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Homomorphisms of quantum groups

Ralf Meyer, Sutanu Roy, and Stanis law Lech Woronowicz

(Communicated by Joachim Cuntz)

Abstract. In this article, we study several equivalent notions of homomorphism between
locally compact quantum groups compatible with duality. In particular, we show that our
homomorphisms are equivalent to functors between the respective categories of coactions.
We lift the reduced bicharacter to universal quantum groups for any locally compact quantum
group defined by a modular multiplicative unitary, without assuming Haar weights. We work
in the general setting of modular multiplicative unitaries.

1. Introduction

Let (C,∆C) and (A,∆A) be two C∗-bialgebras. A Hopf ∗-homomorphism
between them is a morphism f : C → A that intertwines the comultiplications,
that is, the following diagram commutes:

C

∆C

��

f
// A

∆A

��

C ⊗ C
f⊗f

// A⊗A.

(Throughout this article, C∗-tensor products are spatial, and a morphism be-
tween two C∗-algebras A and B is a nondegenerate *-homomorphism from A
to the multiplier algebra M(B) or, equivalently, a strictly continuous unital *-
homomorphism M(A) → M(B). Thus C∗-algebras with the above morphisms
form a category.)

These Hopf ∗-homomorphisms are the right morphisms between compact
quantum groups (see [9]) and, more generally, between amenable quantum
groups. For locally compact groups, however, they are not appropriate because
they do not behave well for reduced group C∗-algebras. It is easy to see that a
group homomorphism f : G→ H induces Hopf ∗-homomorphisms from C0(H)
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to C0(G) and from C∗(G) to C∗(H). But the latter does not always descend
to the reduced group C∗-algebras. For instance, the constant map from G to
the trivial group {1} induces a Hopf ∗-homomorphism C∗

r (G) → C∗
r ({1}) = C

if and only if G is amenable.
Thus Hopf ∗-homomorphisms are not compatible with duality, unless we use

full duals everywhere: a Hopf ∗-homomorphism from C to A need not induce
a Hopf ∗-homomorphism from Â to Ĉ.

More satisfactory notions of quantum group morphisms are introduced by
Ng [5] and later by Kustermans [3]. While we wrote the first version of this
article, we were unaware of Ng’s article [5] and, therefore, duplicated some of
his work.

The theory in [5] works well provided quantum groups are defined by mul-
tiplicative unitaries that lift to the universal quantum groups. More precisely,
the issue is to lift the (reduced) bicharacter in UM(Ĉ ⊗ C) to a bicharacter

in UM(Ĉu ⊗Cu), where Ĉu and Cu denote the universal quantum groups as-

sociated to the quantum groups Ĉ and C, respectively. (We write UM(A) for
the group of unitary multipliers of a C∗-algebra A, and U(H) for the unitary
group on a Hilbert space H.)

Multiplicative unitaries that lift to UM(Ĉu ⊗ Cu) are called basic in [5,
Def. 2.3], and several sufficient conditions for this are found in [5]. Kuster-
mans [3] gets such a lifting from Haar weights. Here we establish that all
modular multiplicative unitaries are basic, so that the theory in [5] works very
generally.

The definition of locally compact quantum group we adopt here is the one by
So ltan and the third author based on modular multiplicative unitaries (see [7])
and not assuming Haar weights. The description of quantum groups by mul-
tiplicative unitaries goes back to Baaj and Skandalis [2].

We now briefly list the equivalent notions of quantum group homomorphism
that we study. The most fundamental notion comes from the point of view that
quantum groups encode symmetries of C∗-algebras, in the form of coactions.

Let C∗alg(A) be the category of C∗-algebras with a continuous coaction of
(A,∆A), with A-equivariant morphisms as arrows. Forgetting the coaction
provides a functor For to the category C∗alg of C∗-algebras without extra
structure. A quantum group homomorphism from (C,∆C) to (A,∆A) is a
functor

(1) F : C∗alg(C) → C∗alg(A) with For ◦ F = For.

A Hopf ∗-homomorphism f : C → A clearly induces such a functor: compose a
coaction D → D⊗C with idD ⊗f to get a coaction of A. While the definition
in (1) is conceptually attractive, it is hard to work with. We provide several
more concrete descriptions of quantum group homomorphisms.

A Hopf ∗-homomorphism f : C → A yields a unitary multiplier

V = Vf := (idĈ ⊗f)(WC) ∈ UM(Ĉ ⊗A),
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which is a bicharacter, that is,

(2) (∆Ĉ ⊗ idA)V = V23V13 and (idĈ ⊗∆A)V = V12V13,

where WC ∈ UM(Ĉ ⊗ C) is the reduced bicharacter.

We show that bicharacters in UM(Ĉ ⊗ A) correspond to quantum group
homomorphisms from C to A and therefore call them bicharacters from C to A.
Bicharacters were already interpreted as homomorphisms of quantum groups
in [5], where they are called WC-WA-birepresentations.

Bicharacters are nicely compatible with duality. If V is a bicharacter from C
to A, then σ(V ∗) is a bicharacter from Â to Ĉ, where we use the coordinate
flip

σ : Ĉ ⊗A→
ˆ̂
A⊗ Ĉ.

A Hopf ∗-homomorphism f : C → A is determined by the bicharacter Vf
because elements of the form (ω ⊗ idC)(WC) for linear functionals ω on Ĉ are

dense in C and f
(
(ω ⊗ idC)(WC)

)
= (ω ⊗ idA)(Vf ). Furthermore, if f admits

a dual quantum group homomorphism f̂ : Â → Ĉ, then these two are related
by

(3) (f̂ ⊗ idA)(WA) = Vf = (idĈ ⊗f)(WC).

The standard Hilbert space representations of Ĉ and A turn a bicharacter V
into a unitary operator V = Vf on HC ⊗HA that satisfies the two pentagonal
equations

(4) V23W
C
12 = W

C
12V13V23 and W

A
23V12 = V12V13W

A
23,

which relate it to the multiplicative unitaries WC and WA of C and A. Con-
versely, such unitary operators come from bicharacters, so that we call them
concrete bicharacters.

We show that concrete bicharacters and hence bicharacters form a category.
The composition of two bicharacters VC→A ∈ UM(Ĉ ⊗ A) and VA→B ∈

UM(Â⊗B) is the unique VC→B ∈ UM(Ĉ ⊗B) that satisfies

V
A→B
23 V

C→A
12 = V

C→A
12 V

C→B
13 V

A→B
23 .

As expected, the composition of a bicharacter VC→A ∈ UM(Ĉ ⊗A) with the

bicharacter Vf of a Hopf ∗-homomorphism f : A→ B yields (idĈ ⊗f)(VC→A).
Previously, it was suggested to define quantum group homomorphisms by

passing to universal quantum groups [8]. Moreover, Kustermans [3] shows that
the Hopf ∗-homomorphisms between universal quantum groups correspond to
certain coactions on the von Neumann algebraic versions of these quantum
groups.

The universal property that defines the universal quantum group (Cu,∆u)
of a quantum group (C,∆) immediately implies that bicharacters from C to A
correspond bijectively to Hopf ∗-homomorphisms Cu → A. We show that such
bicharacters lift uniquely to bicharacters from C to Au. Thus quantum group
homomorphisms C → A are in bijection with Hopf ∗-homomorphisms Cu →
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Au. The composition of bicharacters corresponds to the usual composition of
Hopf ∗-homomorphisms between universal quantum groups.

There is a bijective correspondence between bicharacters and certain coac-
tions. A right quantum group homomorphism from C to A is a morphism
∆R : C → C ⊗A such that the following two diagrams commute:

(5)

C
∆R

//

∆C

��

C ⊗A

∆C⊗idA

��

C ⊗ C
idC ⊗∆R

// C ⊗ C ⊗A,

C
∆R

//

∆R

��

C ⊗A

idC ⊗∆A

��

C ⊗ A
∆R⊗idA

// C ⊗A⊗A.

A bicharacter V ∈ UM(Ĉ ⊗A) yields a right quantum group homomorphism

∆R : C → C ⊗A, ∆R(x) := V(x⊗ 1)V∗ for all x ∈ C.

The bicharacter corresponding to ∆R is the unique unitary V ∈ UM(Ĉ ⊗ A)
with

(6) (idĈ ⊗∆R)(WC) = WC
12V13.

Given a functor F : C∗alg(C) → C∗alg(A) with For ◦ F = For, we get such a
right coaction ∆R by applying F to the coaction ∆C on C. In this way, right
quantum group homomorphisms are equivalent to functors as in (1).

