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Abstract. We study the problem of convergence to the boundary in the setting of random
walks on discrete quantum groups. Convergence to the boundary is established for random

walks on ŜUq(2). Furthermore, we will define the Martin boundary for random walks on
C∗-tensor categories and give a formulation for convergence to the boundary for such random
walks. These categorical definitions are shown to be compatible with the definitions in the
quantum group case. This implies that convergence to the boundary for random walks on
quantum groups is stable under monoidal equivalence.

1. Introduction

When studying random walks several natural questions arise. Among these
are “what is the asymptotic behavior of the random walk as the time tends
to infinity?” and “can we describe all invariant functions on the space?” To
be precise, given a discrete Markov chain (X,P ), consider the space of all in-
finite paths Ω := XN with associated coordinate projections Xn : Ω→ X , can
we describe the behavior of Xn as n → ∞? And can we find all functions
h : X → C such that Ph = h? It turns out that the answers to these two ques-
tions are related. Martin [19] defined a compactification M̃(X,P ) of X with
respect to P (nowadays called the Martin compactification) and a boundary

M(X,P ) := M̃(X,P ) \ X . He proved that every positive harmonic function
can be represented by an integral over this boundary, hereby partially answer-
ing the second question. This result is the probabilistic analog of the theorem
that any analytic function on the disc can be represented by an integral over
the circle. Some years later Doob [13] and Hunt [14] independently showed ex-
istence of a measurable function X∞ : Ω→M(X,P ) such that the coordinate
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maps Xn converge to X∞. Note that this function X∞ takes values in the
Martin boundary, explaining the terminology “convergence to the boundary”.
Moreover, they strengthened Martin’s result and proved by means of this con-
vergence result that positive harmonic functions can uniquely be represented
on a smaller subset of the Martin boundary, the so-called minimal boundary.
Let ν1 be the measure on the Martin boundary which represents the constant
function 1. It can be shown that if h is a bounded harmonic function, then
the corresponding representing measure νh is absolutely continuous with re-
spect to ν1. The Martin boundary together with this measure ν1 is called the
Poisson boundary. It describes all positive bounded harmonic functions.

In the early nineties Biane [2, 3, 4, 5] started the study of non-commutative
random walks on duals of compact groups. His idea was to work on the group
von Neumann algebra L(G) and act with operators of the form Pϕ := (ϕ⊗ι)∆,
where ∆ is the comultiplication given by ∆(λg) = λg ⊗ λg. These operators
Pϕ form the analog of Markov operators used in Markov chains on discrete
spaces. Izumi [15] continued this study and defined random walks on discrete
quantum groups. His main motivation was to study the (non-)minimality of
actions of compact quantum groups on von Neumann algebras. He considered
actions on infinite tensor products and proved that the relative commutant of
the action can be described as the space of harmonic elements of a Markov
operator P . The space of P -harmonic elements is called the Poisson boundary
and forms the non-commutative analog of the Poisson boundary for classical
random walks. Neshveyev and Tuset [22] built further on this story and defined
the Martin boundary for noncommutative random walks on discrete quantum
groups. In that paper they proved the important result that any positive
harmonic element can be represented by a linear functional on the boundary.
But the problem of convergence to the boundary remained open. In another
overview paper [21] they gave a conjecture of what convergence to the boundary
should correspond to in the quantum world.

The problem with proving boundary convergence in the noncommutative
setting is that the “commutative proof” is very hard to translate. Classically
stopping times and Martingale convergence theorems are used to obtain almost
everywhere convergence. However, it is not clear how to formulate such stop-
ping times, up- and downcrossings in a noncommutative way. In this paper
we prove that the conjecture of convergence to the boundary as proposed in
[21] holds for SUq(2). Our approach is very computational, but it shows that
there is exponential fast convergence, which is a lot faster than what occurs
classically.

There are not many examples of quantum groups for which the Martin
boundary has been computed. The difficulty is that it is very hard to com-
pute how the Martin kernel acts on matrix units of the discrete dual Ĝ. One
can say that SUq(2) is the main example for which the Martin boundary has
been identified [22]. Other cases are based on this computation of SUq(2). For
example, the free orthogonal quantum groups [29, 30] which are monoidally
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equivalent to SUq(2). A theorem by De Rijdt and Vander Vennet [12] gener-
alizes this and gives a concrete method to compute the Poisson and Martin
boundaries for a quantum group out of the Poisson and Martin boundaries of
a monoidally equivalent quantum group. Later Neshveyev and Yamashita [24]
proved an extended Tannaka–Krein duality between certain algebras with G-Ĝ
actions and C∗-tensor categories related to Rep(G). With this correspondence
they were able to define a categorical version of the Poisson boundary. The
results of both papers indicate that a similar result should hold for the Martin
boundary too. In this paper we will show that this is indeed the case. We
give a definition of a categorical Martin boundary and show that under the
correspondence of [24] the Martin boundary of a random walk on a discrete
quantum group can be reconstructed from the categorical Martin boundary of
the random walk on the representation category. A natural question is then
whether also convergence to the boundary can be presented in a categorical
way. Fortunately the answer to this question appears to be positive, yielding
a broader range of examples for which convergence to the boundary holds.

The paper is structured in the following way. We start with the prelimi-
naries in which we build up the theory about compact and discrete quantum
groups, C∗-tensor categories and noncommutative random walks. In Section 3
we establish convergence to the boundary for random walks on ŜUq(2). In Sec-
tion 4 we will briefly outline how the methods of [12] can be extended to show
that convergence to the boundary is invariant under monoidal equivalence of
quantum groups. We proceed in Section 5 by defining the Martin boundary
and convergence to the boundary in a categorical way. Finally, in Section 6
we establish compatibility of this categorical description with the theory for
random walks on discrete quantum groups.

2. Preliminaries

2.1. Compact and discrete quantum groups. There are several good pre-
sentations of the theory of compact and discrete quantum groups; see for ex-
ample [18, 23, 31]. Here we give a brief overview of the concepts will we need.

Definition 2.2. A compact quantum group is a pair G = (C(G),∆) consisting
of a unital C∗-algebra C(G) and a ∗-homomorphism ∆: C(G)→ C(G)⊗C(G)
called the comultiplication, satisfying coassociativity (ι⊗∆)∆ = (∆⊗ ι)∆ and
the cancellation property

span{(a⊗ 1)∆(b) | a, b ∈ C(G)} and span{(1⊗ a)∆(b) | a, b ∈ C(G)}
are norm-dense in C(G) ⊗ C(G).

The tensor product ⊗ of C∗-algebras always indicates the minimal tensor
product unless mentioned otherwise.

There exists a unique state h : C(G) → C, called the Haar state which
satisfies

(h⊗ ι)∆(a) = h(a)1 = (ι⊗ h)∆(a).
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This is called right invariance, respectively left invariance of the Haar state.
Throughout the paper we will assume that the Haar state is faithful, so we are
dealing with reduced quantum groups.

Often Sweedler’s sumless notation will be useful. If x =
∑
i x

(1)
i ⊗ x

(2)
i , we

write for example x12 = x1,2 = x⊗ 1 or x13 = x1,3 =
∑

i x
(1)
i ⊗ 1⊗ x(2)i .

Definition 2.3. A unitary representation of G on a Hilbert space H is a
unitary element U ∈M(C(G) ⊗B0(H)), such that

(∆⊗ ι)U = U13U23.(1)

Here B0(H) denotes the compact operators on H.
We will only deal with unitary representations and therefore we will usually

omit the prefix “unitary”. If U and V are unitary representations, denote the
space of intertwiners

Hom(U, V ) :=
{
T ∈ B(HU ,HV ) | (ι⊗ T )U = V (ι⊗ T )

}
.

A representation is called irreducible if Hom(U,U) = C1HU . Two represen-
tations U and V are (unitarily) equivalent if Hom(U, V ) contains a unitary
intertwiner, in which case we write U ∼= V . The set of equivalence classes
of irreducible representations is denoted by Irr(G). We fix representatives Us
for every s ∈ Irr(G). The equivalence class of the trivial representation, the
representation on C given by 1 ∈ C(G)⊗B(C), is denoted by 0. (Note that in
literature the label 0 is sometimes used for the 0-dimensional representation.)
The (classical) dimension of U is by definition the dimension of HU and is
denoted by dim(U). Sometimes, due to the leg numbering, we put the s as a
superscript, so we write for example Us12 := (Us)12.

Every irreducible representation is finite-dimensional and every finite-
dimensional representation decomposes into a direct sum of irreducible
representations. So in most cases it suffices to deal with finite-dimensional
representations. For two representations U and V define the tensor prod-
uct representation on HU ⊗ HV by U × V := U12V13. Note that in general
U × V 6∼= V ×U . For s, t ∈ Irr(G) we write s⊗ t when we want to indicate the
tensor product Us × Ut. For example, Hom(s⊗ t, r) = Hom(Us × Ut, Ur).

Let H be a Hilbert space. The inner product is denoted by 〈·, ·〉 and is
antilinear in the first component. Identify the dual space H∗ with the complex
conjugate Hilbert space H̄. So if ξ ∈ H, then ξ̄ ∈ H̄ acts as ξ̄(ζ) = 〈ξ, ζ〉.
Consider the map j : B(H)→ B(H̄), j(T )ξ̄ := T ∗ξ. So under the identification
j maps T to its dual operator.

Definition 2.4. Let U be a finite-dimensional representation. The contra-
gredient representation U c on H∗

U is defined by

U c := (ι⊗ j)(U−1) ∈ C(G)⊗B(H∗).

Then U c ∈ C(G) ⊗ B(H∗
U ) is invertible and satisfies (∆ ⊗ ι)(U c) = U c13U

c
23,

although it need not be unitary. If U is irreducible there exists a unique positive
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invertible operator ρU ∈ Hom(U,U cc) such that

Tr(xρU ) = Tr(xρ−1
U ) for all x ∈ Hom(U,U).

The conjugate representation Ū of U is defined as

Ū := (1⊗ j(ρU )
1
2 )U c(1⊗ j(ρU )−

1
2 ) ∈ C(G)⊗B(H̄U ),

this is again a unitary representation. The quantum dimension of U equals
Tr(ρU ) and is denoted by dU . Note that dim(U) ≤ dU and equality holds if
and only if ρU = ιU .

Frobenius reciprocity holds and can be formulated as

Hom(U1, U3 × Ū2) ∼= Hom(U1 × U2, U3) ∼= Hom(U2, Ū1 × U3),

where U1, U2 and U3 are representations. In particular, if U is irreducible, then
so is Ū . We write s̄ ∈ Irr(G) for the unique representative satisfying Ūs = Us̄.

Notation 2.5. Given a collection {Xi}i∈I of Banach spaces for some index
set I, we use the following conventions:

∏

i∈I

Xi := {(xi)i | xi ∈ Xi},

⊕

i∈I

Xi :=
{
(xi)i ∈

∏

i∈I

Xi | xi 6= 0 for at most finitely many i
}
,

c0-
⊕

i∈I

Xi :=
{
(xi)i ∈

∏

i∈I

Xi | (‖xi‖)i ∈ c0(I)
}
,

l∞-
⊕

i∈I

Xi :=
{
(xi)i ∈

∏

i∈I

Xi | sup
i∈I
{‖xi‖} <∞

}
.

Note that the last two algebras are Banach spaces, with respect to the norm
‖(xi)i‖ := supi ‖xi‖. The norm-closure of

⊕
i∈I Xi in l∞-

⊕
i∈I Xi equals

c0-
⊕

iXi. Furthermore if all Xi = Ai are C∗-algebras, then c0-
⊕

i∈I Ai and
l∞-

⊕
i∈I Ai are C∗-algebras. Moreover, if all Ai are unital for the multiplier

algebra, then the identity M(c0-
⊕

iAi) = l∞-
⊕

iAi holds.

Notation 2.6. The matrix coefficients of G are defined as

C[G] :=
{
(ι⊗ ω)(U) | U f.d. representation, ω ∈ (B(HU ))∗

}
.

If ξ, ζ ∈ HU , let mξ,ζ := 〈ζ, ·〉ξ ∈ B(HU ) denote the matrix unit. For each
s ∈ Irr(G) we fix once and for all an orthonormal basis {ξsi }

dim(s)
i=1 in Hs such

that ρs acts diagonal with respect to this basis. Abbreviate ms
ij := mξsi ,ξ

s
j
∈

B(Hs), so mij(ξk) = δjkξi. Write

Us =
∑

i,j

usij ⊗ms
ij = (usij)i,j and ρs =

∑

ij

(ρs)ijm
s
ij =

∑

i

(ρs)iim
s
ii.

Note that (1) reads as ∆(usij) =
∑dim(Us)
k=1 usik ⊗ uskj . The matrix coefficients

satisfy the following orthogonality relations:

h((utkl)
∗usij) = δstδjl

(ρ−1
s )ik
ds

, h(utkl(u
s
ij)

∗) = δstδki
(ρs)jl
ds

.
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Definition 2.7. A Hopf ∗-algebra is a pair (A,∆) consisting of a unital ∗-
algebra A and a unital ∗-homomorphism ∆: A → A⊗A, the comultiplication,
satisfying (∆ ⊗ ι)∆ = (ι ⊗ ∆)∆, together with linear maps S : A → A and
ε : A → C such that the identities

(ε⊗ ι)∆(a) = (ι⊗ ε)∆(a) = a,(2)

m(S ⊗ ι)∆(a) = m(ι⊗ S)∆(a) = ε(a)1(3)

hold for all a ∈ A. Here m : A⊗A → A is the multiplication map. S is called
the antipode and ε the counit.

The maps S and ε are uniquely determined by (2) and (3). Moreover, ε is a
∗-homomorphism, S is an anti-homomorphism and they satisfy the following
relations:

ε(S(a)) = ε(a), ∆S = (S ⊗ S)σ∆, S(S(a∗)∗) = a (a ∈ A),
where σ is the flip map.

Note that (C[G],∆) is a Hopf ∗-algebra with maps S, ε defined by the
identities

(S ⊗ ι)(U) = U∗ and (ε⊗ ι)(U) = 1.

Moreover, C[G] is dense in C(G).
Consider the space of linear functionals C[G]∗. For every finite-dimensional

representation U of G we get a representation πU of C[G]∗ on HU by

(4) πU : C[G]∗ → B(HU ), ω 7→ (ω ⊗ ι)U.
The collection {πUs}s∈Irr(G) defines an isomorphism

C[G]∗ ∼=
∏

s

B(Hs) =: U(G).

Similarly

(C[G]⊗n)∗ ∼=
∏

s1,...,sn

B(Hs1 ⊗ · · · ⊗ Hsn) =: U(Gn).

Define a unital ∗-morphism ∆̂: C[G]∗ → (C[G]⊗2)∗ dual to the multiplication
on G:

∆̂(ω)(a⊗ b) := ω(ab) for ω ∈ C[G]∗ and a, b ∈ C[G].

Then (C[G]∗, ∆̂) satisfies the axioms of a Hopf ∗-algebra (when understood
properly) with counit ε̂(ω) = ω(1) and antipode Ŝ(ω) = ω(S(·)) whenever
ω ∈ C[G]∗. Via the isomorphisms above this leads to a map ∆̂: U(G)→ U(G2).
We will generally use U(G) instead of C[G]∗. Let πs : U(G) → B(Hs) denote
the projection on the matrix block corresponding to s. Equivalently one can
define the comultiplication ∆̂(a) for a ∈ U(G) by

(πs ⊗ πt)(∆̂(a))T = Tπr(a) for all T ∈ Hom(r, s⊗ t).
Another way goes via the multiplicative unitary. For this consider the GNS

representation (Hh, ξh, πh) associated to the Haar state h. We will write L2(G)
for Hh. If x ∈ C(G) write Λ(x) = xξh ∈ L2(G) for the corresponding vector in
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the GNS construction. Since h is faithful, we can identify C(G) with πh(C(G))
inside B(L2(G)). Denote by L∞(G) the von Neumann algebra generated by
πh(C(G)) in B(L2(G)). By density of C(G) inside L2(G) the map

(5) (ξ ⊗ aξh) 7→ ∆(a)(ξ ⊗ ξh)
extends to a unitary operator in B(L2(G) ⊗ L2(G)). The adjoint W of (5) is
called the multiplicative unitary and defines a unitary (not necessarily finite-
dimensional) representation of G on L2(G), the so-called left regular represen-
tation. Given ξ, ζ ∈ H consider the functional

ωξ,ζ : B(H)→ C, ωξ,ζ(T ) := 〈ξ, T ζ〉.
If Us is an irreducible representation, then for every ζ ∈ Hs the map

θζ : Hs → L2(G), ξ 7→ (ds)
1
2 (Λ ⊗ ω

ρ
−1/2
s ζ,ξ

)(U∗
s )

intertwines Us and W . From the orthogonality relations it follows that θζ is
isometric if ζ is a unit vector. Moreover, if ζ, ζ′ ∈ Hs are two orthogonal
vectors, the corresponding images of θζ and θζ′ are orthogonal. Thus by pick-
ing orthonormal bases we obtain a canonical inclusion H̄s ⊗ Hs →֒ L2(G), it
corresponds to the space of matrix coefficients of Us. By identifying B(Hs) ∼=
H̄s ⊗ Hs we obtain an inclusion

⊕
sB(Hs) →֒ L2(G). Taking all irreducible

representations exhausts L2(G). This gives the Peter–Weyl decomposition for
compact quantum groups. Observe that W can be expressed as

W =
⊕

s∈Irr(G)

Us =
∑

s

∑

i,j

usij ⊗ms
ij .

The multiplicative unitary W satisfies the pentagon equation W12W13W23 =
W23W12.

Notation 2.8. Let G = (C(G),∆) be a compact quantum group. The discrete
quantum group dual to G is the virtual object indicated by (Ĝ, ∆̂). We write

c00(Ĝ) :=
⊕

s∈Irr(G)

B(Hs), c0(Ĝ) := c0-
⊕

s∈Irr(G)

B(Hs),

l∞(Ĝ) := l∞-
⊕

s∈Irr(G)

B(Hs), U(G) :=
∏

s∈Irr(G)

B(Hs).

The isomorphism (4) shows that Ĝ is indeed dual to the compact quantum
groupG. The multiplicative unitaryW encodes all information of the quantum
group G. Namely its matrix coefficients span both C[G] and c00(Ĝ) and the
comultiplications are given by

∆(a) =W ∗(1⊗ a)W ∈ C(G) ⊗ C(G),
∆̂(x) =W (x⊗ 1)W ∗ ∈ l∞(Ĝ) ⊗̄ l∞(Ĝ),

for a ∈ C(G) and x ∈ l∞(Ĝ). We will not need it, but also the antipode
and counit can be expressed in terms of W (cp. [17, Prop. 11.37]). Recall the
elements ρs defined in Definition 2.4. We write ρ ∈ U(G) for the element that
satisfies πs(ρ) = ρs for every s.
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The comultiplication ∆̂ has unique right- and left-invariant weights, denoted
by ψ̂ and φ̂, respectively. Invariance means that they satisfy

ψ̂((ι⊗ ω)∆̂(x)) = ψ̂(x)ω(1), φ̂((ω ⊗ ι)∆̂(y)) = φ̂(y)ω(1),

for all x, y ∈ l∞(Ĝ)+ such that ψ̂(x) <∞, φ̂(y) <∞ and all ω positive normal
linear functional on l∞(Ĝ). These weights can be written down explicitly as

ψ̂(x) =
∑

s∈Irr(G)

dsTr(πs(xρ
−1)), φ̂(y) =

∑

s∈Irr(G)

dsTr(πs(yρ)).(6)

Note that ψ̂ and φ̂ are unbounded on c0(Ĝ). The modular groups are given by

(7) σψ̂t (x) = ρ−itxρit, σφ̂t (x) = ρitxρ−it (x ∈ c00(Ĝ)).

Definition 2.9. Let G, Ĝ be a compact respectively discrete quantum group
and B a unital C∗-algebra. A left action of G (resp. Ĝ) on B is a unital
∗-homomorphism α : B → C(G)⊗B (resp. α : B →M(c0(Ĝ)⊗B)) satisfying
(ι⊗ α)α = (∆⊗ ι)α (resp. (ι⊗ α)α = (∆̂⊗ ι)α) and α(B)(C(G) ⊗ 1) is norm
dense in C(G)⊗B (resp. α(B)(c0(Ĝ)⊗ 1) is norm dense in c0(Ĝ)⊗B). Right
actions are defined similarly.

Definition 2.10. Let G, Ĝ be a compact respectively discrete quantum group
and N a von Neumann algebra. A right action of G (resp. Ĝ) on N is an
injective normal unital ∗-homomorphism β : N → N ⊗̄ L∞(G) ⊗ B (resp.
β : N → N ⊗̄ l∞(Ĝ)) satisfying (β⊗ ι)β = (ι⊗∆)β (resp. (β⊗ ι)β = (ι⊗ ∆̂)β).
Left actions are defined similarly.

For us the most important actions are the adjoint actions.

Notation 2.11. The multiplicative unitary W defines left and right adjoint
actions of G and Ĝ by

αl : l
∞(Ĝ)→M(C(G) ⊗ l∞(Ĝ)), x 7→W ∗(1 ⊗ x)W,

αr : C(G)→M(C(G) ⊗ l∞(Ĝ)), a 7→W (a⊗ 1)W ∗.

For s1, . . . , sn, t ∈ Irr(G) denote by

mt
s1,...,sn := dim(Hom(Ut, Us1 × · · · × Usn))

the multiplicity of the representation Ut in Us1 ⊗ · · · ⊗ Usn .
Lemma 2.12. For s1, . . . , sn, t ∈ Irr(G) the multiplicities satisfy the following
inequalities:

mt
s1,...,sn ≤

dim(Us1) · · · dim(Usn)

dim(Ut)
,(8)

∑

t∈Irr(G)

mt
s1,...,sn ≤ dim(Us1) · · · dim(Usn).(9)

Proof. For s1, . . . , sn ∈ Irr(G) it holds that
⊕

rm
r
s1,...,snUr

∼= Us1 × · · · × Usn .
Thus ∑

r∈Irr(G)

mr
s1,...,sn dim(Ur) = dim(Us1) · · · dim(Usn),
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from which (8) follows immediately. As each representation has dimension ≥ 1
also (9) is clear from this identity. �

For KMS states we follow [7]. The following result is easy to prove using
the elementary properties of the modular conjugation J .

Lemma 2.13. Let η : A → C be a KMS state on a C∗-algebra A. Then η
extends to a normal faithful state on the von Neumann algebra M := πη(A)

′′.
Let ση = σ be the associated modular group, Jη the modular conjugation and
ξη the GNS vector. Then η : M → C is a σ-KMS state and

(i) the sesquilinear form

(·, ·)η : A×A→ C, (a, b)η := η(bσ−i/2(a
∗)) = 〈ξη, bJηaξη〉

is a semi-inner product;
(ii) the sesquilinear form

(·, ·)η : M ×M → C, (a, b)η := η(bσ−i/2(a
∗)) = 〈ξη, bJηaξη〉

is an inner product;
(iii) the linear functionals (·, c)η : M → C and (c, ·)η : M → C are positive if

c ∈M is positive.

This form above is a modification of the well-known semi-inner product
〈·, ·〉η : A × A → C, 〈a, b〉η := η(ab∗). The modular group ensures that the
positivity result in (iii) holds. Note that σ−i/2(b

∗) need not be defined for all
b ∈ A, but the inner product 〈ξη, bJηaξη〉 is well-defined for all a, b ∈ A.

We will freely use the results of the following lemma.

Lemma 2.14. The q-numbers defined by

[n]q :=
qn − q−n
q − q−1

satisfy the following identities:

[n]q = qn−1 + qn−3 + · · ·+ q−n+1,(10a)

[m+ n]q = qn[m]q + q−m[n]q = q−n[m]q + qm[n]q,(10b)

[m]q
[n]q

= qn−m(1 +O(q2m) +O(q2n)) as m,n→∞.(10c)

Proof. Identities (10a) and (10b) are trivial. For (10c), note that

[m]q
[n]q

qm−n − 1 =
q2m − 1

q2n − 1
− q2n − 1

q2n − 1
=
q2m − q2n
q2n − 1

= O(q2m) +O(q2n),

which proves the lemma. �
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2.15. C∗-tensor categories. For the definitions and elementary results re-
garding C∗-(tensor) categories we refer to [23, Chap. 2]. We will follow their
notation and conventions.

Assumption 2.16. We will always assume that our C∗-categories are small
and closed under finite direct sums and subobjects. Moreover, C∗-tensor cat-
egories are in addition assumed to be strict and rigid.

Notice that simplicity of the unit object is not assumed. To be clear we fix
some notation.

Notation 2.17. Let C be a strict C∗-tensor category with simple unit 1. By
Ob(C) we denote the objects of C and by HomC(U, V ) the set of morphisms
between U and V . Let Irr(C) denote the equivalence classes of the simple
objects in C. For each s ∈ Irr(C) fix a representative Us. For each Us fix a
conjugate object Ūs. By Frobenius reciprocity Ūs is again simple, thus iso-
morphic to Ut for some t ∈ IrrC. We define a map Irr(C) → Irr(C), s 7→ s̄,
where s̄ is defined by the identity Ūs = Us̄. The unit object is indicated by
0 ∈ Irr(C), thus U0 = 1. The multiplicity of Ut in U ⊗ V is denoted by
mt
U,V = dim(HomC(Ut, U ⊗ V )). Thus U ⊗ V ∼=

⊕
tm

t
U,V Ut, where m

t
U,V Ut

means the direct sum of mt
U,V copies of Ut. For each object U we let (RU , R̄U )

be a standard solution of the conjugate equations. Let dU := ‖RU‖2 be the
intrinsic dimension of U . The normalized categorical traces are given by

trU : EndC(U)→ C, T 7→ d−1
U R∗

U (ιŪ ⊗ T )RU = d−1
U R̄∗

U (T ⊗ ιŪ )R̄U .

The adjective “normalized” refers to the constant d−1
U , to make sure that

trU (ιU ) = 1. If C = Rep(G), then it can be shown that Rs := RUs and
R̄s := R̄Us are given by

(11) Rs(1) :=
∑

i

ξ̄si ⊗ ρ
− 1

2
s ξsi , R̄s(1) :=

∑

i

ρ
1
2
s ξ

s
i ⊗ ξ̄si .

In particular, if U is multiplicity free, it holds that ϕU (x) = trU (x) for x ∈
EndRep(G)(U) ⊂ l∞(Ĝ) (see [23, Rem. 2.2.15]). This also implies that the
intrinsic dimension of a representation equals the quantum dimension.

2.18. Infinite tensor products. For the construction of the infinite tensor
product of von Neumann algebras we follow [28, §XIV.1]. This construction
makes use of the infinite tensor product of C∗-algebras. Given a sequence of
C∗-algebras (An)n with ∗-homomorphisms πn : An → An+1, there exists an
inductive limit

A := lim
−→

(An, πn),

with inclusion maps ιn : An → A. This C∗-algebra A can be described by the
following universal property. If B is a C∗-algebra with maps αn : An → B
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such that for each n ∈ N the diagram

An

πn

��

αn

##
❋

❋

❋

❋

❋

❋

❋

❋

❋

An+1 αn+1

// B

commutes, then there exists a unique map α : A→ B such that for each n ∈ N

the following diagram commutes:

An

ιn

��

αn

""
❊

❊

❊

❊

❊

❊

❊

❊

A α
// B.

The C∗-algebraic tensor product of a sequence (An)n of C∗-algebras is defined
as the inductive limit

∞⊗

n=1

An := lim
−→

(A′
n, πn),

where A′
n := A1 ⊗ · · · ⊗ An with the minimal tensor product and connecting

maps πn(x) := x⊗ 1.
Given a sequence (Mn)n of von Neumann algebras together with normal

states ωn : Mn → C, define the state ω =
⊗

n ωn on the C∗-algebra A :=⊗
nMn by

ω(x1 ⊗ · · · ⊗ xn ⊗ 1⊗ 1⊗ · · · ) := ω1(x1) · · ·ωn(xn)
and extension to A. The GNS-construction applied to ω gives a cyclic repre-
sentation (πω ,Hω, ξω) of A. Define the von Neumann algebraic infinite tensor
product of (Mn, ωn)n as

M :=

∞⊗

n=1

(Mn, ωn) := (πω(A))
′′.

The commutant is taken in B(Hω). The functional ω extends to a state on M ,
which is faithful if each ωi is faithful on πωi(Mi). This construction depends
heavily on the choice of the sequence of states (ωn), different choices can give
nonisomorphic algebras, see for example [28, Thm. XVIII.1.1]. For us however,

tensor products of the form
⊗−1

−∞ are relevant, these are defined in a similar
manner.

The formulation of the following lemma is from [15, Lem. 3.4.], the proof
can be found in [10, Lem. 2].

Lemma 2.19 (Noncommutative martingale convergence theorem). Suppose
M is a von Neumann algebra with a normal state ϕ. By construction of the
infinite tensor product for any n ∈ N there is the embedding

in :

−1⊗

−n

(M,ϕ) →֒
−1⊗

−∞

(M,ϕ), x 7→ · · · ⊗ 1⊗ 1⊗ x.
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Define slice maps

E′
n :

−1⊗

−∞

(M,ϕ)→
−1⊗

−n

(M,ϕ), x 7→ (· · · ⊗ ϕ⊗ ϕ⊗ ι⊗n)(x).

Then En := in ◦ E′
n is the unique ϕ-preserving conditional expectation onto

in(
⊗−1

−n(M,ϕ)). The maps En satisfy the following:

(i) For every x ∈⊗−1
−∞(M,ϕ) it holds that x = s∗- limnEn(x).

