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Abstract

We develop a mesoscopic field theory for the collective nonequilibrium dynamics of multicomponent
mixtures of interacting active (i.e., motile) and passive (i.e., nonmotile) colloidal particles with
isometric shape in two spatial dimensions. By a stability analysis of the field theory, we obtain
equations for the spinodal that describes the onset of a motility-induced instability leading to cluster
formation in such mixtures. The prediction for the spinodal is found to be in good agreement with
particle-resolved computer simulations. Furthermore, we show that in active-passive mixtures the
spinodal instability can be of two different types. One type is associated with a stationary bifurcation
and occurs also in one-component active systems, whereas the other type is associated with a Hopf
bifurcation and can occur only in active-passive mixtures. Remarkably, the Hopf bifurcation leads to
moving clusters. This explains recent results from simulations of active-passive particle mixtures,
where moving clusters and interfaces that are not seen in the corresponding one-component systems
have been observed.

1. Introduction

Mixtures of active (i.e., motile) and passive (i.e., nonmotile) colloidal particles exhibit an interesting set of
collective behaviors that is quite different from the dynamics of the corresponding one-component systems.
Many studies of active-passive mixtures have focused on the dilute regime, where long-range hydrodynamic
flows generated by active particles affect the diffusion of passive tracer particles [1-3]. At higher densities, where
short-range interactions such as excluded-volume interactions become important, other fascinating
phenomena arise. Among them are effective depletion-like attractions between passive objects in an active-
particle suspension [4—6], crystallization and melting of hard-sphere glasses by doping with active particles
[7, 8], and mesoscale turbulence mediated by passive particles [9]. Furthermore, the intriguing phenomenon of
motility-induced phase separation (MIPS) [10], whereby purely repulsive active particles spontaneously
segregate into dense and dilute phases, has recently been numerically shown to occur also for mixtures of active
and passive particles [11, 12]. For purely active systems, where MIPS has already been extensively studied
[13-26], this transition has been theoretically rationalized as a spinodal-like instability occurring for sufficiently
large densities and propulsion speeds. A striking feature observed in active-passive mixtures undergoing MIPS is
the emergence of persistently moving interfaces and clusters due to a spontaneous breaking of spatial symmetry
[11, 12], which is qualitatively different from the stationary, albeit fluctuating, clusters observed in purely active
suspensions.

To gain a deeper theoretical understanding of MIPS in mixtures of active and passive particles, as well as
mixtures of active particles with different properties, we here derive a mesoscopic field theory that describes the
collective dynamics of multicomponent mixtures of such particles. In order to restrict the study to the basic
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features of their nonequilibrium dynamics, we consider unbounded systems in two spatial dimensions and
particles with isometric shapes (i.e., disks or spheres in a plane). Furthermore, we neglect hydrodynamic
interactions between the particles. The different species therefore differ only in their radii and motilities. By
using appropriate approximations for the full (multidimensional) pair-distribution functions of the particles,
we derive spinodal criteria based on coefficients that can be readily evaluated from computer simulations in the
one-phase parameter regime. The predicted spinodals are in good accordance with the instability region
observed in simulations of active-passive mixtures. We furthermore show how two different types of instabilities
arise, depending on the properties of the mixtures: a stationary bifurcation, corresponding to MIPS in one-
component active systems, and a Hopf bifurcation, which can only occur in mixtures and is associated with a
steady state with moving clusters. This distinction is likely to be responsible for the intriguing collective
dynamics observed in computer simulations of active-passive mixtures undergoing MIPS[11, 12].

The article is organized as follows: in section 2 we derive dynamic equations for multicomponent mixtures
of particles with different motilities as well as useful approximations of these equations. Based on these, in
section 3 we address the stability of mixtures of active and passive particles and derive a condition for the onset of
adynamical instability in such mixtures. The good agreement between our analytic results and particle-resolved
computer simulations of mixtures of active and passive particles is demonstrated in section 4. We finally
conclude in section 5.

2. Dynamic equations for mixtures

We consider a multicomponent mixture of colloidal particles, each with different but constant magnitudes of
self-propulsion. In addition to the deterministic self-propulsion, the positions and orientations of the particles
(so-called ‘active Brownian particles’ [27]) undergo translational and rotational diffusion, respectively. In the
following, n denotes the number of different species of active or passive colloidal particles and N}, is the total
number of particles of species p € {1, ..., n}. The translational and rotational diffusion coefficients of the
particlesare Df and D}, respectively, and the particles’ motilities are set by active driving forces F{' > 0[28],
which are zero for passive particles. 7/(t) is the position and ¢ (t) is the orientation of the ith particle of species
wattime . The interactions between a particle of species 1+ and a particle of species v are described by the pair-
interaction potentials UJ™”(||7/* — 77|, where U™ (r) and U (r) can be different” and ||- | is the
Euclidean norm.

2.1. Exact dynamic equations
The microscopic active Brownian motion of an n-component mixture of these colloidal particles with different
constant motilities is described by the Langevin equations®

#'(t) = BDE (Fni ((FI'D) + ELa(01) + &, (1), $))
¢/'(t) = &) )
with the interaction forces
n N, .
Foi (71D = = 25 VU™ (|71 — 77D, 3)

v=1j=1
()= (W5])
Here, an overdot denotes differentiation with respect to time and 3 = 1/ (kg T) is the inverse thermal energy with
the Boltzmann constant kg and the absolute temperature T of the implicit solvent. Furthermore,
i(¢) = (cos(¢), sin(¢))! isanormalized orientation vectorand Vy = (04, 0 y) is the del symbol that involves
partial derivatives with respect to the elements of the vector 7/' = (x/, y/'). The elements of the translational noise
ETH ;(t) and the rotational noise £ ; () in the Langevin equations are statistically independent Gaussian white noises
with mean values (ETul @) = 0 and ( ’ﬁﬂ(t)) = 0, and correlations (g{fi(tl) ® ZTVJ (1)) = 2D{'16;6,,6(h — 1)
and ( RiME ’II{,j (1)) = 2D} 66,6 (t — t,), where ® denotes the dyadic product and 1 is the identity matrix.
The collective dynamics of the n-component mixture can equivalently be described by the Smoluchowski
equation (see [30, 31] for details)

> This is the case especially for colloidal particles that catalyze chemical reactions on their surfaces and break the action-reaction symmetry
stated by Newton’s third law. As an interesting consequence of such asymmetric interactions, anisotropic clusters of passive particles can
become self-propelled [29]. However, in this article we do not further study such systems. Our simulations described in section 4 use the
same interaction potential for all particles.

