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Introduction

p-adic Galois representations attached to elliptic

curves

For a fixed prime number p, let K be a p-adic field with discrete valuation ring

(oK ,mK) and perfect residue field k = oK/mK of characteristic p; we write GK =

Gal(Kalg/K) for the absolute Galois group of K where Kalg/K is a fixed algebraic

closure; let W = W (k) be the ring of Witt vectors over k, and K0 = Frac(W ). As is

well-known from Fontaine theory ([3], [15], [26], [27], [39], [40], [75]), the crystalline

period functor

Dcris :


 p-adic representations of GK

in finite-dimensional Qp-vector spaces


→ (filtered isocrystals over k)

induces an exact equivalence of categories between

— the category of those p-adic representations V of GK which are crystalline,

i.e., for which the canonical map

(V ⊗Qp Bcris)
GK ⊗K0 Bcris → V ⊗Qp Bcris

is an isomorphism, and

— the category of those filtered isocrystals over k which are weakly admissible in

the sense of Fontaine.

For example, if E/K is an elliptic curve over K of good reduction then its special

fiber E0/k is an elliptic curve over k, and the p-adic Tate module

Tp(E) = lim←−(s)E(Kalg)[ps]

gives rise to the crystalline p-adic representation V = Vp(E) = Qp ⊗Zp Tp(E) of

GK ; via Dcris the latter is mapped to Dp(E0/k)⊗W K0 where Dp(E0/k) denotes the

Dieudonné module (defined over the Dieudonné ring Dk = W [F, V ]) associated to

the special fiber E0/k over k.
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Introduction

The finite W -module Dp(E0/k) is closely linked in a functorial way with the

Barsotti-Tate group E0[p
∞] = lim−→(s)E0[p

s] and, due to its (semi-)linear-algebra na-

ture, is easier to understand than E0[p
∞] itself; in fact, the object E0[p

∞] can even

be recovered from Dp(E0/k).

The structure of a filtered isocrystal on Dcris(V ) consists of two data: first of

all, the action of the indeterminate F ∈ Dk induces a natural endomorphism of

the abelian group Dp(E0/k) which is semi-linear with respect to the p-Frobenius

lift f : W → W and becomes an isomorphism after inverting the uniformizer p ∈

W ; the endomorphism F can also be obtained by letting crystalline cohomology

intervene: denoting by E
(p)
0 = E0 ⊗k,x 7→xp k the p-Frobenius pullback of E0, the

relative Frobenius-k-morphism E0 → E
(p)
0 induces a W -linear map

H1
cris(E

(p)
0 /W ) = H1

cris(E0/W )⊗W,f W → H1
cris(E0/W ),

and there is an isomorphism of W -modules Dp(E0/k)
≃
→ H1

cris(E0/W ) which is com-

patible with F and the corresponding f -semi-linear endomorphism of H1
cris(E0/W ).

Using this isomorphism, together with the comparison isomorphism

H1
cris(E0/W )⊗W oK ≃ H1

dR(E/oK)

where E/oK is the (smooth) minimal Weierstraß model of E/K, the Hodge filtration

on H1
dR(E/oK) induces on (Dp(E0/k)⊗WK0)⊗K0K an exhaustive and separated de-

scending filtration by K-subspaces, which concludes our description of Dcris(Vp(E));

for a discussion of all this, see [15], [39].

If E/K is of split multiplicative (bad) reduction then the p-adic representation

V = Vp(E) is no longer crystalline, but rather semi-stable, and from Fontaine theory

we know that via the semi-stable period functor

Dst :


 p-adic representations of GK

in finite-dimensional Qp-vector spaces


→ (filtered (ϕ,N)-modules over k)

one associates to V a finite K0-vector space Dst(V ) together with

— an automorphism ϕ of the abelian group Dst(V ) which is semi-linear with

respect to the p-Frobenius lift K0 → K0,

— a K0-linear map N : Dst(V )→ Dst(V ) such that Nϕ = pϕN , and

— an exhaustive and separated descending filtration of Dst(V ) ⊗K0 K by K-

subspaces.
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The structure of Dst(V ) is more complicated to explain than in the good-reduction

case, and we refer to [17] for a detailed discussion. Of course, the occuring phenom-

ena arise from the fact that the special fiber E0/k is not a smooth curve anymore,

but rather has a nodal point. However, it should be emphasized that the "amount

of complication" is very limited: by virtue of p-adic uniformization for semi-stable

elliptic curves (or, more generally: semi-stable abelian varieties) it turns out that

the step from good reduction to semi-stable reduction is encoded in a single addi-

tional datum on the associated filtered isocrystal of V : the monodromy operator

N . More generally, it is well-known that an arbitrary Bst-admissible (that is: semi-

stable) p-adic representation of GK is crystalline if and only if its associated filtered

(ϕ,N)-module has trivial monodromy, i.e., if and only if N acts as the zero map.

Local shtukas

In equal characteristic, we find a strongly contrary situation. To begin with, let

us say a few words about the crystalline case: building upon work of R. Pink [63]

on Hodge structures over function fields, A. Genestier and V. Lafforgue [34] have

proposed an equal-characteristic analogue for the crystalline period functor Dcris.

Here the notion of a crystalline Galois representation is replaced by that of a local

shtuka: denoting by L an equal-characteristic complete discretely valued field con-

taining a fixed finite field F of p-power order r, with valuation ring (oL,mL) and

perfect residue field ℓ = oL/mL, a local shtuka over oL is a finite free oLJzK-module

M̂ together with an isomorphism

FM̂ : (M̂ ⊗oLJzK,σ oLJzK)[
1
z−ζ

]→ M̂ [ 1
z−ζ

]

of oLJzK[
1
z−ζ

]-modules, where ζ ∈ oL−{0} is a fixed element, and where σ : oLJzK→

oLJzK denotes the r-Frobenius lift defined by z 7→ z and b 7→ br for b ∈ oL; a local

shtuka (M̂, FM̂) is said to be effective if FM̂ comes from an actual oLJzK-linear map

M̂ ⊗oLJzK,σ oLJzK → M̂ . The element z − ζ ∈ oLJzK appearing in the denominator

stems from a distinguished Eisenstein polynomial employed in Breuil-Kisin’s study

of crystalline p-adic representations and finite flat group schemes ([14], [48]); in fact,

the theory mentioned here lies at the very origin of the notion of a local shtuka.

When switching to equal characteristic, the ring of Witt vectors W from the p-

adic world is replaced by the formal power series ring ℓJzK over the residue field

ℓ = oL/mL. If we suppose that ζ ∈ mL then reduction of coefficients mod mL

induces a canonical projection map oLJzK[
1
z−ζ

] → ℓ((z)), and the assignment M̂ 7→

M̂ ⊗oLJzK ℓ((z)) associates to (M̂, FM̂) the z-isocrystal

(D,FD) = (M̂ ⊗oLJzK ℓ((z)), FM̂ ⊗ id).
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This object naturally carries additional information, encoded in its Hodge-Pink

structure, and one obtains a fully faithful functor from local shtukas over oL to

z-isocrystals with Hodge-Pink structure which is the analogue for Fontaine’s crys-

talline period functor Dcris mentioned before; see [34], [40], [41].

Stressing the analogy between elliptic curves over K and Drinfeld modules over L,

we may further illustrate the role of local shtukas: Let ϕ be a Drinfeld F[z]-module

over L; if ϕ is of good reduction in the sense of Drinfeld [21] then, in close analogy

with the case of elliptic curves, by considering the collected z-power torsion ϕ̄[z∞]

of the reduced Drinfeld F[z]-module ϕ̄ over ℓ one obtains a z-divisible group which,

in fact, corresponds to a local shtuka over ℓ; see [22], [41], [52]. From this instance

one can already tell that local shtukas play a double role: they not only take the

place of crystalline p-adic representations, but also appear as analogues for Barsotti-

Tate groups and, at the same time, their Dieudonné crystals. Furthermore, local

shtukas are of a more general nature than crystalline p-adic representations. These

circumstances already incorporate a moral reason for the fact that bad reduction

seems to be less easy to capture in equal-characteristic arithmetic. The generality of

local shtukas is also supported by the following instance: a very important feature

about Drinfeld modules is that they can be mirrored by certain Drinfeld shtukas

(also called F-sheaves), which are global objects of even more general nature; see

[20], [22], [36]. Via formal completion a shtuka having coefficient scheme Spec(oL)

directly gives rise to a local shtuka over oL, as is explained in [41].

Bad reduction

The original aim of research underlying the present thesis was to find a filler for the

diagram of analogies


 semi-stable p-adic

representations of GK


 oo // ( ? )


 crystalline p-adic

representations of GK


 oo // (local shtukas over oL)

and to give an equal-characteristic analogue for Fontaine’s semi-stable period functor

Dst. In the above diagram, the missing objects would naturally be referred to as

semi-stable local shtukas. However, we have to clarify from the outset that this aim

lies beyond our capabilities. The situation in equal characteristic appears to be quite

different from the p-adic case:
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In order to describe bad reduction in equal characteristic, i.e., in order to say what

a "semi-stable local shtuka" should be, one has to take several types of degeneration

into account:

— First of all, arguing on the level of Drinfeld modules, Drinfeld’s Tate uni-

formization theorem [21] can very well be compared with analytic uniformiza-

tion for elliptic curves of split multiplicative reduction. The present work is

mainly devoted to this instance.

— By work of F. Gardeyn [29], [30] it has been shown that Tate uniformization

of Drinfeld modules may be carried out in terms of (analytified) Anderson

motives or, more generally: of analytic τ -sheaves, and that Drinfeld modules

of bad reduction give rise to objects called (strongly) semi-stable τ -sheaves.

More generally, one of the merits of Gardeyn’s work is to give a version of

Tate uniformization for Anderson’s abelian t-modules.

— Speaking in terms of the most general instance of Drinfeld shtukas, we en-

counter yet a different type of degeneration: in his work [49] on the proof of

the Langlands conjecture for Gln over a global function field, L. Lafforgue has

introduced objects which he called chtoucas dégénérés; these were first stud-

ied by Drinfeld [20] in the "rank 2"-case and were then generalized to higher

rank by Lafforgue. Roughly speaking, one of the key insights for proving the

Langlands conjecture was that the desired correspondence is realized by the

cohomology of the moduli space of Lafforgue’s chtoucas dégénérés, which in

turn was first realized in the "rank 2"-case by Drinfeld.

Already from the first item one can derive phenomena which diverge from the p-

adic case: we have already seen that to every good-reduction Drinfeld module over L

(which amounts to a Drinfeld module over the scheme Spec(oL)) one can associate a

local shtuka over oL and therefore a z-isocrystal with Hodge-Pink structure; however,

we will see that in contrast to the p-adic theory one cannot expect to obtain a

"z-isocrystal with Hodge-Pink structure and monodromy operator"

when starting with a bad-reduction Drinfeld module in the sense of [21].

Aim and contents of this thesis

In the present work we wish to give some evidence for the fact that, regarding bad

reduction, the arithmetic over local function fields is quite different from p-adic

arithmetic.
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Introduction

Let us give a description of the chapters of this thesis:

In the first chapter we study the connection between analytic Anderson motives

and local shtukas at the residual characteristic place in a general fashion. We may

illustrate this as follows: an analytic Anderson motive is a finite projective module

M over the Tate algebra L〈z〉 of strictly convergent power series ([9], [28]) in one

indeterminate z over L, together with an injective L〈z〉-linear map FM : M ⊗L〈z〉,σ

L〈z〉 →M , where σ : L〈z〉 → L〈z〉 is the usual r-Frobenius lift, such that coker(FM)

is a finite-dimensional L-vector space and is annihilated by a power of the ideal

(z − ζ) ⊆ L〈z〉. This means that analytic Anderson motives are an analytic variant

of Anderson’s t-motives living over the rigid-analytic closed unit ball B1 ⊆ A1,an
L .

We show that an analytic Anderson motive (M,FM) admits a good model (in the

sense of Gardeyn [30]) over oL〈z〉 if and only if for a suitable effective local shtuka

(M̂, FM̂) there is an oLJzK[1/π]-linear isomorphism

M ⊗L〈z〉 oLJzK[1/π]→ M̂ [1/π]

which is compatible with the respective semi-linear data. The idea is that such a

local shtuka arises via formal completion at the residual characteristic place from

every good model. For a given analytic Anderson motive this also gives a precise

characterization of its good models in terms of (effective) local shtukas. Adapting

Gardeyn’s theory [30] of good models for algebraic and analytic τ -sheaves to the

aforementioned unit disc B1, we are able to further characterize good reduction of

an algebraic Anderson t-motive in terms of its associated analytic Anderson motive;

in particular, this gives a characterization of good models of algebraic Anderson

t-motives in terms of local shtukas.

The second chapter, as well as the third chapter, is rather of a relative flavor:

using the framework of Fontaine theory, in the second chapter we first explain that

every p-adic Galois representation V which is an extension of Vp(E)∨ by Qp, where

E/K is an elliptic curve of supersingular reduction, necessarily is crystalline. This

is of course done by analyzing the associated filtered (ϕ,N)-module Dst(V ) and

showing that N has to act as the zero map. The considerations made here are

certainly well-known to the experts. Turning to equal characteristic, in a next

step we replace the elliptic curve E by a Drinfeld F[z]-module ϕ over L which

is of good supersingular reduction. We consider the associated analytic Anderson

motive M(ϕ) ⊗L[z] L〈z〉 and, by choosing an F[z]-lattice Λ ⊆ ϕ(Lsep) of rank one

and interpreting the Tate-uniformization morphism ϕ→an ϕ/Λ in terms of analytic

Anderson motives, establish an extension structure of finite free L〈z〉-modules with
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semi-linear data

0→ (N,FN)→ (M(ϕ/Λ)⊗L[z] L〈z〉, τϕ/Λ)→ (M(ϕ)⊗L[z] L〈z〉, τϕ)→ 0

where (N,FN) is potentially trivial and of rank one. We now suppose that there is

a hypothetical category of "semi-stable local shtukas" together with a hypothetical

exact functor (corresponding to Dst) to a category of "z-isocrystals with Hodge-Pink

structure and monodromy operator" which verify axioms being very close to those

of MFK(ϕ,N) in the p-adic world, and we assume that the above sequence gives

rise to a short exact sequence of "semi-stable local shtukas", and in particular to one

of the hypothetical associated "(Φ,N )-isocrystals"; we argue that the left-most and

right-most term of the induced sequence have to be of trivial monodromy while the

middle term has to be of properly bad reduction, due to its bad-reduction origin.

However, by a similar argument as in the p-adic case, one can show that also the mid-

dle term has to be of trivial monodromy, which leads to a contradiction: according

to our hypothesis, the monodromy operator of the isocrystal associated to a semi-

stable local shtukaM is trivial if and only ifM is actually of good reduction, i.e., a

local shtuka over oL; however, by the results from chapter 1, this cannot be the case.

Finally, in the third chapter, we are concerned with certain modules of Yoneda ex-

tension classes. Again, in the first part we consider the p-adic situation and study the

Yoneda extension group Ext1(Qp,Qp(1)) for the abelian categories of crystalline and

semi-stable p-adic Galois representations, respectively; we explain that the group of

crystalline extension classes lies as a Qp-hyperplane inside the group of semi-stable

extension classes; this is done first via Galois cohomology and Kummer theory using

the exact valuation sequence of the p-adic base field K, and via Fontaine theory.

Again none of the considerations made on the p-adic side is expected to be original.

Turning to equal characteristic, we again establish an analogous situation: moti-

vated by Tate uniformization for an arbitrary bad-reduction Drinfeld F[z]-module

of rank 2, we study extensions of the form

0→ (R, σR)→ (R2, ( 1 ∗
0 z−ζ ) ◦ σR)→ (R, (z − ζ) ◦ σR)→ 0

where each of the (canonical) maps is compatible with the respective semi-linear

data, and where (R, σR) is an oLJzK-algebra of a suitable type together with an

extension σR : R → R of the r-Frobenius lift of oLJzK. The case R = oLJzK cor-

responds to "crystalline" extensions of the Tate twist R(1) by R(0), and in case

R = oLJzK[1/π] we speak of "semi-stable" extensions. Now, stressing the analogy

between the multiplicative group scheme in the p-adic world and the Carlitz module

in the function-field world, we discuss an equal-characteristic analogue for L of the

p-adic valuation sequence for K and, using a result of B. Poonen [64], show that the
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quotient
semi-stable Yoneda extensions of R(1) by R(0)

crystalline Yoneda extensions of R(1) by R(0)

is free of countably infinite rank as FJzK-module if the residue field ℓ is finite.
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1 A local criterion for good

reduction of analytic Anderson

motives

Once and for all, we fix a finite field F; its order r = #F is a power of the prime

number p = char(F).

Let C be a smooth and geometrically irreducible projective curve over F with

function field Q = F(C). We fix a closed point ∞ ∈ C and let A = Γ(C − {∞},OC)

be the F-algebra of those rational functions on C which are regular outside ∞, i.e.,

A = {f ∈ Q, x(f) ≥ 0 for all closed points x ∈ C − {∞}},

where a closed point x is identified with the corresponding prime place of the global

field Q.

Without proof we will use that the open part C − {∞} ⊆ C is affine, i.e.,

C − {∞} = Spec(A). In particular, A is a noetherian integral domain which more-

over is immediately seen to be a Dedekind domain. The class number of A is finite;

for a discussion, see [36], 4.1.

1.1 The characteristic place

Let oL be an equi-characteristic complete discrete valuation ring containing the fi-

nite field F, with quotient field L = Frac(oL) and perfect residue field ℓ = oL/mL,

where mL ⊆ oL is the sole maximal ideal of oL; we fix a uniformizer π = πL of oL,

i.e., mL = (π). Let | · | denote the non-archimedean absolute value which, up to

equivalence, corresponds to the discrete valuation v = vπ = ordπ(·) on L normalized

by v(π) = 1.

We assume that there is an oL-valued point c ∈ C(oL) such that the correspond-

ing F-morphism c : Spec(oL) → C is dominant and factors via C − {∞} ⊆ C; such

1



1 A local criterion for good reduction of analytic Anderson motives

a datum corresponds to a monomorphism of F-algebras c∗ : A → oL which we call

the characteristic map. We further assume that the closed point V (π) ⊆ Spec(oL)

is mapped to a closed point of Spec(A) ⊆ C; the latter corresponds to the kernel

ε ⊆ A of the composition A→ oL → ℓ. So, in accordance with Drinfeld’s terminol-

ogy [21], we call ε the (residue) characteristic. In this spirit, we are encountering

mixed Drinfeld characteristic.

Likewise, the prime place of the function field Q corresponding to the closed

point ε of Spec(A) ⊆ C is referred to as the (residual) characteristic place of Q. By

continuity, the characteristic map c∗ : A→ oL gives rise to an extension of complete

discretely valued fields Qε ⊆ L where Qε = Frac(Âε) is the completion of Q at the

characteristic place ε.

Lemma 1.1. There is an m ≥ 1 such that εm is a principal ideal of A.

Proof. The closed point of Spec(A) corresponding to ε gives rise to a prime divisor D

and hence to an element of the divisor class group Cl(Spec(A)) = Div(Spec(A))/Q×.

This group equals the ideal class group of the Dedekind domain A and is therefore

finite. This implies that the element D ∈ Cl(Spec(A)) is of finite order, which means

that mD is a principal divisor for some m ≥ 1, say mD = div(f) for some f ∈ Q×.

Now if P varies among the closed points of Spec(A), we have vP (f) = m for P = ε

and vP (f) = 0 otherwise, since D is a prime divisor, i.e., vP (f) ≥ 0 for all P . From

this we may conclude f ∈ A because the maximal ideals of A are precisely the prime

ideals of height one. From vε(f) = m it follows that f ∈ A∩εmAε = εm. Conversely,

let g ∈ A ⊆ Q be a rational function such that g ∈ εm. If again P runs through the

closed points of Spec(A), we have vP (g) ≥ m for P = ε, and vP (g) ≥ 0 otherwise,

i.e., vP (g/f) = vP (g)− vP (f) ≥ 0 for all P . Arguing as before, we get g/f ∈ Ap for

all maximal ideals p ⊆ A, and consequently g/f ∈ A, proving our claim. �

Example 1.2. Let C = P1
F and let ∞ be the F-rational point defined by V (1/z) ⊆

Spec(F[1/z]). Then A equals the polynomial ring F[z] in one indeterminate z over

F. In this situation we clearly have ε = zF[z] if and only if π | z in oL. �

Remark/Definition 1.3. According to Lemma 1.1, say we have εm = (t); first of

all we remark that ε cannot be nilpotent, i.e., t 6= 0; on the other hand, it is clear

that t cannot be a unit in A. Now we know ([36], 4.1) that A× = F×, and so we may

conclude that t ∈ A− F; the rational function t gives rise to a finite flat morphism

C → P1
F ([54], 7.3.10, 4.3.10) and in particular induces a finite flat monomorphism

of F-algebras

ι : F[z]→ A
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1.2 The base rings

which identifies the indeterminate z with t ∈ A; clearly t is transcendent over the

field F, i.e., we may view t as an indeterminate over F. –

The map ι : F[z]→ A will be used frequently.

1.2 The base rings

In what follows, we will mainly be concerned with (semi-)linear algebra-objects

which are defined over certain A⊗F oL-algebras. We abbreviate AoL = A⊗F oL and

furthermore write AL = A ⊗F L as well as Aℓ = A ⊗F ℓ; i.e., AL ≃ AoL [1/π] and

Aℓ ≃ AoL/πAoL .

The oL-valued point c ∈ C(oL) gives rise to a canonical morphism of F-schemes

(id, c) : Spec(oL) → C ⊗F oL, the associated graph morphism. In particular, as c

factors via C − {∞}, there is a map of F-algebras γ = (id, c∗) : AoL → oL which is

surjective since it has a canonical section, naturally embedding oL into AoL ; at the

same time, since c is dominant, γ yields that also A is naturally embedded into AoL .

We first gather together a couple of properties of the base rings defined so far,

starting with the following Lemma. For the notion of excellence, see [EGA IV(2)],

7.8.

Lemma 1.4. (i) The oL-algebra AoL is excellent.

(ii) Aℓ and AL are Dedekind domains.

Proof. As Spec(A) is noetherian, the inclusion Spec(A) ⊆ C is quasi-compact, hence

of finite type. Consequently, the morphism Spec(A)→ Spec(F) is of finite type and,

by base change, so is Spec(AoL) → Spec(oL). By [EGA I(n)], I.6.3.5, the ring AoL
therefore has to be noetherian. On the other hand, by [EGA IV(2)], 7.8.3, we

conclude that AoL is excellent since the complete discrete valuation ring oL is. In

order to prove (ii), we just remark that C ⊗F K is smooth of relative dimension 1

over K and irreducible for every field extension K/F. �

In particular, AoL ⊆ AL is a noetherian integral domain, and by virtue of the

equality Aℓ ≃ AoL/πAoL it follows that π ∈ oL gives rise to a prime element of AoL .

Definition 1.5. Let AoL,π (resp., AoL,(ε,π)) be the completion of the oL-algebra AoL
for the π-adic topology (resp., the (ε, π)-adic topology).

By Krull’s Theorem ([13], III.3.2), the ring AoL is separated for both the π-adic

and the (ε, π)-adic topology.
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1 A local criterion for good reduction of analytic Anderson motives

Lemma 1.6. The topological oL-algebra AoL,π is admissible in the sense of Raynaud,

i.e., it is of topologically finite presentation and has no π-torsion. In particular, the

L-algebra AoL,π[1/π] is affinoid.

Proof. First we remark that by construction AoL,π is π-adically complete and sepa-

rated. We have

AoL,π/πAoL,π ≃ AoL/πAoL ≃ Aℓ,

and the latter is a finitely generated ℓ-algebra. So, by [9], 2.3/10(a), it follows that

AoL,π is of topologically finite type over oL, which means that it is isomorphic to a

quotient of oL〈x〉 for some finite system x of indeterminates; but oL〈x〉 is noetherian

by [9], 2.3/1, and so AoL,π is even of topologically finite presentation. Since AoL is

an integral domain, by [13], III.3.4.2, no power of π can give rise to a zero-divisor in

AoL,π, i.e., AoL,π does not have π-torsion and is therefore admissible. The last claim

follows from [9], 2.4. �

In sections (1.5) and (1.6) the (geometric) role of these oL-algebras will be further

explained. For now, let us briefly explain the most important instance from which

our base rings AoL,π and AoL,(ε,π) arise: If C = P1
F then we have AoL = oL[z] and

correspondingly AL = L[z]. Let us specify that ε = zF[z]. Our choice of a uni-

formizer π gives rise to an identification oL = ℓJπK; see [69], II.4.2. Consequently

oLJzK = ℓJπKJzK = ℓJπ, zK, and the latter equals the (π, z)-adic completion of ℓJπK[z].

In this spirit we view AoL,(ε,π) as a replacement, for general C and ε, of the oL-algebra

oLJzK.

On the other hand, the π-adic completion of oL[z] equals oL〈z〉, and since L〈z〉 =

oL〈z〉 ⊗oL L, we may view AoL,π[1/π] as a replacement, for general C, of the Tate

algebra L〈z〉 of strictly convergent power series in one indeterminate z over L, which

serves as coordinate ring for the one-dimensional affinoid unit ball in classical rigid

geometry.

The Tate algebra L〈z〉 is obtained from the affine coordinate ring L[z] via com-

pletion with respect to its Gauss norm defined by ||
∑<∞
ν aνz

ν || = supν(|aν |), where

| · | is the π-adic absolute value of L; there is an obvious well-defined version of the

Gauss norm for strictly convergent power series which makes L〈z〉 into an L-Banach

algebra, and one finds oL〈z〉 = {f ∈ L〈z〉, ||f || ≤ 1}; see [9], [28].

In the general case, this is mirrored as follows: There is a natural embedding

AL → AoL,π[1/π] which, for general C, replaces the completion homomorphism

L[z] → L〈z〉, and which itself can be regarded as a completion map with respect

to the L-algebra norm-topology on the reduced affinoid L-algebra AoL,π[1/π] and its
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1.2 The base rings

restriction on AL; see [9], 1.4/19. –

Note that the canonical homomorphism AoL → AoL,(ε,π) factors uniquely via AoL,π,

where the induced map AoL,π → AoL,(ε,π) identifies AoL,(ε,π) with the (ε, π)AoL,π-

adic completion of AoL,π, which means that it has to be flat; moreover, there is a

commutative diagram

AoL // AoL,π //

��

AoL,π[1/π]

��
AoL // AoL,(ε,π)

// AoL,(ε,π)[1/π]

where all arrows are injective and flat. In order to justify the injectivity for AoL,π →

AoL,(ε,π), we claim that AoL,π is (ε, π)AoL,π-adically separated. Again by Krull’s

Theorem it suffices to show that AoL,π is an integral domain, which is accomplished

by the following

Proposition 1.7. AoL,π is a regular integral domain.

Proof. LetX = Spec(AoL). SinceAoL is excellent by 1.4, it follows from [EGA IV(2)],

7.8.3.1, that the regular locus Reg(X ′) of X ′ = Spec(AoL,π) equals f−1(Reg(X))

where f is the canonical morphism f : X ′ → X. Therefore, X → Spec(oL) being

smooth, the scheme X ′ is regular, which implies that every local ring of AoL,π at a

prime ideal is an integral domain, i.e., X ′ is locally integral. It remains to show that

X ′ is connected. Since AoL,π/πAoL,π ≃ AoL/πAoL is an integral domain, the closed

subset V (π) ⊆ X ′ is connected. Suppose we have a nontrivial disjoint decomposition

X ′ = V (e) ∪ V (1 − e), where e, 1 − e is a pair of orthogonal idempotents. From

this we get V (π) = V (π, e) ∪ V (π, 1 − e). Now the quotient AoL,π/e is nontrivial,

i.e., it contains a maximal ideal n. By [58], 8.1, AoL,π/e is again π-adically complete

and separated, so that πAoL,π/e ⊆ j(AoL,π/e) ⊆ n (loc. cit., 8.2); this means that

V (π, e) cannot be empty; arguing similarly for the idempotent 1−e gives the desired

contradiction, showing that X ′ has to be connected. Finally, by [EGA I(n)], I.4.5.6,

we conclude that AoL,π is an integral domain. �

Since AoL,π is π-adically complete and separated, the following Lemma is imme-

diately derived from [58], 8.2.

Lemma 1.8. The element π lies in every maximal ideal of AoL,π. �

Recall that there is a finite flat monomorphism of F-algebras ι : F[z] → A which

identifies the indeterminate z with the non-constant rational function t ∈ A chosen

5



1 A local criterion for good reduction of analytic Anderson motives

in 1.3; the oL-algebra homomorphism ι⊗ id : oL[z]→ AoL ,
∑
ν aνz

ν 7→
∑
ν t

ν ⊗ aν , is

finite flat, so that also the maps

oL〈z〉 → AoL,π, L〈z〉 → AoL,π[1/π], oLJzK→ AoL,(t,π), ℓ[z]→ Aℓ

are finite flat; here the (t, π)-adic completion AoL,(t,π) of AoL equals AoL,(ε,π) since

(ε, π)m ⊆ (εm, π) = (t, π) in AoL ; we have a commutative diagram

oL[z] //

��

oL〈z〉 //

��

oLJzK

��
AoL // AoL,π // AoL,(ε,π)

where the horizontal arrows are completion maps and therefore flat, and where the

vertical maps are finite flat.

1.3 Liftings of Frobenius

The r-Frobenius Frobr : oL → oL, x 7→ xr, gives rise to an endomorphism

σ = idA ⊗ Frobr : AoL → AoL , a⊗ x 7→ a⊗ xr,

which extends to give a map idA ⊗ Frobr,L : AL → AL again denoted by σ. On the

other hand, reducing mod π gives σ̄ = idA ⊗ Frobr,ℓ : Aℓ → Aℓ; the latter is clearly

an automorphism of the Dedekind domain Aℓ.

The map σ : AoL → AoL is π-adically and (ε, π)-adically continuous and there-

fore extends to give endomorphisms AoL,π → AoL,π and AoL,(ε,π) → AoL,(ε,π), again

denoted by σ.

Lemma 1.9. In the commutative diagram

AoL //

σ

��

AoL,π //

σ

��

AoL,(ε,π)

σ

��
AoL // AoL,π // AoL,(ε,π)

both squares are cocartesian, and the vertical arrows are finite flat.

We let the proof be preceded by the following

Remark. As mentioned before (see (1.2)), our choice of a uniformizer π identifies

oL with ℓJπK. Via this identification, the r-Frobenius Frobr,oL : oL → oL is mir-

rored by the map ℓJπK → ℓJπK,
∑∞
ν=0 aνπ

ν 7→
∑∞
ν=0 a

r
νπ

rν ; using that Frobr,ℓ is an
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1.4 Categories of Frobenius modules

automorphism, this implies (Frobr,oL)∗oL = oLπ
0 ⊕ ... ⊕ oLπ

r−1; furthermore, the

map Frobr,oL is injective, i.e., Spec(Frobr,oL) is dominant, so that Frobr,oL has to

be flat (for example, by [54], 4.3.9), i.e., we may summarize that the r-Frobenius

Frobr,oL : oL → oL is finite flat. –

Proof of Lemma 1.9. By [EGA IV(2)], 2.1.7, the product σ = idA⊗Frobr,oL : AoL →

AoL is flat, and by [EGA II], 6.1.4/5, it is also finite. By base change, we conclude

that AoL ⊗σ,AoL AoL,π is a flat AoL,π-module. Since σ : AoL → AoL is finite, this

tensor product equals the π-adic completion of the AoL-module σ∗AoL . If we let a =

σ(πAoL)AoL = πrAoL = (πAoL)r and b = πAoL , we get br = a ⊆ b. Consequently, by

[23], 7.14, the inverse systems (AoL/a
n)n and (AoL/b

n)n give the same limit, which

shows at once that the square on the left is cocartesian, and that σ : AoL,π → AoL,π is

flat; in particular, a base change argument now shows that the latter homomorphism

is also finite. Similarly, we have σ(ε, π)AoL = (ε, πr) ⊆ (ε, π) as well as (ε, π)r ⊆

(ε, πr), which proves that the displayed diagram qualifies AoL,(ε,π) as tensor product

AoL,(ε,π)⊗AoL ,σAoL , and that σ : AoL,(ε,π) → AoL,(ε,π) is finite flat. But now it is merely

a formal matter to show that also the square on the right has to be cocartesian. �

Finally, note that the embedding of oL-algebras ι ⊗ id : oL[z] → AoL commutes

with σ : AoL → AoL and the r-Frobenius lift of oL[z], given by

oL[z]→ oL[z],
∑

ν

aνz
ν 7→

∑

ν

arνz
ν ;

Consequently, also the embeddings

oL〈z〉 → AoL,π, L〈z〉 → AoL,π[1/π], oLJzK→ AoL,(t,π), ℓ[z]→ Aℓ

from the end of section (1.2) are Frobenius-equivariant.

1.4 Categories of Frobenius modules

Let A be an oL-algebra together with a ring endomorphism σ : A → A such that σ

and Frobr,oL : oL → oL are compatible with the structure map oL → A, i.e., such

that σ extends Frobr,oL . For example, A could be any of the base rings considered

in the previous sections.

Let M be any A-module which comes equipped with an A-linear map F : σ∗M →

M . Then F corresponds to a homomorphism of abelian groups F sl : M →M which

is semi-linear with respect to σ : A → A; namely, F sl is obtained by composing F

with the canonical σ-semi-linear map M → σ∗M .

We define the category FMod(A) of Frobenius A-modules (or simply F -modules

over A) as follows:
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1 A local criterion for good reduction of analytic Anderson motives

— An object of FMod(A) is a pair (M,F ) consisting of an A-module M which is

finite projective (or, equivalently: locally free of finite rank), together with an

injective A-linear map F = FM : σ∗M → M ; the datum F (equivalently, F sl)

will usually be omitted from the notation, if no ambiguity can arise.

— As usual, a morphism of Frobenius A-modules (M,FM) → (N,FN) is an A-

linear map ϕ : M → N between the underlying A-modules such that ϕ is

F -equivariant, i.e., such that ϕ ◦ FM = FN ◦ σ
∗ϕ (or, equivalently: ϕ ◦ F sl

M =

F sl
N ◦ ϕ); it is called an isomorphism if ϕ is an isomorphism of the underlying

A-modules.

It is an obvious conclusion that the forgetful functor from FMod(A) to the cate-

gory of A-modules is faithful. We further remark that for an isomorphism ϕ : M →

N inside FMod(A) the inverse map of A-modules ϕ−1 is automatically F -equivariant

since the assignment M 7→ σ∗M is functorial on A-modules.

Let B be a flat A-algebra together with a ring endomorphism σ : B → B extending

the Frobenius lift of A, as explained before. Then the exact functor · ⊗A B from A-

modules to B-modules restricts to a functor FMod(A)→ FMod(B); if the structure

map A → B is, in addition, injective then the induced functor on FMod(A) is

faithful since, given a map f : M → N of finite projective A-modules, restricting its

image f ⊗ id : M ⊗A B → N ⊗A B to M gives back f . In particular, we obtain a

natural commutative diagram of categories and faithful functors

FMod(AoL) //

��

FMod(AoL,π)

��

// FMod(AoL,(ε,π))

��
FMod(AL) // FMod(AoL,π[1/π]) // FMod(AoL,(ε,π)[1/π])

1.5 Analytic Anderson motives

Since (C − {∞})⊗F L = Spec(AL) is of finite type over L, one can consider its rigid

analytification Spec(AL)an; see [9], [28]; in accordance with [6], we denote this rigid

analytic L-space by A(∞).

On the other hand, the formal completion of the oL-scheme X = Spec(AoL) along

its special fiber V (π) leads to the formal oL-scheme X = Spf(AoL,π); see [EGA I(n)],

I.10.8.3; its rigidification Xrig ([9], [28]) is given by the affinoid L-space A(1) corre-

sponding to the affinoid L-algebra AoL,π[1/π] (see 1.6); this space can be regarded as

the unit disc of the rigid analytic space A(∞); as opposed to its global counterpart

A(∞), it corresponds to "radius of convergence 1", hence the notation.
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1.5 Analytic Anderson motives

Let J ⊆ AoL be the ideal generated by the elements a ⊗ 1 − 1 ⊗ c∗(a), where

a ∈ A. For example, if C = P1
F, i.e., A = F[z], then one easily computes that

J = (z − ζ) ⊆ oL[z] where ζ = c∗(z).

We intend to study the following instance of rigid analytic τ -sheaves overAoL,π[1/π]

on A(1), in the sense of [6]. See also section (1.7).

Definition 1.10. An analytic Anderson A(1)-motive is an object

ML ∈ FMod(AoL,π[1/π])

such that coker(FML) is a finite-dimensional L-vector space and is annihilated by a

power of J. A morphism of analytic Anderson A(1)-motives is defined as a morphism

in the category FMod(AoL,π[1/π]).

Here the prefix "A(1)-" indicates that we are considering an analytic variant of

Anderson A-motives over the rigid analytic unit disc associated to our chosen oL-

valued point c ∈ C(oL); recall that an Anderson A-motive ([2], [36]) is an object

M ∈ FMod(AL) such that coker(FM) is a finite-dimensional L-vector space and is

annihilated by a power of J; a morphism of Anderson A-motives is defined as a

morphism inside FMod(AL).

Proposition 1.11. The natural functor FMod(AL) → FMod(AoL,π[1/π]) restricts

to a functor

(Anderson A-motives)→ (analytic Anderson A(1)-motives).

Proof. Let M be an Anderson A-motive. Then M̂ = M ⊗AL AoL,π[1/π] is flat over

AoL,π[1/π]. Furthermore, any exact sequence of AL-modules of the form AsL →M →

0 yields an exact sequence AoL,π[1/π]s → M̂ → 0, i.e., we may summarize that M̂

is locally free of finite rank. Similarly one verifies that the map F ⊗ id is again

injective; let C be its cokernel; clearly C is finitely presented over the L〈z〉-algebra

AoL,π[1/π], which in turn is finite over L〈z〉; if coker(F ) is annihilated by Jd, so is C

(for details cf. the proof of 1.18); in particular, we have (z− ζ)dC = 0, where ζ ∈ L

is defined in section (1.6); finally, by the Weierstraß Division Theorem for L〈z〉 (see

[9], 1.2/8), the quotient L〈z〉/(z−ζ)d is finite over L, and so C is a finite-dimensional

L-vector space. �

For the following Lemma, recall the well-known fact ([9], [28]) that the Tate

algebra L〈z〉 is a factorial Dedekind domain, i.e., a principal ideal domain ([58],

20.7).

Lemma 1.12. Let ML be an analytic Anderson A(1)-motive. Then ML is a finite

free L〈z〉-module via L〈z〉 → AoL,π[1/π].
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1 A local criterion for good reduction of analytic Anderson motives

Proof. Being a composition of exact functors, the functor · ⊗L〈z〉 ML = (· ⊗L〈z〉

AoL,π[1/π])⊗AoL,π [1/π] ML is again exact. Furthermore, ML is of finite presentation

over AoL,π[1/π], and the latter is finite over L〈z〉, so ML is also of finite presentation

over L〈z〉, and we may conclude that ML is locally free of finite rank over L〈z〉,

which implies that it is torsion-free over L〈z〉, hence free of finite rank, as L〈z〉 is a

principal ideal domain. �

Definition 1.13. Let ML be an analytic Anderson A(1)-motive. A (formal) model

of ML is an object M∈ FMod(AoL,π) such that its image along the natural functor

FMod(AoL,π)→ FMod(AoL,π[1/π]) is isomorphic to ML inside FMod(AoL,π[1/π]).

For the moment, let M be any AoL,π-module, coming equipped with a σ-semi-

linear map M→M. To M we can associate its reduction

M/πM =M⊗oL ℓ,

which is naturally a module over the Dedekind domain Aℓ. The semi-linear datum

M →M induces a canonical map of abelian groups M/πM →M/πM which is

σ̄-semi-linear; of course, the residue map M → M/πM then automatically com-

mutes with the respective semi-linear data on M and M/πM.

Note, however, that this does not induce a functor from FMod(AoL,π) to FMod(Aℓ),

since the induced F -map need not be injective. This circumstance lies at the origin

of our study of good models:

Definition 1.14. Let M be a model of an analytic Anderson A(1)-motive ML.

Then M is called a good model if

1. the induced Aℓ-linear map

σ̄∗M/πM =M/πM⊗Aℓ,σ̄ Aℓ →M/πM

is injective;

2. coker(FM) is a finite free oL-module and is annihilated by Jd, for some d ≥ 0.

