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Zusammenfassung

In der vorliegenden Arbeit benutzen wir den Zugang von Cuntz
und Quillen, um die zyklische Homologie von 1-R-Algebren zu un-
tersuchen (eine 1-R-Algebra ist ein Quotient einer gemischten freien
Algebra bzgl. einer einzigen definierenden Relation). So eine Algeb-
ra hat eine besondere quasi-freie Erweiterung, namlich die gemischte
freie Erweiterung. Wir zeigen fiir solche Algebren, dass die I-adische
Filtrierung des X-Komplexes der dazugehorenden gemischten freien
Erweiterung eine spezielle Form hat. Wir folgern daraus, dass in
Dimensionen grofler als 3 die zyklische Homologie solcher Algebren
einfach periodisch ist. Fiir vier konkrete Beispiele (die irrationale
Drehungsalgebra, die Weyl Algebra, ihre Modifikation mit einem in-
vertierbaren Erzeuger und die Algebra der Laurent Polynome in zwei
Variablen) bestimmen wir mit Hilfe des X-Komplexes vollstandig die
zyklische und Hochschildsche Homologie. Demnachst zeigen wir, wie
man die Erzeuger der so berechneten zyklischen Homologie auch im
2-Komplex finden kann und tun es fiir die oben erwahnten Beispiele.
Wir zeigen auch, dass jede 1-R-Algebra eine freie Auflosung der
Lange 2 besitzt, und schreiben solche Auflésungen fiir konkrete
Beispiele auf. Schliellich beschreiben wir eine Methode, wie man
mit Hilfe einer projektiven Auflosung der Lange n einer Algebra
einen n-Zusammenhang auf dieser Algebra konstruiert und finden
einen 2-Zusammenhang auf der irrationalen Drehungsalgebra.
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Chapter 1

Introduction

Cyclic (co)homology was introduced independently about twenty
years ago by Connes [9] and Tsygan [38]. They defined with dif-
ferent motivation two dual theories. In the work of Tsygan cyclic
homology (called in his joint article with Feigin [20] additive K-
functor) appears as an object that is isomorphic to the primitive
part of the Lie homology of the matrix Lie algebra with coefficients
in the trivial Lie module. Connes worked in the cohomological con-
text and in [9] cyclic cohomology arises as a target of the Chern
character from the K-homology. Cyclic homology (strictly speaking,
its periodic version) can be regarded as a noncommutative variant
of the de Rham cohomology. In the original definition the cyclic
homology groups of an algebra are the homology groups of the quo-
tient of the Hochschild complex by the action of finite cyclic groups.
Next Loday and Quillen in [28] described cyclic homology as the
homology of a certain bicomplex constructed from Hochschild com-
plexes and bar complexes (as columns). In characteristic zero these
definitions both give the same groups. To show this, Loday and
Quillen constructed one more complex, the (b, B)-bicomplex, using
the Hochschild boundary b and the Connes operator B. This very
complex became later the most popular tool to define cyclic homol-
ogy.

Another, quite different approach to cyclic homology, based on the
X-complex (which is in fact a supercomplex) and quasi-free exten-



sions, was introduced by Cuntz and Quillen in their joint work [13].
It can be considered as an analogue in the noncommutative setting
of the approach of Hartshorne and Deligne to de Rham cohomology
in algebraic geometry.

This new framework is a natural setting for the bivariant version of
cyclic homology. It is also very convenient as a basis for various topo-
logical versions of cyclic (co)homology (e.g. [34], [35], [37]) as well
as for equivariant ones (e.g. [3], [39]). It also turns out to be a very
powerful and effective tool for establishing general homological prop-
erties, e.g. excision in bivariant periodic cyclic homology was proved
within this context in [14] while in the classical context excision for
cyclic homology was proved by Wodzicki [40] only for a certain class
of nonunital algebras called H-unital algebras; Morita-invariance for
certain nonunital algebras was treated in [11] also with the help of
the X-complex (while the classical proof of Morita-invariance from
[30] works only for H-unital algebras of Wodzicki [40]). Homological
properties of topological and equivariant versions of cyclic homology
are also treated successfully within this context ([10], [34], [35], [36],
371, [39])-

The question naturally arises whether one can compute the cyclic
and Hochschild homology of certain algebras using the Cuntz-Quillen
framework. The present work is an attempt to apply the Cuntz-
Quillen theory to concrete computations.

Any algebra defined by generators and relations has a particularly
nice quasi-free extension, namely a free one. The simplest case is that
of one-relator associative algebras (i.e. quotients of free associative
algebras by principal ideals), considered by Dicks in [17], where he
obtains for them some homological results: an estimate on their
global dimension, an exact sequence relating bifunctors T'or and Ext
over a one-relator algebra A = F/FwF itself, over its free extension
F and over the so-called eigenring F/(w) of the element w, and some
properties of the Poincaré series of such algebras. An important role
in that work is played by the fact that the quotient FwF/(FwF)?
is isomorphic to the tensor product A ®g A of the algebra A with
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itself over the eigenring £ = E(w) of the element w. This result
can be considered as a version of the simple identity theorem of
Lyndon, proved in [29] for one-relator groups (and used there for
the computations of the group cohomology of such groups).

We consider in our work a more general case of a one-relator al-
gebra, namely the case of a quotient of a mized free algebra by a
principal ideal. The identity theorem is also crucial for our work,
but we use (and prove) a different version of it, which we discuss
below.

We concentrate only on those one-relator algebras A for which the

enveloping algebra A° “I) ® A has no zero-divisors. The reason
for this restriction will be clear in section 3.1, where the identity
theorem is proved exactly for those algebras. This condition is not
very restrictive though - we’ll see that standard examples such as the
algebra of Weyl or the (algebraic) irrational rotation algebra satisfy
this additional condition. We show for such one-relator algebras
that their Hochschild homology groups in dimensions greater than
two are zero and compute the Hochschild, cyclic and periodic cyclic
homology of three concrete algebras of this type in all dimensions.
This thesis is organized as follows (see also the diagram at the
end of this introduction). In chapter 2 we describe the approach
of Cuntz and Quillen to cyclic homology. We start with the defini-
tion of a (special) tower of supercomplexes and its cyclic, Hochschild
and periodic cyclic homology and show how this new concept is re-
lated via the so-called Hodge tower to the classical notions of cyclic,
Hochschild and periodic cyclic homology of an algebra A, which are
defined with the help of the bicomplex (A, B+ b). Then we intro-
duce the definition of the X-(super)complex of an arbitrary unital
algebra R (which is the first level of the Hodge tower) and of its
I-adic filtration, where I is a two-sided ideal of R; this filtration
gives rise to a special tower X'(R,I). The main statement of the
second chapter, making computations possible, is proposition 2.3.6,
which asserts that for any quasi-free extension R of an arbitrary al-



gebra A (A = R/I) the I-adic tower X' (R, I') is homotopy equivalent
to the Hodge tower 6€2A, hence its Hochschild, cyclic and periodic
cyclic homology groups coincide with those of the algebra A. We
also describe this homotopy equivalence explicitly, to be later able
to find the generators of the cyclic and Hochschild homology of con-
crete algebras not only in the tower X' (R, I), but also in the usual
bicomplex (A, B + b). This is done in two steps: in section 2.2 we
consider the homotopy equivalence between the Hodge tower QA
and the tower Xy = X(RA, [ A), where RA is a particular quasi-free
extension of an algebra A, the universal one, introduced in the same
section, and then in section 2.3 we describe the way to construct
a homotopy equivalence between X4 and X(R, ), where R is an
arbitrary quasi-free extension of A. We also show that mixed free
algebras are quasi-free. Then in section 2.4 we translate Connes’
S BI-sequence into the Cuntz-Quillen setting. The last section of
the second chapter is devoted to firs, which are by definition rings,
where all left and right ideals are free as modules over the ring itself.
We prove that any mixed free algebra is a fir and state Cohn’s inter-
section property of firs that will be used in the proof of the identity
theorem in the next chapter.

The goal of chapter 3 is to show that in dimensions higher than 2
the Hochschild homology of a one-relator algebra (with enveloping
algebra without zero-divisors) is zero and that nothing new occurs
in the cyclic homology - it is just periodic. The most important tool
in this chapter is the identity theorem 3.1.4, which asserts that if [
is a principal ideal of a mixed free algebra R such that the envelop-
ing algebra (R/I)¢ has no zero-divisors, then the quotient I/I? is
a free R/I-bimodule isomorphic to R/I ® R/I. The next step is a
representation (for a one-relator algebra A = R/I with an envelop-
ing algebra without zero-divisors) of a quotient I"/I""! as a tensor
product, namely, I"/I"*t = A%+ due to which the complexes
gr*"X (R, I) for n > 1 (which delivers the Hochschild homology for
even dimensions) and gr*"*'X (R, I) for n > 1 (which delivers the



Hochschild homology for odd dimensions) can be rewritten as

N
AP = AT

(1-4)
where A is the cyclic permutation and NV is the norm operator, and

0
[A®(n+1),A] = [A®(n+1),A],
id

respectively. It follows from this easily that the Hochschild homology
of a one-relator algebra with an enveloping algebra without zero-
divisors is zero in dimensions greater than 2.

Further we see that for such one-relator algebras the cyclic ho-
mology in all odd dimensions greater than 1 is isomorphic to HCj
and that in all even dimensions greater than 0 it is isomorphic to
HC5, and the periodic one is given by HP,(A) = HC3(A) and
HP_(A) = HC3(A).

Chapter 4 consists of computations of the Hochschild, cyclic and
periodic cyclic homology for three concrete one-relator algebras (the
algebraic counterpart Aj of the irrational rotation algebra, the Weyl
algebra A, , and the modified Weyl algebra A, ,-1,). They all have
small mixed free extensions, and the cyclic and Hochschild homology
of the first two examples is already known ([9], [2]), so one can com-
pare our approach with the classical one. We take for each algebra
its natural mixed free extension, write down the corresponding lev-
els (and layers) of the [-adic tower X' (R, I), and compute the cyclic
homology in dimensions 0 and 1 and Hochschild homology in di-
mensions 0, 1, 2 directly. The second and the third cyclic homology
of these three examples is computed using the SBI-sequence from
chapter 2. For the higher dimensions and for the periodic cyclic
homology we use the results of the previous chapter.

In chapter 5 we trace back what becomes of the generators of the
cyclic and Hochschild homology of the algebras A), A,, and A, -1,
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computed in chapter 4, under the homotopy equivalence between
X(R,I) and the Hodge tower (which is described in chapter 2) and
find this way the generators of the cyclic and Hochschild homology
of those algebras in the usual bicomplex (€2, B + b).

In chapter 6 we see another possibility to prove that a one-relator
algebra A = R/I with an enveloping algebra without zero-divisors
has zero Hochschild homology groups in dimensions greater than
two. Namely, we construct a free resolution of such an algebra of
length 2. It can be obtained in two ways: either as a generalization
of Dicks’ result from [17] about one-relator associative algebras, or
by splicing together two short exact sequences from the article [12] of
Cuntz and Quillen. One of the terms of the free resolution obtained
that way is the quotient I/I* from the identity theorem. For our
examples A, , and Ag this resolution becomes the well-known Koszul
resolution respectively the “ad hoc” resolution of Connes from [9].
In section 6.2 we show how a projective resolution of length n of an
algebra A can be used to construct a connection on Q"A. We prove
that such a connection yields an explicit contractive homotopy on
the n-th Hodge filtration of the completed 2-complex F "(QA, b+ B)
and we construct as an example a 2-connection for the algebra A
using Connes’ resolution.

I want to thank my supervisor Professor Dr. Joachim Cuntz for
the introduction to the topic, for the constant support, encourage-
ment and understanding. I also want to thank Professor Dr. Peter
Schneider for the book reference that turned out to be extremely
helpful. T am very grateful to the whole noncommutative geometry
group for the friendly and helpful atmosphere that I enjoyed very
much. I also want to thank Professor Alexander V. Mikhalev from
Moscow State University for teaching me to appreciate the beauty
of mathematics. I thank my friends Irena Artamonova, Alexandra
Mozgova, Viktor Ostrik and Fedor Popelensky for motivating me. I
thank my parents for the love and help, my brother for waking in
me the interest for mathematics. And I am really indebted to my
family for the patience with me, love and support.
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Chapter 2

The Cuntz-Quillen framework
and other preliminaries

2.1 Towers of supercomplexes, X-complex and its /-adic
filtration

The detailed description of cyclic and Hochschild homology via tow-
ers of supercomplexes is given in [13]. We recall it here briefly.

Through the whole chapter “an algebra” means “a unital complex
algebra”, although the most constructions and results can be trans-
lated to the case of any characteristic zero field. Note also that this
approach was extended onto the non-unital algebras in [14], but we
do not need it since all examples considered in this work are unital.

A supercomplex is a Z/2-graded vector space equipped with an
odd operator of square zero.

A tower of supercomplexes is a bounded below inverse system
X = (X™),cz of supercomplexes such that the maps X" — X" ! are
all surjective; X" is called the n-th level of the tower X.

Each tower defines a supercomplex X = liin X" together with

the decreasing filtration F"X = Ker (X — X™) and, vice versa,
each supercomplex K with a decreasing bounded below filtration
(F"K )z that is complete in the topology induced by the filtration
defines a tower (X"),cz via X" = K/F" K, and this way one recovers
from X the original tower.
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The supercomplex
gr'X = Ker (X" — X" ) = F" ' X/ F"X

is called the n-th layer of the tower X.

For so-called special towers, i.e. for such that the homology of
the n-th layer is concentrated in degree (n + 27Z), one defines the
Hochschild, cyclic and periodic cyclic homology by

HH,X = H, 97(gr"X),
HC,X = Hn+gz(?{”),

and

HP,X = H,(X),
respectively.

One defines naturally a morphism f : X — X’ between two
towers as a sequence f = (f,)nez of homomorphisms of supercom-
plexes (that is of linear maps respecting the supercomplex structure)
fn : X" — X' compatible with the surjections. Special towers and
morphisms defined this way form a category that will be denoted
by 7. For the computation of the cyclic and Hochschild homology
of concrete algebras another category is more suitable, namely, the
homotopy category of towers Ho7, objects of which are also tow-
ers, but morphisms are classes of homotopic morphisms of towers;
two morphisms f, g of towers are called homotopic to each other
(f ~ g) if there exists a sequence h = (hy)nez of odd linear maps
hy : X" — X' with the property f — g = 0h + h0, where 0 denotes
the differential in X. If two towers are homotopy equivalent (i.e.,
isomorphic in Ho7 ), they have equal Hochschild, cyclic and periodic
cyclic homology [13].

The definition of the Hochschild, cyclic and periodic cyclic ho-
mology of a tower is motivated by the corresponding definition for
a mixed complex, which we now describe.

