ
for ξ ∈ HU instead of πU (ρ)ξ.

Denote by RepG the C∗-tensor category of finite dimensional unitary rep-
resentations of G. In this category Ū is conjugate to U , in the sense that
there exist morphisms RU : 1 → Ū × U and R̄U : 1 → U × Ū , where 1 is
the trivial representation of G on the one-dimensional space C, such that the
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compositions

U
ι⊗RU−−−−→ U ⊗ Ū ⊗ U

R̄∗

U⊗ι
−−−−→ U and Ū

ι⊗R̄U−−−−→ Ū ⊗ U ⊗ Ū
R∗

U⊗ι
−−−−→ Ū

are the identity morphisms. Using the Woronowicz character ρ we can define
such morphisms by

(1.1) RU (1) =
∑

i

ξ̄i ⊗ ρ−1/2ξi, R̄U (1) =
∑

i

ρ1/2ξi ⊗ ξ̄i,

where {ξi}i is an orthonormal basis in HU . Note that the above expressions
do not depend on the choice of an orthonormal basis, and

‖RU‖ = ‖R̄U‖ = (dimq U)1/2,

where dimq U = TrπU (ρ) is the quantum dimension of U .
Consider now a continuous left action θ of G on a C∗-algebra B, so θ : B →

C(G) ⊗ B is an injective ∗-homomorphism such that (∆ ⊗ ι)θ = (ι ⊗ θ)θ
and (C(G) ⊗ 1)θ(B) is dense in C(G) ⊗ B. Consider the ∗-subalgebra B ⊂
B consisting of elements x ∈ B such that θ(x) lies in the algebraic tensor
product C[G] ⊗ B. Equivalently, B is the linear span of elements of the form
(h⊗ ι)((a⊗ 1)θ(x)), where a ∈ C[G], x ∈ B and h is the Haar state on G. We
call B the algebra of regular elements in B. It is a dense ∗-subalgebra of B,
and θ defines a left coaction of the Hopf ∗-algebra (C[G],∆) on it. As follows
from [3, Lemma 2.5], the positive map E = (h⊗ ι)θ : B → BG is faithful on B,
in the sense that E(x∗x) 6= 0 for every nonzero x ∈ B.

Conversely, assume we have a left coaction θ of the Hopf ∗-algebra (C[G],∆)
on a ∗-algebra B. By slightly extending the definition in [4] we say that θ is
an algebraic action of G if the following conditions are satisfied:

(i) the fixed point algebra A = BG = {x ∈ B | θ(x) = 1⊗x} is a C∗-algebra;
(ii) the projection E = (h⊗ι)θ : B → A is positive and faithful, so E(x∗x) ≥ 0

and E(x∗x) 6= 0 for x 6= 0;
(iii) E(x∗a∗ax) ≤ ‖a‖2E(x∗x) for all a ∈ A and x ∈ B.

Note that condition (iii) follows from (i) and (ii) if B is unital with unit 1 ∈ A.
Note also that conditions (ii) and (iii) can be formulated by saying that B
is a right pre-Hilbert A-module with inner product 〈x, y〉 = E(x∗y), and the
operators of multiplication on the left by elements of A are bounded.

Under the above conditions (i)–(iii) it is not difficult to show that the ∗-
algebra B admits a unique C∗-completionB such that θ extends to a continuous
left action of the reduced form of G on B, see [4, Prop. 4.4]. Namely, B is
faithfully represented by operators of multiplication on the left on the right
pre-Hilbert A-module B with inner product 〈x, y〉 = E(x∗y), and this defines
a norm on B. Note that in general the subalgebra of regular elements in the
completion B of B can be strictly larger than B.

Given a finite dimensional unitary representation U of G, we can con-
sider HU as a left comodule over (C[G],∆) by defining

δU : HU → C[G]⊗HU by δU (ξ) = U∗
21(1⊗ ξ).
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Then, if θ is a continuous left action of G on a C∗-algebra B, we can consider
comodule mapsHU → B. The linear span of images of all such maps is denoted
by B(U) and is called the spectral subspace of B corresponding to U . Choosing
representatives Uα of isomorphism classes of irreducible unitary representations
of G, for the subalgebra B ⊂ B of regular elements we get

B =
⊕

α

B(Uα).

Consider the tensor product comodule HU ⊗B. We denote by (HU ⊗B)G the
subcomodule of invariant vectors, so

(HU ⊗B)G = {X ∈ HU ⊗B | U12X13 = (ι⊗ θ)(X)}.

In other words, if {ξi}i is an orthonormal basis in HU and U = (uij)i,j is
written in the matrix form with respect to this basis, then

(HU ⊗B)G = {X =
∑

i

ξi ⊗ xi | θ(xi) =
∑

j

uij ⊗ xj for all i}.

Note that using Frobenius reciprocity we can identify the space (HU ⊗ B)G

with HomG(HŪ ,B), but we are not going to do this. The spectral subspaces
can be recovered from (HU ⊗B)G using the canonical surjective maps

H̄U ⊗ (HU ⊗B)G → B(Ū), ξ̄ ⊗X 7→ (ξ̄ ⊗ ι)(X),

which are isomorphisms for irreducible U .
The spaces (HU ⊗ B)G is our main object of interest. Clearly, if A =

BG, then these spaces are A-bimodules. Furthermore, if X =
∑

i ξi ⊗ xi
and Y =

∑

i ξi ⊗ yi are vectors in (HU ⊗ B)G, then the element
∑

i x
∗
i yi

is G-invariant. Hence (HU ⊗ B)G is a right Hilbert A-module with inner
product 〈X,Y 〉 =

∑

i x
∗
i yi. This inner product is independent of the choice

of an orthonormal basis, and by slightly abusing notation it can be written as
〈X,Y 〉 = X∗Y .

Given two finite dimensional unitary representation U and V of G, we have
a map

(HU ⊗B)G ⊗ (HV ⊗B)G → (HU×V ⊗B)G, X ⊗ Y 7→ X13Y23.

In other words, if we fix orthonormal bases {ξi}i in HU and {ζj}j in HV , then
for X =

∑

i ξi ⊗ xi and Y =
∑

j ζj ⊗ yj we have

X ⊗ Y 7→
∑

i,j

ξi ⊗ ζj ⊗ xiyj.

It is obvious that this map defines an isometric map (HU⊗B)G⊗A(HV ⊗B)G →
(HU×V ⊗B)G.

We are now ready to define spectral functors.

Definition 1.1. Given a continuous left action of a compact quantum group G
on a C∗-algebra B with fixed point algebra A, the associated spectral functor
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is the unitary functor F from RepG into the C∗-tensor category CorrA of
C∗-correspondences over A defined by

F (U) = (HU ⊗B)G with inner product 〈X,Y 〉 = X∗Y

for representations U , and F (T ) = T ⊗ ι for morphisms, together with the
A-bilinear isometries

F2,U,V : F (U)⊗A F (V ) → F (U × V ), X ⊗ Y 7→ X13Y23.

A few comments are in order. By a C∗-correspondence over A we mean a
right Hilbert A-module together with a nondegenerate left action of A on it.
We have to explain why the left action on (HU ⊗B)G is nondegenerate in the
nonunital case. This is a consequence of the following simple lemma.

Lemma 1.2. If θ is a continuous left action of a compact quantum group G
on a C∗-algebra B, then the fixed point algebra A = BG is a nondegenerate
C∗-subalgebra of B.

Proof. Let {es}s be an approximate unit in A. Define an A-valued inner prod-
uct on B by 〈x, y〉 = E(x∗y). Then xes → x in the norm defined by this
inner product for every x ∈ B. By [3, Lemma 2.5], on every spectral subspace
B(U) ⊂ B the norm defined by the inner product is equivalent to the C∗-norm.
Therefore xes → x in the C∗-norm for every x ∈ B, hence for every x ∈ B. �

C∗-correspondences over A form a C∗-tensor category CorrA with adjoint-
able A-bilinear maps as morphisms. We emphasize that the isometries F2,U,V

in the definition of the spectral functor are not claimed to be adjointable, and
therefore formally they are not morphisms in CorrA.

Finally, recall that two natural notions of isometry between Hilbert modules
coincide: if M and N are right Hilbert A-modules, and T : M → N is an A-
linear map such that ‖TX‖ = ‖X‖ for all X ∈ M , then 〈TX, TY 〉 = 〈X,Y 〉
for all X,Y ∈M , see e.g. [9, Thm. 3.5].