The following technical result is a crucial tool in this article: if a, b ∈ B(HA)
satisfy W(a ⊗ 1) = (1 ⊗ b)W, then already a = b ∈ C · 1. This implies that a
multiplier of A is constant if it is left or right invariant. This result was proved
in [4, Result 6.1] assuming the existence of Haar weights. We establish it in
the more general framework of [7].

2. Invariants are constant

Let (C,∆C) and (A,∆A) be two quantum groups in the sense of [7]. That
is, they are obtained from modular multiplicative unitaries WC ∈ U(HC⊗HC)

and WA ∈ U(HA ⊗ HA) for certain Hilbert spaces HC and HA. Let WC ∈

UM(Ĉ ⊗ C) and WA ∈ UM(Â⊗A) be their reduced bicharacters.
Being constructed from modular multiplicative unitaries, our locally com-

pact quantum groups are concrete C∗-algebras, represented on some Hilbert
space. However, several nonequivalent multiplicative unitaries may give the
same locally compact quantum group, that is, isomorphic pairs (C,∆C). There-

fore, we distinguish between elements of C∗-algebras such as Ĉ ⊗ C and the
Hilbert space operators they generate in the representation of Ĉ ⊗ C. For a
unitary multiplier U of Ĉ ⊗C, we write U for U considered as an operator on
the Hilbert space HC ⊗HC , where Ĉ, C ⊆ B(HC). In particular, this applies

to the reduced bicharacter WC ∈ UM(Ĉ ⊗C) and the modular multiplicative

unitary WC ∈ U(HC ⊗HC). Whereas WC is uniquely determined by (C,∆C),
WC is not unique in any sense.
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Recall the following properties:

W
C
23W

C
12 = W

C
12W

C
13W

C
23 in U(HC ⊗HC ⊗HC),(7)

∆C(x) = W
C(x ⊗ 1)(WC)∗ in B(HC ⊗HC) for all x ∈ C,(8)

∆Ĉ(y) = Σ(WC)∗(1 ⊗ y)WCΣ in B(HC ⊗HC) for all y ∈ Ĉ,(9)

WC
12WC

13 = (idĈ ⊗∆C)(WC) in Ĉ ⊗ C ⊗ C,(10)

WC
23WC

13 = (∆Ĉ ⊗ idC)(WC) in Ĉ ⊗ Ĉ ⊗ C.(11)

Here Σ ∈ U(HC ⊗HC) denotes the coordinate flip.

Theorem 2.1. Let H be a Hilbert space and let W ∈ B(H⊗H) be a modular
multiplicative unitary. If a, b ∈ B(H) satisfy W(a ⊗ 1) = (1 ⊗ b)W, then

a = b = λ1 for some λ ∈ C. More generally, if a, b ∈ M(K(H) ⊗D) for some
C∗-algebra D satisfy W12a13 = b23W12, then a = b ∈ C · 1H ⊗M(D).

Proof. Define the operators Q̂, Q, and W̃ as in [6, Def. 2.1]. First we prove
the assertion without D and under the additional assumption b∗D(Q) ⊆ D(Q).
Our assumption W(a⊗ 1) = (1 ⊗ b)W means

(x⊗ y | W | az ⊗ u) = (x⊗ b∗y | W | z ⊗ u)

for all x, z ∈ H, y ∈ D(Q) and u ∈ D(Q−1). The modularity condition for W

yields (
az ⊗Qy

∣∣ W̃
∣∣ x⊗Q−1u

)
=

(
z ⊗Qb∗y

∣∣ W̃
∣∣ x⊗Q−1u

)
.

In this formula, W̃(x⊗Q−1u) runs through a dense subset of H⊗H. Therefore,

we may replace W̃(x⊗Q−1u) by x⊗Q−1u and get

(az ⊗Qy | x⊗Q−1u) = (z ⊗Qb∗y | x⊗Q−1u).

An operator w on H induces a transpose operator wT on H by wT(ξ) := w∗ξ.
Hence

((a∗)Tz ⊗Qy | x⊗Q−1u) = (z ⊗Qb∗y | x⊗Q−1u),

for all x, y, z, u ∈ H. Thus (a∗)T ⊗ 1 = 1 ⊗ b∗, so that a, b ∈ C · 1 and a = b.
To remove the assumption b∗D(Q) ⊆ D(Q), we regularize a and b. For

a ∈ B(H) and n ∈ N, we define

R̂n(a) :=

∫ +∞

−∞

Q̂−itaQ̂itδn(t) dt and Rn(a) :=

∫ +∞

−∞

Q−itaQitδn(t) dt,

where

δn(t) :=

√
n

2π
exp

(
−
nt2

2

)

is a δ-like sequence of Gaussian functions. Since

W
∗(Q̂ ⊗Q)W = Q̂⊗Q,

our condition W(a⊗ 1) = (1 ⊗ b)W implies

W(R̂n(a) ⊗ 1) = (1 ⊗ Rn(b))W.
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We will show below that

(12) Rn(b)∗D(Q) ⊆ D(Q).

The first part of the proof now yields R̂n(a) = Rn(b) = λn1 for all n ∈ N. If

n→ ∞, then R̂n(a) and Rn(b) converge weakly towards a and b, respectively.
Hence we get a = b = λ1 for some λ ∈ C in full generality.

It remains to establish (12). Let x, y ∈ D(Q). Then the function

fx,y(z) := (Qi(z−i)x | b∗ | Qizy)

is well-defined, bounded, and continuous in the strip Σ := {z ∈ C : −1 ≤
Im z ≤ 0} and holomorphic in the interior of Σ. In particular, for t ∈ R :

(13) fx,y(t) = (Qx | Q−itb∗Qit | y), fx,y(t− i) = (x | Q−itb∗Qit | Qy).

By Cauchy’s Theorem, the integrals of fx,y(z)δn(z) along the lines R + is for
0 ≤ 1 ≤ s do not depend on s. For s = 0 and s = 1, (13) shows that the
integrals are (Qx | Rn(b)∗ | y) and

(
x

∣∣∣∣
∫ +∞

−∞

Q−itb∗Qitδn(t− i) dt

∣∣∣∣ Qy
)
,

respectively. Their equality shows that (Qx | Rn(b)∗y) depends continuously
on x. This yields Rn(b)∗y ∈ D(Q∗) = D(Q), that is, (12).

Finally, we add the coefficient algebra D. If a, b ∈ M(K(H) ⊗ D) satisfy
W12a13 = b23W12 in M(K(H ⊗ H) ⊗ D), then the first part of the theorem
applies to the slices (id⊗µ)(a) and (id⊗µ)(b) for all µ ∈ D′. Thus (id⊗µ)(a) =
(id⊗µ)(b) = λµ · 1 for all µ ∈ D′. This implies that a = b ∈ C · 1⊗M(D). �

Corollary 2.2. Let (C,∆C) be a quantum group constructed from a manage-

able (or, more generally, from a modular) multiplicative unitary W ∈ B(H ⊗
H). If c ∈ M(C), then ∆C(c) ∈ M(C ⊗ 1) or ∆C(c) ∈ M(1 ⊗ C) if and only

if c ∈ C · 1.
More generally, if D is a C∗-algebra and c ∈ M(C ⊗ D), then (∆C ⊗

idD)(c) ∈ M(C ⊗ 1 ⊗ D) or (∆C ⊗ idD)(c) ∈ M(1 ⊗ C ⊗ D) if and only if

c ∈ C · 1 ⊗M(D).

Proof. Using (8), we rewrite the equation ∆C(c) = 1⊗c′ for c, c′ ∈ M(C⊗D) as
WC

12c13 = c′23W
C
12. Now Theorem 2.1 yields c ∈ C ·1⊗M(D). If ∆C(c) = c′⊗1

instead, then we apply the unitary antipodes. With a := (RC ⊗ idD)(c) and
a′ := (RC ⊗ idD)(c′), we get ∆C(a) = 1 ⊗ a′. The argument above shows
a ∈ C · 1 ⊗M(D) and hence c ∈ C · 1 ⊗M(D). �

3. Bicharacters

Definition 3.1. (see also [5, Def. 3.1]) A unitary V ∈ UM(Ĉ ⊗A) is called a
bicharacter from C to A if

(∆Ĉ ⊗ idA)V = V23V13 in UM(Ĉ ⊗ Ĉ ⊗A),(14)

(idĈ ⊗∆A)V = V12V13 in UM(Ĉ ⊗A⊗A).(15)

Münster Journal of Mathematics Vol. 5 (2012), 1–24
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Lemma 3.2. A unitary V ∈ U(HC ⊗ HA) comes from a bicharacter V ∈

UM(Ĉ ⊗A) (which is necessarily unique) if and only if

V23W
C
12 = W

C
12V13V23 in U(HC ⊗HC ⊗HA),(16)

W
A
23V12 = V12V13W

A
23 in U(HC ⊗HA ⊗HA).(17)

Proof. The representation of Ĉ ⊗ Ĉ ⊗A on HC ⊗HC ⊗HA is faithful. Hence
a bicharacter V ∈ UM(Ĉ ⊗A) is determined by its image V ∈ U(HC ⊗HA),
and (14) and (15) are equivalent to some equations of unitary operators on
HC⊗HC⊗HA. Using (9), we rewrite (14) as Σ12(WC

12)∗V23W
C
12Σ12 = V23V13.

