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Abstract. In this paper, we prove a long exact sequence involving the algebraic, topological
and relative K-theory groups for a sheaf (X,O

X
) of Fréchet algebras or ultrametric Banach

algebras on a scheme X under certain conditions. This extends to sheaves the construction
due to A. Connes and M. Karoubi of the relative K-theory group Krel

∗
(A) and the associated

K-theory long exact sequence for a Fréchet algebra A. In doing so, we make use of the
generalized sheaf cohomology for simplicial sheaves developed by Brown and Gersten.

1. Introduction

Let A be a unital algebra and letGL(A) denote the direct limit of the general
linear groups {GLn(A)}n≥1 over A. Then, the Quillen K-theory groups of A
are defined to be the homotopy groups (see [15]):

(1) Kn(A) := πn(BGL(A)+) ∀ n ≥ 0,

where BGL(A) denotes the classifying space of GL(A) and BGL(A)+ is ob-
tained by applying Quillen’s plus construction (see [15]) to the space BGL(A).
This definition may be extended to a scheme (X,OX) as follows: we consider
the presheaf Z × BGL+ on X that associates to an open set U ⊆ X the sim-
plicial set Z × BGL(OX(U))+. Let Z×BGL+ denote the sheafification of
Z × BGL+. Then, by using hypercohomology (see Soulé [16, § 4.2]), we can
define the Quillen K-theory groups of the scheme X .

It is natural to ask if we can similarly extend the definition of K-theory
groups to sheaves of topological algebras on a scheme X . For instance, con-
sider a smooth, integral and separated scheme X of finite type over C such
that the complex analytic space Xan associated to X is a smooth manifold.
Let C∞X denote the sheaf that associates to any Zariski open set U ⊆ X the
ring of smooth complex valued continuous functions on Uan ⊆ Xan, where Uan

denotes the complex analytic subspace of Xan associated to U . Then C∞X is
a sheaf of Fréchet algebras on X . More generally, in this paper, we consider
sheaves of Fréchet algebras or ultrametric Banach algebras on a scheme X
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satisfying certain conditions described in Section 2. For sheaves of ultramet-
ric Banach algebras, our motivating example is that of formal schemes (see
Example (a) in Section 2).

Let A be a Fréchet algebra. Then, Connes and Karoubi ([7], [8]) have
defined a relative K-theory group Krel

∗ (A) that fits into a long exact sequence
with the algebraic and topological K-theory groups of A:
(2)

. . . −→ Kalg
i (A) −−−−→ Ktop

i (A) −−−−→ Krel
i−1(A) −−−−→ Kalg

i−1(A) −→ . . .

In this paper, our objective is to develop similar constructions for sheaves
(X,OX) of Fréchet algebras or ultrametric Banach algebras on a noetherian
scheme X of finite type over C (see Definition 2.2). Using the hypercohomol-
ogy of simplicial sheaves as defined by Brown and Gersten [4], we will define

groups Kalg
∗ (X), Ktop

∗ (X) and Krel
∗ (X) that we will respectively call the alge-

braic, topological and relative K-theory groups of X. Thereafter, we show that
the relative K-theory group Krel

∗ (X) fits into a long exact sequence along with
the algebraic and topological K-theory groups just as in (2).
(3)

. . . −→ Kalg
i (X) −−−−→ Ktop

i (X) −−−−→ Krel
i−1(X) −−−−→ Kalg

i−1(X) −→ . . .

2. Exact Sequence of K-theories for a Fréchet sheaf

Let X be a noetherian scheme of finite type over C. In this paper, we will
consider the K-theory of sheaves of Fréchet algebras or ultrametric Banach
algebras on X . We recall here the notion of an ultrametric Banach algebra as
defined in [14, 5.1].

Definition 2.1. Let A be a Z-algebra provided with a “quasi-norm”

p : A −→ R+

satisfying the following properties:

(1) For all x, y ∈ A, p(x+ y) ≤Max(p(x), p(y)) and p(xy) ≤ p(x)p(y).
(2) For any x ∈ A, p(x) = 0 if and only if x = 0.
(3) For any x ∈ A, p(−x) = p(x).

Then, if A is complete under the metric defined by d(x, y) := p(y− x), ∀ x,
y ∈ A, A is said to be an ultrametric Banach algebra.

Definition 2.2. Let X be a noetherian scheme of finite type over C and
let X denote a sheaf of rings on X . We will say that the pair (X,OX) is a
Fréchet sheaf (resp. an ultrametric Banach sheaf) if, for each open subset
U ⊆ X , the associated ring OX(U) is a Fréchet algebra (resp. an ultrametric
Banach algebra) and for any open sets V ⊆ U ⊆ X , the restriction map
OX(U) −→ OX(V ) is a continuous map of topological algebras.

