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The unitary character group of abelian
unipotent groups

Helma Klüver

(Communicated by Siegfried Echterhoff)

Abstract. We determine the Pontrjagin dual of all K-split abelian unipotent algebraic
groups G over local fields K of positive characteristic. By giving a detailed study of the
structure of such groups we show that there is always an isomorphism between the group G

and its dual group bG.

1. Introduction

In this paper we analyze the structure of abelian unipotent linear algebraic
groups G over local fields of characteristic p. In particular we study their

Pontrjagin dual, i.e., the group Ĝ = Hom(G,T) consisting of all continuous
homomorphisms from G to the circle group T, where G is equipped with the
locally compact Hausdorff topology.

We consider these groups as abstract groups, equipped with the locally
compact topology from the additive group of the underlying field K, which is
commonly denoted by Ga. A large class of unipotent linear algebraic groups
over local fields admit a finite composition series consisting of characteristic
subgroups such that all consecutive quotient groups are isomorphic to the
additive group Ga. Such groups are called K-split.

If the characteristic of the field K is equal to 0 then every unipotent linear
algebraic group over K is K-split and every abelian K-split group over a local
field of characteristic 0 is isomorphic to a finite product of copies of the group
Ga. In particular, such groups are isomorphic to their dual groups. If K has
positive characteristic, the situation becomes much more complicated. In this
case there do exist abelian linear algebraic K-groups which are not K-split
and the abelian K-split groups are usually not isomorphic to powers of K. A
special class of K-split groups over such fields are given by the class of finite
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dimensional Witt groups (see Section 4 for the definition) and every K-split
group is isogeneous to a finite product of finite-dimensional Witt groups.

The main result of this paper is a structure theorem (Theorem 4.16) which
shows that each Witt group can be decomposed into a discrete and a compact
part, each being isomorphic to the dual group of the other. This theorem is
then used to show that every abelian K-split group G over a local field of

characteristic p is isomorphic to its dual group Ĝ. We also give an explicit
description of the characters of the first Witt group W1(K), where K is a local
field of the form Fp((t)) for some prime number p.

The paper is organized as follows. After a short preliminary section on
local fields and duality for locally compact groups, we give in Section 3 a
short discussion on the general structure of unipotent algebraic groups over
local fields. The main results of this paper are given in Section 4, which is
divided into four subsections: in the first subsection we recall the definition
of Wn(K), the nth Witt group of a local field K of characteristic p. In the
second subsection we derive our structure theorem for Witt groups. In the
third subsection we show that all Witt groups over local fields are self-dual
and in the last subsection we give the explicit description of the characters
of the first Witt groups. In the final Section 5 we use the fact that every
abelian K-split group over a local field of characteristic p is isogeneous to
a finite product of Witt group to prove that every abelian K-split group is
topologically isomorphic to its dual group.

Acknowledgements. The author wants to thank her advisor Professor
Siegfried Echterhoff, as well as Professor Markus Reineke (Bergische Uni-
versität Wuppertal) and Profesor Fritz Grunewald (Heinrich-Heine-University
Düsseldorf) for their encouraging guidance, their support and the many fruitful
discussions that inspired this work.

2. Some preliminaries

A local field is a locally compact, non-discrete field. Up to isomorphism,
the local fields of characteristic 0 are R, C, and finite algebraic extensions of
the field Qp of p-adic numbers for all prime numbers p ([9], §3 Theorem 5).
Furthermore, every local field of characteristic p > 0 is isomorphic to a field of
formal Laurent series in one variable, denoted by Fq((t)), where q is some power
of the prime p ([9], §4 Theorem 8). A field of this form can be constructed as
follows.

Let Fq be the finite field with q elements, where q is a power of some prime
p > 0, and let Fq[[t]] be the ring of formal power series in one variable over Fq.
The invertible elements of this ring are power series x =

∑∞

n=0 xnt
n, where

x0 6= 0. Put

Fq((t)) := Fq[[t]](t
−1).

The elements of Fq((t)) are formal Laurent series of the form
∑∞

n=n0
ant

n,

where n0 ∈ Z and an ∈ Fq. Since every nonzero element x ∈ Fq((t)) can be
written uniquely as x = tly for some l ∈ Z and some y ∈ Fq[[t]]

×, every nonzero
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element of Fq((t)) has a multiplicative inverse. Thus Fq((t)) is a field, it is the
quotient field of the ring Fq[[t]].

One can define a norm on Fq((t)) in the following way. We put ‖0‖ = 0 and
for 0 6= x ∈ Fq((t)) with x = tly for some l ∈ Z and some y ∈ Fq[[t]]

×, we put
‖x‖ = q−l. Equipped with this norm, the additive group of the field Fq((t))
becomes a locally compact group.

Observe that the map

φ : Fq[[t]] →

∞∏

i=0

Fq,

∞∑

n=0

ant
n 7→ (an)n∈Z≥0

defines an isomorphism of groups, which is bi-continuous with respect to the
product topology on the compact group

∏∞

i=0 Fq. Furthermore, the map

Φ : Fq((t)) →
−∞⊕

i=−1

Fq ×
∞∏

i=0

Fq,
∞∑

n=−m

ant
n 7→ (an)n∈Z≥ −m

,

is an isomorphism of additive groups and Φ is bi-continuous with respect to
the discrete topology on the direct sum

⊕−∞

i=−1 Fq. By means of this map, we
obtain a natural decomposition of the local field Fq((t)) into a discrete and a
compact part:

(1) Fq((t)) ∼=

∞⊕

i=1

Fq ×

∞∏

i=0

Fq.

We now discuss duality of local fields. Recall that for any abelian locally

compact group G, the Pontrjagin dual group Ĝ is the group of all continuous
group homomorphisms from G to the circle group T equipped with pointwise

multiplication. The elements of Ĝ are called characters of G. Given the topol-

ogy of uniform convergence on compact sets of G, Ĝ is again a locally compact
group. We say that G is self-dual if there exists a topological isomorphism

between G and Ĝ. For instance, if G is the additive group of a local field K
then G is self-dual:

Proposition 2.1. ([9], Theorem 3) Let K be a non-discrete locally compact
field and let χ be a non-trivial character of the additive group of K. Then

the map y 7→ χy from K to K̂, where χy(x) := χ(xy), is an isomorphism of
topological groups.

The proposition implies in particular that the field Fq((t)), viewed as an
additive locally compact group, is selfdual. We want to observe that there is
also a different way of exhibiting the selfduality of Fq((t)), using the structure
of its additive group. For this, we recall the following facts about the dual
group of a locally compact abelian group G which can all be found in [3],
Chapter 4.

(1) If G1, . . . , Gn are locally compact abelian groups then

(G1 × · · · ×Gn)b∼= Ĝ1 × · · · × Ĝn
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and every finite abelian group is selfdual.

(2) If G is discrete then Ĝ is compact and if G is compact then Ĝ is
discrete.

(3) If G =
∏

i∈I Gi, where each Gi is a compact abelian group then

Ĝ ∼=
⊕

i∈I

Ĝi.

(4) (Pontrjagin duality theorem) The map Φ : G →
̂̂
G defined by

Φ(x)(χ) = χ(x) is an isomorphism of topological groups.

Let G be the additive group of the local field Fq((t)). Then we have by (1)

G ∼=

∞⊕

i=1

Fq ×

∞∏

i=0

Fq

and using the facts listed above we obtain

Ĝ ∼=

(
∞⊕

i=1

Fq ×

∞∏

i=0

Fq

)b

∼=

(
∞⊕

i=1

Fq

)b

×

(
∞∏

i=0

Fq

)b

∼=

∞∏

i=0

Fq ×

∞⊕

i=1

Fq
∼= G.

3. The structure of unipotent linear algebraic
groups

In this section we want to recall some results on the structure of unipotent
linear algebraic groups which we shall use in this paper. By a linear algebraic
group G over K we will always understand the K-rational points, G(K), of
such a group with the locally compact topology from the local field K.

The most basic example is the additive group of the underlying field K
which we denote in the following by Ga. The group Ga is unipotent since it is
isomorphic to the group G =

{
( 1 x

0 1 ) , x ∈ K
}
⊆ GL2(K). Recall the following

definition.

Definition 3.1. Let V be a finite dimensional vector space over K and denote
by End(V ) the algebra of endomorphisms of V .

(a) An element a ∈ End(V ) is called nilpotent if am = 0 for some m ∈ N.
(b) An element a ∈ End(V ) is called unipotent if a− 1 is nilpotent.
(c) A group G ⊆ End(V ) is said to be unipotent if all its elements are

unipotent.

Recall that a linear algebraic group G over K is a Zariski closed subgroup
of GLn(K) for some n ∈ N. If K is a local field, then G is also closed with
respect to the locally compact Hausdorff topology on GLn(K) inherited from
the locally compact topology on K.

Definition 3.2. Let n ∈ N. We define

Tr1(n,K) := {A ∈ GLn(K) | Aij = 0 for j < i and Aii = 1 for all 1 ≤ i ≤ n}

to be the algebra of upper triangular n×n-matrices over K with each diagonal
entry equal to 1.
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Theorem 3.3. ([1], Theorem 4.8) A linear algebraic group defined over K is
unipotent if and only if it is isomorphic to a closed algebraic subgroup of the
upper triangular unipotent group Tr1(n,K) for some n ∈ N. In particular,
every unipotent linear algebraic group is nilpotent.

An important class of unipotent linear algebraic groups is the class ofK-split
groups, which are defined as follows.

Definition 3.4. ([1], Definition 15.1) A unipotent linear algebraic group G
defined over K is called K-split if it admits a composition series

G = G0 D G1 D · · · D Gk = {e}

consisting of closed, normal linear algebraic subgroups of G such that Gi/Gi+1

is isomorphic to the additive group Ga. In particular such a group is connected
with respect to the Zariski topology ([7], V, 2.1).

Remark/Example 3.5. ([1], Corollary 15.5.) If the field K is perfect, in
particular if the characteristic of K is equal to 0, then every unipotent linear
algebraic group G over K is K-split. This is not true for local fields of positive
characteristic.

Definition 3.6. ([7], V §3.1) Let G be a unipotent linear algebraic group over
K. The group G is said to be K-wound if G does not admit a subgroup which
is isomorphic to the additive group Ga.

Example 3.7. ([7], V §3.4) Let K be a local field of characteristic p and
suppose that K is not perfect (i.e. Kp 6= K). Let t be an element of K \Kp.
One can show that the algebraic subgroup H := {(x, y) | xp − typ = x} of
Ga ×Ga is K-wound.

In [7], chapter V and V I, Oesterlé proves several interesting facts about the
structure of K-wound groups.

Theorem 3.8. ([7], V §5) Let G be a unipotent linear algebraic group over a
local field K of characteristic p > 0. Then the following are equivalent.

(i) G is K-wound.
(ii) The topological group G is compact.

Theorem 3.9. ([7], VI §1) Every unipotent linear algebraic group G over K
admits a largest algebraic normal subgroup N which is K-split. The quotient
G/N is K-wound and it is the largest quotient of G with this property.

It follows from Theorem 3.8 that every abelianK-wound group has a discrete
dual group. So, unless they are finite, such groups can never be self-dual. From
now on we will concentrate ourselves on K-split groups. Let G be K-split and
let

(2) G := Z0(G) D Z1(G) D · · · D Zm(G) = {e}
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be its descending central series. Notice that in this case Zm−1(G) is equal to
the center of G. Since (Zi(G), Zi(G)) ⊆ (Zi(G), G) for all i, it follows that the
canonical map

ϕ : Zi(G)/(Zi(G), Zi(G)) −→ Zi(G)/(Zi(G), G)

is surjective. But we have Zi(G)/(Zi(G), G) = Zi(G)/Zi+1(G) and since the
quotient group Zi(G)/(Zi(G), Zi(G)) is abelian it follows that all consecutive
quotients Zi(G)/Zi+1(G) appearing in the central series (2) are abelian unipo-
tent K-split groups. Thus we can refine the central series (2) so that we obtain
a new composition series in which all consecutive quotients are isomorphic to
the additive group Ga.

As we have seen above, every unipotentK-split group is a multiple extension
of groups of the type Ga. So in order to understand the structure of these
groups more precisely, we first need to study the algebraic extensions of the
additive group Ga with itself. For this we recall the following definitions.

An algebraic 2-cocycle f on Ga is a polynomial in two variables with coef-
ficients in K satisfying the equations

f(x, 0) = f(0, x) = 0 for all x ∈ Ga and

f(y, z)− f(x+ y, z) + f(x, y + z) − f(x, y) = 0 for all x, y, z ∈ Ga.(3)

If g : Ga → Ga is any polynomial map, the function h : Ga ×Ga → Ga defined
by

h(x, y) = g(x+ y) − g(x) − g(y)

is an algebraic 2-cocycle and such a 2-cocycle is called trivial. The group
of classes of algebraic 2-cocycles modulo the trivial 2-cocycles is denoted by
H2(Ga, Ga). Every algebraic extension of the additive group Ga with itself is
completely determined by an algebraic 2-cocycle f : Ga × Ga → Ga, and we
will identify in the following such extensions with their 2-cocycles.

A 2-cocycle f is called symmetric if f(x, y) = f(y, x) for all x, y ∈ Ga,
and we denote the group of classes of symmetric, algebraic 2-cocycles modulo
the trivial 2-cocycles by Ext(Ga, Ga). In characteristic p > 0, a non-trivial
example of such a polynomial is

(4) ω(x, y) =
1

p
(xp + yp − (x + y)p),

the 2-cocycle which defines the first Witt group over K. Finite-dimensional
Witt groups will be introduced in Section 4 and we will see in Section 5 that
there is in fact a close connection between abelian K-split groups and Witt
groups.

