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Abstract. Under very strong axioms, there is precisely one real noncommutative geometry
between the classical one and the free one, namely the half-classical one, coming from the
relations abc = cba. We discuss here the complex analogues of this geometry, notably with
a study of the geometry coming from the commutation relations between all the variables
{ab∗, a∗b}, that we believe to be the “correct” one.

1. Introduction

The fact that the behavior of the subatomic particles might be described
by some kind of “noncommutative geometry”, with a great deal of probability
theory involved, is as old as quantum mechanics. While the weak and strong
forces are radically different from gravity and electromagnetism, one hope,
however, would be that this noncommutative geometry could simply appear
as an “analogue” of the classical geometry.

From this perspective, any exploration of the noncommutative analogues of
the various aspects of the classical geometry can only be useful. The subject
is, of course, still in its infancy. As a reminder here, the classical geometry
itself took about 2000 years to be axiomatized, and applied to basic problems
in physics (Kepler, Newton). Noncommutative geometry seems to be on a
faster track, but there is no reason to be overly optimistic, and not to remain
modest. After all, we are dealing here with phenomena that both our human
brains and machinery have big troubles in observing and understanding.

Doing some abstract mathematics, with these ideas in mind, will be our
purpose here. We will be interested in noncommutative algebraic geometry,
of very elementary type: basic curves and surfaces. Technically speaking, we
will use the same formalism and philosophy as Connes [19], a noncommuta-
tive space being for us the dual of an operator algebra. For some successful
applications of this philosophy, we refer to [18].
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Our starting point is a recent discovery, from [10, 11], stating that when
imposing the strongest possible axioms, there are only three real geometries,
namely the classical one, the free one, and an intermediate one, called “half-
classical”. Motivated by this fact, we started in [5] an investigation of the
possible half-classical complex geometries. We will finish here the work started
in [5], by identifying the “standard” such geometry.

Let us first explain the above-mentioned rigidity phenomenon, from the
real case. From an elementary, all-around point of view, the basic objects of
the N -dimensional geometry are the unit sphere, the standard cube, and the
orthogonal group:

SN−1

R
=

{
x ∈ RN |

∑

i

x2
i = 1

}
,

TN =
{
x ∈ RN | xi = ± 1√

N

}
,

ON =
{
U ∈ MN(R) | U t = U−1

}
.

Note that we have not included RN itself in our list. This is because we
would like later on to talk about noncommutative versions of the above objects,
and our formalism here requires all the spaces to be compact. Physically
speaking, our belief is that for certain key problems, such as those regarding
QCD, this restriction is not important.

Quite remarkably, there is a full set of connections between the above ob-
jects:

(i) ON is the isometry group of SN−1

R
, and SN−1

R
appears as ON (◦), where

◦ = (1, 0, . . . , 0). In addition, we have an embedding ON ⊂
√
N · SN2

−1

R
.

(ii) TN appears inside SN−1

R
by setting |x1| = · · · = |xN |. Conversely, SN−1

R

appears from TN ⊂ RN by “deleting” this relation, while still keeping∑
i x

2
i = 1.

(iii) TN ≃ ZN
2 is a maximal compact abelian subgroup of ON , and the group

ON itself can be reconstructed from this subgroup, by using various
methods.

We are of course a bit vague here, but it is not hard to believe that, with
a minimal knowledge of basic algebraic geometry and representation theory,
all the 2× 3 = 6 correspondences can indeed be established. This is actually
a very good exercise.

Let us discuss now the construction of the noncommutative versions of the
above objects. There are several possible choices here, and based on our per-
sonal knowledge of quantum mechanics, and of mathematical physics in gen-
eral, we will use the operator algebra formalism. The idea indeed is that
whenever we have a unital C∗-algebra A, we can write A = C(X), with X
being a noncommutative compact space. This is supported by a nontrivial
theorem of Gelfand, which states that when A is commutative, the formula
A = C(X) holds indeed, with X being a classical space, called spectrum of A.
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So, let us define the free sphere, free cube, and free orthogonal group, by
setting:

C(SN−1

R,+ ) = C∗

(
(xi)i=1,...,N | xi = x∗

i ,
∑

i

x2
i = 1

)
,

C(T+

N ) = C∗

(
(xi)i=1,...,N | xi = x∗

i , x
2
i =

1

N

)
,

C(O+

N ) = C∗
(
(uij)i,j=1,...,N | uij = u∗

ij , u
t = u−1

)
.

Observe that ui =
√
Nxi ∈C(T+

N ) are subject to the relations ui = u∗
i = u−1

i .

Thus, T+

N appears as the abstract dual of the discrete group Z∗N
2 . As for

O+

N , this is a compact quantum group in the sense of Woronowicz [29], with
structural maps as follows:

∆(uij) =
∑

k

uik ⊗ ukj , ε(uij) = δij , S(uij) = uji.

We refer to the original papers [8, 28] and to the lecture notes [4] for details.
In analogy now with what happens in the classical case, we have:

(i) O+

N is the quantum isometry group of SN−1

R,+ , and SN−1

R,+ appears as
an homogeneous space over O+

N . In addition, we have an embedding
O+

N ⊂
√
N · SN2

−1

R,+ .

(ii) T+

N appears inside SN−1

R,+ by setting x2
1 = · · · = x2

N . Conversely, SN−1

R,+ ap-
pears from T+

N by “deleting” this relation, while still keeping
∑

i x
2
i = 1.

(iii) T+

N ≃ Ẑ∗N
2 is a maximal group dual subgroup of O+

N , and O+

N itself can
be reconstructed from this subgroup, via representation theory methods.

To be more precise, having agreed that in the classical case, constructing the
2× 3 = 6 correspondences is a good exercise in basic geometry, the situation
is similar here, with all this being a good exercise in basic noncommutative
geometry. The only point which is nontrivial is the correspondence T+

N → O+

N ,
and we refer here to [2, 7, 11]. Also, we refer to the lecture notes [4] for all the
needed details on all this material.

Let us try now to understand the possible “intermediate liberations” of the
usual geometry. At the sphere and cube level, there is a lot of freedom in
dealing with this question, or at least the known noncommutative geometry
theories here do not provide any simple, quick answer. However, at the quan-
tum group level, things are quite rigid. So, as a first good question, we would
like to find the intermediate quantum groups, as follows:

(1) ON ⊂ G ⊂ O+

N .

In order to deal with this problem, let us recall Brauer’s theorem [17]. Given
a pairing π ∈ P2(k, l), between an upper row of k points, and a lower row of l
points, we set

Tπ(ei1 ⊗ · · · ⊗ eik) =
∑

j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ · · · ⊗ ejl .
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Brauer’s theorem states that the intertwining spaces Hom(u⊗k, u⊗l) for the
orthogonal group ON are precisely those spanned by these maps Tπ. In addi-
tion, a free version of this result is available, stating that for O+

N , the inter-
twining spaces are spanned as well by the maps Tπ, but this time with π being
a noncrossing pairing, π ∈ NC2. See [7].

Based on these results, let us call a quantum group ON ⊂ G ⊂ O+

N easy if
the following equalities hold for a certain category of pairings NC2 ⊂ D ⊂ P2:

Hom(u⊗k, u⊗l) = span
(
Tπ | π ∈ D(k, l)

)
.

Here the categorical operations are the horizontal and vertical concatena-
tion, and the upside-down turning of the pairings. These operations ensure
the fact that the spaces span(Tπ | π ∈ D(k, l)) form a tensor C∗-category, and
as a consequence of Woronowicz’s Tannakian duality [30], each such category
produces a quantum group. For full details regarding the easy quantum group
theory, we refer to [10, 23, 26].

We are now ready to go back to (1). If we restrict the attention to the
easy case, we just have to find the intermediate categories NC2 ⊂ D ⊂ P2.
And here, there is only one solution, namely the category P ∗

2 generated by the
following “crossing”:

◦

❏❏
❏❏

❏❏
❏❏

❏❏
❏❏

❏❏ ◦ ◦

tt
tt
tt
tt
tt
tt
tt

◦ ◦ ◦
Due to the uniqueness result, we will call this diagram “half-classical cross-

ing”, and the corresponding relation, namely abc = cba, “half-commutation
relation”. See [11].