Further, we will say that a Fréchet sheaf (resp. an ultrametric Banach sheaf)
X is irreducible if the underlying scheme X is irreducible and for any any
nonempty open sets V ⊆ U ⊆ X , the restriction map OX(U) −→ OX(V ) is an
injection.
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Our motivating examples for Definition 2.2 are as follows:

Examples. (a) Let X ′ be an integral noetherian scheme of finite type over
C and let X be a closed integral subscheme of X ′, corresponding to a sheaf
I of ideals in the structure sheaf OX′ of X ′. Further, suppose that, given
any affine open set U = Spec(AU ) contained in X ′ in which X is defined by
a prime ideal pU , all powers piU , i ≥ 1 of pU are primary ideals. We will
refer to such an integral subscheme X as a primary integral subscheme of X ′

(this would happen, for instance, if the prime ideal corresponding to X in any
affine open set were always generated by a regular sequence (see [11])). Then,
for any n ≥ 1, the sheaf OX′/In is a sheaf of rings supported on X . Then,
the scheme X , equipped with the sheaf OX of topological rings lim

←−
n≥1

OX′/In is

referred to as the formal completion of X ′ along X , known as a formal scheme
(see [10, II.9]). Using the Lemma 2.3, Lemma 2.4(1) and Lemma 2.5, we will
show that the formal scheme (X,OX) obtained in this manner is an irreducible
ultrametric Banach sheaf on X .

(b) Let X be a smooth, integral, separated scheme of finite type over C

such that the complex analytic space Xan associated to X (see, for instance,
[10, Appendix B]) is a smooth manifold. Then any Zariski open set U ⊆ X
can be associated to an open subset Uan ⊆ Xan (since the usual topology
is finer than the Zariski topology). Then, we let C∞X denote the sheaf of
Fréchet algebras on X that associates to the Zariski open subset U ⊆ X the
Fréchet algebra C∞(Uan) of smooth complex valued continuous functions on
Uan ⊆ Xan. Using Lemma 2.4(2) and Lemma 2.5 below, we will show that
C∞X is, in fact, an irreducible Fréchet sheaf on X .

If (X,OX) is an ultrametric Banach sheaf on X , for any open set U ⊆ X ,
we let NU denote the quasi-norm on OX(U). Then, a sequence {xn}n∈N,
xn ∈ OX(U) will be said to be Cauchy if for any ǫ > 0, ∃ M such that for any
n, m > M , we have NU (xm − xn) < ǫ. The sequence {xn}n∈N, xn ∈ OX(U)
will be said to converge to x ∈ OX(U) if for any ǫ > 0, ∃ M such that for any
n > M , we have NU (xm − x) < ǫ.

Lemma 2.3. Let (X,OX) denote the formal scheme obtained by completing
an integral noetherian scheme X ′ of finite type over C along a closed primary
integral subscheme X, as in example (a) above. Then, for each open subset U
of X, the ring OX(U) is an ultrametric Banach algebra, i.e., (X,OX) defines
an ultrametric Banach sheaf on X.

Proof. Let the closed subscheme X ⊆ X ′ be defined by a sheaf I of ideals in
the structure sheaf OX′ of X ′. First, suppose that U = Spec(AU/pU ) is an
affine open subset of X , such that Spec(AU ) is an affine open subset of X ′ in
which X is defined by the prime ideal pU . Let Aff(X) denote the collection
of all such affine open subsets U of X . Then, by definition, OX(U) is the

completion ÂU = lim
←−
n≥1

AU/p
n
U . Since X

′ is integral, AU is a noetherian integral
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domain and from the well known Krull intersection theorem (see, for instance,
[2, Thm. 10.17]), it follows that ∩∞n=1p

n
U = 0. We choose any 0 < λ < 1 and

define NU : AU −→ R≥0 by setting NU (x) = λn if x ∈ pnU and x /∈ pn+1
U

(for x 6= 0) and NU (0) = 0. Hence, the completed ring OX(U) = ÂU is an
ultrametric Banach algebra (see [14, 5.1]) with a quasi norm also denoted NU

that makes ÂU into a Hausdorff topological space.
For an arbitrary open set U ⊆ X , we let Aff(U) denote the collection of

affine open sets in Aff(X) contained in U . We define a quasi norm NU on
OX(U) by the maximum