6 - . . . .
In the limit of a one-component system, these Langevin equations reduce to the simpler ones that have been used in [16, 19].
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with the many-particle probability density P({7/'}, {¢/}, t). Here, the operator 0 means partial differentia-

tion with respect to ¢*'. By integrating away all degrees of freedom except for 7/* and ¢/, the one-particle
densities [32]

PGl ol D =N H ]H Sy [Cagr e o )
(ul)i(vn

can be obtained from P ({7/'}, {¢!'}, t). Many-particle densities like the two-particle densities
5123(? v, ¢, ¢', t) can be obtained analogously [33]. Applying an integration as in equation (5) to the

Smoluchowski equation (4) and renaming 7' — 7 = (x, )" and ¢! — ¢ leads to the dynamic equations
(P 6,0 =DEarg, (76,0 + DY 3%, (7, b, 1) — vo“v : (ﬁ((b)pﬂ(?, )

+5DHZV* fdzr/ U(/u/) = —*/”) E %/” f do’ (2)(7 7, b, ¢, 1) (6)

for the one-particle densities p, (7, ¢, t). Here, v{' = BD4 F{ denotes the speed of a free particle of species y and
we used the notation U’ (r) = dUY"(r) /dr. The dynamics of the one-particle densities p,(7, ¢, t) depends
on the two-particle densities pflzy) #, 7, ¢, @', t), which can be decomposed into the one-particle densities

Oy (7, ¢, t) and the pair-distribution functions & 7, 7', 0, s t):

POF T, 6, ¢, ) = p,(F 6, Do, (7, 8, g, (B T, 6, &, %)
Note that this standard definition of g, (7, 7/, ¢, ¢', t) implies that
4,
lim n/(? 1‘/, ¢ (ZS/ H=1-— ﬂ) (8)
77 oo™ N,

where the term §,,,, /N, is usually negligibly small. Since the one-particle densities in equation (7) depend on
orientation and time, the commonly used orientation- and time-independent pair-distribution functions
8, (7, 7') cannot be simply obtained by an angular integration and a time average of g, (7', 7', ¢, &', 1).
Instead, they need to be calculated from an equation analogous to equation (7), where all functions are replaced
by their orientation-integrated and time-averaged counterparts.

Inserting equation (7) into equation (6) results in the exact dynamic equations for the one-particle densities

PP, & 1) = Df 87, (7, &, 1) + DEOGp, (7, 6, 1) — v Vo - (0(D) p, (7, @, 1))

L ADES T - (pﬂ(r, t)de/Uw")qr *’H)H;

v=1

!

gl
404,57 606 00,6, ). ©

ﬂl \tl

The pair-distribution functions g, (7, 7/, ¢, ¢', t), however, are unknown and have to be approximated
appropriately.

2.2. Approximate dynamic equations
In order to approximate the pair-distribution functions, we first assume global translational invariance of the
system, leading to S 77, 0,0, t) = S (7" — 7, ¢, ¢/, t). With the parametrization 7/ — 7 = rii(¢y)
(see figure 1) this can be rewrittenas g (1, ¢, @, @', t). Assuming also invariance of the system with respect to
g gp,l/ R g Y p
global rigid rotations, the number of variables of the pair-distribution functions can be reduced further, yielding
& (1> O — &, @' — ¢, t).Inaddition, we assume that the pair-distribution functions are not explicitly time-
dependent: g, (r, ¢ — ¢, ¢' — ¢). These common approximations become exact when the system isin a
homogeneous steady state. In accordance with [16], we now further approximate g, (r, ¢ — ¢, ¢ — ¢) by
&, (1> ¢p — @) with the symmetry property g, (r, —0) = g, (r, ). Notice that the pair-distribution
functions g, (r, ¢y — ¢) still depend on the driving forces F{ of the active particles and on the constant average

particle number densities p, = <pu (7, t))7, where Py 7, 1) = fo Zﬁqbpu(?, ¢, t) are the orientation-independent

3
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Figure 1. Absolute and relative positions and orientations of two different isometric colloidal particles

concentration fields of the particles of species pu € {1, ..., n} and (-); denotes a spatial average. Regarding the
pair-interaction potentials Uy’ (r) we assume short-range interactions between the particles. This allows us to
simplify the final term of equation (9) through a gradient expansion [34-36].

With these approximations, equation (9) simplifies to the dynamic equations for n-component mixtures of
active and passive particles

P (F &, ©) = DI 2y, (7, &, 1) + DEO%p,(Fy 6, 1) — Vs - (P, &, DA p, (P, 6, 1)
+ BD{ V- (9, (75 &5 OVEYu(F 6, 1)) (10)
with the effective speeds of the active particles
(75 ¢, t) = v§' — BDYFl (7,5 ¢, 1) (11)

that describe the slow-down of active particles due to collisions [ 15, 16]. Here, the resistive forces

s L2l auy A
F# , b, 1) = m . m.
(7 00 1) = Zlmzl ,;) % — 2012k (m — 2k — D!I2k + 1!
=Dkl g Cym—2k-]) (2 X AR, (—1)im! ALY - T2 (7
X G @@V mwwggangjﬁ;wwmmmw
(12)
and the functions
n 0o m;lJ k A(#V) k!
L7565 1) = a2 CDE ki) - Gym26-0-1p (7, 1) (13
WBeD=2 0 2 ek k= @Y pAn D)
with the coefficients
00 , 2
Al — fo dr rm U8 () fo doy g, (1 br)cos (dp)" L sin (¢p)* (14)

are gradient expansions of the concentration fields p, (7, t). The four terms on the right-hand side of

equation (10) describe entropic translational and rotational diffusion, drift caused by the particles’ motility, and
diffusive transport resulting from interactions of the particles, respectively. When the particles are passive, the
third term vanishes and the function Y,,(7, ¢, t) reduces to the excess chemical potential corresponding to the
particles of species 1. The dynamic equations (10) are applicable even for active systems far from thermodynamic
equilibrium and constitute the first main result of this article.

So far, we approximated the pair-distribution functions by assuming that they are invariant with respect to
translations and rotations of the coordinate system and that they have no explicit time-dependence, as well as by
neglecting the dependenceof g, (r, ¢ — ¢, ¢ — ¢)on ¢’ — ¢.Furthermore, we assumed short-range
particle interactions that allow fast convergence of the gradient expansions (12) and (13). Most of these
approximations are common when dealing with passive particles. The only exception is the negligence of the
@' — ¢-dependence of the pair-distribution functions, which depend only on r when the motilities of all
particles vanish. With additional assumptions on the pair-distribution functions, one can reduce the number of

4
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independent coefficients A,(,jf,':) in equations (12) and (13). These possible further approximations of the pair-
distribution functions are described in appendix A, but not used in this article.

