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Abstract 

 The biogenesis of functional extracellular matrices necessitates the 

appropriate combination and mutual association of matrix suprastructures, each 

comprising more than one molecular constituent. Collagen VI-containing 

aggregates are prominent examples of the suprastructural plasticity of 

extracellular matrix aggregates, depending on the exact composition.  

 In order to gain more insight into the organization and molecular 

compositions of matrix suprastructures we examined fibrilar fragments and 

collagen VI microfibrils from articular bovine cartilage. Authentic suprastructures 

were extracted by mechanical disruption of the tissue in PBS. Thereafter, 

fibrillar fragments were investigated by transmission and immuno-electron 

microscopy. We found collagen VI microfibrils are firmly associated by twisting 

around thin banded fibrils containing collagens II, IX, and XI. We also found that 

matrilin-1, biglycan and decorin are structural components of collagen VI-

containing suprastructures. Moreover, we found that COMP is a novel 

component of collagen VI-containing suprastructures. Interestingly, we found 

biglycan bound to the globular domain of collagen VI microfibrils in a regular 

pattern that twisted around banded fibrils. Moreover, after treatment with 5 M 

guanidine hydrochloride, collagen VI microfibrils are still associated with banded 

fibrils. From these data we deduce that collagen VI microfibrils are covalently 

cross-linked to banded fibrils. Further, we investigated rib cages of newborn 

collagen IX- and biglycan-knockout mice to substantiate the role of these 

components in tethering collagen VI microfibrils to cartilage banded fibrils. We 

found a regular binding pattern of collagen VI microfibrils on banded fibrils in 

wild type as well as in biglycan knockout mice. This binding is disrupted in 

collagen IX knockout mice. Although, by using a binding assay, we found that 

collagen VI directly interacts with the NC4-domain of collagen IX with a 

relatively weak binding constant (Kd = 3 × 10-7 M). Nevertheless, the repetitive 

projection of NC4-domain of collagen IX present a substrate with multiple 

binding sites and, hence, an extremely high avidity for collagen VI microfibril 

binding. This data are supported by the result from in vitro fibrillogenesis 

experiment in which collagen VI microfibrils bound to reconstituted fibrils 
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containing collagens II, IX and XI but not to fibrils without collagen IX. 

Therefore, these data suggest that collagen IX serves as an adaptor between 

collagen VI microfibrils and the banded collagen fibrils. 
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DMEM  dulbecco’s modified eagle medium 
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PCR   polymerase chain reaction  
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SDS   sodium dodecyl sulphate 
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TBST   tris buffered saline + tween-20 

TEM   transmission electron microscope 

TEMED  N,N,N',N'-tetramethylethylenediamine 
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1. INTRODUCTION 

 The extracellular matrix (ECM) is a component of all mammalian tissues 

and consists of a network of fibrous proteins, elastin, and collagens. The 

network is embedded in a viscoelastic gel rich in high molecular weight anionic 

polymers known as proteoglycans. This structure, which is quantitatively a 

major component in tissues such as cartilage, intervertebral disc, and blood 

vessels, endows tissues with the requisite mechanical properties and regulates 

the movement of water, nutrients, and other solutes. There is strong evidence 

that changes in these functions are associated with diseases such as arthritis, 

atherosclerosis, and cancer. The basic information of the molecular 

components and their suprastructures in extracellular matrix is requied for 

diagnosis and healing.  

 Collagen VI-containing aggregates are prominent examples of the 

suprastructural plasticity of extracellular matrix aggregates. Matrilin-1, biglycan, 

and decorin are components of collagen VI-containing suprastructure (Wiberg 

et al., 2003). However, the interactions of collagen VI-containing supra-

structures with collagen banded fibrils and network-like structures are only 

partially known. In the present study, therefore, these interactions were 

investigated. 
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2. REVIEW OF THE LITERATURE 

2.1.  Cartilage 

 Cartilage is a type of connective tissue characterized by firmness and 

resilience. It is composed of cells called chondrocytes and an extracellular 

matrix which is produced by these cells. Unlike other connective tissues, 

cartilage is an avascular tissue. Therefore, the nutrition of cartilage occurs by 

diffusion of substances from capillaries in adjacent connective tissue or via 

synovial fluid from joint cavities and the chondrocytes (Stockwell, 1979). Further 

characteristics are the lack of nerve fibres and absence of a lymphatic system. 

Most properties of cartilage tissue are not dependent on the chondrocytes 

themselves, but rather on what the chondrocytes secrete and deposit in the 

extracellular space. There is a highly complex but well organized network of 

diverse suprastructures in the extracellular matrix. Most of the extracellular 

volume, however, is made up of water (~80%) (Miller, 1996). The important 

biomechanical properties of cartilage are elasticity and resistance to 

compression and deformation. The major factors determining these 

biomechanical are the physical characteristics of the individual matrix molecules 

and their interactions (Ratcliffe and Mow, 1996). 

 Cartilage is classified into elastic, fibrous, and hyaline cartilage based on 

its morphological appearance and the composition of its extracellular matrix 

(Horton, 1993).  

2.1.1  Elastic cartilage 

 Elastic cartilage contains elastic fibrils in addition to the collagen fibrils. It 

is consequently more resilient than either the hyaline or fibrous cartilage. Elastic 

cartilage is found in structures that are subjected to continual bending, such as 

parts of the external ear and epiglottis. 

2.1.2  Fibrous cartilage 

 Fibrous cartilage contains a large number of fibrous bundles containing 

collagen I embedded in its matrix and very few cells arranged in rows between 
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the bundles. The fibrous bundles provide greater tensile strength than in the 

other types of cartilage. The cushioning discs of fibrous cartilage between the 

vertebrae and the internal cartilages of the knee joints are enabled by their 

structure to stand up under the continuous heavy pressure to which they are 

subjected. 

 

 2.1.3  Hyaline cartilage 

 Hyaline cartilage is the most abundant type of cartilage and plays a 

central role in the formation and growth of the vertebrate skeleton (for review 

see Morris et al., 2002). It is semi-transparent and appears bluish-white in 

colour. Hyaline cartilage is strong, but flexible and elastic. It is derived, like other 

types of connective tissue, from mesenchymal cells. At the begining of about 

the fifth foetal week, the precursor cells become rounded and form densely 

packed cellular masses, called centres of chondrification (Stockwell, 1979). The 

cartilage-forming cells, chondroblasts, begin to secrete components of the 

extracellular matrix of cartilage (Stockwell, 1979). The extracellular matrix 

consists of ground substance (hyaluronan, chondroitin sulphate and keratin 

sulphate) and tropocollagen which polymerise extracellularly into fine collagen 

fibrils (Poole et al., 1982). Hyaline cartilage lines the bones in joints, articular 

cartilage, and is also present inside bones, serving as a centre of ossification or 

bone growth (Arey, 1974). 

 As the amount of matrix increases, the chondroblasts become separated 

from each other and become, from this time on, isolated in small cavities within 

the matrix. These cavities are called the lacunae. Concurrently the cells 

differentiate into mature chondrocytes.  

 Cartilage growth occurs by two mechanisms.  

i) Interstitial growth where the chondroblasts within the existing 

cartilage divide and form small groups of cells called isogenous 

groups. These groups produce matrix to become separated from 

each other by a thin partition of matrix. Interstitial growth occurs 

mainly in immature cartilage.  

 

 

http://www.answers.com/main/ntquery?method=4&dsid=2222&dekey=Ossification&gwp=8&curtab=2222_1
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ii) Appositional growth where mesenchymal cells surrounding the 

cartilage in the deep part of the perichondrium or the 

chondrogenic layer differentiate into chondroblasts. Appositional 

growth also occurs in mature cartilage.  

 The matrix near the isogenous groups of chondrocytes, territorial matrix, 

contains larger amounts and different types of glycosaminoglycans than the 

matrix more remote, interterritorial matrix, from the isogenous groups. An 

idealized chondrocyte and its matrix compartments are illustrated in Figure 2-1. 

 

 

Nucleus 

Territorial matrix 
Interterritorial matrix 

Cell 

Pericellular matrix 
 

 

 

 

 

 

 

 

 

 

Figure 2-1. Idealized chondrocyte, depicting surrounding matrix compartments 
and other landmarks. Modified from Morris et al., 2002. 
 
 
2.1.4  Articular cartilage 

 Articular cartilage is a specialised form of hyaline cartilage. It is usually 

divided into four zones: superficial, intermediate, deep, and calcified zone 

depending on the arrangement of chondrocytes and collagen fibrils (Figure 2-2). 

As with other cartilage types, there are differences in cellular and matrix 

morphology depending on joint location, degree of weight bearing, the age and 

species of cartilage. The articular cartilage of a growing bone does not have a 

calcified zone. It blends into epiphyseal cartilage that resides between the 

articular surface and the growth plate. This is more evident in species with large 

bones and large epiphyseal cartilages, such as human. However, it becomes 
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less apparent as secondary ossification centres in the epiphyseal cartilage 

encroach upon the articular region. Despite these differences, articular cartilage 

shares many features such as the suprastructure of the chondrocytes and 

matrix, the organization of matrix into compartment, and cell-matrix 

relationships, with each other as well as with other cartilage types.  

 

 Surface 

Bone 

Tidemark 

Superficial 
zone  

 

 Intermediate 
zone  

 

 

 
Deep  
zone  

 

 
Calcified 
zone  

 

 

Figure 2-2. Schematic representation of adult articular cartilage showing the 
zones and organization of articular chondrocytes (according to Morris et al., 
2002).  
 
 
 The superficial zone is the thinnest along the articular surface and widest 

at the articular margin, where it merges with the perichondrium. The articular 

surface is comprised of a thin layer of densely packed, fine collagen fibrils 

running parallel to the surface of cartilage (Weiss et al., 1968). These fibrils 

have characteristic periodic banding, and many form bundles (Poole et al., 

1984; Cameron and Robinson, 1958). There are no cells in this fibrous layer. 

However, the lower part of the superficial zone contains flattened cells aligned 

parallel to the surface of cartilage. These chondrocytes display a cell-surface 

polarity (Schenk et al., 1986; Weiss et al., 1968). The cell membrane facing the 

surface tends to contain prominent invaginations, or caveolae, while many 
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cytoplasmic processes are found on the other side of the cell. Rough 

endoplasmic reticulum and Golgi complexes are sparse (Weiss et al., 1968). 

The typical basket-like pericellular capsule and territorial matrix compartment 

are not prominent in this zone. Cationic dyes display less proteoglycan than in 

deeper zones. However, proteoglycans and proteoglycan link proteins can be 

detected by immunostaining (Schenk et al., 1986; Poole et al., 1982). The 

chondrocytes of the intermediate zone are more spherical, and the surface 

polarity seen in the superficial zone is much less apparent (Schenk et al., 1986; 

Weiss et al., 1968). The cells have more prominent perinuclear filaments, and 

rough endoplasmic reticulum and Golgi complexes are more abundant. There is 

more organization of matrix compartments, and chondrons with concentric 

capsular layers are apparent (Poole et al., 1987). Collagen fibrils are thinner 

and more widely spaced, and display a faint periodic banding. Their orientation 

tends to be random, and bundles are rarely remarkable (Cameron and 

Robinson, 1958). The matrix of the intermediate zone stains intensely with 

cationic dyes for glycosaminoglycans (Stockwell, 1979).  

 The deep zone is distinguished by the tendency of the cells to align 

themselves perpendicularly to the joint suface. The collagen fibrils of the 

interterritorial compartment are thicker than in the intermediate zone. 

Furthermore, they exhibit the same orientation (Schenk et al., 1986; Poole et 

al., 1982). Rough endoplasmic reticulum and Golgi complexes are prominent in 

the chondrocytes (Weiss et al., 1968; Eggli et al., 1988). Cationic stains and 

immunostaining indicate abundant proteoglycan in this zone (Poole et al., 

1982). Schenk and colleagues have observed that the cells of the upper deep 

zone are rich in intermediate filaments and glycogen deposits compared with 

the cells of the lower deep zone. The border of this zone and the calcified 

cartilage zone is called tidemark (Schenk et al., 1986). Matrix vesicles can be 

identified in the interterritorial matrix of the radial, as well as the superficial and 

intermediate zones, but they are not mineralized (Poole, et al., 1984). 

 
2.2  Molecular constituents of hyaline cartilage  

 The extracellular matrix of hyaline cartilage contains two major 

supramolecular elements: a framework formed by collagen II-rich fibrils, and a 
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hydrated substance with a high content of the cartilage-specific proteoglycan 

aggrecan. The proteoglycan-rich gel has a high osmotic swelling pressure. 

Fibrils strongly resist tension, and the fibrillar network contains the swelling 

pressure. As a consequence, the tissue is provided with mechanical stiffness 

and elasticity, which is essential for its capacity to withstand shearing and 

compressive forces. These properties are required particularly in mature joint 

cartilage where mobility is combined with tolerance for extremely high loads. 

The extracellular matrix of adult articular cartilage shows a complex 

suprastructural pattern. Fibril diameters and the preferential orientation of fibrils 

vary with the location within the tissue (Lane and Weiss, 1975; Poole et al., 

1984; Hunziker and Herrmann, 1990). The interfibrillar proteoglycan 

organizations also vary in the four zones within the cartilage (Poole et al., 

1982).  

 Over recent years, our understanding of cartilage matrix biology has 

been substantially extended. A number of novel, less-abundant matrix proteins 

have been identified any characterized. Furthermore, some cases of heriditary 

cartilage diseases do not show abnormalities with respect to the major gene 

products. This additional information made it clear that cartilage matrix 

organization and function is much more complex than originally thought. Most of 

these proteins are introduced in more detail below. 

2.2.1  Collagens 

 The most abundant proteins in the extracellular matrix are members of 

the collagen family. They play a dominant role in maintaining the structure of 

various tissues and also have many other important functions. For example, 

collagens are involved in cell adhesion, chemotaxis and migration. Furthermore, 

the dynamic interplay between cells and collagens regulates tissue remodeling 

during growth, differentiation, morphogenesis, wound healing, and many 

pathologic states.  