But first we want to remark that the class of polynomial 2-cocycles of Ga is
much greater then the class of symmetric polynomial 2-cocycles. It is easy to
see that, for example, every bi-additive polynomial f : Ga ×Ga → Ga satisfies
Equation (3). In characteristic p, the bi-additive polynomials of Ga are of the
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form
f(x, y) =

∑

m,n

am,nx
pm

ypn

,

where all but finitely many coefficients am,n are equal to zero. A simple exam-
ple of an asymmetric bi-additive polynomial is given by

f(x, y) = xpy.

The non-abelian group G corresponding to this asymmetric cocycle can be
realized as

G =

{(
1 x y
0 1 xp

0 0 1

)
, x, y ∈ Ga

}
.

In fact, we can show the following result.

Proposition 3.10. Every algebraic 2-cocycle of Ga is the sum of a symmetric
2-cocycle and a bi-additive 2-cocycle.

Proof. Notice first that if f(x, y) is a 2-cocycle of Ga then the polynomials
f̄(x, y) := f(y, x) and g(x, y) := f(x, y) − f(y, x) are also 2-cocycles. Further-
more, we have

g(x, y + z) − g(x, y) − g(x, z) = 0,

for all x, y, z ∈ Ga, and since g(x, y) = −g(y, x) it follows that the polynomial
g is bi-additive. We distinguish between two cases.

If the characteristic of K is anything except 2, then we can write

f(x, y) =
1

2

(
f(x, y) + f(y, x)

)
+

1

2
g(x, y)

and thus we can write f as a sum of a symmetric and a bi-additive 2-cocycle.
If the characteristic of K is equal to 2, then g(x, y) = f(x, y) + f(y, x) is

bi-additive and symmetric. If f is of the form f(x, y) =
∑
aijx

iyj then we
have

g(x, y) =
∑

(aij + aji)x
iyj =

∑
bijx

iyj .

Furthermore we have bij = bji and bii = 2aii = 0 for all i. Since g(x, y) is
bi-additive it follows that bij = 0 except for the case that i and j are both
powers of 2. Now, let h(x, y) =

∑
i<j bijx

iyj , then h(x, y) is bi-additive and

we have h(x, y) + h(y, x) = g(x, y) for all x, y ∈ Ga. Since

f(x, y) + f(y, x) + h(x, y) + h(y, x) = 2g(x, y) = 0,

it follows that the sum f(x, y) + h(x, y) is symmetric and hence f(x, y) is the
sum of a symmetric and a bi-additive 2-cocycle. �

4. Witt groups

Finite-dimensional Witt groups over local fields K of characteristic p define
an important class of abelian K-split groups. This section is divided into four
subsections. In Subsection 4.1 we give, for every n ∈ N0, the definition of
Wn(K), the nth Witt group of a local field K of characteristic p. We prove
in Subsection 4.2 that finite-dimensional Witt groups of any local field K of
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characteristic p can be decomposed into a discrete and a compact part, each
being the dual of the other (Proposition 4.20). With this result we prove in
Subsection 4.3 that, for every n ∈ N0 and every local field K of characteristic
p, the topological group Wn(K) is isomorphic to its dual group. Finally, we
give in Subsection 4.4 an explicit description of the characters of the first Witt
group of a local field K of the form K = Fp((t)) for some prime number p.

4.1. Definition of finite-dimensional Witt groups. We first introduce the
definition of the nth Witt ringWn(R) of a commutative ring R with unity. The
approach we are following is given in [5].

Let p ∈ N be a fixed prime, let n ∈ N, and consider the polynomial ring

A = Q[X0, Y0, . . . , Xn, Yn].

We will define a new ring structure on the set An+1 via the following procedure.
Let x = (x0, x1, . . . , xn) ∈ An+1 and define a map φ : An+1 → An+1 by

φ((x0, x1, . . . , xn)) = (x(0), x(1), . . . , x(n)),

where

(5) x(0) := x0 and x(i) := xpi

0 + p · xpi−1

1 + · · · + pi−1 · xp
i−1 + pi · xi for i ≥ 1.

Conversely, given an arbitrary vector z = (x(0), x(1), . . . , x(n)) ∈ An+1, define
a map ψ : An+1 → An+1 by

ψ(z) = (x0, x1, . . . , xn),

where

(6) x0 := x(0) and xi :=
1

pi
[x(i) − xpi

0 − p · xpi−1

1 − · · · − pi−1 · xp
i−1] for i ≥ 1.

The maps φ and ψ are inverse bijections. Using these maps we can introduce
new binary operations of addition, denoted by ⊕, and multiplication, denoted
by ⊗, on the set An+1. For this let x, y ∈ An+1 and define

(7) x⊕ y := ψ(φ(x) + φ(y)) and x⊗ y := ψ(φ(x) · φ(y)).

That is, (x ⊕ y)(i) = x(i) + y(i) and (x ⊗ y)(i) = x(i) · y(i) for i ≥ 0. Note
that, in general, x ⊕ y 6= x + y and x ⊗ y 6= x · y. We write Wn(A) for the
set An+1 endowed with the operations ⊕ and ⊗ as given above. One can show
that Wn(A) is a commutative ring of characteristic 0, isomorphic to the ring
An+1 under φ : Wn(A) → An+1. Observe that by (5), (6) and (7), we obtain
for example:

(x ⊕ y)0 = x0 + y0,

(x ⊕ y)1 = x1 + y1 +
1

p
(xp

0 + yp
0 − (x0 + y0)

p),

(x ⊗ y)0 = x0y0,

(x ⊗ y)1 = xp
0y1 + x1y

p
0 + p · x1y1.
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Theorem 4.1. ([4], Theorem 8.25) Let n ∈ N and let x = (x0, x1, . . . , xn) and
y = (y0, y1, . . . , yn) be elements of Wn(A). Let x ◦ y denote x ⊕ y, x ⊗ y, or
x⊖ y. Then (x ◦ y)i ∈ Z[x0, y0, . . . xi, yi] for all i ∈ {0, . . . , n}.

Using this result we can now define for all 0 ≤ i ≤ n :

(x⊕ y)i =: Ai(x0, y0, . . . , xi, yi) ∈ Z[x0, y0, . . . , xi, yi],

(x⊗ y)i =: Mi(x0, y0, . . . , xi, yi)∈ Z[x0, y0, . . . , xi, yi],

(x⊖ y)i =: Si(x0, y0, . . . , xi, yi) ∈ Z[x0, y0, . . . , xi, yi].

With these properties we can pass from the ring A = Q[X0, Y0, . . . , Xn, Yn]
to any commutative ring R with identity. Let ϕ : Z → R denote the natural
homomorphism defined by ϕ(c) = 1 · c =: c̄ for c ∈ Z. Let Āi(x0, y0, . . . , xi, yi)
and M̄i(x0, y0, . . . , xi, yi) be the polynomials in R[x0, y0, . . . , xi, yi] obtained
from Ai(x0, y0, . . . , xi, yi) and Mi[x0, y0, . . . , xi, yi], respectively, by replacing
each coefficient c ∈ Z by c̄ ∈ R. We can now give the definition of the nth
Witt ring of a commutative ring with unity.

Definition 4.2. Let R be any commutative ring with unity and let n ≥ 0.
The nth Witt ring Wn(R) of R is defined to be the set of all (n + 1)-tuples
x = (x0, . . . , xn), where xi ∈ R for every i ∈ {0, . . . , n}, with addition and
multiplication defined as

(x ⊕ x′)i =: Āi(x0, x
′
0, . . . , xi, x

′
i) and

(x ⊗ x′)i =: M̄i(x0, x
′
0, . . . , xi, x

′
i).

By [4], Theorem 8.26, Wn(R) is a commutative ring. The zero and identity
elements of Wn(R) are 0 = (0, 0, . . . , 0) and (1, 0, . . . , 0), respectively.

Remark 4.3. Let R be any commutative ring with unity and let n ≥ 0.
Let x = (x0, . . . , xn) and x′ = (x′0, . . . , x

′
n) be elements of Wn(R), and con-

sider B := Z[Y0, Y
′
0 , . . . , Yn, Y

′
n]. There exists a ring homomorphism θ from

B to R, satisfying θ(c) = c̄ for c ∈ Z, θ(Yi) = xi, and θ(Y ′
i ) = x′i for all

0 ≤ i ≤ n. This map induces a ring homomorphism θ̃ : Wn(B) → Wn(R),

where θ̃((a0, . . . , an)) = (θ(a0), . . . , θ(an)), ai ∈ B, satisfying θ̃((Y0, . . . , Yn)) =

(x0, . . . , xn) and θ̃((Y ′
0 , . . . , Y

′
n)) = (x′0, . . . , x

′
n). In this way we obtain a func-

tor Wn from the category of commutative rings of characteristic p into the
category of commutative rings. In particular, if S is a subring of R, then
Wn(S) is a subring of Wn(R).

Remark 4.4. Let R be any commutative ring with unity and let n ≥ 0. Let
x = (x0, . . . , xn) and y = (y0, . . . , yn) be elements of Wn(R). Then (x ⊕ y)i =
Āi(x0, y0, . . . , xi, yi) for all 0 ≤ i ≤ n and it follows from Equation (5), (6),
and (7) that Āi is of the form

(8) Āi(x0, y0, . . . , xi, yi) = xi + yi + ωi(x0, y0, . . . , xi−1, yi−1),

where ωi, i ∈ {1, . . . , n}, is a polynomial in the variables x0, y0, . . . , xi−1, yi−1

with coefficients in R. Only ω0 is equal to the zero polynomial. Note that
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the ωi, i ∈ N, can be regarded as 2-cocycles on the Witt-groups Wi−1(R)
with values in R and that the ith Witt-group Wi(R) is realized as the central
extension of Wi−1(R) by the central subgroup R corresponding to this cocycle.

4.2. The structure of finite-dimensional Witt groups. In the following,
let K be a local field of characteristic p0. The (n + 1)-dimensional Witt ring
Wn(K), n ∈ N≥0, has the natural structure of an abelian, unipotent algebraic
group. The elements of Wn(K) are (n+ 1)-tuples (x0, . . . , xn), where xi ∈ K
and hence, as a set, Wn(K) = Kn+1. It follows from Definition 4.2 and the
remarks following it that the maps π : Wn × Wn → Wn, where π(x, y) =
x ⊕ y and i : Wn → Wn, where i(x) = −x are morphisms of affine varieties
K2(n+1) → Kn+1 and Kn+1 → Kn+1, respectively. Therefore, Wn(K) is a
(n+1)-dimensional abelian (affine) algebraic group. In order to see that the
group Wn(K) is unipotent we introduce the following maps.

(1) The Shift map

S : Wn(K) →Wn(K), (x0, x1, . . . , xn) 7→ (0, x0, . . . , xn−1) and

(2) the Frobenius map

F : Wn(K) →Wn(K), (x0, x1, . . . , xn) 7→ (xp
0, x

p
1, . . . , x

p
n).

These maps have the following important properties.

Lemma 4.5. ([5], Theorem 13.6.)

(i) The Shift map S and the Frobenius map F are ring homomorphisms.
(ii) All elements x = (x0, . . . , xn) ∈ Wn(K) satisfy the following equation

(9)
pkx = Sk(F k(x)) for all 0 ≤ k ≤ n and hence

pk(x0, . . . , xn) = (0, 0, . . . , 0, xpk

0 , xpk

1 , . . . , xpk

n−k).

As a direct consequence of this lemma we obtain the following result.

Corollary 4.6. If 1 denotes the vector (1, 0 . . . , 0) in the nth Witt ring Wn(K),
then pn+1 · 1 = 0 and pm · 1 6= 0 whenever m < n + 1. Thus each element of
Wn(K) has additive order a power of p, and hence Wn(K) is a unipotent group.
Moreover, pn+1 is the smallest power of p satisfying the condition pn+1x = 0
for all x ∈Wn(K).

For the rest of this section, we endow Wn(K) with the locally compact
topology of the field K and consider in this way Wn(K) as an abelian locally
compact group. In the following we will write Wn instead of Wn(K).

As we have seen in Section 2, we can decompose the additive group of the
field K into a product of a discrete and a compact part, each being the dual
of the other. Our aim in this section is to derive a structure theorem for all
finite-dimensional Witt groups over K, which shows that these groups consist,
like the field K, of a discrete and a compact part, each being the dual of the
other.

Recall that every non-discrete locally compact field of characteristic p > 0
is isomorphic to a field of formal Laurent series in one variable, Fq((t)), where
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q is some power of the prime p. We consider first the case that q = p, i.e.,
the case that the field K is isomorphic to Fp((t)). We will use the following
notation.

Notation 4.7. Let

• k := Z /pZ be the finite field with p elements,
• K := k((t)) the field of Laurent-series over k,
• K+ := k[[t]] ⊆ K the power series ring over k, and
• K− := {a1t

−1 + a2t
−2 + . . .+ ant

−n | n ∈ N, ai ∈ k}.

The set K− is an additive subgroup of K which is also closed under multipli-
cation. Clearly, every element a ∈ K can be written uniquely as a = a+ + a−,
where a+ ∈ K+ and a− ∈ K−.

Furthermore, if A is a finite abelian group with the discrete topology we
define

• A∞ :=
∏∞

i=0A = {(a0, a1, . . .) | ai ∈ A}

to be the infinite direct product of A, which is a compact group with respect
to the product topology. And we define

• A(∞) :=
⊕∞

i=1 A = {(a1, a2, . . .) | ai ∈ A, ai = 0 for almost all i}

to be the infinite direct sum, which is a discrete group with the usual direct-
sum-topology. Moreover, let for every n ∈ N0

• Cn := Z /nZ be the cyclic group with n elements,
• W+

n := {(x0, . . . , xn) ∈Wn | xi ∈ K+ for all 0 ≤ i ≤ n}, and
• W−

n := {(x0, . . . , xn) ∈ Wn | xi ∈ K− for all 0 ≤ i ≤ n}.