Example 1.15. Let M be an Anderson A-motive with good reduction, that is,

there is a locally free AoL-moduleM of finite rank together with an AoL-linear map

F ◦ : M⊗AoL ,σ AoL →M such that there is an F -equivariant and AL-linear isomor-

phism M[1/π] ≃ M , in such a way that coker(F ◦) is a finite free oL-module and

is annihilated by a power of J (see also [41], 2.1.4); note that every such isomor-

phism gives rise to an F -equivariant embedding M →֒ M which shows that F ◦ is

automatically injective. Moreover the induced Aℓ-linear map

M/πM⊗Aℓ,σ̄ Aℓ →M/πM
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is again injective by virtue of our requirements on coker(F ◦), so that the π-adic

completionM⊗AoL AoL,π ofM gives rise to a good model for the analytic Anderson

A(1)-motive M ⊗AL AoL,π[1/π]; this is proven in 1.30 below. �

1.6 Local shtukas and the main theorem

As opposed to Drinfeld’s shtukas (also called F-sheaves in [20], [22]), which are

defined over base schemes involving the whole curve C and are therefore of global

nature, local shtukas are associated to a fixed place of the curve C; they are obtained

via formal completion (along the fiber of this fixed place) from global objects like

A-motives with good reduction, or Drinfeld shtukas; see [41], 2.1.4.

We intend to study (effective) local shtukas at the residual characteristic place ε

and commence by giving some elementary remarks regarding the fiber ε× Spec(oL)

of ε ∈ C along the projection C ⊗F oL → C. If k(ε) denotes the residue field

Aε/εAε ≃ A/ε of ε, we have a canonical closed immersion

(C ⊗F oL)×C Spec(k(ε))→ (C ⊗F oL)×C U,

where U ⊆ C stands for the affine open neighborhood C − {∞} of ε ∈ C; this

means that ε× Spec(oL) is contained in (and lies closed inside) the affine open sub-

scheme Spec(AoL) = U ⊗F oL ⊆ C ⊗F oL, and we are led to considering the fiber

V (εAoL) ⊆ Spec(AoL) of ε along U ⊗F oL → U ; the formal completion of U ⊗F oL

along this fiber is represented by the completion AoL,ε of AoL for the εAoL-adic topol-

ogy.

For example, if C = P1
F and ε = zF[z] then the ε-adic and the (ε, π)-adic com-

pletion of AoL = oL[z] coincide and are both equal to oLJzK. The following Lemma

shows that, in fact, this is also true for general C and ε.

Lemma 1.16. The canonical map AoL,ε → AoL,(ε,π) is an isomorphism.

Proof. First we remark that we have a canonical isomorphism

AoL ≃ A⊗F[z],z 7→z oL[z];

note that this is an isomorphism of oL[z]-algebras. The composition oL[z]→ AoL →

AoL,ε, mapping z to (the image of) t, is (z)-ε-adically continuous and hence induces a

map oLJzK→ AoL,ε which in turn gives rise to a canonical map A⊗F[z]oLJzK→ AoL,ε.

We claim that the latter is an isomorphism. Indeed, the tensor product A⊗F[z] oLJzK

equals the z-adic completion of the (finite) oL[z]-algebra AoL and is therefore z-

adically complete; as εm = (t) in A, the canonical map AoL → A ⊗F[z] oLJzK is

11



1 A local criterion for good reduction of analytic Anderson motives

ε-(z)-adically continuous and thus extends to give a map AoL,ε → A ⊗F[z] oLJzK

which is the desired inverse: it is trivial that AoL → AoL,ε factors via the identity

of AoL,ε, and on the other hand, it factors via AoL → A ⊗F[z] oLJzK, which in turn

factors via AoL,ε; so by the universal property of the map AoL → AoL,ε we see that

the composition AoL,ε → A⊗F[z]oLJzK→ AoL,ε necessarily equals the identity. In the

same way one argues in order to show that A⊗F[z]oLJzK→ AoL,ε → A⊗F[z]oLJzK also

equals the identity. Finally, we just remark that oLJzK also equals the (z, π)-adic

completion of oL[z] and that AoL,(t,π) equals AoL,(ε,π); so, replacing εAoL ⊆ AoL by

(ε, π) and thereby imitating the arguments given so far, we realize that the canonical

map A⊗F[z] oLJzK→ AoL,(ε,π) is an isomorphism, proving our claim. �

Definition 1.17. An (effective) local shtuka at ε over oL is an object

M̂ ∈ FMod(AoL,(ε,π))

such that coker(FM̂) is a finite free oL-module and is annihilated by a power of J.

Arguing like in the proof of 1.12, one easily verifies that via the embedding

oLJzK → AoL,(ε,π) a local shtuka M̂ gives rise to a finite free oLJzK-module. Fur-

thermore, using the isomorphism A ⊗F[z] oLJzK → AoL,(ε,π) (see the proof of 1.16),

one shows that there is a canonical isomorphism

M̂ ⊗(AoL,(ε,π)),σ AoL,(ε,π) ≃ M̂ ⊗oLJzK,σ oLJzK

(for details cf. the corresponding argument for AoL,π and oL〈z〉 on p. 18).

Let ζ ∈ oL be the image of the rational function t ∈ A under the characteristic

map c∗ : A→ oL. By choice of t we obtain that π | ζ in oL. If J ⊆ AoL denotes the

ideal generated by the elements a⊗ 1− 1⊗ c∗(a), where a ∈ A, via the embedding

ι⊗ id : oL[z]→ AoL we get (z − ζ)AoL ⊆ J.

Remark. Let M̂ be a local shtuka at ε in the sense of the above Definition, and let

C be the cokernel of F : σ∗M̂ → M̂ , say with JdC = 0. In particular, this implies

(z − ζ)dC = 0, so that applying the functor · ⊗oLJzK oLJzK[
1
z−ζ

] to

0→ σ∗M̂ → M̂ → C → 0

yields an isomorphism σ∗M̂ [ 1
z−ζ

]→ M̂ [ 1
z−ζ

] of oLJzK[
1
z−ζ

]-modules. In particular, M̂

gives rise to a local shtuka in the sense of [41], 2.1.1, over the formal (one-point)

oL-scheme Spf(oL). –

12



1.6 Local shtukas and the main theorem

The following criterion for good reduction of analytic Anderson A(1)-motives be-

comes highly plausible when looking at the commutative square

FMod(AoL,π)

��

// FMod(AoL,(ε,π))

��
FMod(AoL,π[1/π]) // FMod(AoL,(ε,π)[1/π])

and can also be regarded as a good-reduction Local-Global Principle at the charac-

teristic place. In the course of its proof we will make extensive use of the embedding

ι : F[z]→ A, as defined in 1.3, and its various descendants over oL.

Theorem 1.18. Let ML be an analytic Anderson A(1)-motive such that coker(FML)

is annihilated by Jd say. Then the following assertions are equivalent:

(i) ML admits a good model;

(ii) There is

— a local shtuka M̂ at ε such that coker(FM̂) is a finite free oL-module and

is annihilated by Jd,

— an isomorphism

ML ⊗AoL,π [1/π] AoL,(ε,π)[1/π] ≃ M̂ [1/π]

inside FMod(AoL,(ε,π)[1/π]).

Proof. In order to show that (ii) implies (i), let

f : ML ⊗ AoL,(ε,π)[1/π]→ M̂ [1/π]

be an isomorphism of AoL,(ε,π)[1/π]-modules as displayed in the assertion of the

Theorem. We have canonical F -equivariant AoL,π-linear maps

i : ML →ML ⊗AoL,π [1/π] AoL,(ε,π)[1/π], j : M̂ → M̂ [1/π]

where i (resp., j) is injective since ML (resp., M̂) is flat. Let

M = im(i) ∩ f−1(im(j)).

We claim thatM gives rise to a good model ofML. First we remark that, by virtue of

the linearity of f , the AoL,π-module structure of ML⊗AoL,π [1/π]AoL,(ε,π)[1/π] restricts

to an AoL,π-module structure of M. Furthermore, by the F -equivariance of f and

i, the semi-linear map F sl
ML
⊗ σ restricts to a map of abelian groups F sl

M : M→M

which of course is semi-linear with respect to σ : AoL,π → AoL,π and makes the

AoL,π-linear inclusion M →֒ ML F -equivariant (this embedding already shows that

13



1 A local criterion for good reduction of analytic Anderson motives

M is a torsion-free AoL,π-module). The latter map gives rise to an AoL,π[1/π]-linear

embedding M[1/π] →֒ ML[1/π] ≃ ML, of which we claim that it is, in fact, an

isomorphism. Indeed, let m ∈ML; there is an s ≥ 0 such that πsf(m⊗ 1) ∈ im(j),

i.e., πsm⊗ 1 ∈M, and it becomes clear that (πsm⊗ 1)/πs is mapped to m.

– In the commutative diagram

σ∗ML
σ∗i //

��

σ∗(ML ⊗ AoL,(ε,π)[1/π])
σ∗f //

��

σ∗M̂ [1/π]

��

ML i
// ML ⊗ AoL,(ε,π)[1/π]

f
// M̂ [1/π]

where σ stands for the Frobenius lift of AoL,π, we claim that σ∗M = σ∗im(i) ∩

(σ∗f)−1(σ∗im(j)). In order to see this, we consider the diagram with exact rows

0 // im(i) // ML ⊗ AoL,(ε,π)[1/π]
pr1 //

f
��

coker(i) // 0

0 // im(j) // M̂ [1/π]
pr2 // coker(j) // 0

and remark that M is characterized by the short exact sequence

0→M→ML ⊗ AoL,(ε,π)[1/π]
(

pr1
pr2◦f

)

−−−−→ coker(i)⊕ coker(j).

Now the functor · ⊗(AoL,π),σ AoL,π respects kernels and finite direct sums, so that

we obtain a short exact sequence

0→ σ∗M→ σ∗(ML ⊗ AoL,(ε,π)[1/π])→ σ∗coker(i)⊕ σ∗coker(j)

where the rightmost arrow is given by (σ∗pr1, σ
∗pr2 ◦σ

∗f). So finally, by applying

σ∗(·) to the above diagram, we get the desired equality.

– Applying the exact functor · ⊗(AoL,π),σ AoL,π to the embedding M →֒ ML gives a

commutative diagram

M⊗(AoL,π),σ AoL,π //

FM

��

ML ⊗(AoL,π),σ AoL,π

FML
��

M // ML

where the left-hand vertical map FM : σ∗M→M has to be injective because the

other three appearing maps are; here it just remains to remark that ML⊗(AoL,π),σ

AoL,π ≃ML ⊗AoL,π [1/π],σ AoL,π[1/π].

14



1.6 Local shtukas and the main theorem

– Next we claim that Jdcoker(FM) = 0, where J = (a⊗1−1⊗ c∗(a), a ∈ A) ⊆ AoL ,

and where we are provided that both coker(FML) and coker(FM̂) are annihilated by

Jd. Let x =
∑
ν ανmν⊗1 ∈ JdM where αν ∈ Jd. By assumption there is a (unique)

y ∈ σ∗ML such that
∑
ν ανmν = FML(y); we have to show that, regarding y as an

element of σ∗im(i) ≃ im(σ∗i), we have y ∈ σ∗M = σ∗im(i)∩(σ∗f)−1(σ∗im(j)). So

it remains to see that (σ∗f)(y) ∈ im(σ∗j). Indeed, inside M̂ [1/π] we have f(x) =

f(F (y)) = F ((σ∗f)(y)); on the other hand, the linearity of f and j gives that

f(x) =
∑
ν ανf(mν⊗1) = j(y′) for some y′ ∈ JdM̂ ⊆ im(FM̂), say y′ = FM̂(y′′) for

a y′′ ∈ σ∗M̂ , i.e., f(x) = F ((σ∗j)(y′′)); so finally, since F : σ∗M̂ [1/π] → M̂ [1/π]

is injective, we obtain that (σ∗f)(y) = (σ∗j)(y′′), as desired.

– The given AoL,(ε,π)[1/π]-linear isomorphism f : ML ⊗ AoL,(ε,π)[1/π] → M̂ [1/π]

gives rise to an oLJzK[1/π]-linear isomorphism

f̃ : ML ⊗L〈z〉 oLJzK[1/π]→ M̂ ⊗oLJzK oLJzK[1/π],

for we have

ML ⊗L〈z〉 oLJzK[1/π] ≃ ML ⊗AoL,π [1/π] (AoL,π ⊗oL〈z〉 oLJzK)[1/π]

≃ ML ⊗AoL,π [1/π] AoL,(ε,π)[1/π],

M̂ ⊗oLJzK oLJzK[1/π] ≃ M̂ ⊗AoL,(ε,π)
(AoL,(ε,π) ⊗oLJzK oLJzK[1/π])

≃ M̂ ⊗AoL,(ε,π)
AoL,(ε,π)[1/π].

From the corresponding property of the isomorphism f and the F -equivariance

of oL[z]→ AoL we derive that also f̃ is F -equivariant. Furthermore, analogous to

what we have seen before, we have natural maps

ĩ : ML →ML ⊗L〈z〉 oLJzK[1/π], j̃ : M̂ → M̂ ⊗oLJzK oLJzK[1/π]

where ĩ (resp., j̃) is L〈z〉-linear (resp., oLJzK-linear) and injective. Let

M̃ = im(̃i) ∩ f̃−1(im(j̃)).

Then the isomorphism displayed above restricts to an isomorphism

M̃
≃
→M

which is oL〈z〉-linear; hereM becomes an oL〈z〉-module via the embedding oL〈z〉 →

AoL,π; in particular, we obtain an ℓ[z]-linear isomorphism M̃/πM̃ ≃M/πM.

– In the following step we are going to show that M̃ is finitely presented over oL〈z〉,

which implies that M̃/πM̃ will be finitely presented over ℓ[z]; since we have an

oL〈z〉-linear isomorphism M ≃ M̃, it also follows that M is finitely presented
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1 A local criterion for good reduction of analytic Anderson motives

over oL〈z〉; in particular M will be finitely presented over AoL,π, and finally we

may conclude that the reduction M/πM will be finitely presented over ℓ[z] and

over Aℓ.

Let (e1, ..., em) be an L〈z〉-basis of ML; see 1.12; furthermore, let (d1, ..., dn) be

a basis for M̂ over oLJzK. Note that our choice of basis for ML gives rise to an

isomorphism ML⊗L〈z〉oLJzK[1/π] ≃ oLJzK[1/π]m; for every ν = 1, ..., n we consider

f̃−1(dν) and regard it as an element of the right-hand side of this isomorphism.

We choose N ≥ 0 big enough, such that f̃−1(πNdν) ∈ oLJzK
m for all ν, say

f̃−1(πNdν) = (ρν,1, ..., ρν,m)

where ρν,µ ∈ oLJzK. Now let x ∈ M̃. Via f̃ we obtain, say, f̃(x) =
∑
ν λνdν in M̂ ,

with suitable λν ∈ oLJzK; consequently f̃(πNx) =
∑
ν λν(π

Ndν), so that the image

of πNx in oLJzK
m corresponds to the family of scalars

(
∑

ν

λνρν,1, ...,
∑

ν

λνρν,m) ∈ oLJzK
m.

Now, since the embedding ĩ is L〈z〉-linear and since the images of the eµ consti-

tute an oLJzK[1/π]-basis of ML ⊗L〈z〉 oLJzK[1/π], writing πNx ∈ ML as a linear

combination over L〈z〉 has to yield πNx =
∑
µ(
∑
ν λνρν,µ)eµ, i.e., the appearing

scalars αµ =
∑
ν λνρν,µ have, in fact, to be elements of oL〈z〉 = L〈z〉 ∩ oLJzK.

Inside ML we may write x = π−NπNx =
∑
µ αµπ

−Neµ, so that we may conclude

M̃ ⊆
∑

µ

oL〈z〉π
−Neµ.

Finally, being a submodule of a finitely generated module over a noetherian ring,

M̃ has to be of finite presentation.

– We claim that M̃/πM̃ is torsion-free over ℓ[z]; this will imply that M̃/πM̃ is

finite free over ℓ[z], since it is already of finite presentation. Furthermore, it fol-

lows that M/πM is torsion-free and hence free over ℓ[z].

Let x̃ ∈ M̃, and let λ =
∑
s λsz

s ∈ oL〈z〉 be such that π ∤ λ and λx̃ ∈ πM̃, say

λx̃ = πỹ for some ỹ ∈ M̃. In order to prove that M̃/πM̃ is torsion-free we must

show that x̃ ∈ πM̃. First suppose that λ ∈ oL〈z〉 ∩ oLJzK
×. We consider π−1x̃ ∈

ML; in fact, this element lies in M̃, since we have f̃(π−1x̃) = π−1λ−1f̃(λx̃) =

λ−1f̃(ỹ) ∈ M̂ ; consequently x̃ = π(π−1x̃) ∈ πM̃. Now suppose that π | λ0; this

means we find λ′ ∈ oL[z] and λ′′ ∈ oL〈z〉 ∩ oLJzK
× such that λ = πλ′ + zNλ′′ for

some N ≥ 1; we have πỹ = λx̃ = πλ′x̃ + zNλ′′x̃; suppose we have already shown
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1.6 Local shtukas and the main theorem

that znx̃ ∈ πM̃ implies x̃ ∈ πM̃ for any n ≥ 0; we claim that zN x̃ ∈ πM̃ which,

by assumption, will imply that x̃ ∈ πM̃; indeed, we have

f̃(π−1zN x̃) = λ′′−1π−1f̃(λ′′zN x̃) = λ′′−1π−1f̃(πỹ − πλ′x̃) = λ′′−1f̃(ỹ − λ′x̃) ∈ M̂,

which shows that π−1zN x̃ ∈ M̃, i.e., zN x̃ = π(π−1zN x̃) ∈ πM̃. So it remains to

show that znx̃ ∈ πM̃ implies x̃ ∈ πM̃ for any n ≥ 0. By induction, it suffices to

consider the case n = 1. So suppose zx̃ ∈ πM̃, say zx̃ = πỹ; let f̃(x̃) =
∑
ν βνdν ,

where (d1, ..., dn) is the finite oLJzK-basis of M̂ fixed before. The relation zx̃ = πỹ

implies that π | zβν for every index ν, so that π | βν for every ν. Arguing similarly

as before, one now immediately shows that π−1x̃ ∈ML necessarily maps via f̃ to

an element of M̂ , i.e., x̃ ∈ πM̃.

– As an auxiliary step in order to show that M is locally free of finite rank over

AoL,π, we claim that the reduction M/πM is locally free of finite rank over Aℓ.

Indeed, now that we know thatM/πM is of finite presentation over Aℓ, it suffices

to prove flatness over Aℓ. Since Aℓ is a Dedekind domain, by [13], VII.10.22, we

only need to show that M/πM is torsion-free over Aℓ (hence projective, hence

flat).

Since M/πM is free over ℓ[z], it is flat and we get an embedding M/πM →

M/πM⊗ℓ[z]ℓ(z); there is a canonical isomorphismM/πM⊗ℓ[z]ℓ(z) ≃M/πM⊗Aℓ
(Aℓ ⊗ℓ[z] ℓ(z)), and we claim that Aℓ ⊗ℓ[z] ℓ(z) ≃ Frac(Aℓ); indeed, S = ℓ[z]− {0}

gives rise to a multiplicative subset of Aℓ not containing zero, and Aℓ ⊗ℓ[z] ℓ(z) ≃

S−1Aℓ; furthermore, the embedding ℓ(z)→ Aℓ⊗ℓ[z]ℓ(z) is finite, and ℓ(z) is a field,

so Aℓ⊗ℓ[z] ℓ(z) also is a field; consequently the canonical map Aℓ → S−1Aℓ factors

via Frac(Aℓ), and it is directly seen that the induced map Frac(Aℓ) → S−1Aℓ is,

in fact, an isomorphism.

Let α ∈ Aℓ − {0} and x ∈ M/πM be such that αx = 0; by regarding αx as an

element of M/πM⊗Aℓ Frac(Aℓ), we get x = α−1αx = 0, as desired.

– Relying on the preceding step, we claim thatM is locally free of finite rank over

AoL,π where again it only remains to show thatM is flat over AoL,π.

First we remark that, since AoL,π is π-adically complete and separated, we have

πAoL,π ⊆ j(AoL,π), and the AoL,π-module M is finitely generated, so that M is

π-adically ideally Hausdorff in the sense of [13], III.5.1. In the preceding step

we have shown that M/πM is flat over Aℓ ≃ AoL,π/πAoL,π, and we know that

M has no π-torsion, so that the canonical map πAoL,π ⊗AoL,π M → πM is an

isomorphism; therefore, by Bourbaki’s Flatness Criterion [13], III.5.2.1(iii), we

may conclude that M is indeed flat over AoL,π.

– Our next aim is to show that the kernel V ofM/πM⊗Aℓ,σ̄Aℓ →M/πM is trivial,
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1 A local criterion for good reduction of analytic Anderson motives

i.e., that M is good in the sense of 1.14. Since we have a canonical isomorphism

M/πM⊗ℓ[z],σ̄ ℓ[z] ≃M/πM⊗Aℓ,σ̄ Aℓ

and since the abelian subgroup V of the right-hand side corresponds to the kernel

V ′ of M/πM⊗ℓ[z],σ̄ ℓ[z]→M/πM, is suffices to show that V ′ is trivial.

We have already shown that JdM⊆ im(FM); in particular, we have the following

chain of oL〈z〉-modules

(z − ζ)dM⊆ im(FM) ⊆M;

the element ζ ∈ oL is zero mod π, and we obtain

zd(M/πM) ⊆ im(M/πM⊗ℓ[z],σ̄ ℓ[z]→M/πM) ⊆M/πM;

we know thatM/πM is finite free over ℓ[z]; so 1.19 below shows that the middle

term W ′ in the latter chain has full rank insideM/πM. Finally, taking ranks in

the (split) short exact sequence of finite free ℓ[z]-modules

0→ V ′ →M/πM⊗ℓ[z],σ̄ ℓ[z]→ W ′ → 0

accomplishes the proof that V ′ indeed is trivial.

– As we will now prove, the module M is finite free over oL〈z〉. To see this, let

(m1, ...,ms) be a lifting in M of a basis of M/πM. Let ϕ : oL〈z〉
s →M be the

oL〈z〉-linear map which sends the k-th vector of the canonical basis of oL〈z〉
s to

mk. We claim that ϕ is an isomorphism. Indeed, by the choice of the mk, the

quotient coker(ϕ)/πcoker(ϕ) is trivial, and Lemma 1.8 shows that π ∈ j(oL〈z〉);

now Nakayama’s Lemma ([58], 2.2) shows that the finitely generated oL〈z〉-module

coker(ϕ) is trivial; finally, applying the Snake Lemma to the commutative diagram

with short exact rows

0 // ker(ϕ) //

π

��

oL〈z〉
s //

π

��

M //

π

��

0

0 // ker(ϕ) // oL〈z〉
s //M // 0

shows that ker(ϕ)/π ker(ϕ) = 0, so that, again by Nakayama’s Lemma, also ker(ϕ)

is trivial.

– It remains to prove that the cokernel C ofM⊗(AoL,π),σ AoL,π →M is a finite free

oL-module.

In a first step we show that C is finitely presented over oL. Since π ∈ j(AoL,π)

and since C, being a quotient ofM, is finitely presented over the noetherian ring
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1.6 Local shtukas and the main theorem

AoL,π, we conclude by Krull’s Theorem ([58], 8.10) that C is π-adically separated.

By [58], 8.4, it now suffices to show that C/πC is a finite-dimensional ℓ-vector

space (because any lift of an ℓ-basis of C/πC will then be a system of generators

for C over oL); indeed, from what we have seen so far, C/πC is finitely presented

over AoL,π and hence over Aℓ. As ℓ[z] → Aℓ is finite, it follows that C/πC is

of finite presentation over ℓ[z]. Moreover, from (z − ζ)dC = 0 it follows that

zd(C/πC) = 0, i.e., C/πC is finitely presented over ℓ[z]/zd; but the latter is a

finite-dimensional ℓ-vector space, and so we may conclude that C/πC is indeed

finite-dimensional over the residue field ℓ.

In a second step we show that C is a flat oL-module, which will imply that C

is finite free over the local ring oL. Since we have just seen that C/πC is free

and hence flat over ℓ, we only need to prove that C has trivial π-torsion; then

Bourbaki’s Flatness Criterion [13], III.5.2.1(iii), will yield the desired result.

By imitating the argument given in the proof of 1.16 one shows that the canonical

map A⊗F[z] oL〈z〉 → AoL,π is an isomorphism of oL〈z〉-algebras, and the canonical

isomorphism (id, σ) : oL〈z〉 ⊗oL〈z〉,σ oL〈z〉 → oL〈z〉, f ⊗ g 7→ σ(f)g, gives rise to

the composition

AoL,π ⊗oL〈z〉,σ oL〈z〉 ≃ (A⊗F[z] oL〈z〉)⊗oL〈z〉,σ oL〈z〉

≃ A⊗F[z] (oL〈z〉 ⊗oL〈z〉,σ oL〈z〉)

≃ A⊗F[z] oL〈z〉

≃ AoL,π

which induces an isomorphism of AoL,π-modules AoL,π ⊗oL〈z〉,σ oL〈z〉 ≃ σ∗AoL,π,

showing that M ⊗oL〈z〉,σ oL〈z〉 ≃ M ⊗(AoL,π),σ AoL,π. Therefore it suffices to

consider the cokernel C ′ of the map M⊗oL〈z〉,σ oL〈z〉 → M and to show that C ′

has no π-torsion.

So let πx ∈ im(M⊗oL〈z〉,σ oL〈z〉 → M), say there is an element y ∈ M⊗oL〈z〉,σ

oL〈z〉 which is mapped to πx; note that y is uniquely determined by πx. There

is a canonical epimorphism ℓ[z]⊗oL〈z〉,σ oL〈z〉 → ℓ[z] giving rise to a commutative

diagram

M⊗oL〈z〉,σ oL〈z〉 //

��

M

��
M/πM⊗ℓ[z],σ̄ ℓ[z] //M/πM

where the horizontal maps are injective and the vertical maps are surjective, and

where the left-hand projection is obtained via the composition of natural maps

M⊗oL〈z〉,σ oL〈z〉 →M/πM⊗oL〈z〉,σ oL〈z〉 →M/πM⊗ℓ[z],σ̄ ℓ[z].

In the upper row of the above diagram both modules are free of the same rank

over oL〈z〉, while in the bottom row both modules are free of the same rank over
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1 A local criterion for good reduction of analytic Anderson motives

ℓ[z].

Since πx goes to zero under the right-hand projection, it follows that y goes to

zero under the left-hand projection. Let (m1, ...,ms) be a lift inM of an ℓ[z]-basis

(m̄1, ..., m̄s) ofM/πM; as we have seen before, every such lift is an oL〈z〉-basis of

M; writing y in terms of the basis (m1⊗1, ...,ms⊗1) yields y ∈ π(M⊗oL〈z〉,σoL〈z〉),

and since M is a torsion-free oL〈z〉-module, we are done. Hence we have shown

that M gives rise to a good model for ML.

Conversely, in order to show that (i) implies (ii), suppose thatM is a good model

of ML. We define

M̂ =M⊗AoL,π AoL,(ε,π),

i.e., M̂ equals the completion ofM for the (ε, π)AoL,π-adic topology. It is clear that

every fixed F -equivariant isomorphism of AoL,π[1/π]-modules M[1/π] ≃ ML gives

rise to a natural F -equivariant AoL,(ε,π)[1/π]-linear isomorphism

ML ⊗AoL,π [1/π] AoL,(ε,π)[1/π] ≃ M̂[1/π].

We claim that M̂ is a local shtuka. Indeed, by standard base change arguments, M̂

is again locally free of finite rank; furthermore, since the completion map AoL,π →

AoL,(ε,π) is Frobenius-equivariant and flat, we indeed obtain an injective map

M̂ ⊗(AoL,(ε,π)),σ AoL,(ε,π) → M̂.

Let C ′ be its cokernel, and let C = coker(FM), i.e.,

C ′ ≃ C ⊗AoL,π AoL,(ε,π).

First we claim that C ′ is annihilated by Jd, i.e., that JdM̂ lies in the image of the

latter map, which is FM ⊗ id. So let x =
∑
ν λνxν ∈ JdM̂, where λν ∈ Jd and

xν =
∑
µ yµν ⊗ aµν ∈ M̂ =M⊗ AoL,(ε,π); this gives

x =
∑

µ,ν

λνyµν ⊗ aµν =
∑

µ,ν

FM(y′µν)⊗ aµν = (FM ⊗ id)(
∑

µ,ν

y′µν ⊗ aµν).

In particular, note that C ′ is annihilated by (z − ζ)d ⊆ oL[z]. It remains to show

that C ′ is a finite free oL-module. However, this is clear, for we have

C = C/(z − ζ)dC

≃ C ⊗AoL,π AoL,π/(z − ζ)
d

≃ C ⊗AoL,π AoL,(ε,π)/(z − ζ)
d

≃ (C ⊗AoL,π AoL,(ε,π))⊗AoL,(ε,π)
AoL,(ε,π)/(z − ζ)

d

≃ C ′ ⊗AoL,(ε,π)
AoL,(ε,π)/(z − ζ)

d

≃ C ′/(z − ζ)dC ′

= C ′
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1.6 Local shtukas and the main theorem

by virtue of Lemma 1.20 below. In particular, this argument shows that the cokernel

C is not affected by (ε, π)-adic completion, i.e., it is (ε, π)-adically complete. �

Lemma 1.19. Let R be a principal ideal domain, and let M be a finite free R-

module; furthermore, let a ∈ R − {0}, and let U ⊆ M be a submodule such that

aM ⊆ U . Then the rank of U equals the rank of M .

Proof. Let d be the rank of M . It suffices to consider the case U = aM : regarding

the chain aM ⊆ U ⊆ M , U is finite free inside M while aM is finite free inside

U , i.e., rk(aM) ≤ rk(U) ≤ d. But given a basis (m1, ...,md) of M , the system

(am1, ..., amd) is free and generates aM . �

Lemma 1.20. Let e ≥ 1. There are natural isomorphisms

AoL/(z − ζ)
e ≃ AoL,π/(z − ζ)

e ≃ AoL,(ε,π)/(z − ζ)
e.

Proof. First of all, we claim that the canonical map α : oL[z]/(z− ζ)e → oL〈z〉/(z−

ζ)e is an isomorphism; in order to see this, we consider some f ∈ oL〈z〉. By the

Weierstraß Division Theorem for the Tate algebra L〈z〉 ([9], 1.2/8) there is a unique

a ∈ L〈z〉 as well as a unique b ∈ L[z] of degree < e such that f = a(z − ζ)e + b;

moreover we have 1 ≥ ||f || = max(||a||, ||b||), where || · || denotes the Gauss norm

of L〈z〉, i.e., a and b have their coefficients in oL. In particular, this shows that

α is surjective. Now let g ∈ oL[z] be such that there is some a ∈ oL〈z〉 satisfying

g = a(z − ζ)e in oL〈z〉; note that necessarily a is uniquely determined by g. In

order to show that α is injective, we have to prove that a lies in oL[z]. Indeed, by

the Division Theorem for L[z] there is a uniquely determined a′ ∈ L[z] such that

g = a′(z−ζ)e. Therefore, by uniqueness, a has to lie in oL[z]. This accomplishes the

proof that α is an isomorphism. Taking the Weierstraß Division Theorem for oLJzK

([13], VII.3.8.5) into account, an analogous argument shows that also the canonical

map β : oL〈z〉/(z − ζ)
e → oLJzK/(z − ζ)

e is an isomorphism, and at the same time

one realizes that the three oL-algebras involved in the composition

oL[z]/(z − ζ)e
α
→ oL〈z〉/(z − ζ)

e β
→ oLJzK/(z − ζ)

e

are free over oL of the same rank e. Finally, applying the functor · ⊗oL[z] AoL to this

composition completes the proof. �

Corollary 1.21. Let ML be an analytic Anderson A(1)-motive. Then there is a

(1:1)-correspondence

{good models of ML}/∼
(1:1)
←→





pairs (M̂, f) consisting of

• a local shtuka M̂ at ε,

• an isomorphism in FMod(AoL,(ε,π)[1/π])

f : ML ⊗ AoL,(ε,π)[1/π] ≃ M̂ [1/π]





/∼
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1 A local criterion for good reduction of analytic Anderson motives

where (·)/∼ indicates taking isomorphism classes, and where on the right-hand side

an isomorphism of pairs (M̂, f)
≃
→ (N̂ , g) is defined to be an isomorphism of local

shtukas M̂ → N̂ which in the obvious manner is compatible with f and g. In

particular, if ML admits a good model M, one obtains equalities

rkL〈z〉(ML) = rkoL〈z〉(M) = rkoLJzK(M̂)

where M̂ is a corresponding local shtuka at ε.

Proof. Suppose thatM is a good model ofML. In the proof of 1.18 we have seen that

its completion M̂ =M⊗AoL,πAoL,(ε,π) is a local shtuka at ε; letM[1/π] ≃ML be an

F -equivariant isomorphism of AoL,π[1/π]-modules; it induces a natural isomorphism

f : (M⊗AoL,π AoL,π[1/π])⊗AoL,π [1/π] AoL,(ε,π)[1/π]
≃
→ M̂⊗AoL,(ε,π)

AoL,(ε,π)[1/π]

which is F -equivariant, and which is immediately seen to verify

M =M[1/π] ∩ f−1(M̂).

Indeed, the isomorphism f clearly maps M ⊆M[1/π] to M̂. Conversely, consider

an element m/πs ∈ M[1/π]; the element (m ⊗ 1/πs) ⊗ 1 of the domain of f is

mapped to m/πs, where m is viewed via the embedding M →֒ M̂ as an element

of the completion M̂; note that M is flat over AoL,π, so that it can be identified

with its image inside M̂; as AoL,(ε,π) has no π-torsion, we see that, by hypothesis,

we may indeed write m = πsm′ for some m′ ∈M. Therefore we may conclude that

the construction given in 1.18 retrieves M from the local shtuka M̂.

It remains to show that, given a local shtuka M̂ together with an isomorphism

f : ML ⊗AoL,π [1/π] AoL,(ε,π)[1/π] ≃ M̂ [1/π], the (ε, π)AoL,π-adic completion of the

good modelM = ML∩ f
−1(M̂) gained in the above construction gives back M̂ . By

construction of M, the map f restricts to an embedding M →֒ M̂ , which in turn

induces an F -equivariant and AoL,(ε,π)-linear map

ψ : M⊗AoL,π AoL,(ε,π) → M̂.

Our aim is to show that the map ψ is, in fact, an isomorphism. We have a canonical

isomorphismM⊗AoL,π AoL,(ε,π) ≃M⊗oL〈z〉 oLJzK, and we know thatM is finite free

over oL〈z〉. We claim that

rkoLJzK(M⊗oL〈z〉 oLJzK) = rkoLJzK(M̂).

Indeed, in the proof of 1.18 we have seen that the given isomorphism f is mirrored

by an oLJzK[1/π]-linear isomorphism

ML ⊗L〈z〉 oLJzK[1/π] ≃ M̂ ⊗oLJzK oLJzK[1/π],
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1.6 Local shtukas and the main theorem

showing that rkL〈z〉(ML) = rkoLJzK(M̂); on the other hand, we haveM⊗oL〈z〉L〈z〉 ≃

ML, i.e., rkoL〈z〉(M) = rkL〈z〉(ML). In particular, ψ is a map between finite-free

oLJzK-modules of the same rank s. We fix an oLJzK-basis B (resp., C) of M⊗oL〈z〉

oLJzK (resp., of M̂) and let A = C[ψ]B ∈ oLJzK
s×s be the matrix which describes ψ

with respect to B and C; likewise, we let

T = B[FM⊗oL〈z〉oLJzK]σ∗B, T′ = C[FM̂ ]σ∗C,

so that AT = T′σ(A) by virtue of the F -equivariance of ψ. In order to see that

ψ is an isomorphism, we need to show that det(A) is a unit in oLJzK. To begin

with, an elementary application of the Weierstraß Division Theorem for oLJzK ([13],

VII.3.8.5) shows that the kernel of the epimorphism oLJzK→ oL, z 7→ ζ, is generated

by z−ζ, so that the latter is a prime element of oLJzK; furthermore, recall that oLJzK,

being a regular local ring, is factorial ([58], 20.3). We know that M⊗oL〈z〉 oLJzK is

a local shtuka, so that FM⊗oL〈z〉oLJzK becomes an isomorphism after inverting z − ζ

which means that det(T)−1 is a unit of oLJzK[
1
z−ζ

]; say we have a relation (z− ζ)e =

det(T)u in oLJzK, for some e ≥ 0 and some u ∈ oLJzK; by a comparison of powers of

z − ζ, we may assume that u is not divided by z − ζ; in this equation there is only

one prime element of oLJzK occuring on both sides, which, by factoriality, implies

that u has to be a unit in oLJzK; let (z − ζ)e
′

= det(T′)u′ be the corresponding

relation for the local shtuka M̂ , with a unit u′ ∈ oLJzK
× and some suitable e′ ≥ 0.

Since M⊗oL〈z〉 oLJzK→ M̂ becomes an isomorphism after inverting π, we see that

det(A) ∈ oLJzK[1/π]×; note that the natural reduction-mod-z map oLJzK → oL,

h 7→ h(0), induces an epimorphism of abelian groups oLJzK[
1
π
]× → L×, so that (the

absolute term of) det(A) gives rise to an element α of L×. By virtue of the relations

derived above, the equation det(A) det(T) = det(T′)σ(det(A)) yields

det(A)u−1(z − ζ)e = u′−1(z − ζ)e
′

σ(det(A))

which modulo z gives αq−1 = u′(0)
u(0)

(−ζ)e−e
′
in L×. Suppose for a moment that e = e′;

in this case it follows at once that α is a unit in oL, so that det(A) is a unit in oLJzK.

Therefore it remains to verify that our assumption e = e′ is justified. This can be

seen as follows: The reduction-mod-π map oLJzK → ℓJzK is an epimorphism with

kernel πoLJzK, and via applying the functor ·⊗oLJzKℓJzK to FM̂ : σ∗M̂ → M̂ we obtain

a commutative diagram

σ∗M̂ = M̂ ⊗oLJzK,σ oLJzK //

��

M̂

��

σ̄∗M̂/πM̂ = M̂/πM̂ ⊗ℓJzK,σ̄ ℓJzK // M̂/πM̂

where in the upper row (resp., the bottom row) both modules are finite free of the

same rank over oLJzK (resp., over ℓJzK) and the arrow is given by FM̂ (resp., by
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1 A local criterion for good reduction of analytic Anderson motives

F̄ = FM̂ ⊗ idℓJzK). The reduced matrix T′ ∈ ℓJzKs×s describes the map F̄ with

respect to the ℓJzK-bases σ∗C = σ̄∗C̄ of σ̄∗M̂/πM̂ and C̄ of M̂/πM̂ respectively, and

from what we have seen before, we derive the relation det(T′)u′ = ze
′
, i.e.,

e′ = ordz(det(T′)),

the latter being true since u′ ∈ ℓJzK×; in particular we have det(T′) ∈ ℓJzK − {0}.

A similar observation for the local shtuka M⊗oL〈z〉 oLJzK instead of M̂ shows that

e = ordz(det(T)). Let

C = coker(FM⊗oL〈z〉oLJzK), C ′ = coker(FM̂).

Multiplication with the matrix T′ gives rise to a finite presentation

ℓJzKs → ℓJzKs → C ′/πC ′ → 0.

Taking determinants in an equation of the form S1T′S2 = Diag(α1, ..., αd, 0, 0, ..., 0),

where S1,S2 ∈ Gls(ℓJzK) are suitable matrices such that α1, ..., αd ∈ ℓJzK− {0} are

the elementary divisors of T′ (see [12], VII.4.5.1), yields that necessarily d = s, so

that C ′/πC ′ is a torsion ℓJzK-module and

C ′/πC ′ ≃ ℓJzK/α1ℓJzK⊕ ...⊕ ℓJzK/αsℓJzK ≃ ℓn1 ⊕ ...⊕ ℓns

where nj = ordz(αj) and
∑
j nj = e′, i.e.,

e′ = ordz(det(T′)) = rkℓ(C
′/πC ′) = rkoL(C ′),

the latter equation being valid since C ′/πC ′ ≃ C ′⊗oLJzK ℓJzK. Finally, imitating this

argument for the local shtuka M⊗oL〈z〉 oLJzK yields that

e = ordz(det(T)) = rkℓ(C/πC) = rkoL(C).

