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Abstract. The structure of the group von Neumann algebra N (G) is considered as a module
over the group ring CG for various groups G. In particular, the question of when the group
von Neumann algebra will be a flat module is studied. Group homology calculations are used
to investigate this question. The main result is that for the class of torsion-free elementary
amenable groups, the module N (G) is flat if and only if G is locally virtually cyclic.

1. Introduction

In [15], Wolfgang Lück makes two conjectures seeking to connect the struc-
ture of a group G with properties of the corresponding group von Neumann
algebra as a module over the group ring CG. The first conjecture seeks to use
N (G) to classify when a group is amenable.

Conjecture 1.1. A group G is amenable if and only if N (G) is dimension-flat

over CG.

It is already known that if G is amenable, then N (G) is dimension-flat over
CG. The converse is still open. However, it is settled in the case when G has a
nonabelian free subgroup (see [15, Thm. 6.37]). The second conjecture, which
is the primary motivation for this work, guesses for which groups N (G) will
be a flat module.

Conjecture 1.2. A group G is locally virtually cyclic if and only if N (G) is

flat over CG.

The forward implication of this conjecture will be proved below. The con-
verse is still open in general, but it will be proved for the class of torsion-free
elementary amenable groups.

2. Locally virtually cyclic groups

In this section it is proved that if G is locally virtually cyclic, then N (G) is
a flat CG-module. This class of groups is defined as follows:



78 Wade Mattox

Definition 2.1. A group G is called virtually cyclic if either it is finite or there
exists an infinite cyclic normal subgroup H such that G/H is finite. A group
is called locally virtually cyclic (LVC) if every finitely generated subgroup is
virtually cyclic.

The flatness of N (G) is readily apparent for certain special cases of LVC
groups. If G is finite, then N (G) = CG is a free (and hence flat) module. Fur-
thermore, if G is locally finite then the group ring CG is a “von Neumann reg-
ular” ring (as a consequence of Maschke’s theorem and the Artin–Wedderburn
theorem), which implies every CG-module is flat. The special case of G = Z

requires a lemma regarding modules over PIDs.

Lemma 2.2. Let R be a PID, and let M be an R-module. If M is R-torsion-

free, then M is a flat R-module.

Proof. Express M as a direct limit of its finitely generated submodules;

M ∼= lim
−→

Mi.

SinceM is R-torsion-free, so is every submoduleMi. By the standard structure
theorem for finitely generated modules over PIDs, it follows that each Mi is
a free module. Since M is the direct limit of free modules, it must be a flat
module (see [17, Thm. 3.4]). �

Theorem 2.3. If G = Z, then the module N (G) is flat over the ring CG.

Proof. For the group G = Z the ring CG is a PID. By the previous lemma,
it suffices to show that N (G) is CG-torsion-free. This follows from the zero
divisor conjecture [16]. �

There is one remaining lemma needed before proving half of Conjecture 1.2.

Lemma 2.4. If G is a group with an infinite cyclic subgroup H and 1 ≤ p ∈ R,

then 0 6= α ∈ CH and 0 6= β ∈ ℓp(G) imply αβ 6= 0.

Proof. Let 0 6= α ∈ CH and 0 6= β ∈ ℓp(G). Let T be a transversal for H in
G. Then β =

∑

t∈T αtt for some αt ∈ ℓp(H). Suppose, to the contrary, that
αβ = 0. Note that αβ = α

∑

t∈T αtt =
∑

t∈T (ααt)t = 0 if and only if ααt = 0
for all t ∈ T . This is true if and only if αt = 0 for all t ∈ T (see [16]), which is
true if and only if β = 0; a contradiction. Therefore, αβ 6= 0. �

The theorem below establishes half of Conjecture 1.2.

Theorem 2.5. If G is locally virtually cyclic, then N (G) is a flat CG-module.

Proof. Let M = N (G) and B be any CG-module. It suffices to show that

TorCG1 (M,B) = 0. Since G is locally virtually cyclic, G can be expressed as
a direct limit of virtually cyclic groups: G = lim

−→
Gi. Now make the following

identifications (see [5, Prop. 2.2 and p. 12]):

TorCG1 (M,B) ∼= H1(G,M ⊗B) ∼= lim
−→

H1(Gi,M ⊗B).
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Hence, it suffices to show H1(Gi,M ⊗ B) = 0. This is trivially true if Gi is
finite. Suppose Gi is infinite. Since Gi is infinite virtually cyclic, there must
be a normal infinite cyclic subgroup of finite index. In other words, there is a
short exact sequence 1 → Ki → Gi → Qi → 1, where Ki

∼= Z and Qi is finite.
If N = M ⊗B, then there is the following exact sequence (see [5, §7.7]):

H2(Qi, NKi
) → H1(Ki, N)Qi

→ H1(Gi, N) → H1(Qi, NKi
).