(4) NU (x) = Max{NV (xV ) | V ∈ Aff(U)} ∀ x ∈ OX(U),

where xV ∈ OX(V ) denotes the restriction of x ∈ OX(U) to V ⊆ U . The maxi-

mum in (4) exists because all the values NV (xV ) can take lie in {λ0, λ1, λ2, ...}
and since 0 < λ < 1, every nonempty subset of {λ0, λ1, λ2, ...} has a maxi-
mum. In particular, when U = Spec(AU/pU ) ∈ Aff(X), x ∈ pnU ⊆ AU ⇒
xV ∈ pnV ⊆ AV for any x ∈ AU , V ∈ Aff(U) and hence NV (xV ) ≤ NU (x),
i.e., NU reduces to the previous definition when U ∈ Aff(X). Further, given
x, y ∈ OX(U), we have NV ((xy)V ) ≤ NV (xV )NV (yV ) for each V ∈ Aff(U)
and hence NU (xy) ≤ NU (x)NU (y). Also, if we choose V ∈ Aff(U) such that
NU (x+ y) = NV ((x+ y)V ), we have

NU (x+ y) = NV ((x + y)V ) ≤Max{NV (xV ), NV (yV )}(5)

≤Max{NU (x), NU (y)}.

From the maximum in (4), we also note that given any open sets U ′ ⊆ U ,
since Aff(U ′) ⊆ Aff(U), the restriction maps OX(U) −→ OX(U

′) must be
continuous.

For any open U ⊆ X , we can choose a finite cover {Vi}i∈I , Vi ∈ Aff(U) of U .
Then, for any given V ′ ∈ Aff(U) with V ′ = Spec(AV ′/pV ′), we can choose a
covering {V ′j }j∈J of V ′ with V ′j ∈ Aff(V ′) ⊆ Aff(U) such that V ′j ∈ ∪i∈I Aff(Vi)

for all j ∈ J . For a given â ∈ OX(U) restricting to âV ′ ∈ ÂV ′ , suppose that âV ′

maps to 0 in AV ′/pnV ′ but not in AV ′/pn+1
V ′ . Since the restriction of OX′/In+1

to V ′ is also a sheaf, there exists some V ′j such that âV ′
j
does not map to 0

in AV ′
j
/pn+1

V ′
j

. Thus, NV ′
j
(âV ′

j
) = NV ′(âV ′). Hence, if we choose Vi such that

V ′j ∈ Aff(Vi), NV ′(âV ′) = NV ′
j
(âV ′

j
) ≤ NVi

(âVi
). It follows that, given the

finite open cover {Vi}i∈I of U , we may set

(6) NU (x) = Max{NVi
(xVi

)} ∀ x ∈ OX(U).

It follows from (4) that given a Cauchy sequence {xn}n∈N, xn ∈ OX(U), n ∈
N, the restriction {xn,V }n∈N is a Cauchy sequence in OX(V ) for each V ∈

Aff(U). Since each OX(V ) = ÂV is an ultrametric Banach algebra, each of
the sequences {xn,V }n∈N converges to a unique xV ∈ OX(V ). Further, for
any V ′′ ⊆ V ⊆ U , V , V ′′ ∈ Aff(U), it is clear that xV ∈ OX(V ) restricts
to xV ′′ ∈ OX(V

′′). Then, since a formal scheme is a sheaf of rings (see [10,
II.9]), there exists a unique x ∈ OX(U) restricting to each xV ∈ OX(V ),
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V ∈ Aff(U). Then, using (6), since NU (xn − x) is the maximum of the finite
set {NVi

(xn,Vi
− xVi

)}, i ∈ I and each of the sequences {xn,Vi
}n∈N converges

to xVi
, it follows that {xn}n∈N converges to x. Hence, OX(U) satisfies all the

conditions for being an ultrametric Banach algebra (see [14, 5.1]). �

Lemma 2.4.

(1) Let R be a noetherian integral domain and suppose that p is a prime ideal
in R such that all powers pi, i > 0 are primary. Then, for any g ∈ R− p,
the natural map from R̂ = lim←− R/pn to R̂g = lim←− Rg/p

n
g is an injection.

(2) Let X be a smooth, integral, separated scheme of finite type over C such
that the associated analytic space Xan is a smooth manifold. Let C∞X
denote the Fréchet sheaf associated to X as in example (b) above. Then,
there exists a basis B for the Zariski topology on X such that given any open
sets V ⊆ U ⊆ X with U , V ∈ B, the restriction map C∞X (U) −→ C∞X (V )
is an injection.

Proof. (1) The elements of R̂ are, by definition, sequences of the form (r1, r2, ...)
with ri ∈ R, ∀ i ∈ N, where, for positive integers i ≥ j, ri ≡ rj (mod pj).