All collagen molecules compose three polypeptide chains, called α 

chains, and contain at least one domain composed of repeating Gly-X-Y 

sequences in each chain (for review see Ricard-Blum et. al., 2005). In some 

collagens all three α chains are identical whereas, in others, the molecules 
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contain two or even three different α chains. The three α chains are each coiled 

into a left-handed helix and are then twisted around a common axis to form a 

triple helix with a shallow right-handed superhelical pitch, so that the final 

structure is a rope-like rod (Fleischmajer et al., 1990; Engel and Prockop, 1991; 

van der Rest and Garrone, 1991; Hulmes, 1992; Kielty et al., 1993). The 

presence of glycine, the smallest amino acid, in every third position is essential 

for the packing of this coiled-coil structure. The X and Y position can be 

occupied by any amino acid other than glycine, but proline is often found in the 

X position and 4-hydroxyproline in the Y position (for review see van der Rest 

and Garrone, 1991). The 4-hydroxyprolines are essential for the thermodynamic 

stability of the triple-helix (Ramachandran and Ramakrishnan, 1976). The 

conformation of the triple helix places the side chains of amino acids in the X 

and Y positions on the surface of the molecule. This arrangement enables many 

collagens to polymerize, since the multiple clusters of hydrophobic and charged 

side chains direct self-assembly into precisely ordered structures. The triple 

helix is relatively rigid. In some contexts, the resistance of the molecule to 

extension or compression is important for the biological function of the protein.  

 Vertebrates have at least 28 different collagen types with 43 distinct α 

chains in total, while more than 20 additional proteins have collagen domains. 

Based on their structure and supramolecular organization, collagens can be 

grouped into  

i) fibril-forming collagens 

ii) fibril-associated collagens with interrupted triple helices (FACIT) 

iii) network-forming collagens 

iv) basement membrane collagens  

v) others with unique functions.  

Collagens I-XIX have been thoroughly reviewed previously (Figure 2-3) 

(Kivirikko and Prockop, 1995; Kadler, 1995; Myllyharju and Kivirikko, 2001; 

Kielty and Grant, 2002), whereas collagens XX-XXVIII (Table 2-1) have been 

reported only in the past five years (Koch, et al., 2001; Fitzgerald and Bateman, 

2001; Banyard, et al., 2003; Koch, et al., 2003; Hashimoto, et al., 2002; Sato, et 

al., 2002; Pace, et al., 2003; Boot-Handford, et al., 2003; Veit, et al., 2006).  



 16   Review of The Literature

The different collagens are characterized by considerable complexity and 

diversity in their structures, their variants, the presence of additional, non-helical 

domains, their assembly, and their functions. The most abundant and 

widespread family of collagens with about 90% of the total collagen is 

represented by the fibril-forming collagens. Fibrils containing collagens I and V  

contribute to the structural component of bone while collagens II and XI are 

found predominantly in the fibrillar matrix of articular cartilage. Their torsional 

stability and tensile strength lead to the stability and integrity of these tissues 

(von der Mark, 1999; Birk, et al., 1988; Mayne, 1989). Collagen IV, with a more 

flexible triple helix, assembles into networks restricted to basement membranes. 

The collagen VI microfibril is highly disulfide cross-linked and contributes to a 

network of beaded filaments interwoven with other collagen fibrils (von der 

Mark, 1984). Fibril-associated collagens with interrupted triple helices (FACIT) 

such as collagens IX, XII, and XIV are associated with banded fibrils and they 

can be integral parts and important organizers of the overall fibril structure 

rather than optional addition to preexisting aggregates (Birk and Bruckner, 

2005). Collagens VIII and X form hexagonal networks while collagens XIII and 

XVII even span cell membranes (van der Rest and Mayne, 1987). 

Transmembrane collagens are collagens XIII, XVII, XXIII, and XXV, each 

containing a single-pass hydrophobic transmembrane domain (Peltonen et al., 

1999; Schäcke et al., 1998; Banyard et al., 2003; Hashimoto et al., 2002). 

Given the diversity of the collagen superfamily, it is not surprising that 

mutations in collagen genes or deficiencies in the activities of specific post-

translational enzymes of collagen synthesis have been discovered in many 

heritable disorders such as osteogenesis imperfecta (Roughley et al., 2003), 

chondrodysplasias (Cohn, 2001; Vikkula, 1993, 1995), several subtypes of the 

Ehlers-Danlos syndrome (Eyre et al., 2002; Nuytinck et al., 2000), and several 

forms of epidermolysis bullosa (Bruckner-Tuderman et al., 1999). Intriguingly, 

collagen gene defects have also been found in certain forms of common 

disease, such as osteoporosis (Laitinen, 1976; Knott et al., 1995), osteoarthritis 

(Hollander et al., 1994) and aortic aneurysm (Kuivaniemi et al., 1991).  
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Figure 2-3. Members of the collagen superfamily and their known supramolecular assemblies. 
The collagen superfamily can be divided into nine families on the basis of the supramolecular 
assemblies and other features of its members: (a) fibril-forming collagens; (b) fibril-associated 
collagens with interrupted triple helices (FACITs) located on the surface of fibrils, and 
structurally related collagens; (c) collagens forming hexagonal networks; (d) the family of 
collagen IV located in basement membranes; (e) collagen VI, which forms beaded filaments; (f) 
collagen VII, which forms anchoring fibrils for basement membranes; (g) collagens with 
transmembrane domains; and (h) the family of collagens XV and XVIII. The supramolecular 
assemblies of families (g) and (h) are unknown and are therefore not shown in this figure. The 
polypeptide chains found in the 27 collagen types are coded by 42 genes in total, each 
molecule consisting of three polypeptide chains that can be either identical or different. An 
additional highly heterogenous group (i) within the superfamily comprises proteins that possess 
collagenous domains but have not been defined as collagens. Some of the group (i) proteins 
could also be defined as collagens, although some of the collagens might also belong to this 
group because there are no distinct criteria for distinguishing between a collagen and a protein 
containing a collagen domain(s). Abbreviation: PM, plasma membrane. (according to Myllyharju 
and Kivirikko, 2004). 
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Table 2-1. Collagen types and their expressions, modified and updated from 

Gelse et al. 2003. 

 
Type 
 

Chain Location 

I α1(I), α2(I) Most connective tissues 
II α1(II) Cartilage, vitreous humour 
III α1(III) Extensible connective tissues, 

e.g. skin, lung, vascular system 
IV α1(IV), α2(IV), α3(IV), 

α4(IV), α5(IV), α6(IV) 
Basement membranes 

V α1(V), α2(V), α3(V) Tissues containing collagen I, 
quantitatively minor component 

VI α1(VI), α2(VI), α3(VI) Most connective tissues 
VII α1(VII) Anchoring fibrils 
VIII α1(VIII), α2(VIII) Many tissues, especially 

endothelium 
IX α1(IX), α2(IX), α3(IX) Tissues containing collagen II 
X α1(X) Hypertrophic cartilage 
XI α1(XI), α2(XI), α1(II)a Tissues containing collagen II 
XII α1(XII) Tissues containing collagen I 
XIII α1(XIII) Many tissues  
XIV α1(XIV) Tissues containing collagen I 
XV α1(XV) Many tissues 
XVI α1(XVI) Many tissues 
XVII α1(XVII) Skin hemidesmosomes 
XVIII α1(XVIII) Many tissues, especially liver 

and kidney 
XIX α1(XIX) Rhabdomyosarcoma cells 
XX α1(XX) Corneal epithelium, skin, 

cartilage and tendon 
XXI α1(XXI) Many tissues 
XXII α1(XXII) Tissue junctions 
XXIII α1(XIII) Metastatic tumour cells 
XXIV α1(XXIV) Developing bone and cornea 
XXV α1(XXV) Neurons 
XXVI α1(XXVI) Testis, ovary 
XXVII α1(XXVII) Cartilage, eye, ear and lung 
XXVIII α1(XXVIII) Sciatic nerve 

 aThe α3(XI) chain of collagen XI is encoded by the same gene as the α1(II) chain of 
type. 
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2.2.1.1 Cartilage collagens 

 Six collagens (collagens II, VI, IX, X, XI, and XXVII) have been identified 

in articular cartilage. Collagen II, a homotrimer composed of α1(II) chains, is the 

most abundant fibrillar protein found in articular cartilage and constitutes 80-

85% of the total collagen content (for review see Cremer et al., 1998). 

Collagens IX and XI are present in smaller quantities than collagen II, ranging 

between 3 and 10% each, depending on the cartilage species and age. Unlike 

collagen II, collagens IX and XI are heterotrimers. Collagen IX has a large 

globular non-collageneous (NC) domain N-terminus from α1(IX) and is further 

characterized by two short NC segments that interrupt the helix. One of these 

short NC segments creates a "kink" in the molecule which is a site of a 

chondroitin sulphate rich glycosaminoglycan chain extending from α2(IX) (van 

der Rest and Mayne, 1988). Cartilage collagen IX differs from vitreous collagen 

IX, because the former retains a large NC4 domain (Brewton et al., 1991) and 

has a tenfold shorter chondroitin sulphate chain (Yada et al., 1990). Collagen XI 

resembles collagen II in structure because the helices of both molecules are 

uninterrupted by NC domains; some collagen XI molecules, however, retain an 

extractable α3(XI) N-propeptide which projects from the fibril (Thom and Morris, 

1991).  

 Collagens XI and II are quite similar with respect to their α3(XI) and α1(II) 

chains which are mostly encoded by the same gene. A higher degree of 

glycosylation of α3(XI), however, indicates differences in posttranslational 

processing. Collagen XI also share similarity with collagen V, as demonstrated 

by significant sequence homology between α1(XI) and α1(V) and between 

α2(XI) and α2(V) (Seyer and Kang, 1990; Mayne et al., 1993). Studies of the 

vitreous body of the eye suggest that, at least in this environment, collagen V 

and collagen XI are not separate collagens (Mayne et al., 1993). The possibility 

that α1(XI) and α2(XI) can be expressed in non-cartilaginous tissues, in the 

absence of α3(XI), is suggested by the detection of mRNA for both α-chains in  

embryonic tissue. It is presently unknown whether α1(XI) and α2(XI) can 

combine to create homotrimers or heterotypic collagen XI (Lui et al., 1995).  
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 Collagen X is also cartilage-specific and a homotrimer, although 

considerably shorter than collagens II and XI. It is synthesized by terminally 

differentiating chondrocytes, i.e. hypertrophic chondrocytes (Schmid and 

Linsenmayer, 1985). It is thought that the biological function of collagen X is to 

facilitate the process of calcification possibly through matrical organization 

changes (Kwan et al., 1991). The expression of collagen X is restricted in the 

matrix of hypertrophic chondrocytes, suggesting that it is of major importance in 

endochondral bone growth and development. Furthermore, the mutations in 

collagen X may be responsible for some chondrodysplasias in humans and 

mice (Kwan et al., 1989). 

 Other collagens have also been identified which are collagen VI and 

collagen XXVII in cartilage. However, these collagens are also present in non-

cartilaginous tissues. Collagen VI is well characterized. Homotrimeric and 

heterotypic forms of collagen VI exist which contain helical domains shorter 

than those found in collagen X and large globular termini which make up two-

thirds of the molecule (von der Mark et al., 1984). Collagen VI is addressed in 

more detail in the next section.  

 Collagen XXVII is a novel vertebrate fibrillar collagen that is highly 

conserved in human, mouse and fish (Fugu rubripes). The pro-α1(XXVII) chain 

has a domain structure similar to that of α1(V), α3(V), α1(XI), and α2(XI). 

However, compared with other vertebrate fibrillar collagens, collagen XXVII has 

unusual molecular features. Collagen XXVII has a short chain selection 

sequence within the NC1 domain (Pace et al., 2003; Boot-Handford et al., 

2003). 

2.2.1.2 Supramolecular assemblies of cartilage collagens 

 The biogenesis of functional extracellular matrices necessitates the 

appropriate combination and mutual association of matrix suprastructures, each 

comprising more than one molecular constituent. The following topics are 

prominent examples of supramolecular assemblies of collagens in cartilage 

matrix. 
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(i) Organization of collagens in cartilage banded fibrils 

 The prototypic cartilage collagen fibril, original form, is an assembly of 

collagens II, IX, and XI (Mendler et al., 1989). Collagen II represents about 80% 

of the collagens of the cartilage fibrils. The remaining 20% are contributed to an 

equal extent by collagens IX and XI (Eyre et al., 1987). Collagens II and XI 

molecules are arranged in longitudinally staggered arrays of molecules of a 

length that is being a non-integer multiple of the stagger between next 

neighbors. Therefore, a gap occurs sequentially between neighboring 

molecules giving rise to a gap-overlap structure in the collagen fibrils with a D-

periodic banding (Figure 2-4, Birk and Bruckner, 2005). 

In addition, depending on their precise tissue origin cartilage fibrils also 

contain the FACIT collagens IX (Müller-Glauser et al. 1986; Eyre et al., 1987, 

2004; van der Rest and Mayne, 1988) or XVI (Kassner et al., 2003) or are 

associated with the small leucine-rich proteoglycan (SLRP) decorin (Hagg et al., 

1998). Therefore, some composite fibrils comprise a heterotypic fibril body 

encompassing parts of all three collagens from which collagen IX can project to 

the exterior with its aminoterminal globular NC4-domain (Vaughan et al., 1988). 

However, it is possible to distinguish between different populations of fibril. Thin 

fibrils containing collagens II, IX, and XI with uniform diameters coexist with 

large fibrils with heterogeneous diameters containing collagens II and XI. 

Notably, collagen IX is always absent from the large fibrils (Figure 2-5, Hagg et 

al., 1998). Thin collagen fibrils are particularly enriched in the territorial matrix 

embedding the chondrocytes by forming basket-like structures (Poole, 1992) 

whereas larger collagen fibrils were exclusively found in the interterritorial 

region more remote from the chondrocytes.  