We proceed by expanding the orientation-dependent one-particle densities p, (¥, ¢, t) with respect to the
orientation ¢, neglecting terms of third or higher order in gradients, and performing a quasi-stationary
approximation (see appendix B for details). This results in the dynamic equations

= > 8D ({p,)dip,) (15)
v=1
for the concentration fields Py (7, t). Here and in the following, 0; denotes the ith element of the del symbol

%; = (0), 02) = (0, 0,) and Einstein’s summation convention is used for Latin but not for Greek indices.
Furthermore, the density-dependent diffusion tensor D({ o)) has the elements

2
v Py v
() _ " M () (ul/) 0 "u
D" ({p,}) = (DT + —ZD}QL]&,WL ( ag Dy ) (16)
the density-dependent swim speeds v, ({ p,})are given by
) = v (1 - Zao’“’)p,,], (17)
v=1
and the coefficients a, ) and a{*” are defined as’
(W)
/W) ﬂD p_0Y — (18)
vé‘
(W) ﬂD#(A(IW) + A(#V)) (19)

The division of A% by v in the definition of the coefficients a "’ is motivated by the fact that the effective
swim speeds v, ({ pu}) are proportional to ¥}’ in mixtures of active and passive particles [11]. Equations (15) and
(16) constitute the second main result of this article.

On the right-hand side of equation (16), the term D/ ¢,,,, describes the diffusivity of a free passive particle,

the term a; (1)

p, /2 takes interactions with particles of the same or other species into account, and the two
remaining contributions describe the effect of the particles’ motilities on the collective diffusion. Since the

diffusion tensor D({ o) and the swim speeds v, ({ p,}) can directly be obtained from particle-resolved

computer simulations, equations (16) and (17) allow to determine the coefficients a, ) and a (")
1 Oy,
g — _ L% (20)
vy Op,
2 Vﬁ Vi 81/#
al(W) = = |Dw) — D# + 1 (S/w o . 21
Py 2D} D{ dp,

Especially for one-component systems, this constitutes an alternative to determining the pair-distribution
functions in simulations and calculating a " and a,"*"’ using equations (14), (18), and (19).

3. Dynamical instability

For certain combinations of the free swim speeds v}’ and the average particle number densities p, the mixture
becomes unstable, particle clusters form, and the system phase separates [11]. In the following, we use the
dynamic equations (15) to derive the spinodal for the onset of this activity-induced dynamical instability by
means of a linear stability analysis.

3.1. Multicomponent mixtures

To derive the spinodal, we consider a system with slightly perturbed concentration fields p, (7, t) = p, + 6p, (7, 1),
where 6p, (7, t) are the small perturbations. Inserting this perturbation ansatz into equation (15) and linearizing the
resulting expression in 6p, (7, t) leads to the dynamic equations for the perturbations

7 For v — 0 the pair-distribution functions g, (r, ¢) become independent of ¢ and the coefficients Ag/g {4 vanish. Therefore, the
coefficients af*” do not diverge when v — 0.
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n
op, = > D abp, (22)
v=1
with the constant diffusion coefficients D, = D(*‘”)({pu}) corresponding to the average densities py, ..., p,.
Fourier transforming equation (22) results in
. n
6[)11 = —k2 Z D;“/(SP,,) (23)
v=1
where ;5\[;# (K, t) denotes the spatial Fourier transform of 6p, (7, t)and k = ||K||is the wave number
corresponding to the wave vector k. If we define the perturbation vector 3; = (3751, oo %n)T and the constant
diffusion tensor D = D({pp}) = (D_w/)ﬂ,v: 1,....n> the solution of equation (23) can be written as
Sp(k, t) = exp (—k2Dt)5p(k, 0) (24)
with the matrix exponential exp(—k2Dt). An n-component mixture of colloidal particles with different
motilities is therefore stable if the real parts of all eigenvalues A, ..., A, of D are positive, i.e.,
Re(A) >0 Vie{l,...,n}, (25)

and unstable if at least one of the eigenvalues has a negative real part. Otherwise the stability can depend on
nonlinear contributions in equation (15) that are not captured by the linear stability analysis. The spinodal of the
dynamical instability is the outer surface that encloses the surfaces which are defined by the implicit functions
Re(\;)) = Owithi € {1, ..., n}. Inthe next subsection, we apply the stability criterion (25) to binary mixtures.

3.2. Binary mixtures
We now focus on binary mixtures with two species i1 € {A, B} of particles. The constant diffusion tensor D is
thenareal 2 X 2-dimensional matrix

_ Dw D
P — ( AA _AB) (26)
Dy Dsp
with eigenvalues
1, - = 1 = 5 e D
A= E(DAA + Dgp) — E\/(DAA — Dpp)* + 4DspDpa 27
1, - = 1 = ;5 5 D
A = E(DAA + Dgp) + E\/(DAA — Dpp)* + 4DapDpa (28)

and the spinodal is the outer surface that encloses the two nonoverlapping” surfaces given by the equations
Daa=—Dpg A Diy < —DapDspa (29)
and
DxaDgg = DapDga, (30)

respectively, which correspond to Re(\;) = 0and Re(\;) = 0. Equations (29) and (30) describe the stability of
binary mixtures of colloidal particles with different motilities and constitute the third main result of this article.
As can be seen from the eigenvalues (27) and (28) and accompanying eigenvectors

W= ()\1 - DBB) #y = ()\2 - DBB) 31)
Dga Dga

of D, respectively, equations (29) and (30) correspond to instabilities of different types. Under the condition
(29), the eigenvalues A and )\, are imaginary and complex conjugates of each other. The surface described by
equation (29), where a complex conjugate pair of eigenvalues of D passes through the imaginary axis, is
associated with a Hopf bifurcation [37-39]. This type of bifurcation is possible for a binary mixture, but not for a
one-component system of active or passive colloidal particles. In contrast, under the condition (30), A; and A,
arereal and one of these eigenvalues is zero. The surface described by equation (30), where one of the two real
eigenvalues of D passes through zero, is associated with a stationary bifurcation [37-39]. This type of bifurcation
is possible also for one-component systems. Hence, there is a fundamental difference between the already widely
studied MIPS of one-component systems of active particles, which we related to a stationary bifurcation, and the
nonequilibrium dynamics of active-passive mixtures, which exhibits also a Hopf bifurcation.