Since Qi is finite, we have

H2(Qi, NKi
) ∼= H1(Qi, NKi

) ∼= 0 and H1(Gi, N) ∼= H1(Ki, N)Qi
.

Thus, it suffices to show that H1(Ki, N) = 0. Rewrite this as TorCKi

1 (M,B),
which must be trivial since CKi is a PID andM does not have any CKi-torsion.
This completes the proof. �

3. Free abelian groups

Next consider the converse of Theorem 2.5; it is conjectured that if G is not
locally virtually cyclic, then N (G) is not flat as a module over CG. The first
special case considered below is the free abelian group Z⊕ Z.

Theorem 3.1. If G = Z⊕ Z, then H1(G,N (G)) 6= 0.

Proof. Identify the torus T 2 with the standard quotient space of the square
[−π, π] × [−π, π]. By using Fourier transforms, N (G) can be identified with
L∞(T 2). Under this identification, elements of CG are expressed with lin-
ear combinations of functions of the form e−inxe−imy for integers m and n.
To calculate H1(G,N (G)), construct a free CG-resolution of C, such as the
following:

0 → CG
γ
−→ CG2 β

−→ CG
ǫ
−→ C → 0,

where

γ : x =
∑

an,m · tnsm 7→ (−(s− 1)x, (t− 1)x)

and

β : (x, y) 7→ (t− 1)x+ (s− 1)y,

for G = 〈t, s | ts = st〉. Next apply the functor N (G) ⊗− to obtain a deleted
complex:

0 → L∞(T 2)⊗CG CG
γ′

−→ L∞(T 2)⊗CG CG2 β′

−→ L∞(T 2)⊗CG CG → 0.

This leads to the complex

0 → L∞(T 2)
γ′

−→ L∞(T 2)2
β′

−→ L∞(T 2) → 0,

where

γ′ : f 7→ (f · (1− e−iy), f · (e−ix − 1))

and

β′ : (g, h) 7→ g · (e−ix − 1) + h · (e−iy − 1).
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This complex can be used to calculate the first group homology:

H1(G,N (G)) ∼= ker (β′)/ Im(γ′).

Suppose (g, h) ∈ ker (β′). Then g · (e−ix − 1) + h · (e−iy − 1) = 0. Define

f =
g

1− e−iy
=

h

e−ix − 1
.

The group homology vanishes if every such f must be in L∞(T 2). To show the
group homology is nontrivial it suffices to show there exists (g, h) ∈ ker (β′)
such that f /∈ L∞(T 2). In other words, it suffices to make the following
construction:

h ∈ L∞(T 2), f =
h

e−ix − 1
/∈ L∞(T 2), g =

h · (1− e−iy)

e−ix − 1
∈ L∞(T 2).

Define
A = {(x, y) ∈ T 2 | cos y > cosx},

i.e., A = {(x, y) ∈ T 2 | −|x| < y < |x|}. Let h = χA. Clearly, h ∈ L∞(T 2).
Since A contains open neighborhoods around points with arbitrarily small
x-values, it follows that f /∈ L∞(T 2).

Claim: g ∈ L∞(T 2).
This can be proved by showing the stronger claim: |g| ≤ 1 for all (x, y) ∈ T 2.

Suppose to the contrary that |g(x, y)| > 1 for some (x, y). Then (x, y) must
be in A. And:

∣

∣

∣

1− e−iy

e−ix − 1

∣

∣

∣
> 1 =⇒ |e−iy − 1| > |e−ix − 1|

=⇒ (cos y − 1)2 + (sin y)2 > (cosx− 1)2 + (sinx)2

=⇒ 2− 2 cos y > 2− 2 cosx

=⇒ cos y < cosx

=⇒ (x, y) /∈ A.

This is a contradiction, which proves the claim and finishes the proof. �

4. Connections: N (G), ℓ2(G), subgroups, and quotient groups

The following connection between groups and subgroups can be found in
[15, Thm. 6.29].

Theorem 4.1. If N (G) is flat over CG and H is a subgroup of G, then N (H)
is flat over CH.

This theorem will be very useful in the final section below. Conjecture 1.2
will be verified for special examples of elementary amenable groups (such as
Baumslag–Solitar groups) using explicit calculations, and then the preceding
theorem will be used to expand upon those results. For example, the main
result of the last section implies:

Corollary 4.2. If G is any group with a subgroup isomorphic to Z⊕ Z, then

N (G) is not flat over CG.

