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Abstract
Wedevelop amesoscopic field theory for the collective nonequilibriumdynamics ofmulticomponent
mixtures of interacting active (i.e., motile) and passive (i.e., nonmotile) colloidal particles with
isometric shape in two spatial dimensions. By a stability analysis of the field theory, we obtain
equations for the spinodal that describes the onset of amotility-induced instability leading to cluster
formation in suchmixtures. The prediction for the spinodal is found to be in good agreementwith
particle-resolved computer simulations. Furthermore, we show that in active-passivemixtures the
spinodal instability can be of two different types. One type is associatedwith a stationary bifurcation
and occurs also in one-component active systems, whereas the other type is associatedwith aHopf
bifurcation and can occur only in active-passivemixtures. Remarkably, theHopf bifurcation leads to
moving clusters. This explains recent results from simulations of active-passive particlemixtures,
wheremoving clusters and interfaces that are not seen in the corresponding one-component systems
have been observed.

1. Introduction

Mixtures of active (i.e.,motile) and passive (i.e., nonmotile) colloidal particles exhibit an interesting set of
collective behaviors that is quite different from the dynamics of the corresponding one-component systems.
Many studies of active-passivemixtures have focused on the dilute regime, where long-range hydrodynamic
flows generated by active particles affect the diffusion of passive tracer particles [1–3]. At higher densities, where
short-range interactions such as excluded-volume interactions become important, other fascinating
phenomena arise. Among them are effective depletion-like attractions between passive objects in an active-
particle suspension [4–6], crystallization andmelting of hard-sphere glasses by dopingwith active particles
[7, 8], andmesoscale turbulencemediated by passive particles [9]. Furthermore, the intriguing phenomenon of
motility-induced phase separation (MIPS) [10], whereby purely repulsive active particles spontaneously
segregate into dense and dilute phases, has recently been numerically shown to occur also formixtures of active
and passive particles [11, 12]. For purely active systems, whereMIPS has already been extensively studied
[13–26], this transition has been theoretically rationalized as a spinodal-like instability occurring for sufficiently
large densities and propulsion speeds. A striking feature observed in active-passivemixtures undergoingMIPS is
the emergence of persistentlymoving interfaces and clusters due to a spontaneous breaking of spatial symmetry
[11, 12], which is qualitatively different from the stationary, albeitfluctuating, clusters observed in purely active
suspensions.

To gain a deeper theoretical understanding ofMIPS inmixtures of active and passive particles, as well as
mixtures of active particles with different properties, we here derive amesoscopic field theory that describes the
collective dynamics ofmulticomponentmixtures of such particles. In order to restrict the study to the basic
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features of their nonequilibriumdynamics, we consider unbounded systems in two spatial dimensions and
particles with isometric shapes (i.e., disks or spheres in a plane). Furthermore, we neglect hydrodynamic
interactions between the particles. The different species therefore differ only in their radii andmotilities. By
using appropriate approximations for the full (multidimensional) pair-distribution functions of the particles,
we derive spinodal criteria based on coefficients that can be readily evaluated from computer simulations in the
one-phase parameter regime. The predicted spinodals are in good accordancewith the instability region
observed in simulations of active-passivemixtures.We furthermore showhow two different types of instabilities
arise, depending on the properties of themixtures: a stationary bifurcation, corresponding toMIPS in one-
component active systems, and aHopf bifurcation, which can only occur inmixtures and is associatedwith a
steady state withmoving clusters. This distinction is likely to be responsible for the intriguing collective
dynamics observed in computer simulations of active-passivemixtures undergoingMIPS [11, 12].

The article is organized as follows: in section 2we derive dynamic equations formulticomponentmixtures
of particles with differentmotilities as well as useful approximations of these equations. Based on these, in
section 3we address the stability ofmixtures of active and passive particles and derive a condition for the onset of
a dynamical instability in suchmixtures. The good agreement between our analytic results and particle-resolved
computer simulations ofmixtures of active and passive particles is demonstrated in section 4.Wefinally
conclude in section 5.

2.Dynamic equations formixtures

Weconsider amulticomponentmixture of colloidal particles, eachwith different but constantmagnitudes of
self-propulsion. In addition to the deterministic self-propulsion, the positions and orientations of the particles
(so-called ‘active Brownian particles’ [27])undergo translational and rotational diffusion, respectively. In the
following, n denotes the number of different species of active or passive colloidal particles and mN is the total
number of particles of species m Î ¼{ }n1, , . The translational and rotational diffusion coefficients of the
particles are mDT and mDR , respectively, and the particles’motilities are set by active driving forces mF 0A [28],
which are zero for passive particles. m ( )r ti is the position and fm ( )ti is the orientation of the ith particle of species
μ at time t. The interactions between a particle of speciesμ and a particle of species ν are described by the pair-
interaction potentials -mn m n  ( )( )U r ri j2 , where mn ( )( )U r2 and nm ( )( )U r2 can be different5 and · is the
Euclidean norm.

2.1. Exact dynamic equations
Themicroscopic active Brownianmotion of an n-componentmixture of these colloidal particles with different
constantmotilities is described by the Langevin equations6

b f x= + +
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Here, anoverdot denotes differentiationwith respect to time and b = ( )k T1 B is the inverse thermal energywith
theBoltzmannconstant kB and the absolute temperatureTof the implicit solvent. Furthermore,
f f f=ˆ ( ) ( ( ) ( ))u cos , sin T is a normalizedorientation vector and  = ¶ ¶m m m
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and x x d d dá ñ = -m n m
mn( ) ( ) ( )t t D t t2i j ijR, 1 R, 2 R 1 2 , where⊗denotes thedyadic product and 1 is the identitymatrix.

