
Münster • 2010

Jörg Mensmann

Exploiting Spatial and Temporal
Coherence in GPU-Based

Volume Rendering

Informatik

Exploiting Spatial and Temporal Coherence

in GPU-Based Volume Rendering

Inauguraldissertation zur Erlangung des akademischen Grades eines Doktors
der Naturwissenschaften durch den Fachbereich Mathematik und Informatik

der Westfälischen Wilhelms-Universität Münster

vorgelegt von

Jörg Mensmann
aus Haltern

2010

Typeset with LATEX2e and KOMA-Script using the fonts Palatino, Bera Sans, and Bera

Mono. Text editing was performed using GNU Emacs/AUCTEX. Figures were created
with Inkscape, GIMP, gnuplot, and OpenOffice.org.

Dekan: Prof. Dr. Christopher Deninger

Erster Gutacher: Prof. Dr. Klaus H. Hinrichs

Zweiter Gutacher: Prof. Dr. Sergei Gorlatch

Tag der mündlichen Prüfung: 16. Juli 2010

Tag der Promotion: 21. Juli 2010

Abstract

Efficiency is a key aspect in volume rendering, even if pow-
erful graphics hardware is employed, since increasing data
set sizes and growing demands on visualization techniques
outweigh improvements in graphics processor performance.
This dissertation examines how spatial and temporal coher-
ence in volume data can be used to optimize volume rendering.
Several new approaches for static as well as for time-varying
data sets are introduced, which exploit different types of co-
herence in different stages of the volume rendering pipeline.
The presented acceleration algorithms include empty space
skipping using occlusion frustums, a slab-based cache struc-
ture for raycasting, and a lossless compression scheme for
time-varying data. The algorithms were designed for use with
GPU-based volume raycasting and to efficiently exploit the
features of modern graphics processors, especially stream pro-
cessing. The improvements in rendering performance achieved
by the optimizations allow interactive rendering of volumetric
data on common workstations and open up new vistas for
more complex visualization techniques.

i

ii

Contents

Preface vii

1 Introduction 1

2 General-Purpose Programming on Graphics Processors 5

2.1 GPGPU Approaches . 5
2.2 Stream Processing . 6

2.2.1 History of stream processing in graphics 7
2.3 CUDA Basics . 8

2.3.1 Differences between CUDA and graphics programming 9

3 Concepts of Volume Rendering 11

3.1 Theoretical Background . 12
3.2 Volume Rendering Approaches . 13

3.2.1 Direct volume rendering . 14
3.2.2 Transfer functions . 15
3.2.3 Illumination models . 16
3.2.4 Performance and image quality 16

3.3 GPU-based Raycasting . 17
3.4 Accelerating Volume Raycasting . 18

3.4.1 Empty space skipping . 18
3.4.2 Early ray termination . 19
3.4.3 Bricking and multi-resolution approaches 19

4 Voreen: The Volume Rendering Engine 21

4.1 Data-flow Concept . 21
4.2 User Interface . 22
4.3 Integration of GPU-based Raycasting 23
4.4 Adding New Components . 24
4.5 Performance Considerations . 25

iii

Contents

5 Empty Space Skipping using Occlusion Frustums 27

5.1 Related Work . 28
5.2 Impact of Hardware Restrictions on GPU-based Raycasting 30
5.3 Optimizing the Proxy Geometry for Space Leaping 34

5.3.1 Occlusion frustums as proxy geometry 36
5.3.2 Clipping the occlusion volume 38
5.3.3 Possible extensions to the occlusion frustum approach 38

5.4 GPU Implementation . 42
5.4.1 Analyzing first-hit points . 42
5.4.2 Generating occlusion frustums 43

5.5 Integration into Voreen . 44
5.5.1 Data-flow network . 44
5.5.2 Implementing the optimized proxy geometry processor 46

5.6 Results . 46
5.6.1 Performance evaluation . 46
5.6.2 Discussion . 48

5.7 Summary . 50

6 Applying GPU Stream Processing to Volume Raycasting 51

6.1 Related Work . 52
6.1.1 GPU-based volume raycasting 52
6.1.2 GPU stream processing . 53

6.2 Raycasting with CUDA . 54
6.2.1 Using the CUDA architecture for raycasting 54
6.2.2 3D texture caching . 56
6.2.3 Accelerating raycasting . 57

6.3 Implementing Basic Raycasting . 59
6.3.1 Fragment shader implementation 59
6.3.2 CUDA implementation . 60

6.4 Slab-based Raycasting . 61
6.4.1 Slab-based approach . 61
6.4.2 CUDA implementation . 63

6.5 Integration into Voreen . 66
6.5.1 Volume handling . 66
6.5.2 Network integration . 67

6.6 Results . 69
6.6.1 Testing methodology . 69
6.6.2 Basic raycaster . 70

iv

Contents

6.6.3 Slab-based raycaster . 74
6.6.4 Discussion . 76

6.7 Summary . 78

7 Lossless Compression for Rendering Time-Varying Volume Data 81

7.1 Related Work . 83
7.2 Hybrid Compression Scheme . 85

7.2.1 Data properties and hardware limitations 85
7.2.2 Two-stage compression approach 87
7.2.3 Subdividing the volume into bricks for compression 88
7.2.4 Main compression algorithm . 89
7.2.5 Prediction schemes . 90
7.2.6 Variable-length coding . 91
7.2.7 Data preprocessing . 91

7.3 GPU-supported Decompression Pipeline 92
7.3.1 Multi-threaded loading and LZO decompression 92
7.3.2 Asynchronous data transfer to the GPU 92
7.3.3 Decoding and brick assembly . 93
7.3.4 Rendering . 94

7.4 Integration into Voreen . 94
7.4.1 Preprocessing and on-disk storage format 94
7.4.2 Network integration . 96

7.5 Results . 96
7.5.1 Test data sets . 98
7.5.2 Compression ratio . 98
7.5.3 Rendering speed . 100

7.6 Summary . 101

8 Conclusions 103

A Source Code 107

A.1 Fragment Shader for Volume Raycasting 107
A.2 CUDA Kernel for Volume Raycasting 110

B Index of Data Sets 113

Bibliography 117

Acronyms 127

v

vi

Preface

So long, and thanks

for all the fish.

(Douglas Adams)

This dissertation represents the result of work carried out from November 2006
to June 2010 at the Department of Computer Science, University of Münster
under the kind guidance of Prof. Dr. Klaus Hinrichs, whom I wish to thank

for giving me the opportunity for this interesting research and for his encouragement
throughout. Furthermore, I would especially like to thank PD Dr. Timo Ropinski,
who is the initiator and project leader of the Voreen software project, for his constant
support and fresh ideas.

I would like to express my thanks to my past and present colleagues from the
Visualization and Computer Graphics Research Group, including Dr. Frank Steinicke,
Dr. Jennis Meyer-Spradow, Jörg-Stefan Praßni, Stefan Diepenbrock, and all others, for
all the fruitful on-topic as well as off-topic discussions and for a very nice working
environment.

Stefan Diepenbrock also supported me with additional implementation work on the
occlusion frustum approach presented in Chapter 5. I would like to thank Johannes
Lülff and Michael Wilczek from the Institute for Theoretical Physics for valuable
discussion about time-varying volume data and for supplying their data sets. Finally,
thanks go to everyone who participated in the development of the Voreen framework.
The project allowed me to concentrate on relevant topics when implementing the
techniques discussed in this thesis, as well as giving me the possibility to take part in
the construction of such a complex and powerful visualization system.

Parts of this work were supported by grants from Deutsche Forschungsgemein-
schaft through the Sonderforschungsbereich 656 “Molekulare kardiovaskuläre Bildge-
bung” (MoBil), project Z1. Acknowledgments for the volume data sets used through-
out the thesis can be found in Appendix B.

Münster, June 2010 Jörg Mensmann

vii

viii

Chapter 1

Introduction

With the emergence of volume data in medicine, but also in many other
fields such as fluid dynamics and seismology, and with the ever increasing

amount and complexity of such data, volume visualization has become an
essential tool for data analysis. This was made possible by improvements in graphics
hardware, which today allow interactive rendering of large volume data sets even on
standard workstations—although current graphics processors (GPUs) were designed
primarily for rendering triangles and not intended for rendering volume data. Volume
rendering is a computationally expensive task, and efficiency is a key aspect to be
considered in any application dealing with volume data for visualization purposes.

We have approached the goal of improving volume rendering performance by
developing techniques that exploit spatial and temporal coherence in volume data in
order to accelerate different stages of the rendering process and thus increase the
rendering frame rate. The presented techniques efficiently utilize new features in
graphics hardware such as geometry shaders and stream processing.

In the context of volume rendering, data coherence is an important aspect to achieve
good performance results. A volumetric data set is defined to be coherent if its data
elements exhibit a non-random distribution. Hence, coherence means that the data
has a certain structure, which can be exploited by appropriate algorithms. Two main
types of coherence can be identified: spatial and temporal coherence. Both types
of coherence can describe the data, but they can also characterize the behavior of
algorithms interacting with the data, especially how an algorithm accesses the data
elements.

Spatial data coherence refers to data that exhibits an intrinsically coherent structure
in the spatial domain, i. e., the values of spatial data elements are not distributed
randomly and are not independent of the values of neighboring elements. For a
spatially coherent algorithm the same properties apply to the way in which the data
elements are processed, i. e., the memory access pattern. An example for such a

1

Chapter 1 – Introduction

spatially coherent algorithm is an image-order rendering technique, which exploits
the tendency of neighboring fragments to use the same data during rendering. In
the special case of image-order volume rendering using the raycasting technique,
this translates to the tendency of neighboring rays to access the same voxels during
ray traversal. Such spatially coherent algorithms must be seen in the context of
caching mechanisms, as the algorithms ensure data locality and therefore efficient
cache utilization. But spatial coherence can also be exploited directly. For example,
volume rendering can be accelerated by skipping over parts of the volume that do
not contribute to the final image, i. e., parts in which all voxels are empty.

Temporal data coherence can be found in data that models time-varying phenomena
at multiple time steps. For this kind of data the state of an element at a certain time
step typically depends on its state in the previous step, hence exhibiting coherence in
the time domain. This coherence can be exploited for volume data compression by
storing only those parts of the volume that change between two time steps. Even if
the data itself is not time-varying, temporal coherence can be introduced by running
multiple iterations of an algorithm, when the results are associated with different
time steps. A temporal component is often introduced into rendering algorithms
by continuously changing the viewing parameters, e. g., the camera position, and
rendering multiple output frames while these changes are applied. With small view
changes between rendering the frames, the resulting images exhibit coherence, as
each image only differs slightly from the previous image.

Even when exploiting coherence for optimization, volume rendering is still compu-
tationally expensive and can benefit significantly from the use of graphics hardware.
Graphics processors are not only getting faster with each new generation, but they
also add new features, so that today they support many functions previously reserved
to CPUs. Hence, while new hardware will typically speed up volume visualization
simply by means of higher clock rate or by integrating more compute cores, exploiting
the new features is crucial to fully utilize the hardware resources and achieve optimal
performance results. Even though interactive volume rendering is already possible
with current graphics processors, improving the rendering performance further is
an important challenge. Faster volume rendering will allow using more complex
visualization techniques or larger data sets without switching to specialized hardware
solutions or reducing the image quality. After all, volume rendering will not become
“fast enough” in the foreseeable future, because of rising data set sizes as well as
growing demands on visualization.

Volume rendering is not supported natively by common graphics hardware. In-
stead, implementations have to utilize hardware resources in unconventional ways.

2

To fully exploit these resources, features available in GPUs as well as the overall
system architecture must be examined and volume rendering algorithms must be
adapted. This holds true especially for raycasting, a volume rendering technique that
yields optimal image quality, but is also computationally expensive. Raycasting is
akin to raytracing and therefore the approach differs significantly from the triangle
rasterization performed by common graphics processors. Nonetheless, it can be
implemented to exploit the hardware resources, albeit not directly.

In this dissertation, we introduce three GPU-based algorithms for accelerating
volume rendering by exploiting coherence. They target different parts of the volume
rendering pipeline and support both static and time-varying data. First, we present a
new approach to empty space skipping that exploits the temporal coherence between
sequential output images. It utilizes geometry shaders, which were previously not
used in volume rendering. Second, we examine the applicability of the new stream
programming model to volume rendering in comparison to the classical shader pro-
gramming approach, and we present a novel caching technique exploiting previously
unavailable hardware features. The described algorithm makes use of spatial ray
coherence and relies on data locality in volume raycasting. Third, we develop a
lossless compression scheme for time-varying volume data, using spatial as well as
temporal data coherence. It utilizes both the CPU and the GPU to increase overall
rendering performance and to achieve interactive frame rates.

This dissertation is structured as follows. Before we describe the acceleration
techniques in more detail, we review fundamental concepts and related work in GPU
programming (Chapter 2) and volume rendering (Chapter 3), and present a short
introduction to the Voreen volume rendering framework (Chapter 4), which we used
for implementing our techniques. These chapters may be skipped by readers already
familiar with stream processing and volume rendering or having prior experience
with Voreen. In Chapter 5 we present the empty space skipping approach, which is
based on the novel concept of occlusion frustums. We discuss the applicability of the
stream programming model for volume rendering in Chapter 6 and present the slab-
based raycasting algorithm, which was specially adapted to the hardware architecture.
After having discussed static data in the previous chapters, we transfer our findings
to time-varying volume data in Chapter 7. This type of data introduces individual
performance challenges, especially regarding data set size and bandwidth bottlenecks,
which we approach using a hybrid compression scheme. In the final Chapter 8 we
summarize the results of our acceleration approaches and discuss the lessons learned,
especially those concerning the use of novel hardware features. We also describe
which role further advances in graphics hardware might play in the future.

3

Chapter 1 – Introduction

The contributions presented in this dissertation are based on the following pub-
lications: The occlusion frustum approach for empty space skipping described in
Chapter 5 was presented at the Eurographics/IEEE Symposium on Volume and
Point-Based Graphics (Mensmann et al., 2008a). Initial findings of the slab-based
volume raycasting approach from Chapter 6 were presented as a poster at the ACM
Conference on High Performance Graphics (Mensmann et al., 2009), while the final
results were presented at the International Conference on Computer Graphics The-
ory and Applications (GRAPP) (Mensmann et al., 2010a). Finally, the time-varying
compression scheme described in Chapter 7 was presented at the IEEE/Eurographics
Symposium on Volume Graphics (Mensmann et al., 2010b). Further work related to
volume rendering has been conducted by contributing to the following publications:
The basic idea for the occlusion frustum proxy geometry introduced in Chapter 5
came from an evaluation of complex proxy geometries for volume raycasting, which
has also been used for implementing interactive volume deformation (Mensmann
et al., 2008b). As examples for complex visualization techniques that would ben-
efit from performance improvements in the raycasting component, contributions
have been made to work on dynamic ambient occlusion (Ropinski et al., 2008) and
shape-based transfer functions (Praßni et al., 2010). Finally, contributions have been
made to the development of the Voreen framework, which has been used for devel-
oping and integrating the acceleration techniques, and to the related publications
(Meyer-Spradow et al., 2009, 2010).

4

Chapter 2

General-Purpose Programming
on Graphics Processors

Graphics processors do not support volume rendering directly and there-

fore the same methods as for implementing general-purpose tasks need

to be applied to realize volume visualization techniques on GPUs. Hence,

we give a brief introduction to the relevant topics of GPU programming,

stream processing, and the CUDA architecture.

Graphics processors have evolved from providing access to a simple frame
buffer into fully programmable and massively parallel stream processors.
Today’s GPUs often outperform CPUs for tasks that can be adapted to their

architecture, even for applications outside of graphics programming. Using GPUs for
tasks not directly related to graphics and traditionally performed by CPUs is called
general-purpose computing on graphics processing units (GPGPU).

In this chapter, we examine classical GPGPU programming as well as the more
recent stream processing approach. One implementation of this approach is the
CUDA architecture, which we describe in more detail, as we will use it extensively
in Chapters 6 and 7. We assume that the reader is already familiar with the basic
principles of computer graphics and GPU programming, as described, e. g., in the
OpenGL Programming Guide (“The Red Book”) by Shreiner (2009).

2.1 GPGPU Approaches

Graphics processors have evolved significantly in recent years. While early 3D acceler-
ators could only draw textured triangles, over time more and more functionality was
relocated from the CPU to the GPU, such as geometry and lighting calculations. With
the introduction of programmable graphics processors fully supporting branching
and looping in shader programs, the hardware became capable of performing tasks

5

Chapter 2 – General-Purpose Programming on Graphics Processors

not directly related to graphics. At the same time the graphics hardware performance
was—and still is today—increasing more rapidly than that of CPUs (Owens et al.,
2007). CPUs are optimized for executing sequential code, and much of their previ-
ous performance increase was based on increasing clock rate. As this is limited by
thermal issues and power requirements, recent developments focused on multi-core
approaches rather than increasing the performance of a single processor. Modern
CPUs support concurrent execution both by utilizing multiple independent cores as
well as on the instruction level of single cores through extensions such as Streaming
SIMD Extensions (SSE) for the Intel x86 instruction set. Still, the much simpler and
inherently parallel architecture of GPUs allows to use additional transistors more
efficiently, achieving higher performance with the same transistor count. Another
advantage of graphics processors for certain applications is their specialized hardware
for operations such as texturing. These are intended for use in graphics programming
and are highly optimized for this task, but they can also be exploited for applications
unrelated to graphics.

The parallel architecture of graphics processors is naturally suited for many data-
parallel tasks found in computer graphics. Still, while fully programmable, this
specialized architecture is only applicable to problems that can be mapped to the
hardware efficiently. CPUs spend a considerable amount of their transistors on branch
prediction and cache management to optimally utilize the hardware when executing
sequential code. These features are missing from GPU architectures, hence they will
not perform well with sequential algorithms containing lots of conditional branches
and loops. Therefore, one must carefully verify whether the problem is suited for
a solution with this type of architecture before starting with an implementation.
A survey of GPGPU techniques by Owens et al. (2007) describes basic operations
such as map/reduce or scatter/gather, and more complex algorithms for sorting,
searching, or solving differential equations. These are used in fields like physically-
based simulations, signal processing, or computer vision.

2.2 Stream Processing

In contrast to the sequential programming model of CPUs, the stream processing model
(Kapasi et al., 2003; Owens, 2005) structures programs in a way so that they can be
mapped efficiently to the highly parallel structure of GPU architectures. It is based on
streams of structured data that are processed by kernels. The most important property
of kernels is that they operate on entire streams instead of on individual elements. At
the same time only a simple control flow is supported, with the goal of achieving a
coherent branch behavior for adjacent elements in the stream. Hence, stream elements

6

2.2 Stream Processing

can be processed in parallel by the data-parallel hardware of graphics processors. It is
interesting to note that this approach fits well with the traditional model of a graphics
pipeline, in which streams of primitive data such as vertices, triangles, or fragments
are sent through the individual processing stages, i. e., kernels.∗ Examples of stream
processors are programmable GPUs, but also the Cell Broadband Engine Architecture
(Kahle et al., 2005) can be used as a stream processor, although its architecture is
more complex and also supports other programming models.

2.2.1 History of stream processing in graphics

Initially, programming of graphics processors for GPGPU tasks was performed by
using standard graphics APIs such as OpenGL. Simple tasks can be implemented
by basic graphics operations such as storing data in textures and blending multiple
textures using the fixed function pipeline. For more complex problems, shader
programs must be used. Typically fragment shaders are used as kernels, for which
the input streams are made available as textures and the output stream is the
resulting image of rendering a screen-aligned quad while the fragment shader is
active. Fragment shaders were originally intended for implementing illumination
models for scene geometry, but they are flexible enough to support implementing
quite different algorithms.

When the suitability of using graphics processors for general-purpose computa-
tions became apparent, several approaches for accessing GPU hardware without
going through graphics APIs were made available by hardware vendors as well as
third-party developers. AMD/ATI supported direct GPU programming through their
Stream SDK (AMD, 2009) and the Brook+ stream processing language (Buck et al.,
2004b). NVIDIA introduced the Compute Unified Device Architecture (CUDA) as
both a parallel architecture for their GPUs and a programming model (Nickolls et al.,
2008). It allows implementing stream processing kernels in the C programming lan-
guage while permitting full access to the hardware. More recently, OpenCL (Munshi,
2009) was introduced as an industry standard in order to provide a vendor-neutral so-
lution. Also based on the stream processing concept, it shares many similarities with
CUDA. Therefore, most of the results obtained for CUDA can be directly mapped
to OpenCL. We believe that, due to the support by major hardware vendors and
availability for several operating systems, OpenCL will become the standard solution

∗ Although related, we do not consider shader programming and other graphics-based GPGPU
techniques as belonging to the stream processing model. While a fragment shader can be interpreted
as a kernel processing a stream of input fragments, we believe shader programming to be too specific
to graphics to fit into the general stream model. Hence, with the term stream processing, we refer to
CUDA or OpenCL, but not to shader programming.

7

Chapter 2 – General-Purpose Programming on Graphics Processors

GPU SP MP regs bandwidth
GeForce 8800 GT 112 14 8,192 57.6 GB/s
GeForce GTX 280 240 30 16,384 141.7 GB/s

Table 2.1: Specifications of the CUDA-capable graphics processors we used for testing
our techniques, showing the number of available scalar processors (SP) and multipro-
cessors (MP), the number of hardware registers per multiprocessor (regs), and the
maximum memory bandwidth.

for implementing stream processing programs in the foreseeable future. However,
OpenCL implementations only became available recently and have not yet reached
a level of stability and optimization comparable to the more mature CUDA imple-
mentations. Consequently, we focused on using CUDA for implementing stream
processing algorithms on the GPU, but we see no problems in mapping our results
and porting our algorithms to OpenCL.

2.3 CUDA Basics

An in-depth understanding of the underlying hardware architecture is essential
to get good performance results with CUDA. Some basic information about the
architecture and its limitations are given in this section, while for a deeper discussion
we refer to external resources (NVIDIA, 2010). Our discussion is specific to CUDA
devices supporting compute capability 1.x, as GPUs implementing the new Fermi

architecture (GeForce 400 Series) and supporting compute capability 2.x were not yet
available at the time of writing this thesis.

A CUDA-capable GPU can apply a computation kernel to a large number of parallel
threads. Up to 512 threads are organized in thread blocks, which have access to an
on-chip shared memory. A CUDA device, i. e., a GPU, consists of multiple streaming
multiprocessors (MP), onto which thread blocks are distributed (see Figure 2.1). Spec-
ifications of some CUDA devices are listed in Table 2.1. Thread blocks are further
partitioned into warps of 32 threads that are executed by the scalar processors (SP) on
the multiprocessor. All threads in a warp are executed in parallel with different code
paths leading to serialization of execution.∗ It is therefore important to have a high
degree of branch coherence inside a warp.

The stream processing model made available through CUDA can be characterized
as SIMT: single instruction, multiple threads. It is related to the common SIMD model

∗ Since each streaming multiprocessor contains 8 scalar processors, only 8 of the 32 threads in a warp
can actually be executed in parallel, but this is not visible to the programmer.

8

2.3 CUDA Basics

Figure 2.1: High-level overview of the CUDA architecture.

(single instruction, multiple data), but sets the focus on threads that process the
individual data elements in parallel. While the hardware supports a large number
of threads, they are oversubscribed, i. e., many more logical threads are started than
physical threads are available. In combination with fast switching between active
threads this allows efficient handling of stalling operations without a deep and
complex pipeline as in CPUs: When a thread block waits for the result of a memory
transaction, a multiprocessor can simply switch to a different thread block that
performs arithmetic operations or for which the memory transaction has already
finished. In the optimal case this approach achieves full utilization of the computing
resources by hiding memory latency through thread switching.

2.3.1 Differences between CUDA and graphics programming

While using the same hardware as shader programs, CUDA makes available certain
features that are not accessible by applications through graphics APIs. In contrast to
shader programs, a CUDA kernel can read and write arbitrary positions in GPU global
memory. The global memory space is located in the device memory and therefore
has a higher latency and lower bandwidth than on-chip memory such as registers or
caches. To achieve maximum bandwidth from global memory, suitable access patterns
have to be chosen to coalesce simultaneous memory accesses into a single memory
transaction. The coalescing rules (NVIDIA, 2010, p. 144) can be observed easily for
block-wise loading operations, while more complex—effectively random—access
patterns will not achieve full coalescing. As an example for a coalescing rule, the
memory access from all threads of a half-warp (i. e., 16 threads) will be coalesced into
a single memory transaction if all the 8-bit words accessed by the threads lie in the
same 32-byte memory segment.

9

Chapter 2 – General-Purpose Programming on Graphics Processors

Each multiprocessor on a CUDA device contains a small amount of on-chip memory
that can be accessed by all threads in a thread block and can be as fast as a hardware
register. This shared memory is not available to shader programs. The total amount
of shared memory in each multiprocessor—and therefore the maximum amount
available to each thread block—is limited to 16 kB with compute capability 1.x
hardware. Similar to the coalescing issues, shared memory can only be as fast as a
hardware register as long as the access pattern introduces no memory bank conflicts.
While the penalty is less grave than with non-coalesced global memory access, bank
conflicts can massively decrease the effectiveness of the shared memory.

For fragment shaders the processing order of the fragments is undefined and
cannot be controlled, although the order can have great influence due to coherence
aspects. On the contrary, the size and distribution of CUDA thread blocks must be
controlled manually. The block size is limited by the available hardware registers and
shared memory: Each thread block can use a maximum of 16,384 registers, depending
on the hardware (compare Table 2.1). With a block size of 256 this would allow 64
registers per thread, while with a smaller block size of 64 the number of available
registers increases to 256. At most half of these should be used per block to allow
running multiple thread blocks on a multiprocessor at the same time. This means that
a complex kernel must be run with a smaller block size than a simple one. Likewise,
making full use of all available shared memory, e. g., to share information between
adjacent threads, restricts a multiprocessor to work on only one thread block at the
same time. Therefore the amount of shared memory allocated per block should be at
most half the total amount available in the multiprocessor, in order to be able to hide
memory latency by switching between active threads.

Choosing an appropriate block size is essential to get optimal performance from
a CUDA kernel. However, the optimal block size depends on several boundary
conditions and no general value suitable for all applications can be given. Fortunately,
knowing the capabilities and limitations of a CUDA device allows to assess the effect
of block size on performance for a specific kernel configuration. The warp occupancy,
which is the ratio of active warps to the hardware-dependent maximum number
of warps on a multiprocessor, can be retrieved through the occupancy calculator
tool (NVIDIA, 2008a) and gives a rough estimate on the degree of device capacity
utilization. Making sure the hardware is fully utilized by a kernel is an important step
for getting optimal CUDA performance. However, when a kernel is not bandwidth-
bound but compute-bound, a higher warp occupancy will have no influence on the
kernel performance. Unlike as with the asynchronous memory transactions, switching
to another thread is not feasible for a compute-bound kernel, as the arithmetic units
cannot perform asynchronous computations.

10

Chapter 3

Concepts of Volume Rendering

This chapter recapitulates volumetric data representations and volume

rendering, with a focus on the GPU-based techniques that we will use in the

following chapters. A more elaborate discussion of many different aspects

of volume rendering may be found, for example, in the book by Engel et al.

(2006).

In computer graphics, three-dimensional scenes are traditionally modeled ge-
ometrically, using surface representations such as polygonal meshes. While
rendering of such geometric data is directly supported by specialized graphics

processors, a surface-based representation cannot display the interior structure of
an object. Volume rendering uses 3D scalar data to model objects without relying
on surfaces. A volumetric data set is typically stored as a three-dimensional array,
where each element, called voxel (volumetric pixel), describes a property of the
corresponding position in space.

The major source of volumetric data are tomographic scanners used in medical
as well as technical applications. Computed tomography (CT) is the most prevalent
acquisition technology, but there exists a multitude of other imaging modalities such
as magnetic resonance imaging (MRI), positron emission tomography (PET), or 3D
ultrasonography (US). While great technical effort is required to retrieve volumetric
data from real-world objects, volume data can also be constructed synthetically. Sim-
ulations of natural phenomena, e. g., in meteorology, often use a discrete volumetric
representation of space. This representation is used primarily for storing the current
state of the simulation, but it can be directly used for visualization as well. Hence,
simulations are another important area generating volumetric data.

Acquisition devices and simulations generate volumetric data of different reso-
lutions and with different data types, typically arranged in a uniform grid. More
complex structures, e. g., tetrahedral grids, are less common in practical applications
and therefore we are focusing on uniform grids in this thesis. Scalar values are

11

Chapter 3 – Concepts of Volume Rendering

commonly stored as 16-bit unsigned integers, of which especially CT data often only
uses 12 bits. For certain applications 8-bit integer data is used as well, and simulations
often return 32-bit floating point data. Volume data where each voxel is associated
with a vector value is handled by the separate research field of flow visualization.
Some scanner types can acquire not only a single volume but entire series of volumes,
where each volume corresponds to a time step. These time-varying data sets allow
for analyzing temporal behavior in addition to spatial properties.