2. Weak tensor functors

Our goal is to give an abstract characterization of spectral functors. Here
is the main definition.

Definition 2.1. Given a C∗-algebra A and a strict C∗-tensor category C
with unit object 1, by a weak unitary tensor functor C → CorrA we mean
a linear functor F : C → CorrA together with natural A-bilinear isometries
F2 = F2,U,V : F (U) ⊗A F (V ) → F (U ⊗ V ) such that the following conditions
are satisfied:

(i) F (1) = A;
(ii) F (T )∗ = F (T ∗) for any morphism T in C;
(iii) F2 : A⊗A F (U) → F (1⊗U) = F (U) maps a⊗X into aX , and similarly

F2 : F (U)⊗A A→ F (U) maps X ⊗ a into Xa;
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(iv) the diagrams

F (U)⊗A F (V )⊗A F (W )

ι⊗F2

��

F2⊗ι
// F (U ⊗ V )⊗A F (W )

F2

��

F (U)⊗A F (V ⊗W )
F2

// F (U ⊗ V ⊗W )

commute;
(v) for all objects U and V in C and every vector X ∈ F (U), the right A-

linear map SX = SX,V : F (V ) → F (U ⊗ V ) mapping Y ∈ F (V ) into
F2(X ⊗ Y ) is adjointable, and the diagrams

F (U ⊗ V )⊗A F (W )

S∗

X⊗ι

��

F2
// F (U ⊗ V ⊗W )

S∗

X

��

F (V )⊗A F (W )
F2

// F (V ⊗W )

commute.

Remark 2.2.
(i) As was pointed out by the referee, the assumption on F2 to be isometric is,

in fact, automatically satisfied. Indeed, first of all note that since SX(a) = Xa

for a ∈ A = F (1) and X ∈ F (U), we have S∗
XY = 〈X,Y 〉 for all Y ∈ F (U).

Then, using conditions (i), (iii) and (v), for any X1, X2 ∈ F (U) and Y1, Y2 ∈
F (V ), we get

〈F2(X1 ⊗ Y1), F2(X2 ⊗ Y2)〉 = 〈Y1, S
∗
X1
F2(X2 ⊗ Y2)〉 = 〈Y1, S

∗
X1

(X2)Y2〉,

so F2 is an isometry.

(ii) Any unitary tensor functor C → CorrA defines a weak unitary tensor
functor. In other words, if conditions (i)–(iv) are satisfied and the maps F2 are
surjective, then condition (v) is also satisfied. In order to see this, note that
the map SX : F (V ) → F (U ⊗ V ) is adjointable, because by assumption F2

is unitary and the map Y 7→ X ⊗ Y is adjointable, with adjoint given by
X ′ ⊗ Y ′ 7→ 〈X,X ′〉Y ′. Since

SXF2 = F2(SX ⊗ ι) : F (V )⊗A F (W ) → F (U ⊗ V ⊗W ),

by taking the adjoints we get F ∗
2 S

∗
X = (S∗

X ⊗ ι)F ∗
2 . This is equivalent to

commutativity of the diagram in (v) by unitarity of F2.

(iii) If we consider F simply as a functor into the category of vector spaces,
then SX is a natural transformation from F to F (U⊗·), and so S∗

X is a natural
transformation from F (U ⊗ ·) to F , or in other words,

(2.1) S∗
XF (ι⊗ T ) = F (T )S∗

X

for morphisms T in C.
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Given a continuous left action of a compact quantum group G on a C∗-
algebra B with fixed point algebra A, the associated spectral functor RepG→
CorrA is a weak unitary tensor functor. Indeed, properties (i)–(iv) are imme-
diate, while (v) follows by observing that the adjoint of the map

SX : (HV ⊗B)G → (HU×V ⊗B)G, Y 7→ X13Y23,

is given by S∗
XZ = X∗

13Z. In other words, if X =
∑

i ξi ⊗ xi and Z =
∑

i,j ξi ⊗ ζj ⊗ zij for orthonormal bases {ξi}i in HU and {ζj}j in HV , then

(2.2) S∗
XZ =

∑

i,j

ζj ⊗ x∗i zij ∈ (HV ⊗ B)G.

The following is our main result.

Theorem 2.3. Assume G is a reduced compact quantum group and A is a
C∗-algebra. Then by associating to an action of G on a C∗-algebra its spectral
functor we get a bijection between isomorphism classes of triples (B, θ, ψ),
where θ is a continuous left action of G on a C∗-algebra B and ψ : A→ B is an
embedding such that BG = ψ(A), and natural unitary monoidal isomorphism
classes of weak unitary tensor functors RepG→ CorrA.

In the proof we will identify A with ψ(A) and simply talk about actions
with fixed point algebra A.

The main part of the proof is, of course, a construction of an action from
a weak unitary tensor functor F : RepG→ CorrA. We will define this action
in a series of lemmas.

Choose representatives Uα of isomorphism classes of irreducible unitary rep-
resentations of G, and write Hα instead of HUα

for the underlying Hilbert
spaces. We assume that there exists an index e such that Ue = 1. Consider
the space

BF =
⊕

α

H̄α ⊗ F (Uα).

It will also be convenient to consider a much larger space. Choose a small
C∗-tensor subcategory C ⊂ RepG containing the objects Uα, and then put

B̃F =
⊕

U

H̄U ⊗ F (U),

where the summation is over all objects in C. We have a canonical linear map
π : B̃F → BF defined as follows. For a finite dimensional unitary representation
U of G, choose isometries wi ∈ Mor(Uαi

, U) such that
∑

i wiw
∗
i = ι. Then put

π(ξ̄ ⊗X) =
∑

i

w̄∗
i ξ̄ ⊗ F (w∗

i )X,

where w̄iζ̄ = wiζ, so w̄
∗
i ξ̄ = w∗

i ξ. This definition is independent of the choice
of isometries wi, since for any other choice vj there exists a unitary matrix
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(uij)i,j such that wi =
∑

j uijvj . One property of π that we will regularly use,

is that if ξ̄ ⊗X ∈ H̄U ⊗ F (U) and w ∈ Mor(U, V ) is an isometry, then

(2.3) π
(

wξ ⊗ F (w)X
)

= π(ξ̄ ⊗X).

Define a product on B̃F by

(ξ̄ ⊗X) · (ζ̄ ⊗ Y ) = (ξ ⊗ ζ)⊗ F2(X ⊗ Y ).

It is immediate that this product is associative. Considering BF as a subspace
of B̃F , we define a product on BF by

xy = π(x · y) for x, y ∈ BF .

Lemma 2.4. The map π : B̃F → BF is a homomorphism, hence the product
on BF is associative.

Proof. We have to check that π(π(x) · π(y)) = π(x · y) for all x, y ∈ B̃F . Take
x = ξ̄ ⊗ X ∈ H̄U ⊗ F (U), y = ζ̄ ⊗ Y ∈ H̄V ⊗ F (V ) and choose isometries
ui ∈ Mor(Uαi

, U), vj ∈ Mor(Uαj
, V ) and wijk ∈ Mor(Uαk

, Uαi
× Uαj

) defining
decompositions of U , V and Uαi

× Uαj
into irreducibles. Then

π(π(x) · π(y)) =
∑

i,j,k

w∗
ijk(u

∗
i ξ ⊗ v∗j ζ)⊗ F (w∗

ijk)F2(F (u
∗
i )X ⊗ F (v∗j )Y ),

while

π(x · y) =
∑

i,j,k

w∗
ijk(u

∗
i ξ ⊗ v∗j ζ)⊗ F (w∗

ijk(u
∗
i ⊗ v∗j ))F2(X ⊗ Y ).

By naturality of F2 these expressions are equal. �

We can identify the space H̄e ⊗ F (Ue) = C̄ ⊗ A ⊂ BF with A. Under this
identification, the space A, with its original product, becomes a subalgebra
of BF . Furthermore, the left and right multiplications on H̄α ⊗ F (Uα) by
elements of A ⊂ BF are defined by the A-bimodule structure on F (Uα), that
is, the product on BF has the property

a(ξ̄ ⊗X) = ξ̄ ⊗ aX, (ξ̄ ⊗X)a = ξ̄ ⊗Xa.