Summarizing, we have now an answer to (1), which is in addition unique, in
the easy quantum group setting. We should mention that, conjecturally, this
solution is actually unique, in the arbitrary compact quantum group setting.
See [6].

So, let us go ahead now, and construct our various geometric objects, as
follows:

C(SN−1

R,∗ ) = C(SN−1

R,+ )
/〈

abc = cba | ∀a, b, c ∈ {xi}
〉
,

C(T ∗

N ) = C(T+

N )
/〈

abc = cba | ∀a, b, c ∈ {xi}
〉
,

C(O∗

N ) = C(O+

N )
/〈

abc = cba | ∀a, b, c ∈ {uij}
〉
.

As in the classical and free cases, we have correspondences between these
objects, with statements (i)–(iii) as above. For details, we refer to [4, 8, 9, 11].

In view of the uniqueness results mentioned above, we can stop here the
axiomatization work, because this is the third and last possible “geometry”.
So, what is left to do now is to start the actual geometric work. We would like
to understand the structure and geometry of the various algebraic manifolds
X ⊂ SN−1

R,∗ , X ⊂ SN−1

R,+ , along with their differential geometric aspects, and
Riemannian aspects as well. We have as well the important question of finding
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explicit matrix models for the coordinates of such manifolds. The whole subject
is still very young, and we refer to [3, 5, 15].

The aim of the present paper is to clarify what happens in the complex
geometry setting. Available here are the classical theory, having symmetry
group UN , and its free version, with symmetry group U+

N . At the level of
intermediate geometries, however, the situation is quite complicated, because
we have many quantum groups as follows:

UN ⊂ G ⊂ U+

N .

Our goal is not to solve this classification problem for the intermediate
complex geometries, but to try to identify the “main” solution. For this pur-
pose, we will use an axiomatic approach. We will first axiomatize the triples
(S, T,G) which are subject to correspondences (i)–(iii) as above, then we will

examine the various complex analogues of the triple (SN−1

R,∗ , T ∗
N , O∗

N ), and we
will identify the “main” solution.

The paper is organized as follows: Sections 2 and 3 contain various pre-
liminaries and generalities. In Sections 4 and 5, we construct and study the
complex half-classical geometry.

2. Formalism

We agree to call “noncommutative compact spaces” the abstract duals of
the unital C∗-algebras. We denote such spaces by X,Y, Z, . . . , with the cor-
responding C∗-algebras being denoted by C(X), C(Y ), C(Z), . . . We use this
correspondence for formulating our various findings directly in terms of non-
commutative spaces. For instance, we call a morphism X → Y injective if the
corresponding morphism C(Y ) → C(X) in surjective, and vice versa. Also, a
direct product X × Y is by definition the noncommutative space corresponding
to the C∗-algebra C(X)⊗ C(Y ), with ⊗ being the minimal tensor product.

In what follows, we are interested in the noncommutative analogues of the
real algebraic manifolds X ⊂ SN−1

C
. Here we use of course the canonical em-

bedding SN−1

C
⊂ CN ≃ R2N , and by real algebraic manifold we mean as usual

the set of zeroes of a certain family of polynomials in the standard coordinates
on RN , or, equivalently, of a certain family of polynomials in the standard
coordinates on CN , and their conjugates.

Our starting point is the following well-known fact:

Proposition 2.1. Consider a real algebraic manifold X ⊂SN−1

C
, appearing as

X =
{
x ∈ CN |

∑

i

|xi|2 = 1, Pα(x1, . . . , xN ) = 0
}
.

The algebra of continuous functions f : X → C is then given by

C(X) = C∗

comm

(
x1, . . . , xN |

∑

i

xix
∗

i = 1, Pα(x1, . . . , xN ) = 0
)
,

where by C∗
comm we mean universal commutative C∗-algebra.
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Proof. Observe first that the universal algebra in the statement is well-defined,
because

∑
i xix

∗
i = 1 gives ‖xi‖ ≤ 1 for any i, and so the biggest norm is

bounded. If we denote by A this algebra, we have an arrow A → C(X).
Conversely, by Gelfand duality we have A = C(X ′) for a certain compact
space X ′. The coordinates xi produce an embedding X ′ ⊂ CN , then the condi-
tion

∑
i xix

∗
i = 1 gives X ′ ⊂ SN−1

C
. Finally the conditions Pα(x1, . . . , xN ) = 0

give X ′ ⊂ X . Thus we have X = X ′, as claimed. �

The above result suggests to construct a free version X+, simply by remov-
ing the commutativity assumption from the presentation of C(X). However,
this is quite tricky, because the relations Pα = 0 must not include, or imply,
the commutativity.

In practice, this method works in a number of situations.

Definition 2.2. The free complex sphere and free unitary group are con-
structed as

C(SN−1

C,+ ) = C∗

(
(xi)i=1,...,N |

∑

i

xix
∗

i =
∑

i

x∗

i xi = 1
)
,

C(U+

N ) = C∗
(
(uij)i=1,...,N | u∗ = u−1, ut = ū−1

)
,

where on the right we have universal C∗-algebras.

As explained by Wang in [28], the above noncommutative space U+

N is a
compact quantum group in the sense of Woronowicz [29], with structural maps
as follows:

∆(uij) =
∑

k

uik ⊗ ukj , ε(uij) = δij , S(uij) = u∗

ji.

We have an action U+

N y SN−1

C,+ , whose properties are quite similar to that
of the action UN y SN−1

C
. In order to explain this material, let us introduce

a few more notions:

Definition 2.3. Consider an algebraic submanifold X ⊂ SN−1

C,+ , i.e. a closed
subset defined via algebraic relations, and a closed quantum subgroupG ⊂ U+

N .

(i) We say that we have an affine action G y X when the formula

xi →
∑

j

uij ⊗ xj

defines a morphism of C∗-algebras Φ : C(X) → C(G) ⊗ C(X).
(ii) The biggest quantum subgroup G ⊂ U+

N acting affinely on X is denoted
by G+(X) and is called quantum isometry group of X .

Here by “algebraic relations” we mean relations of type Pα(x1, . . . , xN ) = 0,
with Pα being noncommutative ∗-polynomials in N variables. As for the word
“biggest”, this means “maximal in the appropriate category”. We agree in
what follows to keep using the language of noncommutative compact spaces
and manifolds, and to use more complicated language only when needed and
helpful in connection with problems.

Münster Journal of Mathematics Vol. 10 (2017), 457–483
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Observe that the morphism in (i) above is automatically coassociative,
(Φ⊗ id)Φ = (id⊗∆)Φ, and counital as well, (id⊗ ε)Φ = id. When X,G are
both classical, such a morphism must appear by transposition from a usual
affine group action G×X → X .

Regarding (ii), it is routine to check that such a biggest quantum group
exists indeed, simply by dividing C(U+

N ) by the appropriate relations. We
refer to [2] for details.

We should mention that, in analogy with what happens in the classical
case, there are of course several notions of quantum isometries and quantum
isometry groups, and those presented above are those that we will need here.
As an example, consider the usual sphere SN−1

R
. The classical isometries of

SN−1

R
are “obviously” the orthogonal matrices U ∈ ON , but the meaning of

“obvious” can of course vary with the person involved:

(i) If we agree that the sphere is “something round”, which is basic com-
mon sense, the isometry group is quite complicated to compute. We
obtain ON .

(ii) If we agree that the sphere is the set of solutions of
∑

i x
2
i = 1, which

is perhaps a bit unnatural, the isometry group is easy to compute. We
obtain ON too.

In the noncommutative setting, all this becomes considerably more com-
plicated. For a full discussion on these topics, we refer to Goswami’s papers
[21, 22].

We will need as well the following constructions:

Definition 2.4. Consider a subspace S ⊂ SN−1

C,+ and a subgroup G ⊂ U+

N .

