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Abstract. We conjecture the existence of a long exact sequence relating Deninger’s con-
jectural cohomology to Weil–Arakelov cohomology, the latter being unconditionally defined.
We prove this conjecture for smooth projective varieties over finite fields whose Weil-étale
motivic cohomology groups are finitely generated. Then we explain the consequences that
such an exact sequence would have.

1. Introduction

Christopher Deninger has conjectured the existence of a certain cohomology
theory for arithmetic schemes (i.e., separated schemes of finite type over the in-
tegers), which would explain many conjectural properties of the corresponding
Zeta-functions. The shape that such a cohomology should take was described
in a long series of papers (see [3, 5, 4, 6, 7, 8, 9, 10, 11]). The resulting con-
jectural framework generalizes Weil’s conjectures to arbitrary—in particular,
possibly flat—arithmetic schemes. More recently, the authors of this note have
defined some cohomological complexes of R-vector spaces attached to proper
regular arithmetic schemes, which we call Weil–Arakelov cohomology, see [13].
The “secondary Euler characteristic” of the Weil–Arakelov cohomology groups
of the arithmetic scheme X with coefficients in R(n) conjecturally gives the
vanishing order of the Zeta-function ζ(X , s) at s = n ∈ Z. Under standard
assumptions, Weil–Arakelov cohomology has an integral structure which con-
jecturally gives Zeta-values up to sign. In this note, we conjecture the existence
of a long exact sequence relating Deninger’s conjectural cohomology to Weil–
Arakelov cohomology, the latter being unconditionally defined. We prove this
conjecture for smooth projective varieties over finite fields whose Weil-étale
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motivic cohomology groups are finitely generated. Then we explain the con-
sequences that such an exact sequence would have, using elementary linear
algebra. For example, it would imply our vanishing order formula. It would
also “explain” Beilinson’s conjectures relating motivic cohomology to Deligne
cohomology, as well as the perfectness of the Arakelov intersection pairing be-
tween the Arakelov–Chow groups of Gillet–Soulé. In the last section of this
note, we recall from [13] the statement of our special value conjecture, and
briefly mention how it fits into Deninger’s formalism.

2. Deninger’s conjectures on Zeta-functions

The Zeta-function of an arithmetic scheme X is defined by the product
(see [34])

ζ(X , s) =
∏

x∈X0

(1−N(x)−s)−1,

which converges in the half-plane ℜ(s) > dim(X ) (see [34, Theorem 1]), where
X0 is the set of closed points of X , N(x) is the cardinality of the residue field
κ(x), and dim(X ) is the Krull dimension of X . It is conjectured that ζ(X , s)
has a meromorphic continuation to the whole complex plane. We have

ζ(X , s) =
∏

p<∞

ζ(Xp, s),

where the product is indexed over the set of prime numbers and Xp := X⊗ZFp.
If X → Spec(Z) is projective, flat and regular, an Arakelov compactification

X of X is defined as follows. We view the fiber of X over R as the complex
analytic variety X (C) endowed with its obvious GR-action, where GR is the
Galois group of C/R. An “integral structure over ∞” is then given by the
choice a Kähler metric ω on X (C) compatible with the GR-action, i.e., such
that F ∗

∞(ω) = −ω, where F∞ ∈ GR is complex conjugation. We denote by
X∞ the pair (X (C), ω) endowed with its GR-action, and we set X := (X ,X∞).
The dimension of X , which we denote by dim(X ), is defined to be the Krull
dimension of the scheme X .

The Zeta-function of X is defined by

ζ(X , s) = ζ(X , s) · ζ(X∞, s) =
∏

p≤∞

ζ(Xp, s),

where ζ(X∞, s) is a product of Gamma factors, depending on the Hodge struc-
ture over R on Betti cohomology H∗(X (C),C). More precisely, let

Hi(X (C),C) ≃
⊕

p+q=i

Hq(X (C),Ωp) =:
⊕

p+q=i

Hp,q

be the Hodge decomposition and let

hp,q = dimCH
p,q, hp,± = dimC(H

p,p)F∞=±(−1)p

Münster Journal of Mathematics Vol. 13 (2020), 519–540



Deninger’s conjectures and Weil–Arakelov cohomology 521

be the Hodge numbers. One defines

ζ(X∞, s) :=
∏

i∈Z

L∞(hi(XQ), s)
(−1)i ,

where (see [35, Section 3])

(1) L∞(hi(XQ), s) :=
∏

p<q; p+q=i

ΓC(s−p)h
p,q

·
∏

p= i
2

ΓR(s−p)h
p,+

ΓR(s−p+1)h
p,−

and

ΓC(s) = (2π)−sΓ(s), ΓR(s) = 2−
1
2 π− s

2Γ
(s

2

)

.

The statement of Deninger’s conjecture requires the notion of zeta-regularized
determinant, which we now recall from [4, Section 1].

Definition 2.1. Let Θ be an endomorphism of a complex vector space V of
countable dimension. We say that det∞(Θ | V ) is defined if the following
conditions hold:

(i) V is the direct sum of finite-dimensional Θ-invariant subspaces. For
any α ∈ C, there are at most finitely many of these subspaces on which
α occurs as an eigenvalue.

(ii) Let Sp(Θ | V ) be the set of eigenvalues of Θ counted with their alge-
braic multiplicities. We consider

ζΘ|V (s) :=
∑

06=α∈Sp(Θ|V )

α−s, with −π < arg(α) ≤ π.

We assume that ζΘ|V (s) converges absolutely for ℜ(s) ≫ 0 and that
ζΘ|V (s) has an analytic continuation to ℜ(s) > −ǫ for some ǫ > 0,
which is holomorphic at s = 0.

It follows from condition (i) above that V Θ∼α := colimKer(Θ − α)m, where
the colimit is indexed over m ∈ N, is finite-dimensional for any α ∈ C. The
algebraic multiplicity of the eigenvalue α is defined as the dimension of V Θ∼α.
Under these two conditions, we define

det∞(Θ | V ) := exp(−ζ′Θ|V (0)) if 0 /∈ Sp(Θ | V )

and

det∞(Θ | V ) := 0 if 0 ∈ Sp(Θ | V ).

Notation 2.2. We use the notation X to denote either an arithmetic scheme
X = (X ,∅) or an Arakelov compactification X = (X ,X∞) of a projective

regular flat arithmetic scheme X . In the latter case, we say that X → Spec(Z)

is projective, flat and regular. We say that X → Spec(Z) is projective and

regular if either X → Spec(Z) is projective, flat and regular, or if X = (X ,∅),
where X is a projective smooth scheme over a finite field.