Münster Journal of Mathematics Vol. 9 (2016), 77–91



Homology of group von Neumann algebras 81

In an important upcoming calculation, it will be easier to work with the
module ℓ2(G) rather than N (G). Therefore, it is useful to know that ℓ2(G) is
a flat N (G)-module, as the remaining results of this section will establish.

Lemma 4.3. Any finitely-generated submodule of a projective N (G)-module

is projective.

Proof. This follows from the fact that N (G) is a semi-hereditary ring; see [15,
Thm. 6.7 (1)]. �

Lemma 4.4. Any submodule of a free N (G)-module is flat.

Proof. Let M be a submodule of a free N (G)-module. Then M can be ex-
pressed as a direct limit of its finitely generated submodules, each of which
must be projective by the previous lemma. Since M is a direct limit of pro-
jective modules, it must be a flat module. �

Lemma 4.5. The N (G)-module U(G) of affiliated operators can be expressed

as a direct limit of free modules.

Proof. Let X = {x ∈ N (G) | x is a nonzero divisor}. For every x ∈ X , define
Fx = x−1N (G), which is a free N (G)-module and a submodule of U(G). In
fact, U(G) =

⋃

x∈X Fx. It now suffices to show that {Fx} is a directed system.
That is, for any x, y ∈ X , it suffices to show there exists a cofinal Fz such
that Fx ⊆ Fz and Fy ⊆ Fz . Since N (G) satisfies the Ore condition, there exist
w,α ∈ N (G) such that w ∈ X and wy = αx. Hence, for any x−1β ∈ x−1N (G):

x−1β = y−1yx−1β = y−1w−1xβ ∈ (wy)−1N (G).

And for any y−1β ∈ y−1N (G):

y−1β = y−1w−1wβ ∈ (wy)−1N (G).

Thus, define z = wy to produce the desired result. �

Theorem 4.6. Let G be a group. Then ℓ2(G) is a flat N (G)-module.

Proof. Since ℓ2(G) can be embedded in U(G), the module ℓ2(G) is a submodule
of U(G). Hence:

ℓ2(G) = U(G) ∩ ℓ2(G) =
(

⋃

x∈X

Fx

)

∩ ℓ2(G) =
⋃

x∈X

(

Fx ∩ ℓ2(G)
)

.

Since Fx is a finitely-generated free module, Lemma 4.4 implies that Fx∩ℓ2(G)
is a flat module. Therefore, ℓ2(G) is a direct limit of flat modules, making it a
flat module. �

Corollary 4.7. If N (G) is flat over CG, then ℓ2(G) is flat over CG.
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5. Baumslag–Solitar groups

5.1. Introducing the relevant groups. In a later section, Conjecture 1.2
will be proved for all torsion-free elementary amenable groups. An important
building block for that result will be the special case of certain Baumslag–
Solitar groups. These groups were first introduced by Gilbert Baumslag and
Donald Solitar in 1962 to provide examples of finitely presented Hopfian groups
[2]. These groups are defined with the following presentation: for natural num-
bers m and n, define B(m,n) = 〈a, b | abma−1 = bn〉. If m 6= 1 and n 6= 1, then
B(m,n) has a nonabelian free subgroup [6]. The focus below will be only on
the amenable Baumslag–Solitar groups B(1, n). These groups have cohomolog-
ical dimension 2 (see [4, Thm. 7]). In fact, they are the only finitely-generated
elementary amenable groups with this property (see [11, Thm. 3]). The groups
B(1, n) can also be expressed as a semi-direct product [7]: B(1, n) ∼= Z[ 1n ]⋊Z.
In particular, B(1, n) has a normal subgroup H isomorphic to Z[ 1n ] with quo-
tient G/H ∼= Z, and the generator of the quotient acts on H by multiplication
by n.

Another class of groups, which contains the groups B(1, n), is defined as
follows: for any natural numbers m and n, let Gm,n = Z[ 1

mn ] ⋊ Z, where
Z acts by multiplication with m

n . The group Gm,n has a normal subgroup

H isomorphic to Z[ 1
mn ] and quotient G/H ∼= Z. These groups were first

introduced within the context of trying to classify all groups of cohomological
dimension 2. For G = G2,3, Bieri posed the question of whether cd(G) = 2 or
cd(G) = 3 (see [4, p. 112]). Gildenhuys provided the answer that cd(G) = 3
(see [7, Thm. 4]).