(ii) If the sequence (xn)n ⊂
⊗−1

−∞(M,ϕ) satisfies En(xn+1) = xn, then there

exists a unique x ∈⊗−1
−∞(M,ϕ) such that xn = En(x).

Notation 2.20. Recall the left adjoint action αl : l
∞(Ĝ)→M(C(G)⊗l∞(Ĝ)).

This action can be extended to a left action of G on
⊗−1

−n l
∞(Ĝ) by

αl :

−1⊗

−n

l∞(Ĝ)→ L∞(G) ⊗̄
( −1⊗

−n

l∞(Ĝ)
)
,(12)

x 7→W ∗
1,n+1 · · ·W ∗

1,2(1⊗ x)W1,2 · · ·W1,n+1.

Moreover, for x ∈ ⊗−1
−∞(l∞(Ĝ), ϕ) the following limit can be shown to exist

in norm (see [15, §3]):
lim
n→∞

W ∗
1,−1 · · ·W ∗

1,−n(1⊗ x)W1,−n · · ·W1,−1,

defining an action on the infinite tensor product. The leg numbering here is
different than elsewhere in this paper, the 1 refers to L∞(G) and the −j to

the −jth component of
⊗−1

−∞. Again this action is denoted by αl.

2.21. Noncommutative random walks. Here we review the basic proper-
ties of noncommutative random walks on discrete quantum groups. For clas-
sical random walks take a look in [34].

Definition 2.22. A discrete Markov chain consists of a pair (X,P ) where
X is a discrete space and P = {p(x, y)}x,y∈X is a matrix which satisfies the
properties p(x, y) ∈ [0, 1] for all x, y ∈ X and

∑
y∈X p(x, y) = 1 for all x ∈ X .

We say that P defines a (classical) random walk on X . The scalars p(x, y) are
the transition probabilities that the random walk jumps from x to y.

Definition 2.23. Suppose that {p(x, y)}x,y∈X defines a random walk on X .
Let

pn(x, y) :=





δx,y if n = 0,

p(x, y) if n = 1,∑
z∈X p

n−1(x, z)p(z, y) if n > 1.

This is the probability that the random walk is at y after n steps when started
at x. The random walk is called transient if

∑∞
n=1 p

n(x, y) < ∞ for all
x, y ∈ X. It is called irreducible if for all x, y ∈ X there exists an n ∈ N

such that pn(x, y) > 0.
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Transience means that for any pair (x, y) the expected number of times the
random walk hits y when starting at x is finite. Irreducibility exactly means
that every point can eventually be reached from any other point with positive
probability.

Definition 2.24. Let U be a finite-dimensional representation of G. Define
the state

ϕU : B(HU )→ C, T 7→ Tr(TπU (ρ
−1))

dU
.

Write ϕs := ϕUs . Obviously ϕs ◦ πs defines a state on l∞(Ĝ), which we again
denote by ϕs. Denote

C := span{ϕs | s ∈ Irr(G)},
where we take the norm-closure. Clearly, for any ϕ ∈ C there exists a finite
(complex) measure µ on Irr(G) such that ϕ =

∑
s∈Irr(G) µ(s)ϕs. In that case

we write ϕ = ϕµ. Note that ϕµ is a state if and only if µ is a probability
measure.

The orthogonality relations imply that

ϕs(x)1s = (h⊗ ι)(U∗
s (1⊗ x)Us),

so ϕs is an αl|B(Hs)-invariant state. In fact, it is the unique αl|B(Hs)-invariant
state (see [22, §1.4]). We get

(13) ϕs(x) = ϕs(x)ϕs(1s) = (h⊗ ϕs)
(
W ∗(1 ⊗ x)W

)
.

Note that (6) translates to ψ̂(x) =
∑

s d
2
sϕs(x).

Definition 2.25. Given a normal linear functional ϕ on l∞(Ĝ), define the
Markov operator associated to ϕ by Pϕ := (ϕ⊗ ι)∆̂.

The operator Pϕ is completely positive if ϕ is positive. In addition the
operator satisfies Pϕ(Z(l

∞(Ĝ))) ⊂ Z(l∞(Ĝ)) if and only if ϕ ∈ C (see [22,
Prop. 2.1]). Therefore we focus on Markov operators defined by states of the
form ϕµ for probability measures µ. We write Pµ := Pϕµ .

In the literature, there is another quite common convention. Namely non-
commutative random walks defined by the states ψs := d−1

s Tr(πs(· ρ)) and

P̃µ :=
∑

s µ(s)(ι ⊗ ψs)∆̂. Thus slicing in the right leg of the comultiplication

with a different state. Of course all results that hold for Pµ also hold for P̃µ
and conversely, but one has to be aware on how to translate them. In this
paper we will only work with Pµ.

Let I =
⊕

s Is be the identity in l∞(Ĝ). Since ∆̂(I) = I ⊗ I and ϕµ
is a state, it follows that Pµ(I) = I. Define scalars pµ(s, t) ∈ [0, 1] by
Pµ(It)Is = pµ(s, t)Is, then it follows that

∑
t∈Irr(G) pµ(s, t) = 1 and pµ(s, t) >

0. Therefore {pµ(s, t)}s,t∈Irr(G) defines a discrete Markov chain on Irr(G).
Define the measure µ̄ by µ̄(s) := µ(s). Write ϕ̌s := ϕs̄ and extend this lin-
early to the states ϕµ. If ϕ and ψ are two functionals on l∞(Ĝ), the prod-
uct is defined by ϕψ := (ϕ ⊗ ψ)∆̂. For properties of this Markov chain see
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[22, Lem. 2.4, Cor. 2.5]. In particular, using induction, one easily shows that
pnµ(s, t) = pϕn

µ
(s, t).

Definition 2.26. The measure µ or the operator Pµ is called generating if for
all s ∈ Irr(G) there exists an n ∈ N such that ϕnµ(Is) > 0. If the random walk
with kernel {pµ(s, t)}s,t∈Irr(G) is transient, Pµ or µ is called transient.

Transience almost automatically holds for “true” quantum groups as is
shown by the following result.

Lemma 2.27 ([22, Thm. 2.6]). Suppose that µ is a probability measure on
Irr(G). Define constants cn,r(µ) by the identity ϕnµ =

∑
r∈Irr(G) cn,r(µ)ϕr,

then

(14) cn,r(µ) =
∑

t1,...,tn∈Irr(G)

µ(t1) · · ·µ(tn)mr
t1,...,tn

dr
dt1 · · · dtn

.

Put λ :=
∑
r µ(r)

dim(Ur)
dr

. The following inequalities hold for any n ∈ N:
∑

r∈Irr(G)

cn,r(µ)d
−1
r ≤ λn,

pnµ(s, t) ≤
dt
ds

dim(Us)

dim(Ut)
λn for any s, t ∈ Irr(G).

In particular, if there exists s ∈ supp(µ) such that dim(Us) < ds, then

lim
n→∞

∑

r∈Irr(G)

cn,r(µ)d
−1
r = 0,

∞∑

n=1

pnµ(s, t) <∞,

in which case µ is transient.

The statements regarding pnµ are from [22, Thm. 2.6]. The identities of cn,r
are an easy consequence of the computations of the proof of that theorem.

Proof of Lemma 2.27. We prove (14) by induction on n. If n = 1, this is
trivially true as mr

t1 = δt1,r. For n > 1 we have

ϕn+1
µ = ϕnµϕµ

=
∑

r,t

cn,r(µ)µ(t)ϕrϕt

=
∑

r,t

( ∑

t1,...,tn

µ(t1) · · ·µ(tn)mr
t1,...,tn

dr
dt1 · · · dtn

)
µ(t)

(∑

s

ms
r,t

ds
drdt

ϕs

)

=
∑

s

( ∑

r,tn+1

∑

t1,...,tn

µ(t1) · · ·µ(tn)µ(tn+1)
ds

dt1 · · · dtndtn+1

mr
t1,...,tnm

s
r,tn+1

)
ϕs

=
∑

s

( ∑

t1,...,tn+1

µ(t1) · · ·µ(tn+1)
ds

dt1 · · · dtn+1

ms
t1,...,tn,tn+1

)
ϕs,
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which completes the induction. Use the estimates of Lemma 2.12 to obtain
∑

r

cn,r(µ)d
−1
r =

∑

t1,...,tn

µ(t1) · · ·µ(tn)
(∑

r

mr
t1,...,tn

) 1

dt1 · · · dtn

≤
∑

t1,...,tn

µ(t1) · · ·µ(tn)
dim(Ut1) · · ·dim(Utn)

dt1 · · · dtn

=
(∑

t

µ(t)
dim(Ut)

dt

)n
.

For the estimate of pnµ observe that (14) implies that

pnµ(s, t) = pϕn
µ
(s, t) =

∑

r

cn,r(µ)
dt
drds

mt
r,s

=
∑

r1,...,rn

µ(r1) · · ·µ(rn)
1

dr1 · · · drn
dt
ds
mt
r1,...,rn,s

≤
∑

r1,...,rn

µ(r1) · · ·µ(rn)
1

dr1 · · · drn
dt
ds

dim(Ur1) · · · dim(Urn) dim(Us)

dim(Ut)

=
dt
ds

dim(Us)

dim(Ut)
λn.

The last part follows from the observation that if ds > dim(Us) for some

s ∈ supp(µ), then 0 <
∑

t µ(t)
dim(Ut)
dt

< 1. �

Definition 2.28 ([22]). Suppose that µ is transient. Then the following op-
erator, the Green kernel, makes sense:

Gµ : c00(Ĝ)→ l∞(Ĝ), x 7→
∞∑

n=0

Pnµ (x).

If in addition µ is generating, the Martin kernel of µ given by

Kµ̄ : c00(Ĝ)→ l∞(Ĝ), x 7→ Gµ̄(x)(Gµ̄(I0))
−1

is well-defined. Here I0 denotes the identity in the trivial representation
H0 = C. By definition, the Martin compactification M̃(Ĝ, µ) of Ĝ with re-
spect to µ is the C∗-subalgebra of l∞(Ĝ) generated by c0(Ĝ) and Kµ̄(c00(Ĝ)).

The Martin boundary M(Ĝ, µ) of Ĝ is the quotient C∗-algebra M̃(Ĝ, µ)/c0(Ĝ).

Definition 2.29 ([15, §2.5]). Let ϕ be a state on l∞(Ĝ). An element h ∈
l∞(Ĝ) is called ϕ-harmonic if Pϕ(h) = h. If x ≥ 0 and Pϕ(x) ≤ x, then x is
called ϕ-superharmonic. Define the Poisson boundary

H∞(Ĝ, ϕ) :=
{
h ∈ l∞(Ĝ) | Pϕ(h) = h

}
.

This is a von Neumann algebra with product x·y := s∗- limn P
n
ϕ (xy). If ϕ = ϕµ

for some µ probability measure on Irr(G), we write H∞(Ĝ, µ) for the Poisson
boundary.
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Note that in the literature different manifestations of this product can be
found. However, all products are the same, because H∞(l∞(Ĝ), µ) is an op-
erator system in l∞(Ĝ). By a result of Choi and Effros [8], it admits at least
one product turning it into a von Neumann algebra. On the other hand, a
C∗-algebra has, up to complete order isomorphism, a unique product. The
nontrivial part is therefore to find this product. Originally Izumi [15, §2.5]
used an ultra-filter and Cesàro-summation to define the product. For a dis-
cussion on the product on H∞(Ĝ, ϕ), see [16, Appendix].

Proposition 2.30 ([22, Thm. 3.3]). For any µ-superharmonic element x ∈
l∞(Ĝ) there exists a bounded positive linear functional ωx : M̃(Ĝ, µ)→ C such
that (y, x)ψ̂ = ωx(Kµ̄(y)) for all y ∈ c00(Ĝ).

Conversely if ω : M̃(Ĝ, µ)→ C is a bounded positive linear functional, then
there exists a unique superharmonic element xω ∈ l∞(Ĝ) such that (y, xω)ψ̂ =
ω(Kµ̄(y)) for all y ∈ c00(Ĝ). If xω is µ-harmonic, then ω|c0(Ĝ) = 0. Moreover,
if supp(µ) is finite, then xω is harmonic if and only if ω|c0(Ĝ) = 0.

We say that the above functional ωx represents the element x.

2.31. General results on convergence to the boundary. Discrete Markov
chains are known to converge to the boundary. For random walks on discrete
quantum groups this is still an open problem. In this section we prove some
results regarding the convergence of paths in the quantum setting.

Recall that a net (xi)i ⊂ B(H) is said to converge to x in the strong topology
if ‖(xi−x)ξ‖ → 0 for all ξ ∈ H. It converges in strong∗ topology if both xi → x
and x∗i → x∗ in strong topology. We write s- limn xi = x and s∗- limn xi = x
for the strong and strong∗ limits.

IfM ⊂ B(H) is a von Neumann algebra, then the strong and strong∗ topolo-
gies onM in general depend on the embedding ofM into B(H). The restriction
of the topologies to bounded sets are independent of such an embedding. Note
that if (xi)i ⊂ M is a bounded net and ϕ : M → C is a faithful state on M ,
then s- limi xi = x if and only if limi ϕ((xi − x)∗(xi − x)) = 0.

Notation 2.32. Let ϕ be a state on (l∞(Ĝ), ∆̂). Consider for n ≥ 1 the unital
∗-homomorphisms

jn : l
∞(Ĝ)→

−1⊗

−∞

(l∞(Ĝ), ϕ), x 7→ · · · ⊗ 1⊗ 1⊗ ∆̂n−1(x).

An element x is called ϕ-regular if s∗- limn jn(x) exists in
⊗−1

−∞(l∞(Ĝ), ϕ).
Denote

Rϕ :=
{
x ∈ l∞(Ĝ) | x is ϕ-regular

}
.

For x ∈ Rϕ define j∞(x) := s∗- limn jn(x). Write ϕ∞ := · · · ⊗ ϕ ⊗ ϕ and
observe that ϕ∞ ◦ jn = ϕn.

This algebra
⊗−1

−∞(l∞(Ĝ), ϕ) turns out to be the proper generalization of
the space of functions on paths of the random walk. The maps jn correspond
to the duals of the coordinate maps.
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Proposition 2.33 (Izumi [15] and Neshveyev–Tuset [21]). Let (l∞(Ĝ), ∆̂) be
a discrete quantum group and µ be a probability measure on Irr(G). Assume
that the random walk defined by ϕ = ϕµ is generating and transient. The
following holds:

(i) Rϕ is a C∗-subalgebra of l∞(Ĝ) that contains c0(Ĝ) and H∞(Ĝ, ϕ).

Write

θ := j∞|H∞(Ĝ,ϕ) : H
∞(Ĝ, ϕ)→

−1⊗

−∞

(l∞(Ĝ), ϕ).

Then

(ii) j∞ : Rϕ →
⊗−1

−∞(l∞(Ĝ), ϕ) is a ∗-homomorphism onto θ(H∞(Ĝ, ϕ));
(iii) c0(Ĝ) ⊂ ker(j∞);
(iv) θ : H∞(Ĝ, ϕ)→ θ(H∞(Ĝ, ϕ)) is a ∗-isomorphism;
(v) θ−1 ◦ j∞(x) = s∗- limn P

n
ϕ (x) for any x ∈ Rϕ. In particular,

ε̂ ◦ θ−1 ◦ j∞ = lim
n
ϕn.

Denote θ0 := θ−1 ◦ j∞ : Rϕ → H∞(Ĝ, ϕ). This is a ∗-homomorphism by (ii)
and (iv).

No proof of this result is given in [21] and only some parts are in [15,
Thm. 3.6], so we give a proof for completeness. Note that part (iv) does not
follow from part (ii) since the Poisson boundary is equipped with a different
product than l∞(Ĝ) (cp. Definition 2.29).

Proof. (i) Clearly Rϕ is a linear space which is closed under the involution ∗.
Each jn is a ∗-homomorphism, so it is norm-decreasing, i.e. ‖jn(x)‖ ≤ ‖x‖.
Therefore if x, y ∈ Rϕ and ξ ∈ Hϕ∞ , then

‖(jn(xy)− j∞(x)j∞(y))ξ‖
= ‖(jn(x)jn(y)− j∞(x)j∞(y))ξ‖
≤ ‖(jn(x)jn(y)− jn(x)j∞(y))ξ‖+ ‖(jn(x)j∞(y)− j∞(x)j∞(y))ξ‖
≤ sup

m
‖jm(x)‖‖(jn(y)− j∞(y))ξ‖ + ‖(jn(x)− j∞(x))j∞(y)ξ‖,

which tends to 0 as n → ∞, thus xy ∈ Rϕ and j∞(xy) = j∞(x)j∞(y). To
show that Rϕ is closed in norm, let (xn)n ⊂ Rϕ be a bounded sequence with
limn ‖xn− x‖ = 0. Given ε > 0 and ξ ∈ Hϕ∞ , find m such that ‖x− xm‖ < ε.
Then there exists N ∈ N such that ‖(jn(xm)−jn′(xm))ξ‖ ≤ ε for all n, n′ ≥ N .
This gives, for n, n′ ≥ N ,

‖(jn(x) − jn′(x))ξ‖ ≤ ‖(jn(x) − jn(xm))ξ‖ + ‖(jn(xm)− jn′(xm))ξ‖
+ ‖(jn′(xm)− jn′(x))ξ‖

≤ ‖x− xm‖‖ξ‖+ ε+ ‖xm − x‖‖ξ‖
≤ ε+ 2‖ξ‖ε.

Thus Rϕ is closed in norm and hence a C∗-algebra.

Münster Journal of Mathematics Vol. 10 (2017), 287–365



304 Bas P.A. Jordans

We claim that s∗- limn jn(x) = 0 for every x ∈ c0(Ĝ). This would show that
c0(Ĝ) ⊂ Rϕ and c0(Ĝ) ⊂ ker(j∞). First consider Is ∈ B(Hs), then

ϕ∞
µ (jn(Is)) = (ϕµ ⊗ · · · ⊗ ϕµ)(∆̂n−1(Is))

= (ϕµ ⊗ · · · ⊗ ϕµ ⊗ ε̂)(∆̂n(Is))

= ε̂(Pnµ (Is)) =
∑

t∈Irr(G)

ε̂(Pnµ (Is)It) =
∑

t∈Irr(G)

ε̂(It)p
n
µ(t, s)

= pnµ(0, s).

By assumption Pµ is transient, thus
∑

n p
n
µ(0, s) = gµ(0, s) < ∞ and hence

limn p
n
µ(0, s) = 0. If x ∈ c00(Ĝ) is finitely supported, then x∗x is dominated

by a linear combination
∑m

i=1 ciIsi for some si ∈ Irr(G) and ci > 0. Therefore

lim
n
ϕ∞(jn(x)

∗jn(x)) ≤
∑

i

ci lim
n
pnµ(0, si) = 0.

Since Rϕ is a C∗-algebra and c00(Ĝ) is dense in c0(Ĝ), the claim follows.
The statement that H∞(Ĝ, ϕ) ⊂ Rϕ is contained in [15, Thm. 3.6]. Izumi

only deals with finitely supported measures µ, but the proof also applies to
our case. Recall the conditional expectations En and maps E′

n introduced in
Lemma 2.19. By coassociativity one has, for m > n and any x ∈ l∞(Ĝ),

E′
n(jm(x)) = (· · · ⊗ ϕ⊗ ϕ⊗ ι⊗n)(· · · ⊗ 1⊗ 1⊗ ∆̂m−1(x))

= (ϕ⊗ · · · ⊗ ϕ︸ ︷︷ ︸
m−n

⊗ι⊗n)((ι⊗m−n ⊗ ∆̂n−1)∆̂m−n(x))

= ∆̂n−1(Pm−n
ϕ (x))

and thus

(15) En(jm(x)) = jn(P
m−n
ϕ (x)).

Therefore if h ∈ H∞(Ĝ, ϕ) is a harmonic element, then En(jn+1(h)) = jn(h);
in which case, the noncommutative Martingale convergence theorem (cp.

Lemma 2.19) implies that there exists a unique element y ∈⊗−1
−∞(l∞(Ĝ), ϕ)

such that En(y) = jn(h) for all n and that the sequence (En(y))n converges to y
in strong∗ topology. In other words s∗- limn jn(h) = y, thus H∞(Ĝ, ϕ) ⊂ Rϕ,
concluding part (i).

We now deal with (iv). Clearly θ is surjective on its image, linear and pre-
serves the involution. For an element x ∈ Rϕ the limit s∗- limn P

n
ϕ (x) exists

by (15) and is harmonic. Therefore by part (i) it is again in Rϕ. Thus if
h1, h2 ∈ H∞(Ĝ, ϕ) are harmonic, by the noncommutative martingale conver-
gence theorem and (15) we have

j∞(h1)j∞(h2) = j∞(h1h2)

= s∗- lim
n
Enj∞(h1h2)

= s∗- lim
n

s∗- lim
m
Enjm(h1h2)
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= s∗- lim
n

s∗- lim
m
jn(P

m−n
ϕ (h1h2))

= s∗- lim
n
jn(h1 · h2)

= j∞(h1 · h2),

thus j∞ : H∞(Ĝ, ϕ) → ⊗−1
−∞(l∞(Ĝ), ϕ) is a ∗-homomorphism. It remains

to show that j∞ is isometric. Since j∞ is a ∗-homomorphism, it is norm-
decreasing, so ‖h‖ ≥ ‖j∞(h)‖. It thus suffices to prove the reverse inequality.

Denote U :=
⊕

s∈suppµ Us, so if x ∈⊗−1
−n l

∞(Ĝ) then

π⊗n
U (x)Is1⊗···⊗sn =

{
xIs1⊗···⊗sn if s1, . . . , sn ∈ supp(µ),

0 otherwise.

Since the measure µ is assumed to be generating, we obtain

‖h‖ = sup
{
‖πs(h)‖ | s ∈ Irr(G)

}

= sup
{
‖πs(h)‖ | s ∈ supp(µ∗n), n ∈ N

}

= sup
{
‖π⊗n

U (∆̂n(h))‖ | n ∈ N
}

= sup
{
‖jn(h)‖ | n ∈ N

}
.

From (15) we conclude jn(h) = En(j∞(h)). Since En is a conditional expec-
tation, we get

‖h‖ = sup
n∈N

‖jn(h)‖ = sup
n∈N

‖En(j∞(h))‖ ≤ ‖j∞(h)‖.

Hence j∞ is isometric and thus a ∗-isomorphism onto its image, which proves
(iv).

We prove (ii) and (v) simultaneously. Clearly j∞ is a ∗-homomorphism.
By (i) it is immediate that θ(H∞(Ĝ, ϕ)) ⊂ j∞(Rϕ). Let x ∈ Rϕ. By the
noncommutative martingale convergence theorem and (15) we get

j∞(x) = s∗- lim
n
Enj∞(x)(16)

= s∗- lim
n

s∗- lim
m
Enjm(x)

= s∗- lim
n

s∗- lim
m
jn(P

m−n
ϕ (x))

= s∗- lim
n

s∗- lim
m
jn(P

m
ϕ (x))

= j∞(s∗- lim
m
Pmϕ (x)).

Since s∗- limn P
n
ϕ (x) is harmonic, we obtain j∞(Rϕ) ⊂ j∞(H∞(Ĝ, ϕ)) which

establishes (ii). Moreover, (16) can be written as θ−1 ◦ j∞(x) = s∗- limm P
m
ϕ (x).

This gives

ε̂ ◦ θ−1 ◦ j∞(x) = lim
m
ε̂ ◦ Pmϕ (x) = lim

m
ε̂(ϕm ⊗ ι)∆̂(x) = lim

m
ϕm(x),

which finishes the proof. �
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Conjecture 2.34 ([21]). Let µ be a transient and generating probability mea-
sure on Irr(G). The following holds for the random walk defined by ϕ = ϕµ on
(Ĝ, ∆̂):

(i) Kϕ̌(x) ∈ Rϕ for every x ∈ c00(Ĝ).
(ii) If ν = limn ϕ

n|Rϕ = ε̂θ0, then ψ̂(xh) = ν(Kϕ̌(x)h) for every x ∈ c00(Ĝ)
and any harmonic element h ∈ H∞(Ĝ, ϕ).

There is no proof known for this conjecture. We therefore say that a random
walk on a discrete quantum group (Ĝ, ∆̂) defined by a probability measure µ
converges to the boundary if the statements of the conjecture hold for (Ĝ, µ).
This notion of convergence to the boundary is compatible with the classical
case, see Proposition 2.36 below.

Consider the modular group {σψ̂t }t of the right Haar weight (see (7)). It is
easy to show that (see [22, §3.3]) the following holds:

(17) σψ̂t Pϕ̌ = Pϕ̌σ
ψ̂
t , σψ̂t Kϕ̌ = Kϕ̌σ

ψ̂
t .

Moreover, if x ∈ l∞(Ĝ), then ‖πs(σψ̂t (x))‖ ≤ ‖πs(x)‖ whenever t ∈ R and thus
σψ̂t (c0(Ĝ)) ⊂ c0(Ĝ). It follows that σψ̂t defines an automorphism group on the
Martin compactification and factors through the Martin boundary.

The state ν|M̃(Ĝ,ϕ) is a σ
ψ̂-KMS state representing the unit 1 ∈ H∞(Ĝ, ϕ)

(see [22, Thm. 3.10]). So in particular σνt = σψ̂t for all t. Define the map

K∗
ϕ̌ : πν(M̃(Ĝ, ϕ))′′ → l∞(Ĝ) by the identity

(18) (a,Kϕ̌(x))ν = (K∗
ϕ̌(a), x)ψ̂ (a ∈ πν(M̃(Ĝ, ϕ))′′, x ∈ c00(Ĝ)),

where (·, ·)ν and (·, ·)ψ̂ are as in Lemma 2.13. Note that ψ̂ is unbounded on
l∞(Ĝ), but it is well defined on c00(Ĝ). Identity (18) determines K∗

ϕ̌ uniquely
because we can take for x all matrix units ms

ij . In [22, Lem. 3.9] it is shown

that Im(K∗
ϕ̌) ⊂ H∞(Ĝ, ϕ) and K∗

ϕ̌ is normal, unital and completely positive.

Theorem 2.35 ([21, Thm. 6.2]). If Conjecture 2.34 holds for a state ϕ on
(l∞(Ĝ), ∆̂), then this random walk has the following properties:

(i) For any positive harmonic element h ∈ H∞(Ĝ, ϕ) the positive linear
functional (h, ·)ν represents h, meaning (h, x)ψ̂ = (h,Kϕ̌(x))ν for all
x ∈ c00(Ĝ).

(ii) The map K∗
ϕ̌|M(Ĝ,ϕ) : M(Ĝ, ϕ) → H∞(Ĝ, ϕ) equals the map θ0|M(Ĝ,ϕ).

It induces an isomorphism πν(M(Ĝ, ϕ))′′ ∼= H∞(Ĝ, ϕ) which respects the
action of the compact quantum group G and the dual discrete quantum
group Ĝ.

Given a discrete group Γ, consider C(G) := C∗
r (Γ) and define ∆: C(G) →

C(G) ⊗ C(G) by ∆(λγ) := λγ ⊗ λγ , then G = (C∗
r (Γ),∆) is a compact quan-

tum group. The elements {λγ}γ∈Γ are one-dimensional representations of the
compact quantum group G. They span a dense subset of C(G). Hence by the
orthogonality relations these are all finite-dimensional irreducible representa-
tions. Thus Irr(G) ∼= Γ and C[G] ⊂ C(G) = C∗

r (Γ) equals the ordinary group
algebra of Γ. It follows that U(G) = C[G]∗ equals the functions on Γ. The
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discrete quantum group can be identified as l∞(Ĝ) = l∞(Γ) with pointwise
multiplication and involution. The comultiplication is given by

∆̂(f)(γ, γ′) := f(γγ′) ∈ l∞(Γ× Γ) ∼= l∞(Γ) ⊗̄ l∞(Γ).

Let µ be a probability measure on Γ = Irr(G). Since all irreducible represen-
tations ofG are one-dimensional, ρ equals the identity and thus ϕµ : l

∞(Γ)→ C

equals ϕµ(f) :=
∑
γ∈Γ f(γ)µ(γ). It follows that

Pµ(f)(x) =
(
(ϕ⊗ ι)∆̂(f)

)
(x) =

∑

y∈Γ

µ(y)f(y−1x) =
∑

y∈Γ

µ(xy−1)f(y).

So this equals the classical random walk on Γ with Markov kernel pµ(x, y) =
µ(xy−1). With this notation we get the following result.

Proposition 2.36. Suppose that we are given a probability measure µ on a
discrete group Γ. Assume that µ defines a generating and transient random
walk on Γ. Let Pµ be the Markov kernel of the random walk on l∞(Ĝ). Then
this quantum random walk converges to the boundary in the sense of Conjec-
ture 2.34.

We will not prove this proposition, because it would require to build up
the whole theory of classical random walks and convergence to the boundary
thereof. Instead we give a rough sketch.

Sketch of proof of Proposition 2.36. First identify the quantum Martin com-
pactification M̃(Ĝ, µ) with the functions on the classical Martin compactifica-

tion M̃(Γ, µ) via

κ : C(M̃(Γ, µ))→ l∞(Ĝ),

1γ → Iγ , kµ(t, ·) 7→ d−2
t Kµ̄(It).