We recall that the field K = Fp((t)) is isomorphic to the direct product of
the discrete subgroup K− and the compact subgroup K+ and thus

K ∼= K− ×K+ ∼=

∞⊕

i=1

k ×

∞∏

i=0

k ∼= C(∞)
p × C∞

p .

The aim of this section is to show that the nth Witt group of K can be
decomposed in a similar way. In fact we will prove

Wn
∼= W−

n ×W+
n

∼= (C
(∞)
pn+1 ×C

(∞)
pn × · · · ×C(∞)

p )× (C∞
pn+1 ×C∞

pn × · · · ×C∞
p ).

The proof consists of several steps. At first we show that the nth Witt group
Wn can be written as the direct product of its subgroups W−

n and W+
n .

Lemma 4.8.

(i) The sets W+
n and W−

n , defined as above, are subgroups of Wn and we
have W+

n ∩W−
n = {0}.

(ii) The map µ : W+
n × W−

n → Wn, (x, y) 7→ x ⊕ y is a bi-continuous
isomorphism.

Proof. (i): In order to show that W+
n is a subgroup of Wn notice first that the

neutral element (0, . . . , 0) is an element of W+
n . Moreover, if (x0, . . . , xn) ∈

W+
n then also −(x0, . . . , xn) ∈ W+

n , since it follows from (5), (6), and (7)
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that −(x0, . . . , xn) = (−x0, . . . ,−xn). Now, let x = (x0, . . . , xn) and x′ =
(x′0, . . . , x

′
n) be two arbitrary elements of W+

n . Then we have xi, x
′
i ∈ K+ for

all 0 ≤ i ≤ n and it follows from Definition 4.2 that (x ⊕ x′)i = Āi(x0, x
′
0, . . . ,

xi, x
′
i), where Āi(x0, x

′
0, . . . , xi, x

′
i) denotes a polynomial in x0, . . . , xi and

x′0, . . . , x
′
i. Thus Āi(x0, x

′
0, . . . , xi, x

′
i) is itself an element of K+ and we obtain

(x⊕x′)i ∈ K+ for all 0 ≤ i ≤ n. This proves that W+
n is closed under addition.

We can use the same arguments to show that W−
n is a subgroup of Wn and

obviously we have W+
n ∩W−

n = {0}.
(ii): We show first that the map µ is a homomorphism. For this, let (x, y)

and (v, z) be two elements of W+
n ×W−

n . Since the group Wn is commutative
we obtain

µ((x, y) + (v, z)) = µ((x⊕ v, y ⊕ z)) = (x⊕ v) ⊕ (y ⊕ z)

= (x⊕ y) ⊕ (v ⊕ z) = µ((x, y)) ⊕ µ((v, z)).

In order to prove the injectivity of the map µ, let x = (x0, . . . , xn) ∈ W+
n and

let y = (y0, . . . , yn) ∈ W−
n with µ((x, y)) = (0, . . . , 0). Then

(0, 0, . . . , 0) = (Ā0(x0, y0), Ā1(x0, x1, y0, y1), . . . , Ān(x0, . . . , xn, y0, . . . , yn))

and by comparing the components of the vectors above we obtain for all 0 ≤
i ≤ n:

0 = Āi(x0, y0, . . . , xi, yi).

Rewriting the expression Āi(x0, y0, . . . , xi, yi) by means of (8) of Remark 4.4,
we obtain for all 0 ≤ i ≤ n:

(10) 0 = xi + yi + ωi(x0, y0, . . . , xi−1, yi−1).

The proof proceeds by induction on i ∈ {0, . . . , n}.
If i = 0, Equation (10) yields 0 = x0 + y0 and since x0 ∈ K+ and y0 ∈ K−,

it follows that x0 = 0 and y0 = 0, proving the base case.
So let i ∈ {0, . . . , n} be fixed and suppose that xj = yj = 0 for all 0 ≤ j ≤ i.

Then we have ωi+1(x0, y0, . . . , xi, yi) = 0 and it follows from (10) that 0 =
xi+1 + yi+1. But since xi+1 ∈ K+ and yi+1 ∈ K−, we obtain xi+1 = yi+1 = 0.

In order to prove that the map µ is surjective let x = (x0, . . . , xn) be an
arbitrary element of Wn. We need to show that there exist two elements
y− ∈ W−

n and y+ ∈ W+
n with µ((y−, y+)) = x. We define these elements

y− = (y−0 , . . . , y
−
n ) and y+ = (y+

0 , . . . , y
+
n ) via the following procedure. For each

a ∈ K let a− ∈ K− and a+ ∈ K+ be those elements, such that a = a− + a+

and define

y−0 := x−0 , y+
0 := x+

0 ,

y−k := x−k − ωk((y−0 , . . . , y
−
k−1), (y

+
0 , . . . , y

+
k−1))

− and

y+
k := x+

k − ωk((y−0 , . . . , y
−
k−1), (y

+
0 , . . . , y

+
k−1))

+ for all 1 ≤ k ≤ n.

It follows directly from this definition that y− ∈ W−
n , y+ ∈W+

n and clearly
we have

µ((y−, y+)) = (y−0 , . . . , y
−
n ) ⊕ (y+

0 , . . . , y
+
n ) = (x0, . . . , xn).
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It only remains to show that µ is bi-continuous. But µ is the addition map in
a topological group and thus continuous by definition. Since every continuous,
bijective homomorphism between σ-compact locally compact groups is open,
it follows that µ is bi-continuous. �

In a second step we construct an isomorphism Λ between the subgroup W+
n

of Wn and the compact group (C∞
pn+1 × C∞

pn × · · · ×C∞
p ) and an isomorphism

Ψ between the subgroup W−
n of Wn and the discrete group (C

(∞)
pn+1 × C

(∞)
pn ×

· · · × C
(∞)
p ). For this we define maps Λk and Ψk, k = 0, . . . , n, which will

be the “componentwise building blocks” for the maps Λ and Ψ, respectively.
Since the definition of these maps is not canonical we explain the idea of the
construction by means of the following special case.

Example 4.9. Let p = 2 and consider the local field K = F2((t)). The first
Witt group W1(K) of K consists of the set of pairs {(x0, x1) | x0, x1 ∈ K},
where addition is defined as

(x0, x1) ⊕ (y0, y1) := (x0 + y0, x1 + y1 + x0y0).

We can view W1(K) as the group G :=

{(
1 x0 x1

0 1 x0

0 0 1

)
, x0, x1 ∈ K

}
, since the

map

Φ : W1(K) → G, (x0, x1) 7→
(

1 x0 x1

0 1 x0

0 0 1

)

defines an isomorphism of topological groups.
In order to define an isomorphism Λ between the subgroup W+

1 (K) and
the compact group C∞

p2 × C∞
p , we introduce first two homomorphisms, Λ1 :

C∞
p2 → W+

1 (K) and Λ0 : C∞
p → W+

1 (K). Notice that Cp2 = C4 = Z /4 Z

and Cp = C2 = Z /2 Z and we identify elements of Z /4 Z and of Z /2 Z with
numbers in {0, 1, 2, 3} and in {0, 1}, respectively, in the canonical way. Thus
we can multiply elements am ∈ C4 with pairs (x0, x1) ∈ W+

1 (K), where we
understand the product as the am-fold sum of the pair (x0, x1) in W+

1 (K). We
can now define

Λ1 : C∞
4 → W+

1 (K), (am)m∈N0
7→

∑

m∈N0

am(tm, 0)

and we will prove in Lemma 4.12 that Λ1 is a well-defined group homomor-
phism. Notice that

0 · (tm, 0)= (0, 0),
1 · (tm, 0)= (tm, 0),
2 · (tm, 0)= (tm, 0) ⊕ (tm, 0) = (0, t2m), and
3 · (tm, 0)= (0, t2m) ⊕ (tm, 0)= (tm, t2m).

This computation shows that the image of Λ1 is equal to the subgroup
K+ × (K+)2 of W+

1 (K) and since we want to obtain an isomorphism between
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C∞
4 × C∞

2 and W+
1 (K), we define a second map Λ0 as follows:

Λ0 : C∞
2 →W+

1 (K), (am)m∈N0
7→

∑

m∈N0

m/∈2 N0

am(0, tm).

But we do not want to use only every second term of the sequence (am)m∈N0

(although we want to multiply am, m ∈ N0, only with the even powers of t),
and thus we define the function f to be the unique monotone bijective function
from N0 \2 N0 to N0 and modify the definition of Λ0 as follows:

Λ0 : C∞
2 → W+

1 (K), (am)m∈N0
7→

∑

m∈N0

m/∈2 N0

af(m)(0, t
m).

We will show in Lemma 4.12 that Λ0 is a well-defined group homomorphism
and we will prove in Proposition 4.14 that the map

Λ : C∞
4 × C∞

2 →W+
1 (K), (a(1), a(0)) 7→ Λ1(a

(1)) ⊕ Λ0(a
(0))

defines an isomorphism of topological groups.
In a similar way we will define an isomorphism Ψ between the subgroup

W−
1 (K) and the discrete group C

(∞)
p2 × C

(∞)
p .

Recall that Wn denotes the nth Witt group of the field of Laurent series
Fp((t)). Generalizing the idea above, we introduce the following notation.

Definition 4.10. Let p be any prime number and J := N0 \ pN0. Define f to
be the unique monotone bijective function from J to N0.

Definition 4.11. Let n ∈ N0 be fixed and define

(11) Λn : C∞
pn+1 →W+

n , (a(n)
m )m∈N0

7→
∑

m∈N0

a(n)
m (tm, 0, . . . , 0).

We view a
(n)
m ∈ Cpn+1 = Z /pn+1 Z as an integer between 0 and pn+1−1 in the

canonical way and understand the product a
(n)
m (tm, 0, . . . , 0) as the a

(n)
m -fold

sum of the (n+1)-tuple (tm, 0, . . . , 0) in W+
n . Furthermore, we define for every

0 ≤ k ≤ n− 1:

(12) Λk : C∞
pk+1 →W+

n , (a(k)
m )m∈N0

7→
∑

m∈N0

m/∈p N0

a
(k)
f(m)(0, . . . , t

m, . . . , 0),

where the term tm is at the (n + 1 − k)th position in the (n + 1)-tuple

(0, . . . , tm, . . . , 0). Again, we view a
(k)
f(m) ∈ Cpk+1 = Z /pk+1 Z as an inte-

ger between 0 and pk+1 − 1 in the canonical way and understand the prod-

uct a
(k)
f(m)(0, . . . , t

m, . . . , 0) as the a
(k)
f(m)-fold sum in W+

n of the (n + 1)-tuple

(0, . . . , tm, . . . , 0).
Furthermore, we define

(13) Ψn : C
(∞)
pn+1 → W+

n , (b(n)
m )m∈N 7→

∑

m∈N

b(n)
m (t−m, 0, . . . , 0)

Münster Journal of Mathematics Vol. 1 (2008), 181–220



The unitary character group of abelian unipotent groups 195

and for every 0 ≤ k ≤ n− 1:

(14) Ψk : C
(∞)

pk+1 →W−
n , (b(k)

m )m∈N 7→
∑

m∈N

m/∈p N

b
(k)
f(m)(0, . . . , t

−m, . . . , 0),

where the term t−m stands at the (n + 1 − k)th position in the (n+ 1)-tuple
(0, . . . , t−m, . . . , 0). Notice that the sums, appearing in (13) and (14), are finite.

Lemma 4.12. The map Λk is a continuous group homomorphism for every
k ∈ {0, . . . , n}.

Proof. In order to prove that Λk is a well-defined map for every k ∈ {0, . . . , n},
we observe that if (G,+) is any abelian group and g0, . . . , gi ∈ G, i ∈ N0, then

the map ϕi : Zi+1 → G, (z0, . . . , zi) 7→
∑i

m=0 zmgm is a group homomorphism.
So if G = W+

n and if gi = (0, . . . , ti, . . . , 0), i ∈ N0, is a vector in W+
n , where

the term ti stands at the (n+1− k)th position in this (n+1)-tuple, we obtain
for every 0 ≤ k ≤ n− 1 and every i ∈ N0 a group homomorphism

ϕi
k : Zi+1 →W+

n , (z0, . . . , zi) 7→
i∑

m=0

zm(0, . . . , tm, . . . , 0).

By the same argument we obtain a group homomorphism

ϕi
n : Zi+1 →W+

n , (z0, . . . , zi) 7→

i∑

m=0

zm(tm, . . . , 0, . . . , 0).

Moreover, if we denote by V : Wk → Wk+1, (x0, . . . , xk) 7→ (0, x0, . . . , xk) the
Shift homomorphism, then one can show (see for example [5]) that for every
k ∈ {0, . . . , n− 1}, the image V n−k(Wk) ⊆Wn is isomorphic to Wk. Since
pk+1(x0, . . . , xk) = (0, . . . , 0) for every vector (x0, . . . , xk) ∈ Wk+1 (Corollary
4.6), we obtain for every i ∈ N0 and every 0 ≤ k ≤ n− 1 a well-defined group
homomorphism

Λi
k : (Z /pk+1 Z)i+1 →W+

n , (a
(k)
0 , . . . , a

(k)
i ) 7→

i∑

m=0
m/∈p N0

a
(k)
f(m)(0, . . . , t

m, . . . , 0).