Suppose that the sequence (r1, r2, ...) maps to the zero sequence in R̂g. Then,
for each ri, we must have ri ∈ pig. Since R is an integral domain, this means

that we have an xi ∈ pi and a power gki of g such that

gkiri = xi ∈ pi for each i.

By assumption, pi is a primary ideal and thus ri /∈ pi would imply that some
power of gki lies in pi. This is impossible since g /∈ p. Hence, each ri ∈ pi and
the map is injective.

(2) In the notation of example (b) above, we consider the smooth integral,
separated scheme X of finite type over C. Then, we can choose an affine
open cover of the form Ui = Spec(C[x1, ..., xn]/Ji), i ∈ I of X . Hence, there
is a basis Bi of Ui in Zariski topology, consisting of open sets of the form
Ui,f = Spec((C[x1, ..., xn]/Ji)f ) for any f ∈ C[x1, ..., xn], f /∈ Ji. Then, each
f ∈ C[x1, ..., xn], f /∈ Ji, defines a holomorphic function on Uan

i and hence
the set Uan

i,f ⊆ Uan
i where f does not vanish on Uan

i is a dense open subset of

Uan
i (see, for instance, [9, IV.1.6]). Then, since any function h ∈ C∞X (Ui,g) =

C∞(Uan
i,g ) is continuous on Uan

i,g , for any Ui,g ∈ Bi such that Ui,f ⊆ Ui,g (and
hence Uan

i,f ⊆ Uan
i,g ⊆ Uan

i ), we have an injection C∞X (Ui,g) = C∞(Uan
i,g ) →֒

C∞(Uan
i,f ) = C∞X (Ui,f ).

We note that B = ∪
i∈I
Bi is a basis for X . Further, given any W ′ ⊆ W ⊆ X

with W ∈ Bi, W
′ ∈ Bj, there exists some W ′′ ∈ Bi such that W ′′ ⊆W ′. Then,

the composition C∞X (W ) −→ C∞X (W ′) −→ C∞X (W ′′) is an injection and hence
C∞X (W ) −→ C∞X (W ′) is an injection. �

Lemma 2.5. Let (X,OX) be a sheaf of topological algebras on an irreducible
noetherian scheme of finite type over C. Suppose that X has a basis B such
that for any open sets W , W ′ ∈ B with W ′ ⊆W , the induced map OX(W ) −→
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OX(W
′) is an injection. Then, given any two nonempty open sets U and V in

X with V ⊆ U , the natural map OX(U) −→ OX(V ) is an injection.

Proof. Suppose that V ⊆ U are open sets in X such that the restriction map
OX(U) −→ OX(V ) is not an injection. Then, we can choose x ∈ OX(U) such
that x 6= 0 and x maps to 0 in OX(V ). First, we suppose that U ∈ B. Then,
if V ′ ∈ B is an open set contained in V , x restricts to 0 in V ′ ⊆ V . By
assumption, we know that we have an injection OX(U) →֒ OX(V

′) and hence
0 6= x ∈ OX(U) cannot restrict to 0 in OX(V

′), which is a contradiction. Hence,
we have an injection OX(U) →֒ OX(V ) whenever U ∈ B.

In general, let U be any open set and choose an open cover {U i ∈ B}i∈I of
U . Again, let x ∈ OX(U) be such that x 6= 0 and x maps to 0 in OX(V ). Let xi

be the image of x in each OX(U
i). Since x 6= 0, we can choose i0 ∈ I such that

xi0 6= 0. SinceX is irreducible, we must have U i0∩V 6= φ. Then, since U i0 ∈ B,
it follows from above that we have an injection OX(U

i0) →֒ OX(U
i0∩V ). Hence

xi0 (and hence x) restricts to some y 6= 0 in U i0 ∩ V . But U i0 ∩ V ⊆ V and
hence, by assumption, x restricts to 0 in U i0 ∩ V , which is a contradiction. It
follows that we have injections OX(U) →֒ OX(V ) whenever V ⊆ U . �

From this point onwards, unless otherwise mentioned, we will always let
(X, OX) denote an irreducible Fréchet sheaf or an irreducible ultrametric Ba-
nach sheaf on an irreducible noetherian scheme X of finite type over C in the
sense of Definition 2.2.

