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Abstract

The main focus of this thesis concerns combination of multiple image segmentations

in the fields of contour detection and region-based image segmentation. The goal

of a multiple segmentation combination concept is to combine multiple imperfect

segmentation results produced from multiple sources into a single improved seg-

mentation result. In Part One the concept of multiple segmentation combination is

applied to a contour averaging problem. The contour averaging problem is formally

formulated within the framework of generalized median as an optimization problem.

A new efficient algorithm based on dynamic programming to exactly compute the

generalized median contour is presented, as well as the usefulness of the exact so-

lution of generalized median contour in verifying the tightness of a lower bound for

generalized median problems in metric space.

Part Two of this thesis focuses on the combination of region-based image seg-

mentations. A novel algorithm for combining multiple segmentations to achieve a

final improved segmentation is presented. In contrast to previous works we consider

the most general class of segmentation combination, i.e. each input segmentation

can have an arbitrary number of regions. Our approach is based on a random walker

segmentation algorithm which is able to provide high-quality segmentation starting

from manually specified seeds. We automatically generate such seeds from an input

segmentation ensemble. A median concept based optimality criterion is proposed

to automatically determine the final number of regions in a final combined result.

In addition, the study of the interplay between accuracy and diversity of segmenta-

tion ensemble and its influence on final segmentation combination performance are

carried out. Finally, we describe a number of real-world applications in computer

vision that can be solved efficiently and reliably using our proposed combination

algorithm. Experiments demonstrate the effectiveness of the proposed algorithm in

a variety of imagery data and image segmentation methods.

In Part Three we focus on experimentally investigating a number of existing

well-known segmentation evaluation measures. A metric property of these measures
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is addressed and behavioral clustering frameworks for clustering them have been

proposed. The results of this study are intended to be as a guideline for appropriately

using and choosing the existing evaluation measures.
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Chapter 1

Introduction

1.1 Motivation

Image segmentation is defined as the meaningful partitioning of images into non-

overlapping homogeneous regions exhibiting similar features or image content. In

general, image segmentation is a key step towards high level tasks such as image

understanding, and serves in a variety of applications including object recognition,

scene analysis or image/video indexing. Due to its importance, numerous approaches

for image segmentation have been developed and proposed. Over the last 40 years,

image segmentation has evolved very quickly and has undergone great change [149].

A comprehensive survey of image segmentation techniques presented thus far are

discussed and summarized in [18, 47, 59, 86, 102, 149]. In spite of several decades of

intensive research and a large extent of progress in general purpose image segmen-

tation, image segmentation remains a challenging unsolved issue.

• Instability of Segmentation Algorithm: Image segmentation is known to be un-

stable, strongly affected by small image perturbations and feature choices [104].

A single segmentation algorithm with a single segmentation technique and a

single feature set may (often) not be able to comprehensively capture the large

degree of variability and complexity encountered in many real-world images. In

fact different segmentation techniques, as well as different set of image features,

may be able to capture different facets of true image structure. Ensemble com-

bination provides a powerful means for combining such information. In this

thesis, we study the question of how to best integrate such information from

multiple segmentations of an image to improve the accuracy and robustness

of segmentation result.

1



2 Chapter 1. Introduction

• Parameter Selection Problem: Image segmentation algorithms mostly have

some parameters that define the behavior of their operations. As a conse-

quence, the segmentation results depend heavily on the choices of initial pa-

rameter values. Different initial parameter values may yield to completely

different results as illustrated in Figure 1.1. The granularity of the regions

changes with the changes of parameter values. Thus, initial parameter values

need to be set appropriately in order to obtain a quality segmentation result.

However, a lack of both assumption about data distribution structures and

prior information about statistical properties of the regions to be segmented

presents a difficulty for handling the initial parameter values correctly. More-

over, adequate values of the algorithm parameters for one image may not be

effective for others, and this may lead to an undesirable result as illustrated

in Figure 1.2. No single setting of parameter has been found that performs

adequately across a wide diversity of images. A high variation in input images,

due to effects such as shading, highlights, non-uniform illumination or texture,

involves additional difficulties in image segmentation problem.

These difficulties arise the problem of algorithm parameter selection. The

parameter selection problem has not received the due attention in the past.

Researchers typically claim to have empirically determined the parameter val-

ues (in an ad-hoc manner). More systematically, the optimal parameter values

can be trained in advance based on manual ground truth by exploring a sub-

space of the parameter space to find out the best parameter [8, 22, 97, 107].

In fact the parameter selection and/or parameter learning should be usually

done on a large enough data set, so that it well enough represents the entire

domain for building up a general model for segmentation. However, it is often

not possible to obtain a large enough data set and, furthermore, ground truth

segmentations for training procedure are often not available. Another class of

methods assumes a segmentation quality measure, which is used to control a

parameter optimization process [1, 105]. However, these approaches are typ-

ically restricted to a specific application or a specific domain of images they

work with. (The problem of parameter selection is addressed at length further

on in Chapter 7.)

In fact for most image segmentation algorithms each image requires its own set

of parameter values in order to obtain quality and satisfactory segmentation

results. We encourage that image segmentation algorithms should possess

adaptive behavior to adjust values of its own parameters according to the

changes of image quality and image characteristics.
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Figure 1.1. Illustration of the problem of segmentation algorithm instability. Segmenta-

tions of the same input image obtained by the FH algorithm [38] given the different set of

parameter values (b) σ = 0.6, k = 300, M = 1500, (c) σ = 0.6, k = 700, M = 1500, and (d)

σ = 0.7, k = 700, M = 1500. The details of segmentation algorithm and its parameters

will be given in Chapter 2.

Figure 1.2. Illustration of the problem of segmentation algorithm parameter selection.

Segmentations obtained by the FH algorithm [38] given the same set of parameter values

(σ = 0.9, k = 700, M = 1500). The details of segmentation algorithm and its parameters

will be given in Chapter 2.

In this thesis we address this problem of finding the optimal setting of algo-

rithm parameters, preferably on a per-image basis, and propose the multiple

segmentation combination strategy as a solution to the problem. The fun-

damental idea is not to explicitly determine the optimal parameter setting

for a particular image. Instead, we compute a set of segmentations (ensem-

ble) according to a subspace sampling of the parameter space and then try to

reach an optimum out of the segmentation ensemble. The main advantage of

our approach is that the parameter selection problem can be effectively solved

without the need of ground truth and in a fully automatic manner.

• Algorithm Selection Problem: Although there has been a large extent of progress

in general purpose image segmentation, ranging from simple statistical mod-
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els [118], adaptive filters [124] to sophisticated methodologies such as color and

texture analyzes, wavelets [82], fuzzy sets [19, 99], and neural networks [33],

it remains an extremely difficult problem when facing with the challenging

segmentations of complex pictures such as outdoor and natural images. Those

algorithms all suffer from sensitivity to the properties of images, such as noise

level, illumination condition, and the target size [145].

Image segmentation techniques are basically ad hoc and differ precisely in the

way they emphasize one or more of the desired properties and in the way they

balance and compromise one desired property against another [59]. Conse-

quently, the results of different segmentation algorithms on a particular image

differ greatly due to their objective constraints they try to satisfy as illustrated

in Figure 1.3. The segmentations created by each algorithm exhibit different

natures. More importantly, these underlying segmentation constraints often

limit the use of the algorithm in the wide-range of images. In fact there is no

single method which can be considered good for all images, nor are all methods

equally good for a particular type of image [102].

As a matter of fact, many researchers [46, 51, 60, 145] have suggested an

effective and straightforward solution by using different algorithms to segment

different images. However, automated selection of an optimal algorithm for

one particular image is not trivial task. Most recent approaches for selecting

an optimal segmentation algorithm according to image characteristics have

exploited machine learning techniques and learning-based system [93, 120, 144,

145, 150]. The main drawback of these approaches is their requirement of either

the assumption of ground truth segmentations or the human intervention in a

training process. (The problem of algorithm selection is addressed at length

further on in Chapter 6)

To tackle the segmentation algorithm selection problem, we neither explicitly

select the optimal segmentation algorithm for a particular image nor are in-

terested in optimizing a segmentation algorithm for a given task. Instead, we

propose to use the segmentation combination strategy to solve the problem.

The rationale behind this idea is that while none of the segmentation algo-

rithms is likely to segment an image correctly, we may benefit from combining

the strengths of such multiple segmenters. The advantages of our approach are

that it requires no assumption of ground truth segmentations and no human

intervention in a framework operation.

Another potential challenging issue concerning the field of image segmentation

is image segmentation evaluation. Performance evaluation is not only important for
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(a) FH (b) MS (c) mNC

Figure 1.3. Illustration of the problem of segmentation algorithm selection. Segmented

images are computed by FH, MS, and mNC segmentation algorithms (left/middle/right).

The comparative performance of different segmentation algorithms can vary significantly

across images. The details of segmentation algorithms will be given in Chapter 2.

evaluating and comparing the performance of individual image segmentation meth-

ods, but also useful for parameter tuning/learning [12, 97] and algorithm selection

problem [51, 120, 147]. Despite of its importance, image segmentation evaluation

has not received the due attention in the past. Moreover, most efforts spent on

evaluation are just for designing new evaluation methods and only very few authors

have attempted to characterize the different existing evaluation methods [148]. The

most well known and cited by many authors in this area is the work of Zhang [147].

Zhang studies different segmentation evaluation methods proposed so far, and classi-

fied them into three groups: the analytical, the empirical goodness and the empirical

discrepancy groups. A brief description of each method in every group and some

comparative discussions about different method groups are carried out. A brief

review of supervised evaluation methods can also be found in [10, 73, 132, 143].

In this thesis we experimentally investigate the existing supervised evaluation

measures for image segmentation in two following frameworks:

• Comparison of the metric property : The well known segmentation evaluation

measures commonly used in the computer vision literature are compared ac-
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cording to their property of being a metric. Being a metric is the highly desired

property for distance measures in pattern matching and visual applications in

order to match the human intuition of similarity. There is essentially no liter-

ature for any kind of segmentation evaluation measure which investigate the

metric property. An experimental comparison is performed to provide a rank

of how likely these evaluation measures are metric. We hope that this study

would be helpful for an appropriate use of existing evaluation methods, where

the property of a metric is expected, for example, in this work the computation

of generalized median.

• Clustering of existing evaluation measures : For last decades many different

segmentation evaluation measures have been proposed in the literature. These

measures are typically endowed with different standard for measuring the qual-

ity of the segmentation. As a result, evaluating results vary significantly be-

tween different evaluation measures. In particular, it is difficult for the users

to choose an appropriate measure when they are faced with such a variety of

possibilities.

The segmentation evaluation measures under consideration are clustered into

groups based on their behaviors in evaluating the same series of segmented

images. The evaluation measures’ behavioral characteristics are captured

through the use of selecting and ranking strategies. The basic idea is that

the evaluation measures with similar behavioral characteristics will select or

rank the segmentation results in a similar manner and will be clustered into

the same group. We hope that this behavioral clustering study could be useful

for users as a guideline in choosing different appropriate evaluation measures,

especially from different clusters, in order to fairly report the performance of

the proposed algorithm.

We hope that these two analytical studies will give pioneer frameworks for com-

paring and clustering other evaluation measures existing in literatures.

1.2 Objectives

The main objectives of this thesis are summarized as follows:

• To propose an algorithm for combining multiple image segmentations to achieve

a final improved segmentation.
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• To investigate three different potential application scenarios to demonstrate

the usefulness of segmentation combination: 1) Exploring parameter space

without ground truth, which addresses the problem of parameter selection,

2) Multiple segmentation algorithm combination, which addresses the prob-

lem of optimal algorithm selection, and 3) Segmentation algorithm instability

problem.

Along with the main objectives, there are important relevant issues that are integral

parts of our approach and need to be considered in this work.

• To propose the new optimality criterion for automatically determining the

final number of regions in a combination result.

• To propose two novel frameworks for experimentally investigating a number

of existing (supervised) evaluation measures for assessing the quality of image

segmentations: Comparing the metric property of evaluation measures and

behavioral clustering of evaluation measures.

1.3 Thesis Organization

The remainder of the thesis is organized as follows.

In Chapter 2 we give an overview of some fundamental concepts and algorithms

that are required for understanding and building our algorithm framework and will

be used throughout the thesis, such as the generalized median concept, three baseline

image segmentation algorithms, fourteen commonly used evaluation measures, and

the segmentation evaluation methodology.

In Chapter 3 we present our general framework of segmentation combination.

Its components, features and goals are discussed, as well as examples of its possible

applications. This general framework will be applied for both multiple contour

combination and multiple region-based image segmentation combination.

The remainder of the thesis is organized in three parts.

The first part composing of only one chapter (Chapter 4) focuses on the problem

of contour averaging. Contour averaging has found several applications in computer

vision including prototype formation and computational atlases. A contour aver-

aging problem is formal formulated within the framework of generalized median as

an optimization problem. A special class of contours, which frequently occurs in
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many applications of image analysis, is considered. We propose an efficient algo-

rithm based on dynamic programming to exactly compute the generalized median

contour in this domain. Experimental results will be reported on two scenarios to

demonstrate the usefulness of the concept of generalized median contours: Explor-

ing the parameter space of a (segmentation) algorithm and verification of optimal

lower bound for generalized median problems in metric space.

The second part composing of Chapter 5–Chapter 8 is devoted to the problem of

multiple region-based image segmentation combination and its potential applications

.

In Chapter 5 the problem of multiple region-based image segmentation is dis-

cussed. We propose a novel algorithm for combining multiple segmentations to

achieve a final improved segmentation result. The proposed algorithm is based on

a random walker algorithm for image segmentation. In contrast to previous works

we consider the most general class of segmentation combination, i.e. each input

segmentation can have an arbitrary number of regions. A new optimization method

based on the generalized median concept for automatically estimating the number

of regions in a final combined result is also proposed. We investigate the effective-

ness of this generalized median-based criterion by comparing it with three existing

different criteria.

In Chapter 6 a variety of segmentation ensemble generation approaches is pre-

sented to verify the effectiveness of our segmentation combination algorithm in var-

ious situations. The study of the interplay between accuracy and diversity of such

segmentation ensemble and its influence on final segmentation combination perfor-

mance are carried out. In addition, the problem of optimal algorithm selection is

also exhaustively addressed in this chapter.

In Chapter 7 the proposed segmentation combination algorithm is applied to

solve the potential problem of parameter selection. The efficacy of our combination

approach is compared to three training approaches, ranging from simple traditional

approach to a more adaptive approach such as cased-based reasoning. Extensive

experimental comparisons are conducted on both natural image and real range image

data sets.

In Chapter 8 we demonstrate another usefulness of our segmentation combina-

tion for solving the problem of instability of image segmentation algorithm. The

instability of the segmentation algorithm caused by parameter variation and noise

is investigated. We compare the ability of our segmentation combination in dealing

with this problem to the set median concept approach.
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In third part composing of Chapter 9 and Chapter 10 is about the image seg-

mentation evaluation.

In Chapter 9 the metric property of evaluation measures is addressed and four-

teen well-known (supervised) evaluation measures are compared in terms of this

property. This study would hopefully be helpful for appropriate use of the existing

evaluation methods, where the property of a metric is expected.

In Chapter 10 the same set of evaluation measures considered in Chapter 9

is clustered into groups based on their evaluating behaviors on the same set of

test images. This study is intended to provide a guideline for a user in choosing

appropriate evaluation measures, especially from different clusters, in order to fairly

report the performance of the proposed algorithm.

Contributions of our work in summary and conclusions on this thesis are given

in Chapter 11.
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Chapter 2

Fundamental Concepts

Before proceeding to present our multiple segmentation combination framework and

algorithms, there are some fundamental concepts and algorithms that are required

for understanding and building of our algorithm framework. This chapter gives an

overview of these necessary backgrounds that will be used throughout the thesis. The

first section provides a general overview of median concept. Median concept plays an

important role in the contour combination and the estimation of the number of re-

gions in region-based segmentation combination in subsequent chapters. The second

section gives a short methodological review of well-known image segmentation algo-

rithms that will be used as baseline segmentation algorithms in ensemble generation

procedure. The third section gives a brief review of existing evaluation measures

for evaluating quality of segmentation result. Some of these measures are used as

measures for quantitatively evaluating the quality of the resulting segmentations.

The comparison and clustering analysis of these measures will also be conducted

and reported in the last part of our thesis. The last section discusses a method to

objectively evaluate the segmentation performance by comparing the machine seg-

mentation result against its corresponding ground truth (human segmentation). The

human segmentation data set that is used in most of our experiments throughout

the thesis is also detailed.

2.1 Median Concept

The general concept of average, or mean, has turned out to be useful in numerous

contexts of science and engineering. In general, we are given a set of noisy samples

of the same object and want to infer a representative model. One powerful tool for

11
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this purpose is provided by the generalized median concept.

Assume that we are given a set S of objects in some representation space U

and a distance function d(p, q) to measure the dissimilarity between any two objects

p, q ∈ U . The essential information of the given set of objects is captured by an

object p ∈ U that minimizes the sum of distances to all objects from S, i.e.

p = arg min
p∈U

∑

q∈S

d(p, q) (2.1)

Object p is called a generalized median of S. A related concept is the so-called set

median, which results from constraining the search to the given set S

p̂ = arg min
p∈S

∑

q∈S

d(p, q) (2.2)

The set median may serve as an approximative solution for the generalized median.

Note that neither the generalized median nor the set median is unique in general.

Independent of the object type and the underlying representation space we can

always find the set median of N objects by means of 1
2
N(N − 1) pairwise distance

computations (although more efficient algorithms have been reported as well). In

contrast there is no general approach to computing generalized medians. The rea-

son is that any such algorithm must be of constructive nature and the construction

process crucially depends on the structure of the objects under consideration. Ad-

ditional difficulty is caused by the fact that determining the generalized median is

provably of high computational complexity in several cases.

2.2 Baseline Segmentation Algorithms

The purpose of this section is to give an overview of the well-known image seg-

mentation techniques which will be used as the baseline segmentation algorithms

for producing initial segmentations for our combination approach. We will describe

their underlying principles and discuss the particular characteristics of each class of

algorithms.

Three image segmentation algorithms are chosen from three different categories

of image segmentation methods which are widely-used in the vision community.

• Mean Shift-based Method : Mean Shift image segmentation (MS) proposed by

Comaniciu and Meer [23] is based on feature space analysis techniques. The

versatility of the feature space analysis enables the design of algorithms in
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which the user controls performance through a single parameter which is the

resolution of the analysis (i.e., bandwidth of the kernel). Comaniciu and Meer

applied the feature space analysis technique to a feature space that represents

both an L∗u∗v∗ representation of the color image (range domain) and the

spatial coordinates of a pixel (spatial domain). The multivariate kernel is

defined as the product of two radially symmetric kernels and the Euclidean

metric allows a single bandwidth parameter for each domain

Khs,hr
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C
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where xs is the spatial, xr is the range part of a feature vector, k(x) the

common profile used in both two domains, hs and hr the employed kernel

bandwidths, and C the corresponding normalization constant. In practice, a

normal kernel always provides satisfactory performance, so that the user only

has to set the bandwidth parameter rmh = (hs, hr), which determines the

resolution of the mode detection.

The mean shift technique for image segmentation is comprised of two basic

steps:

– Mean Shift Filtering : this step consists of finding the modes of the prob-

ability density function underlying the image data in feature space which

correspond to the locations with highest data density. In terms of a seg-

mentation, it is intuitive that the data points close to these high density

points (modes) should be clustered together.

– Mean Shift Segmentation: After mean shift filtering, each data point in

the feature space has been replaced by its corresponding mode. Clustering

proposed in [23] is described as a simple post-processing step in which

any modes that are less than one kernel radius apart are grouped together

and their basins of attraction are merged.

Mean shift image segmentation is able to produce segmentations that corre-

spond well to human perception. However, this algorithm is quite sensitive to

its parameters, especially hr. Slight variations in hr can cause large changes

in the granularity of the segmentation. This algorithm is used in a graphical

interface EDISON system which is publicly available at [52].

• Graph-based methods : They treat an image as a connected graph G = (V,E)

where each node vi ∈ V corresponds to a pixel in the image, and the edges in

E connect certain pairs of neighboring pixels. The weight of an edge is some
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measure of the dissimilarity between the two pixels connected by that edge

(e.g., the difference in intensity, color, motion, location or some other local

attribute).

Felzenszwalb and Huttenlocher [38] proposed the efficient graph-based image

segmentation algorithm (FH) for general purpose image segmentation. In con-

trast to MS, this algorithm works directly on the data points in feature space,

without first performing a filtering step. The underlying principle of FH algo-

rithm is based on the idea that the image should be partitioned into regions

such that for any pair of regions, the variation across regions should be larger

than the variation within the region. They develop a simple algorithm which

computes segmentations according to this idea by defining two measures:

– the internal difference, Int(C), which measures the dissimilarity among

neighboring elements within a component C ⊆ V , is defined to be the

largest weight in the minimum spanning tree of the component, MST (C,E):

Int(C) = max
e∈MST (C,E)

w(e)

– the external difference, Dif(C1, C2), which measures the dissimilarity

between elements along the boundary of the two components C1, C2 ⊆ V

to be the minimum weight edge connecting the two components:

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w(vi, vj).

The algorithm start with a segmentation S0, where each vertex vi is in its own

component. Then it iteratively merges disjoint components where the exter-

nal variation between them is small with regard to their respective internal

variations,

Dif(C1, C2) > MInt(C1, C2)

and

MInt(C1, C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)).

The threshold function τ(C) = k/ |C| controls the degree to which the differ-

ence between two components must be greater than their internal differences,

where |C| denotes the size of C, and k is some constant parameter.
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The key success of this method is that, unlike the classical methods, this

technique adaptively adjusts the segmentation criterion based on the degree

of variability in neighboring regions of the image. This results in a method

that, while making greedy decisions, can be shown to obey certain non-obvious

global properties. However, this algorithm suffers somewhat from sensitivity

to a parameter k.

This segmentation algorithm is attractive due to its competitive segmentation

performance and high computational efficiency. In fact, the running time is

nearly linear in the number of graph edges and very fast in practice. Felzen-

szwalb and Huttenlocher have made available an implementation of their al-

gorithm at [37].

• Spectral Methods : Spectral segmentation methods also model images as con-

nected graphs. Similar to the graph-based methods defined above, the weight

wij of the edge connecting two vertices i, j measures the similarity between

two image elements and can be stored in an affinity matrix W . Spectral meth-

ods identify partitions via the eigenvectors of the affinity matrix (or other

matrices derived from it) by using dominant eigenvectors of matrices to per-

form segmentation. These approaches are attractive in that they are based

on simple eigen–decomposition algorithms whose stability is well understood.

Nevertheless, the use of eigen–decompositions in the context of segmentation

is far from well understood [142].

Cour et al. [25] applied spectral analysis techniques to solve the image seg-

mentation problem, called multiscale Normalized Cuts (mNC). The algorithm

works on multiple scales of the image in parallel with the use of the Normal-

ized Cut graph partitioning framework [121]. The algorithm solves a cross

scale constraint matrix which processes the different spatial scales in parallel

by forcing the system to seek an average segmentation across all scales. Let X

be a multiscale partitioning matrix, where Xs ∈ {0, 1}Ns×K is the partitioning

matrix at scale s, Xs(i, k) = 1 iff graph node i belongs to partition k. The

algorithm segments an image by finding the graph cut that correspond to the

constrained multiscale Normalize Cut:

maximize ǫ(X) =
1

K

K
∑

l=1

XT
l WXl

XT
l DXl

subject to CX = 0, X ∈ {0, 1}N∗×K , X1K = 1N∗ ,

where C is a cross-scale constraint matrix and CX = 0 is a cross-scale seg-

mentation constraint equation, N∗ =
∑

s Ns and D is a diagonal matrix,
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Table 2.1. Parameters and descriptions of baseline segmentation algorithms

Algo. Parameter Description

MS hs a spatial bandwidth parameter of the kernel function, deter-

mining the resolution of the mode detection.

hr a range bandwidth parameter of the kernel function, determin-

ing the resolution of the mode detection.

M specify a minimum size of regions in the result enforced by post-

processing. The range parameter hr and M control the number

of regions in the segmented image.

FH σ a gaussian filter parameter which is used to smooth the im-

age before computing in order to compensate for digitization

artifacts.

k a parameter of a threshold function, τ , a larger k causes a

preference for larger components in the result. Setting of k

depends on the resolution of the image and the degree to which

fine detail is important in the scene.

M specify a minimum size of regions in the result enforced by

post-processing.

mNC scale specify a scale of input image to be segmented.

nsegs specify a number of segments in the segmented image.

D(i, j) =
∑

j W (i, j), and 1N is a vector of N ones. A graph weight W is

defined based on two simple and effective local grouping cues, namely, inten-

sity and contours.

The complexity of this algorithm is linear in the number of pixels and the

number of segments requested, where the main computation bottleneck is in

the eigenvector computation. We choose this algorithm because it is a general

purpose approach and is well representative of spectral method in image seg-

mentation. The implementation of this algorithm is publicly available at [24].

More review and discussion of different spectral clustering methods can be

found in [142].

Algorithm parameters of each segmentation algorithm are summarized in Table 2.1.

Sample segmentations produced by the three image segmentation algorithms are

shown in Figure 2.1. It is worth noticing that the FH algorithm tends to produce

long, thin regions along image edges while the MS algorithm produces reasonable

segmentations at coarser levels. However, both algorithms provoke also noticeable
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(a) FH (b) MS (c) mNC

Figure 2.1. Sample segmented images computed by FH, MS, and mNC segmentation

algorithms. Parameter set for FH: σ = 0.9, k = 300, M = 1500; MS: hs = 8, hr = 7, M =

1500; and mNC: scale = 0.8, nseg = 12.

over-segmentation. Multiscale NCuts attempts to find global solution with larger

segments that have a chance to be objects but often oversegmenting large homoge-

neous regions.

In the subsequent chapters, the word ’MS’ refers to the mean shift-based seg-

mentation method by Comaniciu and Meer [23], the word ’FH’ refers to the efficient

graph-based segmentation method by Felzenszwalb and Huttenlocher [38], and the

word ’mNC’ refers to the multiscale normalized cuts method by Cour et al. [25].

2.3 Review of Segmentation Evaluation Measures

In this section we review well-known evaluation measures that are used in this study.

These measures are chosen because of their extensive use in the literature. The

measures will be reviewed according to their categories. The first category involves

the methods specifically derived for segmentation evaluation task, while the second

category involves the methods developed in statistics for comparing clusterings but

popularly used in the computer vision literature.
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2.3.1 Measures for Comparing Segmentations

Region consistency

Martin et al. [90] proposed two measures of error that can be used to evaluate the

consistency of a pair of segmentations. The measures are designed to be tolerant to

refinement, that is, if one segment is a proper subset of the other, then the pixels

lie in an area of refinement, and the local error should be zero. If there is no subset

relationship, then the two regions overlap in an inconsistent manner. In this case,

the local error should be non-zero. Let R(S, pi) be the set of pixels corresponding to

the region in segmentation S that contains pixel pi, the asymmetric local refinement

error between two input segmentation S1 and S2 is defined as:

E(S1, S2, pi) =
|R(S1, pi)\R(S2, pi)|

|R(S1, pi)|
(2.3)

where \ denote set difference, and |x| the cardinality of set x. The error measure

evaluates to 0 if all the pixels in S1 are also contained in S2. This local refinement

error encodes a measure of refinement in one direction only. Given this local refine-

ment error in each direction at each pixel, there are two natural ways to combine

the values into an error measure for the entire image. Let n be the number of pixels:

GCE(S1, S2) =
1

n
min

{

∑

i

E(S1, S2, pi),
∑

i

E(S2, S1, pi)

}

(2.4)

LCE(S1, S2) =
1

n

∑

i

min{E(S1, S2, pi), E(S2, S1, pi)} (2.5)

Global Consistency Error (GCE) forces all local refinements to be in the same direc-

tion, while Local Consistency Error (LCE) allows refinement in different directions

in different parts of the image. Since both measures are tolerant of refinement, there

are two trivial segmentations that achieve zero error: One pixel per segment, and

one segment for the entire image. The former is a refinement of any segmentation,

and any segmentation is a refinement of the latter. Thus, Martin [89] proposed an

alternative measure that does not tolerate refinement termed the Bidirectional Con-

sistency Error (BCE). The measure penalized dissimilarity between segmentations

proportional to the degree of region overlap by replacing the poxelwise minimum

with a maximum, defined as:

BCE(S1, S2) =
1

n

∑

i

max{E(S1, S2, pi), E(S2, S1, pi)} (2.6)

The values of these three error measures lie in the range [0,1], with a value of 0

indicating no error and a value of 1 indicating maximum deviation between two

segmentations to be compared.
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Another region-based evaluation is proposed by Huang and Dom [65]. They

introduced the concept of directional Hamming distance to quantitatively describe

the degree of mismatch from one segmentation S1 = {R1
1, R

2
1, ..., R

m
1 } to another

segmentation S2 = {R1
2, R

2
2, ..., R

n
1}. They associate each region Ri

2 from S2 with a

region Rj
1 from S1 such that Ri

2 ∩ Rj
1 is maximal. Directional Hamming distance

from S1 to S2 is defined as:

DH(S1 ⇒ S2) =
∑

Ri
2∈S2

∑

Rk
1 6=R

j
1,Rk

1∩Ri
2 6=⊘

∣

∣

∣Ri
2 ∩ Rk

1

∣

∣

∣

where |·| denotes the size of a set. Therefore, DH(S1 ⇒ S2) is the total area under

the intersections between all Ri
2 ∈ S2 and their non-maximal intersected regions

Rk
1 from S1. The reversed distance DH(S2 ⇒ S1) can be similarly computed. The

overall performance measure based on normalized Hamming distance is defined as

p = 1 −
DH(S1 ⇒ S2) + DH(S2 ⇒ S1)

2 |S|
(2.7)

where |S| is the image size and p ∈ [0, 1]. The smaller the degree of mismatch, the

closer the p is to one.

Boundary Matching

F-measure is a boundary-based evaluation developed by Martin et al. [92]. It was

proposed solving an approximation to a bipartite graph matching problem for match-

ing segmentation boundaries and computing the percentage of matched edge ele-

ments. In this framework the two terms of measures for boundary detection, preci-

sion and recall, are computed. Precision (P ) is the fraction of detections which are

true positives, while recall (R) is the fraction of positives that are detected. The

F-measure is an overall performance measure that captures the trade-off between

these two quantities as the weighted harmonic mean of P and R, defined as:

F = PR/(αR + (1 − α)P ) (2.8)

This yields a value of F-measure between zero and one where a value of one indicates

a perfect matching between two segmentations. A relative cost α between P and R

quantities focuses attention at a specific point on the precision-recall curve. We set

α to 0.5 in our experiments.

2.3.2 Measures for Comparing Clusterings

Considering image segmentation as a pixel clustering process, we can apply measures

for comparing clusterings developed in statistics for the purpose of segmentation
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evaluation.

A clustering C is a partition of a set of points, or data set D into mutually

disjoint subsets C1, C2, ..., CK called clusters. Formally, C = {C1, C2, ..., CK} such

that Ck ∩ Cl = ∅ and
⋃K

k=1 Ck = D. Let the number of data points in D and in

cluster Ck be n and nk, respectively. We have, of course, that n =
∑K

k=1 nk.

We also assume that nk > 0, in other words, that K represents the number

of non-empty clusters. Let a second clustering of the same data set D be C′ =

{C ′
1, C

′
2, ..., C

′
K}, with cluster sizes n′

k′ . Note that the two clusterings may have

different numbers of clusters.

Comparing clusterings by counting pairs

An important class of criteria for comparing clusterings is based in counting the

pairs of points on which two clustering agree/disagree. A pair of points from D can

fall under one of four cases described below.

N11 - number of point pairs that are in the same cluster under both C and C′

N00 - number of point pairs in different clusters under both C and C′

N10 - number of point pairs in the same cluster under C but not under C′

N01 - number of point pairs in the same cluster under C′ but not under C

The four counts always satisfy N11 + N00 + N10 + N01 = n(n − 1)/2.

Several comparing measures are based on these four counts. The Rand index

introduced in [111] is the percentage of pairs for which there is an agreement and

defined as:

R(C, C′) =
N11 + N00

n(n − 1)/2
(2.9)

This gives a measure of similarity with values ranging over [0,1] interval. R is 1 for

identical clusterings.

Hubert and Arabie [66] noticed that the Rand index is not correct for chance that

is equal to zero for random partitions having the same number of objects on each

class. They, therefore, introduced the adjusted version of the Rand index, whose

expectation is equal to zero. The resulting adjusted Rand index has the expression

AR(C, C′) =
R(C, C′) − E[R]

1 − E[R]
(2.10)

Thus, the adjusted Rand index can take on a wider range of values, ranging in the

range [-1,1]. AR is 1 when the two partitions are identical.
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Unnikrishnan et al. [132] proposed the modifications to the basic Rand index,

termed the Probabilistic Rand (PR) index, that allows comparison of a test segmen-

tation with multiple ground truth images C′
K , defined as

PR(C, C′
K) =

1

T

∑

i,j

[nijpij + (1 − nij)(1 − pij)] (2.11)

where pij is the probability that pixels i and j have the same label. When the sample

mean is used to estimate pij, PR index is simply an average value of Rand index

among different ground truth segmentations in a set [4].

There are other criteria in the literature, to which this class of criteria applies.

Wallace [134] proposed the two asymmetric criteria WI , WII below:

WI(C, C′) =
N11

∑

k nk(nk − 1)/2
, WII(C, C′) =

N11
∑

k n′
k′(n′

k′ − 1)/2
(2.12)

They represent the probability that a pair of points which are in the same cluster

under C (respectively C′) are also in the same cluster under the other clustering.