Cross-linking studies have identified at least six sites of cross-linking 

within the collagen IX molecule where covalent bonds form with either collagen 

II molecules or with other collagen IX molecules (Wu et al., 1992; Ichimura et 

al., 2000; Diab et al., 1996) (Figure 2-6). The cross-linking residues are either 

trivalent pyridinolines or divalent borohydride-reducible intermediates formed by 

the same lysyl oxidase-mediated mechanism as occurs in the major fibril-

forming collagens (Eyre et al., 2004). Figure 2-6 shows how collagen IX 
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molecules can be accommodated on a fibril surface and can satisfy all the 

covalent interactions so far identified. In the model, the COL1/NC1-domain 

docks in the space region, oriented as shown in Figure 2-6, and the molecule 

hinges back on itself at the NC2-domain. 

 Collagen XI is located largely within the fibrils, where it is covalently 

linked with collagen II via hydroxylysine-based aldehyde cross-links. Collagen 

XI is found in greatest quantities in small fibrils. Cross-linked peptide analyses 

have shown that collagen XI molecules are cross-linked to each other through 

their N-telopeptide-to-helix interaction sites (Wu and Eyre, 1995). Interestingly, 

the N-telopeptide cross-linking lysines are located externally to candidate 

metalloproteinase cleavage sites, in α1(XI), α1(V), and α2(XI). It implies that 

any of such cleavages could selectively depolymerise collagen XI (Wu and 

Eyre, 1995). The N-terminal helical cross-linking site of collagen XI molecules is 

occupied by α1(II) C-telopeptide in α1(XI). By analogy to findings with the 

collagen I/V copolymeric fibrils of bone (Niyibizi and Eyre, 1994), this is 

consistent with the formation of lateral cross-links between collagens II and XI 

molecules at this locus. Together, these findings can be interpreted as collagen 

XI initially forming a head-to-tail self-cross-linked filament. This filament 

becomes integrated and cross-linked laterally onto or within the body of 

collagen II fibrils. Collagen XI could conceivably form an interconnecting, 

secondary filamentous network that provides links between fibrils as well as 

running within fibrils, not inconsistent with the concept that collagen XI restricts 

the lateral growth of collagen II-containing fibrils (Blaschke et al., 2000).  
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Figure 2-4. Structure of a generic collagen fibril. A D-periodic collagen fibril 
from tendon is presented at the top of the panel. The negative stained fibril has 
a characteristic alternating light/dark pattern representing the gap (dark) and 
overlap (light) regions of the fibril. The diagram represents the staggered 
pattern of collagen molecules giving rise to this D-periodic repeat.The collagen 
molecules (arrows) are staggered N to C. The fibrillar collagen molecule is 
approximately 300 nm (4.4 D) in length and 1.5 nm in diameter. (according to 
Birk and Bruckner, 2005). 
 
 
 
 Collagen IX Collagen II Collagen XI 

decorin 

chondroitin-/ dermatan 
sulphate 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-5. Schematic representation of the biochemical heterogeneity of D-
periodic fibrils in mature articular cartilage. The thinnest fibrils are enriched in 
collagens IX and XI. Fibrils of intermediate size have lower contents of collagen 
IX, and the small proteoglycan decorin can occur as an additional component. 
The coexistence of collagen IX and decorin on the fibril surface is a notable 
feature. The thickest fibrils lack collagen IX but they contain some collagen XI 
and frequently decorin. Modified and up-dated from Hagg et al.1998. 



 24   Review of The Literature

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2-6.  might initially 

teract with nascent collagen II molecules and fold to accommodate known 

i) Collagen VI networks 

itous distribution throughout connective tissues. It 

 Molecular model showing how collagen IX molecules
in
cross-linking interactions. a) the NC1(IX) to Lys-930(II) cross-link is presented 
as an early event with folding through the NC2 domain to accommodate the 
other, and cross-links between collagens II and IX molecules. b) the bottom 
structure indicates the potential for interfibrillar bonds between collagen IX and 
IX molecules on intersecting collagen II/XI-containing fibrils. (according to Eyre 
et al., 2004). 
 
 
(i

 Collagen VI has a ubiqu

is assembled into different tissue forms, including hexagonal networks and 

broad banded structure (von der Mark et al., 1984; Bruns et al., 1986). 

Moreover, it is found as an extensive microfibrillar network (Kielty and Grant, 

2002). Collagen VI is important in maintaining the integrity of tissues such as 
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blood vessels, lung, and skin. Furthermore, the linkage of mutations in the 

collagen VI genes forms leads to muscle weakness and wasting such as 

observed in Bethlem myopathy (Scacheri et al., 2002) and Ullrich syndrome 

(Camacho et al., 2001). 

Collagen VI is a large collagenous glycoprotein composed of three 

differe

 

monom

manner which is presumed to be mediated through A-domain interactions.  

nt α-chains, the α1(VI), α2(VI), and α3(VI) (Chu et al., 1987). Each chain 

consists of a short collagenous domain and large globular domains at the N- 

and C-termini. The majority of the globular domains of collagen VI have a 

homology to von Willebrand factor A-domains (VWA) with a molecular mass of 

approximately 21 kDa. Varying numbers of these domains are found at the N- 

and C-termini of all three chains [Figure 2-7(a)] (Chu et al., 1990). Structural 

studies on the A-domain of integrin CR3 have shown A-domains to be 

composed of a central β-sheet flanked on each side by three α-helices which is 

highly reminiscent of the Rossmann dinucleotide-binding fold (Huizinga, 1997). 

By selective reduction of microfibril interchain disulphide bonds,

ers, dimers, and tetramers could be formed (Furthmayr et al., 1983). By 

a combination of pepsin digestion, analytical ultracentrifugation, selective 

reduction and rotary shadowing transmission electron microscopy, a model of 

assembly of collagen VI has been proposed. This is shown in Figure 2-7(b). The 

model proposes that dimers are formed by the laterally staggered alignment of 

two monomers in an anti-parallel manner, giving rise to a 75 nm long region of 

two inter-twisted triple helices [Figure 2-7(b)] (Furthmayr et al., 1983). The 

globular domains lie at the end of the triple-helical region corresponding to a 

left-handed superhelix with a pitch of 37.5 nm (Knupp and Squire, 2001). 

Discontinuities in the Gly-X-Y sequence are predicted to break the supercoil into 

segments which is called the collagen-segmented supercoil. Still within the cell, 

collagen VI dimers align with their ends in register to form tetramers (Furthmayr 

et al., 1983) which are the secreted form of the molecule [Figure 2-7(b)]. The 

C2-domain is required for dimer and tetramer formation, and thus, the non-

collagenous sequences play a central role in these assembly steps. Once in the 

extracellular space, end-to-end accretion of tetramers leads to microfibril 

formation. Collagen VI tetramers associate to form microfibrils in a non-covalent 
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Collagen VI interacts with a spectrum of extracellular matrix molecules 

including collagens I, II, IV, XIV, microfibril-associated glycoprotein (MAGP-1), 

perlecan, decorin, biglycan, hyaluronan, heparin, and fibronectin as well as 

integrins and the cell-surface proteoglycan NG2 (Birk and Bruckner, 2005). For 

example, complexes of collagen VI microfibrils with matrilin-1, -3, -4, biglycan, 

and decorin are found in isolated Swarm rat chondrosarcoma cells as well as in 

the reconstitution products of isolated proteins (Figure 2-8, Wiberg et al., 2003). 

In these complexes, decorin and biglycan interact with VWA domains in the N-

terminal region of collagen VI and that matrilins were in turn bound to these 

small leucine-rich repeat proteoglycans. At the periphery of these assemblies, 

matrilins could be seen to connect the collagen VI-containing microfibrils to 

aggrecan core proteins or to collagen II-containing fibrils. Therefore, 

supramolecular aggregates of collagen VI are composite structures with other 

integrated molecules modulating the functional properties of the collagen VI-

containing suprastructure (Birk and Bruckner, 2005). In addition, collagen VI 

microfibrils have been proposed to play an important role in matrix organization 

due to their interactions with several matrix components (Kielty and Grant, 

2002). 
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ollagen VI: (a) A diagram showing the organisation of domains in the α1, α2 
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terminal VWA domains, respectively. The gray, white and black crosses 
represent the proline-rich region, Fibronectin III repeat and Kunitz protease 
inhibitor domain, respectively. The collageneous region is shown in black as a 
molecular structure. (b) A diagram showing the assembly of collagen VI 
microfibrils from the three α chains. The formation of monomers, dimers and 
tetramers occurs intracellularly, while microfibril assembly occurs in the 
extracellular space (modified from Baldock et al., 2003). 
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Figure 2-8. Structure of intact collagen VI from the Swarm rat chondrosarcoma 
s seen by electron microscopy after negative staining. (a) Collagen VI 

) is a group of biomolecules consisting of a core protein 

and one or more covalently attached glycosaminoglycan chains. PGs are 

a
microfibrils with different molecules bound close to the N-terminal parts of the 
collagen VI tetramers are visible (arrows). Representative particles exhibiting 
multidomain structures of different sizes are shown at higher magnification 
(insets). Using specific gold-labelled antibodies these molecules are identified 
as biglycan (b), decorin (c), matrilin-1 (d), matrilin-3 (e), matrilin-4 (f) and 
chondroadherin (g). Thus, complexes of matrilin-1, -3, or -4 and the leucine-rich 
repeat proteoglycans biglycan or decorin, binding close to the collagen VI N-
termini, are identified. The bar represent 100 nm (a) and 20 nm [(b) - (g)] 
(Wiberg et al., 2003).  
 
 
.2.2  Proteoglycans 2

 Proteoglycan (PG

characterized as having a polyanionic nature conferred for the most part by 

sulphate substitutents on carbohydrate residues and by the carboxyl group of 

the hexuronic acid moieties (for review see Iozzo, 1998). These 

glycosaminoglycan chains define the class of the PG by forming a generaly 

repeating disaccharide backbone. The PGs heparin, heparan sulphate (HS), 
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chrondroitin sulphate (CS), and dermatan sulphate (DS) backbones compose of 

[hexuronic acid-N-acetylhexosaminel]n which can have sulphate ester 

substituents on either the uronic acid or hexosamine or both (Price et al., 1992). 

For keratan sulphate (KS) PGs, [galactose-N-acetylglucosamine]n defines the 

carbohydrate backbone with the polyanionic character conferred by the 

presence of sulphate groups on the galactose and hexosamine residues. These 

GAG modifications result in the production of mature PGs whose biophysical 

properties would be expected to differ. These are based upon the extent of 

sulphate substitutions and hexuronic acid epimerization. 

 The PGs such as biglycan, decorin, and fibromodulin contain core 

proteins whose structure (a duplicated leucine-rich repeat) confers an 

 Biglycan is a member of the leucine-rich repeat (LRR) protein family. It is 

core protein that is substituted with two 

amphipathic nature to the intact PGs (Fisher et al., 1989; Krantz et al., 1991; 

Neame et al., 1989; Oldberg et al., 1989). Other PGs, such as aggrecan or 

versican, consist of peptide sequences that confer lectin-like properties and 

have epidermal growth factor (EGF)-like repeats. These EGF-like repeats have 

the potential to influence cellular metabolism (Baldwin et al., 1989; Doege et al., 

1987; Krusius et al., 1987). These large CSPGs also have very large core 

proteins (Mr > 200,000 daltons) which affect their behaviour in solution and 

isolation yields. The core protein sequence that determines the identity, and 

hence the name of a PG, such as for the large CSPGs aggrecan (Doege et al., 

1991) and versican (Zimmermann and Ruoslahti, 1989), the chondroitin 

sulphate proteoglycan IX collagen (Huber et al., 1988; Yada et al., 1990), the 

HSPGs syndecan (Saunders et al., 1989), perlecan (Noonan et al., 1991), 

betaglycan (Andres et al., 1989), glypican (David et al., 1990) fibroglycan 

(Marynen et al., 1989), the small CS/DSPGs biglycan (Fisher et al., 1989) and 

decorin (Ruoslahti, 1988). In the following section, biglycan and decorin, which 

were studied in the present work, are briefly discussed. 

 

2.2.2.1 Biglycan 

composed of a 38 kDa 

glycosaminoglycan chains on the N-terminal Ser-Gly sites. The core protein 

contains ten leucine rich repeats flanked by disulphide bond stabilized loops on 
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both sides and additional sites for glycosylation (N-linked glycosylation sites) 

within the leucine-rich repeats (Fisher et al., 1991, Neame et al., 1989). The 

quality of the glycosaminoglycans varies both in regard to the length and 

composition. The backbone of the glycosaminoglycan chain is composed of 

repeating disaccharide units of N-acetylgalactosamine and glucuronic acid. 

Glucuronic acid is often converted into iduronic acid through epimerization at 

carbon 5. As the chains are elongated they are modified by sulphation resulting 

in chondroitin sulphate and dermatan sulphate, respectively.  

 The degree of epimerization and sulphation varies between tissues 

(Cheng et al., 1994). An isoform of biglycan with a single glycosaminoglycan 

 Decorin is also a member of the leucine-rich repeat (LRR) protein family 

36.5 kDa core protein substituted with one 

substitution has been found (Jarvelainen et al., 1991). Biglycan interacts with 

collagen VI and the complement component C1q (Krumdieck et al., 1992, 

Hocking et al., 1996). Conflicting data exists whether biglycan interacts with 

fibrillar collagens (Wiberg et al., 2001; Bidanset et al., 1992). Thus biglycan 

binds to the immobilized collagen but appears not to precipitate with collagen 

fibrils (Svensson et al., 1995). It is also a Zn2+-binding protein (Yang et al., 

1999). A distinct tight interaction of the core protein of biglycan with collagen VI 

at the border between the N-terminal non-triple helical and triple helical domains 

has been shown (Wiberg et al., 2001, 2002, 2003). The interaction with the 

collagen molecule is not modulated by the GAG chains. Furthermore, biglycan 

also interacts with transforming growth factor-β (Hildebrand et al., 1994). 