Our next goal is to define an involution on BF . For a finite dimensional
unitary representation U of G consider the standard solution (RU , R̄U ) of the
conjugate equations for U defined by (1.1).

Lemma 2.5. For every X ∈ F (U) there exists a unique element X• ∈ F (Ū)
such that

〈X•, Y 〉 = F (R̄∗
U )F2(X ⊗ Y ) for all Y ∈ F (Ū).

If the C∗-algebra A is unital, then X• = S∗
XF (R̄U )(1). We also have

〈X,Y 〉 = F (R∗
U )F2(X

• ⊗ Y ) for all Y ∈ F (U).
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Proof. The uniqueness is clear. In order to prove the existence assume first
that A is unital. We then have

〈S∗
XF (R̄U )(1), Y 〉 = 〈F (R̄U )(1), F2(X ⊗ Y )〉 = F (R̄∗

U )F2(X ⊗ Y ),

so X• = S∗
XF (R̄U )(1). If A is nonunital, then a similar computation shows

that for any X ∈ F (U) and a ∈ A the element (aX)• exists and (aX)• =
S∗
XF (R̄U )(a

∗). But this is enough, since by Cohen’s factorization theorem any
element of F (U) has the form aX .

To prove the last statement in the formulation, assume once again that A is
unital, the nonunital case requires only a minor modification. For Y ∈ F (U)
we compute:

F (R∗
U )F2(X

• ⊗ Y ) = F (R∗
U )F2(S

∗
XF (R̄U )(1)⊗ Y )

= F (R∗
U )S

∗
XF2(F (R̄U )(1)⊗ Y )

= S∗
XF (ι⊗R∗

U )F (R̄U ⊗ ι)Y by (2.1)

= S∗
XY.

Here SX is the map A → F (U), a 7→ F2(X ⊗ a) = Xa, so S∗
XY = 〈X,Y 〉, as

was already observed in Remark 2.2(i). �

This lemma implies that the correspondences F (U) and F (Ū) are, in some
sense, dual to each other. In general, this is not the duality in the C∗-
categorical sense. Already the simplest examples, such as the spectral functor
associated with the action of T by rotations on the unit disk, show that the
objects F (U) do not necessarily have conjugates in CorrA.

Similarly, for every vector ξ ∈ HU define a vector ξ• ∈ HŪ by

ξ• = (ι⊗ ξ̄)RU (1) = ρ−1/2ξ, so (ζ, ξ•) = R∗
U (ζ ⊗ ξ) for all ζ ∈ HŪ .

Define an anti-linear map B̃F → B̃F , x 7→ x•, by

(ξ̄ ⊗X)• = ξ• ⊗X•.

For x ∈ BF put x∗ = π(x•). On A ⊂ BF this clearly coincides with the invo-
lution on A. Although we will not need this, we remark that it is not difficult
to show that the particular choice of solutions (RU , R̄U ) was not important

for defining the involution on BF , in the sense that for every x ∈ B̃F the
element π(x•) is independent of any choices.

Lemma 2.6. The map x 7→ x∗ defines an involution on the algebra BF , and
for every x ∈ B̃F we have π(x)∗ = π(x•).

Proof. We start by proving the second part. We have to show that π(π(x)•) =
π(x•). Take an element x = ξ̄ ⊗ X ∈ H̄U ⊗ F (U). Choose isometries wi ∈
Mor(Uαi

, U) defining a decomposition of U into irreducibles. Write Ri for RUαi

and R̄i for R̄Uαi
. Then RU =

∑

i(w̄i ⊗ wi)Ri and R̄U =
∑

i(wi ⊗ w̄i)R̄i. For
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any Y ∈ F (Ū) we have

F (R̄∗
U )F2(X ⊗ Y ) =

∑

i

F (R̄∗
i )F2(F (w

∗
i )X ⊗ F (w̄∗

i )Y )

=
∑

i

〈(F (w∗
i )X)•, F (w̄∗

i )Y 〉,

so X• =
∑

i F (w̄i)(F (w
∗
i )X)•. We also have ξ• =

∑

i w̄i(w
∗
i ξ)

•. Therefore

x• =
∑

i

¯̄wi(w∗
i ξ)

• ⊗ F (w̄i)(F (w
∗
i )X)•.

Applying π and using (2.3) we get

π(x•) =
∑

i

π
(

(w∗
i ξ)

• ⊗ (F (w∗
i )X)•

)

= π(π(x)•).

We next prove anti-multiplicativity of the map ∗ on BF . For this it suffices
to check that for all x, y ∈ B̃F we have π((x·y)•) = π(y• ·x•). Take x = ξ̄⊗X ∈
H̄U ⊗F (U) and y = ζ̄ ⊗ Y ∈ H̄V ⊗F (V ). The unitary σ : HV̄ ⊗HŪ → HU×V

mapping η̄ ⊗ ϑ̄ into ϑ⊗ η defines an equivalence between V̄ × Ū and U × V ,
and we have

RU×V = (σ ⊗ ι⊗ ι)(ι⊗RU ⊗ ι)RV and R̄U×V = (ι⊗ ι⊗ σ)(ι ⊗ R̄V ⊗ ι)R̄U .

Assuming that A is unital we compute:

F2(X ⊗ Y )• = S∗
F2(X⊗Y )F (R̄U×V )(1) by Lemma 2.5

= S∗
Y S

∗
XF (ι⊗ ι⊗ σ)F (ι⊗ R̄V ⊗ ι)F (R̄U )(1)

as SF2(X⊗Y ) = SXSY

= F (σ)S∗
Y F (R̄V ⊗ ι)S∗

XF (R̄U )(1) by (2.1)

= F (σ)S∗
Y F (R̄V ⊗ ι)(X•)

= F (σ)S∗
Y F2(F (R̄V )(1)⊗X•)

= F (σ)F2(S
∗
Y F (R̄V )(1)⊗X•)

= F (σ)F2(Y
• ⊗X•).

In the nonunital case we get the same identity by replacing X and Y by
elements of the form aX and bY , see the proof of Lemma 2.5. We also have
(ξ ⊗ ζ)• = σ(ζ• ⊗ ξ•). Therefore

(x · y)• = (σ̄ ⊗ F (σ))
(

(ζ• ⊗ ξ•)⊗ F2(Y
• ⊗X•)

)

= (σ̄ ⊗ F (σ))(y• · x•).

Applying π we get π((x · y)•) = π(y• · x•).
It remains to show that the map x 7→ x∗ on BF is involutive. Equivalently,

we have to show that π(x••) = π(x) for all x ∈ B̃F . Take an element x =

ξ̄ ⊗ X ∈ H̄U ⊗ F (U). Consider the unitary u : HU → H ¯̄U mapping ζ into ¯̄ζ.

Then R̄Ū = (ι⊗ u)RU . Hence, for any Y ∈ F ( ¯̄U),

〈X••, Y 〉 = F (R̄∗
Ū )F2(X

• ⊗ Y ) = F (R∗
U )F2(X

• ⊗ F (u∗)Y ) = 〈X,F (u∗)Y 〉,
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where the last equality follows from Lemma 2.5. Thus X•• = F (u)X . We also

have ξ•• = ¯̄ξ = uξ. Therefore

x•• = (ū⊗ F (u))x,

and applying π we get π(x••) = π(x). �

We next define a linear map θF : BF → C[G]⊗ BF by

θF (ξ̄ ⊗X) = (U c
α)

∗
21(1 ⊗ ξ̄ ⊗X) for ξ̄ ⊗X ∈ H̄α ⊗ F (Uα).

In other words, if we fix an orthonormal basis {ξi}i in Hα and write Uα as a
matrix (uij)i,j , then

θF (ξ̄i ⊗X) =
∑

j

uij ⊗ ξ̄j ⊗X.

Lemma 2.7. The map θF defines a left algebraic action of G on BF with fixed
point algebra A.

Proof. Clearly, the map θF turns BF into a comodule over (C[G],∆) with fixed
point subcomodule A.