The collective dynamics of the n-componentmixture can equivalently be described by the Smoluchowski
equation (see [30, 31] for details)

5
This is the case especially for colloidal particles that catalyze chemical reactions on their surfaces and break the action-reaction symmetry

stated byNewton’s third law. As an interesting consequence of such asymmetric interactions, anisotropic clusters of passive particles can
become self-propelled [29]. However, in this article we do not further study such systems.Our simulations described in section 4 use the
same interaction potential for all particles.
6
In the limit of a one-component system, these Langevin equations reduce to the simpler ones that have been used in [16, 19].
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with themany-particle probability density fm m({ } { } )P r t, ,i i . Here, the operator ¶fm
i
means partial differentia-

tionwith respect to fm
i . By integrating away all degrees of freedom except for mr1 and fm

1 , the one-particle
densities [32]
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can be obtained from fm m({ } { } )P r t, ,i i .Many-particle densities like the two-particle densities

r f f¢ ¢mn
 ( )( ) r r t, , , ,2 can be obtained analogously [33]. Applying an integration as in equation (5) to the

Smoluchowski equation (4) and renaming  =m  ( )r r x y,1
T and f fm

1 leads to the dynamic equations
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for the one-particle densities r fm
( )r t, , . Here, b=m m mv D F0 T A denotes the speed of a free particle of speciesμ and

we used the notation =mn mn¢( ) ( )( ) ( )U r U r rd d2 2 . The dynamics of the one-particle densities r fm
( )r t, , depends

on the two-particle densities r f f¢ ¢mn
 ( )( ) r r t, , , ,2 , which can be decomposed into the one-particle densities

r fm
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where the term dmn mN is usually negligibly small. Since the one-particle densities in equation (7) depend on
orientation and time, the commonly used orientation- and time-independent pair-distribution functions

¢mn
 ( )g r r, cannot be simply obtained by an angular integration and a time average of f f¢ ¢mn

 ( )g r r t, , , , .
Instead, they need to be calculated from an equation analogous to equation (7), where all functions are replaced
by their orientation-integrated and time-averaged counterparts.

Inserting equation (7) into equation (6) results in the exact dynamic equations for the one-particle densities
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The pair-distribution functions f f¢ ¢mn
 ( )g r r t, , , , , however, are unknown and have to be approximated

appropriately.

2.2. Approximate dynamic equations
In order to approximate the pair-distribution functions, wefirst assume global translational invariance of the
system, leading to f f f f¢ ¢ = ¢ - ¢mn mn

   ( ) ( )g r r t g r r t, , , , , , , .With the parametrization f¢ - =
  ˆ ( )r r ru R

(see figure 1) this can be rewritten as f f f¢mn ( )g r t, , , ,R . Assuming also invariance of the systemwith respect to
global rigid rotations, the number of variables of the pair-distribution functions can be reduced further, yielding

f f f f- ¢ -mn ( )g r t, , ,R . In addition, we assume that the pair-distribution functions are not explicitly time-

dependent: f f f f- ¢ -mn ( )g r, ,R . These common approximations become exact when the system is in a

homogeneous steady state. In accordancewith [16], we now further approximate f f f f- ¢ -mn ( )g r, ,R by

f f-mn ( )g r, R with the symmetry property q q- =mn mn( ) ( )g r g r, , . Notice that the pair-distribution
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concentration fields of the particles of species m Î ¼{ }n1, , and á ñ· r denotes a spatial average. Regarding the

pair-interaction potentials mn ( )( )U r2 we assume short-range interactions between the particles. This allows us to
simplify the final termof equation (9) through a gradient expansion [34–36].

With these approximations, equation (9) simplifies to the dynamic equations for n-componentmixtures of
active and passive particles
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are gradient expansions of the concentration fields rm
( )r t, . The four terms on the right-hand side of

equation (10) describe entropic translational and rotational diffusion, drift caused by the particles’motility, and
diffusive transport resulting from interactions of the particles, respectively.When the particles are passive, the
third term vanishes and the function f¡m

( )r t, , reduces to the excess chemical potential corresponding to the
particles of speciesμ. The dynamic equations (10) are applicable even for active systems far from thermodynamic
equilibrium and constitute the firstmain result of this article.

So far, we approximated the pair-distribution functions by assuming that they are invariant with respect to
translations and rotations of the coordinate system and that they have no explicit time-dependence, as well as by
neglecting the dependence of f f f f- ¢ -mn ( )g r, ,R on f f¢ - . Furthermore, we assumed short-range
particle interactions that allow fast convergence of the gradient expansions (12) and (13).Most of these
approximations are commonwhen dealingwith passive particles. The only exception is the negligence of the
f f¢ - -dependence of the pair-distribution functions, which depend only on rwhen themotilities of all
particles vanish.With additional assumptions on the pair-distribution functions, one can reduce the number of

Figure 1.Absolute and relative positions and orientations of two different isometric colloidal particles
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independent coefficients mn( )Am k, in equations (12) and (13). These possible further approximations of the pair-
distribution functions are described in appendix A, but not used in this article.

We proceed by expanding the orientation-dependent one-particle densities r fm
( )r t, , with respect to the

orientationf, neglecting terms of third or higher order in gradients, and performing a quasi-stationary
approximation (see appendix B for details). This results in the dynamic equations
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b=mn m
mn

m ( )( )
( )

a D
A

v
, 180 T

0,0

0

b= +mn m mn mn( ) ( )( ) ( ) ( )a D A A . 191 T 1,0 1,2

The division of mn( )A0,0 by mv0 in the definition of the coefficients mn( )a0 ismotivated by the fact that the effective
swim speeds rm m({ })v are proportional to mv0 inmixtures of active and passive particles [11]. Equations (15) and
(16) constitute the secondmain result of this article.

On the right-hand side of equation (16), the term dm mnDT describes the diffusivity of a free passive particle,

the term rmn
m

( ) /a 21 takes interactions with particles of the same or other species into account, and the two
remaining contributions describe the effect of the particles’motilities on the collective diffusion. Since the
diffusion tensor rm({ })D and the swim speeds rm m({ })v can directly be obtained fromparticle-resolved

computer simulations, equations (16) and (17) allow to determine the coefficients mn( )a0 and mn( )a1 :
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Especially for one-component systems, this constitutes an alternative to determining the pair-distribution
functions in simulations and calculating mn( )a0 and mn( )a1 using equations (14), (18), and (19).

3.Dynamical instability

For certain combinations of the free swim speeds mv0 and the average particle number densities rm¯ themixture
becomes unstable, particle clusters form, and the systemphase separates [11]. In the following, we use the
dynamic equations (15) to derive the spinodal for the onset of this activity-induced dynamical instability by
means of a linear stability analysis.