Furthermore we obtain a well-defined group homomorphism

Λi
n : (Z /pn+1 Z)i+1 →W+

n , (a
(n)
0 , . . . , a

(n)
i ) 7→

i∑

m=0

a(n)
m (tm, 0, . . . , 0).

Using the definition of addition in the nth Witt group Wn we can rewrite

for every k ∈ {0, . . . , n− 1}, the a
(k)
f(m)-fold sum of the vector (0, . . . , tm, . . . , 0)

in the following way:

(15) a
(k)
f(m)(0, . . . , t

m, . . . , 0) = (0, . . . , 0, a
(k)
f(m)t

m, c
(k)
n+1−k(m), . . . , c(k)

n (m)),

where every term c
(k)
j (m), j ∈ {n + 1 − k, . . . , n} is a polynomial in t, whose

smallest exponent of t is greater than or equal to m. (If k = 0, then the terms
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c
(0)
j (m) do not occur.) Consequently, the sequence (Λi

k(a
(k)
0 , . . . , a

(k)
i ))i∈N0

con-
verges in Wn to the element

∞∑

m=0
m/∈p N0

a
(k)
f(m)(0, . . . , t

m, . . . , 0) = Λk((a(k)
m )m∈N0

)

for every k = 0, . . . , n− 1. Moreover, the sequence Λi
n((a

(n)
0 , . . . a

(n)
i )i∈N0

con-
verges in Wn to the element

∞∑

m=0

a(n)
m (tm, 0, . . . , 0) = Λn((a(n)

m )m∈N0
).

Now, let k ∈ {0, . . . , n− 1} be fixed. Since the map Λi
k is an additive group

homomorphism for every i ∈ N0, we obtain for all sequences a(k) and b(k) in
C∞

pk+1 :

Λk(a(k) + b(k)) = lim
i→∞

Λi
k((a

(k)
0 , . . . , a

(k)
i ) + (b

(k)
0 , . . . , b

(k)
i ))

= lim
i→∞

(Λi
k((a

(k)
0 , . . . , a

(k)
i )) ⊕ Λi

k((b
(k)
0 , . . . , b

(k)
i )))

= lim
i→∞

Λi
k((a

(k)
0 , . . . , a

(k)
i )) ⊕ lim

i→∞
Λi

k((b
(k)
0 , . . . , b

(k)
i ))

= Λk(a(k)) ⊕ Λk(b(k)).

Hence Λk is an additive group homomorphism and it follows by the same
argument that Λn is an additive group homomorphism.

It remains to show that each of the maps Λk, k = 0, . . . , n, is continuous.
For this, we observe that the infinite direct product C∞

pk+1 is clearly a compact

group with respect to the product topology. Furthermore, the group W+
n

is, as a topological space, isomorphic to (K+)n, the n-fold direct product of
compact groups and thus itself compact. So in order to show that the map
Λk is continuous, it suffices to show that Λk is componentwise continuous.
We will show that πj ◦ Λk is continuous for every j ∈ {1, . . . , n + 1}, where
πj : W+

n → K+, (x0, . . . , xn) 7→ xj+1 denotes the projection onto the jth
component.

Let k ∈ {0, . . . , n}. We have

(16) Λk((a(k)
m )m∈N0

) =
∑

m∈N0

m/∈p N0

a
(k)
f(m)(0, . . . , t

m, . . . , 0),

where the term tm is at the (n + 1 − k)th position in the (n + 1)-tuple
(0, . . . , tm, . . . , 0). Hence πj ◦ Λk((am)m∈N0

) = 0 for every j ∈ {1, . . . , n − k}
and in particular πj ◦ Λk is continuous for every j ∈ {1, . . . , n − k}. To see
that πj ◦ Λk is also continuous for every j ∈ {n + 1 − k, . . . , n + 1} we ob-
serve that the locally compact topology on K is constructed in a way that
open sets of the form Ur :=< tr > with r ∈ N0 form a neighborhoodbasis of
0 ∈ K. Let Ur, r ∈ N0, be such a neighborhood in K. We show that there
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exists a neighborhood Vsr
of 0 ∈ C∞

pk+1 such that (πj ◦ Λk)(Vsr
) ⊆ Ur for all

j ∈ {n+ 1 − k, . . . , n+ 1}. For this, put sr := f−1(r) and define

Vsr
:=
{

(a(k)
m )m∈N0

∈ C∞
pk+1 | a

(k)
i = 0 for all i = 0, . . . , sr − 1

}
.

This is a neighborhood of 0 in the product topology of C∞
pk+1 .

Let (0, . . . , 0, a
(k)
sr , a

(k)
sr+1, . . .) be an arbitrary element of Vsr

, then

(πj ◦ Λk)(0, . . . , 0, a(k)
sr
, a

(k)
sr+1, . . .) ∈ Ur

for all j ∈ {n+ 1 − k, . . . , n+ 1}, since we have seen in (15) that the smallest
exponent of t appearing in each nonzero entry of

∑

m∈N0

m/∈p N0

a
(k)
f(m)(0, . . . , t

m, . . . , 0)

is at least f(sr) = r. Hence the map πj ◦ Λk is continuous for every j ∈
{n+ 1 − k, . . . , n+ 1}, which proves that Λk is continuous. The continuity of
Λn can be obtained in the same way. �

Next, we obtain the same result for the maps Ψk, k = 0, . . . , n.

Lemma 4.13. The map Ψk, as defined in (14), is a continuous group homo-
morphism for every k ∈ {0, . . . n − 1}. Furthermore, the map Ψn, as defined
in (13), is a continuous group homomorphism.

Proof. We can apply the same arguments as in the proof of Lemma 4.12. In
fact, the proof is even simpler since all the sums appearing in the definition of
the maps Ψk, k ∈ {0, . . . n− 1} and Ψn are finite. �

We will now state and prove the key result of this section, namely that the
sum of all the continuous group homomorphisms Λk, k ∈ {0, . . . , n}, yields
an isomorphism Λ between the group W+

n and the compact group C∞
pn+1 ×

C∞
pn × · · · × C∞

p . Furthermore, we prove that the sum of all the continuous
group homomorphisms Ψk, k ∈ {0, . . . , n}, yields an isomorphism Ψ between

the group W−
n and the discrete group C

(∞)
pn+1 × C

(∞)
pn × · · · × C

(∞)
p .

Proposition 4.14.

(i) The map

Λ : C∞
pn+1 × C∞

pn × · · · × C∞
p →W+

n ,

(a(n), a(n−1), . . . , a(0)) 7→ Λn(a(n)) ⊕ Λn−1(a
(n−1)) ⊕ · · · ⊕ Λ0(a

(0))

is an isomorphism of topological groups.
(ii) The map

Ψ : C
(∞)
pn+1 × C

(∞)
pn × · · · × C(∞)

p → W−
n ,

(b(n), b(n−1), . . . , b(0)) 7→ Ψn(b(n)) ⊕ Ψn−1(b
(n−1)) ⊕ · · · ⊕ Ψ0(b

(0))

is an isomorphism of topological groups.

Münster Journal of Mathematics Vol. 1 (2008), 181–220



198 Helma Klüver

Before we give a proof of this proposition we rewrite the sum appearing in
the definition of the map Λ in the following way. Recall that we have for all
vectors (a(n), a(n−1), . . . , a(0)) ∈ C∞

pn+1 × C∞
pn × · · · × C∞

p ,

Λ((a(n), a(n−1), . . . , a(0))) = Λn(a(n)) ⊕ Λn−1(a
(n−1)) ⊕ · · · ⊕ Λ0(a

(0)) =
∑

m∈N0

a(n)
m (tm, 0, . . . , 0) ⊕

∑

m∈N0

m/∈p N0

a
(n−1)
f(m) (0, tm, 0, . . . , 0) ⊕ · · ·

⊕
∑

m∈N0

m/∈p N0

a
(0)
f(m)(0, . . . , 0, t

m).

We may write every coefficient a
(k)
f(m) ∈ Cpk+1 = Z /pk+1 Z, 0 ≤ k < n, m ∈ N0,

with respect to its p-adic expansion, i.e., we can find uniquely determined

numbers 0 ≤ a
(k)
f(m)j

≤ p− 1, j = 0, . . . , k, such that

(17) a
(k)
f(m) = a

(k)
f(m)

0

+ a
(k)
f(m)

1

p+ a
(k)
f(m)

2

p2 + · · · + a
(k)
f(m)

k

pk.

In the same way we can write every coefficient a
(n)
m ∈ Cpn+1 = Z /pn+1 Z, m ∈

N0, with respect to its p-adic expansion, i.e., we can find uniquely determined

numbers 0 ≤ a
(n)
mj ≤ p− 1, j = 0, . . . , n, such that

(18) a
(n)
(m) = a(n)

m0
+ a(n)

m1
p+ a(n)

m2
p2 + · · · + a(n)

mn
pn.

Using (17) and (18) we obtain for all 0 ≤ k ≤ n− 1:

a
(k)
f(m)(0, . . . , t

m, . . . , 0) =

(a
(k)
f(m)

0

+ a
(k)
f(m)

1

p+ · · · + a
(k)
f(m)k

pk)(0, . . . , tm, . . . , 0) =

a
(k)
f(m)

0

(0, . . . , tm, . . . , 0) ⊕ a
(k)
f(m)

1

p (0, . . . , tm, . . . , 0)⊕

· · · ⊕ a
(k)
f(m)

k

pk (0, . . . , tm, . . . , 0).

If we apply part (ii) of Lemma 4.5 to the last expression we obtain

a
(k)
f(m)(0, . . . , t

m, . . . , 0) =

a
(k)
f(m)

0

(0, . . . , tm, . . . , 0) ⊕ a
(k)
f(m)

1

(0, . . . , tmp, . . . , 0)⊕

· · · ⊕ a
(k)
f(m)

k

(0, . . . , 0, tmpk

).

Using the definition of addition in the nth Witt group we obtain, as in (15),
for every 0 ≤ k ≤ n− 1 and 0 ≤ j ≤ k:

a
(k)
f(m)j

(0, . . . , tmpj

, . . . , 0) = (0, . . . , 0, a
(k)
f(m)j

tmpj

, c
(j,k)
n+1−k+j(m), . . . , c(j,k)

n (m)),

where all the terms c
(j,k)
n−k+1+j(m), . . . , c

(j,k)
n (m) are polynomials in t, whose

smallest exponent of t is greater than or equal to m and whose coefficients are
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uniquely determined by the coefficients a
(k)
f(m)j

. Notice that if k = 0, then the

terms c(j,0) do not occur. Furthermore, we have for all 0 ≤ j ≤ n:

a(n)
mj

(0, . . . , tmpj

, . . . , 0) = (0, . . . , 0, a(n)
mj
tmpj

, c
(j,n)
j+1 (m), . . . , c(j,n)

n (m)),

where all the terms c
(j,n)
j+1 (m), . . . , c

(j,n)
n (m) are polynomials in t, whose smallest

exponent of t is at least m and whose coefficients are uniquely determined by

the coefficients a
(n)
f(m)j

.

With this notation we obtain, for every 0 ≤ k ≤ n− 1,

(19) a
(k)
f(m)(0, . . . , t

m, . . . , 0) =

(0, . . . , 0, a
(k)
f(m)

0

tm, c
(0,k)
n+1−k, . . . , c

(0,k)
n )

⊕ (0, . . . , 0, a
(k)
f(m)

1

tmp, c
(1,k)
n+1−k+1, . . . , c

(1,k)
n )⊕

· · · ⊕ (0, . . . , 0, a
(k)
f(m)

k

tmpk

).

Furthermore, we have

(20) a(k)
m (tm, 0, . . . , 0) =

(a(n)
m0
tm, c

(0,n)
1 , . . . , c(0,n)

n ) ⊕ (0, a(n)
m1
tmp, c

(1,n)
2 , . . . , c(1,n)

n )⊕

· · · ⊕ (0, . . . , 0, a(n)
mn
tmpn

).

If we use (19) for every k ∈ {0, . . . , n− 1} and (20) for k = n, then we obtain

Λ((a(n), a(n−1), . . . , a(0)))

=
∑

m∈N0

a(n)
m (tm, 0, . . . , 0) ⊕

∑

m∈N0

m/∈p N0

a
(n−1)
f(m) (0, tm, 0, . . . , 0)

⊕ · · · ⊕
∑

m∈N0

m/∈p N0

a
(0)
f(m)(0, . . . , 0, t

m)

=
∑

m∈N0

[(a(n)
m0
tm, c

(0,n)
1 (m), . . . , c(0,n)

n (m))

⊕ (0, a(n)
m1
tmp, c

(1,n)
2 (m), . . . , c(1,n)

n (m)) ⊕ · · · ⊕ (0, . . . , 0, a(n)
mn
tmpn

)]

⊕
∑

m∈N0

m/∈p N0

[(0, a
(n−1)
f(m)

0

tm, c
(0,n−1)
2 (m), . . . , c(0,n−1)

n (m))

⊕ (0, 0, a
(n−1)
f(m)

1

tmp, c
(1,n−1)
3 (m), . . . , c(1,n−1)

n (m))

⊕ · · · ⊕ (0, . . . , 0, a
(n−1)
f(m)

n−1

tmpn−1

)]⊕

· · · ⊕
∑

m∈N0

m/∈p N0

(0, . . . , 0, a
(0)
f(m)

0

tm).
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Changing the order of summation in a suitable way yields

Λ((a(n), a(n−1), . . . , a(0)))(21)

=
∑

m∈N0

(a(n)
m0
tm, c

(0,n)
1 (m), . . . , c(0,n)

n (m))

⊕
∑

m∈N0

(0, a(n)
m1
tmp, c

(1,n)
2 (m), . . . , c(1,n)

n (m))

⊕
∑

m∈N0

m/∈p N0

(0, a
(n−1)
f(m)

0

tm, c
(0,n−1)
2 (m), . . . , c(0,n−1)

n (m))

⊕
∑

m∈N0

(0, 0, a(n)
m2
tmp2

, c
(2,n)
3 (m), . . . , c(2,n)

n (m))

⊕
∑

m∈N0

m/∈p N0

[(0, 0, a
(n−1)
f(m)

1

tmp, c
(1,n−1)
3 (m), . . . , c(1,n−1)

n (m))

⊕ (0, 0, a
(n−2)
f(m)

0

tm, c
(0,n−2)
3 (m), . . . , c(0,n−2)

n (m))]⊕

· · · ⊕
∑

m∈N0

(0, . . . , 0, a(n)
mn
tmpn

)

⊕
∑

m∈N0

m/∈p N0

[(0, . . . , 0, a
(n−1)
f(m)

n−1

tmpn−1

)

⊕ (0, . . . , 0, a
(n−2)
f(m)

n−2

tmpn−2

) ⊕ · · · ⊕ (0, . . . , 0, a
(0)
f(m)

0

tm)].