In order to show that θF is a homomorphism, observe first that we have a
left comodule structure θ̃F : B̃F → C[G]⊗ B̃F on B̃F defined in the same way
as for BF , so θF (ξ̄ ⊗X) = (U c)∗21(1 ⊗ ξ̄ ⊗X) for ξ̄ ⊗X ∈ H̄U ⊗ F (U). Then

π : B̃ → BF is a comodule map, since if w ∈ Mor(U, V ), then U c∗(w̄ ⊗ 1) =
(w̄ ⊗ 1)V c∗. Using that (U × V )c∗ = (U c)∗13(V

c)∗23, modulo identification of

HU ⊗HV with H̄U ⊗ H̄V , it is easy to see that θ̃F is a homomorphism. Hence
θF is also a homomorphism.

Next let us check that θF is ∗-preserving. It suffices to show that θ̃F (x)
∗⊗• =

θ̃F (x
•) for x ∈ H̄U ⊗ F (U) ⊂ B̃F . Fixing an orthonormal basis {ξi}i in HU

and identifying ¯̄HU with HU , we get

θ̃F (ξ̄i ⊗X)∗⊗• =
∑

j

u∗ij ⊗ ρ−1/2ξj ⊗X•

and

θ̃F ((ξ̄i ⊗X)•) = (Ū c)∗21(1⊗ ρ−1/2ξi ⊗X•).

Since Ū c∗ = (ρ−1/2 ⊗ 1)U∗(ρ1/2 ⊗ 1), these expressions coincide.
It remains to show that BF is a right pre-Hilbert A-module with inner

product 〈x, y〉 = E(x∗y), where E = (h⊗ ι)θF , and the left action of A on BF

by multiplication is bounded. This will follow immediately, if we can show
that the spaces H̄α ⊗ F (Uα) are mutually orthogonal and

〈ξ̄ ⊗X, ζ̄ ⊗ Y 〉 =
1

dimq Uα
(ρ−1ξ, ζ)〈X,Y 〉 for ξ, ζ ∈ Hα, X, Y ∈ F (Uα).

Note that if z = η̄ ⊗ Z ∈ H̄U ⊗ F (U), then E(π(z)) =
∑

i w
∗
i η ⊗ F (w∗

i )Z,
where wi ∈ Mor(1, U) are isometries such that

∑

i wiw
∗
i is the projection onto

the isotypic component of U corresponding to the trivial representation. This
clearly implies mutual orthogonality of the spaces H̄α⊗F (Uα). If U = Ūα×Uα,
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then the only isometry in Mor(1, U), up to a phase factor, is (dimq Uα)
−1/2Rα,

where Rα = RUα
. Therefore for ξ, ζ ∈ Hα and X,Y ∈ F (Uα) we have

〈ξ̄ ⊗X, ζ̄ ⊗ Y 〉 =
1

dimq Uα
R∗

α(ξ
• ⊗ ζ)F (R∗

α)F2(X
• ⊗ Y ).

By Lemma 2.5 we have F (R∗
α)F2(X

• ⊗ Y ) = 〈X,Y 〉. Using that ξ• = ρ−1/2ξ

it is also straightforward to check that R∗
α(ξ

• ⊗ ζ) = (ζ, ρ−1ξ). This finishes
the proof of the lemma. �

As we discussed in the previous section, an algebraic action of G on B
uniquely defines a completion BF of BF carrying a continuous action of the
reduced form of G. Therefore the previous lemma finishes our construction of
a continuous action from a weak unitary tensor functor.

Proof of Theorem 2.3. It is clear that isomorphic actions produce naturally
unitarily monoidally isomorphic weak unitary tensor functors, and naturally
unitarily monoidally isomorphic weak unitary tensor functors produce isomor-
phic actions. It remains to show that up to isomorphisms the constructions
are inverse to each other.

Assume θ is a continuous left action of G on a C∗-algebra B with fixed
point algebra A. Let F be the associated spectral functor and B ⊂ B be the
subalgebra of regular elements. Consider the algebraic action θF of G on BF

defined by F as described above. We have a linear isomorphism

BF
∼= B mapping π(ξ̄ ⊗X) ∈ BF into (ξ̄ ⊗ ι)(X) ∈ B

for ξ̄ ⊗ X ∈ H̄U ⊗ (HU ⊗ B)G. It is easy to see that this is a G-equivariant
isomorphism of algebras. It is a bit less obvious that this isomorphism is ∗-
preserving. In order to show this, fix an irreducible representation Uα and
an orthonormal basis {ξi}i in Hα. Consider an element X =

∑

i ξi ⊗ xi ∈
(Hα ⊗B)G. Writing R̄α for R̄Uα

, assuming for simplicity that A is unital and
using Lemma 2.5 and identity (2.2) for S∗

X , we get

X• = S∗
XF (R̄α)(1) = S∗

X





∑

j

ρ1/2ξj ⊗ ξ̄j ⊗ 1





=
∑

i,j

(ρ1/2ξj , ξi)ξ̄j ⊗ x∗i =
∑

i

ρ1/2ξi ⊗ x∗i .

From this we see that the image of the element (ξ̄⊗X)∗ = π
(

ρ−1/2ξ⊗X•
)

∈

BF in B equals

∑

i

(ρ−1/2ξ, ρ1/2ξi)x
∗
i =

(

∑

i

(ξi, ξ)xi

)∗

,

so the isomorphism BF
∼= B is indeed ∗-preserving.

Now conversely, assume we start with a weak unitary tensor functor F ,
consider the action θF of G on BF , and define the corresponding spectral
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functor F ′. It is easy to see that if we fix an irreducible representation Uα

and an orthonormal basis {ξi}i in Hα, then the dense subspace (Hα ⊗ BF )
G

of F ′(Uα) = (Hα ⊗ BF )
G consists of vectors of the form

∑

i(ξi ⊗ ξ̄i ⊗ X),
with X ∈ F (Uα). We have the obvious A-bilinear map F (Uα) → F ′(Uα) with
dense image, mapping X into

∑

i(ξi ⊗ ξ̄i ⊗X). Let us check that this map is
isometric. Taking vectors X ′ =

∑

i(ξi ⊗ ξ̄i ⊗ X) and Y ′ =
∑

i(ξi ⊗ ξ̄i ⊗ Y )
in F ′(Uα), and writing Rα for RUα

, we compute:

〈X ′, Y ′〉 =
∑

i

(ξ̄i ⊗X)∗(ξ̄i ⊗ Y ) = π

(

∑

i

(ρ−1/2ξi ⊗X•) · (ξ̄i ⊗ Y )

)

= π
(

Rα(1)⊗ F2(X
• ⊗ Y )

)

.

Since, up to a scalar factor, Rα is an isometry in Mor(1, Ūα × Uα), the last
expression equals

F (R∗
α)F2(X

• ⊗ Y ) = 〈X,Y 〉

by Lemma 2.5. Thus we get unitary isomorphisms F (Uα) ∼= F ′(Uα). These iso-
morphisms for all α extend uniquely to a natural unitary isomorphism between
the functors F and F ′. It is straightforward to check that this isomorphism is
monoidal. �

3. Module categories

In this section we will give a different categorical description of actions in
terms of module categories. Recall that given a C∗-tensor category C, a right
C-module C∗-category is a C∗-category M equipped with a bilinear unitary
functor ⊗ : M×C → M together with natural unitary isomorphisms

φ : (M ⊗ U)⊗ V →M ⊗ (U ⊗ V )

and e : M ⊗ 1 → M satisfying certain coherence relations, see [4] for details.
If C is strict, a module category M is called strict if φ and e are the identity
morphisms. Any module category over a strict C∗-tensor category is equivalent
to a strict one.

In the following discussion we will tacitly assume that the C∗-categories that
we consider have subobjects, meaning that for every projection p in End(M)
there exists an object N and an isometry v ∈ Mor(N,M) such that vv∗ = p.
This is a very mild assumption, as we can always complete a C∗-category with
respect to subobjects.

Assume we are given a continuous left action of a reduced compact quantum
group G on a unital C∗-algebra B. Following [4], consider the category DB of
unitary G-equivariant finitely generated right Hilbert B-modules. By defini-
tion, the morphisms in DB areG-equivariant maps of Hilbert B-modules. Since
we consider only finitely generated Hilbert modules, such maps are automati-
cally adjointable, so DB is a C∗-category. It is a strict right (RepG)-module
C∗-category: given a right Hilbert B-module M with the action of G given by
an isometry δM : M → C(G) ⊗M , we define M ⊗ U as the Hilbert B-module
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M ⊗HU with the action of G given by x⊗ ξ 7→ U∗
31(δM (x)⊗ ξ). Note that for

M = B the module B ⊗ U is, up to identification of HU ⊗ B with B ⊗ HU ,
the same equivariant module HU ⊗ B that we considered in Section 1. The
module B generates the category DB, in the sense that any object in DB is
a subobject of B ⊗ U for some U . In other words, any G-equivariant finitely
generated right Hilbert B-module M is isomorphic to a direct summand of
B ⊗HU for some U , see [14, Sec. 3.2] or [10, Lemma 3.2].