3.1.Multicomponentmixtures
Toderive the spinodal,we consider a systemwith slightly perturbed concentrationfields r r dr= +m m m

 ( ) ¯ ( )r t r t, , ,

where drm
( )r t, are the small perturbations. Inserting this perturbation ansatz into equation (15) and linearizing the

resulting expression in drm
( )r t, leads to thedynamic equations for theperturbations

7
For mv 00 the pair-distribution functions fmn ( )g r, become independent off and the coefficients mn( )A0,0 vanish. Therefore, the

coefficients mn( )a0 do not divergewhen mv 00 .
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with thematrix exponential -( ¯ )k tDexp 2 . An n-componentmixture of colloidal particles with different
motilities is therefore stable if the real parts of all eigenvalues l l¼, , n1 of D̄ are positive, i.e.,

l > " Î ¼( ) { } ( )i nRe 0 1, , , 25i

and unstable if at least one of the eigenvalues has a negative real part. Otherwise the stability can depend on
nonlinear contributions in equation (15) that are not captured by the linear stability analysis. The spinodal of the
dynamical instability is the outer surface that encloses the surfaces which are defined by the implicit functions

l =( )Re 0i with Î ¼{ }i n1, , . In the next subsection, we apply the stability criterion (25) to binarymixtures.

3.2. Binarymixtures
Wenow focus on binarymixtures with two species m Î { }A, B of particles. The constant diffusion tensor D̄ is
then a real ´2 2-dimensionalmatrix

=
⎛
⎝⎜

⎞
⎠⎟¯ ¯ ¯

¯ ¯ ( )D D

D D
D 26AA AB

BA BB

with eigenvalues

l = + - - +( ¯ ¯ ) ( ¯ ¯ ) ¯ ¯ ( )D D D D D D
1

2

1

2
4 , 271 AA BB AA BB

2
AB BA

l = + + - +( ¯ ¯ ) ( ¯ ¯ ) ¯ ¯ ( )D D D D D D
1

2

1

2
4 282 AA BB AA BB

2
AB BA

and the spinodal is the outer surface that encloses the two nonoverlapping8 surfaces given by the equations

= -  < -¯ ¯ ¯ ¯ ¯ ( )D D D D D 29AA BB AA
2

AB BA

and

=¯ ¯ ¯ ¯ ( )D D D D , 30AA BB AB BA

respectively, which correspond to l =( )Re 01 and l =( )Re 02 . Equations (29) and (30) describe the stability of
binarymixtures of colloidal particles with differentmotilities and constitute the thirdmain result of this article.

As can be seen from the eigenvalues (27) and (28) and accompanying eigenvectors

l l
=

-
=

- ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

¯
¯

¯
¯ ( )w

D

D
w

D

D
, 311

1 BB

BA
2

2 BB

BA

of D̄, respectively, equations (29) and (30) correspond to instabilities of different types. Under the condition
(29), the eigenvalues l1 and l2 are imaginary and complex conjugates of each other. The surface described by
equation (29), where a complex conjugate pair of eigenvalues of D̄ passes through the imaginary axis, is
associatedwith aHopf bifurcation [37–39]. This type of bifurcation is possible for a binarymixture, but not for a
one-component systemof active or passive colloidal particles. In contrast, under the condition (30), l1 and l2

are real and one of these eigenvalues is zero. The surface described by equation (30), where one of the two real
eigenvalues of D̄ passes through zero, is associatedwith a stationary bifurcation [37–39]. This type of bifurcation
is possible also for one-component systems.Hence, there is a fundamental difference between the alreadywidely
studiedMIPS of one-component systems of active particles, whichwe related to a stationary bifurcation, and the
nonequilibriumdynamics of active-passivemixtures, which exhibits also aHopf bifurcation.

8
Combining equations (29) and (30) leads to the unfulfillable condition <¯ ¯D DAA

2
AA
2 . This shows that the surfaces described by

equations (29) and (30) have no points in common.
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To study the features of these bifurcations, we now insert the plane-wave ansatz

ådr = w

=

-
   

( ) ( )( · )r t A w, e 32
j

j
k r t

j
1

2
i j j

with the perturbation vector dr dr dr=


( ),A B
T, constants ÎA A,1 2 , imaginary unit i, wave vectors

Î
 
k k,1 2

2, and angular frequencies w w Î,1 2 into equation (22)9. This results in the dispersion relations

w l= - ( )ki , 331 1 1
2

w l= - ( )ki 342 2 2
2

with = 

k k1 1 and = 


k k2 2 .When decomposing the eigenvalues l l l= +( ) ( )Re iImj j j with Î { }j 1, 2 into

their real parts l( )Re j and imaginary parts l( )Im j , where l l= -( ) ( )Im Im1 2 , and inserting the dispersion
relations (33) and (34) into the ansatz (32), we obtain

ådr = l l

=

- -
   

( ) ( )( · ( ) ) ( )r t A w, e e . 35
j

j
k r k t k t

j
1

2
i Im Rej j j j j

2 2

From this equation it is obvious that—in accordance with the stability criterion (25)—the amplitudes of small
spatially harmonic perturbations are exponentially growingwith timewhen at least one of the eigenvalues of D̄
has a negative real part. Furthermore, we see that the perturbations are traveling planewaves for l ¹( )Im 01 ,
i.e., for theHopf bifurcation associatedwith equation (29), whereas the perturbations are static for l =( )Im 01 ,
as holds for the stationary bifurcation associatedwith equation (30). This is an important difference between the
two types of bifurcations and helps to distinguish the two underlying instabilities in simulations and
experiments. The speed of a traveling spatially harmonic perturbationwithwave number k is l( )kIm 2 . Note that
this expression holds only for small k, since the continuumdescription by the field theory (15) breaks down for
 p +( )k R R2 A B , where RA and RB are the radii of particles of species A andB, respectively. In the parameter

regimewhere traveling perturbations occur, an additional condition for k, which can restrict the applicability of
thefield theory (15) to even smaller k, results from the quasi-stationary approximation (see section 2.2). Since
the applicability of the quasi-stationary approximation requires that the time scale D1 R, onwhich the
orientational order-parameter fields described in appendix B relax, ismuch smaller than the period p w2 of the
travelingwaves, whereω is their angular frequency, the condition p wD1 2R must be fulfilled.With the
dispersion relations (33) and (34) this yields the condition p l= ∣ ( )∣k k D2 Immax R 1 for k.