The following conjecture is due to Deninger (see [3, 5, 4, 6, 7, 8, 9, 10, 11]).
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Conjecture 2.3 (Deninger). On the category of arithmetic schemes and their

Arakelov compactifications, there exists a cohomology theory given by (possibly
infinite-dimensional) complex vector spaces H∗

dyn,c(X) and H∗
dyn(X) endowed

with an R-action ϕt, which satisfies the following properties:

(i) One has Hi
dyn,c(X) = 0 for i < 0 and i > 2 · dim(X).

(ii) One has

ζ(X, s) =

2d
∏

i=0

det∞

(s · Id−Θ

2π

∣

∣

∣
Hi

dyn,c(X)
)(−1)i+1

,

where Θ := limt→0
1
t (ϕ

t − Id), and the right-hand side is defined (in
the sense of Definition 2.1).

(iii) If X is regular of pure dimension d, one has a trace map

Tr: H2d
dyn,c(X) → C(−d)

and an R-equivariant pairing

Hi
dyn,c(X)×H2d−i

dyn (X)
∪
−→ H2d

dyn,c(X)
Tr
−→ C(−d)

such that the induced pairing between the ρ-eigenspace of Θ on

Hi
dyn,c(X) and the (d− ρ)-eigenspace of Θ on H2d−i

dyn (X) is perfect, for

all ρ ∈ C. Here C(−d) denotes the vector space C with R-action ed·t.

(iv) If X → Spec(Z) is projective and regular, there exists an R-equivariant

and C-antilinear Hodge ∗-operator

∗ : Hi
dyn(X) → H2d−i

dyn (X)(d− i)

such that

Hi
dyn(X)×Hi

dyn(X) → C, (x, y) 7→ TrX (x ∪ ∗y),

is an hermitian scalar product on Hi
dyn(X). Here, H∗

dyn(X)(n) stands

for H∗
dyn(X) with R-action e−n·tϕt.

(v) If X → Spec(Z) is projective and regular, then the function

L(hi(X), s) := det∞

(s · Id−Θ

2π

∣

∣

∣
Hi

dyn,c(X)
)

defines a holomorphic function on the entire complex plane, whose ze-

roes lie on the line R(s) = i/2.

3. Weil–Arakelov cohomology with real coefficients

In this section, we recall from [13, Sections 2, 4] the definition of Weil–
Arakelov cohomology with R-coefficients. For a regular arithmetic scheme X
and an integer n ≥ 0, we denote by Z(n)(X ) := zn(X , 2n − ∗) Bloch’s cycle
complex (see [1, 16, 26, 27]), which we consider as a complex of Zariski sheaves
on X . For any abelian group A, we set A(n) := Z(n) ⊗Z A and we consider
the Zariski hypercohomology RΓ(X , A(n)) of the complex of sheaves A(n).

Münster Journal of Mathematics Vol. 13 (2020), 519–540
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3.1. Cohomology with compact support. Let X → Spec(Z) be proper and
regular. We define motivic cohomology with compact support RΓc(X ,R(n))
as the mapping fiber of the regulator map RΓ(X ,R(n))

reg
−−→ RΓD(X/R,R(n)),

so that we have an exact triangle

RΓc(X ,R(n)) → RΓ(X ,R(n))
reg
−−→ RΓD(X/R,R(n)) → ,

where
RΓD(X/R,R(n)) := RΓ(GR,X (C),R(n)D)

denotes Deligne cohomology. A similar construction was done by Goncharov
in [20] and later by Holmstrom and Scholbach in [21]. Recall that R(n)D is
the following complex of GR-equivariant sheaves on the manifold X (C):

R(n)D :=
[

(2iπ)nR → Ω0
X (C) → · · · → Ωn−1

X (C)

]

.

Note that if X is proper regular over a finite field, then

RΓc(X ,R(n)) = RΓ(X ,R(n)) for any n ∈ Z.

For n < 0, we have by definition RΓ(X ,R(n)) = 0 and R(n)D = (2iπ)nR,
hence

RΓc(X ,R(n)) = RΓ(GR,X (C), (2iπ)nR)[−1].

Finally, we define

RΓc(X ,C(n)) := RΓc(X ,R(n))⊗R C

for any X proper regular and any n ∈ Z.

3.2. Cohomology of Arakelov compactifications. Let X be a projective
flat regular arithmetic scheme and let X := (X ,X∞) be an Arakelov com-
pactification, where X∞ is the pair (X (C), ω) endowed with its GR-action.
The Kähler metric ω provides a canonical morphism of complexes (see [13,
Remark 2.13])

RΓD(X/R,R(n)) → τ<2nRΓD(X/R,R(n)),

which is a retract of the adjunction map

τ<2nRΓD(X/R,R(n)) → RΓD(X/R,R(n)).

We define RΓ(X ,R(n)) as the mapping fiber of the composite map

RΓ(X ,R(n)) → RΓD(X/R,R(n)) → τ<2nRΓD(X/R,R(n))

so that there is an exact triangle

RΓ(X ,R(n)) → RΓ(X ,R(n)) → τ<2nRΓD(X/R,R(n)) → .

Note that if X is proper regular over a finite field, then we define X := X , and
therefore we have

RΓ(X ,R(n)) = RΓ(X ,R(n)) for any n ∈ Z.

In both cases, we set

RΓ(X ,C(n)) := RΓ(X ,R(n))⊗ C.
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3.3. Weil–Arakelov cohomology. Let X → Spec(Z) be proper and regular.
The Weil–Arakelov cohomology with real coefficients is defined as follows:

RΓar(X , R̃(n)) := RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1],(2)

RΓar(X , R̃(n)) := RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1],

RΓar,c(X , R̃(n)) := RΓc(X ,R(n)) ⊕RΓc(X ,R(n))[−1].

If X lies over a finite field Fq, then one has

RΓar,c(X , R̃(n)) = RΓar(X , R̃(n)) = RΓar(X , R̃(n)).

Finally, we set

RΓar(X , C̃(n)) := RΓar(X , R̃(n))⊗R C,

RΓar(X , C̃(n)) := RΓar(X , R̃(n))⊗R C,

RΓar,c(X , C̃(n)) := RΓar,c(X , R̃(n))⊗R C.