Before proving Conjecture 1.2 for torsion-free elementary amenable groups,
the result will be established forGm,n. To see why the groupsB(1, n) andGm,n

are so relevant to the structure of elementary amenable groups, see [7, Thm. 5]
and Lemma 6.2 below. The result for Gm,n will be accomplished by investi-
gating the first group homology group H1(G, ℓ2(G)). While it is possible to do
this homology calculation for G = B(1, n) directly by using Fox derivatives to
build a free CG-resolution of C, the more general case of G = Gm,n requires a
less direct approach since these groups are typically not finitely presented [3].

5.2. Setting up the calculation. For notation, let G = Gm,n, let H be the
normal subgroup Z[ 1

mn ], and let Q denote the quotient G/H ∼= Z. Let M

denote the left CG-module ℓ2(G). Let t ∈ G be such that t generates Q. For a
natural number i let hi = ( 1

mn )
i, and define Hi = 〈hi〉 ≤ H . Then Hi

∼= Z and
H =

⋃

Hi. For the group H , let ∆(H) denote the augmentation ideal of H ,
and let MH be the quotient M/∆(H)M .

Lemma 5.3. If H1(Q,MH) 6= 0, then H1(G,M) 6= 0.

Proof. The short exact sequence of groups 1 → H → G → Q → 1 leads to an
exact sequence of group homology (see [5, §7.7]):

H1(H,M)Q → H1(G,M) → H1(Q,MH) → 0.
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It now suffices to show H1(H,M) is trivial. Since

H1(H,M) ∼= lim
−→

H1(Hi,M)

(see [5, p. 121]), it suffices to show H1(Hi,M) is trivial for every i ∈ N. Since
H = 〈hi〉 ∼= Z, there is the following free CHi-resolution of C:

0 → CHi
f
−→ CHi

ǫ
−→ C.

The map ǫ represents the augmentation map, and f is multiplication by hi−1.
This induces the complex

0 → M
f∗
−→ M → 0.

To show H1(Hi,M) = 0, it suffices to show ker (f∗) = 0, and this follows from
[13, Thm. 2]. �

Lemma 5.4. If there exists α ∈ M \∆(H)M such that (t − 1)α ∈ ∆(H)M ,

then H1(G,M) 6= 0.

Proof. By the previous lemma, it suffices to show that H1(Q,MH) 6= 0. Since
Q = 〈t〉 ∼= Z, there is the following free CQ-resolution of C:

0 → CQ
g
−→ CQ

ǫ
−→ C.

The map ǫ represents the augmentation map, and g is multiplication by t− 1.
This induces the complex

0 → MH
g∗
−→ MH → 0.

It suffices to show that ker (g∗) 6= 0. That is, it will suffice to find a nontrivial
α ∈ MH such that (t− 1)α = 0. This is true if there exists α ∈ M \∆(H)M
such that (t− 1)α ∈ ∆(H)M , which establishes the result. �

5.5. Introducing Cayley graphs. The previous two lemmas establish a
straight-forward way to demonstrate that H1(G, ℓ2(G)) 6= 0. To help visu-
alize the support of the element α ∈ ℓ2(G) that will be constructed, consider
the Cayley graph of G with respect to the generating set {s, t}, where s = h1.
In the Cayley graph, let rightward edges correspond to left-multiplication by s,
and let upward edges correspond to left-multiplication by t. One of the defin-
ing relations on the generating set is tsnt−1 = tm. In the case of G3,2, this
corresponds to a subgraph of the Cayley graph:

e s s2

t st s2t s3t = ts2

Münster Journal of Mathematics Vol. 9 (2016), 77–91
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Let Γ be the subgraph of the Cayley graph generated from the vertices
{sjti | i, j ≥ 0}, a portion of which is pictured below.

See [3, p. 49] for a full presentation of Gm,n with respect to the generators
s and t. In particular, every relator other than tsnt−1 = tm is of the form
[s, tist−i] = e for natural numbers i, which will not create any duplications or
further edges between the vertices pictured.

5.6. Constructing α. The goal is to construct an element α in ℓ2(G) that
satisfies the requirements of Lemma 5.4. The support of α will be contained
within the subgraph Γ of the Cayley graph. In particular, other than e and
smn (pictured on the bottom row of Γ), we will restrict our attention to the
vertices V = {v ∈ Γ | tv ∈ Γ and t−1v ∈ Γ}. That is, V is the collection of
vertices in Γ with both upward and downward edges. To build the subset of V
that will be featured in the support of α, we will construct sets denoted by Xi.
Whenever “distance” is mentioned below, it will refer to the standard Cayley
graph distance restricted to individual rows of Γ.