Definition 2.1.1 (/27], 2.5.13) A mized complex (C,b, B) is a fam-
ily of C-vector spaces Cp,n € N U {0}, equipped with two maps,

12



one of degree —1, b : C,, — C),_1, and the other one of degree +1,
B : C,, — C,1, satisfying

b>=B*>=bB+Bb=0

Any mixed complex gives rise to a first-quadrant bicomplex, called
(b, B)-bicomplex:

[

o o oo £ g

Lo b Lo

Cy « () £Co (21)
b b

o, £ ¢

Lb

Co

Definition 2.1.2 The Hochschild homology HH.(C) of a mized
complex (C,b, B) is the homology of the first column of (b, B)-
bicomplex, that is, of (C,b). The cyclic homology HC,.(C) of a mized
complex (C,b, B) is the homology of the total complex of (b, B)-
bicomplez (the total complex of a first-quadrant bicomplex consists
of the direct sums of the finite diagonals of bicomplex and its differ-
ential is the sum of b and B). The periodic cyclic homology HP,(C)
of a mixed complex (C,b, B) is the homology of the total complex
(where one takes the direct products instead of the direct sums) of
the periodic (b, B)-bicomplez, defined by
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1o 1o 1o 1o
2o o E oo £ g
1o 1o 1o

2o &g & g

e 1b
2o £ g
Lb

&g

The definition of the Hochschild, cyclic and periodic cyclic homol-
ogy of a special tower is a generalization of definition 2.1.2 in the
following sense: if we consider (C, b, B) as a supercomplex (C, B+b)
with the even-odd grading and with the differential B + b, then the
Hochschild, cyclic and periodic cyclic homology of the Hodge tower
0C = 6(C,B +b) of (C, B + b), which is defined by the filtration
F"(C,B+b) =bC,11® @ Cy on (C,B+b), are exactly HH,C,

HC,C and HP,C.

The notion of a mixed complex and its Hochschild, cyclic and
periodic cyclic homology is in turn a generalization of the classical
definition of the Hochschild, cyclic and periodic cyclic homology of
an algebra. This definition is based on the (2, b, B)-complex,which
we now describe.

For a unital algebra R the R-bimodule of non-commutative dif-
ferential n-forms on R is defined (e.g. [27], §2.6) by Q°R = R and

VR=R®R "
where R = R/C. An elementary tensor from Q"R is denoted by
rodry...dr,. The left R-module structure on QR is obvious; the

right one is defined by the Leibniz rule d(rt) = dr -t +rdt. With the
differential map

d: Q"R — QR
TQdTl...Tn —> d?‘od?“l...rn

14



(d? is obviously zero) and with the product induced by the Leibniz
rule, QR = @,>0{2" R becomes a differential graded algebra.

On QR there are some other important operators. The first one
is the Hochschild boundary b, which is defined by the rule

b(wdr) = (—1)'“"| [w, ]

for homogeneous forms of positive degree |w| and b = 0 on 0-forms.
It’s easy to check that b*> = 0. Using b and d, one obtains the Karoubi
operator k of degree zero, defined by

k=1—(db+bd).
It’s clear that the operator s defined this way commutes with b and
d. Explicitly
k(wdr) = (—1)|w|r - w
for homogeneous forms of positive degree and in degree zero k is the
identity. Finally, the Connes’ operator B is defined on Q"R by

B = z”: Kk'd,
i=0

and it obviously commutes with x. Explicitly,

n
B(rldr'...dr") = (=1)"dr' . .dr"dr®..dr'. (2.2)
i=0
By the direct computation, one obtains the relations

Bb+bB = B?>=0.

Therefore, 2 = QR with the operators b and B is a mixed complex
(2,0, B) and its Hochschild, cyclic and periodic cyclic homology are
by definition the Hochschild, cyclic and periodic cyclic homology of
the algebra R.

The first level of the Hodge tower 62 of the supercomplex
(QR, B + b) plays a very important role in the whole theory, so
it received a special notation:

X(R) = QR/F'QR.
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It is a supercomplex

1d
X(R): R = Q'R
b

where Q'R, = Q'R/[Q'R,R], § : Q'R — Q'R is a quotient map,
and b is defined by the rule b(gridry) = [r1, 73]

If I is an ideal in R, one defines the [-adic filtration on X (R) by
FPHUX(R) : I"r2y(I"M dR + 1),
F2X(R) : "M 4 [I", R|=4(1"dR),
for n > 0, and FYX(R) = X(R) for p < 0. One can also write
F2HLX(R) - I"Hrey(1mdl),
since (/" dR) C y(I"dI). This filtration defines a (special) tower
X(R, 1) = (XP(R, 1))yez by XP(R, T) = X(R)/FIX(R).

2.2 The universal extension RA

An extension of a (unital) algebra A is a unital algebra R together
with its proper two-sided ideal such that the sequence

0—-I—-R—-A—0 (2.3)

is exact. Further in this paper if we want to say that an algebra R
with its ideal I and sequence (2.3) is an extension of an algebra A,
we simply write “an extension A = R/I”.

Any unital algebra A possesses a special extension

0—-J1A—- RA—-A—=0

such that its [ A-adic tower X(RA, I A) is homotopically equivalent
to the Hodge tower of (A, B+b). We will describe it now in detail.
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For an arbitrary unital algebra A, the algebra RA is defined in [12]
as the following quotient of the unital tensor algebra T1(A) = @ A%

120
of the vector space A:

RA ="Ti(A)/T1(A)(1r — 14)T1(A),

where 17 and 14 mean the units of T1(A) respectively of A. In
other words, RA = T1(A) = @Z@ is a unital tensor algebra of the

_ i>0
reduced algebra A.
The algebra RA is universal in the following sense ([12]):

Let

p: A — RA be the following linear map :
l1#a — a
]_A = 1RA

Then there exists for each algebra R with 1 and for each linear map
p:A— R with p(14) = 1 a unique homomorphism ¢ : RA — R
such that ¢ o p = p holds. In particular, there exists a unique
homomorphism 1 : RA — A such that v o p =id4. The ideal Ker
plays an important role in the theory and is denoted by I A.

One defines on the DG algebra () the so-called Fedosov product
by wo & = wé — (=1)“ldwdé for w homogeneous of degree |w| and
extends it by linearity to all forms.

Proposition 2.2.1 [12] Let @ be the curvature of p (that means
w(ay,as) = plaraz) — plar) ® plas)). Then there exists a canonical
isomorphism between RA and the algebra QT A of even differential
forms with the Fedosov product, defined by

ﬁ(ao) 029 CD(CLl, a2) R JJ(CLQnA, a2n) — apday - - - dagy,.

The canonical derivation from RA into Q!'(RA) will be denoted
by ¢ to avoid confusion with the derivation d on A. The differential
from the odd degree to the even one in X(RA) will be denoted by 3
in order to differ it from the operator b on 2A. One identifies 2~ A
with Q'(RA); by xzda < f(zda) [12] .
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In that way the complex X (RA) is identified with the complex
ol
X:QTA= QA
s

which has the same underlying Zo-graded vector space as 2, but
other differentials:

B=b—(1+k)d (2.4)

10 = —N,2b+ B, (2.5)

n—1
where by definition N2 = > k% on Q?"A.
=0
The I A-adic filtration ori X(RA) coincides (under this identifica-
tion) with the Hodge filtration on QA.
The next theorem shows that the tower Xy = X(RA,TA) rep-
resents the Hochschild, cyclic and periodic cyclic homology of the
algebra A.

Theorem 2.2.2 ([13], theorem 6.2). X4 = 0QA in HoT .

We give separately the detailed description of this homotopy
equivalence. This is done by the following

Proposition 2.2.3 Let P be the spectral projection on €2 as well as
on X corresponding to the eigenvalue 1 of the Karoubi operator k
and let

X =PX @ P*X,

Q= PO PQ
be the corresponding decomposition of supercomplexes. Then
1. the supercomplezes PTX and PQ are contractible;
2. the scaling operator
c: PX — PQ

Wg 7 CqWy
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(where wy is a differential form from Q1A) is a homotopy equiv-
alence; the constants are cop = Copy1 = (—1)"n!.

The same is true for the towers (X/FPX), (2/FPQ), not only for
complexes X and €.

Remark that, as was already mentioned, the Karoubi operator
commutes with the differential b + B of ) as well as with the dif-
ferentials 3 and §d of X (it can be seen easily from (2.4) and (2.5)),
hence the spectral projection P is compatible with the supercomplex
structure.

The first claim of the proposition is proved in [13], §3, and the
second one is theorem 6.2 of [13].

2.3 X-complex of a quasi-free extension

The extension RA of A is though very “large”. In fact, it is possible
to compute the Hochschild, cyclic and periodic cyclic homology of
A with the help of an arbitrary quasi-free extension of A.

We start with the basic definition:

Definition 2.3.1 (/12/, §3). An algebra R is called quasi-free if the
following equivalent conditions are satisfied:

e the Hochschild cohomology H"(R, M) is zero for alln > 1 and
for any R-bimodule M,

e Q'R is a projective R-bimodule,

e for any square-zero extension 0 — J — S 4R —0 (square-
zero means J* = 0) there erists a lifting homomorphism R LS
(i.e. poth=ridg).

Example 2.3.2 Quasi-free algebras (cf.[12], proposition...).

1. Every free algebra is quasi-free.

Proof. In each square-zero extension 0 — J — S 5 R — 0
one lifts arbitrary the generators of R and, since R is free, this
lifting can be extended to a homomorphism R — S. O
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2. Every free group algebra R = CG (G is a free group) is quasi-
free.
Proof. Let {x1,x9,...} be the free generators of the group G,
let 0 > J— S5 R—0 be a square-zero extension. One lifts
arbitrary each generator x; to y; and each inverse ZEi_l to z;. In
general, zyy; # 1, but (zyy; — 1) lies in J. Put y;/ = 2y; — y;z:y;.
Then o(y;!) = x; and

Ziyl — 1= Zz(Qyz/ — yllziyzl) — 1= —(1 — Ziyi/)Q = O,

since it lies in J*. Similarly for (zzy; — 1). Thus y;! lifts x;,
z; lifts x; L and they are inverse to each other; this can be then
extended to the desired homomorphism R — S. ]

3. Simalarly, mized free algebras, which we define below, are quasi-
free.

Definition 2.3.3 (/6]) Let k be a field, let X, Y be two disjoint
sets. A muxed free algebra over k on X, Y is defined as a k-algebra
KXY, Y1) generated by X, Y and inverses to Y that is universal
for Y -inverting maps of X LY into k-algebras.

Now we are ready to define the main object of this work:

Definition 2.3.4 An algebra is called a one-relator algebra if it is a
quotient of a mixed free algebra by a principal ideal.

Note that it follows from the definition that any one-relator al-
gebra comes naturally equipped with a quasi-free extension, namely
with a mixed free one.

The next two results make clear what is the goal of the consider-
ation of quasi-free extensions:

Proposition 2.3.5 ([13], corollary 9.4): Let A be an algebra. For
every extension A = R/I there is a canonical morphism

X4 -2 X(R, 1)

in the homotopy category of towers HoT . If R is quasi-free, then
is an isomorphism in HoT .
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From theorem 2.2.2 and proposition 2.3.5 follows

Proposition 2.3.6 For each quasi-free extension A = R/I there
exists a canonical homotopy equivalence

X(R,I) ~ QA

and, therefore, the tower X (R, I) represents the Hochschild, cyclic
and periodic cyclic homology of the algebra A.

To describe explicitly how the morphism 1/ from proposition 2.3.5
is constructed, we need to pass to towers of algebras. A tower of
algebras (R,) consists of an algebra R,, for each n € NU {0} and of
a surjective homomorphism R, 1 — R, also for each n € NU {0}.
A homomorphism ¢ of two such towers (R,) and (5,) is a system
of algebra homomorphisms ¢, : R, — S,, compatible with the
surjections in (R,) and (.S,).

Lemma 2.3.7 ([13], lemma 4.3) Let R be an algebra with an ideal
I, let forn € N R, = R/I"™ and I, = I/I""'. Then for any
k <2n+1 the map of supercomplezes

XMR, 1) — X¥(R,, 1),

which is induced by the canonical projection R — R/I™, is an
isomorphism. It follows that for any algebra S with any ideal J each
homomorphism of towers of algebras

o (Rn) — (Sh)
induces a homomorphism of towers of supercomplexes
pit X(R,I) — X(S, J)
(where S, = S/J"1).

Proposition 2.3.8 (see [13], corollary 9.4) The morphism 1 from
2.3.5 is obtained by choosing any homomorphism of towers of alge-
bras (R,A) — (R,) (where R, = R/I""" and R,A = RA/TA"™)
that lifts the identity map A — R/I and taking the induced map
from X(RA,IA) into X(R,1).
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Now we state two other results that make precise how homomor-
phisms of towers of algebras can be obtained:

Theorem 2.3.9 ([13], theorem 9.3) Let A = R/I, B = S/J be
two extensions of algebras with R quasi-free. Then each homo-
morphism v : A — B can be lifted to a homomorphism of towers

u: (R,) — (Sn). Moreover, the homotopy class of the induced map
us : X(R, 1) — X(S,J) depends only on v.

Lemma 2.3.10 ([13], lemma 8.6.) For any two pairs (R,I) and
(S,J) of algebras with ideals the following data are equivalent:

1. a homomorphism u : (R,) — (S,) of towers of algebras;

2. a compatible system of maps u" : R — S, such that u’(I) = 0.
(Note that the map u" becomes then a homomorphism of pairs
(R,I) — (Sh, Jn) and that it induces therefore a homomorphism
u s X(R, 1) — X(S,, Jy)).

2.4 SBI-sequence in the Cuntz-Quillen context

For any algebra there is an exact sequence called Connes’ SBI-
sequence, which connects Hochschild and cyclic homology of that
algebra. It follows from the periodicity of the (b, B)-bicomplex (2.1):

Theorem 2.4.1 ([27], theorem 2.2.1). For any associative k-
algebra A there is a natural long exact sequence

.= HH,(A) 5 HC,(A) S HC, »(A) 5 HH,_1(A) 5 ..

Here [ is a natural inclusion, B is defined by (2.2), and the peri-
odicity map S is obtained by factoring out the first column of the
(b, B)-bicomplex (2.1).

It is also possible to deduce the SBI-sequence in the Cuntz-
Quillen setting of cyclic homology. To do that, we recall from [33],
section 2.4, that if one has a short exact sequence of complexes

0—-K5L5M-—0, (2.6)
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then there is a long exact sequence of homology groups

s Ho(K) % Ho (L) ™ Hy(M) 2 Hy o (K) — ..,

where ¢, and 7, are induced by ¢ and 7 respectively and the con-
necting homomorphism 3 : H,(M) — H,_1(K) is constructed in
the following way (we denote differentials of all three complexes by
0, since it will be always clear to which complex the differential be-
longs). Let m be a cycle in M,,,1. Since 7 is an epimorphism, there
is an element [ from L,, such that 7l = m. Now since dm = 0, one
has w0l = 0. Since the sequence (2.6) is exact, there is a unique
cycle k from K, 1 such that (k& = OI; this can be written as the
following commutative diagram:

[ — m
l ! (2.7)
k — 0l — 0
n
L, = M,
Lo !

L
Kn—l — Ln—l - n—1-

The homology class of k depends only on the homology class of m
(and does not depend on the choice of the representative m and on
the choice of the pre-image [ of m). Assigning to each homology class
(represented by a cycle m from M,,) the homology class of the cycle
k constructed in that way, one defines the desired homomorphism 3.

Now we consider for an algebra A and its quasi-free extension R
the following two exact sequences of supercomplexes:

0— gr"MX(R,I) — X" YR, T) — X"(R,I) — 0

and
0— gr"X(R, 1) — X"(R,I) — X" YR, I) — 0.