Fowlkes and Mallows [42] introduced a criterion which is symmetric, and is the

geometric mean of WI , WII :

F(C, C′) =
√

WI(C, C′)WII(C, C′) (2.13)

The Jacard index [7] is given by

J (C, C′) =
N11

N11 + N01 + N10

(2.14)

The above two indices give a measure of similarity with a value domain [0,1]. The

value is 1 when the two clusterings are identical.

The Mirkin [98] metric is another adjusted form of the Rand index and can be

written as [94]:

M(C, C′) =
∑

k

n2
k +

∑

k′

n′2
k′ − 2

∑

k

∑

k′

n2
kk′ = 2(N01 + N10). (2.15)

M is 0 for identical clusterings and positive otherwise. In fact, this metric corre-

sponds to the Hamming distance between certain binary vector representations of

each partition [94].

Comparing clusterings by set matching

A second class of criteria is based on set cardinality alone and does not make any

assumption about how the clusterings may have been generated. A symmetric cri-
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terion that is also a metric was introduced by van Dongen [133]

D(C, C′) = 2n −
∑

k

maxk′nkk′ −
∑

k′

maxknkk′ . (2.16)

Hence, D is 0 for identical clusterings and strictly smaller than 2n otherwise.

Information-theoretic clustering comparison

The last class of criteria is based on mutual information, a well-known concept in

information theory. The mutual information between two clusterings measures how

much information one clustering gives about the other. For more details about the

information theoretical concepts, the reader is referred to [26].

Let the probability that a point being in cluster Ck equals P (k) = nk

n
. Thus,

the random variables associated with the clusterings C, C′ denote by P (k), k =

1, ..., K and P ′(k′), k′ = 1, ..., K ′. Let P (k, k′) represent the probability that a

point belongs to Ck in clustering C and to Ck′ in C′, namely the joint distribution

of the random variables associated with the two clusterings: P (k, k′) = |Ck∩Ck′ |
n

.

The mutual information between the clustering C and C′ is equal to the mutual

information between the associated random variables.

I(C, C′) =
K

∑

k=1

K′

∑

k′=1

P (k, k′)log
P (k, k′)

P (k)P ′(k′)
. (2.17)

The mutual information between two random variables is always non-negative and

symmetric.

Strehl and Ghosh [126] proposed the normalized version of mutual information

using geometric mean of H(C) and H(C′) as

NMI(C, C′) =
I

√

H(C)H(C′)
(2.18)

where H(C) and H(C′) denote the entropy associated with clustering C and C′

H(C) = −
K

∑

k=1

P (k)log P (k), H(C′) = −
K′

∑

k′=1

P ′(k′)log P ′(k′). (2.19)

Entropy is always non-negative. It takes a value of 0 only when there is no un-

certainty, namely when there is only one cluster. Thus, in this case NMI is not

defined. The value of NMI ranges in a range [0,1] and is 1 for identical clusterings.
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Another normalized version of mutual information between two partitions was

proposed by Fred and Jain [44]. They used arithmetic mean of H(C) and H(C′) in

the normalizing term:

NMIarith(C, C′) =
2 · I

H(C) + H(C′)
. (2.20)

Meila [94] suggests a further alternative called variation of information (VI)

defined as:

V I(C, C′) = H(C) + H(C′) − 2I(C, C′). (2.21)

Meila proved that the VI is a metric and bounded by log n, however, if C and C′

have at most K∗ clusters, it is bounded by 2 log K∗. Thus, the VI metric takes a

value of 0 when two clusterings are identical and positive otherwise.

2.4 Segmentation Evaluation

The various methods for performance evaluation, in general, can be categorized

according to their taxonomy [73] as summarized in Figure 2.2. A theoretical eval-

uation is done by applying a mathematical analysis without the algorithms ever

being implemented and applied to an image. The major limitations of theoretical

approaches are the simplistic mathematical models and the difficulty in applying

them to many of the more modern segmentation algorithms because of their com-

plexity. An experimental (empirical) evaluation can be divided into feature-based

and task-based. Within the former category, we can further distinguish between

non-GT(ground truth)-based (also called unsupervised) and GT-based (also called

supervised) approaches. The basic idea of GT-based approaches is to measure the

difference between the machine segmentation result and the ground truth1. In con-

trast, non-GT-based methods compute performance measures directly by means of

some desirable properties of the segmentation result. Task-based evaluation follows

a very different philosophy. In this kind of methods, image segmentation is treated as

part of a proposed solution to a larger vision system, for example, object recognition,

and is indirectly evaluated based on the overall performance of the entire system.

However, this strategy can quickly become unfair and, more seriously, inconsistent

when evaluating algorithms that are tailored to different applications [132].

In this work we focus on the supervised evaluation method which is consid-

ered as a principled and powerful way to objectively assessing the performance of

1Ground truth is an expected ideal segmentation, which is in almost all cases specified manually.
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Performance Evaluation Methods

Theoretical Methods Experimental Methods

Feature-base Evaluation Task-based Evaluation

non-GT-based Evaluation

(unsupervised)

GT-based Evaluation

(supervised)

Figure 2.2. Performance evaluation method taxonomy.

segmentation algorithms [147]. Furthermore, they are relatively general which are

applicable to comparing different kinds of segmentation algorithms. The purpose

of supervised approaches is to measure the discrepancy between the machine seg-

mentation obtained by an algorithm and the ground truth. A large discrepancy

involves a large segmentation error and thus this indicates a low performance of the

considered segmentation algorithm.

In the following, we overview the human segmentation data set and evaluation

measures that will be used to quantitatively evaluate the quality of segmentation

results in our experiments throughout the thesis.

2.4.1 The Berkeley Segmentation Dataset

The current public version of the Berkeley Segmentation Dataset (BSDS) [90] is

composed of 300 natural images of size 481 × 321 pixels. The data set is divided

into two sets: a training set containing 200 images that can be used to tune the

parameters of a segmentation algorithm, and a testing set containing the remaining

100 images on which the final performance evaluations should be carried out. For

each image a set of 4 to 9 human segmentations is provided.

Martin et al. [90] show that the human segmentations, though varying in detail,

are consistent with one another in that regions segmented by one subject at a finer

level of detail can be merged consistently to yield the regions extracted by a different

subject at a coarser level of detail. They show regularities that can be exploited

to design and evaluate segmentation algorithms. Figure 2.3 shows some example

images from the data set and their five human segmentations segmented by different

subjects.

Since each image contains more than one human segmentations, one segmenta-
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Figure 2.3. Sample of four images from the segmentation data set and their segmentations

segmented by five different people. The examples illustrate that even though the human

segmentations of the same image are not identical, they are differ only in the levels of

granularity.

tion result is compared to all manual segmentations and the average performance

value is reported. Additional details on the data set construction can be found

in [90]. The data set can be obtained from [91].

2.4.2 Evaluation Measures

In this section we present the details of measures for assessing the quality of a ma-

chine segmentation against human ground truths. Both region-based and boundary-

based are used in our framework.

• Normalized Mutual Information index (NMI): Mutual information is a well-

known concept in information theory that measures the statistical information

shared between two random variables. It has been used for assessing the

consistency between clusterings in many works such as [6, 39, 44, 87, 126,

151]. In this thesis the normalization version of mutual information defined

in (2.18) is used to assess the quality of a machine segmentation in the sense

that a good machine segmentation should share the most information with a

corresponding human ground truth. Since the BSDS data set provides multiple

human segmentations for each image and a good machine segmentation of a

particular image should be able to explain all of them, in all experiments
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reported in this thesis one machine segmentation result is compared to all

human segmentations and the average NMI (ANMI) value is used. ANMI

value between a machine segmentation, Ŝ, and a set of human segmentations,

Sq.

φ(ANMI)(Ŝ, Λ) =
1

N

N
∑

q=1

φ(NMI)(Ŝ, Sq), (2.22)

where N is the number of human segmentations. The higher the ANMI value,

the better is the machine segmentation quality.

Unlike Rand index and other criteria such as conditional entropy [5] (that are

biased toward large k), NMI provides a measure that is impartial with respect

to k. It reaches its maximum value of one only when the two segmentations

have a perfect one-to-one correspondence [126]. However, NMI index under

some conditions is biased toward solutions that have the same number of

clusters as there are classes [39].

• F-measure: Since the BSDS data set provides multiple human segmentations

(binary boundary maps) for each image and simply unioning the humans

boundary maps is not effective because of the localization errors present in

the data set itself, Martin et al. [92] finesse this issue by corresponding the

machine boundary map separately with each human map in turn. Only those

machine boundary pixels that match no human boundary are counted as false

positives. The hit rate is simply averaged over the different humans, so that

to achieve perfect recall the machine boundary map must explain all of the

human data. In order to apply F-measure (defined in (2.8)) in this work, it

is needed to convert a labeled segmentation into a region boundary map. We

compute a binary boundary map with 1 pixel wide boundaries, where bound-

ary pixels are offset by 1/2 pixel towards the origin from the actual segment

boundary.

However, Martin et al. [92] note that computing the precision and recall of

a single thresholded machine boundary map given a single human boundary

map would not tolerate any localization error and would consequently over

penalize algorithms that generate usable, though slightly mislocalized bound-

aries. Furthermore, for a given matching of edge elements between two images,

it is possible to change the locations of the unmatched edges almost arbitrarily

and retrain the same precision and recall score.
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There are some situations that a boundary detection evaluation method is not

appropriate for a region segmentation, e.g., a missing pixel in the boundary be-

tween two regions may not be reflected in the boundary benchmark, but can have

substantial consequences for segmentation quality, namely, incorrectly merging two

large regions. It can also be argued that the boundary benchmark favors contour

detectors over segmentation methods, since the former are not burdened with the

constraint of producing closed curves. However, F-measure has been provided with

the benchmark dataset we used in our experiment. It is reasonable to report the

results on this measure so that it is possible to render comparison to other seg-

mentation algorithms and it does not ignore the principled design considerations

used in the Berkeley evaluation. For this reason, both region-based (NMI) and

boundary-based (F-measure) measures will be used to report the results.
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Chapter 3

Segmentation Ensemble

Framework

The concept of clustering ensemble combination is well known and widely accepted

in the area of pattern classification [81] and prototype learning [74]. The main

goal of clustering ensembles has been to improve the accuracy and robustness of

a given classification or clustering. We expect the similar advantages of ensemble

combination for the unsupervised image segmentation problem, namely, to combine

multiple imperfect segmentations produced from multiple sources of segmentations

into a single improved segmentation result. The solution achieved from combination

of segmentation ensemble should go beyond what is typically achieved by a single

segmentation algorithm in the following respects:

• Novelty : A combined solution should be unattainable by any single segmen-

tation algorithm.

• Accuracy : The quality of combination solution should be superior to the initial

segmentations or at least better than their average. Segmentation accuracy

can be objectively assessed by the use of ground truth (manual segmentation).

• Stability : A combined solution should be stable to changes of segmentation

algorithm parameters, especially, in a reasonable parameter subspace (i.e. a

lower and upper bound for each algorithm parameter is assumed to be known.).

Stability can be assessed from ensemble distribution.

• Robustness : A combined solution should be robust to small variations in an

input image, for example, due to noise or transformations.

29
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A segmentation algorithm that can yield these features will be a very useful and

predictable preprocessing step in a larger high-level computer vision system (e.g.

object recognition, image understanding, etc.).

3.1 Segmentation Ensemble Framework

Segmentation ensemble is a framework for building a robust segmentation from com-

bining different segmentation results given by individual segmentation algorithms.

Our segmentation ensemble combination framework is built in two steps:

1. Segmentation Ensemble Generation Step: This step is to generate initial differ-

ent multiple segmentations of the same image for combination procedure. Two

important aspects in building segmentation ensembles are diversity and accu-

racy of the ensemble. Fern and Brodley [39] showed that both the diversity

and quality of a cluster ensemble significantly impact what can be achieved

by combining the clusterings of the ensemble.

• Diversity of ensemble: Diversity of the initial segmentations is one of the

crucial factors to the success of segmentation ensemble combination, es-

pecially for improving segmentation quality [126]. Different segmenters1

may produce significantly different segmentations of the same image that

capture various distinct aspects of the data. Thus there could be a po-

tential for greater gains when combining the strengths of many individual

segmenters. On the other hand, different segmenters make different mis-

takes. The combination of them will compensate for their weaknesses.

It is intuitive that a combination of relatively identical segmentation so-

lutions would not achieve improved segmentation that outperforms the

individual ensemble members. Many generative procedures have been

proposed in order to achieve diversity in an ensemble, which will be de-

scribed later in this section.

• Strength of ensemble components : This raises questions of how to de-

sign the individual segmenters so that they form potentially an accurate

ensemble, and how weak could each input component is to ensure a suc-

cessful combination. From the supervised case, one can expect that using

1Segmenters may be versions of the same segmentation algorithm, or different segmentation

algorithms, or other methods that yield different segmentation results of the same image.
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Figure 3.1. Segmentation ensemble combination architecture. Given multiple segmenta-

tions γ(i) of an image X produced by variety of sources Ω(i). A goal is to compute a final

segmentation result γ which is superior to the initial segmentations.

many simple, but computationally inexpensive components will be pre-

ferred to combining segmentations obtained by sophisticated, but com-

putationally involved algorithms [128].

It is expected that the accuracy of the ensemble improves when a larger number

of input segmentations is given, provided that the segmentations are diverse.

However, studying diversity in segmentation ensembles, as well as clustering

ensembles, is relatively new area of unsupervised ensembles. The impact of

diversity and quality of the individual segmentation/clustering solutions on

the final ensemble performance has not been fully understood. The preferred

level of diversity (high, medium, or low) is under investigation by some re-

searchers [39, 55, 129]. Topchy et al. [129] shows that a consensus solution is

shown to converge to a true underlying clustering solution as the diversity in

the ensemble increases, while Hadjitodorov et al. [55] shows that in some cases

ensembles which exhibited a moderate level of diversity gave a more accurate

clustering. However, none of the literature on image segmentation combina-

tion proposed thus far concerns this issue. In Chapter 6 we will study the

interplay between accuracy and diversity of our segmentation ensemble and

their influence on segmentation combination performance.

Note that segmentation ensemble generation can be implemented and executed

in parallel to improve processing speed.

2. Segmentation Ensemble Combination Step: In order to find the final combined

segmentation, we need a combination algorithm (for which some literature on

pattern recognition and machine learning refer to as a consensus function)
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for utilizing information provided by multiple initial segmentations (which are

sometimes referred to as base partitions/clusterings). This step questions how

to best combine multiple input segmentations of an image to achieve a final

segmentation result which is superior to the initial segmentations. Similar to

traditional clustering combination problem, there are two difficult tasks which

are specific to the design of segmentation combination algorithm:

• Label correspondence: Due to unavailability of training data, there is no

explicit correspondence between the labels delivered by different parti-

tions. Different clusterings may produce incompatible data labeling, re-

sulting in intractable correspondence problems, especially when the num-

bers of clusters are different. For example, two identical partitions might

have permuted labels and be perceived as different. This problem must be

solved to obtain the same labeling of clusters throughout the ensembles

partitions. Some example approaches to solve the label correspondence

problem are following.

A direct re-labeling approach seeks correspondence between the cluster

labels across the partitions and fuses the clusters of the same label. As

an outcome of the re-labeling procedure, we can straightforwardly ap-

ply a voting scheme or standard clustering (combination) algorithms to

obtain the final combined results. Topchy et al. [130] use the Hungar-

ian algorithm for minimal weight bipartite matching problem in order to

re-label the partitions and a final consensus clustering was obtained by

standard clustering combination algorithms. Boulis and Ostendorf [9] use

Linear Programming to discover a correspondence between the labels of

the individual clusterings and those of an optimal meta-clustering.

A hypergraph approach transforms multiple partitions into a hypergraph

representation and uses methods for hypergraph partitioning to obtain

the ensemble result [79, 126].

A feature-based approach interprets a set of multiple partitions as a new

set of categorical features which are further standardized and transformed

to quantitative features regarding as intermediate feature space. Then,

the solution of combination can be approached by traditional clustering

algorithm (i.e., k-means) [128].

A co-association approach sidesteps the label correspondence problem by

mapping the clustering ensemble to a co-association matrix, where entries

can be interpreted as vote ratios on the pairwise cooccurrences between

all pairs of objects. A final consensus clustering can be extracted by ap-
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plying linkage-based clustering algorithms [44] or clustering combination

algorithm [140] on this matrix.

• Number of clusters: For most clustering problems there is little prior in-

formation (e.g., statistical models) available about the data. Thus, the

desired number of clusters is not known in advance and is often specified

by a human user. In case of clustering ensemble, we can obtain some in-

formation on how these objects (or pixels) should be clustered. Benefited

from this information, the combination algorithm will be able to settle

naturally the appropriate number of clusters underlying a clustering en-

semble. In fact, the right number of clusters in a dataset often depends on

the scale at which the data is inspected, and sometimes equally valid (but

substantially different) answers can be obtained for the same data [126].

In order to optimally combine segmentation ensemble in a fully automatic and

effective manner, we need to address this issue by formulating combination

algorithm that avoid an explicit solution to the correspondence problem and

include a mechanism to automatically determine the final number of regions

in combined segmentation result. One possibility is to compute an average, or

more formally generalized median [74] for a set of multiple segmentations.

Our segmentation combination framework can be summarized as shown in Fig-

ure 3.1.

The key feature of our framework is its generality. It is very important that the

proposed framework is not restricted to specific features or segmentation methods.

In our framework the combination procedure is designed to be independent from

the generative procedure. This allows the users to freely select different choices of

any image segmentation algorithm, even in very different method classes, without

the change in combination step. Moreover, this enables the combination procedure

to lend itself to a wide range of segmentation tasks, for example, regions in color or

texture images, surface patches in range images, etc.

In Chapter 4 we apply this framework for the tasks of multiple contour combina-

tion. In this task a special class of contours is considered, which start from the top,

pass each image row exactly once, and end in the last row of an image. Multiple

contours can be obtained by using different parameter values of the same contour

detection algorithm. Then, they will be combined by means of generalized median.

In Chapter 5 the framework is used to deal with the problem of multiple region-

based image segmentation combination. Fusion of multiple segmentations is achieved

by means of co-association approach. Multiple segmentations are then combined
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using our proposed combination algorithm which is based on a random walker al-

gorithm. In this task the generalized median concept is used as a tool for selecting

the best combination segmentation results (from a set of segmentation results with

different number of regions), which is an implicit way to automatically determine

the final number of regions.

There are several generative procedures for generating multiple region-based

segmentations of the same image: 1) perturbing the data, such as sampling tech-

niques [79] and bagging [41], 2) employing different image features [61], 3) computing

a segmentation algorithm on different random image sites [116], 4) merging superpix-

els by varying the number of segments and initializations of a multiple segmentation

algorithm [62], 5) using different segmentation algorithms [3, 141] or 6) using the

same segmentation algorithm but different parameter values [88, 117, 139]. The

experiments reported in Chapter 6 demonstrate a variety of generative procedures,

where a segmentation ensemble is generated by using different parameter values

of the same segmentation algorithm, using different segmentation algorithms, and

using the same segmentation algorithm with fixed parameter values on different

transformations of an input image.

3.2 Means for Combining Segmentation Ensem-

ble

In this section we present a brief overview of a variety of combination methods.

Firstly, we propose the concept of generalized median as a tool for combining multi-

ple segmentations. Then, some powerful combination methods proposed in machine

learning and pattern recognition literatures are reviewed. The advantages and limi-

tations of these methods for applying in segmentation combination problem are also

discussed.

3.2.1 Combination by Median Concept

The concept of generalized median strings can be applied to compute average con-

tours if contours are represented by strings [76]. This is useful for object prototype

learning. In Chapter 4 a special class of contours is considered, which start from the

top, pass each image row exactly once, and end in the last row of an image. Despite

of their simplicity they frequently occur in many applications of image analysis. A

dynamic programming algorithm with O(Nmn) time and O(mn) space is designed,
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where N images of size m × n are assumed. Recently, this algorithm has been ex-

tended to one of expectation-maximization type for handling the case, where the

input contours are subject to a varying (unknown) horizontal displacement [17].

Chapter 5 mentions the median segmentation optimization function which is

used to select the best segmentation from a set of combination segmentations with

different number k of regions. In some sense this approach can be regarded as an

approximation of generalized median segmentation by investigating the subspace

of U (all possible segmentations of an image), which consists of the combination

segmentations for the considered range of k.

3.2.2 Clustering Ensemble Techniques

There are a number of existing techniques that manipulate the clustering ensemble.

We may consider an image segmentation as a clustering of pixels and apply some

clustering combination algorithm for the segmentation combination purpose. How-

ever, standard clustering combination algorithms each have significant theoretical

and practical limitations that make them unsuitable for the purpose of segmentation

combination.

A well-known clustering combination strategy is graph-based partitioning ap-

proach introduced by Strehl and Ghosh [126]. They proposed three efficient heuris-

tic consensus algorithms: 1) the Cluster based Similarity Partitioning Algorithm

(CSPA) which induces a graph from a coassociation matrix and clusters it using the

METIS algorithm. 2) the Hypergraph Partitioning Algorithm (HGPA) which repre-

sents each cluster by a hyperedge in a graph where the nodes correspond to a given

set of objects. Good hypergraph partitions are found using minimal cut algorithms

such as HMETIS coupled with the proper objective functions, which also control

partition size. 3) Hyperedge collapsing operations are considered in another hyper-

graph based Meta Clustering Algorithm (MCLA). These graph-based partitioning

methods have been used for combining multiple image segmentations by many re-

searchers [15, 79, 87]. Although these graph-based methods are successful in several

cluster ensemble applications, it lacks the ability of clustering the data with highly

unbalanced clusters [126], which sometimes encountered in image data.

Another graph-based method is Hybrid Bipartite Graph Formulation (HBGF)

proposed by Fern and Brodley [40]. It constructs a bipartite graph from a set of

partitions to be combined, modeling objects and clusters simultaneously as vertices,

and later partitioning the graph by a traditional graph partitioning technique. The

implementation of this method is quite complicated.
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Another well-known clustering combination strategy is coassociation-based algo-

rithms proposed by Fred and Jain [44]. It is based on the idea of evidence accumula-

tion by considering each partition as an independent evidence of data organization.

Individual data partitions are combined based on a voting mechanism to generate

a new n × n similarity matrix for n patterns. The final data partition of the n pat-

terns is obtained by applying a hierarchical agglomerative clustering algorithm on

this matrix. The method has shown its power in combining clusters in real datasets.

Unfortunately, its computational and storage complexity scale quadratically with

the number of pixels. Increasing the image size would lead to computationally in-

feasible situation.

Another voting-based algorithm was proposed by Fischer and Buhmann [41]

called path-based clustering. They introduced a cost function with an explicit bias

for chained structures, where an agglomerative algorithm is used for optimization.

Agglomerative optimization has a low running time, however, it is more sensitive to

small fluctuations in the data. Thus, a bootstrap resampling method is proposed

to compensate this effect such that a data clustering method can extract structures

from data in a noise robust way. The quality of path-based clustering with resam-

pling is evaluated through an image segmentation application. However, this voting

consensus algorithm assumes that each partition of the ensemble has the same num-

ber of clusters, which is equal to the target number of clusters in the consensus

clustering, resulting in a limitation of the applications of this algorithm on diverse

cluster ensembles (i.e. clustering with randomly selected number of clusters).

In general, it is not suitable to mechanically apply the combination algorithms

from general clustering domain to segmentation domain. General clustering meth-

ods are global and do not retain positional information. The major drawback of this

is that it is invariant to spatial rearrangement of the pixels, which is an important

aspect of what is meant by segmentation. Resulting segments can be widely scat-

tered, resulting in the need of post-processing step. More detailed reviews of the

clustering combination algorithms for clustering general data can be found in the

introductory sections of several papers in this area [6, 40, 41, 44, 53].

3.3 Applications of Segmentation Ensemble Com-

bination

Segmentation ensemble combination provides a general framework for dealing with

a variety of segmentation problems in various settings. In this section we present
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some of the main applications of segmentation ensemble combinations to alleviate

some hard problems in image segmentation.

Exploring Parameter Space without Ground Truth: The most disadvantage of

image segmentation algorithms is their sensitivity to parameter settings and their

optimal setting is not a trivial task. In Chapter 7 we propose to apply the multiple

segmentation combination for dealing with the difficult problem of parameter selec-

tion without ground truth segmentation. It is assumed that we know a reasonable

subspace of the parameter space (i.e. a lower and upper bound for each parameter),

which is sampled into a finite number N of parameter settings. Then, we run the

segmentation procedure for all the N parameter settings and compute a final com-

bined segmentation of the N segmentations. The rationale behind our approach

is that this segmentation tends to be a good one within the explored parameter

subspace, given the fact that we do not know the optimal parameter setting for a

particular image in advance.

Multiple Segmenter Combination: Different segmentation algorithms have differ-

ent performance and different shortcomings. Some algorithms might perform well

in specific images but not in others. Furthermore, it is not easy to know the opti-

mal algorithm for one particular image. We postulate: Instead of looking for the

best segmenter which is hardly possible on a per-image basis, now we look for the

best segmenter combiner. The rationale behind this idea is that while none of the

segmentation algorithms is likely to segment an image correctly, we may benefit

from combining the strengths of multiple segmenters. This idea has been utilized to

enhance the quality of segmentation results in many works [3, 77, 141]. Similarly,

we may compute a single representative from multiple manually specified ground

truth segmentations [138]. The application of combining multiple segmenters is also

illustrated in Chapter 6

Instability of Segmentation Algorithms : The region growing paradigm is one of

the most widely used techniques for image segmentation. It is shown that within

a small parameter range, which leads to good segmentation results in the majority

of cases, remarkably bad segmentation results may occur. Franek and Jiang [43]

have empirically analyzed the frequency of such instabilities on natural images of

BSDS data set [90] and proposed to solve this stability problem by computing the

set median of a set of segmentations within a specific parameter subspace of interest.

In the majority of cases the computation of set median avoids outliers and achieves

robustness. In Chapter 8 we propose the use of generalized median as an alternative

way to solve this problem. The generalized median of a set of segmentations is

computed by applying our segmentation combination algorithm.
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Multiple Feature Set Integration: A single segmentation strategy with a single

feature set often does not comprehensively capture the large degree of variability and

complexity encountered in many application domains. Combination approach can

overcome this problem by acquiring multiple-source information through multiple

features extracted from multiple processes. Hayman and Eklundh [61] propose two

techniques for fusing the output of multiple cues (i.e., motion, colour, contrast and

prediction) to robustly and accurately segment foreground objects from the back-

ground on video sequences. The first method is based on Baysian approach where

the likelihood of observations over all cues at each pixel is computed before assigning

a membership to a pixel. The second method allows each cue to make a decision

independent of each other before fusing their outputs using weighted voting scheme.
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Contour Detection
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Chapter 4

Multiple Contour Combination

The ability to find the average of a set of contours has several applications in com-

puter vision including prototype formation and computational atlases. While con-

tour averaging can be handled in an informal manner, the formal formulation within

the framework of generalized median as an optimization problem is attractive. In

this chapter we will follow this line. A special class of contours is considered, which

start from the top, pass each image row exactly once, and end in the last row of an

image. Despite of the simplicity they frequently occur in many applications of im-

age analysis. We propose a dynamic programming approach to exactly compute the

generalized median contour in this domain. Experimental results will be reported

on two scenarios to demonstrate the usefulness of the concept of generalized median

contours. In the first case we postulate a general approach to implicitly explore the

parameter space of a (segmentation) algorithm. It is shown that using the gener-

alized median contour, we are able to achieve contour detection results comparable

to those from explicitly training the parameters based on known ground truth. As

another application we apply the exact median contour to verify the tightness of a

lower bound for generalized median problems in metric space.

4.1 Problem Definition

While contour averaging can be handled in an informal manner as done in [14,

119], the formal formulation within the framework of generalized median as an

optimization problem is attractive. This concept has been successfully applied to

strings [69, 85] and graphs [74] in structured pattern recognition. In this work a

special class of contours is considered, which start from the top, pass each image
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row exactly once, and end in the last row of an image. If a contour is coded by a

string, then the same procedure can be adapted to averaging contours [69]. However,

this general approach suffers from high computational complexity. It is proved in [27]

that computing the generalized median string is NP-hard. Sim and Park [122] proved

that the problem is NP-hard for finite alphabet and for a metric distance matrix.

Another result comes from computational biology. The optimal evolutionary tree

problem there turns out to be equivalent to the problem of computing generalized

median strings if the tree structure is a star (a tree with n+1 nodes, n of them being

leaves). In [137] it is proved that in this particular case the optimal evolutionary

tree problem is NP-hard. The distance function used is problem dependent and

does not even satisfy the triangle inequality. All these theoretical results indicate

the inherent difficulty in finding generalized median strings, or equivalently the

generalized median contours. Not surprisingly, researchers make use of domain-

specific knowledge to reduce the complexity [85] or resort to approximate approaches

[69].

4.2 Related Work

Chalana and Kim [14] used the average of the multiple observers’ curves to establish

a gold-standard contour for evaluating boundary detection algorithms on medical

images. Their contour averaging procedure is based on establishing one-to-one cor-

respondence between the points constituting two or more curves. A point on the

average curve is given by the centroid of these corresponding points along the curve.

Then, for each point on the average curve, a normal to the curve at that point is

drawn and the intersection of this normal with each of the input curves is deter-

mined. These points of intersection define another set of correspondence between

the input curves. This new correspondence is averaged again to give a new average

curve. The process is iterated until the average curve does not change any more.

However, the average distance between two curves, computed this way, is not a

metric (it does not satisfy the triangle inequality).

Another approach of contour averaging was proposed by Sebastian and Kimia

[119]. An average of a set of curves is computed by averaging the intrinsic properties

(namely, length and curvature) of the corresponding curve subsegment. The optimal

correspondence is found by an efficient dynamic-programming method for aligning

pairs of curve segments.

In this work we consider a special class of contours for which the generalized
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median can be found by an efficient algorithm based on dynamic programming. We

first motivate our work by giving some background information about this class

of contours in Section 4.3. Then, the algorithm for finding the exact solution is

described in Section 4.4. In Section 4.5 and 4.6 we describe two applications of gen-

eralized median computation: exploring the parameter space of a contour detection

algorithm and tightness evaluation of a lower bound of generalized median problems

in metric space. Finally, some discussions conclude the chapter.

4.3 Class of Contours

The class of contours considered in this work is defined as follows:

Definition 4.1 For a given M×N image a contour C = p1p2, . . . , pM is a sequence

of points drawn from the top to the bottom,where pi, i = 1, . . . ,M , is a point in the

i-th row. The points pi and pi+1, i = 1, . . . ,M − 1, of two successive rows are

continuous.

These contours start from the top, pass each image row exactly once, and end in

the last row.

At the first glance the question may arise why such simple contours are of use

in practice. Some thoughts, however, reveal that there do exist several situations,

where we are directly or indirectly faced with this class of contours. In medical

imaging it is typical for the user to specify some region of interest (ROI) and then

to find some contours within the ROI. As an example, Figure 4.1 shows a ROI in a

CCA (Common Carotid Artery) B-mode sonographic image. The task is to detect

the layer of intima and adventitia for computing the intima-media thickness which is

an important index in modern medicine. Details of this application and an algorithm

for automatic layer detection can be found in [17]. Essential to the current work is

the fact that both the intimal layer and the adventitial layer are examples of the

contour class defined above (although we have to rotate the image by 90 degrees).

This application reflects a typical situation in medical image analysis. The same

fundamental principle can be extended to deal with closed contours. For this purpose

we need a point p in the interior of the contour. Then, a polar transformation

with p being the central point brings the original image into a matrix, in which a

closed contour becomes a contour from top to bottom afterwards. Note that this

technique works well for all star-shaped contours including convex contours as a

special case. As an example, Figure 4.2 shows a problem of eye contour detection
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Figure 4.1. ROI in a CCA B-mode sonographic image (left) and detected layer of intima

and adventitia (right).

(a) (b) (c) (d)

Figure 4.2. Detection of closed contour: (a) input image; (b) removal of iris; (c) detection

of eye contour; (d) strabismus simulation.

taken from [75]. In the image after removal of iris, the eye contour is detected as a

closed contour based on the interior reflection point. The polar space representation

related to Figure 4.2(b) can be seen in Figure 4.3(a) where the intensity is replaced

by a measure of edge magnitude. In this space we are faced with the same contour

detection problem as in Figure 4.1. The result is shown in Figure 4.3(b) and Figure

4.2(c) after projecting back into the image space. The task in this application is

then to simulate strabismus by replacing the iris. The eye contour serves to restrict

the region, within which the newly positioned iris lies. For (almost) convex contours

the selection of the origin of polar space is not critical. In the general case of star-

shaped contours, however, it must be chosen within the area, in which the complete

contour can be seen.

The two situations above and others appear in a variety of applications. They

indicate the broad applicability of the class of contours considered in this paper and

thus justify to investigate them in their own right.

The concept of generalized median in (2.1) can be easily adapted to our domain

by specifying a distance function between two contours. Since each point pi of a

contour P = p1p2, . . . , pM has a constant y-coordinate i, we use pi to represent its

x-coordinate only in the following in order to simplify the notation. Given this

convention, the distance between two contours P and Q can be defined by the k-th

power of the Minkowski distance:

d(P,Q) =
M
∑

i=1

|pi − qi|
k (4.1)
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(a)

(b)

Figure 4.3. Polar space for contour detection: (a) polar space; (b) optimal path.