Let F be the spectral functor associated with the action of G on B. We
have canonical isomorphisms

F (U) = (HU ⊗B)G ∼= Mor(B,B ⊗ U)

that map
∑

i(ξi ⊗ xi) ∈ (HU ⊗ B)G into the morphism x 7→
∑

i(xix ⊗ ξi).
For ergodic actions, these isomorphisms, modulo some identifications in terms
of Frobenius reciprocity, were already used in [4, Sec. 6] to identify algebras
constructed in [4] with those defined by Pinzari and Roberts [13]. In other
words, the key relation between the results in [4] and [13] can be described by
saying that given a (RepG)-module C∗-category M and a simple object M
in M, the functor U 7→ Mor(M,M ⊗ U) has all the properties of a spectral
functor. With our characterization of spectral functors this becomes almost
immediate. Specifically, and more generally, we have the following.

Proposition 3.1. Assume M is a strict right module C∗-category over a
strict C∗-tensor category C. Take an object M ∈ M and consider the unital
C∗-algebra A = End(M). Then the following defines a weak unitary tensor
functor C → CorrA:

F (U) = Mor(M,M ⊗ U),

with the right A-module structure on F (U) given by composition of morphisms,
the left A-module structure by aX = (a⊗ι)X and the inner product by 〈X,Y 〉 =
X∗Y , the action of F on morphisms is defined by F (T )X = (ι⊗ T )X, and

F2 : F (U)⊗A F (V ) → F (U ⊗ V )

is given by X ⊗ Y 7→ (X ⊗ ι)Y .

Proof. This is a routine verification. We only remark that the adjoint of the
map

SX : F (V ) → F (U ⊗ V ), Y 7→ (X ⊗ ι)Y,

is obviously given by S∗
XZ = (X∗ ⊗ ι)Z. �

If the objectM happens to be generating, then we can reconstruct the whole
category M from the functor F . For C = RepG this gives the following result.

Proposition 3.2. Assume G is a reduced compact quantum group and M
is a strict right (RepG)-module C∗-category generated by an object M . Put
A = End(M) and consider the weak unitary tensor functor F : RepG →
CorrA defined by the object M as described in the previous proposition. Let
θ : B → C(G) ⊗ B be the continuous action corresponding to this functor
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by Theorem 2.3. Then DB is unitarily equivalent, as a (RepG)-module C∗-
category, to M, via an equivalence that maps the generator B ∈ DB into M .

Proof. Consider the functor F ′ : DB → CorrA defined by the object B ∈ DB .
By the above discussion, it is naturally unitarily monoidally isomorphic to
the spectral functor associated with the action of G on B, hence to F . Let
ψ : F ′ → F be such an isomorphism. Note that we automatically have that
ψ : A = F ′(1) → F (1) = A is the identity map, since it is a bimodule map
such that ψF2 = F ′

2(ψ ⊗ ψ).

Consider the full subcategories D̃B ⊂ DB and M̃ ⊂ M consisting of objects
B ⊗ U and M ⊗ U , respectively. We want to define a functor E : D̃B → M̃.
On objects we put E(B ⊗ U) = M ⊗ U . For morphisms T ∈ Mor(B,B ⊗ U)
we put E(T ) = ψ(T ). More generally, given two finite dimensional unitary
representations U and V , we have Frobenius reciprocity isomorphisms

Mor(B ⊗ U,B ⊗ V ) → Mor(B,B ⊗ V ⊗ Ū), T 7→ (T ⊗ ι)(ι ⊗ R̄U ),

with inverse S 7→ (ι⊗ ι⊗R∗
U )(S⊗ ι). We also have similar isomorphisms in M̃.

Hence we can define linear isomorphisms

E : Mor(B ⊗ U,B ⊗ V ) → Mor(M ⊗ U,M ⊗ V )

by E(T ) = (ι⊗ ι⊗R∗
U )
(

ψ
(

(T ⊗ ι)(ι ⊗ R̄U )
)

⊗ ι
)

.
Before we turn to the proof that E is indeed a functor, let us make two

observations. The first one is that given a morphism T : B ⊗ U → B ⊗ V

and a finite dimensional unitary representation W of G, for the morphism
T ⊗ ιW = T ⊗ ι : B ⊗ U ⊗W → B ⊗ V ⊗W we have

(3.1) E(T ⊗ ι) = E(T )⊗ ι.

The second observation is that given a morphism T : B ⊗ U → B ⊗ V and a
morphism S : V →W , we have

(3.2) E((ι⊗ S)T ) = (ι⊗ S)E(T ).

Both claims follow easily from naturality of ψ, which means that for any mor-
phisms T : B → B ⊗ U and S : U → V we have ψ((ι ⊗ S)T ) = (ι⊗ S)ψ(T ).

Consider now morphisms R : B ⊗ U → B ⊗ V and T : B ⊗ V → B ⊗W ,
and define the morphisms P = (R ⊗ ι)(ι ⊗ R̄U ) : B → B ⊗ V ⊗ Ū and S =
(T ⊗ ι)(ι ⊗ R̄V ) : B → B ⊗W ⊗ V̄ . We then have

TR = (ιB ⊗ ιW ⊗R∗
V )(S ⊗ ιV )(ιB ⊗ ιV ⊗R∗

U )(P ⊗ ιU )

= (ιB ⊗ ιW ⊗R∗
V )(ιB ⊗ ιW ⊗ ιV̄ ⊗ ιV ⊗R∗

U )((S ⊗ ι⊗ ι)P ⊗ ιU )

= (ιB ⊗ ιW ⊗R∗
V ⊗R∗

U )(F
′
2(S ⊗ P )⊗ ιU ),

where F ′
2(S ⊗ P ) = (S ⊗ ι ⊗ ι)P : B → B ⊗ W ⊗ V̄ ⊗ V ⊗ Ū . A similar

computation gives

E(T )E(R) = (ιM ⊗ ιW ⊗R∗
V ⊗R∗

U )(F2(ψ(S)⊗ ψ(P ))⊗ ιU ).

From this we immediately get that E(TR) = E(T )E(R) using (3.2), (3.1)
and monoidality of ψ, which means that ψF ′

2(S ⊗ P ) = F2(ψ(S) ⊗ ψ(P )).
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Therefore E is a functor. Since it is surjective on objects and fully faithful, it
is an equivalence of the linear categories D̃B and M̃.

Let us show next that the equivalence E is unitary, that is, E(T )∗ = E(T ∗)
on morphisms. Let us check this first for T ∈ Mor(B,B ⊗ U). Since ψ is
unitary, for any S ∈ Mor(B,B ⊗ U) we have

E(T )∗E(S) = ψ(T )∗ψ(S) = 〈ψ(T ), ψ(S)〉 = 〈T, S〉

= T ∗S = E(T ∗S) = E(T ∗)E(S).

Since this is true for all S, we conclude that E(T )∗ = E(T ∗). By virtue

of (3.1) we then also get E(T ⊗ ι)∗ = E((T ⊗ ι)∗). But any morphism in D̃B is
a composition of such a morphism T ⊗ ιW and a morphism of the form ιM ⊗S

for some morphism S in RepG. Since as a particular case of (3.2) we have
E(ι⊗ S)∗ = ι⊗ S∗ = E((ι⊗ S)∗), it follows that E is unitary.

Next, from (3.1) and (3.2) we see that the functor E together with the
identity morphisms

E2 = E2,B⊗U,V : E(B ⊗ U)⊗ V → E(B ⊗ U ⊗ V )

is a unitary equivalence between the (RepG)-module categories D̃B and M̃.
Finally, since DB and M are completions of these categories with respect to
subobjects, the equivalence between D̃B and M̃ extends uniquely, up to a
natural unitary isomorphism, to a unitary equivalence between the (RepG)-
module C∗-categories DB and M. �

This leads to the main theorem of this section, a generalization of results of
De Commer and Yamashita [4] to the nonsemisimple/nonergodic case.