8 Combining equations (29) and (30) leads to the unfulfillable condition D}, < Dj}4. This shows that the surfaces described by
equations (29) and (30) have no points in common.
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To study the features of these bifurcations, we now insert the plane-wave ansatz

2 7 =
Sp(F, 1) = Ajeiim—win g, (32)
j=1

with the perturbation vector 6_;'7 = (6p, Opp)’, constants A;, A, € C, imaginary unit i, wave vectors
ki, k, € R2,and angular frequencies w;, w, € C into equation (22)°. This results in the dispersion relations

w) = —i)\lklz, (33)

with k; = ||k;||and k, = ||k||. When decomposing the eigenvalues Aj = Re()\)) + iIm(\j) with j € {1, 2}into
their real parts Re()\;) and imaginary parts Im(};), where Im() = —Im(},), and inserting the dispersion
relations (33) and (34) into the ansatz (32), we obtain

2

5_b (7, t) = Z A ei(EJ.?—Im(Aj)kat)e—Re()\J)k]ztwj‘ (35)

j=1

From this equation it is obvious that—in accordance with the stability criterion (25)—the amplitudes of small
spatially harmonic perturbations are exponentially growing with time when at least one of the eigenvalues of D
has a negative real part. Furthermore, we see that the perturbations are traveling plane waves for Im(\)) = 0,
i.e., for the Hopfbifurcation associated with equation (29), whereas the perturbations are static for Im(\) = 0,
as holds for the stationary bifurcation associated with equation (30). This is an important difference between the
two types of bifurcations and helps to distinguish the two underlying instabilities in simulations and
experiments. The speed of a traveling spatially harmonic perturbation with wave number k is Im(\,) k. Note that
this expression holds only for small , since the continuum description by the field theory (15) breaks down for
k Z 27/(Ry + Rg), where Ry and Ry are the radii of particles of species A and B, respectively. In the parameter
regime where traveling perturbations occur, an additional condition for k, which can restrict the applicability of
the field theory (15) to even smaller k, results from the quasi-stationary approximation (see section 2.2). Since
the applicability of the quasi-stationary approximation requires that the time scale 1 /Dy, on which the
orientational order-parameter fields described in appendix B relax, is much smaller than the period 27 /w of the
traveling waves, where wis their angular frequency, the condition 1/Dy < 27 /w must be fulfilled. With the
dispersion relations (33) and (34) this yields the condition k < kp.x = /27Dgr /| Im(A\)] for k.

3.2.1. Active-passive mixtures

In the following, we assume that all particles have the same radius R and thus identical translational diffusion
coefficients Dy = D = D} as well as identical rotational diffusion coefficients Dy = D = Df. The
elements of the diffusion tensor (26) then simplify to

-2 - A -
A v vy ¥,
Diy=Dp+ A 4 P g _ g Yot | 36)
2DR 2 DR
Pa| . B (AB) Vi
D = ZH ™ = a2 ) (37)
AB = [ 1 O Dy ]
Drs = P aBA _ a(BA)VgVB 38)
BA > 1 0 DR S
D 172 p VBVB
Dgg=Dr + 2 + 2B al(BB) _ aéBB) 0 (39)
2Dy 2 DR

with the effective swim speeds

= (1 = ag™p, — ag*"'pp), (40)
7= ve(1 — al®¥p, — al¥py). (41)

In the special case of a mixture of active (A) and passive (P) particles with y € {A, P}, equations (36)—(41)
further simplify due to 7p = v, = 0. With the notation # = # and v, = v* this results in

- 7? Pa Vo
Dip = Dy + —— + ol g _ jan oV (42)
M oD T 2 ! " Dp

9 . . . . . .
Note that in the plane-wave ansatz (32) the perturbation vector dp is complex. The perturbations that could be observed in simulations or
experiments correspond to the real part of 6p.
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s Paf @p (ap) VoV
Dpyp = —]a —a —\ 43
‘AP 5 ( 1 0 DR ( )
. aPh
Dpp = Pp> (44)
2
. a PP
Dpp = D1 + 5 Pp (45)
and
7= (1 — ai®™p, — al* pp). (46)

Equations (42)—(45) show that for purely repulsive interactions, where a** > 0 and a{*® > 0, the passive
particles are always stable and that the clustering is triggered by a dynamical instability of the active particles.
According to equations (29) and (30), the spinodal for the instability of the active-passive mixture is defined by

Dua=—Dwp A Djy < —DapDpa (47)

and

DapDypp = DapDpa. (48)

3.2.2. Largev,

We now consider large values vy — oo of the self-propulsion speed of a free particle vy, but not too large particle
densities p, and pp so that 7 — co. Assuming that the coefficients a{*, a{*", a(*"), al*, a(PM and g
neither vanish nor diverge when vy — 00, equation (47) then no longer has a solution, whereas equation (48)
simplifies to

B 2Dt — (2DTa(§AP) — al(PP))pP — aéAP)al(PP),D

2
P

Py = —. (49)
4D7al™ 1 2aVa PP aéAP)al(PA))pP

This means that only the stationary bifurcation but not the Hopf bifurcation occurs in the limit vy — oo. If we
set P = q(PP) = 0 in equation (49), it further reduces to

AP) -
_ 1 —ai""p,

Pa = 208 (50)

which is a simple condition for the low-density branch of the spinodal, as found previouslyin [11].

3.3. One-component systems

Another limiting case of equations (47) and (48) is that of a one-component system of active particles where
pp = 0. Alsoin this case, equation (47) has no solution so that the Hopf bifurcation with its moving
perturbations cannot occur. The stationary bifurcation, in contrast, is still possible. For this bifurcation we
obtain from equation (48) the spinodal condition

= 7 Paf A VoV
Daa = D1+ — + 2[a™ — a2 =0 51
M oDy T 2 ! * Dy GV

with the effective speed of the active particles

7= (1 — ali™p,). (52)

When choosing a** = 0, equation (51) becomes equivalent to the simpler spinodal condition that has been
proposed in [16]. This approximation is, however, in general not applicable. The term proportional to a{** in
the diffusion coefficient Dy, takes the density-dependence of the particles’ collective diffusion into account that
originates from their interactions and is present also if the particles are passive (vy = 0). Further below we show
that neglecting this term has a strong influence on the predicted spinodal.