This is equivalent to (16). A similar argument shows that (15) is equivalent
to (17).

It remains to show that a unitary V on HC ⊗HA that satisfies (16) and (17)

necessarily belongs to M(Ĉ⊗A). We argue as in the proof of [10, Thm. 1.6.2].
The unitary V is adapted to WA in the sense of [10] by (17). Rewriting (17)
as V13 = V∗

12W
A
23V12(WA

23)∗, we see that V ∈ M(K(HC) ⊗ A). Then (16) in

the form V13 = (WC
12)∗V23W

C
12V

∗
23 shows that V13 ∈ M(Ĉ ⊗K(HC) ⊗A), so

that V ∈ M(Ĉ ⊗A) as asserted. �

Example 3.3. Equations (10)–(11) show that a Hopf ∗-homomorphism f : C

→ A yields a bicharacter Vf := (idĈ ⊗f)WC . In particular, WC is a bicharac-
ter.

Remark 3.4. The criterion in Lemma 3.2 has the merit of using only the lan-
guage of multiplicative unitaries and pentagon equations. But the same quan-
tum group may be generated by different multiplicative unitaries. Since WC

only depends on (C,∆C) by [7], bicharacters from C to A depend only on
(A,∆A) and (C,∆C).

Now we define the composition of (concrete) bicharacters as in [5, Lemma 2.5].
Let (B,∆B) be another quantum group.

Definition 3.5. A unitary VC→B ∈ UM(Ĉ ⊗ B) is called a composition of

two bicharacters VC→A ∈ UM(Ĉ ⊗A) and VA→B ∈ UM(Â⊗B) if its image
VC→B in U(HC ⊗HB) satisfies

V
A→B
23 V

C→A
12 = V

C→A
12 V

C→B
13 V

A→B
23 in U(HC ⊗HA ⊗HB),

or, equivalently,

(18) V
C→B
13 = (VC→A

12 )∗VA→B
23 V

C→A
12 (VA→B

23 )∗.

We also briefly write VC→B = VA→B ∗ VC→A.

Lemma 3.6. For any two bicharacters VC→A and VA→B, there is a unique

composition VC→B, and it is a bicharacter from C to B.
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Proof. Define Ṽ := (VC→A
12 )∗VA→B

23 VC→A
12 (VA→B

23 )∗ ∈ UM(Ĉ ⊗ K(HA) ⊗ B).

We are going to use Theorem 2.1 to show that Ṽ ∈ UM(Ĉ ⊗ 1 ⊗B).

W
A
23Ṽ124(WA

23)∗

= W
A
23(VC→A

12 )∗VA→B
24 V

C→A
12 (VA→B

24 )∗(WA
23)∗

= (VC→A
13 )∗(VC→A

12 )∗WA
23V

A→B
24 V

C→A
12 (VA→B

24 )∗(WA
23)∗

= (VC→A
13 )∗(VC→A

12 )∗VA→B
34 W

A
23(VA→B

34 )∗VC→A
12 V

A→B
34 (WA

23)∗(VA→B
34 )∗

= (VC→A
13 )∗(VC→A

12 )∗VA→B
34 W

A
23V

C→A
12 (WA

23)∗(VA→B
34 )∗

= (VC→A
13 )∗(VC→A

12 )∗VA→B
34 V

C→A
12 V

C→A
13 (VA→B

34 )∗

= (VC→A
13 )∗VA→B

34 V
C→A
13 (VA→B

34 )∗ = Ṽ134;

the first step uses (17); the second step uses (16) for VA→B; the third step
uses that VA→B

34 and VC→A
12 commute; the fourth step again uses (17); and the

last step uses again that VA→B
34 and VC→A

12 commute. Now Theorem 2.1 shows

that V ∈ UM(Ĉ ⊗ 1 ⊗B). This is the unique solution for (18).

The following computation yields (16) for Ṽ :

Σ12(WC
12)∗VC→B

24 W
C
12Σ12

= Σ12(WC
12)∗(VC→A

23 )∗VA→B
34 V

C→A
23 (VA→B

34 )∗WC
12Σ12

= Σ12(VC→A
23 )∗(VC→A

13 )∗(WC
12)∗VA→B

34 V
C→A
23 (VA→B

34 )∗WC
12Σ12

= (VC→A
13 )∗(VC→A

23 )∗VA→B
34 Σ12(WC

12)∗VC→A
23 W

C
12Σ12(VA→B

34 )∗

= (VC→A
13 )∗(VC→A

23 )∗VA→B
34 V

C→A
23 V

C→A
13 (VA→B

34 )∗

= (VC→A
13 )∗VC→B

24 V
A→B
34 V

C→A
13 (VA→B

34 )∗

= V
C→B
24 (VC→A

13 )∗VA→B
34 V

C→A
13 (VA→B

34 )∗ = V
C→B
24 V

C→B
14 .

The first step uses (16); the second step uses properties of Σ and that WC
12

and VA→B
34 commute; the third step uses (16); the fourth step uses (18); the

fifth step uses that VC→A
13 and VC→A

24 commute; and the last step uses (18).

Similarly, one shows (17). Hence VC→B is indeed a bicharacter. �

Remark 3.7. The composition of bicharacters at first sight depends on the
choice of the generating modular multiplicative unitaries. Both Theorem 4.8
and Proposition 6.2 below provide alternative descriptions of this composition
that show its independence of auxiliary choices.

Proposition 3.8. The composition of bicharacters is associative, and the mul-

tiplicative unitary WC is an identity on C. Thus bicharacters with the above
composition and locally compact quantum groups are the arrows and objects of

a category, called bicharacter category.

Proof. Only associativity of the composition is nontrivial. This may be estab-
lished by a direct composition similar to the ones above. We omit it because
associativity follows immediately from Theorem 4.8 or from Proposition 6.2

Münster Journal of Mathematics Vol. 5 (2012), 1–24
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below, which translate the composition into a different language where asso-
ciativity is obvious. �

Recall that the dual of a multiplicative unitary W is the multiplicative

unitary Ŵ := ΣW∗Σ. Correspondingly, the reduced bicharacter of the dual
quantum group is Ŵ := σ(W∗). Here σ : Ĉ ⊗ C → C ⊗ Ĉ is the tensor flip
automorphism and Σ : HC ⊗ HC → HC ⊗ HC is the tensor flip unitary. A
similar duality works for all bicharacters:

Proposition 3.9. Let V ∈ UM(Ĉ ⊗A) be a bicharacter from C to A and let

V ∈ U(HC ⊗HA) be the corresponding concrete bicharacter. Then

V̂ := σ(V ∗) ∈ UM(A⊗ Ĉ) and V̂ := ΣV
∗Σ ∈ U(HA ⊗HC)

are a bicharacter from Â to Ĉ and the corresponding concrete bicharacter.
Here we identify the double dual of (A,∆A) again with (A,∆A). This duality

is a contravariant functor on the bicharacter category.

Proof. We check (14) for V̂ using (15) for V :

(∆A ⊗ idĈ)σ(V ∗) = σ23σ12((idĈ ⊗∆A)V ∗)

= σ23σ12(V ∗
13V

∗
12)

= σ(V ∗)23 · σ(V ∗)13.

A similar computation yields (15) for V̂ . A quantum group and its dual are
canonically represented on the same Hilbert space, and the flip σ on operators

is implemented by conjugating by Σ. Hence V̂ := ΣV∗Σ.
Functoriality follows from the following computation:

̂VC→B
13 = Σ13VA→B

23 (VC→A
12 )∗(VA→B

23 )∗VC→A
12 Σ13

= ̂VA→B
12

∗
̂VC→A
23

̂VA→B
12

̂VC→A
23

∗

. �

The following result generalizes [7, Lemma 40] and is proved by the same
idea.

Proposition 3.10. Let V ∈ UM(Ĉ⊗A) be a bicharacter. Let R and τ denote

the unitary antipodes and scaling groups of quantum groups. Then

(RĈ ⊗RA)(V ) = V,(19)

(τ Ĉt ⊗ τAt )(V ) = V for all t ∈ R.(20)

Proof. Let ϕ ∈ Ĉ∗ and ψ ∈ A∗ be entire analytic for (τ Ĉt ) and (τAt ), respec-

tively. Let ϕt := ϕ ◦ τ Ĉt and ψt := ψ ◦ τAt for all t ∈ R. Analytic continuation
yields

ϕz+z′ = ϕz ◦ τ
Ĉ
z′ , and ψz+z′ = ψz ◦ τ

A
z′ for all z, z′ ∈ C.