To avoid lengthy descriptions we will use the following notation.

Notation 4.15. Let t, s ∈ Z with t | s, and let a, b ∈ Z /sZ = Cs. We say
that a = b mod t if a+ t · Cs = b+ t · Cs.

We now prove Proposition 4.14.

Proof. To (i): Observe first that, as a direct consequence of Lemma 4.12, the
map Λ is a well-defined group homomorphism. So it remains to show that Λ
is onto, one-to-one, and bi-continuous.

In order to prove the surjectivity of Λ, let (x(n), x(n−1), . . . , x(0)) be an
arbitrary vector of W+

n . Each entry x(k), k = 0, . . . , n, of this vector is of the
form

x(k) =

∞∑

i=0

x
(k)
i ti with x

(k)
i ∈ Cp = Z /pZ .

We need to show that there exists a vector

(a(n), a(n−1), . . . , a(0)) ∈ C∞
pn+1 × C∞

pn × . . .× C∞
p

with the property that

(22) Λ((a(n), a(n−1), . . . , a(0))) = (x(n), x(n−1), . . . , x(0)).
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We prove by induction on k, k ∈ {0, . . . , n}, the statement
I(k): We can find

(1.) a series a(n) ∈ C∞
pn+1 , which is uniquely determined mod pk+1, i.e., each

element a
(n)
m ∈ Cpn+1 , m ∈ N0, of the series a(n) is uniquely determined

mod pk+1, and
(2.) for every 1 ≤ j ≤ k, a series a(n−j) ∈ C∞

pn−j+1 , which is uniquely

determined mod pk+1−j , i.e., each element a
(n−j)
f(m) ∈ Cpn−j+1 , m ∈ N0,

of the series a(n−j) is uniquely determined mod pk+1−j ,

such that the vector (a(n), a(n−1), . . . , a(0)) satisfies Equation (22).
Notice that this proves then the surjectivity of Λ since by I(n) we can find

series

a(n) ∈ C∞
pn+1 , a(n−1) ∈ C∞

pn , . . . , and a(0) ∈ C∞
p

such that the vector (a(n), a(n−1), . . . , a(0)) satisfies (22).
If k = 0, we use the summation formula (21) to compare the first component

of the vector Λ((a(n), a(n−1), . . . , a(0))) with the first component of the vector
(x(n), x(n−1), . . . , x(0)). This yields the following conditions for the series a(n) ∈
C∞

pn+1 :
∑

m∈N0

a(n)
m0
tm =

∑

m∈N0

x(n)
m tm.

By comparing the coefficients of these sums we obtain the defining equation:

(23) a(n)
m0

:= x(n)
m ∀m ∈ N0 .

But this means that the coefficients a
(n)
m , m ∈ N0, of the series a(n) ∈ C∞

pn+1

are determined mod p and we have proven the base case I(0).
If k = 1, we use again formula (21) to compare the second component of

the vector Λ((a(n), a(n−1), . . . , a(0))) with the second component of the vector
(x(n), x(n−1), . . . , x(0)). This leads to the following conditions for the series
a(n) ∈ C∞

pn+1 and a(n−1) ∈ C∞
pn :

(24)
∑

m∈N0

a(n)
m1
tmp +

∑

m∈N0

m/∈p N0

(a
(n−1)
f(m)

0

tm + c
(0,n)
1 (m)) =

∑

m∈N0

x(n−1)
m tm.

Notice that there do not appear the same exponents of t in the expressions
∑

m∈N0

a(n)
m1
tmp and

∑

m∈N0

m/∈p N0

a
(n−1)
f(m)0

tm.

Furthermore, all coefficients appearing in the polynomials c
(0,n)
1 (m), m ∈ N0,

depend only on the numbers a
(n)
m0

, which are already uniquely defined by Equa-
tion (23). Thus if we compare coefficients in (24) we obtain the following
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defining equations:

(25)
a
(n)
m1 :=x

(n−1)
mp − F (mp) for all m ∈ N0 and

a
(n−1)
f(m)0

:=x
(n−1)
m − F (m) for all m ∈ N0 \ pN0,

where F (m) and F (mp) denote some numbers, which depend only on the

coefficients of the term c
(0,n)
1 (m) and hence on the numbers a

(n)
m0

, m ∈ N0. Thus

the series, a(n) and a(n−1), are determined mod p2 and mod p, respectively,
and we have proven the statement I(1).

Let k ∈ {0, . . . , n − 1} be fixed and assume that I(j) holds for every
0 ≤ j ≤ k. In order to prove the statement I(k+ 1) we use again formula (21)
and compare the (k + 2)nd component of the vector Λ((a(n), a(n−1), . . . , a(0)))
with the (k+2)nd component of the vector (x(n), x(n−1), . . . , x(0)). This yields
the following condition for the series a(n) ∈ C∞

pn+1 , a(n−1) ∈ C∞
pn , . . ., and

an−(k+1) ∈ C∞
pn−k :

(26)
∑

m∈N0

a(n)
mk+1

tmpk+1

+
∑

m∈N0

m/∈p N0

[a
(n−1)
f(m)k

tmpk

+ · · · + a
(n−(k+1))
f(m)

0

tm] +X(m)

=
∑

m∈N0

x(n−(k+1))
m tm,

where X(m) is a polynomial in t, whose coefficients consist of linear combina-
tions in the numbers

a(n)
m0
, a(n)

m1
, . . . , a(n)

mk
; a

(n−1)
f(m)0

, . . . , a
(n−1)
f(m)k−1

; a
(n−2)
f(m)0

, . . . , a
(n−2)
f(m)k−2

; . . . ; a
(n−k)
f(m)0

.

But it follows from the induction hypothesis that these numbers are already
uniquely determined by the elements of the series x(n), x(n−1), . . ., and x(n−k).
Furthermore, there do not appear the same exponents of t in the sums

∑

m∈N0

a(n)
mk+1

tmpk+1

,
∑

m∈N0

m/∈p N0

a
(n−1)
f(m)

k

tmpk

, · · · , and
∑

m∈N0

m/∈p N0

a
(n−(k+1))
f(m)

0

tm,

so that comparing coefficients in (26) leads to the following defining equations
for elements of the series a(n), a(n−1), a(n−2), . . ., and a(n−(k+1)):

a
(n)
mk+1

:= x
(n−(k+1))

mpk+1 −F (mpk+1) for all m ∈ N0

a
(n−1)
f(m)k

:= x
(n−(k+1))

mpk −F (mpk) for all m ∈ N0 \ pN0

a
(n−2)
f(m)k−1

:= x
(n−(k+1))

mpk−1 −F (mpk−1) for all m ∈ N0 \ pN0

...
...

...

a
(n−(k+1))
f(m)0

:= x
(n−(k+1))
m −F (m) for all m ∈ N0 \ pN0 .

Therefore, the series a(n), a(n−1), a(n−2), . . ., a(n−(k+1)) are determined modulo
pk+2, pk+1, pk . . ., p, respectively, and so we have proven I(k + 1).
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To prove the injectivity of the map Λ, let

(a(n), a(n−1), . . . , a(0)) ∈ C∞
pn+1 × C∞

pn × · · · × C∞
p

with

Λ((a(n), a(n−1), . . . , a(0))) = (0, . . . , 0) ∈W+
n .

We prove by induction on k, k ∈ {0, . . . , n}, the statement
I(k): The series a(n), a(n−1), . . . , a(n−k) satisfy

(1.) a(n) = 0 mod pk+1, i.e., a
(n)
m = 0 mod pk+1 for all m ∈ N0, and

(2.) a(n−j) = 0 mod pk+1−j for all j ∈ {1, . . . , k}, i.e., a
(n−j)
f(m) = 0

mod pk+1−j for all m ∈ N0.

If k = 0, we obtain with formula (21)

(27)
∑

m∈N0

a(n)
m0
tm = 0,

and hence

a(n)
m0

= 0 for all m ∈ N0,

which proves the base case I(0).
So let k ∈ {0, . . . , n − 1} be fixed and assume that I(j) holds for every

j ∈ {0, . . . , k}. Then we have, for every m ∈ N0,

(1.) a
(n)
m = 0 mod pk+1 and hence a

(n)
m0

= a
(n)
m1

= · · · = a
(n)
mk

= 0, and

(2.) a
(n−j)
f(m) = 0 mod pk+1−j for all j ∈ {1, . . . , k} and hence

a
(n−j)
f(m)0

= a
(n−j)
f(m)1

= · · · = a
(n−j)
f(m)k−j

= 0.

Thus, if we set the (k+2)nd component of the vector Λ((a(n), a(n−1), . . . , a(0)))
equal to zero, we obtain, from formula (21), the following equation

(28)
∑

m∈N0

a(n)
mk+1

tmpk+1

+
∑

m∈N0

m/∈p N0

[a
(n−1)
f(m)k

tmpk

+ · · ·+a
(n−(k+1))
f(m)

0

tm]+X(m) = 0,

where X(m) is a polynomial in t, whose coefficients consist of linear combina-
tions in the numbers

a(n)
m0
, a(n)

m1
, . . . , a(n)

mk
, a

(n−1)
f(m)0

, . . . , a
(n−1)
f(m)k−1

, a
(n−2)
f(m)0

, . . . , a
(n−2)
f(m)k−2

, . . . , a
(n−k)
f(m)0

.

But it follows from the induction hypothesis that these numbers are all equal
to zero and hence X(m) = 0. Therefore, (28) turns into

(29)
∑

m∈N0

a(n)
mk+1

tmpk+1

+
∑

m∈N0

m/∈p N0

[a
(n−1)
f(m)

k

tmpk

+ · · · + a
(n−(k+1))
f(m)

0

tm] = 0.

Since there do not appear the same exponents of t in the sums
∑

m∈N0

a(n)
mk+1

tmpk+1

,
∑

m∈N0

m/∈p N0

a
(n−1)
f(m)

k

tmpk

, · · · , and
∑

m∈N0

m/∈p N0

a
(n−(k+1))
f(m)

0

tm,
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we may easily compare coefficients in (29) and obtain

a
(n)
mk+1

=0 for all m ∈ N0,

a
(n−1)
f(m)k

=0 for all m ∈ N0 \ pN0,

a
(n−2)
f(m)k−1

=0 for all m ∈ N0 \ pN0,
...

...
...

a
(n−(k+1))
f(m)0

=0 for all m ∈ N0 \ pN0 .

This proves the statement I(k + 1) and hence the injectivity of the map Λ.
It remains to prove that the map Λ is bi-continuous. But we have seen

already in Lemma 4.12 that each map Λk : C∞
pk+1 →W+

n , k ∈ {0, . . . , n} is bi-

continuous. Hence Λ is, as the sum of bi-continuous maps, itself bi-continuous.
The proof of part (ii) is similar. �

We now establish the main theorem of this section. It summarizes the results
obtained so far and gives us precise information about the structure of the nth
Witt group, Wn(K), of the field K = Fp((t)).

Theorem 4.16. Let K = Fp((t)) for some prime p, let n ∈ N0, and let Wn

be the nth Witt group of K. The map

Θ : (C∞
pn+1 × C∞

pn × · · · × C∞
p ) × (C

(∞)

pn+1 × C
(∞)
pn × · · · × C(∞)

p ) −→Wn,

((a(n), a(n−1), . . . , a(0)), (b(n), b(n−1), . . . , b(0))) 7−→

Λ((a(n), a(n−1), . . . , a(0))) ⊕ Ψ((b(n), b(n−1), . . . , b(0))),

where Λ and Ψ are defined as in Proposition 4.14, is an isomorphism of topo-
logical groups.

Proof. The map

µ : W+
n ×W−

n →Wn, (x, y) 7→ x⊕ y

is an isomorphism of topological groups (Lemma 4.8) and we have

Θ((a, b)) = µ(Λ(a),Ψ(b))

for all a ∈ C∞
pn+1 ×C∞

pn ×· · ·×C∞
p and b ∈ C

(∞)
pn+1 ×C

(∞)
pn ×· · ·×C

(∞)
p . Since, by

Proposition 4.14, both maps Λ and Ψ are isomorphisms of topological groups,
it follows that Θ is, as the composition of isomorphisms, itself an isomorphism
of topological groups. �

We may also obtain a more general version of Theorem 4.16, i.e., a similar
decomposition of the nth Witt group of every local field of characteristic p. For
this, let p be a prime, let k = Fpr for some fixed r ∈ N, and let K := Fpr((t)) be
the field of formal Laurent series over k. As for the field Fp((t)) (see Notation
4.7), we introduce the following notations. We define

• K+ := k[[t]] ⊆ K to be the power series ring over k,
• K− := {a1t

−1 + a2t
−2 + . . .+ ant

−n | n ∈ N, ai ∈ k},
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• W+
n (K) := {(x0, . . . , xn) ∈ Wn | xi ∈ K+ for all 0 ≤ i ≤ n}, and

• W−
n (K) := {(x0, . . . , xn) ∈ Wn | xi ∈ K− for all 0 ≤ i ≤ n}.