(i) The standard torus of S is the subspace T ⊂ S obtained by setting, at
the algebra level, C(T ) = C(S)/〈xix

∗
i = x∗

i xi = 1/N〉.
(ii) The diagonal torus of G is the subspace T ⊂ G obtained by setting, at

the algebra level, C(T ) = C(G)/〈uij = 0 | ∀i 6= j〉.
Here, as usual, we use the direct language of noncommutative compact

spaces, with “subspace” standing for “closed noncommutative subspace” and
“subgroup” standing for “closed quantum subgroup”, with all this coming from
the Gelfand theorem.

For S = SN−1

C
, the space constructed in (i) is the usual torus, T = TN .

For S = SN−1

C,+ , the rescaled generators ui =
√
Nxi are subject to the relations

u∗
i = u−1

i , which produce the free group algebra C∗(FN ). Thus, we obtain here
a group dual, T = F̂N .

Regarding (ii), observe that C(T ) is generated by the variables gi = uii,
which are group-like. Thus T = Γ̂, where Γ is the group generated by these
variables. See [11].

We can now formulate our main definition, as follows:

Definition 2.5. A noncommutative geometry consists of three spaces,

(i) an intermediate algebraic manifold SN−1

R
⊂ S ⊂ SN−1

C,+ , called sphere,

(ii) an intermediate space ẐN
2 ⊂ T ⊂ F̂N , called torus,

Münster Journal of Mathematics Vol. 10 (2017), 457–483



464 Teodor Banica and Julien Bichon

(iii) and an intermediate quantum group, ON ⊂ G ⊂ U+

N ,

such that the following two conditions are satisfied:

(i) G is the quantum isometry group of S,
(ii) T is the standard torus of S, as well as the diagonal torus of G,

where, for the needs of the second axiom, we think of full and reduced group
algebras as representing the same quantum space.

This definition is something technical and temporary. Further improving it,
comparing it with the other known definitions of noncommutative manifolds
and geometries, and looking for applications too, is of course something that
we have in mind. In what follows, we will focus on this definition as it is, and
present our results on the subject, as they are, and of course we will be back
to all this in our future papers.

Regarding the terminology, the torus T will be sometimes called “cube”
of the geometry, because in the real case, as explained below, what we have
here is rather a cube. It is also useful to think of the discrete dual Γ = T̂ ,
which appears as an intermediate quotient group FN → Γ → ZN

2 , as being the
“structural group” of the geometry.

Finally, regarding the identification made at the end, this is something stan-
dard in noncommutative geometry. The point indeed is that there is a “prob-
lem” with Gelfand duality, coming from the fact that a discrete group dual
T = Γ̂ can be represented by several C∗-algebras, including the maximal one,
C∗(Γ), and the minimal one, C∗

red
(Γ). The standard way of fixing this issue is

that of identifying all these algebras, and this is what we do here too. For a
full discussion on all this, see Woronowicz [29].

Here is now a useful reformulation of the axioms, in terms of S only:

Proposition 2.6. An algebraic manifold SN−1

R
⊂ S ⊂ SN−1

C,+ , with standard

torus denoted by T ⊂ S, produces a noncommutative geometry precisely if

(i) we have an affine action ON y S,

(ii) δ(xi) =
√
Nxi ⊗ xi defines a morphism of algebras

δ : C(S) → C(T )⊗ C(S).

If these conditions are satisfied, we say that S is a noncommutative sphere.

Proof. Given SN−1

R
⊂S ⊂SN−1

C,+ , consider its quantum isometry groupG⊂U+

N ,
and consider as well the standard torus T ⊂ S and the diagonal torus T ⊂ G.

Assuming that (S, T,G) is a noncommutative geometry, we have ON ⊂ G,
so condition (i) is clear. Also, since we have T = T , the morphism in (ii) simply
appears by composing the universal coaction with the diagonal torus quotient
map:

C(S) → C(G) ⊗ C(S) → C(T )⊗ C(S) = C(T )⊗ C(S),

xi →
∑

j

uij ⊗ xj → gi ⊗ xi =
√
Nxi ⊗ xi.

Münster Journal of Mathematics Vol. 10 (2017), 457–483



Complex half-classical geometry 465

Conversely, assuming that (i) and (ii) are satisfied, we must prove that we
have T = T . For this purpose, observe first that the map δ induces a morphism
as follows:

δ : C(T ) → C(T )⊗ C(T ), xi →
√
Nxi ⊗ xi.

Thus C(T ) is a cocommutative Hopf algebra, and its elements
√
Nxi are

group-like.
With this picture in mind, the map δ in the statement corresponds to an

action T y S, and by universality of the quantum isometry groupG, we obtain
a map

θ : C(T ) → C(T ), uii →
√
Nxi.

In order to construct an inverse map, we will use a composition as follows:

C(S) → C(G)⊗ C(S) → C(G) → C(G) → C(T ),

xi →
∑

j

uij ⊗ xj → uij → 1√
N

∑

j

uij → 1√
N

uii.

Here the first map is the universal coaction, and the second map comes from
the evaluation at (1, 0, . . . , 0) ∈ SN−1

R
⊂ S, which gives a map

ε : C(S) → C, xi → δi1.

Regarding the third map, this is the algebra automorphism uij →
∑

k mkjuik

constructed by using the inclusion ON ⊂ G coming from our assumption (i),

along with an orthogonal matrix M = (mij) having 1/
√
N entries on its first

column. Observe that such orthogonal matrices M exist indeed, for instance
by using the Gram–Schmidt orthogonalization procedure. Finally, the fourth
map is the canonical quotient map.

Now since the elements Xi = 1/
√
N uii satisfy the relations

XiX
∗

i = X∗

i Xi =
1

N
,

the composition that we constructed factorizes into a map

ρ : C(T ) → C(T ), xi →
1√
N

uii.

It is clear that θ, ρ are inverse to each other, and this finishes the proof. �

At the level of basic examples, we have:

Proposition 2.7. We have the following examples of geometries:

(i) Real geometry: S = SN−1

R
, T = ẐN

2 , G = ON .

(ii) Complex geometry: S = SN−1

C
, T = ẐN , G = UN .

(iii) Free real geometry: S = SN−1

R,+ , T = Ẑ∗N
2 , G = O+

N .

(iv) Free complex geometry: S = SN−1

C,+ , T = F̂N , G = U+

N .

Proof. These results are well known. For details, we refer to [1, 8]. �

Based on these examples, here are now a few more general notions:
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Definition 2.8. A noncommutative geometry is called

(i) real if S ⊂ SN−1

R,+ , T ⊂ Ẑ∗N
2 , G ⊂ O+

N ;

(ii) complex if SN−1

C
⊂ S, ẐN ⊂ T , UN ⊂ G;

(iii) classical if S ⊂ SN−1

C
, T ⊂ ẐN , G ⊂ UN ;

(iv) free if SN−1

R,+ ⊂ S, Ẑ∗N
2 ⊂ T , O+

N ⊂ G.

We will illustrate these notions in what follows, with several other examples.
Let us introduce now a few more notions. First, a geometry which is neither

real, nor complex, will be called “hybrid”. Also, a geometry which is neither
classical, nor free, will be called “intermediate”. Basic examples come from
the following definition.

Definition 2.9. We have spheres, tori, and quantum groups as follows:

(i) SN−1

R,∗ , Ẑ◦N
2 , O∗

N , obtained respectively from SN−1

R,+ , Ẑ∗N
2 , O+

N by imposing
to the standard coordinates the relations abc = cba.

(ii) SN−1

C,∗∗ , Ẑ
◦◦N , U∗∗

N , obtained respectively from SN−1

C,+ , F̂N , U+

N by imposing
to the standard coordinates and their adjoints the relations abc = cba.

Here (i) is a well-established definition, coming from the work in [10, 11].
In (ii), we have some temporary objects coming from [16], which are somehow
“minimal” and which will be replaced with the correct, maximal ones later on.

We can now formulate our first result:

Theorem 2.10. We have geometries whose unitary groups are as follows:

UN
// U∗∗

N
// U+

N

TON
//

OO

TO∗
N

//

OO

TO+

N

OO

ON
//

OO

O∗
N

//

OO

O+

N

OO

with the middle row spaces obtained from the upper ones via the relations

ab∗ = a∗b.