Regardless whether constructed by scanning physical objects or coming from a
synthetic model, a volumetric data representation poses great demands on data
processing as well as visualization because of its high memory requirements. At the
same time, the data can exhibit a high level of complexity, which requires interactive
visualization techniques to make interior structures and data correlations visible
to the user. The resolution of volumetric data sets can easily reach 5123 voxels or
even more, and each of these voxels must be potentially visited to generate a correct
rendering. Hence, efficiency is an important aspect of any system working with
volume data, especially for visualization, where interactive performance with at least
10 frames per second (FPS) is desired.

In the following, we first discuss the theoretical background of volume graphics
before describing common volume rendering approaches. Afterwards, we focus on
the GPU-based volume raycasting technique and existing acceleration methods.

3.1 Theoretical Background

The most common optical model for visualizing volumetric data is an emission-ab-
sorption model (Max, 1995), which assumes the volume to consist of gas that can
emit light and absorb incident light. Volume rendering is typically described by the
volume-rendering integral, simulating light flow through a volume from a start point
s = s0 to the end point s = D:

I(D) = I0 e−
∫ D

0 κ(t)dt +
∫ D

0
q(s) e−

∫ D
s κ(t)dt ds.

Here, using the notation by Engel et al. (2006), I(D) describes the radiance when
leaving the volume at s = D, I0 represents the background light at the position s = s0,
κ is the absorption coefficient, and q describes the emission. The absorption can be
alternatively modeled using the transparency for the material between s1 and s2

defined by

T(s1, s2) = e−τ(s1, s2) = e−
∫ s2

s1
κ(t)dt.

12

3.2 Volume Rendering Approaches

Typically the volume-rendering integral cannot be evaluated analytically, so a nu-
merical approach is used, which approximates the integral by a Riemann sum over
n equidistant segments s0 < s1 < · · · < sn = D. This gives the discretized volume-
rendering integral:

I(D) =
n

∑
i=0

ci

n

∏
j=i+1

Tj, c0 = I(s0),

Ti = T(si−1, si),

ci =
∫ si

si−1
q(s) T(s, si) ds.

Now only the transparency Ti and the color contribution ci must be approximated
for each segment:

Ti ≈ e−κ(si)∆x, ci ≈ q(si)∆x, ∆x = (D− s0)/n.

For implementation, an iterative computation of the discretized volume-rendering
integral is used. In the common front-to-back compositing scheme, which describes
traversing viewing rays from the viewpoint into the volume, the radiance at the
current position Csrc is added to the previous radiance Cdst, attenuated by the current
opacity (1− αdst):

Cdst ← Cdst + (1− αdst)Csrc,

αdst ← αdst + (1− αdst)αsrc.

Different compositing schemes can also be useful. For example, in medical imaging a
maximum intensity projection (MIP) is often applied:

Cdst ← max(Cdst, Csrc).

3.2 Volume Rendering Approaches

A simple solution for visualizing volumetric data is to extract an isosurface, e. g.,
using the Marching Cubes algorithm (Lorensen and Cline, 1987), and to render the re-
sulting mesh geometry. However, such an indirect volume rendering ignores the main
advantage of volumetric over geometric representations: the ability to visualize the
interior structure of the data. This requires a direct volume rendering (DVR) approach
(Levoy, 1988), rendering the data without an intermediate geometric representation

13

Chapter 3 – Concepts of Volume Rendering

Figure 3.1: The generic volume rendering pipeline. For each stage of the pipeline a
common implementation is listed on right.

and taking all voxels into account for visualization. It implements the generic volume
rendering pipeline shown in Figure 3.1. The expressiveness of volume renderings can
be increased significantly by enhancing DVR with transfer functions and illumination
models. However, the tradeoff between image quality and rendering performance
needs to be taken into account. We will discuss these topics in the remainder of this
section.

3.2.1 Direct volume rendering

Volume rendering algorithms can be classified as image-order or object-order techniques.
An image-order algorithm works on each pixel in the output image and analyzes the
volume data to determine the resulting pixel color. In contrast, object-order techniques
work on the voxels and determine the effect each voxel has on the resulting image.

A simple approach for object-order rendering is splatting (Westover, 1990), where
the voxels are considered as particles and painted onto the screen with a size depend-
ing on their distance to the view plane. The technique has two mayor drawbacks,
namely a suboptimal rendering quality and a low rendering performance, since
the number of considered points is equal to the number of voxels, independent
of whether they are visible or not. Instead of starting with individual voxels, slice
rendering (Cullip and Neumann, 1994) uses 2D slices to sample the volume, which
are projected onto the view plane and blended either in front-to-back or back-to-front
order. This can exploit the texturing hardware and can therefore be implemented
efficiently on the GPU. However, the technique suffers from visualization artifacts in
the case of perspective projection and is inflexible when it comes to incorporating
more complex visualization algorithms.

The most common image-based rendering approach in computer graphics is
raytracing (Whitted, 1980), where rays are sent from each pixel of the image plane into

14

3.2 Volume Rendering Approaches

Figure 3.2: Principle of volume raycasting: Rays are cast from the center of projection
through pixels in the image plane into the volume. The pixel colors are computed by
sampling the volume at discrete positions on the associated rays and accumulating
the results according to the volume-rendering integral

the scene and analyzed to determine the color values of the pixels. Volume raycasting,
first described by Levoy (1990), uses the same approach for volumetric data, but
without secondary rays and is therefore not capable of simulating effects such as
shadows and reflections. As illustrated in Figure 3.2, the volume data is sampled at
equidistant intervals on each ray using trilinear interpolation. The sampled intensity
values are accumulated according to the front-to-back compositing scheme described
in the previous section to get the resulting color for each pixel. This approach partly
resembles the physical light transport, resulting in the best image quality of the
common volume rendering techniques, according to an evaluation performed by
Smelyanskiy et al. (2009). The straight-forward structure of the algorithm simplifies
integrating extensions to basic raycasting. But unlike the texture slicing approach,
raycasting is not directly supported by graphics hardware, and the algorithm is the
computationally most expensive of the discussed volume rendering approaches.

3.2.2 Transfer functions

The scalar values stored in a volume can relate to different physical or simulated
measurements, depending on the acquisition technology: radiodensity measured in
the Hounsfield scale for CT data, emission of a radionuclide with PET, or temperature
distribution in a fluid dynamics simulation. To map the various voxel intensities to
visually sensible opacity and color values, a transfer function is typically applied.
It can either be specified analytically, e. g., as a simple ramp function, or using a
discrete lookup table (LUT). For GPU-based volume rendering, usually the lookup

15

Chapter 3 – Concepts of Volume Rendering

table is stored in a 1D texture, and linear filtering is applied for smooth transition
between its entries. Multidimensional transfer functions take additional data into
account. For example, they combine voxel intensities and gradient magnitude, for
which the lookup table can be stored in a 2D texture.

3.2.3 Illumination models

Local illumination models such as Phong lighting (Phong, 1975) are often applied
when rendering geometric data to increase realism and spatial comprehension. The
same would be useful for direct volume rendering. However, Phong lighting and
most other local illumination models require a normal vector for each illuminated
point, which is not directly available for volumetric data, as they contain no surface
information. Fortunately, a gradient can be computed for each voxel to estimate a
normal vector that is sufficient for lighting. This computation typically uses forward
of central differences, increasing the cost of rendering, as three or six additional
neighbor voxels need to be sampled.

Global illumination takes light interaction between objects into account to realize
effects such as reflection and caustics. As each object can potentially influence every
other object in the scene, global illumination techniques such as radiosity (Goral
et al., 1984) are computationally expensive even for geometrically defined scenes.
With volumetric data each voxel can be assigned different optical properties while
still influencing all other voxels. Hence, interactive global illumination for volume
data is limited to simple effects such as direct reflection or shadows (Ropinski et al.,
2010), or approximative approaches (Ropinski et al., 2008).

3.2.4 Performance and image quality

The performance of a volume rendering technique is typically inversely-proportional
to the resulting image quality. For example, increasing the resolution of the output
image leads to more rays being traversed when using raycasting. Another configurable
parameter is the sampling rate, which controls the step size between sampling points
on a ray. As a corollary of the Shannon-Nyquist sampling theorem (Shannon, 1949),
each voxel would have to be sampled twice to be correctly reconstructed by the
volume rendering. However, this only holds as long as there are no high frequencies
in the transfer function, which can require to further increase the sampling rate for
visually correct results. Both increasing the viewport size and increasing the sampling
rate increases the overall number of volume sampling operations in the relatively
slow texture memory, and therefore raises the costs of rendering. Hence, choosing
these values is always a tradeoff between rendering performance and image quality.

16

3.3 GPU-based Raycasting

start points end points

Figure 3.3: Ray parameter textures generated by rendering a cube proxy geometry,
for use by GPU-based raycasting. Each pixel encodes the ray start or end point of the
respective ray.

3.3 GPU-based Raycasting

GPU-based raycasting was first described by Röttger et al. (2003) and extended by
Krüger and Westermann (2003). With modern programmable graphics hardware it
allows to run the entire raycasting process in a single pass of a fragment shader. The
volume is stored in a 3D texture through which the shader casts a ray that is traversed
in a single loop. The 3D texture is sampled in equidistant intervals, making use of
the trilinear filtering supported by the texturing hardware. If necessary, a transfer
function and a local illumination model can be applied to the sampled intensity
values. The color value accumulated during raycasting is returned as the resulting
fragment color of the shader.

The Krüger-Westermann approach does not compute the ray parameters, i. e., the
ray start and end points, analytically but utilizes the geometry pipeline to generate
them. It uses a proxy geometry of the volume—typically the data set’s bounding
box—to generate two textures containing the start and end points for each ray. The
proxy geometry is rendered using a fragment shader that maps the (x, y, z) position
of each fragment to (r, g, b) color components, resulting in the ray start point texture.
Rendering the back faces instead of the front faces provides the ray end point textures.
The two resulting textures (Figure 3.3) are made available to the raycasting shader,
which only has to perform a lookup in both textures to determine the ray parameters
for each ray. The ray parameter textures are sometimes also called entry-exit point
(EEP) textures, referring to the points where the rays enter and exit the volume.

Although initially seeming more complex than direct calculation of the intersection
points between a ray and the volume bounding box in the shader, the Krüger-
Westermann approach has two major advantages over an analytical solution: First, it

17

Chapter 3 – Concepts of Volume Rendering

is independent of the view and projection transformations, meaning that the shader
needs no information about camera parameters. The projection can even be switched
between perspective and orthogonal without any modification of the shader, as the
transformation is already applied when rendering the proxy geometry with the
current viewing parameters. Second, modifying the proxy geometry can be a simple
but powerful tool for optimization as well as for realizing complex visualizations. For
example, we have implemented interactive deformation of volumes by just deforming
the proxy geometry (Mensmann et al., 2008b). In Chapter 5 we will describe how an
optimized proxy geometry can be used for accelerating volume raycasting.

3.4 Accelerating Volume Raycasting

Even when implemented on the GPU, volume raycasting leaves room for optimization
to achieve interactive performance even with high viewport resolutions, large data
sets, or expensive visualization techniques. We will shortly describe some of the
most common optimizations in this section. The main cost factor for raycasting
on the GPU is sampling in the volume texture. Even though the bandwidth for
accessing graphics memory from the GPU is significantly higher than the memory
bandwidth of standard CPUs, it is still orders of magnitude slower than on-chip
memory. In addition, there is a memory latency introduced with each texture access,
and the GPU possibly has to wait for the results of the memory transaction to
become available before performing further operations. Therefore, optimizations that
reduce the number of sampling operations promise to increase the overall rendering
performance. Two common techniques implementing this approach are empty space
skipping and early ray termination. Additional effort is required for large volume data
sets that do not fit into GPU memory. This problem can be addressed by bricking
techniques.

3.4.1 Empty space skipping

Many volume data sets contain a considerable amount of empty space, i. e., voxels
that are fully transparent and do not contribute to the final image. The most obvious
example is air around an object in a CT volume, but any voxels that are assigned
zero opacity by the transfer function can be interpreted as empty space. When the
distribution of empty space in a volume is known beforehand, sampling operations
in empty space can be avoided by simply skipping over empty regions during ray
traversal. For detecting these empty regions, spatial data structures such as octrees
should be used. Applying this optimization can have a tremendous effect on rendering

18

3.4 Accelerating Volume Raycasting

performance, depending on both the data set and the applied transfer function. We
will discuss existing approaches for empty space skipping and introduce a novel
technique that incorporates temporal coherence in Chapter 5.

3.4.2 Early ray termination

In the basic raycasting approach rays are always traversed completely from start
to end point. This is necessary for compositing techniques like maximum intensity
projection, as even the last voxel sampled on the ray may contain the maximum
intensity value. However, for direct volume rendering the opacity is accumulated
monotonically, meaning that after the accumulated opacity has reached a value of
1.0, it will not be changed by further sampling operations on the ray. In this case
the ray traversal can be terminated, as all the following voxels on the ray will have
no influence on the result. For practical applications it can be useful to choose a
threshold slightly below 1.0, because when the accumulated value is close to full
opacity, further changes will not be visually perceivable. Early ray termination is
most effective for dense data sets, where rays can terminate shortly after hitting the
opaque object. However, when the transfer function is configured to show the object
as semi-transparent, the accumulated opacity might never reach the threshold and
consequently rays will never be terminated before reaching their end point.

3.4.3 Bricking and multi-resolution approaches

Basic volume raycasting requires the entire volume texture to be available in GPU
memory to fully exploit the high graphics memory bandwidth. For larger volumes,
commonly a divide-and-conquer approach that subdivides the volume into several
sub-blocks or bricks is used. Each of these bricks is chosen small enough to fit into
graphics memory. The bricks are uploaded to the GPU one after another and volume
rendering is applied to each brick individually. Hence, this out-of-core technique can
render the volume without having the entire data available in graphics memory at
the same time. However, it requires an additional step to combine the renderings of
the individual bricks to form the rendering of the complete volume. Bricking can be
implemented with GPU-based raycasting by subdividing the standard cube proxy
geometry into bricks and applying the raycasting fragment shader to each brick,
after sorting the bricks by their distance to the camera. As managing of bricks and
especially the compositing of intermediate results add some overhead compared to
basic raycasting, the technique exhibits performance disadvantages when the volume
fits into memory, and should not be used in this case.

19

Chapter 3 – Concepts of Volume Rendering

Bricking can also be used to implement empty space skipping simply by ignoring
bricks that only contain fully transparent voxels. The bricking approach is also
suitable for multi-resolution rendering, which changes the level-of-detail (LOD) of
each brick, i. e., its resolution, based on some weighting function such as the distance
to the camera. While the basic approach is simple, a significant effort is required to
prevent filtering artifacts from appearing between bricks having different resolutions.
However, such a multi-resolution rendering can also be implemented without bricking
(Ljung et al., 2006).

20

Chapter 4

Voreen –
The Volume Rendering Engine

The Voreen framework provides the basis for implementing the rendering

techniques presented in the following chapters. Therefore, we review the

fundamental concepts and features of the framework, as well as possibili-

ties for extending the system by integrating additional functionality.

Visualizations of volumetric data are often created by combining multiple
rendering and image processing techniques. The complexity of volumetric

data requires that users are able to interactively change rendering parameters
such as camera position or transfer function, but potentially also to modify more
complex settings, such as replacing entire rendering modules or adding additional
image filters. Traditional programming of visualization techniques is not suitable
for supporting such a dynamic workflow; hence, a more interactive approach that
supports rapid-prototyping of visualizations is necessary.

The idea of the Voreen (Volume Rendering Engine) project (Meyer-Spradow, 2009;
Meyer-Spradow et al., 2009) is to support the development of such complex volume
visualizations by using a visual programming paradigm and thus achieve both a high
level of flexibility and rendering performance. The component-based architecture
makes the system highly flexible and extensible to support easy integration of new
rendering techniques or data processing algorithms. Therefore, we realized all the
acceleration techniques for volume rendering presented in the following chapters
using Voreen.

4.1 Data-flow Concept

Visualizations in Voreen are constructed based on the concept of data-flow networks.
Such a network consists of processors, which are autonomous functional building

21

Chapter 4 – Voreen: The Volume Rendering Engine

blocks that perform a specific task. The processors can work on different types of
input data such a 2D images, 3D volumes, or mesh data, and can also output such
data. Processors can be connected through their ports: inports for data input and
outports for output. From each connected processor outport the data flows to the
corresponding inport. In addition to in- and outports, processors can have coprocessor
ports. A coprocessor in Voreen is a processor that supports certain functionality and
may be called by a connected processor, similar to a method call in object-oriented
programming. This can be useful for data that is not suitable for transfer by the
data-flow concept, e. g., because it is stored in an implementation-specific format and
is too large to be converted on demand.

The generic but flexible data-flow concept supports implementing complex visual-
izations by combining multiple processors. Examples for processors include a volume
processor that downsamples an input volume, an image processor that applies a
Gaussian blur to an input image, or a more complex rendering processor that visual-
izes an input volume using raycasting. It is notable that the data-flow concept does
not limit the performance of techniques implemented using this scheme. In practice,
the approach only adds a small overhead compared to a direct implementation.

Since information about the entire network structure is available to a central network
evaluator before rendering is started, the evaluator can apply some optimizations that
would not be possible with local knowledge only. For example, network branches not
connected to an output window can be ignored. In complex networks the order of
evaluation can be modified to minimize the resource requirements, e. g., the number
of OpenGL textures used for storing intermediate rendering results. Hence, the
logical flow of information in the data-flow network can differ from the actual order
of execution. A caching mechanism in the evaluator determines whether results
of sub-networks can be reused instead of executing the processors again, which is
important especially for interactive applications. The concept of a global evaluator
also simplifies the implementation of processors, as they need no information about
a network’s topology, but receive all data through the connected ports.

4.2 User Interface

Although data-flow networks in Voreen can also be created and configured by
method calls in program code, a user will typically start the VoreenVE (visualization
environment) application (shown in Figure 4.1) and use its graphical network editor
to create rendering networks through visual programming. The user can influence the
visual result of a rendering network by adding processors or modifying connections
between existing ones, i. e., changing the network topology. Individual processors can

22

4.3 Integration of GPU-based Raycasting

Figure 4.1: Screenshot of the VoreenVE application for visual programming of data-
flow networks. In addition to the central network editor, the windows for the rendering
result and for modifying the transfer function are visible on the left. The properties of
the selected processor are listed on the right.

be modified through their properties. Processor properties are represented by class
member variables and can be accessed via an automatically constructed GUI. They
allow to model basic processor settings such as raycasting sampling rate, but also
complex properties such as transfer functions are supported.

4.3 Integration of GPU-based Raycasting

Because the focus of Voreen lies on volume visualization, the data-flow implementa-
tion of GPU-based raycasting is of major importance. Figure 4.2 shows a data-flow
network implementing volume raycasting. In this network, the volume data of the
current data set is made available by a VolumeSource processor and sent to the
three connected processors. The actual ray traversal is implemented in SingleVol-

umeRaycaster. Since we use the Krüger-Westermann approach, the processor also
needs two ray parameter textures in addition to the volume data. They are deliv-
ered by CubeProxyGeometry and EntryExitPoints, which work together for this
task. CubeProxyGeometry represents the bounding box geometry of the connected
volume, and EntryExitPoints triggers rendering of this proxy geometry by calling a

23

Chapter 4 – Voreen: The Volume Rendering Engine

Figure 4.2: An example data-flow network implementing GPU-based raycasting in
Voreen and the resulting output image.

method through the coprocessor connection between the two processors. Afterwards,
SingleVolumeRaycaster binds the resulting ray parameters as OpenGL textures and
executes a fragment shader to perform the actual ray traversal through the volume. A
GeometryProcessor adds a wireframe of the data set bounding box to the raycasting
result by calling BoundingBox as a coprocessor. The Background processor combines
the resulting image with a color gradient background and directs the result to the
final Canvas processor for display in the output window.

Other visualization systems typically encapsulate the entire volume rendering in
one large monolithic block (compare Meyer-Spradow et al., 2009, p. 7). However,
splitting up raycasting into several processors, as performed in Voreen, is more
flexible. For example, the basic CubeProxyGeometry can be exchanged easily by a
more complex proxy geometry, a feature we will use in the following chapter.

4.4 Adding New Components

A new rendering technique can be integrated into Voreen by implementing new
processors. A processor is implemented by a class inheriting from Processor or one
of its more specialized subclasses. The actual functionality of a render processor
is located in its process() method. It can access the data sent to the processor’s
inports and renders it, making the output available through one or more outports.

24

4.5 Performance Considerations

The functionality of the process() method can of course differ entirely between
processors used for rendering and data processing, but the overall structure is the
same in either case. There is no limitation on the kind of operations a processor can
perform in process(), e. g., all of OpenGL can be used directly.

4.5 Performance Considerations

Despite the high level of abstraction introduced by the visual programming approach
in Voreen, the abstraction does not cause a performance penalty for rendering.
Overhead in the data-flow architecture comes from two aspects: communication
between processors and managing the execution of processors. Most interaction
between processors is limited to transfer of volume and image data via ports. As this
data is typically located on the GPU as a 3D or 2D texture, it does not have to be
moved, but only references to the data need to be passed to processors. Evaluating a
render network introduces some overhead, for example, when a generic processor
spends resources on initializing a feature that is not actually utilized in a specific
network configuration. The total amount of this overhead depends on the number
of processors in the network, which is small for most applications. There is no no-
ticeable overhead in practice, even for data-flow networks consisting of a hundred
processors. The reason for this low overhead comes from the large difference between
the computational costs for the management overhead and the costs for expensive
visualization techniques such as volume raycasting. In a network containing a ray-
casting processor, the overwhelming part of the total runtime will be spent in the
fragment shader performing the ray traversal. In a network implementing GPU-based
volume raycasting, less than 5% of the total runtime is spent on rendering the proxy
geometry and further initialization, while according to our measurements more than
95% of the time is spent in the process() method of the raycasting processor waiting
for the GPU to finish running the fragment shader.

By designing the architecture to make use of OpenGL resources directly and mini-
mizing initialization overhead and communication between processors, visualizations
developed with Voreen achieve performance results comparable to a direct, but more
laborious, manual implementation. Therefore Voreen is also suitable for applications
requiring interactive frame rates and even for implementing and testing time-critical
rendering algorithms. The performance aspects of volume rendering with Voreen

were also verified by other groups: Eisenmann et al. (2009) evaluated volume ren-
dering for pre-operative planning in neurosurgery. Of the three volume rendering
libraries tested (VTK, Voreen, and VGL), only Voreen was able to achieve interactive
frame rates and high quality output.

25

26

Chapter 5

Empty Space Skipping
using Occlusion Frustums

In this chapter we introduce a novel approach to empty space skipping

in order to reduce the number of costly volume texture fetches during

ray traversal. We generate an optimized proxy geometry for raycasting,

which is based on occlusion frustums obtained from previous frames. The

technique does not rely on any preprocessing, introduces no image arti-

facts, and—in contrast to previous point-based methods—works also for

non-continuous view changes. Besides the technical realization and the per-

formance results, we also discuss the potential problems of ray coherence

in relation to our approach and restrictions in current GPU architectures.

Many volumetric data sets contain a considerable amount of empty space,
i. e., voxels that do not contribute to the final image. What makes up
an “empty” voxel depends on the transfer function, but certain intensity

ranges, such as air around an object in a CT scan, are mapped to zero opacity in
most applications. Ignoring voxels that do not contribute to the final image is an
obvious way to increase rendering performance, but it is important that this opti-
mization introduces no serious overhead. Therefore we have developed an empty
space skipping technique that is realized by exploiting the geometry processing capa-
bilities of programmable graphics hardware, which are normally not utilized during
raycasting. The vertex and fragment processing units of earlier graphics hardware
were independent, resulting in the vertex units being mostly idle when raycasting
was implemented within a fragment shader. More recent GPUs switched to a uni-
fied architecture where processing units are dynamically assigned to process either
vertices or fragments, and thus ensure better utilization of the available computing
resources. Nonetheless, raycasting still does not make use of the geometry processing

27

Chapter 5 – Empty Space Skipping using Occlusion Frustums

capabilities of the hardware. Therefore we have investigated how a more complex
proxy geometry can be used for supporting the fragment processing unit, to save
costly computations and reduce the number of memory transactions.

Data exploration is an important application for volume rendering. For this task
it is especially important for the user to be able to change all rendering parameters
interactively. Changes in some parameters like the transfer function can have global
effects on the empty space, depending on which source data values are mapped to
zero opacity. These parameter changes can therefore invalidate any prior knowledge
about the distribution of empty space and nullify any data structures which rely on
this information. Hence, optimization techniques that rely on empty space informa-
tion and require expensive preprocessing to adapt the underlying data structures
to changes in the empty space are unsuitable for interactive data exploration. We
introduce occlusion frustums to improve the rendering performance of GPU-based
raycasting, which require no preprocessing as they are constantly regenerated. Our
approach relies on the observation that for many applications only small viewpoint
changes are applied between consecutive frames. Using occlusion frustums for empty
space skipping introduces no rendering artifacts and also works for non-continuous
viewpoint changes.

This chapter is structured as follows. Section 5.1 examines related work regarding
volume raycasting optimizations. In Section 5.2 we discuss the potential effects of
hardware restrictions on general raycasting optimizations. Our occlusion frustum
approach is introduced in Section 5.3, and its implementation on the GPU and
integration into Voreen are presented in Sections 5.4 and 5.5. We present and discuss
results in Section 5.6, and give a summary in Section 5.7 .

5.1 Related Work

GPU-based raycasting as introduced by Röttger et al. (2003) and enhanced by Krüger
and Westermann (2003) uses a proxy geometry most often resembling the data set
bounding box to specify ray parameters, as shown in Figure 5.1. Many acceleration
techniques have been proposed for raycasting, often trying to reduce the large number
of sampling operations in the volumetric data. Avila et al. (1992) introduced polygon
assisted raycasting (PARC), which approximates the volume object by a polygon mesh
and restricts raycasting to those parts of the rays lying inside the geometry. This was
implemented by Leung et al. (2006) using the Marching Cubes algorithm (Lorensen
and Cline, 1987) for extracting the object surface. Similarly, Westermann and Sevenich
(2001) utilized hardware-based texture slicing to speed up software-based raycasting.

28

5.1 Related Work

Figure 5.1: Casting a ray through a volume data set.

They render the data set with a fast but low-quality slice-based approach and use
the resulting depth image to get an optimal ray setup for the high-quality raycasting
performed in a second rendering pass. Another approach using distance transforms
was introduced by Šrámek and Kaufman (2000).

A faster but also coarser approximation of the volume object can be generated
by partitioning the volume into uniform blocks and not rendering those consisting
only of empty voxels. Many authors have implemented this bricking approach, for
example, Hadwiger et al. (2005) and Scharsach et al. (2006). Li et al. (2003) used
adaptively partitioned subvolumes to add empty space skipping to slice rendering,
grouping similar voxels into subvolumes. These object-order techniques can adapt
to limited changes in the transfer function by storing minimum and maximum
voxel intensities for each block. But for larger changes in the transfer function these
methods generally require to rebuild the data structure, for which every voxel in
the data set has to be considered. This makes these techniques rather unsuitable
for interactive data exploration where the opacity mapping is changed frequently.
Also, it is often difficult—if not impossible—to adapt the more complex approaches
efficiently to the GPU programming paradigm and to integrate them into existing
rendering frameworks.

Temporal coherence is often exploited for geometry-based rendering techniques.
For example, Havran et al. (2003) reuse ray/object intersections computed in the
last frame for acceleration of raycasting in the current frame. The idea of skipping
empty voxels around a volume object by exploiting temporal and spatial coherence
between consecutive frames was introduced by Gudmundsson and Randén (1990)
for parallel projection and later generalized by Yagel and Shi (1993) under the name

29

Chapter 5 – Empty Space Skipping using Occlusion Frustums

space leaping. They approximate optimal ray start points by extracting first-hit points
from the depth images of previous frames and reprojecting them to the current view
using point splatting. Due to discretization of screen-space positions to integer pixel
locations, some pixels will not be covered by the reprojection and therefore a hole
filling is required, triggering a full raycasting for such pixels. The reprojection is only
possible for small view changes; for larger changes a full raycasting of virtually all
pixels is necessary. The approach is illustrated in Figure 5.2.

Several extensions of the reprojection approach have been presented. For example,
Yoon et al. (1997) transformed rays instead of points to accelerate isosurface rendering.
Wan et al. (2002) presented a cell-based reprojection scheme, which they combined
with a spatial data structure based on distance fields for hole filling. Besides high
memory requirements for the data structure, their technique will fail to detect objects
becoming visible when large viewpoint changes are performed. Instead of frame-
to-frame coherence, Lakare and Kaufman (2004) exploit coherence between rays by
casting detector rays to get empty space information for multiple adjacent rays at the
same time. While independent of the transfer function, their technique can only give
accurate results when single voxels are projected over multiple pixels on the screen,
as it is the case in virtual endoscopy applications where the camera is placed close to
the object surface.