Biglycan is dimeric in solution and the crystal structure of the glycoprotein core 

of biglycan has an appositon of the concave inner surface of the leucin-rich 

repeat domains (Scott et al., 2006). 

 

2.2.2.2 Decorin 

and is composed of a 

glycosaminoglycan chain on the N-terminal Ser-Gly site (Krusius and Ruoslahti, 

1986). The core protein contains ten leucine rich repeats flanked by disulphide 

bond stabilised loops on both sides and additional sites for glycosylation (N-

linked glycosylation sites) within the leucine-rich repeats (Krusius and Ruoslahti, 

1986). The glycosaminoglycan chain backbone is composed of repeating 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1860845&dopt=Abstract
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disaccharide units of N-acetylgalactosamine and glucuronic acid, the latter often 

being converted into iduronic acid through epimerization at carbon 5. As the 

chains are elongated they are modified by sulphation resulting in chondroitin 

sulphate and dermatan sulphate, respectively. The degree of epimerization and 

sulphation varies between tissues (Cheng et al., 1994). Decorin can also exist 

without glycosaminoglycan substitutions or with two glycosaminoglycan 

substitutions (Fleischmajer et al., 1991, Sampaio et al., 1988).  

 Decorin was shown to interact with collagens I and II via its core protein 

and influence collagen fibrillogenesis (Vogel et al., 1984). In addition, it was 

 Matrilins are a family of non-collagenous extracellular matrix proteins that 

 of the superfamily of proteins containing the von Willebrand 

shown to decorate the surface of collagen fibrils at the 'd' and 'e' bands (Pringle 

and Dodd, 1990). Therefore, it was given the name decorin (Krusius and 

Ruoslahti, 1986). Decorin interacts with collagen I fibrils and effects fibril 

diameter in vitro resulting in thinner fibrils (Vogel and Trotter, 1987). The 

interaction occurs mainly via the leucine-rich repeats 4-5 of the decorin core 

protein (Svensson et al., 1995). In addition to the fibrillar collagens I, II, III, and 

V (Bidanset et al., 1992, Hedbom and Heinegård, 1993, Whinna et al., 1993) 

decorin also interacts with collagens VI, XII, and XIV (Bidanset et al., 1992, Font 

et al., 1993, Font et al., 1996) as well as fibronectin, thrombospondin, the 

complement component C1q, epidermal growth factor receptor (EGFR) and 

transforming growth factor-β (TGF-β) (Hildebrand et al., 1994, Iozzo et al., 1999, 

Krumdieck et al., 1992, Schmidt et al., 1987, Winnemoller et al., 1992). 

Furthermore, decorin is also a Zn2+-binding protein (Yang et al., 1999). 

 

2.2.3  Matrilins 

form a subbranch

factor A (VWA) domains (for review see Wagener et al., 2005). VWA domains 

are present in a large number of extracellular and intracellular proteins and 

often participate in protein-protein interactions leading to the formation of 

multiprotein complexes (for review see Whittaker and Hynes, 2002). All four 

members of the matrilin family have been shown to be present in cartilage 

matrix, even though it is mainly matrilin-1 and -3 that are prominent in this 

tissue. Matrilins have emerged with the discoveries of matrilin-2 (Deak et al., 
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3196290&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6439184&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6439184&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1698203&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1698203&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3484330&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=7657652&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1544908&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8262971&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8440685&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1544908&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=1544908&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8227064&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8981330&dopt=Abstract
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http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9988678&dopt=Abstract
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1997), matrilin-3 (Belluoccio and Trueb, 1997; Wagener et al., 1997) and 

matrilin-4 (Wagener et al., 1998). The prototype member of this family is 

matrilin-1, which was initially identified as an abundant, proteoglycan-associated 

protein present in many forms of cartilage (Paulsson and Heinegard, 1979, 

1981, 1982). Four members of the matrilin family have a closely similar domain 

structure (Figure 2-9). Two VWA domains are connected by a varying number 

of epidermal growth factor (EGF)-like domains. These are followed by a C-

terminal α-helical coiled-coil domain which allows the oligomerisation of the 

single subunits in a bouquet-like fashion (Deak et al., 1999). Only matrilin-3 

lacks the second VWA domain and here the EGF-like domains are directly 

connected to the coiled-coil domain (Klatt et al., 2000). In addition, matrilin-2 

and -3 contain a stretch of amino acid residues at the N-terminus with a high 

frequency of positively charged side chains. Uniquely, matrilin-2 contains a 

module between the second VWA domain and the oligomerisation domain that 

has no homology to any other known protein sequence (Piecha et al., 1999).  
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Figure 2-9. Comparison of the domain structures of the members of the matrilin 

mily. Mouse matrilin-4 occurs in two, and human matrilin-4 in three, 
lternatively spliced forms. (modified from Deak et al., 1999) 

s 

 Matrilin-1 was first recognised as a protein tightly bound to aggrecan and 

(Paulsson and 

fa
a
 

2.2.3.1 Interaction and potential functions of matrilin

co-purified with aggrecan in a variety of separation methods 

Heinegard, 1979). The complexes appear to be formed by protein-protein 

interactions occurring along the extended chrondroitin-sulphate-attachment 

region of aggrecan. The bound matrilin-1 molecules become covalently cross-

linked to the aggrecan core protein, with at least some of the crosslinks 

insensitive to reduction of the interchain disulfide bonds (Hauser et al., 1996). 

An association between matrilin-1 and cartilage collagen fibrils was also found 
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(Winterbottom et al., 1992). Chondrocyte cell culture experiments showed 

matrilin-1 present in two types of pericellular filaments, where one type was 

collagen-dependent, as it required ascorbate for formation, and the other was 

not (Chen et al., 1995). Similar staining of filaments in the pericellular matrix of 

cultured cells has been observed for each of the other matrilins and, in case of 

matrilin-2 and -4, not only around chondrocytes, but also in cultures of other cell 

types that express these matrilins (Klatt et al., 2001; Piecha et al., 1999; Klatt et 

al., 2000).  

 Experiments have been performed to identify molecules that interact with 

matrilins to form such matrix assemblies. In studies of all four matrilins, a variety 

 protein (COMP) 

 Cartilage oligomeric matrix protein (COMP) is a non-collagenous 

eal cartilage (Hedbom et 

, 19

of collagens were found to bind to matrilins in solid phase binding assays (Mann 

et al., 2004; Piecha et al., 2002). However, some non-collagenous molecules, in 

particular cartilage oligomeric matrix protein (COMP) and decorin, bind to 

matrilins with higher affinity (Mann et al., 2004). COMP and decorin are known 

to interact with collagens. Therefore, matrilins may be attached to collagen 

fibrils as part of a "sandwich" where other components may be the direct and 

high-affinity collagen binders (Wagener et al., 2005). Evidence in this direction 

comes from studies where the composition and assembly of molecular 

complexes attached to collagen VI microfibrils were studied (Wiberg et al., 

2003). With the use of immuno-gold electron microscopy, it could be shown that 

decorin and biglycan attach to VWA domains in the N-terminal region of 

collagen VI and that matrilins were in turn bound to these small leucine-rich 

repeat proteoglycans (Figure 2-8). At the periphery of these assemblies, the 

matrilins attached the collagen VI microfibrils to aggrecan core proteins or to 

collagen II-containing fibrils. 

 

2.2.4  Cartilage oligomeric matrix

glycoprotein initially found in articular, nasal, and trach

al. 92), but has later been isolated from tendon and ligament (DiCesare et 

al., 1994; Smith et al., 1997; Müller et al., 1998), where also the corresponding 

mRNA was demonstrated (Smith et al., 1997). In the growth plate, COMP is 

primarily observed in the proliferative region, where it is prominent pericellularly 
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(Shen et al., 1995; Ekman et al., 1997), indicating a role in cell growth and 

matrix development. In more developed articular cartilage, COMP is primarily 

located interterritorialy, especially in the more superficial part of the tissue. This 

high expression of COMP in mature articular cartilage may be induced by the 

high mechanical load on the tissue (Smith et al., 2002).  

 COMP was first isolated from bovine articular cartilage under denaturing 

conditions with 4 M guanidine HCl (Hedbom et al., 1992). Native COMP has 

92) and human (Newton et al., 1994) 

been isolated from Swarm rat chondrosarcoma (Mörgelin et al., 1992), bovine 

cartilage (DiCesare et al., 1994), and human articular cartilage (DiCesare et al., 

1995) under mild nondenaturing conditions by extraction with 10 mM EDTA. 

This extraction indicates that the interaction of COMP with components of the 

ECM depends on divalent cations. Structurally, COMP is related to the 

thrombospondins. They have the same molecular domain arrangement of a 

series of four type-2 (epidermal growth factor) repeat domains followed by 

seven type-3 domains (calcium binding) (Oldberg et al., 1992). COMP is 

assembled into a pentameric bouquet-like structure (Mörgelin et al., 1992). The 

interactions involve the formation of a five-stranded coiled coil from an α-helical 

domain at the N-terminus (Efimov et al., 1994). These interactions are stabilized 

by two disulfide bonds. The α-helical oligomerization domain is followed by a 

flexible strand and, at the C-terminal, a globular domain (Mörgelin et al., 1992) 

that shows homology to the thrombospondins (Oldberg et al., 1992). It is 

possible that the globular C-termini form multimeric binding sites for the 

interaction with other ECM components.  

 Rat COMP does not contain any RGD sequence (Oldberg et al., 1992). 

In contrast the bovine (Oldberg et al., 19

COMP contain an RGD sequence although at different locations, indicating that 

COMP may mediate cell binding (DiCesare et al., 1994). The primarily 

interterritorial localization of the protein in adult human cartilage suggests that 

the promotion of cell binding is not a primary function of COMP. It is possible 

that the adhesive properties of COMP are cell surface receptor for COMP has 

been isolated. 
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 That COMP may have important functions in the ECM is illustrated by the 

fact that a mutation in the potentially Ca2+-binding domain has been shown to 

lead to impaired secretion and severe multiple epiphyseal dysplasia (MED) 

(Briggs et al., 1995). Moreover, mutations in the COMP gene are also 

responsible for the human genetic disorders pseudoachondroplasia (PSACH) 

(Briggs et al., 1995, 1998; Chen et al., 1994). Recombinant COMP carrying 

PSACH or MED mutations binds fewer divalent cations and exhibit a slightly 

altered affinity for collagen in the presence of zinc (Thur et al., 2001). PSACH 

and MED are autosomal dominant chondrodysplasias causing mild to severe 

short-limb dwarfism and early-onset osteoarthritis. Suprastructural analysis of 

chondrocytes from patients with PSACH and MED show accumulation of 

material in the rough endoplasmic reticulum (rER) (Maynard et al., 1972; 

McBurney et al., 1991), which have a unique lamellar appearance. The 

accumulated material in rER consists mainly of COMP and collagen IX (Delot et 

al., 1998; Maddox et al., 1997).  
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3.  AIM OF THE PRESENT STUDY 

 This present study has the aim to understand the relationships between 

the physical properties of the macromolecular constituents of the extracellular 

matrix and their supramolecular assemblies. Collagen VI-containing aggregates 

are prominent examples of the suprastructural plasticity of extracellular matrix 

aggregates. Therefore, it is interesting to investigate the collagen VI 

supramolecular assemblies in cartilage. The objectives of this study were the 

following: 

 

(i)  To prepare the discrete fragments of suprastructures from cartilage 

matrix from articular bovine cartilage and rib cages of newborn mice. 

 

(ii)  To determine macromolecular composition of collagen VI-containing 

suprastructures by transmission- and immuno-electron microscopy.  
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4. MATERIALS AND METHODS 

4.1  Chemicals 

 The commonly available reagents used in these experiments are given in 

Table 4-1. 

Table 4-1. List of used chemicals in the present work 

Chemicals 
 

Company: City, Country 

6-aminohexanoic acid  
bovine serum albumin, BSA 
benzamidine hydrochloride 
calcium chloride 
coomassie blue 
dry skim milk 
ethylenediamine tetra acetic acid, EDTA 
glycine 
guanidine hydrochloride, GuHCl 
hydrogen peroxide 
N-ethylmaleimide, NEM 
pepsin 
phenylmethanesulfonyl fluoride, PMSF 
polyacrylamide 
potassium carbonate 
sodium chloride 
sodiumdihydrogenphosphate dihydrate 
sodiumdodecylsulphate, SDS 
tris 
tween 20 
uranyl acetate 

Sigma: Steinheim, Germany 
Serva: Heidelberg, Germany 
Sigma: Steinheim, Germany 
Merck: Darmstadt, Germany 
Serva: Heidelberg, Germany 
Fluka: Buchs, Switzerland 
Merck: Darmstadt, Germany 
Roth: Karlsruhe, Germany 
Fluka: Buchs, Switzerland 
Merck: Darmstadt, Germany 
Sigma: Steinheim, Germany 
Serva: Heidelberg, Germany 
Merck: Darmstadt, Germany 
Roth: Karlsruhe, Germany 
Merck: Darmstadt, Germany 
Roth: Karlsruhe, Germany 
Merck: Darmstadt, Germany 
Serva: Heidelberg, Germany 
MP-Biomedical: Eschwege, Germany 
Sigma: Steinheim, Germany 
Merck: Darmstadt, Germany 
 

 
 
4.2  Animals  

 Collagen IX-deficient mice contain a targeted disruption of the Col9α1 

gene (Fassler et al., 1994; Hagg et al., 1997). Briefly, exon 8 of α1(IX) was 

disrupted by inserting a phosphoglycerate kinase-1 (Pgk-1) promoter-neomycin 

gene cassette. This replacement vector provided 10 kb of homology at the 5' 

end and 1.2 kb of homology at the 3' end. To select against random integration, 

a viral thymidine kinase cassette was included at the 3' end of the vector. The 

linearized targeting vector was electroporated into the D3 embryonic stem (ES) 
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cell line. After double selection in G418 and gancyclovir, the enrichment of 

targeted clones was about 15-fold. 