Proof. The results in the upper and lower row are well known, see, e.g., [1].
Regarding the middle row, consider the quotient algebra

C(TO+

N ) = C(U+

N )
/〈

ab∗ = a∗b | ∀a, b ∈ {uij}
〉
.

Inside this algebra, observe that with Uij =
∑

a uia ⊗ uaj we have

UijU
∗

kl =
∑

ab

uiau
∗

kb ⊗ uaju
∗

bl =
∑

ab

u∗

iaukb ⊗ u∗

ajubl = U∗

ijUkl.

Thus we can construct a comultiplication morphism ∆, by mapping uij → Uij ,
and the existence of the counit ε and of the antipode S is clear too. Now with
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TO+

N constructed as above, we can construct the other quantum groups as
well:

TON = TO+

N ∩ UN , TO∗

N = TO+

N ∩ U∗∗

N .

For the spheres and tori, the discussion here parallels the one from the
quantum group case. To be more precise, the definition of these objects is as
follows:

C(TSN−1

R,× ) = C(SN−1

C,× )
/〈

ab∗ = a∗b | ∀a, b ∈ {xi}
〉
,

C(T̂Z×N
2 ) = C(̂Z×N

2 )
/〈

ab∗ = a∗b | ∀a, b ∈ {gi}
〉
.

Regarding the axioms, let us prove now that the standard action U×

N ySN−1

C,×

restricts to an action TO×

N y TSN−1

R,× . With Xi =
∑

a uia ⊗ xa we have

XiX
∗

j =
∑

ab

uiau
∗

jb ⊗ xax
∗

b =
∑

ab

u∗

iaujb ⊗ x∗

axb = X∗

i Xj.

Thus we can indeed define our coaction map, via xi → Xi. In order to
prove now the universality, assume that we have an action G y TSN−1

R,× . With

Xi =
∑

a uia ⊗ xa as above we have XiX
∗
j = X∗

i Xj . From this we obtain, via

the standard method from [14], that uiau
∗

jb = u∗
iaujb for any i, j, a, b, and so

G ⊂ TO×

N . We refer to [1] for the classical case, the proof in the half-classical
and free cases being similar. �

3. Easiness, amenability

We will need the notion of easy quantum group from [10, 20, 26, 27].
We denote by P (k, l) the set of partitions between an upper row of k points

and a lower row of l points, with each leg colored black or white, and with k, l
standing for the corresponding “colored integers”.

Definition 3.1. A category of partitions is a collection of setsD =
⋃

kl D(k, l),
with D(k, l) ⊂ P (k, l), which contains the identity and is stable under

(i) the horizontal concatenation operation ⊗;
(ii) the vertical concatenation ◦, after deleting closed strings in the middle;
(iii) the upside-down turning operation ∗ (with reversing of the colors).

As explained in [27], such categories produce quantum groups. To be more
precise, associated to any partition π ∈ P (k, l) is the following linear map:

Tπ(ei1 ⊗ · · · ⊗ eik) =
∑

jl...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ · · · ⊗ ejl .

Here the Kronecker type symbol δπ ∈ {0, 1} is by definition 1 if all the strings
of π join pairs of equal indices, and is 0 otherwise. With this notion in hand,
we have:

Definition 3.2. A compact quantum group G ⊂ U+

N is called easy if

Hom(u⊗k, u⊗l) = span
(
Tπ | π ∈ D(k, l)

)

for any k, l, for a certain category of partitions D ⊂ P .
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In other words, the easiness condition states that the Tannakian dual of G,
also called Schur–Weyl dual, should come in the simplest possible way: from
partitions.

In order to discuss some basic examples, consider the categories of pairings
and of noncrossing pairings, NC2 ⊂ P2. Consider as well the “color-matching”
versions of these categories, NC2 ⊂ P2, the color-matching condition stating
that the various types of strings (upper, lower, through) of our pairings must
be colored as follows:

◦ • ◦ • • ◦

◦ • ◦ • • ◦
With these notions in hand, we have the following result:

Proposition 3.3. We have easy quantum groups as follows:

UN
// U+

N

ON
//

OO

O+

N

OO

∼

P2

��

NC2
oo

��

P2 NC2
oo

The diagram on the right-hand side describes the corresponding categories of

partitions.

Proof. The results on the right are Brauer’s theorem for ON and for UN . The
results on the left are free versions of Brauer’s theorem, discussed in [7]. As a
quick, partly heuristic explanation here, all these results follow from Tannakian
duality:

(i) U+

N is defined via the relations u∗ = u−1, ut = ū−1, which tell us that the
operators Tπ, with π = ∩

◦• and π = ∩
•◦, must be in the associated Tannakian

category C. We therefore obtain, as claimed,

C = span(Tπ | π ∈ D) with D = 〈 ∩

◦•,
∩

•◦〉 = NC2.

(ii) O+

N ⊂ U+

N is defined by imposing the relations uij = ūij , which tell us
that the operators Tπ, with π = |◦• and π = |•◦, must be in the associated Tan-
nakian category C. We therefore obtain, as claimed,

C = span(Tπ | π ∈ D) with D = 〈NC2, |◦•, |•◦〉 = NC2.

(iii) UN ⊂ U+

N is defined via the relations [uij , ukl] = 0 and [uij , ūkl] = 0,
which tell us that the operators Tπ, with π = /\◦◦

◦◦
and π = /\◦•

•◦
, must be in the

associated Tannakian category C. Thus, as claimed,

C = span(Tπ | π ∈ D) with D = 〈NC2, /\◦◦◦◦, /\
◦•

•◦
〉 = P2.

(iv) In order to deal with ON , we can use the formula ON = O+

N ∩ UN . At
the categorical level, this tells us that the associated Tannakian category is
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given by

C = span(Tπ | π ∈ D) with D = 〈NC2,P2〉 = P2,

as claimed. �

There are many other examples of easy quantum groups, as for instance the
permutation group SN and its free analogue S+

N , the corresponding categories
being here the category of all partitions P and the category of noncrossing
partitions NC ⊂ P . See [10].

In the pairing case, however, the main examples remain those in Proposi-
tion 3.3. Now observe that the four quantum groups there are precisely the
unitary groups of the four main geometries from Proposition 2.7. We are
therefore led to the following notion:

Definition 3.4. A noncommutative geometry is called easy if its associated
unitary group ON ⊂ G ⊂ U+

N is easy, coming from a category of pairings
NC2 ⊂ D ⊂ P2.

Our first task is to prove that the nine geometries from Theorem 2.10 are
all easy. For this purpose, let P ∗

2 ⊂ P2 be the category of pairings having the
property that when flattening the pairing (which means rotating, as for the
resulting pairing to have only lower legs), each string has an even number of
points between its legs. Let also P 2 ⊂ P2 be the category of pairings having
the property that when flattening the pairing, the number of ◦ symbols equals

the number of • symbols. Finally, let us define as well categories P∗∗
2 , P

∗

2, NC2

in the obvious way, by taking intersections.
With these notions in hand, we have the following result:

Proposition 3.5. The basic nine geometries are easy, with quantum groups

as follows:

UN
// U∗∗

N
// U+

N

TON
//

OO

TO∗
N

//

OO

TO+

N

OO

ON
//

OO

O∗
N

//

OO

O+

N

OO
∼

P2

��

P∗∗
2

oo

��

NC2
oo

��

P 2

��

P
∗

2
oo

��

NC2
oo

��

P2 P ∗
2

oo NC2
oo

The diagram on the right-hand side describes the corresponding categories of

partitions.

Proof. The idea is to convert the defining relations for the quantum group
into statements regarding certain operators of type Tπ, and then compute the
category of partitions generated by these defining partitions π. More precisely:

(i) First of all, the four results at the corners are known from Proposi-
tion 3.3. Also, the result for O∗

N is known from [11], and its unitary version,
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for U∗∗
N , is known from [1]. We are therefore left with proving the three results

corresponding to the middle rows.
(ii) As a first observation here, the result is clear for TON , by using an

elementary approach. Indeed, if we denote the standard corepresentation by
u = zv, with z ∈ T and with v = v̄, then in order to have Hom(u⊗k, u⊗l) 6= ∅,
the z variables must cancel, and in the case where they cancel, we obtain
the same Hom-space as for ON . Now since the cancelling property for the z
variables corresponds precisely to the fact that k, lmust have the same numbers
of ◦ symbols minus • symbols, the associated Tannakian category must come
from the category of pairings P 2 ⊂ P2, as claimed.