Suppose that for each n ≥ 0, C∞(∆n) denotes the ring of C∞-complex
functions on the simplex ∆n. Doing this for each n ≥ 0 allows us to construct
a simplicial ring C∞(∆∗). If (X,OX) denotes an irreducible Fréchet sheaf, for
any open set U in X , we now have an injection of simplicial rings

(7) OX(U) →֒ C∞(∆∗)⊗OX(U) →֒ C∞(∆∗)⊗̂OX(U),

where the first inclusion is obtained by treating OX(U) trivially as a simplicial

ring. For the sake of brevity, we shall refer to the ring OX(U)⊗̂C∞(∆∗) simply
as OX(U)∗.

On the other hand, if (X,OX) is an irreducible ultrametric Banach sheaf,
for each open set U ⊆ X and n ≥ 0, we consider (see [14, 5.2]) the algebra
OX(U)〈x0, ..., xn〉 of convergent series in n + 1 variables with coefficients in

OX(U), i.e., the algebra of formal series
∑

I aIx
I (I being a multi-index) with

each aI ∈ OX(U) and aI tending to 0 in OX(U) as |I| goes to infinity. The
quotient of OX(U)〈x0, ..., xn〉 by the principal ideal generated by (x0+...+xn−
1) is denoted OX(U)n. This associates to each open set U ⊆ X a simplicial
ring which we denote by OX(U)∗, along with an obvious injection OX(U) →֒
OX(U)∗, where OX(U) is treated trivially as a simplicial ring.

Lemma 2.6. Let (X,OX) be an irreducible Fréchet sheaf, or an irreducible
ultrametric Banach sheaf on an irreducible noetherian scheme X of finite type
over C. Then, for any nonempty open sets V ⊆ U ⊆ X, the induced morphism
OX(U)∗ −→ OX(V )∗ is an injection.
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Proof. If (X,OX) is an irreducible Fréchet sheaf, for any open sets V ⊆ U ⊆
X , the restriction map OX(U) −→ OX(V ) induces a morphism OX(U)∗ =

C∞(∆∗)⊗̂OX(U) −→ C∞(∆∗)⊗̂OX(V ) = OX(V )∗. Following [8, 3.1], the

ring OX(U)∗ = C∞(∆∗)⊗̂OX(U) may alternatively be described as follows: for
any n ≥ 0, OX(U)n is the algebra of C∞-functions from ∆n with values in the
Fréchet algebra OX(U). Since (X,OX) is irreducible, given nonempty open sets
V ⊆ U , the injection OX(U) →֒ OX(V ) induces injections OX(U)n →֒ OX(V )n
for each n ≥ 0.

On the other hand, if (X,OX) is an irreducible ultrametric Banach sheaf, for
any open set U ⊆ X and n ≥ 0, following [14, 5.2], we can identify OX(U)n
with the ring OX(U)〈t1, ..., tn〉 of convergent series in n-variables. Then, for
any open sets V ⊆ U , the injection OX(U) →֒ OX(V ) induces injections
OX(U)〈t1, ..., tn〉 →֒ OX(V )〈t1, ..., tn〉. �

From Lemma 2.6, it follows that, for any (X,OX) (an irreducible Fréchet
sheaf or an irreducible ultrametric Banach sheaf) and open sets V ⊆ U ⊆ X ,
we have injections OX(U)∗ →֒ OX(V )∗. Since X is irreducible, it follows that
the nonempty open sets in X form a filtered inductive system (with open sets
U ≤ U ′ if U ′ ⊆ U) , which we denote by IX . We let OX denote the simplicial
ring which is the inductive limit OX := colim

U∈IX
OX(U)∗. Further, for any point

p ∈ X , we let IX,p denote the filtered inductive system of open sets Up ⊆ X
such that p ∈ Up. Then, we set

(8) OX,p := colim
Up∈IX,p

OX(Up) OX,p∗ := colim
Up∈IX,p

OX(Up)∗.

Remark 2.7. Since X is irreducible, the system IX of nonempty open sets in
X is a filtered inductive system. By definition, we have OX = colim

U∈IX
OX(U)∗,

and hence, for any n ≥ 0, we have OX,n = colim
U∈IX

OX(U)n. Further, since IX

is filtered, given U ∈ IX , the subsystem IX,≥U of IX consisting of all open
sets V in X such that V ⊆ U is a filtered inductive set cofinal in IX . Hence,
OX,n = colim

V ∈IX,≥U

OX(V )n. From Lemma 2.6 it follows that, for any V ∈ IX,≥U ,

we have an injection OX(U)n →֒ OX(V )n of rings and hence of abelian groups.
Further, since the colimit is an exact functor on filtered inductive systems of
abelian groups (see [18, Thm. 2.6.15]), the injections OX(U)n →֒ OX(V )n for
each V ∈ IX,≥U induce an injection OX(U)n →֒ OX,n.