From these two sequences we obtain two exact sequences of homology
groups; we write down only those segments of them that we need
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(we omit (R, I) by X for the sake of space):

Hn+1(ng+1X) i) n+1(Xn+1) - n+1(‘)(n) - Hn(grnﬂx)
and
Hyi1(gr"X) — Hyyy (X7) — Hppy (X" B H(gr"X) — H,(X™).

With proposition 2.3.6 and with the fact that X' (R, ) is a special
tower, the first sequence becomes

HH,1(A) 5 HCpi(A) — Hoo (X"(R,I)) — 0 (2.8)
and the second one becomes
0 — Hy1(X"(R, 1)) — HC,_1(A) 2 HH,(A) — HC,(A). (2.9)

Splicing them together, we obtain for each n a sequence

HHy1(A) 5 HCpi(A) 2 HC, 1(A) 2 HH,(A) L HC,(A),
from which it follows that there is a long exact sequence
.= HHo(A) S HCy 1 (A) S HC, 1 (A) D HH,(4) — . ..
R (2.10)
Here the map I : HH,,11(A) — HC,11(A) is just an inclusion, i.e.
for n = 2k
h.cl.(i+ (I**Y + [I*, R])) ~— h.cl.(i + (I*' + [I*, R])),
(h.cl.(.) denotes the homology class of an element) and for n = 2k+1

Iyr:  HHya(A)  — HC911(A)
h.cl.(bw + §I%dI) — h.cl.(jw + 5I%dI);

the map S : HC,1(A) — HC, 1(A) is a quotient map, i.e. for
n =2k
§2k . HCQk(A) — HCQ]C,Q(A)
h.cl.(i + (I*' + [I*, R])) ~ h.cl.(i + (I* + [I"', R)))
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and for n = 2k + 1
Sokt1 HCy:41(A) — HC,—1(A)
h.cl.(bw + §I*dI) + h.cl.(bw + 5I*1dI),

and B is the connecting homomorphism. Explicitly, for n = 2k the
diagram (2.7) becomes

hw + §I*dR — hw + gl dI
! !
b(w) + (" + [I*,R]) — b(w)+ ("' +[I*,R]) — 0
and thus
Boj1 : HC5-1(A) — HHy,(A)

h.cl.(qw + 0I*dI) — h.cl.(b(w)+ (I*' 4 [I*, R)))
For n = 2k + 1 the diagram (2.7) becomes
r+ 1M — e (IMT 4 (IR R])

! !
ndr + h]kd] — gdr + b]kdl — 0
and thus
ng . HCQk(A) — HH%_H(A)

h.cl.(r + (I¥*' + [I*,R]))) +~ h.cl.(4dr + 4I*dI)

2.5 Free ideal rings, a review

In this section we prove that any mixed algebra belongs to a special
class of rings, called free ideal rings (firs). Firs have a nice intersec-
tion property for two-sided ideals which will be used in the proof of
the identity theorem in the next chapter.

The definition of a free ideal ring generalizes the concept of a
principal ideal domain:

Definition 2.5.1 (/6/, section 1.2) A free left (right) ideal ring, or
a left (right) fir, is a ring, in which all left (right) ideals are free
of unique rank as left (right) modules over that ring. A fir or a
two-sided fir is both a left and a right fir.
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Over a right fir R every submodule of a free right R-module is
again free (it follows from theorem 5.3 of [4]). A (left) fir R has
invariant basis number (i.e. any free R-module is of unique rank); a
fir is always an integral domain ([6], section 1.2).

In the commutative ring R any two elements are R-linearly de-
pendent (since a-b = b-a). This implies that no ideal can have a
basis of more than one element. It follows

Proposition 2.5.2 [5] A commutative ring is a fir if and only if it
18 a principal ideal domain.

This can be interpreted like this: one can consider a fir as a “non-
commutativisation” of a principal ideal domain.

The fact that any mixed free algebra is a fir follows from the
general result of Cohn about free products of firs. In order to state
it, we start with the definition of a free product of algebras:

Definition 2.5.3 A free product of a family of unital algebras
(Ay)ier over a field k is their coproduct in the category of unital
associative k-algebras; a free product of two unital k-algebras A and
B is denoted by Ax B (cf. [27], E.2.6.2).

That means that a free product of a family (A;);c; of unital k-
algebras is a unital k-algebra A together with a family of algebra
homomorphisms (j; : A; — A);er such that, given a unital k-algebra
B and a family of homomorphisms (¢; : A; — B);cs, there is a
unique homomorphism ¢ : A — B such that poj; = ¢, forany i € [
(cf. [24], chapter I, §11). This is called the universal property of a
free product.

It follows immediately from the universal property that the free
product of a family (A;);e; is unique up to isomorphism. To show
that it exists, we consider the free algebra on all elements of all A;
as generators and its quotient by the ideal generated by all elements
of the form (s -t — st), where elements s and ¢ belong to the same
A;, s -t is their product in the free algebra, and st is their product
in A;. This quotient is a free product of (A;);es.
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We remark here that Cohn in his articles [8], [5] uses a different
definition of a free product, given in [8] not only for algebras over a
field, but for A-rings for an arbitrary ring A (a A-ring is a ring with
A as a subring), namely a A-ring R is a free product of A-rings R;,
i € Iif (R;)ics is a family of subrings of R such that

1. R;N Ry = A for all i # k from I;

2. if for each © € I X is a set of generators of R;, then UX; is a set
of generators of R;

3. if C; is a set of defining relations of R;, ¢ € I (in terms of the
generating set X;), then UC; is a set of defining relations of R.

The free product of A-rings in the sense of Cohn does not always
exist, but for the algebras over some field & it exists (it follows from
theorem 4.7 of [8], since a field is a regular ring) and clearly has
the universal property. Thus for the algebras over a field the free
product in the sense of Cohn and the free product in the sense of
universal algebra coincide.

Proposition 2.5.4 (/5] corollary 1 of theorem 4.3) If k is a field,
(Ry) is a family of right firs that are augmented k-algebras such that
the augmentation module in Ry is a right ideal, then the free product

of (R)) is a right fir.

(Recall from [5] that a k-ring is called augmented if there is a k-
linear map € : R — k such that j o € = idj, where j is the canonical
embedding of k into R. The augmentation module is by definition
Kere; it is a k-subspace of R.)

The proof of the main theorem of this section relies on that propo-
sition:

Theorem 2.5.5 Any mized free algebra over a field k is a two-sided
fir.

Proof. A mixed free algebra k(X,Y,Y 1) is a free product of the
polynomial algebras k[x] (z € X) and of the group algebras k[y, y ']
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(y € Y) of the infinite cyclic groups. The first ones are firs by 2.5.2,
since k[z] is a principal ideal domain ([24], theorem IV.1.2). The
group ring k[y,y~1] is a ring of quotients of k[y] with respect to
the regular multiplicative system {y"|n € N} (cf. [41], section 4.9).
Applying theorem 4.15(c) of [41] (which claims that any ideal J of
the ring of quotients R, of the commutative ring R with respect to
the multiplicative system M is an extended ideal, which means that
there exists an ideal I of R such that J = Ryy(I), where v is the
canonical embedding of R into Rys), we see that kly,y '] is also a
principal ideal domain.

An augmentation for both k[x] and k[y,y '] can be defined by
(> Nx') = Y\ Clearly, the augmentation module is then an
ideal in both k[z] and k[y,y™!]. Therefore, the mixed free algebra
E(X,Y, Y1) is a two-sided fir by theorem 2.5.4 and its left version.
[

We also want to mention here (although we don’t need it in the
sequel) that another approach to the proof of this theorem can be
found in [26], where it is not only shown that any submodule of a
(right) free module over a free associative algebra or over a free group
algebra is free, but also its generators are given and the formula
for its rank is obtained, analogous to the Schreier’s generators and
Schreier’s formula for a subgroup of a finite group. Namely, if G
is a free monoid or a free group on r generators (or a free product
of a free monoid and a free group with r generators on the whole),
F' = kG and M is a submodule of codimension n in a free F-module
N of rank [, then

rankM =n(r —1) + 1.

Now we state the property of free ideal rings which is the reason
why we consider them in this work:

Theorem 2.5.6 (intersection theorem, [7], corollary of theorem 3.3)
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Let R be a two-sided fir. Then for any proper ideal I in R we have

(1" ={0}.

neN
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Chapter 3

Hochschild and cyclic homology
of one-relator algebras, higher
dimensions

In this chapter we show that for a one-relator algebra the levels
higher than 2 do not contribute to the cyclic homology. In order to
do this, we prove that for a one-relator algebra A = R/I (where R is
a mixed free algebra, I is a principal ideal) such that the enveloping

algebra A® has no zero-divisors there is an isomorphism ["/[""! =
A®(n+1)

3.1 Identity theorem

If R is an algebra over a field k£ and [ is an ideal generated by some
elements {z;|j € A}, then an arbitrary element of the ideal I can be
written in the form

i= Zskzjkrk. (3.1)
k=1

The identity problem is the question of “how unique” expressions
of that form for an element ¢ of the ideal are. Or, equivalently, the
problem of finding all “identities” of the form

m

Zskzjkrk = 0. (3.2)

k=1
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For us the case of a principal ideal I (generated by an element
w) is of interest. The first obvious source of non-uniqueness in (3.1)
is the fact that for all s,r and ¢t from F' the element rwswt can be
written in two ways: as rw(swt) and as (rws)wt. Thus for all s,r
and t from F the difference rw(swt) — (rws)wt is of the form (3.1)
and zero.

In some cases all non-uniqueness arises in some sense in that way,
as was proved by Dicks in [18]. Namely, let F' = k(x,...,z,) be a

free associative algebra freely generated by xzq,...,x,, let J denote
the ideal in F' generated by xg,...,x, and let M denote the free
monoid freely generated by xy, ..., x, (note that F is then a monoid

algebra of M). A non-zero element r of J is called aperiodic if
rf € JrF implies f € FrF for all f € F.

Proposition 3.1.1 ([18/) Suppose that there are a commutative
monoid (T, +,0,>), well-ordered as a monoid, and a monoid mor-
phism ¢ : M — T such that ¢(z;) > 0 for i = 0,...n. If for an

element w = Y Aa (A € k) from F the element wy = > A,
acM a€s
where S = {a|p(a) = max{p(b)|b € M, N\, # 0}}, is aperiodic, then

the annihilator of w in the enveloping algebra F° is generated by
{(wa®1°—-1& (aw)°|a € M}

(by definition the enveloping algebra of an algebra B is the algebra
B¢ = B ® B?).

That means exactly that the sum > spwry is zero if and only if

k
in F*
Z SE QT = Z(aiwbi ® ¢ —a; ® (bjwe;)?)
k i

for some a;,b;,c; € F,1=1,...1.

From this proposition it follows easily that, under the conditions of
proposition 3.1.1, for the principal ideal I = FwF the F/I-bimodule

I/1? is freely generated by w + I? ([18], theorem 1(iii)), i.e. passing
to the quotient I/I? “kills” all non-trivial identities (3.2). For our
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goals this weaker result would be sufficient, but we need to extend
it somehow onto the mized free algebras. We do it in the following
way.
In his paper [25] Lewin constructs for a mixed free k-algebra R
with two ideals U and V' an embedding of the k-algebra R/UV into
R/V 0 B . :
the k-algebra ( T R/U ), where T' = T(R; R/U, R/V) is the
R/U-R/V-bimodule of the universal derivation §, which is defined
r + V O / 1/
by the rule r + UV — < 5(r) 14U ) (For k-algebras R, R, R
and for homomorphisms
R — R, R — R

T = ’]"/ A e 4 7"//

a k-linear map 0 : R — M into an R’-R”-bimodule M is called a
derivation if for all a,b from R

d(ab) = a'6(b) 4+ 6(a)b”.

A R'-R"-bimodule T'(R; R, R") is said to be the module of the uni-
versal derivation § : R — T'(R; R', R") if for any R’-R"-bimodule M
and any derivation § : R — M there is a unique homomorphism of
R'-R"-bimodules ¢ : T — M such that 6 = ¢ 00.)

That embedding gives rise to an embedding of U N V/UV into
T(R; R/U,R/V) defined by z + UV + §(z), which is a free R/U-
R/V-bimodule by the following proposition:

Proposition 3.1.2 (/25], corollary 5) If R = k(X) = k(Y, Z, Z~1)
is a mized free algebra, R’ and R" are k-algebras and R — R’
and R — R" are k-homomorphisms, then the module of the uni-
versal derivation T(R; R',R") is a free R'-R"-bimodule. In partic-
ular, the R-bimodule T'(R) of its universal R-derivation  is a free
R-bimodule, freely generated by on {0(x)|x € X}, and for any R-
bimodule M every setting of v(x) € M on R defines a derivation
v:R— M.

That proves the following
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Theorem 3.1.3 ([25], theorem 7) Let k be a field, let X =Y U Z
be a set, let R = k(X)) = k{Y,Z, Z71) be a mized free algebra. Let
U, V be two-sided ideals in k(X). Then UNV/UV can be embedded
into a free R/U-R/V -bimodule.

The next result is a generalization of theorem 8 of [25].

Theorem 3.1.4 (Simple identity theorem) Let k be a field, let
X=YUZbeaset, let R =KkX)=k(Y,Z,Z71) be a mized free
algebra and let w be an element of R such that the enveloping algebra
(R/I)¢ (where I = RwR) has no zero-divisors. Then I/I? is a free
R/I-bimodule generated by w + I? and, therefore,

I/I? =~ R/I®R/I
w4+ 1?2 — 1®1.

Proof runs exactly as in [25], theorem 8, using the fact that a mixed
free algebra is a fir. Namely, by theorem 3.1.3, I/1? can be embedded
into a free R/I-R/I-bimodule. Since the algebra (R/I)¢ has no zero-
divisors, each non-zero single-generated submodule of a free R/I-
bimodule is again free. I/I?is generated by a single element (namely,
by w + I?) and due to theorem 2.5.6 the intersection () I" = {0},
hence I/I% # 0 and is thus free. O

There is a whole class of one-relator algebras satisfying the con-
ditions of the identity theorem, for which the simple identity the-
orem of Lewin ([25], theorem 8) was proved: if F' is free and w is
a Lie element of F, then F/I is the universal enveloping algebra
of a Lie algebra L, generated by X and the single relation w = 0.
F/I ® (F/I)° is then the universal enveloping algebra of L & L%
and has therefore no zero divisors ([22], theorem V.6). In the next
chapter we consider three more examples of one-relator algebras, for
which the identity theorem holds.
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3.2 Quotient /1",

In this section we prove the following fact:
In/]n+1 ~ A@(TH—I) (3.3)

as A-bimodules.
To do that we state first the following propositions from [12]:

Proposition 3.2.1 ([12], proposition 5.2) For any hereditary alge-
bra R (that means that any submodule of a projective left module
over R is projective) and its two-sided ideal I the associated graded
algebra grrR = ©I" /1" is the tensor algebra on the R/I-bimodule
I/I?. The isomorphism

T I/]2 ®R/I ]n/[n—H N ]n+1/]n+2

15 1nduced by the multiplication map.

Proposition 3.2.2 ([12], proposition 5.2) Any quasi-free algebra is
hereditary.