 Biglycan-deficient mice were generated by using homologous 

recombination in ES cells (Xu et al., 1998). Two independent ES cell clones 

were used to produce chimiras capable of germlin transmission of the targeted 

allele. 

Wild-type, biglycan- and Col9α1-deficient mice were maintained and 

bred under specific-pathogen-free conditions in single ventilated cages. Wild-

type and transgenic mice with a similar genetic background were used for in 

vivo investigation.  

4.3 Tissues 

 In this study bovine articular cartilage and rib cages of newborn mice 

were used for in vivo investigation. Fresh bovine articular cartilage was obtained 

from a local slaughterhouse (Hamm). Adult bovine articular cartilages were 

dissected and were either used directly or stored at -80 oC. The rib cages of 

newborn mice (~ 2 day old) were freed from surrounding non-cartilaginous 

tissue and were stored at -20 oC. Chicken embryo corneas were used for 

collagen VI microfibril purification. They were also dissected and stored at          

-20 oC after dissection. 

4.4 Extraction of fibril fragments 

All extraction buffer solutions contained proteinase inhibitors that listed in 

table 4-2.  

Table 4-2. List of used proteinase inhibitors in fibril fragments extraction 

(according to Riordan and Vallee, 1972; Deutscher, 1990; Gegenheimer, 1990; 

Jazwinski, 1990). 
Proteinase inhibitor  inhibited protienases 

6-aminohexanoic acid  Ser- 

benzamidine HCl  Ser- 

EDTA    Metallo- 
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Table 4-2. (continue) 

Proteinase inhibitor  inhibited protienases 

NEM    Cystein- (Thiol-) 

PMSF    Ser- 

 

4.4.1  Extraction of fibril fragments from bovine articular cartilage 

 An overview of the extraction procedure and partial purification of fibril 

fragments from cartilage tissue is shown in Figure 4-1. Cartilage slices were 

homogenized with a Polytron (Kinematiga, Littau/Luzern, Switzerland) in 15 

volumes of extraction buffer (PBS, pH 7.4) containing a mixture of proteinase 

inhibitors. The suspension was centrifuged at 27,000 ×g for 20 min (JA 25.15, 

Beckman) and the clear supernatant was collected. This procedure was 

repeated twice with fresh extraction buffer, and all supernatants were combined. 

The supernatants were diluted in PBS containing the mixture of proteinase 

inhibitors. Then the suspension was ultracentrifuged at 104,350 ×g, (45 Ti, 

Beckman), 4 oC for 2 h. The pellets were resuspended in PBS. These extracts 

were used in subsequent experiments. In some experiments, the pellets were 

treated with Tris buffer containing 1, 3, and 5 M guanidine hydrochloride for 3 h 

at 4 oC under mild stirring. After the ultracentrifugation (104,350 ×g) the pellets 

were washed with distilled water for 2 h at 4 oC. Then the suspension was 

centrifuged with the ultracentrifugation (104,350 ×g). Finally, the pellets were 

resuspended in PBS.  

 
Extraction buffer solution  
NaCl    0.15 M 
NaH2PO4. 2H2O, pH 7.4 2 mM 
6-aminohexanoic acid  0.1 M 
benzamidine HCl  1 mM 
EDTA    20 mM  
NEM    5 mM 
PMSF    0.1 mM 
 
Tris buffer solution 
NaCl    0.1 M 
Tris HCl, pH 7.4  50 mM 
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Homogenization

Tissue Homogenate 

Low speed 
centrifugation 

Supernatant Residue 

Tissue 

Unreleased material Fibril fragments, 
other supramolecular aggregates, 

soluble components  

High speed centrifugation 
 

 

 

 
Supernatant Pellet  

Soluble components 
 Fibril fragments, 

other supramolecular 
aggregates   

 
Figure 4-1: Procedure of the extraction and partial purification of fibril fragments 

from cartilage tissue. 

 
 
4.4.2  Fibril fragment extraction from rib cages of newborn mice 

 Rib cages of newborn mice were homogenized with a Polytron 

(Kinematiga, Littau/Luzern, Switzerland) in 500 μl of the extraction buffer 

containing inhibitors as same as used for bovine cartilage. The suspension was 

centrifuged at 20,800 ×g (5417R, Eppendorf) for 3 min. The clear supernatant 

was collected. This procedure was repeated twice with fresh extraction buffer. 

All supernatant were combined and used for the immuno-gold electron 

microscopy. 
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4.5  Antibodies for immuno gold electron microscopy 

 Primary antibodies were polyclonal affinity-purified goat-antibodies to 

human and bovine collagen VI (AB782, Chemicon); monoclonal mouse 

antibodies to chicken collagen II with cross-reactivity to human homologue 

(MAB8887, Chemicon); polyclonal antibodies against bovine COMP ( DiCesare 

et al., 1994), (friendly gift from Dr. Frank Zaucke, University of Cologne); 

polyclonal rabbit antibodies against bovine matrilin-1 (Hauser and Paulsson, 

1994), (friendly gift from Dr. Raimund Wagener, University of Cologne); 

polyclonal affinity-purified antibodies to the NC-4 domain of murine collagen IX 

(Budde et al., 2005); (friendly gift from Dr. Bastian Budde, University of 

Muenster), rabbit antiserum against human biglycan (Hausser et al., 1989; 

1992), (friendly gift from Dr. Daniela G. Seidler, Philadelphia); rabbit anti-serum 

against human decorin (Kresse et al., 2001), (friendly gift from Dr. Daniela G. 

Seidler, Philadelphia). 

Secondary antibodies were goat anti-rabbit immunoglobulins conjugated 

to 12 nm gold particles (Jackson Immuno Research); goat anti-mouse 

immunoglobulins conjugated to 18 nm gold particles (Jackson Immuno 

Research). 

4.6  Gold conjugate preparation 

 Colloidal gold 10 nm were prepared by reduction of HAuCl4 by potassium 

carbonate (according to data sheet, Aurion) and conjugated after titration to 

collagen VI affinity purified polyclonal antibodies (AB782, Chemicon). The 

required gold conjugate was prepared using the undiluted antibody solution. 

After addition of the minimal amount of antibody solution to the gold sol 

(Aurion), the mixture was allowed to stand for 2 min. 2% bovine serum albumin 

was added to block the remaining free surface areas on the gold particles and 

to prevent aggregation of the gold conjugate. The mixture was centrifugated at 

20,800 ×g (5417R, Eppendorf), 4 oC for 1 h. The fluffy parts were collected and 

resuspended in PBS with 1% BSA, pH 7.6. 

Before using the gold conjugates for labelling, electron microscopy was 

used to evaluate the particles size, the size distribution and the presence of 
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clusters on a quantitative basis. Gold conjugates were attached to poly-L-lysine 

coated formvar grids. The particle density per unit surface area should be kept 

low in order to be able to evaluate the presence of clusters. After the 

quantitative analysis of the complex, 83.57% of singlet gold particles and 6.70% 

of triple gold particles were detected. From a rule, gold conjugates with at least 

75% singlets and at the most 5% triplets of gold particles are considered to be 

acceptable (according to the data sheet of gold sol, Aurion). Therefore, it might 

be acceptable to use these gold conjugates for immuno electron microscopy. 

4.7  Immuno gold electron microscopy 

 All steps were carried out at room temperature. Aliquots of fibril fragment 

extracts were spotted onto sheets of parafilm. Nickel grids (200-400 mesh) 

covered with formvar and coated with carbon were floated on the drops for      

10 min to allow adsorption of fibril fragments. The grids were dried on filter 

paper (did after all steps) then subsequently washed with PBS, and treated for 

30 min with 2% (w/v) dried skim milk in PBS (2% blocking solution), centrifuged 

twice at 20,800 ×g (5417R, Eppendorf), for 10 min prior to application. The 

adsorbed material was allowed to react for 2 h with antibodies against some 

extracellular matrix components (see 4.5) diluted in 1:50-1:100 0.2% blocking 

solution. After washing five times with PBS, the grids were put on drops of 0.2% 

blocking solution containing colloidal gold particles (12 or 18 nm) coated with 

goat antibodies to rabbit or chicken immunoglobulins (see 4.5, concentration 

1:30). Collagen VI antibody gold conjugates (see 4.6, concentration 1:2 or 

undiluted) were adsorbed on the grid after the blocking step then following by 

the uranyl acetate staining. For double-labeling experiments, a mixture of gold 

particles of two different sizes was used. Finally, the grids were washed with 

distilled water and negatively stained with 2% uranyl acetate for 7 min. Control 

experiments were done with the first antibody omitted. Electron micrographs 

were taken at 60 kV with a transmission electron microscope (TEM) (Philips 

EM410). The re-usable film plates were scanned in a film scanner (Micron 

imaging plate scanner, Ditabis, Pforzheim, 6000 × 5000 pixel).  
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PBS, pH 7.4(sterile filtrated) 

NaH2PO4. 2H2O   2 mM 
NaCl     0.15 M  

4.8  Protein Purifications 

4.8.1 Collagens II, IX, and XI 

 The collagens II, IX, and XI were purified in native and fibrillogenesis-

competent form from cultures of chick embryo sternal chondrocytes in agarose 

gels (Blaschke et al., 2000).  

4.8.1.1 Cell culture 

Sternal chondrocytes from 17-day old chicken embryos were digested 

overnight with bacterial collagenase. Matrix free chondrocytes were collected by 

centrifugation (600 ×g, 7 min, S4180, Beckman) and embedded at a density of 

2-3 × 106 cells/ml into gels containing 0.5% low melting agarose and Dulbecco’s 

modified Eagle’s medium. The medium was supplemented with 10% fetal calf 

serum, 1 mM pyruvate, 1 mM cysteine, 50 µg/ml sodium acorbate and was 

changed every 2-3 days. 60 µg/ml β-aminopropionitrile was added to the 

medium to prevent lysyl oxidase-derived cross-linking. After 14 days, medium 

was removed and the cultures were either used directly or stored at -20 oC. 

4.8.1.2 Collagen purification 

An overview of the procedures used for collagen purification is shown in 

Figure 4-2. After thawing, noncollagenous material was extracted from the 

agarose cultures at 18 °C with PBS containing proteinase inhibitors.  Agarose 

pellets containing the collagens were recovered by centrifugation (18,542 ×g, 

30 min, JLA 10.500, Beckman), and the supernatants were discarded. All of the 

following steps were performed at 4 °C. Collagens were solubilized 

subsequently with buffer containing 100 mM Tris-HCl, pH 7.4, 1 M NaCl. 

Collagens II, IX, and XI were precipitated by adding solid NaCl to give a final 

concentration of 4.5 M and were recovered by centrifugation.  
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For chromatographic separation, the crude collagen pellets were 

dissolved in 100 mM Tris-HCl, pH 7.4, containing 2 M urea and 100 mM NaCl, 

and were passed over a DEAE-cellulose column (3.5 × 11 cm, 100 ml, DE52; 

Whatman Ltd.) equilibrated with the same buffer. Most collagen IX was bound 

to the column, while collagens II and XI and residual collagen IX were 

recovered from the breakthrough fractions (fraction A in Figure 4-2). After 

dialysis against 10 mM Tris HCl, pH 7.4, containing 2 M urea and 50 mM NaCl, 

fraction A proteins were applied to a carboxymethyl-cellulose column (3.5 × 11 

cm, 100 ml, CM52; Whatman, Ltd.). Collagen II was recovered from the 

breakthrough fractions (fraction C), and collagen XI was eluted by a stepwise 

increase of NaCl to 0.5 M (fraction D). 

Collagen XI was further purified by dialyzing fraction D against 50 mM 

Tris-HCl, pH 7.4, containing 2 M urea and 5 mM NaCl, followed by 

chromatography on DEAE-cellulose (1 × 7 cm). Collagen XI bound to the 

columns under these conditions and was eluted in pure form by buffer 

containing 0.2 M NaCl (fraction F). Final purification of collagen II in fraction C 

was achieved by DEAE-cellulose chromatography in 50 mM Tris-HCl, pH 7.4, 

containing 2 M urea and 5 mM NaCl. The pure protein was recovered from the 

breakthrough fractions (fraction E). Purified proteins in fractions E and F were 

dialyzed extensively against 100 mM Tris-HCl, pH 7.4, containing 1 M NaCl, 

and then precipitated by the addition of solid NaCl to a final concentration of  

4.5 M. Following centrifugation, pellets were redissolved in storage buffer at 

appropriate concentrations and clarified by centrifugation.  

 

PBS, pH 7.4 

NaH2PO4. 2H2O  20 mM 
NaCl    0.15 M  
6-aminohexanoic acid  0.1 M 
benzamidine HCl  10 mM 
EDTA    50 mM 
NEM    10 mM 
PMSF    0.1 mM 
 
 
Storage buffer, pH 7.4 

Tris HCl   100 mM 
NaCl    0.4 M 
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Figure 4-2. Flowchart representation of the protocol for purification of cartilage 

collagens from chondrocyte cultures in agarose. The mixture of total collagens 

corresponds to the proteins of 1 M NaCl extracts of the cultures after precipitation 

by 4.5 M NaCl. (according to Blaschke et al., 2000).  

 
 
4.8.2 Collagen VI microfibrils 

Native collagen VI microfibrils were purified from chicken corneas. Corneas 

were cut into pieces and homogenized with the Polytron in 2 volumes of Tris 

buffer, pH 7.4. The homogenate was digested with 2% (w/w) of bacterial 
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collagenase type 1 (Worthington biochemical corporation) overnight at room 

temperature. The suspension was centrifuged for 20 min at 48,000 ×g (JA-25.15, 

Beckman). After centrifugation for clarification 500 µl aliquots of the supernatant 

were filtrated and then fractionated on a Superose 6 (Amersham Biosciences) 

molecular sieve column on HPLC (P-900, Amersham Biosciences). The column 

was run at 0.2 ml/min, monitored at 280 nm with a UV spectrophotometer (UV-

900, Amersham Biosciences), and fractions of 1 ml were collected. Purity and 

suprastructure of the extracted collagen VI microfibrils was proved by SDS-PAGE, 

immunoblotting and immuno-gold electron microscopy.  