3.4. The map ∪θ. For any proper regular arithmetic scheme X , we define

∪θ : RΓar,c(X , R̃(n)) → RΓar,c(X , R̃(n))[1]

as the map

RΓc(X ,R(n))⊕RΓc(X ,R(n))[−1]

[

0 1
0 0

]

−−−−→ RΓc(X ,R(n))[1]⊕RΓc(X ,R(n)),

and similarly over X and without compact support. In other words, ∪θ is the
projection on the first direct summand followed by the inclusion of the second
direct summand. The map ∪θ induces an acyclic complex

(3) · · ·
∪θ
−−→ Hi

ar,c(X , R̃(n))
∪θ
−−→ Hi+1

ar,c(X , R̃(n))
∪θ
−−→ · · · .

Of course, ∪θ induces a C-linear map

∪θ : Hi
ar,c(X , C̃(n)) → Hi+1

ar,c(X , C̃(n)),

and similarly over X and without compact support. Note that we have

(4) Ker
(

∪ θ : Hi
ar,c(X , C̃(n)) → Hi+1

ar,c(X , C̃(n))
)

≃ Hi−1
c (X ,C(n))

and

(5) Coker
(

∪ θ : Hi
ar,c(X , C̃(n)) → Hi+1

ar,c(X , C̃(n))
)

≃ Hi+1
c (X ,C(n)),

and similarly over X and without compact support.
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3.5. Weil–Arakelov cohomology and cohomology of the Weil-étale
topos. Let X be a proper regular scheme over Spec(Fq). We denote by XW

the Weil-étale topos and by

RΓ(XW ,Z(n)) ≃ RΓ(Wk, RΓ(X
Fq,et

,Z(n)))

the Weil-étale motivic cohomology in the sense of [28] and [17]. By [17, Theo-
rem 7.1 (c)], we have an isomorphism in the derived category

RΓ(XW ,Z(n)) ⊗ R
ιFq
−−→ RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1],

which depends on the base field Fq. We define ιF1
as the map ιFq

followed by
the map

RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1]
(1,log(q)−1)
−−−−−−−→ RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1].

Then the isomorphism

RΓ(XW ,Z(n))⊗ R
ιF1−−→ RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1]

does not depend on the base field.
Suppose now that X has pure dimension d. Under the assumptions L(XW , n)

and L(XW , d− n) of [13, Section 3.6], the square

RΓ(XW ,Z(n))

≃

��

Id⊗1
// RΓ(XW ,Z(n)) ⊗Z R

ιF1

��

RΓW (X ,Z(n))
βX

// RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1]

commutes, where RΓW (X ,Z(n)) is the Weil-étale complex defined in [13, Sec-
tion 3], the left vertical isomorphism is [13, Theorem 3.20], and βX is the map
defined in [13, Proposition 4.4].

Remark 3.6. Let X be a proper regular arithmetic scheme of pure dimen-
sion d. The map βX of [13, Proposition 4.4] involves the map

B : RΓc(X ,R(n)) → RΓ(X ,R(d− n))∗[−2d]

induced by the pairing

(6) RΓc(X ,R(n))⊗RΓ(X ,R(d− n)) → RΓc(X ,R(d))
tr
−→ R[−2d].

Here the trace map

RΓc(X ,R(d))
tr
−→ R[−2d]

is tacitly defined (see the proof of [13, Lemma 2.3 (a)]) as

RΓc(X ,R(d)) → RΓc(Spec(Z),R(1))[−2d+ 2]
∼
−→ R[−2d].

If X lies over a finite field, then (6) is the pairing

RΓ(X ,R(n))⊗RΓ(X ,R(d− n)) → CHd(X )R[−2d]

→ CH1(Spec(Z))R[−2d]
∼
−→ R[−2d],

where CH1(Spec(Z)) is the Arakelov–Chow group of [18].

Münster Journal of Mathematics Vol. 13 (2020), 519–540
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3.7. The map ∪θ versus ∪eFq
. Let X be a regular scheme which is proper

over the finite field Fq. Recall that we denote by RΓ(XW ,Z(n)) the cohomology
of the Weil-étale topos with coefficients in the motivic complex Z(n). The
fundamental class

eFq
∈ H1(Spec(Fq)W ,Z) ≃ Hom(WFq

,Z)

is the class mapping the arithmetic Frobenius F ∈ WFq
to 1 ∈ Z. Cup-product

with eFq
yields a map

RΓ(XW ,Z(n))⊗ R
∪eFq
−−−→ RΓ(XW ,Z(n))⊗ R[1].

Proposition 3.8. The square

RΓ(XW ,Z(n))⊗Z R

ιF1

��

log(q)·∪eFq
// RΓ(XW ,Z(n))⊗Z R[1]

ιF1 [1]

��

RΓar(X ,R(n))
∪θ

// RΓar(X ,R(n))

commutes, where ιF1
is the isomorphism defined in Section 3.5.

Proof. We consider the following diagram:

RΓ(XW ,Z(n)) ⊗Z R

ιFq

��

log(q)·∪eFq
// RΓ(XW ,Z(n)) ⊗Z R[1]

ιFq [1]

��

RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1]

[

0 log(q)

0 0

]

//

(1,log(q)−1)

��

RΓ(X ,R(n))[1]⊕RΓ(X ,R(n))

(1,log(q)−1)

��

RΓ(X ,R(n))⊕RΓ(X ,R(n))[−1]

[

0 1
0 0

]

// RΓ(X ,R(n))[1]⊕RΓ(X ,R(n))[−1].

The lower square obviously commutes and the upper square commutes by [17,
Theorem 7.1 (c)]. The result then follows from the definitions of ιF1

and ∪θ. �

In particular, log(q) · ∪eFq
does not depend on base field Fq whereas ∪eFq

does. For example, if q = pf , then one has eFp
= f · eFq

in H1(Spec(Fq)W ,Z),
and therefore

log(q) · ∪eFq
= log(p) · f · ∪eFq

= log(p) · ∪eFp
.

We refer to [29] and [12] for a more geometric definition of ∪θ in the case n = 0,
which in particular explains the factor log(q) appearing in the commutative
square of Proposition 3.8, see also [32, p. 47].

4. The long exact sequence

Throughout this section we assume Conjecture 2.3, and we use Notation 2.2.
In particular, we use the notation X to denote either an arithmetic scheme or
an Arakelov compactification of a projective regular flat arithmetic scheme.