So it remains to show that rkoL(C) = rkoL(C ′). Indeed, we know that ψ : M⊗oL〈z〉

oLJzK→ M̂ gives back f in the generic fiber, which means that ψ is an isomorphism

after inverting π; therefore, inverting π in the commutative diagram with exact rows

0 // σ∗(M⊗oL〈z〉 oLJzK) //

σ∗ψ

��

M⊗oL〈z〉 oLJzK //

ψ

��

C //

��

0

0 // σ∗M̂ // M̂ // C ′ // 0

exhibits (σ∗ψ)[1/π] = σ∗(ψ[1/π]) and ψ[1/π] as oLJzK[1/π]-linear isomorphisms, so

that the Snake Lemma yields C ′[1/π] ≃ C[1/π], and we obtain

rkoL(C ′) = dimL(C ′[1/π]) = dimL(C[1/π]) = rkoL(C),

as desired. �
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1.7 Algebraic, formal, and analytic τ -sheaves

1.7 Algebraic, formal, and analytic τ-sheaves

LetX denote the oL-scheme (C−{∞})⊗FoL = Spec(AoL); its generic fiberD(π) ⊆ X

is well-known to be the open affine part corresponding to the L-algebra AL. As men-

tioned before (see (1.5)), completing X along its special fiber V (π) yields the affine

formal oL-scheme X = Spf(AoL,π), which in turn gives rise to the affinoid L-space

A(1) = Xrig = Sp(AoL,π[1/π]). The Frobenius lift on AoL (resp., AL; resp., AoL,π;

resp., AoL,π[1/π]) gives rise to an endomorphism of X (resp., D(π); resp., X; resp.,

Xrig) again denoted by σ.

For every • ∈ {X,D(π),X,Xrig} we define the category τSh(•) of •-τ -sheaves as

follows:

The objects of τSh(•) are pairs (G, F ) where G is a sheaf of O•-modules which is

locally free of finite rank (in the sense suitable for the choice of •), together with

a morphism of O•-modules F = FG : σ∗G → G with trivial kernel (see also the re-

marks below); in τSh(•) a morphism of pairs (G, FG) → (G ′, FG′) is defined to be a

morphism of O•-modules G → G ′ which is compatible with FG and FG′ .

There is a commutative diagram of categories and functors

FMod(AoL)
Γ(X,G)←[G

M 7→M∼ //

��

||xxxxxxxxxxxxxxxxxxxxxx
τSh(X)

·|D(π)

��

���
�

�
�

�
�

�
�

�
�

FMod(AL)
Γ(D(π),G)←[G

M 7→M∼ //

||yyyyyyyyyyyyyyyyyyyyyy
τSh(D(π))

���
�

�
�

�
�

�
�

�
�

FMod(AoL,π)
Γ(X,G)←[G

M 7→M∆
//

��

τSh(X)

���
�

�

FMod(AoL,π[1/π])
·⊗AoL,π [1/π]OXrig // τSh(Xrig)

on which we give the following remarks:

— In the upper, algebraic part of this diagram, it is well-known that the horizontal

arrows are well-defined and moreover are equivalences of categories, and that

the vertical arrows are faithful; see [EGA I(n)], I.1.3. Summarizing this part

of the diagram we may say that algebraic τ -sheaves on X (resp., D(π)) are

mirrored by Frobenius modules over AoL (resp., AL) in the displayed manner;

the involved objects were studied in [30].

— By [EGA I(n)], I.10.10.8 and 0.7.2.5, the assignment M 7→ M∆ sets up an

(exact) equivalence between the category of finite projective AoL,π-modules
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1 A local criterion for good reduction of analytic Anderson motives

and the category of locally free OX-modules of finite rank, and by [EGA I(n)],

I.10.10.5, this equivalence restricts to FMod(AoL,π) ≃ τSh(X).

— Let us briefly explain why the functor FMod(AoL,π[1/π])→ τSh(Xrig) is well-

defined: By Lemma 1.22(i) below, the assignment

M 7→M ⊗AoL,π [1/π] OXrig

maps finite projective AoL,π[1/π]-modules to locally free OXrig-modules of finite

rank, and it is well-known ([10], 9.4.2/2) that it is exact and fully faithful; fi-

nally, by 1.22(ii), it indeed restricts to a functor on Frobenius modules; as such,

it is again fully faithful, and by Kiehl’s Theorem ([10], 9.4.3/3) in combination

with 1.22, it is essentially surjective, i.e., gives an equivalence of categories.

— The (dashed) functor τSh(X)→ τSh(X) is obtained via

G 7→ (Γ(X,G)⊗AoL AoL,π)∆,

and similarly for τSh(D(π))→ τSh(Xrig). By construction, these functors are

faithful.

— The remaining (dashed) functor τSh(X) → τSh(Xrig) is obtained via the as-

signment

G 7→ Γ(X,G)[1/π]⊗AoL,π [1/π] OXrig

and, by construction, is faithful. –

Lemma 1.22. Let K be a complete non-archimedean valued field. Let A be an

affinoid K-algebra, and let X = Sp(A) be the associated affinoid K-space.

(i) Suppose that A is integral, and let M be an A-module; then M is locally free of

finite rank d if and only if the associated OX-module F = M ⊗AOX is locally

free of finite rank d.

(ii) ([9]) Let Y = Sp(B) be another affinoid K-space, and let Sp(ϕ) : Y → X be

a morphism of affinoid K-spaces, associated to a K-algebra homomorphism

ϕ : A→ B. If M is an A-module then

Sp(ϕ)∗(M ⊗A OX) ≃ (M ⊗A B)⊗B OY .

Proof. We begin with the proof of (i). For the "only if"-part, by [28], 4.5.1, it

suffices to show that for every point x ∈ X the stalk Fx is a free OX,x-module of

rank d; indeed, a fixed point x ∈ X corresponds to a maximal ideal m ⊆ A, and

we know that M ⊗A Am is a free Am-module of rank d; since M is of finite type,
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1.7 Algebraic, formal, and analytic τ -sheaves

by [10], 9.4.2/6, the canonical map M ⊗A OX,x → Fx is an isomorphism, and we

have M ⊗AOX,x ≃ (M ⊗AAm)⊗Am
OX,x which gives the "only if"-part. Conversely,

suppose that F = M ⊗A OX is locally free of rank d; then for every x ∈ X the

stalk Fx is a free OX,x-module of rank d. By Kiehl’s Theorem ([10], 9.4.3/3) there

is a finite A-module N such that F = N ⊗AOX , and by the exactness properties of

the functor · ⊗A OX the module N has to be isomorphic to M , which in particular

means that M itself is finite. As mentioned before, using that M is finite, there is a

canonical isomorphism Fx ≃ (M⊗AAm)⊗Am
OX,x where m ⊆ A is the maximal ideal

corresponding to a chosen point x ∈ X. By [28], 4.6.1, the natural map Am→ OX,x

is faithfully flat, which implies that, since Fx is free, the Am-module M ⊗A Am is a

locally free Am-module and hence is free since Am is a local ring. Going back and

forth in the henceforth established equivalence, one sees that ranks are preserved.

In order to explain (ii), we briefly reproduce the remarks given at the end of section

1.13 in [9]: If N is a B-module then Sp(ϕ)∗(N ⊗B OY ) ≃ (ϕ∗N)⊗AOX , so that the

adjunction formula

HomOY (Sp(ϕ)∗F ,G) ≃ HomOX (F , Sp(ϕ)∗G)

for OX-modules F and OY -modules G completes the proof. �

In section (1.5) we have explained how to attach a canonical reduction (defined

over the Dedekind domain Aℓ) to every Frobenius module M ∈ FMod(AoL,π); the

notion of good models for analytic Anderson A(1)-motives was based on the cir-

cumstance that the assignment M 7→ M/πM does not induce a functor from

FMod(AoL,π) to FMod(Aℓ). For (algebraic) Frobenius modules over AoL we have an

analogous situation: Given an object M ∈ FMod(AoL), the Aℓ-module M/πM is

called the reduction of M.

Proposition 1.23. LetM∈ FMod(AoL), and let M̂ be its image under the natural

functor FMod(AoL) → FMod(AoL,π), i.e., the underlying AoL,π-module M̂ equals

the π-adic completion of M. Then the reduction M̂/πM̂ of M̂ is canonically

isomorphic to the reduction M/πM of M. �

Let M ∈ FMod(AoL). Following Gardeyn [30], we call M AoL-maximal if for

every N ∈ FMod(AoL) the canonical map

HomFMod(AoL )(N ,M)→ HomFMod(AL)(N [1/π],M[1/π])

is surjective (and hence bĳective); correspondingly, an objectM′ ∈ FMod(AoL,π) is

called AoL,π-maximal if for every N ′ ∈ FMod(AoL,π) the canonical map

HomFMod(AoL,π)(N
′,M′)→ HomFMod(AoL,π [1/π])(N

′[1/π],M′[1/π])
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1 A local criterion for good reduction of analytic Anderson motives

is surjective (and hence bĳective).

Let M ∈ FMod(AL); an objectM∈ FMod(AoL) is called an AoL-maximal model

for M if M[1/π] ≃ M inside FMod(AL) (i.e., M is a model for M) and if M is

an AoL-maximal object. Correspondingly, given M ′ ∈ FMod(AoL,π[1/π]), an object

M′ ∈ FMod(AoL,π) is called an AoL,π-maximal model for M ′ ifM′[1/π] ≃M ′ inside

FMod(AoL,π[1/π]) and if M′ is AoL,π-maximal.

Suppose thatM,N ∈ FMod(AoL) are both (AoL-)maximal models of some given

M ∈ FMod(AL); fixing isomorphisms f : M[1/π]→ M and g : N [1/π]→ M inside

FMod(AL), the composition f−1g : N [1/π] → M[1/π] (resp., g−1f : M[1/π] →

N [1/π]) corresponds to a unique morphism f−1g : N →M (resp., g−1f : M→N )

inside FMod(AoL), and the commutative diagram with injective vertical arrows

N [1/π]

id

&&
f−1g //M[1/π]

g−1f // N [1/π]

N
f−1g

//

OO

M
g−1f

//

OO

N

OO

shows that g−1f ◦ f−1g = idN ; similarly one shows that f−1g ◦ g−1f = idM. In

this sense the AoL-maximal model of M , if it exists, is unique up to unique iso-

morphism inside FMod(AoL). By an analogous argumentation, the same is true for

AoL,π-maximal models of objects of FMod(AoL,π[1/π]).

The existence of (AoL- and AoL,π-)maximal models has been established in [30].

To begin with, we recall the algebraic case in the following Lemma. Let ̟ ∈

X = Spec(AoL) be the point corresponding to the ideal p = p̟ = πAoL . Let

R̟ = (AoL)p; since AoL is a regular integral domain, it follows that R̟ is a discrete

valuation ring with uniformizer π and residue field Frac(Aℓ), and its fraction field

equals F̟ = Frac(AoL). The Frobenius lift σ : AoL → AoL naturally extends to give

an endomorphism σ : R̟ → R̟.

Lemma 1.24 ([30]). Let M ∈ FMod(AL). Then the following assertions hold:

(i) M admits a model.

(ii) M admits an AoL-maximal model, which is unique up to unique isomorphism.

(iii) Let M ∈ FMod(AoL) be any model of M . Then M is a good model, i.e.,

M/πM∈ FMod(Aℓ), if and only if the induced R̟-linear map

Mp⊗R̟,σ R̟ →Mp
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1.7 Algebraic, formal, and analytic τ -sheaves

is an isomorphism.

(iv) If a model M∈ FMod(AoL) of M is good, then it is AoL-maximal. �

Proof. For (i) (resp., (ii); resp., (iii); resp., (iv)), see [30], 2.2 (resp., 2.13(i); resp.,

2.10(i); resp., 2.13(ii)). �

The key for the existence of maximal models lies in a result which F. Gardeyn [30]

calls Lafforgue’s Lemma (according to its appearance in [49]) and which is originally

due to S. Langton [51]. In what follows, we give a brief account of the versions of

this result which we will need for our purposes.

When completing the oL-scheme X = Spec(AoL) along its special fiber V (π) ⊆ X,

the point ̟ ∈ X is mirrored by the point ̟ of X = Spf(AoL,π) which corresponds to

the (π-adically open) prime ideal q = pAoL,π = πAoL,π. Since AoL,π is a regular inte-

gral domain by 1.7 and moreover q is a principal ideal, the local ring S̟ = (AoL,π)q

is a regular local ring of dimension 1, i.e., S̟ is a discrete valuation ring with uni-

formizer π and residue field Frac(Aℓ), whose fraction field equals F̟ = Frac(AoL,π).

As σ̄ : Aℓ → Aℓ is an automorphism, the Frobenius lift σ : AoL,π → AoL,π extends

to give an endomorphism σ : S̟ → S̟; the completion map AoL → AoL,π induces

an isomorphism AoL/πAoL ≃ AoL,π/πAoL,π and hence an unramified embedding of

discrete valuation rings R̟ → S̟ which is of residue degree 1. Finally, note that,

a priori, S̟ is not the local ring of the structure sheaf OX at the point ̟ ∈ X,

even though the residue field of S̟ equals the residue field of OX,̟; see [EGA I(n)],

I.10.1.6.

We define the category FLX as follows:

— An object of FLX is a triple (N,P, i) where N ∈ FMod(AL), P ∈ FMod(R̟),

and i : N ⊗AL F̟ → P ⊗R̟ F̟ is an F̟-linear isomorphism.

— A morphism (N,P, i)→ (N ′, P ′, i′) is given by a couple

(N → N ′, P → P ′) ∈ HomFMod(AL)(N,N
′)× HomFMod(R̟)(P, P

′)

such that the induced diagram

N ⊗AL F̟
i //

��

P ⊗R̟ F̟

��
N ′ ⊗AL F̟ i′

// P ′ ⊗R̟ F̟

commutes.
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1 A local criterion for good reduction of analytic Anderson motives

Analogously, we define a category FLX by the following data:

— An object of FLX is a triple (N,P, i) where N ∈ FMod(AoL,π[1/π]), P ∈

FMod(S̟), and i : N ⊗AoL,π [1/π] F̟ → P ⊗S̟ F̟ is an F̟-linear isomorphism.

— A morphism (N,P, i)→ (N ′, P ′, i′) is given by a couple

(N → N ′, P → P ′) ∈ HomFMod(AoL,π [1/π])(N,N
′)× HomFMod(S̟)(P, P

′)

such that the induced diagram

N ⊗AoL,π [1/π] F̟
i //

��

P ⊗S̟ F̟

��
N ′ ⊗AoL,π [1/π] F̟

i′
// P ′ ⊗S̟ F̟

commutes.

Now we state what Gardeyn calls "Lafforgue’s Lemma".

Lemma 1.25. (i) ([30]) There is an equivalence of categories

FMod(AoL) → FLX ,

M 7→ (M [1/π], Mp, M [1/π]⊗AL F̟ ≃Mp⊗R̟ F̟);

in particular, a τ -sheaf M∼ ∈ τSh(X) on X can be reconstructed from the data

consisting of its restriction M [1/π]∼ to the generic fiber D(π) ⊆ X, together

with the finite free R̟-module Mp.

(ii) There is an equivalence of categories

FMod(AoL,π) → FLX,

M 7→ (M [1/π], Mq, M [1/π]⊗AoL,π [1/π] F̟ ≃Mq⊗S̟ F̟);

in particular, a τ -sheaf M∆ ∈ τSh(X) on X can be reconstructed from the data

consisting of its associated τ -sheaf M [1/π] ⊗AoL,π [1/π] OXrig on the Raynaud

fiber Xrig, together with the finite free S̟-module Mq.

The asserted equivalences give rise to an obvious commutative diagram of cate-

gories and functors

FMod(AoL) ≃ //

��

FLX

��
FMod(AoL,π)

≃
// FLX

where the functor FLX → FLX is given by

(N,P, f) 7→

(N ⊗AL AoL,π[1/π], P ⊗R̟ S̟, (N ⊗AL F̟)⊗F̟ F̟
f⊗idF̟
−−−−−→ (P ⊗R̟ F̟)⊗F̟ F̟).
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1.7 Algebraic, formal, and analytic τ -sheaves

Proof of 1.25. For (i) we refer to [30], 2.9; the proof of (ii) is accomplished by the

following Lemma 1.26. �

Lemma 1.26. Let N be a locally free AoL,π[1/π]-module of rank d, and let P be

a free S̟-submodule of rank d of N ⊗AoL,π [1/π] F̟ such that the induced F̟-linear

inclusion P [1/π] ⊆ N ⊗AoL,π [1/π] F̟ is an isomorphism of F̟-vector spaces. Then

there is a locally free AoL,π-module M of rank d such that M [1/π] ≃ N and Mq ≃ P ,

and M is unique up to isomorphisms of AoL,π-modules.

Proof of Lemma 1.26. We may identify N with the image of the canonical embed-

ding N ⊗AoL,π [1/π] AoL,π[1/π] →֒ N ⊗AoL,π [1/π] F̟. Let M = N ∩ P ; this is an

AoL,π-submodule of N ⊗AoL,π [1/π] F̟. First of all, adapting techniques given in [51],

3.6, we show that M is a finitely generated AoL,π-module. Indeed, we know that

N is finitely generated over AoL,π[1/π], say N =
∑e
i=1 AoL,π[1/π]ni, and that P

is finite free over S̟, say P = ⊕dj=1S̟pj. Without loss of generality we may as-

sume that ni ∈ M for every i = 1, ..., e. Indeed, viewing n1, ..., ne as elements of

N ⊗AoL,π [1/π] F̟, there are integers ν1, ..., νe ≥ 0 such that πνini ∈ P ; as π is a unit

in AoL,π[1/π], the elements πν1n1, ..., π
νene still constitute a system of generators for

N over AoL,π[1/π]. Next we note that the basis elements p1, ..., pd of P give rise to

an F̟-linearly independent family of N⊗AoL,π [1/π]F̟; furthermore, as ni ∈ P for all

i, we may write ni =
∑d
j=1 λijpj for uniquely determined scalars λij ∈ S̟; collecting

the denominators of the λij, we see that there is an element c ∈ AoL,π − q such that

λ′ij = cλij ∈ AoL,π for all i, j; the element c gives rise to a unit of S̟, so that the

elements p′1 = c−1p1, ..., p
′
d = c−1pd still constitute a basis of P over S̟, and we get

ni =
∑d
j=1 λ

′
ijp
′
j for every i. Let m ∈M be an arbitrary element, say

m =
e∑

i=1

αini =
d∑

j=1

βjp
′
j

where αi ∈ AoL,π[1/π] and βj ∈ S̟. We obtain m =
∑d
j=1(
∑e
i=1 αiλ

′
ij)p

′
j, so that

βj = (
∑e
i=1 αiλ

′
ij) inside F̟ for every j, the latter equation being true since p′1, ..., p

′
d

are F̟-linearly independent; the same equation shows that βj ∈ AoL,π[1/π] ∩ S̟

for every j, and it is easy to see that the latter intersection inside F̟ does, in

fact, equal AoL,π. Therefore βj ∈ AoL,π for every j, and we may conclude that

M ⊆
∑d
j=1 AoL,πp

′
j; since AoL,π is noetherian, M itself has to be finitely generated;

in particular, M is of finite presentation. Next we remark that there is an AoL,π[1/π]-

linear isomorphism M [1/π] ≃ N , for we have equalities

M [1/π] ≃ N [1/π] ∩ P [1/π] ≃ N

of AoL,π[1/π]-submodules of N ⊗AoL,π [1/π]F̟, which can be explained as follows: the

canonical map N → N [1/π], n 7→ n/1, is an AoL,π[1/π]-linear isomorphism, and the
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1 A local criterion for good reduction of analytic Anderson motives

natural isomorphism P [1/π] ≃ N ⊗AoL,π [1/π] F̟ is in particular AoL,π[1/π]-linear,

so that it exhibits the displayed intersection as being isomorphic to N , as desired.

Furthermore we have

Mq ≃ Nq ∩ Pq ≃ P,

the latter relation being valid for the following reason: there are canonical S̟-linear

isomorphisms

Nq ≃ N ⊗AoL,π S̟ ≃ N ⊗AoL,π [1/π] (AoL,π[1/π]⊗AoL,π S̟) ≃ N ⊗AoL,π [1/π] F̟;

note that the canonical map of AoL,π-algebras AoL,π[1/π]⊗AoL,π S̟ → F̟ is an S̟-

linear isomorphism; on the other hand, also the canonical map P → Pq, r 7→ r/1,

is an S̟-linear isomorphism, so that the desired relation is established. Finally we

claim that M is a flat AoL,π-module. Indeed, since πM = πN ∩ πP = N ∩ πP ,

the AoL,π-linear inclusion M ⊆ P induces an embedding of Aℓ-modules M/πM →֒

P/πP ; here we note that

P/πP ≃ P ⊗S̟ κ(̟);

the residue field κ(̟) = S̟/πS̟ is canonically isomorphic to Frac(Aℓ), so that

P/πP is a finite Frac(Aℓ)-vector space; therefore, itsAℓ-submoduleM/πM is torsion-

free and hence projective, the latter being true since Aℓ is a Dedekind domain; there-

fore M/πM is flat over Aℓ, which (for example, by [13], III.5.2(iii)) implies that M

has to be flat over AoL,π since M ⊆ P has trivial π-torsion. �

We may draw the following

Conclusion 1.27. There are obvious equivalences of categories

LX ≃ L′X ≃ fPrj(AoL,π)

where

• LX is the category whose objects are given by triples (N,P, f) where N is a locally

free AoL,π[1/π]-module of finite rank, P is a finite free S̟-module and f : P [1/π]
≃
→

N ⊗AoL,π [1/π] F̟ is an F̟-linear isomorphism, and where a morphism (N,P, f)→

(N ′, P ′, f ′) is given by a tuple (u, v) ∈ HomS̟(P, P ′)×HomAoL,π [1/π](N,N
′) such

that f ′ ◦ (u⊗ id) = (v ⊗ id) ◦ f ;

• L′X is the category whose objects are given by pairs (N,P ) where N is a locally free

AoL,π[1/π]-module of finite rank, together with a finite free S̟-submodule P of

N ⊗AoL,π [1/π] F̟ such that the induced F̟-linear inclusion P [1/π] ⊆ N ⊗AoL,π [1/π]

F̟ is an F̟-linear isomorphism, and where a morphism (N,P ) → (N ′, P ′) is

given by an AoL,π[1/π]-linear map w : N → N ′ such that (w ⊗ id)(P ) ⊆ P ′;
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1.7 Algebraic, formal, and analytic τ -sheaves

• fPrj(AoL,π) is the full subcategory of Mod(AoL,π) consisting of the locally free

AoL,π-modules of finite rank.

See [30], 2.7, for a similar characterization of the category fPrj(AoL). –

Proposition 1.28. The following assertions hold:

(i) Every M ∈ FMod(AoL,π[1/π]) admits a maximal model, which is unique up to

unique isomorphism.

(ii) If M ∈ FMod(AL) is given and if M∈ FMod(AoL) is an AoL-maximal model

of M thenM⊗AoL AoL,π ∈ FMod(AoL,π) is an AoL,π-maximal model of M⊗AL
AoL,π[1/π] ∈ FMod(AoL,π[1/π]).

(iii) Let M ∈ FMod(AoL,π[1/π]), and let M ∈ FMod(AoL,π) be any model of M .

ThenM is a good model, i.e.,M/πM∈ FMod(Aℓ), if and only if the induced

S̟-linear map

Mq⊗S̟,σ S̟ →Mq

is an isomorphism.

(iv) Let M ∈ FMod(AoL,π[1/π]) and letM∈ FMod(AoL,π) be a model of M ; ifM

is a good model, i.e., M/πM∈ FMod(Aℓ), then it is AoL,π-maximal.

Proof. For (i) (resp., (ii); resp., (iii); resp., (iv)), see [30], 3.3(i) (resp. 3.4(i); resp.

2.10(i); resp., 2.13(ii)). We remark that, by virtue of 1.25, 1.26, the proofs of the

cited results carry over verbatim to the situation at hand. �

We may conclude:

Proposition 1.29. A Frobenius AL-module M admits a good model over AoL if and

only if M⊗ALAoL,π[1/π] ∈ FMod(AoL,π[1/π]) admits a good model over AoL,π; then,

up to isomorphism inside FMod(AoL,π), a good model of M ⊗AL AoL,π[1/π] is given

by M⊗AoL AoL,π where M is a good model of M .

Proof. First suppose that M admits a good modelM∈ FMod(AoL). It follows that

M is an AoL-maximal model of M ; as such, the latter is unique up to unique isomor-

phism inside FMod(AoL); furthermore, its imageM⊗AoL AoL,π inside FMod(AoL,π)

is an AoL,π-maximal model of M⊗ALAoL,π[1/π], and as such it is unique up to unique

isomorphism. Since the reduction of M is canonically isomorphic to the reduction

of M⊗AoL AoL,π, it follows that the latter is a good model. Conversely, suppose

that M ⊗AL AoL,π[1/π] admits a good modelM′ ∈ FMod(AoL,π). NecessarilyM′ is

a maximal model. We know that there is an AoL-maximal model M ∈ FMod(AoL)

of M such that M⊗AoL AoL,π ≃ M
′, and that the reduction of M′ is canonically

isomorphic to the reduction of M. Since M′ is a good model, so is M, which

completes the proof. �
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1 A local criterion for good reduction of analytic Anderson motives

Remark. In [30], especially the case of bad reduction has been studied, i.e., the

case of those τ -sheaves which do not admit a good model; while, as we have seen,

a model always exists and moreover can be chosen in a maximal possible manner,

the induced τ -(or F -)map in the reduction of the maximal model can, for example,

be nilpotent; in such cases the τ -sheaf at hand will not itself be of good reduction,

but will rather contain a good-reduction τ -sheaf of a certain rank, at least after

a suitable finite extension of the base field L. For example, if M is (the analytic

τ -sheaf associated to) the A-motive of a Drinfeld A-module ϕ over L with stable

but bad reduction ([21]) then M does not possess a good model but is rather a

semi-stable analytic τ -sheaf in the sense of [30]; more precisely: Drinfeld’s Tate

Uniformization-Theorem ([21]) applied to ϕ can be carried out in terms of (neces-

sarily non-algebraic) morphisms of A-motives ([29]), which clarifies the semi-stable

structure of the τ -sheaf M . We will come back to this in section (2.2). –

In 1.11 we have seen that a natural source for analytic Anderson A(1)-motives

is incorporated by Anderson A-motives. So, in the case when a given analytic

Anderson A(1)-motive comes from an A-motive, one is naturally led to asking for

a characterization of the existence of a good model. For the following, also see

Example 1.15.

Proposition 1.30. Let M be an Anderson A-motive. Then the following assertions

are equivalent:

(i) There is a locally free AoL-moduleM of finite rank, together with an AoL-linear

map

F ◦ : M⊗AoL ,σ AoL →M

such that

— there is an AL-linear and F -equivariant isomorphism M⊗oL L ≃M ,

— coker(F ◦) is a finite free oL-module and is annihilated by a power of J,

(ii) The associated analytic Anderson A(1)-motive M⊗ALAoL,π[1/π] admits a good

model in the sense of 1.13 and 1.14.

Proof. First we show that (i) implies (ii). So let (M, F ◦) be given in accordance

with (i). We claim that the π-adic completion

M̂ =M⊗AoL AoL,π

of M is a good model for the analytic Anderson A(1)-motive M⊗AL AoL,π[1/π].

Imitating the arguments given in the last part of the proof of Theorem 1.18 shows

that M̂ is locally free of finite rank over AoL,π, that F ◦ ⊗ id is again injective and
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that coker(F ◦ ⊗ id) is finite free over oL and annihilated by a power of J; it is clear

that M̂[1/π] is indeed isomorphic to M ⊗AL AoL,π[1/π] as desired. It remains to see

that M̂ is a good model. However, since the projection map AoL → Aℓ naturally

factors via AoL,π, we have M̂/πM̂ ≃ M/πM. Conversely, in order to show that

(ii) implies (i), suppose that for a given Anderson A-motive M , its analytification

M⊗ALAoL,π[1/π] admits a good modelM′ in the strong sense of 1.13. In particular,

by 1.29, the F -module M over AL admits a good model M ∈ FMod(AoL) in the

sense of F -modules, and it remains to show that M is a good model of M in the

strong sense, i.e., that C = coker(FM) is a finite free oL-module and is annihilated by

a power of the ideal J ⊆ AoL . We start with the latter claim. Let Jdcoker(FM) = 0

say, and let x ∈ JdM. We need to show that x ∈ im(FM). Since the good model of

M⊗ALAoL,π[1/π] as an F -module is uniquely determined up to unique isomorphism,

by 1.29 we may assume thatM⊗AoL AoL,π (which is necessarily isomorphic toM′)

is a good model of M ⊗AL AoL,π[1/π] in the strong sense. We remark thatM, being

in particular a finite projective oL[z]-module, is in fact finite free over oL[z] (see

[70], p. 457), say with finite basis B; furthermore, recall that we have canonical

isomorphisms

M⊗AoL AoL,π ≃M⊗oL[z] oL〈z〉, M⊗AoL ,σ AoL ≃M⊗oL[z],σ oL[z];

in particular, we get

M ⊗AL AoL,π[1/π] ≃M ⊗L[z] L〈z〉, M ⊗L[z],σ L[z] ≃M ⊗AL,σ AL;

note that AoL,π[1/π] ≃ (AoL ⊗oL[z] oL〈z〉)[1/π] ≃ AL ⊗L[z] L〈z〉. Fixing an isomor-

phismM[1/π] ≃M inside FMod(AL), the oL[z]-basis B ofM induces an L[z]-basis

on M[1/π] and hence on M , which in turn gives rise to a canonical induced basis

on each remaining entry of the commutative diagram

σ∗(M⊗oL[z] oL〈z〉) //

���
�

�

�

�

�

�

�

�

�

�
M⊗oL[z] oL〈z〉

��

σ∗M //

66mmmmmmmmmmmm

��

M

88ppppppppppp

��
σ∗M //

((PPPPPPPPPPPPP
M

&&MMMMMMMMMMMM

σ∗(M ⊗L[z] L〈z〉) // M ⊗L[z] L〈z〉

where each arrow is injective. Our chosen element x ∈ JdM in particular lies in JdM ,

so that there is a uniquely determined y ∈ σ∗M such that x = FM(y). On the other

hand, x gives rise to an element ofM⊗oL[z] oL〈z〉; according to our assumption, we

know that the cokernel of the map σ∗(M⊗oL[z]oL〈z〉)→M⊗oL[z]oL〈z〉 is annihilated
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by a power of J, and since M⊗oL[z] oL〈z〉 is a good model in the strong sense of

M ⊗L[z] L〈z〉, we have seen in the proof of 1.18 that we may, in fact, take the power

Jd; this implies that there is a uniquely determined element y′ ∈ σ∗(M⊗oL[z] oL〈z〉)

which is mapped to (the image of) x inM⊗oL[z]oL〈z〉. Finally, since y′ is necessarily

mapped to (the image of) y via the dashed vertical arrow, writing y′ in terms of the

oL〈z〉-basis induced by B and keeping track of linear combinations shows that the

coefficients of y′ have, in fact, to lie inside oL〈z〉 ∩ L[z] = oL[z], which proves that

JdC = 0. In particular, this means (z − ζ)dC = 0, i.e., C is finitely generated over

oL[z]/(z − ζ)d and hence over oL; it only remains to show that C is flat over oL;

indeed, consider the short exact sequence

0→ σ∗M→M→ C → 0;

we see that applying the functor · ⊗oL ℓ to this sequence exhibits C/πC as a (nec-

essarily flat) ℓ-vector space. On the other hand, by virtue of our hypothesis upon

M , applying the functor · ⊗oL L to the same sequence shows that C[1/π] is a finite-

dimensional L-vector space and therefore flat; it remains to see that C does not

have π-torsion; in order to prove this, we need to see that πx ∈ im(FM) for a given

x ∈M implies x ∈ im(FM); we again use thatM is finite free over oL[z] and remark

that, since M is a good model of M as an F -module, the bottom horizontal arrow

in the commutative diagram

σ∗M //

��

M

��
σ̄∗(M⊗oL[z] ℓ[z]) //M⊗oL[z] ℓ[z]

is injective; furthermore, we remark that the vertical maps are surjective and that

in the upper (resp., bottom) row both modules are finite free over oL[z] (resp., over

ℓ[z]) of the same rank. From πx ∈ im(FM) it follows that there is a uniquely

determined y ∈ σ∗M such that πx = FM(y); since πx goes to zero under the right-

hand projection, necessarily y has to go to zero via the left-hand projection; a chosen

oL[z]-basis of M induces bases of each of the other entries of the above diagram;

keeping track of coefficients in linear combinations one verifies that y ∈ πσ∗M;

finally, since M is torsion-free, we obtain x = FM(y), as desired; so, for example,

by [9], 2.6/1, we may conclude that C is flat over oL. �

Using that the canonical map AoL,ε → AoL,(ε,π) is an isomorphism, we obtain

Corollary 1.31. Let M be an Anderson A-motive such that coker(FM) is annihi-

lated by Jd say. Then the following assertions are equivalent:

(i) M admits a good model M, i.e., there is an object M ∈ FMod(AoL) such

that coker(FM) is a finite free oL-module and is annihilated by a power of Jd,

together with an isomorphism M[1/π] ≃M inside FMod(AL);
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(ii) There is

– a local shtuka M̂ at ε such that coker(FM̂) is a finite free oL-module and is

annihilated by Jd,

– an isomorphism

M ⊗AL AoL,ε[1/π] ≃ M̂ [1/π]

inside FMod(AoL,ε[1/π]).

In particular, we obtain a one-to-one correspondence between (isomorphism classes

of) good models of M and (isomorphism classes of) pairs (M̂, f) consisting of a

local shtuka M̂ at ε and an isomorphism f : M ⊗AL AoL,ε[1/π]
≃
→ M̂ [1/π] inside

FMod(AoL,ε[1/π]). �
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2 The monodromy of certain

extension structures

2.1 Crystalline extensions attached to elliptic

curves of supersingular reduction

Let K be a mixed-characteristic complete discretely valued field and let oK ⊆ K be

its valuation ring; let mK = (π) be the sole maximal ideal of oK where π = πK ∈ oK

is a fixed uniformizer ofK. The characteristic of the residue field k = oK/mK is given

by a prime number p. We assume k to be a perfect (not necessarily finite) extension

of the prime field Fp. We fix an algebraic closureKalg/K and let GK = Gal(Kalg/K).

Let F = W (k)[1/p] where W (k) is the ring of Witt vectors over the perfect field

k; let σ : F → F be the p-Frobenius lift. The field F is a complete discretely val-

ued field with uniformizer p which naturally embeds into K; the extension K/F is

finite, so that Kalg gives rise to an algebraic closure of F for which we write F alg;

we denote by F ur the compositum of all finite unramified subextensions of F alg/F ;

the valuation of F extends uniquely to give a valuation on F ur, and one can show

that the residue field of the completion F̂ ur is an algebraic closure of k which we

denote by kalg. We have F̂ ur = W (kalg)[1/p], i.e., the extension kalg/k on the level

of residue fields is mirrored by the extension F̂ ur/F .

2.1.1 Elliptic curves and p-adic Galois representations

Let E be an elliptic curve over K, i.e., E is a smooth projective curve over K which is

isomorphic over K to Proj(K[u, v, w]/f) ⊆ P2
K where the homogeneous polynomial

f ∈ K[u, v, w] is given by

f = v2w + a1uvw + a3vw
2 − u3 − a2u

2w − a4uw
2 − a6w

3

for suitable a1, a2, a3, a4, a6 ∈ K. It is well-known that, fixing a rational point

e ∈ E(K), the pair (E, e) has the structure of a geometrically integral commutative

K-group scheme with unit section given by e, in such a way that for every pair of
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2 The monodromy of certain extension structures

points x, y ∈ E(Kalg) their sum z = x + y in the abelian group E(Kalg) is charac-

terized by the linear equivalence relation of divisors (z) + (e) ∼ (x) + (y) on EKalg ;

see [54], 9.4.

For every n ≥ 1 the kernel E[pn] of the K-morphism [pn] : E → E (multiplication

by pn) is a finite K-group scheme of order p2n, and the kernel E[pn](Kalg) of the map

of abstract abelian groups pn : E(Kalg)→ E(Kalg) is a finite abelian group which is

isomorphic to (Z/pn)2 as a Z/pn-module (see [60], p. 64); there is a natural contin-

uous action of the Galois group GK on E[pn](Kalg) which is given coordinatewise.

The inverse limit of these groups,

Tp(E) = lim←−nE[pn](Kalg),

called the p-adic Tate module of E, is a free Zp-module of rank 2 and carries a natural

induced continuous action of the group GK ; see [71], III.7. The 2-dimensional Qp-

vector space

Vp(E) = Qp ⊗Zp Tp(E)

together with its induced continuous GK-action is a p-adic representation of GK .

By virtue of a suitable change of variables we may assume that the coefficients

ai ∈ K of the Weierstraß equation for E given by the polynomial f ∈ K[u, v, w] lie

inside oK ; consequently the discriminant ∆ ∈ Z[a1, ..., a6] associated to f will also

have non-negative valuation; adjusting the ai further, we may assume that the re-

sulting 2-dimensional regular projective oK-scheme E = Proj(oK [u, v, w]/f) ⊆ P2
oK

is minimal in the sense that the valuation vK(∆) ≥ 0 of ∆ ∈ oK − {0}/o
×
K becomes

minimal; note that mod o×K the discriminant ∆ only depends on E ; see [54], 10.2.

We assume E to be of good reduction, which is to say that the minimal discrim-

inant ∆ attached to E is a unit in oK . The minimal Weierstraß model E ⊆ P2
oK

discussed above is then smooth over oK ; in fact, E is a Néron model for E (see [72],

IV.6.3), and the special fiber E0 = E ⊗oK k is an elliptic curve over k which corre-

sponds to the Weierstraß equation given by the reduced polynomial f̄ ∈ k[u, v, w].

We further assume that the reduced elliptic curve E0 is supersingular, which can

be characterized by saying that the abelian group E0[p](k
alg) is trivial, i.e., the finite

k-group scheme E0[p] has no geometric points of order p (see [53]).

2.1.2 Crystalline and semi-stable Fontaine theory

Recall ([3], [15], [27]) that inside the category RepQp
(GK) of p-adic representations

of the Galois group GK there are several arithmetically significant full subcategories.
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2.1 Crystalline extensions attached to elliptic curves of supersingular reduction

We are particularly interested in two of them, namely the crystalline and the semi-

stable p-adic representations. To begin with, we recall that there is a functor

Dst : RepQp
(GK)→MFK(ϕ,N), V 7→ (V ⊗Qp Bst)

GK ,

into the additive category of filtered (ϕ,N)-modules over the field F ; here Bst de-

notes the semi-stable period ring from Fontaine theory ([3]).

In order to explain the category MFK(ϕ,N), let F [ϕ,N ] be the skew polynomial

ring over F with the commutation rules ϕf = σ(f)ϕ, Nf = fN for all f ∈ F , and

Nϕ = pϕN ; the first two relations can be rephrased by saying that ϕ, the Frobe-

nius, acts σ-semi-linearly and N , the monodromy operator, acts F -linearly. A filtered

(ϕ,N)-module is a pair (D, (FiliDK)i∈Z) consisting of a left F [ϕ,N ]-module D which

is finite-dimensional as an F -vector space and on which ϕ acts bĳectively, together

with an exhaustive and separated descending filtration (FiliDK)i∈Z of DK = D⊗FK

by K-subspaces; a morphism of filtered (ϕ,N)-modules is a map D → D′ of left

F [ϕ,N ]-modules such that the induced map DK → D′K is compatible with the fil-

trations.

Let V ∈ RepQp
(GK). One calls V a Bst-admissible or, equivalently: a semi-stable

p-adic representation if the natural map (V ⊗Qp Bst)
GK ⊗F Bst → V ⊗Qp Bst is

an isomorphism; the category Repst(GK) of semi-stable p-adic representations of

GK is an abelian full subcategory of RepQp
(GK), and the restriction of Dst to this

category is additive and fully faithful. Inside Repst(GK) there is an abelian full

subcategory Repcris(GK) whose objects are called crystalline p-adic representations

of GK , and which can be characterized as follows: a semi-stable p-adic representation

V is crystalline if and only if N acts trivially on Dst(V ). There is a functor

Dcris : RepQp
(GK)→MFK(ϕ), V 7→ (V ⊗Qp Bcris)

GK ,

where MFK(ϕ) denotes the full subcategory of MFK(ϕ,N) consisting of those fil-

tered (ϕ,N)-modules on which N acts trivially, and where Bcris denotes the crys-

talline period ring from Fontaine theory ([3]). Similarly as described above, a p-adic

representation V is crystalline if and only if V is Bcris-admissible, which is to say

that the natural map (V ⊗Qp Bcris)
GK ⊗F Bcris → V ⊗Qp Bcris is an isomorphism. If

V ∈ Repst(GK) is crystalline then Dcris(V ) = Dst(V ).