This fully describes an identification, because by construction of the Martin
compactification the functions {1γ}γ∈Γ and {kµ(t, ·)}t∈Γ generate the algebra
of continuous functions on the Martin compactification. The next step is to
find out how this identification behaves with respect to the maps jn. Let Ω =
{(ωn)∞n=0 | ωn ∈ Γ} be the path space and Xn : Ω → Γ be the nth coordinate
projection. It can be shown that jn corresponds to Xn. Classical convergence
to the boundary says that the sequence Xn converges almost everywhere (with
respect to some measure on Ω constructed out of µ) to a Borel measurable
function X∞ : Ω → M(Γ, µ) (see [34, Thm. 24.10]). Using that convergence
almost everywhere is stronger than convergence in mean, the identification
shows that for any x ∈ M̃(Ĝ, µ) the sequence (jn(x))n converges in strong∗-
topology.

To establish the representation of harmonic elements one first needs to iden-
tify the state representing the unit, for this the classical convergence to the
boundary is again necessary. If y ∈ H∞(Ĝ, µ) is a general harmonic element,
then it corresponds to some harmonic function h ∈ H∞(Γ, µ). Using the clas-
sical convergence to the boundary, h can be represented as an integral over
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the Martin boundary. The identification κ then leads to the desired expression
for y. �

Convergence to the boundary describes the asymptotic behavior of the paths
in the random walk, but by Theorem 2.35 it also gives a natural representation
of harmonic elements. Let us take a closer look at this second part of the
conjecture.

Recall that ϕ∞ defines a faithful state on
⊗−1

−∞(l∞(Ĝ), ϕ). Consider the
GNS representation (πϕ∞ ,Hϕ∞ , ξϕ∞) of θ(H∞(Ĝ, ϕ)) defined by ϕ∞. Since
j∞ : Rϕ → θ(H∞(Ĝ, ϕ)) is surjective and

ν = lim
n
ϕn = lim

n
(ϕ⊗ · · · ⊗ ϕ)∆̂n−1 = ϕ∞ ◦ j∞,

it follows that

πν(Rϕ) = πϕ∞(θ(H∞(Ĝ, ϕ)))

inside B(Hν) =B(Hϕ∞). Therefore the morphism j∞ : Rϕ →
⊗−1

−∞(l∞(Ĝ), ϕ)
can be extended to an s∗-continuous map j∞ : πν(Rϕ)

′′ → θ(H∞(Ĝ, ϕ)). We
denote this extension by j∞ and similarly we write

θ0 := θ−1 ◦ j∞ : πν(Rϕ)
′′ → H∞(Ĝ, ϕ).

Lemma 2.37. For x, y ∈ Rϕ the following holds:

θ0(θ0(x)) = θ0(x) and θ0(xy) = θ0(x) · θ0(y),

where · is the product in H∞(Ĝ, ϕ). If in addition M̃(Ĝ, ϕ) ⊂ Rϕ, then
ν(Kϕ̌(x)θ0(a)) = ν(Kϕ̌(x)a) for a ∈ πν(M̃(Ĝ, ϕ))′′ and x ∈ c00(Ĝ).

Proof. Let x be ϕ-regular. From Proposition 2.33 we see θ0(x) ∈ H∞(Ĝ, ϕ),
thus

Pmϕ (θ0(x)) = θ0(x) for every m ≥ 0.

We also know from Proposition 2.33 that θ0 = s∗- limn P
n
ϕ . Hence

θ0 ◦ θ0(x) = s∗- lim
n
Pnϕ (θ0(x)) = s∗- lim

n
θ0(x) = θ0(x),

which proves the first identity. The second one follows from Proposition 2.33,
part (iv).

To prove the last statement, observe that if a ∈ πν(M̃(Ĝ, ϕ))′′, then θ0(a)
is Pϕ-harmonic and ν = ε̂ ◦ θ−1 ◦ j∞ = ε ◦ θ0. Hence

ν(Kϕ̌(x)θ0(a)) = ε̂ ◦ θ0(Kϕ̌(x)θ0(a))

= ε̂
(
θ0(Kϕ̌(x)) · (θ0(θ0(a)))

)

= ε̂
(
θ0(Kϕ̌(x)) · (θ0(a))

)

= ε̂ ◦ θ0(Kϕ̌(x)a))

= ν(Kϕ̌(x)a),

which proves the result. �
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Proposition 2.38. Assume that M̃(Ĝ, ϕ) ⊂ Rϕ, so that the random walk on
Ĝ defined by µ satisfies the first part of the conjecture. Then the following two
conditions are equivalent:

(i) K∗
ϕ̌ = θ0|M̃(Ĝ,ϕ) and j∞ : πν(M̃(Ĝ, ϕ))′′ → θ(H∞(Ĝ, ϕ)) is surjective.

(ii) Part (ii) of Conjecture 2.34 holds.

Proof. Suppose that (i) holds. Let h ∈ H∞(Ĝ, ϕ). By assumption there exists

an a ∈ πν(M̃(Ĝ, ϕ))′′ such that K∗
ϕ̌(a) = θ−1(j∞(a)) = h. Lemma 2.37 and

the definition of K∗
ϕ̌ in terms of the inner products (17) give

ν(Kϕ̌(x)h) = ν(Kϕ̌(x)θ0(a)) = ν(Kϕ̌(x)a)

= ν
(
Kϕ̌(σ

ν
−i/2(x))σ

ν
−i/2(a

∗∗)
)

=
(
a∗,Kϕ̌(σ

ν
−i/2(x))

)
ν

=
(
K∗
ϕ̌(a

∗), σν−i/2(x)
)
ψ̂

= ψ̂
(
σψ̂−i/2(x)σ

ψ̂
−i/2(K

∗
ϕ̌(a

∗)∗)
)

= ψ̂(xK∗
ϕ̌(a)) = ψ̂(xh),

which is exactly the second condition.
To prove the converse implication, note that Theorem 2.35 implies that

j∞ = θ ◦K∗
ϕ̌ and that K∗

ϕ̌ is an isomorphism. Hence j∞ is surjective. �

Corollary 2.39. Assume that M̃(Ĝ, ϕ) ⊂ Rϕ. In addition, assume that
Kϕ̌ : c00(Ĝ)→M(Ĝ, ϕ) has dense range and K∗

ϕ̌ : πν(M(Ĝ, ϕ))′′ → H∞(Ĝ, ϕ)
intertwines the right coactions of (c0(Ĝ), ∆̂). Then part (ii) of Conjecture 2.34
holds.

Proof. From [22, Prop. 3.12] it follows that K∗
ϕ̌ : πν(M(Ĝ, ϕ))′′ → H∞(Ĝ, ϕ)

is an isomorphism, while [22, Prop. 3.11] implies that K∗
ϕ̌ = (ν ⊗ ι)∆̂ = θ0

which thus is surjective. Now apply Proposition 2.38. �

3. Convergence to the boundary for SUq(2)

In Proposition 2.36 we obtained that if Γ is a discrete group, a quantum ran-
dom walk on l∞(Γ) converges to the boundary in sense of Conjecture 2.34. To
obtain a “true” quantum example of convergence to the boundary we consider
random walks on SUq(2)̂, where

SUq(2)̂ := ŜUq(2).

We shall show that if a probability measure µ on Irr(SUq(2)) is nice enough,
then the random walk on SUq(2)̂ defined by µ converges to the boundary.

3.1. SUq(2) and its Martin boundary. Fix q ∈ (0, 1). The C∗-algebra
C(SUq(2)) is the universal unital C∗-algebra generated by α and γ such that
the matrix (

α∗ γ
−qγ∗ α

)
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is unitary. The comultiplication ∆ is defined as

∆(α) := α⊗ α− qγ∗ ⊗ γ, ∆(γ) := γ ⊗ α+ α∗ ⊗ γ.
The Hopf algebra of matrix coefficients C[SUq(2)] is the ∗-algebra generated
by α and γ. The irreducible representations can be identified as Irr(SUq(2)) ∼=
1
2Z+ and the discrete dual equals

l∞(ŜUq(2)) = l∞-
⊕

s∈ 1
2Z+

B(Hs),

where Hs is a (2s+ 1)-dimensional Hilbert space. This is enough information
to be able to state the main theorem of this section.

Theorem 3.2. Assume that µ is a probability measure on 1
2Z+ that satisfies

the following two conditions:

(i) There exists s ∈ 1
2Z+ \ Z+ with s ∈ supp(µ).

(ii)
∑

t∈ 1
2Z+

µ(t)(1 + q2)2t <∞.

Then the random walk on SUq(2)̂ defined by µ converges to the boundary.

Proof. We postpone the proof of the regularity of the elements Kµ̄(x) for x ∈
c00(SUq(2)̂) to the next subsection. For now assume that the first part of the
conjecture holds.

The space Kϕ̌µ(c00(SUq(2)̂)) ⊂ M(Ĝ, µ) is dense by [22, Thm. 4.10]. By
[22, Cor. 4.13, Prop. 3.11] the mapping K∗

ϕ̌µ
intertwines the right coactions

of (c0(Ĝ), ∆̂). Now Corollary 2.39 gives the second part of the conjecture of
convergence to the boundary. �

Note that Collins also worked on the representation of harmonic functions
of the (classical) random walk on the center of SUq(N)̂, see [9, Thm. 4.1].

To prove the regularity of elements in the Martin boundary, we need some
knowledge of M̃(SUq(2)̂, µ). Here we give a short recap of known results. We
follow the conventions of [22].

The Hopf ∗-algebra Uq(su2) is generated by elements k, e, f satisfying the
following relations:

kk−1 = k−1k = 1, ke = qek, kf = q−1fk,

[e, f ] =
k2 − k−2

q − q−1
,

∆̂(k) = k ⊗ k, ∆̂(e) = e⊗ k−1 + k ⊗ e, ∆̂(f) = f ⊗ k−1 + k ⊗ f,
Ŝ(k) = k−1, Ŝ(e) = −q−1e, Ŝ(f) = −qf,
ε̂(k) = 1, ε̂(e) = ε̂(f) = 0,

k∗ = k, e∗ = f, f∗ = e.

For s ∈ 1
2Z+ let {ξsi }si=−s be an orthonormal basis of a (2s + 1)-dimensional

Hilbert space Hs. There exists a unitary representation of Uq(su2) on Hs given
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by

πs(k)ξ
s
j = q−jξsj , πs(e)ξ

s
j = ([s+ j]q[s− j + 1]q)

1
2 ξsj−1,

πs(f)ξ
s
j = ([s− j]q[s+ j + 1]q)

1
2 ξsj+1.

This representation is denoted by Us. Up to equivalence these are all irreducible
unitary representations. The direct sum of the representations {Us}s∈ 1

2Z+

defines a faithful representation of the quantum enveloping algebra Uq(su2) in
U(SUq(2)). The fusion rules of Uq(su2) are the same as for the Lie algebra su2.
These are explicitly known:

(19) Ut × Us ∼= Ut+s ⊕ Ut+s−1 ⊕ · · · ⊕ U|t−s|.

In particular, U1/2 × Ut ∼= Ut+1/2 ⊕ Ut−1/2. So there exist two orthonormal
bases of H1/2 ⊗Ht ∼= Ht−1/2 ⊕Ht+1/2, namely

{ξ
1
2
i ⊗ ξtj}i,j and {ξt−

1
2

i }i ∪ {ξt+
1
2

j }j.
These two bases can be expressed in terms of each other by means of inner
products, the so-called Clebsch–Gordan coefficients. Denote

Cq(s, t, r; j, k,m) := 〈ξsj ⊗ ξtk, ξrm〉.
From [17, Eqs. (3.4.68), (3.4.69)] it follows that1

Cq

(1
2
, s, s+

1

2
;±1

2
, j, j ± 1

2

)
= q

1
2 (∓s+j)

( [s± j + 1]q
[2s+ 1]q

) 1
2

,

Cq

(1
2
, s, s− 1

2
;±1

2
, j, j ± 1

2

)
= ∓q 1

2 (±s+j±1)
( [s∓ j]q
[2s+ 1]q

) 1
2

.

To compute these Clebsch–Gordan coefficients, Klimyk and Schmudgen [17]
make use of an algebra Ŭ q(su2). This algebra is different, but isomorphic to
Uq(su2), and it has generators E,F,K. Using the isomorphism given on these
generators by

ψ : Ŭ q(su2)→ Uq(su2), ψ(E) := f, ψ(F ) := e, ψ(K) := k−1,

we get the above Clebsch–Gordan coefficients from [17].
Note that the fusion rules (19) imply that if s ∈ 1

2Z+ \ Z+, then for any

t ∈ 1
2Z+ there exists n ∈ N such that Ut is a subrepresentation of U⊗n

s . So

s generates all irreducible representations. However, if s ∈ Z+ ⊂ 1
2Z+ and

t ∈ 1
2Z+, then Ut is a subrepresentation of U⊗n

s for some n ∈ N if and only
if t ∈ Z+. So a probability measure on Irr(SUq(2)) is generating if and only
if supp(µ) ∩ (12Z+ \ Z+) 6= ∅. A last thing to note is that ρ = k−2 (see
[22, Eq. (4.6)]).

In the same spirit as Lemma 2.12 we have the following (stronger estimate)
for SUq(2):

(20)
∑

t∈ 1
2Z+

mt
1
2
⊗n⊗s

≤ 2n.

1In [17, Eq. (6.3.68)] a factor + 1

2
should be replaced by +1, this is done in our formulas.
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Indeed, use (19) to obtain

U 1
2
⊗ Ut ∼=

{
Ut− 1

2
⊕ Ut+ 1

2
if t ≥ 1

2 ,

U 1
2

if t = 0.

Hence by induction
∑

r∈ 1
2Z+

mr
1
2
⊗n+1⊗s

=
∑

r∈ 1
2Z+

∑

t∈ 1
2Z+

mt
1
2
⊗n⊗s

mr
1
2⊗t
≤ 2n2 = 2n+1,

as desired.

Notation 3.3. In accordance with [22] define λ, λ̃ ∈∏
sB(Hs) by

πs(λ) :=
q(q2s+1 + q−2s−1)

(q − q−1)
√

[2]q
Is, πs(λ̃) := q−2sIs.

Define

χ−1 := −qfk, χ0 :=
ef − q2fe√

[2]q
, χ1 := qek.

Denote Xj := λ−1χj for j = −1, 0, 1. Moreover, write

X̃−1 := λ̃−1fk, X̃0 := λ̃−1k2, X̃1 := λ̃−1ek.

It can be shown that Xj , X̃j ∈ l∞(SUq(2)̂). Let Ψ be the unital C∗-algebra
in l∞(SUq(2)̂ ) generated by c0(SUq(2)̂ ) and the elements Xi, i = −1, 0, 1.
The quantum homogeneous sphere of Podleś [26] is the C∗-algebra

C(S2
q,0) := Ψ/c0(ŜUq(2)).

Lemma 3.4. The elements X̃i and Xi satisfy the following:

CXi + c0(ŜUq(2)) = CX̃i + c0(ŜUq(2)) for i = −1, 1,
CX0 + c0(ŜUq(2)) ⊂ C1 + CX̃0 + c0(ŜUq(2)),

CX̃0 + c0(ŜUq(2)) ⊂ C1 + CX0 + c0(ŜUq(2)).

Here CX := {tX | t ∈ C} denotes the complex linear span. In particular, Ψ

equals the unital C∗-subalgebra of l∞(SUq(2)̂ ) generated by X̃i, i = −1, 0, 1
and c0(SUq(2)̂).
Proof. We have

πs(λ̃
−1λ) = q2s

q(q2s+1 + q−2s−1)

(q − q−1)
√

[2]q
Is

=
1

(q − q−1)
√
[2]q

Is +
q4s+2

(q − q−1)
√
[2]q

Is,

πs(λ̃λ
−1) = q−2s (q − q−1)

√
[2]q

q(q2s+1 + q−2s−1)
Is

= (q − q−1)
√
[2]q Is + (q − q−1)

√
[2]q

−q4s+2

q4s+2 + 1
Is.
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Write c := (q− q−1)
√
[2]q. It follows that λ̃

−1λ = c−11+a and λ̃λ−1 = c1+a′

for some a, a′ ∈ c0(SUq(2)̂). Therefore if j = −1, 1, then

Xj = λ−1χj = (λ−1λ̃)λ̃−1χj = (c1 + a′)λ̃−1χj

= jqcX̃j + jqa′X̃j ∈ CX̃j + c0(ŜUq(2)),

X̃j = λ̃−1jq−1χj = (λ̃−1λ)λ−1jq−1χj = (c−11 + a)λ−1jq−1χj

= c−1jq−1Xj + jq−1aXj ∈ CXj + c0(ŜUq(2)).

Hence for j = −1, 1 the statement follows. For j = 0 observe first that

πs(χ0)ξ
s
i = πs

(ef − q2fe√
[2]q

)
ξsi

=
1√
[2]q

([s− i]q[s+ i+ 1]q − q2[s+ i]q[s− i+ 1]q)ξ
s
i

=
1√

[2]q(q − q−1)2

(
(q2s+1 + q−2s−1 − q2i+1 − q−2i−1)

− q2(q2s+1 + q−2s−1 − q−2i+1 − q2i−1)
)
ξsi

=
1√
[2]q

( 1− q2
(q − q−1)2

(q2s+1 + q−2s−1) +
1− q4

(q − q−1)2
q−2i−1

)
ξsi

= πs(λ)ξ
s
i +

q(q−2 − q2)
√
[2]q

(q−1 + q)(q − q−1)2
q−2iξsi

= πs

(
−λ+

q
√
[2]q

q − q−1
k2
)
ξsi .

Thus χ0 = −λ+
q
√

[2]q
q−q−1 k

2. Hence

X0 = −1 + λ−1 q
√
[2]q

q − q−1
k2 = −1 + q

√
[2]q

q − q−1
λ−1λ̃λ̃−1k2

= −1 + q
√
[2]q

q − q−1
(c1 + a′)X̃0,

X̃0 = λ̃−1k2 =
(q − q−1

q
√
[2]q

λλ̃−1
)
λ−1 q

√
[2]q

q − q−1
k2

=
(q − q−1

q
√
[2]q

(c−11 + a)
)
λ−1 q

√
[2]q

q − q−1
k2

=
q − q−1

q
√
[2]q

c−1 +
q − q−1

q
√
[2]q

c−1λ−1
(
−λ+

q
√
[2]q

q − q−1
k2
)
+ aλ−1k2

=
q − q−1

q
√
[2]q

c−1 +
q − q−1

q
√
[2]q

c−1X0 + aλ−1k2,

which proves the statement for j = 0. �
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Theorem 3.5 ([22, Thms. 4.1, 4.10]). Assume that µ is a generating and
transient probability measure on 1

2Z+ with finite mean, that is,

∑

s∈ 1
2Z+

µ(s)s <∞.

Then the Martin compactification M̃(SUq(2)̂, µ) of SUq(2)̂ with respect to µ
equals Ψ and thus the Martin boundary is isomorphic to C(S2

q,0).

3.6. Regularity. Let µ =
∑
t∈ 1

2Z+
µtδt be a probability measure on 1

2Z+. We

form the infinite tensor product with respect to the state ϕµ:

(21)

−1⊗

n=−∞

(l∞(ŜUq(2)), ϕµ).

Recall that the state ϕ∞
µ given by

ϕ∞
µ (· · · ⊗ 1⊗ 1⊗ xn ⊗ · · · ⊗ x1) := ϕµ(xn) · · ·ϕµ(x1)

is faithful on the infinite tensor product (21).

Proposition 3.7. There exists a constant C > 0 such that the elements X̃i

satisfy the estimate

‖1 1
2
⊗ πs(X̃i)− (π 1

2
⊗ πs)∆̂(X̃i)‖2ϕ 1

2
⊗ϕs
≤ C d−1

s

for every s ∈ 1
2Z+.

Proof. To shorten the notation slightly, write

a
+ 1

2

±,i := Cq

(1
2
, s, s+

1

2
;±1

2
, i, i± 1

2

)
,(22)

a
− 1

2

±,i := Cq

(1
2
, s, s− 1

2
;±1

2
, i, i± 1

2

)
,(23)

so that

ξ
1
2

± 1
2

⊗ ξsi = a
+ 1

2

±,iξ
s+ 1

2

i± 1
2

+ a
− 1

2

±,iξ
s− 1

2

i± 1
2

.

Recall that 〈ξsi , ξtj〉 = δs,tδi,j . Consider the index set

Is := {−s,−s+ 1, . . . , s− 1, s}.
We compute

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(1 1

2
⊗ πs(X̃0))

∗(π 1
2
⊗ πs)(∆̂(X̃0))

)
(24)

= (Tr 1
2
⊗Trs)

(
q2s(1 1

2
⊗ πs(k2))(π 1

2
⊗ πs)(∆̂(λ̃−1)(k2 ⊗ k2)(ρ−1 ⊗ ρ−1))

)

= q2s(Tr 1
2
⊗Trs)

(
(1 1

2
⊗ πs(k2))(π 1

2
⊗ πs)(∆̂(λ̃−1)(k4 ⊗ k4))

)
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= q2s
∑

j∈{ 1
2 ,−

1
2}

i∈Is

〈
(1 1

2
⊗ πs(k2))(π 1

2
⊗ πs)(∆̂(λ̃−1)(k4 ⊗ k4))ξ

1
2

j ⊗ ξsi , ξ
1
2

j ⊗ ξsi
〉

= q2s
∑

j∈{ 1
2 ,−

1
2}

i∈Is

q−4j−4i
〈
(π 1

2
⊗ πs)(∆̂(λ̃−1))ξ

1
2

j ⊗ ξsi , (1 1
2
⊗ πs(k2))ξ

1
2

j ⊗ ξsi
〉

= q2s
∑

±,i

q−6i∓2
〈
(π 1

2
⊗ πs)(∆̂(λ̃−1))ξ

1
2

± 1
2

⊗ ξsi , ξ
1
2

± 1
2

⊗ ξsi
〉

= q2s
∑

±,i

q−6i∓2

×
〈
a
+ 1

2
±,i πs+ 1

2
(λ̃−1)ξ

s+ 1
2

i± 1
2

+ a
− 1

2
±,i πs− 1

2
(λ̃−1)ξ

s− 1
2

i± 1
2

, a
+ 1

2
±,iξ

s+ 1
2

i± 1
2

+ a
− 1

2
±,iξ

s− 1
2

i± 1
2

〉

= q2s
∑

±,i

q−6i∓2
〈
q2s+1a

+ 1
2

±,iξ
s+ 1

2

i± 1
2

+ q2s−1a
− 1

2

±,iξ
s− 1

2

i± 1
2

, a
+ 1

2

±,iξ
s+ 1

2

i± 1
2

+ a
− 1

2

±,iξ
s− 1

2

i± 1
2

〉

= q4s
∑

±,i

q−6i∓2
(
q(a

+ 1
2

±,i)
2 + q−1(a

− 1
2

±,i)
2
)

= q4s
∑

±
i∈{−s,...,s−1,s}

q−6i∓2
(
qq(∓s+i)

[s± i+ 1]q
[2s+ 1]q

+ q−1q(±s+i±1) [s∓ i]q
[2s+ 1]q

)
.

It is a standard result that for a positive linear functional ω it holds that
ω(a∗) = ω(a). Clearly ϕs is positive, hence

(25) ϕs(ab) = ϕs(b∗a∗).

Since X̃0 is selfadjoint and (24) is real-valued, we see

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(π 1

2
⊗ πs)(∆̂(X̃0))

∗(1 1
2
⊗ πs(X̃0))

)

= q4s
∑

±
i∈{−s,...,s−1,s}

q−6i∓2
(
qq(∓s+i)

[s± i+ 1]q
[2s+ 1]q

+ q−1q(±s+i±1) [s∓ i]q
[2s+ 1]q

)
.

Similarly using that λ̃ is central gives

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(π 1

2
⊗ πs)(∆̂(X̃0))

∗(π 1
2
⊗ πs)(∆̂(X̃0))

)

= (Tr 1
2
⊗Trs)

(
(π 1

2
⊗ πs)(∆̂(λ̃−2k4)(ρ−1 ⊗ ρ−1))

)

= (Tr 1
2
⊗Trs)

(
(π 1

2
⊗ πs)(∆̂(λ̃−2)(k6 ⊗ k6)))

)

=
∑

±
i∈{−s,...,s−1,s}

〈
(π 1

2
⊗ πs)(∆̂(λ̃−2)(k6 ⊗ k6))ξ

1
2

± 1
2

⊗ ξsi , ξ
1
2

± 1
2

⊗ ξsi
〉

=
∑

±,i

q(−6i∓3)
〈
(π 1

2
⊗ πs)(∆̂(λ̃−2))ξ

1
2

± 1
2

⊗ ξsi , ξ
1
2

± 1
2

⊗ ξsi
〉
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=
∑

±,i

q(−6i∓3)

×
〈
a
+ 1

2
±,i πs+ 1

2
(λ̃−2)ξ

s+ 1
2

i± 1
2

+ a
− 1

2
±,i πs− 1

2
(λ̃−2)ξ

s− 1
2

i± 1
2

, a
+ 1

2
±,iξ

s+ 1
2

i± 1
2

+ a
− 1

2
±,iξ

s− 1
2

i± 1
2

〉

=
∑

±,i

q(−6i∓3)
〈
q(4s+2)a

+ 1
2

±,iξ
s+ 1

2

i± 1
2

+ q(4s−2)a
− 1

2

±,iξ
s− 1

2

i± 1
2

, a
+ 1

2

±,iξ
s+ 1

2

i± 1
2

+ a
− 1

2

±,iξ
s− 1

2

i± 1
2

〉

= q4s
∑

±,i

q(−6i∓3)
(
q2q(∓s+i)

[s± i+ 1]q
[2s+ 1]q

+ q−2q(±s+i±1) [s∓ i]q
[2s+ 1]q

)
.

Last using that

1 =
〈
ξ

1
2

± 1
2

⊗ ξsi , ξ
1
2

± 1
2

⊗ ξsi
〉

=
〈
a
+ 1

2
±,iξ

s+ 1
2

i± 1
2

+ a
− 1

2
±,iξ

s− 1
2

i± 1
2

, a
+ 1

2
±,iξ

s+ 1
2

i± 1
2

+ a
− 1

2
±,iξ

s− 1
2

i± 1
2

〉

= (a
+ 1

2

±,i)
2 + (a

− 1
2

±,i)
2

gives

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(1 1

2
⊗ πs(X̃0))

∗(1 1
2
⊗ πs(X̃0))

)

= (Tr 1
2
⊗Trs)

(
(π 1

2
⊗ πs)((1 1

2
⊗ (λ̃−2k4))(ρ−1 ⊗ ρ−1))

)

= q4s
∑

±,i

〈
(π 1

2
(k2)⊗ πs(k6))ξ

1
2

± 1
2

⊗ ξsi , ξ
1
2

± 1
2

⊗ ξsi
〉

= q4s
∑

±,i

q(−6i∓1)

= q4s
∑

±,i

q(−6i∓1)
(
q(∓s+i)

[s± i+ 1]q
[2s+ 1]q

+ q(±s+i±1) [s∓ i]q
[2s+ 1]q

)
.

Combining these four calculations yields

(ϕ 1
2
⊗ ϕs)

(
(1 1

2
⊗ πs(X̃0)− (π 1

2
⊗ πs)(∆̂(X̃0)))

∗

× (1 1
2
⊗ πs(X̃0)− (π 1

2
⊗ πs)(∆̂(X̃0)))

)

= (ϕ 1
2
⊗ ϕs)

(
(1 1

2
⊗ πs(X̃0))

∗(1 1
2
⊗ πs(X̃0))

)

+ (ϕ 1
2
⊗ ϕs)

(
(π 1

2
⊗ πs)(∆̂(X̃0))

∗(π 1
2
⊗ πs)(∆̂(X̃0))

)

− 2(ϕ 1
2
⊗ ϕs)

(
(1 1

2
⊗ πs(X̃0))

∗(π 1
2
⊗ πs)(∆̂(X̃0))

)

= (d 1
2
ds)

−1q4s
(∑

±,i

q(−6i∓1)
(
q(∓s+i)

[s± i+ 1]q
[2s+ 1]q

+ q(±s+i±1) [s∓ i]q
[2s+ 1]q

)

+
∑

±,i

q(−6i∓3)
(
q2q(∓s+i)

[s± i+ 1]q
[2s+ 1]q

+ q−2q(±s+i±1) [s∓ i]q
[2s+ 1]q

)

− 2
∑

±,i

q(−6i∓2)
(
qq(∓s+i)

[s± i+ 1]q
[2s+ 1]q

+ q−1q(±s+i±1) [s∓ i]q
[2s+ 1]q

))
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= (d 1
2
ds)

−1[2s+1]−1
q q4s

(∑

±,i

q(−6i∓1)
(
(1+q∓2q2−2q∓1q)q(∓s+i)[s± i+1]q

+ (1 + q∓2q−2 − 2q∓1q−1)q(±s+i±1)[s∓ i]q
))

= d−1
1
2

d−2
s q4s

( s∑

i=−s

q(−6i−1)
(
(1 + 1− 2)q(i−s)[s+ i+ 1]q

+ (1 + q−4 − 2q−2)q(s+i+1)[s− i]q
)
+

s∑

i=−s

q(−6i+1)

×
(
(1 + q4 − 2q2)q(s+i)[s− i+ 1]q + (1 + 1− 2)q(−s+i−1)[s+ i]q

))

= d−1
1
2

d−2
s q4s

s∑

i=−s

q−6i
((
q−1(1− q−2)2q(s+i+1)[s− i]q

)

+
(
q(1− q2)2q(s+i)[s− i+ 1]q

))

= d−1
1
2

d−2
s

q4s

(q − q−1)

s∑

i=−s

q−6i
((
q−3(q − q−1)2q(s+i+1)(qs−i − q−s+i)

)

+
(
q3(q − q−1)2q(s+i)(qs−i+1 − q−s+i−1)

))

= d−1
1
2

d−2
s q4s(q − q−1)

s∑

i=−s

q−6i
(
q2s−2 − q2i−2 + q2s+4 − q2i+2

)

= d−1
1
2

d−2
s q4s(q − q−1)

(
(q2s−2 + q2s+4)

s∑

i=−s

q−6i − (q−2 + q2)

s∑

i=−s

q−4i
)

= d−1
1
2

d−2
s q4s(q − q−1)

(
(q2s−2 + q2s+4)[2s+ 1]q3 − (q−2 + q2)[2s+ 1]q2

)

= d−1
1
2

d−2
s q4s(q − q−1)

(
O(q−4s) +O(q−4s)

)

= d−1
1
2

d−2
s O(1),

which proves the result for X̃0. In fact, this estimate is stronger than stated
in the proposition, but we will not need that.