Extraction buffer 

NaCl    400 mM 
Tris HCl, pH 7.4  50 mM 
6-aminohexanoic acid  0.1 M 
benzamidine HCl  10 mM 
EDTA    20 mM  
NEM    10 mM 
PMSF    2 mM 

4.9 Recombinant of NC4-domain of collagen IX 

The NC4-domain was a friendly gift from Dr. Bastian Budde, University of 

Muenster (Budde et al., 2005). RNA was prepared by lithium chloride-urea 

extraction of whole rib cages of neonatal mice, proteinase K digestion, and 

subsequent isopropanol precipitation and reverse transcribed into cDNA using 

Stratascript reverse transcriptase (Stratagene, Germany). A 762-bp fragment 

encoding the entire NC4 domain of the α1 chain of collagen IX was generated by 

PCR. After PCR amplification, purification, and digestion with the corresponding 

restriction enzymes (New England Biolabs), the construct was ligated into the 

pCEP-Pu vector (Smyth et al., 2000) containing a BM40 signal peptide and a C-

terminal six-His sequence, resulting in a fusion protein of α1(IX) NC4 and a His 

epitope. The vector construct was then transiently transfected into 293-EBNA cells 

(Invitrogen, Germany) using the lipofection reagent FuGENE 6 (Roche, Germany) 

according to the protocol of the manufacturer. Selection for successfully 

transfected cells was performed by culturing in selection medium: Dulbecco's 

modified Eagle medium (DMEM)/F12 (1:1) with final concentrations of 2 mM 
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glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin, 10% (v/v) fetal calf serum, 

175 µg/ml Geneticin (Gibco, Germany), and 0.5 µg/ml puromycin (Sigma, 

Germany).  

Positive clones were kept for three to four passages in selection medium 

followed by culturing in serum-free DMEM/F12 (1:1) medium. The cells were viable 

and produced large amounts (ca. 0.5 mg/liter of medium) of NC4 protein for 18 to 

21 days. Media conditioned for 2 days were pooled, dialyzed against 20 mM 

sodium phosphate, pH 6.0, and applied to cationic-exchange chromatography 

(carboxymethyl cellulose CM-52; Whatman, England). The protein was eluted by a 

sodium chloride gradient (0.05 to 0.30 M NaCl, with a main protein peak at 0.14 

M). The NC4-containing fractions were pooled and further purified by a TALON 

cobalt affinity resin which allows high-affinity binding of the six-His tag introduced 

at the C-terminus (Clontech, Germany). 

4.10  SDS-PAGE  

 Samples were pooled and prepared for electrophoresis by three volume of 

cold ethanol precipitation. The precipitates were resuspended in SDS sample 

buffer containing 5% β-mercaptoethanol and boiled at 95 oC for 5 min. The 

samples were run on 4.5–15% polyacrylamide gradient gels (Laemmli, 1970). 

Alternatively, some samples were boiled in non-reducing SDS sample buffer. The 

electrophoresis was performed at room temperature with a current between 15-20 

mA. A molecular weight standard, Prestained Broad Range Standard (Bio-Rad, 

Munich) was applied. The gel was stained with coomassie blue (see 4.11) or 

transferred to nitrocellulose membrane (see 4.12). 

 

SDS-sample buffer (4×) 
Tris HCl, pH 6.8  60 mM 
SDS    2% (w/v) 
Glycerol   10% (v/v) 
Bromphenolblue  0.001% (w/v) 
Optional : 
β-Mercaptoethanol  5% (v/v) 
 

Running buffer 
Tris HCl, pH 8.8  25 mM 
SDS    0.1% (w/v) 
Glycine   0.2 M 
 
 
 
 

Running gel buffer (4×)   Stacking  gel buffer (4×) 
Tris HCl, pH 8.8 1.5 M   Tris HCl, pH 6.8 0.5 M 
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SDS   0.4% (w/v)  SDS   0.4% (w/v) 
 
Running gel solution  
Running gel buffer     1× 
Acrylamide/Bis-acrylamide (32:1)  4.5 and 15% (w/v) 
TEMED     0.1% 
Ammonium persulphate   100 µg/ml 
Stacking gel solution  
Stacking gel buffer     1× 
Acrylamide/Bis-acrylamide (32:1)  4.5% (w/v) 
TEMED     0.33% 
Ammonium persulphate   75 µg/ml 

 

4.11 Coomassie staining 

The gel from electrophoresis (4.10) was put in destaining solution I for      

20 min, in oder to fix proteins contained in the gel. Afterwards, the gel was stained 

with coomassie solution for 1 h 30 min. Then the gel was destained with 

destaining solution I for 1 h following by destaining solution II for 1 h. The 

destaining solution II was replaced with fresh destain solution II and the gel was 

soaked overnight. Finally, the gel was washed twice with gel drying solution for   

30 min and was dried between two gel drying films. 

 

Destaining solution I     Destaining solution II 
Methanol   50% (v/v)  Methanol  10% (v/v) 
Acetic acid   10% (v/v)  Acetic acid  10% (v/v) 
 

Coomassie solution     Gel drying solution 
Coomassie blue R-250 0.1% (w/v)  Ethanol  25% (v/v) 
Acetic acid   10% (v/v)  Glycerol  2% (v/v) 
Isopropanol   25% (v/v) 

 

4.12 Immunoblotting  

The separated proteins from electrophoresis (see 4.10) were transferred 

onto a nitrocellulose membrane (Whatman, Florham Park, NJ, USA). The 

membrane was placed face-to-face with the gel covered with two whatman-papers 

at both sides. Transfering of the proteins from gels onto nitrocellulose membrane 

was performed by using wet electrophoretic elution. For this purpose, the gel-
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membrane sandwich was placed between carbon electrodes in a buffer tank with 

transfer buffer. Electrophoretic elution was run overnight at 4 oC with current at   

10 kV and voltage at 30 mA. Efficiency of transfer was checked by a staining of 

the blot membrane with Ponceau S (Serva, Heidelberg). Afterwards, the dye was 

remove by repeated washing and free binding sites on nitrocellulose membrane 

were blocked with TBS containing 5% (w/v) of dried skim milk for 1 h. Proteins on 

the membrane were then allowed to react for 2 h with a monoclonal antibody 

against chicken VI collagen (39, Hybridoma Bank), diluted in TBST containing 

2.5% (w/v) of dried skim milk. After repeated washing with TBST, membrane was 

incubated for 2 h with a horseradish peroxidase-coupled goat anti-mouse 

immunoglobulins antibody (DAKO). After repeated washing with TBST, bound 

antibodies were visualized with a substrate solution consisting of TBS 

supplemented with 0.18 mg/ml 4-chloro-1-naphthol and 0.04% (v/v) H2O2. 

Chemiluminescent detection was performed by putting a roentgen film (Hyperfilm, 

Amersham Bioscience, Freiburg) on the membrane. The separated protein image 

was developed from the roentgen film by using a film developing machine (Curix 

60, Agfa). 

 

Transfering buffer 
Tris HCl   50 mM 
Glycine    380 mM 
SDS,     0.1% (w/v)  
Methanol   20% (v/v) 
 

4.13  In vitro fibrillogenesis 

 Collagens II, IX, and XI were purified in native and fibrillogenesis-competent 

form from cultures of chick embryo sternal chondrocytes in agarose gels (see 

4.8.1). Mixtures of collagens II, IX, and XI and mixtures of collagens II and XI were 

prepared in storage buffer at molar proportions of 8:1:1 and 8:1, respectively (see 

Table 4-3). In the latter mixtures, storage buffer were added instead of collagen IX. 

Defined mixtures thereof were degassed under vacuum. 100-µl samples were 

transferred to microcuvettes (Multicell, light path, 1 cm, Beckman, Palo Alto, CA). 

In vitro fibrillogenesis was initiated by adding of 100 µl of distilled water. The 

cuvettes were sealed and placed immediately into a spectrophotometer (Beckman 
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UV 640, equipped with a Multicell holder, Micro Auto 12), connected to a water 

bath at 37 oC. After 3 h, in some experiments (Table 4-3, A and C), collagen VI 

microfibrils were added with final concentration 5 µg/ml. Fibrillogenesis was 

continued for one more hour. The kinetics of fibrillogenesis was monitored by 

turbidity development at 313 nm. Finally, the reconstitution products were 

examined by immunogold electron microscopy (see 4.7 and Hansen and 

Bruckner, 2003). 

 

Table 4-3. List of collagen volume used in different experiments. The same 

concentrations of all collagens were used (250-300 µg/ml). 

 
     

 II IX XI VI 

A 80 10 10 10 

B 80 10 10 - * 

C 80 - * 10 10 

D 80 - * 10 - * 

Vo ume of co lagens/ µl l l
Experimen

t

 - *: Storage buffer were used instead of collagens. 

 
Storage buffer 
NaCl    0.4 M 
Tris HCl, pH 7.4  0.1 M 
 

4.14 Binding assay (ELISA) 

 Polystyrene microtiter plates (F96; Nunc, Wiesbaden, Germany) were 

coated overnight at 4 oC with 100 µl/well of recombinant NC4-domain of collagen 

IX, and the purified collagens II, IX, and XI in a concentration of 10 µg/ml in 20 mM 

Tris-HCl, containing 0.15 M NaCl, pH 7.4 (TBS). Plates were washed three times 

with TBS. After blocking with 2% BSA in 200 µl TBS for an hour, the plates were 

washed four times with TBS containing 0.05% Tween 20, TBST. Then 1 to 100 

µg/ml bovine collagen VI (Rockland Inc.) in 100 µl TBST was added and incubated 

at room temperature for an hour. After washing four times with TBST, collagen VI 

polyclonal antibody (AB7821, Chemicon) was added at 1:20,000 in 100 µl TBST 

and incubated at room temperature for an hour. Then the plates were washed four 
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times with TBST and incubated with a horseradish peroxidase-coupled anti-rabbit 

immunoglobulin antibody at 1:10,000 in 100 µl TBST at room temperature for an 

hour. After washing four times with TBST, binding was detected using 200 µl 

0.04% (w/v) o-phenylenediamine, 24.3 mM citric acid, 51.4 mM Na2HPO4, and 

0.012% (v/v) H2O2. The reaction was stopped by adding 100 µl of 2.5 M H2SO4. 

Absorbance at 490 nm was measured using a microplate reader (Dynatech 

Laboratories, Sussex, United Kingdom; software, Mikro WIN V2.38, Mikrotek, 

Overath). The similar procedure was used for pepsin treated commercial collagen 

VI.  
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5. RESULTS 

5.1.  Collagen VI antibody-gold conjugates bind to the globular 
domains of collagen VI microfibrils 

Suprastructural fragments were isolated from bovine articular cartilage (see 

4.4.1). These mechanically generated fragments retain some of their authentic 

tissue properties. Fragments of D-periodically banded fibrils are clearly 

distinguishable from more amorphous-appearing extrafibrillar aggregates after 

negative staining with uranyl acetate. Collagen VI was identified by binding of a 

polyclonal antibody against collagen VI (AB782, Chemicon) directly conjugated to 

gold particles (see 4.6). These collagen VI antibody gold conjugates bound to 

microfibrils (Figure 5-1). The distances between the lateral groups of immunogold 

particles were measured. Such measurements revealed distances of 108 ± 11 nm 

(n = 284) corresponding to the distance of the globular domains of collagen VI 

microfibrils (Engval et al., 1986; Bruns et al., 1986; Baldock et al., 2003). 

Therefore, the antibody against collagen VI is specific to the globular domains of 

collagen VI microfibrils.  
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Figure 5-1. Suprastructural localization of collagen VI on fibril fragments from 
bovine articular cartilage by direct immunogold electron microscopy. The globular 
domains of cartilage microfibrils are heavily labeled with collagen VI antibody gold 
conjugates. Bar, 100 nm. 
 
 
 
5.2  Localization of matrix proteins on the globular domains of 
collagen VI microfibrils in bovine articular cartilage 

The distribution of matrix proteins in fibril fragments from bovine articular 

cartilage was investigated. Collagen VI microfibrils were identified by collagen VI 

antibody gold conjugates labelling. By using electron microscope, collagen VI 
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microfibrils were found in association with D-periodically banded fibrils and 

network-like structures (small gold particles in Figure 5-2, 5-3). After a 

quantification of cartilage banded fibrils, 34% (n =153) of the banded fibrils were 

found in association with collagen VI microfibrils. Interestingly, most of collagen VI 

microfibrils associating with the banded fibrils were found in the association by 

twisting around the banded fibrils (Figure 5-4). 

On the other hand, biglycan, decorin, matrilin-1, and COMP were identified 

by indirect immuno-gold labelling. They were also found in association with 

banded fibrils and network-like structures (large gold particles, Figure 5-2, 5-3). 

The labelling of biglycan revealed that biglycan co-localized with the globular 

domains of collagen VI microfibrils in a regular binding pattern [Figure 5-2 (A,B)]. 

Decorin, matrilin-1, and COMP also co-localized with some of the globular 

domains of collagen VI microfibrils [Figure 5-2 (C,D) and Figure 5-3 (A,B); (C,D), 

respectively]. However, the gold particles representing COMP were found at some 

distance from the globular domains of collagen VI microfibrils whereas the gold 

particles representing biglycan, decorin, and matrilin-1 were found in close ficinity 

of the globular domains. 
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BA 

DC 

 
Figure 5-2. Microfibrils labelled with collagen VI antibody gold conjugates (small 
gold particles) were positive in indirect immuno-labelling for biglycan (A, B) and 
decorin (C, D). Bar, 100 nm. 
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D
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Figure 5-3. Microfibrils labelled with collagen VI antibody gold conjugates (small 
gold particles) were positive in indirect immuno-labelling for matrilin-1 (A, B) and 
COMP (C, D). Bar, 100 nm. 
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Figure 5-4. Suprastructural localization of collagen VI and biglycan on fibril 
fragments from bovine articular cartilage by immunogold electron microscopy. 
Microfibrils are heavily labelled with antibodies against collagen VI (small gold 
particles) in colocallization with biglycan (large gold particles). Collagen VI 
microfibrils are firmly associated by twisting around thin banded fibrils (b). Bar, 100 
nm. 
 