3.2.1. Active-passivemixtures
In the following, we assume that all particles have the same radiusR and thus identical translational diffusion
coefficients = =D D DT T

A
T
B as well as identical rotational diffusion coefficients = =D D DR R

A
R
B. The

elements of the diffusion tensor (26) then simplify to

r
= + + -

⎛
⎝⎜

⎞
⎠⎟

¯ ¯ ¯ ¯ ( )( ) ( )D D
v

D
a a

v v

D2 2
, 36AA T

A
2

R

A
1
AA

0
AA 0

A
A

R

r
= -

⎛
⎝⎜

⎞
⎠⎟

¯ ¯ ¯ ( )( ) ( )D a a
v v

D2
, 37AB

A
1
AB

0
AB 0

A
A

R

r
= -

⎛
⎝⎜

⎞
⎠⎟

¯ ¯ ¯ ( )( ) ( )D a a
v v

D2
, 38BA

B
1
BA

0
BA 0

B
B

R

r
= + + -

⎛
⎝⎜

⎞
⎠⎟

¯ ¯ ¯ ¯ ( )( ) ( )D D
v

D
a a

v v

D2 2
39BB T

B
2

R

B
1
BB

0
BB 0

B
B

R

with the effective swim speeds

r r= - -¯ ( ¯ ¯ ) ( )( ) ( )v v a a1 , 40A 0
A

0
AA

A 0
AB

B

r r= - -¯ ( ¯ ¯ ) ( )( ) ( )v v a a1 . 41B 0
B

0
BA

A 0
BB

B

In the special case of amixture of active (A) and passive (P) particles with m Î { }A, P , equations (36)–(41)
further simplify due to = =v̄ v 0P 0

P .With the notation =¯ ¯v vA and =v v0 0
A this results in

r
= + + -

⎛
⎝⎜

⎞
⎠⎟¯ ¯ ¯ ¯ ( )( ) ( )D D

v

D
a a

v v

D2 2
, 42AA T

2

R

A
1
AA

0
AA 0

R

9
Note that in the plane-wave ansatz (32) the perturbation vector dr


is complex. The perturbations that could be observed in simulations or

experiments correspond to the real part of dr

.
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r
= -

⎛
⎝⎜

⎞
⎠⎟¯ ¯ ¯ ( )( ) ( )D a a

v v

D2
, 43AP

A
1
AP

0
AP 0

R

r=¯ ¯ ( )
( )

D
a

2
, 44PA

1
PA

P

r= +¯ ¯ ( )
( )

D D
a

2
45PP T

1
PP

P

and

r r= - -¯ ( ¯ ¯ ) ( )( ) ( )v v a a1 . 460 0
AA

A 0
AP

P

Equations (42)–(45) show that for purely repulsive interactions, where >( )a 01
PA and >( )a 01

PP , the passive
particles are always stable and that the clustering is triggered by a dynamical instability of the active particles.
According to equations (29) and (30), the spinodal for the instability of the active-passivemixture is defined by

= -  < -¯ ¯ ¯ ¯ ¯ ( )D D D D D 47AA PP AA
2

AP PA

and

=¯ ¯ ¯ ¯ ( )D D D D . 48AA PP AP PA

3.2.2. Large v0
Wenow consider large values  ¥v0 of the self-propulsion speed of a free particle v0, but not too large particle
densities r̄A and r̄P so that  ¥v̄ . Assuming that the coefficients ( ) ( ) ( ) ( ) ( )a a a a a, , , ,0

AA
0
AP

1
AA

1
AP

1
PA , and ( )a1

PP

neither vanish nor diverge when  ¥v0 , equation (47) then no longer has a solution, whereas equation (48)
simplifies to

r
r r

r
=

- - -

+ -
¯

( ) ¯ ¯
( ) ¯

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

D D a a a a

D a a a a a

2 2

4 2
. 49A

T T 0
AP

1
PP

P 0
AP

1
PP

P
2

T 0
AA

0
AA

1
PP

0
AP

1
PA

P

Thismeans that only the stationary bifurcation but not theHopf bifurcation occurs in the limit  ¥v0 . If we
set = =( ) ( )a a 01

PA
1
PP in equation (49), it further reduces to

r
r

=
-

¯
¯ ( )

( )

( )
a

a

1

2
, 50A

0
AP

P

0
AA

which is a simple condition for the low-density branch of the spinodal, as found previously in [11].

3.3.One-component systems
Another limiting case of equations (47) and (48) is that of a one-component systemof active particles where
r =¯ 0P . Also in this case, equation (47) has no solution so that theHopf bifurcationwith itsmoving
perturbations cannot occur. The stationary bifurcation, in contrast, is still possible. For this bifurcationwe
obtain from equation (48) the spinodal condition

r
= + + - =

⎛
⎝⎜

⎞
⎠⎟¯ ¯ ¯ ¯ ( )( ) ( )D D

v

D
a a

v v

D2 2
0 51AA T

2

R

A
1
AA

0
AA 0

R

with the effective speed of the active particles

r= -¯ ( ¯ ) ( )( )v v a1 . 520 0
AA

A

When choosing =( )a 01
AA , equation (51) becomes equivalent to the simpler spinodal condition that has been

proposed in [16]. This approximation is, however, in general not applicable. The termproportional to ( )a1
AA in

the diffusion coefficient D̄AA takes the density-dependence of the particles’ collective diffusion into account that
originates from their interactions and is present also if the particles are passive ( =v 00 ). Further belowwe show
that neglecting this termhas a strong influence on the predicted spinodal.