All of the previously described space leaping methods that make use of temporal
and spatial coherence were implemented on the CPU. Many of them cannot be ported
directly to the GPU and are therefore not useful in a GPU-based raycasting system.
Only few solutions were presented that directly use graphics hardware for acceler-
ation. The approach by Westermann and Sevenich (2001) utilizes hardware-based
texture slicing to speed up software-based raycasting. Klein et al. (2005) implemented
Yagel and Shi’s space leaping with point reprojection on programmable graphics
hardware using vertex shaders. For larger view changes they described artifacts as
“unavoidable” with their technique. The reprojection technique was also applied in
combination with a method to prevent unnecessary raycasting when using time-
varying data by Grau and Tost (2007).

5.2 Impact of Hardware Restrictions on

GPU-based Raycasting

Although the highly parallel architecture of modern graphics processors makes
volume raycasting usable for interactive applications, it must be kept in mind that this
architecture has some restrictions. Detailed information about these restrictions with

30

5.2 Impact of Hardware Restrictions on GPU-based Raycasting

1. full raycasting from
initial view

2. extracting first-hit points 3. reprojecting first-hit points to
the current view

4. approximating new
ray start points

5. raycasting from current view,
leaping over empty space

6. hole filling

Figure 5.2: Illustration of the space leaping approach by Yagel and Shi (1993). Optimal
ray start points for the current view are approximated by reprojecting first-hit points
of the previous view. As the reprojection is not lossless, a final hole filling step is
necessary.

31

Chapter 5 – Empty Space Skipping using Occlusion Frustums

(a) constant (b) linear (c) random

Figure 5.3: Grayscale textures for controlling the distribution of ray lengths on the
screen for measuring its influence on raycasting performance. Each pixel corresponds
to a ray and the ray length is proportional to the pixel luminance. The sum of all ray
lengths is the same in either case.

distribution fps overhead
constant 251.3 —
linear 249.2 0.8%
random 149.7 67.9%

Table 5.1: Influence of ray length distribution on casting 5122 rays with an average ray
length of 128 samples. The difference between a constant and a linear distribution is
insignificant, but a random distribution of ray lengths introduces a rendering overhead
of about 68%.

regard to shader programming is not available from vendors, hence it is necessary
to gather data experimentally, e. g., with the GPUBench tool (Buck et al., 2004a;
Houston, 2007).∗ One hardware restriction significant for raycasting is branch coherence:
Fragment processors on modern GPUs process fragments in groups rather than
individually, and the fragment with the most time-consuming calculations limits the
progress of the entire group, as the group can only finish when all of its fragments
are completed. Houston (2007) demonstrated this for different GPUs by distributing
pixels that cause “slow” or “fast” calculations either randomly or in groups on the
screen. Coherence regions with the same calculation time for 4× 4 to 16× 16 pixels
gave nearly optimal results, depending on the graphics hardware, while a random
distribution resulted in the worst performance.

∗ With the introduction of new programming interfaces such as NVIDIA’s CUDA, vendors have become
more open about the inner workings of their GPUs, making more hardware documentation available
than when graphics processors could only be used through shader programming. However, the exact
mapping of shaders to the hardware resources is still undocumented and often experimental testing
is required to get optimal performance results.

32

5.2 Impact of Hardware Restrictions on GPU-based Raycasting

(a) data set (b) full raycasting (c) empty space
leaping

(d) block grouping

Figure 5.4: Effect of block grouping on raycasting and empty space leaping. Starting
at the optimal ray start points (c) instead of the bounding box (b) prevents most
sampling operations in empty space. Block grouping (with a block size of 4) can
potentially undo much of these savings (d).

For GPU-based raycasting, computation time for each fragment is mainly influenced
by the ray length, as this controls the number of texture fetches. Empty space leaping
and early ray termination can disturb coherence of computation times for adjacent
rays, as they modify the initially equal ray lengths depending on the volume data. To
examine this matter, we have implemented a simplified GPU raycaster that can set the
lengths of the rays to be either constant, linearly increasing, or randomly distributed
over the screen. It uses the textures in Figure 5.3 to control the distribution of ray
lengths. The sum of all ray lengths (and therefore the total number of texture fetches)
is the same in either case. As shown in Table 5.1, there is no significant performance
difference between constant and linear increasing lengths, but a random distribution
of lengths increases rendering time by about 68%.

However, experimental results suggest that ray length distribution is not that
random for non-synthetic data. This can be quantified by comparing the original
unmodified volume raycasting to one where we group adjacent rays in blocks, and
apply the longest ray length within each block to all rays in the block. Hence, we
simulate the behavior of a fragment processor, which also processes fragments in
this fashion. As illustrated in Figure 5.4, block grouping could undo the effect of
empty space leaping when ray lengths are distributed randomly. Implementing the
block grouping scheme in a full volume raycaster, we do not directly consider the
lengths of the rays but instead count the number of texture fetches, which also covers
gradient calculation with six additional texture fetches for each non-empty voxel.
Since the computation time for a block is determined by its longest ray, the shorter
rays in the block result in idling fragment units. We implemented the ray length
analysis into Voreen by extending the standard raycaster to count the number of

33

Chapter 5 – Empty Space Skipping using Occlusion Frustums

data set block size
42 82 162

head +2.3% +4.9% +10.2%
engine +4.7% +10.3% +19.9%
aneurysm +3.4% +7.1% +13.8%

Table 5.2: Overhead when all rays in each block have to wait for the longest ray
inside the block to finish. The overhead is lower than what would be expected for a
purely random distribution of ray lengths.

texture fetches it performs and outputting the results to an additional render target.
Table 5.2 shows the overhead introduced by the block grouping, i. e., the total idle
time, for semi-transparent, dense, and sparse data sets. The overhead ranges from
2% to 20% compared to when no block grouping is applied. This is much less than
what would be expected for a purely random distribution. Visualizing ray lengths
as in Figure 5.5 shows that they are distributed quite uniformly, so we expect the
penalty to pay for a block having to wait for the calculation of its longest ray to be
comparatively small.

Thus we could show that although in theory branch coherence could be a potential
problem for raycasting optimizations, the effects are most visible with synthetic
worst-case data, while with real-world data the resulting ray lengths are much more
coherent, which will not be changed dramatically by optimizations of the proxy
geometry.

5.3 Optimizing the Proxy Geometry for Space Leaping

GPU-based raycasting usually utilizes a cube as its proxy geometry for generating the
ray start and end points, illustrated in Figure 5.1. As the colors on the cube surface
encode the exact position in space (compare Figure 5.6a), any other geometry can be
used instead, as long as it encloses all relevant voxels. A straight-forward approach to
minimize the sampling of empty voxels would therefore be to enclose all non-empty
voxels inside a closely-fitted proxy geometry, as proposed with the PARC algorithm by
Avila et al. (1992). The complexity of this geometry is data-dependent, and some kind
of simplification would be needed to prevent the generation of excessively complex
geometries. While giving optimal results with regard to preventing unnecessary
sampling, generating such a geometry would be quite costly and, even worse, it
would become invalid as soon as the transfer function is changed (Figure 5.7), a
common operation for data exploration. Hence, an on-the-fly process with fast

34

5.3 Optimizing the Proxy Geometry for Space Leaping

(a) vmhead (b)

(c) engine (d)

(e) aneurysm (f)

Figure 5.5: Analyzing the distribution of ray calculation costs in a semi-transparent,
dense, and sparse data set. The number of texture fetches per ray (including gradient
calculations) is normalized and quantized for each data set.

35

Chapter 5 – Empty Space Skipping using Occlusion Frustums

adaptation to changed viewing parameters would be preferred, even when giving
slightly less optimal results. Therefore we refrain from any preprocessing and choose
to do a less costly proxy geometry construction for each frame, using information
obtained during the rendering of the previous frame.

5.3.1 Occlusion frustums as proxy geometry

The concept of occlusion volumes is well-known for geometric visibility calculation
and occlusion culling, e. g., see Schaufler et al. (2000). Objects directly visible from the
camera are considered as occluders that cast an occlusion volume into the scene, similar
to casting a shadow. All objects inside this occlusion volume are known to be invisible
from the camera and can be removed during occlusion culling. Our approach is based
on visibility information retrieved from a first-hit image (Figure 5.6b). In this image,
each pixel corresponds to a ray, and the pixel color specifies the position of the first
non-empty voxel on this ray. The alpha channel is used to mark rays that only hit
empty voxels. When we consider the first-hit voxels as occluders, we can extract
regions where no non-empty voxels are located. These are marked as definite miss in
Figure 5.6c. When using the naming scheme by Yoon et al. (1997), the different types
of regions can be classified as follows:

Definite hit. Regions where non-empty voxels are definitely located. This is only
known for the first-hit voxels.

Definite miss. Regions where only empty voxels are located. This includes all
empty voxels lying between the start and the first-hit point of a ray, or between
the start and the end point when the ray hits no non-empty voxels.

Possible hit. Nothing is known for all other voxels, namely those lying behind
first-hit point voxels. This can be interpreted as the first-hit voxels casting a
shadow or occlusion volume, with no information available about the voxels
occluded by this shadow.

To prevent the raycaster from sampling in regions that are known to contain only
empty voxels, we can build a proxy geometry consisting of the first-hit voxels and
their occlusion volume. Not an exact geometry is necessary, but a simplification is
sufficient as long as it contains all possibly non-empty voxels. For each first-hit voxel
a quadrilateral pyramidal occlusion frustum is constructed, with its top base located
at the voxel position. The occlusion frustums are constructed by extruding the quad
forming the top base along the projectors extending from the center of projection
through the vertices of the quad (illustrated in Figure 5.8). The depth extent of the

36

5.3 Optimizing the Proxy Geometry for Space Leaping

(a) (b) (c)

Figure 5.6: (a) Proxy geometry and (b) first-hit point image for the vmhead data set.
(c) Visibility information retrieved from a first-hit image can be used for constructing
the occlusion frustums.

Figure 5.7: Changing the transfer function invalidates empty space information.

Figure 5.8: Construction of a two-dimensional occlusion frustum with a block size
of three. The voxel closest to the center of projection determines the position of the
occlusion frustum’s top base

37

Chapter 5 – Empty Space Skipping using Occlusion Frustums

frustum is chosen large enough so that its bottom base lies outside the data set
bounding box. The union of all these constructed occlusion frustums is the complete
occlusion volume. Unlike point-based space leaping, no reprojection is necessary to
adapt the generated proxy geometry to changed viewing parameters. As the geometry
is created in object space, it is sufficient to apply the desired view transformation and
simply render the geometry from the new viewpoint (see Figure 5.9).

Special consideration is necessary for objects that are initially located outside the
view frustum. As the generation of occlusion frustums is image-based, they can
only contain voxels lying inside the view frustum. Consequently, when the view is
changed so that previously hidden objects become visible, they will be skipped by
raycasting as they do not lie within the proxy geometry that consists of all occlusion
frustums (see Figure 5.10). To handle this case, the proxy geometry must be enlarged
to enclose all regions outside the view frustum where non-empty voxels may be
located. The additional geometry can be generated by subtracting the view frustum
of the previous frame from the initial cube proxy geometry, which is guaranteed to
contain all voxels.

5.3.2 Clipping the occlusion volume

The occlusion frustum approach can be compared to the shadow volume algorithm
(Crow, 1977) for adding shadows to a geometrically constructed scene. There the
silhouette of occluders is typically extruded to infinity. This cannot be directly
translated to our case, since additional information is carried by the geometry. All
proxy geometry has to be placed inside a bounding box of [0, 1]2 because of the way
ray parameters are encoded as colors. Those are clamped to [0, 1] by the graphics
hardware and therefore geometry outside this unit cube would lead to incorrect ray
parameters. Additionally the frustum must be closed from all sides to give correct
results for all possible viewing directions. Therefore the initial occlusion frustum has
to be clipped against the data set bounding box to construct the final frustum.

5.3.3 Possible extensions to the occlusion frustum approach

The basic occlusion frustum approach is flexible and offers several options for further
optimization. However, it must be examined carefully whether extensions result in
an overall performance advantage.

Incremental geometry refinement. As presented here, the generated geometry
is recomputed for every frame. However, the approach could be changed to be
incremental by calculating the intersection between the newly generated frustums

38

5.3 Optimizing the Proxy Geometry for Space Leaping

1. building occlusion frustums
from first-hit points

2. occlusion volume 3. empty space leaping for
new viewpoint

Figure 5.9: An occlusion volume (yellow) is constructed as the union of all occlusion
frustums generated from the first-hit points (red). To achieve empty space leaping
for a new viewpoint, it is sufficient to apply the new view transformation and use the
occlusion volume as the proxy geometry.

Figure 5.10: New incoming object problem: The new object is outside the occlusion
frustum constructed at t0 and therefore not considered for raycasting at t1.

Figure 5.11: Incremental refinement of the proxy geometry over several frames. For
each frame the new proxy geometry (orange) is computed as the intersection of the
current occlusion volume (yellow) and the previous proxy geometry (red).

39

Chapter 5 – Empty Space Skipping using Occlusion Frustums

and the previous proxy geometry: With every view change the geometry would
get closer to the optimal proxy geometry (Figure 5.11). Unfortunately this would
substantially increase the complexity of the geometry calculations and the amount of
created geometry. Also, direct implementation on graphics hardware would become
difficult. An additional problem that might arise is that any voxels missed in a
single frame due to undersampling could lead to incorrectly identifying parts of the
volume as empty and permanently removing them from the proxy geometry. The
problem is less serious with the non-incremental approach, as there the geometry is
constantly refreshed and errors will be removed immediately. For small view changes
undersampling is not a significant problem, as every voxel that is ignored for proxy
geometry calculations due to undersampling would not be visible in the final image
anyway. In summary, an incremental approach is costly and may accumulate image
artifacts.

Empty space behind the object. Most space leaping techniques only consider
the empty space between the ray start and the first-hit point. Especially for sparse
data sets, however, much more empty space can remain between the first-hit point
and the ray end. The empty space inside an object can get too complex to be handled
efficiently, but the empty space behind it is much simpler. Instead of first-hit points,
now information about last-hit points is necessary, i. e., the position of the last non-
empty voxel between first-hit point and ray end (compare Figure 5.1). The last-hit
image could be used to construct the back of the occlusion frustums, instead of
building them by clipping against the bounding box. Though initially reasonable, we
have not implemented this extension for two reasons: First, it is not compatible with
early ray termination, as finding the last-hit points requires a full traversal of all rays.
Second, while about doubling the costs for creating the occlusion frustum, for the
typical use case of a rotating object the amount of traversed empty voxels that could
be saved with this extension is relatively small.

Multiple views. For some use cases the volume object needs to be displayed from
multiple viewpoints at the same time, e. g., to increase spatial comprehension in a
medical application. Here it might be advantageous to generate the occlusion frustum
proxy geometry for just one viewpoint and reuse it for the others. Obviously, the
efficiency of this optimization depends on how the viewpoints are arranged. When
two views show the same object from opposite sides, even the previously dismissed
method to include the empty space behind an object might be advantageous.

In case the viewport sizes of the different views are not equal, it must be decided
whether to generate the occlusion frustums from the larger viewport and reuse

40

5.3 Optimizing the Proxy Geometry for Space Leaping

them for raycasting on the smaller one or vice versa. Although the optimized proxy
geometry can be created faster from the smaller viewport as fewer pixels need to
be analyzed, it can nonetheless be beneficial to use the larger viewport instead. The
generated proxy geometry is not only used for rendering the current frame on the
smaller viewport, but also for rendering the next frame on the larger viewport. Since
the overall performance relies most on the rendering speed on the larger viewport,
it is important that the proxy geometry removes unnecessary sampling operations
in empty space with the highest efficiency when rendering to this viewport. Hence,
the proxy geometry generated from the larger viewport should also be used for
raycasting on the smaller one to get best performance. This also resolves the problem
of screen space undersampling, which could lead to rendering artifacts when the
occlusion frustums are generated from a small first-hit point image and are then
enlarged for raycasting on a much larger viewport. As in this case not all rays on
the larger viewport have been previously consulted while generating the occlusion
frustums, the geometry could be too small, i. e., voxels would be incorrectly classified
as empty space. This issue does not occur when the viewport size used for the
raycasting is smaller than that of the first-hit point image.

Delayed geometry updates. With a direct implementation of our approach, the
occlusion volume geometry is regenerated for every frame. This ensures an optimal
geometry as long as there is enough frame-to-frame coherence, i. e., the viewpoint
only changes slightly in between frames. For very small viewpoint changes, reusing
the previous occlusion volume proxy geometry instead of regenerating it only in-
troduces a small overhead, which may be smaller than the cost for regenerating the
occlusion frustums. Hence, a practical optimization would be to only update the
proxy geometry when viewing parameters have changed by more than a certain
threshold, e. g., when the camera was rotated by more than 5 degrees relative to
when the occlusion geometry was generated. The actual thresholds would need to
be determined experimentally, as the break-even point between using an outdated
occlusion volume proxy geometry and the costs of generating a new one depends on
several parameters such as complexity of the data set. The expected unsteadiness of
the frame rate caused by the delayed updates of the geometry might be of concern for
continuous animation. The effectiveness of optimization also highly depends on the
application and, more specifically, on the usage pattern regarding viewpoint changes.
Therefore, we have not implemented the optimization for our tests of the occlusion
frustum approach, as we are interested in the behavior of the approach in the general
case and not only for a specific usage pattern.

41

Chapter 5 – Empty Space Skipping using Occlusion Frustums

5.4 GPU Implementation

As described before, the starting point of our approach is the first-hit image. It can
be generated in the raycasting fragment shader by detecting the first-hit voxel and
writing its position into an additional rendering buffer. By exploiting the OpenGL
multiple render target extension, this can be done during normal ray traversal without
the need for a second pass, so that the first-hit image is extracted with minimal
overhead. The steps described in the following subsections are inserted into the
volume rendering process just before the actual raycasting operation, where normally
a cube proxy geometry is rendered to generate the ray start and end point textures
used by the raycasting. The only additional change is instructing the raycaster to
also output the first-hit image, as described above. Thus, the proposed optimization
can be easily integrated into existing volume raycasting frameworks that use the
Krüger-Westermann approach, what we demonstrate by integrating it into Voreen in
the next section.

5.4.1 Analyzing first-hit points

Generating an occlusion frustum for each pixel in the first-hit image would result in a
prohibitively large amount of geometry for high viewport resolutions. The complexity
can be reduced by downsampling the first-hit image, so that an occlusion frustum
corresponds to multiple pixels. However, special care must be taken to ensure that
no important information is lost during the downsampling, which would lead to
an incorrect occlusion frustum and rendering artifacts. To get correct results, we
first group adjacent pixels as square occlusion blocks. We then analyze all voxels
corresponding to pixels in each block to find the voxel with the minimum distance
to the viewpoint. This voxel’s position is later used for constructing a frustum
that encloses all non-empty voxels hit by rays associated with the occlusion block.
Figure 5.8 on Page 37 illustrates the two-dimensional case with a block size of three,
showing that the position of the occlusion frustum’s top base is determined by the
voxel closest to the center of projection. The proxy geometry is enlarged by the
simplification, which leads to sampling of some empty voxels and thus reduces
efficiency of space leaping. But as discussed in Section 5.2, the hardware processes
fragments block-wise and the slowest fragment limits the processing speed for all
fragments in a block. Hence, the block simplification suits the hardware limitations,
and an unsimplified solution would not result in significantly better performance
results. The simplification can be implemented efficiently as a fragment shader and
return the occlusion block texture.

42

5.4 GPU Implementation

We implemented the grouping of adjacent pixels in the first-hit image to generate
the occlusion block texture as a fragment shader running in a ping-pong scheme with
the first-hit texture as input. In each pass the shader replaces every 2× 2 pixel block
by the one pixel inside the block that is closest to the camera. The process therefore
halves the side length of the input texture in each pass. Hence, when a block size of
4× 4 is requested, two passes are needed. This could also be performed in a single
pass of a slightly more complex shader, but the ping-pong scheme is a standard
approach for this type of problem and runs efficiently. In addition, the runtime of this
simple image-based operation is insignificant in comparison to the more complex
generation of the occlusion frustum geometry or the raycasting.

5.4.2 Generating occlusion frustums

The algorithm for generating the occlusion frustum geometry is especially suitable
for implementation on the GPU using geometry shaders. They allow to generate new
graphics primitives (e. g., points or triangles) from input primitives sent by previ-
ous stages of the graphics pipeline. While they can theoretically generate arbitrary
amounts of output primitives from one input primitive, current implementations force
the programmer to specify the maximum number of output primitives in advance
and are most efficient when this value is not set too high.

In our algorithm, an occlusion frustum that consists of twelve triangles has to be
generated for each non-empty occlusion block. These input blocks can be modeled
easily as point primitives, with their x- and y-coordinates set to the texture coordinates
of the corresponding texel in the occlusion block texture. The application sends each
point primitive and the occlusion block texture to the geometry shader, which either
outputs the clipped frustum or zero triangles, depending on whether the block
corresponding to the input point is empty or not. In the geometry shader the frustum
is constructed out of triangle primitives and clipped against the data set bounding
box. To ensure that it contains all relevant voxels, the frustum is enlarged slightly and
moved towards the camera. The resulting geometry is rendered using a fragment
shader that assigns the vertex position as fragment color, while the z-buffer handles
overlapping frustums.

The entire occlusion frustum shader consists of three components: First, a vertex
shader that reads from the first-hit point texture and calculates the basic properties
of the corresponding occlusion frustum, such as distance to the camera. Second, the
geometry shader that uses this information to generate, clip, and output the triangles
that make up the frustum. Third, a simple fragment shader that sets the interpolated
vertex positions generated by the geometry shader as the output fragment color,

43

Chapter 5 – Empty Space Skipping using Occlusion Frustums

which is then written to the ray start point texture. Since the geometry shader
combines both generating the occlusion frustum geometry and sending it to the
rasterization stage, it needs to take different viewing parameters into account. For
generating the occlusion frustums the same camera parameters as used for rendering
the originating first-hit image must be applied, i. e., the viewpoint of the previous
frame. To get the ray parameters for the current frame, the proxy geometry must
then be transformed according to the new camera parameters, which is performed in
a single pass of the geometry shader.

For supporting older hardware, the algorithm could also be adapted to vertex
shaders since the maximum number of generated vertices for each occlusion block is
known beforehand. However, this might result in a significant performance penalty,
as the texture fetch would have to be made per-vertex instead of per-frustum. For
empty occlusion blocks a degenerate geometry with all vertices of the corresponding
frustum set to zero would be built, effectively removing it from the output.

After the occlusion frustums have been constructed, we finally add the bounding
box cube, from which the view frustum of the previous frame is subtracted, to the
proxy geometry for detecting objects that become visible (see Subsection 5.3.1). The
resulting geometry can be used for ray setup by rendering the front faces to get ray
start points, while the ray end points are still retrieved by rendering the back faces
of the data set bounding box. When the empty space information is invalidated by
changing rendering parameters like the transfer function, a single frame has to be
rendered using the data set bounding box as the proxy geometry, but subsequent
frames can again use the occlusion frustums.

5.5 Integration into Voreen

We have implemented the presented occlusion frustum approach using OpenGL and
GLSL shaders. It was integrated into the Voreen volume rendering framework for
combination with the standard raycasting processors already available in the system.

5.5.1 Data-flow network

Integrating the occlusion frustum approach into Voreen is quite simple, as it only
covers analyzing the previous first-hit image and constructing the optimized proxy
geometry. A simple Voreen network that uses an occlusion frustum proxy geometry
is shown in Figure 5.12b. Compared to a standard network (Figure 5.12a) there
are several changes: Two processors were replaced, an additional outport of the
raycasting processor is used, and an additional RenderStore processor with accom-

44

5.5 Integration into Voreen

(a) (b)

Figure 5.12: (a) Standard Voreen network for volume raycasting, (b) extended net-
work using the optimized proxy geometry based on occlusion frustums. The sec-
ond outport of SingleVolumeRaycaster outputs a first-hit image that is stored in
RenderStore, from which it is accessed by OptimizedProxyGeometry through the
coprocessor connection.

panying connections was added. The two new processors OptimizedProxyGeometry
and OptimizedEntryExitPoints look very similar to their standard counterparts
CubeProxyGeometry and EntryExitPoints, with the only exception being an addi-
tional coprocessor port for OptimizedProxyGeometry, which is used for accessing
the first-hit image. Instead of relying on a simple cube, the new processors generate
ray start and end point textures using an occlusion frustum proxy geometry. The
standard SingleVolumeRaycaster can be configured to output results of different
compositing modes at the same time, so we select DVR for the first outport and
first-hit points for the second, previously unused, outport. Thanks to OpenGL’s
multiple render target extension, this can be performed with little overhead in a
single ray traversal.

The first-hit image is needed by the OptimizedProxyGeometry, but a direct con-
nection from SingleVolumeRaycaster is not possible for transferring the image, as
this would introduce a cycle into the network. However, the OptimizedProxyGeom-

etry processor only needs the first-hit image of the previous frame to generate the
optimized proxy geometry and ray parameter textures for the current frame, so no
cycles are required. Hence, the standard RenderStore processor is used, which stores
a copy of its input image and makes it available to other processors via a coprocessor
port. Hence, the first-hit image generated by the SingleVolumeRaycaster is directed

45

Chapter 5 – Empty Space Skipping using Occlusion Frustums

into the RenderStore, which shares a coprocessor connection with OptimizedProxy-

Geometry. When the OptimizedProxyGeometry is processed the next time, i. e., when
the next frame is to be rendered, it can then access the first-hit image of the previous
frame through the coprocessor connection.

5.5.2 Implementing the optimized proxy geometry processor

We integrated the functionality of analyzing the previous first-hit image and generat-
ing the occlusion frustum geometry completely into the OptimizedProxyGeometry

processor. It first runs the block simplification on the first-hit image retrieved from
RenderStore using multiple passes of a simple fragment shader to get the occlusion
block texture. Afterwards it executes the shaders for generating and rendering the
occlusion frustum geometry with the occlusion block texture and the predefined
point primitives as input. The generated proxy geometry is used by OptimizedEn-

tryExitPoints to output the ray start point texture. When no valid first-hit image is
available, i. e., for the first frame or when the transfer function has been modified, the
simple proxy geometry as inherited from CubeProxyGeometry is used instead. For
the ray end points the back faces of the default geometry from CubeProxyGeometry

are used.

5.6 Results

5.6.1 Performance evaluation

All tests were conducted with an Intel Core 2 Duo E6300 CPU and an NVIDIA
GeForce 8800 GT graphics board with 512 MB of onboard memory. We have tested
our algorithm with different sparse and dense data sets; the results are shown in
Figure 5.13 and Table 5.3. Rendering was performed using on-the-fly gradient calcu-
lation, Phong lighting, and early ray termination. The objects were constantly rotated
and visualized using direct volume rendering. Occlusion frustum optimization was
applied with a block size of 4× 4, a compromise between accuracy and complexity of
the generated proxy geometry. In our tests we did not observe artifacts caused by the
optimization. As it is an image-based technique, undersampling could be problematic,
since voxels missed due to undersampling might lead to incorrectly identifying parts
of the volume as empty and removing them from the proxy geometry. In practice
this poses no problem because of the constant refreshing of the occlusion frustum
geometry. Also, the occlusion blocks lower the chance that this happens, as all voxels
in a block would have to be missed due to undersampling to remove the associated
frustum.

46

5.6 Results

(a) vertebra (b) aneurysm (c) hand (skin) (d) hand (bone) (e) backpack

(f) vmhead
(skin)

(g) vmhead
(bone)

(h) engine (i) engine
(interior)

(j) stagbeetle

Figure 5.13: Results of applying our space leaping technique to different dense
and sparse data sets. The resulting final image, first-hit image, and the constructed
occlusion frustum geometry, which is an approximation of the first-hit image, are
shown.

47

Chapter 5 – Empty Space Skipping using Occlusion Frustums

5.6.2 Discussion

As expected, the highest speedups were found with large but sparse data sets
like vertebra∗. For dense objects with little empty space like vmhead (skin), hardly
any optimization is possible. The amount of empty space depends on the transfer
function, and so does the speedup, as shown with the hand and vmhead data sets,
where different transfer functions for showing skin and bone structures are applied.
Since the optimization introduces an additional overhead, our approach can only
result in a significant speedup if the costs of sampling empty voxels are higher than
those for generating the occlusion frustums. Fortunately, the optimization is most
useful for high-resolution data sets and high-quality rendering, where the costs for
sampling empty voxels will also be high. As the runtime of our approach is mainly
dependent on the resulting 2D image resolution, but not 3D data set resolution, it
will produce good results in this case. The costs for optimization increase with the
viewport size, but the amount of saved sampling operations increases proportionally.
Therefore the technique scales well even to the quite large viewport size of 10242, for
some data sets even producing greater speedups than for 5122.

Besides with rotations, we also tested the performance when the point of view is
moved to a random position after each frame. While reprojection methods cannot
give valid results in this case, our approach can even then produce an acceleration
compared to the cube proxy geometry, as indicated in Table 5.4. Random viewpoint
changes destroy most of the frame-to-frame coherence and therefore reduce the effect
of the optimized proxy geometry on rendering performance. For some data sets
like engine the optimization overhead then gets larger than the costs of sampling
empty voxels, leading to a performance decrease. But nonetheless a correct image is
rendered in any case, and an optimization is still achieved for some data sets.