(iii) In order to deal now with the free version TO+

N , no such shortcut is
available here, and we must use the regular, abstract method. So, observe that
the defining relations for this quantum group, namely ab∗ = a∗b, correspond
to the following diagram:

◦ •

• ◦
Thus the associated category of partitions is

D = 〈NC2, |◦•|•◦〉 = NC2,

as claimed.
(iv) Finally, since we have TO∗

N = TO+

N ∩ U∗∗
N , here the associated category

of partitions follows to be

D = 〈NC2,P∗∗

2 〉 = P
∗

2.

This finishes the proof. �

Now back to the general case, our claim is that, for an easy geometry, there
are a few simplifications in the axioms. We first have the following result:

Proposition 3.6. For a geometry which is easy, coming from a category of

pairings NC2 ⊂ D ⊂ P2, the associated quantum group is given by

C(G) = C(U+

N )
/〈

Tπ ∈ Hom(u⊗k, u⊗l) | ∀k, l, ∀π ∈ D(k, l)
〉

and the associated noncommutative torus is T = Γ̂ with

Γ = FN

/〈
gi1 . . . gik = gj1 . . . gjl | ∀i, j, k, l, ∃π ∈ D(k, l), δπ

(
i
j

)
6= 0

〉
.

Moreover, in both cases, we can just use partitions π which generate the cate-

gory D.
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Proof. The first assertion is well known, see [10, 23]. If we denote by gi = uii

the standard coordinates on the associated torus T , then

C(T ) =
[
C(U+

N )
/〈

Tπ ∈ Hom(u⊗k, u⊗l) | ∀π ∈ D
〉]/〈

uij = 0 | ∀i 6= j
〉

=
[
C(U+

N )
/〈

uij = 0 | ∀i 6= j
〉]/〈

Tπ ∈ Hom(u⊗k, u⊗l) | ∀π ∈ D
〉

= C∗(FN )
/〈

Tπ ∈ Hom(g⊗k, g⊗l) | ∀π ∈ D
〉
,

where g = diag(g1, . . . , gN).
The associated discrete group, Γ = T̂ , is therefore given by

Γ = FN

/〈
Tπ ∈ Hom(g⊗k, g⊗l) | ∀π ∈ D

〉
.

Now observe that, again with g = diag(g1, . . . , gN), we have

Tπg
⊗k(ei1 ⊗ · · · ⊗ eik) =

∑

j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ · · · ⊗ ejl · gi1 . . . gik ,

g⊗lTπ(ei1 ⊗ · · · ⊗ eik) =
∑

j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ · · · ⊗ ejl · gj1 . . . gjl .

We conclude that the relation Tπ ∈ Hom(g⊗k, g⊗l) reformulates as follows:

δπ

(
i1 . . . ik
j1 . . . jl

)
6= 0 =⇒ gi1 . . . gik = gj1 . . . gjl .

Thus we obtain the formula in the statement. Finally, the last assertion
follows from Tannakian duality in the quantum group case, and then in the
torus case as well. �

We conjecture that, in the case of an easy geometry, the category D de-
termines everything, and is determined by everything. Thus, in this case we
should have full correspondences, between all the objects involved, with D
being the central object:

S //

))❙❙
❙❙❙

❙❙❙
❙❙❙

��
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
G

uu❦❦❦
❦❦❦

❦❦❦
❦❦

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

oo

D

��

ii❙❙❙❙❙❙❙❙❙❙❙

55❦❦❦❦❦❦❦❦❦❦❦

T

OO

__❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

??⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

Observe the similarity with the usual real and complex geometries, which
have as well a central object, namely RN and CN , respectively. Thus, in a
certain abstract sense, for an easy geometry, D is the analogue of the ambient
space RN ,CN , which cannot be axiomatized.

The following definition provides two more abstract notions:

Definition 3.7. A noncommutative geometry is called

(i) amenable if the discrete quantum group Ĝ is amenable;
(ii) weakly amenable if the discrete group Γ = T̂ is amenable.
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Here we use the usual amenability notion for the discrete groups and for the
discrete quantum groups. For the general theory regarding this latter notion,
see [24].

We should mention that, for all the known examples of noncommutative ge-
ometries in our sense, the coamenability of G is equivalent to the coamenability
of T . We conjecture that this should be true in general, but have no idea on
how to prove this.

Let us discuss now more in detail the half-classical real geometry, associated
to O∗

N . We recall that the projective version of a quantum subgroup G ⊂ O+

N

is the quotient quantum group G → PG having wij,kl = uikujl as fundamental
corepresentation. In the classical case, G ⊂ ON , we recover in this way the
usual projective version.

Theorem 3.8. The following uniqueness results hold true:

(i) O∗
N is the unique easy quantum group ON ⊂ G ⊂ O+

N .

(ii) O∗
N is maximal coamenable, in the easy framework.

(iii) O∗
N is the biggest quantum group whose projective version PO∗

N is clas-

sical.

Proof. The results are well known. We recall the ideas of their proofs because
they will serve as inspiration for various unitary generalizations, to be done
below.

(i) This result is from [11], the idea being that P ∗
2 is the unique intermediate

category of partitions NC2 ⊂ D ⊂ P2. We should mention that, conjecturally,
O∗

N is the unique quantum group ON ⊂ G ⊂ O+

N , even without the easiness
assumption. See [6].

(ii) The precise claim is that O∗
N is coamenable and, in addition, maximal

with this coamenability property, in the easy quantum group framework. The
coamenability is known from [11]; the maximality claim follows from (i).

(iii) This is well known too, see again [11]. Indeed, the relations abc = cba
are equivalent to the relations abcd = cdab, as shown by the following two
computations:

[abc = cba] =⇒ [abcd = cbad = cdab],

[abcd = cdab] =⇒
[
abc =

∑

d

abcdd =
∑

d

cdabd =
∑

d

cbdda = cba
]
.

Here we assume that all the variables are standard coordinates, and we have
used the quadratic condition relating these coordinates, namely

∑
d d

2 = 1. �

4. Complex geometries

In this and the next section, we discuss the construction of the complex
half-classical geometry. We will proceed in two steps:

(i) In this section, we discuss a first extension of the U∗∗
N geometry, with

unitary group denoted by U×

N . This quantum group is the one constructed
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in [12, 13], and denoted there by U∗
N . The problem, however, is that this

geometry is not amenable.
(ii) In Section 5, we construct and study the “correct” complex analogue of

the O∗
N geometry, with unitary group denoted by U∗

N . This quantum group is
the one constructed in [5], and denoted there by UN,∞. The enlarged picture
will look as follows:

UN
// U∗∗

N
// U∗

N
// U×

N
// U+

N

TON
//

OO

TO∗
N

//

OOaa❈❈❈❈❈❈❈❈❈❈❈

==④④④④④④④④④④

TO+

N

OO

ON
//

OO

O∗
N

//

OO

O+

N

OO

In order to get started, our first task is to look for extensions of the U∗∗
N

geometry. This geometry is by definition easy, coming from the following
diagrams:

◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ ◦ ◦

①①
①①
①①
①①
①①
①

◦ ◦ ◦

◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ ◦ •

①①
①①
①①
①①
①①
①

• ◦ ◦

◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ • ◦

①①
①①
①①
①①
①①
①

◦ • ◦

•

❋❋
❋❋

❋❋
❋❋

❋❋
❋ ◦ ◦

①①
①①
①①
①①
①①
①

◦ ◦ •

◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ • •

①①
①①
①①
①①
①①
①

• • ◦

•

❋❋
❋❋

❋❋
❋❋

❋❋
❋ ◦ •

①①
①①
①①
①①
①①
①

• ◦ •

•

❋❋
❋❋

❋❋
❋❋

❋❋
❋ • ◦

①①
①①
①①
①①
①①
①

◦ • •

•

❋❋
❋❋

❋❋
❋❋

❋❋
❋ • •

①①
①①
①①
①①
①①
①

• • •

These diagrams stand for the relations abc = cba, abc∗ = c∗ba, and so on,
up to a∗b∗c∗ = c∗b∗a∗. For more about such pictures and relations, we refer
to [27].