The set K− is an additive subgroup of K which is also closed under multipli-
cation. Clearly, every element a ∈ K can be written uniquely as a = a+ + a−,
where a+ ∈ K+ and a− ∈ K−. Furthermore, we can decompose the nth Witt
group Wn(K) into a direct product of its subgroups W+

n (K) and W−
n (K).

Lemma 4.17.

(i) The sets W+
n (K) and W−

n (K), defined as above, are subgroups of
Wn(K) and we have W+

n (K) ∩W−
n (K) = {0}.

(ii) The map µ : W+
n (K) ×W−

n (K) → Wn(K), (x, y) 7→ x ⊕ y is a bi-
continuous isomorphism.

Proof. The proof of Lemma 4.8 goes through without any modifications. �

We will show in the remaining part of this section that, for every n ∈ N0,
the nth Witt group Wn(K) can be decomposed as follows.

Wn(K) ∼= W−
n (K) ×W+

n (K)

∼= (C
(∞)
pn+1)

r × (C
(∞)
pn )r × · · · × (C(∞)

p )r

× (C∞
pn+1)r × (C∞

pn)r × · · · × (C∞
p )r.

We observe that the finite field k = Fpr is a vector space over the finite
field Fp, and we can choose elements ω0, ω1, . . . , ωr−1 ∈ Fpr such that the
set {ω0, ω1, . . . , ωr−1} is a basis of Fpr over Fp, i.e., for every element x ∈ Fpr

there exist unique elements 0a, 1a, . . . , r−1a ∈ Fp such that x =
∑r−1

i=0
iaωi.

In the same way as in Definition 4.11, we can now define maps Λk and Ψk,
k ∈ {0, 1, . . . , n}, between the r-fold direct product of C∞

pk+1 and W+
n (K),

and between the r-fold direct product of C
(∞)

pk+1 and W−
n (K). Recall that

f : N0 \ pN0 → N0 denotes the unique monotone bijective function from
N0 \ pN0 to N0.

Definition 4.18. Let n ∈ N0 be fixed and define

Λn : (C∞
pn+1)r −→W+

n (K),
(
(0a(n)

m )m∈N0
, (1a(n)

m )m∈N0
, . . . , (r−1a(n)

m )m∈N0

)
7−→

∑

m∈N0

(
0a(n)

m (ω0t
m, 0, . . . , 0) ⊕ 1a(n)

m (ω1t
m, 0, . . . , 0)⊕

· · · ⊕ r−1a(n)
m (ωr−1t

m, 0, . . . , 0)
)
.

For every i = 0, . . . , r − 1, we view ia
(n)
m ∈ Cpn+1 = Z /pn+1 Z as an integer

between 0 and pn+1 − 1 in the canonical way and understand the product
ia

(n)
m (ωit

m, 0, . . . , 0) as the ia
(n)
m -fold sum of the (n + 1)-tuple (ωit

m, 0, . . . , 0)
in W+

n (K).
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Furthermore, we define for every 0 ≤ k ≤ n− 1:

Λk : (C∞
pk+1)

r −→W+
n (K),

(
(0a(k)

m )m∈N0
, (1a(k)

m )m∈N0
, . . . , (r−1a(k)

m )m∈N0

)
7−→

∑

m∈N0

m/∈p N0

(
0a

(k)
f(m)(0, . . . , 0, ω

pn−k

0 tm, . . . , 0)⊕

1a
(k)
f(m)(0, . . . , 0, ω

pn−k

1 tm, 0, . . . , 0)⊕

· · · ⊕ r−1a
(k)
f(m)(0, . . . , 0, ω

pn−k

r−1 t
m, 0, . . . , 0)

)
,

where, for every i = 0, . . . , r − 1, the term ωpn−k

i tm is at the (n + 1 − k)th

position in the (n + 1)-tuple (0, . . . , ωpn−k

i tm, . . . , 0). Again, we view a
(k)
f(m) ∈

Cpk+1 = Z /pk+1 Z as an integer between 0 and pk+1 − 1 in the canonical way

and understand the product ia
(k)
f(m)(0, . . . , ω

pn−k

i tm, . . . , 0) as the ia
(k)
f(m)-fold

sum in W+
n (K) of the (n+ 1)-tuple (0, . . . , ωpn−k

i tm, . . . , 0).
Similarly, we define

Ψn : (C
(∞)
pn+1)

r −→W+
n (K),

(
(0b(n)

m )m∈N0
, (1b(n)

m )m∈N0
, . . . , (r−1b(n)

m )m∈N0

)
7−→

∑

m∈N0

(
0b(n)

m (ω0t
−m, 0, . . . , 0) ⊕ 1b(n)

m (ω1t
−m, 0, . . . , 0)⊕

· · · ⊕ r−1b(n)
m (ωr−1t

−m, 0, . . . , 0)
)

and for every 0 ≤ k ≤ n− 1:

Ψk : (C
(∞)

pk+1)
r →W−

n (K),
(
(0b(k)

m )m∈N0
, (1b(k)

m )m∈N0
, . . . , (r−1b(k)

m )m∈N0

)
7−→

∑

m∈N0

m/∈p N0

(
0b

(k)
f(m)(0, . . . , 0, ω

pn−k

0 t−m, . . . , 0)⊕

1b
(k)
f(m)(0, . . . , 0, ω

pn−k

1 t−m, 0, . . . , 0)⊕

· · · ⊕ r−1b
(k)
f(m)(0, . . . , 0, ω

pn−k

r−1 t
−m, 0, . . . , 0)

)
,

where, for every i = 0, . . . , r − 1, the term ωpn−k

i t−m is at the (n + 1 − k)th

position in the (n+ 1)-tuple (0, . . . , ωpn−k

i t−m, . . . , 0). Again, we view b
(k)
f(m) ∈

Cpk+1 = Z /pk+1 Z as an integer between 0 and pk+1 − 1 in the canonical way

and understand the product ib
(k)
f(m)(0, . . . , ω

pn−k

i t−m, . . . , 0) as the ib
(k)
f(m)-fold

sum in W−
n (K) of the (n+ 1)-tuple (0, . . . , ωpn−k

i t−m, . . . , 0).
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Lemma 4.19. The maps Λk and Ψk, as defined in Definition 4.18, are con-
tinuous group homomorphisms for every k ∈ {0, . . . , n}.

Proof. Let k ∈ {0, . . . , n}. For every i ∈ {0, . . . , r− 1}, we obtain by the same
arguments as in the proof of Lemma 4.12 a continuous group homomorphism

Λi
k : C∞

pk+1 −→W+
n (K),

(ia(k)
m )m∈N0

7−→
∑

m∈N0 m/∈p N0

ia
(k)
f(m)(0, . . . , 0, ω

pn−k

i tm, . . . , 0).

Since

Λk

(
(0a(k), 1a(k), . . . , r−1a(k))

)
= Λ0

k(0a(k)) ⊕ Λ1
k(1a(k)) ⊕ . . .⊕ Λr−1

k (r−1a(k)),

it follows that the map Λk is, as the sum of the continuous group homomor-
phisms Λi

k, i = 0, . . . , r − 1, itself a well-defined, continuous group homomor-
phism. �

Proposition 4.20. Let K = Fq((t)), where q = pr for some prime p > 0 and
some r ∈ N, let n ∈ N0, and let Wn(K) be the nth Witt group of K.

(i) The map

Λ : (C∞
pn+1)r × (C∞

pn)r × · · · × (C∞
p )r −→ W+

n (K),
(
(0a(n), 1a(n), . . . , r−1a(n)), (0a(n−1), 1a(n−1), . . . , r−1a(n−1)),

. . . , (0a(0), 1a(0), . . . , r−1a(0))
)
7−→

Λn

(
(0a(n), 1a(n), . . . , r−1a(n))

)
⊕ Λn−1

(
(0a(n−1), 1a(n−1), . . . , r−1a(n−1))

)
⊕

· · · ⊕ Λ0

(
(0a(0), 1a(0), . . . , r−1a(0))

)

is an isomorphism of topological groups.
(ii) The map

Ψ : (C
(∞)
pn+1)

r × (C
(∞)
pn )r × · · · × (C(∞)

p )r −→W−
n (K),

(
(0b(n), 1b(n), . . . , r−1b(n)), (0b(n−1), 1b(n−1), . . . , r−1b(n−1)),

. . . , (0b(0), 1b(0), . . . , r−1b(0))
)
7−→

Ψn

(
(0b(n), 1b(n), . . . , r−1b(n))

)
⊕ Ψn−1

(
(0b(n−1), 1b(n−1), . . . , r−1b(n−1))

)
⊕

· · · ⊕ Ψ0

(
(0b(0), 1b(0), . . . , r−1b(0))

)

is an isomorphism of topological groups.

Proof. We observe first that if the set {ω0, ω1, . . . , ωr−1} is a basis of the finite

field Fpr over the finite field Fp, then also the set {ωpi

0 , ω
pi

1 , . . . , ω
pi

r−1} is, for
every i ∈ N. With this fact, the proof of the bijectivity of the maps Λ and Ψ
is a straightforward application of the proof of Proposition 4.14. �

In the same way as in Theorem 4.16 we may now obtain the following
decomposition of the nth Witt group of any local field K into a discrete and a
compact part.
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Proposition 4.21. Let K = Fq((t)), where q = pr for some prime p > 0 and
some r ∈ N, let n ∈ N0, and let Wn(K) be the nth Witt group of K. Then

(30) Wn(K) ∼= (C∞
pn+1)r × · · · × (C∞

p )r × (C
(∞)
pn+1)

r × · · · × (C(∞)
p )r.

Proof. The map

µ : W+
n (K) ×W−

n (K) →Wn(K), (x, y) 7→ x⊕ y

is an isomorphism of topological groups (Lemma 4.17) and we have

Θ((a, b)) = µ(Λ(a),Ψ(b))

for all a ∈ (C∞
pn+1)r × (C∞

pn)r × · · ·× (C∞
p )r and b ∈ (C

(∞)
pn+1)

r × (C
(∞)
pn )r × · · ·×

(C
(∞)
p )r. Since, by Proposition 4.20, both maps Λ and Ψ are isomorphisms of

topological groups, it follows that Θ is, as the composition of isomorphisms,
itself an isomorphism of topological groups. �

4.3. Duality of Witt groups. With the detailed information about the struc-
ture of finite-dimensional Witt groups over local fields of characteristic p > 0,
it is now easy to see that such groups are topologically isomorphic to their dual
groups.

Proposition 4.22. Let K = Fp((t)) for some prime p. The nth Witt group of

K is, as a topological group, selfdual for every n ∈ N0, i.e., Ŵn(K) ∼= Wn(K).

Proof. The proof of this proposition follows directly from Theorem 4.16 and
the facts (1)-(4) about the dual group of locally compact abelian groups listed
in Section 2. Theorem 4.16 yields

Wn(K) ∼= (C∞
pn+1 × C∞

pn × · · · × C∞
p ) × (C

(∞)
pn+1 × C

(∞)
pn × · · · × C(∞)

p ).

Since Cpk is a finite cyclic group we have (Cpk)b ∼= Cpk for every k ∈ {1, . . . ,
n+ 1}. Additionally, we have for every k ∈ {1, . . . , n+ 1},

(
C∞

pk

)b
∼=

(
∞∏

i=0

Cpk

)b

∼=

∞⊕

i=0

(
Cpk

)b∼=
∞⊕

i=0

Cpk = C
(∞)

pk

and
(
C

(∞)

pk

)b
∼=

(
∞⊕

i=1

Cpk

)b

∼=

∞∏

i=1

(
Cpk

)b∼=
∞∏

i=1

Cpk = C∞
pk .

With these results we obtain

Ŵn(K) ∼= (C∞
pn+1 × C∞

pn × · · · × C∞
p × C

(∞)
pn+1 × C

(∞)
pn × · · · × C(∞)

p )b

∼= C
(∞)
pn+1 × C

(∞)
pn × · · · × C(∞)

p × C∞
pn+1 × C∞

pn × · · · × C∞
p

∼= Wn(K).

�
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Corollary 4.23. For any local field K of characteristic p and every n ∈ N0,
the nth Witt group Wn(K) is isomorphic to its dual group, as a topological
group.

Proof. Let K be any local field of characteristic p. Then K is isomorphic to a
field of formal Laurent series in one indeterminate with coefficients in a finite
field of characteristic p, i.e., K ∼= Fq((t)), where q = pr for some r ∈ N. But
by Proposition 4.21 we have

Wn(K) ∼=
(
(C∞

pn+1)r × · · · × (C∞
p )r

)
×
(
(C

(∞)
pn+1)

r × · · · × (C(∞)
p )r

)

∼=
(
(C∞

pn+1 × · · · × C∞
p ) × (C

(∞)
pn+1 × · · · × C(∞)

p )
)r
,

and thus, we obtain by the same arguments as in the proof of Proposition 4.22

Ŵn(K) ∼=
(
(C∞

pn+1 × C∞
pn × · · · × C∞

p × C
(∞)
pn+1 × C

(∞)
pn × · · · × C(∞)

p )r
)b

∼=
(
(C∞

pn+1 × C∞
pn × · · · × C∞

p × C
(∞)
pn+1 × C

(∞)
pn × · · · × C(∞)

p )b
)r

∼=
(
C

(∞)
pn+1 × C

(∞)
pn × · · · × C(∞)

p × C∞
pn+1 × C∞

pn × · · · × C∞
p

)r

∼= Wn(K).