If all particles interact purely repulsively, the onset of the dynamical instability requires a sufficiently large
value of the low-density self-propulsion speed v0. The threshold value of v0 depends on r̄A: for small values of r̄A,
the threshold value of v0 is infinite and the instability cannot occur at all; for larger r̄A, the threshold value is
finite, and for a certain value of r̄A, whichwe denote as r̄A,min, the threshold value attains itsminimal possible

value v0,min. Considering
( )a0
AA and ( )a1

AA as nonzero finite constants, which is—aswewill see in section 4.2—
only an approximation, v0,min and the corresponding r̄A,min are given by
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r

r r
=

+

- + -

= + + + +
⎛
⎝⎜

⎞
⎠⎟

¯
¯ ¯

( )

( )

( ) ( )

( )

( )

( )

( )

( )

( )

v D
D a

a a

D D D
a

a
D D D

a

a

a

a

2

1 3 2

8 3 4 4 3
1

2
53

0,min
2

R
T 1

AA
A,min

0
AA

A,min 0
AA 2

A,min
2

T R R
1
AA

0
AA R T

2
T

1
AA

0
AA

1
AA

0
AA

2

and

r = - + + +
⎛
⎝⎜

⎞
⎠⎟¯ ( )( ) ( )

( )

( )

( )

( )
D

a a
D D

a

a

a

a
2

1
4 3

1

2
, 54A,min

T

1
AA

1
AA T

2
T

1
AA

0
AA

1
AA

0
AA

2

respectively. This result for theminimal value of v0 at the spinodal generalizes the previous result
=v D D40,min T R of [16], which is obtained from equation (53)when choosing =( )a 01

AA and has been shown
to lead to too small values for v0,min compared to particle-resolved simulations [18, 20]. Note that, within the
approximationsmentioned above, r( ¯ )v,A,min 0,min is the critical point of the one-component systemof active
particles.

Next, we consider the spinodal condition (51) in the limit  ¥v̄ and assume that ( )a0
AA and ( )a1

AA are finite
in this limit. This results in thewell-known condition for the low-density spinodal branch of a suspension of
active Brownian particles r =¯ ( )( )a1 2A 0

AA [15].

4. Simulations

To confirmour analytical results from section 3, we carried out Brownian dynamics computer simulations of
binarymixtures of isometric active and passive colloidal particles in two spatial dimensions. These particle-
resolved simulations were based on solving the Langevin equations (1) and (2)numerically andmade use of the
LAMMPSmolecular dynamics package [40]. All particles in our simulations had the same diameter s = R2 ,
diffusion coefficients DT and s=D D3R T

2, and repulsive interaction potential ( )U r2 . For the latter, we used
theWeeks–Chandler–Andersen potential, i.e., the truncated and shifted Lennard-Jones potential



e e s

s
=

- + <s s⎧
⎨⎪
⎩⎪

( )( ) ( )( ) ( )U r
r

r

4 , if 2 ,

0, if 2 .
55r r

2

12 6 1 6

1 6

Here, ε determines the interaction strength as well as the Lennard-Jones time scale t s eb= ( )DLJ
2

T . For
convenience, we chose s t, LJ, and ε as units for length, time, and energy, respectively. The active particles had
the low-density self-propulsion speed b s t= =v D F 240 T A LJ with the active driving force e s=F 24A .We
studied active-passivemixtures with various total average area fractions F = F + FA P, fractions of particles
that are active c = F FA A , and Péclet numbers s= v DPe 0 T, where r psF = ¯ 4A A

2 and r psF = ¯ 4P P
2 are

the average area fractions of the active and passive particles, respectively. The Péclet number describes the ratio
betweenmotility and thermal diffusion of a particle. To ensure that the effective particle radius does not depend
on the propulsion speed of a free active particle v0, we varied Pe by changing DT for all particles, while we kept v0
constant (see [20, 41] for details). In the limiting case c = 0A , which corresponds to a systemof only passive
particles, we chose s t=DT

2
LJ.

Our simulationswere carried out for particles with homogeneously distributed random initial positions and
orientations in a quadratic simulation domainwith size s s´150 150 and periodic boundary conditions. The
number of particles was 5730 for F = 0.2 and 22918 for F = 0.8. Furthermore, the simulations comprised
´5 107 time steps of length tD = ´ -t 5 10 5

LJ, of whichwe discarded thefirst ´2 106 time steps. The
duration of a simulationwas thus t2500 LJ. For =Pe 100, where the Brownian time t s= DB

2
T is t t» 4.2B LJ,

this equals t600 B.When the particles have diameter s m= 1 m and translational diffusion coefficient
phs= ( )D k T 3T B [42], and are dispersed inwater with dynamic viscosity h = -10 Pas3 and temperature

=T 293 K, the Brownian time scale is t » 2.3 sB and the duration of the simulations corresponds to about
1400 s.

4.1. Pair-distribution functions
Since the pair-distribution functions f f f f f f- - -( ) ( ) ( )g r g r g r, , , , ,AA R AP R PA R , and f f-( )g r,PP R
(see figure 1 for an illustration of the relative coordinates r and f f-R ) are needed to evaluate the coefficients

( ) ( ) ( ) ( ) ( )a a a a a, , , ,0
AA

0
AP

1
AA

1
AP

1
PA , and ( )a1

PP via equations (14), (18), and (19), we used the simulations described
above to determine the pair-distribution functions for c = 0.5A and various parameter combinations of

Î [ ]Pe 0, 500 and F Î [ ]0, 0.8 . However, we did not include parameter combinationswhere the isotropic state
of the simulated systemwas not stable. The resulting pair-distribution functions for =Pe 50 and F = 0.6 are
shown infigure 2.
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Forfixed f f-R , the shapes of these functions of r are qualitatively similar to the typical shape of a radial
distribution function for repulsive disks or spheres [43]. However, themaxima andminimaof f f-( )g r,AA R

and f f-( )g r,AP R as functions of rdepend strongly on f f-R . They aremost strongly pronounced for
f f- = 0R , corresponding to the active (reference)particle collidingwithother particles right in front of it, and
become increasingly less pronouncedwhen f f p-∣ ∣R increases (seefigures 2(a) and (b)). Furthermore, the
positions of themaximaandminimamove to slightly larger particle separations r for growing f f p-∣ ∣R . This
is consistentwith the bowwave formation in front of amoving active particle reported for one-component systems
of active particles in [16]. In contrast to f f-( )g r,AA R and f f-( )g r,AP R , the pair-distribution functions

f f-( )g r,PA R and f f-( )g r,PP R donot dependon f f-R so that it is here sufficient to focus on the
case f f- = 0R .

When comparing the four pair-distribution functions for f f= R, it becomes obvious that ( )g r, 0AA and
( )g r, 0AP , on the one hand, as well as ( )g r, 0PA and ( )g r, 0PP , on the other hand, are very similar. Themain

difference between these two pairs of correlation functions is that themaxima of ( )g r, 0AA and ( )g r, 0AP are
significantly larger and shifted to smaller r compared to ( )g r, 0PA and ( )g r, 0PP (seefigure 2(c)). This is a
consequence of the different type of the reference particle, which is active for ( )g r, 0AA and ( )g r, 0AP but passive
for ( )g r, 0PA and ( )g r, 0PP .When the reference particle is active, it pushes other particles ahead of itself so that in
front of it (i.e., at f f= R) on average over time the concentration of particles is larger and the particle
separations are smaller than around a passive reference particle.