In this case the representation space U contains all continuous contours from top to

bottom of an input M × N image.

4.4 Algorithm: Computation of Generalized Me-

dian Contours

Given n contours C1, C2, . . . , Cn, the task is to determine a contour C such that the

sum of distances between C and all input contours is minimized. It is important to

notice that we cannot solve this problem of generalized median contours by comput-

ing the optimal value for each of the M rows independently, which could be done, for

instance, by enumerating all possibilities between the leftmost and rightmost point

in the row. Doing it this way, we encounter the trouble of generating a discontinuous

resultant contour.

Our proposed method is formulated as a problem of finding an optimal path in a

graph based on dynamic programming. We first generate a two-dimensional M ×N

cost matrix of the same size as the image, in which every element corresponds to

an image point. Each element is assigned a Local Goodness value, which measures

its suitability of being a candidate point on the generalized median contour we are

looking for. According to the distance given in (4.1) the Local Goodness value is

simply:

Local Goodness(i, j) =
n

∑

l=1

|xli − j|k , 1 ≤ i ≤ M, 1 ≤ j ≤ N

where xli represents the x-coordinate of the l-th contour Cl in i-th row. Generally,

small Local Goodness values indicate better candidates. As a matter of fact, the

optimality of a candidate for C is measured by the sum of its Local Goodness values

over all image rows.
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Dynamic programming is applied to search for an optimal path in a cumulative

cost matrix CC. The cumulative cost of a node (i, j) is computed as:

CC(i, j) = min
l=−1,0,1

{CC(i − 1, j + l)} + Local Goodness(i, j) (4.2)

for 2 ≤ i ≤ M, 1 ≤ j ≤ N . This means that a contour point (i, j) has three

potential predecessors (i− 1, j − 1), (i− 1, j), (i− 1, j + 1) in the previous row. In

addition, the choice of a transition from a point in i-th row to a predecessor in the

(i− 1)-th row is made based on the lowest cumulative cost of the predecessors. The

computation of CC starts by initializing the first row by:

CC(1, j) = Local Goodness(1, j), 1 ≤ j ≤ N

Then, the cumulative cost matrix CC is filled row by row from left to right by using

(4.2).

The node in the last row of matrix CC with the lowest value gives us the last

point of the optimum path. To determine this path, a matrix of pointers is created at

the time of computing the matrix CC. The optimum path, which corresponds to the

generalized median contour, is determined by starting at the last point and following

the pointers back to the first row. Using this dynamic programming technique, we

are able to compute the generalized median contour exactly. An overview of the

proposed algorithm is shown in Figure 4.4.

The computational complexity of the algorithm amounts to O(MNn) while

O(MN) space is required. Note that the search space of dynamic programming

can be substantially reduced. For each row we only need to consider the range

bounded by the leftmost and rightmost point from all input contours in that row.

The size of this reduced search space depends on the variation of input data. The

less variation of the input data, the more the reduction effect. Most likely, this

reduction results in a computational complexity of O(Mn) only. The proposed al-

gorithm was implemented in Matlab on a Pentium IV 2.1 GHz PC. As an example,

the computation time for 250 input contours of 105 points each with 0.00 standard

deviation in the input data is 10 milliseconds. At an increased level of data variation

of 81.74 standard deviation, 90 milliseconds were recorded. We can conclude that

the dynamic programming approach delivers an efficient way of exactly computing

the generalized median of contours.
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Figure 4.4. Overview of the proposed algorithm for computing the generalized median

contours.

4.5 Application I: Parameter Selection Problem

4.5.1 Test images and contour data

In Section 4.5 and 4.6 we report some results to illustrate two applications of the

concept of generalized median contours. The contour data used in both applications

are based on CCA B-mode sonographic images [17]. An image dataset was estab-

lished which consists of 23 such images of 105 columns each. They are actually ROI

cut out of larger images. Each image contains two contours of interest: intima (y1)

and adventitia (y2). Both contours run from left to right of an image. If we turn

the images by 90 degrees, then we are faced with the problem of optimally masking

the two contours of length 105 each from top to bottom.

Each image has its ground truth contours manually specified by an experienced

physician. This information is used for an objective, quantitative comparison with

automatic detection results. The similarity measure is simply the distance function

in (4.1). In all our tests we have fixed k of the distance function to k = 1.
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4.5.2 Exploring parameter space without ground truth

Segmentation algorithms mostly have some parameters and their optimal setting is

not a trivial task. In recent years automatic parameter training has become popular.

Typically, a training image set with (manual) ground truth segmentation is assumed

to be available. Then, a subspace of the parameter space is explored to find out

the best parameter setting. For each parameter setting candidate a performance

measure is computed in the following way:

• Segment each image of the training set based on the parameter setting;

• Compute a performance measure by comparing the segmentation result and

the corresponding ground truth;

• Compute the average performance measure over all images of the training set.

The optimal parameter setting is given by the one with the largest average per-

formance measure. Since fully exploring the subspace can be very costly, space

subsampling [97] or genetic search [22] has been proposed.

While this approach is reasonable and has been successfully practiced in several

applications, its fundamental disadvantage is the assumption of ground truth seg-

mentation. The manual generation of ground truth is always painful and thus a

main barrier of wide use in many situations.

We propose to apply the concept of generalized median for implicitly exploring

the parameter space without the need of ground truth segmentation. It is assumed

that we know a reasonable subspace of the parameter space (i.e. a lower and upper

bound for each parameter), which is sampled into a finite number M of parameter

settings. Then, we run the segmentation procedure for all the M parameter settings

and compute the generalized median of the M segmentation results. The rationale

behind our approach is that the median segmentation tends to be a good one within

the explored parameter subspace.

This idea has been verified on the database described above within the contour

detection algorithm [17]. It has two parameters and a reasonable parameter subspace

is divided into 250 samples. The database is partitioned into a training set of

10 images and a test set of 13 images. The training set is then used to find the

optimal parameter setting among the 250 candidates, which is applied to the test

set. The average performance measure over the 13 test images is listed in Table 4.1.

Note that the testing procedure is repeated 5 times for different partitions of the
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Table 4.1. Performance measures of parameter training and generalized median (GM)

approaches on 5 test sets.

y1 (intima) y2 (adventitia)

Test set Parameter training GM Parameter training GM

1 48.98 49.77 60.59 50.18

2 48.68 49.37 53.56 52.82

3 51.09 51.16 51.79 51.26

4 49.90 50.66 46.83 47.08

5 46.53 46.53 50.03 48.07

average 49.04 49.50 52.56 49.88

23 images into training and test set. On the other hand, the generalized median

approach has no knowledge of the ground truth segmentation. It simply detects 250

contours and computes their generalized median. The average performance measure

of the 13 generalized median contours in the test set as shown in Table 4.1 indicates

that basically no real performance differences exist between these two approaches.

Without using any ground truth information, the generalized median technique is

able to produce contours of essentially identical quality as the training approach.

4.6 Application II: Verification of Optimal Lower

Bound for Generalized Median Problems in

Metric Space

The computation of generalized median patterns is typically an NP-complete task.

Therefore, research efforts are focused on approximate approaches. One essential

aspect in this context is the assessment of the quality of the computed approximate

solutions. Since the true optimum is unknown, the quality assessment is not trivial

in general. A recent work [72] presented the lower bound for this purpose.

Referring to the notation in (2.1), an approximate computation method gives us

a solution C̃ such that

SOD(C̃) =
n

∑

i=1

d(C̃, Ci) ≥
n

∑

i=1

d(C,Ci) = SOD(C)

where SOD stands for sum of distances and C represents the (unknown) true general-

ized median. The quality of C̃ can be measured by the difference SOD(C̃)−SOD(C).

Since C and thus SOD(C) are unknown in general, we resort to a lower bound
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Figure 4.5. Tightness of lower bound Γ for 50 y1 contours (intima, left) and 50 y2 contours

(adventitia, right) contours for all 23 images.

Γ ≤ SOD(C) and measure the quality of C̃ by SOD(C̃)−Γ. Note that the relation-

ship

0 ≤ Γ ≤ SOD(C) ≤ SOD(C̃)

holds. Obviously, Γ = 0 is a trivial, and also useless, lower bound. We require Γ to

be as close to SOD(C) as possible. This tightness can be quantified by SOD(C)−Γ

with a value zero for the ideal case. In [72] the tightness of the lower bound has been

tested in the domain of strings and graphs. Since the computation of generalized

strings and graphs is exponential, only approximate solutions have been considered

there.

Ideally, the tightness should be investigated in domains where we know the true

generalized median. The current work provides us a means of validating the tightness

under ideal conditions. For this purpose we sampled 50 parameter settings of the

parameter subspace1. For each image, we thus compute 50 contours and afterwards

their exact generalized median C by the dynamic programming technique proposed

in this paper. In Figure 4.5 both the lower bound Γ and SOD(C) for all 23 images are

plotted. Obviously, these two values are so similar that no difference is visible. This

is clearly a sign of good tightness of the lower bound Γ. Although this statement is

made for the particular case of contours, it builds a piece of the mosaic of validating

the tightness in many problem spaces.

1The reason for selecting only 50 instead of 250 as in other experiments lies in the high com-

putation time and space requirement of the lower bound computation which is based on linear

programming.
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4.7 Discussion and Conclusions

In this paper we have considered a special class of contours which start from the

top, pass each image row exactly once, and end in the last row of an image. Despite

of the simplicity they frequently occur in many applications of image analysis. We

have proposed a dynamic programming approach to exactly compute the generalized

median contour in this domain.

Experimental results have been reported on two scenarios, in which the concept

of generalized median plays a very different role. In the first case we have postulated

a general approach to implicitly explore the parameter space of a (segmentation)

algorithm. It was shown that using the generalized median contour, we are able

to achieve contour detection results comparable to those from explicitly training

the parameters using a training set with known ground truth. This performance is

remarkable and should be further investigated in other contexts.

Having a generalized median problem with exact solution is interesting in its own

right for the specific problem domain. From a more general point of view, the exact

solution gives us a means to verify the tightness of the lower bound for generalized

median computation under ideal conditions. We have performed the verification

which shows the high tightness. As part of our efforts in verifying the tightness of

the lower bound using a variety of generalized median problems with exact solution,

the current work represents a valuable contribution.
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Region-Based Image Segmentation
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Chapter 5

Multiple Image Segmentation

Combination

Image segmentation is known to be unstable, strongly affected by small image per-

turbations, feature choices, or different segmentation algorithms [104]. This insta-

bility has led towards combining multiple segmentations that take advantage of the

complementary nature of several segmentations. In this chapter we present an al-

gorithm for combining multiple region-based image segmentations to achieve a final

improved segmentation. In contrast to previous works we consider the most general

class of segmentation combination, i.e. each input segmentation can have an arbi-

trary number of regions. Our algorithm is based on a random walker segmentation

algorithm which is able to provide high-quality segmentation starting from manually

specified seeds. We automatically generate such seeds from an input segmentation

ensemble.

In the previous chapter the generalized median concept has been used for com-

puting the average of a set of contours. In this chapter it is used as a criterion for

(indirectly) determining the number of regions in a final combined segmentation re-

sult. We demonstrate the effectiveness of this generalized median based criterion by

comparing it with three alternative criteria for determining the number of regions.

Extensive experiments with these criteria indicate that the generalized median con-

cept is capable of selecting the optimal combined segmentation results.

55



56 Chapter 5. Multiple Image Segmentation Combination

5.1 Related Work

Unsupervised image segmentation is of essential relevance for many computer vision

applications and remains a difficult task despite of decades of intensive research, for

example, segmentation algorithms mostly have some parameters and theirs optimal

setting is a non-trivial task. Moreover, there exists no universal segmentation algo-

rithm that can successfully segment all images. It is not easy to know the optimal

algorithm for one particular image. Recently, researchers start to investigate com-

bination of multiple segmentations of the same image in order to improve segmen-

tation accuracy over the individual input segmentations. Several works in medical

image analysis consider segmenting an image into a known number of semantic la-

bels [63, 115, 138]. Typically, such algorithms are based on local (i.e. pixel-wise)

decision fusion schemes such as voting. Alternatively, a shape-based averaging is

proposed in [114] to combine multiple segmentations.

The works [3, 15, 41, 77, 79, 87] deal with the general segmentation problem.

They consider an image segmentation as a clustering of pixels and apply a standard

clustering combination algorithm for the segmentation combination purpose. The

authors of [15, 79, 87] applied the graph-based clustering combination algorithms

proposed by Strehl and Ghosh [126] as a consensus function. The main difference

between them lies in the way they generate the input segmentations: Keuchel and

Küttel [79] used probabilistic sampling method to obtain a fast segmentation of the

image by approximating the solution of the convex relaxation method, Chang et

al. [15] used k-means algorithm with random initial cluster centroids, and Ma et

al. [87] used spectral clustering with randomly selected value of kernel parameter

in an appropriate range. A more recent work of [15] included texture informa-

tion as another constraint on scale-invariant feature transformation [16]. In [77] a

greedy algorithm finds the matching between the regions from the input segmenta-

tions which build the basis for the combination. Fischer and Buhmann [41] used

bagging (or bootstrap aggregating) with path-based clustering to address the ro-

bustness issue. They proposed a direct re-labeling approach to obtain a consensus

partition from clusterings of multiple bootstrap samples. They selected a relabeling

out of all k! permutations for a clustering, such that it maximizes the sum over the

empirical cluster assignment probabilities estimated from previous mappings, over

all objects of the new mapping configuration. Although this approach has demon-

strated impressive results for image segmentation, an exhaustive experiment might

not be feasible for large k. Another segmentation combination method, that is based

on voting scheme, is proposed by Aljahdali and Zanaty [3]. This work is different

from the above works in that they combined multiple segmentations produced from
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different segmentation techniques (i.e. Histogram thresholding, Region growing, k-

means, Fuzzy c-means, and Kernelized fuzzy c-means), while the above works used

the same clustering methods to generate an ensemble.

Another purpose of exploiting the advantages of combination approach is to com-

bine multiple sets of image features. Recent efforts in this direction include work by

Hayman and Eklundh [61] and Haindl and Mikes [56]. The work [56] exploits the

advantages of combination approach by combining several unsupervised segmenters

of the same type but with different feature sets. Multiple segmentation results are

combined by using the sum rule. The most recent version of this work presented

in [57] with the modification of the sum rule which yields a significant improve-

ment over their previous version. Hayman and Eklundh [61] presented two different

methods: the voting and probabilistic fusion schemes, for combining segmentation

results computed by multiple segmentation algorithms using each individual cue (i.e.

motion, color, texture, and prediction).

However, these works still assume that all input segmentations contain the same

number of regions, as well as in the combined segmentation. Moreover, these ap-

proaches are either restricted to specific base image segmentation methods or re-

stricted to specific image domains. Our work is not limited to these restrictions and

we consider the most general case (i.e. an arbitrary number of regions per segmen-

tation, independent of base image segmentation methods, and independent of image

domain).

Recently, several interesting works have made a clever use of multiple segmenta-

tions for achieving other various objectives. These works leverage the use of multiple

segmentations as pre-processing step in high-level computer vision applications to

avoid the risky commitment to a single segmentation which might be of rather poor

quality. The key motivation of these works is that some segments appear to be

fine in some segmentations and the synergy of many such segments (from differ-

ent multiple segmentations) would compensate for their weakness. For example,

Hoiem et al. [62] make use of multiple segmentations to obtain robust spatial sup-

port using in geometric class learning for recovering surface layout of a scene. The

other works make use of multiple segmentations to obtain spatial support for ob-

jects, which is used as an additional features to improve the performance of many

computer vision applications such as automatically discovering objects categories in

image collections [49, 50, 109, 110, 117], image auto-annotation [127], and object

recognition system [88, 104, 116]. Malisiewicz and Efros [88] demonstrated that

multiple segmentations substantially improve spatial support estimation for objects

compared to a single segmentation, and correct spatial support leads to substantially
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better recognition performance. However, our approach differs from these ones in

that these works treat multiple segmentations from an image as hypotheses for spa-

tial/object support rather than a full segmentation combination of the image which

is considered in this work.

Our proposed multiple segmentation combination algorithm is based on coas-

sociation values and a random walker algorithm for image segmentation [54]. The

coassociation values are one of the key successes of our algorithm. They provide the

necessary guidelines for seed localization, which is used to bound a random walker,

and provides the necessary information for biasing a random walker. In summary,

the starting point of our algorithm is a graph G, whose edge weights contain the

coassociation values indicating how probably a pair of neighboring pixels xi and xj

belong to the same image region. Once the graph G is defined, seed pixels required

for establishing a random walker algorithm can be automatically located. Finally,

given such graph G and seeds, the random walker algorithm is proceeded to achieve

a quality final segmentation.

In the next section, we first briefly describe a random walker algorithm for image

segmentation, which is a basis of our combination algorithm. We then present

our novel multiple segmentation combination algorithm in Section 5.3, followed by

some algorithm discussions in Section 5.4. In Section 5.5, we present the optimality

criteria based on the generalized median concept for determining the final number

of region in a combination result, together with other three alternative criteria.

The experimental results on natural scene images to verify the proposed criteria are

reported in Section 5.6, and finally, some discussions conclude the chapter.

5.2 Random Walker Based Segmentation Algo-

rithm

Our multiple segmentation combination algorithm was developed based on the ran-

dom walker algorithm for image segmentation introduced by Grady [54]. There

are a number of reasons for choosing this algorithm. Firstly, there exists a natural

link between this algorithm and our problem (which will be described later in this

section). Secondly, the algorithm requires a low computational time and memory

which prevents us from scaling problem when the size of an ensemble and an image

are increased. Lastly, the formulation of the algorithm is well-defined and can be

easily modified. In the following, the formulation and the basic idea of the random

walker algorithm for image segmentation are reviewed. The detail of our multiple
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segmentation combination algorithm will be presented in the next section.

The random walker algorithm [54] is formulated in discrete space (i.e. on a

graph) and developed along with the corresponding connections to discrete potential

theory and electrical circuits. The algorithm functions by starting with k sets of pre-

labeled pixels (called seeds) indicating k regions of the input image and then labeling

an unseeded pixel by solving the question: Given a random walker starting at this

unseeded pixel, what is the probability that it first reaches each of the k seed points?

Finally, the label of the unseeded pixel is derived from these probabilities by selecting

the most probable seed destination for a random walker. Connections between

random walkes on graphs and discrete potential theory provide a simple, convenient

method for exactly computing the desired random walker probabilities (without the

simulation of a random walk) by simply solving a sparse, symmetric positive-definite

system of linear equations that corresponds to a combinatorial analog of the Dirichlet

problem. Figure 5.1 (taken from [54]) illustrates the approach to segmentation of

a 4 × 4 graph with unit weights in the presence of three seeds representing three

different labels (denoted L1, L2, L3). The algorithm alternately fixes the potential

of each label to unity (i.e. with a voltage source tied to ground) and set to zero

(i.e. ground) the remaining nodes. The electric potentials calculated represent the

probability that a random walker starting at each node first reaches the seed point

currently set to unity. For illustration, all the weights (resistors) were set to unity.

In the case of an image, these resistors would be a function of the intensity gradient.

The random walker algorithm for image segmentation [54] is formulated on an

undirected weight graph G = (V , E , w), where a vertice vi ∈ V corresponds to a

pixel xi in an image and an edge eij ∈ E connects a pair of neighboring pixels in

4-neighborhood. Associated with each eij, there is a weight wij = wij > 0 which

indicates the similarity between two adjacent pixels xi and xj. A weight wij is

fundamental to the random walker algorithm, corresponding to the likelihood that

a random walker will move along an edge. For an example of intensity image, edge

weights can be defined as a function that maps a change in image intensities and

bias the random walker to avoid crossing sharp intensity gradients. Then, a quality

segmentation that respects object boundaries is obtained. The term pixel and node

will be used interchangeably throughout this chapter where pixel refer to a basic

element of an image and node will be used in the context of graph.

The random walker algorithm [54] begins with manually identifying k seeds (or

pre-labeled pixels), indicating k regions of an input image. Seed can be a single

pixel or a set of pixels. Seed of the same label can be placed on multiple locations of

corresponding image region. Then, the algorithm labels unseeded pixels by resolving
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(a) Seed points with segmentation (b) Probability that a random

walker starting from each node

first reaches seed L1

(c) Probability that a random

walker starting from each node

first reaches seed L2

(d) Probability that a random

walker starting from each node

first reaches seed

Figure 5.1. Illustrate of the approach to segmentation (taken from [54]). (a) The initial

seed points and the segmentation resulting from assigning each node the label that corre-

sponds to its greatest probability. (b)-(d) Probability that a random walker starting from

each node first reaches seed L1, L2 and L3, respectively.

the probability that a random walker starting from each unseeded pixel will first

reach each of the k seed points. A final segmentation is derived by selecting for

each pixel the most probable seed destination for the random walker. Note that the

probabilities at each node sum to unity. The random walker algorithm for image

segmentation is summarized in Algorithm 5.1.

In principle there exists a natural link of our problem at hand to the random

walker based image segmentation. The consensus among the different initial seg-

mentations provides strong hints about where to automatically place some seeds.

Given such seed regions and an appropriate edge weight function, we are then faced

with the same situation as image segmentation with manually specified seeds and

can thus apply the random walker algorithm [54] to achieve a quality final segmen-

tation.
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Algorithm 5.1 A Random Walker Algorithm for Image Segmentation

Input: an image I

a set, VM , of marked pixels (seeds) with k labels, specify k regions in the

desired segmentation result.
Output:a segmentation of I into k regions, S = {s1, s2, ..., sk}.

1. map the image intensities (or texture information, filter coefficients or other

image features) to edge weights in the lattice G = (V, E , w)
2. perform a random walker algorithm

2.1 assign a k-tuple vector to each pixel that specifies the probability that a

random walker starting from each unseeded pixel will first reach each of the

k seed points.
2.2 calculate the random walker probabilities for each unseeded pixel by solving

the Dirichlet problem (by means of a sparse, symmetric, positive-definite

system of equations.
3. Obtain a final segmentation by assigning to each node, vi, the label correspond-

ing to the maximum probability from these k-tuples.

5.3 Multiple Segmentation Combination Algori-

thm

Let N initial segmentations be registered pixelwise on a four-connected lattice G.

Thus N -tuples of labels are associated with each pixel. To develop the multiple seg-

mentation combination algorithm based on the random walker we need three steps:

(i) defining the weights of a graph G, (ii) extracting seeds from G, and (iii) comput-

ing a final combined segmentation by means of random walker algorithm. The steps

of our segmentation combination algorithm are summarized in Algorithm 5.2.

5.3.1 Graph Weight Definition

A weight wij corresponds to the likelihood that a random walker will move along an

edge. In the context of segmentation combination the edge weights should indicate

how probably a pair of pixels xi and xj belong to the same image region. Hence we

define the weight function as a coassociation value between two neighboring pixels

xi and xj as:

wij = w(xi, xj) =
nij

N
(5.1)



62 Chapter 5. Multiple Image Segmentation Combination

where nij is the number of times a pair of pixels xi and xj is assigned to the same

region among the N initial segmentations. The coassociation values have also been

used as an effective mechanism to combine different partitions in [20, 44]. There are

two reasons for choosing the coassociation values. Firstly, it is able to cope with

the problems of different number of regions and label correspondence between in-

put segmentations. Secondly, it is able to extract (to some degree) the information

about homogeneous regions and region boundaries provided by the input segmen-

tations. Homogeneous region information is necessary for seed initialization while

boundary information is essential for biasing a random walker to avoid crossing re-

gion boundaries. We emphasize that the coassociation values are of essential part

of our algorithm since the region information provided by the initial segmentations

is embedded into these values, and, moreover, the random walker algorithm (for

computing a final segmentation solution) is operated upon this representation of an

ensemble. Thus, the efficacy of the proposed segmentation combination algorithm

itself relies on the suitability of these values.

In order to visualize the coassociation values, a coarse measure [20] is applied. A

coarse measure c(x) is obtained by defining the scalar quantity with values between

0 and 255 for every pixel in a d-neighborhood system as c(x) = 255
d

·
∑d

i=1 w(x, xi).

An example of a gray level image of c(x) is shown in Figure 5.2(a). A lighter

pixel indicates a higher coassociation value. Note that the coassociation values can

successfully extract some homogeneous regions (light pixels) and some nearly true

region boundaries (dark pixels). The white areas indicate candidate locations for

placing seeds.

In contrast to the coassociation matrix approach proposed by Fred and Jain [44],

our approach requires only a small neighborhoods centered on a particular pixel (i.e.

4-connected neighborhood), and assumes that all pixels beyond this neighborhood

are not linked to the pixel in question. This advantage results in a sparse affinity

matrix, which is very helpful since it significantly reduces the amount of memory

required to store the affinity matrix and facilitates the random walker computation

for a final segmentation solution. In the approach of [44], its computational and

storage complexity scale quadratically with the number of pixels. Increasing the

image size would lead to computationally infeasible situation.

5.3.2 Seed Generation

Once the graph G is built, the next step consists in determining which subsets of

nodes that correspond to homogeneous regions in the image. These nodes that cor-
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respond to homogeneous regions will be regarded as seeds for establishing a random

walker algorithm. The key principle here is that nodes that belong to the same

region (or cluster) should be joined by edges with large weights, while nodes that

are joined by weak edges are likely to belong to different regions. We describe a

two-step strategy to automatically generate seed pixels as follows: (i) extracting

candidate seeds from G; (ii) grouping them to form final seeds to be used in the

combination step. See Figure 5.3 for an illustration of seed generation procedure.

Step 1 Extracting candidate seeds: We build a new graph G∗ by preserving those

edges with cooccurrence probability p(xi, xj) = 1 only (i.e. xi and xj are

assigned the same label in all N segmentations) and removing all other edges.

This step basically retains those edges between two adjacent nodes which are

most likely belong to the same region. Then, we detect all connected subgraphs

in G∗ and regard them as a set of initial seeds C = {C1, C2, ..., Cm} which are

further reduced in the next step.

Step 2 Grouping candidate seeds: The number of candidate seeds from the first step

is typically higher than a natural number of regions in an input image. Thus,

a further reduction is performed by iteratively selecting the two candidate

seeds with the highest similarity value and grouping them to build one single

(possibly spatially disconnected) candidate seed. For this purpose we need

to define an m ×m symmetric affinity matrix A to store a pairwise similarity

value among m candidate seeds, where an element aij ∈ A contains a similarity

value between two candidate seeds Ci and Cj. The similarity between a pair of

candidate seeds Ci and Cj is computed by averaging the coassociation values

of all pair of pixels belonging to Ci and Cj as follows:

aij = {wij | (xi, xj) ∈ Ci × Cj, i 6= j} (5.2)

where B denotes the average of the set B and aii = 0. The values in the affinity

matrix satisfy aij ∈ [0, 1], where the value of 1 represents perfect similarity

between two candidate seeds, while 0 indicates that none of pixels in candidate

seeds Ci and Cj is clustered together.

After grouping the first pair of candidate seeds Ci and Cj with the highest sim-

ilarity value into a new single candidate seed Cq, the similarity values between

a new grouped seed Cq and all remaining candidate seeds are recomputed by

averaging the similarity values of the two grouped candidate seeds scaled by

their sizes as following:

aq,l =
ai,l |Ci| + aj,l |Cj|

|Ci| + |Cj|
; l = 1, ...,m, l 6= i, l 6= j. (5.3)
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(a) (b) (c) (d)

Figure 5.2. Examples of seed acquisition process. (a) Original image (b) Step 1: A

graph G represented by a consensus image. 24 initial segmentations obtained by the FH

algorithm [38] (above) and the MS algorithm [23] (below), (c) Step 2.1: Candidate seeds

extracted from graph G. Different candidate seeds indicated by different colors, and (d)

Step 2.2: Final seeds after merging operation, which will be used in the combination step.

Different colors indicate different seeds.

where |·| denotes the cardinality of a set.

There are two different approaches for stopping the merging operation. For the

first approach, the merging operation is repeated until a stop condition is satisfied

(see Section 5.5.2 and 5.5.3), and only one initial result is obtained. For the second

approach, the merging operation is forced to generate a series of initial results with

k ∈ [kmin, kmax] seeds. Subsequently, each initial result is fed to the ensemble com-

bination part of our algorithm (Step 3) to achieve a final segmentation result (for

the first approach) or a total of kmax − kmin + 1 combination segmentations (for the

second approach). For the second approach, we select an optimal one with respect

to an objective segmentation criterion (see Section 5.5.1, 5.5.2 and 5.5.4) as the final

combined segmentation.

5.3.3 Segmentation Ensemble Combination

Given the graph G and k seeds, the random walker algorithm performs the calcula-

tion by assigning to each pixel a k-tuple vector that specifies the probability that a

random walker starting from each unseeded pixel will first reach each of the k seeds.

A final segmentation is derived from these k-tuples by assigning each pixel the label

of the largest probability. The computation of random walker probabilities can be
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2.1 Seed extraction

�
�

�

⋮

2.2  Seed grouping

Input: N initial segmentations 

STEP 1:  Graph weight generation

STEP 2:  Seed generation

Detect all connected subgraphs

and regard them as “seeds”

Subgraphs with a number of nodes

less than max_node are discarded 

Remove all edges with wij < τ

 
�

The darker, the lower wij

Figure 5.3. Overview of seed generation step.
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Algorithm 5.2 Multiple Segmentation Combination Algorithm
Input: a set of N initial segmentations, S1, S2, ..., SN , to be combined.

Output: a combined segmentation S∗.

\∗ STEP1: Graph weight definition ∗\

1. map N initial segmentations pixelwise on a graph G = (V, E , w).

2. compute edge weight wij =
nij

N , for all eij ∈ E .

\∗ STEP2: Seed generation ∗\

3. extract candidate seeds

3.1 build a new graph G∗ by preserving those edges with wij = 1 and removing

all other edges.
3.2 detect all connected subgraphs in G∗ and regard them as a set of initial seeds

C = {C1, C2, ..., Cm}.
4. group candidate seeds

4.1 form an m×m similarity matrix A to store a pairwise similarity value among

m candidate seeds, defined by (5.3).
4.2 group the two candidate seeds, Ci, Cj , with the highest similarity value to build

one single candidate seed, Cq.

4.3 update the similarity matrix A, the similarity values between a new grouped

seed Cq and all remaining candidate seeds using (5.3).

4.4 repeat 4.2 and 4.3 until the final desired number k of candidate seeds are

reached.

\∗ STEP3: Segmentation ensemble generation ∗\

5. given the graph G and a set of seeds C = {C1, C2, ..., Ck}

5.1 maximize the entropy of the edge weights using (5.4).

5.3 run random walker algorithm in Algorithm 5.1 to compute the final segmen-

tation, S∗.
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exactly performed without the simulation of random walks, but by solving a sparse,

symmetric, positive-definite system of equations.

In order to apply the random walker algorithm more efficiently to compute the

final segmentation, a Gaussian weighting function (in accordance with [54]) is re-

quired for maximizing the entropy of the edge weights. The weights of the graph G

is now recomputed by

gauss wij = exp (−β · (1 − wij)) (5.4)

where β is a free parameter of our algorithm (further discussion of β is given in

Section 5.4).

5.4 Algorithm Discussion

In this section, we will talk about the general properties of the segmentation com-

bination algorithm, investigate the stability of the proposed combination algorithm

with respect to parameter β, introduce an alternative similarity measure between

candidate seeds in the merging procedure, and discuss some faster practical tech-

niques for extracting seed regions where the tradeoff of accuracy for speed does not

degrade the performance of the algorithm.

5.4.1 Generality of the Combination Algorithm

The proposed segmentation combination algorithm requires very few assumptions

about the nature of the imaging process. As a result the algorithm is quite gen-

eral. The generality of the algorithm can be summarized in the following aspects.

Firstly, no assumptions are made about the equivalent number of regions among

initial segmentations. Namely, the combination framework is able to combine initial

segmentations that contain an arbitrary number of regions. This frees the user from

providing a prior knowledge about the number of regions, and increases the diversity

in the ensemble which is found to be beneficial in the clustering combination con-

text [126]. Secondly, the combination algorithm is independent from the ensemble

generation procedure. It takes only the results of the segmentation algorithms into

account, so the way they are obtained is not important. Thus, it is possible to use

any established segmentation methods for generating an input segmentation ensem-

ble. Lastly, the combination algorithm is not restricted to specific image features.

No assumption is needed at the moment about a prior knowledge about original
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image features (e.g. color, texture), namely only the label feature delivered by seg-

mentation algorithms is taken into account. This allows the combination procedure

applicable for different imaging modalities (e.g. color, intensity, range, etc.).

5.4.2 Stability of the Combination Algorithm

Algorithm stability is another important indication of an algorithm’s usefulness.

If an algorithm gives reasonably correct segmentations on average, but is wildly

unpredictable on any given image or with any given parameter set, it will be useless

as a preprocessing step for other algorithms, such as object recognition [103]. In

this section we address the stability issue with respect to parameter choice. The

algorithm, that has this stability, must give consistent results on the same image

given different parameter inputs.