Theorem 3.3. Assume G is a reduced compact quantum group. Then by
associating to an action of G on a unital C∗-algebra B the (RepG)-module
category DB with generator B, we get a bijection between isomorphism classes
of continuous left actions of G on unital C∗-algebras and unitary equivalence
classes of pairs (M,M), where M is a right (RepG)-module C∗-category and
M is a generating object in M.

Proof. In view of the above proposition we only have to show that two actions
of G on unital C∗-algebras B and C are isomorphic if and only if the pairs
(DB , B) and (DC , C) are unitarily equivalent. Given such an equivalence,
we first of all get an isomorphism BG = EndDB

(B) ∼= EndDC
(C) = CG.

Modulo the identification of BG with CG using this isomorphism, we then also
get a natural unitary monoidal isomorphism between the spectral functors
associated with our actions. Hence the actions are isomorphic by the easy
part of Theorem 2.3. Conversely, it is clear that isomorphic actions produce
unitarily equivalent pairs. �

As in [4], this result can also be formulated in terms of Morita equivalent
actions.
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Corollary 3.4. For any reduced compact quantum group G, there is a bijection
between Morita equivalence classes of continuous left actions of G on unital
C∗-algebras and unitary equivalence classes of singly generated right (RepG)-
module C∗-categories.

Proof. It suffices to show that two actions of G on unital C∗-algebras B and C
are Morita equivalent if and only if the (RepG)-module C∗-categories DB

and DC are unitarily equivalent. In one direction this is obvious: if a C-B-
bimodule M defines the Morita equivalence, then DC and DB are unitarily
equivalent, via an equivalence that maps N ∈ DC into N ⊗C M . Conversely,
assume we have a unitary equivalence E : DC → DB of (RepG)-module cate-
gories. Consider the right Hilbert B-module M = E(C). Since it is a generat-
ing object in DB , and therefore the right Hilbert B-module B can be isometri-
cally embedded into M ⊗HU for some representation U , the module M must
be full. Thus the action of G on B is Morita equivalent to the action of G on
C′ = EndB(M). The (RepG)-module C∗-categories DB and DC′ are unitarily
equivalent, via an equivalence that maps M ∈ DB into C′ ∈ DC′ . It follows
that the (RepG)-module C∗-categories DC and DC′ are unitarily equivalent,
via an equivalence that maps C into C′. By Theorem 3.3 this implies that the
actions of G on C and C′ are isomorphic, so the actions of G on B and C are
Morita equivalent. �

Remark 3.5. In the above proof we used that if an equivariant right Hilbert B-
module M is a generating object in DB, then it is full. The proof implies that
the converse is also true, since ifM is full, thenM is the image of the generating
object C in DC , where C = EndB(M), under the equivalence of categories DC

and DB defined by M , hence M is a generating object in DB. Somewhat more
explicitly this can also be proved as follows. It suffices to show that B ∈ DB

is a subobject of M ⊗ V for some finite dimensional unitary representation V
of G. Replacing M by Mn we may assume that there exists a vector X ∈ M

such that the element 〈X,X〉 ∈ B is invertible. Furthermore, since the union
of spectral subspaces of M is dense in M , we may assume that X lies in a
spectral subspace of M corresponding to some representation U . In other
words, there exist an orthonormal basis {ξi}i in HU and vectors Xi ∈M such
that δM (Xi) =

∑

j u
∗
ij ⊗ Xj and one of the inner products 〈Xi, Xi〉 ∈ B is

invertible. Consider the vector

Y =
∑

i

Xi ⊗ ρ1/2ξi ∈M ⊗HŪ .

Then Y is invariant and 〈Y, Y 〉 =
∑

i,j〈Xi, Xj〉(ρξi, ξj). Since the matrix

((ρξi, ξj))i,j is positive and invertible, and the matrix (〈Xi, Xj〉)i,j is positive,
there exists a constant c > 0 such that

〈Y, Y 〉 ≥ c
∑

i

〈Xi, Xi〉.

It follows that 〈Y, Y 〉 is invertible, so the map B ∋ x 7→ Y 〈Y, Y 〉−1/2x gives an
equivariant isometric embedding of B into M ⊗HŪ .
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4. Examples and applications

The data provided by a weak unitary tensor functor and the construction of
the corresponding C∗-algebra are reminiscent of various crossed product type
constructions. To make the connection more explicit, let us give an equivalent
description of weak unitary tensor functors in terms of collections of Hilbert
module maps satisfying a system of quadratic relations.

Assume G is a compact quantum group and F : RepG→ CorrA is a weak
unitary tensor functor. As in Section 2, fix representatives Uα of irreducible
unitary representations of G, and assume Ue is the trivial representation.
Consider the correspondences Mα = F (Uα) and the linear maps ϕγ

α,β from

Mor(Uα×Uβ, Uγ) into the space of bounded A-bilinear mapsMα⊗AMβ →Mγ

defined by ϕγ
α,β(T ) = F (T )F2. We then have the following:

(i) Me = A;
(ii) if a morphism of the form (T1, . . . , Tn) : Uα × Uβ → ⊕n

i=1Uγi
is unitary,

then the map (ϕ(T1), . . . , ϕ(Tn)) : Mα ⊗A Mβ → ⊕n
i=1Mγi

is isometric;

(iii) the image of the identity map Uβ → Uβ under ϕβ
e,β is the map A⊗AMβ →

Mβ such that a⊗X 7→ aX , and similarly the image of the identity map
Uα → Uα under ϕα

α,e is the map Mα⊗AA→Mα such that X⊗a 7→ Xa;
(iv) if a morphism Uα×Uβ×Uγ → Uδ is written as

∑

i Si(Ti⊗ ι) =
∑

j S
′
j(ι⊗

T ′
j) for some morphisms Ti : Uα×Uβ → Uαi

, Si : Uαi
×Uγ → Uδ, T

′
j : Uβ×

Uγ → Uβj
and S′

j : Uα × Uβj
→ Uδ, then

∑

i

ϕ(Si)(ϕ(Ti)⊗ ι) =
∑

j

ϕ(S′
j)(ι⊗ ϕ(T ′

j))

as maps Mα ⊗A Mβ ⊗A Mγ →Mδ;
(v) for every vector X ∈ Mα and every morphism T : Uα × Uβ → Uγ , the

right A-linear map SX [T ] : Mβ → Mγ mapping Y into ϕ(T )(X ⊗ Y )
is adjointable, and if a morphism Uγ × Uδ → Uα × Uη is written as
∑

i(ι⊗ Si)(T
∗
i ⊗ ι) =

∑

j P
∗
j Rj for some morphisms Ti : Uα × Uβi

→ Uγ ,
Si : Uβi

× Uδ → Uη, Rj : Uγ × Uδ → Uγj
and Pj : Uα × Uη → Uγj

, then
∑

i

ϕ(Si)(SX [Ti]
∗ ⊗ ι) =

∑

j

SX [Pj ]
∗ϕ(Rj)

as maps Mγ ⊗A Mδ →Mη.

Properties (i)–(iv) follow immediately by definition. As will become clear from
the proof of the following proposition, the last property, in the presence of the
other four, is equivalent to condition (v) in Definition 2.1. In particular, if in (ii)
we have unitary maps instead of isometric maps, then (v) is a consequence of
properties (i)–(iv).

Proposition 4.1. Assume we are given correspondences Mα ∈ CorrA and
linear maps ϕγ

α,β from Mor(Uα × Uβ , Uγ) into the space of bounded A-bilinear

maps Mα ⊗A Mβ → Mγ such that the above conditions (i)–(v) are satisfied.
Then there exists a unique, up to a natural unitary monoidal isomorphism,
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weak unitary tensor functor F : RepG → CorrA such that F (Uα) = Mα and
F (T )F2 = ϕ

γ
α,β(T ) for T ∈ Mor(Uα × Uβ, Uγ).

Proof. By virtue of semisimplicity of RepG, there exists a unique, up to a
natural unitary isomorphism, unitary functor F : RepG → CorrA such that
F (Uα) =Mα. We then define

F2 : F (Uα)⊗A F (Uβ) → F (Uα × Uβ) by F2 =
∑

i

F (w∗
i )ϕ(wi),

where wi : Uα × Uβ → Uγi
are coisometric morphisms such that

∑

i w
∗
iwi = ι.