For example, since our elliptic curve E is of good reduction, the associated p-adic

representation Vp(E) is crystalline; see [3], II.3.2.

Our aim is to show the following
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2 The monodromy of certain extension structures

Proposition 2.1. Let

0→ Qp → V → Vp(E)∨ → 0

be an extension inside the category Repst(GK). Then V is crystalline.

We refer to section (3.2) for some general remarks on extensions of GK-represen-

tations.

2.1.3 Isocrystals

Via forgetting about the filtration, any filtered ϕ-module (D,Fil•DK) ∈ MFK(ϕ)

gives rise to a ϕ-isocrystal over k which means that D is a module over the skew

polynomial ring F [ϕ] over F = W (k)[1/p] with the commutation rule ϕf = σ(f)ϕ

for all f ∈ F , that D is finite-dimensional as an F -vector space, and that ϕ acts

bĳectively on D.

Example 2.2. Fixing integers m,n ∈ Z, n > 0, the F -vector space

Dm,n = F [ϕ]/F [ϕ](ϕn − pm)

gives rise to a ϕ-isocrystal over k in the following manner: the polynomial ϕn−pm ∈

F [ϕ] is clearly of degree n, and via the classical argument one verifies that the

elements ϕ0 = 1, ϕ, ..., ϕn−1 constitute an F -basis of Dm,n, so that dimF Dm,n = n.

Multiplication from the left with (the image of) ϕ gives rise to a map of abelian

groups Dm,n → Dm,n which, according to the commutation rule ϕf = σ(f)ϕ for

f ∈ F , is semi-linear with respect to the p-Frobenius lift σ : F → F ; furthermore,

by virtue of

ϕ
n−1∑

i=0

αiϕ
i =

n−1∑

i=0

σ(αi)ϕ
i+1 = pmσ(αn−1) + σ(α1)ϕ+ ...+ σ(αn−2)ϕ

n−1,

the map ϕ(·) : Dm,n → Dm,n is, with respect to the F -basis (ϕ0, ϕ1, ..., ϕn−1), de-

scribed (σ-semi-linearly!) by the matrix

Am,n = ( 0 pm

Idn−1 0 ) ∈ F n×n;

in fact, Am,n is invertible and one has An
m,n = pmIdn; we may summarize that the

obtained F [ϕ]-module Dm,n is a ϕ-isocrystal over k, and that

pmA−1
m,n = An−1

m,n = ( 0 pmIdn−1

1 0
).

�

For the following Lemma, recall that given a ϕ-isocrystal D over k, an F -subspace

D′ ⊆ D is called a sub-isocrystal of D if D′ is also an F [ϕ]-submodule of D and if

ϕ acts bĳectively on D′.
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2.1 Crystalline extensions attached to elliptic curves of supersingular reduction

Lemma 2.3. For (m,n) = 1 the ϕ-isocrystal F̂ ur[ϕ]/F̂ ur[ϕ](ϕn − pm) over kalg is

simple, i.e., it admits no proper sub-isocrystals 6= 0.

Proof. See [76], 6.27. �

We are particularly interested in the filtered ϕ-module

D = Dst(Vp(E)) ∈MFK(ϕ)

which, forgetting about the filtration, gives rise to a ϕ-isocrystal over k. Since

our elliptic curve E has supersingular reduction, it is well-known ([3], [53]) that

the Newton-polygon of the isocrystal D consists of two consecutive segments of

horizontal distance 1 and slope 1/2. Let us briefly discuss what this means. Given a

ϕ-isocrystal D over k, let ϕD : D → D be the σ-semi-linear automorphism by which

ϕ acts on D; then the F̂ ur-vector space D ⊗F F̂ ur acquires a natural F̂ ur[ϕ]-module

structure such that ϕ acts via ϕD ⊗ σ, making D ⊗F F̂ ur into a ϕ-isocrystal over

kalg. Recall the

Theorem 2.4 (Dieudonné-Manin – [57]). Let D be a nontrivial ϕ-isocrystal over

k, and let D̂ = D ⊗F F̂ ur be the associated ϕ-isocrystal over kalg. Then there is a

uniquely determined finite ascending sequence of rational numbers m1/n1 < ... <

mN/nN such that nν > 0, (mν , nν) = 1 for all ν and

D̂ ≃ (D̂m1,n1 ⊕ ...⊕ D̂m1,n1)⊕ ...⊕ (D̂mN ,nN ⊕ ...⊕ D̂mN ,nN )

where D̂mν ,nν = F̂ ur[ϕ]/F̂ ur[ϕ](ϕnν−pmν ), with the structure of ϕ-isocrystal discussed

in 2.2, and where D̂mν ,nν occurs emν ,nν times on the right-hand side.

By what we have seen in 2.2 it is clear that dim
F̂ur D̂

⊕emν,nν
mν ,nν = nνemν ,nν .

Given a nontrivial ϕ-isocrystal D over k, the Newton polygon of D is the convex

polygon with leftmost endpoint (0, 0) and consisting of mνemν ,nν consecutive seg-

ments of horizontal distance 1 and slope mν/nν ; for all this, see [15], [47], [76].

In particular, returning to the ϕ-isocrystal D = Dst(Vp(E)) over k attached to

our elliptic curve E, we may conclude that

D ⊗F F̂ ur ≃ F̂ ur[ϕ]/F̂ ur[ϕ](ϕ2 − p)

as ϕ-isocrystals over kalg, i.e., fixing the obvious basis of the right-hand side dis-

cussed in 2.2, the action of ϕ is given σ-semi-linearly by the matrix ( 0 p
1 0 ); by virtue

of 2.3 we see that D ⊗F F̂ ur is a simple ϕ-isocrystal over kalg.
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2 The monodromy of certain extension structures

Recall ([15], [27]) that the functor Dst respects duals, which in particular means

that

Dst(Vp(E)∨) ≃ D∨;

here we remark that for a ϕ-isocrystal D over k its F -linear dual D∨ = HomF (D,F )

is made into a ϕ-isocrystal over k by letting ϕ act via D∨ → D∨, α 7→ σ ◦ α ◦ ϕ−1
D

where ϕD : D → D is the σ-semi-linear automorphism by which ϕ acts on D. For

example, if D = Dm,n for m,n ∈ Z, n > 0, then with respect to the dual basis

(1∨, ϕ∨, ..., (ϕn−1)∨), the ϕ-action D∨m,n → D∨m,n is described σ-semi-linearly by the

matrix A−m,n from 2.2; this follows from the relation pmA−1
m,n = An−1

m,n which is to

say that ϕ−1
Dm,n(ϕ

0) = p−mϕn−1 and ϕ−1
Dm,n(ϕ

j) = ϕj−1 for j ≥ 1. We may conclude

that D∨m,n ≃ D−m,n; the same is of course true for ϕ-isocrystals over kalg.

Since D is finite-dimensional over F , there is a natural isomorphism D∨⊗F F̂ ur ≃

(D ⊗F F̂ ur)∨ of F̂ ur-vector spaces which is, in fact, an isomorphism of ϕ-isocrystals

over kalg. In particular, since we have

(D ⊗F F̂ ur)∨ ≃ D̂−1,2 = F̂ ur[ϕ]/F̂ ur[ϕ](ϕ2 − p−1),

it follows that D∨ ⊗F F̂ ur is again a simple ϕ-isocrystal over kalg.

In a next step, we aim at showing that, in fact, also D∨ is simple as a ϕ-isocrystal

over k. Indeed, the functor · ⊗F F̂ ur from F -vector spaces to F̂ ur-vector spaces

restricts to a left-exact functor

· ⊗F F̂ ur : (ϕ-isocrystals over k)→ (ϕ-isocrystals over kalg),

so that for any sub-isocrystal D′ ⊆ D∨ over k we obtain a sub-isocrystal D′⊗F F̂ ur ⊆

D∨ ⊗F F̂ ur over kalg. Since F̂ ur is faithfully flat over F , D∨ ⊗F F̂ ur being simple

indeed implies that D∨ is simple.

Proof of Proposition 2.1. Suppose we are given a short exact sequence 0 → Qp →

V → Vp(E)∨ → 0 inside the abelian category Repst(GK). Applying the exact functor

Dst to this sequence yields a short exact sequence of filtered (ϕ,N)-modules

0→ F → Dst(V )→ D∨ → 0

where N acts trivially on F andD∨. Since the maps in this sequence are in particular

compatible with the action of N , we obtain a commutative diagram of F -vector

spaces with exact rows

0 // F
i //

0

��

Dst(V )
pr //

N
��

D∨ //

0
��

0

0 // F
i // Dst(V )

pr // D∨ // 0
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2.2 A non-crystalline Dieudonné module in equal characteristic

which by virtue of the Snake Lemma gives rise to an F -linear map d : D∨ → F

satisfying N = i ◦ d ◦ pr; for this, recall that d is defined by the following diagram

chase: for a given x ∈ D∨, choose any lift x′ ∈ Dst(V ) along pr; then d(x) is defined

to be the uniquely determined y ∈ F such that i(y) = N(x′). From the relation

Nϕ = pϕN it follows that, by construction of d, we have d ◦ ϕD∨ = pϕF ◦ d, which

means that d : D∨ → F respects the ϕ-actions only up to the factor p. This in

turn immediately implies that d(x) = 0 if and only if d(ϕ(x)) = 0, i.e., the ϕ-action

on D restricts to an automorphism of the abelian group ker(d), which, in fact, is

σ-semi-linear; we may conclude that ker(d) becomes a sub-isocrystal of D∨ in this

way. An obvious comparison of F -dimensions shows that ker(d) has to be nontrivial.

However, the ϕ-isocrystal D∨ is simple, i.e., ker(d) = D∨, and we may summarize

that N = 0 on Dst(V ). �

2.2 A non-crystalline Dieudonné module in equal

characteristic

In this section we discuss a situation analogous to that in section (2.1) and construct

an example which will show that, stressing the analogy between Drinfeld modules

and elliptic curves ([21], [31], [36]), a natural analogue of 2.1 turns out to be false.

More specifically, we will show that there is a short exact sequence of Dieudonné

modules ([52]) exhibiting a non-crystalline extension structure where one would

expect a local shtuka.

2.2.1 Mixed Drinfeld characteristic

Retaining the notation from (1.1), let L be a complete discretely valued field con-

taining the finite field F fixed in the beginning, and let oL ⊆ L be its valuation ring,

with sole maximal ideal mL = (π) where π ∈ oL is a fixed uniformizer of L; we denote

by v = vπ = ordπ(·) the discrete valuation on L normalized by v(π) = 1; the residue

field ℓ = oL/mL is always supposed to be a perfect extension of F; we recall that the

choice of π identifies oL with ℓJπK and L with ℓ((π)). Let GL = Gal(Lsep/L) be the

absolute Galois group of L where Lsep/L is a fixed separable closure; furthermore,

let ℓalg/ℓ be a fixed algebraic closure of the perfect field ℓ.

We will work exclusively with Drinfeld F[z]-modules, i.e., in the notation of (1.1)

we specify C = P1
F and let A = Γ(P1

F − {∞},OP1
F
) = F[z] where the point ∞ is

defined by V (1/z) ⊆ Spec(F[1/z]).
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2 The monodromy of certain extension structures

The characteristic monomorphism of F-algebras c∗ : F[z] → oL is clearly deter-

mined by the image ζ ∈ oL of z; let us specify that π | ζ; consequently we have

0 < ordπ(ζ) < ∞, and the image of z in the residue field ℓ will be zero; we may

conclude that the residual characteristic place is given by ε = zF[z], and that c∗

induces an extension of complete discretely valued fields L/F((ζ)).

So far, we have the following analogies between the world of mixed-characteristic

complete valuation rings and our scenery of mixed Drinfeld characteristic :

oK/Zp p-adically complete extension oL/FJζK ζ-adically complete extension

Z →֒ oK natural map c∗ : A →֒ oL choice of characteristic map

p ∈ pZp ⊆ mK assumption c∗(z) ∈ mL

(p) ⊆ Z residue characteristic (z) ⊆ A kernel of A →֒ oL → ℓ

Z →֒ Z(p) →֒ oK A →֒ A(z) →֒ oL

Ẑ(p)
∼= Zp Â(z)

∼= FJzK

2.2.2 Tate uniformization of Drinfeld modules, and

supersingular reduction

Recall that the skew polynomial ring L[τ ] with the commutation rule τα = αrτ for

α ∈ L corresponds to those L-endomorphisms of the additive group scheme Ga,L =

Spec(L[x]) which are F-linear; especially, the distinguished element τ corresponds

to the r-Frobenius Ga,L → Ga,L defined by x 7→ xr; see [59], 1.3.

Definition 2.5. A Drinfeld (F[z]-)module over L ([21], [31], [36]) is a ring homo-

morphism ϕ : F[z]→ L[τ ] such that im(ϕ) * L and such that the triangle

F[z] c∗ //

ϕ
""EE

EE
EE

EE
L

L[τ ]

∂L

>>}}}}}}}}

is commutative.

Here the ring homomorphism ∂L : L[τ ] → L is given by
∑
ν αντ

ν 7→ α0. In [21]

Drinfeld modules are called elliptic (F[z]-)modules. In the future we shall suppress

the prefix "F[z]-", for the reason that the underlying curve and characteristic map

are fixed.
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2.2 A non-crystalline Dieudonné module in equal characteristic

A homomorphism ϕ → ϕ′ of Drinfeld modules ϕ : F[z] → L[τ ], ϕ′ : F[z] → L[τ ]

over L is defined to be a skew polynomial λ ∈ L[τ ] such that λϕf = ϕ′fλ for all

f ∈ F[z]. A homomorphism λ : ϕ→ ϕ′ is called an isogeny (resp., an isomorphism)

if λ 6= 0 (resp., if degτ (λ) = 0), and then ϕ and ϕ′ are called isogenous (resp.,

isomorphic); from the defining relations it follows directly that there is an isogeny

ϕ → ϕ′ only if rk(ϕ) = rk(ϕ′); if there is an isomorphism ϕ → ϕ′ then one writes

ϕ ≃ ϕ′. Being isomorphic is clearly an equivalence relation of Drinfeld modules over

L, and by virtue of the existence of dual isogenies ([59], 3.2) the same is true for the

relation of being isogenous; furthermore, the isogeny relation clearly preserves the

rank of representatives; in particular, so does the isomorphy relation.

It is clear that a Drinfeld module ϕ : F[z] → L[τ ] is already determined by the

image

ϕz = ζ + α1τ + ...+ αnτ
n ∈ L[τ ]

of z; in fact, the number n = degτ (ϕz) is always positive and equals the rank of ϕ;

the latter is characterized by the relations degτ (ϕf ) = −n ·ord1/z(f) for all f ∈ F[z];

here ord1/z denotes the valuation at ∞ of the function field F(z) of the underlying

curve P1
F. Note that, since c∗ : F[z]→ oL is supposed to be injective, the characteris-

tic of a Drinfeld module ϕ : F[z]→ L[τ ] over L, i.e., the point of P1
F associated to the

ideal ker(∂L ◦ϕ) ⊆ F[z], always equals the generic point in the situation at hand; in

this sense, every Drinfeld module over L considered here is of generic characteristic;

see [21], 2A.

Given a Drinfeld module ϕ : F[z] → L[τ ], the abelian group L acquires an ad-

ditional F[z]-module structure by letting f ∈ F[z] act on x ∈ L via ϕfx = ζx +
∑m
µ=1 αµx

rµ where ϕf = ζ +
∑m
µ=1 αµτ

µ, and the condition im(ϕ) * L assures that

this module structure differs from the structure of an F[z]-algebra on L induced by

c∗ : F[z]→ L. In the sequel we will denote by ϕ(L) the F[z]-module with underlying

abelian group L and F[z]-action induced by ϕ; note that in the described way we get

an F[z]-module structure via ϕ on every L-algebra R; we denote this F[z]-module

by ϕ(R).

We have already distinguished the place ε = {z = 0} of our underlying curve P1
F.

We will be particularly interested in the behavior of a Drinfeld module ϕ : F[z] →

L[τ ] over L at ε. Let Lalg/L be an algebraic closure of L. For every n ≥ 1 the

equation znx = 0 (x ∈ ϕ(Lalg)) is a separable polynomial equation over L. Therefore,

let

ϕ[zn](Lsep) = {x ∈ ϕ(Lsep), znx = 0}
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2 The monodromy of certain extension structures

where Lsep/L is our fixed separable closure. It is obvious that the group GL acts

naturally on ϕ[zn](Lsep), and by [59], 2.5(a), we have

ϕ[zn](Lsep) ≃ (F[z]/zn)rk(ϕ).

There are natural transition maps ϕ[zn+1](Lsep)→ ϕ[zn](Lsep), given by scalar mul-

tiplication with z, which are GL-equivariant, and the projective limit

Tzϕ = lim←−nϕ[zn](Lsep)

is a free FJzK-module of rank rk(ϕ) which carries a natural action of GL. We call

Tzϕ the z-adic Tate module of ϕ. We further let Vzϕ = Tzϕ⊗FJzK F((z)); see [59], 3.3.

Similarly as in 2.5, one defines a Drinfeld (F[z]-)module over ℓ to be a ring homo-

morphism ψ : F[z]→ ℓ[τ ] such that im(ψ) * ℓ and such that ∂ℓ ◦ψ : F[z]→ ℓ equals

the composition F[z]→ oL → ℓ induced by c∗.

Note that every Drinfeld module ψ : F[z]→ ℓ[τ ] over ℓ considered here is of finite

characteristic ker(∂ℓ ◦ ψ) = ε = zF[z].

For example, let ϕ : F[z] → L[τ ] be a Drinfeld module over L such that im(ϕ) ⊆

oL[τ ] ⊆ L[τ ]. Then, denoting by f̄ the reduction in ℓ[τ ] of a skew polynomial

f ∈ oL[τ ], one can ask whether the assignment z 7→ ϕ̄z defines a Drinfeld module

over ℓ:

Definition 2.6. A Drinfeld module ϕ : F[z] → L[τ ] is called stable if there is a

Drinfeld module ψ : F[z]→ L[τ ], called an integral model for ϕ, such that

– ϕ ≃ ψ,

– ψf ∈ oL[τ ] for every f ∈ F[z],

– the ring homomorphism F[z]→ ℓ[τ ], z 7→ ψ̄z, defines a Drinfeld module over ℓ.

If ϕ : F[z] → L[τ ] is stable, with a suitable integral model ψ as in the previous

Definition, then rk(ψ̄) ≤ rk(ϕ); if moreover ψ can be chosen in such a way that

equality holds then ϕ is said to be of good reduction. For the following Theorem,

recall that given a Drinfeld module ϕ : F[z]→ L[τ ], a lattice inside ϕ is defined to be

a finite projective F[z]-submodule Λ ⊆ ϕ(Lsep) such that every ball of finite radius

inside Lsep contains at most finitely many points of Λ and such that ρ(Λ) ⊆ Λ for

every ρ ∈ GL.

Theorem 2.7 (Tate Uniformization – [21], 7.2). There is a bĳection between

— the set of isomorphism classes of stable Drinfeld modules over L of rank d,

and
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2.2 A non-crystalline Dieudonné module in equal characteristic

— the set of isomorphism classes of pairs (ψ,Λ) where ψ is a good-reduction

Drinfeld module over L of rank d′ ≤ d, and where Λ ⊆ ψ(Lsep) is a lattice

inside ψ such that (rkF[z]Λ =) dimF(z) Λ⊗F[z] F(z) = d− d′.

In this Theorem, the asserted bĳection can be described as follows: For a sta-

ble Drinfeld module ϕ : F[z] → L[τ ] of rank d with a choice of an integral model

ϕ′ : F[z]→ oL[τ ] there is

– a Drinfeld module ψ : F[z]→ L[τ ] of rank d′ = rk(ϕ′) such that im(ψ) ⊆ oL[τ ] and

such that z 7→ ψz defines a Drinfeld module F[z]→ ℓ[τ ] of rank d′ (in particular,

ψ is of good reduction),

– a skew formal power series u = 1 +
∑∞
j=1 ajτ

j ∈ oL{{τ}} such that ordπ(aj) ≥ 1

for all j and such that

uψf = ϕ′fu

for all f ∈ F[z]; here oL{{τ}} denotes the ring of skew formal power series
∑∞
j=0 bjτ

j

having coefficients in oL, with the commutation rule τα = αrτ for α ∈ oL; in [21],

7.2, Drinfeld goes on to show that moreover u verifies the convergence condition

ordπ(aj)/r
j →∞ (j →∞) and that aj ∈ mL for all j ≥ 1 (in particular, reducing

the relations uψf = ϕ′fu mod mL gives ψ̄ ≃ ϕ̄);

the pair (u, ψ) is uniquely determined by ϕ′; note that u can be interpreted as an

analytic homomorphism of Drinfeld modules ψ →an ϕ
′ which, due to rank reasons,

can not in general represent a nontrivial homomorphism of Drinfeld modules in the

(algebraic) sense defined before. Finally, the isomorphism class of ϕ corresponds to

the isomorphism class of the pair (ψ,Λ), where the lattice Λ inside ψ is given by

Λ = ker(u) = {x ∈ Lsep, x+
∞∑

j=1

ajx
rj = 0};

the latter is a free F[z]-module of rank d − d′; note that for every formal series
∑∞
j=0 bjτ

j ∈ oL{{τ}} additionally verifying the convergence condition ordπ(bj)/r
j →

∞ and every x ∈ Lalg (resp., x ∈ Lsep) the series
∑∞
j=0 bjx

rj converges in Lalg (resp.,

in Lsep) since the field extension L(x) is finite (resp., finite separable) and therefore

complete. Conversely, the Drinfeld module over L obtained from the exponential

function associated to Λ (as constructed in analytic uniformization theory [21], [36]

for Drinfeld modules over the completion C∞ of an algebraic closure of F((1/z))) is

isomorphic to ϕ, which concludes the description of the asserted bĳection.

For every Drinfeld module ϕ : F[z] → L[τ ] over L such that im(ϕ) ⊆ oL[τ ] and

such that z 7→ ϕz defines a Drinfeld module over ℓ, the latter is a Drinfeld module

over the perfect field ℓ, with Drinfeld characteristic given by the place ε associated to
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2 The monodromy of certain extension structures

(z) ⊆ F[z]. This parallels the situation of elliptic curves of semi-stable reduction over

p-adic fields, which are fields of characteristic zero, such that the associated reduced

curve is defined over a perfect field of positive characteristic; therefore we see that,

switching from elliptic curves to Drinfeld modules, the scenario of mixed character-

istic in the sense of rings is replaced by the scenario of mixed Drinfeld characteristic.

Recall that for a given Drinfeld module ψ : F[z]→ ℓ[τ ] over ℓ and every n ≥ 1 we

have

ψ(ℓalg)[zn] = {x ∈ ψ(ℓalg), znx = 0} ≃ (F[z]/zn)rk(ψ)−ht(ψ),

where the positive integer rk(ψ) (resp., ht(ψ)) denotes the rank (resp., the height)

of ψ, and where ht(ψ) ≤ rk(ψ); see [59], 2.3, 2.5.

Definition 2.8. Let ψ : F[z] → ℓ[τ ] be a Drinfeld module over ℓ. Then ψ is called

supersingular if ψ(ℓalg)[z] = 0 (i.e., ht(ψ) = rk(ψ)).

By virtue of the isomorphisms displayed above, the condition ψ[z](ℓalg) = 0 is

equivalent to saying that for all n ≥ 1 one has ψ(ℓalg)[zn] = 0. For a couple

of different characterizations and a deeper study of supersingularity for Drinfeld

modules over finite fields, see [32], 5.1. There is a tight analogy with the situation

for elliptic curves, as we have encountered in section (2.1); see [71], V.3.

Example 2.9. The simplest example of a Drinfeld module is incorporated by the

Carlitz module which is

C : F[z]→ L[τ ], Cz = ζ + τ

(see [36], 3.3). The reduction of C is given by

C̄ : F[z]→ ℓ[τ ], z 7→ τ.

This is a Drinfeld module over ℓ (in fact, the Carlitz module over ℓ) which is su-

persingular: indeed, for x ∈ C̄(ℓalg) we have zx = 0 if and only if xr = 0, i.e.,

x = 0.

2.2.3 Analytic Anderson motives

Let ϕ : F[z]→ L[τ ] be a Drinfeld module over L of rank d = rk(ϕ). Recall ([2], [36])

that the L-vector space M(ϕ) = L[τ ] becomes an L[z]-module by letting z act on

f ∈ M(ϕ) via zf = fϕz; the L[z]-module M(ϕ) is free of rank d, with basis given

by 1, τ, ..., τ d−1; see [36], 5.4.1. Furthermore, the map

M(ϕ)→M(ϕ), f 7→ τf,
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2.2 A non-crystalline Dieudonné module in equal characteristic

is an endomorphism of the abelian group M(ϕ), which, according to the commuta-

tion rule τα = αrτ in L[τ ] for α ∈ L, is semi-linear with respect to the r-Frobenius

lift σ : L[z]→ L[z],
∑n
ν=0 aνz

ν 7→
∑n
ν=0 a

r
νz

ν ; furthermore, the pair (M(ϕ), τ(·)) gives

rise to an object of the category FMod(F[z] ⊗F L) from (1.4), i.e., the associated

L[z]-linear map σ∗M(ϕ)→M(ϕ), m⊗ a 7→ aτm, is injective.

For a given homomorphism of Drinfeld modules λ : ϕ→ ϕ′, from (fϕ′z)λ = (fλ)ϕz

for f ∈ L[τ ] it follows that the L-linear mapM(λ) : M(ϕ′)→M(ϕ), f 7→ fλ, verifies

M(λ)(zf) = zM(λ)(f), i.e., M(λ) is L[z]-linear, and the assignments

ϕ 7→M(ϕ), (λ : ϕ→ ϕ′) 7→ (M(λ) : M(ϕ′)→M(ϕ))

define a contravariant fully faithful functor from the category of Drinfeld modules

over L to the category of Anderson F[z]-motives; see [36], 5.4.11.

Now suppose that ϕ : F[z]→ L[τ ] verifies im(ϕ) ⊆ oL[τ ]; note that this is the case

if and only if ϕz ∈ oL[τ ]. Further, suppose that z 7→ ϕz defines a Drinfeld module

over ℓ, of rank d′ ≤ d = rk(ϕ). Again by [21], 7.2, there is a unique good-reduction

Drinfeld module ψ : F[z] → L[τ ] of rank d′ such that im(ψ) ⊆ oL[τ ], together with

a formal power series u = 1 +
∑∞
j=1 ajx

rj ∈ oLJxK such that ordπ(aj) ≥ 1 for all

j, verifying the convergence condition ordπ(aj)/r
j → ∞ for j → ∞, as well as the

relations uψf = ϕfu for all f ∈ F[z]; like in the context of 2.7 we interpret the

power series u as an analytic homomorphism of Drinfeld modules u : ψ →an ϕ. The

following Theorem relies crucially on work of Gardeyn, [29], and shows how, by

virtue of u, Tate uniformization can be carried out in terms of (analytic) Anderson

motives.

Theorem 2.10. The analytic homomorphism u : ψ →an ϕ of Drinfeld modules gives

rise to a commutative diagram with exact rows

0 // N //

FN

��

M(ϕ)⊗L[z] L〈z〉 //

τ⊗σ
��

M(ψ)⊗L[z] L〈z〉 //

τ⊗σ
��

0

0 // N // M(ϕ)⊗L[z] L〈z〉 // M(ψ)⊗L[z] L〈z〉 // 0

with a finite free L〈z〉-module N of rank s = d− d′, where the horizontal maps are

L〈z〉-linear and the vertical maps are semi-linear with respect to the r-Frobenius lift

σ : L〈z〉 → L〈z〉,
∑∞
j=0 ajz

j 7→
∑∞
j=0 a

r
jz
j; moreover, there is a finite field extension

L′/L such that one has a commutative diagram

N ⊗L〈z〉 L
′〈z〉 ∼

ι
//

FN⊗σ
��

L′〈z〉s

σ⊕s

��
N ⊗L〈z〉 L

′〈z〉 ∼
ι

// L′〈z〉s
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2 The monodromy of certain extension structures

where the horizontal map ι : N ⊗L〈z〉 L
′〈z〉 → L′〈z〉s is an L′〈z〉-linear isomorphism

and the vertical maps are semi-linear with respect to the r-Frobenius lift of L′〈z〉; in

this sense, the couple (N,FN) is potentially trivial.

Note that with respect to the canonical basis E = (e1, ..., es) of L′〈z〉s the map

σ⊕s : L′〈z〉s → L′〈z〉s is described σ-semi-linearly by the unit matrix Ids ∈ L
′〈z〉s×s;

let B = (b1, ..., bs) be the L′〈z〉-basis of N ⊗L〈z〉 L
′〈z〉 defined by ei = ι(bi); the

condition ι ◦ (τN ⊗ σ) = σ⊕s ◦ ι asserted in the Theorem amounts to saying that

(FN ⊗ σ)(bi) = bi for every index i.

Proof of Theorem 2.10. By [29], 1.2, the analytic morphism ψ →an ϕ induces a

commutative diagram

0 // Ñ //

FN
��

M(ϕ)⊗L[z] L〈〈z〉〉 //

τ⊗σ
��

M(ψ)⊗L[z] L〈〈z〉〉 //

τ⊗σ
��

0

0 // Ñ // M(ϕ)⊗L[z] L〈〈z〉〉 // M(ψ)⊗L[z] L〈〈z〉〉 // 0

with a finite (and necessarily free) L〈〈z〉〉-module Ñ of rank s ≥ 0, where the hor-

izontal maps are L〈〈z〉〉-linear and the vertical maps are semi-linear with respect

to the r-Frobenius lift σ : L〈〈z〉〉 → L〈〈z〉〉,
∑∞
j=0 ajz

j 7→
∑∞
j=0 a

r
jz
j; here L〈〈z〉〉 de-

notes the subring of LJzK consisting of those formal power series
∑∞
j=0 bjz

j satisfying

ordπ(bj)/r
j →∞ as j →∞; furthermore, for some finite field extension L′/L there

is a commutative diagram

Ñ ⊗L〈〈z〉〉 L
′〈〈z〉〉

∼
ι

//

τN⊗σ
��

L′〈〈z〉〉s

σ⊕s

��
Ñ ⊗L〈〈z〉〉 L

′〈〈z〉〉
∼
ι

// L′〈〈z〉〉s

where the horizontal map ι : Ñ ⊗L〈〈z〉〉 L
′〈〈z〉〉 → L′〈〈z〉〉s is an L′〈〈z〉〉-linear isomor-

phism and the vertical maps are semi-linear with respect to the r-Frobenius lift of

L′〈〈z〉〉; we briefly write M (resp., M ′) for M(ϕ) ⊗L[z] L〈〈z〉〉 (resp., for M(ψ) ⊗L[z]

L〈〈z〉〉) and observe that the underlying exact sequence of L〈〈z〉〉-modules 0→ Ñ →

M → M ′ → 0 has to be split and therefore exhibits M as the L〈〈z〉〉-linear direct

sum of Ñ and M ′; as the tensor product is compatible with direct sums, applying

the functor · ⊗L〈〈z〉〉 L〈z〉 yields an exact sequence of free L〈z〉-modules

0→ Ñ ⊗L〈〈z〉〉 L〈z〉 →M ⊗L〈〈z〉〉 L〈z〉 →M ′ ⊗L〈〈z〉〉 L〈z〉 → 0

which of course is again split and where each map is again compatible with the

semi-linear data. Since functors preserve isomorphisms, applying · ⊗L′〈〈z〉〉 L
′〈z〉 to

the above commutative square yields an L′〈z〉-linear isomorphism

(Ñ ⊗L〈〈z〉〉 L〈z〉)⊗L〈z〉 L
′〈z〉 ≃ (Ñ ⊗L〈〈z〉〉 L

′〈〈z〉〉)⊗L′〈〈z〉〉 L
′〈z〉

∼
→ L′〈z〉
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2.2 A non-crystalline Dieudonné module in equal characteristic

which is compatible with the semi-linear data. Setting N = Ñ ⊗L〈〈z〉〉 L〈z〉 and

observing that M ⊗L〈〈z〉〉 L〈z〉 ≃ M(ϕ) ⊗L[z] L〈z〉 (likewise for M ′), we see that we

are done. �

2.2.4 Genestier-Lafforgue’s analogue for the crystalline

period functor Dcris

As mentioned before, given a p-adic field K there is a functor Dcris : RepQp
(GK)→

MFK(ϕ), defined by J.M. Fontaine, which induces an equivalence between

– the full subcategory Repcris(GK) of RepQp
(GK) consisting of those p-adic represen-

tations of the absolute Galois group GK of K which are crystalline, and

– the full subcategory MFK(ϕ)wa of MFK(ϕ) consisting of those filtered ϕ-modules

over the field F = W (k)[1/p] (k being the residue field of the valuation ring of

K) which are weakly admissible;

see [27] for a discussion of this equivalence, and cf. (2.1.2) for a brief discussion of

the categories Repcris(GK) and MFK(ϕ).

Turning to equal characteristic, and retaining our complete discretely valued field

L from before, we now briefly describe an analogue for the functor Dcris which was

first defined by A. Genestier and V. Lafforgue in [34] and thorougly studied in [34],

[41].

Definition 2.11. A local shtuka (over oL) is a pair (M̂, FM̂) consisting of a finite

free oLJzK-module M̂ , together with an oLJzK[
1
z−ζ

]-linear isomorphism

FM̂ : σ∗M̂ [ 1
z−ζ

]→ M̂ [ 1
z−ζ

]

where σ∗M̂ = M̂⊗oLJzK,σ oLJzK and where σ : oLJzK→ oLJzK is the r-Frobenius lift of

oLJzK defined by
∑∞
j=0 ajz

j 7→
∑∞
j=0 a

r
jz
j. A morphism of local shtukas (M̂, FM̂) →

(N̂ , FN̂) is an oLJzK-linear map f : M̂ → N̂ such that f ◦FM̂ = FN̂ ◦σ
∗f . An isogeny

of local shtukas is a morphism f : (M̂, FM̂)→ (N̂ , FN̂) such that there is a morphism

g : (N̂ , FN̂)→ (M̂, FM̂) and an integer e ≥ 0 such that g ◦ f = ze and f ◦ g = ze.

Remark. Let us briefly indicate that the element z − ζ ∈ oLJzK appearing in the

denominator stems from a distinguished Eisenstein polynomial employed in Breuil-

Kisin’s study ([14], [48]) of crystalline p-adic representations of the Galois group of

a p-adic field; more precisely, in the notation of [48], the category of local shtukas

provides an analogue for the category BTϕ
/S⊗ Qp; see [40], [41] for a discussion of

this analogy.
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2 The monodromy of certain extension structures

Note that the isomorphism FM̂ need not be induced by an actual oLJzK-linear map

σ∗M̂ → M̂ ; if, however, such a map exists then the local shtuka (M̂, FM̂) is called

effective. For example, as we have studied in chapter 1, the local shtuka associated

to (a good model of) an Anderson motive of good reduction via ε-adic formal com-

pletion is always effective; in particular, an effective local shtuka can be associated

to every good-reduction Drinfeld module over L; besides these examples, see [41],

2.1.4, for an account of the most important sources from which local shtukas arise.

Already here it should be stressed that local shtukas are limited to a scenario of

good reduction, a circumstance which will be further discussed below.

Definition 2.12. A z-isocrystal (or local isoshtuka) over ℓ is a pair (D,FD) con-

sisting of a finite ℓ((z))-vector space D, together with an ℓ((z))-linear isomorphism

σ∗D → D where σ∗D = D ⊗ℓ((z)),σ ℓ((z)) and where σ : ℓ((z)) → ℓ((z)) is induced by

the r-Frobenius lift ℓJzK → ℓJzK defined by
∑∞
j=0 ajz

j 7→
∑∞
j=0 a

r
jz
j. A morphism

of z-isocrystals (D,FD) → (D′, FD′) is an ℓ((z))-linear map f : D → D′ such that

f ◦ FD = FD′ ◦ σ
∗f .

Given a morphism f : (D,FD) → (D′, FD′) of z-isocrystals, the semi-linear map

F sl
D : D → D restricts to a semi-linear map F sl

D : ker(f) → ker(f) which in turn

induces an ℓ((z))-linear map σ∗ ker(f) → ker(f); the latter is clearly injective and,

looking at dimensions, therefore has to be an isomorphism again, so that one obtains

a canonical structure of a z-isocrystal on ker(f); similarly one obtains a canonical

structure of a z-isocrystal on im(f) ⊆ D′.

Let us next discuss the analogue for the category MFK(ϕ) of filtered isocrystals

from Fontaine theory as proposed in [34]. To begin with, we remark that, according

to [69], II.4.8, there is a unique ring homomorphism ℓ → oL which is a section of

the residue map oL → ℓ. The section ℓ→ oL induces a canonical homomorphism

ℓ((z))→ LJz − ζK, z 7→ ζ + (z − ζ),

where LJz − ζK denotes "the" equal-characteristic complete discrete valuation ring

with uniformizer z−ζ and residue field L (see [40], 2.9); let L((z−ζ)) = LJz−ζK[ 1
z−ζ

].

Definition 2.13. A z-isocrystal with Hodge-Pink structure (over L) is a triple (D,

FD, qD) where (D,FD) is a z-isocrystal over ℓ and where

qD ⊆ σ∗D ⊗ℓ((z)) L((z − ζ))

is an LJz − ζK-lattice of full rank. A morphism of z-isocrystals with Hodge-Pink

structure (D,FD, qD)→ (D′, FD′ , qD′) is a morphism of z-isocrystals f : (D,FD)→
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2.2 A non-crystalline Dieudonné module in equal characteristic

(D′, FD′) such that

σ∗f ⊗ id : σ∗D ⊗ℓ((z)) L((z − ζ))→ σ∗D′ ⊗ℓ((z)) L((z − ζ))

verifies (σ∗f ⊗ id)(qD) ⊆ qD′. We denote the category of z-isocrystals with Hodge-

Pink structure by Mℓ((z))(F, q).

See [41], 2.2.3, for a comparison between the concept of filtered Frobenius-isocrystals

from Fontaine theory on the one hand, and the concept of z-isocrystals with Hodge-

Pink structure on the other hand.

Now let (M̂, FM̂) be a local shtuka over oL; it gives rise to a z-isocrystal (D,FD)

with Hodge-Pink structure qD as follows: the underlying ℓ((z))-vector space is given

by D = M̂ ⊗oLJzK ℓ((z)); accordingly one defines FD = FM̂ ⊗ id. In order to associate

a Hodge-Pink structure to the pair (D,FD), one employs the following

Lemma 2.14 ([34], [41]). There is a unique functorial isomorphism

δM̂ : M̂ ⊗oLJzK oLJz, z
−1}[1/t−]

≃
→ D ⊗ℓ((z)) oLJz, z

−1}[1/t−]

which satisfies δM̂ ◦ FM̂ = FD ◦ σ
∗δM̂ and which mod π reduces to the identity.

Here the oL-algebra oLJz, z
−1} consists of those (infinite-tail) formal Laurent series

∑∞
j=−∞ bjz

j such that bj ∈ oL and |bj| · |ζ|
rj → 0 (j → −∞) for all r > 0, and the

element t− ∈ oLJz, z
−1} is defined as the limit of the sequence

(
n∏

j=0

1

z
(z − ζr

j

))n≥0 = (
n+1∑

j=0

(
1

z
)n+1−j(−1)n+1−j

∑

0≤ν1<...<νn+j−1≤n

ζr
ν1 +...+rνn+1−j

)n≥0

inside oLJz, z
−1}. There is a canonical map oLJz, z

−1} → LJz − ζK which is given

by the inclusion oL →֒ L and z 7→ ζ + (z − ζ) and which extends to a map

oLJz, z
−1}[1/t−]→ LJz− ζK; by applying the functor ·⊗oLJz,z−1}[1/t−]LJz− ζK to the

isomorphism

σ∗δM̂ : σ∗M̂ ⊗oLJzK oLJz, z
−1}[1/σ(t−)]

≃
→ σ∗D ⊗ℓ((z)) oLJz, z

−1}[1/σ(t−)],

we obtain an isomorphism σ∗M̂ ⊗oLJzKLJz− ζK
≃
→ σ∗D⊗ℓ((z))LJz− ζK which is again

denoted by σ∗δM̂ ; note that σ∗D⊗ℓ((z))LJz−ζK is an LJz−ζK-lattice of full rank inside

σ∗D⊗ℓ((z)) L((z− ζ)); it is called the tautological lattice. Similarly, by composing the

reduction map oLJzK[
1
z−ζ

]→ ℓ((z)) with the ring homomorphism ℓ((z))→ L((z − ζ)),

z 7→ ζ + (z− ζ), the isomorphism FM̂ : σ∗M̂ ⊗oLJzK oLJzK[
1
z−ζ

]
≃
→ M̂ ⊗oLJzK oLJzK[

1
z−ζ

]

induces an isomorphism

σ∗M̂ ⊗oLJzK L((z − ζ))
≃
→ M̂ ⊗oLJzK L((z − ζ))
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which is again denoted by FM̂ . Finally, in this notation, the Hodge-Pink structure

associated to the z-isocrystal (D,FD) is given by

qD = σ∗δM̂ ◦ (σ∗FM̂)−1(M̂ ⊗oLJzK LJz − ζK) ⊆ σ∗D ⊗ℓ((z)) L((z − ζ)).