 
 
5.3  Collagen VI microfibrils interact with thin banded fibrils 

 From section 5.2, the population of collagen VI microfibrils twisting around 

the banded fibrils was taken into consideration. Interestingly, collagen VI 

microfibrils were found preferentially twisted around the thin banded fibrils but not 

the large banded fibrils (Figure 5-5). The cartilage thin banded fibrils contain 

collagens II, XI and, optionally, collagen IX (Hagg et al., 1998; Mendler et al., 

1989). In order to assure that the banded fibrils are cartilage banded fibrils, 

collagens II and IX were identified by indirect immunogold labelling in combination 

with the collagen VI labelled with collagen VI antibody gold conjugates. Collagen 

XI-labelling was not performed because collagen XI located in the core of the 

cartilage banded fibrils was immunochemically masked (Poole et al., 1987). 

Electron microscopy showed that thin banded fibrils interacting with collagen VI 

microfibrils displayed a labelling with antibodies against collagens II and IX (Figure 

5-6A and 5-6B). Therefore, collagen VI microfibrils interact with cartilage banded 

fibrils containing collagens II, IX, and XI. 
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 The interaction between collagen VI microfibrils and cartilage banded fibrils 

could result from physical entanglement without molecular interaction. The 

extracted fibril fragments were treated with 1, 3, and 5 M guanidine hydrochloride 

(GuHCl) and the stripped banded fibrils were re-investigated by immuno-gold 

electron microscopy for the presence of collagen VI microfibrils and biglycan (see 

4.4.1 and 4.7). Electron microscopy revealed that the banded fibrils were 

somewhat disrupted after the treatment with GuHCl. Interestingly, after the 

treatment with GuHCl biglycan still binds to the globular domains of collagen VI 

microfibrils associated with banded fibrils (Figure 5-7). The gold particles labelling 

biglycan on microfibrils twisting around banded collagen fibrils were counted. 

Some of gold particles were bound directly on the banded fibrils while others 

bound on the globular domains of collagen VI microfibrils interacting with the 

banded fibrils. The fractions of the gold particles binding to the globular domains of 

collagen VI microfibrils are increased after the treatment with GuHCl (Figure 5-8). 

This implies that biglycan which did not bind to the globular domain of collagen VI 

microfibrils was removed from the banded fibrils. 
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Figure 5-5. Immunoelectron micrographs of ultrastructural localization of collagen 
VI (small gold particles) and biglycan are on thin fibrils. Bound antibodies were 
visualized by direct immunogold lablling to collagen VI but by indirect immuno 
staining with gold-conjugated antibodies for biglycan. Bar, 100 nm. 
 
 
 

BA  
 
 

Figure 5-6. Immunoelectron micrographs of ultrastructural localization of collagen 
VI (small gold particles) interacts with the banded fibrils containing collagens II and 
IX (A and B, respectively). Bound antibodies were visualized by direct immunogold 
lablling to collagen VI but by indirect immuno staining with gold-conjugated 
antibodies for collagens II and IX. Bar, 100 nm. 
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igure 5-7. Electron micrographs of ultrastructural localization of collagen VI 

A B

 
 C D
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
(small gold particles) and biglycan (large gold particles) on the fibrils after the 
treatment with 0, 1, 3, and 5 M guanidine hydrochloride are shown in A, B, C, and 
D, respectively. Bar, 100 nm for A, 200 nm for B, C, and D. 
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igure 5-8. The percentage of gold particles representing biglycan that bind to 
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F
collagen VI twisting around banded fibrils, compared with the total gold particles 
representing biglycan on the same banded fibrils before and after treatment with 
guanidine hydrochloride (GuHCl). Data are from two repeated experiments. 
 
 
 
5
banded collagen fibrils is disrupted in collagen IX-deficient mice 

that biglycan interacted to the globular domains of collagen VI microfibrils in a 

regular binding pattern (see 5.2). Furthermore, collagen VI microfibrils were 

preferentially twisted around the thin baded fibrils containing collagen II, IX, and XI 

(see 5.3). But the large banded fibrils lacking of collagen IX molecule did not 

interact the microfibrils. Therefore, biglycan and collagen IX presumably are 

important for the interaction of collagen VI microfibrils with the banded collagen 

fibrils. 
In order to substantiate the notion t

n VI microfibrils to the cartilage banded fibrils, the composition of fibril 

fragments from costal cartilage of wild-type, biglycan-, and collagen IX-deficient 

newborn mice were investigated (see 4.4.2).  

Fibril fragments from wild-type cartila

n VI antibody gold conjugates. Collagen VI microfibrils bind regularly along 

the thin banded fibrils of wild-type and biglycan-knockout mice (Figure 5-9A and B, 
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respectively). The distances between the lateral groups of gold particles 

representing the globular domains of collagen VI microfibrils were measured. The 

measurement revealed that the lengths between the lateral globular domains of 

the microfibrils were the same in wild-type (89 ± 12 nm) and biglycan-knockout 

mice (91 ± 11nm). The collagen VI antibody gold conjugates were also specific to 

the fibril fragments from collagen IX-deficient mice. However, the gold particles 

were not regularly associated with banded fibrils but were a bit further away from 

the surface of the banded fibrils (55%; n = 232, Figure 5-9C). We concluded that 

the interaction of collagen VI microfibrils with the banded fibrils depended on 

collagen IX. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



                                                                                                                               Results  66 

 
A  

 
 
 
 
 
 
 
 
 B  
 
 
 
 
 
 
 
 
 C  
 
 
 
 
 
 
 
 
Figure

.5  Isolation of collagen VI microfibrils from chicken cornea 

 Collagen VI microfibrils from chicken cornea were isolated after bacterial 

 5-9. Ultrastructural localization of collagen VI on fibril fragments from 
newborn mice ribcages by direct immunogold electron microscopy. Collagen VI 
microfibrils has a regular binding pattern in wild type (A) as well as in biglycan 
knockout mice (B). This binding pattern was disrupted in collagen IX-knockout 
mice (C). Bar, 100 nm.  
 
 
 
5

collagenase digestion. This enzyme digests collagens in banded fibrils while 

leaving intact collagen VI-containing microfibrils. The extracts were 

chromatographed on Superose 6 column (see 4.8.2) and the fractions pooled as 

indicated (Figure 5-10). The profiles demonstrated a clear separation of the high 

molecular weight aggregates (arrow) from small molecules. Purity of the isolated 
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collagen VI microfibrils were pure as judged by SDS-Polyacrylamide gradient gels 

of 4.5-15% stained with coomassie blue. All fractions without the reducing agent 

(β-mercaptoethanol) on coomassie blue stained gels are shown in Figure 5-11. 

The high molecular weight aggregates in fractions 6 to 8 failed to penetrate the 

gels (Figure 5-11). The small molecules were eluted from the column in fractions 

14 to 20 (Figure 5-11). Figure 5-12 shows the coomassie blue stained gels of all 

fractions after treatment with reducing agent. The high molecular weight 

aggregates were reduced to different peptides (fractions 6 and 7 in Figure 5-11). 

There are five prominent bands between 75 to 140 kDa and a diffuse band at 25 

kDa.  

Immuno blotting experiments using monoclonal antibodies specific for 

collagen VI confirmed the presence of collagen VI in chicken cornea. Unreduced 

as well as reduced samples showed a positive immuno reaction (Figure 5-12 and 

5-13, respectively) in the fraction of the high molecular weight aggregates. The 

purified collagen VI microfibrils consisted of disulfide bonded multimers which did 

not enter the gel in the absence of reducing agents and were visible as strong 

bands on the top of the gels (fractions 6 to 8, Figure 5-11). Upon reduction the 

multimers were dissociated into prominent five bands occurring between 75-140 

kDa (Figure 5-11). Immunoblotting with the antibody showed only three bands 

corresponding to an apparent molecular weight of 140, 100, and 75 kDa (Figure 5-

12). The 140 kDa-polypeptide corresponds to intact α1(VI) and α2(VI) chains 

(Engvall et al., 1986). The 100 kDa-polypeptide is consistent with an α1(VI)- 

fragment (Trüeb and Bornstein, 1984). The 75 kDa-polypeptide corresponds to a 

pepsin treated α1(VI)-fragment (Colombatti et al., 1987). Therefore, the 

monoclonal antibody is considered to specific for the α1(VI) chain. Furthermore, 

indirect immuno-gold electron microscopy analysis demonstrated collagen VI 

microfibrils as shown in Figure 5-14. The staining revealed globules representing 

the globular domains of collagen VI microfibrils. They were labeled with the 

monoclonal antibody against collagen VI. The faint lines connecting the globular 

domains represent the triple helical part of collagen VI microfibrils. The lengths 

between globular domains was 103 ± 10 nm (n = 137), consistent with the 

periodicity of collagen VI-containing microfibrils. 
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igure 5-10. Chromatograph of fractions from the Superose 6 (Amersham F
Biosciences) molecular sieve column. The column was run at 0.2 ml/min, 
monitored at 280 nm with a UV spectrophotometer and fractions of 1 ml were 
collected. 
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Figure 5-11. SDS-PAGE, 4.5-15%, fraction number 1-30 under non-reducing 
ondition. High molecular aggregates failed to penetrate the gel (in the cycle). c
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Figure 5-10. SDS-PAGE, 4.5-15%, fraction number 1-30 under reducing 
ondition. c
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Figure
ornea. The gold particles represent the globular domain of collagen VI 

.6 Collagen VI microfibrils bind to collagens II, IX and NC4-

 between solubilized 

 5-12. Electron micrograph of purified collagen VI microfibrils from chicken 
c
microfibrils. Bar, 200 nm 
 
 
 
5

domain of collagen IX in binding assay (ELISA) 

 In order to study the monomolecular interaction

collagen VI and the purified chicken collagens II, IX, and XI (see 4.8.1) each 

representing molecular constituents of banded fibrils as well as the recombinant 

NC4-domain of collagen IX (see 4.9), binding experiments were performed. 

Constant amounts of the soluble collagens II, IX and XI in their monomeric state 

and the recombinant NC4-domain of collagen IX were immobilized on microtiter 
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plates. Pepsin treated and untreated commercial collagen VI microfibrils (Rockland 

Inc.) were used as ligand at concentrations ranging from 1-100 µg/ml (see 4.12).  

The commercial collagen VI (Rockland Inc.) is not completely digested with 

pepsin. The coomassie blue stained gel showed the high molecular weight 

aggregates of commercial collagen VI (lane A, Figure 5-15). The three α chains of 

collagen VI were separated after reduction with β-mercaptoethanol (lane C, Figure 

5-15). Lane B in Figure 5-15 shows the peptide fragments of collagen VI after the 

reduction followed by a second digestion with pepsin. 

As expected, collagen XI does not bind to collagen VI microfibrils and 

collagen II is fast saturated at a concentration about 10 µg/ml of collagen VI 

microfibrils. Collagen IX and NC4-domain of collagen IX are also interact to 

collagen VI microfibrils (Figure 5-15). The NC4-domain of collagen IX has the 

highest intensity of the binding. Nevertheless, the association constants (Kd) of the 

binding of collagen VI microfibrils with collagens II, IX, and NC4-domain of 

collagen IX are 1.5 × 10-7, 19.15 × 10-6, and 3.0 × 10-7 M, respectively. Collagen II 

and the NC4 domain of collagen IX have a comparable binding affinity to collagen 

VI microfibrils. Therefore, collagen IX may interact with collagen VI microfibrils via 

NC4-domain. 

The binding of pepsin treated collagen VI was obliterated with all substrates 

(Figure 5-17). Because pepsin treated collagen VI lost the globular domains the 

globular domains of collagen VI microfibrils are important for the interaction with 

the banded fibrils.  
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Figure 5-15. SDS-PAGE, 4.5-15% gel of commercial collagen VI (Rockland Inc), 
untreated (A), after a reduction (C), and after a reduction followed by a pepsin 
digestion representing three band of collagen VI (B) (Trüeb et al. 1987).  
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Figure 5-16. Binding of collagen VI to NC4-domain of collagen IX, collagens II, IX, 
and XI were determined by using a binding assay. The NC4-domain and the 
collagens were coated at a concentration of 10 µg/ml in storage buffer and 
incubated with in concentrations 0-100 µg/ml of collagen VI for 1 h. Data are the 
means of triplicate determinations. 
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Figure 5-17. Binding of pepsin treated collagen VI to NC4-domain of collagen IX, 
collagens II, IX, and XI were determined by using a binding assay. The NC4-
domain and the collagens were coated at a concentration of 10 µg/ml in storage 
buffer and incubated at concentration ranging from 0-50 µg/ml of collagen VI for 1 
h. Data are the means of triplicate determinations. 
 