From these two propositions it follows

Proposition 3.2.3 For a one-relator algebra A = R/I (I = RwR)
such that the enveloping algebra A® has no zero-divisors the A-
bimodule homomorphism

On : In/[nJrl N A®(n+1)
TOWTLW ... Wy + 1" = TR ...07%,

(where T is the image of an element x € R under the canonical
epimorphism R — A) is an isomorphism.

Proof. Since any mixed free algebra is quasi-free, it follows from
proposition 3.2.1 and proposition 3.2.2 that for each n there is an
isomorphism

]n/]n—i—l ~ (]/[2)®An’
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and this isomorphism is induced by the multiplication map. It’s well
known that the map of A-bimodules

AR s A — A
a®@ab — ab

is an isomorphism (e.g. (3.7) of chapter V of [33]), and that its
inverse takes an arbitrary element a from A into a ®41 € A ®4 A.
By the identity theorem 3.1.4, /1> 2 A ® A. One can now easily
see that the composition of the following sequence of maps

AP s (A A)#am — (1) 17)%4" — 17 /1",
taking

TH®...0T, > TH®@(T1®41)@(T3®al) ... 0 (T 1®@41) T, —
(TowTT+H1?) @A (LwTT+HI1*)®@ 4. . . (LwTp+1%) — zowzw . .. wa,+1",

is an isomorphism. l

Note that another way to see that the n-th quotient I" /1" is an
n-fold tensor product of the first one I/I? follows from 2.5.4 with
the help of the following lemma of Cohn:

Lemma 3.2.4 ([7], proposition 2.1) Let R be a ring and let J be
a two-sided ideal in R. If J is free as a right R-module, then the

associated graded algebra grjR is the tensor algebra on the R/J-
bimodule J/J?.

Proof. Denote J"/J"1 by M,. One shows first that the multiplica-
tion map J" ®p J — J""! is an isomorphism, using the fact that J
is free as a right R-module. Let E = {e;} be a basis of J as a right
R-module. Consider the set of n-products E" = {¢;, ...e; |e;, € E}.
Then E™ is again right linearly independent over R and is a basis of
J". The mapping

(€iy..-€i,€) > € ...€ €
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is R-balanced. It induces the multiplication map J" @p J — J"H,
under which

E €iy - - €y, @ eib; E €iy - - €, Ay, €ib;.
This map is obviously surjective. To see that it is also injective, take

geee

hence all a;, ;,; =0 and a = 0.
Then one takes for M,, the short exact sequence

0— J" - J" > M, —0,

tensors it up (over R) with the corresponding short exact sequence
for My, and gets the following commutative diagram:

Jn+3 N Jn+2 N Mn QR J2 — 0

| | |
Jn+2 N Jn+1 N Mn ®RJ — 0

| | |
Jntl QrM, — J"QrM;, — M,QrM; — 0

| | |

0 0 0

The middle row yields an isomorphism M, ®rJ = M, 1. The image
of the map M, ®pJ? — M, ®@rJ is zero. One gets now from the right
column that M, ®grJ = M, ®rM; and, therefore, M, @ g M7 = M, 1.
One checks at last that M, @r M1 = M, ®p,; M. O]
Since in a fir each right ideal is free, one can apply this lemma to
the case of the mixed free algebra R and its ideal I.

3.3 Higher Hochschild homology, even case

Further in this chapter A denotes a one-relator algebra, A = R/I,
such that I = RwR and R,w satisfy the conditions of the identity
theorem.

36



Let us compute HH,,(A), n > 1. By proposition 2.3.6,
HH,,(A) = H,(gr*"X(R, I)). The left-hand side of the complex

gr"X(R,I) : I/ 1" - [I", R] = 41" 'dI /4 I"dR
can be identified with A®" by the map

ToW ... WTy = TpTo X ... K Tp_1.-

This map is really an isomorphism. To prove this, we start with the
fact that for all xg,...x, from R the equality

ToW ... WT, = TploW ...W

holds (since the difference xgw ... wz, — r,xow ... w lies in [I", R]),
from which it follows that with the new notation

S, = span{zow ... wx, 1w|Ty, ... T, 1 € R}

we have

I"/[I",R] + "t = 8, /(I""' N S,,).

The homomorphism ¢,, from proposition 3.2.3 induces in the obvious
way on S, /(I"™1NS,,) a C-linear (injective, since ¢, is injective) map
@n into A®+D the image of which is A®" @ 1 = A%,

The right-hand side of the same complex is identified under propo-
sition 3.2.3 with A®™ by the map

hrow . .. wry_1d(zwy) — YT Q ... @ Tp_1 L.
This map is really an isomorphism. To show that, we note first that
by (4.1)
hrow . .. wr, 1d(rwy) = hwyrow . .. wr, 1dr+
Qyxow . .. wry_1xdw + jrow . . . wr,_1rxwdy,

whence in I""*dI/§I"dR one has

1row . .. wr,_1d(zwy) = fyrow . . . wr,_1rdw.

Further, we obtain with the new notation

T, = span{izow ... wx, 1dw|xrg, ..., 1 € R}
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the following relation:
11" 'dI /yI"dR = T,/ (1I"dR N T,).

The map ¢, from proposition 3.2.3 induces on T,/ (§I"dR N T},) in
the obvious way an injective C-linear map ¢, into A®"; it is easy
to see that its image is the whole of A®".

Now we compute the differentials. By (4.1),

1d(Tow - - - W, W) = fxow . .. wr,_1dw + jwd(zow . . . WTy_1) =

1xow . .. wEy_1dw + fwrow . .. wdr,_1 + jrqwd(Tow . . . WTy_1),

where the second summand is zero, since jwzow . ..wdx,_; lies in
I"dR; with the third summand we proceed as with the element
1d(Tow - .- wT,1w) itself and so on; at the end we obtain that

hd(Tow - - - W, W) = fxow . .. wr,_1dw+

0T, qWTow ... WTy_odw + ...+ jziw. .. W, wredw.

The map b on an arbitrary element from I"~'dI/§I"dR is

b(fxow ... wr,_1dw) = [Tow . .. wWr,_ W, W] =

TOW - .. Wy 1W — T 1WIQW - - - T30
Finally, the complex F?" ' X (R)/F?"X(R) becomes

N
AP = A%

(1=2)

where Aag ® ... ® ay_1) = a1 @ a9 ® ... ® a,_2 is the cyclic
permutation and N = 1+ X + X2 + ... A"l is the norm operator.
It is well known (e.g.[27], appendix C.4) that KerN = Im(1 — ),
hence H Hy,(A) =0 for n > 1.

3.4 Higher Hochschild homology, odd case

Let us now compute H Hy,11(A), n > 1.
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By proposition 2.3.6, HHo,(A) = H_(gr**"*X(R,I)). The left-
hand side of the complex

gr™ I X(R,T) - 1" 4+ [, R) /I = 4I"dR/4(I" T dR + IdI)

is isomorphic to [I", R]/(I"™ N [I" R]), which is identified with
[A®(+D) " A] with the help of the map

[Tow ... wxy, Y] — [To®@ ... T,, 7|

This map is really an isomorphism because the homomorphism ¢,
from proposition 3.2.3 obviously induces on [I" R]/(I"™t N [I", R))
an injective C-linear map &, into A®("*D_ the image of which is
(A% A] since

Q.. QT — T ® ... T, = [Tg® ... Tn, 7.

The right-hand side of the same complex is identified with
[A®("+1) | A] by the map

UYn o WIMAR/Q(I"YAR 4 IMdI) —  [AR(HD ] A]
nTow . .. wr,dr — [T0®...QT,, 7|

To prove that it is really an isomorphism, we start with showing that
it is well-defined: first, it respects the equality (4.1), since

U (frow ... wrpd(st)) = [Fo® ... Ty, st] =
[o® ... @Tps, | +[tro® ... 0T, 3] =
Yp(row . .. wrpsdt) + Py (htrow . . . wr,ds);

second, it vanishes on §(/""*dR+1"dI). It is obviously surjective. To
show that it is injective, suppose that v, (z + §(I"™ dR + I"dI)) =

Ik . .
0 for some element z = > frjw...wz,dr; from §I"dR. The

j=1i=1
equality v, (z + §(I""'dR + I"dI)) = 0 implies that
1k
S 6. 0T =0
j=1 i=1
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in A®(+Y Tt follows that in ™/I"*!
k.
Z (zhw ... wxlr; — rizhw. . owal) + I = 0.
=1 i=1

<

j=1 1

Our element can be represented like

kj
z = g (fzqw ... wd(z,r;) — rizqw . .. wdz,),
j=1 i=1
which lies in I""'dR + I"dI, since
1k
g E (zhw ... wrlr; —rirhw. . wal) € "
j=1 i=1

Therefore, z +§(I" " dR+I"dI) = 0 in yI"dR/5(I" " 'dR+ I"dI) and
Yy, is thus injective.
Finally, the complex F?"X (R)/F7""' X (R) becomes

0
[A®(n+1),A] = [A®(n+1),A]
(id)
and, therefore, HHs,1(A) =0 for n > 1.

3.5 Higher cyclic homology and periodic cyclic homology

For n > 3, for any one-relator algebra A satisfying the conditions of
the identity theorem 3.1.4 the corresponding segment of the SBI-
sequence (2.10) becomes

0L mC,(4) S HC, 1 (A) 20

and it follows inductively that
HCy41(A) = HC3(A),
HCo(A) =2 HCy(A)
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for any k£ > 1.

To deal with the periodic cyclic homology, we recall from sec-
tion 5.1.10 of [27] that if for an algebra A for all n greater than some
Ny the periodicity maps S : HC,(A) — HC,_9(A) are surjective,
then

HP, 107 = 1<1_I7Iﬂ1 HCnJrQr(A)-

It is the case for any one-relator algebra A such that its enveloping
algebra has no zero-divisors and it follows that

HPy(A) = HCy(A)

and

HP,(A) = HCy(A).
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Chapter 4

Examples of computations

In this chapter we compute the Hochschild, cyclic and periodic cyclic
homology of three concrete one-relator algebras: of the algebraic
counterpart A) of the irrational rotation algebra, of the Weyl alge-
bra A,, and of the modified Weyl algebra A, ,-1 , with one invert-
ible generator. Each of these algebras has a two-generated mixed
free extension and satisfies the conditions of the identity theorem.
Hochschild and cyclic homology of the first two algebras is already
known (e.g.[9], [2]), so it is possible to compare our approach with
the standard one.

4.1 Cyclic and Hochschild homology of the algebra Aj

Definition 4.1.1 The algebra A) consists of complex Laurent poly-
nomials in two wvariables u and v with the commutation relation
vu = Auww, where X is a complex number, A = >0 with 0 irrational
from the interval (0,1).

AY is an algebraic counterpart of the locally convex irrational rota-
tion algebra Ay (or the so-called noncommutative torus), the cyclic
homology groups of which are described in [9].

AY is a one-relator algebra. To see that, we take the following
extension of A): Ry = C(Fy) is the group algebra over C of the free
group F5 = F(u,v) and [ is the ideal generated by wy = vu — Auw.
Further in this section we usually omit the subscript 8 and write R
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for Ry and w for wy.
Then [ is a kernel of the surjective homomorphism

R — Ag
U =,
v,
1R —> 1Ag

and R is a mixed free (in particular, quasi-free) extension of AY.

The extension Ry and the element wy satisfy the conditions of the
identity theorem 3.1.4. To see that, we remark that the enveloping
algebra A) @ (A))? can be considered as the algebra of formal finite
sums of the form Y a; jxuv’(u/)*(v')!, with the multiplication in-
duced by the following relations: vu = \uv, v'v’ = X"1u/v/, and u, v
commute with v/, v’. If we now order A) ® (A9)? lexicographically,
then any element of it has a maximal monomial and this order is
compatible with the multiplication. The maximal monomial of the
product of two arbitrary non-zero elements is the product of the
maximal monomials of these elements, whence this maximal mono-
mial is not zero and, therefore, the product itself is not zero. Thus
AY @ (AY)P has no zero-divisors.

4.1.1 Zero cyclic and Hochschild homology of A!
By proposition 2.3.6, one has
HCy(Ag) = HHo(Ap) = H.(X°(R, 1))
and the complex XY(R, I) is of the form
X (R, 1): (A, =0

(not depending on R, I). An arbitrary commutator in [AJ, A)] is of
the following form:

[umvnz, um1vm2] — ()\nzﬂh . >\n1m2)un1+mll}n2+m2.

For all ny,ns,my,my such that ny +m; =ns + mo =0 we have
(A2 — \mm2) = () and, therefore, 1 ¢ [AY, AY]. For all u*v' with
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(s,t) # (0,0) one can find ny,ng, my, me such that s = ny + my,
t = ng +my and (A"2™ — X"™2) =£ (: thus u®o' lies in [A), AY]. Tt
follows that HCy(AY) = HHy(A)) = C and that the homology class
of T forms the basis of HCy(AY) and HHy(A)) in X°(R, I).

4.1.2 First cyclic homology of A9

The first cyclic homology group of Aj is by proposition 2.3.6
HCY(AY) = H_(X\(R, T))

and the complex X!(R, I) is of the form

1d
XYR,I): R/T = Q'R,/4(IdR + Rdl).
b

Due to the equality [zdy, z] = xzd(yz) — xydz — zxdy, we have in
Q' R; the relation

nrd(yz) = feydz + fzaedy. (4.1)

(note that this relation holds in QT for an arbitrary algebra 7). In
particular, each element from (Q'R), can be (inductively) rewritten
as a linear combination of the following elements:

{trdu, grdv| r is a monomial inw,v}.

In the quotient Q'R,/t(IdR + RdI), we can always take r in frdu
and grdv of the form u™v" (since we factorize by §(/dR)).
Thus the quotient Q'R,/5(IdR + RdI) is generated by

{gumvm2du, fumv2do|ng, ny € Z}.

Since

fumon2dw = qumomd(vu — Auv) =
humo (2t dy + qum+Dyrede) — Ajumovm2udv — Ajppu™o2du =

(1 . /\n2+1)bu(nl+1)vn2dv 4+ (1 . )\nﬂ—l)nunlv(ng—i—l)du7
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we have with the new notation

M = span{fumv™2tldu, jumtlom2do|ng, ny € Z} and

N : = span{(1 — X" gumortldu+
(1 — N2 ) gumtlynedo|ng, ny € 7}

the following relation: Q'R,/i(IdR + RdI) = M /N
Let now

2 : <a”1>”2hun1+lvn2dv + Cnl,nQHU”W”QHdu) € Ker b,

(nl,n2)€Z2

(where almost all @y, n,, Cn, n, are zero). This means that

D (@ (1= X" ey (V2 — 1)) writTomatl = §

(ny,ng)€Z2

in AY = R/I, where T denotes the image of the element r € R under
the quotient map R — R/I. This implies that

pyny (1= A" e (V2T = 1) =0 (4.2)

for all ny,ny from Z.
It follows from (4.2) that
for ny # —1, ny # —1 we have ¢, p, = ap, p, (1 — AT /(A2 —1);
for ng # —1 the coefficient a_, ,, is arbitrary and c_; ,, = 0;
for n; # —1 the coefficient ¢,, _; is arbitrary and a,, -1 =0
and for ny = ny = —1 both a_; _;, c_; _; are arbitrary.
With the notation

M, : = span{fu"du, p"dv, n € 7,
(1 — N )gympetdy, + (1 — A2 gu(m+bynedy|
ni,ne € Z\ {—1}}

we have the relation

Kerb = My/N = span{fu—'du, jv—1dv}.
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To compute Im fd, we note that R/I = C-1® [R/I, R/I] (as we
have seen in subsection 4.1.1); d(1) = 0 and

=0, (4.3
since by (4.1)

1d([z,y)) = 4d(zy — yz) = Gady + fyde — tydx — jzdy = 0.
Thus td(R/I) = 0 and, therefore, HC,(A)) = C?% the basis of
HC1(A)) in X1(R, I) consists of the homology classes of fu—'du and

ho~tdv.