4.2. Coefficients
Using equation (14) as well as our results for the pair-distribution functions for c = 0.5A and various choices of

Pe andΦ, we calculated the corresponding values of the coefficients ( ) ( ) ( ) ( ) ( )a a a a a, , , ,0
AA

0
AP

1
AA

1
AP

1
PA , and ( )a1

PP .
While for small Pewe observed a strong dependence of these coefficients on Pe, we found that their dependence
on Pe is negligible for >Pe 50. Under the condition >Pe 50, the calculated coefficients are approximately
given by the expressions

Figure 2.Pair-distribution functions (a) f f-( )g r,AA R , (b) f f-( )g r,AP R , and (c) mn ( )g r, 0 with m n Î { }, A, P for Péclet number
=Pe 50, total particle area fraction F = 0.6, and fractionof activeparticles c = 0.5A .Note that f f- =( ) ( )g r g r, , 0PA R PA and

f f- =( ) ( )g r g r, , 0PP R PP for all f f-R .
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= ( )( )a 0.86, 560
AA

= - F -( ) ( )( )a 1.04 0.67 0.5 570
AP 2

and

= + F ( )( )a 24.94 11.30e , 581
AA 2.62

= + F ( )( )a 26.59 4.98e , 591
AP 3.50

= ( )( ) ( )a a , 601
PA

1
AP

= - + F ( )( )a 7.45 7.78e . 611
PP 3.40

Interestingly, the coefficient ( )a0
AA is independent of the total particle area fractionΦ and ( )a0

AP has only a
moderate dependence onΦ, whereas the other coefficients depend strongly onΦ.

With equations (56) and (57) the effective swimspeed of an active particle (46)becomes r= -¯ ( ¯v v 1 0.860 A
-

r- F -( ( ) ) ¯ )1.04 0.67 0.5 2
P or, equivalently, = - F¯ (v v 1 1.090 A – - F - F( ( ) ) )1.32 0.85 0.5 2

P . This is close10

to the result = - F - F¯ ( )v v 1 1.08 1.210 A P from [11], which has been obtained fromparticle-resolved
simulations for differentFA andFP by calculating F F¯ ( )v ,A P directly as the time-averaged speed of an active
particle. For F = 0P , our expression reduces to = - F¯ ( )v v 1 1.090 A , which is similar to the corresponding result
= - F¯ ( )v v 1 1.050 A from [18, 20].
The equality of ( )a1

AP and ( )a1
PA in equation (60) is a consequence of using the same interaction potential for

all particles and considering only systemswith c = 0.5A when calculating the pair-distribution functions. These

special conditions lead to ò òf f f f=
p p

( ) ( )g r g rd , d ,
0

2

AP 0

2

PA and thus =( ) ( )a a1
AP

1
PA here, but they do not hold

in general.

4.3.Dynamical state diagram
Based on our simulations, we now consider the dynamical state diagramof a binarymixture of isometric active
and passive colloidal particles with the same size and the same purely repulsive interactions in two spatial
dimensions. For smallmotilities or low concentrations of active particles, the steady state of such amixture is
homogeneous. In contrast, when the Péclet number Pe and the average area fraction of the active particles FA are
sufficiently large, the homogeneous state becomes unstable and particle clusters form [11].

Figure 3 shows the dynamical state diagramof a one-component systemof passive particles (c = 0A ), a
binarymixture with the same number of active and passive particles (c = 0.5A ), and a one-component system
of active particles (c = 1A ) in the Pe-Φ plane, where the stable and unstable regionswere determined by visual
inspection. As expected, the system is homogeneous for all Pe andΦwhen there are no active particles (see
figure 3(a)), whereas the state diagramof systemswith half of the particles or all particles being active contains
both stable and unstable regions (seefigures 3(b) and (c)).When c > 0A , equation (46) predicts v̄ 0 for the
largest particle packing fractions. The corresponding region in the state diagram is in good agreementwith the

Figure 3.Theoretical predictions (spinodal curves) and simulation results (circles) for the dynamical state diagramof a binarymixture of
isometric repulsive active andpassive colloidal particles for (a) c = 0A , (b) c = 0.5A , and (c) c = 1A . In the stable region (blue) the
systemhas ahomogeneous steady state,whereas in the unstable region (red)particle clusters can be observed. Thepredicted spinodals for
the onset of a dynamical instability in the systemcorrespond to equation (47) (dashedblack curve) and equation (48) (solid black curve). In
(c), where equation (48) reduces to equation (51), the solid yellowcurvecorresponds to setting =( )a 01

AA in equation (51). Regionswith
v̄ 0 (gray) agreewell with the regions that start at the close-packing area fraction pF = »( )2 3 0.907cp and extend to even larger

area fractions,where the active particles becomeeffectively trapped.

10
For F F, 0A P and F + F FA P cpwith the close-packing area fraction pF = ( )2 3cp , themaximal difference of both expressions

for v̄ is less than v0.061 0.
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regionwhere the total particle area fractionΦ is near the close-packing area fraction pF = »( )2 3 0.907cp or
even larger so that effectivemotion of the active particles is not possible.

In the case of an active-passivemixture with c = 0.5A , clustering of the particles requires >Pe 50 and
F > 0.4 (see figure 3(b)). Evidently, the predicted spinodal for the onset of a dynamical instability in the
mixture, which is in general given by equations (47) and (48)with the parameters (56)–(61), is in accordance
with the border between the stable and unstable regions thatwe observed in the simulations. Here, only
equation (47) describes the spinodal curve, whereas equation (48) has no solution in the parameter range of the
state diagram. The appearance of the predicted spinodal clearly inside the actual one can partly be explained by
the fact that—due to the high noise level in the simulations—in large parts of the simulated instability region
clustering occurs through nucleation and growth instead of spinodal decomposition.