Referring to (5.4) in Section 5.3 there is a single parameter of our combination

algorithm, β, which is an inverse temperature parameter for the Gaussian random

field. The difference of combination results given different β values mostly occurs

at very small boundary pixels along indistinct region boundaries. Some examples of

segmentation results with different values of β are shown in Figure 5.4. We have sys-

tematically conducted a set of experiments that addresses the issue of stability with

respect to parameter β. The experiment investigates the effect of β values over com-

bination results by running the combination algorithm with β = {10, 30, 60, 90, 120}

for all 300 images in the BSDS dataset. The thresholding criterion (Tmerge) is applied

here for determining the number of regions in a final segmentation result since it

is computationally inexpensive (This thresholding criterion will be presented later

in Section 5.5.3). A segmentation ensemble is generated by varying the parameter

values of a baseline segmentation algorithm. Three different experiments are con-

ducted. In the first experiment, input segmentation ensembles are obtained by the

FH algorithm. In the second experiment, input segmentation ensembles are obtained

by the MS algorithm. In the third experiment, input segmentation ensembles are

obtained by the mNC algorithm. The parameter subspace and sampled parameter

values of each algorithm are summarized in Table 6.1. The average NMI (ANMI)

index is applied for assessing a segmentation result against its corresponding ground

truths. For each experiment, we compute a standard deviation of ANMI values of

segmentation results of each input image computed using different values of β. A

standard deviation histogram for each of three experiments are shown in Figure 5.5.

For all cases, the histogram is skewed to the left which indicates that our combina-

tion algorithm has a rather small sensitivity to changes in β. We set β to 30 for all
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(a) β = 10 (b) β = 30 (c) β = 60 (d) β = 90 (e) β = 120

Figure 5.4. Examples of combined segmentation results with different values of parameter

β.
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Figure 5.5. Histograms of the standard deviations of ANMI values of segmentation re-

sults computed by different values of β. Results for the FH, MS and mNC segmentation

ensembles are shown in columns (a), (b), and (c), respectively.

our experiments.

5.4.3 Random Walker Based Similarity Measure

The number of candidate seeds is typically higher than the true number of regions

in an input image. Thus, a further reduction is needed and performed by iteratively

merging the two closest candidate seed regions until some termination criterion is

satisfied. For this purpose we need a similarity measure between two candidate seeds

and a termination criterion. In Section 5.3.2, the similarity between two candidate

seeds is computed on the basis of coassociation values (5.2) and (5.3). An alternate

method to measure the similarity between two candidate seeds is based on random

walker probability. This method has been presented in our previous work [141].

Recall that in the initial graph G the edge weights wkl indicate how probably

two pixels pk and pl belong to the same image region. This interpretation gives us

a means to estimate how probably two candidate seed regions Ci and Cj belong to
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k = 5 k = 14 k = 24 k = 28 k = 28

k = 7 k = 13 k = 18 k = 21 k = 26

(a) β = 10 (b) β = 30 (c) β = 60 (d) β = 90 (e) β = 120

Figure 5.6. Examples of combined segmentation results using the random walker based

similarity measure with different values of parameter β.

the same region. For a node pk ∈ Ci we consider the probability P (pi, Cj) that when

starting from pi, a random walk will reach any node in Cj. Then, we define the

similarity between Ci and Cj by:

Similarity(Ci, Cj) =
1

2
[max
pk∈Ci

P (pk, Cj) + max
pl∈Cj

P (pl, Ci)] (5.5)

The probability P (pi, Cj) can be efficiently computed by the baseline random walker

algorithm [54] described in Section 5.2.

The computational cost of this similarity measure depends on the number of

candidate seed regions. We need to run the random walker algorithm m times (being

the number of candidate seed regions). We use only a small amount of pixels per

candidate seed region by sampling them along the horizontal and vertical image grid

by, for example, factor 5 in each direction. By doing this way, we can substantially

reduce the time required by the random walker algorithm.

This random walker based similarity measure has shown its effectiveness to mea-

sure the similarity between two candidate seeds. However, it is relatively sensitive

to the parameter β which is required for maximizing the entropy of the edge weights

in the random walker algorithm. Figure 5.6 shows examples of combined segmenta-

tion results computed using the random walker based similarity measure (5.5) with

different values of β = {10, 30, 60, 90, 120}.
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5.4.4 Further Implementation Details

Speedup of Seed Generation

The main computational burden of our combination algorithm stems from comput-

ing the similarity matrix in (5.2). Instead of computing the similarity values between

every pixel in one seed to every pixel in the rest seeds, we can cut down the number

of similarity computation by randomly selecting for each seed a small set of pixels

and use them in computation. This small fraction of pixels per seed, in practice, is

sufficient to estimate the similarity between seeds. We have systematically investi-

gated the influence of the number of pixels per seed used in similarity computation

on the segmentation results. We have tested on 44 images in the BSDS data set. We

firstly compute the combination results using both ten pixels per seed and all pixels

per seed, then compute ANMI values between two combined results. The ANMI

values indicates that there are no difference between segmentation results computed

by using ten pixels per seed and using all pixels per seed (i.e. ANMI values between

them are equal to 1). The only difference between them is the computational time.

Thus, for all experiments reported in this paper we randomly select ten pixels per

seed for the similarity computation.

Speedup of Candidate Seed Merging Procedure

In candidate seed region extraction step (in Section 5.3.2) the only connected sub-

graphs with p(xi, xj) = 1 will be regarded as seed regions. This criterion in some

cases may create a very large number (e.g. more than 5,000) of candidate seed re-

gions whose size is very small (e.g. smaller than 3 pixels per region) with respect to

321× 481 image size. These very-small-sized candidate seeds mostly indicate either

the same image regions as do the larger candidate seeds or noise regions. When they

represent noise regions, they will not be merged into any meaningful seed regions,

resulting in combination output with noisy specks (as shown in Figure 5.7(d)) or un-

desirable regions (as shown in Figure 5.7(b), small elongate regions along the region

boundaries ). Thus it would be more practical to disregard these very-small-size

candidate seeds and take only the first kmax largest candidate seeds into account. In

the case that the number of candidate seeds is smaller than kmax (which hardly ever

occurs), the number of all candidate seeds will be used in place of kmax.

For all combination results presented in this paper, connected subgraphs, whose

size is larger than ten pixels, are considered as candidate seed regions and only the

first kmax = 50 largest candidate seed regions are used in the merging procedure.
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(a) (b) (c) (d)

Figure 5.7. Examples of combined segmentation results with different initial candidate

seeds. (a) and (c) Only 50 largest candidate seed regions are used in merging procedure.

(b) and (d) All candidate seed regions are used in merging procedure.

This number is experimentally determined to be large enough to cover all salient

natural image segments as shown in Figure 5.7 (a) and (c).

By doing it this way, we can improve the computational performance of the

algorithm without degrading the qualities of combination results. The proposed

combination algorithm was implemented in MATLAB on an Intel Core 2 CPU.

Seed region generation for an image of dimension 321× 481 with 24 initial segmen-

tations requires less than two seconds in average, and so does the random walker

computation in the final step. Our algorithm is efficient enough to be capable of

evaluating a series of possible combination results with different k values and select-

ing an optimal segmentation based on a median concept criterion. However, this

stage could be parallelized to make the system more acceptable for real-time appli-

cations. Further reduction of computation time can be done in the N -segmentation

ensemble generation. One possibility is to obtain them in parallel.

5.5 Determination of the Final Number of Re-

gions

The automatic identification of the appropriate number of clusters is a deep research

problem that has attracted significant attention in data clustering community. Many

approaches for dealing with this problem have been proposed in the literature. A

comprehensive survey of methods for estimating the number of clusters is given

in [31, 58, 95]. In this work, we investigate two different approaches for determin-

ing the number of regions in a final combined segmentation result: optimization

approach and thresholding approach.

In optimization approach we first start with a series of n different segmentation

results and then, for each segmentation result, we compute its cost according to

the predefined objective function to be optimized. The segmentation result with



5.5. Determination of the Final Number of Regions 73

the minimum cost will be selected as the optimal segmentation solution. This algo-

rithm follows from the general model selection approach to searching for the optimal

partition of a data set, given the minimal and maximal number of clusters. Two

methods of this category that are considered in this work are generalized median con-

cept based and MDL based objective functions. We demonstrate that even though

the performance of both methods is comparable, the strength of the generalized me-

dian concept method lies in the fact that no original image features (e.g. intensity,

color, texture) of an input image are needed. This benefits in the situation when

the original image features are not available and allows the method applicable for

any kind of imagery/task without the need of modification.

The second set of approaches deals with the difficulty of establishing adequate

stopping criteria in the candidate seed merging procedure. The iteration of the merg-

ing process which satisfies the criterion is chosen as the best iteration. Then, the

selected segmentation level is the optimal segmentation. Two thresholding methods

are investigated in this work. The first one selects the best segmentation iteration

by taking the similarity values between two merging regions into account. The iter-

ation is stopped if the merging similarity value falls below the predefined threshold

value. The second thresholding method determines the best segmentation level by

exploring the dendrogram computed from the merging procedure. We also show

that by incorporating the optimization approach into the thresholding approach,

we can achieve an approximated optimal segmentation solution with much lower

computational cost.

5.5.1 Median Concept Criterion

The generalized median concept (see Section 2.1 for details) is a powerful tool for

inferring a representative model of a given set of noisy samples of the same object

and has found promising applications in several domains (e.g. graphs [74], proto-

type learning [74], and double contour detection [139]). In this work, we apply the

generalized median concept to select the best (optimal) segmentation Skopt from a

set of combination segmentations with different number k of regions as the one with

minimal sum of distances among all individual segmentation Sq in Λ:

Skopt = arg min
Ŝ

d(Ŝ, Λ) (5.6)

where Ŝ covers all possible k ∈ [kmin, kmax] segmentations and d(·, ·) is a distance

function.
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If we replace Ŝ by a universe U of all possible segmentations of an image, then

Skopt would represent the optimal segmentation in accordance with the general-

ized median concept of the input ensemble [74]. Therefore, our approach can be

regarded as an approximation of generalized median segmentation by investigat-

ing the subspace of U consisting of the combination segmentations for all possible

K ∈ [Kmin, Kmax] only.

Note that if we define the above median segmentation optimization function

based on normalized mutual information (e.g. by using normalized mutual informa-

tion as a distance function between two segmentations), this approach is equivalent

to the concept of cluster ensemble framework presented by Strehl and Ghosh [126],

in the sense that a good combined clustering should share as much information as

possible with the given original clusterings.

5.5.2 MDL Criterion

In the absence of ground truth data, it is critical to have a criterion that enables the

quality of a segmentation to be evaluated. A more sophisticated approach to deal

with this problem is to use the minimum description length (MDL) principle. The

MDL principle, originally developed by Rissanen [113], is a method for inductive

inference that provides a generic solution to the model selection problem. The MDL

principle defines the best fitted model as the one that produces the shortest code

length of the data (e.g., the best encoding of the data). The MDL criterion was

first used for the problem of image segmentation by Leclerc [83] and followed by

many works such as [48, 78, 84, 112, 152]. The difference between them lies in the

term they used to encode the image data (e.g. texture information, region boundary

information, color information).

In order to apply the MDL principle to tackle the present problem, we first need

to construct a code length expression to encode an image. In this work we follow

the MDL-based objective segmentation criterion proposed by Rao et.al [112]. Rao

et.al used the MDL principle to encode both the texture and boundary information

of a natural image and defined the optimal segmentation of an image as the one

that minimizes its total coding length. In the following we firstly describe how to

encode the texture and boundary information of a natural image and then construct

an objective segmentation criterion based on these coding length functions.

Adaptive Texture Encoding: Rao et.al construct texture vectors that represent ho-

mogeneous textures in image segments as follows. Let the w-neighborhood Ww(p)
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be the set of all pixels in a w ×w window centered at pixel p. They construct a set

of features X by taking the w-neighborhood around each pixel in an image I across

the three color channels, and then stacking each window as a column vector:

X =
{

xp ∈ ℜ3w2

: xp = Ww(p)S for p ∈ I
}

.

For ease of computation, they reduce the dimensionality of these features by project-

ing the set of all features X onto their first D principal components. They denote the

set of features with reduced dimensionality as X̂ and choose to assign D = 8. Sub-

sequently, the texture information is encoded using a Gaussian distribution. First

Rao et.al consider a single region R with N pixels. For a fixed quantization error ǫ,

the expected number of bits needed to code the set of N feature window X̂ up to

distortion ǫ2 is given by:

Lw,ǫ(R) = (
D

2
+

N

2w2
)log2det(I +

D

ǫ2
Σ̂w) +

D

2
log2(1 +

‖µ̂w‖
2

ǫ2
). (5.7)

Adaptive Boundary Encoding: Rao et.al apply a well-known scheme, the Freeman

chain code, for representing boundaries of image regions. In this coding scheme,

the orientation of an edge is quantized along eight discrete directions. Let {ot}
T
t=1

denote the orientations of the T boundary edges of R. Since each chain code can be

encoded using three bits, the coding length of the boundary of R is

B(R) = 3
7

∑

i=0

♯(ot = i).

Given the prior distribution P [∆o] of difference chain codes, B(R) can be encoded

more efficiently using a lossless Huffman coding scheme:

B(R) = −
7

∑

i=0

♯(∆ot = i)log2(P [∆o = i]). (5.8)

Minimizing Coding Length: Suppose an image I can be segmented into non-overlapping

regions R = R1, ..., Rk,∪
k
i=1Ri = I. Based on the coding length functions developed

in (5.7) and (5.8), the total coding length of the image I is

LS
w,ǫ(R) =

k
∑

i=1

Lw,ǫ(Ri) +
1

2
B(Ri). (5.9)

Note that the boundary term is scaled by a half because we only need to represent

the boundary between any two regions once. The optimal segmentation of I is the

one that minimizes (5.9).
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In this work an objective segmentation criterion in (5.9) is applied to determine

the number of k in two ways: (i) selection strategy and (ii) merging strategy.

(i) Selection Strategy :

Given a sequence of combined segmentations for a range of values of k ∈ [kmin, kmax],

the best (optimal) combined segmentation Skopt is the one that minimizes (5.9).

(ii) Greedy Merging Strategy :

To find the optimal segmentation we exactly follow an agglomerative process pre-

sented in [112]. We initialize the optimization process by utilizing a combined seg-

mentation result with kmax as a superpixel. Given a superpixel of the image, at

each iteration, we find the pair of adjacent regions Ri and Rj that will maximally

decrease (5.9) if merged:

(R∗
i , R

∗
j ) = arg max

Ri,Rj∈R
∆Lw,ǫ(Ri, Rj), where

∆Lw,ǫ(Ri, Rj) = LS
w,ǫ(R) − LS

w,ǫ((R {Ri ∪ Rj}) ∪ {Ri ∪ Rj})

= Lw,ǫ(Ri) + Lw,ǫ(Rj) − Lw,ǫ(Ri ∪ Rj) +
1

2
(B(Ri) + B(Rj) − B(Ri ∪ Rj)). (5.10)

Lw,ǫ(Ri, Rj) essentially captures the difference in the lossy coding lengths of the

texture regions Ri and Rj and their boundaries before and after the merging. If

∆L > 0, we merge R∗
i and R∗

j into one region, and repeat this process until LS
w,ǫ(R)

cannot be further reduced.

5.5.3 Thresholding Criterion

Thresholding is the simplest criterion for determining the number of regions in seg-

mentation. We define a threshold Tmerge to indirectly control the number of regions

k through a merging candidate seed operation. The merging operation is stopped if

the highest similarity between two merging candidate seeds is below Tmerge. Thus,

the amount of detail (k) in the final segmentation can be influenced by changing the

value of Tmerge appropriately. Larger values of Tmerge yield a larger number of seed

regions, while smaller values of Tmerge yield fewer number of seed regions. Figure 5.8

shows three examples of combined segmentation results of test images, where the

segmentations obtained for different values of Tmerge = {0.3, 0.5, 0.7, 0.9} from (a) to

(d), respectively. We can see that the value of Tmerge relates heavily to the natural

number of regions in an input image, for example, input image with fewer number of
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ANMI = 0.6013 ANMI = 0.4103 ANMI = 0.3423 ANMI = 0.3310

ANMI = 0.7613 ANMI = 0.7721 ANMI = 0.7905 ANMI = 0.6883

ANMI = 0.4601 ANMI = 0.4932 ANMI = 0.4938 ANMI = 0.5764

(a) Tmerge = 0.3 (b) Tmerge = 0.5 (c) Tmerge = 0.7 (d) Tmerge = 0.9

Figure 5.8. Examples of combined segmentation results with different values of threshold

Tmerge.

regions prefers smaller value of Tmerge. Thus, using a single value of Tmerge through-

out the data set cannot achieves the optimal segmentation result for all images.

However, this approach is much faster than the above optimization approach.

Since setting the accurate value of Tmerge so as to obtain a large enough number

of seed regions to cover all salient natural image segments (i.e. not too coarser or

too finer) is difficult, we can apply the above optimization approach to estimate the

optimal values of Tmerge. For example, we apply the median segmentation optimiza-

tion criteria (5.6) defined in Section 5.5.1 to estimate the optimal values of Tmerge.

This can be done by replacing the subspace of U in (5.6) by a set of combined seg-

mentations computed with all sampled values of Tmerge ∈ [0, 1]. The optimal value

of Tmerge, denoted by T opt
merge, is the one that minimizes the sum of distances among

all individual segmentation Sq in Λ.

Notably, this strategy reduces a large amount of work required by the original

optimization method, in order to achieve Skopt . The original optimization method

has to consider a set of all possible k ∈ [kmin, kmax] segmentations, while the opti-

mization of Tmerge considers only a set of segmentations computed by a small set

of sampled values of Tmerge, which is typically much smaller space than [kmin, kmax].

For example, if all possible k is set to [2, 50], and all sampled values of Tmerge are

set to {0.3, 0.4, ..., 0.9}. The amount of work needed by the optimization of Tmerge
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is 7 times less than the original optimization method. Based on our experience the

meaningful range of Tmerge values is [0.3, 0.9]. The experimental results reported in

Section 5.6 demonstrate that the quality of segmentation results computed by the

optimal Tmerge is close to the quality of segmentation results computed by the me-

dian segmentation optimization criteria (5.6). Thus, the approach of optimization

of Tmerge is very useful when the need of computational time is more critical than the

optimal solution. We would like to note that the MDL-based optimization criterion

is able to apply to optimize Tmerge as well, in a similar manner.

5.5.4 Lifetime Criterion

Another thresholding criterion considered in this work is called lifetime criterion

proposed by Fred and Jain [44]. They used the highest lifetime partition criterion

to decide the number of clusters in the combined partition. The k − cluster life-

time is defined as the range of threshold values on the dendrogram that lead to

the identification of k clusters. The results presented in their work are concerned

with combined partitions extracted from the dendrogram produced by the single

link and the average link methods. In order to apply this criterion in the present

work, the dendrogram is computed from hierarchical merging procedure described

in Section 5.3.2. For instance, Figure 5.9 shows the dendrogram produced by the

merging procedure for the candidate seeds in Figure 5.2(c, above). Lifetimes of 2,

3, and 4-cluster partitions are represented in Figure 5.9 as l2, l3, and l4, respectively.

The lifetime of the 2-cluster solution, l2 = 0.0313, is computed as the difference

between minimum (0.9319) and the maximum (0.9632) threshold values that leads

to the separation of patterns into two clusters. In this case the 3-cluster partition,

l3 = 0.2241, corresponds to the highest lifetime and is chosen as the optimal solution.

5.6 Experiments

The experiments presented in this section are intended to validate the effectiveness

of the four criteria. The effectiveness of the segmentation combination algorithm

will be presented in the next chapter. In these experiments the efficient graph-based

image segmentation proposed by Felzenszwalb and Huttenlocher (FH) [38] is used

as a baseline segmentation algorithm for producing a set of initial segmentations for

combination. An input segmentation ensemble is generated by means of parameter

subspace sampling (see Section 6.1 for more details). The parameter subspace of
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Figure 5.9. Dendrogram produced by the merging procedure described in Subsec-

tion 5.3.2 for the candidate seeds in Figure 5.2(c, above).

the FH segmentation algorithm is sampled into 24 combination of parameters (see

Table 6.1). For each combination of parameters the segmentation algorithm is run

over the complete set of 300 images from the BSDS data set. By doing this way,

we obtain 300 segmentation ensembles (for each 300 images), and each ensemble

consists of 24 initial segmentations. In the case of optimization approaches, we run

the combination algorithm multiple times for each image, varying the region number

k in an interval [2, 50], and then selecting the combination result in accordance

with the criterion used for determining k. We apply both NMI and F-measure to

quantitatively evaluate the segmentation quality against the ground truth. In the

case of NMI index one segmentation result is compared to all manual segmentations

and the average NMI (ANMI) is reported. Larger ANMI values indicate better

combination results that share more information with the ground truths.

Figure 5.10 shows examples of the segmentation results for four images on natural

scenes. From left to right, the six columns show segmentation results based on (a)

the generalized median segmentation criterion, (b) MDL-based merging criterion, (c)

MDL-based selection criterion, (d) Threshold Tmerge criterion, (e) Optimal threshold

Tmerge criterion, and (f) Lifetime criterion, respectively. Quantitative comparison

between these six different criteria is reported in Figure 5.11 in terms of both ANMI

value (a) and F-measure (b). In each plot, we also include the average performance

of segmentation results obtained by the baseline segmentation algorithm (the dot

line) of all 300 images for each combination of parameters in comparison with the

average performance of six different criteria for determining k. For both evaluation

measure, the first five criteria (i.e. the generalized median criterion, MDL-based

merging criterion, MDL-based selection criterion, threshold Tmerge criterion, and
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optimal threshold Tmerge criterion) are able to achieve the average improved results

over a single run of baseline segmentation algorithm, while the lifetime criterion is

not.

For NMI index, the MDL-based merging criterion performs better than the gen-

eralized median criterion, whereas the generalized median criterion performs slightly

better than the MDL-based merging criterion for F-measure index, and outperforms

the MDL-based selection criterion for both index. However, it should be noted that

even though the performance of MDL-based method and the generalized median

method are comparable, the strength of the generalized median method lies in the

fact that no original image features (e.g. intensity, color, texture) of an input image

are needed. This benefits in the situation when the original image features are not

available and allows the method applicable for any kind of imagery/task without

the need of modification.

Empirical evidence also supports the idea that incorporation of the generalized

median approach into the thresholding approach (Tmerge) can produce an approx-

imation of the optimal segmentation solution obtained by the generalized median

approach, however, with much lower computational cost (than applying the gener-

alized median approach alone). As shown in Figure 5.10 the performance of the

optimal threshold Tmerge criterion is relatively similar to the performance of the

generalized median criterion for both evaluation measures. Thus, in the situation

where the need of computational time is more critical than the optimal solution, we

can apply the optimization version of thresholding approach instead of traditional

optimization method.

5.7 Conclusion

A novel segmentation combination algorithm based on a random walker segmenta-

tion algorithm has been proposed. The combination algorithm uses coassociation

values to encapsulate the cluster (region) information provided by an input seg-

mentation ensemble, which is important not only for automatically generating seeds

for a random walker algorithm, but also for biasing the random walker to avoid

crossing the region boundaries. The combination algorithm has been designed in a

general framework, which is not restricted to specific image features or segmentation

methods. This enables the combination procedure to lend itself to a wide range of

segmentation tasks (for example, regions in color or texture images, surface patches

in range images, etc.) and a wide range of imagery data.
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(a) ANMI = 0.5853 (b) ANMI = 0.6280 (c) ANMI = 0.5978

(d) ANMI = 0.5951 (e) ANMI = 0.5853 (f) ANMI = 0.5177

(a) ANMI = 0.7529 (b) ANMI = 0.7964 (c) ANMI = 0.7340

(d) ANMI = 0.7226 (e) ANMI = 0.7529 (f) ANMI = 0.6971

(a) ANMI = 0.7248 (b) ANMI = 0.7073 (c) ANMI = 0.6905

(d) ANMI = 0.6824 (e) ANMI = 0.7248 (f) ANMI = 0.7248

(a) ANMI = 0.5732 (b) ANMI = 0.5333 (c) ANMI = 0.5997

(d) ANMI = 0.5178 (e) ANMI = 0.5662 (f) ANMI = 0.5997

Figure 5.10. Examples of segmentation combination results computed using different

criteria for determining the number of regions: (a) the generalized median segmentation

criterion, (b) MDL-based merging criterion, (c) MDL-based selection criterion, (d) Thresh-

old Tmerge criterion, (e) Optimal threshold Tmerge criterion, and (f) Lifetime criterion.



82 Chapter 5. Multiple Image Segmentation Combination

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

A
vg

. N
M

I (
si

m
ila

rit
y)

Parameter setting

 

 
Upper−Bound

GM−criterion

MDL−merging

MDL−selection

Threshold  T
merge

Optimal threshold  T
merge

Lifetime criterion

Input parameter setting

(a)

1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0.49

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

Parameter setting

F
−

m
ea

su
re

 (
si

m
ila

rit
y)

 

 
Upper−Bound

GM−criterion

MDL−merging

MDL−selection

Threshold  T
merge

Optimal threshold  T
merge

Lifetime criterion

Input parameter setting

(b)

Figure 5.11. Average performance of combination results using different criteria for de-

termining k over 300 images for each individual parameter setting.



5.7. Conclusion 83

We define the problem of determining the number of regions in a final combined

segmentation as the optimization problem where, given a series of combined seg-

mentation solutions, we want to find the segmentation that minimizes the sum of

distances among all input segmentations in an ensemble, namely, an approximation

of the generalized median segmentation. The effectiveness of the generalized median

based criterion is demonstrated by comparing it with three alternative criteria for

determining the number of regions. The experimental result shows that the per-

formance of the generalized median criterion is superior to the thresholding criteria

and is comparable to the MDL-based criteria.

While the presented results are very promising, there is still much more room

for improvement. To illustrate this, we select the (best) optimal combined segmen-

tation solution (from a series of combination results) with the highest ANMI values

compared to its corresponding ground truths for each input image in the data set,

and compute its average performance. This ideal performance indicates the upper-

bound performance we can achieve from the segmentation combination algorithm.

As shown in Figure 5.11 the average upper-bound performance line lies far above

from the line of the best average performance we can obtain at the present. It could

be concluded that the proposed optimality criteria for selecting the best combined

segmentation (from a series of combination results) are not powerful enough to find

the true optimal result. One direction to improve the performance of the current

results towards the ideal performance here is to use/define new distance function

with higher discrimination ability in distinguishing the difference between two seg-

mentations (used in (5.6)) or constructing new, better representative coding length

function (used in (5.9)).
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Chapter 6

Ensemble Generation

In the previous chapter we presented a novel segmentation combination algorithm

for combining multiple segmentations of the same image. The experiments1 have

been conducted to verify the capability of the four different criteria for determining

the final number of regions in combination results. In this chapter a number of

experiments are conducted to demonstrate the efficacy of the combination algorithm

to produce the improved segmentation result over an input ensemble. We verify the

efficacy of our segmentation combination algorithm in a variety of segmentation

ensemble generation approaches:

• Parameter subspace sampling approach: This approach concerns with the prob-

lem of parameter selection, which is fully described in Chapter 7. A segmen-

tation ensemble is obtained by varying the parameter values of the same seg-

mentation algorithm in an appropriate range. This approach will be applied

using three well-known segmentation algorithms, which are FH, MS and mNC

segmentation algorithms.

• Multiple segmentation algorithm approach: This approach concerns with the

problem of selecting the best segmentation algorithm for a particular image.

Since the comparative performance of different segmentation algorithms can

vary significantly across images, it is not easy to know the optimal algorithm

for one particular image. In this approach, multiple segmentations of the

same image are obtained by using different segmentation algorithms. The

three well-known segmentation algorithms (i.e. FH, MS, and mNC) are used

in the experiments.

1The experiments have been conducted on BSDS dataset, where multiple segmentations are

generated by varying the parameter values of the FH segmentation algorithm.

85
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• Multiple image transformation approach: This approach is different from the

above approaches in that the variation in segmentation ensembles are created

by varying the representations of an input image given the same segmenter, in-

stead of varying the segmenters given the same input image. This approach is

based on the fact that most segmentation algorithms existing in the literature

are image dependent. Local variations of the image may change dramatically

the segmentation results. A variety of image transformations, such as geomet-

ric transformations, affine transformations, and perspective transformations,

are applied for generating multiple segmentations of the same image.

All experiments reported in this chapter will be conducted on BSDS dataset, where

multiple segmentations are generated by the three above different approaches. The

quality of segmentation result is quantitatively evaluated using NMI index and F-

measure against the corresponding ground truth segmentations. In order to demon-

strate the improvement of combination results over the input ensemble, the perfor-

mance of combination approach is reported in comparison with the performance of

the baseline segmentation algorithms.

Moreover, to gain insights into the performance improvement obtained by our

segmentation combination method, we analyze the interplay between diversity and

accuracy of the individual segmentation solutions in a segmentation ensemble and

the influence of them on the final segmentation combination performance.

6.1 Parameter Subspace Sampling

In this experiment we adopt the ensemble combination principle to solve the pa-

rameter selection problem in image segmentation (The full detail of this problem

is described in Chapter 7.). It explores the parameter space without the need of

ground truth. It is assumed that we know a reasonable subspace of the parameter

space (i.e. a lower and upper bound for each parameter), which is sampled into a fi-

nite number N of parameter settings. Then, we run the segmentation procedure for

all the N parameter settings and compute a final combined segmentation of the N

segmentations. The rationale behind our approach is that this segmentation tends

to be a good one within the explored parameter subspace.
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6.1.1 Segmentation Ensemble Generation

Multiple segmentations in an ensemble are obtained by varying the parameter val-

ues of the same segmentation algorithm in an appropriate range. The appropriate

ranges of parameters are experimentally determined so that the resulting segmen-

tations would have reasonable or acceptable quality (i.e. not overly under/over-

segmentations). The sampled values of parameters within these ranges are chosen

so as to yield segmentations with perceptible differences. These criteria are applied

for all segmentation algorithms used in the experiments.

In this set of experiments, the three well-known segmentation algorithms: FH,

MS, and mNC, are used as baseline segmentation algorithms for generating a set of

initial segmentations to be combined. The detail of each algorithm is described in

Chapter 2. The experiments are conducted using all three segmentation algorithms

in order to demonstrate that our segmentation combination algorithm is able to

work well with a variety of image segmentation methods. Ranges of the algorithm

parameters and their sampled values for each segmentation algorithm used in the

experiments are summarized in Table 6.1. The total number of parameter combi-

nations for each algorithm is equal to 24 combinations.

For each combination of parameters the segmentation algorithms are run over

the complete set of 300 images from the BSDS data set to form a set of initial

segmentations (which will be called a segmentation ensemble) for a combination. In

detail, for each segmentation algorithm we run the following procedure:

(1) For all 300 images in the BSDS data set:

(1.1) For all 24 parameter settings:

Run the segmentation algorithm on an input image.

(1.2) Obtain a segmentation ensemble consisting of 24 segmentation solutions

(according to 24 parameter settings)
(2) Obtain a set of 300 segmentation ensembles for all 300 images.

By this way, we achieve three different sets of 300 segmentation ensembles by running

the three different segmentation algorithms. In the experimental report we refer a

set of 300 segmentation ensembles produced by the FH algorithm as FH ensembles, a

set of 300 segmentation ensembles produced by the MS algorithm as MS ensembles,

and a set of 300 segmentation ensembles produced by the mNC algorithm as mNC

ensemble.
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Table 6.1. Parameters, descriptions and values of baseline segmentation algorithms.

Algo. Parameter Value Description

FH σ = {0.4, 0.5, ..., 0.9} A parameter of Gaussian filter

k = {150, 300, 500, 700}

A parameter of a threshold function, larger

k causes a preference for larger components

in the result.

M = 1500 We fix a minimum size of regions to be ap-

proximately 1% of input image area to avoid

gross over-segmentation.

MS hs = {8, 16} A spatial bandwidth parameter. The origi-

nal paper of this algorithm [23] claimed that

the algorithm is not very sensitive to the

choice of hs, and suggest to use hs = 8 for

256 × 256 images and hs = 16 for 512 × 512

images.

hr = {7, 11, 15} A color bandwidth parameter.

M = {100, 500, 1000, 1500} The smallest region size. hr and M control

the number of regions in the segmented im-

age. The more an image deviates from the

assumed piecewise constant model (e.g. the

heavily texture background), larger values

have to be used for hr and M to discard the

effect of small local variations in the feature

space (e.g. hr = 15, M = 1500).

mNC scale = {0.4, 0.8} We set a scale of an input image less than

one in order to produce a segmentation result

within reasonable computation time.

nseg = {4, 6, 8, ..., 26} We set a number of regions in a segmented

image varying in a reasonable range. Mar-

tin et al. [90] suggested that the number of

things in each image between 2 and 20 should

be reasonable for any of images in the BSDS

data set.
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6.1.2 Experimental results

In this set of experiments, we run our segmentation combination algorithm on all

three segmentation ensembles (i.e. FH, MS, mNC). The generalized median seg-

mentation optimization criterion (5.6) proposed in the previous chapter will be used

to automatically determine the optimal combined segmentation result, since it is

proved to be the most effective criterion among the four criteria (presented in the

previous chapter). Thus, the only pre-specified parameter of our combination pro-

cedure is a range of possible k values, [kmin, kmax]. This parameter is, however, not

difficult for nonexpert user to specify and can be specified without any knowledge of

underlying combination algorithm. In the extreme case, the possible value for kmin

is equal one and kmax is equal n2, where n is a total number of pixels in an image.

For all experiments reported in this work a range of k values is set to [2,50].