Münster Journal of Mathematics Vol. 13 (2020), 519–540
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Conjecture 4.1. For any X and any n ∈ Z, we have a long exact sequence

· · · → Hi
ar,c(X, C̃(n)) → Hi

dyn,c(X)
Θ−n
−−−→ Hi

dyn,c(X) → Hi+1
ar,c(X, C̃(n)) → · · ·

such that the composite map

Hi
ar,c(X, C̃(n)) → Hi

dyn,c(X) → Hi+1
ar,c(X, C̃(n))

coincides with ∪θ, and similarly without compact support.

4.2. Varieties over finite fields. For X a smooth projective scheme over Fq,
Deninger defined in [5] vector spaces

(7) Hi
dyn(X) := D(Hi(X

Fq
,Ql)⊗Ql,σ C)

endowed with an endomorphism Θ satisfying Conjecture 2.3 (except for state-
ment (iv)), at least if the Frobenius acts semi-simply on the l-adic cohomology
groups Hi(X

Fq
,Ql). We prove below that our Conjecture 4.1 holds true if one

defines Hi
dyn(X) by (7) and if the Weil-étale cohomology groups Hi(XW ,Z(n))

defined in [28] and [17] are finitely generated for all i ∈ Z.

Theorem 4.3. Let X be a smooth projective connected variety over a finite

field Fq. Assume that the Weil-étale cohomology groups Hi(XW ,Z(n)) are

finitely generated for all i ∈ Z. Then Conjecture 4.1 holds for X and n.

Proof. We recall some notation from [5]. We set k = Fq and we denote by
Wk ⊂ Gk the Weil group of k, i.e., the discrete subgroup of Gk generated
by the Frobenius. Let φ ∈ Wk be the geometric Frobenius. We have the
isomorphism

Wk
‖−‖
−−→ qZ

such that ‖φ‖ = q−1, where qZ is the subgroup of R×
>0 generated by q. Applying

the logarithm isomorphism R×
>0

∼
−→ R, we get

Wk
∼
−→ Z · log(q) ⊂ R.

We denote by B := C[C] the group ring over C with coefficients in C. An
element of B is written in the form

∑

α∈C rαe
α, with α, rα ∈ C. Then Wk acts

on B := C[C] by w · (eα) := ‖w‖α · eα for any w ∈ Wk. Moreover, B has a
C-linear derivation Θ defined by Θ(eα) = α · eα. For any λ ∈ C, one defines

Lλ := Bφ=−λ = C[Logq(λ)],

where Logq(λ) ⊂ C denotes the set of complex numbers α satisfying qα = λ.
Hence an element of Lλ is of the form

∑

α∈Logp(λ)
rαe

α. Finally, we consider

the ring L := L1 := C[Logq(1)] endowed with its derivation Θ. Note that Lλ

is a free L-module of rank one for any λ ∈ C.
If V is a finite-dimensional complex representation of the Weil group Wk,

one defines

D(V ) := (V ⊗C B)
Wk ≃

⊕

λ∈C

V φ=λ ⊗C Lλ.

Münster Journal of Mathematics Vol. 13 (2020), 519–540
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Then D(V ) is a finitely generated free L-module endowed with the Θ-action
induced by the one defined on B. Note the following fact: If V φ=λ is the
eigenspace of φ for the eigenvalue λ, then for any α ∈ C such that qα = λ, the
subspace (V φ=λ ⊗ C · eα) ⊂ D(V ) is the eigenspace of Θ for the eigenvalue α.
Note also that if D is a L[Θ]-module and n ∈ Z, we may define the twist D(n)
(see [5, 1.6]) in such a way that the functor D commutes with twists.

Finally, if V is a finite-dimensional complex representation of Wk, then
D(V ) is a countable direct sum of 1-dimensional complex vector spaces. One
may therefore endow D(V ) with a topology which makes it a locally convex,
Hausdorff and quasi-complete topological vector space. Then the topological
group R acts continuously on D(V ) as follows: t ∈ R acts as the automorphism
exp(t ·Θ) of D(V ). This R-action is in fact C-linear and differentiable.

Lemma 4.4. Let V be a finite-dimensional complex representation of Wk. We

set φn := q−nφ. There is a diagram with exact rows

0 // H0(Wk, V (n))
i

//

f ≃

��

V
φn−1

// V
s

// H1(Wk, V (n)) // 0

0 // H0(R,D(V )(n))
i′

// D(V )
Θ−n

// D(V )
s′

// H1(R,D(V )(n)) //

l≃

OO

0,

where the vertical maps are isomorphisms, and such that the square

H0(Wk, V (n))
i

//

f

��

V
s

// H1(Wk, V (n))

H0(R,D(V )(n))
i′

// D(V )
s′

// H1(R,D(V )(n))

−log(q)−1·l

OO

commutes. Here Hi(R,D(V )) is the cohomology of the topological group R with

coefficients in the R-equivariant topological vector space D(V ). In particular,

we have an exact sequence

(8) 0 → H0(Wk, V (n))
i′◦f
−−→ D(V )

Θ−n
−−−→ D(V )

l◦s′
−−→ H1(Wk, V (n)) → 0

such that the map

H0(Wk, V (n))
i′◦f
−−→ D(V )

l◦s′
−−→ H1(Wk, V (n))

coincides with −log(q) · s ◦ i.

Proof. In view of the identifications D(V (n)) = D(V )(n), (D(V )(n),Θ) =
(D(V ),Θ− n) and (V (n), φ) = (V, φn), one may suppose n = 0.

The fact that the top row of the first diagram is exact is clear since we have

RΓ(Wk, V ) ≃ [V
φ−1
−−−→ V ].

Since D(V ) is a locally convex, Hausdorff and quasi-complete topological
vector space, we have (see [2, IX, Proposition 5.6])

Hi(R,D(V )) ≃ Hi(Lie(R),D(V )),
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where the right-hand side is the cohomology of the Lie algebra R ≃ Lie(R)
which acts on D(V ) by t 7→ t ·Θ. The exactness of the second row of the first
diagram of the lemma then follows from the canonical isomorphisms

H0(Lie(R),D(V )) ≃ D(V )Θ=0 and H1(Lie(R),D(V )) ≃ D(V )Θ=0.

Here D(V )Θ=0 (respectively, D(V )Θ=0) denotes the kernel (respectively, the
cokernel) of Θ: D(V ) → D(V ).