There are some obvious equivalences between these relations, and by erasing
the corresponding diagrams, we are led to three diagrams, namely:

◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ ◦ ◦

①①
①①
①①
①①
①①
①

◦ ◦ ◦

◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ • ◦

①①
①①
①①
①①
①①
①

◦ • ◦

◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ ◦ •

①①
①①
①①
①①
①①
①

• ◦ ◦

In order to extend now the U∗∗
N geometry, the idea would be that of picking

one of these diagrams and using the corresponding relations. But here, we
have:
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Proposition 4.1. Consider the following types of relations between abstract

variables a, b, c ∈ {xi} subject to the relations
∑

i xix
∗
i =

∑
i x

∗
i xi = 1:

(i) abc = cba.
(ii) ab∗c = cb∗a.
(iii) abc∗ = c∗ba.

We have then (i) ⇐⇒ (iii) =⇒ (ii).

Proof. The equivalence (i) ⇐⇒ (iii) follows from the computations

• ◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ ◦ ◦

①①
①①
①①
①①
①①
①

•

• ◦ ◦ ◦ •

=

◦

■■
■■

■■
■■

■■
■ ◦ •

✉✉
✉✉
✉✉
✉✉
✉✉
✉

• ◦ ◦

◦ ◦

❋❋
❋❋

❋❋
❋❋

❋❋
❋ ◦ •

①①
①①
①①
①①
①①
①

◦

◦ • ◦ ◦ ◦

=

◦

■■
■■

■■
■■

■■
■ ◦ ◦

✉✉
✉✉
✉✉
✉✉
✉✉
✉

◦ ◦ ◦

As for (i) + (iii) =⇒ (ii), this is best worked out at the algebraic level:

ab∗c =
∑

d

ab∗cdd∗ =
∑

d

adcb∗d∗ =
∑

d

cdab∗d∗ =
∑

d

cb∗add∗ = cb∗a.

Thus we have indeed (i) ⇐⇒ (iii) =⇒ (ii), as claimed. �

Now, by getting back to our problem and, more specifically, to our above-
mentioned idea of using one diagram out of three possible ones, we can see, as
a consequence of Proposition 4.1, that we have only one good choice. We are
led to the following definition:

Definition 4.2. We have a sphere, a torus, and a quantum group as follows:

(i) SN−1

C,× ⊂ SN−1

C,+ , obtained via ab∗c = cb∗a, with a, b, c ∈ {xi}.
(ii) T×

N ⊂ F̂N , obtained via ab−1c = cb−1a, with a, b, c ∈ {gi}.
(iii) U×

N ⊂ U+

N , obtained via ab∗c = cb∗a, with a, b, c ∈ {uij}.

Observe that U×

N is indeed a quantum group, containing U∗∗
N , and this be-

cause we are imposing to the standard coordinates of U+

N certain easy relations.
It is of course possible to check Woronowicz’s axioms in [29] as well, directly.
We will prove later on that we have indeed a noncommutative geometry, in the
sense of Definition 2.5.

Let us clarify now a few more algebraic issues. The most elegant approach
to the U×

N geometry is in fact via projective space theory, using the following
notions:
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Definition 4.3. Given a subspace X ⊂ SN−1

C,+ , we define quotients as follows:

(i) Left projective version: X → PX , with coordinates pij = xix
∗
j .

(ii) Right projective version: X → P ′X, with coordinates qij = x∗
jxi.

(iii) Full projective version: X → PX, with coordinates pij , qij .

We say that X is left/right/full half-classical if these spaces are classical.

Observe that in the classical case, X ⊂ SN−1

C
, the three projective versions

coincide and equal the usual projective version obtained by dividing under the
action of T.

In the real case, X ⊂ SN−1

R,+ , the three projective versions coincide as well,
and X is left or right half-classical if X ⊂ SN−1

R,∗ . This follows indeed from
Theorem 3.8.

In relation now with SN−1

C,× , SN−1

C,∗∗ , we can use the following simple fact

from [5].

Proposition 4.4. Let X ⊂ SN−1

C,+ , with coordinates x1, . . . , xN .

(i) X ⊂ SN−1

C,× precisely when {xix
∗
j} commute, and {x∗

i xj} commute as well.

(ii) X ⊂ SN−1

C,∗∗ precisely when the variables {xixj , xix
∗
j , x

∗
i xj , x

∗
i x

∗
j} all com-

mute.

Proof. Regarding the first assertion, the implication =⇒ follows from

ab∗cd∗ = cb∗ad∗ = cd∗ab∗, a∗bc∗d = c∗ba∗d = c∗da∗b.

The implication ⇐= is obtained as follows, by using the commutation assump-
tions in the statement, and by summing over e = xi:

ae∗eb∗c = ab∗ce∗e = ce∗ab∗e = cb∗ee∗a =⇒ ab∗c = cb∗a.

The proof of the second assertion is similar, because we can remove all the
∗ signs, except for those concerning e∗, and use the above computations with
a, b, c, d ∈ {xi, x

∗
i }. �

The assertions in the next proposition follow from Proposition 4.4.

Proposition 4.5. We have the following results:

(i) SN−1

C,× is left and right half-classical; it is maximal with this property.

(ii) SN−1

C,∗∗ is fully half-classical.

(iii) SN−1

R,∗ is fully half-classical; it is maximal inside SN−1

R,+ with this property.

We still have an issue to be clarified, namely to prove that, in the diagram
drawn in the beginning of this section, U×

N sits indeed above TO∗
N . This comes

from:

Proposition 4.6. We have TO+

N ∩ U×

N = TO∗
N , as quantum subgroups of U+

N .

Proof. According to the definition of TO∗
N , from Section 2, this quantum group

appears as TO∗
N = TO+

N ∩ U∗∗
N . Thus, we must prove TO+

N ∩ U×

N ⊂ U∗∗
N .
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In terms of defining relations, we must prove that ab∗ = a∗b and ab∗c = cb∗a
for any a, b, c ∈ {uij} implies abc = cba for any a, b, c ∈ {uij , u

∗
ij}. But this is

clear, because using ab∗ = a∗b, we can first obtain a∗bc = cba∗, and then, by
using Proposition 4.1, we can obtain from this the other relations as well.

Here we have used the fact that what we know about abstract variables
satisfying

∑
i xix

∗
i =

∑
i x

∗
i xi = 1 applies to the coordinates to any closed sub-

group G ⊂ U+

N , simply because these coordinates, when rescaled by
√
N , do

satisfy these relations. �

We recall that the free complexification of a compact quantum group G,
with standard coordinates denoted by vij , is the compact quantum group G̃
corresponding to the subalgebra C(G̃) ⊂ C(T) ∗ C(G) generated by the vari-
ables uij = zvij , where z is the standard generator of C(T). Observe that G̃
is indeed a quantum group, because it appears as a subgroup of T ∗̂G, the
quantum group associated to C(T) ∗ C(G). See [25].

Following [3], we can formulate the next result.

Proposition 4.7. The quantum groups O∗
N , UN , U∗∗

N , U×

N have the following

properties:

(i) They have the same left projective version, equal to PUN .

(ii) They have the same free complexification, equal to U×

N .

Proof. With terminology and notations from [3], the idea is as follows:
(i) The equality PO∗

N = PUN is well known from [11]. It is clear as well that
PUN ⊂ PU∗∗

N ⊂ PU×

N . Using Proposition 4.4 (i), we conclude that PU×

N is

classical; so we must have PU×

N ⊂ (PU+

N )class. But this latter space (PU+

N )class
is known to be equal to PUN , which finishes the proof. See [3, 12, 13].

(ii) If we denote by vij the standard coordinates on G = O∗
N , UN , U∗∗

N , U×

N ,
and by z the generator of a copy of C(T), free from C(G), then with a, b, c ∈
{vij} we have

(za)(zb)∗(zc) = zab∗c = zcb∗a = (zc)(zb)∗(za).