4.1.3 TFirst Hochschild homology of AY

The first Hochschild homology group of Aj is by proposition 2.3.6
HH(A) = H (¢gr'X(R,I))

and the complex gr'X (R, I) is of the form

hd
gr'X(R, 1) : [R, R+ /I = Q'R,/3(IdR + Rdl).
b

As in the previous subsection, Kerb = span{fju~tdu,jv—1dv}. On
the other hand, Imfd = 0, since [R, R| + I = [R, R]/[R, R] N I and
since fd|jrr = 0 by (4.3). Thus HH(A)) = C*>. The basis of

HH;(A)) in gr'X(R,I) consists of the homology classes of fu~!du

and qu—1dv.

4.1.4 Second Hochschild homology of A)
The second Hochschild homology group of AY is by proposition 2.3.6
HHy(A)) = H (gr*X(R, 1))
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and the complex gr2X (R, I) is of the form:

1d
gr*X(R,I): I/(I* + [I,R]) 2 4(IdR + RdI)/4IdR.
b

Note that the basis of Q'R,/1IdR is given by
{busvtdu, qusvtdv, | s,t € Z}.

We use in what follows the notation v = (ny,ns) € Z2.

Since I/I? = A) ® A) (recall that w = vu — Auv is the generator
of the principal ideal I; then the mentioned isomorphism is given by
bwe + I? — b ® ¢, T denotes here the image of an element z € R
under the quotient map R — R/I(= A))) and since in I/(I*+[I, R])
we have

bwe + (I? + [I, R]) = cbw + (I* + [I, R]),
we can identify I/(I* + [I, R]) with A) by
bwe + (I* + [I, R]) + cb.

Now we compute the differential gd. For an element a form R of the

form a = Y a,u™v™, a, € C, almost all a, are zero, we have
veZ?

td(aw) = t(av — \va)du + §(ua — Aau)dv =
Z (1 = N")ap, -1 n,—10u™ o2 du+

veZ?

S (1= A", gy a0,

vEZ2

and gd(aw) = 0 implies that

(1 - )\n1>an171,n271 = 07
(1 — X”)anl_l’nz_l = 0.

It follows that a,, ,, = 0 if ny # —1 or ng # —1 and that a_; _;
is arbitrary. Therefore, Kerfd = span{u~'v"lw}. On the other
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hand, b(k(IdR + RdI)) C [I, R] whence Imb = 0 in I/(I? + [I, R]).
Therefore, H Hy(A)) = C and its basis in gr?X (R, I) is the homology

class of u—tv—1lw.

4.1.5 Second cyclic homology of A

The second cyclic homology group of Aj is by proposition 2.3.6
HCy(Ap) = H. (X*(R, 1))

and the complex X?(R, I) is of the following form:

1d
X*(R,I): R/(I*+[I,R]) = Q'R /4IdR.
b

It is possible to compute H,(X?(R,I)) directly, but such a compu-
tation is extremely technical and long. The simpler way is to use
the S BI-sequence (2.10). We consider the following segment of the
S BI-sequence:

HC1(A)) 25 HHy(A)) = HCy(A9) 5 HCy(A)) 23 HH, (AY).
N (4.4)
Note that By(HC;(AY)) = 0, since the generators of HC1(AY) in
XY(R,I) computed in subsection 4.1.2 are the homology classes of
tu—ldu and fv~ldv and since

Bi(h.cl.(qu" du + §RAI)) = h.cl.(b(udu) + (I> + [I,R])) = 0
and, similarly,
Bi(h.cl.((;v~'dv + hRdI)) = 0.

Note also that By(H Co(AD)) = 0, since the generator of HCy(A)
computed in subsection 4.1.1 is the homology class of 1 and since

~

Bo(h.cl.(1+ (I + [R, R]))) = h.cl.(4d(1) + RdI) = 0.
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Therefore, from exact sequence (4.4) we obtain the exact sequence

0 — HHy(A)) & HCy(AY) 2 HCy(AY) — 0

and the second cyclic homology HC5(AY) is a direct sum of H Hy(AY)
and HCy(AY). The generators of HCy(AjJ) are the homology classes
of L(uv~'w + (I + [I, R])) (since the generator of HHy(AY) in
gr?’X (R, I) is the homology class of u=lv—1w) and of the pre-image
of 1+ (I +[R,R]) under S5. So we conclude that HC,(AY) = C?
and its basis in X?(R, I') consists of the homology classes of u~1v~1w
and 1.

4.1.6 Higher cyclic homology and periodic cyclic homology of A)

To compute HC3(Aj), we consider the following segment of sequence
(2.10):

0= HHy(AY) & HCOy(AY) 2 HC(AY) 2L HHy(AY) (4.5)

As we have seen in subsection 4.1.5, B(HC1(A))) = 0in H Hy(A)).
Now sequence (4.5) becomes

0— HC3(Ag)— HC (Af)—0
and it follows that HC5(A)) = HCy(A)) = C2.
Now the results of section 3.5 yield that
HH,(A}) =0

for all n > 2, that
HC,(A)) = C?

for any n > 2 and that
HP,(A)) = C?
for x =0, 1.

49



4.2 Cyclic and Hochschild homology of the Weyl algebra
Apg

Definition 4.2.1 The Weyl algebra A,, consists of complex poly-
nomials in two variables p and q with the commutation relation

[p,ql = 1.

Take the following unital extension of A, ,: R,, = C(p,q) is the
free associative C-algebra with generators p and q. Let I be the ideal
generated by w,, = [p,q] — 1. Further in this section we usually
simply write R for R, , and w for w,,,.

Then I is the kernel of the surjective homomorphism

R — Ay,
p = D
qg — g,
1R = 1Ap,q
and R is a quasi-free extension of A, .

We note here that the algebra R, , and the element w, , satisfy the
conditions of the identity theorem 3.1.4. To see that, we remark that
Apq @ AP is again the algebra of Weyl, in two pairs of generators,
and has therefore no zero-divisors (e.g. [19]).

One proves inductively the following

Lemma 4.2.2 ([19], 2.1) In A, , the following commutation relation
holds:

o0 l 1 -1
. q'] = Z [[(G=nE=i)p e (46)
=1 7=0

Note that in fact only a finite number of summands in (4.6) is not
zero, namely for | = 1,... min {s,t} (compare also with formula
(2.4) from [21], which holds in a more general situation.)

Sometimes it is useful to rewrite (4.6) in the following way:
¢ =S (- (" Vi (4.7)
— [)\l
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We use here the standard conventions that for £ > n from N the
binomial coefficient (Z) is equal to zero, that (6‘) = 1 and that 0! = 1.

We will in fact use formula (4.7) only in the simple particular
case where either s or ¢ is equal to 1. Note also that from (4.6) it
follows that for any polynomial g € C[z] one has [¢(p),q] = ¢ (p)
and [p, g(q)] = ¢'(q), where ¢’ is the derivation of g.

4.2.1 Zero cyclic and Hochschild homology of A,

As in subsection 4.1.1, HCy(A,,) = HHy(Ay,) = (Ap,);. Since
for all n, k one has [p,p*¢" "] = (n + 1)p*¢", each monomial p*q"
lies in [A,4, Apq]. It follows that (A,,); = 0 and thus HCy(A,,) =
HHy(A,,) =0.

4.2.2 First cyclic and Hochschild homology of 4,,

The first cyclic homology group of A4, , is by proposition 2.3.6
HC1(Apg) = H(X\(R, 1))

and the complex X!(R,I) is of the form

1d
XYR,I): R/T = Q'R,/4(IdR + Rdl).
b

Similarly to subsection 4.1.2, one has with the notation

S = span{p*~tq¢tdp, ip'q*~1dg|s € N,t € NU{0}} and

T := span{nifgp™~lg™dp + nobipmq™~tdglni,ny € N U {0}}

(by convention, the second summand in the definition of 7 is zero
for ny = 0) the relation Q'R /4(IdR + RdI) = S/T.
Let now

(Z (an1,n2 hpnlilqwdp + Cnyng hpnlqwldq)) € Ker E,

ny,n2
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where by definition ag,, = c,, 0 = 0 for all n;,ns and almost all
Qny ny» Cnymy ar€ zero. This implies

E (_TLQanl,ng + nlcnl,ng)pm_lqn2_1 =0

ny,n2

in R/I and it follows that
—N1 Gy py + N2Cpy iy, =0 (4.8)

for all ny,ny from N U {0}. B

It follows from (4.8) that Kerbd lies in 7 and, therefore,
HC (4,4 =0.

Similarly, HH,(A,,) = 0.

4.2.3 Second Hochschild homology of A, ,

The second Hochschild homology group of A,, is by proposition
2.3.6
HHy(A, ) = Hy(gr*X(R, 1))

and the complex gr2X (R, I) is of the form

d
gr*X (R, 1) : I/(I* +[I,R]) = §(IdR + RdI)/4IdR.
b

A

As in subsection 4.1.4, each element j from I/(I? + [I,R]) can

o0
be represented in the form j = @w, where a = > an,0,0"q¢"™,
n1,n2=0
any .y € C, almost all a,,, ,, are zero, and w = [p, q] — 1 is the gener-

ator of the principal ideal 1.
In §(/dR + RdI) one has

jd(aw) = jadw + qwda = tad(pq — qp) = bfa, p)dg — tla, q]dp =

o0
> (—notn, 10" g™ g + 1, 0" g D).

n1 ,TZQ:O
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Now fd(aw) = 0 implies that for all ny, ng

{ nlaﬂl,ng — 07

n2an1,n2 — 07

which yields that ay,,, = 0 for (ni,ns) # (0,0) and that agg is
arbitrary.

Therefore, Ker fd is generated by w. We have, on the other hand,
that b(§(IdR + RdI)) C [I, R] and thus Im b = 0 in I /(1% + [I, R]).
We get HHy(A,,) = C and its basis in gr’X (R, I) is the homology
class of w.

4.2.4 Second cyclic homology of A,,

The second cyclic homology group of 4, , is by proposition 2.3.6
HCy(Ap) = H. (X*(R, 1))

and the complex X?(R, I) is of the form

1d
X*(R,1): R/(I*+[I,R]) = Q'R /4ldR.
b

As well as for the algebra A), one could compute H,(X?(R, 1))
directly, but such a computation involves the commutation for-
mula (4.7) in the general form and some nasty technical combinato-
rial results. It is easier to use the SBI-sequence. We consider the
following segment of sequence (2.10):

0= Hcl(Ap,q) . HH2(Ap,q) - HC?(Ap,q) E HCO(AP#J) =0.

It follows that the second cyclic homology HC5(A4,,) is isomorphic
to HHy(A,,). The generator of HC5(A,,) is the homology class of
Iy(w+ (I2+[I, R])). Thus HCy(A,,) = C and its basis in X2(R, )
consists of the homology class of w.
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4.2.5 Higher cyclic homology and periodic cyclic homology of A4, ,

To compute HC5(A,,), we consider the following segment of se-
quence (2.10):

0= HHB(AM)_)HCS(Ap,q)_)HCl(Am) =0,
hence HC3(A,,) =0

From the results of section 3.5 it follows that
HH,(A,,) =0
for all n > 2, that
HCo11(Apq) =0,
HC9%(A,,) =C
for any k£ > 1, and that

112

HPy,(A,,) =C
HP(A,,)=0

4.3 Cyclic and Hochschild homology of the Weyl-type al-
gebra with one invertible generator

In this section we consider the following modification of the Weyl
algebra:

Definition 4.3.1 The algebra A, ,-1, 1s defined as the quotient of
the mized free algebra R, ,1, = Cip,p~t,q) by the same relation
as the Weyl algebra, i.e. by the principal ideal I generated by the
element w,, = [p,q] — 1.

The extension R, , and the element w, , satisfy the conditions
of the identity theorem 3.1.4, the argument is similar to the one used
for the algebra AY.
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Further in this section we omit the subscripts and simply write R
for R, 1, and w for wy,.

For the computations we need to know how to write an arbitrary
element of A, -1, in the canonical form

oo
§ § 1 N9
anl 7n2p q Y

n1€EZL no=0

where almost all a,, ,, are zero. The question is how to commute
the powers of p and ¢g. For positive powers of p the answer is given
by lemma 4.2.2. The rest is done with the following

Lemma 4.3.2 For negative powers of p the same commutator for-
mula (4.6) as for positive holds; formula (4.7) is also true if one
generalizes the binomaial coefficients (Z) to negative values of n by
(1) =4nn—1)...(n—=1+1) forn € Z,k € N.

Proof. 1. We prove by induction on ¢ that
= —1\ [t
to—1 _ 1 —1-1 =1
q'p lz;( R I B V'

The base of induction is ¢ = 1: multiplying the equality [p,q] = 1 on
the left and on the right by p~!, one obtains ¢gp~! = p~lq +p~2.

Now multiplying the equality [p, ¢'] = t¢"~! on the left and on the
right by p~!, we obtain

qtp—l — p—lqt + tp_lqt_lp_l,

the right-hand side of which is by the inductive assumption (and
with the remark that (_ll) = (=1)71) equal to
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Bt 1\ /t—-1
—1 ¢ -1 ! —1-1 t—1-1
¢ AU _
pq+pl§:0( )<l><l)p q
> t—1
1.t —2—1 _t—1-1
E It —
q + ( ] )p q
plqt+§ tt—1)...(t—1—1+1)p 2l =
+§ tt—1)...(t—k+1p Fg =

kf%(—l)kk! (;1) (,i)p‘l"“qt"“,

which completes the induction step.

2. Now we prove by induction on s € N that

¢p° = i:(—l)ll! <_ls> (;)p‘s‘lqt‘l-

The base of induction is the case s = 1, which we just have proved.
Now by the inductive assumption

-5 —s — - —s+1 t —s+1-1 t—1, —
qtp :qtp +1,p 122(_1)1“( l ><l>p +1 lqt lp 1 _

i (—s + 1) @ i:: 1t (—]:) (t ; z)p_s_l_kqt_l_k )
22(—1)”%1 <_Sz+ 1) @ (—kl> (t ; z>p_8_l_kqt_l_k-

Observe that

um@ (t;l> :(t%!_k)!:(uk)!(ljk).
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Now the substitution m = [ + k yields

i =S () () (o

;n(@l)mm!@) (lﬁ; (—sl+ 1) (1)mz> i

One can easily see by induction on m that

()=

which completes the proof. O

Note also that the equality [g(p), ¢] = ¢'(p) holds for any Laurent
polynomial g € Clz, x| as well.

As well as for the Weyl algebra we rally use (4.6) and (4.7) only
in the simple case, where s =1 or ¢t = 1.