Theorem 5.7. Let p= pm,n be the smallest natural number such that (mn )p > 2.
For all i ≥ 0, there exist subsets Xi ⊆ V that satisfy the following properties:

(i) Vertices in Xi have the form sjti. That is, vertices in Xi are on the i-th
row of Γ. The notation gir will represent the r-th element of Xi, moving

from left to right in Γ.

(ii) The cardinalities |Xi| are non-decreasing powers of two. In particular,

for any k ≥ 0, if kp ≤ i < (k + 1)p, then |Xi| = 2k+1.

(iii) If k ≥ 0, kp < i < (k + 1)p, and 1 ≤ r ≤ |Xi|, then the distance between

gir and t · gi−1,r is no larger than (m2 +mn)/2.

(iv) If k ≥ 0, i = (k + 1)p, 1 ≤ r ≤ |Xi|, and r is odd, then the distance

between gir and t · gi−1, r+1

2

is no larger than (m2 +mn)/2.

Note 5.8. Before proving the theorem above, some comments are in order.
Condition (ii) hints at the relevance of the constant p defined in the theorem;
this constant is related to the rate at which |Xi| → ∞. Condition (iii) is
relevant to sets Xi that have the same size as Xi−1. For these sets, the r-th
element in Xi is approximately above the r-th vertex in Xi−1. Condition (iv)
is relevant to sets Xi that have twice as many elements as Xi−1. For these
sets, the odd-numbered vertices are approximately above vertices in Xi−1.
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Proof. For any point v in Γ, let F (v) denote the point that is “directly above” v.
More precisely, if v is on row i of Γ with a distance of d from ti, then let F (v)
be the point on row i + 1 of Γ of distance m

n · d from ti+1. If v is a vertex
in Γ, then F (v) will also be a vertex if t · v is in Γ. However, even in that
case, F (v) will probably not be in V because it may not have an upward edge
within Γ. Thus, define T (v) to be nearest element of V to the point F (v).
More generally, for any q ≥ 1, let Tq(v) be the nearest element in V to F q(v),
which will be q rows higher than v. If F q(v) is midway between two vertices
in V , then choose the one on the right.

To begin the inductive definition of the sets Xi, let X0 = {e, smn}. For any
nonnegative integer k and any integer i between kp + 1 and (k + 1)p − 1, let
Xi := {Ti−kp(v) | v ∈ Xkp}. At the next multiple of p, there is a cardinality
jump:

X(k+1)p = A(k+1)p ∪B(k+1)p

:= {Tp(v) | v ∈ Xkp} ∪ {smnTp(v) | v ∈ Xkp}.

It is important to note that on any row of Γ the vertices in V are spaced a
distance of mn apart. For consecutive elements v and w of Xkp, the distance
between F p(v) and F p(w) will be at least (mn )

p ·mn > 2mn, which guarantees
that smnTp(v) will be between Tp(v) and Tp(w) in X(k+1)p. That is, the
elements of X(k+1)p, moving from left to right in Γ, will alternate between
A(k+1)p and B(k+1)p.

To paraphrase the definition of {Xi} informally, after Xkp the next p − 1
sets Xi will include only the i-th row vertices in V “approximately above”
the vertices in Xkp. However, for the p-th row after Xkp we will include not
only the vertices closest to being above those in Xkp, but we will also include
other vertices in V that are in between. There will not necessarily be these “in
between” vertices available at every step, which is why it takes p steps before
the cardinality can safely be doubled.

For example, if m = 3 and n = 2, then p = 2, and the following picture
shows the first three rows of Γ with elements gir labeled as i, r:

0,1 0,2

1,1 1,2

2,1 2,2 2,3 2,4

The definition of {Xi} clearly satisfies condition (i). Since the vertices
specified above are all distinct, the definition also satisfies condition (ii). For
condition (iii), let k ≥ 0, kp < i < (k + 1)p, and 1 ≤ r ≤ |Xi|. Then, there
exists v ∈ Xkp such that gi−1,r = Ti−1−kp(v) and gi,r = Ti−kp(v). Since

Münster Journal of Mathematics Vol. 9 (2016), 77–91
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vertices in V are spaced a distance of mn apart, the vertex gi−1,r is no farther
than mn

2 from F i−1−kp(v). Looking up one row, the vertices t · gi−1,r and
F i−kp(v) are at most a distance of m

n · mn
2 apart. Also, the distance between

gi,r and F i−kp(v) is no greater than mn
2 . By the triangle inequality, the vertices

gi−1,r and gi,r are at most a distance of m
n · mn

2 + mn
2 apart. Condition (iv) is

a similar application of the triangle inequality. �

Now that the sets Xi are established, α can be defined.