From Lemma 2.6, we know that given open sets V ⊆ U with V 6= φ, we
have injections OX(U) →֒ OX(V ) and OX(U)∗ →֒ OX(V )∗. Then, it follows
from Remark 2.7 that, for each open set U in X , we have injections:

(9) OX(U) →֒ OX(U)∗ →֒ OX

into the inductive limit OX, where OX(U) is treated trivially as a simplicial
ring. Using this, we get injections of simplicial groups:

(10) GL(OX(U)) →֒ GL(OX(U)∗) →֒ GL(OX),

Münster Journal of Mathematics Vol. 6 (2013), 167–179
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where, once again, GL(OX(U)) is treated trivially as a simplicial group. Fur-
ther, using (9), for any given point p ∈ X , we get injections OX(Up) →֒
OX(Up)∗ →֒ OX of simplicial rings for any open set Up containing p. Again, as
in Remark 2.7, using the fact that the colimit is an exact functor on filtered
inductive systems of abelian groups, it follows that we have injections

(11) OX,p := colim
Up∈IX,p

OX(Up) →֒ OX,p∗ := colim
Up∈IX,p

OX(Up)∗ →֒ OX

of filtered colimits.
We will now introduce the classifying spaces BGL(OX(U)) and BGL(OX

(U)∗) of the simplicial groups GL(OX(U)) and GL(OX(U)∗) in (10) that will
be used to define the K-theory groups of (X,OX). Therefore, we mention here
some standard notation for simplicial groups. An ordinary group G may be
treated as a category whose objects are the elements ofG and whose morphisms
are as follows: for g, g′ ∈ G, the set of morphisms Mor(g, g′) from g to g′ is
defined as

(12) Mor(g, g′) := {h ∈ G | hg = g′}.

The simplicial nerve of this category is referred to as EG. The simplicial set
EG is contractible and we consider the classifying space BG := EG/G. If G
injects into a group G′, it follows that G has a free action on the contractible
space EG′. Then, it is well known (see, for instance, [6, § 1]) that, up to
homotopy type (of the geometric realization), we might as well set BG :=
EG′/G. Further, the injection of groups G →֒ G′ leads to a Kan fibration of
simplicial sets (see, for instance, [6, § 1])

(13) BG := EG′/G −→ BG := EG′/G′.

We recall that a bisimplicial setX = {Xn,k}n,k≥0 is a simplicial object in the
category of simplicial sets, i.e. a collection of simplicial sets Xn = {Xn,k}k≥0
connected by face maps and degeneracies which are themselves morphisms of
simplicial sets. Given a bisimplicial set X = {Xn,k}n,k≥0, it is well known that
its diagonal d(X) := {Xn,n}n≥0 is a simplicial set and by abuse of notation,
for any bisimplicial set X = {Xn,k}n,k≥0, we shall often refer to its diagonal as
the “simplicial set X”. For a simplicial group G = {Gn}n≥0, EG is actually a
bisimplicial set with (EG)n = EGn. If we have an injection G = {Gn}n≥0 →֒
G′ = {G′n}n≥0 of simplicial groups, we can define BG := EG′/G (see, for
instance, [1, § 5]). Then, we have a Kan fibration (see, for instance, [6, § 1])

(14) BG −→ BG′

of simplicial sets. Continuing from (10), we now consider the bisimplicial set
EGL(OX) associated to the simplicial group GL(OX). For each open set U in
X , we define:

BGL(OX(U)) := EGL(OX)/GL(OX(U))(15)

BGL(OX(U)∗) := EGL(OX)/GL(OX(U)∗)
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Let us denote by BGL the presheaf on X that associates to each open set U
the simplicial set BGL(OX(U)) and by BGLtop the presheaf on X that asso-
ciates to each open set U the simplicial set BGL(OX(U)∗). The presheaf that
associates BGL(OX(U))+ to the open set U will be denoted BGL+, where
BGL(OX(U))+ is obtained by applying Quillen’s plus construction (see [15])

to BGL(OX(U)). We will use BGL, BGL+ and BGLtop to denote the sheafi-
fication of the presheaves BGL, BGL+ and BGLtop respectively.