Polar decomposition of the antipodes κĈ and κA ([10, Thm. 1.5]) shows that

ϕz ◦ κĈ = ϕz+i/2 ◦RĈ , and ψz ◦ κA = ψz+i/2 ◦RA.
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Let κ̄A be the closure of κA with respect to the strict topology on M(A). Then
[10, Thm. 1.6(4)] yields

κ̄A(ω ⊗ id)V = (ω ⊗ id)(V ∗)

for all ω ∈ Ĉ∗. Applying ψz to both sides and using that ω is arbitrary, we get
(
id⊗ψz+i/2 ◦RA

)
V = (id⊗ψz)(V ∗).

Interchanging the roles of A and Ĉ and replacing V by ΣV ∗Σ and ψ by ϕ, we
get

(
ϕz+i/2 ◦RĈ ⊗ id

)
(V ∗) = (ϕz ⊗ id)V.

Both formulas together yield

(21) (ϕz+i/2 ⊗ ψz+i/2) ◦ (RĈ ⊗RA)(V ) = (ϕz+i/2 ◦RĈ ⊗ ψz+i/2 ◦RA)(V )

= (ϕz+i/2 ◦RĈ ⊗ ψz)(V ∗) = ψz(ϕz+i/2 ◦RĈ ⊗ id)(V ∗) = (ϕz ⊗ ψz)(V ).

Inserting ϕ ◦ κĈ and ψ ◦ κA into (21) instead of ϕ and ψ yields

(ϕz+i ⊗ ψz+i)(V ) = (ϕz+i/2 ⊗ ψz+i/2) ◦ (RĈ ⊗RA)(V ) = (ϕz ⊗ ψz)(V ).

This shows that (ϕz⊗ψz)(V ) is a periodic function of period i. Being bounded
as well, Liouville’s Theorem shows that it is constant, that is,

(ϕz ⊗ ψz)(V ) = (ϕ⊗ ψ)(V )(22)

for all z ∈ C. Putting z = −i/2 in (21) and using (22) yields

(ϕ ⊗ ψ) ◦ (RĈ ⊗RA)(V ) = (ϕ ⊗ ψ)(V ).

This proves (RĈ ⊗ RA)(V ) = V . Finally, (22) also yields (τ Ĉt ⊗ τAt )(V ) = V
for all t ∈ R. �

Besides taking duals, we may also take the opposite or coopposite of a quan-
tum group, where we change the order of multiplication or comultiplication.
We remark without proof that these constructions are (covariant) functors on
the bicharacter category. The opposite-coopposite of a quantum group is iso-
morphic to the original quantum group via the unitary antipode because it is
an antihomomorphism both for the algebra and the coalgebra structure. The
first part of Proposition 3.10 shows that this isomorphism acts identically on
bicharacters.

Example 3.11. We give an interesting example of a concrete bicharacter from
the definition of modular multiplicative unitaries.

Let (C,∆) be a quantum group generated by a modular multiplicative uni-
tary W on H ⊗ H. The opposite quantum group (Cop,∆) is generated by
a modular multiplicative unitary acting on H ⊗H for the complex-conjugate
Hilbert space H. The unitary operator (W∗)T⊗T on H ⊗ H is multiplicative
and gives rise to the quantum group (C̄, ∆̄) with

(23) C̄ := {cT : c ∈ C} and ∆̄(cT) := (∆(c))T⊗T.
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The quantum group (C̄, ∆̄) is isomorphic to (Cop,∆). Thus the dual ( ˆ̄C, ˆ̄∆) is

isomorphic to the dual of the opposite quantum group (Ĉop, ∆̂), where

(24) ˆ̄C = {ĉT : ĉ ∈ Ĉ} and ˆ̄∆(ĉT) = (∆̂(ĉ))T⊗T.

Recall the operator W̃ from the definition of a modular multiplicative uni-

tary, [6, Def. 2.1]. It satisfies W̃∗ = WT⊗R by [6, Thm. 2.3(6(ii))]. Hence (24)

yields W̃ ∈ UM( ˆ̄C ⊗ C). We compute

( ˆ̄∆ ⊗ idC)W̃
∗

= ((∆̂ ⊗ idC)W)T⊗T⊗R = (W23W13)T⊗T⊗R = W̃
∗

13W̃
∗

23,

(id ˆ̄C
⊗σ ◦ ∆)W̃

∗

= ((idĈ ⊗σ ◦ ∆)W)T⊗R⊗R = (W12W13)T⊗R⊗R = W̃
∗

13W̃
∗

12.

Now Lemma 3.2 shows that W̃ is a bicharacter from (C̄, ∆̄) to (C,∆op).

4. Passage to universal quantum groups

In this section we show that our quantum group homomorphisms are equiv-
alent to Hopf ∗-homomorphisms between the associated universal quantum
groups, which were previously suggested as a suitable notion of quantum
group homomorphism. Moreover, on the way, we shall show that every re-

duced bicharacter admits a unique bi-lift to a universal bicharacter. Thus
modular (or manageable) multiplicative unitaries are basic in the sense of [5,
Def. 2.3].

Let (C,∆C) be a quantum group in the sense of [7]. The associated univer-
sal quantum group (Cu,∆Cu), also introduced in [7], is a C∗-bialgebra, that is,
a C∗-algebra equipped with a coassociative comultiplication. While its struc-
ture is similar to that of a locally compact quantum group, it is usually not
generated by a modular multiplicative unitary. Thus the theory above does
not apply to it.

Definition 4.1. A left corepresentation of a C∗-bialgebra (C,∆C) on a C∗-al-
gebra D is a unitary multiplier V ∈ UM(C⊗D) with (∆C⊗idD)(V ) = V23V13.

The universal dual carries a left corepresentation V ∈ UM(Ĉ⊗Cu) of Ĉ that

is universal in the following sense: for any left corepresentation U ∈ UM(Ĉ ⊗
D) there is a unique morphism ϕ : Cu → D with U = (idĈ ⊗ϕ)(V). This
universal property characterizes the pair (Cu,V) uniquely up to isomorphism.

The comultiplication on Cu is defined so that idĈ ⊗∆Cu maps V to the left
corepresentation V12V13. Thus V is a bicharacter and may be interpreted as a
quantum group homomorphism from C to Cu. This is, however, not literally
true because (Cu,∆Cu) is only a C∗-bialgebra, not a quantum group in our
sense.

Proposition 4.2. Let (A,∆A) be a C∗-bialgebra. Bicharacters in UM(Ĉ⊗A)
correspond bijectively to Hopf ∗-homomorphisms from (Cu,∆Cu) to (A,∆A).

Proof. A Hopf ∗-homomorphism ϕ : Cu → A is also a morphism from Cu to A
and thus corresponds to a left corepresentation V ∈ UM(Ĉ ⊗ A), which is
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determined by the condition (idĈ ⊗ϕ)(V) = V . The Hopf ∗-homomorphisms
∆A ◦ ϕ : Cu → A ⊗ A and (ϕ ⊗ ϕ) ◦ ∆Cu : Cu → A ⊗ A correspond to the
left corepresentations (idĈ ⊗∆A)(V ) and V12V13, that is, idĈ ⊗(∆A ◦ ϕ)(V) =
(idĈ ⊗∆A)(V ) and (idĈ ⊗(ϕ ⊗ ϕ) ◦ ∆Cu)(V) = V12V13 because V is a bichar-
acter. Thus a morphism ϕ : Cu → A is a Hopf ∗-homomorphism if and only if
the corepresentation V also satisfies (idĈ ⊗∆A)(V ) = V12V13. That is, V is a
bicharacter. �

Corollary 4.3. Any Hopf ∗-homomorphism ϕ : Cu → A induces a dual Hopf
∗-homomorphism ϕ̂ : Âu → Ĉ.

Proof. By Proposition 4.2, a Hopf ∗-homomorphism ϕ : Cu → A corresponds
to a bicharacter V in UM(Ĉ ⊗ A). By Proposition 3.9, σ(V ∗) is a bichar-

acter from Â to Ĉ, which yields a Hopf ∗-homomorphism ϕ : Âu → Ĉ by
Proposition 4.2. �

We are going to show that Hopf ∗-homomorphisms (Cu,∆Cu) → (A,∆A) lift
uniquely to Hopf ∗-homomorphisms from (Cu,∆Cu) to (Au,∆Au). Together
with Proposition 4.2, this yields a bijection between homomorphisms of quan-
tum groups in our sense and Hopf ∗-homomorphisms between the associated
universal quantum groups. The main ingredient is the universal bicharacter
X ∈ UM(Ĉu ⊗Cu). For quantum groups with Haar weights, it is constructed
in [3, Prop. 6.4]. First we carry this construction over to the setting of [7].