The assignment (M̂, FM̂) 7→ (D,FD, qD) defines a functor

H : (local shtukas over oL)→Mℓ((z))(F, q).

Localizing the category of local shtukas over oL by the class of isogenies yields,

by definition, the category of local shtukas over oL up to isogeny. The functor H

sends isogenies of local shukas to isomorphisms of the associated z-isocrystals with

Hodge-Pink structure and therefore, by the universal property of localization, factors

uniquely up to equivalence of functors via

Hiso : (local shtukas over oL up to isogeny)→Mℓ((z))(F, q).

For the following Theorem we remark that, given two local shtukas (M̂, FM̂),

(N̂ , FN̂), their tensor product is given by the local shtuka (M̂ ⊗oLJzK N̂ , FM̂ ⊗ FN̂),

and the dual of (M̂, FM̂) is given by the oLJzK-module M̂∨ = HomoLJzK(M̂, oLJzK)

together with FM̂∨ : σ∗M̂∨[ 1
z−ζ

]→ M̂∨[ 1
z−ζ

] defined by the commutative diagram

σ∗M̂∨[ 1
z−ζ

]
FM̂∨ //________________

≃
��

M̂∨[ 1
z−ζ

]

≃
��

Hom
oLJzK[

1
z−ζ

]
(σ∗M̂ [ 1

z−ζ
], oLJzK[

1
z−ζ

])
·◦F−1

M̂

// Hom
oLJzK[

1
z−ζ

]
(M̂ [ 1

z−ζ
], oLJzK[

1
z−ζ

])

using that the Frobenius lift σ : oLJzK→ oLJzK is flat and hence σ∗(M̂∨) ≃ (σ∗M̂)∨;

in this spirit, one may write FM̂∨ = (F−1
M̂

)∨. Similarly, given two z-isocrystals with

Hodge-Pink structure (D,FD, qD), (D′, FD′ , qD′), their tensor product is given by

the triple (D⊗ℓ((z))D
′, FD⊗FD′ , qD⊗LJz−ζK qD′), and the dual of (D,FD, qD) is given

by the triple (D∨, (F−1
D )∨,HomLJz−ζK(qD, LJz − ζK)).

Theorem 2.15 ([34], [41]). The functor Hiso is exact, fully faithful, and it respects

tensor products and duals.

The study of the categories introduced here and of the functor H is referred to

as Hodge-Pink theory; see [34], [41], [63]. In [34] the functor Hiso is proposed as an

equal-characteristic analogue for the functor

Dcris : Repcris(GK)→MFK(ϕ)

where GK is the absolute Galois group of a given p-adic field K. See [40], and [41],

2.3.6, for a discussion of the analogy between local shtukas on the one hand, and

crystalline p-adic representations in the sense of Fontaine on the other hand.
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2.2 A non-crystalline Dieudonné module in equal characteristic

2.2.5 Semi-stable local shtukas and z-isocrystals with

Hodge-Pink structure and monodromy

After having discussed the "crystalline level" in the previous section, namely the

functor Hiso which plays the role of Fontaine’s functorDcris : Repcris(GK)→MFK(ϕ)

in equal characteristic, we now turn to the "semi-stable level", and for this we first

recall the commutative diagram of categories and fully faithful functors

Repst(GK) // MFK(ϕ,N)

Repcris(GK) //

OO

MFK(ϕ)

OO

which was already discussed in section (2.1.2). Viewing the (isogeny) category of

local shtukas over oL as an analogue for crystalline p-adic representations ([40], 5.3,

5.4), we now intend to study a hypothetical analogue for the category Repst(GK) of

semi-stable p-adic representations à la Fontaine.

Digression 2.16. We have mentioned earlier that local shtukas and, correspond-

ingly, crystalline p-adic representations have to be seen as good-reduction objects.

Let us look at the p-adic world and let us say a few words about the geometric

picture standing behind Fontaine’s theory. In [38], Grothendieck posed the ques-

tion of whether there is a functorial relation between the p-adic étale cohomology

H∗ét(X ⊗K Kalg,Qp) of a smooth proper scheme X of good reduction over a p-adic

field K on the one hand, and the crystalline cohomology H∗crys(X/K) of X on the

other hand. Such a functorial relation is, in fact, provided by Fontaine’s crystalline

period functor Dcris, i.e., the Qp-vector space H∗ét(X ⊗K Kalg,Qp) indeed is a crys-

talline p-adic representation of the absolute Galois group GK of the field K (as

was shown by G. Faltings), the abelian group H∗crys(X/K) gives rise to an object

of MFK(ϕ) (shown by P. Deligne and L. Illusie), and Dcris(H
∗
ét(X ⊗K Kalg,Qp))

is indeed isomorphic to H∗crys(X/K) as objects of MFK(ϕ); see [3], [15], [26], [27],

[39]. There is a very similar geometric picture which is related to Fontaine’s functor

Dst – namely, given a proper and smooth scheme X of semi-stable reduction over a

p-adic field K, a conjecture of J. M. Fontaine and U. Jannsen states that there is a

functorial isomorphism

Dst(H
∗
ét(X ⊗K K

alg,Qp)) ≃ H∗log−crys(X)

where H∗log−crys(X) denotes the log-crystalline cohomology of the scheme X. The

proof of this conjecture has been accomplished by T. Tsuji; see [75] for a survey. –

Turning again to equal characteristic, we have already seen that local shtukas

are functorially associated to global objects such as Drinfeld modules or Anderson
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2 The monodromy of certain extension structures

motives, where one has to restrict to those objects which are of good reduction or

rather, in terms of the most general instance of Drinfeld shtukas: those which do

not possess degenerators ([20], [49]).

Taking the case of bad reduction into account, a given local shtuka (M̂, FM̂) should

be seen as a canonical good model for the associated pair

(M̂ ⊗oLJzK (oLJzK⊗oL L), FM̂ ⊗ id)

which is then said to be of good reduction. This point of view ties in with the general

"philosophy" of reduction, such as in the case of elliptic curves/abelian varieties or

Drinfeld modules/Anderson motives.

In order to discuss a hypothetical analogue for Fontaine’s functorDst : Repst(GK)→

MFK(ϕ,N) we commence by studying the following analogue for the category

MFK(ϕ,N). We define the category Mℓ((z))(F, q,N ) of z-isocrystals with Hodge-

Pink structure and monodromy operator as follows:

– An object of Mℓ((z))(F, q,N ) is given by a pair ((D,FD, qD),ND) where (D,FD, qD)

is a z-isocrystal with Hodge-Pink structure and where ND : D → D is an ℓ((z))-

linear map, called the monodromy operator, such that ND ◦ FD = λDFD ◦ σ
∗ND

for a suitable λD ∈ ℓJzK− ℓJzK
×.

– A morphism ((D,FD, qD),ND) → ((D′, FD′ , qD′),ND′) inside Mℓ((z))(F, q,N ) is

given by a morphism f : (D,FD, qD)→ (D′, FD′ , qD′) of z-isocrystals with Hodge-

Pink structure such that ND′ ◦ f = f ◦ ND.

A sequence of morphisms

0→ ((D′, FD′ , qD′),ND′)
f
→ ((D,FD, qD),ND)

g
→ ((D′′, FD′′ , qD′′),ND′′)→ 0

inside Mℓ((z))(F, q,N ) is said to be exact if the underlying sequence of z-isocrystals

with Hodge-Pink structure 0→ (D′, FD′ , qD′)→ (D,FD, qD)→ (D′′, FD′′ , qD′′)→ 0

is an exact sequence of z-isocrystals such that (σ∗g ⊗ id)(qD) = qD′′ and such that

σ∗f ⊗ id identifies qD′ with qD ∩ σ
∗D ⊗ℓ((z)) L((z − ζ)).

Remark. Note that for an object ((D,FD, qD),ND) of Mℓ((z))(F, q,N ) we do not

impose a relation between the monodromy operator ND and the Hodge-Pink struc-

ture qD of the underlying z-isocrystal. This parallels the situation in Fontaine theory

where for an object ((D,ϕD,Fil•DK), ND) of MFK(ϕ,N) the filtration Fil•DK of the

underlying filtered isocrystal is not related to the monodromy operatorND : D → D;

cf. [14], [15], [27]. Also note that the relation ND ◦FD = λDFD ◦σ
∗ND is equivalent
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2.2 A non-crystalline Dieudonné module in equal characteristic

to N ◦ F sl
D = λDF

sl
D ◦ ND where F sl

D : D → D is the semi-linear map corresponding

to the isomorphism FD : σ∗D → D.

There is an obvious fully faithful and exact "inclusion" functor

Mℓ((z))(F, q)→Mℓ((z))(F, q,N ), (D,FD, qD) 7→ ((D,FD, qD),ND = 0),

which admits a faithful and exact "retraction" given by

Mℓ((z))(F, q,N )→Mℓ((z))(F, q), ((D,FD, qD),ND) 7→ (D,FD, qD).

Of course both categories appearing here admit an obvious faithful and exact

forgetful functor into the category Mod(ℓ((z))) of ℓ((z))-vector spaces.

Lemma 2.17. Let ((D,FD, qD),ND) be an object of Mℓ((z))(F, q,N ) such that

dimℓ((z)) D = 1.

Then ND = 0.

Proof. For a fixed basis element d ∈ D the map FD : σ∗D → D corresponds to the

map ℓ((z)) → ℓ((z)), x 7→ fDx, where fD = d[FD]σ∗d ∈ ℓ((z))×, and ND : D → D

corresponds to the map ℓ((z)) → ℓ((z)), x 7→ nDx, where nD = d[ND]d ∈ ℓ((z)).

Now, as nD = d[ND]d = σ∗d[σ
∗ND]σ∗d, we obtain a relation λDfDσ(nD) = fDnD

inside ℓ((z)); applying ordz(·) on both sides we realize that, by virtue of ordz(nD) =

ordz(σ(nD)), this relation cannot be valid unless nD = 0. �

Hypothesis 2.18. Suppose there is

– a category S whose objects are called semi-stable local shtukas over L, and which

admits a notion of exact sequence, together with an exact functor

i : (local shtukas over oL)→ S;

– an exact functor

Hst : S →Mℓ((z))(F, q,N )

which, up to equivalence of functors, restricts to the functor H on local shtukas

over oL;

– for M ∈ S one has NHst(M) = 0 if and only if M comes from a local shtuka over

oL, i.e., lies in the essential image of i.
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2 The monodromy of certain extension structures

Remark. The hypothetical category S could be expected to admit a (universal)

functor into the category FMod(R) where R is a suitable oLJzK⊗oL L-algebra; the

image of a semi-stable local shtuka M ∈ S over L via such a "forgetful" functor

would then be interpreted as the underlying module of M ; such a situation would

truly generalize the case of the category of local shtukas over oL which indeed admits

an exact forgetful functor into the category of (finite free) oLJzK-modules. However,

it would not be obvious how to define the hypothetical analogue

Hst : S →Mℓ((z))(F, q,N )

for Fontaine’s functor Dst : Repst(GK) → MFK(ϕ,N) on underlying modules, re-

quiring that Hst be an extension of H. To begin with, supposing additionally that

for a given local shtuka (M̂, FM̂) the underlying R-module of the associated object

of S is (functorially) isomorphic M̂ ⊗oLJzK R would lead to a commutative diagram

S
Hst //

uulllllllllllllllll Mℓ((z))(F, q,N )

��

vvmmmmmmmmmmmm

Mod(R) Mod(ℓ((z)))


 local shtukas

over oL




OO

wwooooooooooo

H // Mℓ((z))(F, q)

N=0

OO

xxqqqqqqqqqqqqqqq

Mod(oLJzK)
·⊗oLJzKℓ((z))

//

·⊗oLJzKR

OO

Mod(ℓ((z)))

However, there cannot be an oL-algebra homomorphism R → ℓ((z)) which replaces

the reduction map oLJzK → ℓ((z)) appearing in the good-reduction case, for the

image of π in R is a unit, whereas it is zero in ℓ((z)). Given a local shtuka (M̂, FM̂)

over oL, a hypothetical natural isomorphism of ℓ((z))-vector spaces

(M̂ ⊗oLJzK R)⊗R ℓ((z)) ≃ M̂ ⊗oLJzK ℓ((z))

expressing Hst(M̂) ≃ H(M̂) is therefore not available, so that it becomes impossi-

ble for Hst to act as ·⊗Rℓ((z)) on underlying modules for any oLJzK⊗oLL-algebraR. –

2.2.6 A non-crystalline Dieudonné module in equal

characteristic

We consider the Drinfeld module over L given by

ϕ : F[z]→ L[τ ], z 7→ ζ + τ 2.
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2.2 A non-crystalline Dieudonné module in equal characteristic

The Drinfeld module ϕ clearly has integral coefficients, i.e., im(ϕ) ⊆ oL[τ ], and ϕ is

of good reduction: the reduced Drinfeld module over ℓ is given by

ϕ̄ : F[z]→ ℓ[τ ], z 7→ τ 2;

the latter is a supersingular Drinfeld module, i.e., ϕ is of supersingular reduction,

for we have

ϕ̄[z](ℓalg) = {x ∈ ℓalg, xq
2

= 0} = 0.

Inside the F[z]-module ϕ(Lsep) we consider the F[z]-lattice of rank 1 given by

Λ = F[z]ζ−1 = {ϕλ(ζ
−1), λ ∈ F[z]}.

Indeed Λ ⊆ ϕ(Lsep) is a free F[z]-submodule of rank 1 which is ρ-stable for every

ρ ∈ GL and, by virtue of |ζ−1| > 1, is discrete in the sense that every bounded ball

inside Lsep contains at most finitely many elements of Λ.

By the Tate uniformization Theorem the pair (ϕ,Λ) gives rise to a bad-reduction

Drinfeld module ϕ′ over L of rank 3 = rk(ϕ) + rkF[z](Λ) whose isomorphism class

corresponds to the isomorphism class of (ϕ,Λ) via the bĳection described in (2.2.2).

Moreover, by 2.10, the Tate uniformization map ϕ →an ϕ
′ may be carried out in

terms of analytic Anderson motives: we obtain a commutative diagram with exact

rows

0 // N //

τN

��

M(ϕ′)⊗L[z] L〈z〉 //

τ⊗σ
��

M(ϕ)⊗L[z] L〈z〉 //

τ⊗σ
��

0

0 // N // M(ϕ′)⊗L[z] L〈z〉 // M(ϕ)⊗L[z] L〈z〉 // 0

where the vertical maps are semi-linear with respect to the Frobenius lift σ of L〈z〉.

Tensoring this diagram over L〈z〉 with oLJzK[1/π] ≃ oLJzK⊗oL L yields a commuta-

tive diagram with exact rows

0 // N ⊗L〈z〉 oLJzK[1/π] //

τN⊗σ

��

M(ϕ′)⊗L[z] oLJzK[1/π] //

τ⊗σ

��

M(ϕ)⊗L[z] oLJzK[1/π] //

τ⊗σ

��

0

0 // N ⊗L〈z〉 oLJzK[1/π] // M(ϕ′)⊗L[z] oLJzK[1/π] // M(ϕ)⊗L[z] oLJzK[1/π] // 0

where now σ denotes the Frobenius lift of oLJzK[1/π]. Taking up the notation from

(2.2.5) we want to explain how this diagram can give rise to a short exact sequence

inside the hypothetical category S of semi-stable local shtukas. For this purpose it

is, in the first place, desirable to establish the following Hypothesis; before we state

it, note that there is a canonical faithful, exact functor

(effective local shtukas over oL) → FMod(oLJzK[1/π]),

(M̂, FM̂) 7→ (M̂ [1/π], FM̂ [1/π]),

61



2 The monodromy of certain extension structures

which to every effective local shtuka M̂ = (M̂, FM̂) associates the F -module over

oLJzK[1/π] of which M̂ is a "canonical good model".

Hypothesis 2.19. There is an exact functor

s : FMod(oLJzK[1/π])→ S

such that dimℓ((z))(Hst ◦ s)(M) = rkoLJzK[1/π](M) for M ∈ FMod(oLJzK[1/π]), and

such that the diagram of categories and functors

FMod(oLJzK[1/π])

s

$$JJJJJJJJJJJJJJJ


 effective local

shtukas over oL


 i //

66lllllllllllll

S

is commutative (up to equivalence of functors).

Here the category FMod(oLJzK[1/π]) was defined in (1.4). The hypothetical func-

tor s generalizes the functor which assigns a local shtuka over oL to (good models

of) good-reduction Anderson motives (see [41], 2.1.4).

Regarding the exact sequence 0→ N⊗L〈z〉oLJzK[1/π]→M(ϕ′)⊗L[z]oLJzK[1/π]→

M(ϕ) ⊗L[z] oLJzK[1/π] → 0 which we want to transfer via Hst into the category

Mℓ((z))(F, q,N ), we make the following

Remark 2.20.

– According to the above Hypothesis 2.19, applying Hst ◦ s to N ⊗L〈z〉 oLJzK[1/π]

will in particular give a z-isocrystal with Hodge-Pink structure whose underlying

ℓ((z))-vector space is of dimension 1. Therefore, by 2.17, the object (Hst◦s)(N⊗L〈z〉

oLJzK[1/π]) of Mℓ((z))(F, q,N ) has trivial monodromy operator (which means that,

by 2.18, the semi-stable local shtuka s(N ⊗L〈z〉 oLJzK[1/π]) would have to come

from a local shtuka over oL).

– Since ϕ is of good reduction as a Drinfeld module it follows that the Anderson

motive M(ϕ) admits a good model M(ϕ) as an algebraic τ -sheaf à la Gardeyn,

and even in a stronger sense. In order to explain this, we study the additional

semi-linear structure of M(ϕ) which is given by

τ : M(ϕ)→M(ϕ), m 7→ τm.

First of all, as was mentioned before, the L-vector space M(ϕ) = L[τ ] becomes

an L[z]-module via zf = fϕz for f ∈ L[z]. As such, M(ϕ) is finite free of rank 2.

The map τ : M(ϕ)→M(ϕ) induces an L[z]-linear map

τ lin : M(ϕ)⊗L[z],σ L[z]→M(ϕ), m⊗ f 7→ fτm,
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2.2 A non-crystalline Dieudonné module in equal characteristic

which, fixing the basis (1, τ) of M(ϕ), is described by the matrix ( 0 z−ζ
1 0 ). Let

C = coker(τ lin) be the cokernel of τ lin. We claim that C is a one-dimensional

L-vector space and that (z − ζ)C = 0. Indeed, clearly there is an isomorphism

C ≃ L[z]2/( 0 z−ζ
1 0 )L[z]2

which is induced by our choice of basis, and the projection L[z]2 → L[z], (a, b) 7→

a, induces an isomorphism L[z]2/( 0 z−ζ
1 0 )L[z]2 ≃ L[z]/(z− ζ); the latter is isomor-

phic to L via L[z]→ L, z 7→ ζ, so our claim follows.

Next we claim that the oL[z]-module M(ϕ) = oL[z]2 together with the injective

oL[z]-linear map

FM(ϕ) : oL[z]2 ⊗oL[z],σ oL[z]→ oL[z]2, ( 1
0 )⊗ 1 7→ ( 0

1 ), ( 0
1 )⊗ 1 7→ (z − ζ)( 1

0 ),

is a good model for M(ϕ) in the sense that

– there is an isomorphism of L[z]-modules M(ϕ) ⊗oL L ≃ M(ϕ) which is

compatible with FM(ϕ) ⊗ id on M(ϕ)⊗oL L and τ lin on M(ϕ),

– coker(FM(ϕ)) is an oL-module of rank 1 and is annihilated by z − ζ.

The first item is clear, and for the second item it remains to verify that we may

imitate the above argument with L[z] replaced by oL[z]. Indeed, we have an

isomorphism coker(FM(ϕ)) ≃ oL[z]2/( 0 z−ζ
1 0 )oL[z]2 which is induced by the canon-

ical basis, and by virtue of the isomorphism oL[z]2/( 0 z−ζ
1 0 )oL[z]2

≃
→ oL[z]/(z − ζ)

induced by the projection (a, b) 7→ a it remains to show that oL[z]/(z − ζ) is

isomorphic to oL via the map oL[z] → oL, z 7→ ζ. So let f ∈ oL[z] be such that

f(ζ) = 0; here we may interpret f as an element of L[z], so that we find a unique

g ∈ L[z] verifying f = (z − ζ)g; we may further interpret this equation as being

valid inside L〈z〉, so that ||g|| ≤ 1 (for example, by [9], 1.2/8) where || · || denotes

the Gauss-Norm of L〈z〉, i.e., g ∈ oL[z]. We may conclude (see [41], 2.1.4) that the

(z)-adic completion (M(ϕ)⊗oL[z] oLJzK, FM(ϕ) ⊗ id) of the model (M(ϕ), FM(ϕ))

is an effective local shtuka over oL, and we see that this local shtuka verifies

(M(ϕ)⊗oL[z] oLJzK)⊗oLJzK oLJzK[1/π] ≃ (M(ϕ)⊗L[z] L〈z〉)⊗L〈z〉 oLJzK[1/π];

this isomorphism is compatible with (F sl
M(ϕ)⊗σoLJzK)⊗σoLJzK[1/π] and (τ ⊗σL〈z〉)⊗

σoLJzK[1/π]. Finally, applying the functor H to the local shtuka (M(ϕ) ⊗oL[z]

oLJzK, FM(ϕ) ⊗ id) gives the z-isocrystal (D,FD) where D = ℓ((z))2 and where

FD : ℓ((z))2 ⊗ℓ((z)),σ ℓ((z))→ ℓ((z))2 is, with respect to the canonical basis of ℓ((z))2,

described by the matrix ( 0 z
1 0 ). In particular, the monodromy operator of the

corresponding object of Mℓ((z))(F, q,N ) is trivial.

– The middle term M(ϕ′) ⊗L[z] oLJzK[1/π] is of bad-reduction origin and therefore

should certainly give rise to an object of S which is properly semi-stable, i.e., it
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2 The monodromy of certain extension structures

should not eventually turn out to come from a local shtuka over oL like the right-

hand term M(ϕ)⊗L[z] oLJzK[1/π] does (see the previous item). However, below we

will see that, in fact, the z-isocrystal (Hst ◦ s)(M(ϕ′)⊗L[z] oLJzK[1/π]) has trivial

monodromy. –

Now we finally study the situation on the level of the associated z-isocrystals. To

begin with, applying the functor s to our exact sequence

0→ N ⊗L〈z〉 oLJzK[1/π]→M(ϕ′)⊗L[z] oLJzK[1/π]→M(ϕ)⊗L[z] oLJzK[1/π]→ 0

inside FMod(oLJzK[1/π]) yields a short exact sequence 0→ sN → sM(ϕ′) → sM(ϕ) →

0 inside the hypothetical category S of semi-stable local shtukas. Retaining our hy-

potheses 2.18, 2.19, and recalling what we have seen in section (2.2.5), the associated

exact sequence

0→ Hst(sN)→ Hst(sM(ϕ′))→ Hst(sM(ϕ))→ 0

inside Mℓ((z))(F, q,N ) is, in particular, a short exact sequence of z-isocrystals with

Hodge-Pink structure, and we obtain the following commutative diagram of ℓ((z))-

vector spaces with exact rows

0 // Hst(sN) i //

NHst(sN )=0

��

Hst(sM(ϕ′))
pr //

NHst(sM(ϕ′))

��

Hst(sM(ϕ)) //

NHst(sM(ϕ))=0

��

0

0 // Hst(sN) i // Hst(sM(ϕ′))
pr // Hst(sM(ϕ)) // 0

By virtue of the Snake Lemma there is an ℓ((z))-linear map

d : Hst(sM(ϕ))→ Hst(sN)

such that NHst(sM(ϕ′)) = i ◦ d ◦ pr. From this, by

i(d(F sl
Hst(sM(ϕ))(pr(y)))) = i(d(pr(F sl

Hst(sM(ϕ′))(y))))

= NHst(sM(ϕ′))(F
sl
Hst(sM(ϕ′))(y))

= λHst(sM(ϕ′))F
sl
Hst(sM(ϕ′))(NHst(sM(ϕ′))(y))

= i(λHst(sM(ϕ′))F
sl
Hst(sN )(d(pr(y))))

for every y ∈ Hst(sM(ϕ′)), it follows that

d ◦ F sl
Hst(sM(ϕ)) = λHst(sM(ϕ′))F

sl
Hst(sN ) ◦ d.

In particular, the map F sl
Hst(sM(ϕ)) : Hst(sM(ϕ))→ Hst(sM(ϕ)) restricts to a map

F sl
Hst(sM(ϕ)) : ker(d)→ ker(d)
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2.2 A non-crystalline Dieudonné module in equal characteristic

which of course is again semi-linear; it follows at once that the corresponding ℓ((z))-

linear map σ∗ ker(d) → ker(d) is a monomorphism of ℓ((z))-vector spaces, hence an

isomorphism. We may conclude that the ℓ((z))-linear subspace ker(d) ⊆ Hst(sM(ϕ))

gives rise to a sub-z-isocrystal of Hst(sM(ϕ)); note that we ignore Hodge-Pink struc-

tures in this place.

Our aim is to show that the subspace ker(d) equals Hst(sM(ϕ)). In order to achieve

this we recall that, according to our Hypothesis 2.18, 2.19 as well as the above re-

marks on the structure of M(ϕ), the underlying z-isocrystal of Hst(sM(ϕ)) is isomor-

phic to the z-isocrystal

D =
(
ℓ((z))2, ( 0 z

1 0 ) · σ
)

where ( 0 z
1 0 ) · σ denotes the map ℓ((z))2 → ℓ((z))2 which is, with respect to the

canonical basis of ℓ((z))2, semi-linearly described by the matrix ( 0 z
1 0 ). However, the

latter z-isocrystal is simple, i.e., it admits no nonzero proper subobjects; indeed, by

[52], 2.4.5, the associated Dieudonné-ℓalg((z))-module

D ⊗ℓ((z)) ℓ
alg((z)) =

(
ℓalg((z))2, ( 0 z

1 0 ) · σ
)

has to be simple, and we may conclude that, consequently, D is simple, the latter be-

ing true since the field extension ℓalg((z))/ℓ((z)) is faithfully flat; note that, according

to loc. cit., the structure theory of z-isocrystals over an algebraically closed residue

field very much parallels the corresponding theory over (residue fields of) p-adic

fields as indicated in (2.1.3); see also [40], 3.6. Finally, we may conclude that the

inclusion ker(d) ⊆ Hst(sM(ϕ′)) has, in fact, to be an equality since, looking at dimen-

sions, ker(d) has to be a nontrivial subobject of the simple z-isocrystal Hst(sM(ϕ)),

i.e., NHst(sM(ϕ′)) is trivial, so that the z-isocrystal Hst(sM(ϕ′)) comes from a local

shtuka over oL, more precisely: there is an effective local shtuka M̂ = (M̂, FM̂) such

that

M(ϕ′)⊗L[z] oLJzK[1/π] ≃ M̂ ⊗oLJzK oLJzK[1/π]

inside FMod(oLJzK[1/π]). However, according to 1.21, this is a contradiction since

M(ϕ′)⊗L[z] L〈z〉 does not admit a good model.
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3 Crystalline and semi-stable

extension classes in mixed and

equal characteristic

Let K be a p-adic field. In a first step we briefly discuss the 2-dimensional p-adic

representation of GK = Gal(Kalg/K) given by the p-adic Tate module Tp(E) of an

elliptic curve E over K of split multiplicative reduction; see [3], [15].

3.1 Tate elliptic curves

Retaining the notation from (2.1), let K be a mixed-characteristic complete dis-

cretely valued field of prime residue characteristic p > 0, with perfect residue field

k = oK/mK where oK ⊆ K denotes the valuation ring of K and mK ⊆ oK its

sole maximal ideal; let π ∈ K be a fixed uniformizer. To begin with, we cite two

Theorems due to J. Tate.

Theorem 3.1 (Tate Elliptic Curves). Let q ∈ K× be such that |q| < 1, and let

sk(q) =
∞∑

n=1

nkqn

1− qn
, a4(q) = −5s3(q), a6(q) =

5s3(q) + 7s5(q)

12
.

The series a4(q) and a6(q) converge in K. Define the projective curve Eq ⊆ P2
Kalg

by the Weierstraß equation

Eq : Y 2Z +XY Z = X3 + a4(q)XZ
2 + a6(q)Z

3.

(i) Eq is an elliptic curve defined over K with discriminant ∆ = q
∏∞
n=1(1−q

n)24,

and with j-invariant j(Eq) whose q-expansion is given by

j(Eq) = 1
q

+ 744 + 196884q + 21493760q2 + ... ∈ 1
q

+ ZJqK

(cf. [72], I.7.4).

(ii) The series

X(u, q) =
∞∑

n=−∞

qnu

(1− qnu)2
− 2s1(q),

Y (u, q) =
∞∑

n=−∞

(qnu)2

(1− qnu)3
+ s1(q)
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

converge for every u ∈ Kalg−qZ. They define a surjective and GK-equivariant

homomorphism of abelian groups

(Kalg)× → Eq(K
alg), u 7→





(X(u, q), Y (u, q)) if u /∈ qZ,

O if u ∈ qZ,

whose kernel equals qZ ⊆ (Kalg)×; in particular, for every algebraic field ex-

tension K ′/K, it induces an isomorphism of abelian groups

(K ′)×/qZ ≃
→ Eq(K

′).

Proof. See [72], Theorem V.3.1 and Remark V.3.2.1. �

Theorem 3.2 (p-adic Uniformization). Suppose that k is finite. Let E/K be an

elliptic curve with |j(E)| > 1.

(i) There is a unique q ∈ (Kalg)× with |q| < 1 such that E is isomorphic over

Kalg to the Tate elliptic curve Eq. Further, this value of q lies in K.

(ii) Let q be chosen as in (i). Then E is isomorphic to Eq over K if and only if

E has split multiplicative reduction.

Proof. See [72], V.5.3. �

Relying on Theorem 3.1, we next discuss the structure of Vp(Eq) = Tp(Eq)⊗Zp Qp

for a Tate elliptic curve Eq/K. To begin with, we recall that the p-adic Tate module

Tp(Gm,K) = lim←−nGm(Kalg)[pn]

of the multiplicative group scheme Gm,K is a free Zp-module of rank 1. Let e =

(ε(n))n ∈ Tp(Gm,K) be a Zp-basis, i.e., let ε(n) ∈ (Kalg)× be a primitive pn-th root

of unity for every n, subject to the relations (ε(n+1))p = ε(n); in particular ε(0) = 1,

ε(1) 6= 1; the Zp-module Tp(Gm,K) carries an action of GK which is given by the

cyclotomic character χ : GK → Z×p , and the resulting GK-module is denoted Zp(1);

namely, composing the natural action

GK → AutZp(Zp(1)), ρ 7→ ((ζpn)n 7→ (ρ.ζpn)n),

with the isomorphism AutZp(Zp(1)) ≃ Z×p belonging to the chosen Zp-basis e =

(ε(n))n yields the cyclotomic character χ : GK → Z×p , i.e., ρ.e = χ(ρ)e = (ρ.ε(n))n;

we obtain the GK-representation on Zp-linear maps

GK → AutZp(Zp(1)), ρ 7→


 Zp(1) → Zp(1)

x 7→ χ(ρ)x


 .
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3.1 Tate elliptic curves

Note that for every ρ ∈ GK the associated automorphism ρ : Zp(1)→ Zp(1) is inde-

pendent of the chosen Zp-basis e, since every coordinate-change relation takes place

inside the commutative ring Zp.

Let Qp(1) = Zp(1)⊗Zp Qp, endowed with the induced Qp-linear action of GK .

Proposition 3.3. Let q ∈ K× be such that |q| < 1, and let Eq/K be the associated

elliptic curve from 3.1. Then there is a short exact sequence of GK-equivariant

Zp-linear maps

0→ Zp(1)
i
→ Tp(Eq)

pr
→ Zp → 0;

in particular, there is an extension 0 → Qp(1) → Vp(Eq) → Qp → 0 inside the

abelian category RepQp
(GK).

It follows immediately that fixing the Zp-basis (i(1), pr(1)) of Tp(Eq) the action

of ρ ∈ GK is given by a matrix of the form ( χ(ρ) ∗
0 1

) ∈ Gl2(Zp); below we will further

analyze this.

Proof. By Tate’s Theorem 3.1 there is an isomorphism of GK-modules (Kalg)×/qZ ≃
→

Eq(K
alg) which corresponds to a GK-equivariant short exact sequence of abelian

groups

0→ qZ → (Kalg)× → Eq(K
alg)→ 0;

here we note that, as q lies inside the base field K, the GK-action on qZ has to be

trivial. Let n ≥ 1; applying the Snake Lemma to the commutative diagram

0 // qZ //

pn

��

(Kalg)× //

pn

��

Eq(K
alg) //

pn

��

0

0 // qZ // (Kalg)× // Eq(K
alg) // 0

yields an exact sequence of Z/pn-modules

0→ qZ[pn]→ (Kalg)×[pn]→ Eq(K
alg)[pn]→

→ qZ/(qZ)p
n
→ (Kalg)×/((Kalg)×)p

n
→ Eq(K

alg)/pnEq(K
alg)→ 0;

it is clear that qZ[pn] and (Kalg)×/((Kalg)×)p
n

have to be trivial, the latter since for

every given nonzero x ∈ Kalg the polynomial up
n
− x ∈ Kalg[u] splits up into linear

factors. We obtain a short exact sequence of Z/pn-modules

1→ (Kalg)×[pn]→ Eq(K
alg)[pn]→ qZ/(qZ)p

n

→ 1

which, in fact, is GK-equivariant. Letting n vary, this gives a projective system of

short exact sequences, the transition maps being induced by multiplication with p;
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

we observe that these are GK-equivariant, and that the Mittag-Leffler condition is

met, the latter since p : (Kalg)×[pn+1] → (Kalg)×[pn] is surjective for every n; we

may summarize that taking the limit yields a short exact sequence of Zp-modules

0→ Zp(1)→ Tp(Eq)→ qZ ⊗Z Zp → 0;

the abelian group qZ is canonically isomorphic to Z, so that qZ ⊗Z Zp equals Zp,

having trivial GK-action. The proof is complete. �

We will see below that the exact sequence 0→ Qp(1)→ Vp(Eq)→ Qp → 0 does,

in fact, give rise to a Yoneda extension class of Qp by Qp(1) for the abelian category

Repst(GK) of semi-stable p-adic representations of GK .

3.2 Yoneda extension classes of p-adic

representations, and Galois cohomology

3.2.1 Kummer theory

Let M be a fixed topological GK-module, i.e., a topological abelian group which

is equipped with a continuous action of the pro-finite group GK . We recall (cf.

Appendix B of [65]) that a 1-cocycle (resp., a 1-coboundary) is a map of sets γ : GK →

M such that γρ′ρ = γρ′ + ρ′.γρ for all ρ, ρ′ ∈ GK (resp., such that γρ = ρ.m−m for

a suitable m ∈ M and all ρ ∈ GK); it is well-known that the 1-cocycles constitute

an abelian group under pointwise operation, of which the 1-coboundaries are a

subgroup; by definition, the abelian group C1(GK ,Qp(1)) (resp., B1(GK ,Qp(1)))

consists of all continuous 1-cocyles (resp., of all those continuous 1-cocycles which are

1-coboundaries), and one defines the group H1(GK ,M), called the 1st cohomology

group, to be the quotient C1(GK ,M)/B1(GK ,M); note that in the present context

the group H1(GK ,M) is abelian. We commence by stating the well-known

Lemma 3.4 (Kummer theory). (i) ([69]) For every n ≥ 0 there is a natural

map of abelian groups δn : K× → H1(GK , µpn(K
alg)) which is defined as fol-

lows: for a given q ∈ K× choose a pn-th root q1/pn ∈ (Kalg)× of q; then δn(q)

is defined to be the class of the 1-cocycle GK → µpn(K
alg), ρ 7→ ρ.q1/pn/q1/pn;

the map δn induces an isomorphism of Z/pn-modules

K×/(K×)p
n

→ H1(GK , µpn(K
alg)).

(ii) ([3]) There is a natural isomorphism of Zp-modules

K̂× = lim←−(n)K
×/(K×)p

n

→ H1(GK ,Zp(1)),

(qn)n 7→ class of (ρ 7→ (ρ.q1/pn

n /q1/pn

n )n);
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3.2 Yoneda extension classes of p-adic representations, and Galois cohomology

in particular, this induces an isomorphism of Qp-vector spaces

K̂× ⊗Zp Qp
≃
→ H1(GK ,Qp(1))

where the right-hand side becomes a Qp-vector space by pointwise operations

on 1-cocycles.

Proof. Let n ≥ 0 be fixed; the finite group µpn(K
alg) carries the discrete topology,

and (for example, by [71], B.2.2.) from the short exact sequence of abelian groups

1→ µpn(K
alg)→ (Kalg)×

pn
→ (Kalg)× → 1

we obtain the long exact cohomology sequence

µpn(K
alg)GK → ((Kalg)×)GK

pn
→ ((Kalg)×)GK

δ
→

δ
→ H1(GK , µpn(K

alg))→ H1(GK , (K
alg)×)→ ...

where H1(GK , (K
alg)×) is trivial by "Hilbert 90" (see [69], X.1.2); we obtain a short

exact sequence

1→ K×
pn
→ K×

δ
→ H1(GK , µpn(K

alg))→ 1

which proves (i). In order to explain (ii), we first remark that by [65], B.2.3, the

unique map

H1(GK ,Zp(1))→ lim←−(n)H
1(GK , µpn(K

alg))

making the diagram

C1(GK ,Zp(1)) //

��

lim←−(n)C
1(GK , µpn(K

alg))

��

H1(GK ,Zp(1)) // lim←−(n)H
1(GK , µpn(K

alg))

commutative is an isomorphism of abelian groups; in particular, by (i), this induces

a natural isomorphism

H1(GK ,Zp(1))
≃
→ K̂×;

the induced map

K̂× ⊗Zp Qp → H1(GK ,Zp(1))⊗Zp Qp

is clearly again an isomorphism; finally, by [65], B.2.4, we realize that the Qp-vector

space H1(GK ,Zp(1))⊗Zp Qp is naturally isomorphic to H1(GK ,Qp(1)). �
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

3.2.2 The Baer sum

Next we discuss the Qp-vector space Ext1
Qp[GK ](Qp,Qp(1)) whose underlying abelian

group consists of the Yoneda extension classes of Qp by Qp(1) inside the abelian cat-

egory RepQp
(GK); our discussion will follow closely [62]. Recall that the category

RepQp
(GK), whose objects are finite-dimensional Qp-vector spaces endowed with a

continuous GK-action (morphisms being GK-equivariant Qp-linear maps), becomes

an abelian category in a natural way since kernels, cokernels, images, and coimages

of GK-equivariant Qp-linear maps naturally acquire a continuous GK-action by Qp-

linear automorphisms.