We deal with X̃1 in an analogous way, however the estimates become slightly
more involved, because the ξsi are no longer eigenvectors for πs(e) and πs(f).

The calculations for X̃−1 are similar and are omitted. First we calculate

dsϕs(πs(X̃
∗
1 X̃1)) = Trs

(
πs(λ̃

−1kfλ̃−1ek)πs(ρ
−1)

)
(26)

= Trs(πs(λ̃
−2fek4))

= q4s
s∑

i=−s

〈πs(fek4)ξsi , ξsi 〉
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= q4s
s∑

i=−s

q−4i([s+ i]q[s− i+ 1]q)
1
2

× ([s− (i − 1)]q[s+ (i− 1) + 1]q)
1
2 〈ξsi , ξsi 〉

= q4s
s∑

i=−s

q−4i[s+ i]q[s− i+ 1]q

=
q4s

(q − q−1)2

s∑

i=−s

q−4i(qs+i − q−s−i)(qs−i+1 − q−s+i−1)

=
q4s

(q − q−1)2

s∑

i=−s

q−4i(q2s+1 + q−2s−1 − q2i−1 − q−2i+1)

=
q4s

(q − q−1)2

(
(q2s+1 + q−2s−1)

s∑

i=−s

q−4i − q−1
s∑

i=−s

q−2i − q
s∑

i=−s

q−6i
)

=
q4s

(q − q−1)2
(
(q2s+1 + q−2s−1)[2s+ 1]q2 − q−1[2s+ 1]q − q[2s+ 1]q3

)
.

This gives

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(1 1

2
⊗ πs(X̃1))

∗(1 1
2
⊗ πs(X̃1))

)

= q4s
q + q−1

(q − q−1)2
(
(q2s+1 + q−2s−1)[2s+ 1]q2 − q−1[2s+ 1]q − q[2s+ 1]q3

)
.

Using the second equality of (26), for s± 1
2 instead of s we also get

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(π 1

2
⊗ πs)(∆̂(λ̃−1ek)∗∆̂(λ̃−1ek))

)

= (Tr 1
2
⊗Trs)

(
(π 1

2
⊗ πs)(∆̂(kfλ̃−1λ̃−1ek)(k2 ⊗ k2))

)

= (Tr 1
2
⊗Trs)

(
(π 1

2
⊗ πs)(∆̂(λ̃−2fek4))

)

= Trs− 1
2

(
πs− 1

2
(λ̃−2fek4)

)
+Trs+ 1

2

(
πs+ 1

2
(λ̃−2fek4)

)

=
q4s−2

(q − q−1)2
(
(q2s + q−2s)[2s]q2 − q−1[2s]q − q[2s]q3

)

+
q4s+2

(q − q−1)2
(
(q2s+2 + q−2s−2)[2s+ 2]q2 − q−1[2s+ 2]q − q[2s+ 2]q3

)
.

Recall the abbreviations of the Clebsch–Gordan coefficients a
+ 1

2

±,i and a
− 1

2

±,i

introduced in (22) and (23) above. We obtain

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(1 1

2
⊗ πs(X̃1))

∗(π 1
2
⊗ πs)(∆̂(X̃1))

)

= (Tr 1
2
⊗Trs)

(
(1 1

2
⊗ πs(λ̃−1ek))∗(π 1

2
⊗ πs)(∆̂(λ̃−1ek))(k2 ⊗ k2)

)

= (Tr 1
2
⊗Trs)

(
q2s(π 1

2
⊗ πs)((1 ⊗ kf)∆̂(λ̃−1e)(k3 ⊗ k3))

)
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= q2s
∑

±
i∈{−s,...,s−1,s}

〈
(π 1

2
⊗ πs)((1 ⊗ kf)∆̂(λ̃−1e)(k3 ⊗ k3))ξ

1
2

± 1
2

⊗ ξsi , ξ
1
2

± 1
2

⊗ ξsi
〉

= q2s
∑

±,i

q∓
3
2 q−3i

〈
(π 1

2
⊗ πs)(∆̂(λ̃−1e))ξ

1
2

± 1
2

⊗ ξsi , (π 1
2
⊗ πs)(1 ⊗ ek)ξ

1
2

± 1
2

⊗ ξsi
〉

= q2s
∑

±,i

q∓
3
2 q−3iq−i([s+ i]q[s− i+ 1]q)

1
2

×
〈
(π 1

2
⊗ πs)(∆̂(λ̃−1e))ξ

1
2

± 1
2

⊗ ξsi , ξ
1
2

± 1
2

⊗ ξsi−1

〉

= q2s
∑

±,i

q∓
3
2 q−4i([s+ i]q[s− i+ 1]q)

1
2

×
〈
a
+ 1

2

±,iπs+ 1
2
(λ̃−1e)ξ

s+ 1
2

i± 1
2

+ a
− 1

2

±,iπs− 1
2
(λ̃−1e)ξ

s− 1
2

i± 1
2

,

a
+ 1

2

±,i−1ξ
s+ 1

2

i−1± 1
2

+ a
− 1

2

±,i−1ξ
s− 1

2

i−1± 1
2

〉

= q2s
∑

±,i

q∓
3
2 q−4i([s+ i]q[s− i+ 1]q)

1
2

×
〈
a
+ 1

2

±,iq
2s+1

([
s+

1

2
+ i± 1

2

]
q

[
s+

1

2
− i∓ 1

2
+ 1

]
q

) 1
2

ξ
s+ 1

2

i± 1
2−1

+ a
− 1

2

±,iq
2s−1

([
s− 1

2
+ i± 1

2

]
q

[
s− 1

2
− i ∓ 1

2
+ 1

]
q

) 1
2

ξ
s− 1

2

i± 1
2−1

,

a
+ 1

2

±,i−1ξ
s+ 1

2

i−1± 1
2

+ a
− 1

2

±,i−1ξ
s− 1

2

i−1± 1
2

〉

= q4s
∑

±,i

q∓
3
2 q−4i

×
(
q
(
[s+ i]q[s− i+ 1]q

[
s+ i+

1

2
± 1

2

]
q

[
s− i+ 3

2
∓ 1

2

]
q

) 1
2

a
+ 1

2

±,ia
+ 1

2

±,i−1

+ q−1
(
[s+ i]q[s− i+ 1]q

[
s+ i− 1

2
± 1

2

]
q

[
s− i+ 1

2
∓ 1

2

]
q

) 1
2

a
− 1

2

±,ia
− 1

2

±,i−1

)

= q4s
∑

±,i

q∓
3
2 q−4i

(
q
(
[s+ i]q[s− i+ 1]q

[
s+ i+

1

2
± 1

2

]
q

[
s− i+ 3

2
∓ 1

2

]
q

) 1
2

× q 1
2 (∓s+i)

( [s± i+ 1]q
[2s+ 1]q

) 1
2

q
1
2 (∓s+i−1)

( [s± i∓ 1 + 1]q
[2s+ 1]q

) 1
2

+ q−1
(
[s+ i]q[s− i+ 1]q

[
s+ i− 1

2
± 1

2

]
q

[
s− i+ 1

2
∓ 1

2

]
q

) 1
2

× q 1
2 (±s+i±1)

( [s∓ i]q
[2s+ 1]q

) 1
2

q
1
2 (±s+i−1±1)

( [s∓ i± 1]q
[2s+ 1]q

) 1
2
)
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=
q4s

[2s+ 1]q

∑

±,i

q∓
3
2 q−4i

(
q
(
[s+ i]q[s− i+ 1]q

[
s+ i+

1

2
± 1

2

]
q

×
[
s− i+ 3

2
∓ 1

2

]
q
[s± i+ 1]q[s± i∓ 1 + 1]q

) 1
2

q∓s+i−
1
2

+ q−1
(
[s+ i]q[s− i+ 1]q

[
s+ i− 1

2
± 1

2

]
q

[
s− i+ 1

2
∓ 1

2

]
q

× [s∓ i]q[s∓ i± 1]q

) 1
2

q±s+i±1− 1
2

)

=
q4s

ds

∑

i

q−4i
(
q−

3
2+1

(
[s+ i]q[s− i+ 1]q[s+ i+ 1]q[s− i+ 1]q

× [s+ i+ 1]q[s+ i]q
) 1

2 q−s+i−
1
2 + q

3
2+1

(
[s+ i]q[s− i+ 1]q[s+ i]q

× [s− i+ 2]q[s− i+ 1]q[s− i+ 2]q
) 1

2 qs+i−
1
2 + q−

3
2−1

(
[s+ i]q[s− i+ 1]q

× [s+ i]q[s− i]q[s− i]q[s− i+ 1]q
) 1

2 qs+i+
1
2 + q

3
2−1

(
[s+ i]q[s− i+ 1]q

× [s+ i− 1]q[s− i+ 1]q[s+ i]q[s+ i− 1]q
) 1

2 q−s+i−
3
2

)

=
q4s

ds

∑

i

q−4i[s+ i]q[s− i+ 1]q
(
[s+ i+ 1]qq

−s+i−1

+ [s− i+ 2]qq
s+i+2 + [s− i]qqs+i−2 + [s+ i− 1]qq

−s+i−1
)

=
q4s

ds

∑

i

q−4i[s+ i]q[s− i+ 1]q

×
(
q[s+ i + 1 + s− i+ 2]q + q−1[s− i+ s+ i− 1]q

)

= q4s
q[2s+ 3]q + q−1[2s− 1]q

[2s+ 1]q

s∑

i=−s

q−4i[s+ i]q[s− i+ 1]q

= q4s
q[2s+ 3]q + q−1[2s− 1]q

[2s+ 1]q(q − q−1)2

×
(
(q2s+1 + q−2s−1)[2s+ 1]q2 − q−1[2s+ 1]q − q[2s+ 1]q3

)
,

where we used in the third last equality that

qm[n]q + q−n[m]q = [m+ n]q

and in the last equality the fifth equality of (26). Since this expression is
real-valued, by (25) it follows that also

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(π 1

2
⊗ πs)(∆̂(X̃1))

∗(1 1
2
⊗ πs(X̃1))

)

= q4s
q[2s+ 3]q + q−1[2s− 1]q

[2s+ 1]q(q − q−1)2

×
(
(q2s+1 + q−2s−1)[2s+ 1]q2 − q−1[2s+ 1]q − q[2s+ 1]q3

)
.
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Adding these four terms shows that X̃1 satisfies the required estimates. Indeed,
using the asymptotic behavior of the q-numbers (cp. Lemma 2.14) gives

d 1
2
ds(ϕ 1

2
⊗ ϕs)

(
(1 1

2
⊗ πs(X̃1)− (π 1

2
⊗ πs)∆̂(X̃1))

∗(1 1
2
⊗ πs(X̃1)− (π 1

2
⊗ πs)∆̂(X̃1))

)

= q4s
q + q−1

(q − q−1)2
(
(q2s+1 + q−2s−1)[2s+ 1]q2 − q−1[2s+ 1]q − q[2s+ 1]q3

)

+
q4s−2

(q − q−1)2
(
(q2s + q−2s)[2s]q2 − q−1[2s]q − q[2s]q3

)

+
q4s+2

(q − q−1)2
(
(q2s+2 + q−2s−2)[2s+ 2]q2 − q−1[2s+ 2]q − q[2s+ 2]q3

)

− 2q4s
q[2s+ 3]q + q−1[2s− 1]q

[2s+ 1]q(q − q−1)2

×
(
(q2s+1 + q−2s−1)[2s+ 1]q2 − q−1[2s+ 1]q − q[2s+ 1]q3

)

=
q4s

(q − q−1)2

(
(q + q−1)

×
(
O(q−4s) + q−2s−1 −q−4s−2

q2 − q−2
−O(q−2s) +O(q6s)− q −q

−6s−3

q3 − q−3

)

+ q−2
(
O(q−4s) + q−2s −q−4s

q2 − q−2
−O(q−4s)−O(q6s)− q −q

−6s

q3 − q−3

)

+ q2
(
O(q−4s) + q−2s−2 −q−4s−4

q2 − q−2
−O(q−4s)−O(q6s)− q −q

−6s−6

q3 − q−3

)

− 2
(
qq−2(1 +O(q4s)) + q−1q2(1 +O(q4s))

)

×
(
O(q−4s) + q−2s−1 −q−4s−2

q2 − q−2
+O(q−4s) +O(q6s)− q −q

−6s−3

q3 − q−3

))

=
q4s

(q − q−1)2

(
(q + q−1)

(−q−6s−3

q2 − q−2
+

q−6s−2

q3 − q−3

)

− q−6s−2

q2 − q−2
+

q−6s−1

q3 − q−3
− q−6s−4

q2 − q−2
+

q−6s−3

q3 − q−3

+ 2(q + q−1)(1 +O(q4s))
( q−6s−3

q2 − q−2
− q−6s−2

q3 − q−3

)
+O(q−4s)

)

=
q4s

(q − q−1)2
(
O(q−2s) +O(q−4s)

)

= O(1),

which proves the claim for X̃1. �
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Lemma 3.8. Let C > 0, x ∈ l∞(SUq(2)̂ ) and let µ =
∑
t∈ 1

2Z+
µtδt be a

probability measure on 1
2Z+. Denote U =

⊕
t∈supp(µ) Ut. Assume that the

element x satisfies the estimate

(27) ‖1 1
2
⊗ πs(x)− (π 1

2
⊗ πs)∆̂(x)‖2ϕ 1

2
⊗ϕs
≤ C d−1

s

for every s ∈ 1
2Z+. Then the inequality

‖1U ⊗ πs(x) − (πU ⊗ πs)∆̂(x)‖2ϕµ⊗ϕs
≤ C d−1

s

[2]q

(
√

[2]q −
√
2)2

∑

t∈ 1
2Z+

µt
(d 1

2
)2t

dt

holds for every s ∈ 1
2Z+.

Proof. Let x ∈ l∞(SUq(2)̂) satisfy (27). We start with the following estimate:

∥∥(1 1
2
⊗ · · · ⊗ 1 1

2
⊗ (π 1

2
⊗ · · · ⊗ π 1

2︸ ︷︷ ︸
k

⊗πs)∆̂k(x))

− (1 1
2
⊗ · · · ⊗ 1 1

2
⊗ 1 1

2
⊗ (π 1

2
⊗ · · · ⊗ π 1

2︸ ︷︷ ︸
k−1

⊗πs)∆̂k−1(x))
∥∥2

ϕ 1
2
⊗···⊗ϕ 1

2
⊗ϕs

= ‖(π 1
2
⊗ · · · ⊗ π 1

2
⊗ πs)

(
(ι ⊗ ∆̂k−1)∆̂(x) − (1 1

2
⊗ ∆̂k−1(x))

)
‖2ϕ 1

2
⊗···⊗ϕ 1

2
⊗ϕs

= (ϕ 1
2
⊗ · · · ⊗ ϕ 1

2
⊗ ϕs)(π 1

2
⊗ · · · ⊗ π 1

2
⊗ πs)

(
((ι ⊗ ∆̂k−1)∆̂(x) − 1 1

2
⊗ ∆̂k−1(x))∗((ι⊗ ∆̂k−1)∆̂(x) − 1 1

2
⊗ ∆̂k−1(x))

)

=
(
(ϕ 1

2
◦ π 1

2
)⊗ ((ϕ 1

2
⊗ · · · ⊗ ϕ 1

2
⊗ ϕs)(π 1

2
⊗ · · · ⊗ π 1

2
⊗ πs)∆̂k−1)

)
(
(∆̂(x)− 1 1

2
⊗ (x))∗(∆̂(x)− 1 1

2
⊗ (x))

)

=
∑

r∈ 1
2Z+

mr
1
2
⊗k−1⊗s

dr

dk−1
1
2

ds
(ϕ 1

2
⊗ ϕr)(π 1

2
⊗ πr)

(
(∆̂(x)− 1 1

2
⊗ (x))∗(∆̂(x)− 1 1

2
⊗ (x))

)

≤
∑

r∈ 1
2Z+

mr
1
2
⊗k−1⊗s

dr

dk−1
1
2

ds
C d−1

r

= d
−(k−1)
1
2

d−1
s C

∑

r∈ 1
2Z+

mr
1
2
⊗k−1⊗s

≤ d−(k−1)
1
2

d−1
s C2k−1

= C
( 2

d 1
2

)k−1

d−1
s .

Here we used (20) to obtain a bound on the sum of the multiplicities. Now let
t ∈ 1

2Z+. Then the representation πt embeds into (π 1
2
)⊗2t with multiplicity 1.
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Therefore for any positive element y it holds

dt
(d 1

2
)2t

ϕt(y) ≤
∑

r∈ 1
2Z+

mr
1
2
⊗2t

dr
(d 1

2
)2t

ϕr(y) = (ϕ 1
2
)2t(y).

For brevity write κ := ϕ 1
2
⊗ · · · ⊗ ϕ 1

2
⊗ ϕs. Combining this with the previous

estimate, we obtain

‖1t ⊗ πs(x)− (πt ⊗ πs)∆̂(x)‖2ϕt⊗ϕs

≤
(d 1

2
)2t

dt
‖1 1

2
⊗ · · · ⊗ 1 1

2
⊗ πs(x) − (π 1

2
⊗ · · · ⊗ π 1

2
⊗ πs)(∆̂2t−1 ⊗ ι)∆̂(x)‖2κ

≤
(d 1

2
)2t

dt

(
‖ 1 1

2
⊗ · · · ⊗ 1 1

2︸ ︷︷ ︸
2t

⊗πs(x)− 1 1
2
⊗ · · · ⊗ 1 1

2︸ ︷︷ ︸
2t−1

⊗((π 1
2
⊗ πs)∆̂(x))‖κ + · · ·

+ ‖1 1
2
⊗ ((π 1

2
⊗ · · · ⊗ π 1

2︸ ︷︷ ︸
2t−1

⊗πs)∆̂2t−1(x)) − (π 1
2
⊗ · · · ⊗ π 1

2︸ ︷︷ ︸
2t

⊗πs)∆̂2t(x)‖κ
)2

≤
(d 1

2
)2t

dt

(
(C d−1

s )
1
2 +

(
C
( 2

d 1
2

)
d−1
s

) 1
2

+ · · ·+
(
C
( 2

d 1
2

)2t−1

d−1
s

) 1
2
)2

≤ C
(d 1

2
)2t

dtds

( ∞∑

n=0

( 2

[2]q

)n
2
)2

= C
(d 1

2
)2t

dtds

( 1

1−
√

2
[2]q

)2

= C
(d 1

2
)2t

dtds

[2]q

(
√
[2]q −

√
2)2

.

Since

‖1U ⊗ πs(x)− (πU ⊗ πs)∆̂(x)‖2ϕµ⊗ϕs

=
∑

t

µt‖1U ⊗ πs(x)− (πU ⊗ πs)∆̂(x)‖2ϕt⊗ϕs
,

the proof is complete. �

Corollary 3.9. Let C > 0, x ∈ l∞(SUq(2)̂ ) and let µ =
∑
t∈ 1

2Z+
µtδt be

a probability measure on 1
2Z+. Assume that

∑
t µt(1 + q2)2t < ∞ and that

the element x satisfies estimate (27) for every s ∈ 1
2Z+. Then there exists a

constant C′ independent of n such that

‖jn(x) − jn+1(x)‖2ϕ∞
µ
≤ C′

( ∑

r∈ 1
2Z+

µ(r)
dim(Ur)

dr

)n
.
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In particular, if supp(µ) 6= {0}, then
∞∑

n=0

‖jn(x)− jn+1(x)‖2ϕ∞
µ
<∞.

Proof. For n ≥ 1 it holds that

q − q−1

q2 − 1
qn ≤ 1

[n]q
≤ qn(q − q−1)

and also ∑

t

µt[2]
2t
q q

2t =
∑

t

µt(1 + q2)2t.

So
∑

t

µt
(d 1

2
)2t

dt
<∞ if and only if

∑

t

µt(1 + q2)2t <∞.

Use Lemma 3.8 and the decomposition of ϕnµ using the constants cn,s(µ)
(see (14)) to obtain the following chain of inequalities:

‖jn(x)− jn+1(x)‖2ϕ∞
µ

= ‖1⊗ ∆̂n−1(x)− ∆̂n(x)‖2
ϕ⊗n+1

µ

= ‖1⊗ x− ∆̂(x)‖2ϕµ⊗(ϕµ)n

=
∑

s∈ 1
2Z+

cn,s(µ)‖1⊗ x− ∆̂(x)‖2ϕµ⊗ϕs

≤
∑

s∈ 1
2Z+

cn,s(µ)C d
−1
s

[2]q

(
√

[2]q −
√
2)2

( ∑

t∈ 1
2Z+

µt
(d 1

2
)2t

dt

)

≤ C [2]q

(
√

[2]q −
√
2)2

( ∑

t∈ 1
2Z+

µt
(d 1

2
)2t

dt

)( ∑

r∈ 1
2Z+

µ(r)
dim(Ur)

dr

)n
.

This proves the first part of the corollary. Write

d :=
∑

r

µ(r)
dim(Ur)

dr
.

If supp(µ) 6= {0}, the sum satisfies 0 < d < 1 and thus

∞∑

n=0

dn =
1

1− d <∞. �

Now it is a matter of putting everything together to prove the regularity for
random walks on SUq(2)̂.

Proof of the first part of Theorem 3.2. Proposition 3.7 and Corollary 3.9 im-
ply that for elements x = X̃i, i = −1, 0, 1 the following holds:

∞∑

n=0

(· · · ⊗ ϕµ ⊗ ϕµ)
(
(jn(x) − jn+1(x))

∗(jn(x) − jn+1(x))
)
<∞.
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Hence s- limn jn(x) exists. As X∗
0 = X0 and X̃∗

−1 = qX̃1, we in fact have

that s∗- limn jn(x) exists. In other words, the elements X̃j are ϕµ-regular. By

Lemma 3.4 and Theorem 3.5 the Martin boundary M̃(SUq(2)̂, µ) is generated
as a C∗-algebra by c0(SUq(2)̂) and X̃i, i = −1, 0, 1. Proposition 2.33 asserts
that all elements in c0(SUq(2)̂ ) are ϕµ-regular and that the set of regular

elements forms a C∗-algebra. Hence all elements in M̃(SUq(2)̂, µ) are regular.
�

Remark 3.10. This proof of regularity of “functions” on the Martin com-
pactification is fundamentally different from the proof in the classical case.
There is no need to use some sort of “noncommutative stopping times” (it is
even not clear what such objects should be). Due to the fact that 0 < q < 1,
there is exponentially fast convergence to the boundary if the measure µ is
nice enough, this is much stronger convergence than classically. We emphasize
that this proof does not work in the classical case, so not for q = 1.

4. Boundary convergence and monoidal equivalence

In this section we will establish that the property of boundary convergence
is stable under monoidal equivalence. In [12] De Rijdt and Vander Vennet
showed how one can compute the Poisson and Martin boundary via monoidal
equivalences. We will follow their approach. However, later we will tackle
the same problem in a more general setting by defining boundary convergence
for random walks on C∗-tensor categories and showing compatibility with the
definition for quantum groups (see Sections 5.22 and 6.6 below). For this reason
we will be very brief in this section and only outline the main arguments.

Definition 4.1 ([6, Def. 3.1]). Two compact quantum groups G1 and G2 are
said to be monoidally equivalent if the representation categories Rep(G1) and
Rep(G2) are unitarily monoidally equivalent as C∗-tensor categories.

The following theorem is proven in [6], the formulation is from [12, Thm. 4.2].
Since this result plays a fundamental role and we use different conventions, we
recall it here for convenience.

Theorem 4.2. Given two monoidally equivalent compact quantum groups G1

and G2 together with a unitary monoidal equivalence κ : Rep(G1)→ Rep(G2),
the following holds:

(i) There exists a (up to isomorphism) unique unital ∗-algebra B equipped
with a faithful state ω and unitary elements Xs ∈ B ⊗B(Hs,Hκ(s)) sat-
isfying
• Xs

12X
t
13(ιB ⊗ S) = (ιB ⊗ κ(S))Xr, whenever S ∈ Hom(r, s⊗ t);

• the matrix coefficients of {Xs}s∈Irr(G1) form a basis in B as a vector
space;
• (ω ⊗ ι)(Xs) = 0 if s 6= 0.
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(ii) There exist unique commuting ergodic actions δ1 : B → B ⊗alg C[G1] and
δ2 : B → C[G2]⊗alg B satisfying, for every s ∈ Irr(G1),

(δ1 ⊗ ι)(Xs) = (Xs
13)(Us)23 ∈ B ⊗ C[G1]⊗B(Hs,Hκ(s)),

(δ2 ⊗ ι)(Xs) = (Uκ(s))13(X
s
23) ∈ C[G2]⊗ B ⊗B(Hs,Hκ(s)).

(iii) The state ω is invariant under the actions δ1 and δ2 and is given by the
identity ω(b)1B = (ι⊗ h)δ1(b).

This algebra B is called the link algebra of G1 and G2 under the monoidal
equivalence κ. The algebra B can be constructed explicitly, however such a
definition is irrelevant for our purposes. We will only work with the properties
described above. Using the faithful state ω, this can all be extended to the von
Neumann framework. LetB be the von Neumann algebra generated by B in the
GNS representation of ω. The actions δ1 and δ2 have unitary implementations
and can therefore be extended to

δ1 : B → B ⊗̄ L∞(G1) and δ2 : B → L∞(G2) ⊗̄B
(see [12, Rem. 3.12]).

Notation 4.3. In this section X denotes the following element:2

X :=
∏

s∈Irr(G1)

Xs ∈ l∞-
⊕

s∈Irr(G1)

B ⊗̄B(Hs,Hκ(s)).

Use this to define the collection of maps

kn :

−1⊗

i=−n

l∞(Ĝ2)→ B ⊗̄
( −1⊗

i=−n

l∞(Ĝ1)
)

(n ≥ 1),

x 7→ (X∗
1,n+1 · · ·X∗

1,2)(1B ⊗ x)(X1,2 · · ·X1,n+1),

k0 : C→ B, z 7→ z1B.

Observe that if W (i) is the multiplicative unitary of Gi, then (δ1 ⊗ ι)(X) =

X13W
(1)
23 and (ι⊗ δ2)(X) =W

(2)
13 X23 when viewed in the multiplier algebra.

For the remainder of this section we assume that G1 and G2 are two
monoidally equivalent compact quantum groups with unitary monoidal equiv-
alence κ : Rep(G1)→ Rep(G2).

Notation 4.4. If α : N → L∞(G1)⊗̄N is a left action of the compact quantum
group G1 on a von Neumann algebra N , denote

B ⊠
α N :=

{
x ∈ B ⊗̄N | (δ1 ⊗ ι)(x) = (ι⊗ α)(x)

}
.

In the algebraic setting, if N is a unital ∗-algebra and α : N → C[G1]⊗alg N
an action, let

B ⊠
α
alg N :=

{
x ∈ B ⊗alg N | (δ1 ⊗ ι)(x) = (ι ⊗ α)(x)

}
.

The C∗-algebraic case is more involved due to technicalities with the range,
see also [33, §8]. We formulate it in general, but we will only need it if the

2Later the symbol X will again be used to indicate objects in categories.
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C∗-algebra under consideration equals the Martin boundary or Martin com-
pactification. Suppose D is a C∗-algebra with an action α : D → C(G1)⊗D.
Define for s ∈ Irr(G1) the spectral subspaces

Ks :=
{
x ∈ D ⊗ H̄s | (α⊗ ι)(x) = x13U

s
23

}
.

Denote

Ds := span
{
x(1⊗ ξ) | x ∈ Ks, ξ ∈ Hs

}
, D := span

{
Ds | s ∈ Irr(G1)

}
.

It follows that α : Ds → C[G1]s ⊗alg Ds is a Hopf algebra coaction. An action
α is called reduced if the conditional expectation onto the fixed point algebra
(ι⊗ h)α : D → Dα is faithful. For a reduced action α : D → C(G1)⊗D define
B ⊠αred D to be the norm closure of B ⊠αalg D in B ⊗D.

Proposition 4.5 below will play a crucial role to transport the convergence
properties of one quantum group to a monoidal equivalent one. The result
shows that all the algebraic operations can be transferred from G1 to G2 by
means of the link algebra B. The construction is motivated by and can be
proved in a spirit similar to [12, §7, §8], it extends their results to higher
tensor powers. When defining random walks De Rijdt and Vander Vennet
work with states of the form ψs := d−1

s Tr(πs(·ρ)) and slice in the right leg,
while we work with ϕs := d−1

s Tr(πs(·ρ−1)) slicing in the left leg. Moreover,
they interchange the roles of G1 and G2 in the monoidal equivalence, while we
do not. Therefore our maps defining the isomorphisms have a slightly different
form than theirs.