The vertical isomorphism f in the first diagram of the lemma is the following
map

H0(Wk, V ) = V φ=1 → V φ=1 ⊗C C · e0

= V φ=1 ⊗C LΘ=0 = D(V )Θ=0 = H0(R,D(V )),

where V φ=1 → V φ=1 ⊗C C · e0 sends v to v ⊗ e0.
The vertical isomorphism l is obtained as follows. We have

H1(R,D(V )) ≃ H1(R, V φ=1 ⊗C L)⊕H1(R,⊕λ6=1V
φ=λ ⊗C Lλ)

≃ H1(R, V φ=1 ⊗C L)

≃ H1(R, V φ=1 ⊗C C · e0)⊕
(

⊕α6=0H
1(R, V φ=1 ⊗C C · eα)

)

≃ H1(R, V φ=1 ⊗C C · e0)

≃ Hom(R, V φ=1).

Hence the map H1(R,D(V )) → H1(Wk, V
φ=1) may be identified with

l : Hom(R, V φ=1) → Hom(Wk, V
φ=1),

which is in turn induced by the morphism

Wk → R, φ 7→ −log(q).

It follows that the second diagram of the lemma can be identified with the
following one:

V φ=1

Id

��

i
// V

s
// Hom(Wk, V

φ=1)
f 7→f(φ)

// V φ=1

V φ=1 i′
// D(V )

s′
// Hom(R, V φ=1)

f 7→f(1)
//

−log(q)−1·l

OO

V φ=1.

Id

OO

Here the right square commutes. Moreover, the composition of the maps of
the top row is the identity of V φ=1, and similarly the composition of the maps
of the bottom row is the identity of V φ=1. Hence the left square commutes.
The result follows. �

Let X be a smooth projective variety over k = Fq. We set

V i := Hi(Xk̄,Ql)⊗Ql,σ C,
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where k̄ is an algebraic closure, l 6= p is a prime number away from the charac-
teristic, Hi(Xk̄,Ql) is étale l-adic cohomology and σ : Ql → C is a fixed embed-
ding. We consider V i as a finite-dimensional complex representation of Wk,
and we still denote by φ the geometric Frobenius. The quasi-isomorphism

RΓ(X,Ql(n)) ≃ holim
(

RΓ(Xk̄,Ql(n))
φ−1
−−−→ RΓ(Xk̄,Ql(n))

)

yields the long exact sequence

· · ·→Hi(X,Ql(n)) → Hi(Xk̄,Ql)
φn−1
−−−→ Hi(Xk̄,Ql) → Hi+1(X,Ql(n)) → · · · ,

where φn := q−nφ. Applying (−)⊗Ql,σ C, we obtain

· · · → Hi(X,Ql(n))⊗Ql,σ C → V i φn−1
−−−→ V i → Hi+1(X,Ql(n))⊗Ql,σ C → · · · .

In view of (8), we obtain the long exact sequence

· · · → Hi(X,Ql(n))⊗Ql,σ C → D(V i)
Θ−n
−−−→ D(V i)

→ Hi+1(X,Ql(n))⊗Ql,σ C → · · · .

Consider the Weil-étale motivic cohomology

RΓ(XW ,Z(n)) := RΓ(Wk, RΓ(Xet,Z(n)))

in the sense of [17]. Since the groups Hi(XW ,Z(n)) := Hi(RΓ(XW ,Z(n))) are
finitely generated by assumption, we have by [17, Theorem 8.4] an isomorphism

Hi(XW ,Z(n))⊗Z Ql ≃ Hi(X,Ql(n)),

hence

(9) Hi(XW ,Z(n))⊗Z C ≃ Hi(X,Ql(n))⊗Ql,σ C

for any i ∈ Z. Hence Lemma 4.4 gives the long exact sequence

· · ·→Hi(XW ,Z(n))⊗ZC → D(V i)
Θ−n
−−−→ D(V i) → Hi+1(XW ,Z(n))⊗ZC → · · ·

such that the composite map

(10) Hi(XW ,Z(n)) ⊗Z C → D(V i) → Hi+1(XW ,Z(n))⊗Z C

coincides, under isomorphism (9), with

(11) Hi(X,Ql(n))⊗Ql,σ C → V i → Hi+1(X,Ql(n))⊗Ql,σ C

multiplied by the factor −log(q). But (11) coincides with ∪(−ek), where −ek ∈
H1(Wk,Z) = Hom(Wk,Z) is the class mapping φ to 1, and ∪ek is the map
Hi(X,Ql(n)) → Hi+1(X,Ql(n)) defined by cup-product with ek (see the proof
of [13, Lemma 5.20]). We obtain

(10) = log(q) · ∪ek.

Hence the result follows from Proposition 3.8. �
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4.5. The vanishing order conjecture. Recall that we denote the kernel
(resp. the cokernel) of the map

Θ− n : Hi
dyn,c(X) → Hi

dyn,c(X)

by Hi
dyn,c(X)

Θ=n (resp. by Hi
dyn,c(X)Θ=n). We say that Θ is semisimple at n

if the composite map

(12) Hi
dyn,c(X)

Θ=n → Hi
dyn,c(X) → Hi

dyn,c(X)Θ=n

is an isomorphism for all i ∈ Z.

Proposition 4.6. Assume Conjecture 4.1. Then Θ is semisimple at n.

Proof. Recall from (3) that

(13) · · ·
∪θ
−−→ Hi

ar,c(X, C̃(n))
∪θ
−−→ Hi+1

ar,c(X, C̃(n))
∪θ
−−→ · · ·

is an acyclic complex. Conjecture 4.1 gives the following diagram with exact
rows:

0 // Hi−2
dyn,c(X)Θ=n

// Hi−1
ar,c (X, C̃(n)) // Hi−1

dyn,c(X)
Θ=n //

αi−1

ss❣❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣

0

0 // Hi−1
dyn,c(X)Θ=n

// Hi
ar,c(X, C̃(n))

s
// Hi

dyn,c(X)
Θ=n //

αi

ss❣❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣
❣❣

0

0 // Hi
dyn,c(X)Θ=n ι

// Hi+1
ar,c(X, C̃(n))

// Hi+1
dyn,c(X)

Θ=n // 0,

where s is induced by the map Hi
ar,c(X, C̃(n)) → Hi

dyn,c(X) appearing in the

long exact sequence of Conjecture 4.1, ι is induced by the map Hi
dyn,c(X) →

Hi+1
ar,c (X, C̃(n)), and αi is the map (12) defined above. We denote the map

Hi
ar,c(X, C̃(n))

∪θ
−−→ Hi+1

ar,c (X, C̃(n)) by θi. By Conjecture 4.1, we have

θi = ι ◦ αi ◦ s

for all i. Identifying Hi−1
dyn,c(X)Θ=n with its image in Hi

ar,c(X, C̃(n)), we obtain

Im(θi−1) = Im(αi−1) ⊆ Hi−1
dyn,c(X)Θ=n ⊆ s−1(Ker(αi)) = Ker(θi).