Let A,B ∈ RepQp
(GK) be two fixed p-adic representations. Two extensions 0 →

B → V → A → 0 and 0 → B → V ′ → A → 0 inside RepQp
(GK) are said to

be Yoneda equivalent if there is a GK-equivariant isomorphism of Qp-vector spaces

f : V → V ′ making the diagram

0 // B // V //

f ≃
��

A // 0

0 // B // V ′ // A // 0

commute; this clearly defines an equivalence relation on the set of extensions of

the type 0 → B → · → A → 0, and the set of equivalence classes is denoted by

Ext1
Qp[GK ](A,B). This set is made into an abelian group via the Baer sum; in order

to describe this group structure, we recall that the direct sum A⊕B of A and B is

given in an obvious way by the direct sum of underlying vector spaces and, like in

any abelian category, at the same time gives rise to both a categorial product and a

categorial coproduct; let C ∈ RepQp
(GK) be a third object, and suppose that there

are morphisms a : A → C and b : B → C inside RepQp
(GK); the pullback A ×C B

with respect to a, b is characterized by the exact sequence

0→ A×C B → A⊕B
(a,−b)
→ C

inside RepQp
(GK); the direct-sum GK-action on A⊕ B restricts to a GK-action on

A×C B, i.e., the action of ρ ∈ GK on (x, y) ∈ A×C B is given by

ρ.(x, y) = (ρ.x, ρ.y);

furthermore, there is a natural isomorphism of abelian groups

Hom(T,A×C B) ≃ Hom(T,A)×Hom(T,C) Hom(T,B)

for every T ∈ RepQp
(GK), which is induced by the projections of A ⊕ B (seen

as a product); dually, suppose that there are arrows a′ : D → A, b′ : D → B for

72



3.2 Yoneda extension classes of p-adic representations, and Galois cohomology

some object D ∈ RepQp
(GK); then the pushout A ∐D B with respect to a′, b′ is

characterized by the exact sequence

D
(a′,−b′)
→ A⊕B → A∐D B → 0

inside RepQp
(GK); the direct-sum GK-action of A⊕B restricts to a GK-action of the

Qp-linear subspace im(a′,−b′) ⊆ A⊕ B, so that one obtains an induced GK-action

on A∐D B; more precisely, a given ρ ∈ GK acts on (x, y) ∈ A∐D B by

ρ.(x, y) = ρ.(x, y) = (ρ.x, ρ.y);

furthermore, there is a natural isomorphism of abelian groups

Hom(A∐D B, T ) ≃ Hom(A, T )×Hom(D,T ) Hom(B, T )

for every T ∈ RepQp
(GK), which is induced by the coprojections of A⊕ B (seen as

a coproduct). Let ξ ∈ Ext1
Qp[GK ](A,B) be the class of

0→ B
i
→ V

pr
→ A→ 0,

and let f : C → A, g : B → D be morphisms inside RepQp
(GK); one defines f ∗(ξ) =

ξ · f to be the class of

0→ B
(0,i)
→ V ×A C → C → 0

in Ext1
Qp[GK ](C,B), and g∗(ξ) = g · ξ to be the class of

0→ D → D ∐B V
(0,pr)
→ A→ 0

in Ext1
Qp[GK ](A,D); one can show that

g · (ξ · f) = (g · ξ) · f

(cf. [62], Lemma 2, p. 230), i.e., the expression g · ξ · f is well-defined. Now we can

describe the Baer sum of two classes ξ and η in Ext1
Qp[GK ](A,B) where ξ (resp., η) is

induced by the extension 0→ B → V → A→ 0 (resp., by 0→ B → V ′ → A→ 0)

say; let ξ ⊕ η be the class in Ext1
Qp[GK ](A ⊕ A,B ⊕ B) of the induced direct-sum

sequence 0 → B ⊕ B → V ⊕ V ′ → A ⊕ A → 0; furthermore, let d = (id, id) : A →

A⊕A be the diagonal, and s = (id, id) : B⊕B → B the sum; now the Baer sum of

ξ and η is defined to be

ξ + η = s · (ξ ⊕ η) · d;

the resulting map

+: Ext1
Qp[GK ](A,B)× Ext1

Qp[GK ](A,B)→ Ext1
Qp[GK ](A,B)
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

makes the set Ext1
Qp[GK ](A,B) into an abelian group whose zero element is given by

the class of the canonical split extension 0 → B → B ⊕ A → A → 0 where B ⊕ A

carries the direct-sum GK-action; furthermore, the additive inverse of ξ is given by

(−idB) · ξ = ξ · (−idA); for all this, see [62], section 2. The Qp-vector space structure

of the abelian group Ext1
Qp[GK ](Qp,Qp(1)) will be discussed below.

This discussion carries over verbatim to the abelian category RepZp
(GK) of Zp-

linear p-adic representations of GK whose objects are finitely generated (not neces-

sarily free) Zp-modules which are endowed with a continuous action of GK ; mor-

phisms in the category RepZp
(GK) are GK-equivariant Zp-linear maps. We denote

by Ext1
Zp[GK ](Zp,Zp(1)) the abelian group of Yoneda extension classes of Zp by Zp(1),

the group law being given by the Baer sum.

Remark. Even though the underlying Zp-module of an object of RepZp
(GK) is not

in general free, one observes that given an extension 0→ Zp(1)→ M → Zp → 0 of

Zp-linear p-adic representations the Zp-module M is, in fact, always free of rank 2;

indeed, by the Snake Lemma, the functor on Zp-modules defined by P 7→ T (P ) =

ker(P → P ⊗Zp Qp) is left-exact, so that M is torsion-free and therefore free. –

3.2.3 Yoneda extensions and Galois cohomology

Following [75], 2.3.2 (see also [18], 5.1), we define a map

C1(GK ,Zp(1))→ Ext1
Zp[GK ](Zp,Zp(1))

as follows: the image of a 1-cocycle c : GK → Zp(1) is defined to be the class of the

extension

ec : 0→ Zp(1)
ic→ Zp(1)⊕ Zp

prc→ Zp → 0

where ρ ∈ GK acts on Zp(1)⊕ Zp via

ρ : (y, x) 7→ (ρ.y + xcρ, x)

for x ∈ Zp, y ∈ Zp(1); by virtue of the cocycle condition on c, one immediately

obtains ρ′.(ρ.(y, x)) = (ρ′ρ).(y, x) for ρ, ρ′ ∈ GK , and cid = cid·id implies id.(y, x) =

(y, x); we further remark that by the continuity of c the induced Zp-linear action

GK × (Zp(1)⊕ Zp)→ Zp(1)⊕ Zp

becomes continuous. Finally, observe that with respect to the basis ((e, 0), (0, 1)) of

Zp(1)⊕ Zp (where the Zp-basis e = (ε(n))n of Zp(1) was chosen in section (3.1)) the

action of ρ ∈ GK is described by the matrix ( χ(ρ) cρ
0 1

) ∈ Gl2(Zp).

For later use we want to give a detailed explanation of the following well-known
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3.2 Yoneda extension classes of p-adic representations, and Galois cohomology

Proposition 3.5 ([18]). The map C1(GK ,Zp(1)) → Ext1
Zp[GK ](Zp,Zp(1)), c 7→

[ec], induces an isomorphism of abelian groups

H1(GK ,Zp(1))
≃
→ Ext1

Zp[GK ](Zp,Zp(1)).

Proof. We have to show that c 7→ [ec] defines a surjective group homomorphism

with kernel B1(GK ,Zp(1)). First of all, it is clear that the trivial cocycle is mapped

to the class of the canonical split extension 0 → Zp(1) → Zp(1) ⊕ Zp → Zp →

0; in order to see that the (pointwise) sum of two cocycles c, c′ : GK → Zp(1) is

mapped to the Baer sum [ec] + [ec′ ], we study the latter, proceeding as follows: let

s : Zp(1)⊕ Zp(1)→ Zp(1) be the sum and d : Zp → Zp ⊕ Zp the diagonal; from the

commutative diagram inside RepZp
(GK) with exact bottom row

X
pr

//

��

Zp

d
��

ec ⊕ ec′ : 0 // Zp(1)⊕2

i=(0,ic⊕ic′ )

77oooooooooooooo

ic⊕ic′
// (Zp(1)⊕ Zp)

⊕2
prc⊕prc′

// Z⊕2
p

// 0

where

X = (Zp(1)⊕ Zp)
⊕2 ×prc⊕prc′ ,Z

⊕2
p ,d Zp

= {( ((y,x),(y′,x′))
x′′

) ∈ (Zp(1)⊕ Zp)
⊕2 ⊕ Zp, d(x′′) = (prc ⊕ prc′)((y, x), (y′, x′))}

= {( ((y,x),(y′,x′))
x′′

) ∈ (Zp(1)⊕ Zp)
⊕2 ⊕ Zp, (x′′, x′′) = (x, x′) in Z⊕2

p }

one obtains a GK-equivariant extension

0→ Zp(1)⊕2 i
→ X

pr
→ Zp → 0;

here i = (0, ic⊕ic′) : Zp(1)⊕2 → X is given by (y, y′) 7→ ( ((y,0),(y′,0))
0

), and pr : X → Zp

is the projection onto the second component; the latter extension gives rise to a

pullback diagram

0 // Zp(1)⊕2 i //

s

��

X
pr

//

��

Zp
// 0

Zp(1)
j

// Y

(0,pr)

??��������

where

Y = Zp(1)∐s,Zp(1)⊕2,i X = (Zp(1)⊕X)/im(s,−i),

with coprojections induced by those of Zp(1) ⊕ X; we obtain a GK-equivariant

extension

0→ Zp(1)
j
→ Y

(0,pr)
→ Zp → 0

where j : Zp(1) → Y is given by y 7→ (y, 0), and where (0, pr) : Y → Zp maps

the residue class of (y′′, ( ((y,x),(y′,x′))
x′′

)) to x′′. It is well-known that every short
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

exact sequence of finite free modules is split, i.e., we obtain a Zp-linear section

w : Zp → Y of the projection (0, pr) : Y → Zp which in the present situation maps

x ∈ Zp to the residue class of (0, ( ((0,x),(0,x))
x )); note that w is not in general GK-

equivariant; we further recall that w induces a direct-sum decomposition of Y being

Y = im(j) ⊕ im(w). We observe that the residue class inside Y of a given element

(y′′, ( ((y,x),(y′,x′))
x′′

)) ∈ Zp(1)⊕X admits the couple

(y + y′ + y′′, ( ((0,x),(0,x′))
x′′

)) ∈ Zp(1)⊕X

as a representative; the latter may be decomposed as (y+y′+y′′, 0)+(0, ( ((0,x),(0,x′))
x′′

))

and, in view of the above characterization of X, its residue class therefore is mapped

to (y + y′ + y′′, x) via the GK-equivariant isomorphism of Zp-modules

Y = im(j)⊕ im(w)
≃
→ Zp(1)⊕ Zp,

where Zp(1)⊕Zp is endowed with the Galois action from the definition of ec+c′ ; the

latter isomorphism fits into a commutative diagram with exact rows

0 // Zp(1)
j

// Y
(0,pr)

//

≃
��

Zp
// 0

0 // Zp(1)
ic+c′// Zp(1)⊕ Zp

prc+c′ // Zp
// 0

inside the category RepZp
(GK), and we may summarize that the extension class

[ec+c′ ] is Yoneda-equivalent with the Baer sum [ec] + [ec′ ], as desired. Next we show

that the map c 7→ [ec] is surjective. Let ξ ∈ Ext1
Zp[GK ](Zp,Zp(1)) be the class of the

extension

0→ Zp(1)
i
→ V

pr
→ Zp → 0;

since the underlying extension of Zp-modules is split, there is a Zp-linear section

w : Zp → V of the projection pr : V → Zp which induces a Zp-linear isomorphism

V = im(i)⊕ im(w)
≃
→ Zp(1)⊕ Zp,

v = (v − (wpr)(v)) + (wpr)(v) 7→ (yv, pr(v)),

where yv ∈ Zp(1) is uniquely determined by the condition i(yv) = v − (wpr)(v); we

observe that w(1) ∈ V is mapped to (0, 1) ∈ Zp(1)⊕Zp via the latter isomorphism;

on the other hand, for a given ρ ∈ GK we have

ρ.w(1) = ρ.w(1)− (wpr)(ρ.w(1)) + (wpr)(ρ.w(1)) = ρ.w(1)− w(ρ.1) + w(ρ.1),

so that the element ρ.w(1) is mapped to the couple (γρ, 1) ∈ Zp(1) ⊕ Zp, where

γρ ∈ Zp(1) is uniquely determined by the condition i(γρ) = ρ.w(1)− w(1); from

i(γρ′ + ρ′.γρ) = (ρ′ρ).w(1)− w(1)
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for ρ, ρ′ ∈ GK it immediately follows that the assignment ρ 7→ γρ defines a 1-cocycle

GK → Zp(1) which, by the continuity of the GK-action on V , is continuous, and

which we denote by γ; in order to see that the GK-action of Zp(1) ⊕ Zp is indeed

given according to eγ, we just need to remark that for every y ∈ Zp(1) and x ∈ Zp a

given ρ ∈ GK does act on i(y)+w(x) as i(ρ.y+xγρ)+w(x). We may summarize that

ξ = [eγ]. It remains to verify that [ec] is trivial if and only if c is a 1-coboundary;

indeed, suppose that given c ∈ C1(GK ,Zp(1)) there is some α ∈ Zp(1) such that

cρ = ρ.α − α for all ρ ∈ GK , i.e., that c is a 1-coboundary; then for every ρ ∈ GK

the element (−α, 1) is fixed by the Zp-linear automorphism

ρ : Zp(1)⊕ Zp → Zp(1)⊕ Zp, (y, x) 7→ (ρ.y + x(ρ.α− α), x),

associated to c, and the Zp-linear map Zp → Zp(1)⊕Zp defined by 1 7→ (−α, 1) is a

GK-equivariant section of the projection Zp(1)⊕ Zp → Zp, i.e., [ec] = 0; conversely,

suppose that the extension

ec : 0→ Zp(1)
i
→ Zp(1)⊕ Zp

pr
→ Zp → 0

admits a GK-equivariant Zp-linear section w : Zp → Zp(1) ⊕ Zp of pr; from this we

may conclude that ρ.w(1) = w(1) for every ρ ∈ GK , and w(1) = (y, 1) for some

y ∈ Zp; therefore

0 = ρ.w(1)− w(1) = (ρ.y + cρ, 1)− (y, 1) = (ρ.y − y + cρ, 0)

for every ρ ∈ GK , i.e., c has to be a 1-coboundary. �

The proof in particular shows that the map

H1(GK ,Zp(1))→ Ext1
Zp[GK ](Zp,Zp(1)), c̄ 7→ [ec],

does, in fact, give rise to an isomorphism of Zp-modules: since C1(GK ,Zp(1)) is a

Zp-module by pointwise operation and admits B1(GK ,Zp(1)) as a Zp-submodule,

we may argue on the level of 1-cocycles, and on the other hand we may restrict our

attention to extensions of the type ec for varying 1-cocycles c; now there can be

only one Zp-module structure on Ext1
Zp[GK ](Zp,Zp(1)) such that the 1-cocycle λc is

mapped to λ[ec] for every λ ∈ Zp, and the above arguments show that indeed all

needed axioms are met by the obvious candidate; more generally, this Zp-vector space

structure may be described in terms of pullbacks (or, equivalently, pushouts): for a

given λ ∈ Zp and the class ξ ∈ Ext1
Zp[GK ](Zp,Zp(1)) of 0 → Zp(1) → V → Zp → 0

say, define λξ to be λ∗ξ = ξ · λ, i.e., the class of

0→ Zp(1)→ V ×Zp,λ Zp → Zp → 0;

see [23], A3.26(e); indeed, from ξ = [ec] it follows that λξ = [eλc].

Replacing Zp by Qp everywhere, we obtain
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Corollary 3.6. The map C1(GK ,Qp(1))→ Ext1
Qp[GK ](Qp,Qp(1)), c 7→ [ec], induces

an isomorphism of Qp-vector spaces

H1(K,Qp(1)) ≃ Ext1
Qp[GK ](Qp,Qp(1)).

�

By virtue of the natural isomorphism of Qp-vector spaces

H1(K,Qp(1)) ≃ H1(K,Zp(1))⊗Zp Qp,

the preceding corollary implies

Corollary 3.7. There is a natural isomorphism of Qp-vector spaces

Ext1
Qp[GK ](Qp,Qp(1)) ≃ Ext1

Zp[GK ](Zp,Zp(1))⊗Zp Qp.

�

The connection with Galois Cohomology also yields

Corollary 3.8. There is a natural isomorphism of Zp-modules

K̂× ≃ Ext1
Zp[GK ](Zp,Zp(1));

which in particular induces an isomorphism of Qp-vector spaces

K̂× ⊗Zp Qp ≃ Ext1
Qp[GK ](Qp,Qp(1)).

�

Finally, in the notation of Proposition 3.3, we may draw the following conclusion:

Corollary 3.9. Let q ∈ K× be such that |q| < 1, and let Eq/K be the corresponding

Tate elliptic curve; fixing a basis of the p-adic Tate module Tp(Eq), for every ρ ∈ GK

let cρ ∈ Zp be such that the action of ρ on Tp(Eq) is given by the matrix ( χ(ρ) cρ
0 1

) ∈

Gl2(Zp). Then the map ρ 7→ cρ is a continuous 1-cocycle GK → Zp(1). �

3.3 Crystalline and semi-stable extensions of Qp

by Qp(1)

Our aim in the present section is to explain the following Proposition. First we re-

mark that the abelian group Ext1
cris(Qp,Qp(1)) (resp., Ext1

st(Qp,Qp(1))) of Yoneda

extension classes of Qp by Qp(1) inside the abelian category Repcris(GK) (resp.,
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Repst(GK)) may be viewed as a subgroup of Ext1
Qp[GK ](Qp,Qp(1)); namely, an ex-

tension class ξ ∈ Ext1
Qp[GK ](Qp,Qp(1)) belongs to Ext1

cris(Qp,Qp(1)) (resp., to Ext1
st

(Qp,Qp(1))) if and only if for one (and hence for every) representative 0→ Qp(1)→

V → Qp → 0 of ξ the p-adic representation V is crystalline (resp., semi-stable).

Here we already use the well-known fact that the trivial p-adic representation Qp

is crystalline and, in particular, semi-stable; the same is, of course, also true for

Qp(1); for an argument, we refer to the remarks after 3.19.

Proposition 3.10. There is an exact sequence of Qp-vector spaces

0→ Ext1
cris(Qp,Qp(1))→ Ext1

st(Qp,Qp(1))→ Qp → 0.

3.3.1 The p-adic valuation sequence

Below we will give a proof of this result using Fontaine’s characterization of crys-

talline and semi-stable p-adic representations of GK in terms of weakly admissible

filtered (ϕ,N)-modules (see [27]). First we give an argument letting Galois cohomol-

ogy intervene, using the results of the previous section. We commence by proving

the following

Lemma 3.11 ([15]). The choice of a uniformizer π ∈ oK for the complete dis-

cretely valued field K gives rise to a split exact sequence of Zp-modules

0→ 1 + mK → K̂× → Zp → 0;

in particular, this induces an exact sequence of Qp-vector spaces

0→ (1 + mK)⊗Zp Qp → K̂× ⊗Zp Qp → Qp → 0.

Proof. The normalized discrete valuation on the field K gives rise to an exact se-

quence of abelian groups

0→ o×K → K× → Z→ 0,

and our choice of a uniformizer π ∈ oK defines a section Z → K× of the valuation

map K× → Z which is given by 1 7→ π, i.e., the above sequence is split, and

it therefore induces a direct-sum decomposition of the abelian group K×, being

K× = o×K ⊕ Z. Furthermore, there is a canonical exact sequence of abelian groups

1→ 1 + mK → o×K → k× → 1

which is split as well: using that k is perfect, and according to [69], II.4.8, let

λ : k → oK be the unique section of the residue map oK → k being compatible
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

with p-th powers; by loc. cit. the map λ is multiplicative, and it restricts to a

map of abelian groups k× → o×K which canonically renders the above sequence

split; furthermore, the subgroup λ(k×) ⊆ o×K is p-divisible. We obtain a direct-sum

decomposition of the abelian group o×K , being o×K = λ(k×)⊕ (1 + mK), and we may

summarize that there is a (non-canonical) identification

K× = λ(k×)⊕ (1 + mK)⊕ Z.

Now fix an integer n ≥ 1. Applying the functor · ⊗Z Z/pn to the latter identity, we

get

K×/(K×)p
n

= λ(k×)/λ(k×)p
n

⊕ (1 + mK)/(1 + mK)p
n

⊕ Z/pn.

As the group λ(k×) is p-divisible, the first summand on the right-hand side is trivial;

we observe that for every s ≥ 1 and x ∈ K× we have xp
s+1

= (xp)p
s
, i.e., the obvious

transition map of abelian groups (1 + mK)/(1 + mK)p
s+1
→ (1 + mK)/(1 + mK)p

s

is well-defined and surjective, i.e., the Mittag-Leffler condition is met; on the other

hand, the abelian group U = U (1) = 1 + mK is p-adically complete: the canonical

map U → lim←−(s)U/U
ps has to be injective since o×K is the direct sum of U and the

p-divisible group λ(k×); the surjectivity of the completion map is seen as follows:

given an element ((1 + πxn)Upn)n of the projective limit, choosing a representative

1 + πxn ∈ U of the n-th component for every n ≥ 1 amounts to giving a Cauchy

sequence (1 + πxn)n with respect to the topology given by the p-adic filtration

(Upn)n of U ; from π | p it follows that Upn ⊆ 1 + mn+1
K , and we obtain a relation

1 + πxn+1 = (1 + πxn)(1 + πn+1yn) for every n ≥ 1; by induction it follows that

1 + πxn+1 =
∏n
j=0(1 + πj+1yj) where we set y0 = x1; it is now instantly verified that

the infinite product x′ =
∏∞
j=0(1+πj+1yj) is π-adically convergent and lies inside U ;

by a multiplicative version of the argument given in 3.23(ii) below, one now shows

that p-adically 1 + πxn → x′ = 1 + πx as n→∞. We may summarize that taking

the projective limit over the above mod-pn identifications gives a (necessarily split)

exact sequence of Zp-modules

0→ 1 + mK → K̂× → Zp → 0

which implies the desired result. �

Proposition 3.12 ([3], [75]). (i) The isomorphism of Qp-vector spaces K̂×⊗Zp

Qp → Ext1
Qp[GK ](Qp,Qp(1)) from 3.8 restricts to an isomorphism of Qp-vector

spaces

K̂× ⊗Zp Qp
≃
→ Ext1

st(Qp,Qp(1)),

i.e., for every extension 0 → Qp(1) → V → Qp → 0 inside RepQp
(GK) the

p-adic representation V is Bst-admissible.

80



3.3 Crystalline and semi-stable extensions of Qp by Qp(1)

(ii) The isomorphism of Qp-vector spaces K̂×⊗Zp Qp → Ext1
st(Qp,Qp(1)) from (i)

restricts to an isomorphism of Qp-vector spaces

(1 + mK)⊗Zp Qp
≃
→ Ext1

cris(Qp,Qp(1)).

Proof. See [3], II.4.4, and [75], 2.3.2. �

Corollary 3.13 ([3], [75]). Let q ∈ K× be such that |q| < 1, and let Eq/K be the

corresponding Tate elliptic curve; let Tp(Eq) = lim←−(n)Eq[p
n](Kalg) be the p-adic Tate

module of Eq, and let Vp(Eq) = Tp(Eq)⊗ZpQp be the associated p-adic representation

of GK. Then Vp(Eq) is Bst-admissible but not Bcris-admissible.

Proof. By virtue of 3.3, it follows directly from 3.12(i) that Vp(Eq) is semi-stable.

The argumentation in [75], 2.3.2(2), shows that Vp(Eq) cannot be crystalline. �

We may summarize that there is a commutative diagram of Qp-vector spaces with

exact rows

0 // (1 + mK)⊗Zp Qp
//

≃

��

K̂× ⊗Zp Qp
//

≃

��

Qp
// 0

0 // Ext1
cris(Qp,Qp(1)) // Ext1

st(Qp,Qp(1)) // Qp
// 0

where the vertical arrows are isomorphisms. This proves Proposition 3.10. In what

follows we view this result in a different angle.

3.3.2 The semi-stable period functor Dst

We recall that there is an exact equivalence

Dst : Repst(GK)→MFK(ϕ,N)wa

between the abelian category of semi-stable p-adic representations of the group GK

on the one hand, and the abelian category of weakly admissible filtered (ϕ,N)-

modules over F = Frac(W (k)) on the other hand. The additive category of filtered

(ϕ,N)-modules over F has already been discussed in (2.1.2). We commence by ex-

plaining the notion of weak admissibility for filtered (ϕ,N)-modules.

Note that given an F -vector space V of dimension d <∞, together with a map of

abelian groups ϕ : V → V which is semi-linear (always with respect to the Frobenius

lift σ : F
≃
→ F ), by ∧dϕ : ∧dV → ∧dV we mean the semi-linear map of abelian groups

corresponding to the F -linear map

∧dϕlin : σ∗(∧dV ) ≃ ∧d(σ∗V )→ ∧dV.
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The map ∧dϕ is again bĳective if ϕ is: indeed, if B is a fixed F -basis of V and if

A = B[ϕ]
(σ)
B ∈ F d×d denotes the matrix describing ϕ (σ-semi-linearly) with respect

to B then

det(A) = det(B[ϕlin]σ∗B) = ∧dB[∧dϕlin]∧dσ∗B = ∧dB[∧dϕ]
(σ)

∧dB;

now some calculations in σ-semi-linear algebra ([67]) show that det(A) 6= 0 if and

only if V is F -linearly generated by the image of ϕ, and the latter condition already

implies that ϕ is injective; moreover, since σ is an automorphism of the field F , the

image im(ϕ) ⊆ V is, in fact, an F -linear subspace of V , and so we may conclude

that det(A) 6= 0 if and only if ϕ is surjective if and only if ϕ is injective.

Definition 3.14. Let D = (D,ϕD, ND, (FiliDK)i) be a filtered (ϕ,N)-module of

dimension d = dimF D.

(i) For any fixed basis d ∈ D of the 1-dimensional F -vector space ∧dD let λ ∈ F×

be the describing matrix of the semi-linear automorphism ∧dϕD : ∧dD → ∧dD

of the abelian group ∧dD with respect to d. The Newton slope of D is defined

to be

tN(D) = ordp(λ)

where ordp(λ) ∈ Z is the p-adic valuation of λ.

(ii) Let (Fili(∧dDK))i be the induced filtration of ∧dDK ⊆ DK ⊗K ... ⊗K DK (d

factors) where Fili(DK ⊗K ...⊗K DK) is for every i ∈ Z given by
∑

i1+...+id=i

Fili1(DK)⊗K ...⊗K Filid(DK) ⊆ DK ⊗K ...⊗K DK .

The Hodge slope tH(D) of D is defined to be the integer i ∈ Z such that

Fili(∧dDK) = ∧dDK and Fili+1(∧dDK) = 0.

The integers tN(D) and tH(D) associated to D are indeed well-defined; see [27],

(6.4.2).

Lemma 3.15 ([27]). Let D = (D,ϕD, ND, (Fili(DK))i) be a filtered (ϕ,N)-module.

For every i ∈ Z let gri(DK) = Fili(DK)/Fili+1(DK) be the associated i-th graded

object. Then

tH(D) =
∑

i∈Z

i dimK(gri(DK)).

Proof. See [27], 6.45. �

For the following Lemma, note that a sequence of finite-dimensional filtered K-

vector spaces 0 → V ′ → V → V ′′ → 0 is, by definition, exact if and only if the

underlying sequence of K-vector spaces is exact and

Fili(V ′) = Fili(V ) ∩ V ′, Fili(V ′′) = (Fili(V ) + V ′)/V ′

for every i ∈ Z.
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Lemma 3.16 ([27]). Let 0 → D′ → D → D′′ → 0 be a short exact sequence of

filtered (ϕ,N)-modules, i.e., a short exact sequence of left F [ϕ,N ]-modules such that

the induced K-linear sequence 0 → D′K → DK → D′′K → 0 is an exact sequence of

finite-dimensional filtered K-vector spaces. Then

tN(D) = tN(D′) + tN(D′′), tH(D) = tH(D′) + tH(D′′).

Proof. See [27], 6.42, 6.46. �

For a given filtered (ϕ,N)-module D = (D,ϕD, ND, (Fili(DK))i) over F , a sub-

object of D consists of a (necessarily finite-dimensional) F -subspace D′ ⊆ D which

is a left F [ϕ,N ]-submodule of D, i.e., which is stable under ϕD and ND, and such

that Fili(D′K) = Fili(DK) ∩ D′K for every i ∈ Z; this may be rephrased by saying

that a subobject of D corresponds to an exact sequence 0 → D′ → D of filtered

(ϕ,N)-modules. Note that for any subobject D′ with underlying F -vector space

D′ the restriction ϕD|D′ : D
′ → D′ is still injective and therefore, by the above

characterization of σ-semi-linear bĳections, is a semi-linear automorphism of D′.

Definition 3.17. A filtered (ϕ,N)-module D = (D,ϕD, ND, (FiliDK)i) over F is

called weakly admissible if

— tH(D) = tN(D);

— for any subobject D′ = (D′, ϕD|D′ , ND|D′ , (Fili(D′K))i) one has

tH(D′) ≤ tN(D′).

One denotes by MFK(ϕ,N)wa the full subcategory of MFK(ϕ,N) consisting of

those filtered (ϕ,N)-modules which are weakly admissible. For the sake of com-

pleteness we state the well-known

Theorem 3.18 (Fontaine, Colmez-Fontaine). (i) ([27]) MFK(ϕ,N)wa is an

abelian category.

(ii) ([19], [26]) The functor

Dst : RepQp
(GK)→MFK(ϕ,N), V 7→ (V ⊗Qp Bst)

GK ,

induces an additive, exact equivalence between the category Repst(GK) of Bst-

admissible p-adic representations of GK and the abelian category MFK(ϕ,N)wa

of weakly admissible filtered (ϕ,N)-modules over F . �
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For example, the base field F = Frac(W (k)) becomes a left F [ϕ,N ]-module by

setting

ϕF = σ : F → F, NF = 0: F → F ;

if the filtration of FK ≃ K is given by

Fili(FK) =




FK if i ≤ 0,

0 if i > 0

for i ∈ Z then the collection K〈0〉 = (F, ϕF , NF , (Fili(K))i) becomes a filtered

(ϕ,N)-module which clearly is weakly admissible since tH(K〈0〉) = 0 = tN(K〈0〉).

The structure of a filtered (ϕ,N)-module on F can also be "twisted" – one defines

a filtered (ϕ,N)-module K〈1〉 by equipping the abelian group K〈1〉 = F with the

left F [ϕ,N ]-action given by ϕK〈1〉 = 1
p
σ and NK〈1〉 = NF = 0; the filtration of

K〈1〉K ≃ K is given by

Fili(K〈1〉K) =




K〈1〉K if i ≤ −1,

0 if i > −1

for i ∈ Z. Also K〈1〉 is weakly admissible, for we have tH(K〈1〉) = −1 = tN(K〈1〉).

It is well-known that K〈0〉 = Dst(Qp); moreover we have

Lemma 3.19 ([27]). The choice of a basis of Zp(1) over Zp induces an isomor-

phism

Dst(Qp(1))
≃
→ K〈1〉

inside MFK(ϕ,N)wa.

Proof. See [27], (7.1.3). �

In particular, the p-adic representation Qp(1) is crystalline. Similarly as in The-

orem 3.18, the functor

Dcris : RepQp
(GK)→MFK(ϕ), V 7→ (V ⊗Qp Bcris)

GK ,

induces an additive, exact equivalence between the abelian category Repcris(GK)

of crystalline p-adic representations of GK and the abelian category MFK(ϕ)wa of

weakly admissible filtered ϕ-modules over F , where weak admissibility is defined as

in the case of filtered (ϕ,N)-modules; see [15], [26], [27].

We denote by Ext1
MFK(ϕ,N)wa(·, ·) (resp., by Ext1

MFK(ϕ)wa(·, ·)) the Yoneda Ext1-

group with respect to the abelian category MFK(ϕ,N)wa (resp., MFK(ϕ)wa), the

group law being given by the Baer sum; we have explained this for the case of the

abelian category RepQp
(GK) in section (3.2); for a general discussion, see [62].
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Proposition 3.20. The functor Dst induces isomorphisms of Qp-vector spaces

Ext1
st(Qp,Qp(1)) ≃ Ext1

MFK(ϕ,N)wa(K〈0〉, K〈1〉),

Ext1
cris(Qp,Qp(1)) ≃ Ext1

MFK(ϕ)wa(K〈0〉, K〈1〉).

Proof. We need merely remark that the functor Dst is additive, exact, and fully

faithful; furthermore, it restricts to the functor Dcris on crystalline representations.

In particular, Yoneda equivalence classes of extensions 0 → Qp(1) → · → Qp → 0

inside Repst(GK) correspond to Yoneda equivalence classes of the associated ex-

tensions of filtered (ϕ,N)-modules; the same is true in case N = 0, i.e., on the

crystalline level. If we endow each of the abelian groups on the right-hand side with

the usual F -vector space structure, using that F σ=id = Qp we instantly see that the

asserted isomorphisms are Qp-linear. �

Proposition 3.21. There is a canonical exact sequence of Qp-vector spaces

0→ Ext1
MFK(ϕ)wa(K〈0〉, K〈1〉)→ Ext1

MFK(ϕ,N)wa(K〈0〉, K〈1〉)→ Qp → 0.

Proof. Suppose we are given an extension

0→ K〈1〉
i
→ D

pr
→ K〈0〉 → 0

of weakly admissible filtered (ϕ,N)-modules where D is the F -vector space un-

derlying D; let ξ be its Yoneda equivalence class with respect to the category

MFK(ϕ,N)wa. To begin with, we conclude from 3.16 that

tN(D) = tN(K〈0〉) + tN(K〈1〉) = −1 = tH(K〈0〉) + tH(K〈1〉) = tH(D).

Since the Frobenius lift σ : W (k) → W (k) is an automorphism of the ring of Witt

vectors over k, the W (k)-submodule W (k) of F is an W (k)-lattice of K〈0〉 verifying

σW (k) = p0W (k); so, by [76], 6.18, the ϕ-isocrystal K〈0〉 is isoclinic. By the same

argument, the ϕ-isocrystal K〈1〉 is isoclinic, for we have a relation (1
p
σ)W (k) =

p−1W (k). By [76], 6.21, our given extension of filtered (ϕ,N)-modules gives rise

to a split extension of ϕ-isocrystals (forgetting about ND and the filtration) via a

unique ϕ-equivariant section w : F → D of the projection pr : D → F , i.e., there is

a direct-sum decomposition of ϕ-isocrystals

D = K〈1〉 ⊕K〈0〉

showing that with respect to the canonical basis B = (i(1), w(1)) of D, the map ϕD

is (σ-semi-linearly) described by the matrix

B[ϕD]
(σ)
B = ( 1/p 0

0 1
) ∈ Gl2(F ).
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From the N -equivariance of the map i : K〈1〉 → D we immediately derive that

ND(i(1)) = 0; on the other hand, the identity of σ-semi-linear mapsNDϕD = pϕDND

yields that

ϕD(ND(w(1))) = 1
p
ND(w(1));

writing ND(w(1)) = αi(1) + βw(1) we find that σ(α) = α, i.e., α ∈ F σ=id = Qp, as

well as β = pσ(β); however, the latter relation implies that β = 0, for if we uniquely

write, say, β = β′pn, where β′ ∈ W (k)× and n ∈ Z, we obtain σ(β) = σ(β′)pn which

leads to a contradiction since σ(β′) is a unit again; next we remark that given a

commutative diagram

0 // K〈1〉 i // D
pr //

≃ ι

��

K〈0〉 // 0

0 // K〈1〉 i′′ // D′′
pr′′ // K〈0〉 // 0

inside MFK(ϕ,N)wa where ι : D → D′′ is an isomorphism of filtered (ϕ,N)-modules,

together with a ϕ-equivariant section w : K〈0〉 → D of pr : D → K〈0〉, the composi-

tion ιw is a ϕ-equivariant section of pr′′ : D′′ → K〈0〉, and the couple (i′′(1), (ιw)(1))

is an F -basis of D′′; the relation ND′′((ιw)(1)) = α(ιw)(1) now shows that the map

Ext1
MFK(ϕ,N)wa(K〈0〉, K〈1〉)→ Qp, ξ 7→ α,

is, in fact, well-defined; it obviously remains to be shown that this map is Qp-linear

and surjective: by construction its kernel is already as desired; in order to prove the

Qp-linearity, we study the Baer sum ξ + ξ′ where ξ′ is the Yoneda equivalence class

of an extension

0→ K〈1〉
i′
→ D′

pr′
→ K〈0〉 → 0

inside MFK(ϕ,N)wa; let w′ : F → D′ be the unique ϕ-equivariant section of the

projection pr′ : D′ → K〈0〉; let s : K〈1〉 ⊕ K〈1〉 → K〈1〉 be the sum and d : →

K〈0〉 ⊕K〈0〉 the diagonal; proceeding similarly as in the proof of 3.5, we derive an

extension

0→ K〈1〉 ⊕K〈1〉
i=(i⊕i′,0)
→ X → K〈0〉 → 0

inside MFK(ϕ,N)wa, where

X = (D ⊕D′)×pr⊕pr′,K〈0〉⊕K〈0〉,d K〈0〉

= {((a, b), z) ∈ (D ⊕D′)⊕K〈0〉, pr(a) = z = pr′(b)};

here i : K〈1〉 ⊕K〈1〉 → X is given by (x, y) 7→ ((i(x), i′(y)), 0), and the map X →

K〈0〉 is given by the projection onto the second component; in a second step we

obtain an extension

0→ K〈1〉
i+
→ Y

pr+
→ K〈0〉 → 0,
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3.3 Crystalline and semi-stable extensions of Qp by Qp(1)

inside MFK(ϕ,N)wa where

Y = K〈1〉 ∐s,K〈1〉⊕K〈1〉,i X

= (K〈1〉 ⊕X)/im(s,−i),

the maps being given as follows: via i+ : K〈1〉 → Y an element x ∈ K〈1〉 is sent to

the class of (x, 0) ∈ K〈1〉 ⊕X, and the class of a couple (x, ((a, b), z)) ∈ K〈1〉 ⊕X

is via pr+ : Y → K〈0〉 sent to z ∈ K〈0〉. Let w : K〈0〉 → Y be the F -linear map

defined by

1 7→ class of (0, ((w(1), w′(1)), 1));

this map is evidently a section of the projection pr+ : Y → K〈0〉 just described, and

we claim that w is ϕ-equivariant: indeed, first of all, it is instantly seen that X is an

F [ϕ,N ]-submodule of (D⊕D′)⊕K〈0〉 and that the canonical projectionK〈1〉⊕X →

Y naturally becomes F [ϕ,N ]-linear as well; but this said, the ϕ-equivariance of w

is immediate. Similarly as above, the N -equivariance of i+ : K〈1〉 → Y shows that

NY (i+(1)) = 0; let us compute NY (w(1)): using the equivalence relation defining

Y we see that NY (w(1)) equals the class of (0, ((αi(1), α′i′(1)), 0)), provided that

ND(w(1)) = αi(1) and ND′(w
′(1)) = α′i′(1); however, the latter equivalence class

admits the element (α+α′)i+(1) as a representative, which proves that the Baer sum

ξ + ξ′ is, in fact, mapped to α + α′. Let λ ∈ Qp be a scalar; in order to accomplish

the proof of the desired Qp-linearity, we study the Yoneda equivalence class λ∗ξ of

the extension

0→ K〈1〉
iλ→ D ×pr,K〈0〉,λ K〈0〉

prλ→ K〈0〉 → 0

where iλ : K〈1〉 → Z = D ×pr,K〈0〉,λ K〈0〉 maps 1 to (i(1), 0); we define an F -linear

and ϕ-equivariant section wλ : K〈0〉 → Z of prλ : Z → K〈0〉 by 1 7→ (λw(1), 1);

note that here we make use of our requirement λ ∈ F σ=id; we finally remark

that the resulting F -basis Bλ = (iλ(1), wλ(1)) of Z verifies NZ(iλ(1)) = 0 and

NZ(wλ(1)) = (λα)iλ(1), provided that ND(w(1)) = αi(1). Let us now show the

desired surjectivity. Let λ ∈ Qp be given. We construct an extension

0→ K〈1〉
i
→ D

pr
→ K〈0〉 → 0,

inside MFK(ϕ,N)wa as follows: the F -vector space underlying D is D = K〈1〉 ⊕

K〈0〉, and i, pr are canonically given by i : 1 7→ (1, 0), pr : (0, 1) 7→ 1; the structure of

a left F [ϕ,N ]-module on D is given by ϕD = ϕK〈1〉⊕ϕF = (1
p
σ)⊕σ, ND((1, 0)) = 0,

ND((0, 1)) = λ(1, 0); there is an obvious ϕ-equivariant F -linear section w : K〈0〉 →

D of pr : D → K〈0〉 which sends 1 ∈ F to (0, 1) ∈ D. Using the requirement of

N -equivariance, the left F [ϕ,N ]-module D admits only a single proper nontrivial

left F [ϕ,N ]-submodule which is given by D′ = im(K〈1〉 →֒ D) = F (1, 0). We have

to define a filtration of DK = (K〈1〉 ⊕ K〈0〉)K = K〈1〉K ⊕ K〈0〉K such that D
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

becomes weakly admissible; necessarily, by 3.15, such a filtration has to be of the

type

Fili(DK) =





DK for i ≤ −1,

L for i = 0,

0 for i ≥ 1,

where L ⊆ DK is a suitable 1-dimensional K-linear subspace of DK . Setting

L = im(K〈0〉K →֒ DK) = K((0, 1)⊗ 1),

the induced K-linear sequence

0→ K〈1〉K → DK → K〈0〉K → 0

becomes an exact sequence of filteredK-vector spaces, by construction of Fil·(K〈1〉K),

Fil·(K〈0〉K); finally, since tH(D′) = −1 = tN(D′) and tH(D) = −1 = tN(D), we see

that D is weakly admissibe, which concludes the proof. �

3.4 Yoneda extension classes and bad reduction

in equal characteristic

Retaining the notation from chapter 2, let L be an equal-characteristic complete

discretely valued field extension of F, with valuation ring oL and residue field ℓ =

oL/(π) where π = πL ∈ mL is a fixed uniformizer; we denote by v = vπ = ordπ(·)

the discrete valuation on L normalized by v(π) = 1. We recall that the r-Frobenius

lift of the oL-algebra oLJzK is given by the map

σ : oLJzK→ oLJzK,
∞∑

j=0

ajz
j 7→

∞∑

j=0

arjz
j.