Thus we have G̃ ⊂ U×

N . Conversely now, it follows from the general theory of

the free complexifications of easy quantum groups [25] that both K = G̃, U×

N

should appear as free complexifications of certain intermediate easy quantum
groups ON ⊂ H ⊂ O+

N . On the other hand, since PH = PH̃ = PK = PUN ,

the only choice here isH = O∗
N . Thus we have G̃ = U×

N = Õ∗
N , and this finishes

the proof. See [3]. �

Let us prove the quantum isometry group result. This is known from [3],
but we have now a much simpler proof. We use the following notion:

Definition 4.8. Given a closed subgroup G ⊂ U+

N and a closed subset X ⊂
SN−1

C,+ , we say that G acts projectively on X , and write PG y PX, if

Φ(xix
∗

j ) =
∑

ab

uiau
∗

jb ⊗ xax
∗

b

defines a morphism of C∗-algebras Φ : C(PX) → C(PG)⊗ C(PX).
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Note the similarity to Definition 2.3 which deals with the affine case. As
in the affine case, such a morphism is automatically coassociative and couni-
tal. Observe also that any affine action G y X produces a projective action
PG y PX . See [9].

We can now formulate our quantum isometry group results:

Proposition 4.9. The following implications hold true:

(i) PG y PN−1

C
implies G ⊂ U×

N .

(ii) G y SN−1

C,× implies G ⊂ U×

N .

Proof. Since G y SN−1

C,× implies PG y PSN−1

C,× = PN−1

C
, we just have to prove

the first assertion. For this purpose, we use an old method from [14], as in [4].
Let us consider a coaction map, written

Φ(pij) =
∑

ab

uiau
∗

jb ⊗ pab,

with pab = zaz̄b. The idea is to use the formula pabpcd = padpcb. We have

Φ(pijpkl) =
∑

abcd

uiau
∗

jbukcu
∗

ld ⊗ pabpcd,

Φ(pilpkj) =
∑

abcd

uiau
∗

ldukcu
∗

jb ⊗ padpcb.

The left terms being equal, and the last terms on the right being equal too, we
deduce, with [a, b, c] = abc− cba, the following equality:

∑

abcd

uia[u
∗

jb, ukc, u
∗

ld]⊗ pabpcd = 0.

In order to exploit this equality, we use basic tensor product theory. The trick
when having a formula of type

∑
i ai ⊗ bi = 0 is to compact the elements on

the right, by using linear dependence, and then to conclude that the elements
on the left must vanish.

In our case, since the quantities pabpcd = zaz̄bzcz̄d on the right depend only
on the numbers |{a, c}|, |{b, d}| ∈ {1, 2}, and this dependence produces the
only possible linear relations between the variables pabpcd, we are led to the
following 2× 2 = 4 equations:

uia[u
∗

jb, uka, u
∗

lb] = 0 for all a, b,(2)

uia[u
∗

jb, uka, u
∗

ld] + uia[u
∗

jd, uka, u
∗

lb] = 0 for all a and b 6= d,(3)

uia[u
∗

jb, ukc, u
∗

lb] + uic[u
∗

jb, uka, u
∗

lb] = 0 for all a 6= c and b,(4)

uia

(
[u∗

jb, ukc, u
∗

ld] + [u∗

jd, ukc, u
∗

lb]
)

(5)

+ uic

(
[u∗

jb, uka, u
∗

ld] + [u∗

jd, uka, u
∗

lb]
)
= 0 for all a 6= c and b 6= d.

Let us process now all these formulae. (We will not need (4) and (5).) From
(2) and (3) we conclude that (3) holds with no restriction on the indices.
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Multiplying now this formula to the left by u∗
ia, and then summing over i, we

obtain

[u∗

jb, uka, u
∗

ld] + [u∗

jd, uka, u
∗

lb] = 0.

By applying now the antipode, then the involution, and finally by suitably
relabelling all the indices, we successively obtain

[udl, u
∗

ak, ubj ] + [ubl, u
∗

ak, udj] = 0

=⇒ [u∗

dl, uak, u
∗

bj ] + [u∗

bl, uak, u
∗

dj] = 0

=⇒ [u∗

ld, uka, u
∗

jb] + [u∗

jd, uka, u
∗

lb] = 0.

Comparing with the original relation above, we conclude that

[u∗

jb, uka, u
∗

ld] = [u∗

jd, uka, u
∗

lb] = 0.

Thus we have reached the formulae defining U×

N , and we are done. �

We have now all the needed ingredients for proving the following result.

Theorem 4.10. The sphere SN−1

R,× , the torus T×

N and the quantum group U×

N

form a noncommutative geometry. This geometry is easy and not amenable.

Proof. The verification of all the axioms is standard. The only nontrivial fact
is the universality of the action U×

N y SN−1

C,× , coming from Proposition 4.9.
Regarding the non-amenability claim for the geometry that we have, here

we must prove that the quantum group U×

N is not coamenable. But this can
be checked by using a free complexification trick. We know that the discrete
group Γ×

N = T̂×
N is given by

Γ×

N =
〈
g1, . . . , gN | ab−1c = cb−1a, ∀a, b, c ∈ {gi}

〉
.

If we denote by h1, . . . , hN the standard generators of ZN , and by z the
generator of a copy of Z, which is free from ZN , then with a, b, c ∈ {hi} we
have

(za)(zb)−1(zc) = zab−1c = zcb−1a = (zc)(zb)−1(za).

We therefore have a group morphism Γ×

N → Z ∗ ZN , given by gi → zhi. Now
observe that the image of this morphism contains the following two elements:

(zh1)
−1(zh2) = h−1

1 h2, (zh1)(zh2)
−1 = zh1h

−1
2 z∗.

These elements being free, we obtain a copy of F2 inside the image. Thus the
image, and then Γ×

N , and then Û×
N itself, follow to be non-amenable as well. �

The U×

N geometry can be further investigated by using various algebraic

tricks, notably the free complexification formula U×

N = ŨN . We refer to [3].
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5. Half-classical geometry

In this section, we introduce and study the U∗
N geometry, which is the

“correct” complex half-classical one, in the sense that it is the biggest half-
classical geometry.

In view of Definition 4.3 above, we can indeed formulate:

Definition 5.1. We have a sphere, a torus, and a quantum group as follows:

(i) SN−1

C,∗ ⊂ SN−1

C,+ , obtained via “ab∗, a∗b all commute”, with a, b, c ∈ {xi}.
(ii) T ∗

N ⊂ F̂N , obtained via “ab−1, a−1b all commute”, with a, b, c ∈ {gi}.
(iii) U∗

N ⊂ U+

N , obtained via “ab∗, a∗b all commute”, with a, b, c ∈ {uij}.
In other words, these are the biggest half-classical sphere, torus, and quantum
group.

As a first remark, the real version of SN−1

C,∗ , obtained by imposing the con-
ditions xi = x∗

i to the standard coordinates, is the half-classical real sphere

SN−1

R,∗ . Observe also that we have inclusions as follows, coming from the vari-
ous results in Proposition 4.4:

SN−1

C,∗∗ ⊂ SN−1

C,∗ ⊂ SN−1

C,× .

Similar inclusions are valid for the tori and for the quantum groups. Finally,
observe that U∗

N is by definition easy, coming from the following two diagrams:

◦

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

•

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

•

✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

◦

✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

• ◦ ◦ •

◦

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

•

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

◦

✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

•

✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

◦ • ◦ •
In order to better understand the construction X → PX, and the definition

of SN−1

C,∗ itself, let us perform now some explicit computations. By PN−1

C
we

denote the usual complex projective space.

Proposition 5.2. The projective versions of SN−1

C,∗∗ ⊂ SN−1

C,∗ ⊂ SN−1

C,× are given

by

SN−1

C,∗∗
//

��

SN−1

C,∗
//

��

SN−1

C,×

��

PN−1

C
× PN−1

C
// PN−1

C
× PN−1

C
// PN−1

C
◦ PN−1

C

where the product on the bottom right is constructed by conjugating by a free

unitary.