Since (13) is acyclic, we have Im(θi−1) = Ker(θi), hence

(14) Im(αi−1) = Hi−1
dyn,c(X)Θ=n = s−1(Ker(αi)).

Therefore, αi−1 is surjective and we have

(15) s−1(Ker(αi)) = Hi−1
dyn,c(X)Θ=n = s−1(0).

Applying s to (15), we obtain Ker(αi) = 0, since s is surjective. Hence αi is
injective. �
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Proposition 4.7. Assume Conjecture 4.1, and set d := dim(X). Then

Hi
ar,c(X, C̃(n)) is finite-dimensional for all i, zero for i /∈ [0, 2d + 1], and one

has

(16) ords=nζ(X, s) =
∑

i∈Z

(−1)i · i · dimCH
i
ar,c(X, C̃(n))

for any n ∈ Z.

Proof. By Conjecture 2.3 (ii), the multiplicity of the eigenvalue n of Θ act-
ing on Hi

dyn,c(X) is finite (see Definition 2.1), and therefore the eigenspace

Hi
dyn,c(X)

Θ=n is finite-dimensional for all i ∈ Z. Since Hi
dyn,c(X)Θ=n is iso-

morphic to Hi
dyn,c(X)

Θ=n, it is finite-dimensional as well. The short exact
sequence

(17) 0 → Hi−1
dyn,c(X)Θ=n → Hi

ar,c(X, C̃(n)) → Hi
dyn,c(X)

Θ=n → 0

then shows that Hi
ar,c(X, C̃(n)) is finite-dimensional for all i and zero for i /∈

[0, 2d+ 1]. We obtain

∑

i∈Z

(−1)i · i · dimCH
i
ar,c(X, C̃(n))

=
∑

i∈Z

(−1)i · i · dimCH
i−1
dyn,c(X)Θ=n +

∑

i∈Z

(−1)i · i · dimCH
i
dyn,c(X)

Θ=n

=
∑

i∈Z

(−1)i · i · dimCH
i−1
dyn,c(X)

Θ=n +
∑

i∈Z

(−1)i · i · dimCH
i
dyn,c(X)

Θ=n

= −
∑

i∈Z

(−1)i · dimCH
i
dyn,c(X)

Θ=n

= −
∑

i∈Z

(−1)i · dimCH
i
dyn,c(X)

Θ∼n,

where the second and the last equalities follow from the fact that Θ is semisim-
ple at n by Proposition 4.6. Here we denote

Hi
dyn,c(X)

Θ∼n := colimKer(Θ − n)m,

as in Definition 2.1. It remains to show the identity

ords=nζ(X, s) = −
∑

i∈Z

(−1)i · dimCH
i
dyn,c(X)

Θ∼n,

which, by Conjecture 2.3 (ii), follows from

(18) ords=ndet∞

(s · Id−Θ

2π

∣

∣

∣
Hi

dyn,c(X)
)

= dimCH
i
dyn,c(X)

Θ∼n.
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For the sake of completeness, we show (18). To ease notations, we set Θs :=
s·Id−Θ

2π and V := Hi
dyn,c(X). We have

det∞(Θs | V ) = det∞(Θs | V
Θ∼n) · det∞(Θs | V/V

Θ∼n)(19)

= det(Θs | V
Θ∼n) · det∞(Θs | V/V

Θ∼n)(20)

=
(s− n

2π

)dim(V Θ∼n)

· det∞(Θs | V/V
Θ∼n),(21)

where the symbol det in (20) denotes the usual determinant. Indeed, the
identity (20) is valid since V Θ∼n is finite-dimensional, and (19) is (an easy
case of) [4, Lemma 1.2] applied to the Θs-equivariant short exact sequence

0 → V Θ∼n → V → V/V Θ∼n → 0.

Since 0 does not occur as an eigenvalue of Θn acting on V/V Θ∼n, we have by
definition

det∞(Θn | V/V Θ∼n) := exp(−ζ′Θn|V/V Θ∼n(0)) 6= 0,

hence det∞(Θs | V/V Θ∼n) does not vanish at s = n. Therefore (18) follows
from (21). �

Remark 4.8. Assume that either X → Spec(Z) is flat, proper and regular, or

that X → Spec(Z) is flat, projective and regular. Suppose, moreover, that the
motivic L-function L(hi(XQ), s) satisfy the expected meromorphic continuation
and functional equation for all 0 ≤ i ≤ 2d− 2. Then, by [12, Theorem 9.1] and
[13, Proposition 5.13], the conclusion of Proposition 4.7 holds for n = 0.

4.9. The eigenspace H
i
dyn,c(X)Θ=n and duality.

Proposition 4.10. Assume Conjecture 4.1. For any i, n ∈ Z, we have iso-

morphisms

Hi
c(X,C(n)) ≃ Hi

dyn,c(X)
Θ=n ≃ Hi

dyn,c(X)Θ=n

and

Hi(X,C(n)) ≃ Hi
dyn(X)

Θ=n ≃ Hi
dyn(X)Θ=n.

Proof. The kernel of ∪θ : Hi+1
ar,c (X, C̃(n)) → Hi+2

ar,c(X, C̃(n)) can be identified

with Hi
dyn,c(X)Θ=n by (14) on the one hand, and with Hi

c(X,C(n)) by (4)

on the other. So we have isomorphisms Hi
c(X,C(n)) ≃ Hi

dyn,c(X)
Θ=n ≃

Hi
dyn,c(X)Θ=n, and similarly without compact support. �

Proposition 4.11. Assume Conjecture 4.1 and that X has pure dimension d.
There is a trace map

H2d
c (X,C(d))

∼
−→ H2d

dyn,c(X)
Θ=d Tr

−→ C

and a perfect pairing

(22) Hi
c(X,C(n))×H2d−i(X,C(d− n)) → H2d

c (X,C(d)) → C

of finite-dimensional vector spaces, for any i, n ∈ Z.
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Proof. This follows from Proposition 4.10, since Poincaré duality for Deninger’s
cohomology induces a perfect pairing

Hi
dyn,c(X)

Θ=n ×H2d−i
dyn (X)Θ=d−n ∪

−→ H2d
dyn,c(X)

Θ=d Tr
−→ C. �

For X proper regular over Spec(Z), a trace map

H2d
c (X ,C(d))

tr
−→ C

and a pairing

(23) Hi
c(X ,C(n)) ×H2d−i(X ,C(d− n)) → H2d

c (X ,C(d))
tr
−→ C

are defined in [13, Section 2.2], where it is also shown that the perfectness
of (23) is essentially equivalent to the classical conjecture of Beilinson relating
motivic cohomology to Deligne cohomology (see [13, Conjecture 2.5] and also
[33, Section 4]). In particular, Proposition 4.11 holds for X = (Spec(OF ),∅),
and more generally for dim(X) ≤ 1.