We also take up the F-algebra homomorphism c∗ : F[t] → oL, recalling that the

image ζ ∈ oL of the indeterminate t is supposed to be divided by πL and therefore

is zero in the residue field ℓ of L.

3.4.1 Motivation: Semi-stable Drinfeld modules

We have seen earlier how the p-adic Tate module of a Tate elliptic curve naturally

becomes an extension of Zp by Zp(1) as Galois modules.

In this section we want to study an analogous situation in equal characteristic;

here the most basic objects to study are Drinfeld modules of bad reduction; their

behavior will lead to our principal object of interest. Let α ∈ oL be a non-unit,
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3.4 Yoneda extension classes and bad reduction in equal characteristic

i.e., such that π | α. We consider the Drinfeld F[z]-module ϕ : F[z]→ L[τ ] given by

z 7→ ζ + τ + ατ 2. Clearly ϕ is of bad reduction: whereas ϕ is of rank 2, its reduced

Drinfeld module over ℓ is of rank 1. By Drinfeld’s Tate uniformization theorem there

is a Drinfeld F[z]-module ψ : F[z] → L[τ ] of good reduction and rank 1, together

with an analytic morphism ψ →an ϕ; the latter is given by a formal power series

u ∈ oL[[x]] of the form u = x+
∑
ν≥1 uνx

rν verifying v(uν)/r
ν →∞ as ν →∞, and

uψa = ϕau for all a ∈ F[z]. By Theorem 2.10 there is an exact sequence

0→ N →M(ϕ)⊗L[z] L〈z〉 →M(ψ)⊗L[z] L〈z〉 → 0

compatible with the respective semi-linear data, together with a finite field extension

L′/L such that the pair (N ⊗L〈z〉 L
′〈z〉, τN ⊗ σ) is isomorphic to (L′〈z〉, σ). Note

that the underlying sequence of L〈z〉-modules is split, but in general the splitting

will not be F -equivariant. We know that, up to a unit c ∈ o×L , the τ -action on

M(ψ)⊗L[z]L〈z〉 is with respect to the canonical basis 1 ∈M(ψ) given by z− ζ, and

since the FN -action is trivial over L′, we see that after replacing L by L′(c
1
r−1 ) the

τ -action of M(ϕ) ⊗L[z] L〈z〉 with respect to its composed L〈z〉-basis is given by a

matrix of the form

( 1 ∗
0 z−ζ ) ∈ L〈z〉2×2.

Since ϕ is of bad reduction as a Drinfeld module, the resulting object M(ϕ) ⊗L[z]

oLJzK[1/π] should give rise to a proper "semi-stable local shtuka"; note that a priori

we do not have a chance to remedy negative powers of π in the coefficients. We may

summarize that, indicating byO(n) for n ≥ 0 the object (oLJzK[1/π], F = (z−ζ)n◦σ)

we obtain an extension structure

0→ O(0)→M(ϕ)⊗L[z] oLJzK[1/π]→ O(1)→ 0.

By permitting finite base field extensions in the p-adic case, here and in the following

discussion we may ignore the circumstance that we have to extend the base field L

in order to obtain the described extension structure of M(ϕ)⊗L[z]L〈z〉 (rather than

being able to obtain this structure in a rational way).

3.4.2 The Carlitz module

We want to exhibit the circumstance ([74]) that, based on the analogy between

Z and F[t], the Carlitz module C : F[t] → L[τ ] defined by Ct = ζ + τ provides a

function-field analogue for the multiplicative K-group scheme

Gm,K = Spec(K[u, u−1])

in the following manner: recall that the group scheme Gm = Spec(Z[u, u−1]) repre-

sents the functor

(schemes)→ (abelian groups), S 7→ Γ(S,OS)×.
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

Stressing that Spec(Z) is the final object in the category of schemes and that abelian

groups correspond to Z-modules, one observes that Gm parallels the functor

(F[t]-schemes)→ (F[z]-modules), S 7→ Γ(S,OS),

where z acts on the F-vector space Γ(S,OS) via the F-linear endomorphism x 7→

tx + xr; note that via this functor, for every L-algebra R the F[t]-scheme Spec(R)

goes to the F[z]-module C(R); here we use that every L-algebra becomes an F[t]-

algebra via our fixed characteristic map of F-algebras F[t]→ L, t 7→ ζ.

In this spirit we may regard the z-adic Tate module

FJzK(1) = Tz(C) = lim←−n≥1C(Lsep)[zn]

as a z-adic analogue for Zp(1); for every n ≥ 1 the abelian group C(Lalg)[zn] is

naturally an F[z]/zn-module which is free of rank 1 (for example, by [59], 2.5(a));

by virtue of the following elementary Lemma, the abelian group C(Lalg)[zn] con-

sists of the roots of a separable polynomial over L, so that, in fact, the abelian

group C(Lsep)[zn] is free of rank 1 as a module over F[z]/zn, and therefore we may

summarize that Tz(C) is a free FJzK-module of rank 1.

Lemma 3.22. Via the isomorphism

L[τ ]
≃
→ End(GrSch/L),F−lin(Ga,L),

s∑

ν=0

αντ
ν 7→ Spec(L[x]→ L[x], x 7→

s∑

ν=0

ανx
rν ),

where L[τ ] is the skew polynomial ring over L with the commutation rule τα = αrτ

for α ∈ L, every power of ζ+τ ∈ L[τ ] corresponds to (an endomorphism Ga,L → Ga,L

given by) a separable polynomial over L.

Proof. The skew polynomial ζ + τ ∈ L[τ ] corresponds to f0 = ζx+ xr ∈ L[x] whose

formal derivative is

(d/dx)(ζx+ xr) = ζ ∈ L×.

Therefore gcd(f0, (d/dx)f0) = 1. To accomplish the proof, it suffices to show that

for f ∈ L[x] the condition deg((d/dx)f) = 0 implies deg((d/dx)(ζf + f r)) = 0.

However, this is immediate, for we have (d/dx)(ζf + f r) = ζ(d/dx)f . �

Let us briefly discuss the z-adic analogue for the p-adic cyclotomic character χK :

GK → Z×p . Let (tn)n≥0 ∈ Tz(C) be a coherent sequence where tn ∈ C(Lsep)[zn+1] is

an F[z]/zn+1-basis, in particular

tr−1
0 = −ζ, ζtn + trn = tn−1 (n ≥ 1).
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3.4 Yoneda extension classes and bad reduction in equal characteristic

This sequence gives rise to an isomorphism of FJzK-modules

AutFJzK(Tz(C)) ≃ FJzK×;

we consider the element t+ =
∑
n tnz

n ∈ L∞JzK× where L∞ = L((tn)n≥0); note that

t0 ∈ L×∞. Let σ = σL∞ : L∞JzK → L∞JzK be the r-Frobenius lift of L∞JzK. By

construction σ(t+) equals (z− ζ)t+. Let γ ∈ GL. Since t+ is a unit in L∞JzK, there

is a well-defined element χL(γ) ∈ L∞JzK such that

∞∑

n=0

γ(tn)zn = χL(γ)t+.

Since ζ lies in the ground field L, the element χL(γ) is σ-invariant: we have

σ(χL(γ)) = σ(
∞∑

n≥0

γ(tn)zn)σ(t+)−1 = (z − ζ)χL(γ)t+σ(t+)−1 = χL(γ),

i.e., the coefficients of χL(γ) lie in the splitting field of the polynomial xr−x ∈ L[x]

inside Lsep, i.e., χL(γ) ∈ FJzK×; because of the defining relation of χL(γ), the

absolute term of χL(γ) has to be nontrivial. We obtain a character χL : GL →

FJzK× which is our analogue of χK , and which induces a canonical embedding

Gal(L∞/L) →֒ FJzK×; see [40], 1.3.

3.4.3 The valuation sequence

In (3.1) we have recalled that the abelian group E(K) of K-rational points of a

Tate elliptic curve E/K over a complete discretely valued field extension K/Qp is

naturally isomorphic to the unit group K× modulo a Z-lattice of the form qZ for

a uniquely determined parameter q ∈ K×. By virtue of the period q ∈ K×, the

p-adic representation Vp(E) associated to E/K acquires a natural structure of a

semi-stable, non-crystalline extension of Qp by Qp(1). As we have seen in 3.10,

the Qp-vector space Ext1
cris(Qp,Qp(1)) of Yoneda-equivalence classes of crystalline

extensions of Qp by Qp(1) sits as a Qp-hyperplane inside the corresponding Qp-vector

space Ext1
st(Qp,Qp(1)) for the semi-stable category; this in turn is mirrored by the

Qp-linear short exact sequence

0→ (1 + mK)⊗Zp Qp → K̂× ⊗Zp Qp → Qp → 0

which has its origin in a unique splitting of the canonical exact sequence of abelian

groups

1→ 1 + mK → o×K → k× → 1

combined with a (non-canonical) splitting of the canonical valuation sequence

1→ o×K → K×
vK→ Z→ 1
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for the p-adic field K. Every splitting of the latter sequence corresponds to the

choice of a uniformizer for K. Stressing the analogy between the multiplicative

group scheme Gm and the Carlitz module C, we may regard the valuation sequence

as being an analogue for the F[z]-linear exact sequence

0→ C(oL)→ C(L)→ C(L)/C(oL)→ 0

where L is our equal-characteristic complete discretely valued base field; note that

the latter sequence does not admit a canonical F[z]-linear splitting. Furthermore,

looking at the above kernel sequence for the reduction map o×K → k×, the exact

sequence of F[z]-modules

0→ C(mL)→ C(oL)→ C(ℓ)→ 0

indicates that the kernel C(mL) may be viewed as a function-field analogue for the

principal-unit group 1 + mK ⊆ o×K of the p-adic field K; note that the F-linear

subspace mL of oL is indeed an F[z]-submodule of C(oL), so that writing C(mL)

actually makes sense.

Proposition 3.23. (i) For every n ≥ 1 the F[z]-linear inclusion C(mL) ⊆ C(oL)

restricts to the equality

C(mL)[zn] = C(oL)[zn]

of F[z]/zn-modules.

(ii) The F[z]-module C(mL) is z-adically complete.

(iii) For every n ≥ 1 the canonical map

C(mL)/znC(mL)→ C(oL)/znC(oL)

of F[z]/zn-modules is an isomorphism; in particular, there is a canonical iso-

morphism of FJzK-modules

C(mL)
≃
→ Ĉ(oL)

(z)
.

Proof. For every n ≥ 1, apply the Snake Lemma to the commutative diagram of

F[z]-linear maps

0 // C(mL) //

zn

��

C(oL) //

zn

��

C(ℓ) //

zn

��

0

0 // C(mL) // C(oL) // C(ℓ) // 0
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with exact rows. We have already seen earlier that the Carlitz module is of super-

singular reduction, and moreover

C(ℓ)[zn] = {x ∈ ℓ, xr
n

= 0} = 0.

This implies at once part (i) as well as that for every n ≥ 1 there is a canonical

exact sequence of F[z]/zn-linear maps

0→ C(mL)/znC(mL)→ C(oL)/znC(oL)→ C(ℓ)/znC(ℓ)→ 0;

in particular, there is a canonical exact sequence of FJzK-linear maps

0→ Ĉ(mL)
(z)
→ Ĉ(oL)

(z)
→ Ĉ(ℓ)

(z)
→ 0;

the latter being true since the Mittag-Leffler condition is clearly met. Finally, how-

ever, since ℓ is perfect, the map zn : C(ℓ)→ C(ℓ) is surjective, so that C(ℓ)/znC(ℓ)

is trivial for every n ≥ 1. It remains to show that the canonical map

C(mL)→ lim←−(s)C(mL)/zsC(mL)

is an isomorphism. First of all, we note that for every s ≥ 1 we have an inclusion

zC(ms
L) ⊆ ms+1

L , and using this we show by induction on s that zsC(mL) ⊆ ms+1
L

for all s ≥ 1: our claim holds true if s = 1 since r ≥ 2, and for any fixed s we have

zsC(mL) = z(zs−1C(mL)) ⊆ zC(ms
L) ⊆ ms+1

L

provided that zs−1C(mL) ⊆ ms
L; we may conclude that

∩s≥1z
sC(mL) ⊆ ∩s≥1m

s+1
L = 0,

i.e., the canonical map C(mL)→ Ĉ(mL)
(z)

is injective or, in other words: C(mL) is

z-adically separated. In order to show that the displayed map is also surjective, we

fix a coherent sequence

(xs[z
s])s ∈ Ĉ(mL)

(z)

of residue classes xs[z
s] ∈ C(mL)/zsC(mL); in particular, we are provided that

xs+1 − xs ∈ z
sC(mL) for every s ≥ 1, so we find elements ys, ws ∈ mL such that

xs+1 − xs = zsys = πs+1ws,

where the latter equality follows from what we have seen above; the series x1 +
∑∞
s=1 xs+1 − xs converges inside oL and gives an element x ∈ mL for we have

v(x) = v(x1 +
∞∑

s=1

xs+1 − xs) ≥ min(v(x1), v(
∞∑

s=1

πs+1ws)) ≥ 1;
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here v denotes as usual the discrete valuation of L normalized by v(π) = 1; we need

yet to verify that x− xs ∈ z
sC(mL) for every s; indeed, we have

x− xs = x1 − xs +
∞∑

ν=1

xν+1 − xν

=
∞∑

ν=1

xν+1 − xν −
s−1∑

ν=1

xν+1 − xν

=
∞∑

ν=s

xν+1 − xν

=
∞∑

ν=s

zνyν = zsw

where w =
∑∞
ν=s z

ν−syν ∈ C(mL), see Lemma 3.24 below; note that zν−syν ∈

C(mν−s+1
L ) for every ν ≥ s, as we have seen above; therefore the defining series for

w converges in oL, and indeed v(w) ≥ 1. �

Lemma 3.24. Let α =
∑∞
n=1 αn be a convergent series inside oL; then zsα =

∑∞
n=1 z

sαn inside C(oL) for every s ≥ 1.

Proof. We have

zα = ζα+ αr =
∞∑

n=1

(ζαn + αrn) =
∞∑

n=1

zαn.

So the claim follows by induction. �

3.4.4 Analytic uniformization

Having fixed a separable closure Lsep/L, we denote by GL = Gal(Lsep/L) the ab-

solute Galois group of our complete discretely valued field L. Let Λ ⊆ C(Lsep) be

a lattice of rank d, i.e., a finite projective (hence free) F[z]-submodule of C(Lsep)

of rank d such that ρ(Λ) ⊆ Λ for every ρ ∈ GL. According to Drinfeld’s Tate uni-

formization theorem, which we have already discussed in section (2.2.2), the couple

(C,Λ) corresponds up to isomorphism to a bad-reduction Drinfeld F[z]-module of

rank d+ 1, which we denote by C/Λ; note that C/Λ plays the role of a Tate elliptic

curve Eq = Gm,K/q
Z in the p-adic world; furthermore, note that Tate uniformiza-

tion for Drinfeld modules is actually broader than that of elliptic curves: in order

to uniformize all stable Drinfeld modules over L, one would have to allow lattices

inside Drinfeld modules of higher rank (not only inside C).

According to what we have recorded in (2.2.2), one may write down the uni-

formization of C/Λ in terms of an exact sequence

0→ Λ→ C →an C/Λ→ 0
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where one has to note that, as indicated by the notation, the arrow C →an C/Λ

is merely an analytic morphism of Drinfeld modules, not an algebraic one; this

morphism is given by a formal power series u = x +
∑∞
ν=1 uνx

rν ∈ oLJxK verifying

v(uν)/r
ν → ∞ as ν → ∞ and uCa = (C/Λ)au for all a ∈ F[z]; the power series u

induces an F[z]-linear map C(Lsep) → (C/Λ)(Lsep) by ξ 7→ u(ξ); namely, for every

ξ ∈ Lsep the field extension L(ξ) is finite separable and therefore complete, i.e.,

u(ξ) ∈ L(ξ) ⊆ Lsep; the resulting map is clearly F-linear, and we have

u(zξ) = u(Cz(ξ)) = (C/Λ)z(u(ξ)) = zu(ξ),

i.e., the map defined by u is indeed F[z]-linear. We obtain an exact sequence of

F[z]-modules 0 → Λ → C(Lsep) → C/Λ(Lsep) → 0. Now let n ≥ 1; applying the

Snake Lemma to the commutative diagram

0 // Λ //

zn

��

C(Lsep) //

zn

��

C/Λ(Lsep) //

zn

��

0

0 // Λ // C(Lsep) // C/Λ(Lsep) // 0

we get an exact sequence

0→ Λ[zn]→ C(Lsep)[zn]→ C/Λ(Lsep)[zn]→

→ Λ/znΛ→ C(Lsep)/znC(Lsep)→ C/Λ(Lsep)/zn(C/Λ(Lsep))→ 0

Here Λ[zn] = 0 since Λ is free over F[z]; we claim that C(Lsep)/znC(Lsep) is trivial as

well: indeed, arguing as in 3.22 we see that for every β ∈ Lsep the relation znα = β

inside C(Lalg) corresponds to a separable polynomial equation over L and therefore

does, in fact, admit a solution inside C(Lsep). Therefore we obtain an exact sequence

of F[z]/zn-modules

0→ C(Lsep)[zn]→ C/Λ(Lsep)[zn]→ Λ/znΛ→ 0

for every n. Since the F[z]-linear map z : C(Lsep)[zn+1] → C(Lsep)[zn] is surjective

for every n, we see that for the resulting projective system of exact sequences the

Mittag-Leffler condition is met, so that in the projective limit we get an exact

sequence

0→ Tz(C)→ Tz(C/Λ)→ Λ⊗F[z] FJzK→ 0.

As a GL-module Tz(C) equals FJzK(1), as we have discussed in (3.4.2); similarly we

have a natural GL-action on the Tate module Tz(C/Λ), leading to a GL-represen-

tation which should be regarded as non-crystalline, i.e., it cannot correspond to a

local shtuka over oL, due to its bad-reduction origin.
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

In the case of a Tate elliptic curve Eq/K we have seen that the exact uniformiza-

tion sequence 1 → qZ → Gm(Kalg) → Eq(K
alg) → 0 induces an extension of Zp-

modules 0 → Zp(1) → Tp(Eq) → Zp(0) → 0 compatible with the GK-actions. The

uniformizing parameter q of a Tate elliptic curve is always an element ofK and there-

fore is fixed under the action of GK . Consequently we may write qZ ⊗Z Zp = Zp(0).

In equal characteristic, however, the situation is slightly different: We consider

the fixed lattice Λ ⊆ C(Lsep) from above. Let ρ ∈ GL be any L-automorphism of

Lsep; in particular, ρ fixes F; moreover, being a ring homomorphism, ρ is compatible

with z : C(Lsep)→ C(Lsep), i.e., ρ restricts to an F[z]-linear automorphism

ρ : Λ→ Λ,

and fixing any F[z]-basis yields a homomorphism of groups GL → Gld(F[z]). Assume

that d = rkF[z](Λ) = 1, say with F[z]-basis λ ∈ Λ. This setting is supposed to be

in tightest analogy with the uniformization of Tate elliptic curves. Thus we wish

to relate the z-adic completion Λ ⊗F[z] FJzK to the trivial Tate twist FJzK(0): Let

α(ρ) ∈ F[z]× = F× be such that ρ.λ = α(ρ)λ. This scalar is clearly independent of

the choice of λ, and we may summarize that the induced representation

GL → AutFJzK(Λ⊗F[z] FJzK) = FJzK×

factors via F×; one further observes that α(ρ) = 1 holds for all ρ if and only if

Λ ⊆ C(L); in particular, without imposing any restriction upon Λ, our desired

relation between Λ⊗F[z] FJzK and the 0-th Tate twist of FJzK fails to be true, which

means that these two are in general not isomorphic: the scalar α(ρ) may vary inside

the finite group F×.

3.4.5 Yoneda extensions of Tate-twist quasi-crystals

Let R be a noetherian integral domain which is a flat oLJzK-algebra, together with

a ring endomorphism σR : R → R which is an extension of the r-Frobenius lift

σ : oLJzK→ oLJzK. We define a category σMod(R) as follows: an object of σMod(R)

is a couple (M,ϕM) where M is a finitely generated R-module together with a σR-

semi-linear map ϕM : M → M ; a morphism (M,ϕM) → (N,ϕN) is defined to be a

ϕ-equivariant R-linear map M → N . Given an object (M,ϕM), the datum ϕM will

usually be omitted from the notation.

For example, for every n ∈ Z, n ≥ 0, the n-th Tate object of σMod(R) is given by

R(n) = (R, (z − ζ)n ◦ σR).
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We may write R instead of R(0). If R = oLJzK then every effective local shtuka gives

rise to an object of σMod(R); we take this instance as a motivation for calling an

object of σMod(·) a quasi-crystal over R, for (effective) local shtukas over oL corre-

spond to Dieudonné crystals of p-adic Barsotti-Tate groups ([40], [41]); accordingly,

for every effective local shtuka M̂ its mod-πL reduction M̂ ⊗oLJzK ℓJzK gives rise to

a z-isocrystal (with Hodge-Pink structure) by inverting the scalar z; note that ℓJzK

corresponds to the ring of Witt vectors over the residue field in the p-adic world;

see [40].

Lemma 3.25. The category σMod(R) is abelian.

Proof. It is clear how to define finite bi-products and, since the base ring R is

noetherian, also kernels and cokernels of morphisms. �

In particular, for any two objects M,M ′ ∈ σMod(R) the set Ext1
σ,R(M,M ′) of

Yoneda extension classes of M by M ′ with respect to σMod(R) is an abelian group

under the Baer sum; see [62].

Let us consider the following special case: suppose that a given extension 0 →

R
i
→ M

pr
→ R(1)→ 0 inside σMod(R) admits an R-linear section w : R(1)→ M of

pr : M → R(1) so that, fixing this section, M is canonically isomorphic to R⊕R(1)

as an R-module; necessarily M is free with basis Bw = (i(1), w(1)); fixing this basis,

there is a unique b ∈ R such that the given extension amounts to a commutative

diagram of R-modules

0 // R //

σR

��

R⊕R(1) //

( 1 b
0 z−ζ )◦σR

��

R(1) //

(z−ζ)◦σR
��

0

0 // R // R⊕R(1) // R(1) // 0

where the rows are exact sequences of R-linear maps and where the vertical maps are

σR-semi-linear; let us exhibit that two extensions of this type are Yoneda equivalent

if and only if there is some u ∈ R such that

( 1 b
0 z−ζ )( 1 σR(u)

0 1
) = ( 1 u

0 1 )( 1 b′

0 z−ζ ),

which is to say that σR(u)+b = b′+u(z−ζ); here b′ ∈ R corresponds (in the manner

just described) to an extension 0 → R → M ′ → R(1) → 0 with a fixed R-linear

splitting w′ : R(1)→M ′.

We intend to follow this line of thought and commence by stating the obvious

Proposition 3.26. For every extension class ξ ∈ Ext1
σ,R(R(1), R) every represen-

tative of ξ admits an R-linear section.
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

Proof. We need merely remark that the R-module underlying R(1) is free of rank

one. �

It is clear that the binary relation ∼ on R defined by

b ∼ b′ :⇐⇒ There is some u ∈ R such that σR(u) + b = b′ + u(z − ζ)

is an equivalence relation. The set R/∼ of equivalence classes for ∼ naturally

becomes an abelian group via

+: (R/∼)× (R/∼)→ (R/∼), ([b], [b′]) 7→ [b+ b′].

Example. z ∼ ζ + 1, in particular [z − ζ] = [1]. –

Let b, b′ ∈ R. If λ ∈ RσR=id then b ∼ b′ implies λb ∼ λb′, i.e., the map

RσR=id × (R/∼)→ (R/∼), (λ, [b]) 7→ [λb],

is well-defined; it clearly makes R/∼ into an RσR=id-module; in particular, R/∼ is

an FJzK-module. Furthermore, given λ ∈ RσR=id, the map

λ : R(n)→ R(n)

becomes ϕ-equivariant for every n ≥ 0; recall that the usual RσR=id-module structure

of the abelian group Ext1
σ,R(R(1), R) is given by

λξ = class of 0→ R→M ×pr,R(1),λ R(1)→ R(1)→ 0,

where the class ξ is represented by 0→ R→M
pr
→ R(1)→ 0.

Proposition 3.27. There is a canonical isomorphism of abelian groups

Ext1
σ,R(R(1), R)

≃
→ R/∼

which is RσR=id-linear, and which is natural in the sense that if R′ is a noetherian

domain being a flat R-algebra, together with an extension σR′ : R
′ → R′ of σR, then

there is a commutative diagram

Ext1
σ,R(R(1), R) ≃ //

��

R/∼R

��
Ext1

σ,R′(R
′(1), R′) ≃ // R′/∼R′

where the vertical maps are defined in the obvious manner.
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3.4 Yoneda extension classes and bad reduction in equal characteristic

Proof. Let ξ ∈ Ext1
σ,R(R(1), R) be the class of

0→ R
i
→M

pr
→ R(1)→ 0

say, and let w : R(1) → M be an R-linear section of the projection pr : M → R(1);

let Bw = (i(1), w(1)) be the resulting R-basis of M . If w′ : R(1) → M is another

section of pr with resulting basis Bw′ = (i(1), w′(1)) then we have

Bw′ [idM ]Bw = ( 1 r
0 1 ) ∈ Gl2(R)

where r ∈ R is uniquely determined by the relation i(r) = w(1)− w′(1). From

ϕM(w(1)) = ϕM(w(1))− (z − ζ)w(1) + (z − ζ)w(1)

we may conclude that

Bw [ϕM ]
(σR)
Bw = ( 1 ρw

0 z−ζ ) ∈ R2×2

where ρw ∈ R is uniquely determined by the relation i(ρw) = ϕM(w(1))−(z−ζ)w(1),

i.e., ρw is trivial if and only if the section w is ϕ-equivariant. Proceeding analogously

with the section w′ : R(1)→M , the coordinate change

Bw′ [ϕM ]
(σR)
Bw′

= Bw′ [idM ]Bw · Bw [ϕM ]
(σR)
Bw · σR(Bw′ [idM ]Bw)−1

shows that ρw ∼ ρw′ in R. Next we have to show that the assignment

Ext1
σ,R(R(1), R)→ R/∼, ξ 7→ [ρw],

is well-defined. Let 0 → R
i′
→ M ′ pr′

→ R(1) → 0 be another representative of ξ,

and let ι : M → M ′ be a corresponding ϕ-equivariant isomorphism of R-modules.

We already know that ιw is an R-linear section of pr′ and that the couple B′ιw =

(i′(1), (ιw)(1)) constitutes an R-basis of M ′. It just remains to remark that writing

ϕM(w(1)) = ρwi(1)+(z− ζ)w(1) we obtain ϕM ′((ιw)(1)) = ρwi
′(1)+(z− ζ)(ιw)(1),

i.e., we get

Bw [ϕM ]
(σR)
Bw = ( 1 ρw

0 z−ζ ) = Bιw [ϕM ′ ]
(σR)
Bιw ;

so, by the above considerations, we may conclude that the assignment ξ 7→ [ρw]

is indeed well-defined. By analyzing the Baer sum ξ + ξ′ of two given extension

classes ξ, ξ′ ∈ Ext1
σ,R(R(1), R) similarly as in 3.21, one easily verifies that the

map Ext1
σ,R(R(1), R) → R/∼ just defined is additive, and obviously it sends the

trivial extension class to 0 = [0] ∈ R/∼. The asserted naturality and RσR=id-

linearity are clear. From the considerations made so far, it also becomes immedi-

ately clear that ξ ∈ Ext1
σ,R(R(1), R) is mapped to 0 if and only if ξ = 0, i.e., the

map Ext1
σ,R(R(1), R) → R/∼ is injective. In order to prove surjectivity, we need

merely remark that given an equivalence class [ρ] for some ρ ∈ R, one can con-

sider the trivial extension of R-modules 0 → R → R ⊕ R(1) → R(1) → 0 where
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

the R-linear maps R → R ⊕ R(1) and R ⊕ R(1) → R(1) are canonically given by

1 7→ (1, 0) and (0, 1) 7→ 1 respectively; in particular, there is a canonical R-linear

section R(1) → R ⊕ R(1) of the projection map which is given by 1 7→ (0, 1); if we

define ϕR⊕R(1) : R⊕R(1)→ R⊕R(1) with respect to the canonical basis of R⊕R(1)

(σR-semi-linearly) by the matrix ( 1 ρ
0 z−ζ ) then it becomes clear that the class of the

gained extension inside Ext1
σ,R(R(1), R) is mapped to [ρ] ∈ R/∼. �

Let us give another description of the Rσ=id-module R/∼, relying on the fact that

the canonical map R→ R/∼ is Rσ=id-linear. We observe that this map is surjective

and that its kernel coincides with the image of the Rσ=id-linear map

ηR : R→ R, u 7→ σ(u)− u(z − ζ),

i.e., there is an exact sequence of Rσ=id-modules

R
ηR→ R→ (R/∼)→ 0,

which means that (R/∼) = coker(ηR).

3.4.6 "Crystalline" and "semi-stable" Yoneda extensions

Let

YE1
cris = Ext1

σ,oLJzK(oLJzK(1), oLJzK),

YE1
st = Ext1

σ,oLJzK[1/π](oLJzK[1/π](1), oLJzK[1/π]).

Note that, since π ∈ oLJzK is not σ-invariant, it does not make sense to write down

expressions like "YE1
cris[1/π]"; in particular, it should be noted that YE1

st cannot arise

from YE1
cris by "inverting π".

Proposition 3.28. The obvious FJzK-linear map YE1
cris → YE1

st is injective.

Proof. Let x ∈ oLJzK be given such that we have an equation x = σ(u)
πrn
− u

πn
(z − ζ)

inside oLJzK[1/π] for a suitable u ∈ oLJzK and n ≥ 0; in particular, this implies

πrnx = σ(u) − π(r−1)nu(z − ζ). Suppose that n > 0. We may assume that u ∈

oLJzK − πoLJzK, i.e., that the reduction mod π of u does not vanish. However,

reducing the latter equation mod π yields σ̄(ū) = 0, where σ̄ : ℓJzK → ℓJzK denotes

the r-Frobenius lift, i.e., we obtain u ∈ πoLJzK, a contradiction. �

The FJzK-module of Yoneda extension classes introduced in the last section always

carries the z-adic topology. As an example, using the identity

YE1
cris = coker(ηoLJzK : oLJzK→ oLJzK)

let us study this topology on the FJzK-module YE1
cris. We will restrict ourselves to the

module of crystalline extension classes, i.e., to the case of good reduction. Writing

η = ηoLJzK we prove the
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3.4 Yoneda extension classes and bad reduction in equal characteristic

Proposition 3.29. The canonical map

coker(η)→ lim←−scoker(η)/zscoker(η)

is an isomorphism of FJzK-modules, i.e., the FJzK-module YE1
cris is z-adically com-

plete.

Proof. Let us first show z-adic separatedness, i.e., we first claim that the displayed

map is injective. Let f ∈ oLJzK, f =
∑
ν fνz

ν , be such that f̄ = f [im(η)] lies in the

kernel, which is to say that for every s ≥ 1 there exists an element us =
∑
ν usνz

ν ∈

oLJzK such that zs | (f − η(us)) for every s; so for every s ≥ 1 we get relations

f0 − u
r
s0 − ζus0 = 0, fν − u

r
sν + us,ν−1 − ζusν = 0 (1 ≤ ν ≤ s− 1);

we claim that the sequence (us)s≥1 admits a sub-sequence (us(k))k≥1 which converges

to an element u ∈ oLJzK, in the sense that for every integer ε ≥ 1 we have u−us(k) ∈

zεoLJzK for all k ≥ N(ε) say; here we may assume without loss of generality that

N(ε) ≥ ε; suppose for a moment that there is such a sequence (us(k))k, with limit

u ∈ oLJzK; let ε ≥ 1, and let k ≥ 1 be sufficiently large such that u−us(k) ∈ z
εoLJzK

and s(k) ≥ ε; then we get

f − η(u) = f − η(us(k)) + η(us(k))− η(u) = f − η(us(k)) + η(us(k) − u)

which lies in zεoLJzK since f − η(us(k)) is divided by zs(k) and therefore also by zε,

and since η(us(k) − u) also is divided by zε; this implies that f = η(u), i.e., that

f [im(η)] = 0. So it remains to find a convergent subsequence (us(k))k. Using the

relations f0 − urs0 − ζus0 = 0 for s ≥ 1 we find that us0 − us′0 ∈ C(oL)[z] for all

s, s′ ≥ 1; consequently the set

D = {us0 − us′0, s, s′ ≥ 1}

has to be finite. For every d ∈ D let

Ad = {s ≥ 1, u10 − us0 = d};

since the partition {Ad}d∈D of the set N≥1 is finite, there has to be some d ∈ D such

that Ad is infinite; we fix such a d; now, given any s, s′ ∈ Ad, we obtain us0 = us′0,

i.e., for all s ∈ Ad the us0 have the same value; this yields a constant subsequence

(us(k),0)k≥1 of (us0)s≥1 given by {s(k), k ≥ 1} = Ad. Next we consider the relations

f1 = urs1 − us0 + ζus1, s ≥ 2;

in particular, these relations are valid for s ∈ {s(k)}k≥1 ∩ N≥2; using that the

sequence (us(k),0)k is constant, they yield that us(k),1 − us(k′),1 ∈ C(oL)[z] for all
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

k, k′ ≥ 1 such that s(k), s(k′) ≥ 2; as above we show that the sequence (us(k),1)k≥1

admits a constant subsequence (us(k)(k1),1)k1≥1; inductively, fixing ν ≥ 2 and using

the relations

fν = ursν − us,ν−1 + ζusν , s ≥ ν + 1,

we can now prove that the sequence (us(k)(k1)...(kν−1),ν)kν−1≥1 admits a constant sub-

sequence (us(k)(k1)...(kν−1)(kν),ν)kν≥1; now we define a sequence (vj)j≥1 by v1 = us(1),

v2 = us(k)(2), v3 = us(k)(k1)(3), v4 = us(k)(k1)(k2)(4), etc.; we write vj =
∑
µ vjµz

µ for

every j; by construction, for every µ ≥ 0 the sequence (vjµ)j becomes stationary,

i.e., (vj)j is z-adically a Cauchy sequence and therefore converges to some element

u ∈ oLJzK, as desired.

In order to show surjectivity, we consider a sequence of elements fs =
∑
ν fsνz

ν ∈

oLJzK such that for every s ≥ 1 there exists some us ∈ oLJzK verifying fs+1 − fs −

η(us) ∈ z
soLJzK; we define a sequence (f ′s)s≥1 in oLJzK by

f ′s = fs −
s−1∑

µ=1

η(uµ) (s ≥ 1);

by construction, for every s ≥ 1 we obtain fs = f ′s in coker(η), and

f ′s+1 − f
′
s = fs+1 − fs − η(us);

we claim that the sequence (f ′s)s converges z-adically to some f ∈ oLJzK; indeed,

given any integer ε ≥ 1, the latter relations yield immediately that f ′s+1 − f ′s ∈

zsoLJzK ⊆ zεoLJzK for all s ≥ N(ε) = ε; the residue class f̄ = f [im(η)] is now the

desired preimage: we have to show that f̄ [zs] = fs[z
s] for every s ≥ 1; since the

element (fs[z
s])s of the projective limit is a coherent sequence of residue classes, it

suffices to show that for fixed s ≥ 1 there is some n ≥ s such that f̄ [zs] = fn[zs];

so let n ≥ 1 be large enough such that n ≥ s and such that f − f ′n ∈ zsoLJzK;

this is possible by construction of f , and it means that we find some g ∈ oLJzK

such that f = f ′n + zsg; in particular, f̄ = f ′n + zsg in coker(η); we claim that

f ′n + zsg[zs] = fn[zs], which then implies f̄ [zs] = fn[zs], as desired; indeed, our

claim is equivalent to saying that f ′n + zsg−fn ∈ z
scoker(η), and the latter actually

holds true since f ′n = fn in coker(η). �

3.4.7 Study of the Carlitz action over an

equal-characteristic local field

In the present section we will mainly be concerned with the following results.

Theorem 3.30. The FJzK-linear map

Ψ: C(L)/C(oL)⊗F[z] FJzK→ YE1
st/YE

1
cris, x̄⊗ f 7→ f [x],

is injective. If the residue field ℓ = oL/mL is finite then Ψ is an isomorphism.
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Corollary 3.31. Suppose that the residue field ℓ of L is finite. Then the F((z))-

vector space YE1
st/YE

1
cris ⊗FJzK F((z)) is of countably infinite dimension.

In order to prove this corollary, we will apply a result due to B. Poonen [64]

showing that the F[z]-module C(L)/C(oL) is free of countably infinite rank, provided

that ℓ is finite. The proof of 3.31 will be given after 3.37 below.

Proof of Theorem 3.30. Let us first convince ourselves of well-definedness: let x, x′ ∈

C(L) be such that x = ξ + x′ for some ξ ∈ C(oL); we claim that [x]− [x′] ∈ YE1
cris;

however, this is clear since w(z − ζ) + (x − x′) = g + σ(w) is met by g = ξ and

w = 0. The map

C(L)/C(oL)× FJzK→ YE1
st/YE

1
cris, (x̄, f) 7→ f [x],

is F[z]-bilinear and therefore induces the displayed FJzK-linear map Ψ. In order to

show injectivity, let c =
∑m
ν=1 ξν ⊗ fν ∈ C(L)/C(oL)⊗F[z] FJzK be any finite sum of

elementary tensors ξν ⊗ fν such that Ψ(c) =
∑m
ν=1 fν [ξν ] = 0. It suffices to show

that fν = 0 for every ν. By erasing elementary tensors being zero and renumbering

we may assume

v(ξ1) ≤ v(ξ2) ≤ ... ≤ v(ξm) < 0,

where v is the discrete valuation of L normalized by v(π) = 1; for every ν write

ξν = πv(ξν)uν where uν ∈ o
×
L . Furthermore, we may assume that

(i) If s < 0 is an integer such that s = v(ξν) for some ν then r ∤ s.

(ii) If s < 0 is an integer such that r ∤ s then the system (ξν : v(ξν) = s) is linearly

independent inside the F-vector space πsoL/π
s+1oL.

(Recall that r = #F.) This will be justified below. Considering our assump-

tion Ψ(c) = 0, one first observes that 0 =
∑m
ν=1 fν [ξν ] equals the residue class of

[
∑m
ν=1 ξνfν ] in YE1

st/YE
1
cris, i.e., we find some w ∈ oLJzK[1/π] and c′ =

∑∞
i=0 c

′
iz
i ∈

oLJzK such that

w(z − ζ) +
m∑

ν=1

ξνfν = c′ + σ(w);

let us write w =
∑∞
i=0 wiz

i where wi ∈ L and v(wi) ≥ −N for some integer N ≥ 0

and all i; note that we view the power series fν =
∑∞
i=0 fνiz

i ∈ FJzK as elements

of oLJzK, so that ξνfν ∈ oLJzK[1/π] for every ν; with these conventions the above

equation yields

wi−1 − ζwi +
m∑

ν=1

ξνfνi = c′i + wri (i ≥ 0),

where we let w−1 = 0. Now suppose that there is some ν such that fν 6= 0. We

define

i0 = min{i, fνi 6= 0 for some ν}, ν1 = min{ν, fνi0 6= 0};

103
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let n = v(ξν1) < 0 be the valuation of ξν1 , and

ν2 = max{ν, v(ξν) = n}.