Another requirement for the generalized median segmentation optimization cri-

terion (5.6) is a distance function used in the optimization. Since NMI index and

F-measure are used for assessing the quality of image segmentations, it is reasonable

to optimize the objective criterion based on the same measure. Thus, for each seg-

mentation ensemble, the (final) optimal segmentation results are selected using both

NMI distance based optimization criterion and F-measure distance based optimiza-

tion criterion. The optimal segmentation solution selected based on NMI distance

will be evaluated using NMI index. Similarly, the optimal segmentation solution

selected based on F-measure distance will be evaluated using F-measure. The ex-

perimental results are reported separately for each set of segmentation ensembles

(i.e. FH, MS, mNC). Since the values of NMI index and F-measure lie in the range

[0,1], NMI distance can be computed by 1.0-NMI index and, similarly, F-measure

distance can be computed by 1.0-F-measure.

Figure 6.1(d)– 6.3(d) show examples of combined segmentation results produced

by our method on FH, MS, and mNC segmentation ensembles, respectively. For

comparison purpose we also show the input segmentation with the worst, median and

the best evaluation values (column (a)-(c)). For each image, the first row shows the

combined segmentation result which is determined based on NMI distance, as well

as the worst, median and the best input segmentations. Similarly, the second row

shows the segmentation results which are determined based on F-measure distance.

Generally, we can observe a substantial improvement of our combination compared

to the median input segmentation. These results demonstrate that we can obtain

an “average” segmentation which is superior to the - possibly vast - majority of the

input ensemble. This fact can also be illustrated by the plots shown in Figure 6.4.

Each plot shows a per-image performance of the 300 images in the data set, compared
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ANMI = 0.5771 ANMI = 0.7026 ANMI = 0.8069 ANMI = 0.8141

F = 0.5454 F = 0.7042 F = 0.8435 F = 0.8364

ANMI = 0.5206 ANMI = 0.6114 ANMI = 0.6507 ANMI = 0.6778

F = 0.5414 F = 0.6482 F = 0.7069 F = 0.7695

ANMI = 0.3635 ANMI = 0.5951 ANMI = 0.6686 ANMI = 0.6459

F = 0.3551 F = 0.5615 F = 0.7058 F = 0.6960

(a) (b) (c) (d)

Figure 6.1. Parameter subspace sampling: combination segmentation results on FH en-

sembles. (a)-(c) Input segmentations with the worst, median and the best average NMI/F-

measure values, respectively; (d) Combined segmentation.
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ANMI = 0.5759 ANMI = 0.7048 ANMI = 0.7753 ANMI = 0.7870

F = 0.5386 F = 0.6190 F = 0.7323 F = 0.7490

ANMI = 0.3921 ANMI = 0.4423 ANMI = 0.4953 ANMI = 0.5216

F = 0.3601 F = 0.5068 F = 0.5817 F = 0.6549

ANMI = 0.5060 ANMI = 0.5707 ANMI = 0.6982 ANMI = 0.7171

F = 0.6430 F = 0.7004 F = 0.7633 F = 0.7625

(a) (b) (c) (d)

Figure 6.2. Parameter subspace sampling: combination segmentation results on MS

ensembles. (a)-(c) Input segmentations with the worst, median and the best average

NMI/F-measure values, respectively; (d) Combined segmentation.
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ANMI = 0.4095 ANMI = 0.5837 ANMI = 0.6017 ANMI = 0.6042

F = 0.3426 F = 0.5327 F = 0.5948 F = 0.5724

ANMI = 0.4844 ANMI = 0.5777 ANMI = 0.6144 ANMI = 0.6202

F = 0.4477 F = 0.6886 F = 0.7883 F = 0.7584

ANMI = 0.5626 ANMI = 0.7397 ANMI = 0.7617 ANMI = 0.7592

F = 0.2498 F = 0.5810 F = 0.6372 F = 0.6644

(a) (b) (c) (d)

Figure 6.3. Parameter subspace sampling: combination segmentation results on mNC

ensembles. (a)-(c) Input segmentations with the worst, median and the best average

NMI/F-measure values, respectively; (d) Combined segmentation.
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Figure 6.4. Comparison (per image): Average and worst input & combination result (in

terms of average NMI values with respect to the ground truth).
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Figure 6.5. f(n): Number of images for which the combination result is worse than the

best N input segmentations.
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Figure 6.6. Average performance of combined results over 300 images for each individual

parameter setting (in terms of the average NMI (left) and F-measure (right) values with

respect to the ground truth).
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Table 6.2. Segmentation combination versus base segmentation results over 300 images.

Data set FH MS mNC

NMI Combination 0.6179 ± 0.1322 0.6267 ± 0.1344 0.5813 ± 0.1235

Base segmentation 0.5714 ± 0.1371 0.5851 ± 0.1405 0.5580 ± 0.1173

F-measure Combination 0.6042 ± 0.1227 0.6362 ± 0.1218 0.5760 ± 0.1102

Base segmentation 0.5414 ± 0.1190 0.5948 ± 0.1329 0.5278 ± 0.1048

with the worst and average inputs. In order to make the plot simpler and easier to

observe, the performance values are plotted in increasing order of performance value

of average inputs.

Moreover, in some cases the combined segmentation even outperforms the entire

input ensemble. This case is confirmed by Figure 6.5, which shows a statistic f(n),

indicating the number of images among the 300 test images, for which the com-

bination segmentation is worse than the n best input segmentations. Remarkably,

the combination segmentation outperforms all 24 input segmentations in f(0) = 76

cases for FH ensembles, f(0) = 60 cases for MS ensembles, and f(0) = 28 cases

for mNC ensembles (on NMI index). In the case of FH ensembles, for 70% (210)

of all 300 test images, the goodness of our solution is beaten by at most 5 input

segmentations only. In the cases of MS and mNC ensembles, for 71% (213) and

70% (210) of 300 images, the goodness of our solution is beaten by at most 8 input

segmentations, respectively. These statistics are a clear sign of combination quality

of our approach.

To provide additional empirical justification of our method, Figure 6.6 shows

the average performance of all 300 images with regard to each of the 24 individual

configurations (parameter settings). We also draw the blue line for the average

performance of our combination approach of all 300 images. This implies that for

all 24 parameter settings the combination approach always achieved improved results

in average. This is true for all three sets of segmentation ensembles, except for mNC

ensembles on F-measure.

Table 6.2 summarizes the average performance of combination segmentations and

baseline segmentations for all three segmentation ensembles. Among three sets of

segmentation ensembles, it is obviously seen that the improvement of segmentation

combination is the least for mNC ensembles. We conjecture that this is due to less

diversity in the individual segmentations in the mNC ensemble. This conjecture will

be examined in Section 6.1.4.
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Another reason that explains the low improvement on mNC ensembles is a num-

ber of regions in the initial segmented results. The number of regions of segmen-

tations in each mNC segmentation ensemble are forced to be [4, 6, 8, ..., 26]. Conse-

quently, when selecting the optimal combined segmentation results using the gen-

eralized median segmentation criterion (5.6), which minimizes the sum of distances

between the optimal segmentation to all segmentations in an ensemble, the number

of regions in the optimal segmentation result mainly falls in the middle of the range

[4, 26], which often does not correspond well to the natural number of regions in a

given input image. In contrast to the other two segmentation algorithms, FH and

MS, allow each parameter configuration to determine its own number of regions in

a resulting segmented image, which is more likely corresponding well to the natural

number of regions.

It is also important to note that the choices of distance functions, used in the

generalized median segmentation optimization criterion (5.6) for selecting the fi-

nal optimal segmentation solution, is another key of success for our combination

approach. The ability of distance functions in measuring similarity/dissimilarity

between segmentations affects significantly the success of selecting the most optimal

solution in a set of combination results. As shown in Figure 6.1– 6.3, NMI index

and F-measure have its own preference to choosing the optimal segmentation so-

lution, as well as the worst/median/best input segmentations. Even though many

quantitative evaluation measures for image segmentations have been proposed over

years, their behaviours and applicabilities on a variety of images remain unclear,

and remain a potential problem in computer vision. In our work, we define the gen-

eralized median segmentation criterion (5.6) independent of the choices of distance

functions, which provides the user opportunity to select a particular quantitative

measure that best suits for a particular imagery data or a specific task of image

segmentation.

6.1.3 Suitability of Parameter Ranges and Values

The ranges and values of baseline image segmentation parameters used in the ex-

periments are empirically determined based on an intention of making as much

as possible the correct segmentations within the chosen ranges. In this section we

examine the suitability of our choices of parameter ranges and values of each segmen-

tation algorithm that have been used in the experiments. We verify the suitability

of chosen parameter ranges by examining the highest quality of segmentation re-

sults that we can achieve from each of segmentation algorithm for a given set of 24
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Figure 6.7. Maximum NMI value of each image obtained by each segmentation algorithm

given the set of parameters. (a) The highest NMI values for each input image. (b) The

number of images per maximum NMI index bin.

segmentation parameter combinations (see Table 6.1). The highest segmentation

quality is computed by selecting the segmentation results (among 24 results) with

the highest ANMI values comparing with the ground truth. The left plot in Fig-

ure 6.7 shows the maximum ANMI value on each segmentation algorithm. Note that

the performance values are plotted in increasing order for each algorithm. Thus, the

image rank on the x-axis may not represent the same image across algorithms. The

plot shows that all of the algorithms have roughly equal ability to produce correct

segmentations with the parameter setting chosen. The mNC algorithm has slightly

lower performance than the other two. A histogram in the right plot of Figure 6.7

shows the number of images per maximum ANMI value bin, summarizing the same

information in the left plot. Most segmentation results have ANMI values centered

around 0.6 (for mNC) and 0.7 (for FH and MS) which demonstrates that all of the

algorithms almost always have the potential to produce useful segmentation results.

Thus, we can conclude that our choices of parameter ranges and values for each

algorithm are reasonable.

6.1.4 Analysis of Diversity vs. Accuracy

In this section we study the impact of diversity and quality of the individual seg-

mentation solutions on the final combined segmentation performance. The objective

of this study is to show that diversity and quality of the base segmentations have

proven to be a key element in increasing segmentation combination performance. In

this study we firstly examine the diversity and accuracy of the base segmentation

ensembles and, then, examine the influence of diversity and accuracy of the base

segmentation ensembles on the performance of segmentation combination.
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Diversity and Accuracy of Ensembles

We perform the ensemble diversity analysis following the approach taken by Fern

and Brodley [39]. The diversity of an ensemble can be measured by calculating the

NMI distance (e.g. 1.0-NMI) between each pair of segmentation solutions in the

ensemble. To obtain a single accuracy measure for each pair, we average their NMI

values as computed between each of the two segmentation solutions and the ground

truth segmentations. In detail, for each set of segmentation ensembles (i.e. FH, MS,

and mNC) we ran the following procedure:

(1) Repeat the following steps 300 times for all 300 ensembles of 300 images in the

BSDS data set

(2) For all i, j = {1, 2, ..., 24} and i 6= j

(2.1) Compute the pairwise diversity measures between each pair of segmen-

tations in an ensemble:

DNMI = 1 − φ(NMI)(Si, Sj)

(2.2) Compute the average accuracy for each pair of segmentations against a

set of ground truth, S:

AccNMI =
1

2
[φ(ANMI)(Si,S) + φ(ANMI)(Sj,S)]

The graphs plotted the diversity (DNMI) versus accuracy (AccNMI) for each pair of

initial segmentations of all 300 ensembles for each of FH, MS and mNC algorithms

are shown in Figure 6.8. In the diversity-accuracy diagram, the diversity is maxi-

mized when the DNMI value between two solutions (shown on the x-axis) is one, as

well as the accuracy which is maximized when maximizing the AccNMI values. Fern

and Brodley [39] suggest that higher diversity among ensemble members tends to

produce higher performance gain. Thus, a desirable location of our points is close

to the right-hand top corner of a graph which has high both accuracy and diversity.

In Figure 6.8 each of the three ensemble datasets shows different behavior. The

first two graphs show that FH and MS form a set of segmentation ensembles with

a wide range of quality and diversity, where FH ensemble has slightly lower quality

than MS ensemble. In contrast, mNC ensemble (right) has much lower diversity and

lower quality than FH and MS.

In all cases, it is shown that the accuracy of the ensemble decreases as the diver-

sity increases. This can be explained by the nature of image segmentation problem.
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Figure 6.8. The diversity-accuracy diagram for three segmentation ensembles.

The good segmentations of the same image are alike, while the bad segmentations

are arbitrarily bad in its own way. Thus, it is quite difficult to obtain the ensemble

with high accuracy and high diversity.

Influence of Diversity and Accuracy on Combination

In order to study the impact of diversity and accuracy of ensemble on the combina-

tion results, we consider the accuracy of a combination result and a segmentation

ensemble with respect to the diversity of the ensemble. For each segmentation en-

semble, the single diversity measure is computed by averaging the pairwise diversity

measures of all pair of segmentations in the ensemble:

Davg
NMI =

2

N(N − 1)

N−1
∑

i=1

N
∑

j=i+1

(1 − φ(NMI)(Si, Sj)), for N = 24,

and the single accuracy measure is computed by averaging a pairwise accuracy

between each segmentation solution in an ensemble with its corresponding ground

truth, S:

Accavg
NMI =

1

24

24
∑

i=1

φ(ANMI)(Si,S).

For each segmentation algorithm (i.e. FH, MS, and mNC), we compute Davg
NMI

and Accavg
NMI 300 times for all 300 ensembles of 300 images in the BSDS data set.

We then plot Davg
NMI and Accavg

NMI of 300 ensembles for each segmentation algorithm

as shown in the diversity-accuracy graphs in Figure 6.9 as a magenta line with cross

mark. In each graph we also show the accuracy (in terms of average NMI comparing
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with the ground truth) for the combination solutions for each corresponding ensem-

ble (a blue line with dot mark) as reported in Figure 6.4. The axes for each kind of

plot have been kept constant so plots can be compared easily.

We see evidence that high diversity leads to greater improvements in the quality

of combination results over an input ensemble (i.e. the further the blue line far

away above from the magenta line, the higher the quality of the combination result

over the quality of the input ensemble). Specifically, we see the least improvement

of the combination result over an input ensemble for the mNC data set, which

has significantly lower diversity than the other two. The average percentage of

improvement at each diversity level is summarized in the histogram in Figure 6.10. In

all cases, the higher the diversity of an ensemble, the greater gains the improvement

of the combination result. These results suggest that the ensemble combination

performance is strongly influenced by the diversity of the individual segmentation

solutions. If the individual segmentation solutions have little diversity, then not

much leverage can be obtained by combining them.

However, the quality of the individual segmentation solutions limits the perfor-

mance of ensemble combination. From Figure 6.9, we compute the average accuracy

of combination results at different levels of diversity and draw the histograms as

shown in Figure 6.11. We see that the accuracy of combination results decreases

as the diversity increases, even though the percentage of improvement increases as

the diversity increases. This is because when the diversity of ensemble increases,

the accuracy of ensemble decreases (as shown in Figure 6.8 and 6.9). However, note

that in the case of MS, the accuracy of combination results does not monotonically

decrease like in the other two cases. The average accuracy increases from diversity

level 0.5 and 0.7 to diversity level 0.6 and 0.8, respectively. One possible reason is

that the quality of the MS ensembles is higher than the quality of FH ensembles

at high level of diversity. This may enhance the combination performance on MS

ensembles at high diversity level. These results suggest that the ensemble perfor-

mance is strongly influenced by both the quality and the diversity of the individual

segmentation solutions.

6.2 Multiple Segmentation Algorithm Combina-

tion

Despite the large number of segmentation techniques presently available [45, 47, 86,

102, 149], no general methods have been found that perform adequately across a
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Figure 6.9. The diversity-accuracy diagram for three data sets.
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(b) MS ensembles
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(c) mNC ensembles

Figure 6.10. Average percentage of improvements at different levels of diversity.
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(b) MS ensembles
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(c) mNC ensembles

Figure 6.11. Average accuracy of combination solutions at different levels of diversity.
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diverse set of imagery [8]. This situation is firstly due to the high variations of the

input images, whose characteristics, such as contrast, noise and illumination, etc.,

may change greatly. Secondly, due to the ill-posed nature of image segmentation

problem, defining meaningful constraints or an objective function for classifying

pixels into regions is typically specific to the application domain. Consequently, the

properties/behaviors of different segmentation algorithms differ due to the objectives

they try to satisfy. Figure 6.12 illustrates the different behaviours of state-of-the-art

segmentation algorithms. Some algorithms might perform well in specific images

but not in others. Each column shows the best segmentation results of a given

image for each of FH, MS and mNC algorithms. The best segmentation result of

each given input image for each algorithm is selected from 24 segmentation results

(according to 24 parameter settings defined in the previous section) with the highest

ANMI value (as compared to the ground truth). Homogeneous regions and smooth

boundaries in segmented images are constructed with respect to specific constraints

used in each particular algorithm. Segmentation results show differences in terms of

the number of segmented regions, sensibility to low local variation (a) and sensibility

to small structures (b). The FH algorithm performs well for the first input image,

while none of its 24 parameter settings can yield a good result for the rest input

images (see Figure 6.12(a)). Similar for the MS algorithm, it performs well for the

second input image but none of its 24 parameter settings can yield a good result for

the rest (see Figure 6.12(b)), whereas the mNC algorithm performs well for the last

input image (see Figure 6.12(c)).

Hundreds of segmentation techniques are present in the literature, but there is

no single method which can be considered good for all images, nor are all methods

equally good for a particular type of image [102]. In particular, the potential problem

is that it is not easy to know the optimal algorithm for one particular image. Auto-

mated selection of an optimal algorithm according to image characteristics and/or

the application need is a real challenge. Zhang and Luo [150] have attempted to

construct an automated algorithm selection system by using the heuristic knowledge

(which is obtained by objective evaluation of available segmentation algorithms in

a number of situations) and feedback of segmentation evaluation. In other words,

the algorithm selection is made according to the properties of the segmentation

algorithms and images to be segmented.

Yong et al. [144, 145] proposed a framework of algorithm selection system based

on learning scheme. During training, both the performance ranks of candidate algo-

rithms on every image and image features are used to train a predictor. Then, the

performance ranks of all candidates will be predicted according to image features.
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ANMI = 0.8069 ANMI = 0.7762 ANMI = 0.5762

(a) Parameter setting for FH:σ = 0.6, k = 700,M = 1500;

MS:hs = 8, hr = 11,M = 1500; mNC:scale = 0.8, nseg = 10

ANMI = 0.6448 ANMI = 0.7476 ANMI = 0.6046

(b) Parameter setting for FH:σ = 0.6, k = 700,M = 1500;

MS:hs = 16, hr = 15,M = 500; mNC:scale = 0.4, nseg = 4

ANMI = 0.6923 ANMI = 0.6310 ANMI = 0.7251

(c) Parameter setting for FH:σ = 0.9, k = 500,M = 1500;

MS:hs = 8, hr = 11,M = 1500; mNC:scale = 0.4, nseg = 6

Figure 6.12. Illustration of the problem of segmentation algorithm selection. Segmented

images are computed by FH, MS, and mNC segmentation algorithms (left/middle/right).

The comparative performance of different segmentation algorithms can vary significantly

across images.
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Figure 6.13. The diversity-accuracy diagram of 300 segmentation ensemble.
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Finally, the algorithm with the highest rank will be regarded as optimal and applied

to the image. In this framework, the histogram is used as image feature, the num-

ber of misclassified pixels and computation expenses are used to facilitate interactive

segmentation evaluation, and Principle Components Analysis and Support Vector

Machine are used to construct the predictor. Recently, a similar but more sophis-

ticated learning-based framework is proposed by Shah [120]. Shah has proposed a

probabilistic framework based on Bayesian theory for the performance prediction

and selection of an optimal segmentation algorithm. Within the developed frame-

work, the knowledge about each candidate algorithm’s capability on input image

features is learnt from a limited sample of images representing the context variety

and a measure of candidate algorithms’ performance. When this knowledge is put

to use, features extracted from each new input image are used by the predictor

and the performance of all algorithms on that image is predicted without actually

running any of the candidate algorithms. The algorithm corresponding to the best

performance is selected as optimal and applied to that image. The framework pro-

posed by Shah differs from the framework proposed by Yong et al. in that in Yong’s

framework [144, 145], the interactive segmentation evaluation of segmentation re-

sults produced by candidate segmentation algorithms must be done by a user.

Martin and Thonnat [93] proposed a unified framework for learning of adaptive

image segmentation methods which illustrates how a knowledge-based framework

can be augmented with learning capabilities. In this framework the learning process

involves three stages: extracting optimal parameters for each image of the training

dataset, ranking algorithms to construct a case base, and training a neural network

to select algorithms and their parameters for novel images. The basic concept of

this framework is different from the first two works in that it provides a mechanism

for tuning the parameters of candidate segmentation algorithms (in the first step of

learning process).

Even though these approaches based on machine learning techniques and learning-

based system have shown impressive results on a particular application/image do-

main, these methods require either the assumption of ground truth segmentations

or the human intervention in a training process.

In order to tackle this segmentation algorithm selection problem, we neither ex-

plicitly select the optimal segmentation algorithm for a particular image nor are

interested in optimizing a segmentation algorithm for a given task. Instead, we

attempt to effectively utilize the existing (efficient) segmentation algorithms by pos-

tulating that “Instead of looking for the best segmenter which is hardly possible on

a per-image basis, now we look for the best segmenter combiner”. The rationale
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behind this idea is that while none of the segmentation algorithms is likely to seg-

ment an image correctly, we may benefit from combining the strengths of multiple

segmenters. For this purpose we may apply various segmentation methods (each

perhaps run with multiple parameter sets) to build a segmentation ensemble. The

advantages of our approach over above mentioned approaches are that our approach

requires no assumption of ground truth segmentations and no human intervention

in a framework operation.

6.2.1 Segmentation Ensemble Generation

In this experiment, a segmentation ensemble is generated using three different seg-

mentation methods, namely FH, MS and mNC segmentation algorithms. A pa-

rameter setting for each segmentation algorithm is specified by choosing the best

one from the 24 sets of parameter values described in Table 6.1, namely, a param-

eter setting with the highest average performance for all images in the BSDS data

set. For the FH algorithm: σ = 0.9, k = 300,M = 1500, for the MS algorithm:

hs = 8, hr = 7,M = 1500, and for the mNC algorithm: scale = 0.8, nseg = 22.

We run these three segmentation algorithms with their best parameter setting on

each of 300 images in the BSDS data set to form a segmentation ensemble for each

image. Each segmentation ensemble consists of three segmentation results. The di-

versity and accuracy of all 300 segmentation ensembles is shown in Figure 6.13. The

three segmentation algorithms form a set of segmentation ensembles with moderate

diversity and relatively high quality.

6.2.2 Experimental Results

Our combination algorithm is used to combine multiple segmentations of three dif-

ferent segmenters: FH, MS and mNC. The combination algorithm is performed on

all 300 segmentation ensembles of 300 images in the dataset. Once again, the gen-

eralized median segmentation optimization criterion (5.6) is applied to choose the

optimal segmentation result from a set of combined segmentations with the different

number of k ∈ [2, 50]

Visual samples of segmentation combination results are shown in Figure 6.14(a),

while, for a comparison purpose, Figure 6.14(b)-(d) show all three baseline input

segmentations produced by FH, MS and mNC algorithms, respectively. It is obvious

that the segmentations given by each baseline algorithm have different natures,

depending on the specific underlying segmentation criterion it used. Particularly,
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ANMI = 0.5703 ANMI = 0.5389 ANMI = 0.5491 ANMI = 0.5117

ANMI = 0.7717 ANMI = 0.7033 ANMI = 0.7624 ANMI = 0.2578

ANMI = 0.7559 ANMI = 0.6284 ANMI = 0.7152 ANMI = 0.6959

ANMI = 0.6563 ANMI = 0.6299 ANMI = 0.6356 ANMI = 0.6018

ANMI = 0.6609 ANMI = 0.5941 ANMI = 0.6484 ANMI = 0.5506

ANMI = 0.8117 ANMI = 0.7298 ANMI = 0.7426 ANMI = 0.6658

ANMI = 0.6614 ANMI = 0.5446 ANMI = 0.6362 ANMI = 0.5897

(a) Combined (b) FH (c) MS (d) mNC

Figure 6.14. Segmenter Combination: (a) Segmenter combinations (b)-(d) Three in-

put segmentations computed by running combination algorithm on FH, MS, and mNC

ensembles, respectively.



108 Chapter 6. Ensemble Generation

an individual run of these baseline algorithms often produces less satisfactory results.

On inspecting these results, we observe that our combination algorithm is able to

uncover some parts of the true natural structure in the input image, even though

these parts are not present in the segmentation ensemble. An obvious example of this

argument can be seen in the last segmentation result. Our combination algorithm

can successfully extract the face of a woman, even though none of the baseline

segmentation algorithms does. This situation can also be observed in different parts

of the image, as well as in other sampled segmentation results. These results clearly

support our assumption on that we may benefit from combining the strengths of such

multiple segmentation algorithms, even though none of them is likely to segment an

image correctly.

Another key success of our combination approach is the use of generalized median

concept to determine an optimal segmentation solution from a set of combination

results, where an optimal segmentation solution is the one that minimizes the sum

of distances to all segmentations in an ensemble. Thus, when the quality of the

majority of segmentations in an ensemble is relatively good, we always achieve an

improved combined segmentation solution. An obvious example of this situation can

be seen in the second and the sixth rows of Figure 6.14. The combination results

are more similar to the majority of segmentation solutions in an ensemble (i.e. the

segmentations produced by the FH and the MS algorithms) and less affected by the

outlier segmentations1 (i.e. the segmentation produced by the mNC algorithm).

In addition, the experimental results also demonstrate that our combination al-

gorithm is able to gain an improvement of segmentation results, even when the

size of segmentation ensemble is small (i.e. 3 segmentations per ensemble). The

improvement of our combination approach can be confirmed by the plots shown in

Figure 6.15. Figure 6.15(a) shows the average performance of all 300 images for each

baseline segmentation algorithm in comparison with the average performance of our

approach. This plot implies that for all three baseline segmentation algorithms the

combination approach always achieved improved results in average. A histogram

shown in Figure 6.15(b) shows a statistic f(n), indicating the number of images

among the 300 test images, for which the segmenter combination segmentation is

worse than the n best input segmentations. Remarkably, the segmentation combina-

tion approach outperforms all three input segmentations in f(0) = 147 cases (49%).

For 89% (267) of all 300 test images, the goodness of our segmenter combination

approach is beaten by the one best input segmentation only.

1Outlier segmentation is a segmentation that is far away from the majority of segmentations in

a set, commonly with large-scale measurement error.
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Figure 6.15. (a) Average performance of combined results over 300 images for each

baseline segmentation algorithm (in terms of the average NMI values with respect to the

ground truth). (b) f(n): Number of images for which the segmenter combination result is

worse than the best N input segmentations computed by running combination algorithm

on FH, MS, and mNC ensembles.

Given the fact that we do not know the optimal segmentation algorithm for a

particular image in advance (see Figure 6.12), the comparative performance of our

approach is remarkable and reveals its potential in dealing with the difficult problem

of optimal algorithm selection even without ground truth. In fact our combination

approach is even superior to conventional algorithm selection approaches, since in

many cases it can provide better quality segmentations beyond what can be provided

by the best segmenter in an ensemble.

6.3 Multiple Image Transformations

In this section we propose to improve the quality of image segmentations by mak-

ing use of image transformations. This approach is different from the approaches

presented so far in that the variation in segmentation ensembles are created by

varying the representations of an input image given the same segmenter, instead of

varying the segmenters (e.g. varying the algorithm parameters or applying multiple

segmentation algorithms) given the same input image. This approach is based on

the fact that most segmentation algorithms existing in the literature are image de-

pendent. Local variations of the image may change dramatically the segmentation

results. We have a conjecture that a combination of such different segmentation

solutions resulting from segmenting different transformations of an input image will

be able to improve the segmentation performance over the performance of a single

segmentation solution of the original input image.
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(a) Rotation (b) Shearing (c) Perspective

Figure 6.16. Examples of different image transformations.
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Figure 6.17. The diversity-accuracy diagram of 300 segmentation ensembles. A segmen-

tation ensemble is formed by running FH segmentation algorithm on multiple transforma-

tions of the original input image.

6.3.1 Segmentation Ensemble Generation

In this experiment, a variety of image transformations, such as geometric trans-

formations, affine transformations, and perspective transformations, are applied for

creating diversity in a segmentation ensemble.

• Geometric transformation - the transformation that includes rotation and scal-

ing.

• Affine transformation - the transformation that includes shearing. Straight

lines remain straight, and parallel lines remain parallel, but rectangles might

become parallelograms.

• Perspective transformation - transformation in which straight lines remain

straight but parallel lines converge toward vanishing points.

Figure 6.16 shows examples of different image transformations.
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(a) Original image

(b) Rotation

(b) Scaling

(c) Shearing

(d) Perspective

Figure 6.18. Example of 25 segmentations in a segmentation ensemble resulting from

segmenting different transformed images.
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Table 6.3. Summary of 24 image transformations.

Transformation Description

Rotation 270◦ rotation with Nearest-neighbor interpolation and

(4 transformations) 45◦ rotation with Nearest-neighbor, Bilinear, and Bicubic in-

terpolations

Scale Transformation parameter S = [sx, sy], where

(8 transformations) sx specifies the scale factor along the x axis,

sy specifies the scale factor along the y axis.

S1 = [1, 0.33], S2 = [1, 0.67], S3 = [1, 1.33], S4 = [1, 1.67]

S5 = [0.33, 1], S6 = [0.67, 1], S7 = [1.33, 1], S8 = [1.67, 1]

Shear Transformation parameter A = [sx, sy, shx, shy], where

(8 transformations) shx specifies the shear factor along the x axis,

shy specifies the shear factor along the y axis.

A1 = [1, 1, 0.5, 0], A2 = [1, 1, 1, 0], A3 = [1, 1,−0.5, 0],

A4 = [1, 1,−1, 0], A5 = [2, 0.5,−0.5, 0], A6 = [2, 0.5, 0.5, 0],

A7 = [0.5, 2,−0.5, 0], A8 = [0.5, 2, 0.5, 0]

Perspective Set an input coordinate system so that the input image fills

the unit square with vertices (0,0), (1,0), (1,1), (0,1) and then

transform the image into the quadrilateral with a set of vertices

P .

(4 transformations) P1 = [(0.2, 0), (−1, 1), (0.8, 0), (2, 1)],

P2 = [(−1, 0), (0.2, 1), (2, 0), (0.8, 1)],

P3 = [(0, 0.3), (0, 0.7), (1, 0), (1, 1)],

P4 = [(0, 0), (0, 1), (1, 0.3), (1, 0.7)]

A segmentation ensemble consists of 25 segmentation results: 24 segmentations

resulting from segmenting 24 transformations of the input images plus one segmenta-

tion resulting from segmenting the original input image. 24 transformations include

4 rotations, 8 scaling, 8 shearing and 4 perspective transformations. The details of

24 transformantions are listed in Table 6.3. The FH segmentation algorithm with a

parameter setting σ = 0.8, k = 300,M = 500 is used to segment the images. This

parameter setting is chosen based on its highest average performance over all images

in the dataset. Examples of different segmentations of different transformed images

are presented in Figure 6.18.
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Surprisingly, multiple transformations of original input image are able to form

a set of segmentation ensembles with moderate diversity, which is much more di-

verse than segmentation ensembles that are generated by the mNC segmentation

algorithm with multiple parameter values (see Figure 6.8(c)). The diversity and

accuracy of all 300 segmentation ensembles is shown in Figure 6.17.

6.3.2 Experimental Results

We run our proposed combination algorithm on all 300 segmentation ensembles

of 300 images in the dataset. The generalized median segmentation optimization

criterion (5.6) based on NMI distance is applied for selecting the final optimal seg-

mentation result from a set of combined segmentations with different number of

k ∈ [2, 50]. Then, NMI index is used for quantitatively assessing the quality of

segmentation results against the ground truth.

The performance of our segmentation combination approach is reported in com-

parison with performance of single segmentation of the original image. Some samples

of combination results comparing with single results of the original image are shown

in Figure 6.19. Based on visual judgment, combination results seem to have bet-

ter quality than segmentations of the original image, even though in some cases

the quantitative evaluating values of the combination results are equivalent or little

worse than the segmentations of the original images. It is obviously seen that com-

bined segmentations have smoother region boundaries and have no small elongate

regions along the region boundaries.

In most cases, we can achieve the improvement of segmentation results. Fig-

ure 6.20 shows the performance of combination segmentations over the performance

of segmentations of the original images. Again, to make the plot simpler, the av-

erage NMI values are plotted in increasing order of the average NMI values of the

original input segmentations. In this plot we can observe a substantial improvement

of our combination results compared to the original input segmentation (i.e. most

of the blue markers lie above the magenta line). 86% of combination results (258

of 300 test images) obtain higher average NMI values than the segmentations of

original input images. These results demonstrate the advantage of our combination

approach to overcoming the imperfections of using a single segmentation algorithm

with a single parameter.
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ANMI = 0.5736 ANMI = 0.7023 ANMI = 0.6902 ANMI = 0.7452

ANMI = 0.4064 ANMI = 0.3748 ANMI = 0.5769 ANMI = 0.6083

ANMI = 0.6605 ANMI = 0.6774 ANMI = 0.7508 ANMI = 0.7991

(a) Original (b) Combined (c) Original (d) Combined

Figure 6.19. Multiple image transformation combination: (a) and (c) Segmentation re-

sults of the original input image computed by FH segmentation algorithm. (b) and (d)

Combined segmentation results computed by our segmentation combination algorithm.
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Figure 6.20. Average performance of combined results over 300 images comparing with

the performance of segmentations of the original images. The ANMI values are plotted in

increasing order according to the segmentation performance of the original images.
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6.4 Discussion and Conclusion

On observing the experimental results of the three scenarios of segmentation ensem-

ble generations, we can make the following conclusions. Given an input image, the

segmentation results change with the different parameter values of a single segmen-

tation algorithm, and different segmentation algorithms create different segmenta-

tions with different natures. However, such different segmentations may uncover

some partial/different region structures which complement one another. In other

words, each provides complementary sources of information about region member-

ship. Combining such different segmentations can thereby lead to more accurate,

robust and reliable of segmentation result.