The bicharacter W of C is also a left corepresentation. Hence the universal
property yields a reducing *-homomorphism Λ : Cu → C with

(25) (idĈ ⊗Λ)(V) = W.

The constructions above for the dual of C yield a maximal left corepresentation
Ṽ ∈ UM(Ĉu ⊗ C) of C and a reducing *-homomorphism Λ̂ : Ĉu → Ĉ with

(26) (Λ̂ ⊗ idC)(Ṽ) = W.

We want to find X ∈ UM(Ĉu⊗Cu) with (Λ̂⊗ idCu)(X ) = V and (idĈu ⊗Λ)(X )

= Ṽ .
Using (8), we may rewrite the fact that Ṽ is a corepresentation in the second

variable as a pentagon equation

(27) W23Ṽ12 = Ṽ12Ṽ13W23 in UM(Ĉu ⊗K(HC) ⊗ C).

Similarly, using (9) and that V is a corepresentation in the first variable, we
get the pentagon equation

(28) V23W12 = W12V13V23 in UM(Ĉ ⊗K(HC) ⊗ Cu).

In both cases, we represent the second tensor factors C and Ĉ (faithfully)
on HC to make sense of the pentagon equation. We may now characterize X
by a variant of the pentagon equation as in [3, Prop. 6.4].
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Proposition 4.4. There is a unique X ∈ UM(Ĉu ⊗ Cu) such that

V23Ṽ12 = Ṽ12X13V23 in UM(Ĉu ⊗K(HC) ⊗ Cu).

Moreover, this X is a bicharacter, and it satisfies

(idĈu ⊗Λ)X = Ṽ ,(29)

(Λ̂ ⊗ idCu)X = V ,(30)

(Λ̂ ⊗ Λ)X = W.(31)

Proof. Let X ′ := Ṽ∗
12V23Ṽ12V

∗
23. First, we show X ′ ∈ M(Ĉu⊗ 1⊗Cu), that is,

X ′ = X13 for some X ∈ UM(Ĉu ⊗ Cu). Obviously, this unitary is the unique
solution of our problem. Then we establish that X is a bicharacter.

The first step follows once again from Theorem 2.1. We compute

W23X
′
124W

∗
23 = W23Ṽ

∗
12V24Ṽ12V

∗
24W∗

23

= Ṽ∗
13Ṽ

∗
12W23V24Ṽ12V

∗
24W∗

23

= Ṽ∗
13Ṽ

∗
12V34W23V

∗
34Ṽ12V34W∗

23V
∗
34

= Ṽ∗
13Ṽ

∗
12V34W23Ṽ12W∗

23V
∗
34

= Ṽ∗
13Ṽ

∗
12V34Ṽ12Ṽ13V

∗
34 = Ṽ∗

13V34Ṽ13V
∗
34 = X ′

134;

the first step is the definition of X ′; the second step uses (27); the third step
uses (28) twice; the fourth step uses that V∗

34 and W12 commute; the fifth step

again uses (27); and the sixth step follows because V34 and Ṽ12 commute. Now

Theorem 2.1 yields X ′ ∈ UM(Ĉu ⊗ 1 ⊗ Cu), so that X exists.
Now we show that X is a corepresentation in the second variable:

(idĈu ⊗ idC ⊗∆Cu)Ṽ∗
12V23Ṽ12V

∗
23 = Ṽ∗

12V23V24Ṽ12V
∗
24V

∗
23

= X13V23Ṽ
∗
12V24Ṽ12V

∗
24V

∗
23 = X13V23X14V

∗
23 = X13X14.

A similar computation works in the first variable. Thus X is a bicharacter.
The following computation yields (29):

(idĈu ⊗ idC ⊗Λ)X13 = (idĈu ⊗ idC ⊗Λ)Ṽ∗
12V23Ṽ12V

∗
23

= Ṽ∗
12W23Ṽ12W∗

23 = Ṽ∗
12Ṽ12Ṽ13 = Ṽ13.

A similar computation yields (30). Then (31) follows from (25) or (26). �

Definition 4.5. The unitary multiplier X in Proposition 4.4 is called the
universal bicharacter of (C,∆C).

Lemma 4.6. Let X,Y ∈ UM(C⊗Au) be corepresentations in the second vari-
able on a C∗-algebra C. Let ΛA : Au → A be the reducing *-homomorphism.

If (idC ⊗ΛA)X = (idC ⊗ΛA)Y , then X = Y . A similar statement holds in the

first variable.

Proof. Copy the proof of [3, Result 6.1]. �
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Proposition 4.7. A bicharacter in UM(Ĉ⊗A) lifts uniquely to a bicharacter

in UM(Ĉu⊗Au) and hence to bicharacters in UM(Ĉ⊗Au) and UM(Ĉu⊗A).

Proof. These liftings are unique by Lemma 4.6. It remains to prove existence.
Let V ∈ UM(Ĉ⊗A) be a bicharacter. By Proposition 4.2, it corresponds to a

Hopf ∗-homomorphism ϕ : Cu → A. Let XC ∈ UM(Ĉu⊗Cu) be the universal

bicharacter. Then V ′ := (id⊗ϕ)XC ∈ UM(Ĉu ⊗ A) is a bicharacter that

lifts V . Now σ(V ′)∗ ∈ UM(A⊗Ĉu) is again a bicharacter (see Proposition 3.9).

Repeating the above step we lift it to a bicharacter V ′′ in UM(Au⊗Ĉu). Then
σ(V ′′)∗ is the desired lifting of V . �

Recall that bicharacters form a category and that duality is a functor on
this category. Hopf ∗-homomorphisms Au → Cu also form the arrows of a
category.

Theorem 4.8. There is an isomorphism between the categories of locally com-

pact quantum groups with bicharacters from C to A and with Hopf ∗-homo-
morphisms Cu → Au as morphisms C → A, respectively. The bicharacter

associated to a Hopf ∗-homomorphism ϕ : Cu → Au is (ΛĈ ⊗ ΛAϕ)(XC) ∈

UM(Ĉ ⊗A).
Furthermore, the duality on the level of bicharacters corresponds to the du-

ality ϕ 7→ ϕ̂ on Hopf ∗-homomorphisms, where ϕ̂ : Âu → Ĉu is the unique

Hopf ∗-homomorphism with (ϕ̂⊗ idAu)(XA) = (idĈu ⊗ϕ)(XC).

Proof. Propositions 4.2 and 4.7 yield bijections from Hopf ∗-homomorphisms
Cu → Au to bicharacters from C to Au and on to bicharacters from C to A.
We must check that this bijection preserves the compositions and the duality.
We first turn to the duality because we need this to establish the compatibility
with compositions.

Let ϕ : Cu → Au be a Hopf ∗-homomorphism. Let V := (ΛĈ⊗ΛAϕ)(XC) ∈

UM(Ĉ⊗A) be the associated bicharacter. The duality on the level of bicharac-

ters yields the bicharacter σ(V ∗) ∈ UM(A⊗Ĉ) from Â to Ĉ. This corresponds

to a unique Hopf ∗-homomorphism ϕ̂ : Âu → Ĉu with (ΛA ⊗ ΛĈϕ̂)(X Â) =

σ(V )∗. Now we use X Â = σ(XA)∗ to rewrite this as

(ΛĈ ⊗ ΛAϕ)(XC) = (ΛĈ ϕ̂⊗ ΛA)(XA).

Both (idĈu ⊗ϕ)(XC) and (ϕ̂⊗idAu)(XA) are bicharacters. Applying Lemma 4.6

to both tensor factors, we get first (idĈu ⊗ΛAϕ)(XC) = (ϕ̂ ⊗ ΛA)(XA) and

then (idĈu ⊗ϕ)(XC) = (ϕ̂ ⊗ idAu)(XA). This yields the asserted description
of duality.