Definition 5.9. Let the element α =
∑

g∈G agg ∈ ℓ∞(G) have the following
coefficients. If g = gir ∈ Xi, then let

ag = air =

{

1
|Xi|

if 1 ≤ r ≤ 1
2 |Xi|,

−1
|Xi|

if 1
2 |Xi|+ 1 ≤ r ≤ |Xi|.

For all other elements g of the group, let ag = 0.

For example, if |Xi| had four elements, then the coefficients would be ai1 =
1
4 , ai2 = 1

4 , ai3 = −1
4 , and ai4 = −1

4 .

5.10. Nontrivial first homology group.

Lemma 5.11. For the element α ∈ ℓ∞(G) constructed above, α ∈ M .

Proof. The support of α is supp(α) =
⋃

i≥0 Xi. For every q ∈ N, p of the sets
Xi have cardinality 2q. And for each set Xi of cardinality 2q, the corresponding
coefficients are all ±2−q. Therefore,

‖α‖22 = p

∞
∑

q=1

2q(2−q)2 < ∞. �

Lemma 5.12. For the element α ∈ M constructed above, (t− 1)α ∈ ∆(H)M .

Proof. Let β =
∑

g∈G bgg ∈ ℓ∞(G) be such that (t − 1)α = (s − 1)β. If

α =
∑

g∈G agg, then
∑

g∈G

(at−1g − ag)g =
∑

g∈G

(bs−1g − bg)g.

It follows that bg = (ag − at−1g) + bs−1g for every g ∈ G, and therefore

bg =

∞
∑

k=0

(as−kg − at−1s−kg).

The claim can be verified by showing that β ∈ M . This is where it is important
that the support of α was restricted to V , since it guarantees the support of β
is contained in Γ. Looking at a vertex g in Γ, the terms as−kg−at−1s−kg in the
summation above correspond to differences of α’s coefficients of vertices to the
left of g with α’s coefficients of vertices directly beneath those. For vertices
on row i of Γ to the right of the rightmost vertex in Xi, the coefficients of α
were designed precisely so that this summation would equal 0. For example,
consider G3,2, once again with selected vertices gir labeled as i, r:
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0,1 0,2

1,1 1,2

2,1 2,2 2,3 2,4

Consider the vertex g = g12 or any vertex to the right of that. The coefficient
would be

bg =
(−1

2
− 0

)

+
(

0−
−1

2

)

+
(1

2
−

1

2

)

= 0.

Vertices in the support of β can be found between certain vertices in Xi. Back
to the example, if g = s−1g12, then

bg =
(

0−
−1

2

)

+
(1

2
−

1

2

)

=
−1

2
.

To bound ‖β‖2 it will be helpful to split the coefficients into two categories.
First consider the rows of Γ for which |Xi| = |Xi−1|. If kp+ 1 ≤ i < (k + 1)p
and g is on the i-th row of Γ, then bg = 0 unless g is between gij and tgi−1,j

for some j. In this case, bg = ± 1
2k
. Since j ≤ 2k+1, the distance between gij

and tgi−1,j is no larger than m2

2 + mn
2 , and there are p − 1 rows of this type,

the total contribution of these rows to ‖β‖22 can be bounded by

(m2

2
+

mn

2

)

(p− 1)

∞
∑

k=1

2k+1
( 1

2k

)2

< ∞.

Next consider the rows of Γ for which |Xi| = 2|Xi−1|. That is, suppose i =
(k + 1)p. Vertices in Xi ∩ supp(β) could lie between gij and gi,j+1 if j is odd.
Or, similar to the first category, they could occur between gij and tgi−1,(j+1)/2

if j is odd. As before, there are at most m2

2 + mn
2 vertices in each of these (at

most) 2k+1 gaps. The coefficients of these vertices must be ± 1
2k

or ± 1
2k−1 . This

is true because each such coefficient is a sum of finitely many nonzero terms of
the form (ag − at−1g), which in this case mostly cancel; each term for g ∈ Bi

has the form ±( 1
2k − 0), which is then followed in the sum by a term ±( 1

2k − 0)
for g ∈ Ai and a term ±(0 − 1

2k−1 ) for g ∈ tXi−1. (The cancellation is not
complete if the sum does not start with g ∈ Bi, thus leaving behind either ± 1

2k

or ± 1
2k−1 uncanceled.) Therefore, the contribution of these remaining vertices

in supp(β) to ‖β‖22 can be bounded by

(m2

2
+

mn

2

)

∞
∑

k=1

2k+1
( 1

2k−1

)2

< ∞.

This accounts for all the elements of supp(β), so it follows that β ∈ M . �

Lemma 5.13. For the element α ∈ M constructed above, α /∈ ∆(H)M .