The difficult image segmentation problem has various facets of fundamental com-

plexity. In this chapter some of these segmentation problems have been addressed

and carried out through the three segmentation ensemble generation scenarios: Pa-

rameter subspace sampling, Multiple segmentation algorithms, and Multiple image

transformations.

The parameter subspace sampling approach concerns with the problem of op-

timal parameter selection, whereas the multiple segmentation algorithm approach

concerns with the problem of selecting the optimal segmentation algorithm for a

particular image. We have investigated the two approaches using three state of the

art image segmentation algorithms as a baseline segmentation. In these frameworks

we do not explicitly determine the optimal parameter setting/segmentation algo-

rithm for a particular image. Instead, we try to reach an optimum output of the

segmentation ensemble by means of generalized median concept. In all cases, we

show that without knowing the optimal parameter setting/segmentation algorithm

for a particular image in advance, the comparative performance of our approach is

remarkable and reveals its potential in dealing with the difficult problem of param-

eter/segmentation algorithm selection without ground truth.

For the multiple image transformation approach, we propose an alternative way

in dealing with the imperfections of segmentation algorithms by combining the prin-

ciple of segmentation combination with image transformation techniques. This ap-

proach takes advantage of the disadvantage of a segmentation algorithm in that

most segmentation algorithms are typically sensitive to the change in local varia-

tion in an input image. Transforming the input image may change greatly in a

segmentation result. Surprisingly, the multiple transformation approach is able to

create a moderate-diverse segmentation ensemble, and combining such an ensemble

is able to improve the quality of segmentation result computed from a single run of
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segmentation algorithm on an original input image (which might be of rather poor

quality).

Even though in many cases the developed segmentation combination framework

did not provide the superior segmentation quality over the best input segmentation,

it did guarantee to produce the segmentation result with higher or equal quality

to the average input segmentation. These results are indicative of the effective-

ness of our combination framework to achieve statistically significant performance

improvement over a segmentation ensemble.

We have also analyzed the interplay between diversity and accuracy of the in-

dividual segmentation solutions in a segmentation ensemble and the influence of

them on the final segmentation combination performance. For all three segmenta-

tion ensemble generation approaches, it is revealed that (i) the accuracy of ensemble

decreases as the diversity of ensemble increases. This relationship can be explained

that the good segmentations of the same image are alike, while the bad segmenta-

tions are arbitrarily bad in its own way. Thus, the degree of diversity between bad

segmentations is relatively higher than the degree of diversity between good ones.

(ii) Both diversity and accuracy of the individual ensemble member are crucial fac-

tors to the success of segmentation ensemble combination, especially for improving

segmentation quality. However, diversity alone may not consistently achieve high

quality combination results. When the quality of the majority of the individual

ensemble member is poor, a combination of such segmentations may not be able

to overcome an error of this magnitude. Thus, a choice of heuristics for generating

ensemble is as of important issue to the success of combination approach.

It is also interesting to note that our segmentation combination method is able

to achieve improvement of segmentation results on different sizes of ensemble, from

a very small size (e.g. 3 segmentations per ensemble, see Section 6.2) to medium

size (e.g. 25 segmentations per ensemble, see Section 6.3). This may imply that

for our framework the size of segmentation ensemble is not as much critical as the

diversity and the accuracy of the ensemble.



Chapter 7

Application I: Parameter Selection

Problem

Unsupervised image segmentation is of essential relevance for many computer vision

applications and remains a difficult task despite of decades of intensive research. In

particular, the parameter selection problem has not received the due attention in

the past. In this work we adopt the ensemble combination principle to solve the pa-

rameter selection problem in image segmentation. The first scenario of comparison

experiments is conducted on a natural color image data set (BSDS). We compare our

combination approach to both a classical parameter training approach and a more

sophisticated adaptive learning scheme, namely, a case-based reasoning approach.

The second scenario of comparison experiments is conducted on two range image

data sets. Our approach here is compared with an adaptive search algorithm for

automated parameter training. The experimental results reveal that training ap-

proaches are not optimal and lack an adaptive behavior in dealing with a particular

image, and demonstrate that our approach outperforms all of these three ground

truth-based learning approaches.

7.1 Problem Definition

Segmentation algorithms mostly have some parameters and their optimal setting

is not trivial since it controls the quality of segmentation results. Normally the

correct setting of parameters is given by the algorithm developers. This setting is

expected to give satisfactory segmentations for the images in the class used to tune

the parameters, however, probably does not give satisfactory segmentations for other

117
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classes of images. This is because most segmentation parameters are usually affected

by the changes of the image characteristics such as contrast, noise and illumination.

Variations between images may cause drastic changes in segmentation results. As a

consequence, the values of segmentation parameters need be adjusted with respect

to the changes of image characteristics in order to obtain satisfactory results. One

fundamental problem is in fact to find suitable parameter values, preferably on a

per-image basis. This need can be illustrated by the two pairs of images shown in

Figure 7.1 and Figure 7.2. Each pair is segmented using the FH algorithm [38] based

on exactly the same parameter set1 However, while Figure 7.1(a) and 7.2(a) show

a nearly perfect segmentation, we obtain a very bad segmentation in Figure 7.1(b)

and 7.2(b). It is obvious that there is no single setting of parameters that will result

in the best possible segmentation for any general image, and inappropriate choice

of parameter settings result in unsatisfactory segmentations.

In fact, there are several factors that make the problem of parameter selection

on a per-image basis rather difficult.

• Size of Valid Parameter Space: The size of the parameter search space in a

particular segmentation algorithm can be prohibitively large, highly efficient

methods may be needed in this case.

• High Variations of Images : Since variations between images cause changes in

the segmentation results, the objective function that represents segmentation

quality varies from image to image. The search technique used to optimize the

objective function must be able to adapt to these variations between images [8].

• Complex nature of the segmentation algorithms and the inherent parameter

sets : Complicated interaction between the segmentation parameters in a typ-

ical segmentation algorithm makes it fairly impossible to model the parame-

ters’ behavior in an algorithmic fashion. Thus, the multi-dimensional objective

function defined using the various parameter combinations cannot generally

be modeled in a mathematical way [8].

• No Consensus on Objective Segmentation Evaluation: Up to now, there is

still no universally accepted method of objective evaluation of segmentation

result, which makes evaluation-based algorithm selection hard to apply to real

applications.

1see Section 2.2 in Chapter 2 for the meaning of these parameters.
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(a) ANMI = 0.8435 (b) ANMI=0.5731

Figure 7.1. Illustration of the problem of segmentation algorithm parameter selection.

Segmentations obtained by the FH algorithm [38] given the same set of parameter values

(σ = 0.9, k = 700, M = 1500).

(a) ANMI=0.6501 (b) ANMI=0.1924

Figure 7.2. Illustration of the problem of segmentation algorithm parameter selection.

Segmentations obtained by the FH algorithm [38] given the same set of parameter values

(σ = 0.5, k = 700, M = 1500).

7.2 Related Works

Despite of its importance, the parameter selection problem has not received the due

attention in the past. Researchers typically claim to have empirically determined

the parameter values (in an ad-hoc manner). More systematically, the optimal

parameter values can be trained in advance based on manual ground truth. A

subspace of the parameter space is explored to find out the best parameter setting

(with the largest average performance measure). Since fully exploring the subspace

can be very costly, space subsampling [97] or genetic search [8, 22, 107] has been

proposed. Min et al. [97] proposed an interesting multi-locus hill climbing scheme on

a coarsely sampled parameter space for searching the optimal parameters for each

segmentation algorithm. The algorithm in its concept does not guarantee to find
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the global minima and thus it requires a larger number of initial points (parameter

settings) to avoid local minima. More details of this adaptive searching algorithm

are given in Section 7.5. A more complex approach for searching the parameter

space was proposed by Bhanu and Ming [8]. They proposed the algorithm for

tuning a color image segmentation algorithm by a genetic algorithm (GA), where

a chromosome is formed by the program parameters. The GA is used to set the

control parameters involved in a region-growing based intensity image segmentation

using some qualitative evaluation of the segmentation results for guiding the genetic

search. Following this work, Cinque et al. [22] used the same rationale for range

image segmentation, however, independently from the specific segmenter. Some

extensions of [22] are presented in [21, 107]. In [21], they improved the results

given by the genetic search [22] by applying simulated annealing strategy. The

output of the genetic search is used as a starting point for a simulated annealing

process to obtain a more suitable solution at the cost of a relatively small increase of

computation. While this approach is reasonable and has been successfully practiced

in several applications, its fundamental disadvantage is the assumption of ground

truth segmentation. The manual generation of ground truth is always painful and

thus a main barrier of wide use in many situations.

Another class of methods assumes a segmentation quality measure, which is

used to control a parameter optimization process. Abdul-Karim et al. [1] seek the

optimal parameter setting of a vessel/neurite segmentation algorithm by means of

a recursive random search algorithm. The search algorithm explores the parameter

space driven by trading-off conciseness of the segmentation versus its coverage, which

can be systematically defined based on the minimum description length principle.

This tradeoff is controlled by external parameters, optionally specified by a user.

Recently, a different class of methods that assumes a segmentation quality mea-

sure has been proposed by Peng and Veksler [105]. They develop an algorithm for

automatic parameter selection for graph cut based image segmentation. They ap-

proach the problem of segmentation quality as a binary classification problem (i.e.

good segmentation versus bad segmentation), and train a classifier using the Ad-

aBoost algorithm. Then they run the graph cut segmentation algorithm for different

parameter values and choose the segmentation of highest quality according to our

learnt measure. This approach has to re-run the graph cut algorithm for differ-

ent parameter values. Hence, for practically computational reason, the parameter

search space has to be low-dimensional. This approach does not assume the avail-

ability of the ground truth, however, human intervention is required for labeling the

segmented image (as positive or negative example) for learning process.
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Another class of methods that assumes a segmentation quality measure is an

evaluation-based algorithm selection methods [34, 123]. Singh et al. [123] intro-

duced a novel measurement of image segmentation quality and used this measures

for automatic selecting the best segmentations from a set of segmentation results

produced by different parameter settings of a segmentation algorithm. In this study,

the measurement of image segmentation quality is based on region features from the

segmented images. A similar methodology is also be found in the recent work of

Espindola et al. [34], whose objective function is defined based on intrasegment ho-

mogeneity and intersegment separability. This objective function is used to decide

which parameter settings generate the best segmentation result (i.e. the segmen-

tation that maximized intrasegment homogeneity and intersegment heterogeneity).

This method is robust as it utilizes the inherent characteristics of images: variance

and spatial autocorrelation, which have not been considered in image segmentation

evaluation before. Even though these methods show some promising results for

some particular image segmentation tasks, it should be noted that the definition of

an objective function itself can be a subject of debate because there are available no

single, universally accepted measures of segmentation performance with which the

quality of the segmented image can be uniquely defined [8].

In this work we propose a novel framework of parameter handling based on

ensemble combination. No ground truth is assumed in our framework. The fun-

damental idea is not to explicitly determine the optimal parameter setting for a

particular image. Instead, we compute a set of segmentations (ensemble) according

to a subspace sampling of the parameter space and then try to reach an optimum

out of the segmentation ensemble. One possibility is to compute an average, or more

formally generalized median [74].

7.3 Traditional Parameter Training Approach

In recent years automated parameter training has become popular, mainly by prob-

ing a subspace of the parameter space by means of quantitatively comparing with a

training image set with (manual) ground truth segmentation [22, 97]. Assume that

a reasonable parameter subspace is specified and sampled into a finite number N of

parameter settings. For each parameter setting candidate a performance measure is

computed in the following way:

• Segment each image of the training set based on the parameter setting;
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• Compute a performance measure by comparing the segmentation result with

the corresponding ground truth;

• Compute the average performance measure over all training images.

The optimal parameter setting is given by the one with the largest average perfor-

mance measure.

7.3.1 Experimental Results

In this experiment series we investigate if our combination approach remains advan-

tageous even if ground truth is available and the parameter training is thus possible.

The FH segmentation algorithm is used as a baseline segmentation algorithm to be

tuned, because of its competitive segmentation performance and high computational

efficiency. The reasonable parameter subspace1 of the FH algorithm is sampled into

24 parameter settings (see Table 6.1 for a list of parameter values). We apply a 3-

fold cross validation in the training process described above. The BSDS data set

is randomly partitioned into 3 groups (100 images each). One group forms a 100-

images training set while the rest two groups form a 200-images test set. By this

way we have 3 different training sets with their corresponding test sets. The train-

ing procedure is then run 3 times on each training set to find its optimal parameter

setting among the 24 parameter setting candidates.

The average performance measure over 100 images of each training set and 200

images of each test set are listed in the second and third column of Table 7.1, respec-

tively. The forth column of Table 7.1 shows the average performance of combination

approach on each test set. The combination results shown in the table are taken

from the experiment presented in Section 6.1. The average performance of the com-

bination results is computed according to 200 images in each test set. Figure 7.3

details the summarized information in Table 7.1, which shows histograms of the

200 values of the difference of ANMI values between the two approaches. The posi-

tive differences indicate that the combination approach outperforms the automated

training approach on each test image. For all three test sets, the distribution skews

toward the higher values. The results clearly demonstrate that the combination

approach is even superior to automated parameter training. Firstly, the combina-

tion approach needs no ground truth. Secondly, even in case of ground truth, the

combination approach is able to produce segmentations (on test data) with higher

average performance than those of the training approach. This is an indication that

1The same parameter subspace used in the experiments reported in Section 6.1 in Chapter 6
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Table 7.1. Average performance measures of parameter training and combination ap-

proach on 3 test sets.

Parameter training approach Combination approach

Test set Training data Testing data (Optimal k)

1 0.5716 0.5936 0.6252

2 0.5887 0.5921 0.6208

3 0.6144 0.5793 0.6078

average 0.5916 0.5883 0.6179
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(c) Test set 3

Figure 7.3. Distribution of the difference of ANMI values between the combination ap-

proach and the automated training approach for each test set. The positive difference

indicates that the combination approach outperforms the training approach.

the trained parameters based on manual ground truth lack an adaptive ability for

dealing with the variation of an input image. Figure 7.4 shows the comparison of

segmentation results of four images, produced by (a)-(b) trained parameters and (c)

our combination algorithm.

The experimental results show that the combined segmentation outperforms the

majority of the input segmentations and is in many cases even superior to the best

input segmentation (see Figure 6.5). Given the fact that the optimal parameter

setting may substantially vary among different images, our framework intends to

achieve the highly desired adaptive behavior in dealing with a particular image (see

Figure 6.6).
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ANMI = 0.4244 ANMI = 0.4510 ANMI = 0.4881

ANMI = 0.6961 ANMI = 0.6489 ANMI = 0.6487

ANMI = 0.6696 ANMI = 0.6847 ANMI = 0.7353

ANMI = 0.5075 ANMI = 0.5684 ANMI = 0.5921

(a) (b) (c)

Figure 7.4. Comparison of segmentation results between traditional training approach

and the combination approach. (a) and (b) computed by using two optimal parameter

sets obtained by training approach: (a) σ = 0.7, k = 300, M = 1500; (b) σ = 0.9, k =

300, M = 1500, and (c) computed by our combination algorithm with the generalized

median optimality criterion.

7.4 Case-based Reasoning for Image Segmenta-

tion

The parameter selection and/or parameter learning should be usually done on a

large enough data set, so that it well enough represents the entire domain for build-

ing up a general model for segmentation. However, it is often not possible to obtain

a large enough data set. Furthermore, a general model guarantees an average best

fit over the entire set of images rather than the best segmentation for each image.

Therefore, to obtain optimal segmentation on each particular image, the segmenta-

tion parameter values need to be adapted according to the changes of image quality

and image characteristics.

Frucci et al. [46] and Perner [106] proposed to use case-based reasoning (CBR) for
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automatically selecting the segmentation parameter values according to the current

image characteristics. Their hypothesis is based on the assumption that images

having similar characteristics will show similar good segmentation results when the

same segmentation parameters are applied to these images. In the case base, a case

consists of a description of the prototype of a class of similar images, coupled with

the best solution to its segmentation (i.e. the values of the parameters producing the

best result). Then, given an input image, they use CBR to identify in the case base

the most similar prototype and the solution associated to the selected prototype is

used to run the segmentation algorithm on the input image.

In [46] the description of the prototype is given in terms of the statistical features

characterizing the whole image (see Table 7.2). These features are defined for a

gray-level image. The first order histogram H(g) is equal to N(g)/S, where g is the

gray-level, N(g) is the number of pixels with gray-level g and S is the total number

of pixels. In our experiment, we adopt these features to handle a color image by

applying them separately for each of three color channel. By doing this way, the

total number of features for color image becomes three times as large in the number

of features for gray-level image. These features are used for indexing the case-base

and for retrieval of a set of cases close to the current problem, based on a proper

similarity measure. Image similarity has a crucial role for both to build the case

base (i.e. grouping similar images into cases) and to compare an input image to

the prototypes of the cases in order to derive automatically the proper values for

the segmentation parameters. The similarity between two images A and B in the

original work [46] is computed on the basis of the statistical features (see Table 7.2)

and defined as

distAB =
1

k

k
∑

i=1

wi

∣

∣

∣

∣

CiA − Cimin

Cimax − Cimin

−
CiB − Cimin

Cimax − Cimin

∣

∣

∣

∣

, (7.1)

where k is the number of features, CiA and CiB are the values of the ith feature of A

and B, Cimin and Cimax are the minimum and the maximum value of the ith feature of

all images in the database, and wi weights the ith feature, with w1+w2+· · ·+wk = 1.

In this experiment the weights wi assume equal values in accordance with the original

work.

7.4.1 Building the Case Base for Image Segmentation

We build the case base following the original work, which proceeds as follows. The

statistical features shown in Table 7.2 are used to describe the images. Then, cluster-

ing based on the normalized city-block metric ( 7.1) and the average linkage method
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Table 7.2. Statistical features for gray-level image.

Feature name Calculation Feature name Calculation

Mean ḡ = Σgg · H(g) Variance δ2
g = Σg(g − ḡ)2H(g)

Skewness gs = 1
δ3

g

Σg(g − ḡ)3H(g) Kurtosis gk = 1
δ4

g

Σg(g − ḡ)4H(g) − 3

Variation Coefficient v = δ
ḡ

Entropy gE = −ΣgH(g)log2H(g)

Centroid x x̄ =
ΣxΣyxf(x,y)

ΣxΣyf(x,y)
Centroid y ȳ =

ΣxΣyyf(x,y)

ΣxΣyf(x,y)

=
ΣxΣyxf(x,y)

ḡS
=

ΣxΣyyf(x,y)

ḡS

were applied to separate different cases and to form groups of similar cases. The

expectation is that images, for which we got the best segmentation by using the

same values of the parameters, would cluster into groups of similar images. When

the values of the segmentation parameters experimentally found to produce the best

segmentation results of all images in a cluster are identical, these values are selected

as the solution and are recorded in the corresponding case together with the de-

scription of the prototype of the cluster. When different best values are found for

the segmentation parameters of images in the same cluster, the solution is the set

of values producing on the average the best segmentation results for the images in

the cluster.

7.4.2 Experimental Results

We randomly divided 300 images in the BSDS dataset into two sets: 100 train im-

ages for building the case base and 200 test images for testing the performance of

CBR. The 100 train images are clustered into 64 classes according to their sta-

tistical features on RGB color space.The FH segmentation algorithm is applied

here. The best segmentation parameter for each class is determined by search-

ing the FH parameter subspace (defined in Table 6.1) for the best parameter values.

The best parameter setting is the one that produces the average best result for

all images in a cluster. The quality of the resulting segmentation is assessed us-

ing NMI index by comparing with its corresponding ground truth segmentation.

We would like to note that we have tested the CBR approach on a larger and

finer parameter subspace (i.e. σ = {0.4, 0.5, ..., 0.9}, k = {300, 400, ..., 1000},M =

{100, 300, 600, 900, 1200, 1500} = 288 combinations of the segmentation parameter

in total), but no significantly statistical improvement was obtained.

The combination results reported in this section are taken from the experiment

presented in Section 6.1. Figure 7.5(a) shows a histogram of the 200 values of the

difference of ANMI values between the two approaches. The positive differences



7.4. Case-based Reasoning for Image Segmentation 127

−0.4 −0.2 0 0.2 0.4
0

5

10

15

20

25

30

N
um

be
r 

of
 im

ag
es

Avg.NMI(Combination) − Avg.NMI(CBR)

Performance of Combination over CBR

(a)

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.6

0.61

0.62

0.63

0.64

Parameter set

A
vg

. N
M

I i
nd

ex
 (

ac
cu

ra
cy

)

 

 

Combination
Case−based Reasoning
Input segmentation

(b)

Figure 7.5. (a) Distribution of the difference of ANMI values between the combination

approach and the CBR approach. The positive difference indicates that the combination

approach outperforms the CBR approach. (b) Average performance of combined results

(blue line) and CBR results (magenta line) over 200 test images for each individual pa-

rameter setting.

indicate that the combination approach outperforms the CBR approach on each

test images. In this case the histogram shows that 83.5% (167 of 200 images) of the

combination results get higher performance than the CBR results.

Another perspective is given in Figure 7.5(b), showing the average performance of

our approach (blue line) and CBR approach (magenta line) for all 200 test images

with regard to the average performance of each of the 24 individual parameter

settings (dot line). The blue line lies far above the dot line. This implies that for all

24 parameter settings the combination approach always achieved improved results

in average. In contrast, the CBR approach cannot achieve improvement over all 24

individual parameter settings. Frucci et al. suggested that in order to reach the goal

of solving segmentation parameter problem, a large case base should be available.

However, the initial set of images, though large, does not generally include the

prototypes of all possible classes of images. Thus, the segmentation model should

be adjusted to fit new data by means of a suitable case base maintenance process

(not yet included in our experiment, as well as in the original work). When the

current image does not suitably match any image in the initial set, then the current

image has to be added to the case base as a new case. To this purpose, the best

segmentation parameter values have to be found experimentally for a new case.

Visual comparison of segmentation results of six sampled images are shown in

Figure 7.6: (a) and (c) shows the segmentation obtained using the parameter setting

selected by CBR, (b) and (d) shows the segmentation results by the combination

algorithm. In most cases the combination approach can give more accurate segmen-
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ANMI = 0.5695 ANMI = 0.5853 ANMI = 0.6745 ANMI = 0.4881

ANMI = 0.5183 ANMI = 0.4318 ANMI = 0.5692 ANMI = 0.6822

ANMI = 0.6276 ANMI = 0.7448 ANMI = 0.6794 ANMI = 0.7755

(a) CBR (b) Combination (c) CBR (d) Combination

Figure 7.6. Samples of segmentation results: (a) and (c) Case-based reasoning approach.

(b) and (d) Our combination approach.

tation results than the CBR approach.

The experimental results clearly demonstrate that the combination approach is

even superior to the CBR approach. Firstly, the combination approach needs no

ground truth. Secondly, even in case of ground truth, the combination approach is

able to produce segmentations (on test data) with higher average performance than

those of the CBR approach. Finally, the combination approach is able to operate

without having any knowledge about the original features (e.g. intensity, color, etc.)

of the input images.

7.5 Automated Training of Parameters on Range

Image

Range images are colored according to the distance from the sensor that scans the

image. Each pixel in a range image indicates the value of the distance from the

sensor to the foreground object point. The range image segmentation algorithm

aims at partitioning and labeling range images into surface patches that correspond

to surfaces of 3D objects [107]. For decades several range image segmentation algo-
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rithms have been proposed (We refer to [64, 67] for a survey of range segmentation

algorithms). Each algorithm mostly contains a number of control parameters, whose

default values are usually fixed beforehand by the developer of the algorithm. How-

ever, these parameter are generally affected by the type of surfaces (e.g. planar

versus curved) and the nature of the acquisition system (e.g. laser range finders or

structured light scanners). Thus, they need to be tuned according to the changes of

image characteristics, in order to provide accurate results on a given class of images.

In this section we propose to approach this parameter selection problem in range

image segmentations by our combination method. We compare our approach with

automated tuning of parameter framework proposed by Min et al. [97]. Experimental

results demonstrate the effectiveness of our approach.

7.5.1 Performance Evaluation on Range Image

A machine segmentation of an image can be compared to the ground truth specifica-

tion for that image to count instances of correct segmentation, under-segmentation,

over-segmentation, missed regions, and noise regions [64]. The definitions of these

metrics are based on the degree of mutual overlap required between a region in the

machine segmentation and a corresponding region in the ground truth. The mean-

ingful range of required overlap is 50% < T ≤ 100%. Note that, currently, only

correct segmentation instances metric is considered. A performance curve of the

given metric can then be created for each overlap threshold T varies over its mean-

ingful range, from which a quantitative performance value so–called area under the

performance curve (AUC) [97] is scored. Performance curves can be normalized to

a basis where the ideal curve has an area of one. Thus, the AUC becomes an index

in the range of [0,1], representing the average performance of an algorithm over a

range of values for the overlap threshold.

For experiments reported in this section, the AUC values are computed using a

trapezoid rule with overlap threshold sampled at ten values: 0.51, 0.55, 0.6, 0.65,

0.7, 0.75, 0.8, 0.85, 0.9, and 0.95.

7.5.2 Automated Tuning of Parameters Framework

Automated tuning of parameters framework proposed in Min et al. [97] consists of

three steps: The training step searches for the best parameter settings, the valida-

tion step decides how many of the segmenter’s parameters should have their value

learned through training versus left at the default value, and the test step determines
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performance curves to be used in comparing different segmenters. The framework

uses a validation step to avoid the over-training problem. After training on a given

number of parameters, the parameter values for each training set are run on each

validation set. If the area under the validation performance curves is statistically

significantly improved in going from N − 1 to N parameters, and additional param-

eters are available, then training is repeated using N + 1 parameters. If there was

no significant improvement in going to N parameters available, then the (N − 1)–

parameter training result is kept. If there are no additional parameters, then the

N -parameter result is kept. The results of this step will yield parameter values to

be used on the test step.

Search Algorithm for Automated Parameter Training Procedure

The adaptive search algorithm for automated parameter training procedure pro-

posed in Min et al. [97] operates as follows. Assume that the number of parameters

to be trained and the plausible range of each parameter are specified. The range of

each parameter is sampled by five evenly-spaced points. If D parameters are trained,

then there are 5D initial parameter settings to be considered. The segmenter is run

on each of the training images with each of these 5D parameter settings. The seg-

mentation results are evaluated against the ground truth using the AUC metric.

The highest performing one percent of the 5D initial parameter settings, as ranked

by area under the curve (AUC), are selected for refinement in the next iteration.

The refinement in the next iteration creates a 3×3×· · ·×3 sampling around each of

the parameter settings carried forward. In this way, the resolution of the parameter

settings becomes finer with each iteration, even as the total number of parame-

ter settings considered is reduced in each iteration. The expanded set of points is

then evaluated on the training set, and AUCs again computed. The top-performing

points are again selected to be carried forward to the next iteration. Iteration con-

tinues until the improvement in the AUC drops below 5% between iterations. Then

the current top-performing point is selected as the trained parameter setting. This

search algorithm is a form of multi-locus hill climbing. The algorithm in its concept

does not guarantee to find the global minima and that is why they set a larger

number of initial points. This parameter space searching algorithm is summarized

in Algorithm 7.3.

The whole training is a time-consuming process which depends on various factors

such as the speed of segmenter, the number of images in the train set, the number of

train sets, the number of parameters being tuned. For example, if we are about to

tune 3 parameters of a segmenter on 10 train images, 53 × 10 (= 1, 250) executions



7.5. Automated Training of Parameters on Range Image 131

Algorithm 7.3 Adaptive Searching Algorithm for Parameter Training Procedure

Input: A set of training images,

D segmentation algorithm parameters to be trained and their plausible ranges.

Output: the trained parameter setting.

\∗ Initial step: ∗\

1. Sample five evenly-spaced points from the range of each parameter to form 5D

initial parameter settings.
2. For all training images:

2.1 Run the segmenter on each image with each of 5D parameter settings.

2.2 Compute AUC values for each segmentation results.

3. Select a set of parameter settings, Λ, with the highest performance one percent

of the 5D initial parameter settings for a refinement step.

\∗ Refinement step: ∗\

4. Given a set of parameter settings, Λ:

4.1 Creates 3× 3× · · · × 3 sampling around each of the parameter setting in Λ to

form a new set of initial parameter settings, Λ′.
4.2 For all training images:

4.2.1 Run the segmenter on each image with each parameter settings in Λ′.

4.2.2 Compute AUC values for each segmentation results.

4.3 If the improvement in the AUC drops below 5% go to step 5.

4.4 Select a new set of parameter settings, Λ, with the highest performance one

percent of the parameter settings in Λ′ and go to step 4.1
5. Parameter setting with the highest AUC value is selected as the trained param-

eter setting.

of the segmenter are needed just in the initial step. In case of 4 parameters the

number of initial segmenter executions goes up to 6,250.

7.5.3 Baseline Segmentation Algorithm and Range Image

Dataset

In this experiment, we used the University of Bern (UB) range image segmentation

algorithm proposed by Jiang and Bunke [71] as a baseline segmentation algorithm:

the UB algorithm for planar–surface scenes will be the baseline segmenter on ABW

images, and the UB algorithm for curved–surface scenes [68] will be the baseline

segmenter on Cyberware images. All input images, their ground truths, and the
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UB algorithms, as well as the package of automated parameter training presented

in this experiment, are publicly available via [96]. The details of the algorithm and

the range image data set are as follows.

Range Image Dataset

We use the same set of 40 ABW range images for planar scenes [125] and 40 Cyber-

ware range images for curved-surface scenes used in the original work [97]. ABW

data set has been adopted by many authors to test their segmentation algorithms

(such as [29, 80, 136]). For each image, they provide the ground truth image con-

structed by pixel-level manual specification. The ground truth for range image

contains a region for each of surface patches (e.g. planar, cylindrical, spherical, con-

ical, and toroidal), plus artifact regions for the areas that correspond to significant

artifacts in the image (e.g. shadow regions). The average number of ground truth

regions in an image is 16.5 for the ABW image set and 9.0 for the Cyberware im-

age set. Figure 7.7 shows an example of ABW range images and its corresponding

ground truth. The ABW scanner uses structured light to obtain range values, so

shadow areas are possible. Pixels in shadow areas have a value of zero and appear

black. The larger a depth value the brighter the pixel. An example of Cyberware

range images and its corresponding ground truth are shown in Figure 7.8.

The UB Range Image Segmentation Algorithm

The UB algorithm for planar-surface scenes [71] uses a novel approach that exploits

the scan line structure of the image. The segmenter is based on the fact that, in the

ideal case, the points on a scan line that belong to a planar surface form a straight

3D line segment. On the other hand, all points on a straight 3D line segment

surely belong to the same planar surface. Therefore, they first divide each scan

line into straight line segments and subsequently perform a region growing process

using the set of line segments instead of the individual pixels. The UB algorithm is

considered as the most versatile range image segmentation algorithm in terms of its

computational time and segmentation accuracy [64].

The UB algorithm for curved-surface scenes [68] assumes that a moderately well

extracted binary edge map is given initially and subsequently refines such initial seg-

mentation into regions by direction-guided adaptive edge grouping algorithm. The

algorithms extracts closed contour by applying a process of hypotheses generation

and verification. This algorithm is based on the consideration that any contour gap
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ABW image ground truth

(a)

ABW image ground truth

(b)

Figure 7.7. Example ABW range images and corresponding ground truth image.

CW image ground truth

(a)

CW image ground truth

(b)

Figure 7.8. Example CW range images and corresponding ground truth image.

can be closed by dilating the input edge map. Thus, a single dilation operation

followed by a region verification is applied until all regions are labelled. The ge-

ometry of contours is taken into account in order to apply the dilation–the dilation

process is restricted to one direction. This algorithm is able to achieve appealing

performance with respect to both segmentation quality and computation time.

The UB algorithm for planar-surface scenes has seven parameters, and for curved-

surface scenes has ten parameters that control its operation, as listed in the order of

significance in Table 7.3 and Table 7.4, respectively. These parameters are thresholds

on various values in the segmentation algorithm.

7.5.4 Experiments

Automated Parameter Training Approach

Each set of 40 images is divided into a pool of 14 training images, 13 validation

images, and 13 test images. Ten different training sets of six images each are created

by random sampling from the pool of training images. Similarly, 10 validation sets
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Table 7.3. Parameter ranges, their default values and sampling values for ensemble

generation of UB algorithm for planar-surface scenes.

Parameter Range Default value Sampling values for ensemble generation

T1 [1.0, 3.0] 1.25 {1.0, 1.2, 1.4, 1.6}

T2 [1.5, 3.5] 2.25 {1.5, 1.9, 2.3, 2.7}

t1 [1.0, 8.0] 4.0 4.0

t2 [0.05, 0.3] 0.1 0.1

t3 [1.0, 8.0] 3.0 3.0

t4 [0.05, 0.3] 0.1 0.1

t5 [40, 300] 100 100

Table 7.4. Parameter ranges, their default values and sampling values for ensemble

generation of UB algorithm for curved-surface scenes.