If all particles interact purely repulsively, the onset of the dynamical instability requires a sufficiently large
value of the low-density self-propulsion speed v,. The threshold value of v, depends on p, : for small values of p,,
the threshold value of v, is infinite and the instability cannot occur at all; for larger p, , the threshold value is
finite, and for a certain value of p,, which we denote as Pr.min> the threshold value attains its minimal possible
value vy min. Considering aéAA) and a/** as nonzero finite constants, which is—as we will see in section 4.2—
only an approximation, vy, mi» and the corresponding p, .., are given by
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2DT + al(AA)pA,min

2
Yomin — DR
0,min —1+ 3a(§AA)pA,min _ ZaéAA)Zpli’min
al(AA) 2 al(AA) 1 al(AA) :
=8D1Dyg + 3DRW + 4Dy, (4Dt + 3DTW + E W (53)
and
2

) Dr 1 [ a (o
Prmin = —2—— + ———4D7t + 3D1—— + —| ——— | > (54)
A, min a®h A T a2 | g

respectively. This result for the minimal value of v, at the spinodal generalizes the previous result
Vo,min = 4+/D1Dr 0of [16], which is obtained from equation (53) when choosing a{*" = 0 and has been shown
to lead to too small values for vy ,;, compared to particle-resolved simulations [18, 20]. Note that, within the
approximations mentioned above, (9 i, Vo,min) is the critical point of the one-component system of active
particles.

Next, we consider the spinodal condition (51) in the limit # — oo and assume that a{** and a/** are finite
in this limit. This results in the well-known condition for the low-density spinodal branch of a suspension of
active Brownian particles p, = 1/(2a{*")[15].

4, Simulations

To confirm our analytical results from section 3, we carried out Brownian dynamics computer simulations of
binary mixtures of isometric active and passive colloidal particles in two spatial dimensions. These particle-
resolved simulations were based on solving the Langevin equations (1) and (2) numerically and made use of the
LAMMPS molecular dynamics package [40]. All particles in our simulations had the same diameter o = 2R,
diffusion coefficients Dt and Dr = 3Dt /o2, and repulsive interaction potential U, (r). For the latter, we used
the Weeks—Chandler—Andersen potential, i.e., the truncated and shifted Lennard-Jones potential

o 12 (e 6 . 1/6
Uy(r) = 46((r) (r))—i—s, if r < 2%, (55)
0, if r > 2%,

Here, £ determines the interaction strength as well as the Lennard-Jones time scale 7j = o2/ (¢8D7). For
convenience, we chose o, 71, and ¢ as units for length, time, and energy, respectively. The active particles had
the low-density self-propulsion speed vy = D1 FEy = 240 /7 with the active driving force Fy, = 24¢/0. We
studied active-passive mixtures with various total average area fractions & = ®, + ®p, fractions of particles
thatare active y, = @ /®, and Péclet numbers Pe = vy0/Dr, where &y, = p,mo?/4and ®p = ppmo?/4are
the average area fractions of the active and passive particles, respectively. The Péclet number describes the ratio
between motility and thermal diffusion of a particle. To ensure that the effective particle radius does not depend
on the propulsion speed of a free active particle v, we varied Pe by changing D for all particles, while we kept v,
constant (see [20, 41] for details). In the limiting case y, = 0, which corresponds to a system of only passive
particles, we chose Dt = o2/m;.

Our simulations were carried out for particles with homogeneously distributed random initial positions and
orientations in a quadratic simulation domain with size 1500 x 1500 and periodic boundary conditions. The
number of particles was 5730 for & = 0.2 and 22918 for & = 0.8. Furthermore, the simulations comprised
5 x 107 time steps of length At = 5 X 1077y, of which we discarded the first 2 x 10° time steps. The
duration of a simulation was thus 25007;. For Pe = 100, where the Brownian time 73 = 02/Dyis 13 &~ 4.271,
this equals 60073. When the particles have diameter o = 1 pm and translational diffusion coefficient
Dt = kg T/ (370 ) [42], and are dispersed in water with dynamic viscosity 7 = 103 Pas and temperature
T = 293 K, the Brownian time scale is 73 ~ 2.3 s and the duration of the simulations corresponds to about
1400 s.

4.1. Pair-distribution functions

Since the pair-distribution functions g, , (r, ¢g — @), &4p (1> Gr — @), G (1> Pr — @), and gp(r, P — @)
(see figure 1 for an illustration of the relative coordinates rand ¢, — ¢)are needed to evaluate the coefficients
AR aéAP ) a A, al(AP), al(PA), and al(PP ) via equations (14), (18), and (19), we used the simulations described
above to determine the pair-distribution functions for x, = 0.5 and various parameter combinations of

Pe € [0, 500]and ® € [0, 0.8]. However, we did not include parameter combinations where the isotropic state
of the simulated system was not stable. The resulting pair-distribution functions for Pe = 50and ® = 0.6 are

shown in figure 2.
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Figure 2. Pair-distribution functions (a) g, , (r, ¢ — ¢),(®) g,p(r, P — @),and (c) gW(r, 0) with p, v € {A, P} for Péclet number
Pe = 50, total particle area fraction & = 0.6,and fraction of active particles y, = 0.5.Notethat g,, (r, ¢ — ¢) = g, (r, 0) and
&p (1> Pr — @) = gop(r, 0) forall g — .

For fixed ¢y — ¢, the shapes of these functions of r are qualitatively similar to the typical shape of a radial
distribution function for repulsive disks or spheres [43]. However, the maxima and minimaof g, , (, ¢g — @)
and g,,(r, ¢g — ¢)as functions of r depend strongly on ¢, — ¢. Theyare most strongly pronounced for
¢r — ¢ = 0, corresponding to the active (reference) particle colliding with other particles right in front ofit, and
become increasingly less pronounced when | ¢, — ¢| < 7 increases (see figures 2(a) and (b)). Furthermore, the
positions of the maxima and minima move to slightly larger particle separations r for growing |y — ¢| < 7. This
is consistent with the bow wave formation in front of a moving active particle reported for one-component systems
of active particlesin [16]. In contrastto g, , (r, ¢ — ¢)and g,,(r, ¢ — @), the pair-distribution functions
Ga (1, o — @) and g,p(r, P — @) donotdependon ¢y — ¢ so thatitis here sufficient to focus on the
case pp — ¢ = 0.