Proof. We use the following presentation result, which comes from the Gelfand
theorem and from the fact that PN−1

C
is the space of rank 1 projections in

MN (C):

C(PN−1

C
) = C∗

comm

{
(pij)i,j=1,...,N | p = p2 = p∗, Tr(p) = 1

}
.

Münster Journal of Mathematics Vol. 10 (2017), 457–483



480 Teodor Banica and Julien Bichon

Let us first discuss the computation of the spaces PSN−1

C,∗∗ ⊂ PSN−1

C,∗ . We
know that these spaces are both classical. We also know that the left and
right components of these spaces, in the sense of Definition 4.3, are all equal to
PN−1

C
, for instance because their standard generators satisfy the above defining

relations for C(PN−1

C
).

In order to finish, it remains to prove that the subspaces PSN−1

C,∗∗ , P
′SN−1

C,∗∗ ⊂
PSN−1

C,∗∗ , which are both isomorphic to PN−1

C
, are in generic position. For this

purpose, we can use a suitable matrix model, coming from [5]. Let indeed ui, vi
be the standard coordinates of two independent copies of SN−1

C
, and consider

the following matrices:

Xi =

(
0 ui

vi 0

)
, X∗

i =

(
0 v̄i
ūi 0

)
.

We have then
∑

i XiX
∗
i =

∑
i X

∗
i Xi = 1 and the relations abc = cba hold as

well, for any a, b, c ∈ {Xi, X
∗
i }. Thus we have the following matrix model:

C(SN−1

C,∗∗ ) → M2

(
C(SN−1

C
× SN−1

C
)
)
, xi → Xi.

The point now is that, in this model, we have the following formulae:

XiX
∗

j =

(
uiūj 0
0 viv̄j

)
, X∗

jXi =

(
viv̄j 0
0 uiūj

)
.

Since these matrices are conjugated by an order 2 automorphism, the algebra
that they generate is isomorphic to C(PN−1

C
× PN−1

C
), and this finishes the

proof.
Finally, regarding the computation for SN−1

C,× , let us denote by pij = ziz̄j the
standard coordinates on PN−1

C
= PSN−1

C
. In the usual free complexification

model for SN−1

C,× , namely S̃N−1

C
, we have then

xix
∗

j = pij , x
∗

jxi = zpijz
∗,

and this gives the result. �

In order to verify the axioms, we follow the proof for U×

N .

Definition 5.3. Given a closed subgroup G ⊂ U+

N , and a closed subset X ⊂
SN−1

C,+ , we say that G acts fully projectively on X , and write PG y PX, if the
formulae

Φ(xix
∗

j ) =
∑

ab

uiau
∗

jb ⊗ xax
∗

b , Φ(x∗

i xj) =
∑

ab

u∗

iaujb ⊗ x∗

axb

define a morphism of C∗-algebras Φ : C(PX) → C(PG)⊗ C(PX).

As in the affine case, such a morphism is automatically coassociative and
counital. Observe also that any affine action G y X produces a projective
action PG y PX.

Proposition 5.4. The following quantum isometry group results hold true:

(i) We have an affine action U∗
N y SN−1

C,∗ .

(ii) PG y PN−1

C
× PN−1

C
implies G ⊂ U∗

N .
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(iii) G y SN−1

C,∗ implies G ⊂ U∗
N .

(iv) U∗
N is the quantum isometry group of SN−1

C,∗ .

Proof. Our first claim is that it is enough to prove (ii). Indeed, in order to
prove (i), observe that with Xi =

∑
a uia ⊗ xa, we have the following formulae:

XiX
∗

j =
∑

ab

uiau
∗

jb ⊗ xax
∗

b , X∗

jXi =
∑

ab

u∗

jbuia ⊗ x∗

bxa.

Now since the various variables on the right pairwise commute, the variables
on the left commute as well, and so we can define the action map by xi → Xi.

The other remark is that since G y SN−1

C,∗ implies

PG y PSN−1

C,× = PN−1

C
× PN−1

C
,

we have (ii) =⇒ (iii). Finally, the implication (i) + (iii) =⇒ (iv) is trivial.

In order to prove now (ii), let us observe that PG y PN−1

C
× PN−1

C
implies

PG y PN−1

C
. Thus, we can use Proposition 4.9 (i), and we obtain G ⊂ U×

N .

We are therefore left with proving that PG y PN−1

C
× PN−1

C
implies that

the following diagram belongs to the Tannakian category of G:

◦

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

•

❂❂
❂❂

❂❂
❂❂

❂❂
❂❂

•

✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

◦

✁✁
✁✁
✁✁
✁✁
✁✁
✁✁

• ◦ ◦ •
For this purpose, consider a coaction map, written as in Definition 5.3. By

multiplying the two relations there, we obtain

Φ(xix
∗

jx
∗

kxl) =
∑

abcd

uiau
∗

jbu
∗

kculd ⊗ xax
∗

bx
∗

cxd,

Φ(x∗

kxlxix
∗

j ) =
∑

abcd

u∗

kculduiau
∗

jb ⊗ x∗

cxdxax
∗

b .

Assuming now that x1, . . . , xN are the standard coordinates on SN−1

C,∗ , the
products of x variables at left are equal, and so are the products at right. Thus,
we have ∑

abcd

[uiau
∗

jb, u
∗

kculd]⊗ xax
∗

bx
∗

cxd = 0.

Now recall that, in view of Proposition 5.2, we can write

xax
∗

bx
∗

cxd = pab ⊗ qdc,

where pab, qcd are the standard coordinates on PN−1

C
. Thus, our formula be-

comes ∑

abcd

[uiau
∗

jb, u
∗

kculd]⊗ pab ⊗ qdc = 0.

Since the variables on the right are linearly independent, we obtain that all
the commutators vanish, and this finishes the proof. �
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We can now formulate our main result:

Theorem 5.5. We have a noncommutative geometry, with sphere SN−1

C,∗ , torus

T ∗
N and quantum group U∗

N . This is the biggest geometry having a classical

projective version.

Proof. The verification of all the axioms is standard. The only nontrivial fact
is the universality of the action U∗

N y SN−1

C,∗ , coming from Proposition 5.4.
The last assertion, where “biggest” means as usual “maximal”, is clear. �

In view of the above result, the U∗
N geometry as constructed above seems to

be the “correct” complex half-classical geometry. This geometry waits of course
to be developed, with the potential questions concerning the submanifolds
X ⊂ SN−1

C,∗ being a priori as many as the questions concerning the submanifolds
X ⊂ SN−1

C
, or perhaps X ⊂ SN−1

R
, with the remark of course that there are

whole books written on these latter manifolds. As a very first question here,
it would be interesting to work out the analogues of [15, 16] in the present
setting. Finally, we conjecture that the U∗

N geometry is amenable. Moreover,
it is maximal with this amenability property, at least in the easy framework.

References

[1] T. Banica, Liberations and twists of real and complex spheres, J. Geom. Phys. 96

(2015), 1–25. MR3372015
[2] T. Banica, A duality principle for noncommutative cubes and spheres, J. Noncommut.

Geom. 10 (2016), no. 3, 1043–1081. MR3554842
[3] T. Banica, Half-liberated manifolds and their quantum isometries, Glasg. Math. J. 59

(2017), no. 2, 463–492. MR3628941
[4] T. Banica, Quantum isometries, noncommutative spheres, and related integrals, Banach

Center Publ. 111 (2017), 101–144.
[5] T. Banica and J. Bichon, Matrix models for noncommutative algebraic manifolds, J.

Lond. Math. Soc. (2) 95 (2017), no. 2, 519–540. MR3656280
[6] T. Banica, J. Bichon, B. Collins, and S. Curran, A maximality result for orthogonal

quantum groups, Comm. Algebra 41 (2013), no. 2, 656–665. MR3011789
[7] T. Banica and B. Collins, Integration over compact quantum groups, Publ. Res. Inst.

Math. Sci. 43 (2007), no. 2, 277–302. MR2341011
[8] T. Banica and D. Goswami, Quantum isometries and noncommutative spheres, Comm.

Math. Phys. 298 (2010), no. 2, 343–356. MR2669439
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