Parameter Range Default value Sampling values for ensemble generation

T1 [0.01, 1.0] 0.5 {0.01, 0.05, 0.1, 0.15, 0.2, 0.25}

T2 [0.01, 5.0] 2.5 {0.01, 0.05, 1.0}

T3 [10.0, 90.0] 45.0 10.0

t4 [0.01, 1.0] 0.11 0.11

t5 [0.01, 0.5] 0.09 0.09

t6 [1, 10] 2 2

t7 [1, 10] 3 3

t8 [100, 500] 200 200

t9 [0.01, 1.0] 0.11 0.11

t10 [0.01, 0.5] 0.07 0.07

of six images each are created by sampling from the pool of validation images, and

10 test sets of six images each are created by sampling from the pool of test images.

The training results and the trained parameter settings of the UB segmentation

algorithm reported in the original work [97] are reproduced here (see Table 7.5 for

ABW data set and Table 7.6 for Cyberware data set). Note that only the first

parameter (T1) of the UB planar-surface algorithm is trained, and the first three

parameters (T1, T2, T3) of the UB curved-surface algorithm are trained. The UB

segmenter is then run on each of the test images with each of these trained parameter

settings. The segmentation results are evaluated against the ground truth using the

AUC metric. The average AUC values for 10 ABW test sets are reported in the

second column of Table 7.7, as well as for 10 Cyberware test sets in the forth column.
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Table 7.5. AUC values of 10 ABW training sets and their resulting trained parameter

values. Only one parameter is trained for the UB algorithm for planer-surface segmenta-

tion.

the UB algorithm on planar-surface scenes

Training set 1 2 3 4 5 6 7 8 9 10

AUC .82 .79 .78 .80 .86 .78 .82 .77 .81 .79

T1 1.6 1.2 1.4 1.2 1.0 1.2 1.2 1.4 1.4 1.2

Table 7.6. AUC values of 10 Cyberware training sets and their resulting trained pa-

rameter values. Three parameters are trained for the UB algorithm for curved-surface

segmentation.

the UB algorithm on curved-surface scenes

Training set 1 2 3 4 5 6 7 8 9 10

AUC .71 .60 .61 .49 .67 .62 .71 .56 .53 .65

T1 .109 .505 .208 .109 .2575 .0595 .208 .208 .109 .208

T2 0.01 0.01 0.01 0.01 0.01 0.01 1.008 0.01 0.01 0.01

T3 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0

Segmentation Combination Approach

A segmentation ensemble is generated by varying the first two parameter values of

the UB segmentation algorithm. For the UB algorithm for planar-surface scenes,

the first two parameters are considered to be the most critical. Thus, only values of

the first two parameters are varied (see the last column in Table 7.3), and the five

less important parameters were fixed at the same values as found by the manual

training [64]. Similarly, only the first two parameters of the UB algorithm for

curved-surface scenes are varied (see the last column in Table 7.4). These settings

result in 16 combinations of the segmentation parameters for ABW dataset and

18 combinations of the segmentation parameters for Cyberware data set. For each

data set, we run the UB segmentation algorithm on each image for all parameter

combinations to form a segmentation ensemble for each of 13 test images.

We perform our combination algorithm on all 13 segmentation ensembles for each

data set. The final number of regions in a resulting segmented image is determined

based on the majority number of regions in segmentations in an ensemble. The

variation of number of regions in a range image segmentation ensemble is substan-

tially small, in contrast to an ensemble of natural scene image segmentations (e.g.
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Table 7.7. Average AUC values of training approach and combination approach on 10

test sets of ABW and Cyberware data sets.

ABW Data set Cyberware Data set

Test set Automated Tuning Combination Automated Tuning Combination

1 0.8140 0.8378 0.6138 0.4079

2 0.8563 0.8662 0.5160 0.6041

3 0.8452 0.8536 0.5054 0.5642

4 0.8048 0.8142 0.5299 0.6350

5 0.8557 0.8630 0.4520 0.3080

6 0.8426 0.8479 0.6344 0.4931

7 0.8327 0.8312 0.5249 0.6636

8 0.8552 0.8580 0.5838 0.6167

9 0.8344 0.8472 0.6682 0.3877

10 0.8356 0.8496 0.6597 0.6081

Average 0.8376 0.8469 0.5688 0.5288

the mean of standard deviation of number of regions for all 13 ABW range image

segmentation ensembles is only 1.0188). Thus, we expect that the majority number

of regions in segmentations in an ensemble would correspond well with the natural

number of regions in a given input image.

Experimental Results

The average AUC values for combined segmentation results are reported in accor-

dance with 10 test sets, which are listed in the third column of Table 7.7 for ABW

test set and in the fifth column of Table 7.7 for Cyberware test set. For ABW

dataset, the combination approach obtained almost always slightly better average

AUC than the training approach does, while for Cyberware dataset, the combination

approach obtained higher average AUC than the training approach does for only half

of all test sets. It is possible that the UB segmentation algorithm for curved-surface

scenes is more sensitive to its parameters than the UB segmentation algorithm for

planar-surface scenes, and the parameter subspace of the UB curved-surface seg-

mentation algorithm for generating CW segmentation ensemble is not large enough.

However, given the fact that we do not need the ground truth segmentations for our

operation, the comparative performance of our approach is remarkable and reveals

its potential in dealing with the difficult problem of parameter selection without

ground truth.
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Figure 7.9 and 7.10 show examples of segmentation results on two ABW test

images and two CW test images (see Figure 7.7 and 7.8 for input range images and

their corresponding ground truths), respectively: (a)-(c) shows segmentation results

computed by the UB segmentation algorithm with the trained parameter values,

and (d) shows segmentation combination results. The combination approach is able

to eliminate small noise segments presented in input segmentations, however, it

inevitably removes small shadow areas from combined segmentation results.

Considering the results on ABW data set, we can see that the trained param-

eter value T1 = 1.4 (in Figure 7.9(c)) yields the best result for the input image in

Figure 7.7(b) but yields the worst result for the input image in Figure 7.7(a). On

the other hand, the trained parameter value T1 = 1.0 (in Figure 7.9(a)) performs

best on the input image in Figure 7.7(a) but performs worst on the input image in

Figure 7.7(b). This is an indication that the trained parameters based on manual

ground truth lack an adaptive ability for dealing with the variation of an input im-

age. This situation can also be observed in the results of Cyberware dataset (see

Figure 7.10). Trained parameter setting T1 = 0.109, T2 = 0.01, T3 = 10.0 (in Fig-

ure 7.10(a)) produces excellent segmentation results on the first range images, but

it produces worst results for the second input range image.

7.6 Discussion and Conclusions

In this work we have taken a step towards solving the parameter selection problem

in image segmentation. Since empirically fixing the parameter values or training in

advance based on manual ground truth are not optimal and lack of adaptive be-

havior for dealing with the problem in a more general context, we have proposed to

apply the concept of ensemble combination for exploring the (segmentation) param-

eter space without the need of ground truth. We verified our framework in a case

study of segmentation combination. The experimental results confirm our expecta-

tion. Without using any ground truth information, our technique is able to produce

segmentations with higher average quality than the training approach.

The focus of our current work is region-based image segmentation. It should be

mentioned that our concept of ensemble combination is a general one. Given the

demonstrated power we expect that it will be helpful towards solving the parameter

selection problem in numerous other contexts. One such example is to explore the

parameter space in a double contour detection problem [139]. We will consider

further application scenarios in future.
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AUC = .9183 AUC = .8097 AUC = .7131 AUC = .8594

AUC = .8352 AUC = .8433 AUC = .9148 AUC = .9229

(a) (b) (c) (d)

Figure 7.9. Comparison of segmentation results on ABW test images. (a)-(c) Segmenta-

tions produced by the UB planar-surface segmentation algorithm with trained parameters

T1 = 1.0, T1 = 1.2 and T1 = 1.4, respectively. (d) Combined segmentation results.

AUC = 1.000 AUC = .4091 AUC = .3333 AUC = .3333

AUC = .4537 AUC = .6778 AUC = .6640 AUC = .7289

(a) (b) (c) (d)

Figure 7.10. Comparison of segmentation results on Cyberware test images. (a)-(c)

Segmentations produced by the UB curved-surface segmentation algorithm with three of

trained parameter settings: (a) T1 = 0.109, T2 = 0.01, T3 = 10.0; (b) T1 = 0.208, T2 =

0.01, T3 = 10.0; and (c) T1 = 0.505, T2 = 0.01, T3 = 10.0. (d) Combined segmentation

results.



Chapter 8

Application II: Instability Problem

of Image Segmentation Algorithms

In this chapter we show the other application of our segmentation combination

approach. The instability of region growing based image segmentations algorithms

is studied. The region growing paradigm is one of the most widely used techniques

for image segmentation. It is shown that within a small parameter range, which leads

to good segmentation results in the majority of cases, remarkably bad segmentation

results may occur. The empirical study presented in [43] shown that instability is in

fact a substantial problem of these algorithms. Franek and Jiang [43] also empirically

analyzed the frequency of such stabilities on natural images of BSDS dataset [90]

and proposed to solve this stability problem by computing the set median for a set

of segmentations within a specific parameter subspace of interest. The experimental

results reported in [43] concluded that adopting the concept of set median to region

growing algorithms is reasonable to receive stability. In the majority of cases the

computation of set median avoids outliers and achieves robustness.

We propose the use of generalized median as an alternative way to solve this

problem. The generalized median of a set of segmentations is computed by applied

our segmentation combination algorithm. The performance of generalized median

comparing to the performance of set median is reported.

8.1 Problem Definition

The region growing paradigm is one of the most widely used techniques for image

segmentation because of its competitive segmentation performance and high com-

139
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putational efficiency. However, it is well known that region growing methods suffer

from the chaining problem [108, 135]: Pixels of different intensity values can be

joined into one region when there exists a chain of pairwise similar pixels which

connects them. Furthermore, the direction, in which one region grows, is dependent

on the order that pixels are examined. In each iteration region growing algorithms

search the unlabeled pixel with the lowest intensity difference between the pixel and

its neighboring region [2, 38]. Additionally, the features of each region are adap-

tively updated as the region growing proceeds. Suppose the input image changes

a little, like in the case of image smoothing or noise. This change could cause a

different sequence in the region growing and therefore slightly different input images

may lead to different regions with different features.

Franek and Jiang [43] analysed two region growing algorithms extensively. It is

shown that among a set of parameters which yield good segmentation results, there

may be some parameters which yield remarkably bad segmentation results. They

also perturb the input images with Gaussian noise and study how segmentations are

influenced by noise.

8.1.1 Instability Caused by Variation of Parameters

Franek and Jiang [43] explored the parameter space for each segmentation algorithm

and 300 images of the BSDS dataset [90]. They used NMI index as performance mea-

sure and as distance measure in their proposed segmentation optimization method.

Human segmentations from the BSDS dataset are used as ground truth images.

The first segmentation algorithm is the graph-based image segmentation algo-

rithm1 (FH) proposed by Felzenszwalb and Huttenlocher [38]. The algorithm has

three parameters: a smoothing parameter (σ), a threshold function (k) and a mini-

mum component size (M). A dense parameter grid with a total of 2,500 (50 × 50)

parameter settings: σ = 0.2, 0.25, ..., 2.65 and k = 100, 110, ..., 590 are analyzed. A

parameter M is fixed since empirical tests show that segmentation results are not

sensitive to change of this parameter [43].

Figure 8.1(a) shows the resulting parameter space for the image in Figure 8.1(c)

received by the FH algorithm. Furthermore, Figure 8.1(b) shows a detail of the

parameter space. The best and worst results within the detailed parameter space

are displayed in Figure 8.1(c) and 8.1(d), respectively. In this work our purpose is to

1The detail and the algorithm parameter descriptions of the FH segmentation algorithm is given

in Section 2.2.
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(a) A whole parameter space (b) A Detailed view

(c) Best segmentation within the

detailed view: NMI = 0.70, k =

460, σ = 1.85

(d) Worst segmentation within

the detailed view: NMI = 0.26,

k = 450, σ = 1.70

Figure 8.1. Exploring parameter space for the FH algorithms (taken from [43]).

extract such parameter regions from the whole parameter space, where the majority

of segmentations are good ones and some bad segmentations are observed.

For comparison purpose Franek and Jiang [43] also investigate the JSEG algo-

rithm, proposed by Deng and Manjunath [28], which combines a color quantization

approach with region growing paradigm. A Gaussian filter parameter σ is used in

preprocessing. The rest parameters of the JSEG algorithm are set to default since

the empirical tests show that segmentation results are not very sensitive to change

of these parameters. Therefore, only a dense one-dimensional parameter space con-

sisting of a total of 100 parameter settings: σ = {0.0, 0.02, . . . , 1.98} is explored.

Two examples of resulting parameter spaces computed by the JSEG algorithm are

shown in Figure 8.2(a) and 8.2(b). Furthermore, Figure 8.2(c)-8.2(f) demonstrates

that the difference between the best and worst segmentation result within a small

parameter range ( σ ∈ (1.6, 1.8) resp. σ ∈ (1.2, 1.4)) is significant.

In both cases (FH and JSEG) the differences in segmentation performance is re-

markable although the changes in parameters are only small. Often a small change

in the smoothing parameter (∆σ = 0.02) leads to remarkable differences in segmen-



142 Chapter 8. Application II: Instability Problem

(a) Parameter space for image 8.2(c) (b) Parameter space for image 8.2(e)

(c) Best σ ∈ (1.6, 1.8): NMI = 0.62,

σ = 1.72

(d) Worst σ ∈ (1.6, 1.8): NMI = 0.39,

σ = 1.74

(e) Best σ ∈ (1.2, 1.4): NMI = 0.76,

σ = 1.34

(f) Worst σ ∈ (1.2, 1.4): NMI = 0.61,

σ = 1.32

Figure 8.2. Exploring parameter space for the JSEG algorithms (taken from [43])

.
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(a) Input image (b) Segmented by the FH (c) Segmented by the JSEG

Figure 8.3. NMI-histogram: Segmentation performance of 1,000 noisy images generated

by perturbing an input image (a) (taken from [43]).

tation quality. It must be emphasized that the peaks associated with bad results

often are unexpected, as can be seen from the results. We conclude that region

growing algorithms are very sensitive to Gaussian smoothing whereas the sensitiv-

ity to the other parameters (e.g. k) is not very significant. On the other hand,

Gaussian filtering is often reasonable in the case of noisy images or to avoid small

segments in the segmentation result. Note that image smoothing often is part of

segmentation algorithms and can enhance segmentation results significantly, even if

images are not noisy. For this reason in principle smoothing should not be avoided.

8.1.2 Instability Caused by Noise

In this section we study how segmentations are influenced by noise. The study

is conducted by perturbing an input image with Gaussian noise. For every image

of the BSDS dataset noisy images are generated by adding Gaussian noise with

zero mean and standard deviation 10−3. For instance, if an image is scaled in

[0, 255], the standard deviation corresponds to a deviation of about one grey level.

To illustrate this study, we compute 1,000 noisy images from the input image shown

in Figure 8.3(a) and segment them using both FH and JSEG algorithms. Then, the

quality of all noisy images for each segmentation algorithms are plotted in the NMI-

histograms shown in Figure 8.3(b) and 8.3(c), respectively. The NMI values form a

Gaussian distribution with standard deviation of 0.01 and 0.03 for the FH and the

JSEG algorithms, respectively. Similar results are also received for other images.

This result demonstrates that region growing algorithms are not stable if Gaussian

noise is added. A high standard deviation of NMI-histogram indicates an unstable

algorithm. Suppose a couple of perturbed images are given. In this situation it is

desirable to avoid the worst segmentation results and to match at least the mean

segmentation result.
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8.2 Experiments

We conduct the experimental comparison between our combination approach and

the set median approach on 300 color natural images of size 481 × 321 from the

BSDS dataset [90]. We apply the NMI index to quantitatively evaluate the segmen-

tation quality against the ground truths. One segmentation result is compared to

all manual segmentations and the average normalized mutual information (ANMI)

is reported.

In [43] the set median (see (2.2) in Section 2.1) for each segmentation ensemble

is determined by computing the SOD for each segmentation of the ensemble. The

set median segmentation is the one that minimize SOD. Since NMI index is used as

a performance evaluation measure of segmentations, it is reasonable to use it as a

distance function (by 1.0-NMI) in a computation of set median. Let n denote the

number of pixels in a segmentation and |Sa| and |Sb| denote the number of groups

within labeling Sa and Sb, the computation of the set median of N segmentations

has the complexity of O(|Sa| |Sb|nN).

In the case of combination approach, we use the generalized median criterion

(5.6) for determining the final segmentation solution from a series of combination

results with different k ∈ [2, 50], and regards the final segmentation results as the

generalized median segmentation.

8.2.1 Stability in Parameter Space

The parameter spaces of FH and JSEG defined in Section 8.1 are employed and

summarized in Table 8.1. The purpose in this work is to examine small parame-

ter regions (in the whole parameter space) that contains good segmentations and

some outliers. The set median is then computed for each small parameter region to

achieve the stability in such regions. Thus, for each image in the dataset segmen-

tation ensembles consist of segmentations computed from small sets of neighboring

parameter settings in the dense parameter space.

For the JSEG algorithm, the whole one-dimensional parameter space with the

range of 100 parameter values is divided into ten equidistance parameter ranges, each

consisting of ten parameter values. Thus, for each input image, ten segmentation

ensembles are generated according to ten parameter subranges. Each segmentation

ensemble consists of 10 segmentations (computed from 10 parameter values in a pa-

rameter subrange). The set median is then computed for each parameter subrange.
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Table 8.1. Summary of the FH parameter subspace sampling and the JSEG parameter

subspace sampling.

Algorithm Parameter Total parameter settings

FH σ = {0.2, 0.25, 0.3, ..., 2.65} 2,500

k = {100, 110, 120, ..., 590}

JSEG σ = {0, 10, 20, ..., 490} 100

For the FH algorithm, the whole two-dimensional parameter space of size 50×50

is examined. However, the only 5 × 5 parameter regions that yield good segmenta-

tions and some outliers are extracted from the whole parameter space. Note that not

all regions in the whole parameter space is used since we are only interested in the

area where instability occurs. Furthermore, the number of the extracted parameter

regions for each image in the dataset are different, as well as the locations of the

interesting regions, depending on the characteristic of that image. Thus, for each

image in the dataset the number of generated segmentation ensembles is different.

Each segmentation ensemble consists of 25 (5 × 5) segmentations (computed from

25 parameter settings in an extracted parameter region). The set median is then

computed for each 5 × 5 parameter regions.

Some results of set median and generalized median are shown in Figure 8.4 for

both FH and JSEG ensembles. For comparison purpose, the best, average and the

worst input segmentations are also shown. Both approaches have relatively similar

ANMI values. However, based on visual inspection, the results computed by the

combination algorithm have less ragged region boundaries and less oversegmented

than the results selected by the set median.

Similar qualities of the GM and SM results in this experiment are possibly due

to a relatively small diversity of an input ensemble. An input ensemble is generated

from a very narrow range of algorithm parameters. As a result, initial segmentations

in an ensemble are quite similar to each other. As we mentioned earlier, a combi-

nation of relatively identical segmentation solutions would not achieve improved

segmentation that outperforms the individual ensemble members. The combined

segmentations are, consequently, relatively identical to the initial segmentations.

However, the performance of the GM is slightly better than the performance of

the SM. The percent improvements are 0.83 and 0.82 for FH and JSEG ensemble,

respectively.
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(a)

ANMI = 0.7020 ANMI = 0.6186 ANMI = 0.6953 ANMI = 0.5321

(b)

ANMI = 0.6846 ANMI = 0.5939 ANMI = 0.6839 ANMI = 0.5207

(c)

ANMI = 0.6539 ANMI = 0.553 ANMI = 0.6776 ANMI = 0.4992

(d)

ANMI = 0.6885 ANMI = 0.5933 ANMI = 0.6839 ANMI = 0.5220

(e)

ANMI = 0.7217 ANMI = 0.6117 ANMI = 0.6875 ANMI = 0.5336

Figure 8.4. Examples of segmentation results on parameter subspace data. (a)-(c) The

best, average and the worst input segmentations. (d) Set median segmentation. (e)

Generalized median segmentation.
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8.2.2 Stability Across Noisy Images

In this experiment we consider the influence of noise on regions growing algorithms.

For this reason we fix parameters of the segmentation algorithms and investigate the

segmentation performance on noisy images. For each image 100 noisy images are

generated by adding Gaussian noise with zero mean and standard deviation 10−3

as described in Section 8.1. We postulate that in the situation of a couple of noisy

images, it is desirable to avoid the worst segmentation and to match at least the

segmentation with average ANMI without knowing ground truth. We propose to

accomplish this by applying the median concept to compute an approximation of

the mean segmentation result without knowing ground truth. Thus, the generalized

median and the set median are computed from all 100 noisy images.

The performance of the generalized median and the set median is analyzed in

three situations:

1. the segmentation whose ANMI is lower than (average ANMI - 0.1). This level

corresponds to the situation where the segmentation is significantly worse than

the average ANMI (i.e. the mean segmentation).

2. the segmentation whose ANMI is lower than (average ANMI - 0.05). This

level indicates how close the segmentation to the mean segmentation.

3. the segmentation whose ANMI is larger than average ANMI. This level cor-

responds to the situation where the segmentation is better that the mean

segmentation.

The barrier for classifying the segmentation results is chosen from experience. Ta-

ble 8.2 shows the statistical performance of the computed median segmentations.

In the experiment of noisy images, the GM approach can handle noises in the data

more effective than the SM approach. Visual comparison of segmentation results

are presented in Figure 8.5. Based on visual inspection, it is clear that the GM

approach is able to produce more meaningful segmented images and less affected by

noises.

Figure 8.6 shows a histogram of the difference of 300 ANMI values between the

GM and SM segmentations. For the FH algorithm, 73.67% of 300 GM segmentations

(221 of 300 images) had a slightly higher ANMI values than SM segmentations and

66% of 300 GM segmentations (198 of 300 images) had a slightly higher ANMI

values than SM segmentations for the JSEG algorithm. The percent improvement

are 1.32 and 1.84 for FH and JSEG ensemble, respectively.



148 Chapter 8. Application II: Instability Problem

Table 8.2. Performance classification of the median results on noisy data.

Segmentation\Algorithm FH JSEG

Worst input < (average ANMI - 0.1) 15.33% 34.33%

Set median < (average ANMI - 0.1) 0.00% 0.67%

Set median < (average ANMI - 0.05) 0.67% 1.33%

Set median > average ANMI 82.33% 74.33%

Generalized median < (average ANMI - 0.1) 0.00% 1.00%

Generalized median < (average ANMI - 0.05) 2.00% 5.00%

Generalized median > average ANMI 88.33% 79.33%

8.3 Discussion and Conclusion

In this work we studied the instability of region growing segmentation algorithms,

which is a substantial problem of such algorithms. Firstly, the frequency of insta-

bilities caused by varying the smoothing parameter σ was empirically studied. The

intention of this approach was to eliminate peaks associated with bad segmentation

results. Experimental results demonstrated the performance of the median concept

approach and proved that the median concept approach satisfies the intention well.

At this place, we want to remark that computing generalized median segmentations

(combination approach) is not the simplest and most efficient way for this partic-

ular application, since we only achieve slightly improved results at much higher

computational costs. The set median solution is enough for this problem.

In the second application scenario we deal with the instability of the segmenta-

tion algorithm across noisy images. The generalized median and the set median of

segmentations of noisy images are computed to avoid the worst segmentation results.

In the presence of noise, the set median method shows a rather poor performance

than the generalized median, mainly because the noise destroys the coherence of

the image structures of interest. It is important to note that the set median seg-

mentation is the segmentation selected from a segmentation ensemble, while the

generalized median segmentation can go beyond what is typically achieved by a

single segmentation in an ensemble. Thus, the generalized median is not directly

affected by noise and able to yield improved segmentation results by combining the

strength of each individual input segmentation in an ensemble.

Although the combination approach is not the most efficient way for solving this

particular problem, the experimental results are mainly intended to show the broad

applicability and usefulness of our algorithm in a variety of image segmentation

problems.
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ANMI = 0.4765 ANMI = 0.5047 ANMI = 0.7470 ANMI = 0.4277

(a) Set median segmentation.

ANMI = 0.5221 ANMI = 0.5640 ANMI = 0.7608 ANMI = 0.4610

(b) Generalized median segmentation.

Figure 8.5. Examples of segmentation results on noisy data set. (a) Set median segmen-

tation. (b) Generalized median segmentation.
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(a) Ensembles produced by the FH (b) Ensembles produced by the JSEG

Figure 8.6. Distribution of the difference of ANMI values between the generalized median

and the set median results.
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Chapter 9

Comparison of Segmentation

Evaluation Measures

Ideally, the distance function is desired to be a metric in order to match the human

intuition of similarity. Distance functions with a metric property enable several ad-

vantages in many applications. For example, fast computation of the exact solution

of set median strings [70], computation of optimal lower bound for generalized me-

dian problem using for assessing the quality of the computed approximated solutions

of generalized median [72], and speedup the search in image retrieval system [35].

In this chapter we utilize the special property of a metric in the sense that distance

functions, that are a metric, would give a more robust generalized median than us-

ing distance functions, that are not a metric. There is essentially no literature for

any kind of segmentation evaluation measure which investigates the metric property.

In contrast to the previous work, where comparisons between evaluation measures

have done in terms of performance evaluation of segmentation results, our work is to

compare the evaluation measures themselves. The evaluation measures considered

in this work include both the methods specifically derived for segmentation evalua-

tion task and the methods for comparing clusterings developed in statistics and the

machine learning community for the purpose of segmentation evaluation.

9.1 Motivation

Recalling to Section 5.5.1 we regarded an approximation of generalized median seg-

mentation as the optimal combined segmentation. The generalized median segmen-

tation is determined by computing the sum of distances (SOD) to all combined
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segmentations with different number of regions. The generalized median segmen-

tation is the one that minimize SOD. Thus, the generalized median segmentation

is explicitly characterized by a distance function. This raises the issue of how to

define a measure of distance between segmentations. Ideally, the distance function

is desired to be a metric, in order to match the human intuition of similarity.

Definition 9.1 (Distance metric) A distance function d is called a metric dis-

tance, iff

1. ∀p, q : d(p, q) ≥ 0 (non-negativity)

2. ∀p, q : d(p, q) = d(q, p) (symmetry)

3. ∀p, q, r : d(p, q) + d(q, r) ≥ d(p, r) (triangle inequality)

The triangle inequality is necessary since it excludes the undesirable case in which

d(p, r) and d(r, q) are both very small, but d(p, q) is very large. According to this

special property of a metric, we have a conjecture that using a metric distance

function will give a more robust generalized median than using a non-metric distance

function. Thus, in this work we investigate the metric property of the existing

measures.

Recently, there is an extensive literature about various ways to define distance

between segmentations. These include methods specifically derived for segmentation

evaluation task and the methods for comparing clusterings developed in statistics

and the machine learning community but used for the purpose of segmentation eval-

uation. Among them there may exist functions that satisfy both the non-negativity

and the symmetry, but not the triangle inequality. The work [10] extends the con-

cept of metrics to so-called quasi-metrics with a relaxed triangle inequality, where

the full power of the triangle inequality is not needed. Instead of the strict triangle

inequality, the relation:

d(p, r) + d(r, q) ≥
d(p, q)

1 + ǫ
(9.1)

is required. Here ǫ is a small nonnegative constant. As long as ǫ is not very large, the

relaxed triangle inequality still retains the human intuition of similarity. Note that

the strict triangle inequality is a special case with ǫ = 0. Thus, a desirable property

of being a metric of a distance function is qualified by the relaxed triangle inequality:

The smaller the value of ǫ, the closer the distance function being a metric.

There is essentially no literature about segmentation evaluation measures pre-

sented thus far that compares and investigates the metric property of the existing

measures. The remainder of this chapter is organized as follows. In Section 9.2, we
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firstly describe some basic requirements for a measure of segmentation evaluation.

Then, experimental validation of the metric property of evaluation methods is re-

ported in Section 9.3. Finally, Section 9.4 gives some discussions to conclude the

chapter.

9.2 Requirements of Segmentation Evaluation Mea-

sures

In this work we are interested in the thirteen general-purpose evaluation measures

defined in Chapter 2: GCE, LCE, BCE, p, F , R, AR, F , J , M, D, NMI, and

V I. The following basic requirements for image segmentation evaluation measures

are discussed in the light of these measures.

1. Quantitative and Objective: Quantitative study can provide precise results

reflecting the exactness of evaluation while objective study will exempt the

influence of human factor and provide consistency and no bias results [148].

Evaluation measures presented in Chapter 2 are normally quantitative as the

values of quality measures can be numerically compute. The availability of

the ground truth yields objective evaluation results.

2. Tolerant to Different Segment Counts : Tolerant to different segment counts

is due to the complexity of the images [90]. Segmentation evaluation needs

to be able to compare two segmentations when they have different numbers

of segments and region size. This property is hold for all evaluation measures

mentioned in Chapter 2, except for GCE and LCE. Since GCE and LCE are

tolerant of refinement, there are two trivial segmentations that achieve zero

error: One pixel per segment, and one segment for the entire image. The for-

mer is a refinement of any segmentation, and any segmentation is a refinement

of the latter. Thus, these measures are meaningful only when comparing two

segmentations with an approximately equal number of segments.

3. Independent of the Coarseness of Pixelation: In any situation where compar-

isons are not restricted to a single data set, a criterion that is not n-invariant

would have little value without being accompanied by the corresponding n,

where n is a number of pixels in an image. This property is hold for all eval-

uation measures defined earlier, except for Mirkin and Dongen metrics, which

are strongly dependent on n (i.e., both metrics grow unboundedly with n) [94].
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Meila denotes the n-invariant versions of D, M by Dinv, Minv:

Dinv(C, C′) =
D(C, C′)

2n
, Minv(C, C′) =

M(C, C′)

n2
.

4. Tolerant to Refinement : Refinement is the differences in the pixel-level gran-

ularity in the segmentations, of particular, the differences in granularity that

are correlated with differences in the level of detail in the human segmenta-

tions [132]. Motivation for making segmentation error measures tolerant to

refinement is that even if different human observers have the same perceptual

organization of an image, they may choose to produce segmentations at vary-

ing levels of granularity. Martin et al. [90] argued that “If one segment is a

proper subset of the other, then the pixels lies in an area of refinement, and

the local error should be small or zero. If there is no subset relationship, then

the two regions overlap in an inconsistent manner and the local error should

be non-zero”. GCE and LCE are completely tolerant to refinement while F-

measure is not tolerant of refinement, it is possible for two segmentations that

are perfect mutual refinements of each other to have very low precision and

recall scores. Furthermore, for a given matching of edge elements between two

images, it is possible to change the locations of the unmatched edges almost

arbitrarily and retrain the same precision and recall score.

5. Tolerant to Boundary Localization Error : In many images even the ground

truth data, pixel label assignments are ambiguous near segment boundaries.

Hence, one desirable property of a good comparison measure is robustness to

small shifts in the location of the boundaries between segments, if those shifts

are represented in the manually labeled training set, even when the “true”

locations of those boundaries are unknown [131]. F-measure with a single

thresholded machine boundary map and a single human boundary map is not

tolerate any localization error and would consequently overpenalize algorithms

that generate usable, though slightly mislocalized boundaries.

6. Nondegeneracy : The measure does not have degenerate cases where input

instances that are not well represented by the ground-truth segmentations

give abnormally high values of similarity [131].

9.3 Validation of the Metric Property

We verify the metric property of the thirteen evaluation measures: GCE, LCEL,

BCE, p, F , R, AR, F , J , M, D, NMI, and V I. However, the theme of this
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chapter focuses on distance quantity rather than similarity quantity. Thus, the

similarity measures under consideration are transformed to dissimilarity measures

as follows.

p′ = 1 − p,

F ′ = 1 − F,

R′ = 1 −R,

AR′ = (AR + 1)/2,

F ′ = 1 −F ,

J ′ = 1 − J ,

NMI ′ = 1 − NMI.

Possible values of these dissimilarity measures lie in the range [0,1], where a value of

0 indicates identical segmentations and a value of 1 indicates no similarity between

segmentations.

9.3.1 Experimental Setting

The triangle inequality property of these measures are verified by computing the val-

ues of ǫ in (9.1). A segmentation triple used in the test is constructed from human

segmentations in the BSDS data set [90]. The data set consists of 214 landscape

images and 86 portrait images, each having 4-9 human segmentations (resulting in

a total of 1,633 human segmentations). We divided 300 images in the database into

three sets since the total number of all possible triples for human segmentations

of all 214 landscape images are extremely large, which is equal 774,407,868. Pro-

cessing such size of segmentation triples would cost much the computational time

and memory. The first two sets consist of 100 landscape images randomly selected

from a pool of 214 landscape images (we do not repeatedly select the same image,

thus, the images in both sets are distinct.), and the third set contains all of 86

portrait images from a pool of portrait images. Segmentation triples are then con-

structed from human segmentations corresponding to the images in each set. Note

that segmentations in each triple may either be segmentations of the same image or

be segmentations of the different images. Details on the three sets of segmentation

triples are summarized in Table 9.1. We assume that all measures considered here

are symmetric.
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Table 9.1. Details on the three sets of segmentation triples.

Test set Total number of im-

ages

Total number of seg-

mentations

Total number of triples

(N)

I 100 (landscape) 545 80,494,320

II 100 (landscape) 546 80,939,040

III 86 (portrait) 476 53,585,700

9.3.2 Experimental Results

For each set of segmentation triples (t1, t2, ..., tN), we obtain a set of ǫ values

(ǫ1, ǫ2, ..., ǫN ). Then, ǫ̂ is computed by ǫ̂ = max{ǫ1, ǫ2, ..., ǫN} where 0 < ǫ̂ < ∞, so

that

1. for all p, q, r in each triple in the set, d(p, r) + d(r, q) ≥ d(p,q)
1+ǫ̂

2. there is no ǫi < ǫ̂ so that 1) holds.