We now recall that a morphism p : E −→ B of sheaves of simplicial sets on
X is said to be a local fibration if, for each point x ∈ X , the induced morphism
px : Ex −→ Bx of stalks is a Kan fibration of simplicial sets. The morphism
p is said to be a global fibration, if for any open sets V ⊆ U ⊆ X , we have a
Kan fibration

(16) E(U) −→ B(U)×B(V ) E(V )

of simplicial sets. If E is a sheaf of simplicial sets on X such that the morphism
pE : E −→ ∗ is a global fibration, E is said to be flasque. It is well known that
given any sheaf E of simplicial sets on X , there exists a flasque sheaf R(E)
and a weak equivalence

(17) iR : E −→ R(E)

of sheaves of simplicial sets. The association E 7→ R(E) can be shown to be
functorial and R is referred to as the flasque resolution functor. Then, the
generalized cohomology of Brown and Gersten [4] is defined to be

(18) Hn(X,K) := π−n(Γ(X,R(K))).

We mention here that simplicial sheaves carry the structure of a model category
(see Jardine [13]). Hence, in the language of model categories, the sheaf R(E)
can be described as the “fibrant replacement” of E and the morphism iR :
E −→ R(E) is a “trivial cofibration” (see Hovey [12, § 1.1] for definitions).

Proposition 2.8. Let (X,OX) be an irreducible Fréchet sheaf or an irreducible
ultrametric Banach sheaf on an irreducible noetherian scheme of finite type
over C. Let U be an open subset of X and consider the simplicial sets

BGL(OX(U)) := EGL(OX)/GL(OX(U))

and BGL(OX(U)∗) := EGL(OX)/GL(OX(U)∗).

Then, there exists a fibration

(19) BGL(OX(U))+ −→ BGL(OX(U)∗),

where BGL(OX(U))+ is obtained from BGL(OX(U)) by applying Quillen’s plus
construction.

Proof. For each open set U in X , it follows from the injection GL(OX(U)) →֒
GL(OX(U)∗) that we have a Kan fibration

(20) BGL(OX(U)) −→ BGL(OX(U)∗).
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If (X,OX) is an irreducible Fréchet sheaf, for each open set U ⊆ X , the ring
OX(U) is a Fréchet algebra. Then, from the work of Connes and Karoubi
[8, 3.1], we know that applying the plus construction, we have an induced
fibration:

(21) BGL(OX(U))+ −→ BGL(OX(U)∗)
+ = BGL(OX(U)∗).

On the other hand, if (X,OX) is an irreducible ultrametric Banach sheaf,
for each open set U ⊆ X , the ring OX(U) is an ultrametric Banach alge-
bra. Then, by the construction of the simplicial ring OX(U)∗ and [14, 5.3],

we note that π1(BGL(OX(U)∗)) is equal to the abelian group Ktop
1 (OX(U)) =

π1(BGL(OX(U)∗)), whereK
top
1 refers to the topologicalK-theory group. Since

the group π1(BGL(OX(U)∗)) is abelian for each open set U , its maximal per-
fect subgroup Pπ1(BGL(OX(U)∗)) is trivial. Hence, it follows (see Berrick
[3]) that applying the Quillen plus construction to both BGL(OX(U)) and
BGL(OX(U)∗) preserves the fibration in (20) Further, the fact that the max-
imal perfect subgroup Pπ1(BGL(OX(U)∗)) is trivial for each open set U also
implies that BGL(OX(U)∗)

+ = BGL(OX(U)∗). Hence, applying the plus con-
struction to both BGL(OX(U)) and BGL(OX(U)∗) in (20) yields a fibration:

�(22) BGL(OX(U))+ −→ BGL(OX(U)∗)
+ = BGL(OX(U)∗).

Our next objective is to prove that the fibrations in Proposition 2.8 induce
a local fibration BGL+ −→ BGLtop of sheaves. In order to do that, we will
need the following Lemma, the proof of which is indicated in [12, § 7.4] (or see
[17, Prop. 2.2]).

Lemma 2.9. Let {fi : Ei −→ Bi}i∈I be a family of fibrations of simplicial
sets indexed over a filtered inductive system I. Then, setting E = colimi∈I Ei

and B = colimi∈I Bi, the induced morphism f : E −→ B of filtered colimits is
also a fibration.

Proof. We know (see [12, 3.2.1]) that in the category SSet of simplicial sets, a
morphism is a fibration if and only if it satisfies the right lifting property with
respect to all canonical inclusions Λr[n] →֒ ∆[n] for n > 0 and 0 ≤ r ≤ n (Λr[n]
being the r-horn of the n-simplex ∆[n]). Further, we note that ∆[n] and Λr[n]
are finite simplicial sets and hence they have the following important property:
for every filtered inductive system {Dj}j∈J in SSet the natural maps

colimj∈J SSet(∆[n], Dj) −→ SSet(∆[n], colimj∈J Dj)(23)

colimj∈J SSet(Λr[n], Dj) −→ SSet(Λr[n], colimj∈J Dj)

are isomorphisms.
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Therefore, we consider a canonical inclusion Λr[n] →֒ ∆[n] and a commuta-
tive diagram

(24)

Λr[n]
g

−−−−→ E = colimi∈I Ei

i





y

f





y

∆[n]
h

−−−−→ B = colimi∈I Bi.