Proposition 4.5. Let αl be the adjoint action as defined by (12). Using the
notation introduced above, we have that the map

kn :

−1⊗

−n

l∞(Ĝ2)→ B ⊠
αl

( −1⊗

−n

l∞(Ĝ1)
)

is a ∗-isomorphism. Moreover, the following identities hold:

kn+1 ◦ (ι⊗m ⊗ ∆̂2 ⊗ ι⊗n−m−1) = (ιB ⊗ ι⊗m ⊗ ∆̂1 ⊗ ι⊗n−m−1) ◦ kn,
kn−1 ◦ (ι⊗m ⊗ ϕκ(s) ⊗ ι⊗n−m−1) = (ιB ⊗ ι⊗m ⊗ ϕs ⊗ ι⊗n−m−1) ◦ kn,

for 0 ≤ m ≤ n− 1, and

kn+1(1 ⊗ x) = (kn(x))1 ⊗ 1l∞(G1) ⊗ (kn(x))2,...,n

= (ιB ⊗ 1l∞(Ĝ1) ⊗ ι⊗n)(kn(x))

for x ∈⊗−1
−n l

∞(Ĝ2).

Suppose that µ is a probability measure on Irr(G1). Recall that the push-
forward measure κ∗(µ) is defined by

κ∗(µ)(s) := µ(κ−1(s)).

It is a probability measure on Irr(G2) and satisfies κ(s̄) = κ(s) and thus

κ∗(µ̄) = κ∗(µ).
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Theorem 4.6. Suppose that G1 and G2 are two monoidally equivalent quan-
tum groups with a unitary monoidal equivalence κ : Rep(G1) → Rep(G2) and
that µ is a probability measure on Irr(G1). If the random walk on Ĝ1 defined
by µ converges to the boundary, then so does the random walk defined by κ∗(µ)
on Ĝ2.

Sketch of proof. Suppose x ∈ l∞(Ĝ2). From Proposition 4.5 it is easy to com-
pute that

(· · · ⊗ ϕκ∗(µ) ⊗ ϕκ∗(µ))
(
(jn(x)− jm(x))∗(jn(x)− jm(x))

)

= (ω ⊗ (· · · ⊗ ϕµ ⊗ ϕµ))(
((ιB ⊗ jn)k1(x)− (ιB ⊗ jm)k1(x))

∗((ιB ⊗ jn)k1(x)− (ιB ⊗ jm)k1(x))
)
.

If y ∈ B ⊠
αl

alg M̃(Ĝ1, µ), then y is of the form y =
∑n

i=1 bi ⊗ yi for some

finite sum and elements yi ∈ M̃(Ĝ1, µ) and bi ∈ B. Using convergence to the
boundary for Ĝ1, one can show that s∗- limn(ιB ⊗ jn)(y) exists. Using density,

this extends to all elements y ∈ B ⊠αl
reg M̃(Ĝ1, µ). Since

k1 : M̃(Ĝ2, κ∗(µ))→ B ⊠
αl

red M̃(Ĝ1, µ)

is a ∗-isomorphism (cf. [12, Thm. 10.1]), s∗- limn jn(x) exists for all x ∈
M̃(Ĝ2, κ∗(µ)).

To prove the representation of harmonic elements one first needs to show
that k1 : H

∞(Ĝ2, κ∗(µ))→ B ⊠αl H∞(Ĝ1, µ) is a ∗-isomorphism. Then using
the identities of Proposition 4.5 and the spectral subspaces of H∞(Ĝ2, κ(µ)),
it is not hard to show that the following limits exists and equalities hold:

νG2(Kκ∗(µ̄)(x)h) = lim
n
(ϕκ∗(µ) ⊗ · · · ⊗ ϕκ∗(µ))

(
∆̂n(Kκ∗(µ̄)(x)h)

)

= lim
n
(ω ⊗ ϕµ ⊗ · · · ⊗ ϕµ)

(
(ιB ⊗ ∆̂n)(k1(Kκ∗(µ̄)(x)h))

)

= (ω ⊗ νG1)
(
k1(Kκ∗(µ̄)(x)h)

)

= (ω ⊗ ψ̂G1)
(
k1(x)k1(h)

)
= ψ̂G2(xh).

This is the required identity. �

Example 4.7. In [32] the free orthogonal quantum groups were introduced.
Let n ≥ 2 and F ∈ GLn(C) be a matrix with FF̄ = ±1, where F̄ is the
matrix (F̄ )ij = F̄ij . Define A0(F ) to be the universal C∗-algebra generated by
elements uij , 1 ≤ i, j,≤ n satisfying:

U = (uij)i,j is unitary, U = FU cF−1,

where (U c)i,j = u∗ij . The comultiplication is given by ∆(uij) :=
∑n

k=1 uik⊗ukj .
Note that

A0(Fq) = SUq(2) for Fq =

(
0 −√q√
q−1 0

)
.

Moreover, (A0(F1),∆1) is monoidally equivalent to (A0(F2),∆2) if and only if
sgn(F1F̄1) = sgn(F2F̄2) and Tr(F ∗

1 F1) = Tr(F ∗
2 F2) (see [6, Thm. 5.3, Cor. 5.4]).
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It follows that every free orthogonal quantum group A0(F ) with F ∈ GLn(C)
and n ≥ 2 is monoidally equivalent to SUq(2) for some q ∈ [−1, 1] \ {0}.

Let A0(F ) be a free orthogonal quantum group monoidally equivalent to
SUq(2) for some q ∈ (0, 1) (thus FF̄ = −1 and Tr(F ∗F ) > 2), so q satisfies
q + q−1 = Tr(F ∗F ). Suppose we have an explicit identification

κ : Irr(A0(F ))→
1

2
Z+
∼= Irr(SUq(2))

(see also [1, Thm. 1]) and assume that a generating probability measure µ on
Irr(A0(F )) satisfies the condition

∑

s∈Irr(A0(F ))

µ(s)(1 + q2)2κ(s) <∞.

Then by Theorem 3.2 the random walk defined by κ∗(µ) on SUq(2)̂ converges
to the boundary. Hence Theorem 4.6 shows that the random walk on Â0(F )
defined by µ converges to the boundary.

5. A categorical approach to the Martin boundary

The results of [12] and Section 4 combined with the paper [24] indicate that
the Martin boundary and compactification and also the notion of convergence
to the boundary can be defined on the level of C∗-tensor categories. In this
section we show that this is indeed the case.

5.1. Random walks on C∗-tensor categories. Neshveyev and Yamashita
found a way to define random walks on C∗-tensor categories [25]. For such
random walks they defined a Poisson boundary and used it to prove their
characterization of quantum groups with the same representation theory as
SU(N). Motivated by their work we will construct a Martin boundary and
formulate convergence to the boundary for such random walks. This subsection
will form the starting point of this theory. We introduce the analog of the
algebra of functions on the path space and the necessary functors on these
spaces. It is motivated by [25, §3.1].

Notation 5.2. Let C be a strict C∗-tensor category with simple unit 1. For
n ≥ 1 and an object U ∈ Ob(C) define the n-ary functor

(ι⊗n ⊗ U) : C × · · · × C → C,
(ι⊗n ⊗ U)(X1, . . . , Xn) := (X1 ⊗ · · · ⊗Xn ⊗ U),

(ι⊗n ⊗ U)(f1, . . . , fn) := f1 ⊗ · · · ⊗ fn ⊗ ιU .

Clearly ι⊗n ⊗ U is unitary. For two objects U, V ∈ Ob(C) consider the space
of natural transformations Nat(ι⊗n ⊗ U, ι⊗n ⊗ V ). Since every object can be
decomposed into simple ones and ι⊗n ⊗ U respects direct sums, a natural
transformation η : ι⊗n ⊗ U → ι⊗n ⊗ V is completely determined by its action
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on simple objects Us. Thus

Nat(ι⊗n ⊗ U, ι⊗n ⊗ V )(28)

∼=
∏

s1,...,sn∈Irr(C)

HomC(Us1 ⊗ · · · ⊗ Usn ⊗ U,Us1 ⊗ · · · ⊗ Usn ⊗ V ).

A natural transformation η ∈ Nat(ι⊗n ⊗U, ι⊗n ⊗ V ) is (uniformly) bounded if

‖η‖∞ := sup
{
‖ηUs1 ,...,Usn

‖ | s1, . . . , sn ∈ Irr(C)
}
<∞.

Denote by Natb(ι
⊗n⊗U, ι⊗n⊗V ) the uniformly bounded natural transforma-

tions. Define C−n as the C∗-category which is the subobject completion of the
category with objects Ob(C) and morphisms

HomC−n(U, V ) := Natb(ι
⊗n ⊗ U, ι⊗n ⊗ V ), U, V ∈ Ob(C).

So a morphism η = (ηX1,...,Xn)X1,...,Xn ∈ HomC−n(U, V ) consists of a bounded
collection of morphisms

ηX1,...,Xn : X1 ⊗ · · · ⊗Xn ⊗ U → X1 ⊗ · · · ⊗Xn ⊗ V
natural in X1, . . . , Xn ∈ Ob(C). In C−n the multiplication of morphisms is
given by composition and the involution comes from the ∗ on C. The C∗-norm
on HomC−n(U, V ) is given by

‖η‖∞ := sup
{
‖ηs1,...,sn‖ | s1, . . . , sn ∈ Irr(C)

}

for η ∈ Natb(ι
⊗n ⊗ U, ι⊗n ⊗ V ).

Observe that there exists a canonical functor E : C → C−n given on objects
by U 7→ U and on morphisms

(29) E(T ) := ι⊗n ⊗ T, where (ι⊗n ⊗ T )X1,...,Xn := ιX1 ⊗ · · · ⊗ ιXn ⊗ T.
Obviously E is a unitary functor.

The category C−n should be thought of as the space of functions on paths
of length n (see also Corollary 6.9). In particular, for n = 1 we obtain the
functions on the space.

Notation 5.3. For n = 1 there is more structure present. Define the tensor
product of objects in C−1 to be inherited from C. For natural transformations
define

(30) (ν ⊗ η) := (ν ⊗ ιX)(ιU ⊗ η), ν ∈ HomC−1(U, V ), η ∈ HomC−1(W,X),

where

(ν ⊗ ιX)Y := νY ⊗ ιX : Y ⊗ U ⊗X → Y ⊗ V ⊗X,(31)

(ιU ⊗ η)Y := ηY⊗U : Y ⊗ U ⊗W → Y ⊗ U ⊗X.(32)

Extend this to the subobject completion. With this tensor structure, C−1

becomes a C∗-tensor category. For η ∈ Nat(ι⊗ U, ι⊗ V ) write

supp(η) := {s ∈ Irr(C) | ηs 6= 0}
for the support of η.
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A natural transformation η ∈ Nat(ι⊗ V, ι⊗W ) is called

• vanishing at infinity if {‖ηs‖}s∈Irr(C) ∈ c0(Irr(C));
• compactly or finitely supported if |supp(η)| <∞.

These classes will be denoted by Nat0(ι⊗ V, ι⊗W ) and Nat00(ι⊗ V, ι⊗W ),
respectively. By the same argument as for (28) we get

Nat0(ι⊗ V, ι⊗W ) ∼= c0-
⊕

s∈Irr(C)

HomC(Us ⊗ V, Us ⊗W ),

Nat00(ι⊗ V, ι⊗W ) ∼=
⊕

s∈Irr(C)

HomC(Us ⊗ V, Us ⊗W ).

Observe that M(Nat0(ι ⊗ V, ι ⊗ V )) = Natb(ι ⊗ V, ι ⊗ V ), where M indicates
the multiplier algebra.

Notation 5.4. For 0 ≤ m < n define the functors (ι ⊗ ·) : C−n → C−(n+1)

and ι⊗m ⊗ ∆̂⊗ ι⊗n−m−1 : C−n → C−(n+1). On objects U ∈ Ob(C) ⊂ Ob(C−n)
they are given by the identity while on morphisms η ∈ HomC−n(U, V ) they are
defined by

(ι⊗ η)X1,...,Xn+1 := ιX1 ⊗ ηX2,...,Xn+1 ,(33)

((ι⊗m ⊗ ∆̂⊗ ι⊗n−m−1)(η))X1,...,Xn+1(34)

:= ηX1,...,Xm,Xm+1⊗Xm+2,Xm+3,...,Xn+1 .

These functors extend uniquely to the subobject completions. Given objects
U, V,X ∈ Ob(C) pick a standard solution (RX , R̄X) of the conjugate equations
for X . Define the normalized partial trace

trX ⊗ιV : HomC(X ⊗ U,X ⊗ V )→ HomC(U, V ),

(trX ⊗ιV )(T ) := d−1
X (R∗

X ⊗ ιV )(ιX̄ ⊗ T )(RX ⊗ ιU ).
Notice that HomC(X ⊗ U,X ⊗ V ) is not a tensor product, so this notation
might seem a bit misleading at first. Use these partial traces to define for each
X ∈ Ob(C) and n ≥ 2 the collection of completely positive linear maps

trX ⊗ι⊗n−1 : HomC−n(U, V )→ HomC−(n−1)
(U, V ),

((trX ⊗ι⊗n−1)(η))X1,...,Xn−1(35)

:= (trX ⊗ι⊗n−1 ⊗ ιV )(ηX,X1,...,Xn−1)

= d−1
X (R∗

X ⊗ ιn−1 ⊗ ιV )(ιX̄ ⊗ ηX,X1,...,Xn−1)(RX ⊗ ιn−1 ⊗ ιU ),
where (RX , R̄X) is a standard solution of the conjugate equations for X . Note
that (trX ⊗ι⊗n−1) does not define a functor, because it does not preserve
composition of morphisms. Similarly, if n = 1 and η ∈ C−1(U, V ), denote

(36) trX(η) := (trX ⊗ιV )(ηX) ∈ HomC(U, V ).

Also the maps (trX ⊗ι⊗n−1) can be extended to the subobject completion.
The lemma below shows that (33)–(36) are well-defined.
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Since C is assumed to be strict, the functor ∆̂ is coassociative. Define
inductively ∆̂n := (∆̂ ⊗ ι⊗n−1)∆̂n−1. By linearity define, for a probability
measure µ on Irr(C),

trµ⊗ι⊗n−1 :=
∑

s∈Irr(C)

µ(s)(trUs ⊗ι⊗n−1).

Note that simplicity of the unit 1 ensures that the traces trµ take values in
C ∼= EndC(1).

Lemma 5.5. If η ∈ HomC−n(U, V ), then (ι ⊗ η) and ι⊗m ⊗ ∆̂ ⊗ ι⊗n−m−1(η)
are in HomC−(n+1)

(U, V ). Moreover, if µ is a probability measure on Irr(C),
the series ∑

s∈Irr(C)

µ(s)(trUs ⊗ι⊗n−1)(ηX1,...,Xn−1)

converges in norm in HomC(X1 ⊗ · · · ⊗Xn−1 ⊗ U,X1 ⊗ · · · ⊗Xn−1 ⊗ V ) and
(trµ⊗ι⊗n−1(η)) ∈ Hom C−(n−1)(U, V ).

Proof. The proof is straight-forward. We will only show that ∆̂ defines a
natural transformation. The reasoning for the other two transformations is
similar. Let fi : Xi → Yi for some objects Xi, Yi ∈ Ob(C) and write k :=
n−m− 1. Obviously fm+1 ⊗ fm+2 : Xm+1 ⊗Xm+2 → Ym+1 ⊗ Ym+2, so that

((ι⊗m ⊗ ∆̂⊗ ι⊗k)(η))Y1,...,Yn+1(f1 ⊗ · · · ⊗ fn+1 ⊗ ιU )
= ηY1,...,Ym+1⊗Ym+2,...,Yn+1(f1 ⊗ · · · ⊗ (fm+1 ⊗ fm+2)⊗ · · · ⊗ fn+1 ⊗ ιU )
= (f1 ⊗ · · · ⊗ (fm+1 ⊗ fm+2)⊗ · · · ⊗ fn+1 ⊗ ιV )ηX1,...,Xm+1⊗Xm+2,...,Xn+1

= (f1 ⊗ · · · ⊗ fn+1 ⊗ ιV )((ι⊗m ⊗ ∆̂⊗ ι⊗k)(η))X1 ,...,Xn+1.

Clearly (ι⊗ η) and ιm⊗ ∆̂⊗ ιn−m−1(η) are bounded by ‖η‖∞. For trµ we get
∥∥∥
∑

s

µ(s)(trUs ⊗ι⊗n−1)(ηX1,...,Xn−1)
∥∥∥

≤
∑

s

µ(s)d−1
s ‖Rs‖2‖ιŪs

⊗ ηUs,X1,...,Xn−1‖ ≤ ‖η‖∞,

so the series converges and defines a natural bounded transformation. �

Definition 5.6 ([25]). Suppose that µ is a probability measure on Irr(C).
Define the collection of positive linear maps

Pµ : HomC−1(U, V )→ HomC−1(U, V ), Pµ := (trµ⊗ι)∆̂.
Pµ is called the Markov operator of µ. It is well-defined due to Lemma 5.5
above. Explicitly we have

Pµ(η)X =
∑

s∈Irr(C)

µ(s)(trUs ⊗ιX ⊗ ιV )(ηUs⊗X)

for η ∈ Natb(ι ⊗ U, ι⊗ V ) ⊂ HomC−1(U, V ).
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As in the quantum case we need a classical discrete Markov chain on the set
of irreducible objects. To define this random walk we need a couple of central
natural transformations. At the moment only V = 1 is relevant, but later we
will also need general objects V .

Definition 5.7. For V ∈ Ob(C) and t ∈ Irr(C) put

κt,V ∈ HomC−1(V, V ) ∼= l∞-
⊕

s∈Irr(C)

EndC(Us ⊗ V ), κt,Vs :=

{
ιUt⊗V if s = t,

0 if s 6= t.

From (28) we see

Natb(ι⊗ 1, ι⊗ 1) ∼= l∞-
⊕

s∈Irr(C)

HomC(Us, Us) = l∞-
⊕

s∈Irr(C)

Cιs.

Therefore the matrix {pµ(s, t)}s,t∈Irr(C) determined by the identity

Pµ(κ
t,1)κs,1 = pµ(s, t)κ

s,1

is well-defined and has entries in C. It describes a Markov kernel on Irr(C). In-
deed, if µ is a probability measure, then ‖Pµ‖ ≤ 1. Clearly Pµ is positive, thus
pµ(s, t) ∈ [0, 1] for all s, t. Furthermore if we denote by I the natural transfor-
mation which is the identity on all objects, then

∑
t Pr(κ

t,1)s = Pr(I)s = ιs for
all r, s. Therefore

∑
t pµ(s, t)ιs =

∑
t Pµ(κ

t,1)s = ιs and hence
∑
t pµ(s, t) = 1.

Define the map ∨ : Ps 7→ P̌s := Ps̄ and extend it to operators PU and Pµ by
antilinearity.

Lemma 5.8. For the operators PU , Pµ defined above the following properties
hold:

PU ◦ PV = PV⊗U , P̌µ = Pµ̄, P̌U = PŪ , P̌U ◦ P̌V = P̌U⊗V ,

pµ(s, t) =
∑

r

µ(r)mt
r,s

dt
drds

, pnµ̄(s, t) =
( dt
ds

)2

pnµ(t, s),

Pnµ (κ
t,1)κs,1 = pnµ(s, t)κ

s,1.

This lemma can be proved by the same methods as used in the proof of
[22, Lem. 2.4]. We leave it as an exercise for the reader.

5.9. The categorical Martin boundary. Even though this subsection is
called “The categorical Martin boundary”, we will start by presenting the
Poisson boundary, as that one is easier to define and we will need it later in
this paper. After stating the main properties we move our attention to the
Martin boundary for random walks on C∗-tensor categories. We need to prove
some additional results before we can give its definition.

Definition 5.10 ([25]). Let µ be a probability measure on Irr(C). A natural
transformation η ∈ Natb(ι⊗ U, ι⊗ V ) is called µ-harmonic if Pµ(η) = η.
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Given T ∈ HomC(X,Y ), consider E(T ) = (ιU ⊗ T )U ∈ HomC−1(X,Y ) (see

(29)). The tensor product of natural transformations (30) gives κt,V ⊗E(T ) =
κt,V ⊗ T which acts as

(κt,V ⊗ E(T ))U := κt,VU ⊗ T ∈ Hom(U ⊗ V ⊗X,U ⊗ V ⊗ Y ).

Note that in HomC(U ⊗ V, U ⊗W ),

Ps(κ
t,1 ⊗ T )U = (trs⊗ιU ⊗ ιW )((κt,1 ⊗ T )Us⊗U )

= (trs⊗ιU )(κt,1)Us⊗U ⊗ T = Ps(κ
t,1)U ⊗ T

and thus

(37) Pµ(κ
t,1 ⊗ T ) = Pµ(κ

t,1)⊗ T.
In particular, as κt,V = κt,1 ⊗ ιV , it follows that
(38) Pµ(κ

t,V ) = Pµ(κ
t,1)⊗ ιV .

Definition 5.11 ([25]). The categorical Poisson boundary of C with respect
to a probability measure µ on Irr(C) consists of a pair (P(C, µ), E), where
P(C, µ) is the C∗-tensor category which is the subobject completion of C with
morphism sets given by

HomP(C,µ)(U, V ) :=
{
η ∈ Natb(ι⊗ U, ι⊗ V ) | η is µ-harmonic

}
.

The composition of morphisms in P(C, µ) is given by (ν ·η)X := limn P
n
µ (νη)X .

For objects U, V ∈ Ob(C) ⊂ Ob(P(C, µ)) the tensor product is the same as in C,
while on morphisms ν, η it is defined by

(ν ⊗ η)Y := (ν ⊗ ιX) · (ιU ⊗ η),
where ν ⊗ ιX and ιU ⊗ η are as in (31) and (32). E is the tensor functor
E : C → P(C, µ) defined as E(U) := U on objects and E(T )U := (ιU ⊗ T )U on
morphisms.

This Poisson boundary is well-defined. Indeed, in [25] it is shown that if η
and ν are bounded µ-harmonic natural transformations, then η · ν is again a
bounded µ-harmonic natural transformation. Moreover, this product is asso-
ciative. In addition for natural bounded transformations it holds that

(39) (Pµ(η) ⊗ ιY )W = Pµ(η ⊗ ιY )W , (ιU ⊗ Pµ(ν))W = Pµ(ιU ⊗ ν)W .
So the tensor product is well-defined. Also (ιU ⊗ T )U is harmonic for every
T ∈ HomC(X,Y ) and thus the functor E is well-defined. Note that in general
the unit object 1 need no longer be simple in P(C, µ).

Definition 5.12. If for every s ∈ Irr(C) there exists an n ∈ N such that
s ∈ supp(Pnµ (κ

0,1)), then µ is called generating. Consider the classical random
walk (Irr(C), pµ). If this classical Markov chain is transient, we call µ or Pµ
transient. If Pµ is transient, we define the Green kernel Gµ :=

∑∞
n=0 P

n
µ .
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Remark 5.13. If C = Rep(G) for a compact quantum group G, then κs,1 cor-
responds to Is. So a probability measure µ on Irr(G) is generating respectively
transient in the sense of quantum groups (Definition 2.26) if and only if µ is
generating respectively transient in the sense of categories (Definition 5.12).

From

pnµ̄(s, t) =
( dt
ds

)2

pnµ(t, s)

(see Lemma 5.8) it is obvious that µ is generating (respectively transient) if
and only if µ̄ is generating (respectively transient).

Lemma 5.14. If η ∈ Nat00(ι⊗ V, ι⊗ V ) ⊂ HomC−1(V, V ) and µ is transient,
then ‖Gµ(η)‖∞ <∞ and thus Gµ(η)U is well-defined for all U ∈ Ob(C). If in
addition µ is generating, then (Gµ(κ

0,V ))U is invertible for all U, V ∈ Ob(C).
Proof. Put C := ‖η‖∞. Then |ηs| ≤ C

∑
t∈supp(η) κ

t,V
s for all s ∈ Irr(C). The

Markov kernel Pµ is completely positive, so the Green kernel Gµ being a sum
of Markov kernels is positive as well. It follows that

‖Gµ(η)‖∞ ≤ ‖Gµ(|η|)‖∞ ≤ C
∑

s∈supp(η)

sup
t∈Irr(C)

‖(Gµ(κs,V ))t‖

= C
∑

s∈supp(η)

(
sup

t∈Irr(C)

gnµ(t, s)
)
.

By the maximum principle (see for instance [27, §2.1]) each of the summands
supt g

n
µ(t, s) is finite. Since η is finitely supported, the quantity ‖Gµ(η)‖∞ is

finite.
The support supp(κ0,V ) = {0}, so Gµ(κ0,V )U is well-defined for every ob-

ject U . Use the generating property of µ to find for each t ∈ Irr(C) an nt ∈ N,
such that t ∈ supp(Pnt

µ (κ0,1)). We get Pnt
µ (κ0,V ) = Pnt

µ (κ0,1)⊗ ιV from (38).
The latter is nonzero by choice of nt. Since Pµ is positive and κ0,V is a positive
natural transformation, we get that Pnt

µ (κ0,V )t is strictly positive (meaning
that there exists c > 0 such that Pnt

µ (κ0,V )t > cιUt⊗V ). Let U ∈ Ob(C) and
decompose U =

⊕
tm

t
UUt. Denote

I :=
{
t ∈ Irr(C) | mt

U 6= 0
}

and N := max
{
nt | t ∈ I

}
.

Then for each t ∈ I the inequality
∑N

n=0 P
n
µ (κ

0,V )t ≥ Pnt
µ (κ0,V )t implies that∑N

n=0 P
n
µ (κ

0,V )t is strictly positive. Now

Gµ(κ
0,V )U ≥

⊕

t∈I

mt
V

N∑

n=0

Pnµ (κ
0,V )t

shows that Gµ(κ
0,V )U is strictly positive, thus invertible. �

Definition 5.15. Suppose that µ is a generating and transient probability
measure on Irr(C). The Martin kernel for Pµ is the operator given by

Kµ̄ : Nat00(ι⊗ V, ι⊗W )→ HomC−1(V,W ),

Kµ̄(η)U := Gµ̄(η)U (Gµ̄(κ
0,V )U )

−1.
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By Remark 5.13, µ̄ is generating and transient, so Lemma 5.14 implies that
the Martin kernel Kµ̄ makes sense.

Note that (38) implies by linearity that Gµ(κ
t,V ) = Gµ(κ

t,1) ⊗ ιV . As Ps
and thus Gµ̄ preserve the center, for any ν ∈ Natb(ι⊗ V, ι⊗W ) it holds that

Gµ̄(κ
0,W )U νU = (Gµ̄(κ

0,1)⊗ ιW )U νU

= νU (Gµ̄(κ
0,1)⊗ ιV )U = νU Gµ̄(κ

0,V )U .

Therefore we obtain

Gµ̄(η)U (Gµ̄(κ
0,V )U )

−1 = (Gµ̄(κ
0,W )U )

−1Gµ̄(η)U .

This means that the appropriate inverse can be placed on either side of Gµ̄(η)
when defining the Martin kernel.

Definition 5.16. Given a strict C∗-tensor category C with simple unit 1 and
a generating and transient probability measure µ on Irr(C), let M̃′ be the
smallest C∗-subcategory of C−1 containing the objects Ob(C) and morphism
sets Nat0(ι ⊗ U, ι ⊗ V ) and Kµ̄(Nat00(ι ⊗ U, ι ⊗ V )). The composition of

morphisms in M̃′ is given by the composition of natural transformations.
The Martin compactification of C with respect to µ consists of the pair

(M̃(C, µ), E), where M̃(C, µ) is a direct sum and subobject completion of M̃′

and E : C → M̃(C, µ) is the restriction of the canonical functor E : C → C−1

introduced in Notation 5.2.

The functor E is well-defined. Indeed, by linearity identity (37) implies that
Gµ(κ

0,1 ⊗ T ) = Gµ(κ
0,1)⊗ T for T ∈ HomC(V,W ). Therefore

Kµ(κ
0,1 ⊗ T ) = Gµ(κ

0,1 ⊗ T )Gµ(κ0,V )−1

= (Gµ(κ
0,1)⊗ T )(Gµ(κ0,1)⊗ ιV )−1 = ι⊗ T.

Again note that the unit object 1 of M̃(C, µ) need no longer be simple.

Lemma 5.17. The category M̃(C, µ) forms a C∗-tensor category.

Proof. Since C−1 is a C∗-tensor category, we only need to show that M̃(C, µ)
is closed under tensor products. Recall from (30) the tensor product in C−1.
It suffices to show that

(a) (η ⊗ ιY ) ∈ Nat0(ι⊗ U ⊗ Y, ι⊗ V ⊗ Y ) if η ∈ Nat0(ι⊗ U, ι⊗ V );
(b) (ιU ⊗ ν) ∈ Nat0(ι⊗ U ⊗X, ι⊗ U ⊗ Y ) if ν ∈ Nat0(ι⊗X, ι⊗ Y );
(c) Kµ̄(η)⊗ ιY = Kµ̄(η ⊗ ιY ) if η ∈ Nat00(ι⊗ U, ι⊗ V );

(d) ιU ⊗Kµ̄(ν) ∈ M̃(C, µ) if ν ∈ Nat00(ι ⊗X, ι⊗ Y ).

Part (a) is trivial, because (η⊗ιY )U = ηU⊗ιY , thus supp(η⊗ιY ) = supp(η)
and ‖(η ⊗ ιY )W ‖ = ‖ηW ‖.