Münster Journal of Mathematics Vol. 9 (2016), 77–91



88 Wade Mattox

Proof. Suppose α ∈ ∆(H)M . There exists q ∈ N such that α ∈ ∆(Hq)M .
Since Hq = 〈hq〉, there exists γ ∈ M such that α = (hq−1)γ. If γ =

∑

g∈G cgg,
then

cg = −
∞
∑

k=0

ah−k
q g.

Since there exists N ∈ N such that hN
q = s, it follows that

cg = −
∞
∑

k=0

as−kg.

For any i ∈ N, if |Xi| = 2r, then consider g = gij for j = 2r−1. For this
choice of g, we have cg = −1

2 . Since every row of Γ has at least one vertex
such that cg = −1

2 , it follows that γ /∈ M , producing a contradiction. Hence,
α /∈ ∆(H)M . �

Theorem 5.14. Let m > n be natural numbers, G = Gm,n, and M = ℓ2(G).
Then H1(G,M) 6= 0.

Proof. Lemma 5.4 reduced this theorem to the construction of an element
α ∈ ℓ∞(G) that satisfied sufficient properties. The choice of α in Definition 5.9
was shown to satisfy those properties in Lemmas 5.11, 5.12, and 5.13. �

Corollary 5.15. If G = Gm,n for natural numbers m and n, then N (G) is

not flat over CG.

Proof. If m 6= n, then the result follows from Theorem 5.14 and Lemma 4.7.
If m = n, then G has a subgroup isomorphic to Z ⊕ Z, and the result follows
from Theorem 3.1 and Theorem 4.1. �

6. Elementary amenable groups

The next objective is to use the previous results to prove Conjecture 1.2
for the class of torsion-free elementary amenable groups. The proof will be by
induction, utilizing a standard inductive construction of the class of elemen-
tary amenable groups which can be found in [12, §3]. Let X0 consist of only
the trivial group, and let X1 be the class of finitely generated abelian-by-finite
groups. For any successor ordinal α, define Xα = (LXα−1)X1; i.e., any group
in Xα has a normal subgroup that is locally in Xα−1 with quotient in X1. De-
fine Xα =

⋃

β<αXβ if α is a limit ordinal. Using this notation, the class of all
elementary amenable groups can be expressed as

⋃

α≥0 Xα. It will be useful
to note that the notion of “Hirsch length” originally defined only for poly-
cyclic groups can be extended to the class of elementary amenable groups [9].
The notation h(G) will be used to denote the Hirsch length of an elementary
amenable group G.

In the upcoming proof of Conjecture 1.2 for torsion-free elementary
amenable groups, the next two lemmas will be useful for connecting some
of these groups back to the groups Gmn.
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Lemma 6.1. Let H be an additive subgroup of the rationals Q, and let ϕ ∈
Aut(H). Then ϕ(x) = rx for some r ∈ Q.

Proof. For any n ∈ N, define Xn = {k ∈ N | k
n ∈ H}, and let pn = min (Xn).

Then Xn = {kpn | k ∈ N}. There exists rn ∈ Q such that ϕ(pn

n ) = rn(
pn

n ).
Since ϕ is additive, ϕ(x) = rnx for every x ∈ H such that x = kpn

n . Since
every nonempty Xn intersects nontrivially with X1, it follows that rn = r1 for
all n. Therefore, ϕ(x) = rx for r = r1. �

Lemma 6.2. Let G be a group. Suppose H is a normal subgroup of G, H is

an additive subgroup of Q, and G/H ∼= Z. Then G has a subgroup isomorphic

to Gpq for some natural numbers p and q.

Proof. Let x ∈ G be such that G/H = 〈x〉. Define ϕ ∈ Aut(H) by ϕ(h) =
xhx−1. By Lemma 6.1, there exists r ∈ Q such that ϕ(h) = rh for all h ∈ H .
Express r as a reduced fraction of integers p

q . Then ϕi(1) = pi

qi ∈ H for all
i ∈ Z. Thus,

a
pi

qi
+ b

qi

pi
=

ap2i + bq2i

piqi
∈ H

for all a, b, i ∈ Z. Since gcd(p, q) = 1, it follows that gcd(p2i, q2i) = 1. Hence,
1

piqi ∈ H for all i ∈ Z. It follows that K = Z[ 1
pq ] ≤ H .

Define A = 〈x〉K ≤ G. Then K is a normal subgroup of A and A/K ∼= Z.
Furthermore, conjugation in K by x is equivalent to multiplication by p

q .
Therefore, A ∼= Gpq. �

The proof of the conjecture for torsion-free elementary groups will use in-
duction. To complete the induction step the following lemma about locally
virtually cyclic groups will be needed.