Now let ϕ : Cu → Au and ψ : Au → Bu be Hopf ∗-homomorphisms and
let VC→A ∈ UM(Ĉ ⊗ A) and VA→B ∈ UM(Â ⊗ B) be the corresponding
bicharacters,

VA→B = (ΛÂ ⊗ ΛBψ)XA = (idÂ ⊗ΛBψ)VA,

VC→A = (ΛĈ ϕ̂⊗ ΛA)XA = (ΛĈ ϕ̂⊗ idA)ṼA,
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where we use the dual quantum group homomorphism ϕ̂ : Âu → Ĉu. Now

(VA→B ∗ VC→A)13 = (VC→A
12 )∗VA→B

23 VC→A
12 (VA→B

23 )∗

= (ΛĈϕ̂⊗ idB(HA) ⊗ΛBψ)((ṼA
12)∗VA

23Ṽ
A
12(VA

23)∗)

= (ΛĈϕ̂⊗ idB(HA) ⊗ΛBψ)(XA
13)

by Proposition 4.4. Thus

VA→B ∗ VC→A = (ΛĈ ϕ̂⊗ ΛBψ)(XA) = (ΛĈ ⊗ ΛBψ) ◦ (ϕ̂⊗ idAu)(XA)

= (ΛĈ ⊗ ΛBψ) ◦ (idĈu ⊗ϕ)(XC) = (ΛĈ ⊗ ΛB(ψ ◦ φ))(XC ).

Hence VA→B ∗VC→A is the bicharacter associated to ψ ◦φ. Thus our bijection
is compatible with compositions. �

Remark 4.9. Proposition 4.4 or more generally Proposition 4.7 shows that
modular multiplicative unitaries are basic in the sense of [5, Def. 2.3]. Thus
Theorem 4.8 is comparable to [5, Thm. 4.9].

5. Right and left coactions

Definition 5.1. A right quantum group homomorphism (C,∆C) → (A,∆A)
is a morphism ∆R : C → C ⊗A for which the two diagrams in (5) commute.

The second diagram in (5) means that ∆R is an A-comodule structure on C.

Example 5.2. A Hopf ∗-homomorphism ϕ : C → M(A) yields a right quan-
tum group homomorphism by ∆R := (idC ⊗ϕ)∆C .

Let W ∈ UM(Ĉ ⊗ C) denote the reduced bicharacter.

Theorem 5.3. For any right quantum group homomorphism ∆R : C → C⊗A,
there is a unique unitary V ∈ UM(Ĉ ⊗A) with

(32) (idĈ ⊗∆R)(W) = W12V13.

This unitary is a bicharacter.

Conversely, let V be a bicharacter from C to A, and let V ∈ U(HC ⊗HA)
be the corresponding concrete bicharacter. Then

(33) ∆R(x) := V(x⊗ 1)V∗ for all x ∈ C

defines a right quantum group homomorphism from C to A.
These two maps between bicharacters and right quantum group homomor-

phisms are inverse to each other.

Proof. First we check that Ṽ := W∗
12·(idĈ ⊗∆R)(W) belongs to UM(Ĉ⊗1⊗A),

that is, Ṽ = V13 for some V ∈ UM(Ĉ ⊗ A). This is the unique V that
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verifies (32). We compute

W
C
23Ṽ124(WC

23)∗ = W
C
23(WC

12)∗(WC
23)∗ ·WC

23(idĈ ⊗∆R)(W)124(WC
23)∗

= (WC
13)∗(WC

12)∗ · (idĈ ⊗∆C ⊗ idA)(idĈ ⊗∆R)(W)

= (WC
13)∗(WC

12)∗ · (idĈ ⊗(idC ⊗∆R)∆C)W

= (WC
13)∗(WC

12)∗ · (idĈ ⊗ idC ⊗∆R)(W12W13)

= (WC
13)∗

(
(idĈ ⊗∆R)W

)
134

;

the first equality is the definition of Ṽ , the second one uses (7) and (8), the third
one (5), the fourth one uses (10), and the last one is trivial. Now Theorem 2.1

yields Ṽ = V13 for some V ∈ UM(Ĉ ⊗A).
Next we verify that V is a bicharacter. We check (14):

(
(∆Ĉ ⊗ idA)V

)
124

= (∆Ĉ ⊗ idC ⊗ idA)
(
W∗

12 · (idĈ ⊗∆R)(W)
)

= ((∆Ĉ ⊗ idC)W∗)123 · (idĈ ⊗ idĈ ⊗∆R)(∆Ĉ ⊗ idC)(W)

= (W23W13)∗(idĈ ⊗ idĈ ⊗∆R)(W23W13)

= W∗
13W∗

23W23V24W13V14 = V24V14;

the first two equalities use (32) and that ∆Ĉ is a *-homomorphism; the third
equality uses (11); the fourth one uses (32) again; and the final step uses that
W13 and V24 commute. The following computation yields (15):
(
(idĈ ⊗∆A)V

)
134

= W∗
12(idĈ ⊗ idC ⊗∆A)(idĈ ⊗∆R)W

= W∗
12(idĈ ⊗∆R ⊗ idA)(idĈ ⊗∆R)W

= W∗
12(idĈ ⊗∆R ⊗ idA)(W12V14) = V13V14;

the first equality follows from (32); the second one from (5); the third and
fourth equalities from (32). Thus we have constructed a bicharacter V from a
right quantum group homomorphism.

Conversely, let V ∈ UM(Ĉ⊗A) be a bicharacter. We claim that (33) defines
a morphism from C to C ⊗ A. Recall that slices of W by linear functionals
ω ∈ B(H)∗ generate a dense subspace of C. On x := (ω⊗idH)(W), we compute

∆R(x) = (ω ⊗ idH⊗ idH)(V23W12V
∗
23) = (ω ⊗ idH ⊗ idH)(W12V13),

and this belongs to M(C ⊗ A). Thus ∆R(C) ⊆ M(C ⊗ A). It is clear from
the definition that ∆R is nondegenerate.

We may also rewrite the above computation as

(ω ⊗ idC⊗A) ◦ (idĈ ⊗∆R)(W) = (ω ⊗ idC⊗A)(W12V13)

for all ω ∈ B(H)∗. Since ω is arbitrary, (32) holds for ∆R and our original
bicharacter V .

Now we use (32) to check that ∆R is a right quantum group homomorphism.
The first diagram in (5) amounts to

(idĈ ⊗∆C ⊗ idA)(idĈ ⊗∆R)(W) = (idĈ ⊗ idC ⊗∆R)(idĈ ⊗∆C)(W)
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because slices of W generate C. This follows from (32) and (10): both sides
are equal to W12W13V14. Similarly, the second diagram in (5) amounts to

(idĈ ⊗ idC ⊗∆A)(idĈ ⊗∆R)(W) = (idĈ ⊗∆R ⊗ idA)(idĈ ⊗∆R)(W),

which follows from (32) and (15) because both sides are equal to W12V13V14.
Thus a bicharacter V yields a right quantum group homomorphism ∆R.

Since these are related by (32), we get back the original bicharacter from this
right quantum group homomorphism. It only remains to check that, if we
start with a right quantum group homomorphism ∆R, define a bicharacter
by (32) and then a right quantum group homomorphism by (33), we get back
the original ∆R. We may rewrite (16) as

V23W12V
∗
23 = W12V13 = (idĈ ⊗∆R)(W),

using (32). This implies that the original ∆R satisfies (33) because the slices

of W by linear functionals on Ĉ span a dense subspace of C. �

Definition 5.4. A left quantum group homomorphism from (C,∆C) to (A,∆A)
is a morphism ∆L : C → A⊗C such that the following two diagrams commute:

C
∆L

//

∆C

��

A⊗ C

idA ⊗∆C

��

C ⊗ C
∆L⊗idC

// A⊗ C ⊗ C,

C
∆L

//

∆L

��

A⊗ C

∆A⊗idC

��

A⊗ C
idA ⊗∆L

// A⊗A⊗ C.

Theorem 5.5. For any left quantum group homomorphism ∆L : C → A⊗C,
there is a unique unitary V ∈ UM(Ĉ ⊗A) with

(34) (idĈ ⊗∆L)(W) = V12W13.

This unitary is a bicharacter.
Conversely, let V be a bicharacter from C to A, let V ∈ U(HC ⊗HA) be the

corresponding concrete bicharacter, and define V̂ as in Proposition 3.9. Let

RA and RC be the unitary antipodes of A and C. Then V̂∗(1 ⊗ RC(x))V̂ ∈
M(A⊗ C) for all x ∈ C and

(35) ∆L(x) := (RA ⊗RC)(V̂∗(1 ⊗RC(x))V̂) for all x ∈ C

is a left quantum group homomorphism from C to A.
These two maps between bicharacters and left quantum group homomor-

phisms are bijective and inverse to each other.