For (b), suppose that η has finite support. By Frobenius reciprocity

|supp(ιU ⊗ ν)| = |{s ∈ Irr(C) | ηUs⊗U 6= 0}|
= |{s ∈ Irr(C) | ∃ t ∈ supp(ν), mt

s,U 6= 0}|
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= |{s ∈ Irr(C) | ∃ t ∈ supp(ν), ms̄
U,t̄ 6= 0}|

≤
∑

t∈supp(ν)

|{s ∈ Irr(C) | ms̄
U,t̄ 6= 0}| <∞.

Hence
ιU ⊗ ν ∈ Nat00(ι⊗ (U ⊗X), ι⊗ (U ⊗ Y )).

The claim follows since Nat0(ι⊗ (U ⊗X), ι⊗ (U ⊗ Y )) is the norm-closure of
Nat00(ι⊗ (U ⊗X), ι⊗ (U ⊗ Y )).

For (c), use (39) to obtain

Kµ̄(η)⊗ ιY = (Gµ̄(η)Gµ̄(κ
0,U )−1)⊗ ιY = (Gµ̄(η)⊗ ιY )(Gµ̄(κ0,U )⊗ ιY )−1

= (Gµ̄(η ⊗ ιY ))(Gµ̄(κ0,U ⊗ ιY ))−1 = Kµ̄(η ⊗ ιY ).
Part (d) is slightly more complicated. Again by (39) we obtain

ιU ⊗Kµ̄(ν) = ιU ⊗ (Gµ̄(ν)Gµ̄(κ
0,X)−1)

= (ιU ⊗Gµ̄(ν))(ιU ⊗ (Gµ̄(κ
0,X))−1)

= Gµ̄(ιU ⊗ ν)(Gµ̄(ιU ⊗ κ0,X))−1.

Since µ is generating, by Lemma 5.14 the morphism Gµ̄(κ
0,U⊗X) is invertible.

It follows that ιU ⊗Kµ̄(ν) can be written as

ιU ⊗Kµ̄(ν) = Gµ̄(ιU ⊗ ν)(Gµ̄(κ0,U⊗X))−1Gµ̄(κ
0,U⊗X)(Gµ̄(ιU ⊗ κ0,X))−1

= Kµ̄(ιU ⊗ ν)Kµ̄(ιU ⊗ κ0,X)−1,

which is an element of M̃(C, µ). �

Let M̃′ be as in Definition 5.16. DefineM′ to be the category with

Ob(M′) := Ob(M̃′) = Ob(C)
and

HomM′(V,W ) :=
{
[η] | η ∈ HomM̃′(V,W )

}
,

where [η] denotes the equivalence class of η in Natb(ι⊗ V, ι⊗W )/Nat0(ι⊗ V,
ι⊗W ). LetM(C, µ) be the subobject and direct sum completion ofM′. Then
we can make the following observations:

(i) The equivalence relation is well-defined and turnsM′ into a category.

(ii) [ · ] : M̃′ → M′ is a functor and defines a tensor and ∗-structure on M′

by [ν]⊗ [η] := [ν ⊗ η] and [η]∗ := [η∗].

(iii) [ · ] extends to a full unitary tensor functor M̃(C, µ)→M(C, µ).
Definition 5.18. The Martin boundary of C with respect to µ is the pair
(M(C, µ), E) where M(C, µ) is the C∗-tensor category introduced above and
E : C →M(C, µ) is the unitary tensor functor which is the composition of the

functor E : C → M̃(C, µ) with [ · ].
It is often easier to work with Natb(ι⊗V, ι⊗V ) than with Natb(ι⊗V, ι⊗W )

for V 6= W . Fortunately most of the times one can reduce to the former case
by taking the direct sum of V and W .

Münster Journal of Mathematics Vol. 10 (2017), 287–365



338 Bas P.A. Jordans

Notation 5.19. Let pV ∈ HomC(V ⊕W,V ) and pW ∈ HomC(V ⊕W,W ) be
the projections onto V and respectively W . To be precise pV p

∗
V = ιV and

p∗V pV = qV where qV is a projection in EndC(V ⊕W ), similarly for pW . Then
qV + qW = ιV⊕W . Suppose that η ∈ Natb(ι⊗ V, ι⊗W ), the extension of η is
defined as ηe := (ηeU )U , where η

e
U equals the composition

U ⊗ (V ⊕W )
ι⊗pV

// U ⊗ V ηU
// U ⊗W ι⊗p∗W

// U ⊗ (V ⊕W ).

Similarly for ρ ∈ Natb(ι⊗ (V ⊕W ), ι⊗ (V ⊕W )), the restriction of ρ is defined
as ρr := (ρrU )U , where ρ

r
U equals the composition

U ⊗ V ι⊗p∗V
// U ⊗ (V ⊕W )

ρU
// U ⊗ (V ⊕W )

ι⊗pW
// U ⊗W.

The extension and restriction again yield natural transformations. Indeed,
suppose that T ∈ HomC(U,X) and η is a natural transformation. Since T ⊗ ι
acts in different legs than the projections ι ⊗ pV and ι ⊗ pW , it is immediate
that

(T ⊗ ιV⊕W )(ι⊗ p∗W )ηU (ι⊗ pV ) = (ι⊗ p∗W )(T ⊗ ιW )ηU (ι⊗ pV )
= (ι⊗ p∗W )ηU (T ⊗ ιV )(ι⊗ pV )
= (ι⊗ p∗W )ηU (ι⊗ pV )(T ⊗ ιV⊕W ).

Thus ηe is a natural transformation. Since

‖ηeU‖ = ‖(ι⊗ p∗W )ηU (ι⊗ pV )‖ ≤ ‖ηU‖,
the natural transformation ηe is uniformly bounded whenever η is, and it is
vanishing at infinity if η is vanishing at infinity. A similar argument works for
the restriction. Moreover, observe that since pV p

∗
V = ιV and pW p

∗
W = ιW , it

holds that

(ηe)rU = (pW ⊗ ι)(p∗W ⊗ ι)ηU (pV ⊗ ι)(p∗V ⊗ ι) = ηU ,

so (ηe)r = η.

Lemma 5.20. Suppose that µ is a generating and transient probability measure
on Irr(C). Then

Kµ(η
e) = Kµ(η)

e for η ∈ Nat00(ι⊗ V, ι⊗W ),

Kµ(ρ
r) = Kµ(ρ)

r for ρ ∈ Nat00(ι⊗ (V ⊕W ), ι⊗ (V ⊕W )).

Proof. First suppose that η ∈ Natb(ι⊗ V, ι⊗W ) and t ∈ Irr(C), then
Pt(η

e)U = (trUt ⊗ιU⊗(V⊕W ))
(
(ιUt ⊗ ιU ⊗ p∗W )ηUt⊗U (ιUt ⊗ ιU ⊗ pV )

)

= (ιU ⊗ p∗W )
(
(trUt ⊗ιU⊗W )(ηUt⊗U )

)
(ιU ⊗ pV ) = (Pt(η))

e
U .

Thus by linearity in µ we get Pµ(η
e) = Pµ(η)

e. Taking sums gives Gµ(η
e) =

Gµ(η
e) for finitely supported η. We know from (38) that

Gµ(κ
t,V ) = Gµ(κ

t,1)⊗ ιV
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and thus

Kµ(η)
e = (ι ⊗ p∗W )Gµ(η)(Gµ(κ

0,1 ⊗ ιV ))−1(ι⊗ pV )
= (ι ⊗ p∗W )Gµ(η)(ι ⊗ pV )(Gµ(κ0,1)−1 ⊗ ιV⊕W )

= Gµ(η)
e(Gµ(κ

0,1)−1 ⊗ ιV⊕W ) = Kµ(η
e).

The second identity can be proved similarly. �

Remark 5.21. Observe that EndM̃(C,µ)(U) equals the C∗-algebra generated
by the morphisms Kµ̄(Nat00(ι ⊗ U, ι⊗ U)) and Nat0(ι ⊗ U, ι⊗ U). Indeed, it
suffices to show that if V ∈ Ob(C) is another object and η is an element of the
C∗-algebra generated by Nat0(ι⊗(U⊕V ), ι⊗(U⊕V )) andKµ̄(Nat00(ι⊗(U⊕V ),
ι⊗ (U ⊕V ))), then (ι⊗pU )η(ι⊗p∗U ) is an element of the C∗-algebra generated
by Nat0(ι ⊗ U, ι⊗ U) and Kµ̄(Nat00(ι ⊗ U, ι⊗ U)). If η is a generator, so an
element in Nat0(ι⊗(U⊕V ), ι⊗(U ⊕V ))∪Kµ̄(Nat00(ι⊗(U⊕V ), ι⊗(U⊕V ))),
this can directly be verified by a proof similar to Lemma 5.20. But then it
immediately holds for all η.

Since M̃(C, µ) is a C∗-category, we also have that

HomM̃′(V,W ) = (EndM̃′(V ⊕W ))r,

where r denotes the restriction.

5.22. Categorical convergence to the boundary. It is also possible to put
convergence to the boundary in a categorical framework. In this section we
work towards the definition.

Notation 5.23. Let µ be a probability measure on Irr(C). For n > m define
recursively the maps HomC−n(U, V )→ HomC−m(U, V ) by

(trµ⊗ · · · ⊗ trµ︸ ︷︷ ︸
n−m

⊗ι⊗m)(η) := (trµ⊗ι⊗m)((trµ⊗ · · · ⊗ trµ︸ ︷︷ ︸
n−m−1

⊗ι⊗m+1)(η)),

where η ∈ HomC−n(U, V ) and the base case m = n − 1 is defined by (35).
Denote

(trµ⊗ · · · ⊗ trµ⊗ trU )(η) := trU ((trµ⊗ · · · ⊗ trµ)(η)),

where η ∈ HomC−n(U,U). Write

(40) ‖η‖µ⊗n :=
(
(trµ⊗ · · · ⊗ trµ︸ ︷︷ ︸

n

⊗ trU )(η
∗η)

) 1
2 .

Since trµ is a positive linear functional, ‖·‖µ⊗n defines a semi-norm on the
space HomC−n(U, V ). As η∗ ∈ HomC−n(V, U), equation (40) also defines

‖η∗‖µ⊗n =
(
(trµ⊗ · · · ⊗ trµ︸ ︷︷ ︸

n

⊗ trV )(ηη
∗)
) 1

2 .
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Definition 5.24. A natural transformation η ∈ HomC−1(U, V ) is called µ-
regular if the following condition holds: for every ε > 0 there exists N ∈ N

such that, for all n > m ≥ N ,
∥∥∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η)

∥∥2

µ⊗n < ε,
∥∥(∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η))∗

∥∥2
µ⊗n < ε.

Denote the set of µ-regular elements in HomC−1(U, V ) by RC,µ(U, V ) or simply
Rµ(U, V ). These morphisms can be collected into a category. Use R(C, µ) to
denote the subcategory of C−1 with HomR(C,µ)(U, V ) := RC,µ(U, V ), this is
indeed a subcategory, see Proposition 5.26.

For U = V regularity can be formulated in an equivalent way. First, we
define the path spaces of paths of infinite length (cp. [25, §3.1]). For this con-
sider the von Neumann algebras HomC−n(U,U). Fix µ and define a conditional
expectation

(41) En+1,n : HomC−(n+1)
(U,U)→ HomC−n(U,U), η 7→ (trµ⊗ι⊗n)(η).

Clearly En+1,n(ι⊗ η) = η, so the conditional expectation En+1,n preserves the
embedding HomC−n(U,U) →֒ HomC−(n+1)

(U,U). For n > m define

En,m := Em+1,m ◦ · · · ◦ En,n−1.

Define a state

ϕ
(n)
U := trU ◦En,0

on HomC−n(U,U). This collection (ϕ(n)
U )n gives a state ϕ(∞)

U on the union⋃
nHomC−n(U,U). Define the von Neumann algebra HomC−∞

(U,U) as the
completion of

⋃
nHomC−n(U,U) in the GNS representation defined by the

state ϕ(∞)
U . Consider the composition

jn : HomC−1(U,U)→ HomC−n(U,U) →֒ HomC−∞
(U,U),

η 7→ ∆̂n−1(η) 7→ · · · ⊗ ι⊗ ι⊗ ∆̂n−1(η).

It follows that a morphism η ∈ HomC−1(U,U) is µ-regular if and only if
s∗- limn jn(η) exists in the von Neumann algebra HomC−∞

(U,U). Again often
it is easier to work with U = V .

Lemma 5.25. Given η ∈ HomC−1(U, V ) and ν ∈ HomC−1(U ⊕ V, U ⊕ V ), the
following holds:

(i) If η ∈ Rµ(U, V ), then ηe ∈ Rµ(U ⊕ V, U ⊕ V ).
(ii) If ν ∈ Rµ(U ⊕ V, U ⊕ V ), then νr ∈ Rµ(U, V ).

Proof. Straight-forward computations show that for η ∈ HomC−n(U, V ) and
ν ∈ HomC−n(U ⊕ V, U ⊕ V ) the restriction and extension operations satisfy:

(ι⊗m ⊗ ∆̂⊗ ι⊗n−m−1)(ηe) = ((ι⊗m ⊗ ∆̂⊗ ι⊗n−m−1)(η))e,

(ι⊗m ⊗ ∆̂⊗ ι⊗n−m−1)(νr) = ((ι⊗m ⊗ ∆̂⊗ ι⊗n−m−1)(ν))r ,

ι⊗ ηe = (ι⊗ η)e, ι⊗ νr = (ι⊗ ν)r.
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Similarly we have

‖ηe‖µ⊗n =
dU

dU + dV
‖η‖µ⊗n , ‖νr‖µ⊗n ≤ dU + dV

dU
‖ν‖µ⊗n .

To prove these two we will restrict ourselves to n = 1, the case n > 1 is only
more complicated in notation. Note that

trU⊕V =
1

dU⊕V
TrU⊕V =

1

dU + dV
TrU ⊕TrV

=
dU

dU + dV
trU ⊕

dV
dU + dV

trV .

As ιU⊕V ≥ p∗V pV , it follows that ν
∗ν = ν∗(ι ⊗ ιU⊕V )ν ≥ ν∗(ι ⊗ p∗V )(ι ⊗ pV )ν

and thus

‖ηe‖2µ = (trµ⊗ trU⊕V )((η
e)∗ηe)

=
(
trµ⊗

( dU
dU + dV

trU ⊕
dV

dU + dV
trV

))

(
(ι⊗ p∗U )η∗(ι ⊗ pV )(ι⊗ p∗V )η(ι⊗ pU )

)

=
(
trµ⊗

( dU
dU + dV

trU ⊕
dV

dU + dV
trV

))(
(ι⊗ p∗U )η∗η(ι⊗ pU )

)

=
dU

dU + dV
(trµ⊗ trU )(η

∗η) =
dU

dU + dV
‖η‖2µ,

‖νr‖2µ = (trµ⊗ trU )((ν
r)∗νr)

= (trµ⊗ trU )
(
(ι ⊗ pU )ν∗(ι⊗ p∗V )(ι ⊗ pV )ν(ι ⊗ p∗U )

)

≤ (trµ⊗ trU )
(
(ι ⊗ pU )ν∗ν(ι⊗ p∗U )

)

≤ dU + dV
dU

(trµ⊗(trU⊕V ))
(
(ι⊗ pU )ν∗ν(ι⊗ p∗U )⊕ (ι⊗ pV )ν∗ν(ι⊗ p∗V )

)

=
dU + dV
dU

(trµ⊗ trU⊕V )(ν
∗ν) =

dU + dV
dU

‖ν‖2µ.

The lemma can now be proved by combining the previous identities. Indeed,
∥∥∆̂n−1(ηe)− ι⊗n−m ⊗ ∆̂m−1(ηe)

∥∥2
µ⊗n

=
∥∥(∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η)

)e∥∥2
µ⊗n

=
dU

dU + dV

∥∥∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η)
∥∥2

µ⊗n ,

∥∥∆̂n−1(νr)− ι⊗n−m ⊗ ∆̂m−1(νr)
∥∥2

µ⊗n

=
∥∥(∆̂n−1(ν)− ι⊗n−m ⊗ ∆̂m−1(ν)

)r∥∥2
µ⊗n

≤ dU + dV
dU

∥∥∆̂n−1(ν)− ι⊗n−m ⊗ ∆̂m−1(ν)
∥∥2

µ⊗n ,

and similarly for the adjoint. �
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Since (ηe)r = η, this lemma implies that a morphism η ∈ HomC−1(U, V )
is µ-regular if and only if s∗- limn jn(η

e) exists in the von Neumann algebra
HomC−∞

(U ⊕ V, U ⊕ V ).

Proposition 5.26. The following holds:

(i) R(C, µ) forms a C∗-tensor subcategory of C−1.
(ii) If η is µ-harmonic, then η is µ-regular.
(iii) If η ∈ HomR(C,µ)(U, V ), then limn(trµ⊗ · · · ⊗ trµ)(∆̂

n−1(η)) exists in
norm in HomC(U, V ).

We write

(42) tr∞µ (η) := lim
n
(trµ⊗ · · · ⊗ trµ)(∆̂

n−1(η)) ∈ HomC(U, V ).

Note that we cannot say that the Poisson boundary P(C, µ) is a subcategory
of R(C, µ) since the product in P(C, µ) is different.

Proof of Proposition 5.26. (i) From the definition of µ-regularity it is imme-
diate that η∗ ∈ Rµ(V, U) whenever η ∈ Rµ(U, V ). Moreover, it is clear
that Rµ(U, V ) is a linear space. Rµ(U, V ) has norm ‖·‖∞ which is inher-
ited from C and thus has the properties of a norm in a C∗-category. Observe
that trU (x

∗x) ≤ trU (‖x‖21) = ‖x‖2 for any x ∈ HomC(U, V ), this gives that
‖η‖µ⊗n ≤ ‖η‖∞ whenever η ∈ HomC−n(U, V ). Now a 3ε-argument can be used
to show that the homomorphism sets are closed in norm, we omit the details.

For multiplicativity we use the same estimate as in the proof of Lemma
5.25, namely that x∗x ≤ ‖x‖21, so that y∗x∗xy ≤ ‖x‖2y∗y and thus

‖xy‖2U = trU ((xy)
∗(xy)) ≤ ‖x‖2 trU (y∗y) = ‖x‖2‖y‖2U .

Let ν ∈ Rµ(U, V ), η ∈ Rµ(V,W ) and ε > 0. Then for n and m large enough

‖∆̂n−1(ην)− ι⊗n−m ⊗ ∆̂m−1(ην)‖µ⊗n

≤ ‖∆̂n−1(η)(∆̂n−1(ν)− ι⊗n−m ⊗ ∆̂m−1(ν))‖µ⊗n

+ ‖(∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η))(ι⊗n−m ⊗ ∆̂m−1(ν))‖µ⊗n

≤ ‖∆̂n−1(η)‖∞‖∆̂n−1(ν)− ι⊗n−m ⊗ ∆̂m−1(ν)‖µ⊗n

+ ‖ι⊗n−m ⊗ ∆̂m−1(ν)‖∞‖∆̂n−1(η) − ι⊗n−m ⊗ ∆̂m−1(η)‖µ⊗n

≤ ‖η‖∞ε+ ‖ν‖∞ε.

A similar argument works for the adjoint. Thus ην ∈ Rµ(U,W ) and R(C, µ) is
a C∗-category.

To show that Rµ(C, µ) admits a tensor structure we must verify that

(η ⊗ ν) ∈ HomR(C,µ)(U ⊗X,V ⊗ Y ),

if η ∈ HomR(C,µ)(U, V ) and ν ∈ HomR(C,µ)(X,Y ). Here (η ⊗ ν) is defined by
identity (30). We have already shown that Rµ is closed under composition,
so it suffices to show that the natural transformations η ⊗ ιY and ιU ⊗ ν are
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µ-regular. We compute

(trµ⊗ · · · ⊗ trµ⊗ trU⊗Y )
(
(∆̂n−1(η ⊗ ιY )− ι⊗n−m ⊗ ∆̂m−1(η ⊗ ιY ))

× (∆̂n−1(η ⊗ ιY )− ι⊗n−m ⊗ ∆̂m−1(η ⊗ ιY ))∗
)

= (trµ⊗ · · · ⊗ trµ⊗ trU ⊗ trY )
(
((∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η))⊗ ιY )

× ((∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η))∗ ⊗ ι∗Y )
)

= trY (ιY ι
∗
Y )(trµ⊗ · · · ⊗ trµ⊗ trU )(

(∆̂n−1(η)− (ι⊗n−m ⊗ ∆̂m−1(η)))(∆̂n−1(η) − (ι⊗n−m ⊗ ∆̂m−1(η)))∗
)
,

which goes to zero as n,m → ∞ because η is µ-regular. Similarly it can be
shown that

‖∆̂n−1(η ⊗ ιY )− ι⊗n−m ⊗ ∆̂m−1(η ⊗ ιY )‖2µ⊗n → 0 as n,m→∞,
so η⊗ιY ∈ Rµ(U⊗Y, V ⊗Y ). For ιU ⊗ν, assume that U is simple, say U = Ut.
Suppose that t ∈ supp(µ∗k) for some k ≥ 1, then

(trµ⊗ · · · ⊗ trµ⊗ trY )∆̂
k−1

=
∑

s1,...,sk,r

mr
s1,...,sk

dr
ds1 · · · dsk

µ(s1) · · ·µ(sk)(trr ⊗ trY )

≥ mt
s1,...,skdt

µ(s1) · · ·µ(sk)
ds1 · · · dsk

trt⊗ trY .

Hence if s1, . . . , sk ∈ supp(µ) are such that mt
s1,...,sk

≥ 1, then

trUt ⊗ trY ≤ d−1
t

ds1 · · · dsk
µ(s1) · · ·µ(sk)

(trµ⊗ · · · ⊗ trµ⊗ trY )∆̂
k−1.

Observe that (ιU ⊗ ν)X = νX⊗U = ∆̂(ν)X,U . So ∆̂n−1(ιU ⊗ ν) = ∆̂n(ν) · ,U ,
where on the spot · one has to put an n-tuple of objects. We still assume that
U = Ut for some simple object Ut. We obtain

(trµ⊗ · · · ⊗ trµ⊗ trUt⊗Y )
(
(∆̂n−1(ιUt ⊗ η)− ι⊗n−m ⊗ ∆̂m−1(ιUt ⊗ η))

× (∆̂n−1(ιUt ⊗ η)− ι⊗n−m ⊗ ∆̂m−1(ιUt ⊗ η))∗
)

= (trµ⊗ · · · ⊗ trµ⊗ trUt⊗Y )
(
(∆̂n(η) · ,Ut − ι⊗n−m ⊗ ∆̂m(η) · ,Ut)

× (∆̂n(η) · ,Ut − ι⊗n−m ⊗ ∆̂m(η) · ,Ut)
∗
)

≤ d−1
t

ds1 · · · dsk
µ(s1) · · ·µ(sk)

(trµ⊗ · · · ⊗ trµ⊗ trY )

(
(∆̂n+k−1(η) − ι⊗n−m ⊗ ∆̂m+k−1(η))

× (∆̂n+k−1(η)− ι⊗n−m ⊗ ∆̂m+k−1(η))∗
)

= d−1
t

ds1 · · · dsk
µ(s1) · · ·µ(sk)

∥∥∆̂n+k−1(η)− ι⊗n−m ⊗ ∆̂m+k−1(η)
∥∥2

µ⊗n+k ,

which tends to 0 as n,m→∞. Similarly it can be shown that
∥∥(∆̂n−1(ιUt ⊗ η)− ι⊗n−m ⊗ ∆̂m−1(ιUt ⊗ η))∗

∥∥2
µ⊗n → 0 as m,n→∞.
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If U is not simple, then decomposing U into simple objects and taking direct
sums gives the result.

(ii) This is similar to [25, §3.1]. Let η ∈ HomC−1(U, V ) be µ-harmonic. By
(the results in the proofs of) Lemmas 5.20 and 5.25 we may assume U = V ,
since if U 6= V , we can consider the extension ηe to U ⊕ V . Again we apply
the noncommutative martingale convergence theorem. Consider the sequence
(jn(η))

∞
n=1 ⊂ HomC−∞

(U,U). Recall the conditional expectations En,m defined
in (41). It holds that, for n ≥ m,

En,m(∆̂n−1(η)) = (trµ⊗ · · · ⊗ trµ⊗ι⊗m)∆̂n−1(η)(43)

= (trµ⊗ · · · ⊗ trµ⊗ι⊗m)
(
(ι⊗n−m ⊗ ∆̂m−1)∆̂n−m(η)

)

= ∆̂m−1(Pn−mµ (η)) = ∆̂m−1(η).

Write Ẽn,m for the composition of En,m with the embedding HomC−m(U,U) →֒
HomC−∞

(U,U). Consider HomC−m(U,U) as a subalgebra of HomC−∞
(U,U)

and denote

Ẽm : HomC−∞
(U,U)→ HomC−m(U,U) ⊂ HomC−∞

(U,U)

for the conditional expectation defined by {Ẽn,m}n≥m. It follows from (43)

that Ẽm(jn(η)) = jm(η) for n ≥ m. As we are dealing with von Neumann
algebras, the noncommutative martingale convergence theorem (cp. Lemma

2.19) shows that there exists an η̃ ∈ HomC−∞
(U,U) such that jn(η) = Ẽn(η̃)

and (jn(η))
∞
n=1 converges in strong∗ topology to η̃. So η is µ-regular.

(iii) Let η ∈ Rµ(U, V ). Using the identities in the proof of Lemma 5.25, we
get

lim
n
(trµ⊗ · · · ⊗ trµ)(∆̂

n−1(η))(44)

= lim
n
(trµ⊗ · · · ⊗ trµ)

(
(∆̂n−1(ηe))r

)

= lim
n
(trµ⊗ · · · ⊗ trµ)

(
(ι⊗n ⊗ pV )(∆̂n−1(ηe))(ι⊗n ⊗ p∗U )

)

= lim
n
pV (trµ⊗ · · · ⊗ trµ)(∆̂

n−1(ηe))p∗U

= pV
(
lim
n
(trµ⊗ · · · ⊗ trµ)(∆̂

n−1(ηe))
)
p∗U

= pV
(
lim
n
(· · · ⊗ trµ⊗ trµ)(jn−1(η

e))
)
p∗U .

From the observation following the proof of Lemma 5.25 it follows that the
limit s∗- limn jn(η

e) exists in HomC−∞
(U ⊕V, U ⊕V ). As HomC(U ⊕V, U ⊕V )

is a finite-dimensional C∗-algebra, limit (44) exists in norm. �

Definition 5.27. Let C be a strict C∗-tensor category with simple unit 1 and
let µ be a probability measure on the set of irreducible objects Irr(C). The
random walk on C with Markov kernel Pµ converges to the boundary if the
following two conditions hold:
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(i) Kµ̄(η) ∈ Rµ(U, V ) for every η ∈ Nat00(ι⊗ U, ι⊗ V ) ⊂ HomC−1(U, V ).
(ii) For every η ∈ Nat00(ι⊗U, ι⊗V ) and ν ∈ Natb(ι⊗X, ι⊗Y ) with Pµ(ν) = ν

it holds

(45)
∑

s∈Irr(C)

d2s trs((η ⊗ ν)Us) = tr∞µ (Kµ̄(η)⊗ ν).

Here the tensor product of natural transformations is defined by (30) and the
functionals trs and tr∞µ are defined by (36) and respectively (42). Note that
both sides of (45) are in HomC(U ⊗X,V ⊗ Y ).

Observe that requirement (ii) of this definition makes sense due to Propo-
sition 5.26.

6. Correspondence with quantum groups

To make sure that the definition of a Martin boundary and the definition
of convergence to the boundary for random walks on C∗-tensor categories are
sensible, we need to check that they correspond in some way to theory that
already exists for random walks on discrete quantum groups. So for a compact
quantum group G one should be able to reconstruct the Martin boundary
M(Ĝ, µ) fromM(Rep(G), µ) and vice versa. Similarly a random walk (Ĝ, µ)
should converge to the boundary if and only if (Rep(G), µ) converges to the
boundary.

6.1. Duality between G-C∗-algebras and categories. This subsection
again contains preliminary material. We review some of the results of [11,
20, 24] that we need to prove a correspondence between the categorical picture
and the quantum group picture of random walks in the next subsection.

Let B be a G-C∗-algebra, with left action α : B → C(G) ⊗ B. The regular
subalgebra of B is denoted by

B :=
{
x ∈ B | α(x) ∈ C[G]⊗alg B

}
.

It is a dense ∗-subalgebra of B (see [11, Lem. 4.3]) and α restricts to a Hopf
algebra coaction α : B → C[G]⊗alg B.
Definition 6.2. If D is a C∗-category, define the category End(D) with objects
given by C∗-functors D → D and morphisms HomEnd(D)(F,G) := Natb(F,G).
D is called a Rep(G)-module category if D comes equipped with a unitary
tensor functor Rep(G)→ End(D). If U ∈ Ob(Rep(G)), the induced functor in
End(D) is denoted by X 7→ X × U . An object X ∈ Ob(D) is generating if for
any object Y ∈ Ob(D) there exists U ∈ Rep(G) such that Y is a subobject of
X × U .

Theorem 6.3 ([11, Thm. 6.4], [20, Thm. 3.3]). Let G be a reduced compact
quantum group. The following two categories are equivalent:

(i) the category of unital G-C∗-algebras with unital G-equivariant ∗-homo-
morphisms as morphisms;
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(ii) the category of pairs (D, X), where D is a Rep(G)-module C∗-category
and X is a generating object in D with morphisms given by equivalence
classes of unitary Rep(G)-module functors respecting the designated gen-
erating objects.