Comparing our results to those of similar methods, Klein et al. (2005) report
a speedup of up to 1.7x for semi-transparent volume rendering with small view
changes. They report an even larger speedup of up to 2.7x for isosurface rendering,
as this rendering mode benefits even more from space leaping, but it cannot be
compared to our direct volume rendering results. Our results on similar data sets are
comparable to—if not better than—their semi-transparent rendering, possibly because
no hole-filling is required. Hence, our technique is competitive with point-based

∗ While named “vertebra”, the data set actually is a rotational angiography scan of a human head with
an aneurysm. Vertebrae are the individual bones that build the spinal column of vertebrate animals,
but these are not visible in the data set. We would like to thank Prof. Dr. Timothy S. Newman from
the University of Alabama in Huntsville for pointing out this discrepancy to us. To be consistent with
other uses of the data set and because we were already using a different data set called “aneurysm”,
we stayed with the original name.

48

5.6 Results

viewport 5122 viewport 10242

data set size cube opt. s triangles cube opt. s triangles
vertebra 5123 19.1 43.1 2.26 33,876 7.6 18.9 2.49 167,904
aneurysm 2563 29.7 55.1 1.86 47,688 8.5 15.6 1.84 182,208
hand (skin) 2563 19.4 25.1 1.29 65,772 5.6 7.1 1.27 250,056
hand (bone) 2563 25.7 48.8 1.90 53,676 7.6 12.9 1.70 217,524
backpack 5122×373 24.0 44.6 1.86 31,608 8.4 16.8 2.00 128,724
vmhead (skin) 2563 36.9 39.1 1.06 81,576 4.0 3.9 0.98 327,624
vmhead (bone) 2563 27.0 36.7 1.36 54,888 7.1 9.2 1.30 216,060
engine 2562×128 24.2 27.7 1.14 47,664 7.4 8.3 1.12 189,672
engine (int.) 2562×128 37.5 64.6 1.72 24,300 11.3 21.9 1.94 93,132
stagbeetle 4162×247 8.5 15.3 1.80 37,464 3.1 6.6 2.13 135,108

Table 5.3: Results for different data sets, with average frame rates for a full rotation
of the object using a cube proxy geometry and our occlusion frustum optimization,
resulting speedup factor s, and triangle count of the optimized proxy geometry.

data set cube opt. s
vertebra 16.8 22.9 1.36
vmhead (bone) 19.1 19.5 1.02
engine 25.6 19.8 0.77

Table 5.4: Resulting frame rates and speedup factors for random viewpoint selection
on a 5122 viewport. The point of view was changed to a random position after each
frame, destroying most of the frame-to-frame coherence.

reprojection, with the additional benefit that it allows also large viewpoint changes
without introducing artifacts. More recently, Liu et al. (2009) proposed to use proxy
spheres instead of occlusion frustums to construct an optimized proxy geometry, and
conducted a detailed comparison of their technique to ours. However, their general
approach is different in that they perform a preprocessing step on the GPU to detect
which blocks in the volume are active, i. e., visible, and construct a proxy geometry
consisting of discs oriented orthogonal to the view direction. Hence, their technique is
a descendant of the PARC algorithm (Avila et al., 1992). In contrast, our approach does
not require any preprocessing but instead makes use of frame-to-frame coherence.
Also, the occlusion frustums give correct results for any volume, while the proxy
spheres approach fails for data sets with anisotropic voxels.

49

Chapter 5 – Empty Space Skipping using Occlusion Frustums

5.7 Summary

After examining architectural limitations of graphics hardware with respect to ray-
casting optimization, we have presented a purely GPU-based method for accelerating
volume raycasting using empty space leaping. By exploiting the temporal coherence
between consecutive frames we achieved a speedup of up to a factor of two. Arti-
facts could be caused by undersampling, but as the created geometry is constantly
refreshed, they will be removed immediately. As it requires no preprocessing, the tech-
nique is also suitable for data exploration applications. Best results can be expected
when large parts of the data set have been removed by the transfer function, a typical
operation for data exploration. Compared to point-based reprojection methods, our
approach results in a proxy geometry that can be used for any point of view, although
optimal space leaping is expected for small view changes. Holes can never appear
and consequently no hole filling is necessary, which would trigger full raycasting for
unknown regions and reduce optimization efficiency.

The technique can be integrated easily into an existing GPU-based raycasting
infrastructure, as it requires only minimal changes within the raycaster and has no
external dependencies. To further improve optimization, it should be examined how
to perform incremental optimization of the proxy geometry by refining the previous
occlusion frustums after each view change, instead of recreating them from scratch.
This would require implementing the refinement step on the GPU, as well as an
approach to prevent visual artifacts caused by the incremental construction of the
geometry.

50

Chapter 6

Applying GPU Stream Processing
to Volume Raycasting

The ray traversal in GPU-based raycasting is usually implemented in a

fragment shader, utilizing the hardware in a way that was not originally

intended. New programming interfaces for stream processing, such as

CUDA or OpenCL, support a more general programming model and the use

of additional device features, which are not accessible through traditional

shader programming. In this chapter we first compare fragment shader

implementations of basic raycasting to implementations directly translated

to CUDA kernels. Then we propose a new slab-based raycasting technique

that is modeled specifically to use the additional device features to accel-

erate volume rendering. We conclude that new stream processing models

can only gain a small performance advantage when directly porting the

basic raycasting algorithm. However, they can be advantageous through

novel acceleration methods that use the hardware features not available

to shader implementations.

Implementations of GPU-based volume raycasting usually apply general-pur-
pose GPU programming techniques (GPGPU), which skip most of the geometry
functionality of the hardware and use fragment shaders to perform raycasting

through the volume data set. The unified shading architecture of modern GPUs
supports dynamic allocation of computing resources to different shader types, so
that applications that rely heavily on fragment operations achieve a high overall
utilization of all hardware resources. Still, it is not obvious whether this not originally
intended use of the hardware gives optimal performance results, or if the processing
overhead from the graphics system has a negative impact on the overall performance
of such a raycasting implementation.

Modern GPUs support stream processing as an alternative programming model
to classical graphics APIs such as OpenGL. These stream processing models, e. g.,

51

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

NVIDIA’s CUDA or OpenCL, allow a more general access to the hardware and also
support certain hardware features not available via graphics APIs, such as on-chip
shared memory.

As described in Chapter 3, rendering approaches for volumetric data can be classi-
fied as object-order and image-order traversal techniques. Object-order techniques
like slice rendering simplify parallelization by accessing the volume data in a regular
manner, but cannot easily generate high quality images and are rather inflexible with
regard to acceleration techniques. Image-order techniques such as raycasting, on the
other hand, can generate good visual results and can be accelerated easily, e. g., with
early ray termination (ERT) or empty space skipping. However, their ray traversal
through the volume leads to highly irregular memory accesses. This can undermine
caching and also complicate efforts towards a parallel implementation.

In contrast to many other applications of stream processing that often achieve
high speedup factors, such as CT reconstruction, volume raycasting already uses the
graphics hardware instead of the CPU. Hence, no major speedups are expected simply
by porting a raycasting shader to CUDA. However, fragment shader implementations
do not allow sharing of data or intermediate results between different threads, i. e.,
rays, and therefore this data needs to be fetched or recalculated over and over again.
More general programming models exploiting fast on-chip memory could allow a
massive reduction in the number of memory transactions and therefore make more
advanced visualization techniques available for interactive use.

The remainder of this chapter is structured as follows. In Section 6.1 we review
previous work related to raycasting and stream processing. Section 6.2 discusses
features and limitations of the CUDA programming model with regard to raycasting.
In Section 6.3 we first examine the general suitability of stream processing for
direct volume rendering (DVR) by comparing CUDA- and shader-based raycasting
implementations. Afterwards, in Section 6.4, we discuss acceleration techniques that
utilize the additional device features accessible through CUDA and introduce a novel
slab-based approach, going beyond what is possible with shader programming. The
integration of the CUDA-based techniques into Voreen is described in Section 6.5.
We present the performance results in Section 6.6 and conclusions in Section 6.7.

6.1 Related Work

6.1.1 GPU-based volume raycasting

To speed up rendering, or to support data sets not fitting in GPU memory, the volume
data can be subdivided into bricks (Scharsach et al., 2006) through which rays are
cast independently, while compositing the results afterwards. Law and Yagel (1996)

52

6.1 Related Work

presented a bricked volume layout for distributed parallel processing systems that
minimizes cache thrashing by preventing multiple transfers of the same volume data
to the same processor in order to improve rendering performance. Grimm et al. (2004)
used this approach to get optimal cache coherence on a single processor with hyper-
threading. However, the method is only applicable to orthographic projection but not
to perspective projection, and therefore unsuitable for general volume visualization.

Many acceleration techniques have been developed for the more general problem of
raytracing, often incorporating efficient spatial data structures. These can be utilized
when raycasting geometric objects or isosurfaces from volumetric data, e. g., implicit
acceleration structures (Wald et al., 2005), but they are not applicable to direct volume
rendering and therefore beyond the scope of this thesis.

6.1.2 GPU stream processing

New programming interfaces for stream processing allow to bypass the graphics
pipeline and directly use the GPU as a massively parallel computing platform. The
stream processing model is limited in functionality compared to, e. g., a multi-CPU
architecture, but can be mapped very efficiently to the graphics hardware, which is
akin to a SIMD system.

Intel’s upcoming Larrabee architecture (Seiler et al., 2008) can be considered a
hybrid between a multi-core CPU and a GPU, which will allow a software-based
implementation of rasterized graphics APIs such as OpenGL. The available informa-
tion indicates that the Larrabee hardware will also efficiently support tasks such as
raytracing and volume raycasting (Smelyanskiy et al., 2009). In the context of stream
processing also the Cell Broadband Engine Architecture (Kahle et al., 2005) is often
mentioned. However, it is more akin to a MIMD architecture and thus the underlying
programming model is more complex compared to pure stream processors. It is also
not as widely available as GPUs and we therefore do not consider it as suitable for
visualization tasks.

We have chosen CUDA as our platform for evaluating raycasting techniques be-
cause it is the most mature and stable of the current programming models and it
is available for multiple operating systems. At the time of writing this thesis the
publicly available implementations of OpenCL had not yet reached a level of stability
and efficiency that is comparable to CUDA. For example, CUDA implementations
of sample programs from NVIDIA’s GPU computing SDK typically outperformed
feature-identical programs implemented in OpenCL. But as CUDA shares many sim-
ilarities with the OpenCL programming model, porting results to this new industry
standard can be performed easily, when implementations finally improve in stability
and performance.

53

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

Besides for numerical computations, CUDA has been used for some rendering
techniques, including raytracing (Luebke and Parker, 2008). A simple volume ray-
casting example is included in the CUDA SDK (NVIDIA, 2008c). Maršálek et al.
(2008) also demonstrated proof of concept of a simple CUDA raycaster and did a
performance comparison to a shader implementation. Their results showed a slight
performance advantage for the CUDA implementation, but they did not incorporate
lighting or other advanced rendering techniques, which would be required for practi-
cal applicability. Grauer et al. (2008) have started work on a CUDA-based volume
rendering module for the 3D Slicer visualization system, but the project has since
been abandoned. Kim implemented bricked raycasting on the Cell Architecture (Kim
and JaJa, 2008) and on CUDA (Kim, 2008), distributing some of the data management
work to the CPU. He focused on streaming volume data not fitting in GPU memory
and did not use all available hardware features for optimization, such as the texture
filtering hardware. Smelyanskiy et al. (2009) compared raycasting implementations
running on a simulation of the Larrabee architecture and running on CUDA hard-
ware, focusing on volume compression and not including texture filtering. Kainz
et al. (2009) recently introduced a new approach for raycasting multiple volume data
sets using CUDA. It is based on implementing rasterization of the proxy geometry
manually instead of relying on the usual graphics pipeline.

6.2 Raycasting with CUDA

6.2.1 Using the CUDA architecture for raycasting

Implementing raycasting using CUDA allows for more flexibility compared to a frag-
ment shader implementation. However, for an efficient implementation it is essential
to consider the strengths and limitations of the hardware architecture. In addition
to the basic information discussed in Section 2.3, we have examined the individual
properties of graphics processors with regard to a raycasting implementation to
decide how to make best use of the hardware’s capabilities.

The inherent parallelism in the raycasting algorithm is based on the fact that rays
are independent of each other and therefore can be traversed in parallel. Hence,
it is obvious to model rays as individual threads for implementing a raycasting
kernel. CUDA threads are organized into thread blocks, and the block size can have
a significant influence on the kernel performance, i. e., it must neither be chosen
too large nor too small. For arranging rays in thread blocks, there are basically two
approaches: arranging the rays in a linear fashion (one-dimensional) or building
rectangular blocks of rays (two-dimensional). Both approaches are reasonable in

54

6.2 Raycasting with CUDA

that they will return correct results, but from a performance perspective rectangular
blocks are to be preferred. One important precondition for optimal performance when
executing a thread block is a high degree of branch coherence in the threads, or, more
specifically, in those threads that are executed in the same warp. As threads with
different code paths inside a warp lead to serialization of execution, an insufficient
coherence between threads can foil any potential speedup. Taking our experiments
about ray coherence in shader-based raycasting from Section 5.2 into account, we
chose rectangular thread blocks. In contrast to one-dimensional blocks they maintain
spatial coherence, i. e., rays in the same block correspond to neighboring pixels on
the screen, while the rays in a one-dimensional block may be located far away from
each other in screen space. The optimal dimensions for the rectangular thread blocks
cannot be predicted but should be determined experimentally, as we will show in
Section 6.6. The available documentation resources indicate that the presented ap-
proach of mapping rays to threads and grouping rectangular regions of the screen for
CUDA raycasting is actually quite similar to how a fragment shader implementation
would operate. This is not surprising, as graphics processors were initially designed
specifically for supporting fragment shaders, so the basic usage pattern for CUDA
must be similar to attain optimal utilization of the hardware resources.

A major reason for the high performance that CUDA kernels can achieve is that
they can make use of the high memory bandwidth of modern graphics processors.
This, however, requires that the used memory access pattern complies with the
coalescing rules (compare Section 2.3) to consume the minimum number of memory
transactions. Hence, the achievable throughput for random access in global memory
will be much lower than for a regular access pattern that satisfies the coalescing rules.
In a raycasting kernel the majority of all memory accesses will be in the volume
data. Unfortunately, as raycasting is an image-order technique, the access pattern is
not regular, and it will only achieve a low data throughput. However, this can be
improved by using the texturing hardware, which does not require coalescing, as
discussed in the next section. A raycasting kernel can also contain regular memory
access, e. g., when reading information for ray setup from a 2D array. But as this
only affects a small part of all memory reads, which are dominated by sampling the
volume data, the influence on the overall performance by achieving coalescing will
be limited.

Limitations similar to the coalescing rules for global memory also exist for shared
memory. In order to achieve the same performance as for accessing a hardware
register, the access pattern in shared memory must chosen so that it does not cause
bank conflicts. In a raycasting kernel the shared memory could, for example, be used
as a fast cache for parts of the volume data that are accessed more than once. However,

55

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

because of its irregular access pattern, a ray traversal through shared memory will
cause bank conflicts, just like raycasting in global memory, and thus will not be able
to achieve optimal performance.

The Krüger-Westermann approach for GPU-based raycasting is based on rendering
a proxy geometry to generate ray parameters. When using CUDA for raycasting, there
are several alternatives: using ray parameter textures from OpenGL, implementing
rasterization in CUDA, and computing ray parameters analytically. While the analyti-
cal approach is easy to implement, much flexibility is lost, such as direct support for
simple clipping, empty space skipping as discussed in Chapter 5, or the ability of
deform the volume object (Mensmann et al., 2008b). Hence, we consider generating
the ray parameter textures by rendering a proxy geometry with OpenGL as the
most flexible and also most efficient solution. Rasterization can also be implemented
with CUDA (Kainz et al., 2009), but the complexity of a full-featured and efficient
rasterization implementation should not be underestimated. The existing OpenGL
rasterization will certainly be more optimal, as it can potentially make better use of
internal and possibly undocumented features of the hardware.

6.2.2 3D texture caching

Just like a shader, a CUDA kernel can also access 1D, 2D, and 3D textures, and
thus use the highly optimized texturing hardware for filtering and border handling.
For the CUDA hardware, caching of the texture memory is largely undocumented
beyond the fact that it is optimized for 2D spatial locality and constant latency
(NVIDIA, 2010, p. 89).∗ Knowledge about the caching behavior is important for
judging the suitability of techniques that may influence the coherence of texture
access. In Section 5.2 we already examined the effect of varying ray lengths on the
performance of GPU-based raycasting. We used a similar test case to determine
the influence of the texture cache on 3D texture fetches. To measure this effect,
we applied the same random permutation to the pixels of the start and end point
textures (Figure 6.1a) to deliberately destroy coherence while keeping the amount of
volume texture fetches unchanged. We also modified all rays to have equal length, in
order to remove the influence of ray length coherence issues. With these modified
ray parameters we experienced a more than tenfold increase in the runtime of
raycasting (Figure 6.1b), even when not including the time needed for generating
the ray parameter textures. This demonstrates that raycasting relies heavily on the

∗ It is notable that before the introduction of CUDA, even less information was available from vendors
about low-level features of their graphics processors. To understand the inner workings of GPUs, one
had to rely mainly on the results of benchmarking tools such as GPUBench (Buck et al., 2004a).

56

6.2 Raycasting with CUDA

(a) (b)

Figure 6.1: (a) Ray start point texture before and after applying a random permu-
tation. (b) Frame rates for raycasting two data sets using the default as well as the
randomized start points.

texture caching hardware and that the usual traversal scheme with an advancing
ray front, i. e., adjacent rays sampling adjacent voxels, offers a significant amount
of locality. Therefore, any reasonable acceleration scheme must make sure that in
addition to ray length coherence also the locality of texture access is maintained.

6.2.3 Accelerating raycasting

While easy to implement, the basic raycasting algorithm leaves room for optimization.
Many techniques have been proposed for DVR, from skipping over known empty
voxels (Levoy, 1990) to adaptively changing the sampling rate (Röttger et al., 2003).
Most of these techniques are also applicable to a CUDA implementation. In this
chapter, we rather focus on techniques that can use the additional capabilities of
CUDA to get a performance advantage over a shader implementation.

Many volume visualization techniques take a voxel’s neighborhood into account
for calculating its visual characteristics, starting with linear interpolation, to gradient
calculations of differing complexity, to techniques for ambient occlusion (Hernell
et al., 2007). As the neighborhoods of the voxels sampled by adjacent rays do overlap,
many voxels are fetched multiple times, thus wasting memory bandwidth. Moving
entire parts of the volume into a fast cache memory could remove much of the
superfluous memory transfers.

As noted in Section 6.2.1, each multiprocessor has available 16 kB of shared
memory, but less than half of this should be used by each thread block to get
optimal performance. Using the memory for caching of volume data would allow
for a subvolume of 163 voxels with 16 bit intensity values. In practice slightly less is
available, since kernel parameters are also stored in shared memory. While accessing
volume data cached in shared memory is faster than transferring the data from global

57

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

memory, this has some disadvantages compared to using the texturing hardware.
First, the texturing hardware directly supports trilinear filtering, which would have to
be performed manually with multiple shared memory accesses. Second, the texturing
hardware automatically handles out-of-range texture coordinates by clamping or
wrapping, and removes the need for costly addressing and range checking. Finally,
the caching mechanism of the texturing hardware can achieve read performance
similar to that of shared memory, as long as the access pattern exhibits enough
locality. While typically having some locality, the access pattern is still irregular and
therefore it will be difficult to prevent bank conflicts in shared memory, which also is
not an issue for texture access.

When a volume is divided into subvolumes that are moved into cache memory, ac-
cessing neighboring voxels becomes an issue. Many per-voxel operations like filtering
or gradient calculation require access to neighboring voxels. For voxels on the border
of the subvolumes much of their neighborhood is not directly accessible any more,
since the surrounding voxels are not included in the cache. The neighborhood can
either be accessed directly through global memory, or included into the subvolume
as border voxels, thus reducing the usable size of the subvolume cache. With a
relatively small subvolume size of 163 voxels the number of border voxels outside
the subvolume is about 42% of the number of voxels inside the subvolume. Moving
border voxels into the cache reduces the usable subvolume size to 143, with 33% of
the cache occupied by border data. This would substantially reduce the efficiency of
the subvolume cache.

Bricking implementations for shader-based volume raycasting often split the proxy
geometry into many smaller bricks corresponding to the subvolumes and render them
in front-to-back order. This requires special border handling inside the subvolumes
and can introduce overhead due to the multitude of shader calls. A CUDA kernel
would have to use a less flexible analytical approach for ray setup, instead of utilizing
the rasterization hardware as proposed by Krüger and Westermann (2003), or imple-
ment its own rasterization method (Kainz et al., 2009). As described above, due to the
scarce amount of shared memory the total number of bricks would also be quite high,
increasing the overhead for managing bricks and compositing of intermediate results.
The bricking technique described by Law and Yagel (1996) is specially designed for
orthographic projection, for which the depth-sorting of the bricks can be simplified
significantly, compared to perspective projection. Their technique also relies on per-
brick lists, where rays are added after their first hit of the brick and removed after
leaving it. This list handling can be efficiently implemented on the CPU, but such
data structures do not map well to GPU hardware. As graphics processors feature
a massively parallel architecture, synchronization would be crucial to prevent two

58

6.3 Implementing Basic Raycasting

Figure 6.2: Building blocks for raycasting algorithms.

threads from writing to the same brick list at the same time, creating a race condition.
However, efficient synchronization is not supported by the CUDA architecture, where
data can be shared among thread blocks only between consecutive kernel calls. Kim
(2008) works around this problem by handling the data structures on the CPU. As his
aim is streaming of data not fitting into GPU memory, the additional overhead is of
no concern, in contrast to when looking for a general approach for volume rendering.

To summarize, a direct bricking implementation with CUDA is problematic because
only a small amount of shared memory is available and the ray setup and compositing
for individual bricks is difficult. Therefore we will introduce an acceleration technique
that is better adapted to the features and limitations of the CUDA architecture in
Section 6.4.

6.3 Implementing Basic Raycasting

As illustrated in Figure 6.2, the basic raycasting algorithm (Krüger and Westermann,
2003) can be divided into three parts: initialization and ray setup, ray traversal, and
writing the results. Raycasters implemented as fragment shaders or using CUDA
can make different choices for the implementation of some of these building blocks,
which we will discuss in this section.

6.3.1 Fragment shader implementation

Texture fetches can be used for retrieving ray start and end points, applying transfer
functions, as well as for the volume sampling. All these operations can utilize the

59

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

texturing hardware to get linear filtering. Results are typically written into one
or more OpenGL render targets, hence also multiple outputs are possible, e. g.,
generating DVR and first-hit point rendering in one pass.

The source code of our fragment shader implementation is listed in Appendix A.1
(p. 107). Features marked as optional in Figure 6.2 can be enabled or disabled using
preprocessor defines. As the shader is compiled by the OpenGL driver, this allows
dynamic configuration of the raycasting process at runtime, while not introducing
any overhead to the compiled shader program.

6.3.2 CUDA implementation

For each of the memory read operations in a CUDA kernel the question arises
whether to use the texturing hardware or to read from global memory. Using textures
for the ray start and end points does not have an advantage over memory reads in a
CUDA implementation, as no filtering is necessary and coalescing can be achieved
easily. Performance differences will have the biggest effect inside the raycasting loop,
where both voxel sampling and transfer function lookup require filtering, so using
textures is the natural choice. Also, textures have the additional advantage that for
random access the latency of address calculations is better hidden (NVIDIA, 2008b,
p. 68), potentially further improving performance compared to using global memory.

Our implementation first renders the proxy geometry into OpenGL textures to get
the ray start and end points. Although at that point the ray parameter textures are
already located in GPU memory, the raycasting kernel cannot access them directly, but
an intermediate conversion is necessary. A texture first needs to be transferred into
an OpenGL pixel buffer object (PBO), which the function cudaGLMapBufferObject()

can then copy into the address space of CUDA, making its contents available to
the raycasting kernel. This additional copy—even though an on-device operation—
introduces an overhead that does not exist for a shader implementation of raycasting.
In addition, several revisions of the CUDA runtime contained errors that severely
limited the performance of copying from a PBO into CUDA memory, i. e., they would
perform the copy through host memory instead of directly on the device (NVIDIA,
2009), causing a massive slowdown. The new OpenGL interop mechanism in CUDA
3.0 (NVIDIA, 2010, p. 38) supports binding an OpenGL texture directly to a CUDA
array using cudaGraphicsGLRegisterImage(), removing the issues. However, for
our tests this functionality was not yet available, so we had to use the intermediate
copy. To prevent the issue from distorting our measurements, we did not include the
time needed for the copy operation when timing CUDA-based raycasting, but only
measured the runtime of the kernel. This allows a sensible comparison to a shader

60

6.4 Slab-based Raycasting

implementation, especially since the issue is resolved in newer versions of CUDA.
After creating and converting the ray parameter textures, the raycasting kernel is

started with the chosen thread block size, with each thread in the block corresponding
to a single ray. Following the scheme illustrated in Figure 6.2, the kernel first performs
ray setup using the ray parameter buffers before entering the main loop. Inside the
loop the texture fetches are performed and lighting calculation is applied before
compositing the intermediate result and advancing the current position on the ray.
When the end of a ray is reached, the fragment color is written to an output buffer
mapped to a PBO. It is copied to the screen when processing of all thread blocks has
completed.

If early ray termination is active, the main loop is terminated before reaching the
ray end when the compositing results in an opacity value above a certain threshold.
Since all threads in a warp operate in lock step, the thread has to wait for all the other
rays to terminate by either reaching their end or through ERT. This is a hardware
limitation, and therefore it also applies to the fragment shader implementation. In
practice, however, this is of no concern, as neighboring rays usually exhibit a coherent
behavior with regard to both ray length and ERT.

The CUDA implementation shown in Appendix A.2 (p. 110) is quite similar to
the previously discussed shader program. It also uses the preprocessor to disable
or enable optional features in the raycasting process. However, as the CUDA code
is preprocessed at application compile time, this simple approach does not allow
dynamic reconfiguration at runtime, unlike with the shader implementation. Besides
code differences caused by the different APIs, some optimizations are specific to the
CUDA kernel. When loading the ray parameters from global memory in lines 80
and 81, four floats are read, although only three are actually needed. This is done to
comply with the coalescing rules and increases the overall throughput even though
more data is transferred—because fewer memory transactions are required. Hence,
it becomes clear that a CUDA implementation has more potential for low-level
optimizations compared to a fragment shader.

6.4 Slab-based Raycasting

6.4.1 Slab-based approach

Since the bricking described in Section 6.2.3 is an object-order technique that is not
well suited for a CUDA implementation because of the irregular memory pattern,
we introduce an alternative caching mechanism that can be used in image-order
by dividing the volume into slabs. In contrast to bricking, rays instead of voxels

61

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

Figure 6.3: Bricking (object-order) and slab-based (image-order) approach for volume
raycasting.

are grouped to build a slab. The screen is subdivided into rectangular regions and
stacked slabs reaching into the scene are created, as shown in Figure 6.3. While for
orthogonal projection the structure of a slab is a simple cuboid, it has the form of a
frustum for perspective projection.

It would be optimal to move all voxels contained in a slab into shared memory.
But unlike bricks, slabs are neither axis-aligned in texture space nor do they have
a simple cuboid structure. Therefore either a costly addressing scheme would be
required, or large amounts of memory would be wasted when caching the smallest
axis-aligned cuboid enclosing the slab. As described in Section 6.2.3, both alternatives
are not suitable for a CUDA implementation. However, a more regular structure can
be found after voxel sampling. All rays inside a slab have approximately the same
length and therefore the same number of sample points. Saving the voxel sampling
results for all rays in a slab leads to a three-dimensional array which can easily be
stored in shared memory.

Caching these data does not give a performance advantage per se, when samples
are accessed only once. But several lighting techniques, e. g., ambient occlusion or even
basic gradient calculation, need to access neighborhood voxels regularly. When these
techniques access the same sample position multiple times, memory bandwidth and
latency are saved. Unfortunately, the relation between adjacent samples in the cache
is somewhat irregular, as rays are not parallel when applying perspective projection,
and therefore the distance between sample points differs. However, often not the exact
neighborhood of a voxel is needed by visualization techniques but an approximation
is sufficient. For large viewport resolutions adjacent rays are close to parallel even
with perspective projection, hence for approximation purposes one can consider them

62

6.4 Slab-based Raycasting

as parallel. Gradient calculation can then use the same simple addressing scheme as
known from conventional raycasting to access neighboring voxels, although in this
case the resulting gradients are relative to the eye coordinate system instead of the
object coordinate system. While relying on an explicitly managed cache in shared
memory, this method also makes use of the implicit cache of the texturing hardware
as discussed in Section 6.2.2 when sampling the voxels that get written into shared
memory. Hence, these two cache levels complement each other. As the access pattern
for filling the cache is the same as for normal raycasting, the technique also maintains
the locality of texture access, which was found to be an important factor for optimal
performance in Section 6.2.2.