�

4.4. Characters of the first Witt group. In this subsection, we give an
explicit description of the characters of the first Witt group W1(K), where
K = Fp((t)) for some prime p.

By Theorem 4.16 we have

W1(K) ∼=

(
∞⊕

i=1

Cp2 ×
∞∏

i=0

Cp2

)
×

(
∞⊕

i=1

Cp ×
∞∏

i=0

Cp

)

∼=

∞⊕

i=1

(Cp2 × Cp) ×

∞∏

i=0

(Cp2 × Cp).

So, in order to describe the characters of W1(K) we can use the isomorphism
of Theorem 4.16 and describe instead the characters of the group

H :=
∞⊕

i=1

(Cp2 × Cp) ×
∞∏

i=0

(Cp2 × Cp).

Since Cpj , j = 1, 2, is a finite cyclic group, every character χ ∈ Ĉpj is of the
form

χ = χvj
: Cpj → T, sj 7→ exp

(
2πisjvj

pj

)
,

for some vj ∈ Cpj . Thus every character χ ∈ ̂Cp2 × Cp is of the form χ = χv,
where v = (v1, v2) ∈ Cp2 × Cp and we have

χv : Cp2 × Cp → T, χv(s1, s2) = χv1
(s1) · χv2

(s2),

where χv1
is a character of Cp2 and χv2

is a character of Cp, as above.
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We define a “duality bracket” in the following way:

(31) 〈v, s〉Cp2
×Cp := 〈v1, s1〉Cp2 · 〈v2, s2〉Cp := χ(v1,v2)(s1, s2) = χv(s).

Observe that
(

∞⊕

i=1

(Cp2 × Cp)

)b

∼=

∞∏

i=0

(Cp2 × Cp) and

(
∞∏

i=0

(Cp2 × Cp)

)b

∼=

∞⊕

i=1

(Cp2 × Cp).

Thus we can define a character χx ∈ Ĥ, x = (xm)m∈Z ∈ H by defining it first
on every component of the sequence s = (sm)m∈Z ∈ H :

χx(sm) := 〈x−m, sm〉Cp2
×Cp .

The character χx ∈ Ĥ , x = (xm)m∈Z ∈ H , is then of the form

(32) χx(s) =
∏

m∈Z

〈x−m, sm〉Cp2
×Cp

and it is clear that every character of H is of such a form. Notice that since
only finitely many components with negative subscript of x and s are nonzero,
the product in (32) is well-defined.

5. The structure of abelian K-split groups

In the following, let K be a local field. Recall that we denote by Ga the
additive group of the field K. In this section we give a complete character-
ization of abelian K-split groups. As we have seen in Section 3, the basic
building-blocks for these groups are the abelian, algebraic extensions of the
additive group Ga with itself. Recall that we denote by Ext(Ga, Ga) the set of
all group extensions given by symmetric algebraic 2-cocycles f : Ga×Ga → Ga

and we will identify such group extensions with the corresponding 2-cocycle.
During this section we will follow an approach of Serre [8], chapter VII to the
structure of commutative unipotent groups, state the most important results,
and prove some additional facts, which will be needed in the next section.

Remark 5.1. A general assumption made in [8], chapter VII, is that the base
field K is algebraically closed. But studying the relevant proofs in that chapter,
one can show that this assumption can be removed. In fact, all the results cited
in this section hold for any local field K.

Proposition 5.2. ([8], Proposition 8) In characteristic 0, Ext(Ga, Ga) = 0.
In characteristic p > 0, the K-vector space Ext(Ga, Ga) admits for a basis
the pnth powers (n ∈ N0) of the 2-cocycle f which defines the first Witt group
W1(K):

f(x, y) =
1

p
(xp + yp − (x+ y)p).

Note that the right hand side of the equation above should be considered as a
formal sum.
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We sketch briefly the idea of the proof. One writes the polynomial g(x, y),
which determines the group extension, in the form

∑
aijx

iyj . Then formula (3)
translates into identities for the coefficients aij which allow one to determine
explicitly all symmetric 2-cocycles. For the details of the computation see [6],
§III.

Corollary 5.3. ([8], Corollary of Proposition 8) In characteristic 0, every
commutative connected unipotent group is isomorphic to a product of copies of
the additive group Ga.

Proposition 5.2 indicates the relevance of finite-dimensional Witt groups in
the field of abelian K-split groups. In the following we recall and state some
facts concerning these groups, see also [8], chapter VII. The definition of the
nth Witt group Wn(K) =: Wn of a field K is given in Section 4.1. There exist
two maps which are very useful in this context:

(1) the Shift homomorphism S : Wn → Wn+1, (x0, . . . , xn) 7→ (0, x0, . . . ,
xn) and

(2) the Restriction homomorphism R : Wn+1 → Wn, (x0, . . . , xn+1) 7→
(x0, . . . , xn).

We should notice that this shift homomorphism does not coincide with the
shift homomorphism S : Wn −→ Wn as introduced earlier. The above homo-
morphisms commute with each other and we obtain, for all m,n ∈ N0, an exact
sequence:

(33) 0 // Wm
Sn+1

// Wn+m+1
Rm+1

// Wn
// 0.

We denote the corresponding element of Ext(Wn,Wm) by V m
n . The following

commutative diagram shows the effect of the restriction homomorphism R on
these extensions

0 // Wm
//

R

��

Wn+m+1
//

R

��

Wn
//

id

0

0 // Wm−1
// Wn+m

// Wn
// 0.

Thus we obtain the formula

R∗(V
m
n ) = Vm−1

n ,

where R∗(V
m
n ) denotes the pushout of V m

n by the map R as indicated in the
above diagram. Analogously, we have the following commutative diagram

0 // Wm
//

id

Wn+m+1
//

OO

S

Wn
//

OO

S

0

0 // Wm
// Wn+m

// Wn−1
// 0.

And thus we obtain the formula

(34) S∗(V m
n ) = V m

n−1,
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where S∗(V m
n ) denotes the pullback of V m

n by the map S. In the same way
one can show

S∗(V
m
n ) = R∗(V m+1

n−1 ).

We denote by En the ring of endomorphisms of the algebraic group Wn,
n ∈ N0. The pushout operation ϕ∗(V

m
n ) and the pullback operation ϕ∗(V m

n )
give the group Ext(Wn,Wm) the structure of a left module over Em and a right
module over En, respectively, and these two structures are compatible in the
above sense.

Remark 5.4. The group W0 is just the additive group Ga and the exact
sequence (33) shows that the nth Witt group Wn, n ∈ N0, is an iterated
extension of the additive group Ga. For m ≤ n, we can identify Wm with a
subgroup of Wn by means of Sn−m and we have Wm = pn−mWn (see also
Lemma 4.5 in Section 4.2). Furthermore, the mth Witt groups Wm, m ≤ n,
are the only connected subgroups of Wn ([8], VII, Section 8).

The following definition is a useful instrument in algebraic geometry.

Definition 5.5.

(i) A homomorphism between two algebraic groups is called an isogeny if
it is surjective with finite kernel.

(ii) We say that two algebraic groups G and H are isogeneous if there exist
isogenies f : G→ H and g : H → G.

Remark 5.6. ([8], chapter VII) Let n ∈ N0 and let G be an abelian unipotent
linear algebraic group. The following are equivalent:

(i) There exists an isogeny f : G→Wn.
(ii) There exists an isogeny g : Wn → G.

Lemma 5.7. ([8], VII, §2, Lemma 3) Every element H ∈ Ext(Ga, Ga) can
be written uniquely as H = ϕ∗(V 0

0 ) (or ψ∗(V
0
0 )), where ϕ and ψ are elements

of E0. Furthermore ϕ∗(V 0
0 ) is the trivial extension if and only if ϕ is not an

isogeny.

Proof. The existence and uniqueness of ϕ works as follows. The element V 0
0 ∈

Ext(Ga, Ga) corresponds to a symmetric 2-cocycle ω : Ga × Ga → Ga which
determines the first Witt group:

V 0
0 : 0 // Ga

// W1
// Ga

// 0.

LetH ∈ Ext(Ga, Ga) be an abelian algebraic group extension ofGa. According
to Proposition 5.2, the element H corresponds to a symmetric 2-cocycle of the
form

f(x, y) =
∑

i

ai ω(x, y)pi

with ai ∈ K.

On the other hand, every endomorphisms ϕ of Ga can be written uniquely as

ϕ(x) =
∑

i

bi x
pi

.
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Hence we have H = ϕ∗(V 0
0 ) if and only if bi = ai for all i, which proves the

existence and uniqueness of ϕ. The other parts are similar. �

With Lemma 5.7 we can obtain a useful characterization of the elements of
Ext(Ga, Ga).

Corollary 5.8. Let H be an element of Ext(Ga, Ga). Then H is either iso-
morphic (as an algebraic group) to Ga×Ga or isogeneous to the 2-dimensional
Witt group W1(K).

Proof. By Lemma 5.7 we can find a map ϕ ∈ End(Ga, Ga) such that H =
ϕ∗(V 0

0 ). If H = ϕ∗(V 0
0 ) = 0 then H splits, which means that H is isomorphic

to Ga × Ga. Otherwise the map ϕ is an isogeny, and since the corresponding
pullback diagram

0 // Ga
//

id

W1
//

OO

φ

Ga
//

OO
ϕ

0

0 // Ga
// H // Ga

// 0

is commutative, it follows as an application of the Snake-Lemma that the map
φ : H →W1 is an isogeny. �

There are also similar results for higher dimensional Witt groups.

Lemma 5.9. ([8], VII, §2, Lemma 6) Every element H of Ext(Wn, Ga) can
be written as H = ϕ∗(V 0

n ) for some ϕ ∈ En. One has ϕ∗(V 0
n ) = 0 if and only

if ϕ is not an isogeny.

One can also reverse the roles of Wn and Ga.

Lemma 5.10. ([8], VII, §2, Lemma 6’) Every element H of Ext(Ga,Wn) can
be written as H = ϕ∗(V

n
0 ) for some ϕ ∈ En. One has ϕ∗(V

n
0 ) = 0 if and only

if ϕ is not an isogeny.

As in the case n = 0, we obtain a characterization of the elements of Ext(Ga,
Wn) and Ext(Wn, Ga).

Corollary 5.11. Let H be an element of either Ext(Ga,Wn) or Ext(Wn, Ga).
Then H (i.e., the linear algebraic group defined by the exact sequence H) is
either isomorphic to Wn ×Ga or isogeneous to Wn+1.

Proof. We will prove the corollary for Ext(Ga,Wn), the case of Ext(Wn, Ga)
is similar. As in the two-dimensional case we have either H = (ϕ)∗V n

0 = 0
for some ϕ ∈ En and thus H splits and is isomorphic to Wn × Ga, or there
exists an isogeny ϕ from Ga to Ga such that H is the pullback of Wn+1 and
Ga under ϕ. Since the diagram

0 // Wn
//

id

Wn+1
//

OO

φ

Ga
//

OO

ϕ

0

0 // Wn
// H // Ga

// 0

Münster Journal of Mathematics Vol. 1 (2008), 181–220



214 Helma Klüver

is commutative, it follows as an application of the Snake-Lemma that the map
φ : H →Wn is an isogeny. �

Lemma 5.12. ([8], VII, §2, Lemma 7) If m ≥ n, every element H ∈ Ext(Wn,
Ga) can be written as H = f∗(V

0
m) with f ∈ Hom(Wn,Wm).

The next theorem demonstrates the exact connection between abelian unipo-
tent K-split groups and Witt groups.

Theorem 5.13. ([8], VII, §2, Theorem 1) Every commutative unipotent K-
split group is isogeneous to a finite product of Witt groups.

In order to get a better understanding of this theorem, we give a sketch of
the proof.

Proof. Let G be a commutative unipotent K-split group of dimension n ∈ N.
We argue by induction on n. If n = 1 then G = Ga = W0(K) and there is
nothing to prove.

So let n ∈ N and suppose that the theorem is shown for all abelian K-split
groups of dimension less than n. The group G is an extension of a group H of
dimension n − 1 by the group Ga. Applying the induction hypothesis to the
group H yields an isogeny

f :

k∏

i=1

Wni
→ H.

Put W :=
∏k

i=1Wni
. The pullback f∗(G) is an extension of W by Ga and this

pullback is isogeneous to G:

0 // Ga
//

id

G //
OO

F

H //
OO

f

0

0 // Ga
// f∗(G) // W // 0.

Thus it suffices to show that f∗(G) is isogeneous to a product of Witt groups.
In other words we are reduced to the case where H = W . Replacing f∗(G) by
G, let us denote the extension in question by γ ∈ Ext(W,Ga).

The extension γ is defined by a family of elements γi ∈ Ext(Wni
, Ga).

Suppose that n1 ≥ ni for all i and let V =
∏k

i=2Wni
. We are going to

distinguish two cases.

1.) γ1 = 0. The group G is then the product of Wn1
and the extension of

V by Ga, defined by the system (γi)i≥2. By the induction hypothesis,
this extension of V by Ga is isogeneous to a product of Witt groups
and hence G is isogeneous to a product of Witt groups.