We may note that by virtue of (i) we have r ∤ n. We claim that v(
∑m
ν=1 ξνfνi0) =

n < 0; indeed, by choice of ν1 and ν2 we may write

m∑

ν=1

ξνfνi0 =
∑

ν1≤ν≤ν2

ξνfνi0 +
∑

ν2<ν≤m

ξνfνi0

= πn
∑

ν1≤ν≤ν2

uνfνi0 + πn+1
∑

ν2<ν≤m

πv(ξν)−(n+1)uνfνi0 ;

therefore the first summand here is of valuation ≥ n whereas the second one is of

valuation ≥ n + 1; by virtue of (ii) we realize that v(
∑
ν1≤ν≤ν2

ξνfνi0) = n, i.e., the

first summand does, in fact, have valuation n, and so by the triangle inequality for

v our claim follows. Using this, in a next step we show that

rv(wi0) = n,

i.e., r | n, a contradiction. Let us first consider the case i0 > 0: supposing for a

moment that v(wi0−1) ≥ 0 we get

0 > v(
m∑

ν=1

ξνfνi0) = v(wri0 + ζwi0 − wi0−1 + c′i0) = v(wri0 + ζwi0);

this implies v(wi0) < 0, and consequently v(wri0) < v(ζwi0), so we may conclude

that n = v(
∑m
ν=1 ξνfνi0) = v(wri0), as desired; we have yet to justify our assumption

v(wi0−1) ≥ 0, and in order to achieve this we show inductively that v(wi) ≥ 0

for 0 ≤ i < i0, starting with i = 0: let us assume that v(w0) < 0; noting that
∑m
ν=1 ξνfν,0 = 0, from the equation 0 = wr0 + c′0 + ζw0 we conclude that 0 > v(wr0) ≥

min(v(c′0), v(ζw0)); if v(c′0) > v(ζw0) then we get 0 > v(wr0) = v(ζw0) which leads

to a contradiction, and v(c′0) ≤ v(ζw0) cannot happen either, i.e., our assumption

is false and therefore v(w0) ≥ 0; proceeding inductively, we now suppose that for

some 1 ≤ j ≤ i0 − 1 we have v(wj−1) ≥ 0; we show that assuming v(wj) < 0 leads

to a contradiction: indeed, from

0 > v(wrj ) = v(wj−1 − c
′
j − ζwj) ≥ min(v(wj−1 − c

′
j), v(ζwj))

it follows that 0 > v(wrj ) ≥ v(ζwj) since v(wj−1 − c′j) ≥ 0. This contradiction

concludes our proof for rv(wi0) = n in the case i0 > 0. It remains to consider the

case i0 = 0; here we have

0 > v(
m∑

ν=1

ξνfν,0) = v(wr0 + ζw0 + c′0) ≥ min(v(wr0 + ζw0), v(c
′
0)) = v(wr0 + ζw0)
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which implies v(w0) < 0 and therefore v(wr0) < v(ζw0), i.e., we get

n = v(
m∑

ν=1

ξνfν,0) = v(wr0 + ζw0 + c′0) = v(wr0),

as desired. Next we have to justify our assumptions (i), (ii). Let us start with

(i). We need to either show that (i) is already met by our fixed representation

c =
∑m
ν=1 ξν ⊗ fν of c by elementary tensors or, if this is not the case, how to

produce another representation of c by elementary tensors, i.e.,

c =
m∑

ν=1

ξν ⊗ fν =
m′∑

ν′=1

ξ′ν′ ⊗ f
′
ν′ ,

such that all the ξ′ν′ meet (i); for furnishing such a new representation we would use

our assumption v(ξ1) ≤ ... ≤ v(ξm) < 0 on the ξν ; we further remark that such a

new representation does not affect Ψ(c), for we have

0 = Ψ(c) =
m∑

ν=1

fν [ξν ] = Ψ(
m∑

ν=1

ξν ⊗ fν) = Ψ(
m′∑

ν′=1

ξ′ν′ ⊗ f
′
ν′) =

m′∑

ν′=1

f ′ν′ [ξ
′
ν′ ].

Clearly (i) is true for all s < v(ξ1) since in this case there is no ν such that s = v(ξν).

Let s0 < 0 be the smallest s such that r | s and such that v(ξν) = s for some ν,

say v(ξν0) = s0; clearly we have v(ξ1) ≤ s0 < 0 and r | s0; using the identification

L = ℓ((π)), let us write ξν0 =
∑
j≥s0

γjπ
j where γs0 ∈ ℓ

×; let us write γν0 instead of

γs0 ; we get ξν0 = γν0π
s0 + ξ̃ν0 where ξ̃ν0 ∈ ℓ((π)) is an element of π-adic valuation

v(ξ̃ν0) = ordπ(ξ̃ν0) > s0; since ℓ is perfect, we have a unique r-th root γ1/r
ν0

of

γν0 ∈ ℓ
×; the F[z]-action of L = ℓ((π)) being understood to come from the Carlitz

module C(L) = C(ℓ((π))), we write

γ1/r
s0
πs0/r ⊗ z = z(γ1/r

ν0
πs0/r)⊗ 1

= (γν0π
s0 + ζγ1/r

ν0
πs0/r)⊗ 1

= (ξν0 − ξ̃ν0 + ζγ1/r
ν0
πs0/r)⊗ 1

= ξν0 ⊗ 1 + (ζγ1/r
ν0
πs0/r − ξ̃ν0)⊗ 1,

which in turn gives a new representation of c by elementary tensors, namely

c =
m∑

ν=1

ξν ⊗ fν =
∑

ν 6=ν0

ξν ⊗ fν + ξν0 ⊗ fν0

=
∑

ν 6=ν0

ξν ⊗ fν + γ1/r
ν0
πs0/r ⊗ zfν0 − (ζγ1/r

ν0
πs0/r − ξ̃ν0)⊗ fν0

Here we have v(γ1/r
ν0
πs0/r) = s0/r > s0 and

v(ζγ1/r
ν0
πs0/r − ξ̃ν0) ≥ min(s0/r, v(ξ̃ν0)) > s0;
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we proceed like this for every remaining ν such that v(ξν) = s0, obtaining

c =
∑

ν:v(ξν) 6=s0

ξν ⊗ fν +
∑

ν:v(ξν)=s0

γ1/r
ν πs0/r ⊗ zfν − (ζγ1/r

ν πs0/r − ξ̃ν)⊗ fν ;

now if s < s0 is any integer such that r | s then we claim that in the henceforth

gained family

(ξν){ν : v(ξν) 6=s0} ∪ (γ1/r
ν πs0/r){ν : v(ξν)=s0} ∪ (ξ̃ν − ζγ

1/r
ν πs0/r){ν : v(ξν)=s0}

there is none of valuation s: indeed, by choice of s0 there is no ν such that v(ξν) = s,

and the remaining elements are of valuation > s0. Furthermore, there is no element

in this new family which is of valuation s0. We may conclude that our assumption

(i) was justified. Let us turn to (ii); here we proceed analogously as in (i). First

of all, we remark that for every integer s < v(ξ1) the system (ξν : v(ξν) = s) is

the empty system and is therefore linearly independent inside the F-vector space

Vs = πsoL/π
s+1oL. Let s0 < 0 be the smallest s such that r ∤ s and such that

the system (ξν : v(ξν) = s) is linearly dependent inside the F-vector space Vs; in

particular, we get that r ∤ s0 and that (ξν : v(ξν) = s0) in linearly dependent inside

the F-vector space Vs0 . From our assumption v(ξ1) ≤ ... ≤ v(ξm) we obtain that

there are indices ν1, ν2 ∈ {1, ...,m} such that

v(ξ1) ≤ ... ≤ v(ξν1−1) < v(ξν1) = ... = v(ξν2) < v(ξν2+1) ≤ ... ≤ v(ξm)

where v(ξν) = s0 for all ν ∈ {ν1, ..., ν2}; therefore we may say that v(ξν) = s0 if and

only if ν1 ≤ ν ≤ ν2; note that, since a single non-zero element of any vector space

is always linearly independent, actually ν1 < ν2; since the elements ξν1 , ..., ξν2 are of

the same valuation, we may re-arrange them and write down a linear-combination

ξν2 =
ν2−1∑

ν=ν1

ανξν

inside Vs0 where not all of the scalars αν ∈ F are zero; we may rephrase this by

writing ξν2 =
∑ν2−1
ν=ν1

ανξν + ξ̃ν2 with a suitable ξ̃ν2 ∈ πs0+1oL; setting αν = 0 for

ν /∈ {ν1, ..., ν2} we may also write

ξν2 =
∑

ν 6=ν2

ανξν + ξ̃ν2 .

Consequently

c =
∑

ν

ξν ⊗ fν =
∑

ν 6=ν2

ξν ⊗ fν + ξν2 ⊗ fν2

=
∑

ν 6=ν2

ξν ⊗ (fν + ανfν2) + ξ̃ν2 ⊗ fν2
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using that αν ∈ F ⊆ F[z]; we may conclude that via replacing ξν2 by ξ̃ν2 in the system

(ξν : v(ξν) = s0) we obtain a system where the "new" ξν2 is no longer of valuation

s0, but of valuation ≥ s0 + 1; we proceed like this until the system (ξν : v(ξν) = s0)

is linearly independent inside Vs0 , a process which has to terminate at the system

of one single element, if not earlier. Note that in this construction we did not use

that r ∤ s0. Now let s < s0 be any integer such that r ∤ s; by choice of s0 the

system (ξν : v(ξν) = s) is linearly independent inside Vs; moreover, we have found

a representation by elementary tensors c =
∑
ν′ ξ
′
ν′ ⊗ f

′
ν′ for c such that the system

(ξ′ν′ : v(ξ′ν′) = s0) is linearly independent inside Vs0 . Finally, we may summarize that

also (ii) is justified. Let us show that Ψ is surjective provided that ℓ is finite. Let

[f ] ∈ YE1
st/YE

1
cris, say with f =

∑∞
i=0 fiz

i ∈ LJzK such that v(fi) ≥ −N for some

N ≥ 0 and all i. Using the identification L = ℓ((π)) we may write oLJzK = ℓJπKJzK =

ℓJπ, zK; let, say, fi =
∑
j≥−N fijπ

j ∈ ℓ((π)) for every i; then

f =
∑

i≥0

fiz
i =
∑

i≥0

(
∑

j≥−N

fijπ
j)zi =

∑

j≥−N

(
∑

i≥0

fijz
i)πj =

∑

j≥−N

∑

a∈ℓ

afa,jπ
j

as elements of oLJzK[1/π] = ℓJzK((π)), where fa,j =
∑
i : fij=a z

i ∈ FJzK for every

j ≥ −N . We claim that the element

−1∑

j=−N

∑

a∈ℓ

aπj ⊗ fa,j

is via Ψ mapped to the residue class of [f ]; indeed, we need to find w ∈ oLJzK[1/π]

and g ∈ oLJzK such that

w(z − ζ) + (
∑

j∈{−N,...,−1}, a∈ℓ

(afa,j)π
j − f) = g + σ(w),

which is met by w = 0 and g =
∑
j≥0, a∈ℓ(afa,j)π

j. �

We remark that there is a commutative diagram of F[z]-linear maps with exact

rows

0 // C(oL)⊗F[z] FJzK //

��

C(L)⊗F[z] FJzK //

��

C(L)/C(oL)⊗F[z] FJzK //

��

0

0 // YE1
cris

// YE1
st

// YE1
st/YE

1
cris

// 0

which is induced by the F[z]-linear map

C(L)→ oLJzK[1/π]/∼, x 7→ [x],

using the natural isomorphism YE1
st ≃ oLJzK[1/π]/∼ discussed before. In 3.30 we

have already realized that the right-hand vertical map is always injective, and is
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even an isomorphism if the residue field ℓ is finite. Let us give some further remarks

regarding this diagram: we consider the FJzK-linear map

η : oLJzK→ oLJzK, u 7→ σ(u)− u(z − ζ).

The kernel of C(oL)→ YE1
cris clearly equals C(oL) ∩ im(η). Moreover, we have

Proposition 3.32.

ker(C(oL)→ YE1
cris) = ∩s≥1z

sC(oL) ⊆ C(oL)

ker(C(L)→ YE1
st) = ∪n≥0 ∩s≥1 z

s(π−noL) ⊆ C(L).

We will see below that, in fact, the two kernels described here do coincide. Note

that for n > 0 the subgroup π−noL ⊆ L is not an F-linear subspace of L and that

z : C(L) → C(L) does not restrict to a map π−noL → π−noL, so that the inclusion

π−noL ⊆ C(L) cannot become F[z]-linear.

Proof. Let x ∈ C(L). Suppose there is an integer n ≥ 0 together with an element

u =
∑∞
ν=0 uνz

ν ∈ oLJzK such that we have an equation

x =
σ(u)

πrn
−

u

πn
(z − ζ) =

∞∑

ν=0

(π−rnurν − π
−nuν−1 + π−nuνζ)z

ν

inside oLJzK[1/π], where we let u−1 = 0; a comparison of coefficients yields

x = π−rnur0 + π−nu0ζ, π−nuν−1 = π−rnurν + π−nuνζ (ν ≥ 1),

i.e., x = z(π−nu0) ∈ C(L), and π−nuν−1 = z(π−nuν) ∈ C(L) for every ν ≥ 1; this

proves the second asserted equation; if we let n = 0 and x ∈ C(oL) then the same

argument shows that also the first equation is true. �

The map η : oLJzK → oLJzK induces an FJzK-linear map ℓJzK → ℓJzK defined by

u 7→ σ̄(u)− zu, where σ̄ : ℓJzK→ ℓJzK denotes the r-Frobenius lift.

Proposition 3.33. The map η is injective, and the commutative diagram of FJzK-

linear maps with exact rows

0 // πoLJzK //

��

oLJzK //

η

��

ℓJzK //

��

0

0 // πoLJzK // oLJzK // ℓJzK // 0

induces a short exact sequence of FJzK-linear maps

0→ coker(πoLJzK→ πoLJzK)→ coker(oLJzK
η
→ oLJzK)→ coker(ℓJzK→ ℓJzK)→ 0.

108



3.4 Yoneda extension classes and bad reduction in equal characteristic

Proof. Let u =
∑∞
ν=0 uνz

ν ∈ oLJzK. Provided we have a relation σ(u) = u(z − ζ) it

follows that urν + ζuν = uν−1 for every ν ≥ 0, where we let u−1 = 0. Suppose that

u0 6= 0; this implies ur−1
0 = −ζ, and we obtain a relation

(∗) (uν/u0)
r − uν/u0 = (uν−1/u0)(−1/ζ)

inside L for every ν ≥ 0. Let v be the discrete valuation of L normalized by

v(π) = 1. We get min(rv(u1/u0), v(u1/u0)) ≤ v((u1/u0)
r − u1/u0) = −v(ζ) < 0 and

necessarily v(u1/u0) < 0. From v((u1/u0)
r − u1/u0) = −v(ζ) it now follows that

rv(u1/u0) = −v(ζ), and by induction, using the above relations (∗), one verifies that

rνv(uν/u0) = −v(ζ)

for every ν ≥ 0. In particular, this gives

v(uν) = −v(ζ)/rν + v(u0)

for all ν ≥ 0, which is a contradiction since 0 < v(ζ) < ∞. It follows that u0 = 0,

and by induction, using the relations urν +ζuν = uν−1 for ν ≥ 1, our argument shows

that uν = 0 for all ν ≥ 0. In particular, we get

ker(πoLJzK
η
→ πoLJzK) ⊆ ker(oLJzK

η
→ oLJzK) = 0,

and it only remains to remark that

ker(ℓJzK→ ℓJzK) = {
∞∑

ν=0

uνz
ν , ur0 = 0, urν = uν−1 for all ν ≥ 1} = 0;

so by the Snake Lemma our claim follows. �

Remark. The equalities C(mL)[zs] = C(oL)[zs] (s ≥ 1) from 3.23 do as well imply

that the kernel of η : oLJzK → oLJzK coincides with the kernel of the restriction

πoLJzK→ πoLJzK, for we have

ker(oLJzK
η
→ oLJzK) = {u =

∞∑

ν=0

uνz
ν ∈ oLJzK, (uν)ν≥0 ∈ lim←−s≥1C(oL)[zs]}

= {u =
∞∑

ν=0

uνz
ν ∈ oLJzK, (uν)ν≥0 ∈ lim←−s≥1C(mL)[zs]}

= ker(mLJzK
η
→ mLJzK). −

Lemma 3.34. Suppose that the residue field ℓ of L is finite, i.e., that L is an equal-

characteristic local field. Then there exist

— a finite field extension L′/F(ζ) and

— a prime place p of L′ lying over the place of F(ζ) given by (ζ) ⊆ F[ζ]
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such that L′p = L.

Proof. Our assumption amounts to saying that L/F((ζ)) is a finite field extension.

Let F((ζ))sep be the separable closure of F((ζ)) inside L; this is evidently again a local

field. Let πs ∈ F((ζ))sep be a fixed uniformizer, and let ℓs be the (finite) residue field

of F((ζ))sep; we obtain an identification F((ζ))sep = ℓs((πs)) where, ℓs being perfect, the

right-hand side may be regarded as the field of (finite-tail) formal Laurent series over

ℓs; we claim that, in fact, we have ℓs = ℓ: indeed, the finite field extension L/F((ζ))sep

is purely inseparable, and some elementary considerations in field theory show that

the degree of L over F((ζ))sep is a power of p, say [L : F((ζ))sep] = pm; by Lemma

3.35 below, using the identification F((ζ))sep = ℓs((πs)), the field L is isomorphic to

ℓs((π
1/pm

s )), i.e., the finite field extension L/F((ζ))sep is totally ramified. Let us now

consider the separable finite field extension F((ζ))sep/F((ζ)); the element ζ ∈ F((ζ))×

of the base field gives rise to the subring ℓ[ζ] ⊆ ℓJπsK of polynomials in ζ over ℓ;

let ζ = eπns for some e =
∑∞
ν=0 eνπ

ν
s ∈ ℓJπsK

× and n > 0, say; we claim that ζ is

transcendent over ℓ: indeed, for any polynomial expression f =
∑d
ν=0 aνζ

ν ∈ ℓJπsK

such that aν 6= 0 for at least one index ν, we may assume without loss of generality

that a0 6= 0, so that

f =
d∑

ν=0

aνζ
ν =

d∑

ν=0

aν(e0π
n
s + e1π

n+1
s + ...)ν = a0 + (a1e0)π

n
s + ...,

i.e., f ∈ ℓJπsK
×, and in particular f 6= 0; the inclusion ℓ[ζ] ⊆ ℓJπsK induces monomor-

phisms of rings ℓ[ζ]/(ζν) →֒ ℓJπsK/(π
nν
s ) for every ν ≥ 1, which in the projective limit

give a finite embedding of complete discrete valuation rings ℓJζK →֒ ℓJπsK. We con-

sider the corresponding totally ramified finite extension of local fields ℓ((πs))/ℓ((ζ));

it is well-known that ℓ((πs)) = ℓ((ζ))(πs) (for example, by [25], Corollary (2.9)/2); let

f =
∑
ν fνx

ν ∈ ℓ((ζ))[u] be the minimal polynomial of πs over ℓ((ζ)); since the global

field ℓ(ζ) lies (ζ)-adically dense inside the local field ℓ((ζ)), every coefficient fν may

be approximated by some element of ℓ(ζ), i.e., for any given range N > 0 we can

find some polynomial g =
∑
ν gνu

ν ∈ ℓ(ζ)[u] such that deg(f) = deg(g) and

min
ν

ordζ(fν − gν) > N ;

therefore, by Krasner’s Lemma [10], 3.4.2/3, there is an element β ∈ ℓ((ζ))alg such

that g(β) = 0 and

F((ζ))sep = ℓ((ζ))(πs) = ℓ((ζ))(β);

in particular, the element β is algebraic over ℓ(ζ), so that L′′ = ℓ(ζ)(β) is finite

over ℓ(ζ); the (ζ)-adic valuation ord(ζ) on ℓ(ζ) canonically extends to the natural

valuation ord(ζ) on ℓ((ζ)) which in turn uniquely extends to a discrete valuation w

on the finite extension ℓ((ζ))(β), in the sense that w|ℓ((ζ)) is equivalent with ord(ζ) on
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ℓ((ζ)); we remark that the field ℓ((ζ))(β) is complete with respect to w; let w′′ = w|L′′ ;

by [25], Theorem (2.6), the field L′′ lies dense inside ℓ((ζ))(β) with respect to the

topology induced by w, and moreover w′′|ℓ(ζ) induces the (ζ)-adic topology on ℓ(ζ);

we obtain the diagram

ℓ((ζ))(β)

w|w′′ℓ((ζ))

w|ord(ζ)
ttttttttt

ord(ζ)|· L′′

ℓ(ζ)
w′′|ord(ζ)

ssssssssss

of extensions of discretely valued fields; by the universal property of the (ζ)-adic

completion (L′′w′′ , ŵ
′′) of L′′ (see, for example, [50], XII.2.1) there is a unique isomor-

phism of valued fields

(L′′w′′ , ŵ
′′) ≃ (ℓ((ζ))(β), w)

being compatible with the respective canonical embeddings of L′′; we may summarize

that F((ζ))sep = L′′w′′ . Returning to the purely inseparable extension L/F((ζ))sep, we

consider the valuation w′′ of the field L′′ and choose an element x ∈ L′′ such that

1 = w′′(x) = ŵ′′(x); necessarily x ∈ L′′w′′ is a uniformizer of the local field L′′w′′ .

We adjoin a pm-th root x1/pm of x to L′′. The polynomial f = up
m
− x ∈ L′′[u]

is Eisenstein and therefore irreducible, since x is a prime element of the valuation

ring ow′′ of L′′ for w′′, i.e., f is the minimal polynomial of x1/pm over L′′. Let

L′ = L′′(x1/pm). Since the extension L′/L′′ is purely inseparable, there is a unique

discrete valuation v on L′ such that v|L′′ is equivalent with w′′ (for details see the

proof of 3.35(i) below, or [25], (2.6)); similarly as before, from [25], Theorem (2.6),

it follows that L′′w′′(x
1/pm) is the v-adic completion of L′. Furthermore, since the

residue field of the local field L′′w′′ is perfect, we learn from 3.35(iii) below that

Lp
m

= L′′w′′ ; in particular, L contains a pm-th root of the uniformizer x, and we may

conclude that L′′w′′(x
1/pm) ⊆ L; for reasons of degree, from

[L′′w′′(x
1/pm) : L′′w′′ ] = pm = deg(f)

it follows that the latter inclusion of fields has to be an equality. We summarize our
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findings in the diagram

L

pm

L′′w′′(x
1/pm) = L′v

NNNNNNNNNNNN

pm L′

pm v|w′′L′′w′′ L′′w′′

ŵ′′|w′′ OOOOOOOOOOOOO

L′′

of extensions of discretely valued fields. The proof is complete. �

Lemma 3.35. Let κ be a field of characteristic p > 0 and let x be an indeterminate

over κ; let m ≥ 1 be an integer.

(i) The (x)-adic valuation ord(x) on κ(x) extends uniquely to a discrete valua-

tion on the purely inseparable finite field extension κ(x)(x1/pm), and the field

κ((x))(x1/pm) is the (x)-adic completion of κ(x)(x1/pm).

(ii) The purely inseparable finite field extension κ((x))(x1/pm)/κ((x)) is totally rami-

fied of degree pm.

(iii) Let κ be perfect, and let E/κ((x)) be a purely inseparable finite field extension

of degree pm. Then κ((x)) = Epm = im(FrobmE : E → E). In particular,

E = κ((x))1/pm = {α1/pm , α ∈ κ((x))}.

(iv) Let κ be perfect. Then every purely inseparable finite field extension of κ((x))

is of the form κ((x1/ps)) = κ((x))(x1/ps) for some s ≥ 0.

Proof of 3.35. The polynomial f = up
m
− x ∈ κ(x)[u] is Eisenstein over κ[x] with

respect to the prime element x ∈ κ[x] and therefore irreducible over κ(x); we consider

the finite field extension κ(x)(x1/pm) of κ(x) of degree pm and remark that the root

x1/pm has to be transcendent over κ since x is; furthermore, f being the minimal

polynomial of x1/pm over κ(x), the element x1/pm is purely inseparable over κ(x).

One can also view f as an element of κ((x))[u]; as such it is Eisenstein over κJxK and

therefore irreducible over κ((x)). Let us show part (i). Let w be the unique discrete

valuation on κ((x))(x1/pm) such that w|κ((x)) is equivalent with ord(x) on κ((x)); by

[25], Theorem (2.6), the field κ(x)(x1/pm) lies dense inside κ((x))(x1/pm) with respect

to the topology induced by w, and the restriction of w′ = w|κ(x)(x1/pm ) to κ(x) is
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3.4 Yoneda extension classes and bad reduction in equal characteristic

equivalent with ord(x). We obtain the diagram

κ((x))(x1/pm)

w|ord(x)κ(x)(x1/pm)

w|w′
nnnnnnnnnnnn

w′|ord(x) κ((x))

κ(x)
ord(x)|·

nnnnnnnnnnnnnn

of extensions of valued fields; in order to show the uniqueness of w′, suppose that

w′′ 6= w′ is another discrete valuation on κ(x)(x1/pm) such that w′′|κ(x) is equivalent

with ord(x) on κ(x); then there is some α ∈ κ(x)(x1/pm) such that w′(α) 6= w′′(α);

now consider the purely inseparable field extension κ(x)(α)/κ(x); the minimal poly-

nomial of α over κ(x) is purely inseparable and therefore admits only a single linear

factor over a fixed algebraic closure of κ(x), so that by [25], Theorem (2.6), the

(x)-adic valuation ord(x) of κ(x) can only admit a single extension to κ(x)(α), which

is a contradiction; we may summarize that the valuation w′ is the unique extension

of ord(x) on κ(x) to κ(x)(x1/pm) (this argument can be carried out more generally,

see [25], Corollary (2.6)); finally, by the universal property of (x)-adic completion

([50], VII.2.1) we find that there is a unique isomorphism of valued fields

(κ((x))(x1/pm), w) ≃ (κ(x)(x1/pm)w′ , ŵ′)

over κ(x)(x1/pm), as desired. Let us turn to part (ii). It is well-known that we have

w(α) = 1
f
ord(x)(Nκ((x))(x1/pm )/κ((x))(α))

for every α ∈ κ((x))(x1/pm), where f = f(w|ord(x)) is the residue degree of the field

extension κ((x))(x1/pm)/κ((x)); letting e = e(w|ord(x)) denote the ramification index

of this extension, one calculates

w(x) = 1
f
ord(x)(x

pm) = e,

where we use that pm = [κ((x))(x1/pm) : κ((x))] = ef ; on the other hand, we find

w(x) = pmw(x1/pm), i.e., e = pmw(x1/pm); in combination with the equation pm = ef

this yields

e = pm, f = 1, w(x1/pm) = 1,

i.e., the field extension κ((x))(x1/pm)/κ((x)) is totally ramified of degree pm; in par-

ticular, the residue field of κ((x))(x1/pm) equals κ, and x1/pm is a uniformizer of

κ((x))(x1/pm). This accomplishes the proof of part (ii). In order to prove (iii), we
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

imitate an argument given in [55], X.1.3, for the case of a global function field: let,

say, E = κ((x))(α1, ..., αs), where each of the elements α1, ..., αs is algebraic and

purely inseparable over κ((x)); for every j = 1, ..., s let fj ∈ κ((x))[u] be the mini-

mal polynomial of αj; then fj is of the form up
mj
− α′j for some mj ≥ 1, and α′j

is the pmj -th power of αj for every j; in particular, deg(fj) = pmj for every j; let

n = maxj(mj); necessarily Epn ⊆ κ((x)), and from [E : κ((x))] = pm it follows that

n ≤ m. We claim that [E : Epn ] = pn; indeed, we have isomorphisms of fields

FrobnE : E
≃
→ Epn , Frobnκ((x)) : κ((x))

≃
→ κ((x))p

n

which show that [Epn : κ((x))p
n
] = [E : κ((x))]; from the diagram of field extensions

E

Epn

ssssssssss

κ((x))

κ((x))p
n

uuuuuuuuu

we therefore get that [E : Epn ] = [κ((x)) : κ((x))p
n
]. Since κ is perfect, it follows that

κ((x))p
n

= κ((xp
n
)), and with the aid of part (i) we realize that κ((x)) = κ((xp

n
))(x),

therefore

pn = [κ((x)) : κ((xp
n

))] = [E : Epn ],

and our claim follows. From Epn ⊆ κ((x)) ⊆ E we obtain that [E : κ((x))] ≤ [E : Epn ]

and hence m ≤ n; we may summarize that m = n, and so, for reasons of degree, the

inclusion Epn ⊆ κ((x)) has to be an equality. Finally, let us discuss (iv). Let E/κ((x))

be a purely inseparable finite field extension, say of degree ps for some s ≥ 1, the

case s = 0 being trivial. From (iii) it follows that E = κ((x))1/ps , in particular, the

field E contains a uniquely determined ps-th root x1/ps of x, i.e., κ((x))(x1/ps) ⊆ E.

In part (i) we have realized that the field κ((x))(x1/ps) is purely inseparable of degree

ps over κ((x)), and we may conclude that the inclusion κ((x))(x1/ps) ⊆ E has to be

an equality. �

Proposition 3.36. Suppose that the residue field ℓ is finite.

(i) The F[z]-module C(L)/C(oL) is torsion-free, i.e., the kernel of the canonical

F[z]-linear map C(L)/C(oL)→ C(L)/C(oL)⊗F[z] F(z) is trivial.

(ii) The F[z]-module C(L)/C(oL) is free of countably infinite rank.
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3.4 Yoneda extension classes and bad reduction in equal characteristic

In particular, the F(z)-vector space C(L)/C(oL) ⊗F[z] F(z) is of countably infinite

dimension.

Proof. From 3.34 we know that the local field L arises as the completion of a global

function field L′/F(ζ) with respect to a prime place p|(ζ). The Carlitz module C :

F[z] → L′[τ ] over L′, defined by z 7→ ζ + τ , where L′[τ ] = End(GrSch/L′),F−lin(Ga,L′),

is certainly defined over op, and in particular over oL = ôp. In order to show (i), for

a given x ∈ C(L) let x̄ ∈ C(L)/C(oL) be such that αx̄ = 0 for some α ∈ F[z]−{0},

i.e., αx ∈ C(oL); by 3.37(ii) below, this implies V (x) = 0, i.e., v(x) ≥ 0 by 3.37(iii),

which in turn means that x̄ = 0 in C(L)/C(oL). Now Theorem 2 in [64] immediately

implies (ii); note that in order to apply the cited result in loc. cit. one can take S

to be any nonempty finite set of prime places of L′ such that p /∈ S. �

Let v be the discrete valuation of L normalized by v(π) = 1, and suppose that

the residue field ℓ is finite. By [64], Proposition 1.(1), for every x ∈ C(L) the limit

V (x) = lim
n→∞

min(0, v(znx))

rn

exists; this gives a function V : C(L) → R which plays the role of a local height

function à la Néron-Tate associated to the Carlitz module

C : F[z]→ L[τ ] = End(GrSch/L),F−lin(Ga,L), z 7→ ζ + τ,

over L; see [64], §3, for details.

Lemma 3.37 ([64]). Suppose that the residue field ℓ is finite. Let x ∈ C(L).

(i) V (x) = 0 if and only if αx ∈ C(oL) for some α ∈ F[z]− {0}.

(ii) V (x) = min(0, v(x)).

Proof. For (i) (resp., (ii)) see Proposition 4.(3) (resp., Proposition 4.(4)) in [64]. �

Finally, we are able to prove the main result of the present section.

Proof of Corollary 3.31. We need merely remark that by 3.30 there is a canonical

FJzK-linear isomorphism C(L)/C(oL)⊗F[z]FJzK→ YE1
st/YE

1
cris, and that C(L)/C(oL)

is free of infinite rank over F[z]. �

3.4.8 Inverting isogenies

We have seen earlier that YE1
cris = oLJzK/∼ naturally is an FJzK-module. Setting

F = F((z)) and o = oF = FJzK we now consider the F -vector space

YE1
cris[

1
z
] ≃ YE1

cris ⊗o F.
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

We let

IsoYE1
cris = Ext1

σ,oL((z))(oL((z))(1), oL((z))),

i.e., the o-module IsoYE1
cris is naturally isomorphic to oL((z))/∼ where ∼ denotes the

usual equivalence relation on oL((z)) as discussed in 3.27. In fact, since the action

of z ∈ o on IsoYE1
cris is an automorphism ρz : IsoYE1

cris → IsoYE1
cris of the underlying

abelian group, the o-module structure on IsoYE1
cris naturally extends to an action of

F = o[ 1
z
] in such a way that z−1 acts by ρ−1

z .

Remark. The prefix "Iso-" is motivated by the characterization of the isogeny

category of (good-reduction) local shtukas over oL; see [34], §§2, 7, and [41], §2. –

Proposition 3.38. The map

YE1
cris[

1
z
]→ IsoYE1

cris = oL((z))/∼oL((z)), [f ]/zn 7→ [z−nf ],

is an isomorphism of F -vector spaces.

Proof. Let us first check that the displayed map is well-defined. Before doing so, we

remark that if g, h ∈ oLJzK then [g] = [h] with respect to ∼oLJzK clearly implies that

[g] = [h] with respect to ∼oL((z)). Now let [f ]/zn = [g]/zm inside YE1
cris[

1
z
], i.e., there

is some s ≥ 0 such that [zs+mf ] = [zs+ng] with respect to ∼oL((z)), and therefore,

via multiplying with z−s−m−n, we obtain that [z−nf ] = [z−mg], as desired. It is a

straightforward matter to show F -linearity and surjectivity; let us briefly explain

injectivity: suppose that there is some u ∈ oL((z)) such that σ(u) + z−nf = u(z− ζ),

i.e., that [z−nf ] = [0]; for N ≫ 0 we get zn+Nu ∈ oLJzK and therefore zN [f ] = [0]

over oLJzK, but this means that [f ]/zn = 0 inside YE1
cris[

1
z
]. �

Replacing YE1
cris by YE1

st, we arrive at the following situation: let

IsoYE1
st = Ext1

σ,oL((z))[1/π](oL((z))[1/π](1), oL((z))[1/π])

= oL((z))[1/π]/∼oL((z))[1/π] .

Again, the scalar z ∈ o acts by an automorphism on this abelian group, i.e., the

multiplication-by-z map ρ′z : IsoYE1
st → IsoYE1

st is bĳective; as before, we may con-

clude that IsoYE1
st naturally becomes an F -vector space, and that z−1 acts via (ρ′z)

−1.

Remark. Similarly as mentioned earlier, since π ∈ oLJzK is not σ-invariant, the

abelian group IsoYE1
st, being merely an F -vector space, cannot arise from IsoYE1

cris

by "inverting π". –

Proposition 3.39. The map

YE1
st[

1
z
]→ IsoYE1

st, [π−nf ]/zm 7→ [z−mf/πn],

is an isomorphism of F -vector spaces.
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3.4 Yoneda extension classes and bad reduction in equal characteristic

Proof. We remark that π−ng ∼ π−mh with respect to ∼oLJzK[1/π] implies π−ng ∼

π−mh with respect to ∼oL((z))[1/π]. This being said, the proof is entirely analogous to

that of 3.38. �
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Appendix: A brief dictionary

Mixed Characteristic/Number Fields Equal Characteristic/Function Fields

Let F be a finite field, #F = r <∞, char(F) =

p

Z Γ(P1
F − {z =∞},OP1

F

) = F[z]

Q F(P1
F) = F(z)

| · |∞ the archimedean absolute value on Q |·|∞ on F(z)× defined by | f
g
|∞ = rdeg(f)−deg(g)

R = Q̂|·|∞ R∞ = F(( 1
z
)) = F̂(z)

|·|∞
completion at ∞

C C∞ = R̂alg
∞

oK complete mixed-char. DVR oL complete discretely valued F-algebra

K = Frac(oK) L = Frac(oL)

GK = Gal(Kalg/K) GL = Gal(Lsep/L)

p = char(k), k the residue field of oK p = char(ℓ), ℓ the residue field of oL

Z →֒ oK canonical map F[z] →֒ oL an embedding of F-alg., z 7→: ζ ∈

oL

p = 0 in k Assumption ζ = 0 in ℓ

(p) ⊆ Z residue characteristic (z) ⊆ F[z] kernel of F[z] →֒ oL → ℓ

k → k, x 7→ xp, p-Frobenius ℓ→ ℓ, x 7→ xr, r-Frobenius

W (k)→W (k), [x] 7→ [x]p, p-Frobenius lift ℓJzK → ℓJzK,
∑
i biz

i 7→
∑
i b
r
i z
i, r-Frobenius

lift

Zp (p)-adic completion of Z FJzK (z)-adic completion of F[z]

Qp = Zp[ 1
p
] F((z)) = FJzK[ 1

z
]

oK/Zp complete ring extension oL/FJζK complete ring extension

E Elliptic curve over K E Drinfeld F[z]-module over L, Ez = ζ +∑<∞
i=1 aiτ

i,

where τ : Ga,L → Ga,L r-Frobenius

E(K) group of K-rational points of E E(L) F[z]-module: zx = ζx+
∑<∞
i=1 aix

ri

Gm multiplicative group scheme C Carlitz F[z]-module

Gm(K) = K× unit group of K C(L) F[z]-module: zx = ζx+ xr

Zp(1) = Tp(Gm,K) = lim←−n≥1Gm(Kalg)[pn] FJzK(1) = Tz(C) = lim←−n≥1C(Lsep)[zn]
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3 Crystalline and semi-stable extension classes in mixed and equal characteristic

AutZp(Zp(1)) ≃ Z×p via (εn)n≥1, where εn is

a generator of the cyclic group Gm(Kalg)[pn]

s.t. (εn)n≥1 ∈ Tp(Gm,K)

AutFJzK(FJzK(1)) ≃ FJzK× via (tn)n≥0, where

tn is an F[z]/(zn+1)-basis of C(Lsep)[zn+1] s.t.

(tn)n≥0 ∈ Tz(C)

K∞ = K(ε1, ε2, ...) ⊆ K
alg L∞ = L(t0, t1, ...) ⊆ L

sep

γ ∈ GK : Zp(1) → Zp(1), x 7→ χK(γ)x, nat-

ural GK-action via the cyclotomic character

χK : GK → Z×p

γ ∈ GL: FJzK(1)→ FJzK(1), x 7→ χL(γ)x, GL-

action via the cyclotomic character χL : GL →

FJzK× defined by
∑
n γ(tn)z

n = χL(γ)t+

where t+ =
∑
n tnz

n ∈ L∞JzK×

1→ o×K → K
× vK→ Z→ 0 valuation sequence 0→ C(oL)→ C(L)→ C(L)/C(oL)→ 0

1→ 1 + mK → o
×
K → k

× → 1 principal units 0→ C(mL)→ C(oL)→ C(ℓ)→ 0

1→ qZ → (Kalg)× → E(Kalg)→ 0, |q|K < 1,

p-adic uniformization of Tate elliptic curves E

0 → Λ → C →an E
′ → 0 Drinfeld’s ana-

lytic uniformization of quotients E′ of C by

GL-invariant finite free F[z]-submodules Λ ⊆

C(Lsep)

The action ofGK on the uniformization lattice

qZ ⊆ (Kalg)× is always trivial, i.e., qZ⊗Z Zp =

Zp(0)

The uniformization lattice Λ ⊆ C(Lsep) does

not in general lie inside C(L), and if rk(Λ) = 1

then GL → AutFJzK(Λ ⊗F[z] FJzK) factors via

F×

crystalline Yoneda-extension classes

(1 + mK)⊗Zp Qp ≃ Ext1
cris(Qp,Qp(1)) C(mL)⊗FJzK F((z))→ YE1

cris ⊗FJzK F((z))

semi-stable Yoneda-extension classes

K̂×
(p)
⊗Zp Qp ≃ Ext1

st(Qp,Qp(1)) Ĉ(L)
(z)
⊗FJzK F((z))→ ŶE1

st

(z)
⊗FJzK F((z))

Quotients of Ext1-modules

Ext1
st(Qp,Qp(1))/Ext1

cris(Qp,Qp(1)) ≃ Qp YE1
st/YE

1
cris ⊗FJzK F((z)) ≃ ⊕NF((z))

if #ℓ <∞
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