When comparing the four pair-distribution functions for ¢ = ¢, it becomes obvious that g, , (r, 0) and
&p (5 0), onthe onehand, aswell as g, (r, 0)and g, (r, 0), on the other hand, are very similar. The main
difference between these two pairs of correlation functions is that the maxima of g, , (r, 0)and g, ,(r, 0) are
significantly larger and shifted to smaller r compared to g, (r, 0) and gy, (7, 0) (see figure 2(c)). Thisisa
consequence of the different type of the reference particle, which is active for g, , (v, 0)and g, , (r, 0) but passive
for g, (r, 0)and g, (r, 0). When the reference particle is active, it pushes other particles ahead of itself so that in
frontofit (i.e.,at ¢ = ¢;) onaverage over time the concentration of particles is larger and the particle
separations are smaller than around a passive reference particle.

4.2. Coefficients

Using equation (14) as well as our results for the pair-distribution functions for x, = 0.5 and various choices of
Pe and ®, we calculated the corresponding values of the coefficients ai*Y, a{*?, oY, a*P, aP and a®P,
While for small Pe we observed a strong dependence of these coefficients on Pe, we found that their dependence
on Pe is negligible for Pe > 50. Under the condition Pe > 50, the calculated coefficients are approximately

given by the expressions
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Figure 3. Theoretical predictions (spinodal curves) and simulation results (circles) for the dynamical state diagram of a binary mixture of
isometric repulsive active and passive colloidal particles for (a) x, = 0, (b) x, = 0.5,and(c) x, = 1.Inthestable region (blue) the
system has a homogeneous steady state, whereas in the unstable region (red) particle clusters can be observed. The predicted spinodals for
the onset of a dynamical instability in the system correspond to equation (47) (dashed black curve) and equation (48) (solid black curve). In
(c), where equation (48) reduces to equation (51), the solid yellow curve corresponds to setting al(AA) = 0inequation (51). Regions with

7 < 0 (gray) agree well with the regions that start at the close-packing area fraction &, = 7 / (2+/3) ~ 0.907 and extend to even larger
area fractions, where the active particles become effectively trapped.

ai™ = 0.86, (56)
al™ = 1.04 — 0.67(d — 0.5)? (57)
and
a® = 24,94 4 11.30e2622, (58)
a® = 26.59 + 4.98e>70%, (59)
al(PA) = al(AP), (60)
a®? = —7.45 4 7.78¢3402, (61)

Interestingly, the coefficient a(** is independent of the total particle area fraction ® and a(*" has only a

moderate dependence on ®, whereas the other coefficients depend strongly on ®.

With equations (56) and (57) the effective swim speed of an active particle (46) becomes ¥ = v,(1 — 0.86p, —
(1.04 — 0.67(® — 0.5)%)pp) or, equivalently, 7 = vy (1 — 1.09®, — (1.32 — 0.85(® — 0.5)?)®p). Thisis close'’
totheresult v = vo(1 — 1.08®y — 1.21®p) from [11], which has been obtained from particle-resolved
simulations for different &, and ®p by calculating 7(®,, Pp) directly as the time-averaged speed of an active
particle. For ®p = 0, our expression reducesto 7 = v(1 — 1.09%y ), which is similar to the corresponding result
7 = 1y(1 — 1.05®,) from [18, 20].

The equality of a/*” and 4" in equation (60) is a consequence of using the same interaction potential for
all particles and considering only systems with y, = 0.5 when calculating the pair-distribution functions. These

special conditions lead to fo 27a¢ (1, @) = fo 27{1¢ & (1, @) and thus a{?) = (P here, but they do not hold
in general.

4.3. Dynamical state diagram

Based on our simulations, we now consider the dynamical state diagram of a binary mixture of isometric active
and passive colloidal particles with the same size and the same purely repulsive interactions in two spatial
dimensions. For small motilities or low concentrations of active particles, the steady state of such a mixture is
homogeneous. In contrast, when the Péclet number Pe and the average area fraction of the active particles ®, are
sufficiently large, the homogeneous state becomes unstable and particle clusters form [11].

Figure 3 shows the dynamical state diagram of a one-component system of passive particles (y, = 0),a
binary mixture with the same number of active and passive particles (y, = 0.5), and a one-component system
of active particles (y, = 1)inthe Pe-® plane, where the stable and unstable regions were determined by visual
inspection. As expected, the system is homogeneous for all Pe and ® when there are no active particles (see
figure 3(a)), whereas the state diagram of systems with half of the particles or all particles being active contains
both stable and unstable regions (see figures 3(b) and (c)). When x,, > 0, equation (46) predicts ¥ < 0 for the
largest particle packing fractions. The corresponding region in the state diagram is in good agreement with the

10 For &, ®p > 0and $ + Pp < P, with the close-packing area fraction &, = 7 / (24/3), the maximal difference of both expressions
for 7 isless than 0.061v,.
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region where the total particle area fraction @ is near the close-packing area fraction &, = 7 / (24/3) &~ 0.907 or
even larger so that effective motion of the active particles is not possible.

In the case of an active-passive mixture with x, = 0.5, clustering of the particles requires Pe > 50 and
® > 0.4 (see figure 3(b)). Evidently, the predicted spinodal for the onset of a dynamical instability in the
mixture, which is in general given by equations (47) and (48) with the parameters (56)—(61), is in accordance
with the border between the stable and unstable regions that we observed in the simulations. Here, only
equation (47) describes the spinodal curve, whereas equation (48) has no solution in the parameter range of the
state diagram. The appearance of the predicted spinodal clearly inside the actual one can partly be explained by
the fact that—due to the high noise level in the simulations—in large parts of the simulated instability region
clustering occurs through nucleation and growth instead of spinodal decomposition.

The state diagram of one-component systems of active particles (y, = 1) is qualitatively similar to that of
active-passive mixtures with y, = 0.5 (see figure 3(c)). Also in the case of solely active particles, the occurrence
of amotility-induced instability requires Pe > 50, but in this case an instability can already be observed for @
downto ® =~ 0.4 [20]. For x, = 1, equation (47) has no solution and the spinodal curve is entirely described by
equation (48) or, equivalently, equation (51). The predicted spinodal is in rather good agreement with that
directly obtained from the simulations. Especially the minimal values of Pe required for the instability to occur,
that are associated with the critical points of the spinodals, are very close together. When a/** = 0 is chosen in
equation (51), the predicted spinodal includes too small values of Pe down to 4+/3 = 6.9 and the agreement
with the simulation results is significantly worse. This shows that the density-dependence of the particles’
collective diffusion has a strong influence on the predicted spinodal and should not be neglected. Setting
al™ = g{&P) = g®Y — 5(PP) — () in the case of a mixture with y, = 0.5 leads to an even stronger
deterioration of the predictions. Then the predicted spinodal not only includes regions of too small Pe, but also
corresponds to the wrong type of instability.