The slab-based approach is somewhat similar to packet-based traversal schemes
for raycasting and raytracing of geometric data (Wald et al., 2001), where rays are
grouped into packets to take advantage of coherence and allow the use of SIMD
instructions and packet-based culling. But unlike for geometric data, the simple
fragment shader implementation of volume raycasting already offers a high degree
of coherence and uses the SIMT hardware efficiently, while culling is not applicable
for volumetric data in general. The advantage introduced by the slab-based approach
is an explicit voxel cache that can improve coherence for data intensive calculations
such as gradient computation.

6.4.2 CUDA implementation

Just as with the implementation of the basic raycasting algorithm, also for the slab-
based raycasting each thread corresponds to a ray and ray setup is performed through
the ray parameter textures. However, the start points must be adapted for the slab
structure, as described below. The main loop traverses the rays through the slabs,
calculating the gradients using the cache in shared memory. Special handling is
necessary for border voxels and for early ray termination.

Start point preprocessing. The slab algorithm relies on the fact that voxels are
sampled by an advancing ray front and that sample points that are adjacent in
texture space also lie close together in the cache. This only holds true as long as
the view plane is parallel to one side of the proxy geometry cube, as otherwise ray
start positions have different distances to the camera. This would result in incorrect
gradients, since voxels adjacent in the volume may lie on different slices in the slab
cache. A solution to the problem is modifying all ray start points in a slab to have
the same distance to the camera as the one closest to the camera, as illustrated in
Figure 6.4a. We use shared memory and thread synchronization to find the minimum

63

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

(a) (b)

Figure 6.4: (a) Start point preprocessing modifies the ray start points in a slab so
that all have the same distance to the camera. (b) Illustration of slab-based gradient
calculation in eye-space, which uses adjacent samples on the current slice as well as
the next and previous sample on the ray.

camera distance over all rays in a block and then move the start point of each ray to
have this minimum distance to the camera. The CUDA API offers the atomicMin()

function, which would seem ideal for this application. However, in our tests it
sometimes gave incorrect results, it is not available on all CUDA platforms, and it
also did not give a performance advantage compared to manual synchronization for
our use case. Moving the start points does not lead to additional texture fetches, as
the texture coordinates will lie outside of the interval [0, 1]3, which is checked before
each 3D texture fetch. This check is not only needed for performance reasons but also
for correctness, as CUDA only supports standard clamp-to-edge and wrapping as
texture wrap modes, but no clamping to a predefined border color. Hence, without
the check artifacts could appear.

Main loop. The main rendering loop consists of two parts. In the first part, the slab
cache is filled with samples by traversing the ray. As a ray typically creates too many
samples to fit in the slab cache completely, the slab depth sd controls the number
of samples to write into the cache per ray at the same time. Samples with the same
distance to the camera lie on the same slice in the slab. After thread synchronization
the second part of the main loop uses the recently acquired samples to apply lighting
and compositing. The ray traversal is started from the beginning for the slab, but now
the samples are read directly from shared memory instead of the texture. Due to the
regular access pattern this can be done without getting bank conflicts. The main loop
is executed for all slabs corresponding to the current thread block.

64

6.4 Slab-based Raycasting

(a) (b)

Figure 6.5: (a) Phong shading applied to the engine data set with gradient calculation.
(b) The grid pattern of the thread blocks becomes visible through incorrect gradients
when border handling is not performed.

Gradient calculation. A gradient is calculated by taking into account adjacent
samples on the same slice from the top, left, bottom, and right rays (seen from the
view point), and the next and previous samples on the current ray, as illustrated
for the 2D case in Figure 6.4b. The gradients are therefore calculated in eye space
and need to be transformed to object space for the lighting calculation. Since the
adjacent samples are read directly from the slab cache, this gradient calculation
requires no additional texture fetches, in contrast to the standard approach. When
comparing the results to that of the standard gradient calculation, slight differences
can be noticed, because different neighboring voxels are used. Still, the gradients of
the slab-based calculation lead to correct rendering results when applying Phong
lighting, as shown in Figure 6.5a. We have not conducted a formal study comparing
the results of both approaches, as for most visualizations the accuracy of gradients
is not of concern. The lighting models incorporating gradients are used mainly to
support spatial comprehension of the data, for which our gradients proved to be
sufficient.

Border handling. As with bricking, accessing the neighborhood of samples on the
border of a slab requires special handling. This is necessary for gradient calculation,
because ignoring voxels not accessible through the cache for gradient calculation
leads to discontinuities in the gradients, which get visible as a grid pattern in the final
image (Figure 6.5b). Directly accessing surrounding voxels would require retrieving
additional ray parameters for rays outside the slab to calculate the relevant voxel
positions. Hence, including the voxels into the cache is more reasonable, even if this
reduces the usable cache size. We also tested accessing surrounding voxels directly,

65

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

but this did not lead to a better performance. Instead, to include surrounding voxels
into the slab, we added all adjacent rays. For these border rays only the first part of
the main loop needs to be executed, in order to write the corresponding samples into
the cache for access by the gradient calculation of the inner rays in the second part.

Early ray termination. As data sampled by one ray is also used for the gradient
calculation in adjacent rays, early ray termination cannot stop the traversal of a
single ray without taking its neighbors into account. Therefore it must be determined
whether all rays in a slab have reached the required opacity threshold before further
ray traversal can be terminated. The warp voting functionality made available with
CUDA cannot be used, as an entire block has to be taken into account, not only a
warp. However, the necessary synchronization can be easily performed using a flag
in shared memory.

6.5 Integration into Voreen

We integrated the different CUDA-based raycasting implementations into Voreen,
where they can use the existing proxy geometry and corresponding ray start and
end point textures generated with OpenGL. As Voreen did not yet include support
for CUDA, some adaptations of the volume handling were necessary in addition to
implementing new raycasting processors.

6.5.1 Volume handling

One limitation of CUDA is that it can not directly use OpenGL textures but requires
the volume data to be available as a CUDA array instead. As the volume handling
in Voreen previously relied exclusively on an OpenGL representation implemented
in the class VolumeGL, we had to extend the volume handling to support CUDA
arrays as well. We utilized a flexible approach that allows simple addition of further
hardware representations of volume data.

Volumetric data in Voreen is managed by the classes Volume and VolumeHandle.
Using the decorator pattern (Gamma et al., 1995), we extended the basic Volume class
to support several different hardware-specific representations of the volume data
(Figure 6.6). The representation is either generated explicitly by calling generate-

HardwareVolumes() with the appropriate parameter or implicitly when an accessor
method such as getVolumeGL() is called. The implicit creation of the hardware-
specific representation when it is accessed for the first time allows the volume
handling to refrain from requiring any knowledge about the data-flow network. The

66

6.5 Integration into Voreen

Figure 6.6: Overview of the classes for managing volumes and their OpenGL and
CUDA hardware representations in Voreen.

representation is created only when a processor inside the network requests it. In
a network containing both a shader-based and a CUDA-based raycaster, both an
OpenGL texture and a CUDA array would be created automatically. Usually only
one of the types would be requested in a typical network, but besides from the
doubled memory requirements, there is no reason to disallow multiple hardware
representations.
VolumeCUDA encapsulates a cudaArray into which the data of the associated Volume

is copied. The CUDA array is created as a three-dimensional array and filled with the
data using cudaMemcpy3D(). To speed up the data transfer, the volume data could
be copied into page-locked memory before uploading to the GPU, which would
allow for slightly higher throughput and running the upload in the background
while another CUDA kernel is active. However, for static data the upload needs to be
performed only once, so there is only little potential for an overall performance gain.
In addition, the cost of copying the data into a page-locked part of system memory
would introduce additional overhead—if possible at all, since page-locked memory is
a scarce resource that might not suffice for large data sets.

6.5.2 Network integration

Since we can use the proxy geometry and ray parameter textures generated using
OpenGL, only the processor that implements the actual raycasting needs to be
replaced for implementing CUDA-based raycasting in Voreen. Consequently, the
data-flow network shown in Figure 6.7 looks very similar to a standard volume
raycasting network. The new CUDARaycaster processor must convert the two ray
parameter textures generated by EntryExitPoints to make them accessible to the
raycasting kernel. In contrast to the ray parameter textures, the volume texture can

67

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

Figure 6.7: Minimal data-flow network for implementing CUDA-based raycasting in
Voreen. Compared to a standard network, only the raycasting processor had to be
replaced with a CUDARaycaster.

be accessed directly, as the CUDARaycaster can retrieve the VolumeHandle through
its volume inport, from which it can request the associated VolumeCUDA that contains
the volume texture as a cudaArray. Hence, the implementation of CUDARaycaster is
limited to data initialization, converting ray parameters and transfer function texture
for use by CUDA, and executing the actual raycasting kernel.

As discussed in Section 6.3.2, there are some issues when converting the ray pa-
rameter textures from OpenGL for access by the CUDA kernel. This step is necessary
because the raycasting approach relies on rendering the proxy geometry to generate
the information for ray setup, and using OpenGL is the natural solution for such a
rendering task. Generating the ray parameter textures directly with CUDA would
require implementing the complete functionality of rasterizing the proxy geometry.
Kainz et al. (2009) accomplished this goal, however, not to avoid dependencies on
OpenGL, but to get access to the internals of the geometry rendering, in order to allow
an efficient implementation of multi-volume raycasting. Using such a CUDA-based
rasterization and completely abandoning OpenGL would add no further advantage,
as, for example, support for OpenGL is still much more prevalent in graphics hard-
ware than support for stream processing APIs. Besides, visualizations of volume data
are often combined with complex geometry, for which it would be pointless to replace
an existing and proven graphics API with a new implementation just to use stream
processing throughout the entire process. The approach taken with OpenCL, i. e.,
sharing data such as textures or vertices between the graphics and stream processing
subsystems, seems more reasonable. The same can be achieved using CUDA, at least
with newer revisions. Hence, we combine a single CUDA-based raycasting proces-
sor with OpenGL-based processors for rendering the proxy geometry or adding a
background image.

68

6.6 Results

6.6 Results

6.6.1 Testing methodology

In order to obtain meaningful performance data for comparing CUDA and fragment
shader raycasting, we have implemented feature-identical versions of a raycaster for
both cases, using CUDA version 2.1 and OpenGL shaders implemented in GLSL,
running on Linux. To get comparable results, our measurements were confined to
the actual fragment shader or kernel call, not counting time for rendering the proxy
geometry or converting textures from OpenGL to CUDA format. Tests showed that
rendering of the proxy geometry and further initializations take less than 5% of
the total rendering time. The CUDA kernels were timed using the asynchronous
event mechanism from the CUDA API, while for shader raycasting a high-precision
timer was used, enclosing the shader execution with calls of glFinish() to ensure
correct results. Each volume object was rotated around the Y-axis while measuring
the average frame rate when rendering 100 frames. The tests were conducted on two
different systems, one equipped with an Intel Core 2 Duo E6300 CPU and an NVIDIA
GeForce 8800 GT, the other with a Core 2 Quad Q9550 and a GeForce GTX 280.

To obtain a better insight into the performance characteristics of the different parts
of a full raycasting implementation, we tested with several variants of the raycaster
that implement a subset of the complete functionality. We started with the minimal
raycasting algorithm performing a simple ray traversal (RC), which directly maps
voxel intensity to luminance. In the next step a transfer function was added (TF),
which uses a one-dimensional texture as a lookup table. Adding Phong lighting with
on-the-fly gradient calculation using central differences and early ray termination
resulted in a full-featured raycaster (PH). Finally, as an example for an expensive
technique, we added gradient filtering, which computes central differences for all
surrounding voxels and averages the result (GF). Table 6.1 lists the number of texture

technique regs fetches
basic raycasting (RC) 15 1
transfer function (TF) 19 2
Phong shading (PH) 33 8
gradient filtering (GF) 57 56

Table 6.1: CUDA register usage and number of texture fetches per sample point for
the different raycasting techniques. The gradient filtering requires a large number of
texture fetches, since it computes the gradient for all voxels surrounding the sample
point and averages the result. This also leads to excessive register requirements.

69

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

RC TF PH GF

Figure 6.8: Results of rendering the engine and the vmhead data sets with different
raycasting techniques.

fetches per sample point for the individual techniques. Advanced techniques include
all previous features, e. g., Phong lighting includes a transfer function.

We have tested our implementations with several data sets and chose two represen-
tative volumes of different sizes and with different transfer functions for comparing
the different techniques. The engine is dense with hardly any transparency, while
the larger vmhead is semi-transparent. Renderings of the data sets with the different
techniques are shown in Figure 6.8.

6.6.2 Basic raycaster

Table 6.2 lists frame rates of our basic raycasting implementations, tested with differ-
ent GPUs, viewport resolutions, and data sets. It is notable that the GeForce GTX 280
achieves significant speedups for the CUDA implementation for all techniques ex-
cept PH, while with the 8800 GT significant speedups are only found with the RC
technique and 10242 viewport size, the GLSL implementation being close to equal or
faster for all other cases. The frame rate differences between GLSL and CUDA reach

70

6.6 Results

view- engine data set (2562×128, 8 bit) vmhead data set (5122×294, 16 bit)
techn. device port GLSL CUDA speedup bsopt GLSL CUDA speedup bsopt

RC
8800GT

5122 291.1 300.4 +3.2% 16× 8 72.2 64.1 −11.2% 16× 20
10242 81.0 96.9 +19.6% 16× 32 48.3 56.3 +16.6% 16× 28

GTX280
5122 380.0 496.0 +30.5% 12× 8 121.2 158.5 +30.8% 8× 8

10242 124.5 147.8 +18.7% 16× 8 70.5 100.2 +42.1% 16× 18

TF
8800GT

5122 194.2 173.5 −10.7% 8× 16 68.1 59.4 −12.8% 8× 16
10242 61.1 62.3 +2.0% 16× 24 38.2 37.4 −2.1% 16× 24

GTX280
5122 317.4 358.1 +12.8% 16× 12 118.0 153.9 +30.4% 8× 16

10242 100.9 110.6 +9.6% 8× 16 64.6 82.7 +28.0% 16× 16

PH
8800GT

5122 60.2 43.6 −27.6% 8× 8 21.5 22.0 +2.3% 8× 16
10242 17.1 14.6 −14.6% 16× 12 12.0 9.9 −17.5% 16× 12

GTX280
5122 95.2 77.6 −18.5% 8× 8 40.7 38.1 −6.4% 8× 16

10242 25.5 22.5 −13.3% 16× 8 18.0 17.2 −4.4% 16× 8

GF
8800GT

5122 8.9 6.7 −24.7% 8× 16 4.6 3.4 −26.1% 8× 16
10242 2.5 2.1 −16.0% 8× 16 1.7 1.6 −5.9% 8× 16

GTX280
5122 9.5 10.4 +9.5% 8× 8 4.6 5.6 +21.7% 12× 8

10242 2.5 2.9 +16.0% 8× 8 1.8 2.3 +27.8% 8× 8

Table 6.2: Performance results in frames per second for basic raycasting implemented
with GLSL and CUDA. The CUDA raycasting was run with different block sizes, and
results for the optimal block size bsopt are given.

up to 30%, with one outlier even at +42%. For the 8800 GT increasing the viewport
size also increases the speedup, while the speedup for the 280 GTX mostly stays the
same. Switching from the engine data set to the larger vmhead increases the speedup
for the 280 GTX, while this is less significant for the 8800 GT.

As the selection of thread block size can have a tremendous influence on the
performance of a CUDA kernel, we tested all raycaster variants with several block
sizes to find the optimal block size bsopt. This was achieved using a script that
automatically configures and compiles the CUDA kernel and shader code for each
test run and then executes the benchmark. Figure 6.9 shows the effect of the block
size on the frame rate when using between 32 and the maximum of 512 threads
per block. The diagrams also include the multiprocessor warp occupancy for each
block configuration, i. e., the number of active warps per multiprocessor. Maximizing
the active warps up to the maximum of 32 is recommended for optimal hardware
utilization (NVIDIA, 2010, p. 83), and some correlation between occupancy and frame
rate is visible in the diagrams. The frame rate follows the warp occupancy up to a
block size of 16× 22 for RC, but increasing the block size further has no influence on
the frame rate. For PH no similar behavior is visible and also the warp occupancy
only reaches half of the maximum of 32, as the high register requirements limit the
number of concurrent block executions.

71

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

 520

 0 50 100 150 200 250 300 350 400 450 500 550
 0

 8

 16

 24

 32

fp
s

m
ul

tip
ro

ce
ss

or
 w

ar
p

oc
cu

pa
nc

y

threads per block

occupancy

CUDA

GLSL

8x4

8x8

12x8

16x8

8x16

16x10 16x12 16x14

16x16 16x18

16x20

16x22 16x24 16x26 16x28 16x30 16x32

(a) engine data set, basic raycasting (RC)

 26

 28

 30

 32

 34

 36

 38

 40

 42

 0 50 100 150 200 250 300 350 400 450 500 550
 0

 4

 8

 12

 16

fp
s

m
ul

tip
ro

ce
ss

or
 w

ar
p

oc
cu

pa
nc

y

threads per block

occupancy

GLSL

CUDA

8x4

8x8

12x8

16x8

8x16

16x10

16x12

16x14

16x16 16x18

16x20

16x22

16x24

16x26

16x28

(b) vmhead data set, Phong lighting (PH)

Figure 6.9: Influence of block size on rendering performance, rendered on a GeForce
GTX 280, viewport size is 5122. The frame rate obtained with a GLSL fragment shader
is included for reference as a horizontal dashed line.

72

6.6 Results

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 50 100 150 200 250 300 350 400 450 500 550
 0

 8

 16

 24

 32

fp
s

m
ul

tip
ro

ce
ss

or
 w

ar
p

oc
cu

pa
nc

y

threads per block

occupancy

CUDA, 280 GTX

GLSL, 280 GTX

GLSL, 8800 GT

CUDA, 8800 GT

8x4

8x8
12x8

16x8

8x16

16x10 16x12 16x14
16x16 16x18

16x20

16x22 16x24 16x26 16x28 16x30 16x32

8x4

8x8

12x8

16x8

8x16

16x10

16x12

16x14 16x16

16x18 16x20 16x22 16x24 16x26 16x28
16x30

16x32

(a) engine data set, basic raycasting (RC)

 10

 15

 20

 25

 30

 35

 40

 45

 0 50 100 150 200 250 300 350 400 450 500 550
 0

 4

 8

 12

 16

fp
s

m
ul

tip
ro

ce
ss

or
 w

ar
p

oc
cu

pa
nc

y

threads per block

occupancy

GLSL, 280 GTX

CUDA, 280 GTX

GLSL, 8800 GT

CUDA, 8800 GT

8x4
8x8

12x8

16x8

8x16

16x10
16x12

16x14
16x16 16x18

16x20
16x22

16x24

16x26

16x28

8x4

8x8

12x8

16x8

8x16

16x10
16x12

(b) vmhead data set, Phong lighting (PH)

Figure 6.10: Comparing the influence of block size between a GeForce 8800 GT and a
GeForce GTX 280, viewport size is 5122. With the more complex PH kernel, the number
of thread blocks is limited by the high register requirements of the kernel. Therefore
the maximum block size possible on the 8800 GT is only 16×12, in contrast to the
simpler RC kernel, for which the maximum of 16×32 = 512 threads can be used.

73

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

When choosing a single general block size for CUDA raycasting, we would rec-
ommend 8×16, as it gives close to optimal results for most of the observed cases.
As an alternative to a static block size, an auto-tune approach could be used in an
application, i.e., automatically testing different block sizes at runtime and measuring
the rendering times to find the optimal configuration for each practical use case. How-
ever, this would increase both complexity and performance overhead, and therefore
would only be justified when a static block size proves to be insufficient.

While the advanced raycasting techniques are more costly since they perform more
texture fetches, they also require more hardware registers to run (compare Table 6.1).
Due to the limited availability of hardware registers, this restricts the number of
active thread blocks per multiprocessor. The GTX 280 has twice as many registers
available as the 8800 GT and therefore allows larger block sizes for kernels that use
many registers. It is notable that for gradient filtering (GF), with both a very high
register count and a large number of texture fetches, the GTX 280 can achieve a
significant speedup, while it was slower than GLSL for PH. Figure 6.10 compares
the effect of block size between the two tested graphics processors. The different
processors show a roughly similar behavior with regard to block size, albeit on a
different overall performance level. The high register requirements of the PH kernel
are a limiting factor on the 8800 GT, hence the block size is limited to 16× 12 for
this kernel. However, looking at the other results, this does not directly limit the
maximum frame rate on this GPU, which would probably still be achieved for the
block size of 8× 16 even if more registers would be available.

6.6.3 Slab-based raycaster

We tested slab-based raycasting on the GTX 280 only, as this GPU proved to be
influenced less by high register requirements. The shared memory cache contains
bsx × bsy × sd sampled voxels, depending on the thread block size bs and the slab
depth sd. The optimal slab depth sdopt depends on the data set, just as the block
size. Results of the slab-based raycaster are presented in Table 6.3. We added an
intermediate viewport size of 7682 for this test to be able to better analyze the
connection between viewport size and speedup factor.

For the basic RC technique each sampled voxel is accessed only once, hence caching
the slabs cannot improve performance. However, this allows us to measure the
overhead for managing the shared memory cache and for fetching additional border
voxels. For the tested configurations the overhead is between 23% and 67%. When
applying Phong lighting, volume data is accessed multiple times by the gradient
calculation, and the slab caching can result in a significant speedup compared to the

74

6.6 Results

engine data set (2562×128, 8 bit)
technique regs viewport basic slab speedup bsopt sdopt

RC 22
5122 496.0 186.4 −62.4% 8× 16 31
7682 251.6 85.7 −65.9% 16× 16 31

10242 147.8 49.2 −66.7% 8× 16 31

PH 34
5122 77.6 77.1 −0.6% 8× 16 31
7682 36.2 35.2 −2.8% 16× 16 31

10242 22.5 19.6 −12.9% 8× 16 31

vmhead data set (5122×294, 16 bit)
technique regs viewport basic slab speedup bsopt sdopt

RC 22
5122 158.5 122.0 −23.0% 16× 14 16
7682 131.1 74.1 −43.5% 16× 14 16

10242 100.2 43.4 −56.7% 16× 30 16

PH 34
5122 38.1 67.9 +78.2% 16× 30 16
7682 27.1 34.1 +25.8% 16× 30 16

10242 17.2 19.5 +12.7% 16× 30 16

Table 6.3: Performance results for the CUDA implementation of slab-based raycasting
on a GeForce GTX 280. Note that the RC technique is only used to measure the
overhead of the slab-based approach.

basic CUDA raycasting. A performance increase between 12% and 78% is found only
with the large 16-bit vmhead data set, presumably since the hardware texture cache is
less efficient with larger volumes, as for the 8-bit engine data set a slight performance
decrease is measured. Another reason might be that the early ray termination is
less efficient with the slab approach, since only complete slabs can be terminated,
not individual rays. The engine is solid and the rays are terminated much earlier
than with the semi-transparent vmhead. It is notable that the speedup decreases with
increasing viewport size. When the viewport gets larger, adjacent rays hit the same
voxels more often. Hence, there is more locality of texture fetches resulting in more
hits in the hardware texture cache. However, the slab cache is most efficient in the
opposite case, when the data set resolution is high compared to the viewport size.

The amount of shared memory required by the raycasting kernels depends on
block size and slab depth. For vmhead the optimal configuration results in 15,360 bytes
which is close to the maximum of 16 kB, hence only one thread block can be active
per multiprocessor. Although engine only uses up to 7,936 bytes, this does not result
in more concurrent thread blocks because of the high register requirements. Neverthe-
less, this configuration is faster than one with a smaller block size, which would allow
multiple concurrent thread blocks. This shows that the stream processing approach

75

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

is not fully effective in hiding the latency of the large number of texture fetches
performed by the raycasting algorithm, as running more thread blocks concurrently
results in no performance advantage in this case.

6.6.4 Discussion

Performance evaluation

The number of required hardware registers seems to be a major factor influencing ker-
nel performance compared to a feature-equivalent shader implementation. Maršálek
et al. (2008) reported saving registers by moving long-living variables into shared
memory. In our tests, however, moving variables into shared memory did not reduce
the number of registers allocated by the CUDA compiler. It is possible that they used
an earlier version of the compiler that was less efficient in register optimization. Since
shaders receive the same benefits as CUDA kernels from the double bandwidth and
twice the number of scalar processors of the GTX 280 compared to the 8800 GT (see
Table 2.1, p. 8), we suspect that the reason for the larger speedups for the CUDA
kernels achieved with the GTX 280 is its support for more hardware registers.

Hence, it seems that our CUDA implementation is less efficient in utilizing hard-
ware registers than shaders are, therefore profiting more when more registers are
available. This claim is supported by results recently published by Smelyanskiy et al.
(2009), who implemented a CUDA-based raycaster to compare it to an implemen-
tation on a simulated Larrabee processor architecture. They compared their results
to our initial findings (Mensmann et al., 2009) and to our more detailed results,
which we shared through personal communication. For their tests, they modified
our raycasting fragment shader in Voreen to match the features of their CPU-based
reference implementation. However, their CUDA implementation was developed
independently from ours. They report that their fragment shader implementation
is between 1.12x and 1.26x faster than their CUDA implementation. Hence, they
obtained results similar to ours, which makes it unlikely that the discrepancy in
performance between CUDA and shader implementations can be explained purely
by inefficiencies or errors in our implementation. In their discussion Smelyanskiy et
al. conclude that both CUDA and shader-based implementations of raycasting are
comparable in performance, which coincides with our results. They also propose that
the performance differences might be caused by empty space skipping in our shader
implementation that takes advantage of hardware rasterization, which is not possible
in their CUDA raycaster. However, empty space skipping as discussed in Chapter 5
is not automatically available in Voreen through the use of the Krüger-Westermann
proxy geometry approach. Therefore we disagree with this explanation.

76

6.6 Results

The slab-based raycasting can increase rendering efficiency when the same volume
data is accessed multiple times, e. g., for gradient calculation. However, it should be
noted that the algorithm can be compared to the basic raycasting only to a certain
extent, as the gradients are less exact for the slab data. Nonetheless, the results show
how much of a difference the use of shared memory can make. We demonstrated
that the method is most efficient for high resolution data sets. This is advantageous
for typical applications of volume rendering, e. g., medical imaging, where data sets
typically have a much higher resolution than engine and improvements in scanner
technology are constantly increasing the quality of data sets. The algorithm is also
more efficient with semi-transparent than with non-transparent data. For data with
no transparency this is not a real issue as well, as in this case also simpler techniques
such as isosurface rendering could be used. Our slab-based method is designed for
use with direct volume rendering, which is most useful for semi-transparent data.

Getting good global memory coalescing is often described as one of the most
important optimizations for CUDA kernels (e. g., NVIDIA, 2010, p. 85). For our
raycasting kernels, coalescing did only have a minor effect on the overall performance,
as global memory is used just for reading of the ray parameters and writing of the
raycasting results. The vast majority of memory accesses use the texturing hardware,
which is not affected by coalescing issues.

Further observations

A practical result we observed when testing the different kernel configurations is
that the integration of the GLSL compiler into the graphics driver compared to the
standalone CUDA compiler is an advantage for visualization tasks. Compilation
at runtime is not supported by CUDA, but is the default mode of operation for
GLSL and also OpenCL. With many different configuration options that need to
be set at runtime, it is advantageous to control these using the preprocessor. This
approach is also used extensively for implementing the complex raycasting shaders
in Voreen (Meyer-Spradow et al., 2010). To achieve the same with CUDA, multiple
kernel variants would need to be defined. Newer CUDA releases have added support
for C++ templates, which partly addresses the problem. While CUDA includes a
mechanism for just-in-time compilation (JIT) since version 2.1 (NVIDIA, 2009), this
only works on device code in PTX assembly form (NVIDIA, 2010, p. 16) and is not
an alternative to full runtime compilation.

Comparing frame rates of the two most simple versions of the raycasting, RC and
TF, a significant performance difference can be noticed, although the kernels differ
only in one additional texture lookup in the one-dimensional transfer function texture.

77

Chapter 6 – Applying GPU Stream Processing to Volume Raycasting

Even though this doubles the number of texture accesses, we would have expected
a smaller decrease in frame rate, as the transfer function texture is relatively small
and should support efficient caching. It seems that the access pattern of the transfer
function texture together with the additional volume texture accesses prevents a better
utilization of the texture cache, leading to the overall speed penalty compared to RC.
Hence, as an optimization for certain applications it should be analyzed whether the
transfer function can be represented analytically, and if the transfer function could
then be evaluated directly instead of using a lookup table. As the performance of the
raycasting kernel is mainly limited by texture access, additional computations could
be added to the kernel without significantly limiting its performance. Even when no
analytical representation of the transfer function is available, a discrete representation
as a lookup table might fit into shared memory, effectively replacing the use of the
texturing hardware.

Our tests also showed that texture filtering—although performed by dedicated
hardware—comes not totally for free. When we switched from filter mode linear to
nearest for the CUDA volume texture, the frame rate increased slightly by about 4% to
10%. This overhead, however, is much less than what would be expected when doing
the filtering manually in the CUDA kernel. Manual texture filtering can be compared
in complexity to gradient computation. Although the PH raycaster also includes
Phong lighting calculation in addition to computing the gradient, the performance
difference between TF and PH can be used as an indicator for the performance of
manual filtering. Frame rates acquired with PH are nearly five times slower than
those for TF. Hence, the overhead of up to 10% for the hardware texture filtering is
acceptable in comparison.