2.) γ1 6= 0. Let β = (βi) ∈ Ext(W,Ga) be the element defined by β1 = V 0
n1

and βi = 0 for i ≥ 2. The extension G′ corresponding to β is the
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product Wn1+1 ×V . We are going to show the existence of an isogeny
ϕ : W →W such that ϕ∗(G′) is isomorphic to G:

0 // Ga
//

id

G′ //
OO

φ

W //
OO

ϕ

0

0 // Ga
// ϕ∗(G′) // W // 0.

It will follow from this that G is isogeneous to G′, which is a product
of Witt groups.

Applying Lemma 5.12 to every γi ∈ Ext(Wni
, Ga) yields homomor-

phism fi ∈ Hom(Wni
,Wn1

) such that γi = fi∗V
0
n1

. Define the map
ϕ : W →W by

ϕ(w1, w2, . . . , wk) = (f1(w1) + f2(w2) + · · · + fk(wk), w2, . . . , wk).

Then ϕ∗(β) = γ. Since f1 is surjective (see Lemma 5.9), it follows
immediately that ϕ is surjective and every surjective homomorphism
between two groups of the same dimension has a finite kernel. Thus
the map ϕ defines the desired isogeny.

�

From now on we assume that K is a local field of characteristic p > 0. We
now show that every abelian K-split group is self-dual. Indeed, this follows
from our previous study of the Witt groups and the following result.

Proposition 5.14. Let H be a unipotent linear algebraic group and suppose
H is isogeneous to G = Wn(K), the nth Witt group of the field K = Fp((t)).
Then H is topologically isomorphic to G.

Proof. Since H is isogeneous to G, we can find a finite subgroup F of G such
that H ∼= G/F . So in order to show that H is isomorphic to G, it suffices to
prove that G ∼= G/F , where F is an arbitrary finite subgroup of G. But every
finite subgroup F is of the form F = 〈x1, . . . , xk〉 for some x1, . . . , xk ∈ G and
we will prove that G/〈x〉 ∼= G for every x ∈ G, where 〈x〉 denotes the additive
subgroup in G generated by x. (Notice that by Corollary 4.6 of Section 4.2 the
group G = Wn(K) is of exponent pn+1, so in particular every element x ∈ G
has finite order and thus 〈x〉 is finite for every x ∈ G.) It then follows by an
induction argument that G/F ∼= (G/〈x1〉)/〈x2, . . . , xk〉 ∼= G/〈x2, . . . , xk〉 ∼= G.

Recall that we denote by Cn := Z /nZ the cyclic group with n elements.
Furthermore we write A∞ for the infinite direct product

∏∞

i=0A of a finite

abelian group A and A(∞) for the infinite direct sum
⊕∞

i=0 A.
By Theorem 4.16 of Section 4.2 we know that the topological group G =

Wn(K) is of the form

G ∼= C∞
p × C∞

p2 × · · · × C∞
pn+1 × C(∞)

p × C
(∞)
p2 × · · · × C

(∞)
pn+1 .

So if we define Hpi := C∞
pi × C

(∞)
pi , then

G ∼= Hp ×Hp2 × · · · ×Hpn+1
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and every x ∈ G is of the form x = (x1, . . . , xn+1) with xi ∈ Hpi for every
i ∈ {1, . . . , n+ 1}.

Let x ∈ G and suppose x 6= 0. The finite group 〈x〉 is a subgroup of Cpn+1 ,
and thus 〈x〉 ∼= Cpm for some m ∈ {1, . . . , n+ 1}. But every cyclic group Cpm ,

m ≥ 1, has a subgroup which is isomorphic to Cp. Thus, by replacing x by xpk

for a suitable power k, we can assume without loss of generality that 〈x〉 ∼= Cp.
We consider two different cases:
1.) The intersection of the element x and the group Hp is not trivial,

i.e., x1 6= 0. Then 〈x1〉 ∼= Cp and x1 ∈ Hp is a Laurent series of the form
x1 = (x1

m)m∈Z, where x1
m ∈ Cp for every m ∈ Z. But the series x1 generates

the cyclic group Cp, and thus we can find an integer k such that 〈x1
k〉

∼= Cp.
Observe that for every y = (y1, . . . , yn+1) ∈ G we can find a unique element of
the span 〈x1

k〉 which is equal to y1
k. We denote by x̄1 the element in Hp defined

by x̄1
k = x1

k and x̄1
m = 0 for all m ∈ Z \{k}. We will show

(a) G/〈x〉 ∼= Hp/〈x̄
1〉 ×Hp2 × · · · ×Hpn+1 and

(b) Hp/〈x̄
1〉 ∼= Hp.

It follows directly from (a) and (b) that G/〈x〉 ∼= G.
In order to show part (a) we define the map

Φ : G −→ G, y 7→ y − ϕ(y),

where ϕ(y) = x′ ∈ 〈x〉 with x′
1
k = y1

k. We conclude from the above observation
that Φ is well-defined and clearly, Φ is a group homomorphism. Furthermore,
we have y − ϕ(y) = 0 if and only if y = ϕ(y) if and only if y ∈ 〈x〉, which
shows that ker(Φ) = 〈x〉. Hence G/〈x〉 is isomorphic to the image of Φ, which
is isomorphic to the direct product Hp/〈x̄

1〉 ×Hp2 × · · · ×Hpn+1 .
In order to prove part (b), we recall that

Hp
∼=

∞⊕

i=1

Cp ×

∞∏

i=0

Cp and 〈x̄1〉 ∼= 〈x̄1
k〉

∼= Cp.

Without loss of generality we assume k = 0. Notice that if y1, z1 ∈ [y1] ∈
Hp/〈x̄

1〉 are two elements of the same coset, then y1 − z1 ∈ 〈x̄1〉 which means
that there exists a number λ ∈ Cp such that y1

l − z1
l = λx̄1

l for all l ∈ Z. In
particular, if y1, z1 ∈ [y1] with y1

0 = z1
0 = 0 then we obtain y1

l = z1
l = 0 for

all l ∈ Z and thus y1 = z1, since 〈x̄1
0〉 6= 0. This means that in every coset

[y1] ∈ Hp/〈x̄
1〉 there exists a unique element z1 with z1

0 = 0. We now define
the map

Ψ :
∞⊕

i=1

Cp × {0} ×
∞∏

i=1

Cp −→ Hp/〈x̄
1〉, y1 7→ [y1].

It follows directly from the above that Ψ is well-defined and it is not hard to
see that Ψ is a group isomorphism. But the group

⊕∞

i=1 Cp × {0} ×
∏∞

i=1 Cp

is obviously isomorphic to Hp, which completes the proof of part (b).
2.) The intersection of the element x and the group Hp is trivial, i.e.,

x1 = 0. Let i ∈ {2, . . . , n + 1} be minimal with respect to the property that
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xi 6= 0. Since 〈x〉 ∼= Cp, we have 〈xi〉 ∼= Cp. As in the case i = 1, we know
that xi is a Laurent series of the form xi = (xi

m)m∈Z with xi
m ∈ Cpi for every

m ∈ Z. Since 〈xi〉 ∼= Cp, there exists k ∈ Z such that 〈xi
k〉

∼= Cp. So for
every y = (yi, . . . , yn+1) ∈ Hpi × · · · × Hpn+1 we can find a unique element

z ∈ 〈xi
k〉 with yi

k +
(
Cpi/Cp

)
= z+

(
Cpi/Cp

)
. (Or, if we view xi

k as an element

of {0, . . . , pi − 1} ∼= Cpi , then z ≡ yi
k mod p.) Denote by x̄i the element of

Hpi defined by x̄i
k = xi

k and x̄i
m = 0 for all m ∈ Z \{k}. We have

(
Hp ×Hp2 × · · · ×Hpn+1

)
/〈x〉

∼= Hp × · · · ×Hpi−1 ×
(
Hpi × · · · ×Hpn+1/〈(xi, . . . , xn+1)〉

)

and claim that it suffices to prove the statements

(a) Hpi × · · · ×Hpn+1/〈(xi, . . . , xn+1)〉 ∼= Hpi/〈x̄i〉 ×Hpi+1 × · · · ×Hpn+1

and
(b) Hpi/〈x̄i〉 ∼=

⊕∞

i=1 Cpi × (Cpi/Cp) ×
∏∞

i=1 Cpi .

Indeed, using (a) and (b) and the fact that (
∏∞

i=0 Cpi−1 )×Cpi−1
∼=
∏∞

i=0 Cpi−1

and
∏∞

i=1 Cpi
∼=
∏∞

i=0 Cpi , we obtain

G/〈x〉 ∼= Hp × · · · ×Hpi−1 × (Hpi/〈xi〉) ×Hpi+1 × · · · ×Hpn+1

∼=

∞⊕

i=1

Cp ×
∞∏

i=0

Cp × · · · ×
∞⊕

i=1

Cpi−1 ×
∞∏

i=0

Cpi−1

×
( ∞⊕

i=1

Cpi × Cpi−1 ×

∞∏

i=1

Cpi

)
× · · · ×

∞⊕

i=1

Cpn+1 ×

∞∏

i=0

Cpn+1

∼=

∞⊕

i=1

Cp ×
∞∏

i=0

Cp × · · · ×
∞⊕

i=1

Cpi−1 ×
∞∏

i=0

Cpi−1

×

∞⊕

i=1

Cpi ×

∞∏

i=0

Cpi × · · · ×

∞⊕

i=1

Cpn+1 ×

∞∏

i=0

Cpn+1

∼= G.

In order to prove the statement (a), we may use exactly the same idea as in
the first case. We define a map

Φ : Hpi × · · · ×Hpn+1 −→ Hpi × · · · ×Hpn+1 , y 7→ y − ϕ(y),

where ϕ(y) = x′ ∈ 〈(xi, . . . , xn+1)〉 is defined so that yi
k +

(
Cpi/Cp

)
= x′

i
k +(

Cpi/Cp

)
. By the above remarks we know that Φ is a well-defined group

homomorphism. The kernel of Φ is equal to 〈(xi, . . . , xn+1)〉 and hence the
quotient group Hpi × · · · ×Hpn+1/〈(xi, . . . , xn+1)〉 is isomorphic to the image

of Φ, which is isomorphic to Hpi/〈x̄i〉 ×Hpi+1 × · · · ×Hpn+1 .
For the proof of part (b), we assume without loss of generality that k = 0

and apply the same argument as above to the map

Ψ :
∞⊕

i=1

Cpi ×
∞∏

i=0

Cpi −→
∞⊕

i=1

Cpi ×
∞∏

i=0

Cpi , y 7→ y − ψ(y),
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where ψ(y) = x′ ∈ 〈xi〉 with yi
0 +
(
Cpi/Cp

)
= x′

i
0 +
(
Cpi/Cp

)
. Since 〈xi

0〉
∼= Cp,

it follows that the image of Ψ is isomorphic to
⊕∞

i=1 Cpi ×Cpi/Cp ×
∏∞

i=1 Cpi ,
which finishes the proof. �

Lemma 5.15. Let G be a finite product of Witt groups of the field K = Fq((t)),

where q = pr for some prime p and some r ∈ N, i.e., G =
∏k

i=1Wni
(K) for

some k ∈ N and some ni ∈ N0, i = 1, . . . , k. Let nj be the maximum of
the set {ni | i = 1, . . . , k}. Then G is, as a topological group, isomorphic to
Wnj

(
Fp((t))

)
.

Proof. Using Proposition 4.21, the topological group G is of the form

G ∼=

k∏

i=1

(C∞
p )r × (C∞

p2 )r × · · ·

× (C∞
pni+1)r × (C(∞)

p )r × (C
(∞)
p2 )r × · · · × (C

(∞)

pni+1)
r

∼=

k∏

i=1

(C(∞)
p × C∞

p )r × (C
(∞)
p2 × C∞

p2 )r × · · · × (C
(∞)

pni+1 × C∞
pni+1)r.

But for all j = 1, . . . , ni + 1, we have

(C
(∞)
pj × C∞

pj )r ∼= (C
(∞)
pj × C∞

pj )

(as additive topological groups) and since the finite product
∏k

i=1(C
(∞)
pj ×C∞

pj )

is topologically isomorphic to the group C
(∞)
pj × C∞

pj for all j = 1, . . . , ni + 1,

it follows that

G ∼= (C(∞)
p × C∞

p ) × (C
(∞)
p2 × C∞

p2 ) × · · · × (C
(∞)

pnj+1 × C∞

pnj+1) ∼= Wnj

(
Fp((t))

)
.

�

Corollary 5.16. If K is any local field of characteristic p and G a commutative
K-split group then G is, as a topological group, isomorphic to its dual group.

Proof. Let K be any local field of characteristic p. Then K is isomorphic to a
field of formal Laurent series in one indeterminate with coefficients in a finite
field of characteristic p, i.e., K ∼= Fq((t)), where q = pr for some r ∈ N. Let
G be a commutative K-split group. Then G is isogeneous to a finite product
of Witt groups (Theorem 5.13), i.e., there exists k ∈ N and there exist ni ∈ N,
i = 1, . . . , k, such that G is isogeneous to H , where

H =
k∏

i=1

(C(∞)
p × C∞

p )r × (C
(∞)
p2 × C∞

p2 )r × · · · × (C
(∞)

pni+1 × C∞
pni+1)r .

By Lemma 5.15, the group H is topologically isomorphic to Wnj

(
Fp((t))

)
for

some nj ∈ {ni | i = 1, . . . , k} and thus G is isogeneous to the Witt group
Wnj

(
Fp((t))

)
. It follows then from Proposition 5.14 that the topological group

G is isomorphic to Wnj

(
Fp((t))

)
. Since every such finite dimensional Witt
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group is, as a topological group, self-dual (Proposition 4.22), it follows that G
is self-dual. �
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