Remark 4.12. The pairings (22) and (23) should coincide. Assuming this and
Conjecture 4.1, the discussion above points out that Conjecture 2.3 (iii) implies
Beilinson’s conjectures relating motivic cohomology to Deligne cohomology.

Notation 4.13. Let X → Spec(Z) be projective, regular and connected.
If X is moreover flat, then X is an Arakelov compactification of a flat regular

projective arithmetic scheme X → Spec(Z). Then we denote by CHn(X)R the
Arakelov–Chow group with real coefficients (see [18, 5.1.1] and [19, 3.3.3]) and
we consider

CHn(X)C := CHn(X)R ⊗R C.

If X is not flat, then X is a smooth projective connected variety over a finite
field, and we denote by

CHn(X)C := CHn(X)⊗Z C

the usual Chow group with C-coefficients.

Proposition 4.14. Assume Conjecture 4.1. Let X → Spec(Z) be projective

regular of pure dimension d. Then we have

(i) Hi
ar(X, C̃(n)) is finite-dimensional for all i and Hi

ar(X, C̃(n)) = 0 for

i 6= 2n, 2n+ 1;
(ii) CHn(X)C ≃ H2n

dyn(X)
Θ=n;

(iii) ords=nζ(X, s) = −dimCCHn(X)C;
(iv) a trace map CHd(X)C → C and a perfect pairing

CHn(X)C × CHd−n(X)C → CHd(X)C → C;

(v) the map (x, y) 7→ Tr(x∪∗y) induces a positive definite hermitian form

on CHn(X)C.
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Proof. The eigenvalues of Θ on Hi
dyn(X) lie on the line R(s) = i/2, hence

Hi
dyn(X)Θ=n = Hi

dyn(X)
Θ=n = 0

for i 6= 2n, so that (i) follows from the short exact sequence (17). By [13,
Proposition 2.11] and Proposition 4.10, we have isomorphisms

CHn(X)C ≃ H2n(X,C(n)) ≃ H2n
dyn(X)

Θ=n.

We obtain

H2n
ar (X, C̃(n)) ≃ H2n+1

ar (X, C̃(n)) ≃ CHn(X)C,

hence (iii) follows from (i) and Proposition 4.7. As in the previous proof, the
perfect pairing (iv) is induced by Poincaré duality for Deninger’s cohomology,
and similarly for (v). �

Assume that X = X → Spec(Z) is projective, regular, of pure dimension d
and moreover flat. By [13, Proposition 2.10], [13, Conjecture 2.5] (i.e., the
Beilinson conjectures) implies Proposition 4.14 (i) as well as the existence of a
perfect pairing

(24) CHn(X )C × CHd−n(X )C → CHd(X )C → C.

Presumably, the pairing of Proposition 4.14 (iv) induced by duality for Denin-
ger’s cohomology, the pairing (24) and the Arakelov intersection pairing [18,
5.1.4] should coincide. By [13, Proposition 2.10], Proposition 4.14 (iii) fol-
lows from the vanishing order formula (16) for the incomplete zeta function
ζ(X , s). Finally, assertion (v) appears in [25, Proposition 3.1], see also [19,
Conjecture 2].

Remark 4.15. One may reformulate Conjecture 4.1 as follows. First assume
that Deninger’s cohomology is the cohomology of a complex RΓdyn,c(X) of
C-vector spaces endowed with an R-action inducing a map Θ: RΓdyn,c(X) →
RΓdyn,c(X). Then we expect an equivalence

RΓar,c(X, C̃(n)) → [RΓdyn,c(X)
Θ−n
−−−→ RΓdyn,c(X)],

where the right-hand side denotes the homotopy fiber of Θ− n, such that the
map ∪θ coincides with the composite morphism

RΓar,c(X, C̃(n)) → RΓdyn,c(X) → RΓar,c(X, C̃(n))[1],

and similarly without compact support. Poincaré duality for Deninger’s coho-
mology would take the form of a Θ-equivariant pairing

RΓdyn,c(X)⊗RΓdyn(X) → RΓdyn,c(X) → C(−d)[−2d],

which is, in some sense, perfect. Then

[RΓdyn,c(X)
Θ−n
−−−→ RΓdyn,c(X)]

would be dual to

[RΓdyn(X)
Θ−(d−n)
←−−−−−− RΓdyn(X)],
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which would give an equivalence

RΓar,c(X, C̃(n))
∼
−→ RHom(RΓar(X, C̃(d− n)),C[−2d− 1]),

as in [13, Proposition 4.2].

Remark 4.16. If one assumes that all Θ-eigenvalues on all Hi
dyn,c(X) occur

semi-simply, the equation ζ(X, s̄) = ζ(X, s) then implies that Hi
dyn,c(X) has

a Θ-invariant real structure. Similarly, Weil–Arakelov cohomology has a real
structure. The speculations mentioned in Section 4 should then also hold with
R-coefficients. The standard example of a supersingular elliptic curve over
a finite field shows that this real structure might not be preserved under all
endomorphisms of X.

5. Special values conjecture

In this section we recall the main conjecture of [13]. We consider proper
regular arithmetic schemes over Spec(Z), and we use the notation X to denote

such an arithmetic scheme. The complex RΓar,c(X , C̃(n)) has a real struc-

ture RΓar,c(X , R̃(n)), and in some sense a Z-structure. Indeed, under stan-
dard assumptions (see [13, Section 4]), there is an object RΓar,c(X ,Z(n)) ∈
Db(FLCA), where FLCA is the quasi-abelian category of locally compact
abelian groups of finite ranks in the sense of [22], and an isomorphism

RΓar,c(X , R̃(n)) ≃ RΓar,c(X ,Z(n)) ⊗L R,

where the derived tensor product is defined as in [22]. More precisely, there is
an exact triangle in Db(FLCA)

(25) RΓar,c(X ,Z(n)) → RΓar,c(X , R̃(n)) → RΓar,c(X , R̃/Z(n))

such that the cohomology of RΓar,c(X , R̃/Z(n)) consists of compact groups
(see [13, Definition 4.15]). Consider the tangent space functor

T∞ : Db(FLCA) → Db(FLCA), K 7→ RHom(RHom(K,R/Z),R),

where RHom is the internal Hom in Db(FLCA).