6.7 Summary

We have demonstrated that the CUDA programming model is suitable for volume
raycasting and that a CUDA-based raycaster—while not a “silver bullet”—can be
more efficient than a shader-based implementation. Factors influencing the speedup
are the type of GPU, thread block size, and data set size. We have also shown that
using shared memory can bring a substantial performance increase when the same
volume data is accessed multiple times. However, hardware restrictions need to be
taken into account, as managing the shared memory and especially handling border
voxels can introduce a significant overhead. We have demonstrated that a direct
translation of a visualization algorithm from a fragment shader to a CUDA kernel
does not guarantee the same performance results, and that an adaptation to the
specific features of the new programming model is necessary.

78

6.7 Summary

The amount of information contained in a single voxel is relatively small, therefore
advanced visualization techniques take surrounding voxels into account to improve
expressivity of visual results. Hence, memory bandwidth becomes the limiting factor
for raycasting, as no complex calculations are applied and the compute intensity, i. e.,
the ratio of arithmetic operations to volume texture fetches, is rather low. Caching
brings some improvements, but the overall access pattern for the ray traversal is quite
complex with a low level of data locality.

Other factors besides rendering performance should also be taken into account
when choosing a programming model for a raycasting application. Currently a
shader implementation will support a wider range of graphics hardware and does
not depend on a single vendor. Also the integration into existing volume rendering
frameworks is easier, e. g., by being able to directly use 2D and 3D textures and
render targets from OpenGL. Many of these issues will hopefully be removed by
implementations of the OpenCL standard, which is vendor-neutral and supports
better integration with OpenGL.

As future work it should be investigated whether more complex visualization
techniques, such as ambient occlusion, can benefit from the additional hardware
resources accessible through stream processing APIs or upcoming hardware architec-
tures such as Larrabee. The slab-based approach might prove valuable for exploiting
these resources and efficiently utilizing them for visualization tasks. As the currently
available on-chip memory is a scarce resource, particularly for storing volume data,
volume rendering would especially benefit from improvements in this area, which
are expected for future hardware. Finally, object-order volume rendering techniques
could be evaluated for implementation on stream processing hardware, as their regu-
lar memory access patterns might use the on-device cache memory more efficiently
than image-order raycasting.

79

80

Chapter 7

Lossless Compression for
Rendering Time-Varying
Volume Data

Since the size of time-varying volumetric data sets typically exceeds the

amount of available GPU and main memory, out-of-core streaming tech-

niques are required to support interactive rendering. To deal with the perfor-

mance bottlenecks of hard-disk transfer rate and graphics bus bandwidth,

we present a hybrid CPU/GPU scheme for lossless compression and data

streaming that combines a temporal prediction model, which enables us

to exploit coherence between time steps, and variable-length coding with

a fast block compression algorithm. This combination becomes possible by

taking advantage of the CUDA computing architecture for unpacking and

assembling data packets on the GPU. The system allows near-interactive

frame rates on desktop hardware even for rendering large real-world data

sets with a low signal-to-noise-ratio, while not degrading image quality. It

uses standard volume raycasting and can be easily combined with existing

acceleration methods and advanced visualization techniques.

Improvements in programmable graphics hardware have made interactive vol-
ume visualization possible for data from many different domains such as
medicine or seismology. While the resolution of these data sets is constantly

increasing due to advancements in acquisition technology, graphics processors could
keep up with the increasing amount of data by means of boosting computation
performance and graphics memory. GPU-based raycasting can easily achieve interac-
tive frame rates for large data sets even without including optimization algorithms.
However, this only holds true as long as all data required by the visualization fits
completely into GPU memory. When this is not possible, data needs to be streamed

81

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

from system memory to GPU memory and potentially even from mass storage. The
transfer bandwidth between the different levels of this memory hierarchy has not
kept up with the advances in GPU performance and therefore serious performance
degradations must be expected when data sets require out-of-core streaming. Time-
varying volume data, i. e., series of volumes corresponding to individual time steps,
can easily reach sizes in the range of gigabytes—and even more in the domain of
petascale visualization. Time-varying volume data can be acquired by medical scan-
ners, e. g., from a cardiac CT, although in this domain only a relatively low temporal
resolution is used. In contrast, time-varying data sets with both high spatial and
temporal resolution are routinely created in numerical simulations, especially in the
fields of fluid dynamics and meteorology.

While the volumetric data resulting from large-scale simulations is often primarily
intended for statistical analysis models, visualization can be essential for understand-
ing unexpected results or spotting errors. There exist several approaches for conveying
the information from multiple time steps in a single image (Meyer-Spradow et al.,
2006), but they are only applicable for relatively simple data with a small number of
time steps. Typically the data is visualized as a volumetric movie by rendering the
time steps one after another. Precomputed animations are useful only up to a certain
degree, since interactive modification of viewing parameters such as camera position
and transfer function is generally seen as a necessity for visualization of volumetric
data. The occlusion problem is more of an issue for volume series than for a static
volume, as the camera position may need continuous updates to keep the region of
interest in sight, which is not possible in a precomputed animation.

While complex simulations typically run on computing clusters or supercomputers,
in practice much of the data analysis and visualization is performed on standard
workstations. Often visualization is just an additional tool for analysis and not the
main goal of the domain experts. Hence, no additional resources are available for
data visualization, and many existing approaches—involving parallel render nodes
or specialized hardware—are not applicable. To give a recent example for parallel
visualization, Howison et al. (2010) were able to perform raycasting of a 46083

volume data set to a 46082 viewport in 0.56 seconds. This, however, required 216,000
compute cores of Jaguar, a Cray XT5 system that is currently ranked as the fastest
supercomputer in the world (with a Linpack performance of 1.76 petaflops according
to the June 2010 TOP500 list).

To allow interactive rendering of large time-varying volumetric data sets on desktop
machines, we must apply techniques to accelerate data streaming to the graphics
processor. A common approach is to use data compression techniques in order
to reduce the amount of data that needs to be transferred through bandwidth

82

7.1 Related Work

bottlenecks. Many compression techniques have been proposed for static as well as
for time-varying data sets. However, lossless compression techniques for rendering
time-varying data sets are rare, even though domain experts want to be able to
access the original data without any loss of accuracy. Especially when considering
the amount of time spent on simulations, it is of great interest to be able to inspect
the data without losing information. Therefore we present a lossless compression
scheme that meets these requirements and allows near-interactive frame rates even
for large data sets. When visualizing data with our approach, the user can rely on
the fact that all visible features are actually present in the data and do not occur due
to compression artifacts.

To achieve this goal, our technique utilizes direct programming of the graph-
ics processor through the CUDA programming interface. With this programming
functionality, simple compression techniques can be brought directly to the GPU.
Since typically the graphics processor is not used to capacity when data needs to be
streamed, it has free resources to support this compression, which previously would
have been handled exclusively by the CPU. Our hybrid approach allows the combi-
nation of several different compression methods, which are optimized for different
parts of the data transfer pipeline. Thus, we are able to achieve an efficient lossless
compression, which is essential to allow fast streaming. As most components of our
approach work independently from each other, the lossless compression scheme can
be modified by exchanging individual parts or adding further ones. It can therefore be
viewed as a generic framework for combining CPU and GPU techniques to improve
data throughput and rendering performance for time-varying volume data. Since
decompression is performed transparently, the presented approach does not limit the
visualization techniques that can be applied to the data.

The remainder of this chapter is structured as follows. In the next section we review
previous work related to time-varying volume data and compressed volume render-
ing. Section 7.2 discusses our proposed compression scheme, while the accompanying
GPU-supported decompression pipeline is described in Section 7.3. The integration
of the approach into Voreen is discussed in Section 7.4. We present our results in
Section 7.5 and a summary in Section 7.6.

7.1 Related Work

There exists a multitude of approaches for compressed volume rendering and for
visualization of time-varying volume data sets (Ma, 2003). They can use lossless
or lossy compression, or a combination of both. A second distinction can be made
between CPU-based, GPU-based, and hybrid CPU/GPU techniques.

83

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

Guthe et al. (2002) presented lossy CPU-based hierarchical wavelet decompression
for rendering large volume data sets using hardware-accelerated slice rendering.
Vector quantization was used by Kraus and Ertl (2002) in a GPU-based compression
scheme for static and time-varying volumetric data sets. Sohn et al. (2004) described
a compression scheme for encoding time-varying volumetric features to support
isosurface rendering. It is based on a lossy wavelet transform with temporal encoding.
A block-based transform coding scheme for compressed volume rendering using
vector quantization was introduced by Fout and Ma (2007), which performs decom-
pression on the GPU by rendering to slices of a 3D texture. Nagayasu et al. (2008)
presented a hybrid pipeline rendering system for time-varying volume data. It uses
a two-stage CPU/GPU decompression that combines lossy DXT/S3TC hardware
texture compression on the GPU (Iourcha et al., 1999) with lossless LZO compression
on the CPU (Oberhumer, 2008). Temporal coherence is exploited by packing voxels
from three successive volumes into the RGB components of the compressed volume
texture (Nagayasu et al., 2006), which is stored using VTC 3D texture compression
(NVIDIA, 2004). Because it is based on the simple hardware compression originally
intended for 2D textures, the system is limited to 8-bit scalar data and is prone to
visual artifacts. While achieving interactive frame rates through a high compression
ratio∗, the authors report visible artifacts that could mislead the user, but assess the
image quality as tolerable for time-series analysis.

Several lossless compression algorithms and prediction schemes for volumetric
medical data were compared by Ait-Aoudia et al. (2006). While most of these tech-
niques were developed for static data, Binotto et al. (2003) proposed a lossless
compression approach for time-varying data using fragment shaders, based on the
concept of adaptive texture maps as introduced by Schneider and Westermann (2003).
It subdivides the volume into 3D blocks and replaces duplicate and homogeneous
blocks by references. As this relies on exact matches between blocks, the approach is
most effective for sparse data sets with a low noise level. This is rarely found with
complex numerical simulation data—just quite the contrary: Artificial noise is often
added intentionally to obtain a more natural behavior in simulations.

Smelyanskiy et al. (2009) used a slice-based variable-length coding to compress
static volume data on the x86 and Larrabee architectures, which they report to be
more effective and faster than ZLIB compression. Fraedrich et al. (2007) presented

∗ There seems to be no general consensus on the definition of the term compression ratio. We use the
definition by Sayood (2000, p. 5), who defines it as the ratio of the number of bits required to represent
the data before compression to the number of bits required to represent the data after compression.
For example, if a file is compressed to half of its original size, the compression ratio is 2:1, which we
simply write as 2. According to the inverse definition by Salomon (2002, p. 5), the compression factor
would be 2, while the compression ratio would be 1:2 or 0.5.

84

7.2 Hybrid Compression Scheme

an implementation of lossless Huffman coding as a fragment shader that allows to
store up to 3.2 times more volume data without loss of information. However, the
decoding throughput of this technique lies in the range of the transmission rate of
the PCI Express bus, undoing any savings achieved by the data compression, which
demonstrates the difficulty of porting compression algorithms to a GPU architecture.

The GPU-based volume raycasting approach by Krüger and Westermann (2003)
can be easily extended to accelerate the final rendering step also for time-varying
data, especially by implementing an empty space skipping similar to our approach
presented in Chapter 5. For example, Grau and Tost (2007) exploit frame-to-frame
coherence in time-varying volume data to speed up rendering by preventing unnec-
essary raycasting.

7.2 Hybrid Compression Scheme

In this section we first discuss properties of time-varying data sets and related
hardware restrictions, before introducing our lossless hybrid compression scheme
and its components.

7.2.1 Data properties and hardware limitations

Volume data acquired from medical scanners is typically stored using 12-bit or 16-
bit integer values. Numerical simulations, on the other hand, return floating-point
data with a highly varying value range. While modern graphics processors directly
support 32-bit float textures, we consider 16-bit integer data as sufficient for most
volume visualization tasks. Additionally, floating point data stored in IEEE 754 format
(IEEE, 2008) is not suitable as input for the standard block compression algorithms
that we will discuss in Section 7.2.4. Hence, a specialized compression approach for
float data would be necessary, for example, the one described by Lindstrom and
Isenburg (2006) for integration into a large scale simulation cluster, which is beyond
the scope of this thesis. Therefore we convert the available simulation test data from
float to integer format during preprocessing, spreading the data values according
to the minimum and maximum values found in the data set to make full use of the
16-bit value range. Depending on the actual application, a more elaborate mapping
might be needed.

While there exist data sets with extremely high temporal as well as spatial resolu-
tion, for many applications a single time step of a time-varying data set can easily
fit into graphics memory. Having the complete time step available to the GPU has
several advantages for rendering, in contrast to splitting up data, e. g., into individual

85

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

data set resolution steps step size total size
convection 512× 2562 401 64 MB 11.4 GB
combustion 448× 704× 128 122 77 MB 25.1 GB
hurricane 5122 × 128 48 64 MB 3.0 GB

Table 7.1: Properties of the time-varying data sets tested with our approach (using
16-bit integer scalar values).

volume bricks. First, no overhead is introduced for managing several parts of the
volume or for border handling. Second, availability of the complete volume allows
us to use visualization and acceleration techniques that require more information
than what is available in a single brick, such as for global illumination (e. g., Ropinski
et al., 2010). Finally, implementation is greatly simplified. Hence, it is desirable for
the decompression to assemble the data back into its original form as a single 3D
texture in GPU memory. As our approach makes the uncompressed data accessible
as a standard volume texture during rendering, no multi-pass bricking techniques
need to be employed but standard rendering can be used. In the optimal case a
volume rendering system can be extended to support such an out-of-core rendering
of time-varying data by just replacing the modules for loading data from disk and
uploading into a 3D texture, while the actual rendering code may stay untouched.
This is an important aspect especially in the context of existing large-scale visual-
ization systems such as Voreen. Furthermore our technique can be combined with
multi-resolution approaches (Ljung et al., 2006). Since we employ a lossless compres-
sion, multi-resolution data can be compressed and streamed by using our approach
without affecting its content. However, this would require additional functionality for
deciding which resolution should be used for the individual parts of the volume.

One major reason for the high volume rendering performance achieved by current
graphics processors is the graphics memory bandwidth. For example, an NVIDIA
GeForce GTX 280 achieves 110 GB/s for an on-device copy. When data needs to
be streamed from the CPU to the GPU via the PCI Express bus, the achievable
throughput is more than an order of magnitude lower at 2.5 GB/s. Finally, when the
data must be read from mass storage, current desktop hard drives achieve around
110 MB/s and server hard drives up to 170 MB/s. Combining several drives can
improve throughput, but it is obvious that mass storage is the major bottleneck for
streaming data to the GPU.

86

7.2 Hybrid Compression Scheme

Figure 7.1: Decompression workflow of our hybrid compression scheme. Data moves
through the mass storage bottleneck with the maximum compression ratio, before it
is decompressed in two stages on the CPU and on the GPU. The GPU can then directly
access the uncompressed data for rendering.

7.2.2 Two-stage compression approach

As the size of a single time step for typical time-varying data sets is already in the
range of what a hard drive can transfer per second (compare Table 7.1), it becomes
clear that any technique that aims at interactive rendering must minimize the amount
of data that needs to be loaded from disk, i. e., it must maximize the compression
ratio of the on-disk storage format.

It would be optimal to run the decompression completely on the GPU, as the data
would then travel through both described bottlenecks, i. e., mass storage and the PCI
Express bus, in compressed form. Unfortunately, the highly parallel architecture of
current GPUs is not well suited for general data compression tasks. Most algorithms
for data compression work in a serial fashion and show no coherent branching
behavior, which does not map well to GPUs. Hence, the main decompression must
be performed by the CPU. As the bandwidth between CPU and GPU is an order of
magnitude larger than that of mass storage, getting maximum compression in this
transfer is not as important as when loading from disk. But as decompression can use
the CPU to full capacity, moving calculations to the GPU is beneficial. This is possible
only for simple computations that fit into the highly parallel architecture, but even
simple memory copy operations can benefit from the higher memory bandwidth on
the GPU and may run much faster than on the CPU. Therefore we propose a two-stage
or hybrid compression scheme, as illustrated in Figure 7.1. Data is compressed twice,
first with a simple algorithm whose decompression component runs efficiently on
the GPU, then with a CPU-based compression technique. Care must be taken that the
output of the first compression is still suitable for the second compression step to be
effective. Furthermore, an initial compression step that preprocesses data so that they
can be compressed more efficiently by the second technique would be advantageous.

87

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

7.2.3 Subdividing the volume into bricks for compression

Volume data is usually stored using a simple memory layout where the two-dimen-
sional slices that form the volume are saved one after another. Previous work often
used 2D image compression techniques on these individual slices (Ait-Aoudia et al.,
2006). Working with slices has the advantage that the memory format is identical to
that of the final 3D texture used for rendering, but this comes at the cost of losing
spatial coherence. Two voxels that are close together in volume space can actually lie
far away in memory space and vice versa. This effect can be evaded by subdividing
the volume into three-dimensional bricks (see Figure 7.2) and storing the contents of
each brick as a continuous block in memory, hence reducing the memory range used
per brick. This can improve the compression ratio of local phenomena by increasing
spatial coherence and is also essential for the variable-length coding described in
Section 7.2.6. It is noteworthy that the bricking scheme is only used for compression
and data transfer, but not for rendering. Therefore, it does not introduce an overhead
to the rendering component, but requires the bricks to be assembled back to the
original 3D texture. Brick assembly is a simple operation that can be performed very
efficiently on the GPU. Although OpenGL provides brick-wise updates of 3D textures,
it does not support data reduction in these update operations. So even a brick with
all zeros would need to be transferred completely. OpenGL also supports slice-based
writing to 3D textures from a fragment shader, but this introduces considerable
overhead and is limited in functionality. Using CUDA for assembling the bricks back
into a complete volume on the GPU is more flexible and therefore allows for better
data reduction.

The level of data locality could be increased further by applying a space-filling
curve, e. g., by accessing the voxels in Z-order (Morton, 1966). However, this would
introduce a more complex memory access pattern that is not suitable for a CUDA
implementation. Furthermore, we do not expect that such an implementation would
achieve significantly better compression results, since block compression algorithms
would not be able to fully exploit the improved data locality.

Figure 7.2: Slice-wise and brick-wise memory layout for storing volume data.

88

7.2 Hybrid Compression Scheme

raw gzip bzip2 LZMA LZO

512

106
60 63

120

si
z
e
 (

M
B
)

(a) compressed size

raw gzip bzip2 LZMA LZO

107

135

39

78

301

th
ro

u
g
h
p
u
t
(M

B
/s

)

(b) decompression throughput

Figure 7.3: Compression efficiency and decompression throughput of the different
lossless block compression algorithms. Only gzip and LZO can decompress faster than
loading the uncompressed (raw) file from disk would take. The results include the time
for reading the compressed data from disk.

A good opportunity for optimization after the volume has been decomposed into
bricks is removing duplicate bricks and replacing them by references (Binotto et al.,
2003). This, however, requires an exact match and therefore is only applicable to
data without noise, i. e., mostly synthetic data. To be feasible, the brick size should
be chosen as small as possible to increase the likelihood of duplicates, but this also
increases the overhead of brick handling. Real-world data sets we tested did hardly
contain any non-uniform duplicate bricks when choosing a feasible brick size, hence
we do not consider this method as beneficial for our use case. The only type of
duplicate bricks that appears regularly as a result of the prediction scheme discussed
in Section 7.2.5 is a uniform brick where all voxels are set to zero. This case is
efficiently handled by the variable-length coding described in Section 7.2.6.

7.2.4 Main compression algorithm

To choose a compression algorithm for our use case we must take both compression
ratio and decompression speed into account. As a requirement, the time for reading
and uncompressing a data block must be less than the time that would be needed
for reading the uncompressed block. However, most lossless data compression tools
and libraries such as gzip, bzip2, or LZMA are optimized for maximum compression
ratio, but not speed. In contrast, the Lempel-Ziv-Oberhumer (LZO) real-time com-
pression library (Oberhumer, 2008) was built with the main goal of providing fast
decompression, since it is intended primarily for embedded systems.

We have evaluated the different compression algorithms by compressing a 512 MB
part of the convection data set and decompressing it from hard disk. Figure 7.3a
shows the compressed file sizes. The best compression ratios were achieved by bzip2,
which is based on a Burrows-Wheeler transform (Burrows and Wheeler, 1994), and

89

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

LZMA (Pavlov, 2009). Both gzip and LZO use a Lempel-Ziv dictionary coder (Ziv
and Lempel, 1977) and produce much larger compressed files. However, for our
application not the compression ratio but the decompression throughput is most
important. The results illustrated in Figure 7.3b reverse the ranking: Only gzip and
LZO can decompress faster than it would take to read the uncompressed file from
disk, hence bzip2 and LZMA are unsuitable for data streaming. Although having a
slightly worse compression ratio, LZO achieves a throughput that more than doubles
the throughput of gzip.

Hence, as also suggested by Nagayasu et al. (2008), we chose LZO as the CPU-
based compression algorithm for our compression scheme. The LZO library supports
multiple algorithms, from which we selected the LZO1X-999 variant, which yields
the best compression ratio. It is the slowest of the available LZO compressors (up
to 8 times slower than the default in our tests), but this does not influence the
decompression speed.

7.2.5 Prediction schemes

The block compression algorithms described in the previous section can reduce the
size of volume data by utilizing spatial coherence. But they cannot directly take
advantage of temporal coherence between different time steps, because their sliding
window is not large enough to cover several time steps. To utilize temporal coherence
in time-varying data, a prediction model needs to be applied. Such a model tries to
predict voxel values and replaces them by the error in the prediction (Ait-Aoudia
et al., 2006; Fraedrich et al., 2007). For time-varying data it is promising to predict
that the current voxel value will not change in the next time step and to store the
difference to the actual value, i. e., the error in the prediction. This differential pulse-code
modulation (DPCM) or delta encoding initially does not reduce the storage requirements.
However, when the changes between time steps are not random, the error data will
exhibit uniform structures. For example, all voxels in regions that do not change
between time steps will get a delta value of zero, resulting in uniform bricks that can
be compressed efficiently. Furthermore the resulting delta values will typically not
use the full data range that is taken up by the original values, which might allow
further compression.

A disadvantage of delta encoding is that it prevents jumping directly to a certain
time step, as all previous time steps first have to be read to reconstruct the data. This
can be resolved by saving the absolute values in addition to the delta values and
loading them on demand, at the cost of increased storage requirements. Because
jumping to a certain time step is less time-critical than sequential playback, the

90

7.2 Hybrid Compression Scheme

Figure 7.4: Block diagram of the complete volume compression scheme.

storage requirements can be limited by not saving the absolute values for every time
step but only for every kth step. Hence, a maximum of k− 1 delta time steps will
need to be loaded in addition to one absolute time step to reconstruct the volume
data. This could be reduced further by a more elaborate algorithm.

7.2.6 Variable-length coding

As the scalar values inside a volume data set are usually not uniformly distributed,
the value range of some bricks will be smaller than the value range of the entire
volume. When the difference between the maximum and the minimum value in
one brick is less than 2n with n < 16, the brick size can be reduced by storing the
minimum as the brick’s base value, and for each voxel the difference from the base.
Each of the difference values now only takes n bits to store, so this variable-length
coding reduces the size needed for storing the brick.

This approach can be directly applied in combination with the previously described
temporal prediction scheme. As the resulting delta values are typically smaller than
the absolute voxel values they encode, the variable-length coding can achieve much
higher compression ratios when applied to the delta values compared to when the
time steps are compressed using absolute values. Uniform bricks are handled by the
variable-length coding directly: All voxels in such a brick have the same value, so
just the base value needs to be stored, while the delta values are reduced to “zero
bits”, i. e., are omitted.

7.2.7 Data preprocessing

The entire data set compression as shown in Figure 7.4 can run as an offline prepro-
cessing step, with the aim of minimizing the overall data size. It creates a stream
file that contains a sequence of compressed bricks with additional per-brick infor-
mation, such as the number of bits used for storage (see Section 7.4.1 for more
details). Preprocessing of the test data sets took 3 minutes for hurricane, 23 minutes
for combustion, and up to 167 minutes for convection, with most of the time spent on
the LZO compression algorithm. The runtime of this preprocessing is usually not
an issue, as it is much less computationally intensive than the simulations used for
creating the data in the first place. Hence, we did not yet optimize it for speed, e. g.,
by running multiple compression threads in parallel.

91

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

7.3 GPU-supported Decompression Pipeline

7.3.1 Multi-threaded loading and LZO decompression

We used a pipeline approach to overlap loading from disk, LZO decompression, and
data upload to the GPU (see Figure 7.5). Each of these tasks runs as one or more
independent threads. The loader thread was configured to load up to five time steps
in advance and feed them to the decompression thread when it becomes idle. The
main bottleneck is typically data loading, so building up of a long queue is only
expected for bricks with a high compression ratio, for which loading from disk is
faster than decompression. Consequently, we only assigned a single thread to LZO
decompression, which might need to be changed when a faster storage device that
can saturate a single CPU core is available.

7.3.2 Asynchronous data transfer to the GPU

Although much faster than disk I/O, uploading the uncompressed bricks to the
GPU is still one of the bottlenecks of the decompression pipeline. To achieve optimal
throughput, the data transfer to the GPU runs through a transfer buffer in main
memory that is marked as page-locked, i. e., it will not be paged to disk by the operating
system and therefore can be copied over the PCI Express bus using direct memory
access (DMA) without involvement of the CPU. Using this “pinned” memory allows
us to start an asynchronous memory copy that can run in parallel to CPU operations
and GPU kernel executions. It achieves the maximum transfer bandwidth available
by copying one large memory block that contains all bricks.

While the variable-length coding already handles “empty” (i. e., all-zero) bricks and
those bricks that do not change between time steps, the data transfer could be further

Figure 7.5: Our hybrid CPU/GPU decompression pipeline.

92

7.3 GPU-supported Decompression Pipeline

Figure 7.6: Decompression workflow.

reduced by ignoring bricks that are completely transparent because of the transfer
function. A simple approximation for determining a brick’s visibility is comparing
the minimum and maximum intensity values inside the brick with the minimum
and maximum intensity that is assigned non-zero opacity in the transfer function.
This can be implemented efficiently but introduces two issues: First, not loading a
brick because it is currently invisible breaks the delta encoding of upcoming time
steps, as it requires data from all previous time steps to calculate the current value.
Hence, the absolute value would need to be accessible as well, increasing disk usage.
The second issue is that when the user modifies the transfer function, bricks that
were previously hidden may get visible, therefore requiring a load operation, which
might hamper the user experience. In addition, this optimization is not specific to
our hybrid compression scheme, so we have not yet implemented it for the current
system.

7.3.3 Decoding and brick assembly

In order to reconstruct the final 3D texture to be used for rendering, the data packets
uploaded to the GPU need to be decoded and reassembled in three steps: Resolving
variable-length coding, resolving delta encoding, and brick assembly (see Figure 7.6).

As the variable-length coding requires different addressing modes based on with
how many bits a brick is stored, we have implemented individual kernels for handling
each of the supported bit lengths. Based on analysis of our test data, we concluded
that the compression ratio for just supporting 16, 8, 4, and 0 bits comes close enough
to the optimal result so that the additional costs of supporting all possible numbers
of bits are not justified.

To be able to benefit from the texturing hardware for linear filtering and border
handling during rendering, the volume needs to be available to the raycasting kernel
as a CUDA array. In contrast to data in global memory, a CUDA kernel cannot directly
write to such an array. Therefore the decompression kernel uses a shadow copy of
the volume texture located in global memory to write its results. The volume is later
copied to the CUDA array by calling cudaMemcpy3D() from host code. As this is an
on-device copy, it can theoretically make use of the full GPU memory bandwidth.

93

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

This intermediate step is anticipated to become unnecessary with the next generation
of graphics processors, which are expected to allow writing to 3D textures from
kernel code. The feature is already included in the OpenCL specification through the
extension cl_khr_3d_image_writes (Munshi, 2009, p. 250), but this extension is not
yet supported by current GPUs and drivers.

Implementing delta encoding is trivial, as the kernel just needs to add the calculated
value to the existing value in the volume instead of overwriting it. To obtain optimal
performance with CUDA kernels it is most important to satisfy the coalescing rules,
i. e., to organize memory accesses in such a way that they require only the minimum
number of memory transactions. We distribute the assembly of a brick onto blocks
of 64 CUDA threads, where each thread is assigned an x-coordinate and processes
all voxels in the brick belonging to this x-coordinate. Due to the memory layout,
this results in adjacent threads accessing adjacent memory cells, and therefore the
kernel shown in Listing 7.1 achieves full coalescing. By constructing a suitable two-
dimensional CUDA grid of thread blocks, a single kernel launch is enough to start
processing of all bricks.

7.3.4 Rendering

Since the compression scheme outputs the complete volume of the current time step
into a CUDA array, we can directly use the basic CUDA volume raycaster described
in Chapter 6 for rendering. The raycaster uses direct volume rendering with Phong
lighting, on-the-fly gradient calculation, and early ray termination. Using a fragment
shader for GPU-based raycasting would also be possible by making the CUDA array
available to OpenGL through the interop mechanism available in recent revisions of
CUDA. With OpenCL this would be even simpler, as OpenGL and OpenCL can share
resources such as volume textures without any conversion.