It is easy to see that this definition does not depend on the choice of wi.
By condition (ii) the map F2 is isometric. Note also that F (wi)F2 = ϕ(wi),
whence F (T )F2 = ϕ(T ) for all T ∈ Mor(Uα × Uβ, Uγ). By semisimplicity of
RepG the isometries F2 : F (Uα) ⊗A F (Uβ) → F (Uα × Uβ) uniquely define a
family of natural isometries F2 : F (U) ⊗A F (V ) → F (U × V ). The only not
entirely obvious property left to check is commutativity of two diagrams in
Definition 2.1.

For the first diagram, we have to check that F2(F2 ⊗ ι) = F2(ι ⊗ F2) as
maps F (Uα)⊗A F (Uβ)⊗A F (Uγ) → F (Uα×Uβ×Uγ). It suffices to check that
F (w)F2(F2 ⊗ ι) = F (w)F2(ι⊗ F2) for any morphism w : Uα × Uβ × Uγ → Uδ.
Any such morphism can be written as

∑

i Si(Ti ⊗ ι) =
∑

j S
′
j(ι ⊗ T ′

j). By
naturality of F2 we then have

F (w)F2(F2 ⊗ ι) =
∑

i

F (Si)F2(F (Ti)F2 ⊗ ι) =
∑

i

ϕ(Si)(ϕ(Ti)⊗ ι),

and similarly F (w)F2(ι⊗ F2) =
∑

j ϕ(S
′
j)(ι ⊗ ϕ(T ′

j)). By condition (iv) these
expressions are equal.

It remains to show that for every X ∈ F (U) the maps SX = SX,V : F (V ) →
F (U ⊗ V ) are adjointable and F2(S

∗
X ⊗ ι) = S∗

XF2. For the adjointability it
suffices to show that the map SX : F (Uβ) → F (Uα×Uβ) is adjointable for every
X ∈ F (Uα). Decomposing Uα×Uβ into irreducible representations, we see that
adjointability of SX is equivalent to adjointability of F (T )SX for all morphisms
T : Uα × Uβ → Uγ . Since F (T )SX(Y ) = F (T )F2(X ⊗ Y ) = ϕ(T )(X ⊗ Y ), we
have F (T )SX = SX [T ], so adjointability of F (T )SX is part of condition (v).

Finally, we have to show that F2(S
∗
X ⊗ ι) = S∗

XF2 as maps F (Uα ×Uβ)⊗A

F (Uδ) → F (Uβ × Uδ) for X ∈ F (Uα). This is equivalent to

F (S)F2(S
∗
X ⊗ ι)(F (T ∗)⊗ ι) = F (S)S∗

XF2(F (T
∗)⊗ ι)

as maps F (Uγ) ⊗A F (Uδ) → F (Uη), for all morphisms S : Uβ × Uδ → Uη

and T : Uα × Uβ → Uγ . The left hand side of the above identity equals
ϕ(T )(SX [T ]∗ ⊗ ι), while the right hand side, by (2.1), equals

S∗
XF (ι⊗ S)F2(F (T

∗)⊗ ι) = S∗
XF ((ι⊗ S)(T ∗ ⊗ ι))F2.
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Writing the morphism (ι⊗S)(T ∗⊗ ι) as
∑

j P
∗
j Rj for some Rj : Uγ×Uδ → Uγj

and Pj : Uα × Uη → Uγj
, we can write the last expression as

∑

j

S∗
XF (P

∗
j )F (Rj)F2 =

∑

j

SX [Pj ]
∗ϕ(Rj).

We thus see that the identity F2(S
∗
X ⊗ ι) = S∗

XF2 follows from condition (v).
Furthermore, from the proof we see that it is equivalent to that condition,
since any morphism Uγ ×Uδ → Uα ×Uη can be written as

∑

i(ι⊗ Si)(T
∗
i ⊗ ι)

for appropriate morphisms Ti : Uα × Uβi
→ Uγ and Si : Uβi

× Uδ → Uη using
Frobenius reciprocity. �

Given data {Mα}α and {ϕγ
α,β}α,β,γ as above, the construction of the corre-

sponding C∗-algebra BF from Section 2 goes as follows. For every α define a
new scalar product on H̄α = H̄Uα

by

(ξ̄, ζ̄) =
1

dimq Uα
(ζ, ρ−1ξ).

Consider the right Hilbert A-module

M = ℓ2-
⊕

α

H̄α ⊗Mα.

For every x = ξ̄ ⊗X ∈ H̄α ⊗Mα define an operator Lx on M by

Lx(ζ̄ ⊗ Y ) =
∑

i

wi(ξ ⊗ ζ)⊗ ϕ
γi

α,β(wi)(X ⊗ Y ) for ζ̄ ⊗ Y ∈ H̄β ⊗Mβ,

where wi ∈ Mor(Uα × Uβ, Uγi
) are coisometries such that

∑

iw
∗
iwi = ι. Then

the results of Section 2 can be summarized by saying that the operators Lξ̄⊗X

for all ξ ∈ Hα, X ∈Mα and all indices α, span a ∗-algebra of bounded operators
on the Hilbert A-module M , and BF is the norm closure of this algebra.

Example 4.2. Assume G is the dual of a discrete group Γ. We identify the
set of isomorphism classes of irreducible representations of G with Γ. Then,
up to equivalence, a weak unitary tensor functor F : RepG → CorrA is the
same as a collection of C∗-correspondences Mα, α ∈ Γ, over A, together with
A-bilinear isometries ϕα,β : Mα ⊗A Mβ → Mαβ such that

(a) Me = A;
(b) ϕe,α : A⊗AMα →Mα and ϕα,e : Mα⊗AA→ Mα are the maps a⊗X 7→ aX

and X ⊗ a 7→ Xa, respectively;
(c) ϕαβ,γ(ϕα,β ⊗ ι) = ϕα,βγ(ι⊗ ϕβ,γ);
(d) for every vector X ∈ Mα and β ∈ Γ, the map SX : Mβ → Mαβ , Y 7→

ϕα,β(X⊗Y ), is adjointable, and ϕβ,γ(S
∗
X⊗ι) = S∗

Xϕαβ,γ as mapsMαβ⊗A

Mγ →Mβγ .

This is similar to the definition of product systems of C∗-correspondences [8].
The difference is that instead of semigroups we consider groups, the maps ϕα,β

are not assumed to be unitary, but then the additional assumption (d) is
required. We remind again that if the maps ϕα,β are unitary, condition (d) is
not needed.
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Since conditions (a)–(d) describe spectral subspaces of an arbitrary coaction

of Γ, our results for G = Γ̂ simply mean that these conditions give an equivalent
characterization of Fell bundles over Γ [7]. Explicitly, the ∗-structure on the
bundle {Mα}α∈Γ is given by the operation • defined in Lemma 2.5, so X• =
S∗
X(1) ∈ Mα−1 for X ∈ Mα if A is unital, and in general X• is characterized

by 〈X•, Y 〉 = ϕα,α−1(X ⊗ Y ) for Y ∈Mα−1 . Clearly, BF is nothing else than
the cross-sectional C∗-algebra of this bundle. ♦

Example 4.3. Assume G = T. Let M be a Hilbert A-bimodule, meaning
that M carries the structures of a right Hilbert A-module with inner prod-
uct 〈·, ·〉R and of a left Hilbert A-module with inner product L〈·, ·〉, and
X〈Y, Z〉R = L〈X,Y 〉Z for all X,Y, Z ∈ M . Consider the complex conju-
gate Hilbert A-bimodule M̄ , so aX̄ = Xa∗, X̄a = a∗X, L〈X̄, Ȳ 〉 = 〈X,Y 〉R
and 〈X̄, Ȳ 〉R = L〈X,Y 〉. Define C∗-correspondences Mn, n ∈ Z, over A by
M0 = A, Mn = M⊗An for n ≥ 1 and Mn = M̄⊗A|n| for n ≤ −1. We have
obvious isometries ϕm,n : Mm ⊗A Mn → Mm+n. In order to show that they
define a weak unitary tensor functor F : RepT → CorrA, we have to check
conditions (a)–(d) from the previous example. Conditions (a) and (b) are ob-
viously satisfied. A moment’s reflection shows that since the maps ϕm,n are
surjective for m and n of the same sign, it suffices to check the other two con-
ditions only for α = ±1. For such α conditions (c) and (d) easily follow from
the identity X〈Y, Z〉R = L〈X,Y 〉Z.