5.1. Statement of the conjecture. Applying the triangulated functor T∞

to (25), we obtain by [13, Remark 4.16] the exact triangle

(26) RΓdR(XR/R)/F
n[−2] → RΓar,c(X , R̃(n)) → RΓW,c(X ,Z(n))R,

where RΓW,c(X ,Z(n)) is Weil-étale cohomology with compact support in the
sense of [13, Section 3.8], which is a perfect complex of abelian groups, and
RΓdR(XR/R) is algebraic de Rham cohomology. We have a canonical isomor-
phism

(27) RΓdR(XR/R)/F
n ≃ RΓdR(X/Z)/Fn ⊗ R,
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where RΓdR(X/Z)/Fn := RΓ(X , LΩ<n
X/Z) denotes derived de Rham cohomol-

ogy modulo the n-th step of the Hodge filtration as defined in [24] (see also Re-
mark 5.4), which is a perfect complex of abelian groups (see [13, Section 5.1]).
This gives isomorphisms

R
∼
−→ detRRΓar,c(X , R̃(n))(28)
∼
−→

(

detZRΓW,c(X ,Z(n)) ⊗Z detZRΓdR(X/Z)/Fn)
)

⊗ R(29)

=: ∆(X/Z, n)⊗Z R.(30)

where (28) is induced by the acyclic complex (3), and (29) is induced by (26)
and (27). We denote the composite isomorphism by

λ∞ : R
∼
−→ ∆(X/Z, n) ⊗ R.

Finally, we define a rational number C(X , n) ∈ Q× using p-adic Hodge theory
(see [13, Section 5.4]). One shows that C(X , n) = 1 for any n ∈ Z if X lies
over a finite field, and that C(X , n) = 1 for any X if n ≤ 1. The conjecture
below is [13, Conjecture 5.12].

Conjecture 5.2. We have an identity

λ∞(ζ∗(X , n)−1 · C(X , n)) · Z = ∆(X/Z, n).

By [13, Theorem 5.27], if X is projective smooth over a number ring, then
Conjecture 5.2 is equivalent to the Bloch–Kato conjecture in the formulation
of Fontaine–Perrin-Riou (see [14] and [15]). On the other hand, if X has
characteristic p, then Conjecture 5.2 is equivalent to the conjecture of Geisser–
Lichtenbaum (see [28] and [17]), which holds, e.g., for curves. The formulation
of Conjecture 5.2 in the case n = 0 was envisioned by Lichtenbaum [29], see
also [31].

5.3. A reformulation. We now give a slight reformulation of Conjecture 5.2
using Conjecture 4.1. If V 0 → V 1 is a map of complex vector spaces with
finite-dimensional kernel and cokernel, one considers the complex [V 0 → V 1]
concentrated in degrees 0, 1 and one defines

detC[V
0 f
−→ V 1] := detCKer(f)⊗ det−1

C Coker(f).

The isomorphism (29) and the long exact sequence of Conjecture 4.1 provide
us with the isomorphism

ι : ∆(X/Z, n)C
∼
−→ detCRΓar,c(X , C̃(n))

∼
−→

⊗

i∈Z

det
(−1)i

C [Hi
dyn,c(X )

n−Θ

2π−−−→ Hi
dyn,c(X )].

Moreover, one has a trivialization

ss:
⊗

i∈Z

det
(−1)i

C [Hi
dyn,c(X )

n−Θ

2π−−−→ Hi
dyn,c(X )]

∼
−→ C,
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induced by the isomorphisms (12), and one may show that the diagram of
isomorphisms

∆(X/Z, n)⊗ C
ι

//

λ−1

∞,C

++❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱❱
❱❱

❱

⊗

i∈Z det
(−1)i

C [Hi
dyn,c(X )

n−Θ

2π−−−→ Hi
dyn,c(X )]

ss

��

C

commutes. Hence Conjecture 5.2 reads as follows: The complex line

⊗

i∈Z

det
(−1)i

C [Hi
dyn,c(X )

n−Θ

2π−−−→ Hi
dyn,c(X )]

has a canonical lattice ι(∆(X/Z, n)) whose generator maps to

±ζ∗(X , n)−1 · C(X , n)

under the isomorphism ss induced by the semi-simplicity isomorphisms (12).

Remark 5.4. We expect

(31) C(X , n)−1 =
∏

i≤n−1; j

(n− 1− i)!(−1)i+jdimQH
j(XQ,Ω

i)

for any n ∈ Z, but among schemes flat over Z, this is currently only known
for X = Spec(OF ), where F is a number field all of whose completions are
absolutely abelian (see [13, Prop. 5.34]). In any case, (31) suggests the fol-
lowing modification of the derived de Rham complex. For a free Z-algebra P ,
consider the subcomplex

Ω̃<n
P/Z :=

[

(n− 1)!Ω0
P/Z → (n− 2)!Ω1

P/Z → · · · → 0!Ωn−1
P/Z

]

of the truncated de Rham complex

Ω<n
P/Z :=

[

Ω0
P/Z → Ω1

P/Z → · · · → Ωn−1
P/Z

]

.

The complex Ω̃<n
P/Z is functorial in the free algebra P . For an arbitrary Z-

algebra A, let P•(A) → A be the standard simplicial resolution of A by free

Z-algebras [23]. Consider the simplicial complex Ω̃<n
P•(A)/Z and its total complex

LΩ̃<n
A/Z := Tot(Ω̃<n

P•(A)/Z),

which is a subcomplex of the derived de Rham complex modulo the Hodge
filtration

LΩ<n
A/Z := Tot(Ω<n

P•(A)/Z).

One then defines RΓdR,c(X/Z)/Fn as the Zariski hypercohomology of the com-

plex of sheaves LΩ̃<n
−/Z on X . If one assumes (31) and if one replaces the

complex RΓdR(X/Z)/Fn by RΓdR,c(X/Z)/Fn in the formulation of Conjec-
ture 5.2, then the correction factor C(X , n) disappears.
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