4.3.1 Zero cyclic and Hochschild homology of A, -1,

As in subsection 4.1.1, HCy(Ap -1 ,) = HHo(App-14) = (App-14)s-
Exactly as for the Weyl algebra, [p,p*¢"™] = (n + 1)p*q¢® for all
k € Z,n € N, hence [A,,1,,App14]

HCy(Ay 1) = HHy(App1 ) = 0.

= A, 1, and, therefore,

4.3.2 First cyclic and Hochschild homology of A, -1 .

The first cyclic homology group of A, ,-1 , is by proposition 2.3.6
HC (App,q) = H,()c’l(R, 1))

and the complex X!(R,I) is of the form

1d
XYR,I): R/T = Q'R,/t(IdR + Rdl).
b
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Similarly to subsection 4.1.2, one has with the notation

~

S 1= span({p*~tq¢tdpls € Z,t € NU{0}}U{tp*¢'~'dq|s € Z,t € N})

and

~

T : = span{nyip™—1¢g"2dp + nofp™q™2~1dg|n, € Z,ny € NU {0}}

(by convention, the second summand in the definition of T is zero
for ny = 0) the equality Q' R, /4(IdR + RdI) = S/T.
Let us now compute Kerb. Let an element

&= Z Z (aﬂlﬂh m—l nde + Cm nsznlqnz 1dQ)

n1€Z nyeNU{0}

lie in Kerb (where by definition 0 = 0 for all ny and almost all
Ay nys Cnymy € zero). This implies that

D (g, +mice ) Pl =0

N1€Z ngy GNU{O}
in R/I and it follows that
—N1 A,y ny + N2Cny 1y = 0 (4.9)

for all ny from Z, ,ny from N U {0}. This yields

) - - _
p=D ) <n1bp”11q”2dp + nzhpmqmld@ T anotp~idp
n17#0 n2 ™

The double sum lies in 7. It follows that the basis of Ker b consists
of the single element fgp—1dp.

The image §d(R/I) is zero due to (4.3), since R/I = [R/I, R/I]
and, therefore, HC1(A,,-1,) = C; the basis of HCi(A,,-1,) in
XY(R,I) consists of the homology class of ip~—ldp.

Similarly, HH;(A,,-1,) = C and the basis of HH;(A,,-1,) con-
sists of the homology class of fp~ldp.
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4.3.3 Second Hochschild homology of 4, ,-1,

The second Hochschild homology group of A, ,-1, is computed ex-
actly as for the Weyl algebra; HHs(A,,1,) = C with the basis in
gr?’X (R, I) given by the homology class of .

4.3.4 Second cyclic homology of 4, ,-1,

The second cyclic homology group of Aj is by proposition 2.3.6
HCQ(Ap,p‘l,q) = H+(X2(R, 1))
and the complex X?(R, I) is of the following form:
nd
X*(R,1): R/(I”+[I,R)) =2 Q'R,/4ldR.
b

Again, instead of the direct computation of H,(X%(R,I)) (involv-
ing (4.7) in the general form and very technical), we use the SBI-
sequence (2.10). We consider the following segment of it:

HC)(Ayy 1) 25 HHa(Ayp 1) 25 HCo(Ayy14) 22 HCy(Ayp 1) = 0.

(4.10)
Note that El(HCl(App—l’q)) = 0, since the generator of HC1 (A, ,-1,)
in X!(R,I) computed in subsection 4.3.2 is the homology class of
ip~ldp and since

By(h.cl.(4p~dp + 4RAI)) = h.cl.(b(p~'dp) + (1> + [I, R])) = 0.

Therefore, from exact sequence (4.10) we obtain the exact sequence

0 — HHy(Ay, ) = HCo(A)) — 0

It follows that the second cyclic homology HCy(A, -1 ,) is isomor-
phic to HHy(A,,-1,) and that its generator is the homology class
of Ir(w 4 (I* + [1, R])). Thus HCy(A,)-1,) = C and its basis in
X?%(R, 1) consists of the homology class of .
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4.3.5 Higher cyclic homology and periodic cyclic homology of A, -1,

To compute HC5(A,,-1,), we consider the following segment of se-
quence (2.10):

0= HHB(A(G)) = HCB(pr‘%q) 2 HCl(Ap,p‘l,q) =l HH2(Ap7p‘17q)
(4.11)
As we have seen in subsection 4.3.4, B(HC1(A))) = 0 in H Hs(AY),
hence sequence (4.11) becomes

0—HC3(A, -1, —HC1(A,)1,)—0
and it follows that HC3(A, -1,) = HC (A, ,—1,) = C.
Now the results of section 3.5 yield that
HHy(App1,4) =0

for all n > 2,

for any n > 2 and

for x =0, 1.

One could get the impression that for a one-relator algebra A
HC3(A) = HCy(A) is always true. In fact, it is not so. To see this,
we consider now one more example.

4.4 Cyclic and Hochschild homology of the algebra of Lau-
rent polynomials in two variables

Definition 4.4.1 The algebra Ap consists of commutative complex
Laurent polynomaials in two variables u and v.

Ay is a one-relator algebra. To see that, we take the following
extension of Ap: Ry = C(F3) is the complex group algebra of the
free group Fy, = F(u,v) and I is the ideal generated by wr = [v, ul.
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Then Ay = R/I and Ry is a mixed free (in particular, quasi-free)
extension of Aj.

The extension R, and the element wy, satisfy the conditions of the
identity theorem 3.1.4. It can be seen with the help of an argument
similar to the one used for the algebra AJ.

Further in this section we usually omit the subscript L and write
R for Ry, and w for wy.

4.4.1 Zero cyclic and Hochschild homology of Aj,

As in subsection 4.1.1, HCy(Ar) = HHo(Ar) = (Ar);. Since Ap
is commutative, [Ar, Ar] = 0 and (Az); = Ag, and, therefore,
HCy(Ar) = HHy(Ar) = C* and its basis in X°(R,I) consists of
the homology classes of all monomials v v™ (ny,ny € 7).

4.4.2 TFirst cyclic homology of A;

The first cyclic homology group of Ay, is by proposition 2.3.6
HC\(Ap) = H (X'(R, 1))

and the complex X*(R, I) is of the form

1d
XYR,I): R/I = Q'Ry/4(1dR + RdI).
b

As well as for the algebra AY, with the help of equality (4.1) one
can rewrite each element from (Q'R); as a linear combination of the
following elements:

{trdu, grdv| r is a monomial inu,v}.

In the quotient Q'R,/t(IdR + RdI), we can always take r in frdu
and frdv of the form u™v™ (since we factorize by §(/dR)). Now
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note that in fact in our case fRdI lies in §/dR (and is thus equal to
it), since
had(bwe) = gabwdc + feabdw + jweadb =
habwde + fweadb + fcab, u]dv + f[v, cabldu

and since the commutator of an arbitrary element of R with u or v
obviously lies in /. Thus the left-hand side of X1(R,I) is equal to
Q'R;/8(IdR) and its basis is given by
{pum—tvr2du, fum v —tdv|ng, ny € Z}.
The map b is zero on the whole Q'R,/f(IdR), since R/I is com-
mutative.

We introduce now a new notation:

( 712—1

Z ) ny < no;
=N
Z =< 0, ny = ng; (4.12)
= ; ’I’Ll—l
il ma] — Z , N1 > No.
\ i:ng

To compute Im gd, we prove first the following
Lemma 4.4.2 In Q'R,/1(IdR) the equality
hd(umom2) = nifum o2 du + nofu™m v~ dv

holds for all ni,n9 € 7Z.

Proof. We compute two following sums of commutators (which, as
all commutators, represent zero in Q'R /t(IdR)):

0= Z g[vkF2d(umone=l=h) y] =

kge[o,ng}

Z (bv’”d(u”lv”f“) — gumon2—ldy—
kQG[O,TLQ]

bv<k2+1)d(unl rUTLQ—l—k'Q )) —
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— Z (u”lv”Q_ldv + kad(unlv”Tb)) —

ko€[0,n2]
Z R d(umy ) =
l[1,ng+1]
— Z qumvn2=tdv + pd(umonz) — fotzdu™ =
ko€[0,n2]
— nofum o~ dy + gd(umvn2) — guredu™;
similarly,

0= Z gluFroredum—1=k y] =
kle[O,nl]

— nigu™ o2 du + gurzdu™.

By summing these two representations for 0 we obtain the desired
equality:. [

It follows from the lemma that Im gd consists of the vectors

{qum—1du, fo2=1dv, (nigu™—1vm2du 4+ nofu™v™=1dv)|ny, ne # 0}.

Therefore, HC,(Az) = Kerb/Im id = C*; the basis of HC(Az)
in XY(R, I) consists of the homology classes of ju=tdu, jv—1dv and
qum—lomedu (ny, ne # 0).

4.4.3 First Hochschild homology of A;

The first Hochschild homology group of Ay is by proposition 2.3.6
HH\(Ap) =2 H (¢r'X(R, 1))

and the complex grlX (R, I) is of the form

hd
gr'X(R, 1) : [R, R+ 1/I = Q'R,/3(IdR + RdI).
b
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As well as in the previous subsection,

Ker b = span{jum—lv"2du, jumv™2-tdv|ny, ny € Z}.

On the other hand, Imfd = 0, since [R, R]+ I = [R,R]/|R,R] NI
and since 4d|pr = 0 by (4.3). Thus HH;(Az) = C*. The basis
of HH{(Ar) in grtX (R, ) consists of the homology classes of all
qum Loz du, fumom2—1dv, ny,ny € Z.

Another possibility to compute HC1(A) were to compute first
HH,(Ar) and to use then the SBI-sequence (2.10), but it makes in

~

fact not much difference, since the operator By is essentially fd.

4.4.4 Second Hochschild homology of A;

The second Hochschild homology group of Ay, is by proposition 2.3.6
HHy(Ap) & H (9r*X (R, 1))

and the complex gr2X (R, I) is of the form:

d
gr*X (R, 1) : I/(I* +[I,R]) = 4(IdR + RdI)/4ldR.
b

A

As in subsection 4.1.4, we can identify I/(I?+ [I, R]) with Af by
bwe + (I + [I, R]) — cb

(where T denotes the image of an element x € R under the quotient
map R — R/I(= Ap) and w = wy, is the generator of the principal
ideal I). The left-hand side of the complex gr?X (R, I) is zero, since
we have seen in subsection 4.4.2 that §(RdI) = §(/dR). Therefore,
HHy(Ap) = C* and its basis in gr?X (R, I) is given by the homology
classes of all elements u™v™2w, ny,ny € Z.
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4.4.5 Second cyclic homology of A;

The second cyclic homology group of Ay, is by proposition 2.3.6
HCy(Ar) =2 H (X*(R, 1))

and the complex X?(R, I) is of the following form:

1d
X*(R,1): R/(I*+[I,R]) = Q'R /4IdR.
b

We will not compute H,(X?(R,I)) directly, but use the SBI-
sequence (2.10). We consider the following segment of the SBI-
sequence:

HCy(AL) 2 HHy(A) & HCo(AL) 2 HCy(AL) 2 HH (AL).
(4.13)
From it follows the exact sequence

0 — HHy(AL)/Bi(HC,(AL))—HCs(AL)—Ker By — 0

and the second cyclic homology H C5(Ap) is thus a direct sum of
HHg(AL)/Bl(HCl(AL)) and Ker B().

For the computation of B;(HC;(AL)) we need the following tech-
nical

Lemma 4.4.3 In R the equality

vy — uv" = E " !

1€]0,n]

(where w = [v,u] is the generator of the principal ideal I) holds for
all n € 7.

Proof. We prove the claim first for n > 0 by induction on n. For
n = 1 we have vu — uv = w; for n > 1 we obtain by the inductive
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assumption

n—1 1

w—uv" ) Fvun" Tt — w" =

v E " ! 4 (vu — )"t = g " e,

1€[0,n—1] 1€]0,n]

v"u —w" =v(v

Now we prove the claim for n = —m, m > 0 by induction on m. For
m = 1 one has

v —w Tt = v (—vu + w)o ! =

for m > 1 by the inductive assumption one has

v "My —uv " =

U—l(v—m+1 m—+1 -m

T Tl T =

U —uv

vt Z v ! 4+ (v — wo DT =

1€]0,—m+1]

E v et — vy = g v !, O
l€[0,—m+1] l€[0,—m]

We evaluate now Bj on the generators of H C1(Ar) computed in
subsection 4.4.2:

By (qu™ 0" du + (IdR + RdI)) =
b(gu™ " du) + (I + [1, R]) = u™~[v", u] + (I° + [, R]) =
um! Z v e + (1P + [1L,R]) =
lE[O,TLQ]
Z vyt ey 4 (17 + [, R]) =
lE[O,TLQ]
> w e w4 (PP + [ R]) = nou™ " w + (12 + [, R)),

ZE[O,HQ}
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Bi(qu~'du + §(IdR + RdI) = 0,
Bi(go~dv + 5(IdR + RdI) = 0.

Therefore, By(HCi(AL) = span{uw"v™w|ny,ny # —1}, whence
HHy(Ar)/By(HC,(AL) = C and its basis consists of the homology
class of ulv™lw + (I + [I, R)).

Compute now Ker EO. Let

0=DBy( > anumu™v™ + (I+[R,R]) =

nq ,TL2€Z

S™ G 0™) + B(RAI) =

n1,NoE€Z

Z Uy iy (N1 0™ 02 du 4 o™ 0™ ) + f(RdI).

n1,N2€Z

It follows that a,, », = 0 for (ny,ng) # (0,0) and that ag is arbitrary,

Y

hence Ker By = C and its basis consists of the homology class of
1+ (I + [R, R]).

Now the generators of HCy(Ay) are the homology classes of
Li(u v Yw+(I2+[1, R])) and of the pre-image of 1+ (I +[R, R]) un-
der §2. So we conclude that HCy(Ar) = C? and its basis in X?(R, I)
consists of the homology classes of v 1v~1w and 1.

4.4.6 Higher cyclic homology and periodic cyclic homology of A

To compute HC5(Ap), we consider the following segment of sequence
(2.10):

0= HHy(A;) 2 HCy(AL) 2 HC(AD) 2 HHy(AL)  (4.14)

From this follows that HC3(Az) = Ker B.
Compute Ker By. Let
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0= By( Z Uy iy BU™ 02 du + afu™ ' du + cgo~ o + §(RdI)) =
nl,ng#()
Z am,ngnZUnlUan + ([2 + [Iv R])?
nl,ng#()

it follows that a,, ,, = 0 for all n;,ny # 0 and that ¢ and ¢ can
be arbitrary. Therefore, Ker B; = C? and its basis consists of the
homology classes of ju~tdu and fv~!dv, from which we conclude that
HC3(Ap) = C? and that its basis consists of the homology classes of
futdu + §(I?dR + IdI) and fv~'dv + §(I?dR + IdI) (which are the
pre-images of the homology classes of ju=tdu and fv=tdv € HC}(Ar)
under S3).