The formulation of this result is taken from [24, Thm. 1.1]. For later use
we explicitly describe the correspondence. Given a G-C∗-algebra B. Let D′ be
the C∗-category with objects Ob(Rep(G)) but morphism sets

HomD′(U, V ) :=
{
T ∈ B ⊗B(HU ,HV ) | V ∗

13(α⊗ ι)(T )U13 = 1⊗ T
}
.

Let DB be the subobject completion of D′. Then DB is the category corre-
sponding to B. The generating object is given by unit object 1∈Ob(Rep(G))⊂
Ob(DB). If U ∈ Ob(Rep(G)), then ι⊗U defines a functor on Rep(G) as in No-
tation 5.2. This functor ι⊗U can be extended to the completion DB; the exten-
sion is again denoted by ι⊗U . The unitary tensor functor Rep(G)→ End(DB)
is given by U 7→ ι⊗ U .

Conversely, let D be a Rep(G)-module category with generating object X .
We may assume that D is equivalent to an idempotent completion of Rep(G)
with some larger morphism sets and that X = 1 ∈ Rep(G). Indeed, let D′

be the category with HomD′(U, V ) := HomD(X × U,X × V ) and take the
idempotent completion. Define

B :=
⊕

s∈Irr(G)

(H̄s ⊗HomD(1, Us)), B̃ :=
⊕

U∈Rep(G)

(H̄U ⊗HomD(1, U)).

For every U ∈ Rep(G) fix isometries wi : Hsi → HU to decompose U into
irreducibles. Define

π : B̃ → B, π(ξ̄ ⊗ T ) :=
∑

i

w∗
i ξ ⊗ w∗

i T for ξ̄ ⊗ T ∈ H̄U ⊗HomD(1, U).

Then π is independent of the choices of the isometries wi. The space B̃ becomes
an associative algebra with product · given by

(46) (ξ̄ ⊗ T ) · (ζ̄ ⊗ S) := (ξ ⊗ ζ) ⊗ ((T ⊗ ι)S)
for ξ̄ ⊗ T ∈ H̄U ⊗ HomD(1, U) and η̄ ⊗ S ∈ H̄V ⊗ HomD(1, V ). We get a

product on B by π(x)π(y) := π(x · y) for x, y ∈ B̃. Define an antilinear map •
on B̃ as follows:

(47) (ξ̄ ⊗ T )• := ρ−1/2ξ ⊗ (T ∗ ⊗ ι)R̄U for ξ̄ ⊗ T ∈ H̄U ⊗HomD(1, U).

This map is not an involution on B̃, but defines an involution on B by π(x)∗ :=

π(x•) whenever x ∈ B̃. Note that

ρ−1/2ξ = (ι⊗ ξ̄)RU (1).
There exists a left coaction of C[G] on B defined in the following way. Let
{ξi}i be an orthonormal basis of HU and uij the matrix coefficients of the
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representation U with respect to this basis. Define

α(π(ξ̄i ⊗ T )) :=
∑

j

uij ⊗ π(ξ̄j ⊗ T ).

It can be shown that there exists a unique completion of B turning it into a
C∗-algebra B such that α extends to a left G-action on B, see [11, §4]. This is
the G-C∗-algebra B corresponding to the category D.

Suppose we start with a unital G-C∗-algebra B. We form DB and let B′ be
the algebra corresponding to DB. Then there is a ∗-isomorphism [24, §2.5]
(48) λ : B′ → B, π(ξ̄ ⊗ T ) 7→ (ι⊗ ξ̄)T.

In case there is more structure present, there is again an equivalence of
categories.

Definition 6.4. Let B be a unital C∗-algebra. Assume that there exist con-
tinuous actions α : B → C(G)⊗B and β : B →M(B⊗ c0(Ĝ)). Define the left
C[G]-module algebra structure

⊲ : C[G]⊗B → B, x ⊲ a := (ι⊗ x)β(a) for x ∈ C[G] and a ∈ B.
Here c0(Ĝ) is identified with a subalgebra of C[G]∗ as described by the isomor-
phism (4). Consider the regular subalgebra B ⊂ B. Let S be the antipode of
the Hopf algebra (C[G],∆). The algebra B is called a Yetter–Drinfeld G-C∗-
algebra if

(49) α(x ⊲ a) = x(1)a(1)S(x(3))⊗ (x(2) ⊲ a(2)) for x ∈ C[G] and a ∈ B.
Here Sweedler’s sumless notation is used, so ∆(x) = x(1) ⊗ x(2) and α(a) =
a(1) ⊗ a(2). A Yetter–Drinfeld G-C∗-algebra B is called braided-commutative
whenever

(50) ab = b(2)(S
−1(b(1)) ⊲ a) for a, b ∈ B.

Theorem 6.5 ([24, Thm. 2.1]). Let G be a reduced compact quantum group.
The following two categories are equivalent:

(i) the category of unital braided-commutative Yetter–Drinfeld G-C∗-algebras
with unital G- and Ĝ-equivariant ∗-homomorphisms as morphisms;

(ii) the category of pairs (C, E), consisting of a C∗-tensor category C and a
unitary tensor functor E : Rep(G) → C such that C is generated by the
image of E. The morphisms (C, E) → (C′, E ′) in this category are given
by the set of equivalence classes of pairs (F , η) where F : C → C′ is a
unitary tensor functor and η : FE → E ′ is a natural unitary monoidal
isomorphism.

The correspondence between these two categories is the same as the corre-
spondence given by Theorem 6.3, but one needs to account for the extra struc-
ture present. We will only describe how the tensor product on the category
can be reconstructed. Let B be a unital braided-commutative Yetter–Drinfeld
G-C∗-algebra. Using the construction following Theorem 6.3, we obtain a
Rep(G)-module C∗-category CB. If U, V ∈ Ob(Rep(G)) ⊂ Ob(CB), the tensor
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product U ⊗V in CB is defined as in Rep(G). For morphisms S ∈ HomC(U, V )
and T =

∑
i bi ⊗ Ti ∈ HomC(W,X), define

ιU ⊗ T :=
∑

i,k,l

(ukl ⊲ bi)⊗mkl ⊗ Ti ∈ HomC(U ×W,U ×X),

S ⊗ ιX := S ⊗ ιHX ∈ HomC(U ×X,V ×X).

Then S ⊗T := (S ⊗ ιX)(ιU ⊗T ), which equals (ιV ⊗ T )(S⊗ ιW ). The functor
EB : Rep(G) → CB is given as the identity map on objects and T 7→ 1B ⊗ T
whenever T ∈ HomRep(G)(U, V ).

6.6. The correspondence with discrete quantum groups. The Martin
boundary and Martin compactification of a random walk on a discrete quantum
group define braided-commutative Yetter–Drinfeld G-C∗-algebras. Therefore
by the duality described in Section 6.1 these algebras define C∗-tensor cat-
egories. These categories are shown to be unitarily monoidally equivalent
to the previously defined categorical Martin boundary and compactification
of Rep(G). The results in Section 4 above suggest that convergence to the
boundary for random walks on discrete quantum groups is a property from
the underlying category Rep(G) and not from the actual realization via a fiber
functor Rep(G)→ Hilbf . We prove that this is indeed the case.

Notation 6.7. Recall the left adjoint action αl defined by (12). Define the
space

( −1⊗

−n

l∞(Ĝ)
)
alg

:=
{
x ∈

−1⊗

−n

l∞(Ĝ) | αl(x) ∈ C[G]⊗alg

−1⊗

−n

l∞(Ĝ)
}

and write C−n(Ĝ) for the norm-closure of (
⊗−1

−n l
∞(Ĝ))alg in

⊗−1
−n l

∞(Ĝ). The
restriction αl : C−n(Ĝ) → C(G) ⊗ C−n(Ĝ) defines an action of C∗-algebras.
Indeed, since αl is a Hopf-algebra coaction, we obtain that

αl(x) ∈ C[G]⊗alg

( −1⊗

−n

l∞(Ĝ)
)
alg

if x ∈ (
⊗−1

−n l
∞(Ĝ))alg. Since αl is continuous in norm, it extends to a map

of the norm closures, again denoted by αl : C−n(Ĝ) → C(G) ⊗ C−n(Ĝ). As

(ε ⊗ ι)αl = ι on
⊗−1

−n l
∞(Ĝ) this identity also holds on (

⊗−1
−n l

∞(Ĝ))alg. It
follows from [22, Cor. 1.4] that αl is a left G-action on the C∗-algebra C−n(Ĝ).

Recall the categorical path spaces of Notation 5.2. We specialize to C =
Rep(G).

Lemma 6.8. For C = Rep(G) and U, V finite-dimensional unitary represen-
tations of G it holds that

HomRep(G)−n
(U, V )

∼=
{
T ∈

( −1⊗

−n

l∞(Ĝ)
)
⊗B(HU ,HV ) | V ∗

13(αl ⊗ ιV )(T )U13 = 1⊗ T
}
.
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Consider HXi =
⊕

sm
s
Xi
Hs. The isomorphism is given explicitly by η(T )←[ T ,

where

(51) η(T )X1,...,Xn := T |HX1⊗···⊗HXn⊗HU .

Proof. Note that T ∈ (
⊗−1

−n l
∞(Ĝ))⊗B(HU ,HV ) satisfies

(52) V ∗
13(αl ⊗ ιV )(T )U13 = 1⊗ T

if and only if

(1⊗ T )(W × · · · ×W × U) = (W × · · · ×W × V )(1⊗ T ),
so if and only if T intertwines the representations (W×n×U) and (W×n×V ).
Since any finite-dimensional representation embeds in the regular representa-
tion coming from the multiplicative unitary W , the above holds if and only
if

(1⊗ T |HX1⊗···⊗HXn⊗HU )(X1 × · · · ×Xn × U)

= (X1 × · · · ×Xn × V )(1⊗ T |HX1⊗···⊗HXn⊗HU )

for all finite-dimensional representations X1, . . . , Xn. This equality states ex-
actly that

T |HX1⊗···⊗HXn⊗HU ∈ HomRep(G)(X1 × · · · ×Xn × U,X1 × · · · ×Xn × V )

for all X1, . . . , Xn ∈ Ob(Rep(G)). Now if all Xi and Yi are irreducible repre-
sentations and fi : Xi → Yi is a morphism in Rep(G), then fi is a multiple of
the identity if Xi

∼= Yi or zero if Xi 6∼= Yi. So clearly the following diagram
commutes:

X1 × · · · ×Xn × U
f1⊗···⊗fn⊗ιU

//

(ηT )X1,...,Xn

��

Y1 × · · · × Yn × U
(ηT )Y1,...,Yn

��

X1 × · · · ×Xn × V
f1⊗···⊗fn⊗ιV

// Y1 × · · · × Yn × V.
If Xi and Yi are not necessarily simple then by decomposing the represen-
tations into irreducible ones it follows that the above diagram again com-
mutes. Therefore we conclude that T satisfies (52) if and only if η(T ) ∈
Natb(ι

⊗n ⊗ U, ι⊗n ⊗ V ). Thus η(T ) ∈ HomRep(G)−n
(U, V ).

Clearly T 7→ η(T ) is an injective ∗-homomorphism. It remains to show that
it is surjective. For this suppose η ∈ HomRep(G)−n

(U, V ). Then

ηX1,...,Xn ∈ HomRep(G)(X1 ⊗ · · · ⊗Xn ⊗ U,X1 ⊗ · · · ⊗Xn ⊗ V ).

Write T =
⊕

s1,...,sn
ηUs1 ,...,Usn

. Then it is immediate that η = η(T ) and the

previous computations imply that T satisfies (52). �

Let U and V be unitary representations. Decompose V as

V =

dimV∑

i,j=1

vij ⊗mV
ij ∈ C[G]⊗B(HV )
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and similarly decompose U . Observe that (52) can be written as

(αl ⊗ ι)(T ) = V13(1 ⊗ T )U∗
13(53)

=

dimV∑

i,j=1

dimU∑

k,l=1

viju
∗
kl ⊗ ((1⊗mV

ij)T (1⊗ (mU
kl)

∗)),

which lies in

C[G]⊗alg

( −1⊗

−n

l∞(Ĝ)
)
⊗B(HU ,HV ).

It follows that if T satisfies (52), then

T ∈
( −1⊗

−n

l∞(Ĝ)
)
alg
⊗B(HU ,HV ).

It is known (see [24, §4.1]) that C−1(Ĝ) contains more structure. It is a
unital braided-commutative Yetter–Drinfeld G-C∗-algebra with the right ac-
tion of Ĝ given by the comultiplication ∆̂, so the left C[G]-module structure
is defined by

(54) u ⊲ x := (ι ⊗ u)∆̂(x), x ∈ C−1(Ĝ), u ∈ C[G].

It corresponds to the C∗-tensor category Rep(G)−1. From the discussion fol-
lowing Theorem 6.3 and we can immediately conclude the following.

Corollary 6.9. For a reduced compact quantum group G the unital G-C∗-
algebra corresponding to the C∗-category Rep(G)−n via the equivalence in The-
orem 6.3 is isomorphic to C−n(Ĝ). Or equivalently the C∗-category correspond-
ing to the unital G-C∗-algebra C−n(Ĝ) is unitarily equivalent to the category
Rep(G)−n as a right Rep(G)-module category. For n = 1 we have unitarily
monoidal equivalence of C∗-tensor categories.

In a similar spirit as (53) we can write the tensor product in Rep(G)−1 as
follows. Suppose η = η(T ) and ν = η(S) (see (51)) for some

T =
∑

i

xi ⊗ Ti ∈ l∞alg(Ĝ)⊗B(HU1 ,HU2),

S =
∑

j

yj ⊗ Sj ∈ l∞alg(Ĝ)⊗B(HV1 ,HV2).

Then (30) translates to

(55) η ⊗ ν =
∑

i,j

xiy
(1)
j ⊗ TiπU1(y

(2)
j )⊗ Sj .

Lemma 6.10. For C = Rep(G), the isomorphism (51) satisfies

(ι⊗ η(T )) = η(1⊗ T ),(56a)

(ι⊗m ⊗ ∆̂⊗ ι⊗n−m−1)(η(T )) = η((ι⊗m ⊗ ∆̂⊗ ι⊗n−m−1 ⊗ ιV )(T )),(56b)

(trµ⊗ι⊗n−1(η(T )) = η((ϕµ ⊗ ι⊗n−1 ⊗ ιV )(T )).(56c)
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If n = 1, then in addition we have

Pµ(η(T )) = η((Pµ ⊗ ι)(T )),(56d)

Kµ(η(T )) = η((Kµ ⊗ ι)(T )).(56e)

Here the first Pµ is the Markov operator on Rep(G), while the one on the
right-hand side is the Markov operator on Ĝ; similarly for Kµ.

Proof. Assertions (56a) and (56c) are trivial. To prove the remaining ones,

assume that T ∈ (
⊗−1

−n l
∞(Ĝ))⊗B(HU ,HV ) satisfies (52). Let X̃ be a finite-

dimensional representation of G and ã ∈ Hom(X̃,Xm+1 ⊗Xm+2). Write a :=
ι⊗m⊗ ã⊗ ι⊗n−m−2 and k := n−m−1. Then by definition of ∆̂ and naturality
of η(T ), we have

(ι⊗m ⊗ ∆̂⊗ ι⊗k)(η(T ))X1,...,Xn+1 ◦ (a⊗ ιU )
= (πX1 ⊗ · · · ⊗ πXm+1⊗Xm+2 ⊗ · · · ⊗ πXn+1 ⊗ πU )(T ) ◦ (a⊗ ιU )
= (a⊗ ιV ) ◦ (πX1 ⊗ · · · ⊗ πX̃ ⊗ · · · ⊗ πXn+1 ⊗ πU )(T )
= (ι⊗m ⊗ ∆̂⊗ ι⊗k ⊗ ιV )

(
(πX1 ⊗ · · · ⊗ πXn+1 ⊗ πU )(T )

)
◦ (a⊗ ιU )

= (η((ι⊗m ⊗ ∆̂⊗ ι⊗k ⊗ ιV )(T )))X1,...,Xn+1 ◦ (a⊗ ιU ).

As this holds for all ã, we get (56b).
Identity (56d) is obvious from (56b) and (56c).
To prove (56e), observe that from (56d) it follows that η((Gµ ⊗ ι)(T )) =

Gµ(η(T )). Moreover, κ0,U = η(I0 ⊗ ιU ). Therefore

Kµ(η(T )) = Gµ(η(T ))(Gµ(η(I0 ⊗ ιU )))−1

= η((Gµ ⊗ ι)(T )) η((Gµ ⊗ ι)(I0 ⊗ ιU ))−1

= η
(
((Gµ ⊗ ι)(T ))(Gµ(I0)−1 ⊗ ιU )

)
= η((Kµ ⊗ ι)(T )),

as desired. �

Define the algebras

B−n(Ĝ) :=
⊕

s∈Irr(G)

H̄s ⊗HomRep(G)−n
(1, Us),

B̃−n(Ĝ) :=
⊕

U∈Ob(G)

H̄U ⊗HomRep(G)−n
(1, U)

and denote

λn : B−n(Ĝ)→ C−n(Ĝ), π(ξ̄ ⊗ η) 7→ (ι⊗ ξ̄)η.
Let B−n(Ĝ) be the unique completion of B−n(Ĝ) to a G-C∗-algebra such that
λn extends to a G-equivariant isomorphism λn : B−n(Ĝ)→ C−n(Ĝ) (cp. (48)).

Let us consider the case n = 0. Put B = C, this is a unital braided-
commutative Yetter–Drinfeld G-C∗-algebra with trivial left and right actions.
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The associated C∗-tensor category CB equals Rep(G). Indeed, for objects
U, V ∈ Rep(G) ⊂ Ob(CB), we have

HomCB (U, V ) =
{
T ∈ B ⊗B(HU ,HV ) | V ∗

13(α ⊗ ι)(T )U13 = 1⊗ T
}

∼=
{
S ∈ B(HU ,HV ) | (ι⊗ S)U = V (ι⊗ S)

}

= HomRep(G)(U, V ).

So put Rep(G)0 := Rep(G) and

B0(Ĝ) :=
⊕

s∈Irr(G)

H̄s ⊗HomCB (1, Us)
∼= EndRep(G)(1).

Consider the isomorphism λ0 : B0(Ĝ)→ C, π(ξ̄ ⊗ T ) 7→ (ι ⊗ ξ̄)T . The algebra
B0(Ĝ) is already complete, but to be consistent in notation we write

B0(Ĝ) = B0(Ĝ).

Lemma 6.11. The map λ1 restricts to G-equivariant ∗-isomorphisms

λ1 :
⊕

s

H̄s ⊗Nat00(ι⊗ 1, ι⊗ Us)→ c00(Ĝ),(57)

λ1 :
⊕

s

H̄s ⊗Nat0(ι⊗ 1, ι⊗ Us)
‖·‖

→ c0(Ĝ).

The closure indicates the unique completion such that the space becomes a C∗-
algebra with left action αl, see Section 6.1.

Proof. B(Hs) is a unital G-C∗-algebra with left action αl,s given by the re-
striction of the left adjoint action αl, so αl,s(x) := U∗

s (1 ⊗ x)Us. Form the
Rep(G)-module category CB(Hs) as described by Theorem 6.3. From this the-
orem it follows that

λs :
⊕

t

H̄t ⊗HomCB(Hs)
(1, Ut)→ B(Hs), π(ξ̄ ⊗ η) 7→ (ι⊗ ξ̄)η

is a G-equivariant ∗-isomorphism. Since

HomCB(Hs)
(U, V )

=
{
T ∈ B(Hs)⊗B(HU ,HV ) | U∗

13(αl,s ⊗ ι)(T )V13 = 1⊗ T
}

∼=
{
η ∈ Natb(ι⊗ U, ι⊗ V ) | supp(η) ⊂ {s}

}
,

we obtain that the function λ :=
⊕

s λs acting as

λ :
⊕

s

⊕

t

H̄t ⊗
{
η ∈ Natb(ι⊗ U, ι⊗ V ) | supp(η) ⊂ {s}

}
→

⊕

s

B(Hs)

is an isomorphism. But this map equals exactly λ1 of (57). Taking closures
gives the second isomorphism. �
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If F : Rep(G)−n → Rep(G)−k is a functor of module categories, we obtain
maps

H̄s ⊗HomRep(G)−n
(1, Us)→ H̄s ⊗HomRep(G)−k

(1, Us),

ξ̄ ⊗ η 7→ ξ̄ ⊗F(η).
Taking direct sums and passing to the completion gives a ∗-morphism of C∗-
algebras (see [11, Prop. 4.5]); we denote it by

(58) (ιH̄ ⊗F) : B−n(Ĝ)→ B−k(Ĝ).

Similarly for trµ we obtain positive maps

H̄s ⊗HomRep(G)−n
(1, Us)→ H̄s ⊗HomRep(G)−(n−1)

(1, Us),

ξ̄ ⊗ η 7→ ξ̄ ⊗ (trµ⊗ι⊗n−1)(η).

By taking direct sums and completion, these maps extend to positive maps

(59) (ιH̄ ⊗ trµ⊗ι⊗n−1) : B−n(G)→ B−(n−1)(G).

Using the functor (ι⊗ ·), we can embed

H̄s ⊗HomRep(G)−(n−1)
(1, Us) →֒ H̄s ⊗HomRep(G)−n

(1, Us),

and thus we obtain an embedding B−(n−1)(G) →֒ B−n(G). The map

(ιH̄ ⊗ trµ⊗ι⊗n−1) defines a conditional expectation B−n(G)→ B−(n−1)(G).

Corollary 6.12. The following identities hold on B−n(Ĝ) for n ≥ 1:

λn+1 ◦ (ιH̄ ⊗ ι⊗ ·) = (1 ⊗ ·) ◦ λn,(60a)

λn+1 ◦ (ιH̄ ⊗ ∆̂⊗ ι⊗n−1) = (∆̂⊗ ι⊗n−1) ◦ λn,(60b)

λn−1 ◦ (ιH̄ ⊗ trµ⊗ι⊗n−1) = (ϕµ ⊗ ι⊗n−1) ◦ λn,(60c)

where the ∗-morphisms (ιH̄ ⊗ ι⊗ ·), (ιH̄ ⊗ ∆̂⊗ ι⊗n−1) are defined by (58) and
(ιH̄ ⊗ trµ⊗ι⊗n−1) by (59). In particular, it holds that

λ1 ◦ (ιH̄ ⊗ Pµ) = Pµ ◦ λ1,(60d)

λ1 ◦ (ιH̄ ⊗Kµ) = Kµ ◦ λ1.(60e)

Proof. This is more a matter of notation than actually something new. The
key part is Lemma 6.10. Let

ξ̄ ⊗ η ∈ H̄s ⊗HomRep(G)−n
(1, Us) ⊂ B−n(Ĝ) ⊂ B−n(Ĝ).

By Lemma 6.8 we may assume that η is of the form η(T ) for some T ∈
(
⊗−1

−n l
∞(Ĝ))⊗B(C,Hs). Using Lemma 6.10, we conclude

λn+1

(
(ιH̄ ⊗ ∆̂⊗ ι⊗n−1)(ξ̄ ⊗ η(T ))

)
|s1⊗···⊗sn+1

= (ι⊗n+1 ⊗ ξ̄)
(
(∆̂⊗ ι⊗n−1)(η(T ))

)
|s1⊗···⊗sn+1

= (ι⊗n+1 ⊗ ξ̄)
(
η((∆̂⊗ ι⊗n−1 ⊗ ιHs)(T ))

)
|s1⊗···⊗sn+1

= (∆̂⊗ ι⊗n−1 ⊗ ξ̄)(T )|s1⊗···⊗sn+1
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= (∆̂⊗ ι⊗n−1)
(
(ι⊗n+1 ⊗ ξ̄)(η(T ))

)
|s1⊗···⊗sn+1

= (∆̂⊗ ι⊗n−1)λn(ξ̄ ⊗ η(T ))|s1⊗···⊗sn+1 .

Identities (60b) and (60c) can be verified in an analogous way, and (60d)
follows immediately from the definition of Pµ (see Definition 5.6).

To prove (60e) consider 1̄⊗ κ0,1 as an element of

C̄⊗HomRep(G)(1,1) ⊂
⊕

s

H̄s ⊗HomRep(G)−1
(1, Us) = B−1(Ĝ).

Then λ1(1̄ ⊗ κ0,1) = I0 ∈ B(H0). By linearity in µ we see from (60d) that
λ1 ◦ (ιH̄ ⊗ Gµ) = Gµ ◦ λ1. Now take ξ̄ ⊗ η ∈ H̄s ⊗ Nat00(ι ⊗ 1, ι ⊗ Us) for
some s. We get

Kµ ◦ λ1(ξ̄ ⊗ η) = Gµ(λ1(ξ̄ ⊗ η))Gµ(λ1(1̄⊗ κ0,1))−1

= λ1
(
(ξ̄ ⊗Gµ(η)) · (1̄ ⊗Gµ(κ0,1)−1)

)

= λ1
(
ξ̄ ⊗Gµ(η)Gµ(κ0,1)−1

)

= λ1(ξ̄ ⊗Kµ(η)),

as desired. �

Suppose that µ is a generating and transient probability measure on Irr(G).

The action αl defines adjoint actions on the Martin compactification M̃(Ĝ, µ)
and Martin boundary M(Ĝ, µ) (cp. [22, Thm. 3.5]). Denote

M(Ĝ, µ)alg := M̃(Ĝ, µ) ∩ l∞alg(Ĝ).

This is a ∗-algebra which is norm-dense in M̃(Ĝ, µ) (see Section 6.1). For the
Martin boundary we consider

M(Ĝ, µ)alg := M̃(Ĝ, µ)alg/(c0(Ĝ) ∩ l∞alg(Ĝ))

=
{
x ∈M(Ĝ, µ) | αl(x) ∈ C[G]⊗alg M(Ĝ, µ)

}
.

Then again M(Ĝ, µ)alg is norm-dense in M(Ĝ, µ).

Lemma 6.13. The C∗-algebras M̃(Ĝ, µ) and M(Ĝ, µ) are unital braided-

commutative Yetter–Drinfeld G-C∗-algebras. The left action of G on M̃(Ĝ, µ)

is given by the restriction of αl to M̃(Ĝ, µ). The left C[G]-module structure ⊲

is defined by the restriction of (54) to M̃(Ĝ, µ). Both actions factor through
M(Ĝ, µ).

Proof. By definition M̃(Ĝ, µ) and M(Ĝ, µ) are C∗-algebras. They are unital,
because Kµ̄(I0) = Gµ̄(I0)Gµ̄(I0)

−1 = 1. The mappings αl and ∆̂ define a

left G-action and respectively a right Ĝ-action on both M̃(Ĝ, µ) and M(Ĝ, µ)

(see [22, Thm. 3.5]). Thus M̃(Ĝ, µ) and M(Ĝ, µ) are closed under αl and ⊲.
As C−1(Ĝ) is a unital braided-commutative Yetter–Drinfeld G-C∗-algebra (see

[24, §4.1]) and M̃(Ĝ, µ) ⊂ C−1(Ĝ) it follows that the defining identities (49)

and (50) also hold on M̃(Ĝ, µ) and M(Ĝ, µ). �
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Theorem 6.14. Let G be a reduced compact quantum group and µ a gen-
erating and transient probability measure on Irr(G). Denote by B̃(Ĝ, µ) and
B(Ĝ, µ) the unital braided-commutative Yetter–Drinfeld algebras associated to

the categorical Martin compactification M̃(Rep(G), µ) and categorical Martin

boundary M(Rep(G), µ) as in Theorem 6.5. Then λ1 : B̃(Ĝ, µ)→ M̃(Ĝ, µ) is
a ∗-isomorphism preserving the left G-action and right Ĝ-action. Moreover,
λ1 factors through the Martin boundary λ1 : B(Ĝ, µ)→M(Ĝ, µ).

Equivalently, the C∗-tensor categories associated to the unital braided-com-
mutative Yetter–Drinfeld G-C∗-algebras M̃(Ĝ, µ) and M(Ĝ, µ) are unitarily

monoidally equivalent to the categorical Martin compactification M̃(Rep(G), µ)
and respectively Martin boundary M(Rep(G), µ) of the random walk defined
by µ on the C∗-tensor category Rep(G). These monoidal equivalences preserve
the functors of Rep(G) into the respective categories.

Proof. From the definition of the Martin compactification M̃(Rep(G), µ) we
see that

HomM̃(Rep(G),µ)(U, V ) ⊂ HomRep(G)−1
(U, V )

for any objects U, V ∈ Ob(Rep(G)), thus B̃(Ĝ, µ) ⊂ B−1(Ĝ). Hence by Corol-

lary 6.9 the restriction λ1 : B̃(Ĝ, µ)→ C−1(Ĝ) is an injective ∗-homomorphism
preserving the actions of G and Ĝ. To show that λ1 defines an isomorphism
for the compactifications, it therefore suffices to show two more things:

(a) λ1(B̃(G,µ)) ⊂ M̃(G,µ);

(b) λ1 : B̃(G,µ)→ M̃(G,µ) is surjective.