7.4 Integration into Voreen

7.4.1 Preprocessing and on-disk storage format

We integrated the data preprocessing into the voltool command-line application,
which is part of Voreen. The new --stream parameter expects a .dat text file with
information about the .raw files that contain the actual volume data of each of the
time steps to be processed—in contrast to the standard .dat/.raw format where
only one volume file is specified per .dat file. The program outputs three files: a
description file (.dat), a brick file (.brk), and a stream file (.str). The description
file (Listing 7.2) is similar to a standard .dat file and contains general information

94

7.4 Integration into Voreen

// Resolves delta encoding and variable-length coding for 4 bit bricks and assembles them into
// the output volume. Each thread processes all voxels with the given x-position in one brick.
__global__ void volumestream_delta4(dim3 volumeSize, int brickSize, unsigned char* brickData,

ushort* baseValues, uint* brickPositions, ushort* output)
5 {

const uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
const uint brickNum = blockIdx.y; // the brick to process by this thread
const uint brickLength = (brickSize * brickSize * brickSize) / 2;
const ushort baseValue = baseValues[brickNum]; // for variable-length coding

10 uint inPos = brickLength * brickNum + x; // read position
uint outPos = brickPositions[brickNum] + (x * 2); // write position

for (int z = 0; z < brickSize; z++) { // for each slice
uint p = outPos; // the write position in the slice

15 for (int y = 0; y < brickSize; y++) { // for each row
ushort value = brickData[inPos];
// write two 16-bit output voxels from 8-bit input
output[p + 0] += baseValue + (value >> 4);
output[p + 1] += baseValue + (value & 0xF);

20

// set up read/write positions for next row
inPos += brickSize / 2;
p += volumeSize.x;

}
25 outPos += volumeSize.x * volumeSize.y; // move write position to next slice

}
}

Listing 7.1: CUDA kernel for unpacking delta-encoded volume bricks with 4-bit
variable-length coding. The kernels for decoding 8- and 16-bit bricks work similar.

Steps: 401 # number of time steps
Mode: delta/vlc # direct, delta, delta/vlc
BrickSize: 64 # brick side length
BrickCount: 8 4 4 # number of bricks in each dimension

5 Resolution: 512 256 256 # resolution of a single time step
SliceThickness: 1 1 1 # taken from source .dat file
Format: USHORT # USHORT or FLOAT
Compression: lzo # none or lzo
BrickFileName: convection_t.brk

10 StreamFileName: convection_t.str

Listing 7.2: Example .dat file for the convection/T data set.

enum PredictionType { DIRECT, DELTA };

struct BrickInfo {
uint64_t offset_; // position of brick data in stream file

5 uint32_t size_; // compressed brick size
uint16_t minValue_; // minimum value in brick
uint16_t maxValue_; // maximum value in brick
uint16_t baseValue_; // base value for variable-length coding
uint8_t bits_; // number of bits for variable-length coding

10 PredictionType prediction_; // absolute values or delta encoding
};

Listing 7.3: Data structure for brick information used in the binary .brk file.

95

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

Figure 7.7: Data-flow network for rendering time-varying volume data using our
lossless compression scheme. The standard VolumeSource processor was replaced by
a VolumeStream. It reads the data of the current time step from the stream file and
makes the uncompressed volume available to other processors through its outport.

about the processed time-varying data set. Information about each brick is stored in
the binary brick file (Listing 7.3), including the position of the compressed brick data
in the stream file.

7.4.2 Network integration

We integrated loading and streaming of time-varying data into Voreen by imple-
menting a single VolumeStream processor, making use of the data-flow architecture.
The new processor replaces VolumeSource, which only returns a static volume. When
using VolumeStream the user selects the description file (.dat) of the compressed
time-varying data set to load through the property mechanism. A further property of
the processor can be used to set the time step to be loaded from the compressed data,
which is then made available to other processors as a VolumeHandle through the sin-
gle outport of the processor. Hence, for a data-flow network implementing rendering
of compressed time-varying volume data (Figure 7.7) only a single processor needs
to be replaced compared to a standard rendering network.

7.5 Results

Tests were conducted on a workstation equipped with an Intel Core 2 Quad Q9550
CPU (2.83 GHz), an NVIDIA GeForce GTX 280 GPU, 4 GB RAM, and a 1.5 TB eSATA
hard disk with a specified burst transfer rate of 105–115 MB/s. The system was
running 64-bit Linux and used version 3.0 beta of the CUDA Toolkit. We later verified
our results with the final 3.0 release.

96

7.5 Results

(a) convection/T

(b) convection/ens

(c) combustion/chi (d) combustion/vort (e) combustion/y_oh

(f) hurricane/rain

Figure 7.8: Visualizations of individual time steps from the time-varying test data
sets using direct volume rendering.

97

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

compr. brick bit usage
pred. vlc bs memory bricks size σ σvlc 16 8 4 0
none no 64 512 kB 128 16.76 GB 1.50 — — — — —
delta no 64 512 kB 128 11.53 GB 2.17 — — — — —
delta yes 32 64 kB 1024 11.16 GB 2.24 1.33 61% 18% 20% 1%
delta yes 64 512 kB 128 11.31 GB 2.22 1.14 78% 15% 6% 0%
delta yes 128 4 MB 16 11.68 GB 2.15 1.04 93% 7% 0% 0%
delta yes 256 32 MB 2 11.92 GB 2.10 1.02 96% 4% 0% 0%

Table 7.2: Effect of prediction scheme, variable-length coding (vlc), and brick size
(bs) on compression, tested with the convection/T data set. Also listed are the total
compression ratio σ, compression ratio σvlc obtained by variable-length coding alone,
and the percentages of bricks that are encoded with a certain number of bits by the
variable-length coding.

7.5.1 Test data sets

Renderings of the test data sets are shown in Figure 7.8. The convection data set is the
result of a hydrodynamical simulation of a thermal plume. It contains two modalities,
temperature (T) and enstrophy (ens), where the latter highlights swirling regions of
the flow.∗ As can be seen in the first time step of this data set in Figure 7.8, the T
modality contains a high level of noise, which was intentionally introduced into the
simulation, and ends in a fully turbulent scenario. The ens modality is more uniform
in the initial part, but also becomes fully turbulent towards the end. Three modalities
chi, vort, and y_oh are available from a turbulent combustion simulation. The structure
of this data set is turbulent as well, but the amount of empty space varies between the
modalities. Finally, there is data from a simulation of the amount of rain in different
levels of the atmosphere for Hurricane Isabel. This smaller data set contains many
empty regions and is expected to achieve a high compression ratio.

7.5.2 Compression ratio

To evaluate the effect of the compression parameters, we have processed convection/T
with several different compression options. The results are listed in Table 7.2. Note
that the given raw sizes correspond to the data converted to 16-bit, the original float
data would take up twice the amount of memory. First, we examined the effect of
delta encoding without using variable-length coding. Delta encoding increased the

∗ In fluid dynamics, enstrophy is defined as the integral of the square of the vorticity, which is related to
the amount of the local angular rate of rotation in a fluid flow.

98

7.5 Results

raw compr. brick bit usage
data set modality size size σ σvlc 16 8 4 0
convection T 25.1 GB 11.3 GB 2.2 1.1 78% 15% 6% 0%

ens 25.1 GB 4.8 GB 5.2 1.5 52% 19% 12% 17%
combustion chi 11.4 GB 2.7 GB 4.3 2.0 48% 2% 1% 50%

vort 11.4 GB 3.8 GB 3.0 1.9 50% 3% 6% 41%
y_oh 11.4 GB 3.5 GB 3.3 2.0 49% 2% 2% 47%

hurricane rain 3.0 GB 0.1 GB 25.1 2.6 36% 3% 1% 60%

Table 7.3: Results of our hybrid compression scheme. The compression uses 643

bricks, delta encoding, variable-length coding, and LZO1X-999 compression.

compression ratio of the LZO algorithm from 1.50 to 2.17, which is quite significant
considering the low cost of calculating the delta values. The efficiency of variable-
length coding depends on the brick size, as smaller bricks are more likely to contain
data that fits into a smaller value range. As can be seen from the bit usage, only 4%
of the bricks can be encoded with less than the full 16 bits when a brick side length of
256 voxels is used. This percentage increases with smaller brick size, thus increasing
the compression ratio σvlc achieved by the variable-length coding alone. The best
compression ratio is achieved for a brick side length of 32, but also the number of
bricks increases to 1024 for this configuration. To keep the overhead for managing
bricks reasonable, we chose a brick side length of 64 for all following tests. While
this reduces σvlc from 1.33 to 1.14, the overall compression ratio, i. e., when including
LZO compression, stays nearly the same. Hence, the LZO algorithm compensates
differences in variable-length coding when the block size is chosen small enough.

As expected, the compression ratios achieved for the different data sets vary
significantly (Table 7.3). The modality T of the convection data set has the lowest
compression ratio both for variable-length coding as well as for total compression.
This is the result of the high level of noise and low amount of empty space in the data
set. The ens modality is more sparse and therefore has a much higher compression
ratio of 5.2, with many more bricks encoded with less than 16 bits. The combustion
data set contains a lot of empty space, so 41% to 50% of its bricks are empty and can
be encoded with zero bits. It is notable that while σvlc only varies slightly between
the modalities, the overall compression ratio σ varies between 3.0 and 4.3. Hence, the
differences are a result of only the LZO compression. Finally, hurricane is a rather
small and sparse data set that gets a high compression ratio of 25.1 and therefore
shifts the system bottleneck from disk throughput to decompression speed.

99

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

7.5.3 Rendering speed

To determine the increase of overall rendering performance achieved by our method,
we measured the time taken for rendering all time steps of the compressed data sets
and compared this to the results of the uncompressed version (Table 7.4). The loader
for the uncompressed files reads the 16-bit integer data of a time step into memory
and immediately uploads it to the GPU for rendering. Disk caches were flushed
between test runs. The raycasting sampling rate was set to 2 samples per voxel, and a
viewport size of 512× 512 pixels was chosen. As expected, the rendering speedups for
most data sets resemble the compression ratios. For some (convection/T, combustion/chi)
they even slightly exceed the compressed ratios, which we would explain with caching
effects. The small hurricane data set is not limited by disk throughput, and therefore
the rendering speedup attained by the compression technique is significantly smaller
than the compression ratio (s = 7.27 < σ = 25.1). It is rendered with 10 fps, more
than 7 times faster than without compression. The same effect, but less intense, can
be seen for convection/T, which has the second highest compression ratio σ = 5.2, but
only a rendering speedup of s = 4.23. With data sets for which disk throughput was
the bottleneck we measured a disk transfer rate of up to 106 MB/s, which is close to
the specified maximum transfer rate of the used hard drive.

Measuring the time needed for the on-device copy of the volume from global
memory into the final 3D texture stored as a CUDA array (compare Section 7.3.3)
gave results of about 24 ms for the convection data set, twice the time needed for brick
assembly and even more than the time taken for rendering. This corresponds to a
throughput of only about 5 GB/s, much less than the maximum of 110 GB/s. We
presume that the low throughput for copying to a 3D CUDA array is related to the
internal data format in GPU memory. According to Engel et al. (2006, p. 192), 3D
texture data is often rearranged on the GPU to increase the locality of neighboring
data values. Apparently, the data is automatically converted to this internal format
when copying to the CUDA array, significantly decreasing throughput compared to
a direct copy to global memory. This could be solved by having the data available
in the internal format before copying; however, currently no such mechanism exists
in CUDA. Future graphics processors that are expected to allow direct writing to
3D textures from CUDA kernels will hopefully resolve this problem by making
the intermediate copy and data conversion unnecessary, and therefore remove the
performance obstacle.

To examine the efficiency of the GPU-based brick assembly implemented as a
CUDA kernel, we compared it to a CPU implementation that assembles the bricks
into a memory buffer, which is then uploaded to the GPU. The results in Table 7.5

100

7.6 Summary

raw compressed
data set modality time fps time fps s
convection T 281 1.4 108 3.7 2.60

ens 281 1.4 66 6.0 4.23
combustion chi 126 1.0 28 4.4 4.55

vort 117 1.0 39 3.1 2.98
y_oh 125 1.0 36 3.4 3.47

hurricane rain 35 1.4 5 10.0 7.27

Table 7.4: Timing results for rendering all time steps of the data sets using the raw
data and our compression scheme. The table includes the measured time in seconds,
frames per second, and the speedup factor s.

CPU GPU
data set modality time fps time fps s
convection T 117 3.4 108 3.7 1.08

ens 92 4.4 66 6.0 1.38
combustion chi 28 4.4 28 4.4 1.01

vort 39 3.1 39 3.1 1.01
y_oh 36 3.4 36 3.4 1.00

hurricane rain 48 6.2 5 10.0 1.29

Table 7.5: Efficiency of running brick assembly on the GPU compared to the CPU. A
rendering speedup s > 1 shows that the CPU was saturated by the brick assembly and
that the CPU load could be reduced by offloading this work to the GPU.

show that the CUDA implementation is never slower than the CPU and can achieve
a significant rendering speedup of up to 1.38x. For combustion no acceleration is
possible, as this data set is disk-bound, i. e., the rendering performance for the data
set is limited by the disk transfer rate. The CPU implementation writes directly into
the 3D texture, so the speedup would increase further when the CUDA kernel would
also be able to write directly to a 3D texture without the intermediate on-device copy.

7.6 Summary

In this chapter we have presented a framework that allows to increase rendering
speed of time-varying volume data sets based on a lossless compression scheme. By
utilizing both CPU and GPU, we could minimize the amount of data that needs to be
transferred. Relocating work to the GPU allows us to use prediction models and brick-

101

Chapter 7 – Lossless Compression for Rendering Time-Varying Volume Data

based instead of slice-based addressing to better maintain spatial coherence. Together
with variable-length coding this can increase the efficiency of LZO compression
without increasing load on the CPU. While the image quality is not affected by our
approach, the compression ratio that can be achieved is highly dependent on the data
set. We have demonstrated our technique with real-world data sets that contain a
considerable level of noise. In all cases near-interactive frame rates were obtained at
full image quality, and the compression improved performance so far that interactive
frame rates are expected to be achieved when replacing the single hard disk by a
faster storage device, e. g., a RAID system or a solid-state drive (SSD).

The exploited stream programming techniques make the compression scheme
flexible and easily extensible. Thus, it would also be possible to integrate lossy
compression for application cases where accuracy is not the highest priority. When
using the proposed technique, the GPU-based volume rendering component needs
no adaptation and can remain completely unchanged, as we have shown for Voreen.
Therefore, combination with other conventional acceleration techniques, for example,
empty-space skipping or temporal coherence optimization (Grau and Tost, 2007), is
possible. However, for the types of data we tested, the core raycasting performance
on the GPU was not the bottleneck.

Future work includes direct support for floating-point data, evaluating further
prediction schemes, and combination with multi-resolution techniques. Each of these
points is related to extending individual components of our compression scheme,
hence its overall structure would stay unchanged. With new graphics processors
it should also be investigated whether they better support the implementation of
complex compression algorithms such as LZO, which would allow to offload further
work to the GPU.

102

Chapter 8

Conclusions

Even state-of-the-art implementations of volume rendering leave room for
optimization, although they often already utilize graphics hardware. In this
thesis we have investigated and successfully exploited the spatial and temporal

coherence found in both volume data and rendering algorithms to achieve significant
rendering speedups for static as well as for time-varying volume data. The presented
techniques were carefully designed to fully utilize the hardware resources of current
graphics processing units, which were accessed either through a graphics API or using
the stream processing paradigm. The implementations follow a modular approach
and can be integrated easily into established, large-scale rendering systems.

The presented acceleration techniques target different parts of the volume rendering
pipeline (compare Figure 8.1) and exploit different types of coherence. However, they
share the common goal of increasing the overall rendering performance to enable
more sophisticated visualizations. The occlusion frustum algorithm (Chapter 5)
utilizes spatial data coherence of empty voxels in the volume together with temporal
coherence in the images resulting from volume rendering. The purely GPU-based
technique achieves a rendering speedup of up to a factor of two while not requiring

Figure 8.1: Position of the acceleration techniques in the volume rendering pipeline.

103

Chapter 8 – Conclusions

preprocessing. Unlike previous approaches, it does not cause image artifacts and
is therefore suitable especially for interactive data exploration tasks. Slab-based
raycasting (Chapter 6) exploits spatial coherence in the access pattern of the ray
traversal. It can accomplish significant speedups by utilizing shared memory, which
only became accessible through a stream processing implementation. Hence, the
technique demonstrates the suitability of the stream processing paradigm for volume
rendering. The hybrid compression scheme for time-varying data (Chapter 7) employs
spatial coherence for block compression and temporal coherence for the prediction
model. It achieves a compression ratio of up to 25:1 and a rendering speedup of up
to 7x without affecting the image quality and therefore enables interactive visual data
analysis without relying on specialized hardware.

As not all types of coherence exist in all types of volume data, it is difficult to
recommend a specific acceleration technique for general use. An optimal solution
would introduce only a negligible overhead even in the worst case, which unfortu-
nately does not apply to the three presented techniques. It would be useful to be
able to predict the performance of a rendering approach and to only activate the
optimization when it has a chance to actually achieve an overall improvement. How-
ever, because of the complexity of the—largely undocumented—graphics hardware,
a purely analytical approach for estimating rendering performance seems unrealistic.
An experimental approach that constantly measures the frame rate and dynamically
activates or deactivates acceleration techniques based on these measurements seems
to be more promising. This would be a worthwhile addition for practical use of the
presented optimizations, but also for other acceleration approaches.

When programming modern graphics processors, it is especially important to
keep in mind the individual hardware restrictions. These limitations prevent the
use of many standard approaches known from CPU programming. For GPU-based
implementations, data structures as well as algorithms must be kept simple, since
both an irregular memory access pattern and non-coherent branching behavior will
introduce a severe performance penalty. Despite these limitations, volume raycasting
can still use the graphics hardware efficiently. However, volume graphics differs
significantly from the triangle-based graphics that GPUs and common graphics APIs
support natively. Hence, implementations of volume rendering can benefit from
approaches originally intended for general-purpose computations on GPUs. While
only CUDA was used for evaluating volume raycasting through stream processing,
the results can be generalized to most current stream processing architectures. Thanks
to the standardization through OpenCL, the paradigm will play an increasingly
important role in volume rendering in the future. However, it will probably not

104

replace traditional graphics APIs such as OpenGL completely: Volume rendering is
just one component of a full visualization system, which also consists of many other
subsystems that use standard graphics methods, from rendering an additional mesh
geometry, over image processing, to showing the rendering results on the screen.
Therefore, future volume visualization systems will use a combination of graphics
programming and stream processing.

Future progress both in graphics processors and in multi-core CPUs will offer
new challenges but also new possibilities for volume rendering. The presented
acceleration approaches would benefit directly from more cache memory and from
higher storage system throughput. Such enhancements are currently arriving with
the latest generation of GPUs and fast solid-state drives. Possible extensions of the
presented approaches, such as incremental refinement of the occlusion frustum proxy
geometry or implementation of data decompression completely on the GPU, depend
on further hardware improvements. Upcoming hybrid processors that combine
functionality of both CPUs and GPUs might open the way to novel optimizations,
but exploiting coherence, with such techniques as discussed in this thesis, will most
certainly be an important aspect of any new acceleration approach.

105

106

Appendix A

Source Code

These source code examples are included for illustration purposes and therefore may
vary slightly from the actual implementation. The code is intended for integration
into the Voreen framework and therefore uses of some of the Voreen infrastructure.

A.1 Fragment Shader for Volume Raycasting

//
// Implementation of volume raycasting as a fragment shader
//

5 #include "modules/mod_sampler2d.frag"
#include "modules/mod_sampler3d.frag"
#include "modules/mod_transfunc.frag"

uniform float raycastingQualityFactorRCP_;
10 uniform vec3 cameraPosition_;

uniform vec3 lightPosition_;

uniform SAMPLER2D_TYPE entryPoints_; // ray entry points
uniform SAMPLER2D_TYPE exitPoints_; // ray exit points

15

uniform sampler3D volume_; // volume dataset
uniform VOLUME_PARAMETERS volParams_; // texture lookup parameters for volume_

// Gradient calculation using central differences
20 vec3 calcGradient(sampler3D vol, VOLUME_PARAMETERS volParams, vec3 samplePos) {

const vec3 off = volParams.datasetDimensionsRCP_;

float v0 = textureLookup3DUnnormalized(volume, volParams, samplePos + vec3(off.x, 0, 0)).a;
float v1 = textureLookup3DUnnormalized(volume, volParams, samplePos + vec3(0, off.y, 0)).a;

25 float v2 = textureLookup3DUnnormalized(volume, volParams, samplePos + vec3(0, 0, off.z)).a;
float v3 = textureLookup3DUnnormalized(volume, volParams, samplePos + vec3(-off.x, 0, 0)).a;
float v4 = textureLookup3DUnnormalized(volume, volParams, samplePos + vec3(0, -off.y, 0)).a;
float v5 = textureLookup3DUnnormalized(volume, volParams, samplePos + vec3(0, 0, -off.z)).a;

30 vec3 gradient = vec3(v3 - v0, v4 - v1, v5 - v2) * 0.5;
return gradient;

107

Appendix A – Source Code

}

// Gradient calculation using filtered central differences
35 vec3 calcGradientFiltered(sampler3D volume, VOLUME_PARAMETERS volParams, vec3 samplePos) {

const vec3 delta = volParams.datasetDimensionsRCP_;

vec3 g0 = calcGradient(volume, volParams, samplePos);
vec3 g1 = calcGradient(volume, volParams, samplePos + vec3(-delta.x, -delta.y, -delta.z));

40 vec3 g2 = calcGradient(volume, volParams, samplePos + vec3(delta.x, delta.y, delta.z));
vec3 g3 = calcGradient(volume, volParams, samplePos + vec3(-delta.x, delta.y, -delta.z));
vec3 g4 = calcGradient(volume, volParams, samplePos + vec3(delta.x, -delta.y, delta.z));
vec3 g5 = calcGradient(volume, volParams, samplePos + vec3(-delta.x, -delta.y, delta.z));
vec3 g6 = calcGradient(volume, volParams, samplePos + vec3(delta.x, delta.y, -delta.z));

45 vec3 g7 = calcGradient(volume, volParams, samplePos + vec3(-delta.x, delta.y, delta.z));
vec3 g8 = calcGradient(volume, volParams, samplePos + vec3(delta.x, -delta.y, -delta.z));

vec3 mix0 = mix(mix(g1, g2, 0.5), mix(g3, g4, 0.5), 0.5);
vec3 mix1 = mix(mix(g5, g6, 0.5), mix(g7, g8, 0.5), 0.5);

50 return mix(g0, mix(mix0, mix1, 0.5), 0.75);
}

// Standard Phong illumination, the material and light properties are hardcoded for brevity
vec3 phong(vec3 sample, vec3 color, vec3 gradient) {

55 vec3 N = normalize(gradient);
vec3 L = normalize(vec3(lightPosition_ - sample));
vec3 V = normalize(vec3(cameraPosition_ - sample));

float shade = 0.3; // ambient
60 float NdotL = max(dot(N, L), 0.0);

shade += NdotL * 0.4; // diffuse

vec3 H = normalize(V + L);
float NdotH = pow(max(dot(N, H), 0.0), 60.0); // shininess

65 shade += NdotH * 0.5; // specular

return color * shade;
}

70 // Performs direct volume rendering and returns the final fragment color.
vec4 basicRaycaster(in vec3 first, in vec3 last) {

vec4 result = vec4(0.0);

// calculate ray parameters
75 float stepIncr = raycastingQualityFactorRCP_;

float t = 0.0;
vec3 direction = last.rgb - first.rgb;

float tend = length(direction);
80 direction = normalize(direction);

while (t <= tend) {
vec3 sample = first.rgb + t * direction;
vec4 voxel = textureLookup3D(volume_, volParams_, sample);

85

108

A.1 Fragment Shader for Volume Raycasting

float intensity = voxel.a;
#ifdef TF

vec4 color = applyTF(voxel);
#else

90 vec4 color = vec4(intensity);
#endif // TF

#ifdef PHONG
#ifdef GRAD_FILTER

95 vec3 grad = calcGradientFiltered(volume_, volParams_, sample);
#else

vec3 grad = calcGradient(volume_, volParams_, sample);
#endif // GRAD_FILTER

color.rgb = phong(sample, color.rgb, grad);
100 #endif // PHONG

// perform compositing: multiply alpha by raycastingQualityFactorRCP_ to
// accomodate for variable slice spacing
color.a *= raycastingQualityFactorRCP_;

105 result.rgb = result.rgb + (1.0 - result.a) * color.a * color.rgb;
result.a = result.a + (1.0 - result.a) * color.a;

#ifdef ERT
// early ray termination

110 if (result.a >= 1.0) {
result.a = 1.0;
t = tend;

}
#endif // ERT

115

t += stepIncr;
}

return result;
120 }

void main() {
vec3 frontPos = textureLookup2D(entryPoints_, gl_FragCoord.xy).rgb;
vec3 backPos = textureLookup2D(exitPoints_, gl_FragCoord.xy).rgb;

125

// determine whether the ray has to be casted
if (frontPos == backPos) {

// background needs no raycasting
discard;

130 } else {
// frag coords are lying inside the bounding box
gl_FragColor = basicRaycaster(frontPos, backPos);

}
}

Listing A.1: Fragment shader implementation of basic volume raycasting.

109

Appendix A – Source Code

A.2 CUDA Kernel for Volume Raycasting

//
// Implementation of volume raycasting as a CUDA kernel
//

5 #include <cuda.h>
#include "cutil_math.h"

texture<ushort, 3, cudaReadModeNormalizedFloat> volumeTex; // 3D texture (16 bit)
texture<uchar4, 1, cudaReadModeNormalizedFloat> transferFuncTex; // 1D RGBA texture (8 bit)

10

// Gradient calculation using central differences
inline __device__

float3 calcGradient(float3 sample) {
const float3 offset = make_float3(1.f / off_x, 1.f / off_y, 1.f / off_z);

15

float v0 = tex3D(volumeTex, sample.x + offset.x, sample.y, sample.z);
float v1 = tex3D(volumeTex, sample.x, sample.y + offset.y, sample.z);
float v2 = tex3D(volumeTex, sample.x, sample.y, sample.z + offset.z);
float v3 = tex3D(volumeTex, sample.x - offset.x, sample.y, sample.z);

20 float v4 = tex3D(volumeTex, sample.x, sample.y - offset.y, sample.z);
float v5 = tex3D(volumeTex, sample.x, sample.y, sample.z - offset.z);

return make_float3(v3 - v0, v4 - v1, v5 - v2) * 0.5f;
}

25

// Gradient calculation using filtered central differences
inline __device__

float3 calcGradientFiltered(float3 sample) {
const float3 offset = make_float3(1.f / off_x, 1.f / off_y, 1.f / off_z);

30

float3 g0 = calcGradient(sample);
float3 g1 = calcGradient(sample+make_float3(-offset.x, -offset.y, -offset.z));
float3 g2 = calcGradient(sample+make_float3(offset.x, offset.y, offset.z));
float3 g3 = calcGradient(sample+make_float3(-offset.x, offset.y, -offset.z));

35 float3 g4 = calcGradient(sample+make_float3(offset.x, -offset.y, offset.z));
float3 g5 = calcGradient(sample+make_float3(-offset.x, -offset.y, offset.z));
float3 g6 = calcGradient(sample+make_float3(offset.x, offset.y, -offset.z));
float3 g7 = calcGradient(sample+make_float3(-offset.x, offset.y, offset.z));
float3 g8 = calcGradient(sample+make_float3(offset.x, -offset.y, -offset.z));

40 float3 lerp0 = lerp(lerp(g1, g2, 0.5f), lerp(g3, g4, 0.5f), 0.5f);
float3 lerp1 = lerp(lerp(g5, g6, 0.5f), lerp(g7, g8, 0.5f), 0.5f);

return lerp(g0, lerp(lerp0, lerp1, 0.5f), 0.75f);
}

45

// Standard Phong illumination, the material and light properties are hardcoded for brevity
inline __device__

float3 phong(float3 sample, float3 color, float3 gradient, float3 lightPos, float3 cameraPos) {
float3 N = normalize(gradient);

50 float3 L = normalize(lightPos - sample);
float3 V = normalize(cameraPos - sample);

110

A.2 CUDA Kernel for Volume Raycasting

float shade = 0.3f; // ambient
float NdotL = max(dot(N, L), 0.f);

55 shade += NdotL * 0.4f; // diffuse

float3 H = normalize(V + L);
float NdotH = __powf(max(dot(N, H), 0.f), 60.f); // shininess
shade += NdotH * 0.5f; // specular

60

return color * shade;
}

// Performs direct volume rendering
65 __global__

void basicRaycaster(float4* entryPoints, float4* exitPoints, float4* output,
uint width, uint height, float qualityFactorRCP,
float3 cameraPos, float3 lightPos)

{
70 // Determine our position on the screen based on thread and block ID

uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;

if (x >= width || y >= height)
75 return;

uint index = (__umul24(y, width) + x);

// enforce reading 4 floats although only 3 are accessed to get coalescing
80 volatile float4 entry4 = entryPoints[index];

volatile float4 exit4 = exitPoints[index];
float3 first = { entry4.x, entry4.y, entry4.z };
float3 last = { exit4.x, exit4.y, exit4.z };

85 if (first == last) {
output[index] = make_float4(0.f);
return;

}

90 float4 result = make_float4(0.f);

// calculate ray parameters
float stepIncr = qualityFactorRCP;
float t = 0.f;

95 float3 direction = last - first;

float tend = length(direction);
direction = normalize(direction);

100 while (t <= tend) {
float3 sample = first + t * direction;
float intensity = tex3D(volumeTex, sample.x, sample.y, sample.z);

#ifdef GRAD
105 #ifdef GRAD_FILTER

111

Appendix A – Source Code

float3 gradient = calcGradientFiltered(sample);
#else

float3 gradient = calcGradient(sample);
#endif // GRAD_FILTER

110 #endif // GRAD

#ifdef TF
float4 color = tex1D(transferFuncTex, intensity); // moved here to hide latency

#else
115 float4 color = make_float4(intensity);

#endif // TF

#ifdef GRAD
#ifdef PHONG

120 float3 shadedColor = phong(sample, make_float3(color), gradient, lightPos, cameraPos);
color.x = shadedColor.x;
color.y = shadedColor.y;
color.z = shadedColor.z;

#endif // PHONG
125 #endif // GRAD

t += stepIncr;

// perform compositing
130 color.w *= qualityFactorRCP;

result.x = result.x + (1.f - result.w) * color.w * color.x;
result.y = result.y + (1.f - result.w) * color.w * color.y;
result.z = result.z + (1.f - result.w) * color.w * color.z;

135 result.w = result.w + (1.f - result.w) * color.w;

#ifdef ERT
// early ray termination
if (result.w >= 1.f) {

140 result.w = 1.f;
t = tend + 1.f;

}
#endif // ERT

}
145

// write output color
output[index] = result;

}

Listing A.2: CUDA kernel for performing basic volume raycasting.