Lemma 6.3. If a group G has a locally virtually cyclic subgroup of finite index,

then G is locally virtually cyclic.

Proof. Let G be a group, and let H be a locally virtually cyclic subgroup of
finite index. Let G1 be an arbitrary finitely generated subgroup of G; it will
be proved that G1 is virtually cyclic. Define H1 = G1 ∩H . Since H1 ≤ H , it
follows that H1 is locally virtually cyclic. Moreover, we have

[G1 : H1] = [G1 : H ∩G1] ≤ [G : H ] < ∞

(see [10, Prop. 4.8]). Since G1 is finitely generated and [G1 : H1] < ∞, it
follows that H1 is finitely generated. Therefore, H1 is virtually cyclic. If H1

is finite, then G1 is finite. If H1 is infinite, then there exists an infinite cyclic
subgroup K of H1 of finite index. Then K is also an infinite cyclic subgroup
of G1 of finite index, and so G1 is virtually cyclic. �

The theorem below establishes Conjecture 1.2 for the class of torsion-free
elementary amenable groups.

Theorem 6.4. Let G be a torsion-free elementary amenable group. If N (G)
is flat over CG, then G is locally virtually cyclic.
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Proof. First note that if G is virtually cyclic, then the group must be either
finite, finite-by-(infinite cyclic), or finite-by-(infinite dihedral) by [8, Lem. 11.4].
And since G is torsion-free by assumption, the terms “virtually cyclic” and
“cyclic” will be used interchangeably. Using the description

⋃

Xα of elementary
amenable groups described above, the proof will proceed by induction.

Base case: Suppose G ∈ X1. Then there exists a subgroup H of G such that
H is finitely generated abelian and [G : H ] < ∞. Since N (G) is flat over CG,
H cannot contain Z ⊕ Z as a subgroup by Theorem 3.1. Therefore, H ∼= Z,
and G is virtually cyclic.

Induction hypothesis: Suppose the result is true for all torsion-free groups
in Xα for some ordinal α.

Induction step: Let G be a torsion-free group in Xα+1. Then there exists a
normal subgroup H of G such that H ∈ LXα and G/H ∈ X1. Since N (G) is
flat over CG, N (H) must be flat over CH by Theorem 4.1. By the induction
hypothesis, H must be locally cyclic. The rest of the induction step will be
split into two cases.

Case 1: G/H is finite. Since H is locally virtually cyclic and [G : H ] < ∞,
Lemma 6.3 implies that G is locally virtually cyclic.

Case 2: G/H is infinite. Then there exists an infinite cyclic subgroup of
G/H . Let x ∈ G be such that x generates that infinite cyclic subgroup. Define

G̃ = 〈x〉H . Then G̃ ≤ G, H is a normal subgroup of G̃, and G̃/H ∼= Z.

Hence h(G̃) = h(H) + h(G̃/H) = 2 by [9, Thm. 1]. By [9, Thm. 2], G̃ must

be solvable. The lowest nontrivial member of the derived series for G̃ is a
torsion-free abelian normal subgroup K of G̃. Since N (G) is flat over CG, K
cannot have Z ⊕ Z as a subgroup. Hence, either K ∼= Z or K is a subgroup
of Q which is not finitely generated [1]. Pick any g ∈ G̃ \ K, and define

Ĝ = 〈g〉K ≤ G̃. Then K is a normal subgroup of Ĝ, and Ĝ/K ∼= Z. If

K ∼= Z, then Ĝ is an elementary amenable group of cohomological dimension
two, and [7, Thm. 5] implies Ĝ ∼= B(1, n) for some n ∈ Z. If K is isomorphic to

some other additive subgroup of Q, then Lemma 6.2 implies Ĝ has a subgroup
isomorphic to Gmn for some m,n ∈ N. In either event, this implies N (G) is
not flat over CG by Corollary 5.15, which is a contradiction. Therefore, G/H
cannot be infinite. �

Conjecture 1.2 is still open. While it can be verified for some elementary
amenable groups with torsion, the induction technique above runs into prob-
lems for the class of all elementary amenable groups. In particular, difficulty
arises if the torsion of the group includes infinite locally finite subgroups. The
conjecture’s assumption of “torsion-free” could be removed if there was a rela-
tionship analogous to Theorem 4.1 for groups and quotient groups by locally
finite subgroups. However, in some special cases of groups with infinite locally
finite subgroups the conjecture has been established, such as the Lamplighter
group (see [14, Lem. 5]).
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