Proof. As in the proof of Theorem 5.3, it may be shown that there is a unique V
satisfying (34) and that ∆L is a well-defined left quantum group morphism
C → A⊗C. The only point in the proof of Theorem 5.3 that must be modified
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is to show that ∆L given by (35) satisfies (34). We compute:

(idĈ ⊗∆L)W = (idĈ ⊗∆L)((RĈ ⊗RC) ◦ W)

= (RĈ ⊗RA ⊗RC)(V̂∗
23W13V̂23)

= (RĈ ⊗RA ⊗RC) ◦ σ23(V23W12V
∗
23)

= (RĈ ⊗RA ⊗RC)(W13V12) = V12W13;

the first step uses Proposition 3.10 for W, the second one uses (35), the third
one is trivial, the fourth one uses (16), and the last one follows from Proposi-
tion 3.10 and the antimultiplicativity of RĈ . �

Remark 5.6. Proposition 4.7 allows a unique universal bi-lift of every bichar-
acter and by Theorems 5.3 and 5.5 right or left quantum group homomorphisms
correspond bijectively to bicharacters. Hence right or left quantum group ho-
momorphisms are equivalent to the mutual coactions of Ng [5, Def. 3.13] and to
the special coactions that are considered as morphisms between von Neumann
algebraic quantum groups by Kustermans in [3, Prop. 12.1 and 12.4].

Lemma 5.7. Let ∆L : C → A⊗C and ∆R : C → C ⊗B be a left and a right

quantum group homomorphism. Then the following diagram commutes:

C
∆L

//

∆R

��

A⊗ C

idA ⊗∆R

��

C ⊗B
∆L⊗idB

// A⊗ C ⊗B.

Furthermore, ∆L and ∆R are associated to the same bicharacter V ∈ UM(Ĉ⊗
A) if and only if the following diagram commutes:

(36)

C
∆C

//

∆C

��

C ⊗ C

idC ⊗∆L

��

C ⊗ C
∆R⊗idC

// C ⊗A⊗ C.

Proof. Since slices of WC span a dense subspace of C, (5.7) commutes if and
only if

(37) (idĈ ⊗ idA ⊗∆R)(idĈ ⊗∆L)(W) = (idĈ ⊗∆L ⊗ idB)(idĈ ⊗∆R)(W).

Let V and Ṽ be the bicharacters associated to ∆L and ∆R, respectively. Equa-
tions (32) and (34) imply that both sides of (37) are equal to V12W13Ṽ14.

The diagram (36) commutes if and only if

(38) (idĈ ⊗ idC ⊗∆L)(idĈ ⊗∆C)(W) = (idĈ ⊗∆R ⊗ idC)(idĈ ⊗∆C)(W)

because slices of W span a dense subspace of C. Using (10), (34) and (32),

we may rewrite (38) as W12Ṽ13W14 = W12V13W14. Thus (38) is equivalent to

V = Ṽ . �
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Lemma 5.8. Right or left quantum group homomorphisms are injective and
continuous coactions.

Proof. Equations (33) and (35) show that left and right quantum group ho-
momorphisms are injective. We only prove continuity for right quantum group
homomorphisms, the left case is analogous. Let ∆R : C → C ⊗ A be a right
quantum group homomorphism with associated bicharacter V ∈ UM(Ĉ ⊗A).
We must show that the linear span of ∆R(C)(1 ⊗ A) is dense in C ⊗ A. We

may replace C by the dense subspace of slices (ĉµ ⊗ idC)WC for µ ∈ Ĉ′ and

ĉ ∈ Ĉ, where ĉµ ∈ Ĉ′ is defined by ĉµ(x) := µ(xĉ) for ĉ ∈ Ĉ, µ ∈ Ĉ′, and

x ∈ Ĉ. We have
(
(ĉµ⊗ idC ⊗ idA)(idĈ ⊗∆R)WC

)
(1⊗a) = (µ⊗ idC ⊗ idA)

(
WC

12V13(ĉ⊗ 1⊗a)
)
.

Here V13(ĉ⊗ 1⊗ a) ranges over a linearly dense subset of Ĉ ⊗ 1⊗A. Hence we
do not change the closed linear span if we replace this expression by ĉ⊗ 1⊗ a.
This leads to

(µ⊗ idC ⊗ idA)(WC
12 · (ĉ⊗ 1 ⊗ a)) =

(
(ĉµ⊗ idC)WC

)
⊗ a,

and these elements span a dense subspace of C ⊗A as asserted. �

6. Functors between coaction categories

Let C∗alg denote the category of C∗-algebras with morphisms (that is, non-
degenerate *-homomorphisms A → M(B)) as arrows. For a locally com-
pact quantum group (A,∆A), let C∗alg(A) or C∗alg(A,∆A) denote the cat-
egory of C∗-algebras with a continuous, injective A-coaction, together with
A-equivariant morphisms as arrows. Lemma 5.8 shows that left and right
quantum group homomorphisms provide objects of our category.

Let For : C∗alg(C) → C∗alg be the functor that forgets the C-coaction. We
now describe quantum group homomorphisms using functors F : C∗alg(C) →
C∗alg(A) with For◦F = For. In particular, we show that a right quantum group
homomorphism induces such a functor. The results in this section answer a
question posed to us by Debashish Goswami.

Theorem 6.1. Let (C,∆C) and (A,∆A) be locally compact quantum groups.

Functors F : C∗alg(C) → C∗alg(A) with For ◦ F = For are in natural bijection
with right quantum group homomorphisms from C to A.

More precisely, let γ : D → D ⊗ C be a continuous coaction of (C,∆C) on

a C∗-algebra D and let ∆R : C → C ⊗ A be a right quantum group homomor-
phism. Then there is a unique continuous coaction α of (A,∆A) on D such

that the following diagram commutes:

(39)

D
γ

//

α

��

D ⊗ C

idD ⊗∆R

��

D ⊗A
γ⊗idA

// D ⊗ C ⊗A.
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If a morphism D → D′ between two C∗-algebras with continuous C-coactions
is C-equivariant, then it is A-equivariant as well, so that this construction is

a functor F : C∗alg(C) → C∗alg(A) with For ◦ F = For. Conversely, any such

functor is of this form for some right quantum group homomorphism ∆R.

Proof. A map α making (39) commute is unique if it exists because γ ⊗ idA

is injective. Existence means (idD ⊗∆R)γ(D) ⊆ (γ ⊗ idA)(M(D ⊗ A)). Let
∆L : C → A ⊗ C be the left quantum group homomorphism satisfying (36).
We compute

(idD ⊗∆R ⊗ idC)(γ ⊗ idC)γ = (idD ⊗∆R ⊗ idC)(idD ⊗∆C)γ

= (idD ⊗ idC ⊗∆L)(idD ⊗∆C)γ

= (idD ⊗ idC ⊗∆L)(γ ⊗ idC)γ

= (γ ⊗ ∆L)γ = (γ ⊗ idA⊗C)(idD ⊗∆L)γ,

where the first and third equality use that γ is coassociative, the second one
uses (36), and the fourth one is trivial.

Thus (idD ⊗∆R⊗idC)(γ⊗idC) maps γ(D) into (γ⊗idA⊗C)(M(D⊗A⊗C)).
Since it also maps 1D⊗C into (γ⊗ idA⊗C)(M(D⊗A⊗C)) and γ(D) ·(1D⊗C)
is dense in D⊗C by the continuity of γ, (idD ⊗∆R⊗ idC)(γ⊗ idC) maps D⊗C
into (γ⊗idA⊗C)(M(D⊗A⊗C)). Thus (idD ⊗∆R)γ(D) ⊆ (γ⊗idA)(M(D⊗A))
as desired.

The second diagram in (5) and several applications of (39) imply

(γ ⊗ idA⊗A) ◦ (α⊗ idA) ◦ α = (γ ⊗ idA⊗A) ◦ (idD ⊗∆A) ◦ α.

Since γ ⊗ idA⊗A is injective, (α ⊗ idA) ◦ α = (idD ⊗∆A) ◦ α. The map α is
injective as well. We check that α is continuous.