112

Appendix B

Index of Data Sets

The following contains information about the volume data sets used throughout this
thesis. Some of them were resized for individual tests; this is noted where applicable
in the respective chapter.

Static Data Sets

aneurysm

Rotational C-arm x-ray scan of the arteries in the right half of a
human head, with an aneurism visible.

Dimensions: 256× 256× 256
Data type: 8 bit unsigned integer
Source: http://www.volvis.org

Courtesy of Philips Research, Hamburg, Germany.

backpack

CT scan of a backpack filled with items.

Dimensions: 512× 512× 373
Data type: 12 bit unsigned integer
Source: http://www.volvis.org

Courtesy of Kevin Kreeger, Viatronix Inc., USA.

engine

CT scan of two cylinders of an engine block.

Dimensions: 256× 256× 128
Data type: 8 bit unsigned integer
Source: http://www.volvis.org

Created by General Electric.

113

http://www.volvis.org
http://www.volvis.org
http://www.volvis.org

Appendix B – Index of Data Sets

hand

CT scan of a human hand.

Dimensions: 256× 256× 256
Data type: 12 bit unsigned integer

Courtesy of Tiani Medgraph, Vienna, Austria.

stagbeetle

CT scan of a stag beetle sculpture.

Dimensions: 416× 416× 247
Data type: 16 bit unsigned integer
Source: http://www.cg.tuwien.ac.at/research/

publications/2005/dataset-stagbeetle/

The stag beetle from Georg Glaeser, Vienna University of Applied Arts, Austria, was
scanned with an industrial CT by Johannes Kastner, Wels College of Engineering,
Austria, and Meister Eduard Gröller, Vienna University of Technology, Austria.

vertebra

Rotational angiography scan of a human head with an aneurysm.
Only contrasted blood vessels are visible.

Dimensions: 512× 512× 512
Data type: 12 bit unsigned integer
Source: http://www.volvis.org

Courtesy of Michael Meißner, Viatronix Inc., USA.

vmhead

Visible Human head CT.

Dimensions: 512× 512× 294
Data type: 12 bit unsigned integer
Source: http://www.nlm.nih.gov/research/

visible/getting_data.html

Courtesy of the Visible Human Project, U.S. National Library of Medicine. The
volume was constructed from the raw data using the instructions from http://teem.

sourceforge.net/nrrd/vmhead/.

114

http://www.cg.tuwien.ac.at/research/publications/2005/dataset-stagbeetle/
http://www.cg.tuwien.ac.at/research/publications/2005/dataset-stagbeetle/
http://www.volvis.org
http://www.nlm.nih.gov/research/visible/getting_data.html
http://www.nlm.nih.gov/research/visible/getting_data.html
http://teem.sourceforge.net/nrrd/vmhead/
http://teem.sourceforge.net/nrrd/vmhead/

Time-Varying Data Sets

combustion

Turbulent combustion simulation.

Dimensions: 480× 720× 120
Time steps: 122
Data type: 32-bit float
Modalities: chi, vort, y_oh
Source: http://vis.cs.ucdavis.edu/Ultravis/datasets/

This data set was made available by Dr. Jacqueline Chen at the Sandia National
Laboratory through the SciDAC Institute for Ultra-Scale Visualization.

convection

Hydrodynamical simulation of a thermal plume.

Dimensions: 512× 256× 256
Time steps: 401
Data type: 32-bit float
Modalities: temperature (T), enstrophy (ens)

This data set was generated by Johannes Lülff and Michael
Wilczek from the Institute for Theoretical Physics at the University of Münster.

hurricane

Simulation of Hurricane Isabel from the 2003 Atlantic hurricane
season.

Dimension: 500× 500× 100
Time steps: 48
Data type: 32-bit float
Modalities: qrain
Source: http://www.vets.ucar.edu/vg/isabeldata/

The Hurricane Isabel data was produced by the Weather Research and Forecast (WRF)
model, courtesy of NCAR, and the U.S. National Science Foundation (NSF).

115

http://vis.cs.ucdavis.edu/Ultravis/datasets/
http://www.vets.ucar.edu/vg/isabeldata/

116

Bibliography

Ait-Aoudia, S., Benhamida, F.-Z., and Yousfi, M.-A. (2006). Lossless compression
of volumetric medical data. In ISCIS: International Symposium on Computer and
Information Sciences, volume 4263 of Lecture Notes in Computer Science, pages 563–
571. Springer-Verlag.

AMD (2009). Stream Computing User Guide, Version 1.4-beta. Advanced Micro Devices,
Inc.

Avila, R., Sobierajski, L., and Kaufman, A. (1992). Towards a comprehensive volume
visualization system. In Proceedings of IEEE Visualization, pages 13–20.

Binotto, B., Comba, J. L. D., and Freitas, C. M. D. (2003). Real-time volume rendering
of time-varying data using a fragment-shader compression approach. In PVG ’03:
Proceedings of the IEEE Symposium on Parallel and Large-Data Visualization and Graphics,
pages 69–76.

Buck, I., Fatahalian, K., and Hanrahan, P. (2004a). Poster: GPUBench: Evaluating
GPU performance for numerical and scientific applications. In ACM Workshop on
General-Purpose Computing on Graphics Processors.

Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hanrahan,
P. (2004b). Brook for GPUs: Stream computing on graphics hardware. ACM
Transactions on Graphics, 23(3):777–786.

Burrows, M. and Wheeler, D. J. (1994). A block-sorting lossless data compression
algorithm. Technical Report 124, Digital Equipment Corporation, Palo Alto.

Crow, F. C. (1977). Shadow algorithms for computer graphics. In SIGGRAPH ’77: Pro-
ceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques,
pages 242–248.

Cullip, T. J. and Neumann, U. (1994). Accelerating volume reconstruction with 3D
texture hardware. Technical report, University of North Carolina at Chapel Hill.

117

Bibliography

Eisenmann, U., Freudling, A., Metzner, R., Hartmann, M., Wirtz, C. R., and Dickhaus,
H. (2009). Volume rendering for planning and performing neurosurgical interven-
tions. In World Congress on Medical Physics and Biomedical Engineering, volume 25/6
of IFMBE Processings, pages 201–204. Springer-Verlag.

Engel, K., Hadwiger, M., Kniss, J. M., and Weißkopf, D. (2006). Real-Time Volume
Graphics. A K Peters.

Fout, N. and Ma, K.-L. (2007). Transform coding for hardware-accelerated volume
rendering. IEEE Transactions on Visualization and Computer Graphics, 13(6):1600–1607.

Fraedrich, R., Bauer, M., and Stamminger, M. (2007). Sequential data compression
of very large data in volume rendering. In VMV 2007: Proceedings of the Vision,
Modeling, and Visualization Conference, pages 41–50. Akademische Verlagsgesellschaft
AKA.

Gamma, E., Helm, R., Johnson, R. E., and Vlissides, J. (1995). Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley.

Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. (1984). Modeling
the interaction of light between diffuse surfaces. In SIGGRAPH ’84: Proceedings of
the 11th Annual Conference on Computer Graphics and Interactive Techniques, pages
213–222.

Grau, S. and Tost, D. (2007). Frame-to-frame coherent GPU ray-casting for time-
varying volume data. In VMV 2007: Proceedings of the Vision, Modeling, and Visual-
ization Conference, pages 61–70. Akademische Verlagsgesellschaft AKA.

Grauer, B., Harlambang, N., and Hata, N. (2008). Volume rendering algorithm
with CUDA for Slicer3. http://www.slicer.org/slicerWiki/index.php/Slicer3:

Volume_Rendering_With_Cuda. Accessed 2008-12-03.

Grimm, S., Bruckner, S., Kanitsar, A., and Gröller, M. E. (2004). A refined data
addressing and processing scheme to accelerate volume raycasting. Computers &
Graphics, 28(5):719–729.

Gudmundsson, B. and Randén, M. (1990). Incremental generation of projections of
CT-volumes. In Proceedings of the First IEEE Conference on Visualization in Biomedical
Computing, pages 27–34.

Guthe, S., Wand, M., Gonser, J., and Straßer, W. (2002). Interactive rendering of large
volume data sets. In Proceedings of IEEE Visualization, pages 53–60.

118

http://www.slicer.org/slicerWiki/index.php/Slicer3:Volume_Rendering_With_Cuda
http://www.slicer.org/slicerWiki/index.php/Slicer3:Volume_Rendering_With_Cuda

Bibliography

Hadwiger, M., Sigg, C., Scharsach, H., Bühler, K., and Gross, M. H. (2005). Real-time
ray-casting and advanced shading of discrete isosurfaces. Computer Graphics Forum
(Eurographics 2005), 24(3):303–312.

Havran, V., Bittner, J., and Seidel, H.-P. (2003). Exploiting temporal coherence in
ray casted walkthroughs. In SCCG ’03: Proceedings of the 19th Spring Conference on
Computer graphics, pages 149–155. ACM.

Hernell, F., Ljung, P., and Ynnerman, A. (2007). Efficient ambient and emissive
tissue illumination using local occlusion in multiresolution volume rendering. In
Eurographics/IEEE VGTC Symposium on Volume Graphics, pages 1–8.

Houston, M. (2007). Understanding GPUs through benchmarking. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 courses.

Howison, M., Bethel, E. W., and Childs, H. (2010). MPI-hybrid parallelism for volume
rendering on large, multi-core systems. In EGPGV ’10: Eurographics Symposium on
Parallel Graphics and Visualization, Norrköping.

IEEE (2008). IEEE 754-2008 Standard for Floating-Point Arithmetic. Microprocessor
Standards Committee of the IEEE Computer Society.

Iourcha, K., Nayak, K., and Hong, Z. (1999). System and method for fixed-rate
block-based image compression with inferred pixel values. US Patent 5,956,431.
S3 Incorporated.

Kahle, J. A., Day, M. N., Hofstee, H. P., Johns, C. R., Maeurer, T. R., and Shippy,
D. (2005). Introduction to the Cell multiprocessor. IBM Journal of Research and
Development, 49(4/5):589–604.

Kainz, B., Grabner, M., Bornik, A., Hauswiesner, S., Muehl, J., and Schmalstieg, D.
(2009). Ray casting of multiple volumetric datasets with polyhedral boundaries on
manycore GPUs. ACM Transactions on Graphics, 28(5):1–9.

Kapasi, U. J., Rixner, S., Dally, W. J., Khailany, B., Ahn, J. H., Mattson, P., and Owens,
J. D. (2003). Programmable stream processors. IEEE Computer, pages 54–62.

Kim, J. (2008). Efficient Rendering of Large 3-D and 4-D Scalar Fields. PhD thesis,
University of Maryland, College Park.

Kim, J. and JaJa, J. (2008). Streaming model based volume ray casting implementation
for Cell Broadband Engine. In EGPGV ’08: Eurographics Symposium on Parallel
Graphics and Visualization, pages 9–16.

119

Bibliography

Klein, T., Strengert, M., Stegmaier, S., and Ertl, T. (2005). Exploiting frame-to-frame
coherence for accelerating high-quality volume raycasting on graphics hardware.
In Proceedings of IEEE Visualization, pages 223–230.

Kraus, M. and Ertl, T. (2002). Adaptive texture maps. In HWWS ’02: Proceedings of the
ACM SIGGRAPH/Eurographics Conference on Graphics Hardware, pages 7–15.

Krüger, J. and Westermann, R. (2003). Acceleration techniques for GPU-based volume
rendering. In Proceedings of IEEE Visualization, pages 287–292.

Lakare, S. and Kaufman, A. (2004). Light weight space leaping using ray coherence.
In Proceedings of IEEE Visualization, pages 19–26.

Law, A. and Yagel, R. (1996). Multi-frame thrashless ray casting with advancing
ray-front. In Proceedings of Graphics Interfaces, pages 70–77.

Leung, W., Neophytou, N., and Mueller, K. (2006). SIMD-aware ray-casting. In
Eurographics/IEEE 5th International Workshop on Volume Graphics, pages 59–62.

Levoy, M. (1988). Display of surfaces from volume data. IEEE Computer Graphics and
Applications, 8(3):29–37.

Levoy, M. (1990). Efficient ray tracing of volume data. ACM Transactions on Graphics,
9(3):245–261.

Li, W., Mueller, K., and Kaufman, A. (2003). Empty space skipping and occlusion
clipping for texture-based volume rendering. In Proceedings of IEEE Visualization,
pages 317–324.

Lindstrom, P. and Isenburg, M. (2006). Fast and efficient compression of floating-point
data. IEEE Transactions on Visualization and Computer Graphics, 12(5):1245–1250.

Liu, B., Clapworthy, G. J., and Dong, F. (2009). Accelerating volume raycasting using
proxy spheres. Computer Graphics Forum (EuroVis 2009), 28(3):839–846.

Ljung, P., Lundström, C., and Ynnerman, A. (2006). Multiresolution interblock interpo-
lation in direct volume rendering. In EuroVis ’06: Proceedings of the Eurographics/IEEE
Symposium on Visualization, pages 259–266.

Lorensen, W. E. and Cline, H. E. (1987). Marching Cubes: A high resolution 3D
surface construction algorithm. In SIGGRAPH ’87: Proceedings of the 14th Annual
Conference on Computer Graphics and Interactive Techniques, pages 163–169.

120

Bibliography

Luebke, D. and Parker, S. (2008). Interactive ray tracing with CUDA. Presentation at
the NVISION 08 conference, San Jose.

Ma, K.-L. (2003). Visualizing time-varying volume data. Computing in Science and
Engineering, 5(2):34–42.

Maršálek, L., Hauber, A., and Slusallek, P. (2008). Poster: High-speed volume ray
casting with CUDA. IEEE Symposium on Interactive Ray Tracing, page 185.

Max, N. (1995). Optical models for direct volume rendering. IEEE Transactions on
Visualization and Computer Graphics, 1(2):99–108.

Mensmann, J., Ropinski, T., and Hinrichs, K. (2008a). Accelerating volume raycasting
using occlusion frustums. In Hege, H.-C., Laidlaw, D. H., Pajarola, R., and Staadt,
O., editors, Eurographics/IEEE 7th International Symposium on Volume and Point-Based
Graphics, pages 147–154, Los Angeles.

Mensmann, J., Ropinski, T., and Hinrichs, K. (2008b). Interactive cutting operations
for generating anatomical illustrations from volumetric data sets. Journal of WSCG –
16th International Conference in Central Europe on Computer Graphics, Visualization and
Computer Vision, 16(1-3):89–96.

Mensmann, J., Ropinski, T., and Hinrichs, K. (2009). Poster: Slab-based raycasting:
Efficient volume rendering with CUDA. SIGGRAPH/Eurographics Conference on
High Performance Graphics, New Orleans.

Mensmann, J., Ropinski, T., and Hinrichs, K. (2010a). An advanced volume raycasting
technique using GPU stream processing. In GRAPP 2010: International Conference
on Computer Graphics Theory and Applications, pages 190–198, Angers.

Mensmann, J., Ropinski, T., and Hinrichs, K. (2010b). A GPU-supported lossless
compression scheme for rendering time-varying volume data. In Westermann,
R. and Kindlmann, G., editors, IEEE/Eurographics 8th International Symposium on
Volume Graphics, pages 109–116, Norrköping.

Meyer-Spradow, J. (2009). Interaktive Entwicklung Raycasting-basierter Visualisierungs-
Techniken für medizinische Volumen-Daten mit Hilfe von Datenflussnetzwerken. PhD
thesis, Westfälische Wilhelms-Universität Münster.

Meyer-Spradow, J., Ropinski, T., Mensmann, J., and Hinrichs, K. (2009). Voreen: A
rapid-prototyping environment for ray-casting-based volume visualizations. IEEE
Computer Graphics and Applications, 29(6):6–13.

121

Bibliography

Meyer-Spradow, J., Ropinski, T., Mensmann, J., and Hinrichs, K. (2010). Interactive
design and debugging of GPU-based volume visualizations. In GRAPP 2010:
International Conference on Computer Graphics Theory and Applications, pages 239–245,
Angers.

Meyer-Spradow, J., Ropinski, T., Vahrenhold, J., and Hinrichs, K. (2006). Illustrating
dynamics of time-varying volume datasets in static images. In VMV 2006: Proceed-
ings of the Vision, Modeling, and Visualization Conference, pages 333–340. Akademische
Verlagsgesellschaft AKA.

Morton, G. M. (1966). A computer oriented geodetic data base and a new technique
in file sequencing. Technical report, IBM Ltd., Ottawa, Canada.

Munshi, A., editor (2009). The OpenCL Specification, Version 1.0.48. Khronos OpenCL
Working Group.

Nagayasu, D., Ino, F., and Hagihara, K. (2006). Two-stage compression for fast
volume rendering of time-varying scalar data. In GRAPHITE 2006: Proceedings of the
International Conference on Computer Graphics and Interactive Techniques in Australasia
and Southeast Asia, pages 275–284.

Nagayasu, D., Ino, F., and Hagihara, K. (2008). A decompression pipeline for accel-
erating out-of-core volume rendering of time-varying data. Computers & Graphics,
32(3):350–362.

Nickolls, J., Buck, I., Garland, M., and Skadron, K. (2008). Scalable parallel program-
ming with CUDA. ACM Queue, 6(2):40–53.

NVIDIA (2004). OpenGL extension nv_texture_compression_vtc. http://www.opengl.
org/registry/specs/NV/texture_compression_vtc.txt. Accessed 2010-06-12.

NVIDIA (2008a). CUDA GPU occupancy calculator. http://developer.download.

nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls. Accessed 2010-06-12.

NVIDIA (2008b). CUDA Programming Guide, Version 2.1. NVIDIA Corporation.

NVIDIA (2008c). CUDA SDK code samples. http://www.nvidia.com/object/cuda_

get_samples.html. Accessed 2009-04-27.

NVIDIA (2009). CUDA Linux Release Notes, Version 2.1. http://developer.download.
nvidia.com/compute/cuda/2_1/toolkit/docs/CUDA_Release_Notes_2.1_linux.txt.
Accessed 2010-04-20.

122

http://www.opengl.org/registry/specs/NV/texture_compression_vtc.txt
http://www.opengl.org/registry/specs/NV/texture_compression_vtc.txt
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://www.nvidia.com/object/cuda_get_samples.html
http://www.nvidia.com/object/cuda_get_samples.html
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/CUDA_Release_Notes_2.1_linux.txt
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/CUDA_Release_Notes_2.1_linux.txt

Bibliography

NVIDIA (2010). CUDA Programming Guide, Version 3.0. NVIDIA Corporation.

Oberhumer, M. F. X. J. (2008). LZO real-time data compression library. http://www.
oberhumer.com/opensource/lzo/. Accessed 2010-06-12.

Owens, J. (2005). Streaming architectures and technology trends. In Pharr, M., editor,
GPU Gems 2, chapter 29, pages 457–470. Addison Wesley.

Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E.,
and Purcell, T. J. (2007). A survey of general-purpose computation on graphics
hardware. Computer Graphics Forum, 26(1):80–113.

Pavlov, I. (2009). LZMA software development kit. http://www.7-zip.org/sdk.html.
Accessed 2010-06-12.

Phong, B. T. (1975). Illumination for computer generated pictures. Communications of
the ACM, 18(6):311–317.

Praßni, J.-S., Ropinski, T., Mensmann, J., and Hinrichs, K. (2010). Shape-based
transfer functions for volume visualization. In IEEE Pacific Visualization Symposium
(PacificVis), pages 9–16.

Ropinski, T., Döring, C., and Rezk-Salama, C. (2010). Interactive volumetric lighting
simulating scattering and shadowing. In IEEE Pacific Visualization Symposium
(PacificVis), pages 169–176.

Ropinski, T., Meyer-Spradow, J., Diepenbrock, S., Mensmann, J., and Hinrichs, K.
(2008). Interactive volume rendering with dynamic ambient occlusion and color
bleeding. Computer Graphics Forum (Eurographics 2008), 27(2):567–576.

Röttger, S., Guthe, S., Weiskopf, D., Ertl, T., and Straßer, W. (2003). Smart hardware-
accelerated volume rendering. In VISSYM ’03: Proceedings of the Symposium on Data
Visualisation, pages 231–238.

Salomon, D. (2002). A Guide to Data Compression Methods. Springer-Verlag.

Sayood, K. (2000). Introduction to Data Compression. Morgan Kaufmann, 2nd edition.

Scharsach, H., Hadwiger, M., Neubauer, A., Wolfsberger, S., and Bühler, K. (2006). Per-
spective isosurface and direct volume rendering for virtual endoscopy applications.
In Eurographics/IEEE VGTC Symposium on Visualization, pages 315–322.

123

http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
http://www.7-zip.org/sdk.html

Bibliography

Schaufler, G., Dorsey, J., Decoret, X., and Sillion, F. X. (2000). Conservative volumetric
visibility with occluder fusion. In SIGGRAPH ’00: Proceedings of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, pages 229–238.

Schneider, J. and Westermann, R. (2003). Compression domain volume rendering. In
Proceedings of IEEE Visualization, pages 293–300.

Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins,
S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., and
Hanrahan, P. (2008). Larrabee: a many-core x86 architecture for visual computing.
ACM Transactions on Graphics, 27(3):1–15.

Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the
Institute of Radio Engineers, 37(1):10–21.

Shreiner, D. (2009). OpenGL Programming Guide: The Official Guide to Learning OpenGL,
Versions 3.0 and 3.1. Addison-Wesley Professional, 7th edition.

Smelyanskiy, M., Holmes, D., Chhugani, J., Larson, A., Carmean, D. M., Hanson, D.,
Dubey, P., Augustine, K., Kim, D., Kyker, A., Lee, V. W., Nguyen, A. D., Seiler, L.,
and Robb, R. (2009). Mapping high-fidelity volume rendering for medical imaging
to CPU, GPU and many-core architectures. IEEE Transactions on Visualization and
Computer Graphics, 15(6):1563–1570.

Sohn, B.-S., Bajaj, C., and Siddavanahalli, V. (2004). Volumetric video compression for
interactive playback. Computer Vision and Image Understanding, 96(3):435–452.

Šrámek, M. and Kaufman, A. (2000). Fast ray-tracing of rectilinear volume data
using distance transforms. IEEE Transactions on Visualization and Computer Graphics,
6(3):236–252.

Wald, I., Friedrich, H., Marmitt, G., and Seidel, H.-P. (2005). Faster isosurface ray
tracing using implicit kd-trees. IEEE Transactions on Visualization and Computer
Graphics, 11(5):562–572.

Wald, I., Slusallek, P., Benthin, C., and Wagner, M. (2001). Interactive rendering with
coherent ray tracing. Computer Graphics Forum (Eurographics 2001), 20(3):153–164.

Wan, M., Sadiq, A., and Kaufman, A. (2002). Fast and reliable space leaping for
interactive volume rendering. In Proceedings of IEEE Visualization, pages 195–202.

Westermann, R. and Sevenich, B. (2001). Accelerated volume ray-casting using texture
mapping. In Proceedings of IEEE Visualization, pages 271–278.

124

Bibliography

Westover, L. (1990). Footprint evaluation for volume rendering. In SIGGRAPH ’90: Pro-
ceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques,
pages 367–376.

Whitted, T. (1980). An improved illumination model for shaded display. Communica-
tions of the ACM, 23(6):343–349.

Yagel, R. and Shi, Z. (1993). Accelerating volume animation by space-leaping. In
Proceedings of IEEE Visualization, pages 62–69.

Yoon, I., Demers, J., Kim, T., and Neumann, U. (1997). Accelerating volume visualiza-
tion by exploiting temporal coherence. In Proceedings of IEEE Visualization, pages
21–24.

Ziv, J. and Lempel, A. (1977). A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23:337–343.

125

126

Acronyms

CT computed tomography

CUDA compute unified device architecture

DMA direct memory access

DVR direct volume rendering

EEP entry/exit points (ray parameters)

ERT early ray termination

FPS frames per second

GLSL OpenGL shading language

GPGPU general-purpose computing on graphics processing units

GPU graphics processing unit

JIT just-in-time (compilation)

LUT lookup table

MIMD multiple instructions, multiple data

MIP maximum intensity projection

MP streaming multiprocessor (CUDA)

OpenCL open computing language

OpenGL open graphics library

PBO pixel buffer object (OpenGL)

PTX parallel thread execution (pseudo-assembly language used in CUDA)

127

Acronyms

RAID redundant array of independent/inexpensive disks

SIMD single instruction, multiple data

SIMT single instruction, multiple threads

SSD solid-state drive

SP scalar processor (CUDA)

128

	Preface
	Introduction
	General-Purpose Programming on Graphics Processors
	GPGPU Approaches
	Stream Processing
	History of stream processing in graphics

	CUDA Basics
	Differences between CUDA and graphics programming

	Concepts of Volume Rendering
	Theoretical Background
	Volume Rendering Approaches
	Direct volume rendering
	Transfer functions
	Illumination models
	Performance and image quality

	GPU-based Raycasting
	Accelerating Volume Raycasting
	Empty space skipping
	Early ray termination
	Bricking and multi-resolution approaches

	Voreen: The Volume Rendering Engine
	Data-flow Concept
	User Interface
	Integration of GPU-based Raycasting
	Adding New Components
	Performance Considerations

	Empty Space Skipping using Occlusion Frustums
	Related Work
	Impact of Hardware Restrictions on GPU-based Raycasting
	Optimizing the Proxy Geometry for Space Leaping
	Occlusion frustums as proxy geometry
	Clipping the occlusion volume
	Possible extensions to the occlusion frustum approach

	GPU Implementation
	Analyzing first-hit points
	Generating occlusion frustums

	Integration into Voreen
	Data-flow network
	Implementing the optimized proxy geometry processor

	Results
	Performance evaluation
	Discussion

	Summary

	Applying GPU Stream Processing to Volume Raycasting
	Related Work
	GPU-based volume raycasting
	GPU stream processing

	Raycasting with CUDA
	Using the CUDA architecture for raycasting
	3D texture caching
	Accelerating raycasting

	Implementing Basic Raycasting
	Fragment shader implementation
	CUDA implementation

	Slab-based Raycasting
	Slab-based approach
	CUDA implementation

	Integration into Voreen
	Volume handling
	Network integration

	Results
	Testing methodology
	Basic raycaster
	Slab-based raycaster
	Discussion

	Summary

	Lossless Compression for Rendering Time-Varying Volume Data
	Related Work
	Hybrid Compression Scheme
	Data properties and hardware limitations
	Two-stage compression approach
	Subdividing the volume into bricks for compression
	Main compression algorithm
	Prediction schemes
	Variable-length coding
	Data preprocessing

	GPU-supported Decompression Pipeline
	Multi-threaded loading and LZO decompression
	Asynchronous data transfer to the GPU
	Decoding and brick assembly
	Rendering

	Integration into Voreen
	Preprocessing and on-disk storage format
	Network integration

	Results
	Test data sets
	Compression ratio
	Rendering speed

	Summary

	Conclusions
	Source Code
	Fragment Shader for Volume Raycasting
	CUDA Kernel for Volume Raycasting

	Index of Data Sets
	Bibliography
	Acronyms