Now the results of section 3.5 yield that
HH,(AL)=0

for all n > 2, that
HC,(Ar) = C?
for any n > 2 and that
HP,(Ap) = C?
for x =0, 1.
We remark here also that in the case of the rational (algebraic)

rotation algebra A (for § = % rational) one has the similar situation:
HCY(AY,) is infinitely-dimensional and HC3(AY, ) is two-dimensional;

m

the commputations are analogue.
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Chapter 5

Generators in the complex
(£,b+ B)

We computed for A = AO,ARq,Ap?pfl?q and ¢ = 0,1, 2 the basis of
HC;(A) in the tower X' (R, I). To compute the basis of those homol-
ogy groups in the tower 0QA, we follow the detailed description of
the homotopy equivalence X (R, I) ~ X(RA, I A) given in section 2.3
and of the homotopy equivalence X(RA, [A) ~ QA given in sec-
tion 2.2.

5.1 Generators of HCj(A,,) in the complex (2,0 + B)

In this case both extensions RA,, and R = R,, of A, , are free,
hence there exist the following homomorphisms:

f: R — RA,,
V1...0, — UV1&...3V,

where v; = p or ¢, and
g: RA) — R
pnlqml ® . ® pnkqu — pnlvml L pnkqu
We have f(I) C TA,,, g(IA,,) C I. It is true that gf = idp
and, therefore, g.f. = idyry. The map fg : (RAy0)n) —

((RA,,)n) is a lifting of the identity map A) — AY thus by theo-
rem 2.3.9 we have f.g. ~ idy(ras,ra9). Therefore, f. : X(R,I) —
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X(RA,,, IA,,) is a homotopy equivalence. It implies that the
homology class of p®q—q®p—1 = f.(w,,) forms the basis
of HCy(A,,) in X*(RA,,, IA,,). Now under the identification
X(RA,,, [A,,) «— X = (2,0 6) described in the section 2.2, the
element p®@ ¢ —q®p— 1 of X*(RA,,,[A,,) corresponds to the el-
ement dqdp — dpdq of X/F?(X), since

PR®q—q@p—1=-w(p,q)+ plpg) +w(g,p) — plgp) — 1 =
w(q,p) —@(p,q) — plpg —qp — 1) = &(q,p) — @(p, q),
since w(q, p) — w(p, q) corresponds to dgdp — dpdgq, and since the I A-

adic filtration corresponds to the Hodge filtration under the men-
tioned identification.

Thus the homology class of dqdp — dpdq forms the basis of
HC5%(A,,) in X/F*(X).

Let now x = dqgdp —dpdq. We represent x in the form x = Px + v,
y = Pz, where P is the spectral projection corresponding to the
eigenvalue 1 of the Karoubi operator. The homology class of y
in (X/F?X) as well as in QA)/F?(QA)) is zero because the com-
plexes P+ X/F?P+X and P*QA, ,/F*(P+QA,,) are contractible by
proposition 2.2.3. The homology class of c¢; Px forms the basis von
HC5(A)) in QA,,/F*(QA4,,), also by proposition 2.2.3. But if we
add to co Pz the element co7, we do not change its homology class. It
follows that the homology class of ¢ forms the basis of HC2(A4, )
in QA,,/F?(QA,,). The constant ¢y can be omitted, therefore, the
generator of HCy(A,,) = C ( as well as of HHy(A,,) = C ) in
(2A4,,, B +b) is given by the homology class of dqdp — dpdgq.

5.2 Generators of HC;(A)) in the complex (Q,b+ B)

Now we recover the generators of HC;(AY) (i = 0,1,2) in the usual
(-complex. The procedure here is more complicated than for A, ,,
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since in this case R = Ry is not free and, therefore, there is no homo-
morphism from R into RAJ. So we have to work with a homomor-
phism of towers of algebras (R,) — ((R,A})) (where R, = R/I""
and R,A = RA/(TA)"™1).
Define
©": R — RAJ/(IA))"

by setting it on the generators as follows:
" (u) = u+ (145",
n+1 n+1

" (v) = v+ (TAp)"",

n+1
o n+1 1 . n
) =30 (") U e e o (g
k=1
This really defines a homomorphism, since

Pt =3 (M) sy (A -

n+1
1
_Z<n+) ( QU )k+(IA2)n+1:
— (1 —u@u Y (149" = 04 (TAD)"H,

since (1 —u®u~1)? D) € (TAD)"+! and, similarly, ¢"(u™1)p"(u) =
()" (1) = () () = 1+ (1A,

Check that the system (") is compatible, i.e. that 7¢@" = "
where " : RAY/(TA))"™ — RAY/(IA))" is the canonical surjection.
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" (u) = " 1(u) is obvious.

n+1
1
(71'"90” . 90"_1)(u_1) _ 2 : (nz ><_1>k:—1u—1 ® (u ® u—l)@(k—l)_
k=1

()" @ (ueu )+

S (1) ()

k=1
oS- (] we w4 (-
=0
w1l —u®u )"+ (TA)" =0,

since (1 —u ® u1)®" € (IA))". Similarly for v, hence the system
(") is really compatible. ¢°(I) = 0 is obvious.

The system of homomorphisms (¢") defines a homomorphism of
towers ¢ : (R,) — (R,A)) by lemma 2.3.10, which lifts the identity
map Ry = Ag — Ag = RoAg.

The homomorphism of algebras

Y RA) — R

"™ @ . QuMv™ — ™M™ u™My™

induces also a homomorphism of towers ¢ : (R,A)) — (R,) and the
compositions 1 o ¢ and ¢ o 1 both lift the identity map A) — AJ.
We conclude by theorem 2.3.9 that for the induced morphisms of
towers of supercomplexes one has in the category Ho7 the equalities
©s 0y = idy(pag,ra9) and ¥, o v, = idy(g 1), hence the induced map
¢s 1 X(R,I) — X(RAY, T AY) is an isomorphism in Ho7

For any k < 2n + 1 consider the sequence of maps

XE(R,T) 25 XF(R,AY, 1,A%) =5 X*(RAY, 14Y), (5.1)
where the second one is the inverse of the canonical projection
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XM(RAY TAY) — XH(R,AY I,AY), which is an isomorphism by
lemma 2.3.7.

Their composition is exactly the k-th level of the isomorphism
¢.. Now we see that, in order to find the generators of HCj(A))
in X*(RAY, IAY), one needs only to find a suitable number n, to
write down sequence (5.1) for it and to compute what becomes of
the generators of HC}(AY) in X*(R, I) under this sequence of maps.

One has for k=n =10

XO(R,I) 25 XO(RyAY I,A) — XO(RAY, IAY)
1 — 1+[Ag — 1

I

whence the generator of HCy(AY) in XO(RA), I A)) is the homology
class of 1. Under the identification X(RA)) < X = (Q,3 @ 9)
described in section 2.2, we see that the homology class of 1 forms
the basis of HCy(A)) in X/F°(X). By proposition 2.2.3, since the
addition (or subtraction) of Ptz to (from) an arbitrary element x
and scaling do not change its homology class, the homology class of
1 forms the basis of HCy(A)) in (QAY), B + ).
One has for k=1, n =10

XNRT) 25 X(RAL LAY s X(RAUIAY)
futdu  — glul + TADS(u+ TA)) qu—tou

wldv o~ g(ot+ TAD)S(v+ TA)) — fv—1ov,

hence the basis of HC1(AY) in X'(RA), TAY) consists of the ho-
mology classes of ju~!'ou and fv—1dv. It follows that the basis of
HC:(AY) in X/F(X) is given by the homology classes of u~'du and
v~1dv. By proposition 2.2.3, since the addition (or subtraction) of
PLz to (from) an arbitrary element z does not change its homology

class and since the scaling constant does not change it either, the
homology classes of u™!'du and v~'dv form the basis of HC;(AY) in
(QAY, B +10).
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One has for k=2, n=1
X2AR,I) 25 X?( LAY LAY = X2(RAY, 1AY)
1 — + (1 A))? > 1 ’

pu(u”tvw) =
ut—u'l@ueu )2 !l—vluee ) @uw + (14))>2

(where w' = v ® v — Au ® v) and the homology class of
it is taken by the second map into the homology class of
Qut—u!l@ueu!)® 2u!—-v®uv®uv ) ®w, which is, there-
fore, the generator of HC5(AY) in X*(RAY, TAY). To find the image
of it in X/F?*(X), we need to rewrite it in the form with p and @.
First, in X?*(RA), [ A))

wW=v@u—I®v=plu)—ov,u) — Ap(uv) + \o(u,v) =
2o (u,v) — &(v,u) € TA],

Further, in the same complex

v T@uvlew =(puv!) -0 vl)@uw =
plu=to™h) @ (Aw(u, v) — w(v, u)),

since w(u~!,v7!) @ w’ lies in (IA9)%. Similarly,

T @ueulteuleouw =

) — o0 ) @ G o) — S o) @ v =
plulo™) @ (Ao (u,v) — @(v,u)),

also similarly,

Tl leow = plulvh)e (Ao(u,v) —w(v,u)),

and also similarly,

vlueulrlieueerlieuw =
plu=to= 1) @ (Ao(u,v) — w(v,u)).
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Therefore,

Qu't—utleueu ) 2u!l-vlueuv)uw =
ul@ueuw —2ulueu e w—
2u v lueu ! @uw+
ul@ueulerlierev!iouw =
plu=to= 1) @ (Ao(u,v) — w(v,u)).
It follows that the generators of HCy(A)) in X/F?*(X) are the ho-
mology classes of 1 and of Au—lv—!dudv — u—lv-1dvdu. By proposi-
tion 2.2.3, since the addition (or subtraction) of Ptz to (from) an
arbitrary element x does not change its homology class and since the

scaling constant can be omitted, the basis of HCy(AY) in (QAY), B+b)
is given by the classes of 1 and of Au~'v~'dudv — v~ 'v " dvdu.

5.3 Generators of HC;(A,,1,) in the complex (2,0 + B)

To recover the generators of HC;(A,,1,) (¢ = 0,1,2) in the Q-
complex, we proceed similarly as for the algebra AY.
Define
"R — RA, 1,/ (TA, 1)

by setting it on the generators as follows:

" (p) =p+ (ITA, 1",

n+1
ns o n—+1 1 _ _ n
P =3 (M) U e e + (),

©"(q) =q+ (]Ap,p‘l,q)n+1'
The same argument as for the algebra Aj) shows that each " de-
fined this way is really a homomorphism, that the system (") is
compatible with ¢(I) = 0, and that the induced map of the tow-
ers of supercomplexes ¢, : X(R,I) — X(RA,,14,1A,,1,) is an
isomorphism in Ho7 .
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The procedure used for the algebra Aj) works in the case
of A,,1, as well. To find the generator of HCy(A,,1,) in
X*(RA, -1 4, TA, -1 ,), one takes the least n such that k < 2n + 1,
considers the sequence of maps

XHRT) 25 XF(RpAy s g LAy 1)) — XF(RA, 1 g TA, 1)
(5.2)
for it, and computes the image of the generators of HCj (A, ,-1,) in
XF*(R, I) under this sequence of maps.
For kK =1, n = 0 the sequence of maps

0 ~
Xl(Ra I) — Xl(ROAp,p‘l,qv IOAp,p‘l,q) — Xl(RAp,p‘l,qv ]Ap,p‘l,q>

takes the element fp~ldp into bhp~—1op, whence the basis of the
first cyclic homology HCy (A, ,-1,) in XY (RA, -1, TA,,)1,) con-
sists of the homology class of gp~1dp. It follows that the basis of
HCy(A,,1,) in X/F'(X) is given by the homology class of p~ldp.
By proposition 2.2.3, since the addition (or subtraction) of Ptz to
(from) an arbitrary element x does not change its homology class,
the homology class of p~'dp forms the basis of HC)(4,,1,) in
(QAp’p—l’q’ B+ b)
For k = 2, n = 1 the sequence of maps

XHR,T) 25 X Ry Ayt gy T A, 1) — X2(RA, 1 0 TA, 1)

PP 4

takes the element w of X?(R,I) into the element p®q—q®p —1
of X*(RA, 14, IA,,1,), and it follows (exactly as for the Weyl al-
gebra) that the basis of HCy(A,,1,) in X/F?*(X) consists of the
homology class of dqdp — dpdq. By proposition 2.2.3, since the addi-
tion (or subtraction) of Pz to (from) an arbitrary element z does
not change its homology class, the homology class of dqdp — dpdq
forms the basis of HC5(A,,1,) in (A, 1,4, B +b).
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5.4 Generators of HC;(Ay) in the complex (2,b+ B)

The generators of HC;(Ar) are recovered analogue to how it is done
for the algebra A)). For each n € NU {0} the map

go” . RL — RAL/(IAL)nJrl
is defined by exactly the same formula as
©" : Ry — RA)/(IA9)"

in section 5.2 and the computations are very similar. At the
end one gets that the basis of HCy(Ar) in (Q2A4r,b + B) is
{u™v™|ny,ny € Z}, the basis of HC1(Ar) in (QAL,b + B) is
{u=tdu, v dv, v "2 dulny, ny # 0}, the basis of HCy(AL) in
(QAL, b + B) is {1,u'v'dudv — u v dvdu} and the basis of
HC3(ApL) in (QAL, b+ B) is {u'du,v"1dv}.
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Chapter 6

Short free resolutions and
connections

The classical way of computing Hochschild homology is based on the
fact that for any C-algebra A and for any A-bimodule M there is an
isomorphism

H,(A, M) = Tord" (M, A),

([27], proposition 1.1.13). So if one has a “nice” projective resolution
of the algebra A as of an A-bimodule, then, in order to compute the
Hochschild homology HH,(A), one tensors the resolution up with
A (over A°) and computes the homology of the obtained complex
([33], theorem V.8.1). In particular, if one has a finite projective
resolution of A (that means that all its terms in dimensions greater
than some n are zero), then one can conclude that H Hi(A) = 0 for
k> n.

6.1 Short free resolution of one-relator algebras

Dicks proved in his article [17] for associative one-relator algebras
(i.e. quotients of free associative algebras) that I/I? fits into a cer-
tain exact sequence of A-bimodules. We generalize his result to all
one-relator algebras and note that in the situation of the identity
theorem 3.1.4 we obtain a free resolution of A of the length 2.
Consider (A® A)™X), which is the direct sum of X copies of A ® A
(note that it is an R-bimodule), and the following R-derivation
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O:R— (A A)X): put 0r = [z] == 1®1 € (A® A), on the
generators of R; this defines a derivation by proposition 3.1.2. Re-
mark that @ vanishes on I? (since 9(iyiz) = 1,0(iz) + (i1 )iz, which
is zero in (A ® A)X)).

Theorem 6.1.1 Let A be a one-relator algebra (that is A = R/I,
R =KkX)=KZY,Y™Y, I = RwR) with an integral enveloping
algebra. Then the following sequence is a free resolution of A as of
an A-bimodule:

0—I/I*% (A AX L A AL A —0), (6.1)

where a(i+1%) = 0i, Bla] = 1T —T®1 and p is the multiplication
map p(a ®b) = ab. It follows that HH,(A) =0 for all n > 2 (since
a free resolution is in particular projective).

Proof. The fact that this sequence is exact is proved by Dicks in
[17] for associative one-relator algebras (i.e. in the case of R free).
We outline his proof, which works also in our case. First, « is well-
defined, since & vanishes on I%2. Ba = 0, since 80 : R — A® A is
the derivation sending generators x into 1 ® T — T ® 1 and, being
unique by proposition 3.1.2, it is equal to the derivation that takes
each element r from R into 1 ® 7 — 7 ® 1, which vanishes on I. The
fact that pufB = 0 is obvious.