The corresponding C∗-algebraBF is the algebraA⋊MZ, the crossed product
of A by the Hilbert A-bimodule M , defined in [1], where it was shown directly
that {Mn}n∈Z forms a Fell bundle over Z. Recall that the C∗-algebra A⋊M Z

is canonically isomorphic to the Cuntz–Pimsner algebra OM . ♦

Let us return to the case of a general compact quantum group G. Recall
that a unitary 2-cocycle on the dual discrete quantum group Ĝ is a unitary
element

Ω ∈W ∗(G)⊗̄W ∗(G) ⊂ (C[G]⊗ C[G])∗

such that (Ω⊗ 1)(∆̂⊗ ι)(Ω) = (1⊗ Ω)(ι ⊗ ∆̂)(Ω). Any such cocycle defines a
unitary fiber functor EΩ : RepG→ Hilbf such that EΩ(U) = HU , EΩ(T ) = T

on morphisms, while the tensor structure EΩ(U)⊗EΩ(V ) → EΩ(U×V ) is given
by the action of Ω∗. By Woronowicz’s Tannaka–Krein duality, this functor
defines a new deformed compact quantum group GΩ. More concretely, we
haveW ∗(ĜΩ) =W ∗(Ĝ) as von Neumann algebras, while the new coproduct is

given by ∆̂Ω(ω) = Ω∆̂(ω)Ω∗. Equivalently, C[GΩ] = C[G] as coalgebras, while

the new product and involution are obtained by dualizing (W ∗(GΩ), ∆̂Ω).
Assume now that we have a continuous left action θ of the reduced form

of G on a C∗-algebra B with fixed point algebra A. Consider the corresponding
spectral functor F : RepG → CorrA. Since by construction the categories
RepG and RepGΩ are equivalent, we can consider F as a weak unitary tensor
functor RepGΩ → CorrA. It defines a C∗-algebra BΩ carrying a continuous
left action of the reduced form of GΩ. These algebras were defined and studied
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in greater generality in [6] and [11] (and in various special cases by many
authors earlier; in particular, see [17] for the case of the dual of a discrete
group). But as we will see in a moment, the categorical picture provides a
very simple and concrete approach.

In order to formulate the result we need to introduce more notation. First
of all we will need a special element u ∈ U(G) = C[G]∗ defined by u =

m(ι⊗ Ŝ)(Ω), where m : (C[G]⊗ C[G])∗ → C[G]∗ is the product map, which is
by definition dual to the coproduct on C[G]. The element u is invertible, with
inverse given by

u−1 = m(Ŝ ⊗ ι)(Ω∗) = Ŝ(u∗).

The antipode on the dual of GΩ is given by ŜΩ = uŜ(·)u−1, and correspond-
ingly the involution † on C[GΩ] is given by

a† =
[

((u−1)∗ ⊗ ι⊗ u∗)∆(2)(a)
]∗

= (u∗ ⊗ ι⊗ (u−1)∗)∆(2)(a∗),

see for instance [12, Ex. 2.3.9]. It is easy to check that the element u can also
be characterized by the identities

(4.1) ΩRU = (u⊗ ι)RU as maps C → HŪ ⊗HU ,

see [12, Ex. 2.2.23].
Next, consider the subalgebra B ⊂ B of regular elements. Then the map

B ⊗ U(G) → B, x ⊗ ω 7→ x ⊳ ω = (ω ⊗ ι)θ(x), defines a right U(G)-module
structure on B.

Proposition 4.4. With the above notation, the following formulas define a
new ∗-algebra BΩ with underlying space B, product ⋆ and involution †:

x ⋆ y = m((x⊗ y)⊳ Ω), x† = x∗ ⊳ u∗,

where m : B ⊗ B → B is the original product map. Furthermore, the map θ,
considered as a map BΩ → C[GΩ] ⊗ BΩ, defines a left algebraic action of GΩ

on BΩ.

Proof. By multiplying Ω by a phase factor we may assume that Ω is counital,
that is, (ε̂⊗ ι)(Ω) = (ι⊗ ε̂)(Ω) = 1.

For every finite dimensional unitary representation U ∈ B(HU ) ⊗ C[G] de-
note by UΩ the same element U considered as an element of B(HU )⊗C[GΩ].
Then we have a unitary monoidal equivalence of categories EΩ : RepGΩ →
RepG such that EΩ(UΩ) = U , EΩ is the identity map on morphisms, and
EΩ

2 : EΩ(UΩ) ⊗ EΩ(V Ω) → EΩ(UΩ × V Ω) is given by Ω: HU ⊗HV → HU ⊗
HV = HU×V .

We identify the algebra B with the algebra BF defined by a weak unitary
tensor functor F . Now we claim that with the above setup the ∗-algebra BFEΩ

corresponding to the weak unitary tensor functor FEΩ is exactly BΩ, and
the map θFEΩ coincides with θ. Note that counitality of Ω is needed for
condition (iii) in Definition 2.1 to be satisfied by the functor FEΩ.
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As linear spaces, we have

BFEΩ =
⊕

α

H̄UΩ
α
⊗ FEΩ(UΩ

α ) =
⊕

α

H̄α ⊗ F (Uα) = B.

Denote by ⋆ the product on BFEΩ . Note that if w : Hγ → Hα ⊗ Hβ is a
morphism Uγ → Uα ×Uβ, then Ωw is a morphism UΩ

γ → UΩ
α ×UΩ

β . From this

we get that if x = ξ̄ ⊗X ∈ H̄α ⊗ F (Uα) and y = ζ̄ ⊗ Y ∈ H̄β ⊗ F (Uβ), then

x ⋆ y =
∑

i

w∗
iΩ

∗(ξ ⊗ ζ)⊗ F (w∗
i )F2(X ⊗ Y ),

where wi ∈ Mor(Uγi
, Uα × Uβ) are isometries such that

∑

iwiw
∗
i = ι. Since

the right U(G)-module structure on B = BF is given by (η̄⊗Z)⊳ω = ω∗η⊗Z,
the above identity means exactly that

x ⋆ y = m((x⊗ y)⊳ Ω).

Denote the involution on BFEΩ by †. Take x = ξ̄ ⊗X ∈ H̄α ⊗ F (Uα). We
may assume that Ūα = Uᾱ for some index ᾱ. Then, by definition,

x† = ξ# ⊗X#,

where ξ# ∈ Hᾱ is such that (RΩ
α )

∗(ζ ⊗ ξ) = (ζ, ξ#) for all ζ ∈ Hᾱ and
X# ∈ F (Uᾱ) is such that (FEΩ)(R̄Ω

α )
∗(FEΩ)2(X ⊗ Y ) = 〈X#, Y 〉 for all

Y ∈ F (Uᾱ), where R
Ω
α and R̄Ω

α solve the conjugate equations for UΩ
α and UΩ

ᾱ .
Note that by irreducibility the operation # depends on the choice of such

a solution, but ξ# ⊗ X# does not. Taking the solutions Rα and R̄α of the
conjugate equations for Uα and Uᾱ defined by (1.1), we can take RΩ

α = ΩRα

and R̄Ω
α = ΩR̄α. In this case X# = X•, while for ξ†, using (4.1), we get

(RΩ
α)

∗(ζ ⊗ ξ) = R∗
α(u

∗ζ ⊗ ξ) = (u∗ζ, ξ•),

so ξ# = uξ•. Therefore

x† = uξ• ⊗X• = (ξ• ⊗X•)⊳ u∗ = x∗ ⊳ u∗.

Finally, the maps θ = θF and θFEΩ coincide on BFEΩ , since they both define
the same right U(G)-module structure, given by (η̄ ⊗ Z)⊳ ω = ω∗η ⊗ Z. �

The construction of a new product on a module algebra using a cocycle on
a Hopf algebra is, of course, well-known. The point of the above proposition
is that it effortlessly gives not only the deformation on the purely algebraic
level, but also the existence of a unique C∗-completion of the deformed algebra
carrying an action of the reduced deformed quantum group.
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