The state diagramof one-component systems of active particles (c = 1A ) is qualitatively similar to that of
active-passivemixtures with c = 0.5A (see figure 3(c)). Also in the case of solely active particles, the occurrence
of amotility-induced instability requires >Pe 50, but in this case an instability can already be observed forΦ
down to F » 0.4 [20]. For c = 1A , equation (47) has no solution and the spinodal curve is entirely described by
equation (48) or, equivalently, equation (51). The predicted spinodal is in rather good agreement with that
directly obtained from the simulations. Especially theminimal values of Pe required for the instability to occur,
that are associatedwith the critical points of the spinodals, are very close together.When =( )a 01

AA is chosen in
equation (51), the predicted spinodal includes too small values of Pe down to »4 3 6.9 and the agreement
with the simulation results is significantly worse. This shows that the density-dependence of the particles’
collective diffusion has a strong influence on the predicted spinodal and should not be neglected. Setting

= = = =( ) ( ) ( ) ( )a a a a 01
AA

1
AP

1
PA

1
PP in the case of amixturewith c = 0.5A leads to an even stronger

deterioration of the predictions. Then the predicted spinodal not only includes regions of too small Pe, but also
corresponds to thewrong type of instability.

Remarkably, through equations (47) and (48), which describe the spinodals for the active-passivemixtures
with c = 0.5A and for the purely active systemswith c = 1A , respectively, also these spinodals are associated
with different types of instabilities, includingmoving perturbations in thefirst case and static perturbations in
the second case. This is in line with the collective dynamics ofmixtures of active and passive particles beingmore
violent, with traveling interfaces and strongly dynamic clusters (see, e.g., the supplementalmovies associated
with [11]), than that of purely active systems, where clusters onlymove through particle diffusion [11, 12]. Given
the different nature of the instabilities for c = 0.5A and c = 1A , and the fact that themixtures exhibit
significantly largerfluctuations, also the ease withwhich nucleation occurs in themetastable region is likely to be
different for one- and two-component systems. In the case c = 0.5A , one has to take into account that in the
parameter regimewheremoving perturbations occur the validity of the quasi-stationary approximation, which
is involved in the derivation of equations (47) and (48), is ensured only for perturbations with small wave
numbers k kmax, where s»k 0.1max near the predicted spinodal shown infigure 3(b). Both a facilitated
nucleation and a reduced accuracy of the quasi-stationary approximation for c = 0.5A could, at least partly,
explain, why the agreement of the predicted spinodals with the simulation results is better for c = 1A than for
c = 0.5A . For c = 0.5A the agreement of the analytical prediction and the simulation results for the spinodal
could therefore be improved by avoiding the quasi-stationary approximation through carrying out a stability
analysis of equations (B8)–(B10) instead of equation (15). A general improvement of the field theory given by
equations (B8)–(B10) and thus of equation (15) is possible by truncating the gradient expansions in
equations (B8)–(B10) at higher than second order. This would lead to spinodal conditions that are—for all
values of cA—more accurate than those presented in the current work.

5. Conclusions

We studiedmulticomponentmixtures of interacting colloidal particles with different but constantmotilities
and isometric shapes that are suspended in an atomic ormolecular solvent. For this purpose, we derived a
mesoscopicfield theory that describes the collective nonequilibriumdynamics of such particles in two spatial
dimensions. By carrying out a stability analysis for thisfield theory, we obtained equations that describe the onset
of amotility-induced dynamical instability in suchmixtures. This instability occurs for sufficiently strong self-
propulsion and a sufficiently large concentration of the active particles and leads to cluster formation.

After a general treatment ofmulticomponentmixtures we focused on the important special case of a binary
mixture of interacting active and passive colloidal particles.We found that the instability leading to cluster
formation in such an active-passivemixture can be fundamentally different from that occurring in a one-
component systemof active particles.While in the latter type of systemswe found only an instability that is
associatedwith a stationary bifurcation and a steady state of static clusters, in an active-passivemixture an
instability that is associatedwith aHopf bifurcation andmoving clusters can also occur. Thisfinding is in
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excellent agreement with the different dynamics of clusters in both systems that have already been reported
before and explains why these systems can behave in very different ways. To complement our analytical
calculations, we carried out Brownian dynamics computer simulations ofmixtures of active and passive
particles. The results of these simulations arewell in linewith our analytical predictions for the spinodal curves.

While ourmesoscopic field theory accurately predicts the qualitatively different dynamics of clusters in
active-passivemixtures and one-component systems of active particles, respectively, it does not give direct
insights into themicroscopicmechanism that is responsible for the different cluster dynamics. It is likely that
thismechanism is analogous to the one that causesmoving interfaces in active-passivemixtures reported in [12].
Different from the situation in one-component active systems, where clusters have a rather homogeneous
composition of active particles with their local polarization pointing inwards the cluster [17], in active-passive
mixtures the clusters are destabilized by an inhomogeneous distribution of passive particles [11].We assume
that this inhomogeneous composition of the clusters locally reduces the stabilizing inwards-pointing
polarization, which causes a force and particle flux imbalance at the interfaces that leads to dynamic evaporation
and deposition of particles at the interfaces and sets the clusters intomotion. For reasons discussed in [12], such
aflux imbalance can persist for considerable time.

An interesting feature of our theory is that it is applicable for both attractive and repulsive particle
interactions and even if the interactions are different for particles of different species. Our theory therefore
constitutes a general framework that can be applied to a particular systemby choosing the number of particle
species, interaction potentials,motilities, etc appropriately. In the future it would be useful to extend this theory
towardsmixtures of particles with anisometric shapes and thus tomake its scope of application evenwider.

Acknowledgments

WethankEdgarKnobloch,HartmutLöwen, andUweThiele forhelpful discussions and theOpenAccessPublication
Fundof theUniversityofMünster for covering the article publication charge.RWis fundedby theDeutsche
Forschungsgemeinschaft (DFG,GermanResearchFoundation)—WI4170/3-1. JS acknowledges fundingbyaProject
Grant fromtheSwedishResearchCouncil (2015-05449).MECholds aRoyal SocietyResearchProfessorship.