Denote the regular subalgebra of B̃(Ĝ, µ) by B̃(Ĝ, µ). To prove (a), note that
as a vector space

B̃(Ĝ, µ) ∼=
⊕

s∈Irr(G)

H̄s ⊗HomM̃(Rep(G),µ)(1, Us)

=
⊕

s∈Irr(G)

H̄s ⊗ (HomM̃(Rep(G),µ)(1⊕ Us,1⊕ Us))r,

where r denotes again the operation of restriction. Now

HomM̃(Rep(G),µ)(1⊕ Us,1⊕ Us)
is generated as a C∗-algebra by

Nat0(ι⊗ (1⊕ Us), ι⊗ (1⊕ Us))
and

Kµ̄(Nat00(ι⊗ (1⊕ Us), ι⊗ (1⊕ Us))).
Lemma 6.11 shows that if T ∈⊕

s H̄s ⊗Nat0(ι⊗ (1⊕ Us), ι⊗ (1⊕Us)), then
λ1(T ) ∈ c0(Ĝ). Similarly if S ∈ ⊕

s H̄s ⊗ Nat00(ι ⊗ (1 ⊕ Us), ι ⊗ (1 ⊕ Us)),
then λ1(S) ∈ c00(Ĝ). In the latter case, write

Sr := S1 ⊗ Sr2 ∈
⊕

s

H̄s ⊗Nat00(ι⊗ 1, ι⊗ Us)
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for the restriction applied to the second leg of S. Lemma 5.20 and Corol-
lary 6.12 imply that

λ1((ιH ⊗Kµ̄)(S)
r) = λ1((ιH ⊗Kµ̄)(S

r)) = Kµ̄(λ1(S
r)),

which is thus an element of Kµ̄(c00(Ĝ)) ⊂ M̃(Ĝ, µ). Hence λ1 maps the gen-

erators of B̃(Ĝ, µ) in M̃(Ĝ, µ), which proves (a).
To establish surjectivity, we reverse the argument. Clearly every x ∈ c0(Ĝ)

lies in the image of λ1 (see Lemma 6.11). Assume that x ∈ c00(Ĝ), by the same
lemma there exists S ∈ ⊕

s H̄s ⊗ Nat00(ι ⊗ 1, ι ⊗ Us) such that λ1(S) = x.
Then

Se ∈
⊕

s

H̄s ⊗Nat00(ι ⊗ (1⊕ Us), ι⊗ (1⊕ Us))

and
((ιH̄ ⊗Kµ̄)(S

e))r ∈
⊕

s

H̄S ⊗HomM(Rep(G),µ)(1, Us).

Invoking again Lemma 5.20 and Corollary 6.12 gives us

λ1((ιH̄ ⊗Kµ̄)(S
e)r) = λ1((ιH̄ ⊗Kµ̄)(S)) = Kµ̄(λ1(S)) = Kµ̄(x).

Hence λ1 is surjective.
From the second part of Lemma 6.11 we immediately conclude that λ1

factors through the Martin boundary. �

Since R(C, µ) is a C∗-tensor category (see Proposition 5.26), one could try to
reconstruct the C∗-algebra Rϕµ of regular elements from R(Rep(G), µ). There
is however one problem, the algebra Rϕµ is only a C∗-subalgebra of l∞(Ĝ), so
one cannot talk about actions in the von Neumann sense. On the other hand,
it is unknown whether the left G-action is continuous in the C∗-sense. But
one can consider Rϕµ ∩ C−1(Ĝ) and show that this algebra admits a braided-
commutative Yetter–Drinfeld structure.

Lemma 6.15. Denote

R̃(Ĝ, µ) :=
{
x ∈ C−1(Ĝ) | x is µ-regular

}
= C−1(Ĝ) ∩Rϕµ .

Then R̃(Ĝ, µ) is a unital braided-commutative Yetter–Drinfeld G-C∗-algebra.

The left action of G on R̃(Ĝ, µ) is given by the restriction of αl to R̃(Ĝ, µ). The

left C[G]-module structure ⊲ is defined by the restriction of (54) to R̃(Ĝ, µ).

Proof. By definition R̃(Ĝ, µ) ⊂ C−1(Ĝ) and αl defines a continuous left action
of G on C−1(Ĝ). Using the same argument as in Lemma 6.13, it thus suffices

to show that R̃(Ĝ, µ) is closed under the actions αl and ⊲.
We deal with αl first. Using the pentagon equation forW , it is easy to show

that αl(∆̂
n(x)) = (ι ⊗ ∆̂n)(αl(x)). Let x ∈ R̃(Ĝ, µ), inferring (13) yields, for

n ≥ m,
∥∥(ι⊗ ∆̂n−1)(αl(x)) − (ι⊗ 1⊗n−m ⊗ ∆̂m−1)(αl(x))

∥∥2

h⊗ϕ⊗n
µ

= (h⊗ ϕµ ⊗ · · · ⊗ ϕµ)
(
((ι⊗ ∆̂n−1)(αl(x)) − (ι⊗ 1⊗n−m ⊗ ∆̂m−1)(αl(x)))

∗

× ((ι ⊗ ∆̂n−1)(αl(x)) − (ι⊗ 1⊗n−m ⊗ ∆̂m−1)(αl(x)))
)
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= (h⊗ ϕµ ⊗ · · · ⊗ ϕµ)
(
αl((∆̂

n−1(x)− 1⊗n−m ⊗ ∆̂m−1(x))∗

× (∆̂n−1(x) − 1⊗n−m ⊗ ∆̂m−1(x)))
)

= (ϕµ ⊗ · · · ⊗ ϕµ)
(
(∆̂n−1(x) − 1⊗n−m ⊗ ∆̂m−1(x))∗

× (∆̂n−1(x) − 1⊗n−m ⊗ ∆̂m−1(x))
)

=
∥∥∆̂n−1(x) − 1⊗n−m ⊗ ∆̂m−1(x)

∥∥2

ϕ⊗n
µ
,

which tends to 0 as m,n→∞. The same argument holds if one replaces x by
x∗ and thus αl(x) ∈ C(G)⊗ R̃(Ĝ, µ).

For ⊲ we use an argument similar to the proof of Proposition 5.26, part (i).

Assume that x ∈ R̃(Ĝ, µ) and t ∈ Irr(G). Since µ is generating, let k ≥ 0 be
such that t ∈ supp(µ∗k). Select s1, . . . , sk ∈ supp(µ) such that mt

s1,...,sk ≥ 1.
Then by Lemma 2.27

ϕt ≤
ds1 · · · dsk

dt
mt
s1,...,sk(ϕs1 ⊗ · · · ⊗ ϕsk )∆̂k−1 ≤ d−1

t

ds1 · · · dsk
µ(s1) · · ·µ(sk)

ϕkµ.

Write

C := d−1
t

ds1 · · · dsk
µ(s1) · · ·µ(sk)

.

It follows that

(ϕµ ⊗ · · · ⊗ ϕµ︸ ︷︷ ︸
n

⊗ϕt)
((

(∆̂n−1 ⊗ ι)∆̂(x) − 1⊗n−m ⊗ (∆̂m−1 ⊗ ι)(∆̂(x))
)∗

×
(
(∆̂n−1 ⊗ ι)∆̂(x) − 1⊗n−m ⊗ (∆̂m−1 ⊗ ι)(∆̂(x))

))

≤ C(ϕµ ⊗ · · · ⊗ ϕµ︸ ︷︷ ︸
n

⊗(ϕµ ⊗ · · · ⊗ ϕµ︸ ︷︷ ︸
k

)∆̂k−1)
(
(∆̂n(x)− 1⊗n−m ⊗ ∆̂m(x))∗

× (∆̂n(x) − 1⊗n−m ⊗ ∆̂m(x))
)

= C(ϕµ ⊗ · · · ⊗ ϕµ︸ ︷︷ ︸
n+k

)
(
(∆̂n+k−1(x)− 1⊗n−m ⊗ ∆̂m+k−1(x))∗

× (∆̂n+k−1(x)− 1⊗n−m ⊗ ∆̂m+k−1(x))
)
,

which, by regularity of x, tends to 0 as m,n→∞. So ∆̂(x) ∈ R̃(Ĝ, µ)⊗ l∞(Ĝ)

and thus R̃(Ĝ, µ) is closed under ⊲. �

Lemma 6.16. The following holds for ξ̄ ⊗ η ∈ H̄s ⊗HomRep(G)−n
(1, Us):

‖λn(ξ̄ ⊗ η)‖2ϕ⊗n
µ
≤ ‖ξ‖2‖η‖2µ⊗n ,(61a)

‖λn(ξ̄ ⊗ η)∗‖2ϕ⊗n
µ
≤ d2s‖ξ‖2‖η∗‖2µ⊗n .(61b)
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In particular, if ξ̄ ⊗ η ∈ H̄s ⊗HomRep(G)−1
(1, Us) and n > m, then

∥∥∆̂n−1(λ1(ξ̄ ⊗ η))− 1⊗n−m ⊗ ∆̂m−1(λ1(ξ̄ ⊗ η))
∥∥2

ϕ⊗n
µ

(61c)

≤ ‖ξ‖2
∥∥∆̂n−1(η)− (ι⊗n−m ⊗ ∆̂m−1)(η)

∥∥2

µ⊗n ,
∥∥(∆̂n−1(λ1(ξ̄ ⊗ η))− 1⊗n−m ⊗ ∆̂m−1(λ1(ξ̄ ⊗ η))

)∗∥∥2
ϕ⊗n

µ
(61d)

≤ d2s ‖ξ‖2
∥∥(∆̂n−1(η)− (ι⊗n−m ⊗ ∆̂m−1)(η)

)∗∥∥2
µ⊗n .

Proof. Let ξ̄ ⊗ η ∈ H̄s ⊗ HomRep(G)−1
(1, Us). We compute, using (46), (47)

and Corollary 6.12, that

‖λn(ξ̄ ⊗ η)‖2ϕ⊗n
µ

(62)

= (ϕµ ⊗ · · · ⊗ ϕµ)
(
λn(ξ̄ ⊗ η)∗λn(ξ̄ ⊗ η)

)

= (ϕµ ⊗ · · · ⊗ ϕµ)
(
λn((ξ̄ ⊗ η)∗(ξ̄ ⊗ η))

)

= (ϕµ ⊗ · · · ⊗ ϕµ)
(
λn(π((ξ̄ ⊗ η)•)(ξ̄ ⊗ η))

)

= (ϕµ ⊗ · · · ⊗ ϕµ)
(
λn

(
π
(
(ρ

−1/2
s ξ ⊗ (η∗ ⊗ ι)(ι⊗n ⊗ R̄s)) · (ξ̄ ⊗ η)

)))

= λ0

(
(ιH̄ ⊗ trµ⊗ · · · ⊗ trµ)

(
π
(
(ρ

−1/2
s ξ ⊗ ξ)⊗ (((η∗ ⊗ ι)(ι⊗n ⊗ R̄s))⊗ η)

)))

= (ρ
−1/2
s ξ ⊗ ξ)

(
(trµ⊗ · · · ⊗ trµ)(((η

∗ ⊗ ι)(ι⊗n ⊗ R̄s))⊗ η)
)
.

Note that since η ∈ HomRep(G)−1
(1, Us) ⊂ Natb(ι

⊗n ⊗ 1, ι⊗n ⊗ U), the tensor
product of natural transformations yields

((η∗ ⊗ ι)(ι⊗n ⊗ R̄s))⊗ η = (η∗ ⊗ ιs̄ ⊗ ιs)(ι⊗n ⊗ R̄s ⊗ ιs)η.
By means of Lemma 6.8 write η =

∑k
i=1 xi ⊗ Ti, where xi ∈ l∞(Ĝ)⊗n and

Ti ∈ B(H
1

,HUs) = B(C,Hs). Since B(C,Hs) is finite-dimensional, we may

choose k = dim(Us) and Ti : C → Hs, c 7→ cζi, where {ζi}dim(Us)
i=1 forms an

orthonormal basis in Hs and 〈ζi, ξ〉 = 0 if i 6= 1. Recall the solutions (Rs, R̄s)
of the conjugate equations for Us (see (11)). With these choices we obtain that
equation (62) equals

dim(Us)∑

i,j=1

(ρ
−1/2
s ξ ⊗ ξ)

(
(ϕµ ⊗ · · · ⊗ ϕµ ⊗ ιŪs⊗Us

)(63)

(
(x∗i ⊗ T ∗

i ⊗ ιs̄ ⊗ ιs)(ι⊗n ⊗ R̄s ⊗ ιs)(xj ⊗ Tj)
))

=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(x∗i xj) (ρ−1/2
s ξ ⊗ ξ̄)

(
(T ∗
i ⊗ ιs̄ ⊗ ιs)(R̄s ⊗ ιs)Tj

)

=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(x∗i xj)
dim(Us)∑

k=1

T ∗
i (ρ

1
2
s ξ

s
k)

(
(ρ

−1/2
s ξ)(ξ̄sk)

)
ξ̄(Tj)
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=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(x∗i xj)
dim(Us)∑

k=1

T ∗
i (ξ

s
k) ξ̄

s
k(ξ) ξ̄(Tj)

=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(x∗i xj)T ∗
i (ξ) ξ̄(Tj).

By the choice of the Ti’s in the decomposition of η, equation (63) equals

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(x∗i xj) 〈ζi, ξ〉 〈ξ, ζj〉

= (ϕµ ⊗ · · · ⊗ ϕµ)(x∗1x1) ‖ξ‖2

≤ ‖ξ‖2
dim(Us)∑

i=1

(ϕµ ⊗ · · · ⊗ ϕµ)(x∗i xi)ϕ1(T ∗
i Ti)

= ‖ξ‖2(trµ⊗ · · · ⊗ trµ⊗ tr
1

)(η∗η)

= ‖ξ‖2‖η‖2µ⊗n .

Estimate (61b) is similar but slightly trickier. Along the same lines one can
show that

‖λn(ξ̄ ⊗ η)∗‖2ϕ⊗n
µ

(64)

= (ξ ⊗ ρ−1/2
s ξ)

(
(trµ⊗ · · · ⊗ trµ)((η ⊗ ιs̄)(η∗ ⊗ ιs̄)(ι⊗n ⊗ R̄s))

)
.

As before decompose η by means of Lemma 6.8 as η =
∑dim(Us)

i=1 xi ⊗ Ti, but
this time let Ti : C → Hs, c 7→ c ξsi , where {ξsi }i are the eigenvectors of ρs.
Assume for the moment that ξ = ξsl for some l ∈ {1, . . . , dim(Us)}. Then in
this case, equation (64) equals

dim(Us)∑

i,j=1

(ξsl ⊗ ρ
−1/2
s ξsl )

(
(ϕµ ⊗ · · · ⊗ ϕµ ⊗ ιUs⊗Ūs

)(65)

(
(xi ⊗ Ti ⊗ ιs̄)(x∗j ⊗ T ∗

j ⊗ ιs̄)(ι⊗n ⊗ R̄s)
))

=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(xix∗j )
dim(Us)∑

k=1

(ξ̄sl ⊗ ρ−1/2
s ξsl )

(
TiT

∗
j (ρ

1
2
s ξ

s
k)⊗ ξ̄sk

)

=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(xix∗j )
dim(Us)∑

k=1

ξ̄sl (Ti)T
∗
j (ρ

1
2
s ξ

s
k)

(
(ρ

−1/2
s ξsl )(ξ̄

s
k)
)

=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(xix∗j )
dim(Us)∑

k=1

〈ξsl , ξsi 〉 〈ξsj , ρ
1
2
s ξ

s
k〉 〈ξsk, ρ

− 1
2

s ξsl 〉

= (ϕµ ⊗ · · · ⊗ ϕµ)(xlx∗l ).
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On the other hand,

‖ξ‖2‖η∗‖2µ⊗n = (trµ⊗ · · · ⊗ trµ⊗ trUs)(ηη
∗)(66)

=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ ⊗ ϕs)(xix∗j ⊗ TiT ∗
j )

=

dim(Us)∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)(xix∗j )
dim(Us)∑

k=1

〈ξsk, ξsi 〈ξsj , ρ−1
s ξsk〉〉

=

dim(Us)∑

i=1

(ϕµ ⊗ · · · ⊗ ϕµ)(xix∗i )(ρ−1
s )ii.

Note that ds =
∑dim(Us)

j=1 (ρs)jj ≥ (ρs)ii for any i. Therefore comparing (65)

and (66) gives

(67) ‖λn(ξ̄ ⊗ η)∗‖2ϕ⊗n
µ
≤ ds‖ξ‖2‖η∗‖2µ⊗n .

Now we deal with general vectors ξ ∈ Hs as follows. Write ξ =
∑

i ciξ
s
i , then

‖ξ‖2 =
∑

i |ci|2. By (67), Cauchy–Schwarz and Jensen’s inequality we get

‖λn(ξ̄ ⊗ η)∗‖2ϕ⊗n
µ
≤

( dim(Us)∑

i=1

|ci|‖λn(ξsi ⊗ η)∗‖ϕ⊗n
µ

)2

≤ ds
( dim(Us)∑

i=1

|ci|
)2

‖η∗‖2µ⊗n

≤ ds dim(Us)

dim(Us)∑

i=1

|ci|2 ‖η∗‖2µ⊗n

≤ d2s‖ξ‖2‖η∗‖2µ⊗n ,

which completes inequality (61b).
Inequalities (61c) and (61d) are now easy to prove. Indeed, by Corollary 6.12

and (61a) we get for ξ̄ ⊗ η ∈ H̄s ⊗HomRep(G)−1
(1, Us) and n > m that

∥∥∆̂n−1(λ1(ξ̄ ⊗ η))− 1⊗n−m ⊗ ∆̂m−1(λ1(ξ̄ ⊗ η))
∥∥2

ϕ⊗n
µ

=
∥∥λn(ξ̄ ⊗ ∆̂n−1(η))− 1⊗n−m ⊗ λm(ξ̄ ⊗ ∆̂m−1(η))

∥∥2

ϕ⊗n
µ

=
∥∥λn(ξ̄ ⊗ ∆̂n−1(η))− λn(ξ̄ ⊗ ι⊗n−m ⊗ ∆̂m−1(η))

∥∥2

ϕ⊗n
µ

=
∥∥λn(ξ̄ ⊗ (∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η)))

∥∥2

ϕ⊗n
µ

≤ ‖ξ‖2
∥∥∆̂n−1(η)− ι⊗n−m ⊗ ∆̂m−1(η)

∥∥2

µ⊗n .

Estimate (61d) is similar. We leave the details to the reader. �

Because of Lemma 6.15 and Theorem 6.5 there exists a C∗-tensor cate-
gory corresponding to the braided commutative Yetter–Drinfeld G-C∗-algebra
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R̃(Ĝ, µ). Denote this C∗-tensor category by D. So concretely, D = CR̃(Ĝ,µ) is
the completion of the category with objects Ob(Rep(G)) and morphism sets

HomD(U, V ) :=
{
T ∈ R̃(Ĝ, µ)⊗B(HU ,HV ) | V ∗

13(αl ⊗ ιV )(T )U13 = 1⊗ T
}

for U, V ∈ Ob(Rep(G)). Recall the C∗-tensor category R(Rep(G), µ) of µ-
regular natural transformations defined in Definition 5.24.

Theorem 6.17. The category D is unitarily monoidally equivalent to the cat-
egory R(Rep(G), µ) via a monoidal equivalence preserving the canonical func-
tors Rep(G)→ D and Rep(G)→ R(Rep(G), µ).

Proof. For an element T ∈ l∞(Ĝ)⊗B(HU ,HV ) recall the condition

(68) V ∗
13(αl ⊗ ιV )(T )U13 = 1⊗ T.

The categories Rep(G)−1 and CC−1(Ĝ) are unitarily monoidally equivalent as
Rep(G)-module categories (see Corollary 6.9). To prove the theorem it there-
fore suffices to show that for any pair of objects U, V ∈ Ob(Rep(G)), the
isomorphism of Lemma 6.8 restricts to an isomorphism

HomR(Rep(G),µ)(U, V )
∼=←−

{
T ∈ R̃(Ĝ, µ)⊗B(HU ,HV ) | V ∗

13(αl ⊗ ιV )(T )U13 = 1⊗ T
}
.

In order to achieve this, it is sufficient to show the following two statements:

(a) η(T ) ∈ HomR(Rep(G),µ)(U, V ) for any T ∈ R̃(Ĝ, µ)⊗B(HU ,HV ) satisfying
condition (68).

(b) For any η ∈ HomR(Rep(G),µ)(U, V ) there exists a homomorphism T ∈
R̃(Ĝ, µ)⊗B(HU ,HV ) satisfying condition (68) such that η = η(T ).

(a) Assume T ∈ R̃(Ĝ, µ) ⊗ B(HU ,HV ) satisfies (68). By Lemma 6.8, we
have η(T ) ∈ HomRep(G)−1

(U, V ). We must show that η(T ) is µ-regular. Since
B(HU ,HV ) is finite-dimensional, we can write T =

∑k
i=1 xi ⊗ Ti with xi ∈

R̃(Ĝ, µ) and Ti ∈ B(HU ,HV ) such that ϕU (T
∗
i Tj) = ϕV (TiT

∗
j ) = 0 whenever

i 6= j (for instance, take Ti of the formmξ,ξ′ where ξ and ξ
′ are in a basis of HU

and respectively HV in which ρ acts diagonally). Let n > m. By Lemma 6.10
we obtain

∥∥∆̂n−1(η(T ))− ι⊗n−m ⊗ ∆̂m−1(η(T ))
∥∥2

µ⊗n(69)

=
∥∥η

(
(∆̂n−1 ⊗ ιV )(T )− (1⊗n−m ⊗ ∆̂m−1 ⊗ ιV )(T )

)∥∥2
µ⊗n

= (ϕµ ⊗ · · · ⊗ ϕµ ⊗ ϕU )(
((∆̂n−1 ⊗ ιV )(T )− (1⊗n−m ⊗ ∆̂m−1 ⊗ ιV )(T ))∗

× ((∆̂n−1 ⊗ ιV )(T )− (1⊗n−m ⊗ ∆̂m−1 ⊗ ιV )(T ))
)
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=

k∑

i,j=1

(ϕµ ⊗ · · · ⊗ ϕµ)
(
(∆̂n−1(xi)− 1⊗n−m ⊗ ∆̂m−1(xi))

∗

× (∆̂n−1(xj)− 1⊗n−m ⊗ ∆̂m−1(xj))
)
ϕU (T

∗
i Tj)

=
k∑

i=1

ϕU (T
∗
i Ti)

∥∥∆̂n−1(xi)− 1⊗n−m ⊗ ∆̂m−1(xi)
∥∥2
ϕ⊗n

µ
.

As each xi is µ-regular, it follows that, for i = 1, . . . , k,
∥∥∆̂n−1(xi)− 1⊗n−m ⊗ ∆̂m−1(xi)

∥∥2
ϕ⊗n

µ
→ 0 as n,m→∞

and thus (69) converges to zero as m,n→∞. A similar calculation shows that
∥∥∆̂n−1(η(T )∗)− ι⊗n−m ⊗ ∆̂m−1(η(T )∗)

∥∥2
µ⊗n → 0 as n,m→∞.

We conclude that η(T ) ∈ HomR(Rep(G),µ)(U, V ).
(b) First assume that η ∈ HomR(Rep(G),µ)(1, Us). Pick the unique element

T ∈ C−1(Ĝ) ⊗ B(C,Hs) satisfying (68) such that η(T ) = η. Given ξ ∈ Hs,
observe that (ι⊗ ξ̄)(T ) = λ1(ξ̄ ⊗ η). From Lemma 6.16 it immediately follows

that (ι ⊗ ξ̄)(T ) ∈ R̃(Ĝ, µ) and thus T ∈ R̃(Ĝ, µ) ⊗ B(C,Hs). For general
objects U, V ∈ Ob(Rep(G)) Frobenius reciprocity gives

HomR(Rep(G),µ)(U, V ) ∼= HomR(Rep(G),µ)(1, Ū ⊗ V )

∼=
⊕

s∈Irr(G)

ms
Ū,V HomR(Rep(G),µ)(1, Us),

as desired. �

Theorem 6.18. Given a reduced compact quantum group G and a generating
and transient probability measure µ on Irr(G) = Irr(Rep(G)), the random walk
defined by µ on the discrete dual l∞(Ĝ) converges to the boundary if and only
if the random walk defined by µ on the C∗-tensor category Rep(G) converges
to the boundary.

Most of the hard work of the proof of this theorem is already done. We will
refer to requirements (i) and (ii) of Definition 5.27 as (i)cat respectively (ii)cat,
to distinguish them from the corresponding properties in Conjecture 2.34.

Proof of Theorem 6.18. Note that M̃(Ĝ, µ)⊂C−1(Ĝ). Therefore Theorem 6.17

implies that M̃(Ĝ, µ) ⊂ R̃(Ĝ, µ) if and only if M̃(Rep(G), µ) is a C∗-tensor
subcategory of R(Rep(G), µ). Thus (i) and (i)cat are equivalent.

Equivalence of (ii) and (ii)cat is proved in the subsequent two lemmas. �

Lemma 6.19. Suppose that (G,µ) satisfies (ii), then (Rep(G), µ) satisfies
(ii)cat.

Proof. Let ν ∈ Natb(ι⊗X, ι⊗ Y ) be µ-harmonic and η ∈ Nat00(ι⊗U, ι⊗ V ).
By Lemma 6.11, η is of the form η = η(T ) for a unique T satisfying (68). Write
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T as T =
∑k

i=1 xi ⊗ Ti ∈ c00(Ĝ) ⊗ B(HU ,HV ). Similarly, by [24, Thm. 4.1]
also ν is of the form ν = η(S) for some S, where

S =
m∑

i=1

yj ⊗ Sj ∈ H∞(Ĝ, µ)⊗B(HX ,HY ).

Note that these sums are finite, because B(HU ,HV ) and B(HX ,HY ) are
finite-dimensional. The Poisson boundary is invariant under the right ac-
tion defined by the comultiplication (see [15, Lem. 2.2]). Thus if we write
∆̂(yj) = y(1)j ⊗ y(2)j , then y(1)j ∈ H∞(Ĝ, µ). Use the description of the tensor

product of natural isomorphisms given by (55) to obtain
∑

s∈Irr(G)

d2s trs(η ⊗ ν) =
∑

s∈Irr(G)

∑

i,j

d2s(ϕs ⊗ ιV ⊗ ιY )
(
xiy

(1)
j ⊗ TiπU (y

(2)
j )⊗ Sj

)

=
∑

i,j

( ∑

s∈Irr(G)

d2sϕs(xiy
(1)
j )

)(
TiπU (y

(2)
j )⊗ Sj

)

=
∑

i,j

ϕ∞
µ

(
Kµ̄(xi)y

(1)
j

)(
TiπU (y

(2)
j )⊗ Sj

)

= (ϕ∞
µ ⊗ ιV ⊗ ιY )

(∑

i,j

Kµ̄(xi)y
(1)
j ⊗ TiπU (y

(2)
j )⊗ Sj

)

= tr∞µ
(
Kµ̄(η)⊗ ν

)
.

In the last step we used Lemma 6.10. �

Lemma 6.20. If (Rep(G), µ) satisfies (ii)cat, then (G,µ) satisfies (ii).

Proof. Let ξ̄ ⊗ η ∈ H̄s ⊗ HomRep(G)−1
(1, Us) be such that λ1(ξ̄ ⊗ η) ∈ c00(Ĝ)

and let ζ̄ ⊗ ν ∈ H̄t ⊗HomRep(G)−1
(1, Ut) be such that λ1(ζ̄ ⊗ ν) ∈ H∞(Ĝ, µ).

Recall the tensor product of natural transformations (30). Using the notation
and results of Corollary 6.12, we get

ψ̂(λ1(ξ̄ ⊗ η)λ1(ζ̄ ⊗ ν)) = ψ̂
(
λ1((ξ̄ ⊗ η)(ζ̄ ⊗ ν))

)
(70)

=
∑

r

d2r ϕr
(
λ1((ξ ⊗ ζ)⊗ ((η ⊗ ι)(ι ⊗ ν)))

)

=
∑

r

d2r λ0 ◦ (ιHs⊗Ht
⊗ trr)

(
(ξ ⊗ ζ)⊗ (η ⊗ ν)

)

=
∑

r

d2rλ0((ξ ⊗ ζ)⊗ trr(η ⊗ ν))

= λ0

(
(ξ ⊗ ζ)⊗

(∑

r

d2r trr(η ⊗ ν)
))
.

By assumption, (Rep(G), µ) satisfies (ii)cat. Thus, by Corollary 6.12, equation
(70) equals

λ0
(
(ξ ⊗ ζ)⊗ tr∞µ (Kµ̄(η) ⊗ ν)

)

= λ0 ◦ (ιHs⊗Ht
⊗ tr∞µ )

(
(ξ ⊗ ζ)⊗ ((Kµ̄(η)⊗ ι)(ι ⊗ ν))

)
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= ϕ∞
µ

(
λ1((ξ ⊗ ζ)⊗ ((Kµ̄(η)⊗ ι)(ι ⊗ ν)))

)

= ϕ∞
µ

(
Kµ̄(λ1(ξ̄ ⊗ η))λ1(ζ̄ ⊗ ν)

)
.

By linearity it follows that for any x ∈ λ1(
⊕

s H̄s ⊗ Nat00(1, Us)) and any
h = λ1(T ) where T ∈

⊕
s H̄s ⊗ Natb(ι, ι ⊗ Us) with (ι ⊗ Pµ)(T ) = T , it holds

that

(71) ψ̂(xh) = ϕ∞
µ (Kµ̄(x)h).

By density and strong∗-continuity we obtain that (71) holds for any x ∈ c00(Ĝ)
and any µ-harmonic element h ∈ H∞(Ĝ, µ). �
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