Statistical values of ǫ̂ for each set of triples are reported in Table 9.2–9.4, respec-

tively. In each table, the results are reported in ascending ordered by the values of

ǫ̂. The evaluation measures with smaller value of ǫ̂ exhibit more metric than the

evaluation measures with larger value of ǫ̂. For all three sets of tested triples, it is

not surprising that values of ǫ̂ of V I, M, and D are less than or equal zeros, since

these measures are proven to be a metric. Values of ǫ̂ of J ′, R′, and p′ measures

are also less than zeros. Values of ǫ̂ of AR′, NMI ′, F ′, and F ′ are relatively small,

while values of ǫ̂ of BCE, GCE, and LCE are relatively large.

9.4 Discussion and Conclusion

In this chapter we tested the metric property of the thirteen evaluation measures.

We have made a conjecture that in order to obtain a more robust generalized median

segmentation, we want a measure to have the property of a metric. However, it is

not necessary that a measure must satisfy the triangle inequality. It is sufficient

for a measure to satisfy a relaxed triangle inequality, where a constant ǫ is not too

large. An experiment is performed to rank how likely these evaluation measures

are metric. We also hope that this study would be helpful for choosing appropriate

measures in the situation where the property of a metric is required.
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Table 9.2. Statistical values of ǫ̂ ascending sorted by the values of ǫ̂ for test set I.

Distance ǫ̂ Mean of (ǫ1, ǫ2, ..., ǫN ) Standard deviation

V I -0.0093 -0.4907 0.1166

J ′ -0.0076 -0.4943 0.0907

M -0.0036 -0.4803 0.1691

R′ -0.0036 -0.4803 0.1691

D -0.0021 -0.4891 0.1269

p′ -0.0021 -0.4891 0.1269

AR′ 0.1121 -0.4943 0.0910

NMI ′ 0.1717 -0.4939 0.0946

F ′ 0.2070 -0.4977 0.0577

F ′ 0.2971 -0.4904 0.1184

BCE 141.2445 -0.3661 0.5406

GCE 175.1888 -0.3455 0.7695

LCE 244.3052 -0.3215 0.7848
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Table 9.3. Statistical values of ǫ̂ ascending sorted by the values of ǫ̂ for test set II.

Distance ǫ̂ Mean of (ǫ1, ǫ2, ..., ǫN ) Standard deviation

V I -0.0018 -0.4910 0.1146

J ′ -0.0013 -0.4945 0.0894

M -0.0006 -0.4810 0.1663

R′ -0.0006 -0.4810 0.1663

D 0 -0.4895 0.1247

p′ 0 -0.4895 0.1247

NMI ′ 0.0905 -0.4940 0.0940

AR′ 0.1055 -0.4940 0.0939

F ′ 0.1707 -0.4975 0.0607

F ′ 0.2634 -0.4904 0.1186

BCE 54.3801 -0.3474 0.4847

GCE 69.2655 -0.3202 0.9443

LCE 338.8778 -0.2629 1.5490
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Table 9.4. Statistical values of ǫ̂ ascending sorted by the values of ǫ̂ for test set III.

Distance ǫ̂ Mean of (ǫ1, ǫ2, ..., ǫN ) Standard deviation

V I -0.0118 -0.4933 0.0993

J ′ -0.0066 -0.4961 0.0754

D -0.0033 -0.4924 0.1056

p′ -0.0033 -0.4924 0.1056

M -0.0012 -0.4817 0.1627

R′ -0.0012 -0.4817 0.1627

NMI ′ 0.0363 -0.4939 0.0940

AR′ 0.0539 -0.4946 0.0887

F ′ 0.1232 -0.4975 0.0602

F ′ 0.1578 -0.4931 0.1004

BCE 59.7018 -0.2919 0.4926

GCE 66.0830 -0.2718 0.7844

LCE 193.3795 -0.2452 1.0894
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Chapter 10

Clustering of Segmentation

Evaluation Measures

Evaluation of image segmentation is as of indispensable for studying and improv-

ing the performance of image segmentation algorithms. Particularly, supervised

segmentation evaluation methods are very useful in practice for quantitatively as-

sessing and comparing the quality of resulting segmentations. While many different

segmentation evaluation measures have been proposed in the literature, very few

researchers have undertaken the task of analyzing existing measures.

Thus far, there is still no consensus on metrics to use for objectively evaluating

of image segmentation [8, 144]. Most evaluation measures are generally endowed

with different standard for measuring the quality of the segmentation. As a result,

different evaluation measures may give significantly different evaluation results on

the same set of segmented images. These situations present the difficulty for the

users to choose a specific measure for a particular application when they are faced

with such a variety of possibilities.

In this work we present an analytical framework for clustering the existing eval-

uation measures. These measures are clustered into groups according to their eval-

uating behaviors on the same set of segmented images. The measures with the

same behavior will be grouped together. We expect that this study can provide

some guidelines in choosing different appropriate evaluation measures, especially,

from different clusters, in order to fairly report the performance of the proposed

algorithm. There is essentially no literature for any kind of evaluation measures

which attempt to cluster the existing evaluation measures according to their eval-

uating behaviors. Two state-of-the-art segmentation algorithms are involved in the
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A B C D E

Figure 10.1. Example input images.

experiments in order to study the behaviors of evaluation measures under real con-

dition. Thirteen evaluation measures under consideration are selected from different

technique groups and are widely used in computer vision literature. The proposed

clustering framework is general and would be valid for treating a wide range of

evaluation measures and with any kind of segmentation methods.

10.1 Motivation

In this work we focus on the supervised evaluation methods. This kind of methods

is considered as a principled and powerful way to objectively assess the performance

of segmentation algorithms [147]. Moreover, most of them are relatively general and

applicable to comparing different kinds of segmentation algorithms. For last decades,

many supervised evaluation measures have been proposed in the literature. It is

important to realize that each evaluation measure may have distinct standards for

measuring the quality of the segmentation. Consequently, the evaluating results vary

significantly between different evaluation measures. Particularly, if the segmentation

algorithm to be evaluated has a bias in the same situations as the evaluation measure,

then some biased results will be produced. In order to illustrate this situation, we

apply two different image segmentation algorithms, FH1 and MS1, to segment five

images in Figure 10.1. The resulting segmentations are shown in Figure 10.2(b)

for the FH algorithm and 10.2(c) for the MS algorithm. Four different evaluation

measures, AR, NMI, BCE, and F (defined in Chapter 2), are taken to assess the

quality of segmentation results against their corresponding ground truths (shown

in Figure 10.2(a)). The quantitative performance of two algorithms are reported

in Table 10.1. If one would like to claim that the overall performance of the FH

algorithm is superior to the overall performance of the MS algorithm, one could

choose to report the performance assessed by AR and NMI only. On the other

hand, if one would like to claim that the overall performance of the MS algorithm is

superior to the overall performance of the FH algorithm, one could choose to report

1Details of FH and MS segmentation algorithms have been described in Chapter 5.
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(a) human segmentation (b) FH segmentation (c) MS segmentation

Figure 10.2. Examples of segmentation results produced by (b) the FH algorithm with

σ = 0.9, k = 300, M = 1500 and (c) the MS algorithm with hs = 8, hr = 15, M =

1000 comparing with its ground truth segmentation in (a). See Table 6.1 for details of

segmentation parameters.

the performance assessed by BCE and F instead.

This situation motivates our work. We present a novel framework for clustering

different (supervised) evaluation measures proposed so far for segmentation eval-

uation in the context of region-based segmentation. The evaluation measures are

clustered based on their behaviors on assessing the quality of segmented images

against ground truth segmentations.

Normally, the raw numerical output of these measures is difficult to compare since

they are neither measures of departure from a common baseline nor are they normal-

ized to lie within certain fixed bounds (e.g., 0 and 1 or ±1) [66]. In this study, the

evaluation measures’ behavior is captured through the use of selecting and ranking
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Table 10.1. Evaluating values of segmentation results shown in Figure 10.2

FH segmentations MS segmentations

Input Image AR1 NMI1 BCE2 F 1 AR NMI BCE F

A 0.4199 0.5575 0.5804 0.3742 0.3572 0.5899 0.5374 0.5588

B 0.0717 0.2840 0.8112 0.1827 0.0064 0.2032 0.6551 0.2957

C 0.2959 0.5334 0.6511 0.4020 0.0961 0.2539 0.6444 0.3143

D 0.0438 0.2517 0.8125 0.2316 0.0896 0.1034 0.2300 0.2525

E 0.4618 0.6140 0.5387 0.3861 0.4270 0.6295 0.6421 0.4724

average 0.2586 0.4481 0.6788 0.3153 0.1953 0.3560 0.5418 0.3787

1 AR, NMI, F are similarity measures, the larger values indicate the better segmentation quality.
2 BCE is a dissimilarity measure, the smaller values indicate the better segmentation quality.

strategies. Selecting behavior is the behavior on selecting k-best segmentations from

a set of segmentations, and ranking behavior is the behavior on ranking the quality

of segmentations in the set. These behaviors reflect directly the overall characteris-

tics (e.g., refinement) and preferences (e.g., bias toward under-/oversegmentation)

of evaluation measures. It is expected that the evaluation measures with similar

characteristics and preferences will select or rank the segmentation results in a sim-

ilar manner. Since there are so many choices for selecting a particular evaluation

measure, we hope that this behavioral clustering study could be useful for users as

a guideline in choosing different evaluation measures, especially in different clusters,

in order to fairly report the performance of the evaluated algorithm.

There is essentially no literature for any kind of segmentation evaluation which

attempts to cluster the existing evaluation measures according to their behavior

under real conditions. In contrast to the previous work presented by Zhang [147]

who broadly classified the existing evaluation methods proposed so far into three

groups, namely, the analytical, the empirical goodness (unsupervised), and the em-

pirical discrepancy (supervised) groups. Comparative discussion provided in [147]

has been just done among the different groups of methods. The comparative study

of different supervised evaluation measures can be found in [73, 101, 132]. However,

the only properties of evaluation measures of interests (e.g. refinement) have been

tested under the specific conditions (typically on synthetic images) separately. The

empirical results concluded from these studies are difficult to summarize the overall

behavioral similarity between different evaluation measures.
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10.2 Behavior on Selecting the k-Best Segmenta-

tions

In this study scenario evaluation measures are asked for picking out the best seg-

mentation from a set of segmentation results of the same image. For each segmented

image in a given set of segmentation results, evaluation measures under considera-

tion are computed to determine how close the machine segmented image is to the

human segmentation. The segmentation result with the best evaluated value is the

best segmentation. However, it is possible that the given set of segmentation re-

sults contains multiple segmentations with the similar best quality. In this situation

choosing any one among them as the best segmentation would be equivalent. Thus,

instead of considering only the one best segmentation of the set, we propose to

consider a set of the k-best segmentations. Note that the former is a specific case

of the latter where k equals one. A value of k indicates the degree of strictness

in measuring the similarity between two evaluation measures. A larger value of k

gives the higher chance that two evaluation measures will be similar to each other.

Therefore, for meaningful clustering results, a value of k should be much smaller

than a number of segmentations in a given set.

To cluster the evaluation measures according to their selecting behavior, we need

a distance function for measuring the difference between two sets of the k-best seg-

mentations produced by two evaluation measures. The lower distance values indicate

the more similar behavior of the two evaluation measures. In other words, the eval-

uation measures with similar evaluating behavior should produce similar sets of the

k-best segmentations and should be clustered into the same group. The distance be-

tween two sets of the k-best segmentations can be defined as follows. Let S be a set

of n segmentations to be judged, S = {S1, S2, ..., Sn}, each segmentation assigned

a unique identifier 1, 2, ..., n. Let π be a set of k-best segmentations that contains

identifier of the selected best segmentations. We construct a binary indicator vector

v whose length equals the number of segmentations in the set S. vi equals one if

Si is selected as the best segmentation and equals zero otherwise. For example,

suppose that k = 1, n = 5, and π = 3, a binary indicator vector v is [0, 0, 1, 0, 0].

Then, we can apply any distance metric (e.g. the Minkowski distance) to evaluate

the dissimilarity between two binary vectors. If two evaluation measures select the

same k-best segmentations, distance between them is zero. Note that the order of

segmentations in the set of the k-best segmentations is not important.
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10.3 Behavior on Ranking Segmentation Quali-

ties

The task of ranking a list of several alternatives based on one or more criteria

is found useful in behavioral survey, such as social choice and voting, comparing

genes using expression profiles, and search engine results. The task is relatively

easy, and is simply a reflection of the judge’s opinions and biases. In this study

scenario we cluster different evaluation measures based on their ranking behavior.

Our assumption is that the evaluation measures with similar behavior would rank

the quality of segmentation results in a similar order. Thus, the similarity between

two evaluation measures can be determined in terms of the similarity between two

lists of ranking. Note that a set of the k-best segmentations (defined in previous

section) is simply the k top segmentations in the ranking. However, the order of

segmentations in the ranking list is important, while the order of segmentations in

the set of the k-best is not.

In this study, two well known distance metrics for measuring the distance between

two rankings are used: the Kendall’s tau distance and the Spearman’s footrule dis-

tance. Both distance functions are metrics and have been widely used in evaluating

rankings and ranking aggregation problem in information retrieval [11, 30, 32].

1. Kendall’s tau distance: Suppose that a set of different segmentations of the

same image contains n segmentations. A ranking of n segmentations can be

represented as a permutation of the integers 1, 2, . . . , n, σ ∈ Pm, where σ(i)

represents the place (rank) of the segmentation i in the ranking. The Kendall

tau distance measures the distance between two rankings, σ and τ , by counting

the number of pairwise disagreements between the two rankings, which can be

formally defined as:

K(σ, τ) = |{(i, j)|i < j, σ(i) < σ(j), but τ(i) > τ(j)}| . (10.1)

A normalized version of the Kendall distance, which ranges between 0 and 1,

can be obtained by dividing this number by the maximum possible value
(

m

2

)

.

A smaller distance value implies stronger agreement between two evaluation

measures on evaluating segmentations.

2. Spearman’s footrule distance: Spearman’s footrule distance is the sum over all

elements i ∈ S, of the absolute difference between the rank of i according to

the two lists. Formally, given two full lists σ and τ , the distance is simply the
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distance induced by L1 norm:

D(σ, τ) =
n

∑

i=1

|σ(i) − τ(i)| (10.2)

After dividing this number by the maximum value |S|2/2, one can obtain a

normalized value of the footrule distance, which is always between 0 and 1.

Similarly, a smaller distance value implies stronger agreement between two

evaluation measures on evaluating segmentations.

10.4 Experiments

Thirteen evaluation measures: GCE, LCE, BCE, p, F , R, AR, F , J , M, D,

NMI, V I (defined in Chapter 2), are considered in the experiments. We investigate

the behavior of evaluation measures on 300 natural images from the BSDS data

set [90], since it provides human segmentations which are necessary for quantitative

evaluation in our study. The BSDS provides multiple human segmentations for each

image, and good segmentation should be able to explain all of them. Thus, one

machine segmentation is compared to all human segmentations of the image, and

the average evaluating values are used in the selecting and ranking procedures. The

results of selecting and ranking procedure are then fed to a clustering procedure as

input data.

To this end we firstly need a set of segmentations of the same image to be

selected and ranked. For each image in the BSDS, we generate a set of different

segmentations by varying the parameter values of the same segmentation algorithm.

In order to make the study reliable, two state-of-the-art segmentation algorithms:

the FH algorithm and the MS algorithm (defined in Chapter 2), are applied for

segmenting images. The parameter descriptions and 24 sampled parameter values

for the FH and the MS algorithms are summarized in Table 6.1. By doing this way,

we have two different datasets obtained from the FH and the MS algorithms which

are referred to FH dataset and MS dataset, respectively.

10.4.1 Clustering Results

We apply the average linkage method1 based on the L1 norm distance for clustering

the selecting behavior, and the Kendall’s tau distance and the Spearman’s footrule
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Figure 10.3. Dendrograms of clustering results on selecting behavior on (a) FH dataset

and (b) MS dataset.

distance for clustering the ranking behavior. The clustering results of selecting

behavior with k = [1, 5, 10] on FH and MS datasets are reported by dendrograms

in Figure 10.3(a) and (b), respectively. The clustering results of ranking behavior

with the Kendall’s tau distance and the Spearman’s footrule distance on FH and

MS datasets are reported by dendrograms in Figure 10.6(a) and (b), respectively. In

the study of selecting behavior, the clustering results with small value of k on both

datasets are not stable, i.e. k < 5 for FH dataset and k < 10 for MS dataset. This

may be due to the number of similar best quality segmentations in a set (i.e. the

difference between numerical evaluation values of those segmentations is less than

10−2). The higher the number of such similar best quality segmentations, the more

fluctuating the results of clustering. However, the clustering results become stable,

when increasing a value of k. After clustering results remain stable (i.e. with k ≥ 5

for FH dataset and with k ≥ 10 for MS dataset), they show similar clustering results

as produced on ranking behavior.

Due to its simple computation and intuitive formulation, the upper tail rule

developed by Mojena [100] is applied to determine the appropriate number of clusters

in hierarchical clustering. It uses the relative sizes of the different fusion levels in

the hierarchy. We let the fusion levels α0, α1, ..., αn−1 correspond to the stages in

the hierarchy with n, n − 1, ..., 1 clusters. We also denote the average and standard

deviation of the j previous fusion levels by α and sα. To apply this rule, we estimate

the number of clusters as the first level at which we have αj+1 > α + csα, where c

is a constant. Milligan and Cooper [95] suggest the value of c to be 1.25 based on

1In the clustering literature, the full name of this approach is the Unweighted Pair Group

Method using Arithmetic Averages (UPGMA).
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Figure 10.4. The plots of the standardized fusion levels of the dendrograms in Figure 10.3

with k = 5 on (a) FH dataset and (b) MS dataset.
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Figure 10.5. 6-Clusters clustering results of selecting behavior with k = 5 on (a) FH

dataset and (b) MS dataset.

their study on simulated data sets.

The plot of the standardized fusion levels of the dendrograms with k = 5 in

Figure 10.3 for a maximum of 10 clusters is shown in Figure 10.4. In Figure 10.4(a)

the ’elbow’ in the curve indicates that 6 clusters are reasonable. In Figure 10.4(b)

the ’elbow’ in the curve indicates that 3 clusters are reasonable, however, some other

’elbows’ at 6 and 8 might provide interesting clusters, too. In this case we choose

the clustering results with 6 clusters for both FH and MS datasets as presented in

Figure 10.5.

The plot of the standardized fusion levels of the dendrograms in Figure 10.6 for

a maximum of 10 clusters is shown in Figure 10.7. In the left plot of Figure 10.4a

and b, the ’elbow’ in the curve indicates that 5 clusters are interesting. In the right

plot of Figure 10.4(a) and (b), the ’elbow’ in the curve indicates that 4 clusters are

reasonable. In this case we choose the clustering results with 5 clusters for Kendall’s

tau distance and with 4 clusters for Spearman’s footrule distance as presented in

Figure 10.8.

It is surprising that the clustering results from all experiments are relatively

consistent. Figure 10.8(b) shows the most coarse level of clustering with 4 clusters,
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Figure 10.6. Dendrograms of clustering results on ranking behavior on (a) FH dataset

and (b) MS dataset.
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Figure 10.7. The plots of the standardized fusion levels of dendrogram in Figure 10.6 on

(a) FH dataset and (b) MS dataset.

and follows by 5 clusters in Figure 10.8(a), while the finer level of clustering with 6

clusters is shown in Figure 10.5(a). It can be concluded that the evaluation measures

can intrinsically be clustered. We can see that the clustering result in Figure 10.5

is relatively different from the others, however, it is getting similar to the others

when k ≥ 10. As mentioned earlier the clustering result of selecting behavior on MS

dataset is not stable when k < 10.

Recalling to the example in Section 10.1, we applied AR, NMI, BCE and F
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Figure 10.8. Ranking behavior clustering results on both FH and MS datasets: (a) 5-

Clusters with Kendall’s tau distance and (b) 4-Clusters with Spearman’s footrule distance.

measures for evaluating the quality of the example images in Figure 10.1. We see

that even though AR and NMI indices agree that the overall performance of the FH

segmentation is superior to the performance of the MS segmentation, their numerical

evaluation output for each individual segmented image shows conflict between their

agreement (i.e. image A, D, and E). Similarly, BCE and F measures agree that

the overall performance of the MS segmentation is superior to the performance of

the FH segmentation, however, their numerical evaluation output for each individual

segmented image shows some conflict (i.e. image C and E). These situations demon-

strate the different evaluation behavior between them, which is consistent with our

clustering results, namely, they are separated into different groups (see Figure 10.5).

In addition, all clusterings agree to cluster BCE measure into the same group as D,

F , J and V I measures. We can show that the evaluation values of these measures

on each five example images correspond well to each other as reported in Table 10.2.

For all results, F-measure, GCE, and LCE are naturally separated from others.

It is not surprising in these cases since these measures possess dominant character-

istic that is not possessed by the rest measures. F-measure is the only one measure

considered in this work that is a boundary based evaluation method. The criterion

used for evaluating the segmentation boundary is different from region based eval-

uation methods. Generally, the former methods have no constraint of producing

closed contours, like the latter methods. A missing pixel in the boundary between

two regions may not be reflected in the boundary benchmark, but can have sub-

stantial consequences for segmentation quality, e.g., incorrectly merging two large

regions. GCE and LCE are the only two measures that are tolerant of refinement

and, therefore, are not sensible to over- and under-segmentation. However, the den-

drograms show quite large difference between them. The reason is that, for any two

segmentations, LCE ≤ GCE. It is clear that GCE is a tougher measure than LCE

so that GCE would tolerate the simple refinement, while LCE would also tolerate



174 Chapter 10. Clustering of Segmentation Evaluation Measures

Table 10.2. Evaluating values of segmentation results shown in Figure 10.2

FH segmentations MS segmentations

Image BCE1 D1 F2 J 2 V I1 BCE D F J V I

A 0.59 91551 0.54 0.36 2.60 0.54 69300 0.56 0.34 2.21

B 0.75 102786 0.39 0.23 2.98 0.66 93458 0.49 0.32 2.29

C 0.66 101589 0.48 0.29 2.59 0.64 70932 0.60 0.36 2.24

D 0.88 130962 0.27 0.10 3.74 0.23 22808 0.87 0.76 0.76

E 0.63 103043 0.48 0.32 2.61 0.64 105672 0.50 0.33 2.78

average 0.70 105986.20 0.43 0.26 2.90 0.54 72434 0.60 0.42 2.06

1 BCE, D, V I are distance measures, the smaller values indicate the better segmentation quality.
2 F and J are similarity measures, the larger values indicate the better segmentation quality.

the mutual refinement.

The Dongen metric and p are always clustered into the same group since the

Dongen metric is closely related to the performance measure p. The only difference

is that the former is a distance measure, while the latter is a similarity measure.

The two measures can be mapped to each other by a simple linear transformation

D(C, C′) = 2n(1 − p) [73]. This kind of relationship can also be found in a pair of

the Mirkin metric and the Rand index. Similarly, the former is a distance measure,

while the latter is a similarity measure. The two measures can be mapped to each

other as M(C, C′) = n(n − 1)[1 −R(C, C′)] [94].

Jacard and FM indices are also closely related. Both similarity measures dis-

regard the quantity N00 into account. The difference between them is just their

normalizing term of N11 value. The former index uses geometric mean of N11 + N01

and N11 + N10, while the latter is based on the term N11 + N01 + N10 (see Sec-

tion 2.3.2).

10.4.2 Clustering Validation

In this section we discuss how appropriate the hierarchical clustering used in the ex-

periments by applying the Cophenetic Correlation Coefficient (CPCC). The CPCC

has been widely used in numerical phenetic studies, both as a measure of degree of

fit of a classification to a set of data and as a criterion for evaluating the efficiency of

various clustering techniques [36]. It assesses the results of a hierarchical clustering

method by comparing the fusion level of observations with their distance. Values
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Table 10.3. Cophenetic correlation coefficient for three hierarchical clustering techniques.

Clusterings FH Dataset MS Dataset

SL CL AL SL CL AL

Selecting, k = 1 0.9383 0.9372 0.9514 0.9363 0.9523 0.9708

Selecting, k = 5 0.9049 0.9268 0.9314 0.9380 0.9388 0.9611

Selecting, k = 10 0.9053 0.8674 0.9247 0.9477 0.9193 0.9693

Ranking, Kendall’s tau 0.7665 0.7699 0.8386 0.7178 0.8093 0.8231

Ranking, Spearman’s footrule 0.9083 0.8722 0.9311 0.9398 0.9256 0.9677

close to one indicate a higher degree of correlation between the fusion levels and the

distances. We use the CPCC to evaluate which type of the following hierarchical

clusterings is the best fit for our data.

We calculated the CPCC for three hierarchical clusterings (i.e. single link, av-

erage link, and complete link methods). The higher the CPCC value, the better

a hierarchical clustering fits the data. The values of CPCC shown in Table 10.3

suggest that the hierarchical clustering produced by the single link technique seems

to fit the data less well than the clusterings produced by complete link and average

link. The average link method best fits the data since it obtains the highest value

of CPCC in all cases.

10.5 Discussion and Conclusion

In this chapter we present an analytical framework for clustering the existing eval-

uation measures. Thirteen well-known evaluation measures are clustered according

to their evaluating behavior on the same set of segmented images. Their numerical

outputs are captured through selecting and ranking strategies. The advantages of

using these strategies in a study of judging behavior of evaluation measures are as

follows. First, different evaluation measures with different range of values can be

compared without normalization (into the same range of values, e.g. between 0

and 1). Second, even when the values of two evaluation measures are defined in

the same range, the raw numerical evaluation values are also incomparable. Select-

ing and ranking provide an indirect way to compare two evaluation measures and

avoid using their raw numerical outputs. Third, different evaluation measures de-

fined in different philosophy (i.e. similarity/dissimilarity measures) can be directly

compared and clustered without transformation.

A prospect of this behavioral clustering study is to give a guideline in choosing
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different appropriate evaluation measures, especially from different clusters, in order

to fairly report the performance of the proposed algorithm. In addition, we hope

that this general clustering framework could be a pioneer framework for further com-

paring and clustering other evaluation measures existing in literatures. However, it

should be noted that the experimental results reported here are preliminary results.

More extensive experiments may be conducted to assure the results.

It is important to realize that the evaluation measures may be themselves biased

in certain situations. Some research works [13, 73, 146] suggest that instead of

using a single measure, we may take a collection of measures and define an overall

performance measure. We believe that such combination approach will achieve a

better behavior by avoiding the bias of the individual measures. The evaluation

measures clustering presented in this chapter provides some useful information for

this combination approach since we could select one representative measure from

each cluster to build an overall evaluation measure.
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Conclusion

In this thesis, we have taken some steps towards a framework of multiple image seg-

mentation combination. Segmentation ensemble combination has been approved to

be a new and powerful means of improving the accuracy and the robustness of image

segmentation. We have proposed two novel combination algorithms for combining

both multiple contours and multiple region-based segmentations. Both algorithms

are able to achieve appealing performance with respect to both segmentation qual-

ity and computation time. A problem of automatically determining a number of

regions in a final segmentation result has also been carried out. Extensive experi-

mental results verify the effectiveness of both our combination algorithms and our

optimality criterion for determining a number of regions. It should be noted that

the performance of the combination algorithm will be limited by the capabilities

of the segmentation algorithm, but the results will be optimal for a given image

based on our combination algorithm and optimality criterion. Beside image seg-

mentation we have studied data analysis problems for segmentation evaluation. We

have investigated and compared the metric property of the existing segmentation

evaluation measures, as well as developed a clustering framework for clustering them

into groups according to their evaluation behaviors.

To summarize, the main contributions of this thesis work are:

• An algorithm for combining multiple contours. We have considered a special

class of contours which start from the top, pass each image row exactly once,

and end in the last row of an image. Exploiting a dynamic programming

technique, we are able to efficiently compute the exact solution of generalized

median contour of such contours within quadratic computational complexity.

Experimental results have been reported on two scenarios, in which the concept

177
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of generalized median plays a very different role.

– In the first case we have postulated a general approach to implicitly ex-

plore the parameter space of a (segmentation) algorithm. It was shown

that using the generalized median contour, we are able to achieve con-

tour detection results comparable to those from explicitly training the

parameters using a training set with known ground truth.

– In the second case the specific problem domain of generalized median

concept has been considered. Having a generalized median problem with

exact solution is interesting in its own right since it gives us a means to

verify the tightness of the lower bound for generalized median computa-

tion under ideal conditions. As part of our efforts in verifying the tight-

ness of the lower bound using a variety of generalized median problems

with exact solution, the current work represents a valuable contribution.

• An algorithm for combining multiple segmentations. The algorithm is based on

a random walker segmentation algorithm which is able to provide high-quality

segmentation starting from manually specified seeds. We are successful in au-

tomatically generating such seeds from an input segmentation ensemble with

the use of coassociation values. Our algorithm is superior to previous works

in that we consider the most general class of segmentation combination, i.e. it

is independent from the ensemble generation procedure where any (different)

segmentation methods can be used concurrently, and each input segmenta-

tion can have an arbitrary number of regions. Extensive experimental results

confirm the success of our algorithm in achieving the goal of computing a fi-

nal segmentation result which is superior to the initial segmentations (in a

statistical sense).

The difficult image segmentation problem has various facets of fundamental

complexity. A robust segmentation combination algorithm provides the basis

for several ideas outlined in the introduction chapter to alleviate some hard

problems in image segmentation. The current work represents a first step

towards that development.

– Solving the parameter selection problem in image segmentation: we have

shown that without using any ground truth information, our technique

is able to produce segmentations with higher average quality than the

training approach. The focus of our current work is region-based im-

age segmentation. It should be mentioned that our concept of ensemble

combination is a general one. Given the demonstrated power we expect
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that it will be helpful towards solving the parameter selection problem in

numerous other contexts.

– Solving the algorithm selection problem in image segmentation: we have

shown that even if we do not know the optimal segmentation algorithm

for a particular image in advance, the comparative performance of our

combination approach is remarkable and reveals its potential in dealing

with the difficult problem of optimal algorithm selection even without

ground truth. Moreover, our approach is even superior to conventional

algorithm selection approaches since in many cases it can provide better

quality segmentations beyond what can be achieved by the best segmenter

in an ensemble.

– Solving the segmentation algorithm instability problem: the experimental

results demonstrate that segmentation combination approach works well

for the purpose, however, it is not the most efficient way for solving this

particular application. The experiments are mainly intended to show

the broad applicability and usefulness of our combination algorithm in a

variety of image segmentation problems.

• An optimality criterion for automatically determining the number of regions

in a segmentation results. We have shown that the number of regions is ad-

equately estimated by adopting the concept of generalized median. In con-

trast to thresholding criteria, the generalized median based criterion is more

adaptive in dealing with a variation in input images. In contrast to a more

sophisticated MDL criterion, the advantage of the generalized median-based

criterion is that it is not restricted to specific image features, namely only label

feature delivered by segmentation algorithms is taken into account. It readily

lends itself to applications with a wide range of different imaging modalities

(color, intensity, range, etc.).

• Comparison of evaluation measures. We have investigated the metric property

of evaluation measures by the use of relaxed triangle inequality. We verify

our comparison method by taking into account both metric and non-metric

evaluation measures in the investigation. The experiments show that met-

ric evaluation measures satisfy very well the relaxed triangle inequality (i.e.

ǫ ≤ 0) for all test sets, while some non-metric evaluation measures do not. In

addition, the experimental results show that two non-metric evaluation mea-

sures we used in this work (i.e. NMI index and F-measure) satisfy well the

relaxed triangle inequality. This comparison method is designed in a general
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way, and we hope that it could be used to investigate the metric property of

other existing evaluation measures.

• Clustering of evaluation measures. We have analysed the evaluation behavior

of the existing evaluation measures through selecting and ranking strategy.

Surprisingly, the clustering results of both strategies have shown their con-

sistency, which indicates that the evaluation behaviors of these evaluation

measures can be naturally grouped. We expect that this work provides the

basis to design a general framework for analysing the existing evaluation mea-

sures and provides some useful guidelines for assisting the users in order to

choose the evaluation measures to fairly report performance of their proposed

segmentation algorithm.

While the preliminary results are very promising, several issues remain. On the

proposed combination algorithm, there are some undeveloped ideas for improving

the current performance, which need to be further implemented and analysed.

• Parallel computing. One efficient way to reduce computational time of our

combination framework is to implement it in parallel.

• New dissimilarity measurement between segmentations. Since the optimal seg-

mentation resulting from the generalized median based criterion is explicitly

characterized by a distance function. A new distance function that better

represents the human perceptions would yield more accurate results.

• New criterion for determining the optimal segmentation combination result.

As we discussed earlier in Section 5, the current segmentation results selected

by the proposed optimality criteria are still far away from the ’ideal’ solution.

There is much more room for improving the optimality criterion in order to

obtain the final combination results as close as to that ideal solution.

In addition to future work on improving the proposed algorithm, we have con-

sidered some ideas of applying it to a wide variety of applications.

• Applications. We will consider further application scenarios for our ensemble

combination concept. The proposed combination algorithm can be incorpo-

rated as a basic step in different computer vision applications such as medical

applications, image retrieval, etc.

• Extension to general data clustering. We will consider an extension of the

random walker based combination approach to other problem domains, such

as clustering ensemble for general data.
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