AppendixA. Possible further approximations of the pair-distribution functions

The number of independent coefficients mn( )Am k, in equations (12) and (13) can be reduced by taking into account
the orientational dependence of the pair-distribution functions fmn ( )g r, only up to second order, i.e., by
approximating

f f f» + +mn
mn mn mn( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )g r g r g r g r, cos cos 2 A1
0 1 2

and by considering rather hard particles with very short-range interactions where the interaction lengths are
much smaller than the particle radii mR .With these approximations, the expressions for the coefficients (14)
simplify to

ò ò

ò

a f f f a f f f

a f f f f

» + +
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2
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0

2
2

2
0

2
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with

òa = - Îmn mn mn
¥

¢( ) ( ) { } ( )( ) ( ) ( )r U r g r id , 0, 1, 2 . A3i i
0

2

When the particles are hard disks or spheres in a plane, the coefficients a mn( )
i can be expressed in a simpler form.

Following a procedure that is a standard trick when deriving an expression for the pressure of a passive hard-
spherefluid [43], wewrite mn ( )( )g r

i in equation (A3) as b b- mn mn mn( ( )) ( ( )) ( )( ) ( ) ( )U r U r g rexp exp
i2 2 and afterwards

use b b b- = - -mn mn mn¢ -( ) ( ( )) ( ( ))( ) ( ) ( ) /U r U r U r rexp dexp d2 2
1

2 . For hard-sphere interactions, the function
b- mn( ( ))( )U rexp 2 becomes theHeaviside step function - -m n( )r R RH . Taking into account that

d=( ) ( )r r rdH d , the coefficients a mn( )
i can thus bewritten as

a
b

= +mn mn
m n

+( ) ( )( ) ( )g R R
1

A4i i

with + = + +mn
m n

mn
m n

+
 +( ) ( )( ) ( )g R R g R Rlim

i i0 for hard particles.What now remains to determine are

the values of +mn
m n

+( )( )g R R
i . They can still depend on the speeds mv0 and the average particle number densities
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rm¯ , but are not functions of r orf. Furthermore, due to their close relationship to the pair-distribution functions

fmn ( )g r, it is possible to estimate at least lower and upper bounds for the values of +mn
m n

+( )( )g R R
i . It should

also be possible tomake good estimates for their dependence on mv0 and rm¯ .

Appendix B.Details on the derivation of equation (15)

Following the commonnotation inGinzburg–Landau theories for liquid crystals [44–47], it is useful to
approximate the orientation-dependent one-particle densities

 r f r f f f» + + Äm p m m m
    ( ) ( ) ( ) · ˆ ( ) ( ) ( ˆ ( ) ˆ ( )) ( )r t r t r t u r t u u, , , , , : B11

2

in the dynamic equations (10) by the order-parameter fields
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These order-parameter fields are the concentration fields rm
( )r t, , the local polarizations m

 ( )r t, , and the
symmetric and traceless nematic tensorsm

( )r t, . The corresponding dynamic equations for the order-parameter
fields are11
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with the currents
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 ( )J r t, and the quasi-currents12
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( )r t, . Up to second order in gradients,
these currents and quasi-currents are given by
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with the density-dependent swim speeds
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the tensor c d d d d d d= + -ijkl ik jl il jk ij kl, and ¶i being the ith element of thedel symbol  = ¶ ¶ = ¶ ¶

 ( ) ( ), ,r x y1 2 .

When considering the limiting case of a one-component system (n= 1) and setting = =mn mn( ) ( )A A 01,0 1,2 , which
meansneglecting all effects of theparticle interactions except for the slow-downof active particles due to collisions
that is taken into account through thedensity-dependent effective swim speeds (B11), our equations (B5)–(B10)
reduce to the corresponding dynamic equations for active Brownian particles in two spatial dimensions of [15]13.

Since only the concentration fields rm
( )r t, are conserved quantities, their relaxation times aremuch larger

than the relaxation times of m
 ( )r t, andm

( )r t, .When the nematic tensorsm
( )r t, are the fastest-relaxing

order-parameter fields, we can describe the systemon a larger time scale where =m 0ij, . Equation (B10) can
then be used to expressm

( )r t, in terms of gradients of the order-parameter fields. Inserting this expression

11
In the following, the Einstein summation convention is used for Latin indices. There is, however, no implicit summation overGreek

indices.
12

Notice that the concentration fields rm
( )r t, are conserved quantities, whereas the local polarizations m

 ( )r t, and the nematic tensors
m

( )r t, are not conserved.
13

Setting n=1 and = =mn mn( ) ( )A A 01,0 1,2 in our equations (B5)–(B10) results in dynamic equations that are equivalent to those that are
obtained by setting j r p a= = = = =( ) d D D2 , 2, 0, const., const.,t r and c = 0abc in equations (4)–(6) of [15].

14

New J. Phys. 19 (2017) 105003 RWittkowski et al



recursively into equations (B8)–(B10) and still neglecting all terms of third or higher order in gradients results in
the quasi-stationary approximation
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which involves dynamic equations for rm
( )r t, and m

 ( )r t, and a constitutive equation that expressesm
( )r t,

in terms of rm
( )r t, and m

 ( )r t, . On the even larger time scale of the relaxation times of the concentration fields

rm
( )r t, , we can use  =m˙ 0i, to further simplify our dynamic equations (B12)–(B14). Proceedingwith m

 ( )r t,
in a similar way aswithm

( )r t, leads to the full quasi-stationary approximation
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which involves only a dynamic equation for rm
( )r t, and constitutive equations for the other order-parameter

fields.
Thefirst termon the right-hand side of equation (B15) is proportional to the local polarizations (B16). This

shows that gradients of r rm m m
({ }) ( )v r t, lead to local polarizations that drive currents of the concentration

fields. The other two terms on the right-hand side of equation (B15) describe diffusive currents, where the first
one represents the translational diffusion of noninteracting particles and the second one takes interactions with
particles of the same and other species into account. As can be seen from the first termon the right-hand side of
equation (B17), gradients of r rm m m

({ }) ( )v r t, also cause local nematic order. Like the local polarizations
described by equation (B16), the first termon the right-hand side of equation (B17) vanishes for passive
particles. In contrast, the second termon the right-hand side of equation (B17) does not in general vanish for
passive particles.Whenwe set n=1 and = =mn mn( ) ( )A A 01,0 1,2 , our equations (B15)–(B17) corresponds to
equations (8) and (9) and the unnumbered equation before equation (8) in [15]. Furthermore, in this limit our
equation (B15) reduces to the simpler diffusion equation that is given by equation (20) in [16].
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