Since γ ⊗ idA⊗C is injective and

(γ ⊗ ∆L)γ = (idD ⊗∆R ⊗ idC)(γ ⊗ idC)γ = (γ ⊗ idA⊗C)(α⊗ idC)γ

we have (idD ⊗∆L)γ = (α⊗ idC)γ.
Letting 〈. . . 〉 denote closed linear spans, we first compute

〈
(idD ⊗∆L)γ(d) · (1D ⊗ a⊗ c) : a ∈ A, c ∈ C and d ∈ D

〉

=
〈
(idD ⊗∆L)γ(d) · (1D ⊗ ∆L(c)) · (1D ⊗ a⊗ 1C) : a ∈ A, c ∈ C and d ∈ D

〉

=
〈
(idD ⊗∆L)(γ(d) · (1D ⊗ c)) · (1D ⊗ a⊗ 1C) : a ∈ A, c ∈ C and d ∈ D

〉

=
〈
(idD ⊗∆L)(d⊗ c) · (1D ⊗ a⊗ 1C) : a ∈ A, c ∈ C and d ∈ D

〉

=
〈
(d⊗ (∆L(c)(a⊗ 1C))) : a ∈ A, c ∈ C and d ∈ D

〉

= D ⊗A⊗ C,
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where the first and fifth equality use the continuity of ∆L and the third equality
uses the continuity of γ. Hence

〈
(α(d) ⊗ c) · (1D ⊗ a⊗ 1C) : a ∈ A, c ∈ C and d ∈ D

〉

=
〈
((α⊗ idC)(d⊗ c)) · (1D ⊗ a⊗ 1C) : a ∈ A, c ∈ C and d ∈ D

〉

=
〈
((α⊗ idC)(γ(d) · (1D ⊗ c)) · (1D ⊗ a⊗ 1C) : a ∈ A, c ∈ C and d ∈ D

〉

=
〈
((α⊗ idC)γ(d)) · (1D ⊗ a⊗ c) : a ∈ A, c ∈ C and d ∈ D

〉

=
〈
((idD ⊗∆L)γ(d)) · (1D ⊗ a⊗ c) : a ∈ A, c ∈ C and d ∈ D

〉

= D ⊗A⊗ C,

where the second equality uses the continuity of γ. This implies α(D) · (1D ⊗
A) = D ⊗A and hence that α is continuous.

It is easy to see that a C-equivariant map D → D′ remains A-equivariant
for the induced A-coactions. Thus we get a functor F : C∗alg(C) → C∗alg(A)
with For ◦ F = For from a right quantum group homomorphism.

Now let, conversely, F : C∗alg(C) → C∗alg(A) be a functor with For ◦
F = For, that is, F maps a continuous C-coaction γ : D → D ⊗ C on some
C∗-algebra in a natural way to a continuous A-coaction F (γ) : D → D⊗A on
the same C∗-algebra. We claim that F must come from some right quantum
group homomorphism ∆R : C → C ⊗A by the above construction.

When we apply F to the coaction ∆C : C → C ⊗ C, we get an A-coaction
∆R : C → C ⊗ A. Being a coaction, it makes the second diagram in (5)
commute. We will see later that the first diagram in (5) also commutes. First
we use naturality to show that (39) with α = F (γ) commutes for any coaction
of C, so that ∆R determines the functor F .

To begin with, we consider the coaction ∆C ⊕ ∆C : C ⊕C → (C ⊕C) ⊗C.
Since the coordinate projections π1, π2 : C ⊕ C → C are C-equivariant, they
are A-equivariant with respect to F (∆C⊕∆C) and F (∆C) = ∆R. This already
implies that F (∆C ⊕ ∆C) = ∆R ⊕ ∆R.

Next we consider the coaction idK(H) ⊗∆C on K(H)⊗C. For any projection
P ∈ K(H), we get a C-equivariant morphism

C ⊕ C → K(H) ⊗ C, (a, b) 7→ P ⊗ a+ (1 − P ) ⊗ b.

Since we already know the A-coaction F (∆C⊕∆C), the induced A-coaction on
K(H)⊗C maps P ⊗a 7→ P ⊗∆R(a). Since this holds for all projections P and
since these projections generate K(H), we get F (idK(H) ⊗∆C) = idK(H) ⊗∆R.

Now consider a general coaction γ : D → D ⊗ C. Then γ is C-equivariant
with respect to the coaction idD ⊗∆C on D ⊗ C. Let π : D → K(H) be a
morphism coming from a faithful representation of D on some Hilbert space H.
The injective, C-equivariant morphism (π⊗ idC) ◦ γ : D → K(H)⊗C remains
A-equivariant with respect to the coactions F (γ) on C and F (idK(H) ⊗∆C) =
idK(H) ⊗∆R on K(H) ⊗ C. This means that (39) commutes with α := F (γ).
Finally, specializing (39) to the coaction ∆C on C shows that the first diagram
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in (5) commutes. Thus ∆R is a right quantum group homomorphism that
generates F . The construction also shows that ∆R is unique. �

Proposition 6.2. Let α : C → C⊗A and β : A→ A⊗B be two right quantum
group homomorphisms and let Fα : C∗alg(C) → C∗alg(A) and Fβ : C∗alg(A) →
C∗alg(B) be the associated functors. Then Fβ ◦Fα = Fγ , where γ : C → C⊗B
is the unique right quantum group homomorphism γ : C → C ⊗B that makes
the following diagram commute:

(40)

C
α

//

γ

��

C ⊗A

idC ⊗β

��

C ⊗B
α⊗idB

// C ⊗A⊗B.

Furthermore, the bicharacter associated to γ is the composition of the bichar-
acters associated to β and α.

Proof. Theorem 6.1 shows that Fα maps the coaction ∆C to α. This is mapped
by Fβ to the unique morphism making (40) commute. Thus Fβ ◦Fα maps ∆C

to γ, forcing Fβ ◦ Fα = Fγ .
Theorem 6.1 yields a unique continuous right coaction γ of (B,∆B) on

(C,∆C) making (40) commute. It is not hard to show that this is a right
quantum group homomorphism. Anyway, we want to convince ourselves that
this construction corresponds to the composition of bicharacters.

Since slices of W by continuous linear functionals on Ĉ generate a dense
subspace of C, the diagram (40) commutes if and only if

(idĈ ⊗ idC ⊗β)(idĈ ⊗α)(WC) = (idĈ ⊗α⊗ idB)(idĈ ⊗γ)(WC).

Equation (32) implies idĈ ⊗α(WC) = WC
12VC→A

13 , and idĈ ⊗ idA⊗β maps this
to the element represented by the unitary operator

W
C
12V

A→B
34 V

C→A
13 (VA→B

34 )∗ = W
C
12V

C→A
13 V

C→B
14

by (33) and (18). Thus

(idĈ ⊗ idC ⊗β)(idĈ ⊗α)(WC) = WC
12VC→A

13 VC→B
14 ,

where VC→B := VA→B ∗ VC→A. Let Ṽ be the bicharacter associated to γ.
Equation (32) implies

(idĈ ⊗α⊗ idB)(idĈ ⊗γ)(WC) = (idĈ ⊗α⊗ idB)(WC
12Ṽ13) = WC

12VC→A
13 Ṽ14.

Hence (40) commutes if and only if Ṽ = VC→B. �

Example 6.3. Let VC→A ∈ UM(Ĉ ⊗ A) and VA→B ∈ UM(Â ⊗ B) be
bicharacters.

Assume first that VA→B comes from a Hopf ∗-homomorphism f : A → B,
that is, VA→B = (id⊗f)(WA). Let α be the right quantum group homomor-

phism from C to A associated to VC→A. The right quantum group homomor-
phism from A to B associated to VA→B is β := (idA ⊗f)∆A. The following
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computation shows that γ = (idC ⊗f)α satisfies (40):

(idĈ ⊗ idC ⊗β)(idĈ ⊗α)WC

= (idĈ ⊗ idC ⊗ idA⊗f)(idĈ ⊗ idC ⊗∆A)WC
12VC→A

13

= (idĈ ⊗ idC ⊗ idA⊗f)WC
12VC→A

13 VC→A
14

= (idĈ ⊗ idC ⊗ idA⊗f)(idĈ ⊗α⊗ idB)WC
12VC→A

13

= (idĈ ⊗α⊗ idB)(idĈ ⊗(idC ⊗f)α)WC ;

the first step uses (32); the second step uses (15); the third and the last step
use (32). Proposition 6.2 yields β ∗ α = (idC ⊗f)α. Hence the composition

VA→B ∗ VC→A is (idC ⊗f)VC→A.

Example 6.4. Let VC→A be constructed from a Hopf ∗-homomorphism f : Â
→ Ĉ, that is, VC→A = (f ⊗ idA)(WA). Then the composition VC→B is

(f ⊗ id)(VA→B). This follows easily from Example 6.3 because C 7→ Ĉ is a
contravariant functor on bicharacters.

Proposition 6.5. A right quantum group homomorphism from C to A induces

a natural map from Hilbert space corepresentations of C to corepresentations
of A on the same Hilbert space.

Proof. Instead of giving a direct proof, we reduce this to Theorem 6.1. A
corepresentation of C on H is equivalent to a coaction of C on the C∗-algebra
K(H ⊕ C) that restricts to the trivial coaction on the corner C = K(C) and
hence leaves the corner K(H) invariant (see [1, Prop. 2.7]). A right quantum
group homomorphism allows us to turn this C-coaction on K(H⊕ C) into an
A-coaction on K(H ⊕ C), which still fixes the corner C by functoriality and
hence comes from an A-corepresentation on H. �
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K-Theory 2 (1989), no. 6, 683–721. MR1010978 (90j:46061)

[2] S. Baaj and G. Skandalis, Unitaires multiplicatifs et dualité pour les produits croisés
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