 
 
5.7 Collagen VI microfibrils interact with the reconstituted fibrils 
containing collagens II, IX, and XI 

 In order to substantiate the notion that collagen IX is necessary for the 

binding of collagen VI microfibrils to banded fibrils, in vitro reconstitution 

experiments were preformed (see 4.11). Fibrils were reconstituted from soluble 

chicken collagens II, IX, and XI (see 4.8.1) for 3 h at 37 oC. Then commercial and 

isolated (see 4.8.2) collagen VI microfibrils were added.  The development of 

turbidity kinetic, hyperbolic turbidity curves, of the fibrillogenesis is shown in Figure 

5-18. The reconstitution products of collagens II, IX, and XI (A and B) showed 

higher turbidity than reconstitution products of collagens II and XI (C and D). The 

addition of commercial (data not shown) and isolated chicken collagen VI 

microfibrils slightly enhanced the turbidity (A and C), whereas the addition of 

buffer, only slightly decreased the turbidity (B and D). Added collagen VI 
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microfibrils were visualized in the EM as beaded filaments by labelling with an 

antibody against the globular domains of collagen VI. As expected, the analysis of 

the reconstituting products revealed that both collagen VI microfibrils, commercial 

(Rockland, Inc.) and isolated chicken collagen VI, interact only with banded fibrils 

containing collagens II, IX, and XI (Figure 5-19A and C). Microfibrils do not interact 

with reconstituted fibrils without collagen IX (Figure 5-19B and D). Furthermore, 

doubly-labelled collagen fibrils containing collagens II, IX, and XI revealed a clear 

co-localisation between the globular domains of collagen VI and the NC4-domain 

of collagen IX (Figure 5-19A).  
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Figure 5-18. Fibrillogenesis of mixtures of collagens II, IX and XI (A and B) and 
collagens II and XI (C and D) monitored by development of turbidity at 313 nm. 
Chicken collagen VI microfibrils were added after 3 h (arrow), (A and C). 
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Figure 5-19. Immunoelectron micrographs of reconstituted fibrils from mixtures of 
collagens II, IX and XI (A and C) and collagens II and XI (B and D). The 
concentrations of collagens are 300 µg/ml. After 3 h of fibrillogenesis, commercial 
collagen VI was added to 5 µg/ml at the end. Then the fibrillogenesis was allowed 
to proceed for 1 h. A and B represent to the addition of commercial collagen VI 
microfibrils (Rockland Inc.) whereas C and D represent the adding of isolated 
chicken collagen VI microfibrils. Small gold particles represent collagen VI while 
large gold particles represent collagen IX. Bar, 100 nm. 
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6.  DISCUSSION 

The important biochemical properties of the cartilage are the result of the 

composite structure of the extracellular matrix containing a dense network of 

collagen fibrils. The fibril network is embedded in a high concentration of 

proteoglycans. There are many distinct proteins and glycoproteins occurring in 

mutual associations and their molecular assemblies. A major challenge of 

extracellular matrix biology is to understand the mechanisms that serve to control 

and organize the three-dimensional fibril network. Therefore, it is necessary to 

identify the molecular assembly components and to examine the nature of their 

interactive capabilities. In the present work, the issue has been addressed by two 

complementary approaches:  

(i) the examination of fragments of authentic fibrils mechanically released 

from the tissue.  

(ii) in vitro binding studies with the soluble components of interest that were 

discussed in ELISA and fibrillogenesis analysis of the present work.  

These strategies were used for investigation of the tissues from bovine 

cartilage, chicken cornea and rib cages of newborn mice. Surprisingly, the first 

method has been applied in relatively few studies, although its potential stands out 

clearly. The authentic fibrils were obtained by mechanical tissue disruption. The 

fibril fragments could be examined by immuno-gold electron microscopy. After 

negative staining the fibril structure was shown in more detail. In addition, it is 

possible to carry out biochemical analysis of these macromolecular aggregates.  

6.1 The molecular components of collagen VI-containing 
suprastructure 

As discussed in 2.2.1.2, collagen VI interacts with a large number of 

extracellular matrix molecules. Supramolecular aggregates containing collagen VI 

are composite structures with other integrated molecules modulating the structural 

and functional properties of the collagen VI-containing suprastructure. In the 

present study, biglycan, decorin, and matrilin-1 were shown to interact to the 
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globular domains of collagen VI microfibrils which is in agreement with the studies 

of Wiberg and her co-workers (Wiberg et al., 2001; 2002; 2003). Matrilin-1, -3, and 

-4 bind to the globular domains of collagen VI microfibrils purified from 

chondrosarcoma tissues via biglycan or decorin (Wiberg et al., 2003). 

Furthermore, biglycan and decorin bind to the same triple helical site near the N-

terminus. This interaction is mediated by the core protein and the presence of the 

glycoaminoglycans chains had no effect on binding (Wiberg et al., 2001). Biglycan 

interacts with the tetramer induce formation of hexagonal lattices rather than 

beaded microfibrils. This was dependent on the presence of the glycoaminoglycan 

chains. Decorin which bind to the same site, was less effective in inducing 

hexagonal lattice formation presumably because of one glycosaminoglycan chain 

(Wiberg et al., 2002). These binding of the proteoglycans via their core proteins 

and their glycosaminoglycan chains subsequently serve to keep collagen VI 

molecules separated while assembly is initiated. Therefore, the proteoglycans 

appear to have a central role in the organization of collagen VI into a network-like 

structure. 

Moreover, in the present work, COMP binds close to the globular domains 

of collagen VI microfibrils. COMP has not previously been observed in collagen VI-

containing suprastructure. However, the gold particles representing COMP were 

found at some distance from the globular domain of collagen VI microfibrils 

whereas the biglycan, decorin, and matrilin-1 were found in close proximity to the 

globular domains. Moreover, COMP was identified as a prominent binding partner 

for matrilin-1, -3, and -4 (Mann et al., 2004). Therefore, it is possible that COMP 

indirectly is attached to globular domains of collagen VI microfibrils via matrilin-1, -

3 and/or -4.  

 

6.2 The isolation of collagen VI microfibrils from chicken 
corneas 

Cornea contains relatively large amounts of collagen VI (Zimmermann et 

al., 1986). Therefore, mostly intact collagen VI microfibrils were isolated from 

chicken by bacterial collagenase digestion following a procedure by Spissinger 

and Engel (1994). Chicken corneas were digested with bacterial collagenase and 
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were purified on a Superose 6 column. The purified collagen VI microfibrils 

consisted of disulfide bonded multimers which failed to penetrate the gel in the 

absence of reducing agents. Furthermore, the microfibrils could be detected and 

identified by immuno-gold electron microscopy. Upon reduction, the multimers 

were dissociated into five prominent bands occurring between 75-140 kDa 

representing the  α-chains of collagen VI (Engvall et al., 1986; Trüeb and 

Bornstein, 1984; Colombatti et al., 1987).  
 
 
 
6.3 The interaction of collagen VI microfibrils with banded fibrils 
containing collagens II, IX, and XI 

A major novel observation of the present work was that collagen VI 

microfibrils undergo tight interactions with thin banded collagen fibrils in cartilage. 

Collagens II, IX, and NC4-domain of collagen IX, but not collagen XI, interacted 

with collagen VI microfibrils in ligand binding assay. Immobilized collagen II has 

the highest binding affinity to collagen VI microfibrils. This result is consistent to 

the result obtained by Bidanset and her co-workers (1992). However, the binding 

of collagen VI to collagen II monomers differs from binding to fibril-bound collagen 

II. The present work shows that collagen VI microfibrils do not bind to large 

banded fibrils which, however, do contain collagen II as the most abundant 

molecular component. 

 On the other hand, the binding of collagen VI microfibrils to the NC4-domain 

of collagen IX is a relatively weak binding (Kd = 3×10-7 M). However, the repetitive 

projections of COL3- and NC4-domain of collagen IX (Vaughan et al., 1988) 

present a substrate with multiple binding sites and, hence, an extremely high 

avidity for collagen VI microfibril binding. 

 Interestingly, the pepsin treated collagen VI microfibrils which lacks the 

globular domains could not interact with the ligands. Therefore, the globular 

domains of collagen VI microfibrils are important for the interaction with the 

banded fibrils. 

Moreover, the investigation took advantage of the possibility that in vitro 

fibrillogenesis could confirm the conclusions from the investigations into authentic 

 



                                                                                                                    Discussion 82 

suprastructures. Collagen VI microfibrils interact with the reconstituted fibrils 

containing collagens II, IX, and XI but do not interact with the reconstituted fibrils 

containing collagens II and XI. This result implies that collagen IX is important for 

the interaction and supports the results from the binding assays and costal 

cartilage of collagen IX-deficient mice. 

Biglycan was found at the globular domains of collagen VI microfibrils in a 

regular pattern that twisted around banded fibrils. This result is consistent to the 

results from Wiberg and her coworkers (2001, 2002, 2003). First, biglycan was 

considered to play an important role as an adaptor between the banded fibrils and 

collagen VI microfibrils (Wiberg et al., 2003). However, after the treatment with 5 M 

guanidine hydrochloride, biglycan still binds to the globular domains of collagen VI 

microfibrils associated with banded fibrils. On the other hand, biglycan which did 

not bind to the globular domain of collagen VI microfibrils was removed. From 

these data it implies that biglycan does not play as an adaptor for the interaction 

but collagen VI microfibrils directly bind on the banded fibrils or via other matrix 

proteins (see Figure 6-1). This hypothesis is supported by the result from the 

investigation of biglycan-deficient costal cartilage of newborn mice. Collagen VI 

microfibrils have a regular binding on the banded fibrils in the knock-out mice as 

well as in the wild type mice. 
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GuHCl 

 

 
 
 
 
 
 
 
 
 
 collagen VI microfibrilbiglycan 
 
Figure 6-1. Model for the binding of collagen VI microfibrils on the banded fibrils in 
the extracellular matrix of articular cartilage. Biglycan directly bound to the banded 
fibrils was removed after treated with 5 guanidine hydrochloride. Because collagen 
VI still bind to the banded fibrils after the treatment, therefore, biglycan do not play 
as an adaptor for the binding but be a component of the supramolecular assembly 
of collagen VI microfibrils. 

 
 

6.4 Collagen VI-containing suprastructure assembly 

Budde and his co-workers (2005) have proposed two possible models of 

collagen VI microfibril binding to cartilage banded fibrils: Both models imply to 

binding of matrilin-3 which binds to the globular domains of collagen VI microfibrils 

via biglycan or decorin (Wiberg et al., 2003). Further: 

(i) matrilin-3 binds to COL3-domain of collagen IX which contained in 

the banded fibrils (Budde et al., 2005). This domain projects from 

the banded fibril surface into perifibrillar space (Vaughan et al., 

1988).  

(ii) (ii) matrilin-3 binds to COMP (Mann et al., 2004) which interacts to 

collagen IX molecules. 

 However, from the results presented here, other conclutions may be drawn 

(Figure 6-2). In collagen VI-containing suprastructures, the globular domains of 

collagen VI microfibrils interact with NC4-domains of collagen IX, a component of 
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banded collagen fibrils projecting from the surface of the banded fibrils. Further, 

biglycan and decorin connect collagen VI microfibrils to matrilin-1, -3 and -4 

(Wiberg et al., 2003). These three matrilins interact with COMP (Mann et al., 

2004). Moreover, matrilin-1 interacts with aggrecan (Paulsson and Heinegard, 

1979; Hauser et al., 1996). It is presumably that collagen VI-containing 

suprastructures interact with aggrecan, the major component in network-like 

structure. Therefore, the collagen VI-containing suprastructure interactions 

suggest a possible role as a bridging suprastructure in cartilage matrix. 

 

 

Biglycan or Decorin C-terminus (VI) 

Collagen IX Collagen II

Matrilin-1

COMP or aggrecan

N-terminus (VI)

Triple helical 
domain (VI) 

 

 

 

 

Figure 6-2. Model for supramolecular assembly of collagen VI microfibrils and 
cartilage banded fibrils. The globular domains of collagen VI microfibrils bind 
directly to the NC4-domain of collagen IX. Biglycan and decorin play as adaptor 
molecules to connect collagen VI microfibrils to matrilin-1. COMP contacts to 
collagen VI microfibrils are mediated by matrilin-1.  
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7. CONCLUSIONS 

 Hyaline articular cartilage plays important roles in the mechanics of the 

body. The tissue transmits weight-bearing forces between long bones and 

facilitates joint articulation. Therefore, the functionally essential component of the 

tissue is its abundant extracellular matrix. The few cells embedded into this matrix 

are responsible for the turnover and for the repair of the tissue. The extracellular 

matrix of hyaline cartilages consists of two major suprastructural elements, an 

extensive network of collagen II-rich fibrils embedding a highly hydrated complex 

of aggregating proteoglycan and hyaluronanic acid called network-like structures. 

Analogously into the mechanics of concrete strengthened with steel rods, the roles 

of the extrafibrillar matrix and the fibrils are to resist compression and tensile 

forces, respectively.  

 Collagen VI-containing aggregates are prominent examples of the 

suprastructural plasticity of extracellular matrix aggregates, depending on the 

exact composition. In order to gain more insight into the organization and 

molecular composition of matrix suprastructures the present work was performed 

by in vivo and in vitro studies. Collagen VI microfibrils are found in both of two 

suprastructural elements, banded collagen fibrils and network-like structures, of 

cartilage extracellular matrix. First group, tigh collagen VI-binding through regularly 

presented NC4-domains of collagen IX binding with extremely high avidity to 

regularly spaced globular domains of collagen VI microfibrils.  The twisted is 

necessary to account for 100 nm versus 64 nm D-periodicity. Another group 

interacts to the network-like structures. Both collagen VI-containing 

suprastructures contains matrilin-1, decorin, and biglycan. These results are 

consistent to the previous reports of Wiberg and her co-workers (2001, 2002, and 

2003). In addition, cartilage oligomeric matrix protein (COMP) is a novel 

component of the collagen VI-containing suprastructures. 

 In collagen VI-containing suprastructures, the globular domains of collagen 

VI microfibrils interact with NC4-domain of collagen IX, a component of banded 

collagen fibrils. Further, biglycan and decorin connect collagen VI microfibrils to 

matrilin-1, -3 and -4 (Wiberg et al., 2003). In fact, matrilin-1 interacts with aggrecan 
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and COMP (Paulsson and Heinegard, 1979; Hauser et al., 1996; Mann et al., 

2004). It is presumably that collagen VI-containing suprastructures interact with 

aggrecan, the major component in network like structure. Therefore, the collagen 

VI-containing suprastructure interactions suggest a possible role as a bridging 

suprastructure in cartilage matrix. 
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