Using the property in (23) and the fact that the indexing set I is filtered, we
can choose some i0 ∈ I such that g : Λr[n] −→ E (resp. h : ∆[n] −→ B) factors
through g′ : Λr[n] −→ Ei0 (resp. h′ : ∆[n] −→ Bi0). Since fi0 : Ei0 −→ Bi0 is
a fibration, there exists a lifting morphism q : ∆[n] −→ Ei0 such that fi0q = h′

and g′ = qi. It follows that there exists a lifting ∆[n] −→ E in the commutative
square (24) and hence f : E −→ B is a fibration. �

Proposition 2.10. The morphism of sheaves

(25) BGL+ −→ BGLtop

is a local fibration.

Proof. We have to check that the induced morphism on stalks at each point of
X is a Kan fibration. Choose a point p in X and let IX,p denote the filtered
inductive system of open sets of X containing p. From Proposition 2.8, we
know that for each open set Up ∈ IX,p, we have a fibration

(26) BGL(OX(Up))
+ −→ BGL(OX(Up)∗)

+ = BGL(OX(Up)∗).

Since the filtered colimit of fibrations is a fibration (using Lemma 2.9 above)
we have a fibration

(27) colim
Up∈IX,p

BGL(OX(Up))
+ −→ colim

Up∈IX,p

BGL(OX(Up)∗)

for each point p ∈ X . Since BGL+ and BGLtop are the sheafifications of
BGL+ and BGLtop respectively (and therefore have the same stalks as BGL+

and BGLtop respectively), it is clear from (27) that there is a local fibration
BGL+ −→ BGLtop of sheaves. �

Definition 2.11. Let (X,OX) be an irreducible Fréchet sheaf or an irreducible
ultrametric Banach sheaf on an irreducible noetherian scheme X of finite type
over C. Let Z denote the constant sheaf on X given by Z. Then, the algebraic
K-theory of X is defined to be

(28) Kalg
n (X) := H−n(X,Z×BGL+).

Consider the sheafification GLrel+ of the presheaf which associates to an open
set U in X the homotopy fiber

(29) U 7→ [Z×BGL(OX(U)+),Z×BGL(OX(U)∗)]
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of the fibration Z × BGL(OX(U))+ −→ Z × BGL(OX(U)∗). We define the
topological and relative K theories of X to be

(30) Ktop
n (X) := H−n(X,Z×BGLtop), Krel

n (X) := H−n(X,GLrel+).

Proposition 2.12. Let (X,OX) be an irreducible Fréchet sheaf or an irre-
ducible ultrametric Banach sheaf on an irreducible noetherian scheme X of
finite type over C. Then there is a long exact sequence of K-theory groups

(31) . . . −→ Krel
n (X) −→ Kalg

n (X) −→ Ktop
n (X) −→ Krel

n−1(X) −→ . . .

Proof. Using the result of Proposition 2.10, we have a local fibration of sheaves:

(32) BGL+ −→ BGLtop

with fiber GLrel+. Therefore, we have a local fibration of sheaves:

(33) Z×BGL+ −→ Z×BGLtop

with fiber GLrel+. Using [5, Thm. 7], the local fibration (33) gives rise to a
long exact sequence

(34) . . . −→ Hm(X,GLrel+) −→ Hm(X,Z×BGL+) −→

Hm(X,Z×BGLtop) −→ Hm+1(X,GLrel+) −→ . . .

By Definition 2.11, Kalg
m (X) = H−m(X,Z ×BGL+), Ktop

m (X) = H−m(X,Z ×

BGLtop) and Krel
m (X) = H−m(X,GLrel+) and hence the required long exact

sequence (31) is a restatement of (34). �
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[14] M. Karoubi, Sur la K-théorie multiplicative, Cyclic cohomology and noncommutative

geometry (Waterloo, ON, 1995), 59–77, Fields Inst. Commun., 17, Amer. Math. Soc.,
Providence, RI, 1997. MR1478702 (98j:19003)

[15] D. G. Quillen, Higher algebraic K-theory. I. Algebraic K-theory, I: Higher K-theories,
(Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 85–147. Lecture Notes
in Math. 341, Springer, Berlin 1973. MR0338129 (49 #2895)
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