Remarkably, through equations (47) and (48), which describe the spinodals for the active-passive mixtures
with x,, = 0.5and for the purely active systems with x, = 1, respectively, also these spinodals are associated
with different types of instabilities, including moving perturbations in the first case and static perturbations in
the second case. This is in line with the collective dynamics of mixtures of active and passive particles being more
violent, with traveling interfaces and strongly dynamic clusters (see, e.g., the supplemental movies associated
with [11]), than that of purely active systems, where clusters only move through particle diffusion [11, 12]. Given
the different nature of the instabilities for y, = 0.5and x, = 1, and the fact that the mixtures exhibit
significantly larger fluctuations, also the ease with which nucleation occurs in the metastable region is likely to be
different for one- and two-component systems. In the case x,, = 0.5, one has to take into account that in the
parameter regime where moving perturbations occur the validity of the quasi-stationary approximation, which
is involved in the derivation of equations (47) and (48), is ensured only for perturbations with small wave
numbers k < kp,y, where k. & 0.1/0 near the predicted spinodal shown in figure 3(b). Both a facilitated
nucleation and a reduced accuracy of the quasi-stationary approximation for y, = 0.5 could, atleast partly,
explain, why the agreement of the predicted spinodals with the simulation results is better for y, = 1than for
Xa = 0.5.For x, = 0.5 the agreement of the analytical prediction and the simulation results for the spinodal
could therefore be improved by avoiding the quasi-stationary approximation through carrying out a stability
analysis of equations (B8)—(B10) instead of equation (15). A general improvement of the field theory given by
equations (B8)—(B10) and thus of equation (15) is possible by truncating the gradient expansions in
equations (B8)—(B10) at higher than second order. This would lead to spinodal conditions that are—for all
values of x,—more accurate than those presented in the current work.

5. Conclusions

We studied multicomponent mixtures of interacting colloidal particles with different but constant motilities
and isometric shapes that are suspended in an atomic or molecular solvent. For this purpose, we derived a
mesoscopic field theory that describes the collective nonequilibrium dynamics of such particles in two spatial
dimensions. By carrying out a stability analysis for this field theory, we obtained equations that describe the onset
of amotility-induced dynamical instability in such mixtures. This instability occurs for sufficiently strong self-
propulsion and a sufficiently large concentration of the active particles and leads to cluster formation.

After a general treatment of multicomponent mixtures we focused on the important special case of a binary
mixture of interacting active and passive colloidal particles. We found that the instability leading to cluster
formation in such an active-passive mixture can be fundamentally different from that occurring in a one-
component system of active particles. While in the latter type of systems we found only an instability that is
associated with a stationary bifurcation and a steady state of static clusters, in an active-passive mixture an
instability that is associated with a Hopf bifurcation and moving clusters can also occur. This finding is in
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excellent agreement with the different dynamics of clusters in both systems that have already been reported
before and explains why these systems can behave in very different ways. To complement our analytical
calculations, we carried out Brownian dynamics computer simulations of mixtures of active and passive
particles. The results of these simulations are well in line with our analytical predictions for the spinodal curves.

While our mesoscopic field theory accurately predicts the qualitatively different dynamics of clusters in
active-passive mixtures and one-component systems of active particles, respectively, it does not give direct
insights into the microscopic mechanism that is responsible for the different cluster dynamics. It is likely that
this mechanism is analogous to the one that causes moving interfaces in active-passive mixtures reported in [12].
Different from the situation in one-component active systems, where clusters have a rather homogeneous
composition of active particles with their local polarization pointing inwards the cluster [17], in active-passive
mixtures the clusters are destabilized by an inhomogeneous distribution of passive particles [11]. We assume
that this inhomogeneous composition of the clusters locally reduces the stabilizing inwards-pointing
polarization, which causes a force and particle flux imbalance at the interfaces that leads to dynamic evaporation
and deposition of particles at the interfaces and sets the clusters into motion. For reasons discussed in [12], such
a flux imbalance can persist for considerable time.

An interesting feature of our theory is that it is applicable for both attractive and repulsive particle
interactions and even if the interactions are different for particles of different species. Our theory therefore
constitutes a general framework that can be applied to a particular system by choosing the number of particle
species, interaction potentials, motilities, etc appropriately. In the future it would be useful to extend this theory
towards mixtures of particles with anisometric shapes and thus to make its scope of application even wider.
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Appendix A. Possible further approximations of the pair-distribution functions

The number of independent coefficients A n(j'z) in equations (12) and (13) can be reduced by taking into account
the orientational dependence of the pair-distribution functions 8w (r, ¢) onlyup to second order, i.e., by
approximating

8,1 ) ~ g (r) + g (r)cos(d) + g (r)cos(2¢) (A1)

and by considering rather hard particles with very short-range interactions where the interaction lengths are
much smaller than the particle radii R,,. With these approximations, the expressions for the coefficients (14)
simplify to

2T 2T
Afn‘f}? ~ (R, + Ry)’”“(af{“’) f d¢ cos(¢)" **lsin(gp)* + ol f d¢ cos(¢)"**2sin(g)*
0 0

2w
+ oz(z“l’)f d¢ cos(2¢)cos(¢)’”k“sin(@") (A2)
0
with
ag‘“’) _ —focdr Uéﬂy)/(r)gi(w)(r)’ i€ {0, 1,2} (A3)
0

When the particles are hard disks or spheres in a plane, the coefficients ag’“’) can be expressed in a simpler form.
Following a procedure that is a standard trick when deriving an expression for the pressure of a passive hard-
sphere fluid [43], we write gi(‘“’) (r) in equation (A3) as exp(— BUY™ (r)) exp(BUS™ (r)) gi(’“’) (r) and afterwards
use Uz(””) "(r) exp(—BU) (1)) = — B~ 'dexp(—BUY)(r)) /dr. For hard-sphere interactions, the function
exp(—0 Uz(’“’) (r)) becomes the Heaviside step function H(r — R, — R,). Taking into account that

dH(r) /dr = 6(r), the coefficients ozg‘”’) can thus be written as

1
QEI"/) _ Egi(/u/)(R# + Ru)+ (A4)

with gl.(’“’) (R, + R)' = lim,_,o+ gi("”) (R, + R, + ¢)forhard particles. What now remains to determine are
the values of gl.(’“’) (R, + R,)". They can still depend on the speeds v’ and the average particle number densities
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p,» butare not functions of r or ¢. Furthermore, due to their close relationship to the pair-distribution functions
8, (1> @) itis possible to estimate at least lower and upper bounds for the values of gi(*“’) (R, + R,)".Itshould
also be possible to make good estimates for their dependence on v§' and Py