To show that the sequence is exact, one constructs the left A-linear
contracting homotopy as follows: let {a;|i € J} be a basis of the
algebra A over k containing 1 and let {s;|i € J} be its pre-image in

R (i.e. 57 = a;), let for any ¢ € J, z € X the product Ta; = Z])\fjaj

je
(where Aj; are elements of k, only finite number of which are not
zero). Then we define the left A-linear maps

W:A— AR A,
A A— (A AWM,

and
(Ao AN - /12
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by the rule
P =11,
F(1®a;) = 0s;,
o ([r]a;) = (vs; — Z Nisi) + I,
jeJ
One checks then directly that puu’ = id, 86+ 1 = id, ad’+5'8 = id
and o’a = id, for details see [17], theorem 4.1. The A-bimodule

I/1? is free by the identity theorem 3.1.4, (A® A)X) and A® A are
obviously free. O

Observe that the bimodule of 1-forms of an arbitrary algebra R
is the module of universal derivation, i.e. T(R) = Q'F and the map
d: R — Q'R is the universal derivation ([27], 2.6.1), thus for a mixed
free algebra R = C{X) the R-bimodule Q'R is freely generated by
{dz|z € X} by proposition 3.1.2.

We observe now that another way to obtain the resolution (6.1)
is splicing together two exact sequences from [12]:

Proposition 6.1.2 ([12], proposition 2.5) One has an exact se-
quence of A-bimodules:

0-QALA0AL A—0
where j(apdar) = apa; ® 1 —ag @ ay and p is the multiplication map.
Proposition 6.1.3 ([12], corollary 2.11) If A = R/I, where I is an
ideal in R, then one has a short exact sequence of A-bimodules:
0= 1/12% Aer Q' Ror A Q1A - 0,

where the surjection 7 is induced by the canonical projection R — A

and the map d is induced by the restriction of the canonical derivation
d:R— Q'R to I.

Note that A ®z Q' R®p A is isomorphic to (A® A)™) and can be
identified with it, since ;R is free on the generators {dz|z € X},
and that the composition j o m becomes [ under this identification.
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For A, , one obtains this way the following resolution:

a 6
0— Ap®A, — (Ap,q@Ap,q)@(Ap,q@)Ap,q) - p,q@Am(ﬁ> Apg — 0),

where
fll,0)=1®p—p&1,
B0,1R1)=1®q¢—q®1,
a(l®el)=@e1-18q¢—(pe1-1Q)p)),

which turns out to be the classical Koszul-type resolution, being
rewritten like

0— AL S AL 2 AL(E 4,, —0),

where L is a free A, ,-bimodule (or A7 -module) with free generators
e; and ez, AL = @ A'L is the external algebra of L, [ is a Aj linear

map

2 L — AS, = A,, @ A

p,qQ’
€1 1®p_p®17

e —  1®qg—q®l1,
and the differential is a particular case of the usual Koszul differential
A(erlN. . . Nep) =S (=1)(e;)erA. . .AEA. . . Ae, (e.g. [1], section 9.1).

i=1
Similarly for the algebra A, ,-1,.
For Ag we become
0— AJ® A) S (A)® AD) @ (A) @ A) & AJ @ AY(L A - 0),
where
flel,0)=10u—u®l,
B0,101)=1v—v®1,
a(l®1)=wRl-A®v,-(Au®l-1u)),

which is exactly the “ad hoc” resolution of Connes’ ([9], lemma 48):

O—>M22M1E>Mo<ﬁ>z42—>0),
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where M; = Ag QN ® Ag, AN =AyD AL ® A, is the exterior tensor
algebra over a two-dimensional C-vector space V' with the basis eq, es
and where

nlee®l)=10u—u®l1,
HNlwel)=1®v—-—v®1,
Nl Ne) @) =wR1-ARv)®e;— (Ml —-—1Q0u)® e,

6.2 2-connection on AS

A projective resolution of length n of an algebra can be used to
construct an n-connection on that algebra, as it was done in [36] for
a tensor product of two free algebras. An n-connection on an algebra
A in turn allows one to write down explicitly a partial contracting
homotopy for the complex (QA, B+10); this was done by Khalkhali in
[23] for the cyclic cohomology (i.e. for the dual complex ((QQA)*, B+
b)), we do this now for the cyclic homology.

Definition 6.2.1 /23] Let n > 0. An n-connection on A is a linear
map

V, :Q"A — Q"L A

such that for all a € A and for all w € Q" A the following equalities
are fulfilled:

Vaaw = aV,w

and
Vo,wa =V,w - a+ wda.

One extends V,, as follows: for k£ > n one defines
Vit QFA — QF1A
by the rule
Vi(ada' ... da") = V,(ada’ ... da™)a" ... d".
Then one has for all £ > n + 1 the equality
bV + Vi_1b=(—1)"id (6.2)
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([23], proposition 4.2), and it follows that the n-th Hodge filtration
F(QA,b) = (bQ" T A T QFA, b) is contractible, by (6.2) together

k>n

with the fact that for bw € b1 A
bV, (bw) = b(id — bV, 11) (w) = bw.

Lemma 6.2.2 (perturbation lemma, [23]) Let the supercomplex (L,
b) be a deformation retract of a supercomplex (M, b). This means
that there exist two homomorphisms of complexes

L5MLL
and a homotopy h : M — M such that

ry = ZdL,
ir = idys + bh + hb,
hi = 0.

Let B be a perturbation of the differential b such that Bi = iB and
the operator

K:fﬁmk

is well defined. Then the complex (L,b+ B) is a deformation retract
of (M,b+ B). The corresponding homomorphisms

(L,b+ B) 5 (M,b+ B) & (L,b+ B)
and the homotopy H : (M,b+B) — (M, b+ B) are defined as follows:
R=rK, H=hK and I =1.
Applying lemma 6.2.2 to the case M = F”(QA,b), L = 0 and

h = V, we obtain a contracting homotopy H = V > (BV)* for
k=0

the supercomplex F"(QA,b+ B). It follows that if there is an n-

connection on A then the periodic cyclic homology of A is the ho-

mology of the supercomplex (QA, B 4 b)/F"(QA, B +b).
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Now we explain how an n-connection can be obtained from a pro-
jective resolution of an algebra, generalizing the construction intro-
duced by Puschnigg in [36] for a tensor product of two free algebras.
Then we apply this procedure to the algebra Ag and its Connes’
resolution.

Let A be an algebra with a unit. One has for A ([13], §3) the
standard free resolution

Co(A)... 2 ragAadaotagad 20040 AL A—0),
where
dwda @ d) = (—1)*wa® d —w ® ad),
wu(a @ b) = ab.

If

P.:...HO—>O—>Pn£>Pn,1g...iPO(iAHO)

is a (finite) projective resolution of A, then one can compare it with
the standard resolution, that means find mutually inverse homo-
topy equivalences (3 : Co(A) — P, and v : Py, — Co(A) ([33], theo-
rem II1.6.1). Set o = 3. Then « is homotopic to id¢,(4). Let h be
the corresponding homotopy, i.e. the sequence (h;);enuqoy of maps
hi: VAR A— Q1 A® A such that

&hl + hz’—l({?i—l =1d — Q. (63)
Then the map (id — d,h,) € End(C,(A)) is an idempotent, since
(id — 9nhn)? = id — 20, hs, + OphyOphy =
id — 20,hy, + 0,(id — Opy1hpi1) by = id — Oy,

It follows that (id — 0,h,)C,(A) is a projective A-bimodule. Re-
stricted to this A-bimodule, the map 0,,_; becomes injective, whence
it is an isomorphism between (id — d,h,,)C,,(A) and 9,,_1C,,(A). The
map
n: QA — 0,1(Q"A® A)
w — Gn_l(w ® 1)
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is an isomorphism of A-bimodules. The inverse isomorphism is given
by 0,-1(w ® a) — w - a. It follows that the map

p: QA — (id — 0h,)(QV"AR A)
w  +—  (id = 0hy)(w®1)

is an A-A-isomorphism. Considered as a map 2"A — Q"A® A, ¢
splits the multiplication map

m: MMARA — A

w®a — w-a,

since
me(w) =m(id — 0hp)(w® 1) = w — mo,hp(w @ 1)

and since for an arbitrary element wda ® a’ from Q"' A® A one has

(—Dm(@e®d — & ® ad') =

(—DP(@a-d =& - ad) = 0.

mo,(oda @ a')

Now we recall the following result of Cuntz an Quillen, relating the
sections of the multiplication map and connections:

Proposition 6.2.3 ( [12], proposition 8.1) For a right A-module E
associating to every map s : E — E® A that splits the multiplication
map u: E® A — A the Grassmanian connection V = u(1 ® d)s is

a one-to-one correspondence between sections of y and connections
V oon FE.

By this proposition we get the connection V = m(1 ® d)p on Q"A.
We remark here that the homotopy A can be constructed inductively
(see the proof of theorem II1.6.1 of [33]); that means that if one has
ho, . .., hy satisfying (6.3) then one can find hj,; and so on. If we
proceed this way, then it is unnecessary for our purposes to compute
h,, since ¢ =id — 9,h, = a,, + hy,,_10,_1 holds.

We consider now the free resolution of the algebra A) described
in the previous section (written in the Connes’ form):
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Moo —0— M3 My 25 My(Ls A9 — 0),
M; = Ag QN @AY, A=AyD A ® A, is the exterior tensor algebra
over V = C(ey, e2),
Hl®eael)=10u—u®l,

HNl®el)=1v—-—1v®1,

Nl Ne)®1) =1 -ARv)®e; — (AMu®l—-—1®u)® es.
The homotopy equivalences of the resolutions v : M, — Co(AY)
and 3 : Co(AY) — M, are constructed in the proof of lemma 51 of
9] (where they are denoted with h and k respectively). We rewrite
the formulas for v and ( in the following way (taking into account
that My = A) @ A) and QVA) = A) @ A)):
Yo = i 496 49,
NMlowe®l) =—-du®l1,
’)/1(1 ®€2 X 1) = —dU & 1,
12(1® (e1 Aeg) ® 1) = —dvdu @ 1 4+ Adudv @ 1,

the rest v; are zero;
Bo = td g9 49,

Bildu™v™)@1) == Y u'@e @um o™

ie[oanl]

E u”lv] ® €9 ® vn2*1*]7

jE[OJLQ]

Go(d(u™v™)d(u™v™) @ 1) =
. Z Z A" - (m1—1)(j+1) n1+21}‘7®(€1/\62)® mi—1—i n2+m2 1— _],

i€[0,m1] j€[0,n2)
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the rest (; are zero. The notation > is explained by (4.12). It
ié[nl,ng]

follows that

ap(d(u™v™) @ 1) =
Z uidu @ um T ™ Z uMldo @ v

iE[O,nl] jE[O,ng]

ag(d(u™v™)d(u™v"™) ® 1) =
Z Z )\leml—(ml—Z)(]—‘rl)unl—f—l,vjdvdu ® uml—l—ivng—i—mg—l—j_

iE[O,ml] jE[O,ng]

nomi—(my—1t)(g+1)+1, n1+i, .5 mi—1—i, no+mo—1—j
g g A= (M=) D)Ly mtigd gy dy @ o™ pheTme ,

1€[0,m1] 7€[0,n2]

and the rest are zero.

Let us now construct a homotopy between a and id¢,4y). Take
h() = O . QOAg®Ag — Q1A2®AO, then (90h0 = 0 = idA2®Ag _idAg®A2'
Define hy : Q'A) @ A) — Q?A) @ A) by

hi(d(u™v™) @ 1) = — Z du'du @ u™ "2 —

iG[O,nl]

Z d(u™ v )dv @ v,

jE[OJLQ]

Check that hoOy + O1hq = id — o.
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(hoOp + O1hy)(d(u"v™) ® 1) =
— Z du'du @ u™ 1" — Z d(u™v?)dv @ v 1) =
i€[0,n1] J€[0,n2]
Z (du™ @ u™ 1" —vldu @ u™ T " — du' @ uM T ™2) 4

i€[0,n]

Z (d(u™ "™ @u™ 1 —ymyidv @v™ T —d(u" ) @v™ ) =

J€[0,n]
— Z u'du @ u T ™ 4 du™ @ 0™ — dl @ uMo"™—

1€[0,n1]
Z u" v dv @ 0" Fd(u" ™) ®@ 1 — du™ @ " =
J€[0,ns]
— Z u'du @ u™ " — Z u vl dy @ 0"
i€[0,n4] Jj€[0,n2]

d(u"v™)® 1 = (id — aq) (d(u"v™) ® 1).

Now we evaluate the homomorphism ¢ : 9?4 — Q24 ® A, defined
by p(w) = (ag + h101)(w ® 1), on the basis elements.

h181 (d(un1vn2)d(um1vm2) ® 1) — _hl()\anld( ni+my n2+m2) )
(= am oA ™) © 1 - da™™) © u™) =

/\ngml E du’du ® un1+m1—1—zvn2+m2+
Z‘E[O7nl+m1]

A2 E d(un1+m11)j)d1} ® vn2+m271*] _
J€[0,n24+ms]

E v dulduy @ u™ T M2 —

z’e[O,ml]
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Z unlvngd(umlv])dv ® ,Um2_1_j_
j€[07m2]

E ' )\ngmlduzdu ® unl—i—ml—l—zvng—i—mg_
z’e[O,nl}
E )\(nz—l—J)mld(umUJ)dv Q uMynztme—1=j
je[oanQ]

and it follows that

@ (d(u"v™)d(u™v™)) =
Z Z \"2m - (m1—1)(j+1) nl—l—zvjd,vdu@uml 1-— zvn2+m2 1—j

ZG[O,ml] [0 TLQ]

E : "2 (mq—i)(j+1)+1 n1+zUjdudU®um1 1—14 n2+m2 1— ]+

i€[0,m1] j€[0,n2)

E : )\ngmlduzdu ® un1+m1—1—zvn2+m2+

Z'E[O,nl—&—mﬂ

E /\nzmld(un1+m1vj>dv ® pnetme—l=j_
7€[0,n2+my]
E w2 du’ du@u™ 1™ — E w2 d(u™ ! dv@y™ 1 —
i€[0,m;] J€[0,mo]

E ' )\ngmlduzdu ® un1+m1—1—zvn2+m2_

ie[O,nl}

Z )\(n2_1_j)m1d<unlvj)dv ® yMylatme=1=j,

jG[O,TLQ}

The desired connection V = m(1 ® d)(as + h10;) is then given ex-
plicitly by
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V(du™ v du™v™?) =

Z Z /\ngml—(m1—i)(j+1)un1+ivjdvdud<um1—l—ivng—i—mg—l—j)_

1€]0,m1] j€[0,n2]

i€[0,m1] 7€[0,n2]

Z A2 duidud(un1+m1—l—ivn2+m2)_|_

iE[O,n1+m1]

E : A2 d(unl—i—mlvj)dvdvn2+m2—1—3_
J€[0,n2+ms]
E u" " du’ dud (u™ ™) — E u" "2 d(u™ ) dody™2 I —
iE[O,mﬂ jE[O,mg]

Z >\n2m1duidud(un1+m1—1—ivn2+m2)_

iE[O,nl]

Z )\("2_1_j)m1d(u’“Uj)dvd(umlv”2+m2_1_j).

je[oanﬂ
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