Appendix B. Details on the derivation of equation (15)

Following the common notation in Ginzburg—Landau theories for liquid crystals [44—47], it is useful to
approximate the orientation-dependent one-particle densities

0, (P5 &, 1) & ipﬂ(?, 1) + BuF 1) - () + Qu(F> 1) 1 (11(¢) ® () (B1)
in the dynamic equations (10) by the order-parameter fields
2T

puF 1) = [0 0,7, 6, 1), (B2)

o 1 2m N R
W7 0 = — ["do g, 0, @), (B3)

. 2 2w . R n

Q1 == ["d6 p, 7, 6, 0((0) © (6) ~ 41}, (B4)

These order-parameter fields are the concentration fields Py (7, t), thelocal polarizations 7_5N(? t), and the

symmetric and traceless nematic tensors Q,,(7, t). The correspondlng dynamic equations for the order-parameter
fields are'’

P+ OJ =0, (BS)
P+ ® =0, (Bo)
s Q _

Qu,ﬁ + q),] =0 (B7)

. =0 = . 2P S . .
with the currents J (7, t) and the quasi-currents'* ®"*(7, t) and ®2(7, t). Up to second order in gradients,
these currents and quasi-currents are given by

],—p” = 7, B.i — DL (0; P —

+ AB )0, @ip,) + 1AL — A Qui@ip,),  (BY)

o% = Laon) + éajm Qui) + DERLs = D 4B~ LS (Al + A D0R00)
+ A% — ABO(PLDip,) + 0i(Pi@ip,)))s (BY)
o5 = —xl,k,ak(vﬂ ) + 4D Qi — D A7 Qi — o ’f: S a - A X O, (Dip,)
v=1
+2m (A% + AN O(Q,,i(0kp,))) (B10)
with the density-dependent swim speeds
v.({p,)) = v}’ — 6D ZIAW)pV, (B11)

the tensor Xij = ik b1 + i djx — 6jOu, and O; being the ith element of the del symbol Vi = (01, 05) = (O 9)).
When considering the limiting case of a one-component system (n = 1) and setting Al(fé”) = Al(ﬁ”) = 0, which
means neglecting all effects of the particle interactions except for the slow-down of active particles due to collisions
that is taken into account through the density-dependent effective swim speeds (B11), our equations (B5)—(B10)
reduce to the corresponding dynamic equations for active Brownian particles in two spatial dimensions of [15]"”
Since only the concentration fields Py (7, t) are conserved quantities, their relaxation times are much larger

than the relaxation times of 73#(?, t)and Q,(7, t). When the nematic tensors Q,,(7, t) are the fastest-relaxing
order-parameter fields, we can describe the system on a larger time scale where QM- = 0.Equation (B10) can
then be used to express Q,,(7, t) in terms of gradients of the order-parameter fields. Inserting this expression

In the following, the Einstein summation convention is used for Latin indices. There is, however, no implicit summation over Greek
indices.

12 . . . . . 2 .
Notice that the concentration fields p, (7, t)are conserved quantities, whereas the local polarizations F,(7, t) and the nematic tensors
Qu(? t) are not conserved.

Settlng n = land Alg (’“’) A(’“’) = 0 in our equations (B5)—(B10) results in dynamic equations that are equivalent to those that are
obtained by setting ¢ = p / (27r), =2, a« =0, D; = const., D, = const.,and y,,. = 0 in equations (4)—(6) of [15].
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recursively into equations (B8)—(B10) and still neglecting all terms of third or higher order in gradients results in
the quasi-stationary approximation

Iip” = TV;LPH,Z' - D’#(aip,u Z(A(IW) (/‘W)) (8 pl/)’ (BlZ)
1 1 4
B = S-0H00) ~ Tepr XA Ok P + DY s — DE 45
D
64T (AT + 345V 0(PL,i0p,) + (AR — A (Bi(FL0p,)) + 0i(PLi(@ip,))),
v=1

(B13)
Quij = ——— Xij O Pu) + —— E( AR = AL X0, (D1p,)); (B14)

SD" 16 Dléf ~

which involves dynamic equations for p, (¥, t) and 73#(?, t) and a constitutive equation that expresses Q,,(7, t)
in terms of Py (7, t)and 73#(?, t). On the even larger time scale of the relaxation times of the concentration fields

Py (7, t), we can use 75#»1‘ = 0 to further simplify our dynamic equations (B12)—(B14). Proceeding with 73,,,(?, t)
in a similar way as with Q,,(7, t) leads to the full quasi-stationary approximation

" /8D'“ na ns
Jit = ZD,ﬁ(vﬁp,,) — D} (dip,) — p,,Z(A(’ '+ ABDip,)s (B15)
v=1
Pi= -3 D”a( Vi) (B16)
1 BDr ¢ () _ 4 0m)
Quij = s DHZ Xuklak(vﬂaz(vup/,)) + — T6xDf Z_:I(A — Ah )leklak(p/,,(azpy)), (B17)

which involves only a dynamic equation for p, (¥, £) and constitutive equations for the other order-parameter
fields.

The first term on the right-hand side of equation (B15) is proportional to the local polarizations (B16). This
shows that gradients of v, ({ £ P, (7, t)lead tolocal polarizations that drive currents of the concentration
fields. The other two terms on the right-hand side of equation (B15) describe diffusive currents, where the first
one represents the translational diffusion of noninteracting particles and the second one takes interactions with
particles of the same and other species into account. As can be seen from the first term on the right-hand side of
equation (B17), gradients of v, ({ Py D Py (7, t) also cause local nematic order. Like the local polarizations
described by equation (B16), the first term on the right-hand side of equation (B17) vanishes for passive
particles. In contrast, the second term on the right-hand side of equation (B17) does not in general vanish for
passive particles. When wesetn = 1and Al(fé”) = Al(fé”) = 0, our equations (B15)—(B17) corresponds to
equations (8) and (9) and the unnumbered equation before equation (8) in [15]. Furthermore, in this limit our
equation (B15) reduces to the simpler diffusion equation that is given by equation (20) in [16].
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